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Zusammenfassung

Uber die Hilfte der Weltbevolkerung lebt heute in Stéidten. Mit einer hohen Dichte an Menschen,
Giitern und Gebéduden sind Stéadte nicht nur die wirtschaftlichen, politischen und kulturellen
Zentren einer Gesellschaft, sondern auch besonders anfillig gegeniiber Naturkatastrophen.
Insbesondere Hochwasser und Uberflutungen stellen in Folge von steigenden Meeresspiegeln
und einer erwarteten Zunahme von Extremwettereignissen eine wachsende Bedrohung in vielen
Regionen dar.

Um die moglichen Folgen dieser Entwicklung zu vermeiden bzw. zu reduzieren, ist es
notwendig sich der steigenden Gefahr durch geeignete Mafnahmen anzupassen. Bisher ist der
Hochwasserschutz in Stédten beinahe ausschlieRlich auf Uberflutungen durch Flusshochwasser
oder Sturmfluten fokussiert. Dabei werden sogenannte urbane Sturzfluten, die in den letzten
Jahren vermehrt zu hohen Schiden in Stédten gefiihrt haben, nicht berticksichtigt. Bei urbanen
Sturzfluten fiihren lokale Starkniederschliige mit hohen Regenmengen zu einer Uberlastung
des stddtischen Abwassersystems und damit zu einer direkten, oft kleinrdumigen Uberflutung
innerhalb eines bebauten Gebiets. Mit einer prognostizierten Zunahme von Starkniederschlé-
gen, sowie einer baulichen Verdichtung und damit einhergehender Flichenversiegelung in
vielen Stédten, ist mit einer Zunahme von urbanen Sturzfluten zu rechnen. Dies verlangt die
Einbindung des Risikos durch urbane Sturzfluten in bestehende Hochwasserschutzkonzepte.
Bisher fehlen allerdings sowohl detaillierte Daten als auch Methoden um das Risiko durch
urbane Sturzfluten und die dadurch verursachten Schiden, etwa an Wohngeb&auden, zuverlissig
abzuschéatzen.

Aus diesem Grund beschéftigt sich diese Arbeit hauptséchlich mit der Entwicklung von
Verfahren und Modellen zur Abschétzung von Schéden an Privathaushalten durch urbane
Sturzfluten. Dazu wurden detaillierte Daten durch Telefon- und Online-Umfragen nach urba-
nen Sturzflutereignissen in Deutschland und in den Niederlanden erhoben und ausgewertet.
Die Erkenntnisse aus den detaillierten Analysen zu Vorsorge, Notmafnahmen und Wieder-
herstellung, vor, wahrend und nach urbanen Sturzflutereignissen, wurden genutzt um eine
neue Methode zur Schitzung von Schidden an Wohngeb&duden zu entwickeln. Dabei werden
neben Angaben wie Dauer und Hohe der Uberflutung, auch Eigenschaften von Haushalten,
wie etwa deren Risikobewusstsein, in die Schétzung miteinbezogen. Nach lokaler Validierung
wurde die neuentwickelte Methode beispielhaft zur Schatzung von Wohngebaudeschdden nach
einem urbanen Sturzflutereignis im Grofraum Houston (Texas, USA) erfolgreich angewendet.
Anders als bei bisherigen Ansétzen wird der geschétzte Schaden eines Wohngeb&udes nicht als
einzelner Wert angegeben, sondern als Verteilung, welche die Bandbreite moglicher Schiaden
und deren Wahrscheinlichkeit angibt. Damit konnte die Zuverlassigkeit von Schadensschiatzun-
gen im Vergleich zu bisherigen Verfahren erheblich verbessert werden. Durch die erfolgreiche
Anwendung sowohl auf der Ebene einzelner Gebéude als auch fiir gesamte Stédte, ergibt sich
ein breites Spektrum an Nutzungsmoglichkeiten, etwa als Entscheidungsunterstiitzung in der
Stadtplanung oder fiir eine verbesserte Frithwarnung vor urbanen Sturzfluten.
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Summary

Today, more than half of the world’s population lives in urban areas. With a high density
of population and assets, urban areas are not only the economic, cultural and social hubs
of every society, they are also highly susceptible to natural disasters. As a consequence of
rising sea levels and an expected increase in extreme weather events caused by a changing
climate in combination with growing cities, flooding is an increasing threat to many urban
agglomerations around the globe.

To mitigate the destructive consequences of flooding, appropriate risk management and
adaptation strategies are required. So far, flood risk management in urban areas is almost
exclusively focused on managing river and coastal flooding. Often overlooked is the risk from
small-scale rainfall-triggered flooding, where the rainfall intensity of rainstorms exceeds the
capacity of urban drainage systems, leading to immediate flooding. Referred to as pluvial
flooding, this flood type exclusive to urban areas has caused severe losses in cities around
the world. Without further intervention, losses from pluvial flooding are expected to increase
in many urban areas due to an increase of impervious surfaces compounded with an aging
drainage infrastructure and a projected increase in heavy precipitation events. While this
requires the integration of pluvial flood risk into risk management plans, so far little is known
about the adverse consequences of pluvial flooding due to a lack of both detailed data sets and
studies on pluvial flood impacts. As a consequence, methods for reliably estimating pluvial
flood losses, needed for pluvial flood risk assessment, are still missing.

Therefore, this thesis investigates how pluvial flood losses to private households can be
reliably estimated, based on an improved understanding of the drivers of pluvial flood loss.
For this purpose, detailed data from pluvial flood-affected households was collected through
structured telephone- and web-surveys following pluvial flood events in Germany and the
Netherlands.

Pluvial flood losses to households are the result of complex interactions between impact
characteristics such as the water depth and a household’s resistance as determined by its risk
awareness, preparedness, emergency response, building properties and other influencing factors.
Both exploratory analysis and machine-learning approaches were used to analyze differences
in resistance and impacts between households and their effects on the resulting losses. The
comparison of case studies showed that the awareness around pluvial flooding among private
households is quite low. Low awareness not only challenges the effective dissemination of
early warnings, but was also found to influence the implementation of private precautionary
measures. The latter were predominately implemented by households with previous experience
of pluvial flooding. Even cases where previous flood events affected a different part of the
same city did not lead to an increase in preparedness of the surveyed households, highlighting
the need to account for small-scale variability in both impact and resistance parameters when
assessing pluvial flood risk.

While it was concluded that the combination of low awareness, ineffective early warning
and the fact that only a minority of buildings were adapted to pluvial flooding impaired the
coping capacities of private households, the often low water levels still enabled households to
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mitigate or even prevent losses through a timely and effective emergency response.

These findings were confirmed by the detection of loss-influencing variables, showing
that cases in which households were able to prevent any loss to the building structure are
predominately explained by resistance variables such as the household’s risk awareness, while
the degree of loss is mainly explained by impact variables.

Based on the important loss-influencing variables detected, different flood loss models were
developed. Similar to flood loss models for river floods, the empirical data from the preceding
data collection was used to train flood loss models describing the relationship between impact
and resistance parameters and the resulting loss to building structures. Different approaches
were adapted from river flood loss models using both models with the water depth as only
predictor for building structure loss and models incorporating additional variables from the
preceding variable detection routine.

The high predictive errors of all compared models showed that point predictions are not
suitable for estimating losses on the building level, as they severely impair the reliability of
the estimates. For that reason, a new probabilistic framework based on Bayesian inference
was introduced that is able to provide predictive distributions instead of single loss estimates.
These distributions not only give a range of probable losses, they also provide information on
how likely a specific loss value is, representing the uncertainty in the loss estimate.

Using probabilistic loss models, it was found that the certainty and reliability of a loss
estimate on the building level is not only determined by the use of additional predictors as
shown in previous studies, but also by the choice of response distribution defining the shape
of the predictive distribution. Here, a mix between a beta and a Bernoulli distribution to
account for households that are able to prevent losses to their building’s structure was found
to provide significantly more certain and reliable estimates than previous approaches using
Gaussian or non-parametric response distributions.

The successful model transfer and post-event application to estimate building structure
loss in Houston, TX, caused by pluvial flooding during Hurricane Harvey confirmed previous
findings, and demonstrated the potential of the newly developed multi-variable beta model for
future risk assessments. The highly detailed input data set constructed from openly available
data sources containing over 304,000 affected buildings in Harris County further showed the
potential of data-driven, building-level loss models for pluvial flood risk assessment.

In conclusion, pluvial flood losses to private households are the result of complex interactions
between impact and resistance variables, which should be represented in loss models. The
local occurrence of pluvial floods requires loss estimates on high spatial resolutions, i.e. on the
building level, where losses are variable and uncertainties are high.

Therefore, probabilistic loss estimates describing the uncertainty of the estimate should
be used instead of point predictions. While the performance of probabilistic models on the
building level are mainly driven by the choice of response distribution, multi-variable models
are recommended for two reasons:

First, additional resistance variables improve the detection of cases in which households
were able to prevent structural losses.

Second, the added variability of additional predictors provides a better representation of
the uncertainties when loss estimates from multiple buildings are aggregated.

This leads to the conclusion that data-driven probabilistic loss models on the building
level allow for a reliable loss estimation at an unprecedented level of detail, with a consistent
quantification of uncertainties on all aggregation levels. This makes the presented approach
suitable for a wide range of applications, from decision support in spatial planning to impact-
based early warning systems.
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Glossary

Bayesian inference
Statistical inference method using Bayes’ theorem to update the probability of a
hypothesis when more evidence or data becomes available.

beta distribution
A family of continuous statistical distributions defined on the interval [0, 1].

Bernoulli distribution
Discrete probability distribution describing the probability of a random variable
to be 0 or 1.

building content
Portable or semi-permanently attached goods inside or attached to a building.

building structure
Permanent and/or non-removable parts of a building.

extreme rainfall
Short-duration, high intensity rainfall that can cause damage to buildings both by
direct penetration through roofs or walls or by leading to pluvial flooding.

flood impact
Damaging properties of flooding determined by factors such as the depth, duration
and contamination of the floodwater.

flood loss and flood damage
Temporary or permanent physical harm caused by the effects of flooding. The
terms ’loss’ and 'damage’ are used synonymously in this thesis.

flood resistance
The ability of an object or individual to be not or less affected by the adverse
consequences of flooding.

flood risk management
Management approach that aims to reduce the likelihood and/or the impact of
floods through prevention, protection, preparedness and emergency response as
well as to facilitate the recovery after a flood event.

fluvial flooding
See river flooding.
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loss model
Mathematical model that quantifies the monetary losses associated with a natural
disaster or a comparable event.

machine learning
Predictive modeling technique that uses statistical methods to give computer
systems the ability to autonomously improve model predictions using data.

pluvial flooding
Flooding directly caused by rain storms over urban areas when precipitation
intensities exceed the capacity of the natural and engineered drainage systems in
urban areas. Flooding is independent from overflowing water bodies.

probabilistic model
Mathematical model with multiple possible outcomes, each representing varying
degrees of certainty of its occurrence.

reliability
Ability of a probabilistic model to produce prediction intervals that contain the
observed value.

river flooding
The rise of the water level of a river to an elevation such that the river overflows
its natural or built banks.

sharpness
The concentration of the predictive distribution from a predictive model. The
higher the sharpness and reliability of a predictive distribution, the better the
prediction.

stage-damage function
Function describing the relationship between flood losses and the inundation depth
of a flood. Stage-damage functions are typically developed for a specific building
class or land use based on data from previous events (empirical) or what-if analysis
(synthetic).

variable importance
Measure in a predictive model referring to the ability of a variable to improve the
prediction. The importance of a variable increases, the more a model relies on this
variable to make predictions.

zero-loss case

Cases in which flood water has entered a building but did not cause any monetary
loss or damage to the building structure or content.
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Creative Commons

Deutscher Wetterdienst (German Weather Service)
European Union

Euro (currency)

Federal Emergency Management Agency
Grid-to-grid

Gesamtverband der Deutschen Versicherungswirtschaft (German Insurer
Association)

Geographic Information System
Harris County Appraisal District
Highest Density Interval

Hit Rate

Interval Score

Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands
Meteorological Institute)

Landesamt fiir Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen
(North Rhine-Westphalia State Environmental Agency)
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USD
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1 Motivation and objectives

1.1 Flooding in urban areas

In 2008, the Department of Economic and Social Affairs of the United Nations announced that
half of the world’s population were currently living in urban settlements, and a recent update
estimates that the share of urban dwellers will reach two-thirds by 2050 (UN DESA, 2008,
2018). While at first glance this information has little to do with natural disasters, ongoing
urbanization has far-reaching implications for the global natural disaster risk. With a high
concentration of population and assets, urban areas are not only the economic, cultural and
social hubs of every society, but are also highly susceptible to natural disasters (IMECHE,
2013).

Of the estimated USD 4.3 trillion lost and 1.7 million people killed by natural disasters
between 1980 and 2016, a substantial amount occurred in urban areas (Munich Re, 2018; Gu
et al., 2015). Based on the occurrence of historical losses between 1981 and 2000, 88% of
cities worldwide with over 300,000 inhabitants were found to be highly vulnerable to economic
losses and 82% were found to be exposed to a high mortality vulnerability from at least one
type of natural disaster. Among the different types of natural disasters, floods are the most
common in terms of both fatalities and direct economic losses and are also the most common
natural disaster in urban areas, with 71% of cities worldwide being located in areas with a
high vulnerability to flood related economic losses (Gu et al., 2015; Doocy et al., 2013).

Descriptions and categorizations of floods can vary, but are commonly based on a combina-
tion of sources, causes and spatial scales as well as onset time and duration (Kron, 2005; Jha
et al., 2012). Based on these combinations four main types of flooding can be distinguished:
storm surges or coastal floods, where waves move inland due to a combination of low pressure
areas, high wind speeds and high tide; river (or fluvial) floods, where the water level of rivers
raise to an elevation such that the river overflows its banks; ground water floods, where a rise
in the groundwater table floods lower-lying structures; and rainfall-triggered overland floods,
where the precipitation intensity of local rainstorms is higher than the infiltration capacity of
the ground, leading to flooding before the water reaches a larger watercourse. Depending on
the onset time of flooding, floods are often further differentiated into flash floods and slowly
rising floods.

In urban areas, flooding is the result of a complex interaction between the previously
described natural processes and the built environment, and are therefore often caused or
intensified by a failure of flood defense measures, drainage infrastructure or other anthropogenic
causes (Dawson et al., 2008) (see Table 1.1).

Here, the extensive sealing of absorptive land cover with impervious surfaces leads to
a special case of rainfall-triggered flooding exclusive to urban areas: In the case of short-
duration rain storms over urban areas, where precipitation intensities exceed the design levels
of the urban drainage system, the water remains on impermeable surfaces or flows into local
depressions, leading to an almost immediate flooding of streets and buildings (Houston et al.,
2011) (see Figure 1.1).
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Table 1.1: Flood types in urban areas (adapted and modified from Jha et al. (2012))

Flood type Natural cause Anthropogenic cause (examples) Onset time

Capacity of sewage system exceeded
Poorly managed/faulty drainage system

Pluvial Rainstorm Lack of permeable surfaces due to increased Rapid
urban concentration
Development in flood plains Usually slow
Fluvial River overflow  Failure of structural flood defense (levees) Rapid in case
Failure in dam management of levee breaches

Development in low lying areas
Lower water abstraction from wells, due to  Slow
decreasing water consumption

Rise in ground-

Ground water
water level

Development in coastal zones Fairly rapid
Coastal Storm surge Removal of natural flood barriers (man- Rapid in case
groves, dunes) of dike breaches

This type of flooding is of central importance in this thesis and is referred to in the
remainder of the thesis as pluvial flooding".

As drainage systems in densely populated urban areas are typically designed to convey
runoff from rain storms with a duration and intensity corresponding to statistical return periods
between 2 and 10 years? (so called design storms) (ASCE, 2006; Guo, 2006; Ten Veldhuis,
2011; Rosenzweig et al., 2018), pluvial floods are common, yet often gain less attention than
river or coastal floods as their impacts are mostly local.

However, recent pluvial flood events in different regions around the world have demonstrated
the serious consequences of pluvial flooding. Well-documented examples include a severe
rainstorm with 150 mm of rainfall within three hours that hit the city of Copenhagen in July
2011 causing estimated flood losses of over USD 1 billion (DKK 6.2 billion), or the pluvial
flood in Beijing in July 2012 with rainfall rates varying between 100 mm and 460 mm over a
period of 20 hours affecting large parts of the city, killing 79 people and causing estimated
losses of over USD 1.86 billion (CNY 11.6 billion)(Wojcik et al., 2013; Wang et al., 2013).
Pluvial flooding in the Houston, TX, area caused by record-setting rainfall during Hurricane
Harvey in August 2017 was also responsible for the largest share of the estimated USD 125
billion in total losses and 36 fatalities (Jonkman et al., 2018; NOAA, 2018).

Besides individual high-impact events, a considerable part of the cumulative pluvial flood
losses over time is caused by frequent small-scale flooding exceeding those of rare, high-impact
events in many areas. For the case of pluvial flooding in the Netherlands, it is estimated that
the cumulative pluvial flood loss of 10 years of successive flood events is similar to the loss of
a single pluvial flood event with an estimated return period of 125 years (Ten Veldhuis, 2011).
For Germany Einfalt et al. (2009) estimates that the sum of losses from small pluvial flood
events account for several million Euros per year.

In addition to ongoing urbanization with further concentration of population and wealth
in urban areas, weather- and climate related impacts as a consequence of a changing climate
have been identified as important drivers of future disaster risk in cities (Hunt and Watkiss,
2011). While these impacts include the well-studied effect of sea level rise on coastal cities

1Other terms frequently mentioned in the literature include surface water flooding, wrban pluvial flooding, urban
flooding, urban water logging and urban flash floods.

2For comparison: Protection standards used in the floodplain management of river floods are typically based
on return periods in the range of 100 to 500 years (Gersonius et al., 2012; Rosenzweig et al., 2018).
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Depening on intensity
and duration of the rainfall
and the local conditions the

following structures can be affected:

1 lower lying structures e.g.
basement shafts, local depressions

2 basement flats,sewage backflow,
ground-level doors and entries

3 streets, cars, first floor

Figure 1.1: Affected structures during a pluvial flood (from GDV (2015); adapted).

(Nicholls and Cazenave, 2010; Hinkel et al., 2014), the projected increase in pluvial flooding
due to an increase in frequency and intensity of heavy rainfall events in many areas around the
globe (Kundzewicz et al., 2014; Field et al., 2012) including Germany (Bronstert et al., 2017)
has gained far less attention. However, pluvial flooding is expected to increase the disaster
risk not only in urban areas that lie in coastal or river flood plains, but also in areas that have
not been considered flood-prone. Hence, it is important to consider pluvial flood risk when
assessing the current and future flood risk in urban areas for the purposes of risk management
and adaptation planning.

1.2 The need to better understand pluvial flood risk

Until recently, pluvial flooding has received only limited attention in flood risk research,
planning and policy. There are several reasons for this, including (i) the assumption that
existing design and operation standards of urban drainage systems are sufficient to prevent
the majority of pluvial flood events when properly managed (Fletcher et al., 2015; Cherqui
et al., 2015), (ii) the underestimation of pluvial flood risk as nuisance with minimal impacts
(Ten Veldhuis and Clemens, 2010), and (iii) the lack of information on the occurrence of
rainstorms that cause pluvial flooding due to the small spatial and temporal scales of these
storm events (Rosenzweig et al., 2018).

However, with an increased sealing of surfaces and further densification in many urban
areas together with an expected increase in heavy precipitation events, the need to integrate
pluvial flooding into urban flood risk management is increasingly recognized (Zevenbergen
et al., 2008; Willems et al., 2012; Jiang et al., 2018).

Following the widely used definition for natural disaster risk, pluvial flood risk can be
understood as a function of hazard, exposure and vulnerability, where the hazard refers to
the probability of a flood event occurring with a specific intensity, the exposure refers to the
number of people and assets impacted by the event, and the vulnerability refers to the severity
of impacts experienced by the exposed population and assets (Cutter, 1996; Kron, 2005).
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So far, a considerable number of studies on pluvial flooding, have focused on improving
the understanding of pluvial flood hazard and exposure, including studies on how changing
precipitation patterns affect the occurrence and intensity of pluvial flood events as well as
the delineation of flooded areas (Arnbjerg-Nielsen et al., 2013; Blanc et al., 2012; Ghimire
et al., 2013). The latter is also supported by an increasing number of urban drainage models
available for flood inundation modeling (Bach et al., 2014; Salvadore et al., 2015).

However, only a few studies investigate the vulnerability of inhabitants and assets to pluvial
flooding. Among the exceptions are studies by Houston et al. (2011) and Douglas et al. (2010),
who investigate the consequences and impacts of two subsequent pluvial flood events in the
UK, as well as Van Ootegem et al. (2015) and Spekkers et al. (2014), who analyze the effect of
different hazard and non-hazard variables on pluvial flood losses.

Although these studies confirm that the vulnerability of population and assets plays an
important role in pluvial flood risk, they also conclude that the processes influencing the
impacts of pluvial flooding are still poorly understood. This lack of understanding includes
how human behavior before, during and after a flood influences the risk of flooding (Aerts
et al., 2018). Here, stronger links between physical and social dimensions are expected to
support a more comprehensive understanding of pluvial flood vulnerability (Cho and Chang,
2017).

Therefore, closing knowledge gaps around how urban dwellers cope with pluvial flooding
and how this affects the impact is important for the development of comprehensive risk
management and mitigation strategies. One key limitation in the analysis of impacts and
factors influencing the vulnerability to pluvial flooding is the availability of suitable data
(Hammond et al., 2015). Previous studies on pluvial flood vulnerability and impacts have
identified several shortcomings in the available data sources.

This includes claims data from insurance data bases that often do not allow a distinction
to be made between different water-related losses and have only a limited amount of additional
information due to privacy regulations (Spekkers et al., 2013; Grahn and Nyberg, 2017), or
call records of reported incidents from municipal call centers, which are often incomplete and
lack detailed information on the incident (Ten Veldhuis and Clemens, 2010). From an analysis
of historic pluvial flood events, Smith and Lawson (2012) find a bias in the frequency of
news reports due to a growing media interest in climate-change related impacts. Self-reported
information from web, postal or telephone surveys of households affected by pluvial flooding
are expected to be able to overcome this lack of detailed information on the impacts and
associated parameters, but these are so far limited to a few additional variables for individual
events(Van Ootegem et al., 2015).

This underlines the importance of collecting and analyzing detailed information on pluvial
flood impacts and associated parameters to not only improve the understanding of vulnerability
in pluvial flood risk, but also to support a comprehensive assessment of urban flood risk.

1.3 Pluvial flood loss models

Flood losses in urban areas both from individual events and over time can be significant. They
include direct financial losses due to damage to the building envelope, building contents and
the city’s infrastructure, as well as indirect financial losses, such as business and supply chain
interruptions (Haraguchi and Lall, 2015). However, also impacts that are difficult to quantify
play a role, such as consequences on the mental and physical health of affected residents
(Tapsell and Tunstall, 2008; Fewtrell and Kay, 2008).

Flood loss models quantify the financial impacts in monetary terms, aiding the development
of cost-efficient risk reduction strategies, and are therefore an important component of an
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integrated flood risk management (Merz et al., 2010; Hammond et al., 2015). They are usually
separated by sector (i.e. residential buildings, infrastructure, businesses) and flood type (see
Table 1.1). The majority of available flood loss models focus on direct losses to the residential
sector caused by river or coastal flooding (Gerl et al., 2016). Loss models for pluvial floods
have not been developed to the same extent due to a lack of data on the impacts as well as
lacking or uncertain information on the flooding itself (Freni et al., 2010; Olsen et al., 2015).

For the quantification of direct economic losses in urban areas, stage-damage functions
(SDF), that describe the relationship between water level and relative or absolute economic
losses for different buildings and sectors are the internationally accepted standard (Grigg
and Helweg, 1975; Smith, 1994; Gerl et al., 2016). These functions are either derived from
empirical loss information collected after flood events or from synthetic approaches based on
hypothetical assumptions about the expected loss for a given water depth (Merz et al., 2010).
Although SDFs are the most widely used type of loss model, the uncertainties in loss estimates
are high, reflecting the lack of understanding about the damaging processes, natural variability
and the underlying uncertainty around input parameters, which are often estimates themselves
(i.e. estimated or modeled water depth in- or outside of a building) (Merz et al., 2004; Freni
et al., 2010).

With a higher level of detail in the analysis, the uncertainties of loss estimates from SDFs
increase, making loss estimates on the level of individual buildings or building blocks highly
uncertain (Merz et al., 2004; Scawthorn et al., 2006; Tate et al., 2014). This challenges the
reliable estimation of losses from pluvial floods as the majority of pluvial flood events occur
on the scale of a few houses to individual neighborhoods within a city.

Apart from unit cost methods, where a pre-defined loss value is allocated to a building when
the (modeled) flood depth exceeds a certain threshold (Zhou et al., 2012; Susnik et al., 2015;
Olsen et al., 2015), previous attempts to estimate pluvial flood losses have used two different
approaches: adapting existing SDFs from river or coastal flooding (Freni et al., 2010), as well
as relating rainfall intensities and duration to pluvial flood losses. While the latter circumvents
the often high uncertainties in water level inputs from urban drainage models, the available
information on rainfall intensity and duration from radar and gauge measurements alone are
not sufficient to explain the variability in losses (Climate Service Center, 2013; Spekkers et al.,
2014; Van Ootegem et al., 2018). Both approaches using rainfall-loss and water-depth-loss
relationships build on recent developments in loss models for other flood types. This includes
the use of additional predictors as well as different model types, such as tree-based models
(Spekkers et al., 2014) or multivariate regression models (Van Ootegem et al., 2015).

Although previous loss models for pluvial floods have provided important information on
the influence of different non-hazard variables, so far little is known whether these approaches
are also suitable for predicting pluvial flood losses. However, approaches to reliably estimate
and predict pluvial flood losses are necessary to include pluvial flood risk into urban flood risk
management strategies. Therefore, the development and improvement of pluvial flood loss
estimation models is an important step for a comprehensive management of the urban flood
risk.
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1.4 Objective, research questions and outline

Pluvial flooding is an increasing risk in many urban areas around the world, but has received
only limited attention in urban flood risk assessment to date. The lack of data and limited
understanding of the damaging processes has so far hindered a reliable estimation of direct
financial losses from pluvial flooding.

However, the reliable quantification of losses from pluvial floods is necessary for a com-
prehensive integrated flood risk management including cost-benefit analysis of disaster risk
reduction measures. While in urban areas different sectors and land use types including
businesses, industry and infrastructure can be affected by pluvial flooding, both the assessment
of their risk and the quantification of the losses require very different approaches and data sets.
As the comprehensive analysis and model development for each of the different sectors and
land use types in urban areas would exceed the scope of this thesis, the subsequent chapters
focus on the private household sector.

Therefore, the main objective of this thesis is to improve the estimation of pluvial
flood losses to private households through an improved understanding of the loss-
influencing factors and the underlying uncertainties, based on statistical analysis of
empirical data from flood affected households, with the overarching aim of providing methods
that can support decisions on how to manage pluvial flood risk in urban areas. This results in
five research questions, addressed in the chapters denoted in brackets:

1. How do private households cope with pluvial flooding? (Chapters 2 and 3)

2. What explains the differences in preparedness and response between households affected
by pluvial flooding? (Chapters 2 and 3)

3. Which factors influence pluvial flood losses to private households? (Chapters 2, 3 and 4)

4. Can implementing these factors in loss models improve the quantification of pluvial flood
losses? (Chapter 4)

5. What influences the reliability and uncertainty of pluvial flood loss models (Chapter 4)7

The structure of this cumulative thesis consists of an introductory chapter and three main
chapters, addressing the main research questions, and a concluding chapter discussing the
main findings of this thesis within a broader context. Chapters 2 to 4 of this thesis take the
form of manuscripts that have been published in peer-reviewed journals or are currently under
review for publication. While each of the three main chapters addresses specific research
questions, they are arranged to follow a four-step study design consisting of data collection,
data analysis, model development and model application (see Figure 1.2).

Chapters 2 and 3 describe the collection and analysis of data from past pluvial flood
events. Chapter 2 analyzes how private households prepare for, respond to and recover from
pluvial flooding based on detailed survey data from three pluvial flood events in three different
German cities in 2005 and 2010. Chapter 3 analyzes regional differences in preparedness and
response between two pluvial flood events in Germany and the Netherlands. Chapter 3 further
discusses different data collection strategies for pluvial flood loss data.

Chapter 4 derives potentially loss-influencing variables based on data and findings from the
previous chapters. Machine learning and data mining approaches are used to systematically
screen the variables for their potential to improve loss estimates before implementing the most
important loss influencing variables in a newly developed, probabilistic, multi-variable loss
estimation model. The loss estimation model is validated, compared with other probabilistic
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loss models, and applied to estimate the uncertainties in building structure loss to private
households during a recent pluvial flood event.

Chapter 1

Introduction, motivation and objectives

DATA COLLECTION & ANALYSIS

Chapter 2 Chapter 3

Coping with pluvial floods by private A comparative survey of the impacts of extreme
households rainfall in two international case studies
Analysis of survey data from three pluvial flood Collection and comparison of pluvial flood
events in Germany in regard to preparedness, survey data between two pluvial flood events in
emergency response and recovery Germany and the Netherlands

MODEL DEVELOPMENT & APPLICATION

Chapter 4

Probabilistic models significantly reduce uncertainty in Hurricane Harvey pluvial flood loss estimates

»  Detection of important pluvial flood loss influencing variables
» Development and validation of probabilistic pluvial flood loss models on the building level
*  Application of developed model to estimate losses from a recent pluvial flood event

Chapter 5

Discussion, recommendations and and conclusion

Figure 1.2: Structure of the thesis.
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1.5 Author contributions

The manuscripts in the following three chapters are the result of a collaboration between the
author of this thesis (V.R.) and several co-authors. In the following, the contributions of V.R.
and all co-authors (initials) are outlined for each manuscript:

Chapter 2: Coping with pluvial floods by private households

V.R. and H.K. designed the research with contributions from A.T.; V.R. analyzed the data for
Sections 2.3.2 to 2.4.3, interpreted the results, generated all figures and tables in this paper,
wrote Sections 2.3.2 to 2.4.3 and Section 2.5 and was responsible for writing the paper; M.M.
and O.B. designed and conducted the survey of flood-affected households in Hersbruck and
Lohmar; M.M. wrote Sections 2.2.1 and 2.2.2; A.T., H.K. and M.M. designed and conducted
the survey of flood-affected households in Osnabriick; H.K. wrote Section 2.1, contributed to
Section 2.5 and contributed to the interpretation of the results; A.T. wrote Section 2.2.3; P.B.
performed all analysis in Section 2.4.4, as well as wrote Section 2.4.4; S.K. wrote Section 2.3.1;
K.S. contributed to Sections 2.1 and 2.5 and contributed to the interpretation of the results;
I.P. prepared the survey data used in this analysis and contributed to Section 2.3.1.

Chapter 3: A comparative survey of the impacts of extreme rainfall in two inter-
national case studies

V.R. and M.S. designed the research with support from H.K. M.-C.V. and A.T.; V.R. and
M.S. were responsible for writing the paper; V.R. and M.S. generated all figures and tables;
V.R. collected the data in Miinster with support from H.K. and A.T.; M.S. collected the
data in Amsterdam with support from M.-C.V.; V.R. and M.S. performed the data analysis
(Section 3.3) and interpreted the results (Section 3.4) with support from H.K. and M.-C.V. and
inputs from A.T.; V.R. wrote Sections 3.2.1, 3.2.3 and 3.4 with contributions from M.S. ; M.S.
wrote Sections 3.2.2, 3.3 and 3.5 with contributions from V.R.; M.S. compiled the supporting
information (Section 3.A) with contributions from V.R.; A.K. and H.K. wrote Section 3.1 with
contributions from V.R. and M.S.

Chapter 4: Probabilistic models significantly reduce uncertainty in Hurricane
Harvey pluvial flood loss estimates

V.R. designed the research, performed the data analysis, developed the models, interpreted
the results, generated all figures and tables (except for Figure 4.5 and Table 4.3) and wrote
the paper; H.K., K.S., U.L. and B.M. contributed to the design of the research and the
interpretation of the results; H.K. wrote Section 4.A.1 — Survey data and generated Table 4.3.;
K.S., J.D.-G. and N.S. contributed to the model development and validation; M.M. contributed
to the data collection and processing of the survey data of flood-affected households in Germany;
N.S. wrote Section 4.A.2 - Probabilistic multi-variate beta model and generated Figure 4.5;
V.R. compiled the supporting information (Section 4.A).



2 Coping with pluvial floods by
private households

Summary. Pluvial floods have caused severe damage to urban areas in recent years. With
a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial
flood damage is expected to increase in the future. Therefore, further insights, especially on
the adverse consequences of pluvial floods and their mitigation, are needed. To gain more
knowledge, empirical damage data from three different pluvial flood events in Germany were
collected through computer-aided telephone interviews. Pluvial flood awareness as well as
flood experience were found to be low before the respective flood events. The level of private
precaution increased considerably after all events, but is mainly focused on measures that
are easy to implement. Lower inundation depths, smaller potential losses as compared with
fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected
to cause a shift in damage mitigation from precaution to emergency response. However, an
effective implementation of emergency measures was constrained by a low dissemination of
early warnings in the study areas. Further improvements of early warning systems including
dissemination as well as a rise in pluvial flood preparedness are important to reduce future
pluvial flood damage.

Published as: Rozer, V., Miiller, M., Bubeck, P., Kienzler, S., Thieken, A., Pech, 1., Schréter, K.,
Buchholz, O. & Kreibich, H. (2016). Coping with pluvial floods by private households. Water, 8(7),
304. doi: 10.3390/w8070304
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2.1 Introduction

Pluvial floods in urban areas are caused by storm events with exceptionally high rainfall rates,
which lead to inundation of streets and buildings. Commonly, failure of the drainage system
plays an important role. Often referred to as surface water flooding, many European cities
experienced pluvial flooding in recent years, which caused considerable damage. Examples
are the pluvial flood in the City of Hull in the UK in 2007, where more than 100 mm of
rain over a 24 h period caused damage to 8600 residential buildings and 1300 businesses
(Coulthard and Frostick, 2010) and the pluvial flood in the city of Dortmund, Germany, in
July 2008, where local rainfall rates of 200 mm over a time span of 3 h led to a total loss of
Euro (EUR) 17.2 million (Griinewald et al., 2009). Pluvial flood risk is expected to increase in
the future. Due to climate change, it is expected that the frequency and intensity of heavy
rainfall events increases, which should contribute to increases in precipitation-generated local
flooding (Kundzewicz et al., 2014). However, increasing exposure and vulnerability of cities
also play a role (Semadeni-Davies et al., 2008; Kaspersen et al., 2015). Thus, for pluvial
flooding, an efficient, integrated risk management following the risk management cycle is also
necessary (Kreibich et al., 2014; Susnik et al., 2015). However, pluvial floods often occur
at much smaller spatial and temporal scales than fluvial floods. They may occur anywhere,
including in areas not obviously prone to flooding, which has important implications in terms
of experience and preparedness of the population. Since pluvial floods are often related to
convective storms, they have a high spatial and temporal dynamic, which challenges early
warning systems (DKKV, 2015). As a result, lead times are short, i.e. only up to a few
hours are available for undertaking response measures. While risk management and mitigation
strategies for fluvial and tidal floods have been established over the last decades, effective
strategies to face an increasing pluvial flood risk, were not developed to the same extent (Zhou
et al., 2012; Hammond et al., 2015; Penning-Rowsell et al., 2010).

Case studies have shown that suitable risk reduction for pluvial flooding, which consists of
preventive, protective and preparative measures, can be difficult to achieve. For instance, a
case study in the city of Eindhoven in the Netherlands revealed that pluvial flood protection
via a separation of sewer and storm water networks and an increase of urban water storage has
a negative cost-benefit ratio (Susnik et al., 2015). Another study in the Greater Manchester
area in the UK investigating pluvial flood events in 2004 and 2006 showed that the affected
people were not well informed or prepared and even confused about the responsibilities before,
during and after the events (Douglas et al., 2010).

A focus in pluvial flood risk management is on early warning and response. Van Ootegem
et al. (2015) found that being aware of the pluvial flood risk before the water enters the building
reduces content damage on average by 90% in the case of basement floods and by 77% in the
case of ground floor floods. However, early warnings for pluvial floods are challenging, as they
require the combination of heavy rainfall forecasts or at least nowcasts with a high spatial and
temporal resolution as well as local information about the urban drainage system, topographic
data, land use and soil moisture preconditions. Although pluvial flood early warning systems
are often limited to rainfall forecasts with warning levels based on historical events or previous
flood experience, more advanced systems have been implemented on different spatial scales
in recent years (Henonin et al., 2013; Leitao et al., 2010). The city of Marseilles, France for
example runs a warning system that links rainfall intensities with local flooding thresholds
(Parker et al., 2011; Deshons, 2002). In the UK, a new system for extreme rainfall alerts and a
surface water flooding forecast was introduced after the severe pluvial floods in 2007, which is
currently further improved by implementing the Grid-to-Grid (G2G) model (Ochoa-Rodriguez
et al., 2018). For the case study areas in Germany, pluvial flood warning is restricted to
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severe weather warnings on district level issued by the Deutscher Wetterdienst (DWD). These
severe weather warnings have a maximum lead time of 12 h and mostly contain the expected
maximum rainfall intensities for the respective district in case of a forecasted heavy rainfall
event (DWD, 2016a,b). The effectiveness of flood early warning systems in reducing damage is
mainly determined by lead times, water depths, and the availability and ability of people to
undertake emergency measures effectively (Penning-Rowsell and Green, 2000; Kreibich and
Merz, 2006). The commonly short lead times for pluvial floods are a challenge, in contrast to
the generally shallow water levels, which allow a damage reduction by sealing the building or
by moving contents higher, e.g., onto shelves or in higher stories. The ability to undertake
effective measures is, for instance, supported by recent flood experience, good preparation and
the availability of emergency plans (Thieken et al., 2007; Kreibich et al., 2007). Since flood
experience may be commonly lacking due to the rare and local occurrence of pluvial flood
events, specific risk communication seems to be decisive for increasing preparation and an
effective implementation of emergency measures.

Damaging processes during pluvial flooding are distinguished from fluvial flooding as the
sources of the excess water and flow processes are very different. Due to a lack of detailed
damage data, there is not much information about damaging processes available. Results
of decision-tree analysis show that insurance claim frequency related to torrential rain and
pluvial flood damage to property is most strongly associated with maximum hourly rainfall
intensity, followed by real estate value, ground floor area, household income, season and the
age of the building (Spekkers et al., 2014). A study on pluvial flood damage in Belgium found
that, although flood depth is an important predictor of pluvial flood damage, indicators that
are not related to flood characteristics, including building properties, behavioral predictors
and income, are also important (Van Ootegem et al., 2015).

The objective of this paper is to gain better knowledge about the consequences of pluvial
floods and their management. How private households during three different pluvial flood
events in Germany were able to cope with the flooding is investigated. Following the phases
of the risk management cycle, how private households contributed to damage mitigation and
how preparedness, response and recovery are correlated to socio-economic variables, flood
experience and flood impact is analyzed.

2.2 Pluvial flood events

2.2.1 Pluvial flood event in the town of Hersbruck on 29 June 2005

At the end of June 2005, the weather in Western Europe was influenced by a surface low
(named Yassin by Institute for Meteorology, FU Berlin, Germany) that emerged over Spain
on 28 June, moved northeast, crossed France and reached Germany on 29 June. It brought
warm humid subtropical air from the southwest of Europe. Along the boundary zone, due to
cold and dry air masses from the north, the atmosphere became more and more unstable and
thunderstorms with heavy rainfall, storm gusts, lightning strokes and hail developed mainly
in the western (North Rhine-Westphalia, Hesse, Rhineland-Palatinate, and Saarland) and
southern (Baden-Wuerttemberg and Bavaria) parts of Germany. Hersbruck, a town in Bavaria,
27 km northeast of Nuremberg, was also highly affected by torrential rain. The first moderate
rainfall occurred from 8:00 A.M. to 11:00 A.M. (Central European Time) on 29 June. At
about 10:00 P.M., rainfall started again with the highest intensity from 10:00 P.M. to 11:30
P.M. Until 7:30 A.M. on 30 June the meteorological station Hersbruck recorded 115.8 mm
in 24 h, and until 7:30 A.M. on 1 July 117.3 mm within 48 h. Approximately 110 mm fell
within only 1.5 h in the late evening on 29 June. The 1 h, 24 h and 48 h rainfall return periods
exceeded 100 years (URBAS, 2008).
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The heavy rain caused widespread flooding and damages in the city of Hersbruck for
various reasons. Flash floods with sludge and debris from unsealed areas outside the town
damaged houses. Several small creeks overtopped the banks, whereas the rise of the water
level of the River Pegnitz in Hersbruck did not cause any damages. At least two landslides
occurred, one of them buried a street over a distance of about 50 m. The sewer system was
hydraulically overloaded, and streets and underpasses were flooded. Some stormwater overflow
structures were also overloaded and newly built reservoirs in Hersbruck-Weiher were heavily
damaged. Approximately 300 houses (mainly the basements) were affected, and, in two cases,
leaking heating oil contaminated the water. Several underground car parks were flooded and
a number of cars were damaged. The total damage was estimated at approximately EUR
2.8 million. Besides the described event, several smaller pluvial floods in different parts of
Hersbruck were reported for the years 1995-1997 and 1999 (URBAS, 2008).

2.2.2 Pluvial flood event in the town of Lohmar 29 June 2005

The weather situation that triggered the pluvial flood event in Hersbruck (see Section 2.2.1)
was also responsible for the development of thunderstorms in the western part of Germany.
Lohmar, a town in North Rhine Westphalia, 20 km southeast of Cologne, was also affected.
Here, the first moderate rainfall occurred in the early morning hours (1:00 A.M. to 7:00 A.M.
Central European Time) on 29 June. At about 6:00 P.M., rainfall started again until 4:00
A.M. on the next day, with the highest rainfall intensity between 9:00 P.M. (29 June) and
1:00 A.M. (30 June). Until 7:30 A.M. on 30 June, several meteorological stations in Lohmar
and surroundings recorded 54 to 68 mm in 24 h. In the evening hours of 30 June until the
morning of 1 July, thunderstorms once again brought heavy but less intense rainfall. Until 1
July (7:30 A.M.), rainfall accumulated to 86 to 112 mm within 48 h. Locally, the 48 h rainfall
return period exceeded 100 years (URBAS, 2008).

The heavy rain led to flooding in the city area of Lohmar and surrounding city districts,
mainly from overflowing small creeks such as the Jabach, the Auelsbach and other very small
unnamed creeks (tributaries to the River Agger) because of hydraulic surcharge, especially at
throats like bridges or at culverts that were partly blocked with sludge and driftwood. The
water level of the River Agger in Lohmar also rose but did not exceed the warning stages.
Locally, the sewer system was overloaded and at some places water from the surrounding
agricultural land flooded built-up areas. Some areas were flooded twice, initially in the night
29/30 June, and again approximately 24 h later (30 June/1 July).

Besides the school center, the control center of the fire brigade of Lohmar was affected,
and a temporary office had to be established. Generally, mainly basements, altogether 250
according to newspaper articles, were flooded. One affected company lost its whole archive.
Most operations by the fire brigade and the Federal Agency for Technical Relief (THW) took
place in the city area of Lohmar and in the surrounding districts Donrath and Wahlscheid.
The total damage was estimated at approximately EUR 2.4 million. While there is no history
of pluvial floods reported for Lohmar, the town has suffered from one reported fluvial flood
before 2005, caused by the Auelsbach, a tributary of the River Agger in the year 2000 (Lohmar,
2005).

2.2.3 Pluvial flood event in the city of Osnabriick 27 August 2010

In all of Germany, August 2010 was the wettest August since 1881, when regular precipitation
measurements started (Boof et al., 2010). Locally, the monthly rainfall total exceeded the
average amount by almost four times, e.g., in the city of Osnabriick, which is, with 156,000
inhabitants, the fourth biggest city in Lower-Saxony in the northwest of Germany (see Figure
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2.1). In August 2010, it received rainfall totals of 273 mm, which is 385% of the reference
value (NLWKN;, 2010).

During the summer of 2010, the Northern Hemisphere jet stream was characterized by
a strongly meandering pattern that remained locked in place for several weeks and brought
extreme weather conditions to different regions in the Northern Hemisphere (Schubert et al.,
2011; Coumou and Rahmstorf, 2012). Low pressure systems repeatedly brought moist air
with thunderstorms and heavy rain to Central Europe. While in the first half of the month
(6 to 10 August), the most damaging flood event occurred at the River Neife at the Ger-
man—Polish—Czech border, heavy rainfall events between 26 August and 2 September led to
major urban flooding in several places damaging a total of 8000 buildings claiming insured
losses of EUR 35 million (GDV, 2012). During this episode, the city of Osnabriick was the
most severely hit district: while the average damage per affected building in late August 2010
was EUR 4840 in all of Germany, it was to EUR 6249 in Osnabriick (GDV, 2012). The damage
was caused by a severe weather system that dumped 128 mm of rain across the city on 26
August, which equals 47% of the mean monthly precipitation in August. As a result, the
creeks Hase, Diite and Belmer Bach could not drain the water and inundated parts of the
city, particularly the neighborhoods of Liistringen, Hellern, Fledder, Atter and Atterfeld. For
the first time since the Second World War, Osnabriick’s mayor declared a state of emergency.
Although this event was the most severe flood recorded in the history of Osnabriick, there
have been two smaller fluvial flood events caused by the River Nette in 1998 and by the River
Hase in 2008 (Osnabriick, 2016a).

2.3 Data and methods

2.3.1 Surveying private households affected by pluvial flooding

The data for all three case studies were collected by computer-aided telephone interviews
(CATI). Interviews were conducted among households in the flood affected areas of Lohmar
and Hersbruck 17 months after the event. On the basis of information from fire brigades, street
lists were compiled and the telephone numbers of residents, potentially affected by the pluvial
flood, were searched from public telephone directories. In Lohmar, 742 telephone numbers
could be identified, while, in Hersbruck, 534 were identified. During the survey period from 21
November to 19 December 2006, all telephone numbers were contacted. In total, 62 interviews
in Lohmar and 111 in Hersbruck with affected residents were completed, which corresponds to
14% of the collected telephone numbers (1,276). Fifty percent of the households called had
not been affected by flooding at all, or the building was mainly used for commercial purposes;
25% did not want to participate in the survey; 10% were not reachable during the survey
period; and 1% did not complete the interview. In the survey, the term “affected” was defined
as a household that had suffered (financial) flood damage at the end of June 2005. Before the
start of the telephone interviews, the public was informed about the campaign. Flyers with
information on pluvial flooding in general and the campaign were distributed to all households
in the affected areas in Lohmar and Hersbruck, and press releases were issued in the local
media. In Lohmar, information was also available on the municipal website.

While the data from Lohmar and Hersbruck were gathered by a dedicated campaign within
the project Urban Flash Floods (URBAS), the data from Osnabriick were part of a larger
data collection campaign among private households, which suffered from property damage
caused by flooding in August 2010 or January 2011 in Germany. The survey was conducted in
February/March 2012, about nineteen months after the respective pluvial flood event. Lists
of inundated streets were compiled on the basis of official lood and media reports as well as
flood masks derived from satellite data (ZKI, Centre for Satellite-Based Crisis Information).
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Figure 2.1: Spatial distribution of rainfall amount (24 h precipitation radar data), affected
streets (purple) and number per interviews per neighborhood (grey bubbles) for the study
areas (a) Osnabriick; (b) Lohmar; (c) Hersbruck; (d) location of the study areas and number
of completed interviews per study area.
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With the help of these lists, which contained 143 street names from Osnabriick phone numbers
of all potentially affected residents were searched from the public telephone directory. In total
20,332 phone numbers were contacted. However, the percentage of successfully completed
interviews was rather small in the end (3%). One reason for this was imprecise information on
the (maximum) flood area and affected streets derived from this data, with the result that
about 40% of households called had not been affected by flooding at all. Therefore, a more
detailed documentation of the flood extent would be of great benefit for the overall sampling
efficiency.

The survey campaign resulted in 658 completed interviews, of which 100 interviews were
carried out with residents affected by torrential rainfall in the city of Osnabriick in August
2010. Their spatial distribution is displayed in Figure 2.1. A comprehensive analysis of the
interviews in respect to the fluvial floods, that were excluded from this paper, can be found in
Kienzler et al. (2015).

The questionnaires used in both campaigns (2006 and 2012) were slightly modified versions
of a questionnaire originally developed by Kreibich et al. (2005) and Thieken et al. (2007) for
the 2002 flood in the Elbe and Danube catchments. The interviews lasted 25 to 30 min on
average and the questionnaire consists of approximately 110 questions on the following topics
(in the order of appearance):

e Characteristics of the flood event;

e Barly warning and emergency measures;

e Contamination of the floodwater;

e Evacuation;

e (Clean-up work and recovery;

e Physical and financial flood damage to the building and the household contents;

e Building ownership and further information on the residential building (or the rented
apartment);

e Aid and financial compensation;

e Long-term preventive and protective measures undertaken by the affected household and
motivation (not) to do so;

e Previously experienced flood and flood awareness; and

e Socio-demographic information.

In a number of questions, people were asked to rank qualitative or descriptive variables on a
scale from 1 to 6, where “1” described the best case and “6” the worst case. The meaning of the
end points of the scales was given to the interviewee. The intermediate rankings could be used
to graduate the evaluation. The surveys were conducted with the VOXCO software package
by the Explorare market research institute. In all interviews, the person in the household that
had the best knowledge about the flood damage was interviewed.
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2.3.2 Pluvial flooding dataset

The total amount of 273 interviews in the dataset consists of 111 households for the town
of Hersbruck, 100 households for the town of Osnabriick and 62 households for the town
of Lohmar. With approximately 300 affected households in Hersbruck, 250 in Lohmar and
1100 in Osnabriick, sample fractions of 37%, 25% and 9%, respectively, were reached for the
three subsets (URBAS, 2008; NOZ, 2016). An overview of the characteristics for the three
subsets regarding socio-economic and flood impact variables is shown in Table 2.1. Compared
to recent census data, the mean age, household size, and mean living area is higher in the
sample for all three subsets. This is also true for the homeowner rate, which is considerably
higher compared to the census reference (see Table 2.1). As mentioned in a previous study
by Kienzler et al. (2015), this points towards a methodological bias of telephone interviews,
where only phone numbers listed in the central telephone register are considered in the sample.
An increasing use of cell phones and the fact that new landline numbers are not automatically
added to the central telephone register, might lead to an overrepresentation of homeowners
and long-established households.

Looking at education and income of the respondents, there is a considerable heterogeneity
between the three study areas. While in Osnabriick 52% of the respondents stated to have
a higher education, in Hersbruck this number is with 23% considerably lower. This is also
reflected in the monthly net household income, where Osnabriick has the lowest fraction of
low income households with less than EUR 1500 at 14% and Hersbruck the highest fraction
with 25%.

Table 2.1: Socio-economic variables and flood characteristics for the three study areas. The
values in brackets show the reference values based on data from the census in 2011.

Pluvial Flood Event 29 Jun 2005 27 Aug 2010

Area Hersbruck Lohmar Osnabriick

Interviews n 111 62 100

Affected households (est.) n 300! 2501 1,100?

Sample Size % 37 25 9

Total population n 12,000° 31,000* 156,000°

Socio-Economic Variables

Mean age of respondents yr 52 (44%) 50 (439 ) 55 (426 )

Respondents with higher education % 23 (25%) 39 (345 ) 55 (416 )

Mean household size n 26(225) 3.0(24%) 26 (2.0%)

Households w. net income (pm) <1500€ % 25 19 14

Mean living area m? 106 (99¢) 126 (1125 ) 112 (86 )

Home owner rate % 61 (54%) 82 (66° ) 85 (355)
Flood Impact Characteristics

Mean flood duration h 10 11 23

Mean water level (rel. to surface) cm -108 -138 -108

Median water level (rel. to surface) cm  -136 -181 -30

Reported high/very high flow velocities % 18 33 12

Reported only basement affected % 80 89 90

Reported contamination (sewage, oil, gas) % 25 24 34

1 Report URBAS Project(URBAS, 2008)

2 Neue Osnabriicker Zeitung (local newspaper) (NOZ, 2016)

3 Bavarian State Office for Statistics (LfStat, 2014)

4 Archive of the city of Lohmar, (Lohmar, 2005)

® The city of Osnabriick, Department for Urban Development (Osnabriick, 2016b)
6 German Federal Office of Statistics (DESTATIS, 2016)
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Regarding education and income the Lohmar sample lies just between the two other subsets.
Comparing the three subsets in respect to their flood impact characteristics, small differences
can be seen for the median water level, mean flood duration, the flow velocity distribution and
the fraction of contaminated households (see Table 2.1). Given the flood characteristics as
well as the number of affected households, Osnabriick can be characterized as the most severe
flood event among the three subsets.

The differences in the rainfall intensity and amount outlined in Section 2.2 between the
events is also reflected in the water levels, where the median water level relative to the surface
for Lohmar is 45 cm and 51 c¢m lower than in Hersbruck and Osnabriick, respectively (see Table
2.1). The negative mean and median water levels indicate the high fractions of households
where only the basement was affected.

In contrast, the mean flood duration in Osnabriick was considerably longer than it was
in Hersbruck and Lohmar. This is caused by the high number of affected households in
Osnabriick compared to the smaller events in Hersbruck and Lohmar, which exceeded the
coping capacities of the local emergency services. According to local newspaper reports, this
led for some households to a delay of several hours, before their flooded basements could be
pumped out by the emergency services (NOZ, 2016).

In Lohmar, the fraction of respondents reporting high or very high flow velocities near
their house is considerably higher than in Hersbruck and Osnabriick. Differences can also
be observed for respondents, who reported contamination of their property during the flood.
Osnabriick sticks out with 34% of the interviewed households reported a contamination of
their property with either oil, sewage, gas or other chemicals.

2.4 Results and discussion

The results presented in this section follow the widely used risk management cycle (see (Thieken
et al., 2007; DKKV, 2003; Silver, 2001)), which addresses the following phases before, during
and after a pluvial flood event:

e Preparedness: This section discusses the previous flood experience of the respondents
in all three subsets, the private precautionary measures they had taken to mitigate the
flood risk and their motivation to undertake these measures.

e Warning and response: This section discusses whether the respondents received a warning
prior to the event and if they undertook any measures shortly before or during the event
to reduce damage.

e Flood damage: This section discusses the damage to buildings and contents caused by
pluvial floods in the three study areas and possible factors that influence the amount of
damage.

e Recovery: This section discusses the process that lead to regaining the standard of living
after the pluvial flood events compared to the pre-event conditions and the factors that
influence the recovery after such an event.

2.4.1 Preparedness

Several studies have shown that flood experience and knowledge about the flood hazard (among
other factors) are closely connected to the implementation of precautionary measures (e.g.
Thieken et al., 2007; Kreibich et al., 2005; Bubeck, Botzen and Aerts, 2012; Kreibich, Seifert,
Thieken, Lindquist, Wagner and Merz, 2011; Siegrist and Gutscher, 2006). Therefore, flood
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experience and preparedness, in the form of private precautionary measures, are considered
together in this section.

Flood experience and knowledge about the flood hazard

Looking at the overall flood experience, the fraction of respondents, who have experienced a
flood before the respective events in 2005 and 2010, is rather low in all three case studies. The
same is true for the knowledge about the flood hazard among the respondents, who had not
experienced a flood before (see Table 2.2).

Table 2.2: Flood experience and knowledge about the flood hazard among private households
in each study area.

29 Jun 2005 27 Aug 2010

Pluvial flood event Hersbruck Lohmar Osnabriick

Flood experience prior to the respective event (%)

Respondents who experienced at least one previous flood 26 16 22
Respondents who experienced at least one previous flood 17 3 11
less than 10 years ago

Respondents who have not experienced a flood prior to 73 84 78
the respective event

Respondents who have not experienced a previous flood, 16 10 8

but have knowledge about the fl. hazard of their property

With only 16% of respondents having previous flood experience, the Lohmar subset has
the lowest number of flood experienced respondents among the three case studies. When
only taking floods into account that happened less than 10 years ago from the respective
event, flood experience in Lohmar was almost non-existent with only 3%. Comparing the two
simultaneous events in Lohmar and Hersbruck, a considerably higher amount of respondents
in the latter area had experienced a flood before the 2005 event. There is also a higher amount
of respondents in Hersbruck, which had knowledge about the flood hazard, although they had
no previous flood experience.

Overall, the Hersbruck subset has the highest fraction of flood experienced respondents,
as well as respondents with knowledge about the flood hazard among the three subsets. For
the other two subsets, the flood experience differs considerably, while the knowledge about
the flood hazard is equally low for Lohmar (10%) and Osnabriick (8%). Since pluvial floods
also occur in areas not obviously prone to flooding and where flood maps are non-existent,
these results seem to correspond with the flood history of the three study areas before the
respective events (see Section 2.2).

Therefore adding information on pluvial flood risks to existing flood maps could help to
increase the awareness of pluvial flood risk in the general public.

Precautionary measures

Private precautionary measures are an important part of flood loss mitigation. The study
comprises three different levels of precautionary behavior: (1) low-cost measures, such as
acquiring information about flood protection; (2) medium-cost measures, such as an inferior
use of exposed floors; and (3) high-cost measures, which involve structural changes to the
building. In total, eleven precautionary measures, covering all three levels, were considered in
the questionnaire (see Figure 2.2).



2.4. Results and discussion 19

The Osnabriick study contained three additional measures, which are, for the sake of
comparability between the three subsets, not considered in this study. Although taking out
flood insurance does not have a direct effect on flood loss mitigation, it helps to recover faster
from a flood event and is therefore treated as a medium-cost measure in this study. For all
measures, the respondents were asked to state whether the measure had been implemented
before the flood, after the flood, is planned or will not be implemented. Measures that involve
changes to the building structure were only answered by homeowners, as tenants are usually
not able to implement these measures. In this section, the changes in preparedness before and
after the respective event as well as the motivation to undertake precautionary measures will
be discussed.

Preparedness before the flood

Although the flood experience and knowledge about the flood hazard was low (see Section 2.4.1
- Flood experience and knowledge about the flood hazard), the overall preparedness for pluvial
floods in terms of respondents who did undertake at least one precautionary measure before the
flood events in 2005 and 2010 was with 60% surprisingly high. Compared to similar analysis
by Kienzler et al. (2015) for fluvial floods where 90% of all respondents did undertake at least
one precautionary measure before the flood, the value can still be seen as high against the
backdrop of the lower flood awareness of the general public for pluvial floods (Houston et al.,
2011). However, differences in preparedness between the three subsets can be observed. In
Osnabriick, 67% of the respondents undertook at least one measure before the flood, while the
values for Hersbruck (59%) and Lohmar (48%) are lower. Interestingly, the flood experience
and knowledge in Osnabriick was lower, than in Hersbruck, but still resulted in a higher
fraction of households who undertook precautionary measures.

Regarding the different precautionary measures implemented by the interviewed households,
an overview is given in Figure 2.2. Mostly low-cost and medium-cost measures were undertaken
before the event. Among the households of all three subsets, collecting information about
flood protection (22%), collecting information about the flood hazard (21%) and effecting
flood insurance (21%) were the most common precautionary measures undertaken before the
respective flood event. Although collecting information about the flood hazard and how to
protect against floods, as well as contracting a flood insurance have no direct effect on the
reduction of flood damage, the high fraction of low-cost measures must be seen in context of
cost-effectiveness in regard to flood probability and expected damage (Kreibich, Christenberger
and Schwarze, 2011). While high-cost measures are often economically “reasonable” in relation
to the expected damage for fluvial floods with short return periods, small pluvial floods with
typically lower amounts of loss call for a shift from expensive precautionary measures to
less costly solutions (Poussin et al., 2015). This is also true for measures that are able to
directly reduce damage, where medium-cost measures, such as adapted building use were more
common than expensive changes to the building structure. Among the medium cost-measures,
installation of a backflow preventer (20%) and avoiding expensive permanent interior on floors
at risk (19%) were the most popular measures to mitigate flood damage. With 3% to 7% of
all respondents, high-cost measures were only considered by a minority.

When looking at the three subsets separately, only smaller differences in precautionary
behavior can be identified. Overall, the level of precaution for Osnabriick was slightly higher
than for the events in Lohmar and Hersbruck. For seven out of eleven measures, the fraction
of respondents who did implement this measure before the flood was higher in Osnabriick than
in Lohmar and Hersbruck (see Figure 2.2). This includes all high-cost measures, except for
the installation of permanent or mobile water barriers. When looking only at the Lohmar
and Hersbruck subsets, it is interesting to see, that although Lohmar had a higher number of
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Figure 2.2: Private precautionary measures undertaken by event, time of implementation and

costs.



2.4. Results and discussion 21

respondents who informed themselves about the flood hazard, how to protect against floods
and who joined a flood network, these measures did not translate to the same extent into
actual damage mitigation measures. Hersbruck, on the other hand, shows lower or equal
numbers for measures that involve acquiring information about pluvial floods, but has higher
values than Lohmar for almost all measures involving adapted building use and changing the
building structure. For the two adapted building use measures “inferior use of exposed floors”
and “avoidance of expensive permanent interior on floors at risk”, the values of 23% and 24%,
respectively, are even higher than in Osnabriick. In comparison with a similar study on fluvial
floods by Kienzler et al. (2015), the values for all three study areas are in the range of the 2002
flood along the River Elbe, where the preparedness level was considered low. Interestingly the
recent history of pluvial flood events in Hersbruck (see Section 2.2.1) did not seem to have an
effect on the implementation of precautionary measures, as the values for almost all of the
measures are equally low as for the other two study areas, where no recent pluvial flood events
prior to the events of 2005 and 2010 were reported. However, the low flood experience (see
Table 2.2) indicates that during past events other areas of Hersbruck were affected, remaining
the households that were hit in 2005 unaware of the risk. This highlights the local extent of
pluvial floods, which make an adequate preparedness challenging for private households as
well as for local authorities.

Changes in preparedness after the flooding

For all three subsets, the respondents were not only asked about what precautionary measures
they have undertaken before they were flooded, but also whether they changed their precau-
tionary behavior in the aftermath of the flooding. Implementing precautionary measures in the
aftermath of a flood is not only a comprehensible behavior, but can also be understood from an
economic perspective, as implementing these measures alongside the restoration of a damaged
building is seen as very cost-effective (Kreibich et al., 2005). Grothmann and Reusswig (2006)
reported that homeowners often implement mitigation measures when they renovate or repair
the building - for any other reason. Therefore, it is not surprising that a significant rise
in precautionary behavior after all three events can be observed. The strongest absolute
increases subsequent to the flooding can again be mainly seen for low- and medium-cost
measures. With 31% in total for all three subsets, informing about flood protection was the
most popular measure undertaken after the flood. However, the strongest relative increases
can be observed for improving the flood safety of the building (this includes structural changes
to the buildings as well as installing flood proof basement doors and windows) and installing
mobile or permanent water barriers. While the latter two were implemented by only 7% of all
respondents before the flood, this value rose by 19% for installing mobile water barriers and
18% for improving the flood safety of the building subsequent to the flooding. Very expensive
measures such as relocating the heating system and fuse box to higher floors or completely
changing the heating system, was only considered by very few respondents (<5%) before the
flood and did not change much after the flood.

When looking at the three subsets individually, Lohmar showed for most of the measures a
considerably higher increase after the flood, than Hersbruck and Osnabriick. Being the least
prepared subset before the flood, Lohmar shows the highest absolute values of respondents who
informed themselves about flood protection (57%), participated in flood protection networks
(52%), improved flood safety of their building (31%) and installed permanent or mobile water
barriers (34%) after the pluvial flood. Nevertheless, for all three subsets, the number of
respondents who reported the implementation of a measure doubled for most of measures after
the flood event.
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Motivation to undertake precautionary measures

In order to analyze whether flood experience or knowledge about the flood hazard has a
significant influence on implementing precautionary measures as stated by several studies on
fluvial floods (Bubeck, Botzen and Aerts, 2012), Chi-squared tests with a 0.005 significance level
were performed. Therefore the interviewed households were separated into groups depending
on whether they have implemented no or at least one precautionary measure for each cost-level
(low-, medium-, high-cost measures) (Figure 2.3). Looking at the flood experience, only low
cost measures were significantly more often implemented by households who have knowledge
about the flood hazard but no previous flood experience. A possible explanation could be that
households who had been flooded before considered inexpensive measures as sufficient given
the flood probability and expected future damage. Households with only knowledge about
the flood hazard might assess the risk as well as the expected damage higher and therefore
considers larger investments in private flood precaution as feasible.

When asked about the general effectiveness of precautionary measures on a scale from
(1), meaning “very effective” to (6), meaning “very ineffective”, a majority of 69% in all three
subsets evaluates precautionary measures as rather effective, giving numbers from (1) to (3).
Among these, 24% consider private precautionary measures as “very effective”. The differences
between the three subsets are in accordance with the fraction of precautionary behavior shown
in Figure 2.2: with 32% of respondents rating precautionary measures as “very effective” and
81% giving grades from 1 to 3, Osnabriick showed the highest fraction of respondents with
positive attitude toward precautionary behavior (Figure 2.4). This is followed by Lohmar
(rating (1): 24%; rating (1) to (3): 66%) and Hersbruck (rating (1): 17%; rating (1) to (3):
61%). Only a minority of 3% in Osnabriick, 5% in Lohmar and 8% in Hersbruck evaluates
precautionary measures as very ineffective.

The low motivation to implement high-cost measures, the lacking influence of flood
experience and knowledge about the flood hazard, and the fact that precautionary measures
were assessed as effective by most households suggest that cost and effort for a measure may
influence the decision about precautionary measures. However, further research especially
in the context of flood coping appraisal is needed to gain a deeper understanding on the
influencing factors of private pluvial flood precaution (Bubeck et al., 2013).

Overall, the level of precautionary behavior before the flood was rather low in all three
subsets. Possible reasons are lacking flood experience and knowledge about the flood hazard.
Although precautionary measures were evaluated as a rather effective way to mitigate pluvial
flood damage in general, mainly inexpensive and easy to implement measures were considered
by households in all three study areas. These measures do not necessarily help to directly
reduce damage, but must be seen against the backdrop of low risk awareness and the relation
between costs of implementation and expected damage associated with pluvial floods. However,
in consequence of the flooding, the fraction of respondents showing precautionary behavior
more than doubled for many measures after the flood, and thus improving the preparedness of
Lohmar, Hersbruck and Osnabriick for possible future floods.

2.4.2 Warning and response to pluvial flooding
Early warning

Receiving a warning prior to a pluvial flood increases the chances to adequately protect lives
and assets at risk, by implementing emergency measures such as moving values to higher
grounds, protect oil tanks or directly safeguard the building from inflowing water. In order
to have enough time to implement these measures, the lead time as well as the content of
the warning concerning affected areas and expected severity of the events, are critical. As
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Figure 2.3: Percentage of households that implemented at least one precautionary measure
split by flood experience and knowledge about the flood hazard for different cost levels.
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Figure 2.4: Perceived effectiveness of private precautionary measures for each of the three
subsets on a scale from (1) very effective to (6) very ineffective.

outlined in Section 2.1, official early warnings for pluvial floods are challenging and limited
to severe weather warnings released by the DWD (DWD, 2016a). Other warnings including
warnings by friends or relatives, general news coverage or direct observation of the weather, are
often uncertain and usually have considerably lower lead times compared to official warnings.
For Hersbruck, Lohmar and Osnabriick, several severe weather warnings with maximum lead
times of 17 h, 15 h and 16 h (meaning the time between the release of the warning and the
flooding of the building), respectively, were released by the DWD. These warnings contained
time, affected district and information about the expected amount of rainfall. Although for all
three subsets official severe weather warnings were issued prior to the flooding, 68% of the
interviewed households stated that they did not receive any warning (see Table 2.3). Among
the respondents who reported that they have received a warning, with 19% most of them
referred to own observations of the weather, the flooding of their direct surroundings or already
smaller leakages inside their homes. This type of warning resulted in very short average lead
times of less than two hours, which limits the emergency response to basic damage reducing
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Table 2.3: Number and fraction of households who received or did not receive an early warning
prior to the pluvial flooding event.

Hersbruck Lohmar Osnabriick Total
Sample area
n % n % n % n %
No warning received 86 7% 48 % 53 53% 187 69%
Warning received 24 22% 13 21% 45 45% 82 30%
Severe weather warning 8 7% 3 5% 12 12% 23 8%
Own observation 12 11% 9 15% 31 31% 52 19%
Other warnings 4 4% 1 2% 2 2% 7 3%
No information 1 1% 1 2% 2 2% 4 1%
Total 111 100% 62 100% 100 100% 273 100%

measures, such as moving valuables to higher grounds or pumping out the water that already
entered the building. Only 8% of all respondents received the official severe weather warning
with an average lead time of nine hours prior to the event. The low number of recipients as
well as the rather high delay of six to eight hours between the possible maximum lead time and
the average lead time, indicates weaknesses in the dissemination of severe weather warnings.
Meanwhile, the DWD has further improved the dissemination of warnings including various
media channels such as Short Message Service (SMS), YouTube videos and an updated website
design (DKKV, 2015).

The number of respondents who did not receive a warning was particularly high in Hersbruck
and Lohmar, where in both cases 77% reported that the flood hit them without any warning.
With 53% of respondents remaining unwarned, the value for Osnabriick was considerably
lower.

Emergency measures undertaken

Emergency measures are actions that are taken shortly before or during a flood event to
mitigate potential loss and damage (Maskrey, 1997). In the context of pluvial floods, emergency
measures are expected to play an important role in damage reduction, as typically lower water
levels compared to fluvial floods are assumed to make these measures particularly effective.
However, the effectiveness of a particular measure in terms of damage reduction depends on a
large number of factors, including the type of warning, lead time, the person implementing
the measure, etc., and is still hardly understood (Molinari et al., 2013). For this study, the
flood affected households in Lohmar, Hersbruck and Osnabriick were asked to report on
the emergency measures they had undertaken and how they assess the effectiveness of these
measures in order to reduce damage.

In total, 58% of all respondents reported to have implemented at least one emergency
measure shortly before or during the pluvial flood. Among the eleven most common emergency
measures asked, pumping the water out of the building (41%), putting movable contents
upstairs (28%) and protecting the building from inflowing water (22%) were most often
implemented by households in all three study areas. Although the relative popularity of
each measure follows a very similar pattern in all study areas, considerable differences in
the number of households implementing emergency measures in each study area were found.
While in Osnabriick 68% of the households implemented at least one emergency measure, the
numbers for Lohmar (58%) and Hersbruck (48%) are substantially lower. The most popular
measures, such as pumping the water out of the building and putting movable content to
higher floors, were particularly often implemented in Osnabriick. Besides switching off the
gas and electricity supply in the building, Hersbruck falls behind the other two subsets for
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Figure 2.5: Fraction of interviewed households that performed emergency measures shortly
before or during the pluvial flood event.

all other measures. However, the slightly higher number of households in Hersbruck who
switched off their gas and electricity supply is probably due to the fact that apparently the
municipality of Hersbruck did not switch it off centrally in the affected neighborhoods (see
Figure 2.5). Compared to the other two subsets, a relative high percentage of households
in Lohmar implemented measures such as protecting the building against inflowing water,
driving vehicles to a flood-safe place and redirecting the water on the property. Unlike damage
mitigation measures such as pumping out the water, the latter are often implemented with the
goal to completely avoid losses by preventing water intrusion into the building or vehicle in the
first place. A reason for this difference might be related to the hazard characteristics, as lower
rainfall intensities (see Section 2.2) in Lohmar may have led to more households considering
damage prevention as feasible.

The affected households in all three study areas were directly asked to assess the effectiveness
of each emergency measure they have implemented on a scale from (1), meaning “very effective”
to (6) meaning “very ineffective”. For the three study areas, the average effectiveness of each
measure is shown in Figure 2.6. Due to no or very few observations in the three study areas,
“protecting oil tanks” was excluded as a measure from this analysis. With an overall average of
(2) and averages ranging from (1) to (3.3) for each measure, the majority of the respondents
assessed the implemented emergency measures as rather effective. Among the three study
areas the measures implemented by households in Osnabriick were evaluated the most effective.
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Table 2.4: Contingency table showing the number of respondents by implemented emergency
measures and received warning (EM: emergency measure).

Emergency measure(s) Warning received Total
Total” Yes No
Yes 59 98 157
No 27 89 116
Hersbruck™ Yes No
Yes 17 37 54
No 8 49 57
Lohmar Yes No
Yes 9 27 36
No 5 21 26
Osnabriick Yes No
Yes 33 34 67
No 14 19 33

* Proportions significantly different from each other based on a Chi-squared test with 0.05 confidence level.

When comparing the different measures, the ones that do not require special knowledge such
as safeguarding documents and valuables or putting movable content upstairs are evaluated as
more effectively compared to technical measures such as redirecting the water on the property
or protecting the building from inflowing water. It is assumed that these differences are also
related to the fact that the proper implementation of more elaborate emergency measures was
constrained by short lead times in most cases.

Response to warning

In the case a household did not receive a warning at all, the lead time drops to zero making
the proper implementation of emergency measures particularly difficult to almost impossible.
In order to analyze if receiving an early warning (regardless of the lead time) influences the
implementation of emergency measures, the fractions of respondents implementing at least
one emergency measure were compared between groups who did or did not have received a
warning prior to the respective flood event (see Table 2.4). A Chi-squared test between the
proportions of all three study areas showed on a 0.05 significance level that significantly more
households implemented at least one emergency measure when they had received an early
warning. Looking at each event separately, one can see that for all three subsets the proportion
of households who implemented at least one emergency measure is larger when a warning
was received, compared to the group that did not receive a warning (Table 2.4). However, a
significant influence on a 0.05 confidence level of receiving a warning on the implementation
of emergency measures could only be confirmed for the Hersbruck subset. This indicates
that not only the receipt of a warning is important for implementing emergency measures,
but other factors such as the information provided in the warning, the flood experience and
the capability of the respondent to implement measures are also important. Furthermore,
the uncertainty that comes with severe weather warnings and forecasts in general, is often
difficult to assess for private households and local authorities alike. Unlike fluvial floods, no
clear thresholds are defined, when emergency services start implementing damage mitigation
measures (Kox et al., 2015; Kox and Thieken, 2017).

In summary, the dissemination of the issued official early warnings was low in all three
subsets, leading to short lead times for emergency response in most cases. Although in
Osnabriick more people received a warning and implemented emergency measures than in the
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Figure 2.6: Average effectiveness on a scale from (1) "very effective" to (6) "not at all effective",
evaluated by the respondents for each implemented measure. Data are shown for each study
area.

other two subsets, a significant influence of early warning on the implementation of emergency
measures was not found for this subset. This shows that receiving an early warning is only a
first step in pluvial flood damage mitigation.

Therefore improving “(pluvial) flood intelligence” (Keys, 1993), meaning the ability to
properly respond to a warning, is equally important to improving the dissemination of early
warnings in order to reduce future pluvial flood losses.

2.4.3 Flood impact characteristics and resulting damage

Due to the high concentration of people and assets in urban areas, the potential damage caused
by pluvial floods can be particularly high. Adverse effects caused by floods range from direct
economic damage, when valuables get directly in contact with water to negative long-term
health effects, such as trauma. Therefore flood damage is often categorized in direct and
indirect damage as well tangible and intangible damage. First introduced by Parker et al. (1987)
this scheme is frequently used in literature as a basis to classify different types of damage (e.g.
Jonkman, 2007; Merz et al., 2010). This study focuses on the direct tangible damage to private
households in terms of replacement values for building structure and contents. Respondents
were only considered as “damage cases”, when they reported monetary damage. For cases,
were reported damage was only minor (e.g., “repainting the basement wall”) and respondents
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were not able to quantify the damage, a flat-rate damage of EUR 250 was assumed.

Among the three subsets, 51% of the respondents reported damage to their residential
building and 67% reported damage to contents. With 41% building damage and 71% content
damage, the Hersbruck subset has the lowest fraction of respondents with building damage, but
the highest fraction of respondents reporting content damage. The difference compared to the
two other, for that matter, very similar datasets, is probably caused by the considerably lower
homeowner rate in the Hersbruck subset (see Table 2.1). While homeowners are responsible
for damage to their building as well as the contents, tenants can only be affected by content
damage. However, in all three subsets the number of households reporting content damage
is higher than the number of households reporting building damage. Compared to a similar
study by Kienzler et al. (2015) on fluvial floods, a clear difference in damage characteristics
between pluvial and fluvial floods can be observed. While more people suffered from building
damage, than from content damage, in all five fluvial flood case studies analyzed by Kienzler
et al. (2015), the numbers on pluvial floods just show the opposite. It can be assumed, that
lower water levels during pluvial floods are not so harmful to building structures. Additionally,
a lower preparedness in terms of adapted (basement) use in the case of pluvial floods, may
lead to more damage to contents.

Table 2.5 shows the mean and median damage to building and contents for each event. To
make the damage of the 2005 subsets comparable to the 2010 subset, the reported building and
content damage for each household were corrected by the building price index and the consumer
price index for consumer products excluding food for the year 2010, respectively (DESTATIS,
2015b,a). When comparing the mean and median damage for each event, as well as for contents
and building damage, one can see that in all cases the mean values are higher than the median,
indicating a positive skew of the damage distributions with higher damage frequencies on the
lower range of the damage spectrum (Figures 2.7 and 2.8). The strongest difference between
mean and median damage of EUR 12,322 can be found for building damage in Osnabriick
(Table 2.5). This is partly caused by an overall shift of the damage distribution towards higher
damage (see Figure 2.7), but mainly the effect of a few outliers with building damage over
EUR 100,000. This can also be seen by comparing the corrected median building damage
values for Lohmar and Osnabriick. Although the corrected mean building damage value for
Osnabriick is almost twice as high as for Lohmar, the corrected median values are almost equal.
Looking at the corrected average contents and building damage for each event separately, the
results show, that average building damage in Osnabriick were high, while the average content
damage is the lowest of the three subsets. Although Hersbruck and Osnabriick had similar
hazard characteristics in terms of water levels and flow velocities (Table 2.1), the average
building damage in Hersbruck was considerably lower, while the average content damage was
slightly higher than in Osnabriick. Several factors, such as flood duration, contamination
of the storm water, precaution, early warning and emergency response and flood experience
have to be taken into account to explain these differences. However, content damage was
lower in study areas where preparedness was higher, more households had flood experience,
and received early warnings and/or implemented emergency measures. When comparing the
three different subsets it can also be observed, that building damage seems to depend stronger
on hazard characteristics such as flood duration, flow velocity or contamination of the flood
water and is therefore more difficult to mitigate by non-structural precautionary measures and
emergency measures.
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Figure 2.7: Distribution of classified building damage by study area based on inflation adjusted
values.
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Table 2.5: Damage to building and contents in the three study areas.

Flood event n Reported Mean Median corr. Mean corr. Median
% Euro (€) Euro (€) Euro (€) Euro (€)

Building damage

Hersbruck 46 41 4,121 1,500 4,6931 1,708t

Lohmar 36 58 7,486 3,000 8,527* 3,417"

Osnabriick 56 56 15,322 3,000 15,3221 3,000*
Contents damage

Hersbruck 79 71 6,355 1,200 6,5992 1,246

Lohmar 39 63 9,127 3,000 9,477? 3,1152

Osnabriick 64 64 4,685 1,000 4,6852 1,0002

1 Damage values were corrected for the year 2010 based on the building price index (“Preisindizes
fiir den Neubau vonWohngeb#uden einschl. Umsatzsteuer”) (Reference year 2010: 100 index
points; 2005: 87.8 index points) published by the German Federal Office of Statistics (DESTATIS,
2015b)

2 Damage values corrected for the year 2010 based on the consumer price index for consumer
products excluding food (“Verbrauchs-und Gebrauchsgiiter ohne Nahrungsmittel und ohne
normalerweise nicht in derWohnung gelagerte Giiter”) (Reference year 2010: 100 index points;
2005: 96.3 index points) published by DESTATIS (2015a).

2.4.4 Recovery

As far as the physical flood damage is concerned, results show that a large share of the
respondents have fully recovered from flood damage at the time of the interview. Fifty-nine
percent of the respondents in Osnabriick, 64% in Hersbruck and 57% in Lohmar reported that
damage to their building was fully repaired about 17 to 18 months after the flood. Another
20% in Osnabriick (14% and 16% in Hersbruck and Lohmar, respectively) indicated the second
best answer category on a six-point answering scale. Only 2% of the respondents in Osnabriick
and Hersbruck stated that their building still showed considerable deficits, while this answer
category was not chosen by households in Lohmar. Very similar findings are reported by
Kienzler et al. (2015), who find that 77% of respondents affected by fluvial flooding stated a
very good or good building status 13 to 18 months after the event. As far as the damage to
contents is concerned, physical recovery appears to be somewhat slower. Here, only 35% of the
households in Osnabriick, 49% in Hersbruck and 40% in Lohmar reported that their damaged
contents were fully replaced. The second best answer category was chosen by another 12% in
Osnabriick, 9% in Hersbruck and 17% in Lohmar. In line with the findings for building damage,
only a minor share of 2% to 7% of the respondents reported that their contents still showed
considerable deficits. Findings are again in line with Kienzler et al. (2015), who also report a
slower physical recovery for contents compared with the building status for people affected
by fluvial flooding. In addition, respondents were also asked whether they received financial
compensation. Results show that only 21% of respondents in Osnabriick received financial
compensation for the damage they had suffered. Slightly lower values were found for Hersbruck
(13.5%) and Lohmar (13%). Two to ten percent of the respondents chose the “don’t know/no
answer” category and the rest did not receive compensation. Those who received compensation
reported a mean value of EUR 7,021 (standard deviation: EUR 10,868; median: EUR 2,000)
in Osnabriick and a similar mean value of EUR 7,700 in Lohmar (standard deviation: EUR
7,852; median: EUR 5,500). In Hersbruck, mean compensation is significantly higher with
EUR 25,595 (standard deviation: EUR 73,923; median: EUR 3525). However, it has to be
noted that this higher mean is caused by an outlier that reported a compensation of EUR
260,000. Moreover, it should be taken into account that the number of observations is very
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low for this specific aspect, ranging from eight in Lohmar, 15 in Hersbruck to 21 in Osnabriick
and findings thus need to be carefully interpreted. The large majority of the respondents
in Osnabriick (19 out of 21) received financial compensation from their insurer. Only three
respondents indicated that they had received financial support from the flood relief fund of
the government (“Soforthilfe”). For Hersbruck and Lohmar, this information is not available.
The results furthermore show that the few respondents who received compensation evaluated
the damage-compensation process mostly positively, with 57% and 14% choosing the best and
second best out of five answer categories in Osnabriick. This indicates that insurance can be
an effective mean to cover damage caused by heavy rain events. In Hersbruck and Lohmar,
satisfaction with the compensation process was somewhat lower with 33% and 37% choosing
the highest answer category, respectively. Contrary, 9.5% of the households in Osnabriick
indicated the two lowest answer categories. The share of the respondents that is not satisfied
with the compensation process—indicated by the two lowest answer categories—is considerably
higher in Hersbruck and Lohmar with 27% and 37%, respectively. However, these findings
should again be carefully interpreted given the low number of observations for this aspect.

In the present paper, recovery exclusively referred to the replacement and repairs of
physical flood damage. It should be noted, though, that this is merely one aspect of recovery.
In addition, floods can also have a large and more long-term impact on the psychological
well-being of those affected (Lamond et al., 2015), which needs be accounted for in policies
and measures that aim at supporting the recovery process of disaster stricken areas.

2.5 Conclusions

Pluvial floods are often described as the “invisible hazard”, since they may occur everywhere
(Houston et al., 2011). The majority of private households in all three study areas were
not aware of the pluvial flood risk. The preparedness level of affected households improved
considerably in the three study areas after the flood. However, raising awareness for pluvial
floods remains challenging and, so far, risk management strategies in the three study areas and
elsewhere are mainly focused on fluvial floods. This was particularly observed in the Hersbruck
study area, where smaller previous pluvial and fluvial flood events in other parts of the city
and the availability of lood maps did not seem to have an effect on the preparedness before
the 2005 pluvial flood event. Thus, future risk communication and management strategies
should take into account that the preparedness of private households for pluvial floods is low
in most areas. The majority of households who either have experienced a flood before or had
knowledge about the flood hazard see precautionary measures as an effective way to reduce
pluvial flood damage. However, only very few were willing to invest in expensive building
retro-fitting. Apparently, the different hazard characteristics of pluvial floods compared to
fluvial floods lead to a shift in private damage mitigation strategies from costly and elaborate
private precautionary measures to an effective emergency response. By comparing the pluvial
flood damage in all three study areas, it seems that especially for content damage, preparedness
and the implementation of emergency measures in particular, play important roles in damage
mitigation. In Osnabriick, for instance, a considerably higher fraction of households received
an early warning and successfully implemented emergency measures. This led to the lowest
average content damage even though flood characteristics were the most severe in all of the
three subsets. In line with the results by Van Ootegem et al. (2015), it can be concluded that
receiving an early warning in time and knowing how to respond to this warning can effectively
reduce damage caused by pluvial floods. While in all three study areas severe weather warnings
with lead times of several hours were released, only a minority of households actually received
the warning. Thus, not only a higher awareness and preparedness through adequate risk
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communication is needed, but also improved early warning systems. This includes a location
specific warning, a warning chain with clear thresholds and information on suitable emergency
measures, as well as an effective dissemination. The latter is constantly improved by including
various media channels such as SMS, social media platforms, smartphone applications and
improved websites.

The comparison between the three case studies revealed that damage caused by pluvial
floods is the result of complex interactions between hazard characteristics, precaution, warning,
emergency response and other influencing factors. Therefore, further research and pluvial
flood damage models are needed to better understand the damaging processes as well as to
improve risk analyses.
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3 A comparative survey of the
impacts of extreme rainfall in
two International case studies

Summary. Flooding is assessed as the most important natural hazard in Europe, causing
thousands of deaths, affecting millions of people and accounting for large economic losses in
the past decade. Little is known about the damage processes associated with extreme rainfall
in cities, due to a lack of accurate, comparable and consistent damage data. The objective
of this study is to investigate the impacts of extreme rainfall on residential buildings and
how affected households coped with these impacts in terms of precautionary and emergency
actions. Analyses are based on a unique dataset of damage characteristics and a wide range of
potential damage explaining variables at the household level, collected through computer-aided
telephone interviews (CATI) and an online survey. Exploratory data analyses based on a total
of 859 completed questionnaires in the cities of Miinster (Germany) and Amsterdam (the
Netherlands) revealed that the uptake of emergency measures is related to characteristics of the
hazardous event. In case of high water levels, more efforts are made to reduce damage, while
emergency response that aims to prevent damage is less likely to be effective. The difference in
magnitude of the events in Miinster and Amsterdam, in terms of rainfall intensity and water
depth, is probably also the most important cause for the differences between the cities in terms
of the suffered financial losses. Factors that significantly contributed to damage in at least
one of the case studies are water contamination, the presence of a basement in the building
and people’s awareness of the upcoming event. Moreover, this study confirms conclusions
by previous studies that people’s experience with damaging events positively correlates with
precautionary behavior. For improving future damage data acquisition, we recommend the
inclusion of cell phones in a CATI survey to avoid biased sampling towards certain age groups.
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3.1 Introduction

More than 200 major flood events occurred in Europe between 1998 and 2009, causing 1126
deaths, displacement of about half a million people and around EUR 52 billion insured economic
losses (European Environment Agency, 2010). These lumped statistics include various types
of flooding, including fluvial floods, flash floods, and pluvial floods in urban areas that are
triggered by extreme rain events overwhelming urban drainage systems. Currently, only little is
known about the contributions of the different flood types and characteristic damage processes.

To better manage floods and to reduce their impacts, the European Union launched the
Floods Directive in 2007 (European Commission, 2007). When implementing the directive,
most of the countries concentrated on fluvial and coastal floods and neglected pluvial floods
despite their damaging character (European Commission, 2016). However, recent pluvial
flood events in urban dwellings in Europe and elsewhere have demonstrated that the adverse
consequences of extreme rainfall must not be neglected. This includes large cities such as
seen in the pluvial floods in Copenhagen in July 2011, with EUR 807 million of insured losses
(Garne et al., 2013) or in Beijing, where a rainstorm in July 2012 caused an estimated total
loss of over USD 1.86 billion (Wang et al., 2013), but also smaller cities such as the city of
Hull, which suffered, among other towns in the UK, from severe pluvial flooding after a series
of extreme rainstorms in 2007 (Coulthard and Frostick, 2010). In addition to losses caused
directly by pluvial flooding, damage can also be caused by rainwater directly entering the
building through roofs (Spekkers et al., 2015).

A prerequisite for an adequate management of the risks of extreme rainfall is a quantitative
analysis of the hazard and its potential impacts. To quantify impacts, processes that govern
damage caused by extreme rainfall have to be analyzed, understood and finally used to derive
quantitative loss models. Accurate, comparable and consistent data on impacts of extreme
rainfall and potentially influencing factors, gathered on the scale of flood-affected properties,
serve as a good basis. While such comprehensive data sets have been collected for fluvial
floods in recent years (e.g. Gissing and Blong, 2004; Thicken et al., 2005, 2016; Kreibich et al.,
2007; Kienzler et al., 2015), data collection for extreme rainfall is rare and samples are much
smaller (Rozer et al., 2016; Van Ootegem et al., 2015).

Two approaches to collect ex-post damage data can be distinguished. Large data sets
originate from loss adjustments by insurers or from payouts of governmental disaster funds
or other risk transfer schemes. Such data sets provide a complete picture of the losses of
insured households and properties with regard to the total amount of losses and also their
spatial as well as temporal distribution. However, these data do not contain information on
damage conditions and the processes underlying damage estimates. Therefore, they are only
of limited use for loss model development (e.g. Spekkers et al., 2014). In addition, loss data
from risk transfer schemes, particularly from flood insurance, may be biased. Insurance data
only cover households that are insured and thus not necessarily the whole affected population.
Moreover, insurance contracts commonly include a deductible as well as an excess rate; i.e.
the insured household has to cover small losses as well as losses which exceed the excess rate
on their own. Thus, these costs have to be added to the payouts in order to receive the total
loss (e.g. Thieken et al., 2006). In addition, access to damage data from risk transfer schemes
and similar sources might be constrained by data privacy protection

Scientific surveys can help to overcome some of the problems associated with insurance data
sets. Surveys allow the collection of detailed information on the property scale including many
factors that might influence the amount and type of damage, such as hazard characteristics
at the affected property, characteristics of the affected structure including property-level
precautionary and emergency measures, and socio-economic variables of the affected households.
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However, due to the high costs and the dependence on the willingness of affected residents to
participate in the survey, only a sample of the affected population can be investigated and is
hence covered by the data. Depending on the questionnaire and survey mode, this sample can
be biased through an overrepresentation of certain groups (selection bias) or a cognitive bias
caused by the questionnaire (response bias). In contrast to data from insurances, surveys are
not necessarily restricted to residents that suffered from damage. In fact, residents that live in
the affected area but did not experience damage may contribute information that is important
for damage analysis and risk mitigation (Van Ootegem et al., 2015).

In the past decades, several scientific surveys have been conducted in the aftermath of severe
flood events, focusing on private households in Germany (e.g. Kreibich et al., 2005; Thieken
et al., 2005, 2007, 2016; Kienzler et al., 2015). Only a few surveys have been carried out to
investigate the risks and damage associated with extreme rainfall. For example, Van Ootegem
et al. (2015, 2018) conducted a mail survey in 2013 among pluvial flood victims in Flanders,
the northern part of Belgium. People were asked to report how much damage they suffered
to several parts of the building as well as the building contents. Explanatory variables were
collected, such as building characteristics, behavioral indicators and socio-economic variables,
to construct multivariate damage models for pluvial floods. Rozer et al. (2016) used data
collected through computer-aided telephone interviews (CATI) to analyze three pluvial flood
events in Germany. Rozer et al. (2016) found emergency response played a bigger role in
pluvial flood damage mitigation than in fluvial floods, because of the relative low water depths
associated with pluvial floods and a low risk awareness among people for this type of flooding.
Poussin et al. (2015) conducted a mail survey in three regions in France to investigate how
households reacted in terms of mitigation measures for different types of flooding, including
pluvial flooding. They found that the effectiveness of flood mitigation measures depends on
the characteristics of the flood hazard. Morss et al. (2016) conducted interviews on people’s
risk perception of flash floods by sending a mail survey to 1000 randomly chosen households
in Boulder, Colorado, and 200 students from the University of Colorado, Boulder. Their study
showed that respondents who had prepared themselves for flash floods or who perceive a higher
likelihood of being killed by a flash flood were also more willing to take protective actions in
response to a flash flood warning.

For this type of analysis, the risk management was found to be a valuable framework
(Thieken et al., 2007; Kienzler et al., 2015; Rozer et al., 2016) . This cycle generally consists
of three phases (see Figure 3.1).

1. Response and recovery: just before, during and immediately after a damaging event,
residents take emergency measures to limit adverse effects of the event and start to
clean-up and repair damage as soon as possible in order to regain the pre-event standard
of living.

2. Risk analysis and event assessment: in order to create a sound knowledge base for
risk management, a phase of risk analysis and event assessment should be performed
including the investigation of the adverse consequences.

3. Disaster risk reduction: in the face of a next disaster, residents plan and implement
adequate precautionary and preparatory measures that aim at preventing and mitigating
risks.

In this paper, we analyze the impacts of extreme rainfall to residential buildings in the cities of
Miinster (Germany) and Amsterdam (the Netherlands) as well as precautionary behavior and
emergency response by households, using the risk management cycle as an aid to analyze and
present results. The two cities suffered from extreme rainfall in the past years, most notably
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Figure 3.1: The risk management cycle used as a framework for the exploratory data analyses
in this paper.

the severe weather event of 28 July 2014 that caused rainfall damage in parts of northern
and central Europe. Within the risk management cycle, we focused on the following research
questions in particular:

1. How did residents in Miinster and Amsterdam respond to a hazardous rain event by
undertaking emergency measures?

2. What is the financial damage to building structure and building content due to a
hazardous rain event?

3. How does the level of precaution and other possible explanatory variables affect the
height of these losses?

4. How prepared are residents in Miinster and Amsterdam for extreme rainfall?

5. Does experience with previous damaging rain events affect people’s precautionary behav-
ior?

These questions were indicated as being important for flood risk management during panel
discussions with professionals working for the city of Amsterdam. Similar questions were also
discussed in related studies by Kienzler et al. (2015); Rozer et al. (2016).

Scientific surveys were administered among affected households in Miinster and Amsterdam
to collect information on self-reported financial losses caused by damage to building struc-
ture and building content as well as factors potentially influencing damage, such as hazard,
building and socio-economic characteristics. A questionnaire was developed for the purpose of
investigating the impacts of intense local rainfall. It has a flexible structure and is set up in
open source software to make it easily adaptable and applicable to other cases.

After briefly describing the two case studies and the damage data collection campaign in
the next section, we discuss the result of the case study comparison in Section 3.3. We then
discuss possible methodological biases and differences between the case studies due to hazard
and regional characteristics (Section 3.4). Conclusions are summarized in Section 3.5.
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3.2 Data and methods

3.2.1 Case studies

Two case studies are central in this paper: the cities of Miinster (Germany) and Amsterdam
(the Netherlands). Both cities suffered rainfall damage caused by a synoptic weather event
that occurred on 28 July 2014. The following two sections describe the case studies in detail.
Key features of the two case studies are summarized in Table 3.1.

Table 3.1: Key features of the two case studies.

Miinster Amsterdam
Rainfall characteristics 28 Jul 2014: 28 Jul 2014:

292 mm in 7 h' 93 mm in 6.5 h?

220 mm in 1.75 h! 40 mm in 1 h?
Dominant building style Single-family houses® Multifamily houses*
Building years 1950-1990 3 1880-1940*
Sewer system 80% separate system® 75% separate system®
Impervious surface 34%7 61%3
Recent flood history No floods before 28 July 2014 Minor floods
Survey period 20 Oct 201526 Nov 2015 20 Jan 2016-28 Apr 2016
Investigated damage processes  Pluvial flooding Pluvial flooding;

Water intrusion through roofs

Survey mode Computer-aided tel. interviews Computer-aided tel. interviews;

Online survey

LLANUV NRW (2015);  2KNMI (2017);  ®LfStat (2017);  *Kadaster (2013);  ° Griining and Grimm
(2015); S Waternet, personal communication (2017);  “ Miinster (2014); 8 City of Amsterdam (2016)

Miinster

On 28 July 2014, the city of Miinster (population: 310 000, area: 300 km?) and the smaller
town Greven (population: 37 000, area: 140 km?) were hit by an extreme rainfall event. The
event, which exceeded a return period of 100 years, was a result of an interaction between a
stationary cold front over Miinster and constantly incoming hot and humid air from the east
(Griining and Grimm, 2015). Between 14:00 UTC and 21:00 UTC, a rain intensity of 292 mm
in 7 hours was measured at the weather station "Hauptkldranlage", north of the city center of
Miinster, operated by the State Environmental Agency of North Rhine-Westphalia (LANUV
NRW, 2015). At its peak, a depth of 220 mm was accumulated in 1.75 hours.

Except for the west, the whole city of Miinster and all of Greven were affected by pluvial
flooding. There was no flooding of a river system in that region that day. More than 7000
residential houses were damaged, and around 24 000 households were without electricity for
some hours. The rail and road traffic was disrupted that day. The total damage to private
households for Miinster is estimated to be more than EUR 70 million (GDV, 2015). The most
affected neighborhoods in Miinster were located in the east of the city.

Ground elevation differences in Miinster are up to 30-60 m. The percentage of impervious
surfaces in the city center is around 90% and on a city-wide level 34%. Miinster has a high
percentage of single-family houses, built in the period of 1950-1990. There is an intensive
residential use of souterrains by students. Around 80% of the city area has separate sewer
systems (Griining and Grimm, 2015). The city of Greven directly borders to the city of
Miinster but is part of another administrative district (i.e. Steinfurt). Greven is a small
mid-sized town, with mostly small single-family houses — the earliest dating back to the 19th
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century.

The case study area compromises neighborhoods in Miinster and Greven that were most
affected (Figure 3.2), based on fire brigade data on street level provided by the cities of Miinster
and Greven. All streets that had at least one, for Miinster, or three, for Greven, fire brigade
records on 28 July 2014 were selected. This case study focuses on households that suffered
from pluvial flooding, which was the scope of the EVUS project that funded the Miinster
survey. In the remainder of the paper, we refer to “Miinster and Greven” as “Miinster”.

Munster Amsterdam
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Figure 3.2: Overview map of the two case study areas. The left panel shows the cities of
Miinster (bottom) and Greven (top). The black triangle shows the location of the gauge
‘Hauptkldranlage’ in Miinster. The right panel shows the neighbourhoods Oud-West and
Oud-Zuid in Amsterdam. Sample areas are shown in red. The black stars indicate the centres
of the three cities.

Amsterdam

The city of Amsterdam (population: 830 000, area: 230 km?) was also hit by extreme rainfall
on 28 July 2014. Between 07:30 UTC and 14:00 UTC, a total of 93 mm of rainfall was
accumulated in 6.5 h, based on radar data from the Royal Netherlands Meteorological Institute
(KNMI, 2017). A maximum hourly rain intensity of 40 mmh~! was recorded between 09:15
and 10:15 UTC (i.e. 40 mm in 1 h is exceeded once every 50 years).

Parts of the highways around Amsterdam were temporarily closed for traffic due to
the rainfall. Throughout the city, floods were reported, mostly in the centrally located
neighborhoods Oud-West and Oud-Zuid (see Figure 3.2). Areas for the survey were based on
a density analysis of fire brigade and municipal flood data of the city of Amsterdam.

The case study area is characterized by multifamily houses (i.e. apartment buildings) built
in the period of 1880-1940 and mostly connected to separate sewer systems. The percentage of
impervious surface areas is 61%, based on 2016 GIS data provided by the city of Amsterdam.
The area is known for having many semi-basements (i.e. souterrains) which are vulnerable to
flooding; an exact number on the percentage of houses with a basement could not be obtained
from public data sources. The case study area is practically flat (height differences of 2-3 m).
Besides pluvial flooding, we investigated cases of roof leakages in this case study, too. The
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survey included not only data from the 28 July 2014 event but also other smaller rain events
that occurred after 2010. Since the extreme rainfall event on 28 July 2014 was most often
reported by respondents (41% of all cases), we refer to this event in the event description.

3.2.2 Damage data collection procedure

To identify factors that influence damage and gain insights on coping strategies, we conducted
surveys among tenants and homeowners in Miinster and Amsterdam whose houses were
flooded due to rainfall. In line with the work by Van Ootegem et al. (2015), the surveys
were also applied to flooded households that did not suffer any damage. The member of the
household with the best knowledge of the damaging event was asked to participate in the
survey. Homeowners were asked to report on their damage to building content and building
structure, while tenants were only asked to report on the latter in case they had detailed
knowledge about the structural damage of the building. We aimed for a minimum of 300
completed interviews per case study to avoid small subsamples (e.g. groups of respondents
that take a certain precautionary measure).

A questionnaire was developed for the collection of damage data associated with extreme
rainfall events, building upon an existing questionnaire for fluvial flooding (Thieken et al., 2005;
Kreibich et al., 2005). River or groundwater flooding are not addressed in this questionnaire.
The questionnaire was organized in six thematic groups, containing 82 mainly closed questions.
The questionnaire acquires information on financial losses caused by damage to building
structure and content, hazard and building characteristics, people’s precautionary behavior
and emergency response. A more detailed description of the questionnaire design is given in
Appendix 3.A.1.

In Amsterdam, we conducted computer-aided telephone interviews and an online survey.
Samples were randomly drawn from a database of landline and cell-phone numbers (2269
households) held by EDM, a customer data analytics company, for the selected case study
area. A team of trained students carried out the CATI in the period of 20 January to 28
April 2016. We conducted an online survey among 7000 households for which we were not
able to retrieve a phone number. Survey participants who suffered damage from multiple rain
events were asked to focus on the most recent event. In case participants suffered from a rain
event after 2010 other than the one on 28 July 2014, they were asked to report on this event.
Therefore, the analyses in this study do not exclusively refer to the extreme rainfall events on
28 July 2014, but impacts of extreme rainfall in general. For Amsterdam, the entire database
of survey responses is available under Creative Commons Attribution-NonCommercial license
(CC BY-NC) and can be downloaded from the DANS archive (Spekkers, 2016).

In Miinster, a CATI among tenants and homeowners was conducted by explorare, an
independent market research institute. Samples were drawn from the Deutsche Post address
database (7445 households) for the affected streets. The generic questionnaire was adapted for
this case study to be consistent with existing flood damage databases. More details on the
survey modes of the Miinster and Amsterdam case studies and the sampling procedures are
given in Appendix 3.A.2. Some post-processing activities were performed on the collected data.
Checks were performed to correct or remove implausible inputs, for example, by comparing
reported water levels inside and outside the house and by comparing reported floor areas
with building footprint. Responses to open questions (e.g. the “Other” field of the question
“How did water get into your house?”) were manually categorized. First, open answers were
categorized using existing answer categories wherever possible. If the open answer did not fit
in any of existing categories, but was given by several respondents, a new category was added.
Otherwise the answer was set to “Other”.
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3.2.3 Data analyses

Table 3.2 presents an overview of the collected data used for analyses in this paper. Similar
to the papers by Thieken et al. (2007), Kienzler et al. (2015) and Rozer et al. (2016), the
risk management cycle (Figure 3.1) is used as a framework for the data analyses and the
presentation of the results. In the present study we did not cover the topic of recovery, because
this would require repeated surveys over a period of time.

Response is here defined as the efforts to minimize the damage created by a disaster by
taking emergency measures just before, during or immediately after the event. This topic
covers items labeled "Response" in Table 3.2. People’s response was analyzed by means of a
frequency analysis of the emergency measures people took. A few emergency measures were
only asked in one of the two case studies. In the present paper, we only report on emergency
measures that were considered in both case studies.

Table 3.2: Items of the questionnaires that were used in this paper.

Item Measurement scale', unit and la- Risk management cycle
bels

Hazard characteristics

Water depth in basement rrm Risk analysis
Water depth at ground level rrm Risk analysis
Contaminated water n: No | Yes Risk analysis
Entry point of water n: How water got into the house Risk analysis

Building information

Presence of a basement n: No | Yes Risk analysis
Floor area r: m?
Building type n: Detached | Semi-detached | Ter-

raced | Multi-family

Damage information

Damage to building structure r: EUR Risk analysis

Damage to building content r: EUR Risk analysis
Preparedness

Flood experience r: Number of previous flood events Disaster risk reduction

Precautionary measures n: Type of precautionary measures Disaster risk reduction

implemented before the event, imple-
mented after the event and planned
within six months from interview date

Aware of upcoming rain event n: No | Yes Risk analysis

Respondent was at home n: No | Yes Risk analysis

Emergency measures n: Type of emergency measures imple- Response
mented

Socio-economic variables

Age of the respondent r: Number of years

Gender n: Female | Male

Education o: Highest degree of education ob-
tained

Household size r: Number of persons living in the
household

Ownership structure n: Homeowner | Tenant

Ly = ratio, o = ordinal, n = nominal
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Risk analysis and event assessment, in this paper, relates to the analysis of damage charac-
teristics and the factors influencing damage. This topic covers items labeled "Risk analysis" in
Table 3.2. We distinguished between damage to building structure and building content as well
as the total damage. Building structure is here defined as everything permanently connected
to the building, such as building walls and ceiling, permanent flooring and infrastructure.
Building contents are portable goods and semi-permanent objects, such as furnishing, curtains
and carpets. Total damage was calculated by summing building structure damage and building
content damage for the records where both values are available, including reported zero values.
We analyzed the effect of the following binary variables on damage:

e water contamination by sewage, chemicals, oil or gas;

e presence of a basement;

e if respondent was at home;

e respondent’s awareness of the upcoming severe weather event;
e respondent’s experience with water intrusion;

e if respondent took at least one precautionary measure.

We performed a median ratio test to analyze the significance of these variables, i.e. by
comparing the median damage in the subset of the data for which the binary variable is true
with the median damage in the subset of the data for which the binary variable is false. For
this purpose, we estimated the confidence intervals of the difference between the medians using
a bootstrapping method with 10 000 bootstrap samples (e.g. Haukoos and Lewis, 2005).

Disaster risk reduction is here defined as a set of actions that is taken as precautionary
measures in the face of a potential disaster and refers to items labeled "Disaster risk reduction"
in Table 3.2. We investigated the number and the type of precautionary measures respondents
took as well as when respondents implemented these measures. A few precautionary measures
were excluded from the analysis because they were only investigated in one of the two case
studies. The correlation between people’s preparedness and their experience with previous
damaging rain events was determined by comparing the mean number of precautionary
measures people have taken before the event in groups of respondents with and without
previous flood experience. Experience is here defined as having at least one experience with a
damaging rain event, independent of the severity and the recency of earlier events. A two-sided
t-test was performed to test whether means are significantly different.

3.3 Results

3.3.1 Summary statistics of the data set

A total of 859 questionnaires were completed, including 510 for Miinster and surroundings and
349 for Amsterdam. The Miinster data set contains 447 completed questionnaires from the city
of Miinster and 63 from the neighboring town of Greven. Basic statistics are summarized in
Table 3.3. The response rate was calculated according to Response Rate 1 (RR1) in AAPOR
(2015) by dividing the number of completed questionnaires by the number of contacted
households. In Amsterdam, the response to the CATI survey (9.3%) was higher than the online
survey (2.0%). The CATI survey of Miinster was in between with a response rate of 6.9%.
In the CATI survey, multiple call attempts were made to obtain a completed questionnaire,
whereas for the online survey we only sent out a survey invitation letter once. The interviews
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Table 3.3: Basic statistics of the data sets. City-level census data are obtained from the
databases of LfStat (2017) and Statistics Netherlands (2017), for Miinster and Amsterdam
respectively. Characteristics of people relate to persons older than 15 years.

Miinster Amsterdam
Phone Census Phone Online Census
sample data sample sample data

Survey characteristics

Number of completed questionnaires 510 210 139
Number of contacted households 7445 2269 7000
Response rate %] 6.9 9.3 2.0
Mean interview time in minutes 29 21 21

Demographic characteristics

Mean age of the respondent 64 45 56 54 43
Female /male ratio 1.3 1.1 0.8 0.8 1.0
People with Master degree or higher [%| 37 20 50 55 38
Mean household size 2.3 2.2 2.3 2.3 1.8
Mean floor area [m?| 130 95 110 100 -

Percentage of homeowners 80 42 66 63 39
Percentage of single-family houses 33 32 19 16 -

averaged eight minutes longer in Miinster than Amsterdam mainly because of a difference in
the length of the questionnaires.

Response bias was checked by comparing demographic indicators between response sample
and census averages. Respondents in both cities are relatively old, highly educated and
more often homeowners, compared to city-level averages (Table 3.3). There can be several
explanations for this. In the Miinster survey, only landlines phone numbers were available.
Due to the increasing use of cell phones, elderly people may tend to be overrepresented in a
landline-only sample, as argued by Kienzler et al. (2015). In the Amsterdam survey, selected
areas affected by flooding were more expensive, and the sample is therefore not representative
for the city as a whole.

Unpublished research by the second author, based on data from a previous study (Roézer
et al., 2016), shows that demographic variables, similar to those listed in Table 3.3, do not
correlate with damage. The exception is the variable "Percentage of homeowners", which
shows a weak positive correlation with damage. We therefore expect that damage amounts
reported in this study may be overestimated because of the response bias. More details on a
possible response bias are given in Section 3.4.

3.3.2 Frequency analysis of emergency response data

A total of 39% of the respondents in Amsterdam and 71% of the respondents in Miinster
have implemented at least one emergency measure before or during the event out of the 11
emergency measures compared in this study. Compared to similar studies by Rozer et al.
(2016) for pluvial floods and Kienzler et al. (2015) for fluvial floods, the percentage for Miinster
is high and the percentage for Amsterdam is among the lowest. For the frequency analysis
all observations including missing data were considered. Therefore, the results have to be
interpreted with caution as a large number of respondents in Amsterdam did not answer this
question (43-45%; see also Section 3.4.1 - Questionnaire structure).

Figure 3.3 shows an overview of the implemented emergency measures in the two cities. For
8 out of 11 emergency measures, the percentage of respondents who implemented emergency
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Asked for external help*** Moved furniture to higher floors or another safe place* Prevented water intrusion by provisionally sealing openings

Munster -

Amsterdam -

Pumped or mopped out the water*** Redirected the water on your property by provisional solutions Secured important documents and valuables***

Miinster -

Amsterdam -

Secured oil tank and tanks with other hazardous substances* Secured or removed semi-permanent facilities*** Secured pets and other animals
Miinster - . -
Amsterdam - |
o o o o
Switched off gas and/or electricity™* Unplugged electronic devices or secured power sockets™* 0% 20% 40% 60%

inster - -

Amsterdam

0% 20% 40% 60% 0% 20% 40% 60%

Figure 3.3: Percentage of respondents undertaking emergency measures. Only emergency
measures are shown that were asked in both cities. A significant difference between proportions
is denoted as follows: * = p < 0.05, xx = p < 0.01, **x = p < 0.001.

measures is significantly higher in Miinster than in Amsterdam on a 0.001 significance level.
“Pumping or mopping out the water” is in both cities by far the most frequently implemented
measure (Miinster 52%, Amsterdam 23%). The measure “Moving furniture to higher floors’
ranks second in Miinster (37%) and third in Amsterdam (12%). These findings are in line
with studies by Rozer et al. (2016); Kienzler et al. (2015), where the two above-mentioned
emergency measures are also among the three most frequently implemented measures. A survey
among pluvial flood affected households in Flanders, Belgium, revealed a similar percentage
for "Moving furniture to higher floors" as in Amsterdam (Van Ootegem et al., 2015).

Unlike the measures "Pumping or mopping out the water" and "Moving furniture to higher
floors", other measures differ considerably in popularity between the two cities. For example,
the measure "Provisionally sealing openings" ranked second in Amsterdam (13%), but was
one of the least popular in Miinster (18%). The differences in emergency response can partly
be explained by the differences in event magnitude. Some measures are more sensible to take
than others depending on the flood depth, as is discussed in more detail in Section 3.4.2 -
Causes of differences in emergency response.

Y

Table 3.4: Number of respondents providing loss information.

Damage data Missing values Zero damage

Minster (n = 510)

Structure damage 340 (67%) 170 (33%) 33 (6%)

Content damage 328 (64%) 182 (36%) 41 (8%)

Total damage 274 (54%) 236 (46%) 23 (5%)
Amsterdam (n = 349)

Structure damage 294 (84%) 55 (16%) 91 (26%)

Content damage 325 (93%) 24 (7%) 215 (62%)

Total damage 282 (81%) 67 (19%) 58 (17%)
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3.3.3 Risk analysis and event assessment

A total of 67% of the respondents in Miinster and 84% of the respondents in Amsterdam
reported on structural damage to the building they live in, which includes reports of zero
damage (Table 3.4). A total of 64% of respondents in Miinster and 93% in Amsterdam could
state their damage to building contents. In the Amsterdam sample, people reported a high
number of zero losses for content damage (215 out of 325 records). A similar result was found
by Van Ootegem et al. (2015) who argue that these zero damages stem from the fact that “it
is possible that people are able to remove the water immediately before/during the flood or
they are able to protect their belongings in some way (for instance by moving them to another
place)”. The number of zero values is limited in the Miinster sample. Since water depths in
Miinster were a few decimeters high, which suggests that people were not able to remove water
or protect their contents effectively.

Figure 3.4 shows the distribution of the total damage (top panel), the building structure
damage (middle panel) and building content damage (bottom panel) of the two data sets.
There is a large variation in the loss amounts reported by respondents, ranging from tens
of Euros to hundreds of thousands of Euros. Based on a comparison of the medians of the
distributions, significantly higher amounts were observed in Miinster than in Amsterdam; the
median of the total damage is an order of magnitude larger in Miinster (EUR 10 500) than in
Amsterdam (EUR 1200).

The damage distributions of Miinster, especially for structural building damage, are less
symmetrical than those of Amsterdam and show higher peak densities. A possible cause that
can explain these differences is the difference in reported water depths between the cities
(Table 3.5), which is discussed in Section 3.4.2 - Causes of differences in financial losses. The
asymmetry in the Miinster data set may indicate the presence of atypical extreme observations,
as discussed in more detail in Section 3.4.2 - Causes of differences in financial losses.

Figure 3.5 shows pathways for rainwater entering buildings as reported by respondents. In
Miinster, 83% of the total damage was caused by water entering the house through toilets,
sinks, drains, basement entrances, doors and other openings at ground level. In Amsterdam,
only 39% of the total damage was associated with these pathways. This can be partly explained
by differences in the sampling strategy between Miinster and Amsterdam: in Miinster cases
with roof leakages were only considered when the respective household had suffered at the
same time from pluvial floods, while the Amsterdam sample contains cases with roof leakage
only. In Amsterdam 19% of the total damage was caused by leaking roofs. The remaining
difference is probably caused by the difference in the severity of the two events (see Table 3.1),
combined with differences in building topology between cities, but this hypothesis could not
be tested based on the available data.

Table 3.5: Reported water depths and contamination. Median and mean are based on non-zero
values of the water depth.

Miinster Amsterdam
Water depth in basement
Median [m] 0.35 0.05
Mean [m] 0.49 0.16
Water depth at ground level
Median [m] 0.20 0.02
Mean [m] 0.57 0.05

Percentage of cases with contaminated water 22 16
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Figure 3.4: Kernel density function of the total damage (top), the building structure damage
(middle) and building content damage (bottom), for Amsterdam (blue) and Miinster (green).
Zero values are excluded in these graphs. The vertical dashed lines represent the median of
the distribution. The difference in medians (= |xp; — x 4|) is significant in all three plots (p <
0.001).
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. Through building walls

. Through toilets, sinks and drains

. Through unsealed basement shafts or basement entrance
Through closed doors, patio doors, french windows at ground level
Through open doors or windows at ground level
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% -
50% Through bursts in rainwater downpipes inside the house

Through other openings at ground level like cable ducts or ventilation holes
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Figure 3.5: The different ways water entered a house and their relative contribution to the
total damage (of all data). Damage was assigned to the pathways as follows: if a respondent
only reported one pathway then the damage amount was completely assigned to that pathway.
If two or more pathways were reported at the same time, then the damage amount was equally
divided over these pathways.

A number of explanatory variables for damage were investigated in this study (Fig. 3.6).
For Miinster, we found a significant difference between respondents who reported contaminated
water and those who did not, in terms of median damage. Contaminated flood water positively
correlated with the median damage. No significant correlation was found for Amsterdam
because the number of respondents reporting contaminated water was low (Table 3.5). In
Amsterdam, the presence of a basement significantly affected the median damage with a factor
2.2. Since less than 2% of the respondents in Miinster did not report a basement, more data
are needed to be conclusive about the significance of this variable for this city. No significant
correlations were found between median damage and the variables "Experience with water
intrusion" and "Took precautionary measures". Awareness correlates positively with median
damage for Miinster. More research is needed to study the causality of these relationships.

3.3.4 Disaster risk reduction

Significantly more respondents took precautionary measures in Miinster compared to Amster-
dam (Fig. 3.7). For example, the measure "Installing a flood water pump", is taken around
six times more frequently in Miinster than in Amsterdam. The exception is the measure
"Adapting the building structure", which is taken more frequently in Amsterdam. This is
because in Amsterdam, unlike Miinster, we also investigated roof leakages, and improvements
to the roof were considered building adaptation.

The list of the five most popular precautionary measures of both case studies contain
the same measures, but not in same order: "Requesting information about precautionary
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Figure 3.6: The effect of water contamination, presence of a basement in the building, presence
of the respondent during the event, respondent’s awareness of the upcoming rain event,
experience with water intrusion and precaution on the total damage (N = 274 (Miinster) and
N = 282 (Amsterdam)). Damage is expressed as the ratio between the median damage in the
group of respondents where variable value is true and the median damage in the group of
respondents where variable value is false. A median ratio above 1 means a positive correlation
and below 1 means a negative correlation. A significant difference between medians, based on
a bootstrapping method with 10 000 bootstrap samples, is denoted as follows: * = p < 0.05,
xx = p < 0.01, x*x*x = p < 0.001.

measures”, "Installing a flood water pump", "Avoid expensive furnishing on the floor at risk",
"Store low-value goods on floor at risk" and "Adapting the building structure" are frequently
reported by respondents in the both cities. Apart from "Adapting the building structure"
these are measures that can be implemented at relatively low or medium costs (Rozer et al.,
2016).

Results show that respondents’ actions were mostly reactive: many respondents imple-
mented precautionary measures after the event. An exception is the measure "Installing a water
pump". The reactive approach is also confirmed by Figure 3.8, which shows that respondents
who have experienced water intrusion before take 1.5 to 1.7 times more precautionary measures
than respondents with no experience. This is in line with studies by Kreibich et al. (2005),
Bubeck, Botzen, Kreibich and Aerts (2012) and Kienzler et al. (2015).

Figure 3.8 also shows that the relative increase in uptake of precautionary measures
between groups with and without experience with water intrusion seem to be independent
from the number of measures implemented, as well as from the fraction of households with
experience. While the majority of households in the Amsterdam dataset had experience with
water intrusion (83%), the number of implemented measures was relative low, with less than
one measure on average per household. In Miinster, only 21% of the households stated to
have experience with water intrusion, but implemented on average 2.3 measures. In Section
3.4.2 - Causes of differences in precautionary behavior we discuss possible explanations for the
difference between cities in uptake of precautionary measures.
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Requesting information about precautionary measures Attending information events about precaution Joining a local community network
Amsterdam- l .
Install/store low-value material and goods on floors at risk Avoiding expensive, built-in interior furnishing on the floors at risk  Moving heating system and/or electric fuse box to higher floors
Amsterdam- - I
Adapting the building structure (e.g. sealing the basement walls) Installing mobile or built-in water barriers Installing mobile or built-in flood water pump(s)
Amsterdam- - -

0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%
I Before the event I After the event IWithin six months from interview date

Figure 3.7: Percentage of respondents undertaking precautionary measures: before the event
(blue), after the event (purple) or planned to be implemented within six months from interview
date (green). Only precautionary measures are shown that were asked in both cities.
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Figure 3.8: Mean number of precautionary measures against people’s experience with water
intrusion. A significant difference, based on two-sided t-test, between means is denoted as
follows: * = p < 0.05, *x = p < 0.01, * xx = p < 0.001.
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3.4 Discussion and recommendations

The results shown in Section 3.3 reveal considerable differences between the two cities in terms
of emergency response (Figure 3.3), financial losses (Figure 3.4) and people’s level of precaution
(Figure 3.7), with generally higher losses and uptake of measures in Miinster compared to
Amsterdam. There are several underlying effects that may cause variations. These include
methodological biases as well as differences in case study characteristics, i.e. differences in the
magnitude of the events in terms of rainfall intensity and recorded water depth and regional
effects such as differences in the socio-economics and building topology (Table 3.3). In this
section, the observed differences are critically evaluated in terms of possible methodological
biases and differences between case studies to derive more universal coherences. Moreover, we
make recommendations for future surveys on the topic of damage data collection.

3.4.1 Methodological biases

As described in Section 3.2.2, the Miinster and Amsterdam surveys are based on one generic
questionnaire, which was adapted independently to the case studies. The main differences
between the two surveys are related to the survey delivery mode and questionnaire structure.

Survey delivery mode

In Miinster a single-mode CATI survey was conducted, while in Amsterdam a combination of
a CATT and an online survey was used. Although there are many studies investigating survey
mode effects, i.e. the possible sources of differences in survey outcomes such as selection bias,
the effect of a particular mode on the survey outcome is not yet fully understood (Couper,
2011).

Demographics of respondent groups can be compared between the samples of different
survey modes to check whether the choice of the survey mode has affected the representativeness
of the sample (Link and Mokdad, 2006). For Amsterdam, we found only minor differences
in the demographics between CATI and online survey, with a similar over-representation of
older and higher-educated respondents compared to census data, as shown in Table 3.3. We
therefore conclude that the choice of survey mode does not influence population representation
in the samples, i.e. Miinster CATI sample, Amsterdam CATI sample and Amsterdam online
sample.

The bias towards older and higher-educated respondents could not have been avoided
by the choice of survey mode. This bias is particularly large for the Miinster sample where
only landline phones were contacted. Response bias in surveys that are based on landline
samples only are a well-known challenge in modern survey research. Dillman (2014) argues
that because of the decreasing numbers of landline phones and accessibility to online surveys
(i.e. internet connection), it becomes increasingly difficult to obtain a representative sample
using a single-mode survey. A combination of a CATI with landline and cell-phone numbers
and an online survey probably brought the mean age of the respondents in Amsterdam closer
to census data. Because of the small differences between the telephone and online samples in
Amsterdam, we assume that by including cell-phone numbers in the sample we improved the
survey coverage.

Questionnaire structure

Modifications to the questionnaire structure (i.e. wording, sequencing, response format) can
significantly bias survey outcomes (Couper, 2011; Bergman et al., 1994; Porst, 2014, e.g.). In
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the context of the present study, an important difference between the surveys (i.e. Miinster
CATI, Amsterdam CATI and Amsterdam online survey) is the response format of questions
related to precautionary and emergency measures. These items were designed as closed
questions in the Miinster CATI and the Amsterdam online survey, i.e. each measure was
individually presented to the respondent. In the Amsterdam CATI, a semi-closed format was
chosen. While testing the Amsterdam CATI, test respondents reported to have had difficulties
with focusing on closed questions that contain many sub-items, which was particularly the
case with the question on precautionary measures (18 sub-items). We therefore decided to
group similar kind of precautionary measures (in groups of around 3—4 items) and asked first
a closed question about whether they took measures of this class. Then, clarifying questions
were asked to make sure the correct precautionary measures within the group were selected.
In case of doubt, the interviewer explicitly went through all items and double-checked with the
respondent. However, after analyzing the collected data, we found that the closed question
format in the online survey resulted in a significantly higher percentage of respondents who
stated to have implemented one or more precautionary measures compared to the semi-closed
format in the CATI (online survey: 34%; CATI: 15%; p < 0.001). The same is true for
the average number of implemented measures (online survey: 0.6; CATI 0.2; p < 0.001).
Nevertheless, these values are much smaller than the values found for the Miinster survey; i.e.
64% of the respondents implemented one or more precautionary measures with an average of
2.3 measures. We can therefore conclude that besides the evident methodological bias, the
level of private precaution is considerably higher in Miinster compared to Amsterdam.

For the question items on emergency measures in Amsterdam, where we used a closed
response format in both the CATT and the online survey, we did not find a significant difference
between the two samples in terms of emergency response. However, considerably more
respondents in Amsterdam did not answer this question (online survey: 45%; CATI: 43%)
compared to Miinster (0.4%). This was probably caused by the fact that in Amsterdam we
coded a filter question (i.e. “Did you or another person in your household take any emergency
measures as an immediate reaction to the rain event?”) that allowed respondents to skip the
question on emergency measures in case they did not implement any emergency measures
or had no information about it. We presume that people were unfamiliar with the term
“emergency measures” (or its Dutch translation “noodmaatregelen”) and therefore skipped the
question (“No answer”) or answered “No” because the emergency measure(s) they applied where
not perceived as such. Because of the high number of missing values, the absolute differences
between the case studies should be interpreted with caution, but we can still compare the
ranks of emergency measures, which will be discussed in the next section. Possible solutions
to avoid missing values for this question in a future survey are given in Section 3.4.3.

3.4.2 Results associated with hazard and regional characteristics

Taking into account the methodological biases as discussed in Section 3.4.1, differences in the
results between Miinster and Amsterdam are also caused by differences in hazard and regional
characteristics of the case studies. It is necessary to determine to what extent these hazard
and regional characteristics play a role to better understand the factors that contribute to
damage due to extreme rainfall.

Causes of differences in precautionary behaviour

Respondents in Miinster implemented more precautionary measures compared to respondents
in Amsterdam (Figure 3.7). This cannot be explained by the magnitude of the studied event,
because there was a high uptake of precautionary measures in Miinster before the event as
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well as after. Another explanation is the relation we found between the mean number of
precautionary measures and flood experience (Figure 3.8), which was also found by other
researchers (Kreibich et al., 2005; Bubeck, Botzen, Kreibich and Aerts, 2012; Kienzler et al.,
2015), but this cannot explain the absolute difference in precaution between the cities, because
flood experience results in 1.5 to 1.7 times more precautionary measures, while the mean
number of implemented precautionary measures was about one magnitude higher in Miinster
compared to Amsterdam (see Section 3.3.4).

The absolute difference in uptake of precautionary measures may be caused by cultural-
and /or language-specific differences in how respondents in Miinster and Amsterdam perceive
risk. Based on a study in Switzerland, Siegrist and Gutscher (2006) found German-speaking
regions to have a significantly lower perception of flood risk compared to French-speaking
regions. They also found, that people in German-speaking regions underestimated their
flood risk, while people in French-speaking regions overestimated their flood risk compared
to expert judgements. However, the relationship between risk perception and precautionary
behaviour is subject to current research and not yet well understood. While few studies found
a significant correlation between risk perception and precautionary behaviour (i.e. Grothmann
and Reusswig, 2006), a large number of studies could not find such a relationship (see Bubeck,
Botzen, Kreibich and Aerts, 2012, for an overview). We recommend to include question items
on risk perception in a future survey as it may explain the level of precaution, and thus also
indirectly damage.

Causes of differences in emergency response

The difference in emergency response between the case studies can to some extent be explained
by the magnitude of the event in terms of reported water depths (Table 3.5).If we compare
the rankings of the emergency measures between the two case studies, we can conclude
the following. The most popular emergency measures were implemented in both cases (i.e.
“Pumping or mopping out the water” and “Moving furniture to higher floors”) and, thus, are
implemented irrespectively of the water depth. Other measures were mostly applied in case of
large water depths (i.e. “Switching off gas and electricity”) or in case of small water depths (i.e.
“Provisionally sealing openings”). Thus, the relative small water depths in Amsterdam not
only reduced the overall necessity of taking emergency actions; they also make some measures
more sensible to take than others. Rozer et al. (2016) found a similar effect: in case studies
with small water depths, people focus more on emergency measures that have the goal to keep
the water out (e.g. sealing openings), rather than reducing the damage after water has already
entered the building (e.g. securing or moving semi-permanent facilities).

Causes of differences in financial losses

Significantly larger damage amounts were reported in Miinster compared to Amsterdam, as
shown in Figure 3.4. With only two case studies, it is difficult to quantify the factors that
explain the variability of damage between case studies. Nevertheless, possible factors can be
discussed on a qualitative level. Following the conceptual model for building damage proposed
by Thieken et al. (2005), we can roughly distinguish between variables that relate on the
impact to the structure (i.e. hydrological load and contamination) and the resistance of the
structure (i.e. permanent resistance and temporal resistance). We expect that the Miinster and
Amsterdam case were mostly different because of the impacts on structures. The hydrological
load in terms of water depths was much larger in Miinster than in Amsterdam. Although
there are differences in building types between cities (Table 3.3), we believe that differences in
resistance are minor or slightly in favor of Miinster, given the high uptake of emergency and
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precautionary measures (Figures 3.3 and 3.7).

In Amsterdam the damage distribution is more symmetrical on a logarithmic scale, while
the damage distribution is negatively skewed for Miinster. Generally, flood damage data
follows a lognormal distribution (Zhai et al., 2005), and as a consequence the density function
would appear symmetrical on a logarithmic scale, but, in case of atypical extreme observations,
standard distributions such as the lognormal are unable to capture the data well (Balasooriya
and Low, 2008). The asymmetry may indicate that the Miinster sample contains some
exceptional losses that are caused by different damage mechanisms than the bulk of the data.
This could be a topic for further research.

3.4.3 Recommendations for rainfall damage surveys

Applying a survey in different countries or regions, as done in this study, is challenging. To
make survey outcomes comparable, and thus to avoid methodological biases, surveys should
to a large extent share the same response format, survey delivery mode, sampling techniques
and questionnaire design (Bird, 2009). On the other hand, a survey should also be able to
capture regional features, for example, in our case country-specific building topologies, and
thus it is unavoidable to introduce some differences in the set-up between surveys of different
case studies.

Some of the methodological biases we encountered in our survey could have been avoided,
while others are more difficult to address. For example, we sampled only landline phone numbers
in the Miinster CATI. Including cell-phones in the sample can increase the representativeness
of the sample as shown for the case of Amsterdam and other studies (e.g. Busse and Fuchs,
2012), but this is not possible for countries where cell-phone phones are not registered at an
address (i.e. in Germany). The present study also highlighted certain issues with respect to
the choice of response format for some of the questions (e.g. items on precautionary measures).
A helpful tool to reduce these and other methodological issues in questionnaires is to use
the template proposed by Bird (2009), who listed minimum requirements on methodological
details of a questionnaire to allow comparison between case studies in natural hazard sciences.
Another issue relates to the use of filter questions. A sparse use of filter questions can generate
an unnecessarily long questionnaire that comes with fatigue effects and high drop out rates.
However, a wrong answer to a filter question by mistake may lead to respondents skipping a
block of questions, resulting in an increased number of missing observations (see Section 3.4.1
- Questionnaire structure). A possible way to avoid this, is to make use of validation questions
to cross-check answers to important questions.

We recommend the use of the same I'T infrastructure in all case studies, i.e. the same survey
software and a shared data repository. This not only increases the comparability between
studies, it also makes data analyses easier and less prone to errors. In Appendix 3.A.1, the
LimeSurvey-coded questionnaire used in Amsterdam is presented as an example of such an
infrastructure.

3.5 Conclusions

In this paper we investigated the impacts of extreme rainfall to residential buildings in the
cities of Miinster and Amsterdam as well as precautionary behavior and emergency response
by households. Scientific surveys were conducted among affected residents in Miinster and
Amsterdam to collect information on self-reported financial losses, caused by damage to
building structure and building content as well as factors influencing damage, such as hazard,
building and socio-economic characteristics. The paper presents an open source, flexible



3.5. Conclusions 53

questionnaire tool that is specific to the impacts of intense local rainfall events and can easily
be adapted to international case studies.

A total of 510 questionnaires in Miinster and 349 in Amsterdam were completed. Reported
damage varied from tens of Euros to hundreds of thousands of Euros. The median damage was
an order of magnitude larger in Miinster (EUR 10 500) than in Amsterdam (EUR 1200). The
mean water depths were a lot higher in Miinster (0.49-0.57 m) than in Amsterdam (0.05-0.16
m). From 16 to 22% of the respondents reported water contamination by sewage, chemicals,
oil or gas.

Exploratory data analyses revealed that the types of implemented emergency measures are
likely to be associated with the hazard characteristics of the event, such as the water level.
The Miinster case, with higher reported water levels than in Amsterdam, shows a preference
for emergency measures to reduce damage, such as unplugging electronic devices, switching
off electricity and securing semi-permanent facilities, while in Amsterdam, with only minor
water levels, people responded by undertaking emergency measures to prevent damage, such
as provisionally sealing openings. The same types of emergency measures were preferred in
both cases and are independent of the water levels: moving furniture to higher floors and
pumping out the water.

The difference in magnitude of the events in Miinster and Amsterdam is probably also the
most important cause for the differences between the cities in terms of the suffered financial
losses; in Miinster significantly higher damage amounts were reported compared to Amsterdam,
including some exceptionally high losses. Additionally, the low number of observations with
no damage in Miinster compared to Amsterdam shows that in Miinster people were unable
to prevent damage, likely due to high water levels. Within the case studies a large variation
in damage was also found. Factors that are significantly associated with damage are the
water contamination, the presence of a basement in the building and people’s awareness of the
upcoming weather event.

This study confirms the conclusions of other studies that people’s previous experience
with adverse events positively correlates with precautionary behavior. However, experience
cannot explain the considerably higher uptake of precautionary measures observed in Miinster
compared to Amsterdam. We recommend that a future survey should investigate the extent
to which risk perception of extreme rainfall can explain people’s precautionary behavior.
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3.A Supporting Information (SI)

3.A.1 SI Questionnaire

Questionnaire design criteria

We set the following requirements prior to the development of the questionnaire:

The main objective of the questionnaire should be to characterize damage to residential
buildings as a direct result of a rain event, i.e. pluvial flooding and rainwater entering
the house through roofs and facades.

The damage assessment should distinguish between the assessment of financial damage
to building structure and building content; questions related to social and physical
vulnerability, such as human health, will not be part of the questionnaire as this requires
a completely different questionnaire design.

The target groups of the questionnaire are private homeowners and tenants. Homeowners
are asked to report their financial damage to building structure and building content.
Tenants are asked to report on the building content damage of their household and, in
case they have detailed information (i.e. bills), on the damage to the structure of the
building they live in.

In cases where tenants or homeowners can only report on one of the damage types,
the other one is considered as missing observation. In cases where water entered the
building, but did not cause damage to the building content and/or building structure,
the respective damage is considered to be zero.

The questionnaire considers a large set of contextual variables that can potentially
explain damage; this list of variables should be based on scientific literature and expert
judgments.

Definitions and variables used in the questionnaire will, as far as possible, be in line with
definitions and variables used in other, related questionnaires (i.e. Kreibich et al., 2005;
Thieken et al., 2005, 2007; Van Ootegem et al., 2015).

Closed questions should be incorporated in the design as much as possible to reduce
data post-processing efforts, to allow quantitative statistical analyses of the data and to
allow comparison within and between data sets (Sarantakos, 2004).

The questionnaire should be applicable to computer-aided telephone interviewing (CATI)
and online surveying; to avoid a “fatigue effect”, the questionnaire should not take longer
than 15-20 min to finish (Rathod and LaBruna, 2005);

The questionnaire should be made generic, so it can easily be adapted to regional
specifications when applied internationally.

Item generation

We have built upon a questionnaire developed by GFZ Potsdam and Deutsche Riick, which
was originally developed to assess flood damage in the aftermath of the severe flood event
that hit Germany in 2002 (Kreibich et al., 2005; Thicken et al., 2005). This questionnaire has
undergone several updates since that time. It has been mainly applied to fluvial flooding, i.e.
the 2002, 2005, 2006, 2010, 2011 and 2013 floods in Germany (see e.g. Thieken et al., 2007;
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Kienzler et al., 2015). It has also been used to investigate pluvial flood events in Lohmar and
Hersbruck in 2005 and Osnabriick in 2010 (Rozer et al., 2016). The 2010 survey in Osnabriick
was part of a larger survey focusing on fluvial floods and only minor changes were made to the
questionnaire. The 2005 survey in Lohmar and Hersbruck, initiated by Deutsche Riick, had a
specific focus on pluvial floods, and some of the original questions were tailored to this type of
event without completely updating the questionnaire.

The present study is a continuation of the existing line of research. We considerably adjusted
the original questionnaire in terms of question items and structure to account specifically
for rainfall-related damages to residential buildings. The most important changes are the
following:

e We have optimized the questionnaire from around 106 items to 82 items to increase the
chance that people will complete the survey. We removed questions that were not or less
relevant for extreme rainfall in cities (e.g. whether people received information about
river water levels or locations of dike bursts, which river was overflowing, or whether
boulders were eroded or deposited because of high flow velocities).

e We added specific questions related to local rainfall conditions (e.g. on the causes
of roof leakages, on the available drainage facilities for rainwater and whether wind
contributed to the occurrence of water in the house), based on findings from previous
studies identifying damage explanatory factors (e.g. Spekkers et al., 2015);

e In line with the study by Van Ootegem et al. (2015), we included items to specify the
amount of damage in different parts of the building (i.e. basement, ground floor), rather
than asking for a total damage amount only.

e The questionnaire was translated to English and has been made more generic (i.e. not
specific to Germany) to make it applicable internationally.

e The questionnaire was modified in such as way that households with no damage could
also complete the questionnaire.

The new questionnaire is organized in six thematic groups. Table 3.6 lists the groups and
example questions per group. Closed questions were used as much as possible but where
relevant respondents could select the answer items “Other, please specify” and “Do not know
or prefer not to say”. Question groups were sequenced in such a way that there was a smooth
transition between the topics. Moreover, the groups “Hazard characteristics” and “Building
information” were put at the start of the survey as some of the items in these groups are
conditional for items in next groups. The questionnaire was programmed in the open source
survey software LimeSurvey 2.05 (Schmitz, 2016). Six “urban flooding” experts, inside and
outside academia, reviewed a draft version of the questionnaire. The entire LimeSurvey
questionnaire structure file (.1ls) can be downloaded from the DANS archive (Spekkers, 2016).

3.A.2 SI Survey mode and sampling technique
Amsterdam

In Amsterdam, we applied two survey modes:

1. Computer-aided telephone interviewing (CATI), where trained interviewers contacted
households by phone and went through the questionnaire using a computer.

2. An online survey, where households completed a web-based version of the questionnaire.



56

Chapter 3. Comparative survey of the impacts of extreme rainfall

Table 3.6: Questionnaire: item groups and example question items

Item group

No. of ques-
tions

Example question items

Hazard characteristics

12

On which date did water get into your house?

How did water get into your house?

What was the cause of the roof leakage?

Which floors of your house were affected by water?
Could you give an estimate of the water depth in cen-
timeters in the basement and on the ground floor?
How long did the water remain in your house?

Was the water contaminated or dirty?

Building information

17

Which of the following building types best describes your
house?

Do you have a garden adjacent to your house?

Which floors does your house have?

What is the main flooring material being used for the
following floors?

Is the roof flat or pitched?

Damage information

14

Did you have damage to your building structure and
your building content, or both?

Have there been any deformations or collapses of walls
or ceilings?

What is the total amount of building structure damage
in euros?

Which building contents were lost or had to be replaced
after the rain event?

Could you still live in your house?

Preparedness

21

Were you or someone else at home at the time of the
rain event?

Were you aware of the rainstorm just before it occurred?
Which emergency measures were taken as an immediate
reaction to the rain event?

How many times have you experienced rainwater intru-
sion in your life before?

Have you taken any actions to store rainwater in your
garden or improve the infiltration capacity of your gar-
den?

Damage compensation

Have your received any form of financial compensation
from a third party?

What was the size of the insurance claim in Euros?
How much compensation have you received by your in-
surer so far?

Socio-economic  vari-
ables

10

Do you or someone else in your household renting or
owning the house?

How many persons are permanently living in your house-
hold?

What is the net household income per year?

What is the highest education you have achieved?

Total no. of questions

82
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We initially considered different survey modes, but we favored CATI for the following reasons:
(1) it is consistent with the Miinster survey where a CATI campaign was planned; (2) because
extreme rainfall impacts is a complex topic, and a CATI approach allows for questions to be
clarified where needed; (3) by phone, people could be motivated to participate in the survey
even if people thought their damage was not relevant for the research. However, because of
the high costs involved in carrying out a CATI campaign (i.e. mainly the costs of hiring staff)
and the limited number of phone numbers that could be obtained for the case study area, we
eventually select for a mixed-mode survey by combing CATI with an online survey. The online
survey does not have the advantage of being able to clarify questions, which may affect the
reliability of responses.

The organization of the telephone survey included the sampling of potential survey partici-
pants, the training of a team of interviewers, setting up a call center and call center software
and writing, mail merging and sending out survey announcement letters.

The sampling was done as follows. We listed the residential addresses located in the case
study using the National Building Register (Kadaster, 2013). We only listed addresses located
at ground or top floor level, because these floors are most likely to be affected by rainfall. Floor
level data are not readily available in the National Building Register. We therefore created an
algorithm based on house numbering logic to determine the floor per address. Per address,
the phone number of the main tenant or the homeowner was then retrieved through the data
enrichment service of the EDM company (www.edm.nl). EDM was able to enrich around 30%
of the records with one or two phone numbers, including cell-phone numbers. According to
EDM, this sample covers all groups of people in the demographic sample. Phone numbers
registered in the National Do Not Call Register for consumer research (i.e. MOA research
filter, www.moaweb.nl) were not used in this study. The sample included 44% landline and
56% cell-phone numbers.

The interviews were carried out by a team of eight MSc students of the TU Delft (four males
and four females), with most of them having a background in hydrology and hydraulics. A half-
day session was organized to provide the students with project background and instructions.
A handbook with tips and fall-back statements (i.e. standard replies to frequently asked
questions by the respondents) was provided to the students. The first author was closely
involved in the first weeks of the data collection phase to support the interviewers. A dedicated
room with computers, phones and headsets was made available by the Product Evaluation
Laboratory (PEL) at the TU Delft. The call center was available from 15:00 to 21:00 UTC on
weekdays in the period of 20 January to 28 April 2016. We wrote a simple web interface to
manage phone calls and appointments using the R shiny package (Chang et al., 2015). Up to
five calls were allowed to obtain a completed questionnaire.

A letter was sent to the households to announce the survey the weeks before they were
called. A cover letter can increase people’s motivation to participate in a survey. In the letter,
we introduced the TU Delft, we explained the research background, the scientific and social
relevance, why we selected the participant and the Dutch privacy protection regulations the
research was bounded to. We also indicated that the survey would take approximately 20 min
to finish. People had the opportunity to opt-out if they did not feel like being called. The
letters were sent in six batches during the study period to ensure there was not too much
time between the letter and the call attempt. More general announcements were done through
social media and local websites. The city authorities of Amsterdam were informed prior to the
survey.

Households for which no phone number could be retrieved through the EDM data enrichment
service were sent a survey invitation letter for the online survey by regular mail. The letter
contained a URL to the survey website and a unique token to open the web-based questionnaire.
Compared to the telephone survey, some items were removed in the online survey to make the
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survey 5 min shorter and, thus, more likely to be completed online. Moreover, some items had
been slightly rephrased, in their expression only, for online readability.

Two new variables, i.e. “building construction year” and “floor area”, were added to each
record based on the National Building Register (Kadaster, 2013).

Miinster

In Miinster, the survey mode was CATI. Interviews were administered in the period 20 October
— 26 November 2015 (i.e. a total of 37 days) by exzplorare, an independent market research
institute. They have over 10 years of experience with household surveys on the topic of flood
damage (e.g. Kreibich et al., 2005; Thieken et al., 2007, 2016). The main reason for a CATI
approach was to have a data set that was consistent with existing CATI data sets.

Samples were drawn by explorare from the Deutsche Post address database (6457 phone
numbers in Miinster and 988 in Greven) for the entire case study area. Due to German privacy
protection regulations, this database only contains landline phone numbers of households that
did not opt-out of being called for surveys.

A raw text file with the question items and relevance equations was provided to explorare,
which then coded the questionnaire in VOXCO CATI, a commercial software for professional
call centers. Prior to the actual survey, a demo version of the questionnaire was made available
for verification purposes. Interviewers were professionals trained by explorare. Depending on
the available call center capacity, 2 - 10 interviewers were working at the same time. The
interviewers received a 1 h introduction to the topic and the questionnaire by the second
author of the present paper. There was a feedback round after the first five completed surveys.

The survey was announced via a press release, which was picked up by at least six local and
regional newspapers as well as local radio stations. Additionally, the survey was announced
through the city websites. The city authorities of Miinster and Greven were informed prior to
the survey. They distributed the information via online and offline public notice boards.

Data availability: The databases of survey responses of the Amsterdam case are available under Creative
Commons Attribution-NonCommercial license (CC BY-NC) and can be downloaded from the DANS archive
(Spekkers, 2016). The questionnaire used in Amsterdam can be downloaded from the same source. The survey
responses of the Miinster case will be available through the HOWAS21 database (GeoForschungsZentrum GFZ,
2017) five years after the end of the EVUS project (BMBF, 03G0846B), i.e. June 2023.
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4 Probabilistic models significantly
reduce uncertainty in Hurricane
Harvey pluvial flood loss estimates

Summary. Pluvial flood risk is mostly excluded in urban flood risk assessment. However, the
risk of pluvial flooding is a growing challenge with a projected increase of extreme rainstorms
compounding with an ongoing global urbanization. Considered as a flood type with minimal
impacts when rainfall rates exceed the capacity of urban drainage systems, the aftermath of
rainfall-triggered flooding during Hurricane Harvey and other events show the urgent need
to assess the risk of pluvial flooding. Due to the local extent and small-scale variations, the
quantification of pluvial flood risk requires risk assessments on high spatial resolutions. While
flood hazard and exposure information is becoming increasingly accurate, the estimation
of losses is still a poorly understood component of pluvial flood risk quantification. We
use a new probabilistic multivariable modeling approach to estimate pluvial flood losses of
individual buildings, explicitly accounting for the associated uncertainties. Except for the
water depth as the common most important predictor, we identified the drivers for having
loss or not and for the degree of loss to be different. Applying this approach to estimate and
validate building structure losses during Hurricane Harvey using a property level data set, we
find that the reliability and dispersion of predictive loss distributions vary widely depending
on the model and aggregation level of property level loss estimates. Our results show that
the use of multivariable zero-inflated beta models reduce the 90% prediction intervals for
Hurricane Harvey building structure loss estimates on average by 78% (totalling U.S.$3.8
billion) compared to commonly used models.

Published as: Rozer, V., Kreibich, H., Schréter, K., Miiller, M., Sairam, N., Doss-Gollin, J., Lall, U. &
Merz, B. (2019). Probabilistic models significantly reduce uncertainty in Hurricane Harvey pluvial
flood loss estimates. Farth’s Future, 7(4), 384-394. doi:10.1029/2018EF001074
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4.1 Introduction

Quantifying the future economic risk of pluvial flooding is critical for climate change adaptation
of an increasing urban population. Pluvial, or often referred to as surface water flooding, is
directly caused by extreme rainstorms with rainfall rates exceeding the capacity of the urban
drainage system. Cities around the globe have been impacted by recent pluvial flood events.
Large-scale pluvial flooding in the Houston area in Texas during Hurricane Harvey has led to
68 deaths and estimated total damage in the range of U.S.$90 to 160 billion, making it the
second most expensive natural disaster in the history of the United States (Blake and Zelinsky,
2018). Other examples include flooding after a rainstorm in Copenhagen 2011 causing total
economic damage of U.S.$ 1 billion (Wojcik et al., 2013) or in Beijing 2012 causing total
economic damage of U.S.$ 1.86 billion and 79 fatalities (Wang et al., 2013).

An increasing pluvial flood risk caused by an expected increase of intensity and frequency
of heavy precipitation events (Donat et al., 2016; Kundzewicz et al., 2014) combined with an
ongoing urbanization with a concentration of population and assets in cities (Kaspersen et al.,
2015) motivates the need to assess the current and future risk of pluvial flooding. A review by
Rosenzweig et al. (2018) identified the lack of knowledge in the quantification of present and
future pluvial flood impacts as one of three key research areas for the development of flood
resilient cities. However, pluvial flood risk is mostly excluded or neglected in flood risk analysis,
although there is evidence that the high frequency of these events lead to long-term cumulative
losses comparable to less frequent but severe flood events (Ten Veldhuis, 2011). This lack of
knowledge includes risk management and mitigation plans. With few exceptions, official flood
hazard maps are exclusively focused on fluvial and coastal flood risk. For the conterminous
United States, Wing et al. (2018) found that the poor coverage of urban catchments in flood
hazard maps produced by the Federal Emergency Management Agency (FEMA), has lead to
an underestimation of the population affected by pluvial and fluvial flooding by a factor of 2.6
- 3.1.

With scarce information on the hazard, only few loss estimation models for pluvial floods
have been developed. Existing approaches include adapting water depth - damage functions
(also known as stage-damage models) from river floods (Freni et al., 2010; Zhou et al., 2012;
Olsen et al., 2015), using multiple linear regression models (Van Ootegem et al., 2015) or by
correlating rainfall measurements with insurance claims or survey data (Spekkers et al., 2014;
Van Ootegem et al., 2018). However, the lack of data, the complex nature of the hazard and
impact as well as the lack of a consistent quantification of the associated uncertainties, has
so far hampered an extensive estimation of expected pluvial flood losses needed to decide
on adaptation strategies in cities. Van Ootegem et al. (2015, 2018) construct different multi-
variate pluvial flood damage models from survey data of a study in Belgium based on water
depth-damage and rainfall-damage relationships. Key findings of their study include the
importance of additional non-hazard variables such as risk awareness and the effect of reported
zero loss cases. However, the results do not provide information as to whether additional
variables can also improve loss estimates.

In this study, we use probabilistic high-resolution loss models to estimate pluvial flood
losses on different spatial scales. Unlike widely used deterministic stage-damage functions,
these probabilistic univariable and multivariable loss models provide a consistent approach to
quantify how certain a loss prediction is by providing predictive distributions instead of point
estimates. Application and validation of different high-resolution probabilistic loss models in
Harris County, Texas, reveal significant differences in the dispersion and reliability of property
and county level pluvial flood loss predictions for Hurricane Harvey. Only two out of the
six tested models reliably predicted the reported loss with a difference of 78% in the 90%
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prediction intervals between the two models equaling to an absolute difference of U.S.$3.8
billion for pluvial flood building structure loss in Harris County. These results have major
implications for cost-benefit analysis of flood risk management and adaptation decisions in
cities.

4.2 Background

With the need to adapt cities to an expected increase in pluvial flood risk, decision makers face
the challenge to take appropriate decisions under the uncertainty of how the risk of pluvial
flooding evolves in the future including the expected losses. As uncertainties in flood losses
estimates are usually high, probabilistic loss models could greatly aid a comprehensive pluvial
flood risk management (Todini, 2018). Unlike deterministic estimates, probabilistic predictions
provide continuous predictive distributions where the dispersion of the distribution can provide
the range an expected loss would fall in with a certain probability (e.g., 90%). The reliability
of a probabilistic prediction can be expressed as the ability of the predictive distribution to
cover the actual observed loss.

Although probabilistic loss models have been developed for river floods (Dottori et al., 2016;
Kreibich et al., 2017; Schréter et al., 2014), these models are the exception and deterministic
estimates based on empirical or synthetic relationships between the water depth and the
absolute or relative building loss are still widely used for loss estimations for all types of
flooding (Gerl et al., 2016; Merz et al., 2010; Scawthorn et al., 2006). The resulting loss
estimates in these stage-damage functions are commonly expressed as point estimates for
the repair and/or replacement costs in monetary values (i.e., U.S.$) or percentage of the
depreciated value of a building. Instead of a direct quantification of uncertainty inherent
to probabilistic predictions, uncertainty in stage-damage functions is often based on expert
judgment and/or by calculating a range of possible outcomes using different loss functions
(Dittes et al., 2018). Missing information, and/or a lack of consistency in quantifying how
certain a loss estimate is, makes it challenging for decision makers to, for example, evaluate
the potential of an adaptation measure to reduce future losses.

While the deviations of point estimates for deterministic loss models are often shown to be
reasonably small for loss estimates on large spatial scales typical for river or coastal flooding,
loss predictions become highly uncertain on smaller scales (i.e., individual buildings)(Merz
et al., 2004; Scawthorn et al., 2006). However, due to the local extent and small-scale variations,
reliable small-scale loss models are required to quantify pluvial flood risk for a specific location.

In this context, we use machine learning as well as different univariable and multivariable
probabilistic approaches to investigate three main research objectives: we (i) identify important
loss influencing variables and their effect on the uncertainty of loss predictions; (ii) analyze the
potential of parametric and nonparametric probabilistic approaches on reducing the dispersion
and increasing the reliability of building-level loss estimates; and (iii) evaluate the applicability
of probabilistic multivariable loss models in the context of new sensors and data sources for
pluvial flood loss estimation on different spatial scales (Ford et al., 2016; Schroter et al., 2018).

4.3 Materials and methods

4.3.1 Data

We construct a data set that consists of self-reported pluvial flood losses and related infor-
mation of private households. The data were obtained through a standardized questionnaire
using computer-aided telephone surveys after pluvial flood events in five cities in Germany
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between 2005 and 2014 (Rozer et al., 2016; Spekkers et al., 2017). Based on 120 items in the
questionnaire, a data set with 56 predictors and two loss variables is constructed covering
eight groups: reported loss, hazard, warning, emergency response, precaution, experience,
building information, and social-economic information. The loss variables are represented as
relative loss (rloss) and a variable with binary information if a building suffered from structural
damage or not (dam). rloss is on the scale from 0 (no loss) to 1 (total loss), normalizing
the reported direct building loss in Euro [EUR| with the total replacement cost value less
depreciation of the respective building. We exclude observations where rloss could not be
derived due to missing information on the building replacement value or the reported loss
itself resulting in a total of 431 observations.

Out of 56 predictors in the data set, 12 are excluded from the analysis, because of their
zero or near-zero variance, resulting in 44 variables to be considered for further analysis.
To address the issue of censoring zero loss observations, pluvial flood affected households
without direct building loss are included in the data set if water intrusion into the building was
reported (9% of observations) (Van Ootegem et al., 2015). Missing values in other variables
were imputed using complementary information available in the questionnaire (i.e., missing
information of the total living area through building footprint and number of habitable floors).
In few cases where causal inference was not possible, missing values are imputed using nearest
neighbor imputation. A more detailed description of the data including a table describing
all 56 predictors, the two loss variables, the variables excluded from the analysis, and the
percentage of imputed missing values is provided in the supporting information (SI) in Section
4.A.1 - Survey data.

4.3.2 Detection of important loss-influencing variables

Prior to the actual model development, we screen the previously described data set for variables
with the highest predictive power given the complex correlations and interdependencies in
the data set using machine learning. A reduced set of variables out of the full 44 variables is
then used to develop the multivariable probabilistic models described in the following section.
The most important loss influencing variables are detected by using an ensemble of variable
importance measures of two tree-based (Bagging (cRF); (Strobl et al., 2007) and Boosting
(GBM); (Friedman, 2001)) and two linear regression-based (Ridge; (Hoerl and Kennard, 1970)
and LASSO; (Tibshirani, 1996)) machine learning algorithms.

The four different types of algorithms are used in two different settings: a binary clas-
sification between loss/no loss (dam) and a regression analysis modeling the degree of loss
(rloss) of a building. Based on the variable importance score of each variable, its rank within
each ensemble member as well as its overall rank is determined. The top five variables with
the highest overall rank for rloss and dam are further considered in the model development
process. For details on the variable selection procedure, see SI in Section 4.A.2 - Determining
important predictors.

4.3.3 Probabilistic loss estimation models

Bayesian zero-inflated beta regression (Ospina and Ferrari, 2010) is used to predict the relative
loss to a building by pluvial flooding (rloss) using the previously selected important loss
influencing variables. The probabilistic prediction y for rloss on the interval [0,1) is modeled
as follows: We define z; to be a binary variable for the occurrence of flooding in the ¢th
observation and estimate it with a logistic regression:

zi ~ Bernoulli(vX;) (4.1)
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where X; is the vector of predictors for the ith observation, v is the vector of coefficients, and
Bernoulli(©) indicates a Bernoulli trial with probability ©. Once z; is known, then we can
calculate y; following a zero-inflated Beta regression model

Beta(wi, 5i) zi=1
0 Z; = 0

= (4.2)
where o; > 0 and B; > 0 are the shape and scale parameters, respectively, of the Beta
distribution. To estimate these parameters, we define

o = (i@ (4.3)
Bi=(1—pi)o (4.4)

following (Ferrari and Cribari-Neto, 2004 )
pi = Xif (4.5)

where [ is the coefficient vector for the Beta regression. In summation, our zero-inflated
Beta regression model conducts simultaneous inference on the vector «, the vector 5, and the
scalar ¢, given observations of flood occurrence z, flood damage y (i.e., the variable rloss),
and predictive variables X.

The probabilistic predictions of rloss from the Bayesian zero-inflated Beta model (Beta) are
compared with probabilistic predictions of two additional model types used for empirical flood
loss estimation in previous studies. A simple Bayesian parametric model based on a Gaussian
response distribution is used as a probabilistic representation of a model type widely used in
flood loss estimation (Gerl et al., 2016; Van Ootegem et al., 2015) and a nonparametric model
based on the RandomForest algorithm, used for probabilistic flood loss estimation in previous
studies (Schroter et al., 2016). The three model types (Beta, Gaussian, and RandomForest) are
fit as univariable and multivariable models (i.e., with a single predictor in X or with multiple
predictors) to investigate the effect of additional variables on the predictive performance,
resulting in six different models in total. The univariable models are fit using water depth wd
as their only predictor, reflecting the current standard in flood loss estimation (Gerl et al.,
2016; Merz et al., 2010). The univariable parametric models (Beta and Gaussian) are fit with
the square root of the water depth to be comparable with reference functions in previous
studies (Merz et al., 2013; Schroter et al., 2014; Wagenaar et al., 2017). All multivariable
models use the set of predictors shown in Table 4.1. For more details on the models including
details on the priors of the Bayesian models, see SI 4.A.2 - Probabilistic multi-variate beta
model.

4.3.4 Model validation and comparison

We validate the probabilistic loss predictions on the building level for the previously described
models and data using 10-fold cross validation. For determining the error of the point estimate
(median of the predictive distribution), the root-mean-square error (RMSE) and the mean
bias error (MBE) are used. For validating and comparing the reliability of the loss estimate,
we calculate the hit rate (HR), meaning the percentage of cases where the observed value
lies within the 90% highest density interval (HDI) of the predictive distribution. We use the
width of the 90% HDI to evaluate the dispersion of the predictive distribution. In addition, we
calculate the interval score, a combined dispersion and reliability score, penalizing predictions
based on the width of the 90% HDI and the percentage of observations that are outside the
90% HDI of the respective predictive distributions (Gneiting and Raftery, 2007).
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To evaluate the effect of including the option to have no building loss in the model, we
validate and compare the different models for three scenarios: one where zero-loss observations
are removed from the data set prior to fitting the model, one where the zero-loss observations
are kept in the data set (zero-loss proportion 9%), and one where the proportion of zero-loss
observations is upsampled to 20%. Details on the validation procedure and the different scores
used to compare the models are provided in SI 4.A.2 - Model comparison and scoring methods.

4.3.5 Application Harris County, TX

We apply the previously trained probabilistic loss models in Harris County, TX, to analyze
the potential for reducing the dispersion and improving the reliability of probabilistic loss
estimates for direct building damage of private households caused by pluvial flooding during
Hurricane Harvey. To demonstrate the feasibility of probabilistic building-level loss estimation,
we construct a high-resolution data set from publicly available data sources for Harris County,
TX.

Based on refined pluvial flood inundation maps for Hurricane Harvey provided by JBA
Risk Management (JBA Risk Management, 2017), detailed information of affected properties
are gathered from the Harris County Appraisal District Real € Personal Property Database
including the type and value of each affected building (HCAD, 2018). In addition, census
information is used to derive the average household size on the block level (U.S. Census Bureau,
2016). Besides this information, the constructed data set contains data on the knowledge about
the flood hazard based on if a property is within the 100-year flood zone derived by FEMA
(Zone A) and the probability of a property being affected by contamination. The contamination
data was created by spatially interpolating reported point sources of contamination from
the National Response Center of United States Coast Guard and volunteered geographic
information using 2-D kernel density interpolation (NRC, 2018; Sierra Club, 2017). The
resulting dataset for Harris County contains information of more than 304 000 individual
buildings affected by pluvial flooding during Hurricane Harvey.

For validation and visualization the property level loss distributions of each model are
aggregated on the zip code as well as on the county level. The aggregated loss estimates are
validated using the sum and average total building damage from FEMA’s Housing Assistance
Program available on the zip code level as well as for the entire county for Hurricane Harvey
(FEMA, 2018a). Details on the data sets and models used in Harris County including the
validation data are provided in SI 4.A.1 - Harris County data.

4.4 Results

4.4.1 Important loss influencing variables

Screening the high-dimensional data set for the most important loss influencing variables to
be considered in the probabilistic loss models, we find that the drivers for having loss or not
having any loss (dam) and the drivers for the degree of loss (rloss) to a building are different,
indicating different damaging mechanisms. While both cases share the water depth as the most
important predictor, other important predictors hardly overlap. Looking at the second to fifth
most important predictors for dam, the resistance of a building and its inhabitants is decisive.
Given a low inundation depth, larger households, multifamily buildings, younger residents, and
residents who previously informed themselves about pluvial flooding have a lower probability of
having any loss. In contrast, the second and fourth most important predictors influencing rloss
are directly related to the flood intensity. Higher inundation depths, longer flood duration,
and contamination of the flood water lead to higher losses. The variable importance scores of
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Table 4.1: Mean variable importance scores of the five most important predictors for rloss
and dam on the scale (0, 100) for each ensemble member (Tree-Based Bagging [cRF]| and
Boosting |[GBM]; Penalized Regression with L1 [LASSO| and L2 [Ridge| Regularization).
Corr indicates direction of the trend: '+’ increasing, ’-’ decreasing. Superscript numbers
indicate rank within each ensemble member. Avg. rank indicates the overall rank based on
the median rank of each ensemble member

Name Variable cRF GBM LASSO Ridge Avg. Corr
rank

Degree of loss

Water depth wd 100! 100! 941 97! 1 +
Duration d 382 502 813 902 2 +
Basement [Y/N]|" bu 129 111 842 853 6 +
Contamination [Y/N] con 158 917 774 814 6 +
Household size " hs 174 178 457 64° 6 -
Loss/no loss
Water depth wd 99! 100! 891 902 1 +
Household size hs 842 142 673 93! 2 -
Knowledge hazard prel 723 6 487 813 3.5 -
Age of 1respondent+ age 69* 133 332+ 429 6.5 +
Multi-family home[Y/N] bt 497 1 500 516 6.5 -

*
Importance scores not stable

showed no improvement in the predictive performance of the probabilistic loss models and were therefore
not considered in the final models

the five most important predictors of the four machine learning algorithms, their rank within
each ensemble member and the median rank of all ensemble members are summarized in Table
4.1. Starting with the most important predictor both the overall rank and the importance
scores drop sharply. Of the five preselected important loss influencing variables shown in Table
4.1, we find three variables for rloss and four variables for dam to improve the predictive
performance in the probabilistic loss models. Variable importance values for all 44 variables
and differences between the machine learning algorithms are shown in SI 4.A.3 Results.

4.4.2 Predictive performance of probabilistic models

The prediction performance of the six probabilistic models (univariable and multivariable mod-
els for Gaussian, RandomForest, and Beta) for the cross-validated predictions are summarized
in Table 4.2. Looking solely on the error of the point estimate of the predictions (median of the
predictive distribution), we find only a minor nonsignificant reduction in root-mean-square error
for the three models for both the univariable and multivariable versions. However, for the 90%
HDI of each predictive distribution, the parametric Beta and Gaussian models are significantly
more reliable with an average HR of 97% and 95% for the univariable and multivariable Beta
models and 91% for both Gaussian models compared to 67% and 49% for the RandomForest
counterparts. However, when we control the HR of the predictive distributions for dispersion
and distance to missed observations using the interval score, the high HR scores of the Gaussian
models can be attributed to consistently wider 90% HDI’s (see Figure 4.1B) compared to
the other two models. The difference in shape and width of the predictive distributions of
the different models is illustrated in Figure 4.1A, for the example of a loss estimate for a
single building with an observed rloss of 0.016. While the RandomForest models tend to give
very sharp predictive distributions with shapes close to a normal distribution, the predictive
distributions of the Gaussian and Beta models both have longer tails. The almost lognormal
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Table 4.2: Performance of loss model predictions for out of sample observations (median).
Standard deviation in brackets. RMSE = root-mean-square error; MBE = mean bias error

Model type Variables RMSE MBE Hitrate?! Interval
Score!
Gaussian uni-variate .028 (.018) .015 (.008) 91 (.01) .26 (.01)
multi-variate .027 (.017) .013 (.007) 91 (.02) (.02)
3 : * + %
RandomForest unl—v.arlat.e .028 (.017) 0" (.009) .49+* (.07) . " 7" (11)
multi-variate .025 (.016) .005 (.008) .67 7 (.08) 117 (.08)
Beta uni-variate  .027 (.017) .010 (.008) .97 (.06) .09* (.08)
multi-variate .025 (.017) .009 (.008) .95 (.07) 08" (.08)

190% highest density interval (HDI)
" Significantly different from Gaussian model for the .05 significance level(uni- and multivariate models
respectively)

" Significantly different from univariate models for the .05 significance level for each model type

shape of the Gaussian models is caused by the backtransformation of the logit-transformed
predictive distribution. Although the sharp predictive distributions of the RandomForest
models lead to considerably narrower prediction intervals it significantly increases the risk
of the 90% HDI not covering the actual observed loss (see Table 4.2). With its flexibility
in shape and clearly defined interval of the response distribution, we find the Beta models
to provide the best trade-off between reliability and dispersion. Compared to the widely
used reference function (univariable Gaussian), the univariable and multivariable models
have between 47% and 50% narrower HDI’s with HRs above 90%. Comparing the difference
between the univariable and multivariable models, we find an increase in the variability in
shape and width of the predictive distributions for all multivariable models. Although this
increase in variability only show a minor, nonsignificant improvement in accuracy, reliability,
and dispersion (see Table 4.2), we find that multivariable models perform significantly better
compared to models using the water depth as only predictor when individual predictions are
aggregated (see Figure 4.3C).

4.4.3 Effect of zero-loss cases on the damage estimates

The often low water levels of pluvial flooding compared to river or coastal flooding increases
the chances that direct building loss can be completely avoided, although water entered the
building. Analyzing different zero-loss proportions, we find that not explicitly accounting for
these cases can considerably affect model predictions in terms of reliability and dispersion of
the predictive distribution.

For the Gaussian models, none, and for the multivariable RandomForest model, 28 of the
38 zero-loss observations in the data set were inside the respective 90% HDI. For increasing the
zero-loss proportions we observe a significant increase in the reliability of the RandomForest
model and a significant increase in the width of the 90% HDI of the loss prediction for the
Gaussian model (Figure 4.2). The increase in reliability of the RandomForest model reflects
the capability of the model to learn implicitly to account for zero-loss cases, when the learning
sample becomes large enough. Without the possibility to consider zero-loss cases, a higher
proportion of zero-loss observation simply adds additional variability, which the Gaussian
models cannot explain. Bias caused by varying zero-loss proportions is found to be reduced
to a minimum by explicitly accounting for zero-loss observation in the (zero-inflated) Beta
models (see Beta model in Figure 4.2). Findings for the univariable models are, for the sake of
readability, shown in SI 4.A.3 Results.
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Figure 4.1: Probabilistic predictive distributions of different uni- and multi-variable models
(RandomForest, Gaussian, Beta) for cross-validated observations. The predictive distributions
for Gaussian and Beta models are based on 2000 MCMC samples from the respective posterior
predictive distributions. The predictive distributions from RandomForest model are based
on the predictions of 2000 individual trees used for training the forest. (A) The different
predictive distributions for a single household (single family home) with a recorded relative
loss of .016 (dotted vertical line). The upper plot of (A) shows the predictive distributions
for three uni-variable models using the water level as only predictor (dashed lines). The
lower plot of (A) shows the same three model types, but with 5 additional predictors (solid
lines). In (B) the widths of the 90% HDI for the predictive distributions of all cross-validated
observations (n=432) is summarized. The points show the medians for the uni-variable (hollow)
and multi-variable (solid) models for the three different model types.The grey boxes show the
25th to 75th percentile ranges for each model. HDI = highest density interval.
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Figure 4.2: Trade-off between reduction in uncertainty and reliability for cross-validated predic-
tions for different multivariable loss models and different proportions of zero-loss observations
in the data set. Results for univariable models are shown in SI (Results section). Uncertainty
is represented as mean width of the 90% HDI for all observations. Reliability is represented as
proportion of the out-of-sample observation, which are inside the respective 90% HDI. Error
bars represent the 90% interval for the HDI width of all out-of-bag predictions. HDI = highest
density interval.

4.4.4 Hurricane Harvey building loss for Harris County, TX

Modeled direct losses to the building structure caused by pluvial flooding during Hurricane
Harvey in Harris County, TX, are summarized in Figure 4.3. Our main finding is that the width
of the 90% HDI of the predictive distribution for individual buildings can be reduced by 21%
or U.S.$3,685 on average when using the multivariable Beta model instead of the univariable
Gaussian model representing the current standard in empirical flood loss estimation. Panel B
shows the mean relative reduction in the width of the 90% HDI between the two models for
individual buildings on the zip code level. For individual buildings we find spatial variations
for the average building structure loss ranging from U.S.$544 to U.S.$10,134 with the majority
of areas being in the range of U.S.$2,000 to U.S.$5,000. The highest average building structure
loss with values above U.S.$7,500 are found west and southwest of Downtown Houston (Panel
A).

For the aggregated predictive distribution of the absolute loss to the building structure
of over 304 000 affected residential buildings (single-family and multifamily homes) in Harris
County, the corresponding samples of the individual predictive distributions of each building
are summed up. This leads to an effect, known as the central limit theorem, where the Beta-
distributed predictive distributions for individual buildings coming from the Beta model tend
to form a normal distribution when enough individual predictive distributions are summed. In
combination with a higher variability, introduced by the additional variables, the considerably
higher reliability and lower dispersion of the multi-variable Beta model compared to the
univariable Gaussian model on the building-level vanishes when the predictions are aggregated
over a large amount of individual buildings (Panel C).
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Figure 4.3: Modeled direct building structure losses for Harris County, TX, caused by pluvial
flooding during Hurricane Harvey. (A) The modeled average building structure loss per building
aggregated on the zip code level using the multivariable Beta model. (B) The average relative
reduction in uncertainty (expressed through the width of the 90% HDI) per building between
the univariable Gaussian model (reference function) and the multivariable Beta model in
percent aggregated on the zip code level. Crosses in (A) and (B) indicate zip code areas where
the reported average building loss is outside the 90% HDI of the modeled average building loss.
(C) Box plots of the aggregated predictive distributions of the absolute direct building structure
damage for the entire county for three different model types (RandomForest, Gaussian and
Beta) in their univariable (hollow) and multivariable (solid) versions. Bars indicate the median
absolute loss, boxes the 90% HDI, and whiskers the 98% HDI of the absolute direct building
loss for Harris County. The red dashed line represents the official reported absolute building
structure loss based on data from the Federal Emergency Management Agency Housing
Assistance Program. HDI = highest density interval.
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This effect is also described by Sieg (2019) and provides further evidence why univariable
stage damage functions based on Gaussian response distributions yield sufficiently accurate loss
predictions on larger scales while the same model produces highly uncertain loss estimates on the
building level. For results aggregated to the county level, we find univariable and multivariable
Gaussian models to overestimate the absolute building structure losses by U.S.$0.7 and U.S.$3.4
billion, respectively. This can be partly attributed to the underestimation of zero-loss cases
described in the previous chapter, which leads to higher intercepts in the model. For the
multivariable model this effect is considerably stronger as the model is fit as a linear instead
of a square root function (see Section 4.3.3). Of the six models tested, none of the univariable
models, and only the aggregated predictive distributions of the multivariable RandomForest
and Beta models are covering the reported loss from FEMA’s Housing Assistance Program
(U.S.$1.04 billion). Here the multivariable Beta performs significantly better with a total
reduction in width of the 90% HDI of U.S.$3.8 billion (or 78%) compared to the multivariable
RandomForest model, providing the best trade-off between dispersion and reliability.

4.5 Discussion and Conclusions

Despite causing severe losses in cities around the globe, pluvial flooding is still widely neglected
when estimating the current and future flood risk in urban areas. This results in a widespread
underestimation of flood risk especially in urban areas where fluvial or coastal floods are not
the dominant sources of flooding (Rosenzweig et al., 2018). One key limitation in reliably
quantifying pluvial flood risk is the local extend of pluvial floods, requiring loss estimates
on spatial scales where damaging processes are still hardly understood and the associated
uncertainties are often unknown.

We present the first consistent quantification of uncertainties in pluvial flood loss models
for private buildings in the shape of predictive distributions using a fully probabilistic modeling
approach. We train and validate different univariable and multivariable probabilistic loss
models with a local training data set and use these models for a probabilistic estimate of
building structure losses of over 304 000 individual buildings in Harris County during Hurricane
Harvey. Our analysis reveal significant differences in the dispersion and reliability of the
continuous predictive distributions between different models depending on (i) the use of
additional predictors, (ii) the choice of response distribution, (iii) the ability of the model
to account for zero-loss cases, and (iv) the spatial scale of the analysis. We find that the
assumption of a normal or lognormal distribution of uncertainties in loss estimates, which
most loss models implicitly use today, results in unnecessarily wide prediction intervals. In the
case of property level predictive distributions, we find that the width of the 90% HDI exceeds
the median of the prediction by factor 30 on average. Our results suggest that the with of the
90% HDI for pluvial flood loss estimates on the property level can be significantly reduced
by 47% when using a zero-inflated Beta distribution instead of normal response distributions
without sacrificing the reliability (Table 4.2).

While not evident on the property level, we find that using water depth as only predictor
results in an underestimate of the prediction intervals leading to unreliable loss estimates
when spatially aggregating loss predictions (Figure 4.3C). Here, we find additional predictors
to improve the pluvial flood loss predictions in two ways: (i) by increasing the variability of
individual predictive distributions leading to a more realistic representation of uncertainties
when aggregating estimates and (ii) by improving the detection of cases where water entered
the building but did not cause any monetary damage to the structure (Figure 4.2). For
the latter our analysis indicate the ability of households to prevent direct damage to their
homes should be included in loss models. The analysis of important loss influencing variables
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has further shown that the probability of a household to not have any monetary loss to the
building structure is — other than for the degree of loss — strongly influenced by household
characteristics such as the number of people living in a household and their prior knowledge
about the pluvial flood hazard. This highlights the need to account for differences in the ability
of households to reduce or avoid damage to their homes in loss models for pluvial floods.

For loss estimates in Harris County, the use of additional predictors in zero-inflated Beta
models considerably increases the reliability while at the same time significantly reduces the
dispersion of the predictive distribution given validation data. For direct building losses
aggregated on the county level this reduction accounts for U.S.$3.8 billion or 78% compared
to loss models based on normal response distributions. These findings are relevant for a larger
discussion on using probabilistic loss estimates for decision making in flood risk management.
This includes the potential of probabilistic approaches to improve the spatial transferability
of loss models. We further demonstrate the potential to significantly improve the dispersion
and reliability of pluvial flood loss estimates using probabilistic models, which goes beyond
previous studies considering only point estimates (Van Ootegem et al., 2015; Zhou et al., 2012).
Although these results are limited to a quantification of uncertainties of loss predictions, the
results can easily be extended for robust decision making on adaptation strategies based on
exceeding probabilities, which can be directly derived from predictive distributions. While our
results suggest that models that use a zero-inflated Beta response distribution provide predictive
distributions with a significantly lower dispersion and higher reliability, a general paradigmatic
change toward probabilistic models would greatly aid a better understanding of uncertainties in
loss models (Todini, 2018). Same is true for multivariable models, where emerging cloud-based
reporting systems and open data portals now allow the use of high-dimensional data sets in
flood loss modeling.
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4.A Supporting Information (SI)

4.A.1 SI Data

Survey data

The data set contains information collected by computer aided telephone interviews (CATTI)
of private households affected by pluvial floods in 2005, 2010 and 2014 in five German cities
(Table 4.3). Altogether 783 completed interviews are available from these surveys. On the basis
of information from fire brigades or flood reports and press releases, lists of inundated streets
were compiled for each flood event. These lists served as a basis to select telephone numbers
of all potentially affected households from the public telephone directory. Computer-aided
telephone interviews were undertaken by a market research institute with the help of the
VOXCO software package (www.voxco.com) about 15 to 19 months after the events (Table
4.3). At the beginning of the interview, it was asked to interview the person in the household
with the best knowledge about the flood event. The questionnaires used for the surveys were
based on a questionnaire developed by Kreibich et al. (2005) and Thieken et al. (2005) for
river floods, but was adapted for the special characteristics of pluvial flooding. The interviews
lasted 25 to 30 min on average and contained approximately 110 questions on the following
topics: flood impact, warning, emergency measures, evacuation, clean-up, characteristics of and
damage to household contents and buildings, recovery of the affected household, precautionary
measures, flood experience, and socio-economic characteristics of the household.

Building loss includes all costs associated with repairing the damage to the building
structure, such as plastering, replacing broken windows and repairing the heating system. The
questionnaire contained detailed questions addressing not only total loss but also the affected
stories, many information on the building itself necessary to estimate the building value. This
generated the most accurate information possible about the flood loss. Post-processing was
performed, like correcting or removing implausible inputs, for example, by comparing reported
water levels inside and outside the house and by comparing reported floor areas with building
footprint. More details on the surveys and dataset are provided by Rozer et al. (2016) and
Spekkers et al. (2017).

Table 4.3: Overview survey data

Characteristics Surveys

Survey period Nov 2006 Feb/Mar 2012 Oct/Nov 2015

Affected cities Lohmar Osnabriick Miinster
Hersbruck Greven

Event Jun 2005 Aug 2010 Jul 2014

Number of households interviewed 173 100 510

References URBAS  (2008), Rozer et al. (2016) Spekkers et al.
Rozer et al. (2016) (2017)

Relative loss

The relative loss (rloss) describes the proportion of the direct monetary damage to the structure
of a building in relation to its total value. It is bounded between the interval [0,1], where 0
is equivalent no monetary damage at all and 1 to a total loss of the building. Modeling the
proportion of the direct monetary damage instead of the total values has two main advantages
when modeling losses: (i) the loss estimates become independent from the actual building
values, which is expected to lead to more stable relationships between rloss and the predictors;
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Figure 4.4: Quantile-quantile plots for different transformations/distributions for rloss.

and (ii) the relative loss is dimensionless, which means it creates comparable results over
space and time without the bias of inflation or varying building costs in different regions (as
discussed for floods in Merz et al. (2010) and in the general context of natural hazards by
Neumayer and Barthel (2011)). For pluvial floods the majority of the values for rloss are
typically in the lower range (< 0.4) including cases where water entered the building in such
low quantities that it did not cause any direct damage to the building structure (we refer to
these cases as zero-loss observations). The bounded outcomes as well as the concentration
of values at or close to 0 makes the modeling of rloss challenging in the context of (ordinary
least squares) regression, which does not account for bounded intervals and therefore may
lead to biased estimates. To overcome these limitations the response variable has to be either
transformed to map the outcomes to the [0,1] interval or using a regressor where the response
variable is assumed to be beta-distributed on the (0,1) interval (Schmid et al., 2013). For the
variable selection using machine learning as well as for the stage-damage and multi-variate
ensemble model we use the logit-transformation to transform rloss:

rloss

) (4.6)

logit(rloss) = log(m
This avoids nonsensical predicted values for rloss below 0 or above 1. To deal with observations
where rloss = 0 that would create a transformed value of —oco we set the values for rloss
= 0 to the smallest non-zero value in the dataset as suggested by Warton and Hui (2011).
This provides more flexibility in the selection of different learning algorithms as machine
learning for beta distributed response variables is not yet well established. For the probabilistic
multi-variate damage model, where the focus of the model is on prediction, we model rloss
as zero-inflated beta distribution. The quantile-quantile (Q-Q) plots in Figure 4.4 show the
logit-transformation as well as the beta-distribution compared to the untransformed empiric
distribution of rloss.

Harris County data

Based on a high-resolution pluvial flood map (spatial resolution approx. 30m) containing
modeled inundation depth, we construct a multi-variable data set to be used with the proposed
uni- and multi-variable probabilistic flood models. The pluvial flood map is provided by JBA
Risk Management based on model runs covering the period from August 25 2017 to August 28
2017 and represents the maximum water depth per cell in this period. The entire map covers
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Table 4.4: Overview of all candidate variables.
Group Var. Description Scale Range Missing
[7]
Damage rloss Relative building structure damage; c 0: damage 1: -
Normalized with building value total damage;
actual range:
0-04
dam Binary building structure damage b yes/no -
afl* Basement affected b yes,/no <1
af2 Ground flood /first floor affected b yes/no <1
af3* Higher floors affected b yes,/no <1
Hazard wd Water level relative to the ground level ¢ -247cm be- 5.6
low ground
to 453 cm
above ground
d Flood duration ¢ 1-840 h 4.2
con Contamination with chemicals, sewage b yes/no 4.6
or oil
v Flow velocity indicator o 0: still to 6: 4.6
high velocity
rfilh Maximum amount of rainfall in 1 hour ¢ 156 - 141.8 -
over the whole storm event mm
Warning wsl* Warnung source: Severe weather warn- b yes/no 1.6
ing
ws2 Warnung source:  Friends, neigh- b yes,/no 1.6
bors,family
ws3* Warning source: National news b yes,/no 1.6
wsd Warning source: Own observation b yes/no 1.6
wt Early warning lead time ¢ 0-72h 2.3
Emergency eml Saving documents and valuables b yes/no <1
response
em2 Put movable content upstairs b yes/no <1
em3*  Safeguard oil tanks b yes/no <1
em4 Pump out water b yes,/no <1
emb*  Safeguard domestics animals and pets b yes/no <1
em6 Protect building against inflowing water b yes/no <1
em7 Redirect water on the property b yes/no <1
Precaution prel Inform about flood hazard/protection b yes/no <1
pre2 Participate in flood protection network b yes,/no 2.5
pre3 Flood insurance b yes,/no 2.3
pred Inferior use of exposed floors b yes/no 1.6
pred Avoid expensive permanent interior b yes/no 2.3
pre6*  Relocate heating/electricity to higher b yes/no 3.5
floors
pre7 Reduce contamination risk (protect oil b yes/no 1.1
tank, store chemicals in safe place)
pre8 Improve flood safety of the building b yes/no 2.5
pre9 Install backflow protection device b yes/no 1.9
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Table 4.4: Overview of all candidate variables.
Group Var. Description Scale Range Missing
[7]
Experience fe Flood experience indicator based on no. o 0: no ex- 2.1
of previous floods, previous damage and perience to
time since last flood 9: recent
experience
with loss >
1000 EUR
npf Number of previous floods 0-5 <1
Building btl Building type: Multi-family home yes/no <1
characteris-
tics
bt2 Building type: Semi-detached house b yes/no <1
bt3 Building type: Rowhouse b yes/no <1
byl* Building year: <1924 b yes/no <1
by2 Building year: 1924 - 1948 b yes/no <1
by3 Building year: 1949 - 1964 b yes/no <1
by4 Building year: 1964 - 1990 b yes,/no <1
ht Oil heating Y/N b yes/no <1
bu Building has basement b yes,/no <1
bq Building quality c 1: very good <1
to 9:  very
bad
bv Building value c 88440 - <1
9682400
EUR
nfb Number of apartments per building c 1-45 1.1
fsb Floor space building c 55 - 4900 2.1
sq.m
bml1*  Building material: Timber frame b yes/no 1.2
bm2 Building material: Steel-enforced con- b yes/no 1.2
crete
bm3 Building material: Masonry b yes/no 1.2
bm4*  Building material: Wood b yes/no 1.2
tpib00 Topography index. Relative height of ¢ -17.74 build- -
building location compared to surround- ing below to
ings. Radius 500m 10.91 above
surrounding
areas
Socio- age Age of respondent ¢ 20 - 90 years 3.2
economic
hs Number of people living in household c 1 - 8 per- 14
son(s)
chi Number of children <14 years in house- c¢ 0-3 3.2
hold
eld Number of adults >65 years in house- c¢ 0-4 2.8
hold
ownl*  Ownership status: Tenant b yes/no <1
own2*  Ownership status: Apartment owner b yes/ no <1
own3  Ownership status: Home owner b yes,/no <1

*Variables have zero or near-zero variance and are not used in the model
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the the Gulf coast from Corpus Christi, TX to Lake Charles, LA to Huntsville, TX in the north,
but only the inundated areas in Harris County, TX are used for this study. As the inundation
depth is the result of modeling work and could only partly validated using observations, the
provided inundation depths are inherently uncertain. More detailed information on the pluvial
flood map are available in the meta data of the flood map and from JBA Risk Management
(JBA Risk Management, 2017).

Using the footprint of the maximum extent of flooding from the pluvial flood inundation
map, the following additional variables are derived from publicly available data sets: estimate
of the inundation duration (d), information on contamination (con), average household size
(hs), knowledge of the hazard (prel), type of building (bt) as well as the value of the building.
For an estimate of the inundation duration (d), we use the revised estimated dry times provided
by the Pacific Northwest National Laboratory (PNNL). The dry times are estimates based on
model simulations of a 2-day hindcast and 5-day quantitative precipitation forecast and do
not reflect the operational control of dams. The dry times reflect the estimated number of
days the water is expected to take from its peak state to a dry state not including base flow
conditions (PNNL, 2017).

Point information on the contamination is derived from incidents report data base of the
National Response Center (NRC) of the United States and filtered for reports in relation to
Hurricane Harvey for a report period between August 27 2017 and September 9 2017 (NRC,
2018). Reports not related to water pollution were excluded from the data set. In addition, a
data base compiled by the Sierra Club containing a collection of national and state level reports
from known incidents during Hurricane Harvey were used to validate and /or complement the
NRC data (Sierra Club, 2017). In total 98 records are available. We use 2D-kernel density
estimation to create a probability map reflecting the probability that an area was contaminated
based on the proximity to locations were contamination was reported. The point information
of contamination is only interpolated for locations that were within or close to a flooded area
(< 30m) and also only within the flooded areas based on the assumption that contaminants
(oil, gas, sewage etc.) are only transported through flood water. This approach does not
consider flow fields of the surface water or sewage system and is only an estimate of potentially
contaminated areas.

To estimate the household size of a building, we use information about the average
household size separated by tenants and house owners on the block level, based on the 2016
American Community Survey (ACS) (U.S. Census Bureau, 2016).

The knowledge of the household about flood risk is based on the flood zone information
provided by FEMA. The assumptions is made, that households lying within an area with
a 1-percent annual chance of getting flooded (Zone A) are aware of the flood risk. This
assumption is based on the requirement that property owners have to buy flood insurance in
these areas when making, increasing, renewing, or extending a loan (FEMA, 2018b).

Information on the type (bt) and value (bv) of the affected buildings can be directly
derived from the property data base of the Harris County Appraisal District (HCAD, 2018).
For this study we only use private single- and multi-family homes. All commercial or public
buildings are not considered and excluded from the data set. For the building value we use
the development replacement cost new less depreciation (RCNLD) to quantify the current
replacement value of each building on the property.

Based on the pluvial flood inundation map we link the flooded areas and other hazard
characteristics with the exposed building. This results in a data set with a total of 304 441
affected buildings in Harris County including information on the estimated inundation in
centimeter, the flood duration in hours, the probability of the building being contaminated
by oil, gas, chemicals or sewage as well as several information on the household size and
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knowledge about the flood hazard. The modeled relative building losses are multiplied by the
RCNLD to obtain loss values in US$. The loss values are validated for the zip code and county
level based on reported loss values from FEMA Housing Assistance Program (FEMA, 2018a).
For validation purposes only the building structure damage of home owners are considered.
As only households whose losses are not covered by insurance are eligible to receive funds
from FEMA’s Housing Assistance Program the validation data might underestimate the total
loss when excluding insured losses. However, the underestimation is expected to be minor as
FEMA estimated that only 15% of all homes (20% of flooded homes according to estimates by
the Consumer Federation of America) in Harris County had flood insurance prior to Hurricane
Harvey (Kunreuther, 2018).

4.A.2 SI Materials and Methods

Determining important predictors

For building an effective predictive model, the selection of input variables is a crucial step.
However, when the number of variables is large, detailed exploratory analysis of all possible
predictors is inefficient and often not feasible (Kuhn and Johnson, 2013). Since input data for
loss estimations are scarce and often difficult to obtain, one would strive for a parsimonious loss
estimation model, that optimizes the trade-off between number of predictors and predictive
accuracy (Gromping, 2009). In this study, we rank all 44 candidate variables (total number
of variables is 56, but only 44 considered for variable selection due to near-zero variance of
12 variables) based on the intrinsic variable importance measures of four different predictive
models. The respective models are used in a regression context to find the strongest predictors
for the level of relative loss (rloss) and in a classification context for the presence or absence
of loss (dam). The variables that show a strong relationship with rloss and dam respectively
are selected to be used as input for the probabilistic loss estimation model.

The supervised predictor selection routine is shown in Figure 4.5. We use the same
routine with the same predictors and the same type of models independently to identify
the predictors with a strong relationship to rloss and dam respectively. To increase the
robustness of the variable ranking and compensate for recurrence issues frequently appearing
in machine learning, the predictor selection is based on the variable importance measures of
four different models (Dasgupta et al., 2011). The four models were selected out of a large
pool of models provided in the caret package (Kuhn, 2008) based on the following criteria: (a)
provide inherent variable importance measure, (b) can be used for regression and classification
(c) combination of models that is able to detect linear- and non-linear relationships. For the
variable importance of non-linear predictors, we use two different non-parametric tree-based
ensemble models: conditional inference forests (Strobl et al., 2007) based on an ensemble of
independent randomized regression- /classification trees, similar to the random forest model
originally proposed by Breiman (2001); and gradient boosting machines based on a stage-wise
additive model with correlated trees (Friedman, 2001). To detect predictors with possible
linear relationships between the two dependent variables, we use two different penalized linear
regression models: the least absolute shrinkage and selection operator (LASSO) with L;
regularization (Tibshirani, 1996) and Ridge regression with Ly regularization (Hoerl and
Kennard, 1970).

For the classification routine, the proportion of cases with no loss is increased from 9% to
50% through random sampling with replacement to compensate for class imbalance. Each
model is tuned individually using 10-fold cross-validation with 10 repeats. That means the
dataset is split and resampled to result in 100 individual training and validation datasets.



78 Chapter 4. Probabilistic models significantly reduce uncertainty of loss estimates

Y 4am: Binary loss Y/N
X;... X5 : Predictors dam
rloss

I
Y.0ss: Relative loss J

10-fold
cross-validation

with 10 repeats ]
\/ 1

T 100

Aoeinooy
IS

>
S
S
3
3
<

Y10ss- Model w. lowest RMSE
Ygam: Model w. highest Accuracy

[ dam

rloss

Variable ranking R | Variable ranking
Overall Variable M

Importance ranking

dam
rloss

Select highest ranked predictors

Y

[
Selected Predictors J
dam

rloss

Figure 4.5: Flowchart of the machine learning routine for the variable importance measures
of the level of loss (rloss) and the the classification of loss/no loss (dam). For the variable
importance each of the four models are tuned for the lowest RMSE (resp. highest accuracy).
The variable importance measures are normalized and each variable is ranked in each of the
four models based on their variable importance score. The most important loss influencing
variables are selected based on their overall rank(median).

The cross-validation routine is repeated for each tuning configuration and the optimal
tuning configuration for each model is selected based on the lowest root mean square error
(RMSE) for rloss and the highest mean accuracy for dam. The model configuration with
the lowest RMSE (the highest mean accuracy respectively) are considered as the optimal
models and for these models the variable importance of each predictor is determined. The
variable importance measures are scaled from 0 (removed from the model) to 100 (most
important variable) using unity based normalization to make the scores comparable between
the different models. Based on its variable importance score, each variable is ranked from 1
(most important) to 44 (least important) for each variable. The overall rank of each variable is
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then determined based on the median rank of all four algorithms. The top five variables with
the highest overall rank for rloss and dam are then considered for the actual probabilistic loss
model.

Bayesian zero-inflated beta regression

Section 4.3.3 of the main text describes the Bayesian zero-inflated Beta regression model used
to develop probabilistic prediction of flood loss. Here we provide details on computation and
the priors used.

In Bayesian models involving empirical observations, obtaining analytical solutions for
predictions are almost impossible. Hence, we estimate an approximated posterior distribution
(Kruschke and Vanpaemel, 2015). Markov Chain Monte Carlo (MCMC) samplers create tens
of thousands of parameter replications based on the data generation process to represent the
posterior distributions. The probabilistic multi-variate flood loss model is implemented in
the stan modeling language (Carpenter et al., 2016) using the brms package version 3.3.2
(Biirkner, 2017) in R using the No-U-Turn Sampler(NUTS) by Hoffman and Gelman (2014).
The MCMC sampler is run with two chains, with 2000 iterations each and a burn-in period
of 1000, resulting in a total number of 2000 MCMC samples for each posterior distribution.
Model convergence is assessed using the Gelman-Rubin R statistic (Gelman and Rubin, 1992),
which compares between-chain and within-chain variances to assess MCMC convergence. We
obtained R < 1.1, suggesting good convergence. We also compute the effective sample size
of posterior draws, which accounts for the autocorrelation to measure the equivalent number
of independent samples (Kass et al., 1998). We confirmed the ratio of effective sample size
to nominal sample size to be between 0.999 and 1.001. Bayesian modeling also requires the
application of a prior distribution on the parameters applied; Bayes’ rule gives
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Figure 4.6: Visualization of the zero-inflated Beta model including priors for the Bernoulli and
Beta parts.
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We applied weakly informative priors, which we define following Gelman et al. (2017)
and Simpson et al. (2017) as priors explicitly designed to encode information that applies
to a general class of problems without taking full advantage of problem-specific knowledge.
In other words, weakly informative priors provide coverage over all parameters which might
be plausible. We do not modify the weakly informative priors provided by default in the
brms package but note that results are not sensitive to alternative specifications of weakly
informative priors. These default priors assume that the group-level priors (i.e., v and )
follow a normal distribution with mean zero and unknown covariance matrix, and assigns an
improper flat prior to scale parameters (i.e. ¢). For further discussion of the priors applied to
the unknown covariance matrix we refer the reader to Biirkner (2017).

Models for comparison

We compare the predictive performance of out-of-sample predictions of the uni-and multi-
variable Beta model with two different model types from the literature: first a stage-damage
model based on a root function using the water depth as only predictor as representation
of a concept that is widely used in academia and among practitioners to describe the flood
vulnerability of a building (Penning-Rowsell et al., 2005; Merz et al., 2013; Scawthorn et al.,
2006; Thieken et al., 2008). Root functions are used as reference damage function in (among
others) Merz et al. (2013), Schréter et al. (2014) and Wagenaar et al. (2017). Second, a non-
linear, non-parametric tree-based model based on the Random Forest algorithm by Breiman
(2001), representing the current state of the art for loss models (Schréter et al., 2014; Wagenaar
et al., 2017). The root function follows:

rloss = c¢1 + coVwd (4.8)

and is fit to the survey data set using Bayesian inference in Rstan. Each prediction consists of
2000 Markov-Chain-Monte-Carlo (MCMC) samples from the posterior predictive distribution
based on the No-U-Turn Sampler (NUTS) implemented in Stan (Hoffman and Gelman, 2014).
Priors for ¢; and cp are set weakly informative (normal distribution with = 0 and o = 10)
to avoid any bias in the prediction. Before fitting the model rloss is logit-transformed to
map the bounded outcomes of rloss € [0, 1] to the whole real line (—oo, 00) and to satisfy the
assumptions of OLS-regression (i.e. normally distributed residuals).

The RandomForest model model uses the original Random Forest algorithm by Breiman
(2001) as implemented in the randomForest R package (Liaw and Wiener, 2002). The
RandomForest model is learned with 2000 independent trees (ntree = 2000). For each loss
prediction of an individual household a predictive distribution is generated by using the mean
of the respective terminal node for each of the 2000 trees. The number of trees is set to 2000 to
make sure that the predictive distribution of the RandomForest model is generated based on the
same number of samples as for the posterior predictive distributions of the Beta and Gaussian
models. All multi-variable models are fit using the same 7 variables (see Table 4.1 in the main
text, three variables for rloss, four variables for dam) used in the probabilistic multi-variable
Beta model. The uni-variable Beta and Gaussian models are fit as square-root function using
the water level as only predictor. The Gaussian models are fit using logit-transformed values
of rloss following the reference function used in Schréter et al. (2014). For the uni-variable
RandomForest model different split points in the water level are selected based on bootstrap
samples of the original dataset; the multi-variable model is fit by randomly selecting two out
of six variables at each split (mtry = 2).
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Model comparison and scoring methods

The predictive performance of the three previously described models are compared using
10-fold cross-validation, where for each iteration 90% of the data are used for fitting/training
the models and 10% are used for prediction. For all three models the composition of the folds
are the same and each observation in the dataset is used at least once for training and once
for prediction. The same dataset described in Section 4.A.1 - Survey data is used for all three
models. The predictive performance is evaluated in terms of accuracy of the point estimate
based on the median of the predictive distribution, using the root mean squared error (RMSE)
and mean bias error (MBE); the reliability of the 90% highest density interval (HDI) of the
predictive distributions is evaluated using the hit rate (HR) and the dispersion of the interval
using the interval score (IS) and mean width of the 90% HDI.
Accuracy of point estimate (median of the predictive distribution) Qs¢;):

n

RMSE = % ;(Qm —0,)? (4.9)
1 n
MBE = — ;(Qs}o@' - 0i) (4.10)

Reliability of the 90% HDI [Qgs;, Qusi] of the probability /ensemble sample:

I~ . _[1, ifO;€ HDIy
HR_n2h“hz_1_{ 0 , otherwise (4.11)

1 o 2 2
IS = HDIgQH—E Z B(HDI9Uizow_Oi)| {OZ < HDI90ilow}+B(Oi_HDI9Uiup)‘ {OZ > HDIgUiup}
i=1
(4.12)
with HDlIyg;,,,, and HDIgy;,, marking the upper and lower bounds of HDIgy;.

4.A.3 SI Results

Model validation for Hurricane Harvey

Comparing the aggregated modeled predictive distributions with FEMA’s Housing Assistance
Program, we find that in 103 out of 136 modeled zip code areas, the reported average loss lies
within the 90% HDI of the modeled average loss (76%). For the modeled total loss this is true
for 112 out of 136 modeled zip code areas (82%). For the total absolute loss for the entire
county only the 90% HDI of multi-variable RandomForest model covers the reported total
absolute loss by FEMA. For the multi-variable Beta model the 98% HDI cover the reported
loss with a considerably sharper prediction making it the model with the highest IS.
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Figure 4.7: Variable importance of the 44 candidate variables using conditional inference
forests (cRF), gradient boosting machines (GBM), lasso (LASSO) and ridge (Ridge) regression
for the level of loss (rloss) and the classification between loss/no loss (dam). The variable
importance values were rescaled for the interval (0,100) using unity normalization. The most
important variable for each model was set to 100. A value of 0 means, that the variable was
removed from the model (feature selection). The uncertainty bands represent the error of one
standard deviation considering all 100 re-sampling rounds.
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Figure 4.8: Trade-off between reduction in uncertainty and reliability for cross-validated pre-
dictions for different uni-variable loss models and different proportions of zero-loss observations
in the dataset. Uncertainty is represented as mean width of the 90% HDI for all observations.
Reliability is represented as proportion of the out-of-sample observation, which are inside
the respective 90 % HDI. Error bars represent the the 90% interval for the HDI width of all
out-of-bag predictions.
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5 Discussion, recommendations and
conclusions

5.1 Summary of findings

The overarching objective of this thesis was to improve the estimation of pluvial flood losses
through an improved understanding of the factors influencing loss and the underlying uncer-
tainties. Therefore, detailed empirical data about households affected by pluvial flooding were
collected and analyzed through a combination of descriptive statistics and machine learning.
Based on this information, a new probabilistic modeling approach for pluvial flood losses was
developed and successfully applied to a recent pluvial flood event.

Key findings of this thesis are highlighted in the bullet points below. All findings in regard
to the research questions defining the structure of this thesis are summarized in the subsequent

paragraphs.

% Key findings

The majority of investigated private households were neither aware of nor
prepared for pluvial flooding before the respective event occurred.

The choice of emergency measures undertaken by private households varied
with the water depth and whether the aim was to mitigate or prevent losses.

Besides the water depth, the degree of building structure loss was mainly
determined by other hazard characteristics (i.e. flood duration and contami-
nation), while the occurrence of building structure loss was mainly determined
by non-hazard characteristics (i.e. household size, prior knowledge about
pluvial flood risk)

Additional variables in pluvial flood loss models improved the quantification
of uncertainties and the detection of zero-loss cases, but not the prediction of
point estimates.

Probabilistic loss models were found to be a suitable approach to account for
the high uncertainties in pluvial flood loss estimates

The choice of response distribution in probabilistic pluvial flood loss models
had a strong influence on the reliability of the loss prediction; Models based
on a beta distribution led to significantly more reliable loss estimates than
comparable Gaussian and non-parametric models.
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1. How do private households cope with pluvial flooding?

To analyze how private households cope with pluvial flooding before, during and after an
event, detailed information on preparedness, awareness, response and recovery were collected
in the form of household surveys following different pluvial flood events in Germany and
the Netherlands between 2005 and 2014. The analysis of the household surveys showed that
the majority of affected households were not aware of the risk of pluvial flooding before the
respective flood event occurred. Even in cases where other parts of the same town had been
previously flooded, the majority of households interviewed did not know about the flood risk
their own home was facing.

The majority of households perceived precautionary measures as an effective way to
mitigate losses. However, households who invested in private precautions both before and
after the event focused on measures that facilitate emergency response and recovery, instead of
more costly building retro-fitting. Due to the low awareness and the lower uptake in building
retro-fitting after the flood, it was concluded that the response shortly before and during an
event plays an important role when coping with pluvial floods. Here, the dissemination of
early warnings was found to be a critical issue, as only one third of the surveyed households
stated that they had received an early warning, even though severe weather warnings with
several hours lead time were released in all cases.

2. What explains the differences in preparedness and response between
flood-affected households?

Based on the analysis of survey data from flood-affected households following three different
pluvial flood events in Germany and one pluvial flood event in the Netherlands, significant
differences were found in how households prepared for and responded to pluvial flooding.

While a relatively greater number of households who were previously affected by flooding
or had knowledge about the flood risk of their home had implemented precautionary measures,
it could not explain the difference in the absolute number of measures implemented. Here,
the significantly lower number of precautionary measures implemented in the Netherlands
compared to the German case studies indicates that other factors such as regional differences
in the risk perception might explain the difference.

In regard to the emergency response, it was found that households perform different
emergency measures depending on the flood magnitude. For events where average water levels
were higher, households predominantly focused their emergency response on reducing losses,
while during events with lower water levels households primarily implemented measures with
the aim of avoiding losses, such as sealing windows or basement shafts.

3. Which factors influence pluvial flood loss to private households?

Using both descriptive statistics in Chapters 2 and 3 and machine learning in Chapter 4,
different variables were found to influence different aspects of pluvial flood loss incurred by
private households.

While in all analyses water depth was found to be the most important loss-influencing
factor, the univariate analysis of different pluvial flood events showed that receiving an early
warning and consequently undertaking emergency measures reduces losses to building contents.
Losses to the building structure, on the other hand, were found to be mainly influenced by
additional flood characteristics such as the duration of the flood.

The machine learning analysis revealed that the drivers for the occurrence of building
structure loss and the drivers for the degree of loss to the building structure are different,
indicating different damaging mechanisms. Here, only the variables influencing the degree of
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loss confirmed findings from the previous univariate analysis, where the increase in building
structure loss was found to be explained best by additional flood characteristics such as flood
duration or contamination of the flood water. The occurrence of building structure loss, on
the other hand, was found to be influenced predominately by non-hazard characteristics, such
as the size of the household and whether or not the household had prior knowledge about the
risk of pluvial flooding. It was concluded that differences in variables between different aspects
of pluvial flood loss should be taken into account when quantifying pluvial flood losses.

4. Can implementing these factors in loss models improve the quantification
of pluvial flood losses?

To analyze whether using variables in addition to the water depth could improve the quantifica-
tion of pluvial flood losses, the predictive performance of probabilistic uni- and multi-variable
loss models was evaluated using cross-validation. The uni-variable models used the water
depth as the single most important variable, while the multi-variable models additionally used
five of the most important variables detected by the preceding machine learning analysis.

Using additional predictors, the probabilistic quantification of pluvial flood losses was
improved in two ways: First, for spatially aggregated estimates, multi-variable models provided
a consistently better balance between sharpness and reliability, thus reducing the risk of
incorrect predictions. Second, additional variables improved the detection of cases in which
water entered the building but did not cause any loss to the structure, thus reducing the bias
in the loss estimates.

Comparing the prediction errors of point estimates instead of predictive distributions for
pluvial flood losses, only a minor non-significant improvement between uni- and multi-variable
loss models was found. Therefore, probabilistic loss models are needed to take advantage of
the information from additional variables when estimating losses from pluvial flooding.

5. What influences the reliability and uncertainty of pluvial flood loss mod-
els

To understand what influences the reliability and uncertainty of building structure loss
estimates, a fully probabilistic modeling approach was applied for the first time in pluvial
flood loss modeling.

Different probabilistic loss models were trained and evaluated with regard to reliability,
meaning the ability of the predictive distribution to cover the actual observed loss, and
uncertainty, meaning the width of the highest-density interval of the predictive distribution.
It was found that the uncertainty and reliability of the continuous predictive distributions
of different loss models vary considerably depending on the use of additional predictors, the
choice of response distribution, the ability of the model to account for zero-loss cases and the
spatial scale of the analysis.

With their ability to significantly reduce uncertainties compared to the widely used Gaussian
stage-damage functions without sacrificing the reliability, the use of multi-variable pluvial flood
loss models based on a zero-inflated beta distribution is recommended for the quantification of
pluvial flood losses on both the object and city scales.
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5.2 Discussion and recommendations for further research

During the analysis of how private households cope with pluvial flooding as well as the
development and application of a novel probabilistic pluvial flood loss model, several aspects
emerged which require discussion in a broader context. The discussion follows the study
design used in this thesis (see Figure 1.2 in Chapter 1) starting with the data collection and
data analysis followed by the model development and closes with the model application. Each
section discusses the potentials and limitations of the approach taken in this thesis, including
unresolved questions that provide directions for further research.

5.2.1 Data on pluvial flood impacts

To analyze how private households cope with pluvial flooding and which factors influence
pluvial flood losses, detailed information on the household level about both impacts and
resistance parameters is needed.

In this thesis, detailed empirical data on how pluvial flooding affects private households
were collected using structured web and telephone surveys. This approach was chosen for its
ability to overcome many limitations identified in previously used data sets and data sources
(see Chapter 1), especially in regard to an insufficient level of detail, incomplete information,
and issues to distinguish between different causes for water-related losses.

Besides method-specific pitfalls such as response bias or data entry errors, discussed in
detail in Chapter 3, the high level of detail of the survey data allowed for a quantitative in-depth
analysis of pluvial flood vulnerability of private households, which had not been possible with
previous data sources. One challenge that was discovered during the data collection process
and that was found to be true for other available empirical data sets on pluvial flooding was
the focus on large events, as most pluvial flood events are too small in terms of both spatial
extent and monetary loss to gain enough attention to be reported. Smaller events, such as the
pluvial flood in Amsterdam investigated here, should not only be considered in future data
collection campaigns because there are indications that small but frequent pluvial flood events
make up a considerable share of the total annual loss (Einfalt et al., 2009; Ten Veldhuis, 2011;
Moftakhari et al., 2017), but also because the coping strategies of private households were
found to be highly dependent on the flood magnitude. Ignoring these differences can lead
to misjudgments regarding the coping capacity of private households and, consequently, the
expected losses from pluvial flooding as well.

While the survey approach used in Chapters 2 and 3 can be used to collect data from events
of all sizes, the costs and effort, especially in conducting computer-aided telephone interviews,
requires that events are large enough to gain a sufficient number of observations per survey
campaign. The open-source web survey approach presented in Chapter 3 significantly reduces
the costs and effort per interview and is therefore recommended for future data collection
campaigns around smaller events. However, it still requires the detection of (small) pluvial
flood events that can be surveyed.

Here, a stronger collaboration between research, practice and public administration dealing
with pluvial flooding is needed to support the data collection and extension of the existing
data bases on pluvial flood impacts. The introduction of high-level standards and platforms
for local administrations to report on pluvial flood events in their communities is particularly
recommended, as it can give a more complete picture of the temporal and spatial occurrence
of pluvial flooding. This information is not only important for researchers, but is also highly
relevant for decision makers, e.g. when evaluating the cost-effectiveness of risk reduction
measures. Based on the open-source web survey tool for pluvial floods from Chapter 3 such an
event data base can then be enhanced with a semi-automatized collection of detailed survey
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data.

In addition to a better reporting and collection of new data on pluvial flood impacts,
already available data such as detailed exposure or loss information should be used more
efficiently. This requires a stronger commitment to existing open data policies and portals from
key stakeholders, including researchers, emergency responders, local and federal authorities
and the insurance industry. The example of a US case study in Chapter 4, where a highly
detailed input data set was constructed entirely from openly available datasets, highlights the
need for federal, national and local authorities in Germany and the EU to catch up. A better
availability of data sets through open data portals would not only facilitate the exchange
and use of already available data but could also help to increase links between the groups
mentioned to improve pluvial flood management practices.

A further exploitation of new data sources and sensors, such as volunteered geographic
information, call record data or high-resolution remote sensing imagery, can then be used to
complement existing data e.g. regarding human activities before, during and after pluvial
flood events (Ford et al., 2016).

5.2.2 The human factor in pluvial flood loss estimation

To investigate how private household’s awareness, preparedness and response influences the
losses caused by pluvial flooding, detailed data on how households behave before, during
and after a flood event were analyzed. While losses from any type of flood are the result of
different flood impact and resistance parameters, the resistance is typically reduced to building
properties in most loss estimation approaches. In the case of pluvial flooding it was shown
that this approach falls short, as the combination of lower water levels and a low preparedness
of households puts loss-mitigating actions by individuals shortly before, during and after a
pluvial flood event in a prominent position in the loss-generating process.

However, to measure both the direct and indirect influences of human actions on flood
losses is challenging. Whether or not an individual takes a particular action and how effective
this action is in mitigating or preventing losses is inherently uncertain and depends on a large
number of additional factors. This requires a modeling strategy in which (i) the influence
of human actions on flood losses can be simplified and represented by measurable variables,
and (ii) the low predictability and variability of these actions can be accounted for. In this
thesis, indicators that are expected to affect human actions, such as the age or risk awareness
of an individual are used in combination with a fully probabilistic approach based on Bayesian
inference to quantify the uncertainties associated with these actions.

Both the consistently higher importance scores of these indicators compared to most
building variables (see Table 4.1) and a better representation of uncertainties in the loss
estimates demonstrate the potential to consider human actions in flood loss models. At the
same time, the only minor improvement in predictive performance in point predictions shows
that the use of indicators can only partly reflect the influence of human actions on losses from
pluvial floods.

While further research is needed on factors that are able to better represent the influence of
human action on flood losses, Bayesian inference used in this thesis has shown to be a suitable
modeling approach for including human factors in loss models. This is not only due to its
ability to consistently represent the uncertainties of human actions, but also because Bayesian
inference allows the modeler to enhance or even replace empirical data with probabilities of
human activities that are conceivable but cannot be directly derived from available empirical
data sources through the use of priors. This includes giving a prior probability of that an
individual will undertake a loss-mitigating action when the individual has knowledge about
the risk of pluvial flooding, but also allows for the proposed implementation of theories from
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other research fields such as behavioral sciences and behavioral economics (Aerts et al., 2018).

To account for the high dynamic of many human actions, future developments in pluvial
flood loss modeling could extend the approach taken in this thesis by combining Bayesian
with agent-based models. Such approaches have been successfully used in water management
applications (Pope and Gimblett, 2015), but agent-based models also receive increasing
attention in flood risk research (Dawson et al., 2011; Haer et al., 2017).

With more detailed data on human behavior before, during and after pluvial flood events
becoming available through active and passive sensors such as web search engine inputs and
social media usage (Feng and Sester, 2018), these models can be further refined and validated
to better represent the human influence on losses for an improved loss estimation.

5.2.3 Probabilistic loss models for pluvial floods

For an integrated risk management, but also to guide response and recovery following a
flood event, it is necessary to reliably quantify the losses from pluvial flooding. However,
prediction errors in flood loss estimates are generally high, especially on small spatial scales
(i.e. neighborhoods or individual buildings), which are needed when quantifying losses from
pluvial flooding. The use of both additional loss-influencing predictors (Thieken et al., 2008;
Van Ootegem et al., 2015; Grahn and Nyberg, 2014) and more complex model types such as
tree- or network-based models (Merz et al., 2013; Vogel et al., 2012; Hasanzadeh Nafari et al.,
2016; Wagenaar et al., 2017) has so far led to only a minor reduction in prediction errors. The
pluvial flood loss model(s) developed in this thesis are no exception, as the errors in point
predictions are high.

While this severely impairs the validity of loss estimates, most flood loss models do not
disclose how certain their estimates are (Scawthorn et al., 2006; Emschergenossenschaft &
Hydrotec, 2004) or communicate the model uncertainties in an inconsistent way, complicating
the comparison between models (Chatterton et al., 2014; Wagenaar et al., 2016; Dittes et al.,
2018). Therefore, this thesis proposes a fully probabilistic modeling approach based on Bayesian
inference for a robust estimation of pluvial flood losses, where predictions are provided in
the shape of uncertainty distributions instead of point estimates. While the probabilistic loss
models developed in this thesis do not directly reduce the errors of point predictions, the
predictive distributions of loss estimates give information on how well the models describe the
uncertainties of the prediction, which has so far not been considered in previous approaches.

The comparison between different probabilistic loss models in Chapter 4 shows that pre-
vious assumptions on log-normally distributed uncertainties (Merz et al., 2004) significantly
overestimate the uncertainties in the upper tail of the distribution, making the beta distri-
bution (Egorova et al., 2008) the recommended choice for pluvial flood loss estimates on the
building level. The flexibility of the presented framework allows uncertainties to be quantified
independently of the model type, input data scale or uncertainty distribution. This includes
the use of mixture distributions to combine the degree of loss and the occurrence of loss into
one prediction as shown in this thesis, but the implementation of probabilistic versions of
existing SDFs or complex non-linear and multi-variate models can also be realized.

This is an important advantage compared to previous probabilistic loss models, in which the
quantification of uncertainties is tied to a specific model type (i.e. tree-based models) (Kreibich
et al., 2017) or requires the transformation of inputs (Vogel et al., 2012) and is an important
step in facilitating a postulated shift towards probabilistic loss models (Schroter et al., 2014).
The comparison with probabilistic models using tree-based bootstrap approaches has further
shown that the short tails of non-parametric uncertainty distributions severely reduce the
reliability of loss estimates on the building level and therefore require the modification of
commonly used tree-based algorithms as shown by Sieg et al. (2019).
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Unlike previously developed probabilistic loss models (Vogel et al., 2012; Schroter et al.,
2016), the variable selection and model parameterization in this thesis are separated in two
independent steps. In the first step, loss-influencing predictors are screened for their predictive
performance using an ensemble of machine learning algorithms before using the strongest
predictors for the parameterization of the probabilistic loss model in the second step. This
approach increases the robustness of the variable selection, which has been a limitation in
previous data mining approaches, where the variable selection is very sensitive to the type and
distribution of the data (Strobl et al., 2007; Merz et al., 2013; Schréter et al., 2014).

However, as there are high uncertainties not only in the loss predictions but also in the
variable selection, the detection of loss-influencing variables in future models could be further
improved by extending the variable selection process with probabilistic Bayesian approaches.
Being an active area of research, the use of regularizing priors (i.e. horse priors) has recently
emerged as an approach to increase the robustness of the variable selection process in sparse
probabilistic models (Carvalho et al., 2009; Piironen et al., 2017).

As this thesis is focused on the quantification of uncertainties in loss models, additional
sources of uncertainties, such as from measurement errors or uncertainties from previous
modeling steps, are at this point not considered in the loss estimate. This limitation also
applies to the application of the developed loss model presented in Chapter 4, where the
inundation depths from hydraulic model outputs are used to estimate the exposed objects and
their losses. While these outputs are subject to uncertainties themselves (Freni et al., 2010;
Zhou et al., 2012), the deterministic results and lack of uncertainty information in the hydraulic
model output did not allow those uncertainties to be propagated into the loss estimate. For
a further improvement of pluvial flood risk assessments, it is therefore recommended to use
not only probabilistic loss models, but an entirely probabilistic model chain, as it allows for
consistent propagation of the uncertainties of the outputs from each model component to
the subsequent modeling step for a more realistic representation of uncertainties in all model
outputs including the loss estimates. A fully probabilistic approach would also allow for a
consistent sensitivity analysis of pluvial flood losses which has shown to be challenging using
frequentist modeling frameworks (Tate et al., 2014; Freni et al., 2010).

5.2.4 Transferability and scalability of pluvial flood loss models

As uncertainties in loss estimates are high and validation data scarce, it is often unclear
how reliable loss estimates are when models are spatially or temporally transferred without
validation (Cammerer et al., 2013). The low number of pluvial flood models and the unknown
transferability of pluvial flood models together with the high requirements for input data has
so far led to an exclusion of pluvial flood risk in large scale pluvial flood risk assessments and
trend analysis (Ward et al., 2013; Paprotny et al., 2018).

In Chapter 4 of this thesis, the probabilistic loss model trained with data from Germany is
applied to a recent pluvial flood event in Houston, TX (USA). As the validation on both the zip
code and county levels showed that the developed model performs well despite very different
regional characteristics between the training and application areas, it raises the question to
what extent the presented pluvial flood loss model can be transfered and scaled to support an
extensive estimation of pluvial flood risk in urban areas.

While it is difficult to draw conclusions about the general transferability of the developed
model from one case study, several findings from this thesis and previous studies support the
assumption that a successful model transfer to other regions is possible.

First, the analysis of important loss-influencing variables has shown that building properties
such as the building material, which are probably the biggest difference between the two
regions, only play a minor role in explaining both the degree and occurrence of building
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structure loss. While differences between building properties in the training data set do not
necessarily reflect those in the application area, it indicates that building properties may
generally play a minor role in pluvial flooding.

Second, the training data set is quite heterogeneous, containing different flood events with
different event magnitudes in different regions and different building types and town sizes.
Here, previous studies on river floods have shown that the performance of transfered models
can be significantly improved when training data sets with a high heterogeneity are used
(Wagenaar et al., 2018).

Third, based on the comparison between uni-variable and multi-variable models in Chapter
4, it can be concluded that using additional predictors besides the water depth in loss
models increases the transferability of loss models through a more realistic representation
of uncertainties, confirming findings from similar studies on river flooding (Schréter et al.,
2016). In the case of the multi-variable, zero-inflated beta regression model developed and
applied in this thesis, additional variables support a model transfer not only by improving
the representation of uncertainties, but also through an improved detection of zero-loss cases,
which can reach a high rate in areas where water levels are low (see Figure 4.2). In this regard,
the probabilistic mixed distribution approach in this thesis also helps compensate for the
uncertainties coming from inundation maps, which would otherwise lead to an overestimation
of losses when large areas are inundated with low water depths (see multi-variable Gaussian
model in Figure 4.3).

While further validation and case studies are necessary, the potentially high transferability
of the model developed here could be used in future studies to complement existing large-scale
flood loss models for river and coastal flooding. The continental approach by Guerreiro et al.
(2017) for European cities and by Wing et al. (2018) for the conterminous USA, generating
extensive high-resolution pluvial flood maps in urban areas, could be extended with the loss
model developed in this thesis to include estimates of building structure losses to private
households. While both the uncertainties and the demand for input data are high, the flexibility
of the Bayesian framework used to develop the probabilistic multi-variable loss models allows
for a consistent quantification and propagation of uncertainties as well as an intuitive means of
local calibration through the use of priors, making the presented model highly scalable. While
the increased availability of high-resolution data sets and computational power is making
high-resolution pluvial flood loss estimation feasible, more research on the transferability of
pluvial flood loss models is necessary to evaluate the robustness of such an approach.
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5.3 Conclusions

This thesis has improved the estimation of losses from pluvial flooding to private households
on the basis of an increased understanding of the loss-influencing factors and processes. Losses
from pluvial flooding are the result of complex, small-scale interactions between the flood
impact and the ability of a household to resist the impact. Detailed, household-level data
sets linking impact with resistance variables are necessary to systematically analyze these
interactions, which are not visible in aggregated or lumped data sets.

Although households without prior flood experience are mostly neither aware of nor
prepared for pluvial flooding, losses can frequently be prevented when water levels are low
and households respond timely and efficiently. Better information about the risks of pluvial
flooding, improved early warning systems and a better dissemination of warnings are needed
to improve the ability of private households to mitigate or prevent losses. This in turn requires
a reliable quantification of the current and future risk of pluvial flooding.

Simple, deterministic water depth-loss relationships developed for estimating losses from
large-scale river or coastal flooding neglect both small-scale differences in the damaging
processes and the ability of a household to mitigate or prevent losses, resulting in highly
uncertain loss estimates when applied to pluvial flooding. The use of additional resistance
variables in loss models improves the detection of households that are able to prevent losses,
yet a considerable part of the variability in losses on the building level remains unexplained.

Complex models in the shape of Bayesian multi-variable mixed distribution models combine
an improved detection of cases where losses could be prevented with a probabilistic framework
for a consistent quantification of the remaining uncertainties. Using continuous predictive
distributions, which provide a range of probable losses instead of a single point estimate,
leads to significantly more robust loss estimates. The shape of the predictive distribution
predominantly defines the reliability of the loss estimate on the building level and must be
chosen carefully to avoid an over- or underestimation of uncertainties. The mix of Bernoulli and
beta distributions has a high flexibility in terms of shape and therefore better represents the
uncertainties of building-level losses than previously used normal or log-normal distributions.

For the estimation of pluvial flood losses on the building-level, an increasing number
of high-resolution data sets are available. In combination with an increased robustness of
probabilistic loss estimates, this allows for a reliable high-resolution quantification of losses
and a seamless scaling of risk assessments for pluvial floods. Many of these new data sets
focus on increasing the level of detail of building properties, which hardly have an influence
on building structure loss from pluvial flooding. Instead, more focus should be put on how
detailed and dynamic data on the individual coping capacity and behavior of households
can be more efficiently collected and used in loss models. While more detailed information
on building properties is still needed to e.g. determine the value of a building or discover
potential entry points of flood water, this information is not expected to directly improve the
loss estimates for pluvial floods.

In conclusion, I recommend data-driven, probabilistic, building-level loss models as the
appropriate tool for estimating pluvial flood loss to private households. This is not only because
the required data, modeling techniques and computational power are becoming increasingly
available, but because it allows to reliably quantify the risk from pluvial flooding on the spatial
scale on which this flood type occurs.
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