Different Degrees of Formality

An Introduction to the Concept and a
Demonstration of its Usefulness

Sebastian Bohne

A Thesis Presented for the Degree of
Doctor Rerum Naturalium
in Theoretical Computer Science

AWNEISyz..
SR

. @A@
. I L
<4 >
O(‘

° &Q’am
o

University of Potsdam
Faculty of Science
Institute of Computer Science

Potsdam, Germany
2019-01-17

Supervisor: Prof. Dr. Christoph Kreitz
Mentor: Prof. Dr. Christoph Benzmiiller

Reviewers: Prof. Dr. Christoph Kreitz
Prof. Dr. Christoph Benzmiiller

Prof. Dr. Cezar Ionescu

Published online at the

Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-42379
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-423795

IT

https://doi.org/10.25932/publishup-42379
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-423795

Abstract

In this thesis we introduce the concept of the degree of formality. It is directed
against a dualistic point of view, which only distinguishes between formal and
informal proofs. This dualistic attitude does not respect the differences between
the argumentations classified as informal and it is unproductive because the indi-
vidual potential of the respective argumentation styles cannot be appreciated and
remains untapped.

This thesis has two parts. In the first of them we analyse the concept of the
degree of formality (including a discussion about the respective benefits for each
degree) while in the second we demonstrate its usefulness in three case studies. In
the first case study we will repair Haskell B. Curry’s view of mathematics, which
incidentally is of great importance in the first part of this thesis, in light of the
different degrees of formality. In the second case study we delineate how awareness
of the different degrees of formality can be used to help students to learn how to
prove. Third, we will show how the advantages of proofs of different degrees
of formality can be combined by the development of so called tactics having a
medium degree of formality. Together the three case studies show that the degrees
of formality provide a convincing solution to the problem of untapped potential.

I1I

Contents

1__Introduction| 1
II Analysis of the concept of the degrees of formality]| 7
[2 Systematic overview of the concept| 8
I TIntroductionl 8
[2.2 What is being formalised? A historical review| 8
[2.3 Three adjusting parameters for degrees of formality| 10
[2.4 Natural number systems of different degrees of formality] 13
[2.5 Argumentations of different degrees validating the commutativity |
[of addition|. 18
[2.6 Proots scripts as proofs| oL 22
2.7 _Auto tactics and related worklo 000 30
[3 Curry in a hurry] 34
3.1 Introductionl 34
[3.2 Saving objectivity via formal systems| 35
[3.3 Fruittul diversity in mathematics] 38
[3.4 How Curry treats logic| 39
[3.5 Earlier and later views of Curry| 40
(3.6 Discussion of the [iterature and Related Workl 42
[4 Formalisms and logics are similar] 45
M1 TIntroductionl 45
[4.2 Combinability, formalisms, and re-characterisation of the degrees of
| formality| 46
4.3 Necessity of combinations| 49
4.4 Monotony and deduction| 0L 50
4.5 Modellingl 51
4.6 Appreciation of logics and the one of higher degrees of formality| . . 53

IV

[> Benefits of the different degrees of formality in argumentations| 55

.1 Introduction| 55
(5.2 The purposes of argumentations| 56
[>.3 Contributions of the ditterent aspects ot formalisation with respect |
| to the purposes of argumentations|. 59
[>.4 Benefits of the different degrees of formality| 60

II Demonstration of the usefulness of the concept of the |

degrees of formality]| 62
6 Three points of criticism regarding Curry’s view of mathematics| 63
6.1 Introductionlo 63
(6.2 The three points of criticism| 63
[6.3 The three problems in light of the different degrees of formality] . . 66
[6.4 Is objectivity lost?| 67
6.5 Related Worklo o oo 69

[Learning how to prove: from the Coq proof assistant to textbook |
72
(.1 Introductionl 72
[7.2 The idea: stepwise reduction of the degree of formality] 75
[7.3 A small step for mathematicians but a big one for learners: line by |

I line comments| 76
[7.4 Weakened line by line comments|. 78
[7.5 Structure faithful proots) 80
[.6 How to teach it?l 83
[r.7_Discussion of related worklo 84
[7.8 Summary and conclusion| 87

[8 Simulating proofs of a medium degree of formality| 89
8.1 Introductionlo 89
(8.2 The tactic drop identities| 91
[8.2.1 'The corresponding reasoning in medium degree proofs/. . . . 91

[8.2.2 Treatment in Coq| 92

[8.2.3 Implementationl 93

824 PBvaluation|.o 96

(8.3 The tactic suc_pred to front|. 97
[8.3.1 'The corresponding reasoning in medium degree proofs{. . . . 97

[8.3.2 Treatment in Coq| 97

[8.3.3 Implementationl oL 99

834 PBvaluation|.o 102

[8.4 The tactic omit parens| 103

[8.4.1 'T'he corresponding reasoning in medium degree proofs{. . . . 103

[8.4.2 Treatment in Coq| 104

[8.4.3 Tmplementation| 105

844 Bvaluation|.o 106

8.5 The tactic make first|. oo 107
[8.5.1 'T'he corresponding reasoning in medium degree proofs{. . . . 107

[8.5.2 Treatment in Coq| 107

[8.5.3 Implementationidea] 109

854 Fvaluation|. 111

[8.6 The tacticdrop| 112
[8.6.1 'T'he corresponding reasoning in medium degree proofs{. . . . 112

[8.6.2 Treatment in Coq| 112

[8.6.3 Implementationidea] 115

8.64 FEvaluation|. 117

[8.7 'T'he implementation for the litfting of value preserving tactics| 118
[8.8 Where the higher degree of tormalism hides 120
(8.9 Simulating medium degree reasoning in more complicated domains |

| —aprospect| 121
[8.10 "T'he simulation of low degree argumentations|. 126
.11 Related workl 127
[8.12 Summary and conclusion|o 131

[9 Summary and conclusion| 132
III Appendix| 137
[A Listing of logical and equational tactic rules| 138
(B Listing of medium degree tactics in arithmetic| 146
[C List of Figures| 154
(D Bibliography| 156

VI

Chapter 1

Introduction

In science most problems, such as global warming, are easy to recognise but hard
to solve. By contrast, in mathematics often to understand the problem is already
a major part of it. Furthermore communication of mathematical problems usually
requires that the recipient is mathematically sophisticated and sometimes even
has some deep knowledge of the specific domain under consideration. This thesis
is about a concept addressing a problem that pertains to mathematics but to
informatic{] and the philosophy of mathematics as well. Somewhat naively one
might then expect that the effort to clarify the problem might be in between,
which is indeed the case. In the following we will give four different examples of
mathematical argumentation that will provide the context we need.

In figure we can see two (quite good) students discussing their homework,
which — incidentally — belongs to the domain of automata theory. The first stu-
dent communicates an idea for proving that half(L) = {w € ¥* | Jv € ¥*,
|lw| = |v| Awv € L} is a regular language if L is. However, we are not interested
in concrete content but in the form of argumentation at hand. Although regular
languages are defined by the existence of suitable regular expressions the outlining
student — without further explanation — chooses an automaton to start with in his
argumentation. However, he does not specify which kind of automaton he is using
(there are DFAs, NFAs, or e-NFAs for instance). Then the student talks rather
picturesquely about the automaton going forward and backward. Yet, mathemati-
cal objects do not move. There is only a so called transition function. Furthermore
there is no constituent in any of the before mentioned kinds of automata that could
be associated with the backward direction the student is adducing. The start “at
both ends” leads to similar problems. Also, the student does not tell us what “both
directions meet” means. Finally, the argumentation ends with the construction of

I In non-institutional contexts we avoid naming the respective discipline ‘computer science’
in this thesis.

CHAPTER 1. INTRODUCTION

| think we can show half (L) to be
regular by constructing an automaton, which
starts at both ends of the original automaton. It
goes forward and backward at the same time
and accepts
when both directions meet.

i?((“f\-- —

Figure 1.1: Two (quite good) students discussing their homework.

the automaton without mentioning the latter’s relation to the statement of the
theorem. So what is characteristic in this argumentation are the imprecisions and
omissions.

In the next figure we see a lecturer explaining some technical steps somewhere
in the middle of some proof. We enter it when only some technical equation, in
concreto & = y?> + y + y * z + x, remains to be shown. There is some chain of
equations indicated, starting with ¢ and ending with x + y * (2 + 1) + y*. The
lecturer points to the salient position of the latter term where something will be
happening in the next step that concludes the proof. Note, however, that his finger
together with the word ‘here’ are only vague hints. Note further that one obtains
v+ (yxz+yx*1)+y% not y> +y+y*z +x, as result after expanding. For showing
that the latter two terms are indeed equal one would have to use the associativity
law as well as the commutativity law several timesJ]

In figure we see an already very technical looking textbook proof for the
theorem (z,y) = (u,v) — 2 = u Ay = v[| The involved formulae, all of which
having a very basic structure, are the predominant part. They are accompanied
by fragments of natural language roughly connecting them.

2 Furthermore some convention is needed when parentheses can be omitted.
3 The proof stems from [80, p. 230] while the idea to compare it with a much more formalised
version is taken from [55, subsubsection 3.2.1.3].

CHAPTER 1. INTRODUCTION

| ... U siffices to- show-
E=y2+y+y-Z+X
expand here and obtain

We hoae € = ...
the required

result =X+y' (Z :I)+y2
ol
Ly /

Now we can

£

Figure 1.2: Lecturer explaining some technical steps somewhere in the middle of
some proof.

Theorem: (z,y) = (u,v) > x =uAy=0.

Proof: “Assume (x,y) = (u,v). Then {{z},{z,y}} = {{u},{u,v}}.
Since {z} € {{z},{z,y}}, {z} € {{u},{u,v}}. Hence, {z} = {u} or
{z} = {u,v}. In either case, z = u. Now, {u,v} € {{u},{u,v}}; so,
{u,v} € {{z},{z,y}}. Then, {u,v} = {z} or {u,v} = {x,y}. Similarly,
{z,y} = {u} or {z,y} = {u,v}. If {u,v} = {z} and {z,y} = {u}, then
r =y =u = v, if not, {u,v} = {x,y}. Hence, {u,v} = {u,y}. So, if
v # u, then y = v; if v = u, then y = v. Thus, in all cases, y = v.”

Figure 1.3: A textbook proof of (z,y) = (u,v) > x =uAy=w.

CHAPTER 1. INTRODUCTION

L (z,y) = (u,v) = {{z}, {z, y}} = {{u} {v,v}} (Def)
2. H{a} e {{z} {z.y}} (H1)
3. H{a} e {{z} {z,y}} =

{{z} Az, y}} = {{u} {v, v}} = {z} € {{u} {uv, v}} (H4)
4 o} {z v} = {{u} {u, 03} = {2} € {{u} {u,0}} (MP, 2,3)
5. (x,y) = (u,v) - {z} € {{u}, {u,v}} (MP, 1,4)
6. - {z} € {{u},{u,v}} = ({a} = {u} v {z} = {u,v}) (H3)
7.z, y) = (u,v) F ({z} = {u} v {z} = {u,v}) (MP, 5,6)

Figure 1.4: Excerpt from a detailed proof of (z,y) = (u,v) >z =u Ay =.

Let us contrast this with the beginning of a much more detailed proof for the
same theorem (figure E| In full the proof contains 96 steps although it already
uses a bunch of lemmata! For every step there is an explicit justification; a lemma
(H1, H3, and H4 in this proof fragmentﬂ) or the modus ponens with the lines it is
applied to.

Usually only the last example would be classified as formal while all previous
ones would be called informalﬁ This dualistic attitude is problematic per se since
the differences between the first and the third example, for instance, are greater
than the ones between the third and the fourth example. Even worse, this division
is unproductive because the individual potential of the respective argumentation
styles cannot be appreciated. The alternative concept of the degrees of formality
presented in this thesis is intended to solve this problem of untapped potential.
With the help of the degrees of formality we will be able to underline the advantages
of the different argumentation styles in such a clear manner that they can be
combined to solve problems of different kinds.

This thesis has two parts. In the first of them we analyse the concept of the
degree of formality (including a discussion about the respective benefits for each
degree) while in the second we demonstrate its usefulness in three case studies.

4 This proof is extracted from [55] p. 168-171]. In the original there are fragments of the proof
of figure [[.3] on the left side of the numbers. We omitted them since we did not want to blur the
impression of the different proof styles.

® The numeration is taken from [55, p.168-171]. H2 will appear later in the proof.

6 This rough distinction is even made in the philosophy of mathematics, in which terminology
usually is very well-considered (see [34] 94} [108] for instance).

CHAPTER 1. INTRODUCTION

In concreto, the first part is structured as follows. We will start with a sys-
tematic overview of the concept of the degree of formality (chapter . We will
not only consider different argumentation styles but also different system styles.
Furthermore the overview comprises an introduction to the Coq proof assistant, a
software for proving theorems in mathematics. In the third chapter we will present
Haskell B. Curry’s view of mathematics. This is done for four reasons. First, his
treatment of logicsﬂ prepares our analogous treatment of formalisms, which in turn
will help us to further clarify the concept of the degrees of formality (chapter |4).
Second, Curry makes an important conceptional split that — third — justifies an at-
titude with pluralistic tendencies. Both points will help us in chapter [f] in which
we will work out the benefits of the different degrees of formality step by step.
Finally, Curry’s view will be the subject of one of the three case studies in the
second part of this thesis.

The second part, i. e. the demonstration of the usefulness of the concept of the
degree of formality, begins — as already indicated — with a review of Curry’s view
of mathematics. This time, however, we will not consider the positive aspects but
discuss why his view is flawed and how it can be repaired in light of the different
degrees of formality (chapter @ While this topic belongs to the philosophy of
mathematics the following chapter is of a didactical nature. We will investigate
how different degrees of formality can help students to learn how to prove in a
textbook manner (chapter [7)). The last case study can but does not have to be
seen from a didactical point of view. We will combine the advantages of proofs
of different degrees of formality by the development of tacticsﬁ having a medium
degree of formality (chapter ﬂ Although the idea is quite simple the cogency of
the argument depends on elaborate technical evidence. At the end of the second
part there will be a summary and conclusion.

This thesis also comprises a listing of most of the user defined tactics repre-
senting a logical or equational rule (appendix |[A]) and a listing of all tactics of a
medium degree of formality belonging to our approach as presented in chapter
(appendix B).

There are some things to be said about the style of this thesis. First, it is —
at least in some aspects — intended to be close to spoken language. In particular
‘~7 and ‘;’ are used more often than usual. Then, besides the impersonal form
(and except for the next paragraph) only the pluralis auctoris is used. This is in
congruence with most works stemming from mathematics and informatics but it is
uncommon in the philosophy of mathematics. Furthermore, in contrast to many
modern texts (especially in the philosophy of mathematics) ‘he’ is used instead of

7 It will become clear later on why we use ‘logics’ instead of just ‘logic’.
8 The notion of a tactic will be explained in section
9 A justification for the adjective medium will be given at the end of section

CHAPTER 1. INTRODUCTION

‘she’” whenever the gender is unspecified. This is done for the sake of readability
and the closeness to spoken language. Finally, there is a frequent use of the word
‘contentual’, which is a translation of the German word ‘inhaltlich’. This word
comprises everything except for the mere form or outer appearances of the matter
under consideration. It refers to the substance or the core of the matter.

It would not have been possible for me to develop and complete this thesis
without great support from others. First and foremost I would like to thank
my supervisor Prof. Dr. Christoph Kreitz who supported me in so many ways.
The regular meetings in which we reflected the progress of my work and dis-
cussed my documents were particularly helpful. Furthermore, I especially appre-
ciate that he gave my much freedom regarding my research and that he con-
stantly encouraged me to pursue the path I had chosen. In short, he did a
fantastic job as a supervisor. Then, I would like to give special thanks to Tim
Richter. Learning type theory or proof assistants with him has always been a
great pleasure. Furthermore, without his technical support I would not have
been able to realise even a single of my proof-assistant-related ideas. I would
like to thank the whole research group of theoretical computer science, which are
— apart from the two already mentioned — Nuria Brede, Mario Frank, and Dr. Eva
Richter, for the fruitful discussions and their constructive feedback during and
after my talks. Then I would like to thank Prof. Dr. Christoph Benzmiiller for
his willingness to be my mentor and for helping me whenever I asked for this
help. There is a continuous course called the Cartesian Seminar at the Univer-
sity of Potsdam. I would like to thank Prof. Dr. Cezar Ionescu, Dr. Nicola Botta,
and all other participants of this seminar for the methodological training and their
lack of willingness to remain silent when they did not agree with my opinion.
Many thanks also to PoGS for their ‘Promotionscoaching’ programme and to the
interdisciplinary team of success arising from it, which helped me to solve all kinds
of problems standing in my way when doing my PhD. Thanks to my father Klaus
Bohne who provided the two pictures of this introduction and thanks to Katharina
Leitner for her help concerning language aspects in different parts of this thesis,
her willingness to lighten my external loads in the final phase of my PhD, and for
her moral support. I would like to say thank you to my family and all those who
supported me!

Part 1

Analysis of the concept of the
degrees of formality

Chapter 2

Systematic overview of the
concept

2.1 Introduction

So far we have seen four argumentations (three of them also being proofs) of which
we said that they have different degrees of formality. However, we did not clarify
precisely what we mean by that. The purpose of this chapter is to rectify that
omission.

In concreto we are going to present different aspects of formalisation that took
place in (the history of) mathematics (section [2.2)) and discuss what it is that makes
some parts of modern mathematics more formal than others (section[2.3). We will
enrich the discussion by an investigation of different formalisations having different
degrees of formality. This will be done for the system complex of natural numbers
(section [2.4)) as well as for the proof and argumentation complex of commutativity
of addition therein (section [2.5). At the close of this chapter we will introduce the
Coq proof assistant and elaborate when and why the so called proof scripts in Coq
can be seen as proofs having a high degree of formality (section .

2.2 What is being formalised? A historical
review

Let us investigate chronologically which entities of mathematics have been for-
malised. We start with pre-Greek mathematics like that of the Egyptians or
Babylonians. In that cultures real world objects like fields or pyramids (as build-
ings) were assigned geometrical forms, in this case rectangle and pyramid (in the
geometrical sense), accompanied by length specifications. With the further help

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

of formulae new numbers could be computed, like the area of the rectangle or the
volume of the pyramid. These numbers in turn could be assigned a specific real
world value, such as the crop of a field or the needed building materialﬂ So the
pre-Greek mathematics formalised real world objects aiming for congruence with
practice]

By contrast, some of the ancient Greeks lost interest in practice, probably when
slaves took over the Greeks’ daily work.ﬁ So mathematics had to prove itself outside
of practice. Without empirical feedback, however, the quality of reasoning had to
become the measuring stick. Quality of reasoning in turn depends — as one factor
— on its clarity. Therefore it is not surprising to find a formalisation of reasoning in
the best known Greek mathematical achievement, i.e. Euclid’s Elements [42]. At
the beginning of this work’s chapters so called definitions, postulates, and axioms
are framedﬁ It follows a series of successive theorems. Each step in the respective
proofs has an explicit justification, for instance a postulate, an axiom, or a previous
result. In these justifications often the exact same wording is used, which means
that there is some sort of syntactical form involvedﬂ Admittedly, from a modern
perspective not all arguments in Euclid’s Elements are that accurate and hidden
assumptions and even fallacies may be found. What is interesting for us, however,
is that a formalisation of reasoning was tackled at all rather than its complete
success.

The mathematics articulated in the elements is rather verbose while today
we use formal symbols for variables, functions, and predicates like in the simple
equation n +m = [. This can be seen as a formalisation of the appearance of
mathematical objects. It fosters the symbolic calculation and enables the commu-
nication of complex formulae.

Albeit quite useful the use of symbols is a rather superficial formalisation step.
By contrast, in the course of the arithmetisation of analysis mathematical en-
tities themselves were formalised by reducing them to simpler and clearer ones:

! Morris Kline in [65, section 2.4] adduces further examples of the use of mathematics by the
Egyptians at that time.

2 That this and not mathematics per se was the true goal is confirmed by some formulae
being wrong on purpose. The formula for computing the area of quadrangles, for instance, was
a very rough approximation but good enough in the relevant cases (see [65, section 2.3]).

3 This and the following consequence are discussed in [65, section 3.8]. The fragment ‘some
of’ is an addition from us since Jens Hgyrup in [62] argues that there were many Greeks doing
mathematics like the Babylonians.

4 These notions do not coincide with their modern usage.

% Let us consider two fragments of the first two proofs as instances. “Thus, CA and CB are
each equal to AB. But things equal to the same thing are also equal to one another [C.N. 1].

Thus, CA is also equal to CB [...]” (J42, book 1, proposition 1]) “Thus, AL and BC are each
equal to BG. But things equal to the same thing are also equal to one another [C.N. 1]. Thus,
AL is also equal to BC [...]” ([42] book 1, proposition 2]).

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

infinitesimals were replaced by a formulation of propositions that used only finite
numbers and quantifierd’, complex numbers and imaginary numbers in particular
were conceived as pairs of real numbers in the complex plane, and the real numbers
themselves were explained by Dedekind cuts, i.e. via sets of rationals.

Such a reduction process cannot go on forever. There must be some primi-
tive mathematical objects we cannot define with the help of other mathematical
objects. Instead the primitive objects’ behaviour can be made explicit by axioms
and logical rules. For the sake of clarity and to avoid any confounding effect
that may presuppose some intuition, these have to be formalised. This can be
realised by the development of mathematical theories or by the development of
theories of mathematics. A paragon of the former is David Hilbert’s book ‘Foun-
dations of Geometry’ [54] while the latter project is epitomised by Gottlob Frege’s
writings [45), 46l [47] as well as by Alfred N. Whitehead’s and Betrand Russell’s
‘Principia Mathematica’ [117].

2.3 Three adjusting parameters for degrees of
formality

In the previous section we became acquainted with different manifestations of
formalisation. Not all of them, however, can be deliberately influenced in modern
mathematics. The restriction to the formalisation of real world objects is a first
example of a low degree of formality one cannot restore. Furthermore, in general
one cannot avoid the use of formulae or formal symbols since they have become an
inherent part of mathematics. The same is true for the cumulative reasoning frame.
One might refrain from (explicit) axioms but the theorems and argumentations
have to build upon each other.

By contrast, — as we have seen in the introduction — reasoning itself, i.e. the
argumentation style, can be varied entailing different degrees of formality. The
same is true regarding the formalisation of systems; where we use the concept of a
system as a lower degree generalisation of a theory comparable to the distinction
between the concept of argumentation and that of proof.lZ] Admittedly, one can

6 One example is convergence. Instead of saying that a sequence (a,) has limit a if for every
infinite n the equation a, = a holds (or something similar), we can define: (a,) has limit a if
Ye>03dN eNVn>N (la, — a| <e). We may write lim a, = a, but infinity does not occur

n—oo

in the definition.

7 Stewart Shapiro defines “a system to be a collection of objects with certain relations among
them.” ([104, p.259]) He then continues: “Define a pattern or structure to be the abstract form
of a system, highlighting the interrelationships among the objects, and ignoring any features
of them that do not affect how they relate to other objects in the system.” ([I04, p.259], all
emphases are in the original text) These definitions — we think — are more or less in accord with

10

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

prevent neither that there are ways to define the objects in the system by other
mathematical objects lying outside the system nor that the behaviour of the objects
can be characterised by elaborated mathematical theories about them. Yet, one
does not have to care. Ignoring these achievements usually has no negative effects
on ones mathematics. Instead of using such elaborated theories one may stick to
vague systems having a lower degree of formality.

Let us now discuss means by which one can vary the degree of formality in
both cases, argumentations and systems. The most obvious point with respect to
argumentations is the use of natural language. Already our four examples in the
introduction suggest a great variety concerning this matter. The verbal discussion
of the students’ homework is almost completely uttered in natural language. The
latter is used to generate a mental representation in the mind and in fact dia-
grams etc. can be used as a supplement in (or sometimes even as an alternative
for) such argumentations. The lecturer does not use too much natural language
on the blackboard. However, natural language has still a pivotal role in the verbal
explanation of what he is doing. In the textbook proof natural language is used
in a minimal but still important way to structure the proof. The given example
is somewhat extreme since other textbook proofs are more verbose. Yet, the ten-
dency is right. The amount of natural language (or alternatives such as diagrams)
decreases. In the last example then there is no natural language left.

The least formal systems are probably just representations in our brain. We
apply such systems in a way that is similar to the unconscious application of
grammar when we speak in our native language. We do not want to discuss here
whether the representations are somehow given in natural language. Instead let us
focus only on those systems that can be communicated somehow. For these it is
the same as with argumentations: the use of natural language reduces the degree
of formality. In particular, the most formal systems (or theories) do not use any
natural language.

Another important point for the degree of formality in argumentation is con-
densation. That one proof is more condensed than another means that one step
of the former usually corresponds to many steps of the latter. For instance, one
step of a proof idea corresponds to several steps in a textbook proof and all the
respective steps there correspond themselves to many steps in a proof that one
would traditionally classify as formal (like the fourth example of the introduc-

our understanding of systems of a low respectively high degree of formality (see below for this
terminology). The disadvantage of Shapiro’s definitions is the dualistic attitude behind it. As
we will see in this chapter this is not better than to only distinct between formal and informal
proofs.

11

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

tion). Instead of saying that one argumentation is more condensed than another
we sometimes alternatively state that the former has less granularity than the
latter.

In case of systems the impact of condensation is inverted. The more formal
a system is the more it will be condensed meaning that it will use only a (small)
amount of axioms and logical rules; the salient point being the word ‘only’ not the
word ‘small’; i. e. nothing else will be used implicitly. By contrast, implicit redun-
dancies lessen the degree of formality. In particular a system of arithmetic in which
natural numbers and reals are conceived of as some kind of intuitive primitives has
a lesser degree of formality than one in which the reals are ultimately defined by
the natural numbers; even when the respective concept of natural numbers does
not refine. Another aspect that reduces formality in systems is the inclusion of
vague associations like, for instance, the visual appearance of geometrical objects.

In case of argumentations there is one further aspect we want to emphasise,
namely frequency and precision of justifications. By justifications we mean that
parts of the overall argumentation that — if existent — explain the transition from
one step to the succeeding one. If we do not offer justifications at all we do not
have any proof (yet we may have a proof idea). However, even if we do offer
justifications we can still do it in very different ways. We can give only short hints
or be very precise. The former is what is usually done in textbook proofs. Some
theorems are cited by their names or their statements as justifications for the most
relevant steps but it is usually not stated in which way they are applied. In set
theory, for instance, the Schroder-Bernstein theorem might be our justification
when reasoning about cardinality, but we do not say explicitly with which sets we
use it nor do we state which of the many formulations of the theorem we use. By
contrast, in those proofs that are traditionally the only ones classified as formal
we need to refer to a concrete formulation of the theorem (the H; in the fourth
example of the introduction) and — when appropriate — apply some values (the
modus ponens with the respective lines in this example).

In principle any combination of the three adjusting parameters (two in the case
of systems) is imaginable. However, most of the time they all point in the same
direction. This in turn allows us to speak in a simplifying way of argumentation-
s/proofs (and systems/theories) of a high, medium, or low degree of formality. As
an abbreviation we will often just omit the ‘of formality’ or speak of high, medium,
or low degree argumentations/proofs (and systems/theories).

Note that so far we discussed the concept of the degree of formality for ar-
gumentations and systems without explaining what a formalism is. After some
preparation we will rectify this omission in chapter

12

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

2.4 Natural number systems of different degrees
of formality

Up to now our analysis was rather abstract. In this section we will concretise our
considerations regarding the degree of systems by presenting different formalisa-
tions of natural numbers. We choose this domain as object of study since it is the
most simple one we have that already allows to gain all relevant insides.ﬂ

The first possibility is to conceive the natural numbers as a part of another,
more basic, system. In concreto this means that natural numbers and the relevant
functions — like successor, addition, and multiplication — have to be defined by
mathematical objects of the more basic system (of course without vicious circles).
In set theory, for instance, this can be done by the Zermelo or Von Neumann
implementation. Both define 0 := () and the successor as a class function on
sets. In the concrete definition the two versions part: the Zermelo version defines

Suc x := {z} and obtainsn = {... {0} ...} while the Von Neumann version defines
—— ——

n-times n-times
Suc z := z U {z} and obtains n = {0,...,n — 1}. Both can then define the set
of natural numbers as the smallest inductive set, i.e. the smallest set containing
() that is closed under the successor operation.ﬂ In both variants addition and
multiplication can then be defined recursively by set theoretical means.

Let us now turn our attention to systems for natural numbers that are conceived
as autonomous. The variants of lowest degree cannot be written down but they are
unconscious representations in our brain. They might comprise a lot of concrete
natural numbers (and their names), as well as knowledge of how to count, add,
multiply, divide etc.

Next, we consider a system of medium degree. It is characterised by the fol-
lowing axioms called Peano axioms:

1. 0 is a natural number.

2. There is a successor function S, mapping natural numbers to natural num-
bers.

3. S is an injection.
4. 0 is not the successor of any number["”)

5. The induction principle: A set that contains 0 and with each natural number
its successor contains all natural numbers.

8 The same will be true for other following considerations, which is why arithmetic will serve
as a running example in this thesis.

9 The Existence of such a set is guaranteed by the axiom of infinity together with the possibility
to intersect sets.

10 The last axiom will ensure that all other numbers are indeed successors.

13

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

The system uses natural language but it does so in a precise manner. Furthermore
some of the formulations can be understood as abbreviations for corresponding
statements not using natural language and other formulations like ‘set” or ‘func-
tion’ refer to technical notions. The system is axiomatised and the axioms are
independent from each other. Yet, the apparent condensation level is deceptive.
First of all, the whole logic part is omitted and second, there is some background
theory needed explaining things like functions, injectivity, and sets.

Let us now watch a first and a second order formalisation of high degree in
parallel by going through each single axiom above (with the formalisation of the
first four axioms being the same in both cases).

1. The first attempt to state that 0 is a natural number might be something
like 0 € N. N, however, is what we want to capture with the help of our
axioms, we do not want to presuppose it. So we might want to state 0 as
an axiom. This, of course, is silly, since 0 is not even a proposition. If our
universe is N then all we have to guarantee is that we can state 0 as part of
formulae, viz. 0 is a legal expression['’] For the same reason we have to allow
variables as expressions, too.

2. The situation regarding S is similar: we cannot state S : N — N or some-
thing like that. A function is something semantical, but we want to have a
syntactical approach. The decisive property of a function as opposed to a
relation is that for all inputs there is exactly one output. However, when we
write S(o) for some input o syntactically this already is its output. Therefore
we only have to ensure that S(o) is an expression, whenever o is.

3. That S is an injection is only an abbreviation of the following already for-
malised statement: Vn (S(n) = S(m) — n =m).

4. We have a straightforward translation for 0 not being the successor of any
number, namely =37 (S(n) = 0).

5. At first glance the high degree formalisation of the induction principle seems
to be straightforward, too: VA0 € AANVn e Nne A — S(n) € A) —
Vn € N(n € A)). The salient point here is that we have to deal with two
different kinds of quantification, one over natural numbers and one over sets
of natural numbers.

In second order logic this is not too much a problem. We conceive the
sets of natural numbers as predicates being true for exactly those natural

1 One could argue, of course, that this is not a proper translation of the above statement.
Indeed, formalisation often causes losses with respect to some informal aspects.

14

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

numbers that are in the set. We obtain VP (P(0) AVn (P(n) — P(S(n))) —
Vn (P n)), whereby the bold print tells us that it is not a natural number
we quantify over but a propertym

Unfortunately, things are not that easy in first order logic since we are not
allowed to quantify over predicates. The solution is to have infinitely many
axioms instead, one for each formula with exact one free variable, i.e. for
all first order formulas ¢ with exact one free variable we have the following
axiom: ¢(0) AV n (p(n) = ¢(S(n))) = Vn(4(n)). This is in a rigorous sense
not a proper formalisation of the corresponding Peano axiom above. It is a
formalisation of something differenﬂ — albeit similar. Nevertheless what we
are constructing (we are not finished yet) is called Peano arithmetic.

6. Although we have translated every single axiom from the above version we
are surprisingly not finished yet. High degree formalisations restrict our
possibilities to define new functions; in our case addition and multiplication
have to be definable or the theory must be expanded.

In second order logic we can define addition and multiplication in the follow-
ing sense: we find a formula ¢(n,m,[) representing n+m =1 (n*m = [re-
spectively). Then we can take the former as definiens for the latter; n+m =1
> o(n,m,l) (nxm =1 > ¥(n,m,!) respectively). For addition we define
d(n,m,l) :=VE(£(0) = mAVEk (£(S(k)) = S(f(k))) — f(n) = 1). Similarly we
can define ¥ (n,m,l) :=VE(f(0) = 0AVE (£(S(k)) = f(k) + m) — f(n) =1).

By contrast, if we restrict ourselves to first order formulas we are not able
to define addition and multiplication anymore[l¥] Instead we have to see ‘+’
and ‘x’ as term formation symbols, i.e. as signs, which when combined with
terms result in a new term. So if ¢; and ¢y are terms then t; + ¢, as well as
t1 * ty should also be legal terms.

This, however, does not explain how both operations work. Therefore we
have to add the recursive “definitions” Vnm (S(n) + m = S(n + m)) and
Vnm (S(n)*m =n*m+m) to our axioms.

12 1f one is fastidious then indices on P are needed explaining if the quantification is over a
function or predicate and what its arity is.

13 In fact, the first order version will have nonstandard models while the second order version
will be categoric. See [59] section 7.2] and [I03], theorem 4.8] for further details.

14 This is even true if we add addition to our theory and only have to define multiplication or
vice versa. The reason is that without one of both operations the theory is known to be decid-
able while this is not the case for the theory including both, thanks to Gédel’s incompleteness
theorems.

15

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

7. There is a second type of axioms we have to add to the medium degree version
in case of first order logic, namely the axioms of equality. In the medium
degree version these are implicitly taken for granted (missing condensation).
Here we have to state them explicitly. These axioms are:

(a) reflexivity: Vo (x = z).

(b) substitution: For each function symbol f (here S, +, and) we have
Veyle=y— f(...,z,...)=f(...,y,...).

(c) substitution for formulas: For each formulas ¢, ¢’ where ¢’ results from
¢ by replacing some but not necessary all free occurrences of x by y we

have Vo y (z =y A ¢ — ¢) [
In particular we can conclude symmetry and transitivity from these axioms.

Again, in second order logic this supplement is not needed since we can
simply define z = y in the spirit of Leibniz as abbreviation of VP (P(z) <

P(y)).

8. So far we are not able to deduce anything since logic is missing. Just like
equality our logic is implicitly presupposed in the medium degree version.
Even in otherwise rigorously formal systems the explication of logic is often
left. However, if we are more pedantic, we have to add respective axioms,
too. So let us add some arbitrary axiomatic system for first and second order
logic, for instance those that can be found in [I03] chapter 3.2].

Last, we will give a type theoretical version for the natural numbers. We will
already use (and explain) some syntax of the Coq proof assistant, which we will
present in the last section of this chapter. Furthermore we will use type theoretical
notation from now on; in particular we write f n instead of f(n) for function
applications and intend the quantifiers to bind as far as possible.

The type theoretical version for natural numbers (written in Coq style) uses
the calculus of inductive constructions (see [89]) as background theory. The whole
bunch of axioms of the medium degree version boils down to the following inductive
definition:

Inductive N:=0:N|Suc: N — N.

15 The last two are axiom schemata since we have different axioms for the different function
symbols and different formulae.

160ne may argue whether this rather creates a theory or whether it is rather an embedding
into type theory (like the one we had for set theory before). That we do create new objects with
the given definition militates in favour of the former classification while the use of other type
theoretic constructs militates in favour of the latter.

16

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

First of all the definition says that 0 is a natural number and that Suc n is a
natural number if n is. Implicitly included in this definition is the possibility to
define functions over N via pattern matching, i.e. by case analysis. What is the
value of the function on input 0 and how can the result be computed (possibly by
using recursion) when the input is a successor? The possibility to define functions
this way implies 0 being different from any Suc n and Suc to be injective[] In
addition to that an induction principle is automatically created, which — of course
— is the usual induction in case of the natural numbers: V P : N — Prop, P 0 —
(Vn:N,Pn— P (Sucn)) — Vn:N, Pn;where Prop is the type of propositions
in Coq.

What about logic, equality, and the definability of addition and multiplication?
Let us only mention here that there are ways to deal with logic and equality in
type theory. So there is no additional work here. In case of addition we can define

Fixpoint addition (n:N):N - N :=
A m: N, match n with

0=m

| Suc n’ = Suc (addition n' m).

The recursive input, here n, must be given as a parameter. More essential, however,
is that we can call the recursive value addition n’ m. Note that the use of the infix
symbol + can be introduced as a notation after the definition.

Multiplication can be defined in the same way:

Fixpoint multiplication (n:N):N— N :=
A m:N, match n with

0=0

| Suc n’ = multiplication n’ m+m.

The type theoretical version of natural numbers in Coq does not use natural
language. It seems to be extraordinarily condensed; an impression that has to
be relativised to a certain extent since we have to add the calculus of inductive
constructions. Yet, the latter is itself a high degree system and so we can count
the type theoretical version as high degree, too.

Let us sum up. We have seen multiple ways to formalise natural numbers and
— on the basis of the use of natural language and condensation — we discussed the
degree of formality for each resulting system. Furthermore it became clear that

17 For the former we can define a function that maps 0 to True and Suc n to False for every
n. There is a theorem, independent of natural numbers, that allows us to infer f a = f b for any
function (of the right type) if a = b. So from 0 = Suc n we could deduce True = False. However,
it can be shown that True # False, which in type theory is just an abbreviation for True = False
— False. Hence 0 # Suc n. To prove injectivity we define a function that maps 0 somewhere, let
us say 0, and Suc n always to n and apply it to the equality Suc n = Suc m, obtaining n = m.

17

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

Theorem: Vnm :N, n+m=m+n

Proof idea: Show that the definition is symmetric (meaning that addition
could have been defined equivalently by recursion on the other parameter).
Then, in the induction step extract the Suc, use the induction hypothesis,
and draw the Suc to the other side.

Figure 2.1: Proof idea for the commutativity of addition.

high degree formalisation entails that one must care about additional issues like
logic, equality and the definition of relevant constants, functions, and predicates.
In particular, two systems of the same degree can be essentially different because
these additional issues are treated entirely differentEg] Note that the non-treatment
of the additional issues in medium degree versions is not necessarily a lapse but
can be seen as focussing on the most relevant aspects.

2.5 Argumentations of different degrees
validating the commutativity of addition

After we have seen how natural numbers can be formalised in or with different
systems let us now have a look at argumentations — and proofs in particular —
of different degrees of formality; all validating the same proposition, namely the
commutativity of addition. In concreto we will delineate one proof idea, something
between a proof idea and a medium degree proof, a medium degree proof, a Hilbert
style proof, and a proof as A-expression while a last variant will be postponed to
the following section about the Coq proof assistant.

First, let us see what a proof idea for the commutativity of addition looks like
(figure [2.1)). One important aspect is the striking brevity. The whole argumenta-
tion is condensed into two sentences using predominantly natural language, which
is the next point. However, one must be aware that there are higher degree for-
malisations for addition, induction etc. upholding this more informal version. A
last point we want to mention is that there are not any justifications here. The
argumentation reads like a recipe.

18 An example of two non-essentially different systems for natural numbers would be our first
order system compared with one where ‘0’ is replaced by ‘)’ or even ‘5. Analogously we could
replace our sign ‘S’ with ‘Suc’ or with “’, where in the last variation one would normally build
a new term of ‘o’ with ‘c’” instead of “o’. In general, however, it is not clear where to draw the
line for essential difference.

18

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

Theorem: Vn m : N, n4+m =m+n.

Proofgumentation: It is easily shown by induction that the definition of
addition is symmetric. We prove the actual theorem by induction over n.
In the base clause we assume m : N arbitrary but fixed. We have 0 4+m =
m = m + 0 thanks to the definition and the symmetry of it.

So let us assume now n : N arbitrary but fixed withVm : N, n+m = m+n.
We have to show V m : N, Suc n+m = m + Suc n. So let m be a natural
number, arbitrary but fixed. We have Suc n +m = Suc (n +m) =
Suc (m +n) = m+ Suc n again thanks to the definition and symmetry of
it as well as thanks to the induction hypothesis.

Figure 2.2: Proofgumentation for V.n m : N, n+m =m + n.

Next, let us consider a form of argumentation that has no official name["] It
lies between proof ideas and medium degree proofs (an example of the latter will
be considered after this argumentation style). For the matter of brevity we dub
it “proofgumentation”. Our respective instance can be found in figure 2.2, What
is essential for this argumentation style is its balance: some parts are still in the
recipe like kind of argumentation while other parts (here the induction) are more
elaborated. In the former parts our above analysis holds while for the latter the
following analysis of medium degree proofs will be valid.

In medium degree proofs, like the one in figure 2.3 every part of them must
be proven, not just some of them. Each proof (possibly including lemmata like in
this case) consists of a mix of natural language and language free formulae. The
former links the latter. Furthermore language structures the proof, including the
weighing of the different parts of the proofﬂ Another important point is that
medium degree proofs are much longer than, say, proof ideas. This is caused by
the increased granularity (or by decreased condensation, which is the dual way
to look at this): no gaps should be perceived in the reasoning. In addition to
this, in a medium degree proof most steps need a justification, explaining why it
is permitted to make the respective step. Yet, a short hint suffices at this level of
argumentation. Instances of such justifications are given in figure for example
by the formulation ‘thanks to the definition and the first lemma’.

In a high degree proof we have to prove the same lemmata as in the medium
degree proof. However, for the reader to get an impression of such a high degree
proof it suffices to presuppose these as lemma 1 (and lemma 2) and show only
the base clause part of the proof (figure . Apart from the lemmata the proof

19 Tn fact, argumentations of that kind are often referred to as proofs in textbooks but that is
misleading.

20 A typical example is the formulation ‘Since xy, we obtain yz’, which marks the ‘Since’-part
as easy and linearises the whole argumentation.

19

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

Theorem: Vn m: N, n+m=m+ n.

For proving this theorem we will need the symmetry of the definition.
Therefore we are going to prove two lemmata first, one for the base and
one for the recursive case.

Lemma: Vn:Nn+0=n.

Proof: We prove the theorem by induction over n. In the base clause we
have 0 4+ 0 = 0 by definition. So let n be a natural number, arbitrary but
fixed with n + 0 = n. We have to show Suc n 4+ 0 = Suc n. But the left
hand side is Suc (n+ 0) = Suc n due to the definition of the addition and
the induction hypothesis. Qed.

Lemma: ¥V n m : N,n + Suc m = Suc (n +m).

Proof: We prove the theorem by induction over n. In the induction basis
we obtain 0 + Suc m = Suc m = Suc (0 + m) by definition. So let n be a
natural number, arbitrary but fixed with V m : N, n4+Suc m = Suc (n+m).
We have to show V m : N;Suc n + Suc m = Suc (Suc n + m). Let
m be an arbitrary but fixed natural number. It is Suc n + Suc m =
Suc (n + Suc m) = Suc (Suc (n 4+ m)) = Suc (Suc n + m) thanks to the
definition of addition and the induction hypothesis. Qed.

Proof of the theorem: We prove the actual theorem by induction over n. In
the base clause we assume m : N arbitrary but fixed. We have 0+m =m =
m + 0 thanks to the definition and the first lemma. So let us assume now
n : N arbitrary but fixed with V m : N, n+m = m +n. We have to show
Vm: N, Suc n+m = m+Suc n. So let m be a natural number, arbitrary
but fixed. We have Suc n+m = Suc (n+m) = Suc (m+n) =m—+ Sucn
thanks to the definition and the second lemma as well as thanks to the
induction hypothesis. Qed.

Figure 2.3: Medium degree proof for V.n m : N, n+m =m+n.

20

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

. FEWVm, 0+m=m+0) —

(Vn, (Vm, n+m=m+n)—
V' m, Suc n+m =m+ Suc n) —

Vanm, n+m=m+n (S9)
2. Fm=0+m—=m=m+0—=0+m=m+0 (S1)
3. FO0+m=m—->m=0+m (PA2)
4. F(Vn, 0+4n=n)—=0+m=m (A4)
5. FVn, 0+n=n (S5)
6. FO+m=m (MP 4,5)
7. Fm=0+m (MP 3,6)
8. Fm=m+0—=04+m=m+0 (MP 2,7)
9. Fm+0=m—=m=m+0 (PA2)
10. F(Vn, n+0=n) =>m+0=m (A4)
11. F¥n, n+0=n (Lemma 1)
12. Fm+0=m (MP 10,11)
13. Fm=m+0 (MP 9,12)
4. F04+m=m+0 (MP 8,13)
5. F¥Ym, 0+m=m+0 (G 14)
16. F(Vn, (Vm, n+m=m+n)—

V' m, Suc n+m =m+ Suc n) —

Vnm, n+m=m-+n (MP 1,15)

Figure 2.4: Base clause in the first order high degree proof of the commutativity
of addition.

21

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

uses furthermore the axiom schemes S1, S5, 59, A4, the theorem scheme PA2 (the
relevant instances of which are stated in the proof), and the inference rules MP
(modus ponens) and G (generalisation)]|

Obviously, the proof is much longer than the previous ones. It becomes clear
that the steps considered as single in the medium degree proof are not so from
this kind of proof’s perspective. Every step be it ever so small has to be stated
explicitly. Furthermore we see that there is no natural language left in the proof.
Instead the proof offers exact justifications after every step; each of them being
Modus Ponens, Generalisation, an axiom, or a theorem.

Last, we turn our attention to the proof that is just the A-expression shown in
figure Although it is constructed with the Coq proof assistant one does not
have to know anything about Coq to get the essential points here. Obviously, no
natural language is used. Even without an understanding of the concrete steps
it is clear that they have a high granularity. Yet, it is not as high as in the first
order proof since we can conduct multiple applications of modus ponens at once.
A further difference is that in the A-proof the justifications are invisible. They are
the matching of the input and the output types.

Let it be mentioned that it is possible to develop type theoretical proofs having
a medium degree of formality. Examples of this can be found in [IT1I]. One may
discuss whether these are as understandable as their corresponding first or second
order versions but we will not delve into this here.

Let us summarise. In this section we have seen a great variety of proofs for
the same theorem. These differed significantly regarding the use of language, the
condensation, and the frequency and precision of justifications. Proof scripts in
Coq, which we omitted so far, require some preparation and will be important in
some parts of this writing. Thus, we devote a separate section to it.

2.6 Proofs scripts as proofs

The aim of this section is to show how so called proof scripts written for the Coq
proof assistant can be seen as proofs. However, before that we have to clarify
what we mean by proof assistants in general and introduce Coq in particular. The
way we use Coq looks somewhat different compared to the standard use and we
will briefly discuss why. Furthermore when we come to our main aim, the proof
scripts, we will also introduce a way of bringing such proof scripts to paper. This
presentation form will be frequently used in chapter [

A proof assistant is a software that helps the human in one way or the other to
create proofs. In contrast to a so called theorem prover this is not done completely

21 The names correspond to [55, p.139], but the theorem itself is not proven there. We made
two small changes by using n instead of = in the quantification of S9 and by quantifying S5.

22

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

Xty T7TLOmMC OO
«/ Addition.v

Warning: query commands should not be inserted in scripts
add_comm =
An: RN,
Wind (An@ : M, ¥m: M ndem=msa nd)
(Am: M,
(AH: @e2m=0em) (HO:=B & m) (H1:=0 = m),
(AH2 : (AMND : M, WO = HL) m,
(AH3 : m=H1,
(AHY : Bem=m,
(A(HS : me@ B =me0) (Ho:=m & O) (H7:=m = B),
(AHB : (AMB : M, MO = H7) m,
(A HY : m = H7,
(AHI® : m=m,
(AH11 : m=m,
(AH1Z : ®2m=m, (AH13 : @em=me 0, HI3) (H12 - H3))
(H4 - H11)) H1B) (refl m)) H8)
(transport (A M@ : M, MO = H7) (n_add ® m) H5})} (equ refl (m e @)))
{H3 -*)) H2) (transport (A MO : M, MO = H1) (0 _add n m) H})
(equ_refl (@ & m)))
(A(n@ : W) (IHh : ¥m : M, n@ em=m & nd@) (m : R},
(A (H: Suc n@ e m=Suc nd & m) (HB:=Suc n@ & m) (HLl:=Suc n@ = m),
(AH2 : (AMO : M, WO = H1) (Suc (n@ = m)),
{A (H3 : Suc (n® & m) = H1) (H4:=Suc n® = m) (HS:=Suc n@ = m},
(A HE : Suc (n® 2 m) = Suc n@ & m,
{A H7 : Suc (n® & m) = Suc n@ 2 m,
(AH8 : Suc n@ @ m = Suc (n®@ & m),
(AHY : (AMO : M, W0 = m @ Suc n@) (Suc (n® = m)),
(A H1® : Suc (n@ @ m) = m & Suc n@,
transport (A MO : M, M0 = m @ Suc n@) (H8 -!) H1@) H9)
((A (H9 : m e Suc n@ =m & Suc n@) (HlB:=m = Suc n@)
(H11l:=m = Suc n@),
(A H1Z : (A MO : M, MO H11)} (Suc (m & n@)),
(A H13 : Suc (m = n@) = H11,
(AH14 : m® Suc n@ = Suc (n@ @ m),
(AHIS : me Suc n@ = Suc (n@ & m),
(A H16 : Suc (n® @ m) = m & Suc n@, H1G6) (HIS -1)) H14)
{let H14 := m & Suc n@ in
let H15 := m & Suc n@ in
(A H16 : Suc (m= n@B) = m e Suc nd,
(AH17 : Suc (.) =me Suc n@, (A H18 : ., . .) (H17 -%))
H16) H13)) H12)
{transport (A MO : M, MO = H11) (n_add suc_m m n@) H9))
{equ refl (m & Suc n@}))) (H7 -*)) HB) H3) H2)
(transport (A MO : M, MO = H1} (suc_n_add m n® m) H})
{equ refl (Suc n@ = m})) n
rYnm:RM, nem=me&n

Ready Line: 391 Char: 16 Coql@rted

Figure 2.5: A-expression as proof for the commutativity of addition.

23

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

automatic but in interaction with the human; where the latter uses a proof editor
or some other interface for the interaction. Besides Coq (see [12} 26]) there are
other proof assistants like Nuprl (see [3]), Isabelle (see [86]), Mizar (see [83] [11§]),
HOL (see [51, 52, 56]), or Agda (see [17]) having in part very different approaches.
While classical Isabelle — like Coq — is based on proof scripts the attachmen@
Isabelle/Isar (see [116]), Mizar, as well as HOL allow to create proofs in a declara-
tive proving style; i. e. the user is telling the system the steps of the proof while the
system tries to infer justifications for that steps. The resulting proofs are of a syn-
thetic nature and often resemble the ones created by humans alone. Nuprl uses a
visual proof editor to create proofs interactively. A fourth, very different approach,
which is realised in Agda, is to build proofs as functions with the possibility to
leave so called holes for which the system infers the needed type.

The Coq proof assistant@ has been developed in the late 1980’s by researchers
at the French Institut National de Recherche en Informatique et en Automatique
(INRIA). Like other proof assistants, Coq implements a higher-order type theory;
thus theorems in Coq are understood as types and the proofs for theorems as
elements of the respective type. This implies that the latter are A\-expressions (as
seen in the previous section) and so the background of Coq is closely interwoven
with functional programming.

However, one feature of Coq is that the user does not have to know or even
be aware of all these issues. Instead the user can develop a proof step by step by
applying so called tactics. Every step the user asks Coq to execute is evaluated
for its correctness and its effects are shown to him. As we will see in this section
but especially in chapter [§] tactics in Coq are a very powerful and flexible tool.
Furthermore, Coq is easily available and has a big and active community.

Let us now turn our attention to the proof scripts. These are sequences of
tactics used to find a proof. Our first example is a simple proof script in the
CoqIDE generating a proof of AANB — BA A (see figure . We start by stating
in the left of the window that we want to prove an implication. The Coqg-System
processes and shows this by “greening” our code, a clear positive feedback. Had
we started by trying to prove a conjunction instead we would have received an
error-message at the bottom right of the window (see figure . In case we make
a correct step the resulting proof situation is shown at the top right of the window
(see again figure 2.6). What we know (or assume) can be seen above the line while
the (sub)goal(s) are listed below. If there is more than one goal then above the
line only the context of the first subgoal is shown.

22 Tsabelle is not a single proof assistant but a framework. See [I15] for further information.
23 The following introduction to Coq including the discussion of the tactics we used is taken
in greater parts from the article [I5]; where the concept of tactics will be introduced below.

24

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

I PTPITLIORC O

«/ Coq_examples.v

Theorem and comm : A A B - B an A. 1 subgoals
Proof B A : Prop
i B : Prop
rove 1imp. =
: —e | H: AAB
(1/1)
B A A
Ready in Propositional_Logic, proving and_comm _:EgLine: 20 Char: 11 Coqldest@

Figure 2.6: Proof script of AA B — B A A after the first step.

I PTPITLIORC O

«f Cog_examples.v

Theorem and comm : A A B - B an A. i ?uggggls
E;gsz.and SRR
' (1/1)
AANB-BanA
Error: Tactic failure: Your goal has to be
a conjunction!.
Ready in Propositional_Logic, proving and_comm Line: 20Char: 1 Coqldest@

Figure 2.7: Proof script of AAN B — B A A with a wrong beginning.

The remaining part of the proof script is given in figure 2.8] The screenshot
shows the situation after step 3: A A B is already decomposed into A and B (via
use_and) and we have applied the tactic prove_and to generate two subgoals, B
and A. The ‘4’ in the next line focusses on the first of them, i.e. after processing
this symbol only the actual goal is shown. Both subproofs can be completed by
using our assumptions.

Before we proceed with our analysis of proof scripts we have to mention that
in Coq normally there are no tactics named use_xyz or prove_xyz. These tactics

25

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

I PTPITLIORC O

«/ Coq_examples.v

Theorem and comm : A A B - B A A. 2 subgoal
B A : Prop
Proof. R
prove_imp. H@.- A p
use and H. o -.B
prive_and.)
B
usi) (2/2)
A
use HO.
Qed.
Ready in Propositional_Logic, proving and_comm Line: 23cChar: 1 Coglde st@d

Figure 2.8: Complete proof script of AN B — B A A.

were defined by usF_Z| and serve essentially as aliases for the logical and equational
tactics Coq is providing. We use the former for the following reasons:

e Predefined Coq tactics have unstructured names and are therefore hard to
remember; for tactic names such as intro, case, or split do not mention
the relevant logical connectives and do not explain their relationship.

e The names of standard Coq tactics do not make an explicit distinction in
the treatment of assumptions and goals. By contrast, our tactics are called
use_Xyz Or prove_xyz.

e Predefined Coq tactics have unwanted features. For instance split, the
tactic corresponding to prove_and, also works on goals like A -+ B — AAB.

So we designed and named the tactics in a way that requires one to reflect on how
to prove theorems in Coq.

So far we avoided to call the proof scripts themselves proofs. To see the sub-
tle differences — and the reasons why we will call proof scripts proofs anyway —
let us compare a theorem in type theory with a wardrobe. A proof, also called
proof object, is a function — expressed as A-term as seen in the previous section
— explaining how the theorem is composed of different functions and applications.
This is similar to the data we usually find next to the exhibit piece in a furniture
store. Yet, for the analogy to work this data would have to be a complete descrip-
tion of the wardrobe. This would include not only the exact enumeration of its

24 See Appendix |A| for a listing of most of the logical and equational tactics we use.

26

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

parts (doors, walls, knobs, mirrors etc.) with their respective properties (length
specifications, material, colour etc.) but their exact arrangement (distances and
angles of the respective parts), too. Furthermore, a complete description of the
wardrobe would have to be done recursively for all its parts.

So a proof in type theory is an exact description of a product. By contrast, a
proof script can be compared to an instruction for building a wardrobe. If every
single tactic step is executed then the theorem (or the wardrobe respectively) will
be constructed. However, requirement for this point of view is that each tactic
has a clear specification of what to do. The logical tactics seen so far satisfy this
criterion and the medium degree tactics we are going to present in chapter |8 will
s0, too, but so called auto tactics do not fulfil this requirement (see the next section
for further discussion). In reality there is a big difference between a (complete)
description of the wardrobe and the instruction for building it. However, in the
mathematical world as well as in some parts of informatics resources are of no
importance, which is why the difference between description and instruction fades
away. Therefore the proof scripts can be conceived as proofs.

What about the degree of proof scripts? The tactics we use are named rather
verbosely after the process they execute. Apart from that, there is no natural
language involved. Whether the whole argumentation is rather condensed — in
the sense that the number of steps is reduced — depends on the concrete tactics.
The few we have already seen and the ones we will still see in this section are very
elementary. They do not condense at all. The tactics do not only represent proving
procedures but function as justifications as well: they give a reason why we are
allowed to transition from the actual to the next proof situation. Their exactness
can be conceived as the preciseness in the treatment of parameters. Since in this
section all parameters are instantiated explicitly the proof scripts in this section
can be classified as high degree. In chapter |8| we will see that not all proof scripts
must be of a high degree.

Let us now come back to resources. We said that mathematics is resource
independent but this is not the same as stating that mathematicians are resource
independent. Therefore we should find a presentation of proof scripts suited to
be used in text documents like this one. To understand what problems may arise
let us first again consider the wardrobe first. In that case, a disadvantage of a
pure instruction is that it does not tell us anything about the appearance of the
product. Not until we executed some step we see its result. However, in reality
we hardly drive to the furniture shop, buy a wardrobe, drive back, and construct
the wardrobe only to see what it looks like. Instead there is a photo and/or an
exhibit piece in advance helping us with our visualisation. Furthermore, since the
individual steps of an instruction in reality are not that unambiguous, modern

27

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

instructions also or even exclusively use graphics showing the appearance of some
of the intermediate products and highlighting the actual changes. Hence mistakes
in the understanding or the construction can be recognised in time.

In the case of proof scripts we have no resource problem regarding execution
if a computer is involved (computers are simply too fast for that to be of any
relevance)E] Nevertheless there are resource problems since we need to have the
right software in the right version installed and the settings must be correct, too.
Furthermore it would be highly preferable not to be committed to a computer
at all. Then, however, the reader of a proof script is not informed about the
actual proof situations (which is elsewise done by the Coq system) and mistakes
will remain unrecognised for a long time and hence cannot be traced back in a
good manner. Therefore proof scripts are assessed as unreadable by humans alone
(see [85]). That is why we use equivalents to the graphics in the instructions. This
time we use tables showing the proof situations. As in the case of instructions we
will only show the changes after each step — instead of the whole proof situation —
to contain the required place resources.

Consider figure as an example. The pure proof script is given in the left
column while in the right column in each row the proof situation after the respective
step is listed. Above the line we find all actual hypotheses (the knowledge we have
at our disposal) and below it the actual goal. If a hypothesis will not be changed
for the remaining part of the subproof it is framed and will not be listed anymore.
The induction hypothesis, for instance, is not changed in the subproof marked by
+5 and is therefore framed. Note that after those tactics that result in a branching
no proof situation is given immediately. The respective proof situations are then
shown after the respective begin of the subproof. One situation, which does not
occur in this example, arises when we want to clear a hypothesis to reuse the name.
It is only in this case that the tactic, namely clear, will not occur on the left hand
side. Instead the respective hypothesis will be struck through in the step before
to signalise that its name now can be reused.

Now let us conclude this section by discussing the contents of the proof. It
starts by using induction over n which leads to two branches, induction begin and
induction step. In the former one chooses m arbitrary but fixed and uses the defi-
nition of addition as presented in section to reduce 0 +m to m. Unfortunately,
fold must be used afterwards to avoid that the definition of addition is written
down on the right hand side of the equation.@ Next, for the other side of the equa-
tion one needs a lemma stating V n : N, n 4+ 0 = n. It is applied to the argument
m obtaining m + 0 = m and this equality is used in the goal. This leads to the
new goal m = m, which can be concluded by the tactic prove_equ. The second

25 At least this is true for the tactics we are considering within this thesis.
26 Note that the feature to use notations is only implemented for unfold in Coq; not for fold.

28

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

Next step in Coq

Proof situation

Initial situation

Vnm: N, n+m=m+n

prove by induction

*1 Vm N, Otm=m+0
prove_all M

O+m=m-+0

unfold “+47; fold addition

m=m-++20

use_equ (n_add_0 m)

m=1m

prove__equ

subgoal proven

+2

[n:N]

IHn Y m:N, n+m=m+n

Vm:N, Sucn+m=m+ Sucn

prove_all

[m: N]|

Sucn+m=m-+Sucn

unfold “+7; fold addition

Suc (n+m) =m+ Suc n

use_equ (n_add_suc_m m n)

Suc (n+ m) = Suc (m +n)

use__equ (IHn m)

Suc (m +n) = Suc (m+n)

prove__equ

Qed

Figure 2.9: High degree proof of V.n m : N, n+m =m + n in Coq.

29

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

subproof might be more difficult to find but — from a technical point of view —
consists of the same kind of steps. Note that one has to use again a lemma; this
time stating ¥V n m : N, n 4+ Suc m = Suc (n + m).

2.7 Auto tactics and related work

For a better understanding of the related work presented in this section it will
be helpful to discuss auto tactics first, which are a substantial ingredient in many
of the corresponding approaches. We already mentioned that auto tactics do not
fulfil clear specifications, a property we can take as definition for the former. One
might object that each (auto) tactic has a specification in the sense that it does
exactly what its code requires it to do, but we do not count this description as
specification since it is not independent from the concrete code or process of the
tactic.

Using auto tactics we obtain a formal proof, for instance a A-term, in the
same way this was true for non-auto tactics. From the proof script point of view,
however, auto tactics — due to their lack of specifications — are no justifications.
This speaks for a low degree of formality. Often the corresponding step size is very
big but that does not need to be the case. If the auto tactic is too weak — be it
so on purpose or not — the step size might be very small. Even when the auto
tactic is very powerful the user might apply it only to very simple lemmata such
that the degree of condensation remains low. Furthermore it should be mentioned
that some auto tactics do not change the proof situation at all — usually returning
an error —, when the actual goal could not be proven completely. So there is no
guarantee for any progress. Altogether we see that proof scripts using auto tactics
are definitely not of a high degree of formality due to their lack of justifications.
Except for the language, which remains formal, such proof scripts may correspond
to low degree proofs’] However, whether this is really the case depends on its
useF_g] Last, let it be mentioned that major use of auto tactics is usually made by
declarative proof assistants. This is understandable since the latter do not focus
on justifications.

Let us now start with the discussion of related work. The aspect of granularity,
which — as a reminder — is the same as condensation but seen from the other side,
is the topic of Marvin Schiller in his PhD thesis [08]. To be more precise, Schiller
wants to find the right criteria to determine what the perceived sizes of given steps
in a proof are. He discusses that the perceived size of a step cannot be the sheer
number of corresponding steps needed in what we call a proof of highest degree. So

27 The existence of a formal proof like a A-term or so may justify to use ‘proof’ here instead
of ‘argumentation’.
28 See section for further discussion.

30

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

respective investigations are needed. These are of an empirical nature and involve
machine learning techniques. The knowledge of the granularity of steps is then
used to support students’ proof development and the teaching of proofs with the
help of the computer. The respective “computer systems for teaching proofs need
to allow students the freedom to produce various proofs at different granularities,
but they also need to detect whether an individual solution is inappropriate.” (|98,
p-47]) The realisation of the computer systems for teaching proofs is based on a
declarative proof assistant using auto tactics. We should also mention that the idea
of various degrees of formality is also present in Schiller’s thesis: “mathematical
language allows a multitude of syntactically different ways to express a solution to
the same problem, which can be formulated in various styles ranging from scrutiny
to vague descriptions.” ([98, p. 8])

The role of granularity is also discussed by Ludovic Font, Philippe R. Richard,
and Michel Gagnon [43] — this time as part of what they call didactical contract.
They list some positive properties of proofs with a lower degree of granularity,
for instance that the latter “[...] smoothen the flow of the resolution or improve
its pedagogic efficiency.” ([43, p.39]) The issues of readability and accessibility
are also addressed by them. The actual topic of their article, however, is the
presentation of a tutor system, which we will discuss in the related work section
of chapter [7}

In [I19] Claus W. Zinn aims at building a verifier for medium degree proofs —
mathematical proofs in his terminology. Since the latter involve a lot of natural
language he has to analyse the role of the respective linguistic fragments used in
the proofs and he has to find ways to translate them automatically and mathe-
matically adequate into a machine readable language. For example, one kind of
such linguistic fragments concerns variables: “[a]ny text understander needs to be
aware of the different uses of variables in mathematical discourse and their re-
spective linguistic realisations.” ([I19} p.62]) In chapter3 of Zinn’s thesis we find
an analysis of particular medium degree proofs, too, but this analysis focusses on
convertibility to some corresponding formal proof only and so does not amount
to a comparison between the different proof styles. Nevertheless the aspect of
granularity is implicitly present: “constructing a maximally rigorous proof from
Hardy & Wright’s informal proof requires filling in many steps that they leave
unverbalised. This is already true for the formal interpretation of the first proof
sentence.” ([119, p.42])

Amanda M. Holland-Minkley, Regina Barzilay, and Robert L. Constable in [57]
want to translate Nuprl proofs, which they are characterising as formal proofs, into
proofs that mimic human reasoning. This sounds very promising. Yet, their Nuprl
proof use auto tactics. As discussed above, the corresponding proofs are then
not formal due to their lack of justification and — more important — there is no

31

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

guarantee for the right step sizes to simulate human reasoning. Therefore the true
achievement of Holland-Minkley, Barzilay, and Constable is restricted to the aspect
of translating the Nuprl proofs into a natural language argumentation. Regarding
that point their work can be seen as reversed to Zinn’s.

The remaining aspect, the frequency and precision of justifications, seems to be
generally underestimated. At least we are not aware of any literature substantially
addressing that subject.@

As discussed, proofs that are not of a high degree of formality are usually called
informal. This already suggests to define or characterise the latter via the former
using negation. A first alternative preferred by some authors is to characterise
“informal proofs” by their properties instead. Fenner Tanswell does this, too,
but he also gives — as a second alternative — a brief and direct characterisation:
“informal proofs are proofs as they are written and produced in mathematical
practice. They may make assumptions about the intended audience’s background
knowledge and ability to follow lines of reasoning, skip over tedious or routine
steps, and make reference to semantic properties and properties of mathematical
objects without stating these fully.” ([I08, pp. 295-296]*)

A very interesting idea is to represent different degrees in a single argumenta-
tion. Such an approach is pursued by Leslie Lamport in [72] with his concept of
structured proofs.ﬂ These are nested proofs, in which some step can be explained
by a nested series of more detailed steps. The reader then has the possibility to
zoom into a more detailed level whenever necessary. Structured proofs mainly ad-
dress granularity. Justifications are only written down explicitly at the respective
end level, which — in our opinion — makes it hard to follow the proof without zoom-
ing at every place possible. By contrast, to be in agreement with our approach
from a particular nesting level on there would have to be independent justifica-
tions instead. Last, we want to mention that the use of language is the same for
all nesting levels.

The same idea of putting different degrees together into a single argumentation
is even realised by an actual proof assistant, the QMEGA-System. It is presented
in [105] by Jorg Siekmann, Christoph Benzmiiller, and Serge Autexier. It realises
proof planning approaches (see [19]), which in turn are inspired by corresponding

29 In [39] and [40] Armin Fiedler deals with proofs having a list of alternative justifications for
some of the steps. He orders these justifications with respect to the degree of their “abstraction”,
which sounds promising. However, it turns out that the latter is only a technical notion related
to an extension of natural deduction. So all of Fiedler’s justifications do not differ in their level
of preciseness.

30" A footnote has been omitted.

31 This must not be confused with the structure faithful proofs we will introduce in section

32

CHAPTER 2. SYSTEMATIC OVERVIEW OF THE CONCEPT

techniques in artificial intelligence. The user is supposed to start with a proof plan
at a suitable degree, switching to a higher one if necessary, and to let the computer
solve respective parts of high enough degrees automatically.

At the end let us remark that our use of low and high degree is inverted with
respect to the one usually found in the literature. This is so because the latter use
orients itself on programming languages while we orient on formality.

33

Chapter 3

Curry in a hurry

3.1 Introduction

Especially in the time of the foundational crisis of mathematics but still until today
there is a controversy about the right foundations and methods of mathematics.
Is mathematics based on set theory, type theory, category theoryE], or perhaps
on logic alone? In any of the previous cases, which logic (or geometry in earlier
times) is the right one? In particular, is the tertium non datur valid? At first
glance this disunity looks like a danger: if everyone can do mathematics as he
likes what value does mathematics have? Will the science be a science after all?
It was this last question — with the former questions being in the background
or explicitly mentioned — that Haskell B. Curry tried to answer positively in his
writings [31, 29] in which he presented his view of mathematics as of the year
1939E] As a supplement to this view we take [30] into consideration, which was
published in 1941 and which is in line with the before mentioned works.

Curry’s solution to find a positive answer to the status of mathematics as a
science is interesting for us due to multiple reasons. First, his treatment of logics
will help us in the next chapter to gain more clarity about our concept of the
degrees of formality. Next, Curry’s approach in some sense is pluralistic fitting
our pluralistic account of the degrees of formality. This motivates the search for
the different benefits of the different argumentation styles (chapter [5). Further-
more, Curry provides a technique that will help in that chapter to characterise the
purposes of argumentation. Finally, his position will serve us as object of study in
the second part of this thesis.

I This can be a modern point of view only because category theory developed chronologically
after the foundational crisis.

2 The former was published in 1951 while the latter is a reprint of an article published in
1954. We will discuss that time discrepancies and the chronological relation of this two sources
and the following one in section

34

CHAPTER 3. CURRY IN A HURRY

The concrete procedure of this chapter is as follows. We start with Curry’s
formal systems, which roughly correspond to our high degree ones, and discuss
their role in saving the objectivity of mathematics to keep the latter’s status as
a science (section [3.2). It will — perhaps surprisingly — be these formal systems,
too, which enable Curry’s pluralistic attitude. In section we will see why. We
will present Curry’s treatment of logic in section Up to this point we will
orient ourselves on [31], 29, 30]. However, there is previous and subsequent work
of Curry. This will be discussed in section[3.5] in comparison to the three former
sources. We will refer to this previous and subsequent work as the view of the
early respectively later Curry.

3.2 Saving objectivity via formal systems

Curry’s starting point in [31], chapter IT] to maintain the status of mathematics as
a science is to find a definition of mathematical truth that underlies an objective
criterion; i.e. it must be possible to substantiate the truth of a mathematical
statement objectively. Curry asserts that a “rigorous proof” is not a suitable
candidate for a criterion of truth; for the concept of rigour itself is utterly vague.

So the question is how it is possible to define mathematical truth with a
suitable, objective criterion for it. In [31, chapter II+III] Curry brings up three
problem-solving approaches for discussion: realism, idealism and formalism. He
discards realism, which for him is essentially mathematics of indigenous people
because it misses the power for representing the actually practised mathematics.
In particular the transfinite mathematics cannot be captured by such a realism. In
the case of idealism, Curry distinguishes two kinds: platonism and intuitionism.
For the criticism on platonism he refers to customary intuitionist’s criticism. In
addition intuitionism itself is rejected by him, too, because it requires a fundamen-
tal intuition that “has objective reality, at least in the sense that it is the same
in all thinking beings.” ([31, p. 6) The problem with this fundamental intuition
according to Curry is that the foundation for an associated objective criterion of
truth has to be based on elementary philosophical hypotheses only ([31], p. 3]). Yet,
the satisfaction of the postulate of a fundamental intuition is assessed by Curry as
“an out and out postulate.” ([31], p. 6]

According to Curry the correct problem solving approach for defining math-
ematical truth together with a suitable criterion for it is formalism. There are
different variants of this school of thought but — as the name suggests — they all

3 We have omitted the footnote at the end of the sentence. Curry enumerates further require-
ments, which we do not need for our argumentation.
4 Again, we have omitted a footnote.

35

CHAPTER 3. CURRY IN A HURRY

put great emphasis on what is usually called a formal system (and what roughly
corresponds to our high degree systems). So let us have a look at what a formal
system for Curry looks like:

“A formal system [...] is defined by a set of conventions, which
I shall call its primitive frame. These conventions are of three kinds,
as follows: first, those which specify the objects of the system, which
[call its terms [...]; second, those determining a set of propositions,
which I shall call the elementary propositions, concerning these terms
[...]; and third, those which specify which of the elementary propo-
sitions are true, that is, are theorems. These specifications have the
form of recursive definitions. Thus the term-specifications give a list of
primitive terms, or tokens, together with operations and rules of term
formation which describe how further terms are to be constructed from
the tokens. The specifications for elementary propositions consist of a
list of predicates (properties, relations, and so on) together with rules
of proposition formation for constructing elementary propositions by
means of them. Finally, the specifications for theorems consist of a set
of elementary propositions, called azioms, which are stated outright
to be true; together with rules of deduction showing how further the-
orems are derived. As in recursive definitions generally a property of
closure is understood, namely, that the specifications give all the enti-
ties recursively — for example, all the terms are obtained by the process
described in the term specifications, and so on.” ([30, p. 225—226]@

It has to be mentioned that we cannot define our concept of the degrees of formality
in the same precise way. This might explain why high degree systems and proofs
are usually contrasted with all lower degree variants.

In our running example of Peano arithmetic, say in its first order version,
Curry’s definition of what formal systems are amounts to the following formal
system (instance):

1. Terms:

(a) Tokens: the constant 0 as well as an infinite list [vg, v1, ve, .. .] of vari-
ables.

(b) Operations: Suc, + and *, =, A, =, and V.

5 All emphases are in the original text. A footnote has been omitted.

36

CHAPTER 3. CURRY IN A HURRY

(¢) Rules of term formation: there are two sorts of terms, real terms and
formulae.

i. Real terms: 0 and all variables v; are real terms and if t;, t, are
real terms so are Suc t1, t; + to, and ¢ * to.

ii. Formulae: if t1, t5 are real terms t; = t5 is a formula. If ¢, ¢, are
formulae and v; is a variable then ¢; A ¢o, = ¢, and V v;, ¢, are
formulae, too.

2. Elementary propositions:

(a) Predicates: only the unary F.

(b) Rules of proposition formation: if ¢ is a formula then F ¢ is a proposi-
tion.

3. Theorems:

(a) Axioms: elementary propositions of the form - ¢ where ¢ is a non-
logical axiom as stated in section or where ¢ is a logical axiom in
some arbitrary but fixed system for first order logic.

(b) Rules of deduction: this depends on the system of first order logic we
take as our basis; probably Modus Ponens and Generalisation.

The salient point about the systems Curry calls formal is that they guarantee
objectivity: when someone provides us with a proof for a theorem in such a system
we — or even a computer — can check it line by line. In Curry’s terminology a
successful verification would establish the truth of the theorem. Yet, since this
truth differs from other versions of truth that are external of the respective system
under consideration we will speak of provability for the purpose of distinctionﬁm
With this objective tool at hand Curry feels now entitled to define mathematics as
the science of formal systems (see [31], chapter X]E[) So Curry seems to have saved
mathematics’ objectivity and therefore its status as a science

6 Admittedly, this term itself is also not unproblematic, since we may want to reserve it for
the unary predicate . Nevertheless it seems that the word ‘provability’ elicits the more suitable
associations to Curry’s view than the term ‘truth’ Therefore we will call F the assertional sign
instead.

7 Another terminology (instead of provability) is given by Jonathan P. Seldin who speaks
about “truth within a system or theory” ([I00, p. V1:565]). This avoids the problem mentioned
in the previous footnote but has the disadvantage of being more cumbersome in formulation.

8 By “science of formal systems” he means not so much the work in formal systems but
meta-theoretical work. The formal systems themselves become objects of consideration (see [31]
chapter IX]). The formal systems are not seen as formal games but they mirror meaningful
propositions (see [31] chapter X]).

9 In chapter @ we will discuss in which manner his definitions lead to problems. For now we
want to concentrate on Curry’s achievements.

37

CHAPTER 3. CURRY IN A HURRY

3.3 Fruitful diversity in mathematics

Up to know we have shown (under reserve) how Curry’s formal systems save the
status of mathematics as a science but we promised more; namely that they also
enable a pluralistic attitude. This should be surprising since provability does not
leave room for interpretation and so at first glance seems to oppose any diversity.
Yet, this is only one side of the coin. On the other side the lack of freedom inside
a system allows a very liberal attitude towards the choice of such systems. In
concreto Curry divides mathematical truth “into two stages” (|31, p. 60[): first
provability of the corresponding formalised statement as already discussed and
second acceptability[7] of the corresponding formal system itself.

Unlike provability acceptability is disputable. It is subjective and committed
to a purpose. Curry exemplifies this for the formalised classical analysis: he ar-
gues for its justification in terms of success in the natural sciences, whereas he
claims intuitionistic mathematics to be almost completely useless from that per-
spective. According to Curry intuitionistic mathematics is acceptable on other
grounds instead; say because it delivers constructive proofs for metamathematical
statements. The different systems do not contradict each other but serve different
purposes. In the end the treatment of one system may foster progress in another
one. Hence Curry establishes a view of mathematics that saves objectivity and
endorses various appearances of mathematics at the same time:

“This leads to my final plea — a plea for tolerance in matters of ac-
ceptability. Acceptability is not so much a matter of right and wrong
as of choice of subject matter. Such a choice should be entirely free;
and some difference of opinion is not only allowable, but desirable.
We are often interested in systems for which the acceptability is hypo-
thetical — even sometimes in those which, like non-desarguesian, non-
archimedean, non-this-or-that geometries, are not acceptable for any
known purpose. As mathematicians we should know to what sort of
systems our theorems — if formalized — belong, but to exclude systems
which fail to satisfy this or that criterion of acceptability is not in the
interests of progress.” [31], p. 64]

This — in our opinion — is the true achievement of Curry’s solution. He manages
to harmonise objectivity and subjectivity and so is able to justify pluralism in
mathematics. We call this the essence of Curry’s view of mathematics.

10 In the remainder of this section we always refer to the corresponding chapter XI of that
book.
11 This time the terminology is adopted from Curry.

38

CHAPTER 3. CURRY IN A HURRY

3.4 How Curry treats logic

Even in modern times there is an attitude shared by many authors that when a
high degree system is defined often logic is not mentioned at all; assuming, let us
say classical first order logic, implicitly. The background of this attitude is that
these authors think of their respective logic as the only real one while all others
are useless, foolish, or simply wrong.

By contrast, Curry denied that there is one correct logic for mathematics:

“Let us distinguish two senses of <logic>. On the one hand logic
is that branch of philosophy in which we discuss the nature and cri-
teria of reasoning; in this sense let us call it logic (1). On the other
hand in the study of logic (1) we may construct formal systems hav-
ing an application therein; such systems and some others we often call
<logics>. We thus have two-valued, three valued, modal, Brouwe-
rian, etc. <logics>>, some of which are connected with logic (1) only
indirectly. The study of these systems I shall call logic (2).

The first point regarding the connection of mathematics and logic
is that mathematics is independent of logic (1). [...] [W]e are able to
construct in logic (2) systems which stand more or less in contradiction
with our intuitions of logic (1) — just as we can do the analogous thing
in the case of geometry. Whether or not there are a priori principles of
reasoning in logic (1), we at least do not need them for mathematics.”

(31, p. 65-66])

The logics can be autonomous formal systems or can be part of some formal
system.ﬁ This invites us to conceive of a mixed high degree system as a tuple
consisting of a contentual and a logical part[”]”| In the next chapter this will be
a good pointer for our treatment of what we will there call formalisms.

Finally, for Curry formal systems of logic are like all other formal systems. In
particular they underlay the same considerations regarding acceptability:

“There is no one system of logic which is acceptable a priori for
every purpose under the sun. [...] When we have enough of such
alternative logics we may realize that our religious faith which some

12 We omitted a footnote. The original quotation marks were replaced in the right number by
the smaller and greater sign to avoid confusion with our usage.

13 See, for instance, examples 3 and 7 in [31} chapter V].

14 Curry does not mention this division explicitly but it is in the air.

15 This is an idealisation and therefore is not meant to imply the assertion that contentual and
logical part can (always) be strictly separated. In fact, the later Curry — when discussing the
logicists — stresses that it is not clear which contents should count as logical (see [32] section 1D]).

39

CHAPTER 3. CURRY IN A HURRY

people have in the classical logic is largely a matter of habit, and that
the acceptability of systems of logic is essentially an empirical matter.”
[31], p. 68-69]

Hence all logics are a priori on the same level and may be worth considering.
Curry has a pluralistic attitude towards mathematics and the domain of logic is
no exception.

3.5 Earlier and later views of Curry

So far we focussed on Curry’s presentations of his 1939 view. Let us now discuss
important differences and other relevant aspects of Curry’s earlier and later work.
We refer to Jonathan P. Seldin’s discussion of the earlier work (see [100] [TOT]).
With respect to the later view of Curry we take two original sources into consid-
eration: ‘Foundations of mathematical Logic’ ([32]), which was published in 1963
and is a mix of technical aspects and the philosophical view of Curry regarding
mathematics of that time, and the article “The Purposes of Logical Formalization’
([33]) written in 1968, which belongs to the philosophy of mathematics.

With respect to the early view one should know that Curry tried to deal with
the technique of substitution in a more simple and clear manner than this was
done in Principia mathematica (see [L00] and [I01, section2.2]). The resulting
project was combinatory logic, which in turn led him to the conviction that formal
systems can create new things of real value (compare [33]). An important difference
between the early Curry and the view presented in [29, B0, [31] is that the former
only allowed one unary predicate for formal systems (named abstract system or
abstract theory at that timd'®), namely the assertion (see [100])[T]

Seldin stresses in [I0I, chapter4] and [102] that Curry’s view in [29 B1I] is
not mature. One difference Seldin is referring to is the following definition of the
later Curry: “[M]athematics is the science of formal methods.” ([32, p.14]) This
is broader than the former fixation on formal systems. In our terminology, it can
also comprise mathematics of a lower degree of formality. Indeed, there are some
points supporting that there is a substantial change regarding that matter. First
of all, besides the philosophical logic and mathematical logics he discussed in [31]
chapter 12] he now speaks of mathematical logic as the one that is usually applied
in deductive reasoning and which was the only one used before logic was formalised
(see [32] section 1A]). In addition it seems to be the logic of the metatheory between
formal logics (see [32], section 1D]). He considers systems, called postulate systems,
in which the non-logical axioms are formalised but for the results of which only

16 Curry’s terminology will be one subject of the related work section of chapter @
17 Therefore in the later [32, chapter 2D1] these systems are called assertional.

40

CHAPTER 3. CURRY IN A HURRY

the informal mathematical logic is used (see [32, subsection 1C1]). Instances of
postulate systems are often algebraic theories like groups. Although we claimed
that already in [31], 29 B0] Curry tries to justify pluralism in mathematics he is
more explicit about it later: “[Formalism] admits the possibility of various kinds
of mathematics existing side by side.” ([32), p. 15])

So far all this fits our concept of different degrees of formality very well. How-
ever, we will argue later on for the respective benefits of systems and argumenta-
tions of different degrees of formality. By contrast, for Curry formalisation seems
to be a one directional issue: the more formalisation the better. Other stages have
no value on their own. When he considers stages of formalisation, for instance,
something like the work of Frege and Russell is the first(!) step for himﬂ He
explains this in a footnote: “One can of course distinguish a lot of earlier stages,
but these do not concern us.” ([32, p.61]) A similar point is made by Curry in [33],
in which he compares the transition from the 18th to the 19th century in calcu-
lug™ with the development from the 19th century mathematics to that of the 20th
century: “[...] the supposedly infallible logical intuitions of the nineteenth cen-
tury were not actually so; it is necessary to refine our intuitions of set, function,
proposition, etc. just as in the nineteenth century analysts found it necessary to
refine the earlier intuitions of continuity and limit process. We can do this by
introducing a higher degree of formalization.” ([33 p. 362]"%) So the formalisation
of one stage has to adjust the weaknesses of the previous one. This attitude to-
wards mathematics of lower and higher degree is further confirmed by a listing
of the advantages of higher degree formalisation that Curry gives: absence of ir-
relevant aspects appearing in the less formal versions, greater clarity, avoidance
of ambiguity, creative power, easier to conduct (thought) experiments, and the
possibility to find analogies between before unrelated concepts (see [33]). On the
other hand the advantages of less formal versions are mentioned only implicitly.
“One does not need the ultimate criterion [the highest degree of formalisation| any
more than one needs to use primary standards every time one makes a physical
measurement.” ([33] p. 365]) “Again it is not a goal of logical formalization to abol-
ish logical intuitions. The working mathematician reasons by his intuitions; let us
hope that he will always do so.” ([33], p. 365])

Whether Curry’s view from 1939 to 1941 is mature or not, there is no major
change later on regarding what we called the essence of it, namely the harmonisa-
tion of objectivity and subjectivity to justify pluralism in mathematics. Objectivity

18 He calls these works ‘formalised contensive theories’. Note that our use of the word ‘con-
tentual’ is not congruent with Curry’s use of the word ‘contensive’.

19 He should have included the 17th century also; the time where Leibniz and Newton were
active.

20 Note that the term ‘higher degree of formalization’ (instead of ‘higher degree of formality’)
indicates a process (instead of an attribute), which has only one direction.

41

CHAPTER 3. CURRY IN A HURRY

— or rigour, which amounts to the same thing — is constantly addressed as an issue
in [32, B3]. In the latter source, for instance, he judges intuitive logic to be “not
suitable as an ultimate criterion of rigorous proof.” ([33] p.361]) The concept of
acceptability is further elaborated in [32], subsection 2B4]. There Curry introduces
interpretations, which can be thought of as functions from theories to a contentual
subject matter, and defines validity of a theory — in analogy to soundness — to
mean that the interpretation of every provable statement in the theory is true. If
for every true contentual statement every pre-image regarding the interpretation
is provable Curry speaks of adequateness. Acceptability for him depends primar-
ily on validity, which in turn depends on the contentual subject matter, while
other criteria like simplicity, naturalness, aesthetics, or philosophical satisfaction
are only secondary factorsP! In addition to the treatment of objective aspects
(via formal systems) and subjective ones (via acceptability) the later Curry still
endorses pluralism in mathematics explicitly — as shown two paragraphs before.
However, what is missing in his later work is a clear nexus between those three as-
pects. This might be due to the fact that only [31],29] are systematic presentations
of his view of mathematics while Curry’s later work is not of this kind. Another
explanation is that the necessity to justify pluralism in mathematics was already
much lower in mathematical community in the sixties because the aftermath of
the foundational crisis of mathematics had faded.

3.6 Discussion of the Literature and Related
Work

Let us first explain the relationship between the different sources [31], 29, [30] pre-
senting Curry’s view of mathematics in 1939. In 1939 Curry wrote a systematic
overview of his views of mathematics for the Journal of Unified Science. However,
for publication he had to shorten it. All copies of the respective issue of the jour-
nal were destroyed during World War II. This is why in 1951 Curry published his
views of 1939(!) again in [31] using the original, i.e. unshortened version. In that
book he explicitly states that the text — except for little changes — was written
in 1939 and does not represent his views of 1951 (see |31, p.V]). However, some
copies of the conference version of his 1939 article re-emerged at some time and so
the shortened article was — with minor corrections — republished in 1954. [29] is
a 1983 reprint of that publication. [30] was published in 1941 to supplement the
original 1939 article in the aspect of rigour.

The most extensive literature about Curry’s philosophy of mathematics stems
from Seldin, who even published together with Curry in the field of combinatory

2l In chapter@ we will argue that this is not liberal enough.

42

CHAPTER 3. CURRY IN A HURRY

logic. [100] is a biography of Curry. [101] is a comparison of Curry’s and Church’s
work, which comprises — apart from many technical aspects — some remarks on
Curry’s view of mathematics. The main source regarding this aspect, however,
is [102]; an article, in which Seldin claims that Curry should be classified as struc-
turalist.

Besides Seldin’s work there is not much literature about Curry’s view of math-
ematics. Thomas Bediirftig’s and Roman Murawski’s book [I1], for instance, is
about the philosophy of mathematics with 284 pages (without the appendix) but
Curry’s view is discussed in relation to Hilbert’s on page 109 only. The main point
discussed in [I1I] is Curry’s attitude towards consistency proofs. Notably, three
pages long is Stewart Shapiro’s discussion of Curry’s work in [104, section6.5].
According to Shapiro the most important aspect of Curry’s philosophy of mathe-
matics is his metatheoretical point of view. In his entry ‘Formalism in the Philos-
ophy of Mathematics’ in the Stanford Encyclopedia of Philosophy [114], in which
one chapter is dedicated to Curry, Alan Weir comes to the same result. Although
the available literature is a bit meagre regarding the discussion of Curry’s work
at least there is some discussion at all. Note that in the most important journal
in the philosophy of mathematics ‘Philosophia Mathematica’ there is not even a
single article about Curry’s views of mathematics/?

There are two aspects of Curry’s philosophy, usually regarded as important,
we did not pay too much attention to. First, this is Curry’s attitude towards
consistency proofs, which — as already mentioned — is the aspect Bediirftig and
Murawski in [IT] are concentrating on. For Curry the consistency proofs were
“neither necessary nor sufficient for acceptability.” ([31], p. 61]) This is also stressed
in [104, section 6.5]. The focus on consistency is understandable; for both sources
want to explain the difference to Hilbert’s formalism, which is mainly discussed.
Shapiro adds that Curry’s version of formalism is not susceptible to the Godelian
incompleteness theorems. Although mentioned in [I00] for Seldin this aspect does
not seem to be too important because he does not classify Curry as formalist and
so does not need to demarcate Curry’s against Hilbert’s view. The same is true in
our case.

The second aspect is metatheory, which — according to Shapiro ([104]) and Weir
([114]) — is the most important one in Curry’s work. The latter stresses that the
metamathematics becomes a contentful theory since it is about propositions with
truth values. Seldin discusses metatheory many times, too. In [100] he stresses the
importance of metatheory for Curry and sketches the project of Curry to formalise
it. In [I01, chapter4] and [102] Seldin presents a very simple formal system for

22 In fact, his name occurs only once in a philosophical context (in a review by Christopher
Pincock). Instead the Curry-Howard correspondence (see [6I]) is mentioned a few times. So — if
at all — Curry is rather famous for his technical contributions.

43

CHAPTER 3. CURRY IN A HURRY

counting (which originally stems from Curry) and states that it is possible to
construct all of arithmetic and calculus as well as other important domains of
mathematics as part of the metatheory of that system. Of course, the methods
allowed in the metatheory need to be sufficiently strong for that endeavour. In [102]
it is argued that Curry’s methodological constraints on metatheory were based on
pragmatism. The reason we do not stress metatheory explicitly is because it is only
a system like any other in our view; having most of the times a lower degree than
the formal systems it investigates as objects. This way of thinking metatheory will
be important in chapter [6]

On the other hand our focus, the split of truth into the objective provability
and the subjective acceptability enabling mathematics to be a pluralistic science,
is not appreciated even remotely in the other sources. The split itself is mentioned
by Seldin in [100] and [I02]P% but there are no relevant conclusions drawn from
it. Shapiro and Weir mention that Curry’s view is anti-metaphysical (see [104]
section 6.5], [114, chapter 6]). Like us they adduce Curry’s statement that math-
ematics has “to be independent of any except the most rudimentary philosoph-
ical hypotheses” ([31, p.3]). Neither of them, however, links this to provability
and therefore to Curry’s endeavour of saving objectivity in mathematics. Shapiro
in [I04], section6.5] mentions Curry’s acceptability, too. Yet, Shapiro discusses
that aspect in isolation. There is no appreciation for the concept justifying and
endorsing a variety of mathematical practices.

23 In the 2011 article this split is compared to Rudolf Carnap’s treatment of existence.

44

Chapter 4

Formalisms and logics are similar

4.1 Introduction

For a better understanding of a new concept it is often expedient to integrate
it into some larger context or to compare it with another already more familiar
concept. In this chapter we will conduct a mix of both approaches. In concreto,
we will integrate the concept of the degree of formality into the wider and new
concept of formalism. The latter in turn will be introduced in comparison to
Curry’s treatment of logics, as presented in section [3.4] first.

We will proceed as follows. First, we will discuss the combinability of logics
and formalisms introducing the latter that way. The discussion will result in a
formula that in turn allows us to re-characterise the degree of formality in terms
of a component of that formula (all this in section [4.2). Then, we will see that —
in some sense — there is a necessity to combine logics and formalisms with other
systems (section . The subsequent chapter will address the monotony and
the deductive nature of both concepts. After that we will show that they have a
modelling character (section . Up to then we will have pointed out that logics
and formalisms share many properties. In the last section of this chapter we will
see that appreciation of logics leads to appreciation of higher degrees of formality
and vice versa. Except for the work of Curry, which we have already discussed
in detail, we are not aware of any related work and so there will be no respective
section in this chapter.

45

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

4.2 Combinability, formalisms, and
re-characterisation of the degrees of
formality

Usually when we pick out two different high degree systems arbitrarily, for instance
our first order version of Peano arithmetic and ZF, and put them together, we
obtain only nonsense. In the above case Peano axioms enable us to conclude that
every set is 0 — for which it is not clear why it should be the same as () here — or of
the form Suc x for some x. Due to set theory we are allowed to construct the set
{0, Suc 0, Suc (Suc 0), .. .}EI, which itself has to be 0 or a successor. So it contains
itself, in contradiction to the e-relation being well-founded in ZF.

In section we have already seen that many high degree systems can be
divided into a contentual and a logical part. This split invites us to combine
the contentual part with logical parts of other systems and the logical part with
contentual parts of other systems. So we might mix, for instance, the contentual
part of Zermelo-Fraenkel set theory with classical or constructive logic or even
second order logic at will as long as the two systems are compatible on the formal
sideJf] In the same way we can combine classical first order logic not only with
Zermelo-Fraenkel set theory but also with, say, group theory or arithmetic. In
contrast to the more general case of mixing arbitrary systems discussed in the
previous paragraph in these cases we can never create total nonsense.

So far we spoke of the contentual part of a system in order to distinguish it
from the logical part or form as we might have called it as well. Now, however,
we have to distinguish the formalism from the remaining part, which therefore
is also contentual. To avoid confusion we will from now on speak of the subject-
specific part instead of the contentual part in the former case. The split Curry
considered implicitly can be called logical division. It can then be expressed by
type theoretical means as

systems = subject-specific systems X logic systems,

i.e. every system has a subject-specific and a logical part. Of course Curry only
considered what we call high degree systems but there is no need for that restriction
here.

1 'We use the existence of the set of natural numbers in ZF and the axiom schema of replace-
ment for that step.

2 This restriction will become clearer once we will have developed the complete division
formula.

3 Admittedly, inside a type theoretical setting some logic is fixed at a global level because of the
Curry-Howard correspondence (see [61]), which binds the treatment of logic to the one of types.
Nevertheless axioms can be added at will, for instance the tertium non datur. Furthermore, we
can introduce each logic locally as a new datatype together with the respective axioms.

46

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

We now claim that a similar formal division is possible. To see this let us
consider the subject-specific part of the high degree first order version of Peano
arithmetic as presented in section On the one hand we have a contentual part,
meaning this time a collection of entities presenting the whole aspect of natural
numbers. Ideally this part should not have any form. On the other hand we have
the formalism. This itself consists of a tool to build systems, called the kind of
formalism, and some instance produced by that tool. In our example the kind of
formalism tells us that we get constants, function symbols, as well as predicates
and it gives us a way to write down concrete axioms. The concrete instance gives
us the constant symbol 0, the function symbols Suc, 4+ and *, the predicate symbol
=, their respective arities as well as the concrete axioms (seen as symbolic strings).

The formal division is not specific to high degree systems. Our subject-specific
part of the medium degree formalisation of Peano arithmetic, for instance, has the
same contentual part since it does not depend on the form. The kind of formalism
is some explicit frame allowing us to enumerate various axioms in a way that mixes
natural and symbolic language. The concrete instance enumerates the five axioms
using some notions like 0 and Suc and the defined concept of injectivity.

We can apply the formal division not only to the subject-specific part of systems
but to the logical part — and therefore to the whole system — as well. The contentual
part of the logical part of a system is a collection of true and false logical statements
of that logic, ways to reason therein, etc. The kind of formalism is the same as
in the subject-specific part and we have some concrete instance, telling us, for
example, what the logical axioms (again seen as symbolic strings) look like.

Combining both, formal and logical division, and using type theoretical nota-
tion we can express the type of systems in the following way:

systems := Z formalisms ¢

c : contents

= > > instances(s, [, k)

(s,l) : subject-specific contents X logical contents k : kinds of formalism

o > instances(s, [, k)
(s,l,k) : subject-specific contents x logical contents x kinds of formalism
For those not familiar with type theoretic notation: the above simply states that
every (mathematical) system is a quadruple containing a subject-specific content,
a logical content, a kind of formalism, and a concrete instance of that formal-
ism, where the instance possibilities are limited by the choice of the other three
components.

47

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

Although a system, in which the instance or even the kind of formalism itself is
replaced by another one, is different from the original one, it is common practice to
name both variants the same. One reason for this might be that we usually think
of a system in a more informal way. On this lower degree the different variants
may be confluent. So the necessity of differentiation disappears from that point of
view.

Let us now discuss the re-characterisation of the concept of the degrees of
formality for systems. We argued in section that the use of natural language
as well as condensation determine the degree of formality. Both of these adjusting
parameters, as we called them, are in turn determined by the respective kind of
formalism. By contrast, the instance of a formalism can only influence the sheer
number of axioms, which is not the form of condensation we have in mind[f] So
the degree of formality of a system does depend on the kind of formalism alone,
i.e. there is a “degree function” mapping every kind of formalism to some kind of
value. In particular, we could speak of the degree of the kind of formalism instead
of the degree of formality. Since the latter is more concise and intuitive, however,
we will stick to that formulation.

In this section we focussed on systems, not on argumentations. The results,
however, are transferable. An argumentation, too, can be seen as a quadruple of a
subject related part, a logical part, a kind of formalism — also called argumentation
(or proof) style —, and a concrete instance. Note that also in this case it will be
the kind of formalism that decides the use of (natural) language and condensation.
Furthermore it will determine the frequency and precision of justifications, too.
Hence we can conceive the degree of formality in argumentations as the degree of
the respective kind of formalism in the same way this could be done for systems.

In additon to that, it makes sense to evaluate the degree of an argumentation
style (or of a proof style respectively) without any concrete argumentation (proof)
at hand. We will use the same abbreviations as for systems and argumentations.
In particular, we will speak of low, medium, or high degree argumentation (proof)
styles (see chapter|7).

4 Analogously, a proof does not become more formal only because it is more cumbersome and
therefore, say, twice as long as another proof.

48

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

4.3 Necessity of combinations

So far we analysed how subject-specific contents, logical contents, and formalisms
for them can be combined. In this section, we will discuss why these have to be
combined. Let us first see what happens if we remove the logical part of a system
like Peano arithmetic or ZF. Such a system (s,(,k,4) has only subject-specific
contents, for which there are no devices left to link them. Hence it atrophies to
a collection of facts. Therefore we do not only have the possibility to connect
subject-specific systems to the different logics but there is the necessity of such a
combination, too — at least if the respective system should deliver new results.

The analogue situation with formalisms is even worse. A system without its
logical part is useless but at least it is always clear what we are referring to. Yet,
that is not the case if we leave out the formalism, obtaining a quadruple (s, ,,).
The contentual part of a system is an idealisation and we will never be able to
see such a completely formalism-free entity. As an approximation it might help
to imagine such systems as physical elements having such a short period of decay
that one will never observe them in nature.

Next, we will show that the relation between the logical part and the subject-
specific part is similar to the one between the formalism and the overall contentual
part. Systems of the form (0),, k,4) can only derive tautologies. How narrow this
restriction is depends on what we are willing to count as logic. Second order logic,
for instance, is mightier in this sense than first order logic since functions and
predicates are involved; enabling mathematical notions like Church numerals or
sets (as characteristic functions). Permitting Frege’s courses of value even makes
logic too strong, resulting in inconsistencies.E] However, even if we have a rather
restricted view of logic it still strives to explain the world. Historically this desire
can be traced back to Aristotle’s time (see [7]) but even today we teach logics with
the help of rain and wet streets. These examples do indicate that it is necessary
at least from a psychological point of view to link logic with reality.

The situation with formalisms as isolated systems, i.e. with systems of the
form (0,0, k,1), is again even worse. Strictly speaking we must have k =i = () in
such cases since otherwise the instance ¢ would have to depend on some content.
However, we can weaken the premises by stating that we are just not interested in
the contents, i.e. we conceive the respective systems as games with no relation to
reality or other contents. This works well for high degree systems but the lower the
degree of formality the less clear the situation becomes. From where, for instance,
do the implicit assumptions stem or what should a proof idea without any relations

® A nice explanation of this exact inconsistency can be found in [70].

49

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

to contents look like? Leaving the problems pertaining to the existence aside,
there is still another problem analogue to the one of logics without subject-specific
contents just discussed above: without any content there is no emphasis on which
theorems are important, aesthetic etc. In first order, for instance, we could add
quantifiers where the quantified variables are never used, we could rename things
arbitrarily, write everything in polish notation etc. and everything would be as
good as the original version. In reality, however, humans and mathematicians in
particular are not able to have such an attitude. In the case of formalisms we have
the same problem as with logical systems: the temptation of contentual linking is
irresistible.

Let us sum up. In this section we saw that logics must be combined with
subject-specific contents — and vice versa — and that formalisms must be combined
with the overall content — and vice versa — in an analogous way.

4.4 Monotony and deduction

When using logics we want to get from truth to truth using deduction. Furthermore
in most logics, whenever some proposition has been proven to be true, it should —
ideally — always keep this status.ﬁ The technical term of this is called monotony.

Let us now test whether formalisms satisfy both properties. If we have a high
degree system together with a high degree proof style then the whole setup is
about where to start from and how to gain new certain theorems with the help of
the already proven ones. So both points above are obviously fulfilled in this case.

However, even in lower degree systems and proofs there is the same ambition
since the reasoning frame is firmly established in nowadays’ mathematics (compare
section . Only the success and the expectation of it will change. In practice
one might therefore be more moderate in pushing theorems forward this way; for
the risk of an error in between increases significantly. Perhaps before the time
Fuclidean mathematics arose deduction has not been the aim. Yet, even there
one might argue, that the respective formulae could be used to “deduce” new
information about real life objects not considered so far. At least monotony was
already part of the pre-Greek mathematics, since neither a formula itself nor the
calculations done with it are lost by using the respective formula.

6 Linear logic (see [49]) is a famous exception. In it a proposition is seen as a resource that
is spent when it is used.

20

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

4.5 Modelling

In this section we will show that both, logics and formalisms, have a modelling
character. By this we mean that some input is transferred to logics or formalisms,
some results are found there, and these are transferred back to the original level.

Perhaps surprisingly, this can be seen best in the case of low degree systems
and argumentations. In reality the task might be to paint some building. For
calculation everything is transferred into geometrical forms with length specifica-
tions. After that formulas are applied to determine the required value. Finally,
these results are transferred back into the real world, determining in this case the
amount of paint needed. It is pretty much the same with physical formulas. Re-
ality is modelled by concepts and corresponding values and units. Computation
with such formulas delivers new results. Such results are transferred back into
reality, for an example that some ball flies to a certain point.

In such modellings of reality we have no way to confirm our reasoning directly.
Reality has no argument we could rely on. We can only falsify our modelling
when its results contradict reality. Furthermore we cannot model all of reality: we
can always ask questions about reality which are not answered by our low degree
formalisms, e.g. what the most suitable colour for the building in the example
above is.

Let us now turn our attention to higher degree systems and argumentations.
Often they do not model reality in a direct way, but systems and proofs of a lower
degree instead. The medium degree system for Peano arithmetic we presented, for
instance, models our way of dealing with natural numbers on a less formal level,
i.e. there are a few axioms that should mirror the more informal system. Inside
the higher degree systems and argumentations we prove new theorems and transfer
such results into the more informal language.

The indirect modelling, i.e. the modelling of lower degree systems and argu-
mentations, allows us not only to falsify the higher degree ones but to ask for
each higher degree argumentation whether it is correct with respect to the one of
lesser degree. Verification only requires to show that every valid step in our higher
degree argumentation is valid in our argumentation of lesser degree. By contrast
to the modelling of reality, when modelling more informal systems and argumen-
tations completeness is not absurd. Some of the higher degree systems with their
corresponding argumentations can mirror every proposition of the more informal
one; and even if this is not the case the question might be worth the consideration.

Next, let us consider logics. Like lower degree formalisms and argumentations
they can model reality. In fact, all logical entities expressing that some statement
follows from another — like implication or logical consequence for instance — are “a
matter of the laws/regularities of nature.” ([81, p.10]) So experiences like “first
it rained and then the street was wet” or “the sun started shining and it was

51

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

much warmer after that” over time were translated in “If it rains then the street
will be wet” and “if the sun shines then it will be warmer”[] Since both of the
latter propositions share the same structure — namely that of a simple implication
— we can translate both of them into A — B. As soon as we have collected
further factual data we can infer new theorems inside logic. If we, for instance,
have in the street-example the additional factual information that it rains we
have an implication A — B and an information A. So we can conclude B via
modus ponens. We translate this result back to reality: “the street is wet”. In
contrast to this we do not have “it is warmer now” since we have no additional
information about the sun shining. Although nowadays logics are mainly parts of
pure mathematical systems this does not change the way of proceeding described
above. The only difference is that we do not apply real life situations but formulae.

Since without logic we do not have any transitions to bridge between different
real life situations, propositions etc. there is nothing like correctness for logic,
i.e. there is no way to verify each logical step with the help of some extraneous
non-logical deviceﬁ Falsifiability on the other hand — like in the physical models
— is at our disposal.

To postulate completeness with respect to logic would essentially amount to
assuming that each entity in the world is logical. This, of course, is a very extreme
point of view. One way to come to such a conclusion might be to see everything
as mathematical and everything mathematical as logical.

In this section we have seen that formalisms and logics are modelling tools.
In both cases — like in physical models — falsifiability is present. Systems and
argumentations of a higher degree of formality do have the additional feature to
generate meaningful questions about correctness and completeness.

7 Another way to state this is that post hoc observations became propter hoc via abstraction
(see [107)).

8 This of course does not mean that there is no correctness regarding higher degree logical sys-
tems representing less formal ones; where the latter is meant to include set theoretical semantics
since the respective systems are in need of some logic behind them.

52

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

4.6 Appreciation of logics and the one of higher
degrees of formality

Up to now we compared the properties of logics and formalisms. In this section
we will see that and discuss why an appreciation of logics usually leads to an
appreciation of a high degree of formality and vice versa.

That logic attracts a high degree is a historical fact: already the Aristotelian
logic had a rather high degree of formality and the first high degree systems (for
all of mathematics) were again logically motivated.

So why do we have this attraction? Logics are very general and abstract]]
which is why in contrast to, say, Euclidean geometry with its — although already
abstracted — still more concrete objects, logics lack intuition. For instance, we
would not be tempted to conclude that there is a unique straight line between to
different straight lines, because points and lines are different. However, similar
typing problems, like self-reference or treatment of existence[r_U], led to considerable
confusion in case of logic[l] In Aristotle’s time this confusion culminated in the
Sophist’s challenge to be able to argue for every point of view by logical means.
This provoked a reaction. Aristotle’s answer was twofold:

1. He denied total generality by restricting (his) logic to legitimate concepts.
This part was metaphysical and very unfruitful at best (see [7]).

2. With the syllogisms he gave rules of a rather high degree of formality for at
least some logical inferences.@

The commitment of logic to high degree systems and argumentations did not
change since then. Whether it be George Boole, Gottlob Frege, Bertrand Russell,
or modern mathematicians, they all used (respectively use) high degree systems
and argumentations for their logical work.

Before the time, in which formal methods start to become more popular, logic
was not appreciated too much. In a passage of Goethes Faust (part I, verse 1908
et seqq.), for instance, Mephistopheles criticises logic because of the very small
steps in its argumentation lines. According to him, intuitively obvious knowledge
is reproduced through very cumbersome inference rules (at that time still the
syllogisms). Nothing new, nothing of importance in particular, is developed in
logic. All the formal rules are only obstacles. We do not want to discuss whether

9 According to [8T] thinking in a general and abstract manner was a precondition for logic to
arise.

10" We allude here to the proof of God’s existence by Anselm of Canterbury.

11 A similar argumentation can be found in [70, chapter 1].

12 This is all we need for our argument. However, it seems as if his syllogisms were more
ambitiously made to somehow mirror all valid arguments (see [106]).

23

CHAPTER 4. FORMALISMS AND LOGICS ARE SIMILAR

Mephistopheles expresses the opinion of GoetheH For us it suffices to know that
there must have been contemporaries of Goethe arguing like that. Furthermore
note that Goethe was not a mathematician but “only” very well-educated. In
such a position knowledge of mathematics might have been one or two generations
behind.

The situation regarding the appreciation of higher degrees of formality changed
significantly at the latest in the beginning of the 19th century with Cauchy’s work.
Indeed with Boole’s work it follows directly an important step in the history of
logic. Admittedly, already Leibniz, living one and a half centuries before, with his
calculus ratiocinator had comparable ideas to treat logic arithmetically but this
exception confirms only our claim since Leibniz’ inclination to formalisms with his
characteristica universalis was also exceptional. Let us finally mention that the
strive for finding a mathematical foundation “generated” new logicians like Frege
and Russell, which in turn improved the formalisms as already discussed.

Our argumentation, however, is not merely historical. Nowadays most mathe-
maticians are not too interested in foundational issues. They usually use a fixed
logic in some implicit way but they do not really esteem it. In informatics on
the other hand logic is much more popular than in mathematicsE One may ar-
gue that this is due to computers working with logic. Yet, this argument is not
convincing since computers are working with electricity, too, but there is no over-
whelming interest in electricity in informatics. Instead the salient point seems to
be the practice of reasoning on a higher degree of formality, which is typical only
for informatics but not for mathematics.

Altogether we have shown in this section that an appreciation of logical aspects
leads to an appreciation of a high degree of formality and vice versa. This concludes
our overall investigation of the relation of logics and formalisms. It showed us that
both concepts are very close. Since we were able to integrate the concept of the
degrees of formality into the one of formalisms this also helped to clarify the former
even further.

13 Paul Lorenzen in [75] argues that this is indeed the case.
14 Jeremy Avigad, a philosopher of mathematics and a logician, said at a conference that he
really likes to work with computer scientists since they do appreciate logic so much.

o4

Chapter 5

Benefits of the different degrees
of formality in argumentations

5.1 Introduction

Often proofs of a medium degree of formality are not admitted a value on their own.
Instead they are seen as a tradeoff between the desirable high degree proofs and
the resources, which do not suffice to always work on a high degree. As mentioned
in section Curry, for instance, did think about high degree proofs as a primary
standard not being suitable for daily use. In this chapter we will argue that this
point of view is mistaken, i.e. we will delineate why medium degree proofs have a
great value on their own.

Paradoxically, it is just the essence of Curry’s view of mathematics that will
serve us as a guideline. Our endeavour to find the benefits of the different degrees
of formality is analogous to his acknowledgement of different formal systems for
different reasons. Furthermore his split into a subjective and an objective compo-
nent of truth will serve as a model when we discuss the purposes of argumentations
(see below).

We proceed as follows. In the next section we will discuss the purposes of
argumentations mentioned in the last paragraph. What are they made for? What
do mathematicians try to accomplish with them? In other writings that we will
use to develop our answer, this topic is treated only in side remarks. In section
we will discuss how the three adjusting parameters of formalisation, use of natural
language, degree of condensation, and frequency and precision of justifications,
can contribute to the purposes. Based on this and as a kind of summary follows
the same discussion for argumentations of the different degrees.

95

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

5.2 The purposes of argumentations

In this section we will first discuss some (side) remarks from other authors on the
purposes of proofsE] to ascertain more systematically the purposes of argumenta-
tions afterwards.

Let us start with Alan Robinson who in [94] enumerates tasks that a proof
should fulfil. To this belong: to guarantee certainty, to provide understanding, to
present ideas, to reveal the heart of the matter, and to create conviction. In addi-
tion to that he says that proofs should be simple, clear, elegant, and compelling. By
contrast, high degree proofs — or formal proofs in his terminology — “seem always
to be essentially hard to understand, and inevitably complicated.” ([94) p.269]) He
continues by deploring what he calls the post-formalisation blues: “Formalization
seems to hide the ideas or even to destroy them.” ([94, p.269]) This is illustrated
by two problems, each having a very simple low degree solution — informal so-
lution in his terminology — but only complicated high degree proofs that reveal
no involved ideas. Robinson concludes that “informal proofs are the real stuff of
mathematical understanding.” ([94] p.280])

In [90] Andrzej Pelc argues that (in general) there cannot be any sort of relation
between medium degree proofs — simply proofs in his terminology — and high
degree proofs — derivations in his terminology — that could explain why we trust
the former ones. His reasoning is based on the thought that the resources needed
for high degree proofs of an existing medium degree proof may exceed the ones
the whole universe can offer. Pelc compares a mathematician with a biologist or
trainer working with animals both of who do not explain the respective animal’s
behaviour with biochemical reactions in the animal’s brain but who do their job
on a more macroscopic level. For us the salient point is that Pelc’s argumentation
supports the view that medium degree proofs are valuable on their own; even
with respect to matters of correctness. There is another line of argument leading
to the same conclusion in [I0§] by Tanswell, whose characterisation of medium
degree proofs — (informal) proofs in his terminology — we already mentioned in
section 2.7 He reasons that there are too many very different formalisations of
the same medium degree — informal — proof such that the latter cannot function
as an indication for some higher degree proof. From that we draw the conclusion
that correctness of a medium degree proof cannot depend on the correctness of
some higher degree one alone.

The convincing role of medium degree proofs is stressed by John W. Daw-
son Jr. in [34]: “we shall take a proof to be an informal argument [medium degree
argument in our terminology| whose purpose is to convince those who endeavor
to follow it that a certain mathematical statement is true (and ideally, to explain

1 Other authors do not care about argumentations that are no proofs.

26

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

why it is true).” ([34, p. 270]@ So the convincing power is related to truth but it is
also subjective in character: “[b]ecause standards of rigor have not remained con-
stant, arguments that once were accepted as convincing may no longer be, while
on the other hand, a rigorously correct proof may fail to be convincing to those
who lack the requisite background or mathematical maturity. (And some results,
such as the Jordan Curve Theorem, may appear so obvious that it requires math-
ematical sophistication even to understand the need for a proof.)” ([34, p.271])
As in the case of Robinson, high degree proofs — formal proofs in his terminology
— come off badly: “they are difficult to comprehend, and despite their rigor they
are often unconvincing, because although they provide wverification that a result
follows logically from given premises, they may fail to convey understanding of
why it does.” ([34, p.271]) Solomon Feferman in [38] emphasises that understand-
ing every step of a proof and really understanding the proof as a whole (and on a
higher level) are two very different animals. A proof should convince us that the
theorem is true in a meaningful sense. Jody Azzouni adds “that ordinary rigorous
[i. e. medium degree|] mathematical proofs often (perhaps usually) confer certainty,
a being convinced that the proof is right, in ways that arent conveyed by the
proof’s formalized cousin.” ([5 p.249])

Obviously, all the authors discussed in the last three paragraphs would not
agree that low and medium degree proofs are only secondary standards that are
just easier to conduct. It would be nice, however, to have a characterisation
of the proof’s — or better argumentation’s — purposes at hand that corroborates
this point. The formula Proof = Guarantee + Explanation claimed by Robinson
in [95] can be seen as such a characterisation. This excludes or at least degrades
high degree proofs since — at least from Robinson’s point of view — they are really
bad regarding explanation. Medium degree proofs, by contrast, fulfil both aspects
and are thus superior. However, we are not too happy about this formula. First,
the equality sign is problematic since the right hand side is no real division of the
left hand one but rather a list of tasks that can or must be satisfied| Second,
the property named ‘explanation’ seems to be too imprecise. There is a difference
between an explanation of what is going on and an explanation why something
works. The latter of both meanings is part of the convincing role of proofs, which
even Robinson himself adduces. This role, however, is coupled with some concept
of truth and that in turn should be rather connected with the guarantee aspect.
So the convincing role cannot be classified in a convincing way, which is our last
point of criticism.

2 Emphases are adopted from the original here and in the remaining section.
3 Compare this use of ‘+’ with ours of ‘x’ and ‘¥’ in the previous chapter.

o7

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

Instead we propose to characterise an argumentation by the following three
main purposes:

1. Tlustrate the idea(s): it should be clear what is happening in the whole
argumentation and its respective parts; in particular orientation must be
provided. Furthermore it must be clear what tools (in the widest sense of
the word) are used and how they function.

2. Convince writer and reader: both should believe that the argumentation
establishes the truth of the theorem under consideration and it must be
clear for them why this should be the case. In particular one must not have
the feeling that any step is missing.

3. Deliver objectivelz_f] guarantee: independent from any human the argumenta-
tion should be a guarantee for the theorem such that everyone can rely on
it.

In line with Robinson, Feferman, and Azzouni we think that there can be
argumentations doing a fine job regarding objective guarantee that are nevertheless
not convincing. Furthermore there can be very convincing argumentations that
are objectively false. In Imre Lakatos’ famous ‘Proofs and Refutations’ [71] many
examples of that kind can be found. However, an anecdote of Lamport perhaps
shows best that we can be convinced by a proof although the latter has no objective
guarantee:

“Some twenty years ago, I decided to write a proof of the Schroeder-
Bernstein theorem for an introductory mathematics class. The simplest
proof I could find was in Kelley’s classic general topology text [...].
Since Kelley was writing for a more sophisticated audience, I had to
add a great deal of explanation to his half-page proof. I had written
five pages when I realized that Kelley’s proof was wrong. Recently,
I wanted to illustrate a lecture on my proof style with a convincing
incorrect proof, so I turned to Kelley. I could find nothing wrong
with his proof; it seemed obviously correct! Reading and rereading the
proof convinced me that either my memory had failed, or else I was
very stupid twenty years ago. Still, Kelley’s proof was short and would
serve as a nice example, so I started rewriting it as a structured proof.
Within minutes, I rediscovered the error.” (|72, p. 604—606]@

4 In section we will discuss the requirements for objectivity. For the moment the intuitive
grasp of this concept suffices.

5 We omitted a figure in between.

6 See section for a brief discussion of his structured proofs.

o8

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

Before analysing the three main aspects of formalisation with respect to the
purposes listed in the second last paragraph let us briefly mention that we can
now define proofs in terms of argumentations in a relative elegant way: proofs
are those argumentations that are doing well in convincing and/or in delivering
objective guarantee.

5.3 Contributions of the different aspects of
formalisation with respect to the purposes of
argumentations

Natural language is a very important factor for all of human communication. In
particular, it is used to convince other members of some social group; for in natural
language one can tell a “story”, which in turn can serve as a mental simulation of
whatever is currently under discussion. The domain of mathematics is no excep-
tion regarding that point. Natural language helps to structure an argument, to
accentuate some of its parts, and so to develop a “mathematical story”[]

However, the inclination to heed stories makes humans susceptible to mistakes,
too. Outside of mathematics, for instance, a human may be persuaded by another
human with the help of a good story to buy something he does not need at allf In
mathematics, by contrast, — hopefully — there is no villain who deliberately deceives
others. Nevertheless we might be misled by the coherence of a good mathematical
story — even of our own one —, since neither it nor the natural language used to
tell it are made to cover the subtleties involved in nowadays’ mathematics. Hence
the use of natural language can be a hindrance regarding objectivity. On the other
hand natural language connects different concepts involved in the respective story,
reinforcing the web of belieff’] and thus making it easier to spot mistakes in any
of those conceptsF_U] So natural language can increase and decrease the objective
guarantee of arguments. The magnitude of both effects depends on the concrete
argumentation.

To communicate ideas we use natural language but also other tools such as di-
agrams, gestures, or everyday items as well. Sometimes the latter are more suited
to convey the salient point. Even if no external tools are involved the communi-
cation of ideas often leads to some kind of mental representation resembling some

" This point is also emphasised by Robinson in [94].

8 See [2, chapter 3] for a description of phishing techniques based on story telling.

9 Mentioning this concept is not meant to imply that we are completely in line with the
book [91] of Willard v. O. Quine and Joseph S. Ullian having exactly this title.

10 We will discuss a similar kind of argument in more detail in section

29

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

external tool[”T] So it seems that natural language is sometimes not too useful in
illustrating ideas directly but that it can be a good mediator instead[”] It helps to
bring our attention to the right point or tool. This can be done best when natural
language is used in a concise manner.

Condensation as well as frequency and precision of justification are not less
important but their strengths and weaknesses are more obvious such that we can
be more concise about them. Clearly, condensation helps the illustration of an idea
while justifications are only a hindrance regarding that aspect. The situation can
be compared to that of proverbs, which must be to the point, too. Similarly clear
is the situation regarding objective guarantee: the less the condensation, i.e. the
smaller the single steps are, the greater is the level of objective guarantee. Every
justification enhances that aspect; the more precise the better.

The less condensation and the more justification the better is not true with
respect to the convincing power. In respective argumentations humans lose orien-
tation of what is going on and of what the essential points are. Such argumen-
tations are not more convincing than a story is fascinating which adduces every
irrelevant detail. On the other hand a plot alone is no story and likewise a mathe-
matical argumentation needs to go into some detail to be convincing. What exact
level of condensation and justification one finds most convincing depends on the
individual.

5.4 Benefits of the different degrees of formality

We have finished our preparations and can now evaluate which degrees of formality
serve which purposes best. Let us start with argumentations of a low degree of
formality. They can be characterised by a high degree of condensation, the concise
use of natural language and/or other media, as well as minimal use or even the
waiving of justifications. As discussed, all this increases the potential to present
ideas. So low degree argumentations are made for just that aspect. Regarding
the convincing power the level of condensation and justification are not optimal
but they might still contribute to some extent. The use of natural language —
even in its concise form — might help, too. We did not discuss the convincing
power of other media but whatever the outcome would be it should not change
the overall picture too much: low degree argumentations are an acceptable tool
for convincing. By contrast, it is only the natural language that at least partially

contributes objective guarantee. So low degree argumentations are not suitable to
fulfil this task.

1 Our first example in the introduction of this thesis was of that kind. The mental represen-
tation was an automaton there.
12 Compare this with the idiom “A picture is worth a thousand words”.

60

CHAPTER 5. BENEFITS OF THE DIFFERENT DEGREES OF
FORMALITY IN ARGUMENTATIONS

Next, the argumentations of medium degree mainly use natural language. Fur-
thermore they have a medium degree of condensation and justification. This is the
perfect framework for being convincing. Although medium degree argumentations
are too detailed and although it would be better to use natural language in a more
concise way to focus on the most important aspects or to generate mental represen-
tations, medium degree argumentations can still convey ideas to some extent. The
same is true with respect to objective guarantee; this time the reason being that
medium degree argumentations are not detailed enough and that natural language
does contribute and destroy at the same time. Altogether we see that medium
degree argumentations are relatively balanced.

Finally, high degree argumentations have no or only little condensation, an
abundance of justifications, and no natural language is used. So there are no influ-
ences spoiling objective guarantee. On the other hand any of the above character-
istica hampers the illustration of ideas. The situation with respect to convincing
power is not overwhelming, too. High degree argumentations are too detailed re-
garding that aspect but some contribution might nevertheless be made by them.
Unfortunately, the waiving of natural language has a negative impact.

This analysis shows that neither of the degrees is the overall primary standard.
Each of them is very good in fulfilling one task to the detriment of the other
two. The amount of this detriment, however, is not the same in each case. We
ascertained that medium degree styles are the most balanced ones. This could be
a resource-independent reason why even nowadays medium degree proofs are the
preferred style in mathematics.

Bear in mind that our division into low, medium, and high degree argumenta-
tions is meant to express tendencies. Although we would assign all textbook proofs
a medium degred'] this does not mean that there are no differences between them.
The textbook proofs presented in [I], for instance, are a little bit closer to proof
ideas while the one presented in figure is a bit more formal than the average
textbook proof.

13 This must not be confused with the statement that every text that is written in textbooks
after the word ‘proof’ is of medium degree.

61

Part 11

Demonstration of the usefulness
of the concept of the degrees of
formality

62

Chapter 6

Three points of criticism regarding
Curry’s view of mathematics

6.1 Introduction

In this chapter we come back to Curry’s view of mathematics; this time from
a sceptic’s point of view. First we will discuss three problems his view implies
(section [6.2). Then — and that is the reason we deal with his view again — we
will show that those problems vanish in light of the different degrees of formality
(section . For this consequence to be of real value, however, we have to show
also that the different degrees of formality do not destroy — as a side effect — what
we asserted in chapter |3 to be the essence of Curry’s view of mathematics. Since
subjectivity and pluralistic tendencies are obviously not affected in a negative way
we only have to exclude that objectivity is lost (section . We conclude this
chapter with a related work section discussing briefly the awareness — the awareness
of Curry in particular — regarding our three points of criticism. In addition to that
we will mention two other points of criticism in that section.

6.2 The three points of criticism

Our first point of criticism is the most common one. Stated in our terminology
it complains that all processes of mathematics standing outside the examination
of high degree systems are not taken into account. That is mathematics could
be only found where there is work in, on, or with high degree systems/[f] Histori-
cally such an understanding of mathematics is untenable, because up to the 19th
century there was no system of a high degree of formality| and therefore — fol-

! Use, creation/improvement as well as metatheory of high degree systems is meant.
2 The first high degree system is probably Frege’s Begriffsschrift from 1879.

63

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

lowing Curry’s definition — no mathematics at all. This, of course, is a conclusion
most mathematicians and non-mathematicians would not accept. The situation
becomes even worse when we remind ourselves that even nowadays’ mathematics
is more complex than Curry’s definition of mathematics is able to coverf, though
the work with high degree systems has attained a decisive role.

Next, let us concentrate on acceptability. Curry cites it as reason why math-
ematicians deal with particular formal systems (in Curry’s understanding of the
word) and not with others. However, not every such system is examined because
the one who does so, accepts it. On the contrary the goal of an analysis might be
the refutation or questioning of the underlying system. Of course, in the case of
success the result of such investigations could be an improved system which one
would accept for reasons of acceptability, but ad interim one has worked within a
system which one has assessed as false. An example for such a procedure is to be
found, for instance, in Bertrand Russell’s analysis of a proof of Georg Cantor — and
therefore also of Cantor’s set system — that there is no greatest number. Russell
doubted that result since for him the number of all things in the world should be
the greatest. The result of that investigation was Russell’s antinomy leading to
improved systems like that of Principia Mathematica[]] However, the examination
of such false systems cannot be explained by Curry’s acceptability since the latter
is coupled with some concept of validity (see section .

For the last point of criticism let us first have again a look at Curry’s definition
of what formal systems are. In chapter 3| we cited the definition but we did not
mention an odd and vague addendum stating that all generalisations belong to
the definition as well, as long as the definite character is not affected (see [31]
chapter IV]); where definite character means that the recognition of terms and
elementary theorems as well as proof verification is recursivef’] while theorems are
recursively enumerable [

Indeed Curry considers suitable alternative definitions of what formal systems
are. One of them is to allow only syntactical formal systems which he calls calculi:

“In a calculus it is explicitly stated that the objects we are dealing
with are symbols. We start with a certain stock of symbols and with
two kinds of rules for manipulating them. The first kind of rules, called
formation rules, specifies recursively a certain set of expressions — that
is, linear sets of symbols — which set I shall call formulas. The second

3 This can be seen, for instance, in the analysis of the mathematical processes given by Michele
Friend in [48], chapter 5.5].

1 See [96, chapter Principia Mathematica] for further details.

5 A set is said to be recursive if there is a Turing machine deciding for each input in finite
time whether it belongs to the respective set.

6 A set is recursively enumerable if there is a Turing machine listing all elements of the set in
a possibly infinite progress. There is no feedback that a particular element is not in the set.

64

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

set of rules, called transformation rules, specifies a class of formulas
which 1 shall call assertible formulas; the rules consist of first a definite
list of formulas, called here aziom formulas, which are assertible, and
second, rules determining recursively how further assertible formulas
are to be constructed.” ([30, p. 232[)

Note that there is no reference to syntax or symbols in Curry’s original definition
of what formal systems are. A second alternative definition would be to accept
only assertional formal systems, i. e. systems in which F is the only predicate. Our
Peano system in section [3.2] is an instance of this more restricted variant.

Curry justifies this indeterminacy regarding his concept of formal system by
citing the irrelevance of ontology in mathematics; but let us examine this point
more carefully. It alludes to the treatment of mathematical objects, like natu-
ral numbers or real numbers for instance, in mathematics. It does not matter
whether they are Zermelo- or Von Neumann ordinals (or whether they are cuts,
Cauchy-sequences, or nested intervals respectively). What matters only is that
the presentation satisfies the characteristic axioms, i.e. Peano axioms (or the ax-
ioms of an ordered field together with the existence of a supremum for nonempty,
bounded above sets respectively). That the different variants satisfy the required
axioms can be proven on a high degree level in the formalised Zermelo-Fraenkel
set theory, for instance. However, this is the salient difference to the case of dif-
ferent definitions for formal systems; for we have no superior instance to prove the
equivalence of all possibilities to define what formal systems are.ﬁ

Admittedly, Curry argues for the equivalence between his formal systems and
calculi’] and we can think of similar arguments for the comparison of other kinds
of formal systems. Yet, first this requires infinitely many alternatives to consider
and, second, the particular arguments are not on a high degree level. However,
the arguments must be objective to justify the indeterminacy (between particular
kinds of formal systems). Hence we face the initial problem for which Curry
proposed formal systems to solve it.

So Curry’s definition of what a formal system is together with the addendum
is too indefinite to support his claim of ontological irrelevance. This in turn un-
dermines objectivity in the way he wants to achieve it, namely via provability in
formal systems. However, we cannot simply leave out the addendum since it would
make mathematics too narrow[]

7 The emphases are adopted from the original.

8 This argumentation is influenced by an analogous one in Penelope Maddy’s [76}, section 3.2].
9 See [30] for further details.

10 Otherwise Curry would have seen no need for such an addendum.

65

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

6.3 The three problems in light of the different
degrees of formality

If we translate Curry’s definition of mathematics as science of formal systems into
our terminology this amounts to stating that mathematics is the science of sys-
tems of a high degree of formality and the high degree proofs therein. Even if
we take Curry’s later and broader characterisation of mathematics as science of
formal methods (see [32, chapter 1C3]) this still implies that high degree systems
and proofs are the benchmark. It should be clear from the first part of this thesis,
however, that this is not the the point of view we are espousing. At least medium
degree systems and medium degree proofs must be included; for — first — these
have the benefit of being the best balanced ones regarding the purposes of argu-
mentation and — second — even today these are the ones most commonly used in
mathematics. So the most narrow characterisation (or definition) of mathemat-
ics we can think of is as the engagement with systems and argumentations that
are at least of medium degree of formality. The most liberal (but still sensible)
characterisation of mathematics is as the engagement with all systems (perhaps
unconsciously) and argumentations that mathematicians expect to be translatable
into ones of at least medium degree. The translations of the orginal argumenta-
tions are then proofs that have great convincing power or that provide objective
guarantee.

Either of both characterisations resonates with the history of mathematics since
the limited possibilities with respect to formality of pre-Fregean mathematics can
be taken into account. If one or both of the characterisations will — for some reason
— turn out to be improper this should not be due to differences between the past,
present or future but due to a general misconception.

With regard to the second point of criticism we can without difficulties allow
for other motivations than acceptability to engage oneself in a system: we can
conceive of the system under consideration as a mathematical object and do our
analysis from the perspective of another (accepted) meta system. In case one wants
to find a contradicition, for instance, it is an argumentation beginning with “Let
us assume the system under consideration as correct. Then ...”. Curry does not
have such a meta system at his disposal since it is not formal in his understanding
of the word.

Finally, we feel not in need to establish the irrelevance of what conception
of formal system is used. By contrast, we will incessantly investigate systems
representing the same content that will turn out to be not equivalent; especially
when the systems are of a different degree of formality.

The above “solutions” of the three problems of Curry’s view might be un-
satisfactory (in particular in the third case) since we went around the problems

66

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

through generalisation. In fact, the difficult part is not to show that our broader
view is not susceptible to the three problems related to Curry’s view — which are
related to narrowness of Curry’s view —, but that we do not create new problems
along the way. In concreto we must show that what we have claimed to be the
essence of Curry’s view on mathematics, namely that objectivity and subjectivity
can be harmonised to justify pluralism in mathematics, is preserved. Obviously, it
is only the objectivity part that is at risk of being disrupted by our generalisations.
Therefore it will be addressed in the next section.

6.4 Is objectivity lost?

It is clear that many of the systems and proofs we are considering cannot be
counted directly as completely objective. So if we expected all systems and all
proofs to have a high or even the highest standard regarding objectivity then
the answer to the section’s question would be simply yes. Yet, there does not
seem to be any good reason for such a requirement. Instead it suffices if (most
of) mathematics can be lifted on demand with respect to objectivity. We claim
that this can be done by formalisation; independent from any concrete choice of
what counts as high degree system or proof and independent from any equivalence
between the different variants. Furthermore we will argue that the medium and
low degree systems and proofs are not the fifth wheel regarding objectivity but
that they can contribute to even more objectivity in a way higher degree systems
cannot.

To argue for both claims we must first clarify in more detail than in chapter
what makes a procesﬂ — and therefore an argument in particular — objective.
Obviously, we need independence from human actions or thoughts unless these
are not part of the process itself. The same is true regarding a particular time or
space. The process should be repeatable and always have the same, unambiguous
result.

With this characterisation of objectivity in mind we can now start to show both
claims. Let us begin with the second claim that lower degree systems and proofs
can contribute to objectivity. In the case of Egyptian geometry, for instance, the
degree of formality was rather low but the mathematics was objective nevertheless.
The reasons were the reality related contents instead of the formalisms. An ascer-
tained formula could be proved by reality — and therefore independent from other
humans etc. — again and again. The result was always the same and unambigu-
ous. Either the calculated resources — like building material for a pyramid — were

11 We avoid the word ‘experiment’ since this connotes a too narrow point of view for our
purposes.

67

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

correct or not. By contrast, topics not related to reality in an obvious way, like
infinity for instance, cannot be discussed objectively at a lower degree of formality
in this manner.

Nevertheless, even modern proof ideas of contents that are not (obviously) re-
lated to reality can contribute to objectivity. This is so because recurring (schemes
of) proof ideas can prove themselves in mathematical practice. Their application
might be often successful, leading to comparable or even the same results, and the
translation of such ideas to more formal versions might have been established as
unproblematic. Proof ideas themselves are ambiguous but their outcome need not
be. They are not independent from humans who have to understand them but
there is usually a large mathematical community that scrutinises them. So their
acceptance does at least not depend on a single human.

The case is similar regarding (schemes of) single steps of medium degree proofs.
Instances of these might occur in different proofs for very different theorems. Since
they are less condensed and of a more technical nature the single steps can be
compared nevertheless. So the number of repetitions and the independence from
content, humans etc. increases. In addition to that, due to their technical nature
single steps are less ambiguous. Finally, the objectivity of the single steps is carried
over to the whole medium degree proof.

Another reason why medium degree proofs contribute to objectivity is their
combination of rather contentual and rather formal aspects. So there is double
backup for the case that one of them turns out to be problematic. However, this
insight does not only pertain to medium degree proofs per se but — on a higher
level — to all combinations of mainly independent argumentations; especially when
they are of a different degree. The susceptibility to errors can be compared to
the probability of simultaneous occurrence of independent events in stochastics.
This is — in our opinion — the proper reason why translations from one kind of
formal system into another — and lower degree meta argumentations that these
translations are correct — are expedient. If one of the variants to define formal
systems turns out to be inappropriate this would — if the translations are correct
— spread to all variants; which is improbable.

To say that low and medium degree systems and proofs contribute to objectivity
does not imply that high degree systems are superfluous. In our view as in Curry’s
they are the most important guarantors of objectivity (claim one above). This is
true because something like syntactical modifications belong to this WOI‘ldH Our
experience with them is not limited to single events but everyone — in particular
a computer — can use and track syntactical modifications everywhere and every
time. Furthermore the process of proving in a high degree system is unambiguous.

12 Perhaps this is also true for non-syntactical formalistic modifications but we do not need to
discuss that here.

68

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

It is clear which strings are given ab initio and how one may create new strings
from these. All we need for recognising or writing a single character is space,
say consisting of pixels that are filled or not and whose content can be erased or
(re)filled [y Of course it is possible to fill only half a pixel such that its status
becomes unclear. But that does not matter, for both writer and reader strive for
unambiguity. Note that these considerations about the contribution of high degree
systems to objectivity are not dependend on any special kind of formalism (apart
from the restriction to syntax, which might not be necessary).

It is this tremendous contribution of high degree systems and proofs to objec-
tivity that allows us to consider any contents even if they are completely odd. We
simply do not have to rely on the contentual contribution to objectivity since the
formalism does this job already well enough. So the strictness of formal systems is
like a bottleneck. After passing it one enjoys the total freedom lying outside the
bottle. If, by contrast, one does not pass this bottleneck contentual restrictions
subsist. One is trapped, so to speak, in the body of the bottle.

Let us sum up. In this chapter we have shown that Curry’s view bears three
essential problems, which vanish in our more pluralistic alternative permitting
systems and argumentations of different degrees of formality. We had to ensure,
however, that our approach does not spoil the objectivity part in the essence of
Curry’s view of mathematics as a side effect. We did not deny the outstanding
contributions of high degree systems and proofs with respect to objectivity. Instead
we argued that low and medium degree systems and argumentations do not stay in
conflict with higher degree versions but make their own contribution to objectivity.
So objectivity is not lost; it is won! From a bird’s eye perspective this shows that
our concept of degrees of formality can help to solve problems belonging to the
domain of the philosophy of mathematics.

6.5 Related Work

There are two other points of criticism on Curry’s view we are aware of but which
we did not cover in the previous sections. Let us start with one that we deem un-
justified. In [I1] and [114], chapter 6] the formal systems of Curry are erroneously
described as (essentially) syntactic, which in turn is assessed by many mathemati-
cians as a poor view of mathematics. Whether this latter attitude is justified or
not, it canot be an adequate criticism of Curry’s view since for Curry a syntacti-
cal system is just a special variant of what he called a representation of a formal
system (see [31, chapter VIII]). He even states explicitly: “I do not agree that the
only things which can be treated formally are symbols.” ([31], p. 45])

13 Tt is not by coincidence that this sounds similar to Alan Turing’s [T10, section1]. His
machines must be objective and concrete parts of this world, too.

69

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

Another — justified — point of criticism regarding Curry is his terminology. Weir
in [I14], for instance, criticises the word ‘token’ since tokens — according to him
at least — must be finite. Seldin complains about the change in Curry’s terminol-
ogy (see [100, 102]). In [32, subsection 2S2] even Curry himself acknowledges the
difficulties arising from the change of terminology. What in [31] is called ‘term’,
for instance, is called ‘entity’ in previous works and ‘ob’ in later works. Next, in
the earlier work he uses both, ‘abstract system’ or ‘abstract theory’, to designate
what is called ‘formal system’ in [31], while in [32] systems are particular theories.
As a last example for the change of terminology, Seldin reports in [102] that Curry
changed the word ‘metatheory’ to ‘epitheory’ after he was criticised for the for-
mer word by Kleene because Curry hated discussions about words. Regarding the
criticism of terminology we want to add that in [31I] Curry divides truth into two
stages: first provability and second acceptability (see [3I], p.60]). Yet, we see no
reason that provability has to come chronologically before acceptability (neither
vice versa). It is a restriction that can be omitted without consequences. Indeed,
in [30, p.241] Curry does not mention the word ‘stage’ but solely uses the word
‘split’. A last issue of terminology pertains to the word ‘formalism’ itself. In [100]
and [102] Seldin surmises that the word ‘formalism’ might have only been chosen
since Curry was a PhD student under Hilbert. Having said that, the terminol-
ogy is only a minor problem not related to any essential aspects of Curry’s view.
Therefore we did not list it above.

The first point of criticism we mentioned, i.e. that all processes of mathemat-
ics standing outside the examination of high degree systems are not taken into
account, is not new. The related historical objection is presented by Shapiro in
[104, p.170] but according to Seldin it dates back at least to 1966 where it was
orally uttered at a colloquium in Hannover, in which Seldin participated (see [102,
p.5]). However, either this criticism is even older or Seldin’s explanation that this
kind of criticism caused Curry to change his definition of mathematics in 1963 to
the science of formal methods (see [32, p. 14| for the definition and [100] as well as
[T01), chapter 4] for the explanation) does not make sense. In fact, in [I01] Seldin
also says that the criticism is much older but he does not name a concrete year
there. In [I14], after the erroneous classification of Curry’s view as syntactical,
Weir supplements that mathematicians in practice prove things about mathemat-
ical objects, not about something like strings. Leaving the string aspect aside this
is our first point of criticism but without the historical dimension. Curry’s 1939
characterisation of mathematics as presented in [31], 29] [30] simply does not fit the
mathematical practice, neither in the past nor in the present.

For Seldin, the criticism discussed in the previous paragraph is only valid for
Curry’s view in 1939 but not for the later one as presented in [32 33]. Seldin
himself criticises other sources for considering only [31, 29] and treating them

70

CHAPTER 6. THREE POINTS OF CRITICISM REGARDING CURRY'’S
VIEW OF MATHEMATICS

as mature work (see [I0I, chapter4] and [102])[F] It seems, however, that even
Curry’s later views cannot solve the problem. Admittedly, Curry’s later view is
more liberal considering different degrees of formality (or formalisation in his ter-
minology) but the lower degree variants are not on a par with the higher degree
ones (see section . In practice, however, the medium degree systems and argu-
mentations are preferred. In chapter[s] we gave reasons for this preference that do
not rely on resources. Therefore Curry’s comparison of high degree formalisation
with the primary standard for measuring in physics as discussed in section |3.5| is
misleading.

We are not aware of any mentioning of the two other problems presented here.
We already discussed in section that Curry’s attitude towards acceptability
does not change in [32]. This indicates that there really was no criticism compelling
him to change his opinion in that respect. In section |3.5| we also mentioned that
Curry formalised the metatheory. This suggests that he himself was not totally
convinced of his argumentations concerning the irrelevance of ontology of formal
systems. However, since the formalisation could have been done in another kind
of formal system, too, the formalisation of metatheory only leads to an infinite

regress 1]

14 This criticism is conretely directed at Shapiro’s [T04]. The other sources we discussed,
namely Bedurftig’s and Murawski’s [IT] and Weir’s [I14], do not even cite [29] but only [31].

15 This is the opposite stance to Shapiro’s in [104] section 6.5], where he presumes the regress
not to be vicious. However, Shapiro does not justify this assessment.

71

Chapter 7

Learning how to prove: from the
Coq proof assistant to textbook
style

7.1 Introduction

Most computer science students have difficulties with proving theorems. Since
many of their solutions avoid formalisms or apply them in a wrong way (see [66])
it seems obvious that the formalisms are at the heart of the problem. In concreto
we suspect the blending of formal and more informal aspects, which is typical for
the textbook proofs the students are asked to develop, to be the main obstacle to
learning how to prove. The formal aspects make a precise argumentation necessary
while the informal ones are hiding this precision.

In accordance with the Cognitive Apprenticeship approach [23], which we al-
ready used in another course (see [68]), we try to render the strategies for precise
argumentation visible. This can be realised most effectively in the case of high
degree proofs. Due to their lack of natural language the suggestive character de-
creases and the students can concentrate on the true aspects of the proof. The
high granularity as well as the high frequency and precision of justifications make
the single steps replicable and the requirements for a correct step become clearer.

Apart from transparency, focussing on high degree proving has another — per-
haps even more important — advantage: thanks to the symbiosis of high degree
proof style and computers we can use Coq to provide the students with a clear
and immediate feedback for every step they attempt[] So strategies will be not
only visible but even evaluable all the time. This leads to almost perfect learning
conditions. By contrast, the only individual feedback students would normally get

I Proof assistants like Nuprl or classical Isabelle share this advantage.

72

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

stems from the correction of their homework assignments. Such kind of corrections,
however, can only evaluate the product, not the process. Early mistakes in the
proof, then, render the remaining part moot. So there is no way to overestimate
the benefits, which will arise due to the use of Coq in this phase of learning.

So far this militates in favour of teaching high degree proofs instead of the
conventional teaching of textbook proofs. Nevertheless this would be no solution.
Textbook proofs as an instance of medium degree proofs are not only very differ-
ent from high degree ones but the former also have benefits that the latter are not
sharing (see chapter . Therefore our overall approach is to start with teaching
students how to prove at a high level of formality first and then to transfer their
achieved proficiencies (and not just the proofs) to the textbook style. It is espe-
cially this latter step, in which our considerations of part I of this thesis will turn
out to be very useful.

Before discussing our first experiences with our approach let us briefly mention
that a declarative proof assistant would be no good alternative for the first step
although working with it would be closer to creating typical textbook proofs; the
reason being that students need to learn the single steps of the process of proving
before creating proof products. This requires the clear (and immediate) feedback
mentioned before. Declarative proof assistants like Isabelle/Isar, however, do not
provide a clear, intensional feedback why some proof step is possible or wrong.
They rather evaluate a declarative step as an idea that (already) works or not.
This is a useful feedback for all those already mastering the technical aspects of
proving but not for the students we are addressing. That is why we stick with Coq
in the first step.

We tested the approach of the two steps — with the focus being mainly on the
first one — the first time in a course, held in October 2016 at Universitdt Hamburg.
Employing logic and inductive data types and in accordance with the previous
paragraphs we had great success regarding the first step/]] With respect to the
second step of transferring back to normal textbook proofs we had a rather naive
approach in that course: we gave a lot of assignments calling on the students to
create a textbook proof out of a proof in Coq and vice versa. The results here
were not nearly as convincing [’

So let us now discuss in which way the treatment of the second step might
be improved. We think there are at least two appropriate ways to deal with the
difficulties the students had with itf%

2 The exam results are discussed in [I5] section 2] while a more comprehensive evaluation of
the course analysing also the amount of questions, working habits etc. of the students can be
found in [67].

3 See again [I5] section 2] for further details.

4 In [15], the relation of which to this chapter will be discussed below, we listed the focus on
Coq proofs as a third alternative. With the background knowledge of the benefits of the different

73

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

1. Change Coq proofs to be (more) like normal textbook proofs.

2. Find some new way to bridge the gap between the ability to prove in Coq
and in textbook style.

The idea of the first approach is to create proof environments for the different
domains of mathematics, which allow students to prove in Coq in a way similar to
the textbook proof styleﬁ In principle such environments can be developed in Coq
by an excessive use of medium degree tactics (and suitable libraries)ﬁ In the next
chapter we will present such medium degree tactics for the domain of arithmetic.

In this chapter we will concentrate on a realisation of the second approach,
which we already tested in a course in September 2017 at the University of Pots-
dam. The key idea for dealing with the second step (the bridging) is to reduce
the degree of formality stepwise from Coq to textbook style. We will describe this
approach in more detail in the next section. In sections - we will discuss
the intermediate proof styles used for the stepwise reduction of the degree of for-
mality. We call these line by line comments, weakened line by line comments, as
well as structure faithful proofs. The subsequent section will be about relating the
intermediate steps and the textbook proofs in teaching. Section [7.7] treats related
work and section provides summary and conclusion for this chapter.

There is already a separate article, namely [I5], dealing with the same topic.
This chapter is essentially a shortened version of it concentrating mainly on the
conceptional partsﬂ The reader who is interested in the empirical data and the
concrete procedure is referred to [I5, sections2,8] and [67]. Furthermore, for the
first course there exists an open access video series of the lectures in German
(see [14]).

degrees it is clear that this cannot be a solution. In the article, however, we argued against the
focus on (conventional) Coq proofs by pointing to the difference between proving in a prepared
file and the development of new projects.

5 This does not necessarily include the use of natural language, which is not the most impor-
tant point of the intended resemblance.

6 For a real proof environment further minor aspects are relevant, which we do not want to
discuss here.

7 Other changes are due to the preparatory work of the previous chapters.

74

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

step 2,

substep 2
sges 2 1 step 2,
Substep substep 3
mastering
Coq-proofs step 2,
first step substep 4
not being mastering
start —> able to textbook
prove proofs
not this
way

Figure 7.1: Second step divided into many approximately equidistant substeps.

7.2 The idea: stepwise reduction of the degree
of formality

The basic idea to improve our teaching regarding the second step, i. e. the transfer-
ring to textbook proofs, is rather simple. We can compare this step with a stream
students have to cross. Some of them can jump across very well and are able to do
so without further assistance. However, most of them will need help. Let us say
there is a big flat stone in the middle. This would make things much easier. By
contrast, if there would be a stone only at the beginning or at the end this would
not be of much help. So we have to find helping stones dividing the whole step into
approximately equidistant substeps (figure [7.1]). Such a scaffolding (and its later
deinstallation) is in line with the Cognitive Apprenticeship approach (see [23] [68]).

What should the flat stones in the middle of the stream look like in the context
of proving theorems? Our general approach is to teach students textbook proofs
by teaching them proofs of a very high degree of formality first. So the idea to
install platforms — which then are particular proof styles — that are intermediate
in their degrees of formality is not far fetched. Yet, the concrete choice is a little
bit fiddly. The proofs one can develop with proof assistants like Isabelle/Isar or
Mizar might be considered as candidates. From the discussion in section it
will follow, however, that they are not suited. Ralph J. Backs pen and paper
approach of structured derivations (see [0]) is product oriented and therefore does
not fit our process oriented approach. Therefore we had to invent new suitable
proof styles. Fortunately, we already detected three adjusting parameters for the
degree of formality in section we can orient ourselves on.

75

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

To begin with, we observed that students do not only face major problems in
transferring from the formal language to natural language (and vice versa) but
that at least some of them are even reluctant to use natural language. It must
be made clear to all students that natural language is no unnecessary, imprecise
adjunct. Therefore intermediate platforms should stress that natural language can
be used in a very precise manner and that it has the power to structure arguments.

In the beginning of the second step students have been taught only to develop
Coq proofs, in which every single modification of the proof situation is announced
by an explicit justification. Since in textbook proofs the single steps are of a much
coarser nature the intermediate platforms should increase the condensation cau-
tiously. One way to do so is to eliminate all repetitive aspects first. Only when
students have gotten used to this easy form of condensation they should be con-
fronted with forms of condensation, in which information is really lost. As we will
see, by increasing the degree of condensation we will be able to decrease the num-
ber of justifications and the precision of the remaining ones in a straightforward
manner.

Two last points we want to mention are readability and feedback. In section
we already noted that proof scripts alone(!) are not readable at all. By contrast,
textbook proofs use natural language to tell a mathematical story and are thus
designed to be read (compare with section . So we should check for each plat-
form whether the readability is increased. Next, — as discussed in the introduction
— when working in Coq the students get a feedback for every single step they at-
tempt. There is no feedback in this sense in the case of textbook proofs. Still,
there are some possibilities regarding self-monitoring but these are hard to deal
with. So it is desirable to create intermediate platforms, in which self-monitoring is
rather straightforward to conduct. This way the feedback can be reduced stepwise
together with the degree of formality.

7.3 A small step for mathematicians but a big
one for learners: line by line comments

The first intermediate platform we introduce is line by line commentation. By this
we mean adding comments to every line of an already existing Coq proof. These
comments have to use natural language to describe precisely the modifications
made in the proof situation at this step. This is illustrated in figure [7.2l To
support this tasks students are provided with formulations for all the logical rules
and the remaining tactics that can appear.

Please note that regarding language the sole focus is on precision. Hence (for
now) we do not request the students to vary their formulations. Even more we

76

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

dxxd T LORC O

«f Coq-examples.v I

Ready _Line: 72 cChar: 5 Caqlo@arted |

Figure 7.2: Proof exemplifying the line by line comments.

7

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

do not expect the students to use language in a structure giving way or an ideas
mediating manner. Furthermore, at this stage we do not require any form of
condensation, whatsoever. The logical justifications are implicit in the written
assumptions and in the formulations explaining what remains to be shown. The-
orem applications — if there are any — have still to be done in a rigorous way,
instantiating one parameter at a time.

Another relevant point is that students need some time to write down com-
ments. Since the writing process itself does not exhaust their mental resources,
students will also reflect on what they are doing during their process. Furthermore
they have to make explicit the bookkeeping that is usually done automatically by
Coq. Hence they do not only have to handle every new situation for itself any-
more, but they have to view their proof holistically. So every step becomes part
of a whole and the different proof step situations become linked together. Hence
we do foster the thinking about the Coq proof at hand and therefore line by line
commentation is also a tentative step towards a bird’s eye perspective. This per-
spective in turn should help the students to develop more readable proofs later
on.

Obviously, we do not have any kind of automatic feedback for the comments.
However, due to the given recommendations for formulations and the line by line
comments of other proofs students can create their own feedback. By contrast,
when proving a theorem in a textbook manner there are no such clear reference
points for self-monitoring.

To sum up, we have created a Coq dependent proof style, which is between
the Coq proof itself and textbook variants of it. Since it is the first of three
intermediate platforms this style is still closer to the former than to the latter. Yet,
this level already involves language and some transition to a bird’s eye perspective.
Furthermore the feedback is already weakened. That weakening can indeed be a
step forward will be the subject of the next section.

7.4 Weakened line by line comments

By a weakened line by line commentation we mean a line by line commentation
with a few important differences:

1. There are some situations where two or more steps of the same kind have to
be condensed into a single step. For example the first four steps in figure
must be condensed to “Let A be a type, P and () be propositional functions
over A, and let furthermore (3a: A, Pa) V (Fa: A, Q a) be assumed.
We have to show 3a: A, Pa VvV Q a”.

78

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

2. There is some textual smoothing required. The previous point already con-
tains the formulations “be a type” and “propositional function over A”. Fur-
thermore from this level on many textual repetitions should be avoidedﬁ

3. Trivial endings like “but we already know it”, “the same are always equal”, or
“ex falso quodlibet” etc. are not commented anymore. Instead the comments
for these are subsumed in the respective comments before (if there are any).

4. The comments have to be oriented at an intuitive understanding instead of
the logical rules. In figure [7.2] for instance, we simplify the comment after
“use_or” by “We make a case analysis over (3a: A, Pa) V (Fa: A, Qa)”

5. Parameters that can be made implicit must not be mentioned. Given the
theorem lequ_antisym stating that Vn m: N, n<m —-+m<n—=>n=m
and given two hypotheses H : n < m and H' : m < n, for instance, the
student should comment “Using theorem lequ_antisym applied to H and
H’ we obtain n = m” but not “Using theorem lequ_ antisym applied to the
natural numbers n and m as well as to the two hypotheses H and H' we
obtain n = m”FI%]

6. In case of analogous branches in the proof only the first of them is permitted
to be commented. The following ones have to be declared as analogous.
Furthermore it has to be explained precisely what changes would have to be
made if we had commented everything. In contrast to the proof in figure[7.2]
for instance, a weakened line by line commentation would only write one
comment for the second branch: “This case is analogous to the first one. P a
has to be replaced by () a everywhere except for the disjunction P a V Q a
and we have to prove the right side of the disjunction instead of the left one”.

The use of language becomes more difficult at this stage. First of all the for-
mulations must have a richer variety now. This in turn eliminates the possibility
of a complete listing of all needed formulations, which was given to the students in
the case of line by line commentation before. So students cannot simply replicate
the suggested formulations from such a given list but have to modify the former
formulations. In case of analogous branches, students even have to find formula-
tions completely on their own. Finally, some of the formulations must condense

8 In the course in Potsdam we did not require to avoid repetitions but it seems to be a suitable
point.

9 In the actual course this point was not taken into consideration.

10 The direct application of multiple arguments for functions is the same as in the case of the
universal quantifier; for both are functions from a type theoretical point of view.

79

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

several lines. So language starts to determine the structure of the proof. Yet, this
is just the beginning and most parts are still given by the Coq proof. Furthermore
language is still not responsible for the communication of ideas.

Despite the lack of ideas contained in them the weakened line by line comments
become more readable. This is due to the more intuitive formulations and the
omission of trivial endings. Furthermore the labelling of branches as analogous
saves resources.

The latter point deserves further attention. When writing (or reading) line by
line comments students should become frustrated by all the annoying repetitions.
They should wish to condense these and this happens at this stage for the first
time. This pertains to the analogous branches as well as to lines of the same kind.
Yet, both kinds of condensation preserve information. They can be reverted and
are therefore innocuous.

The omission of implicit parameters is a tentative step towards a more re-
strained handling of justifications. It fits the idea of avoiding repetitions at this
stage and can therefore again be seen as the little brother of our efforts regarding
condensation.

With respect to feedback comparison with canned formulations will not always
be possible anymore. Instead students have to orient themselves on other weakened
line by line comments or their former solutions for line by line comments. Although
this does not sound like much it is still much more than in the case of textbook
proofs. In the former “only” narrow deviations from a given standard have to be
found.

The weakening of line by line comments has brought us closer to textbook
proofs. While the main focus in the transition to line by line comments is on
language the focus in the transition to weakened line by line comments is on
condensation. Although we already made some tentative improvements regarding
readability there is still a big gap between weakened line by line comments and
textbook proofs. With the next intermediate platform we will reduce it.

7.5 Structure faithful proofs

The last of the three intermediate platforms is given by what we call structure
faithful proofs. These are proofs in natural language that have the same structure
as the corresponding Coq proofs. Besides the usual backward reasoning structure
faithful proofs allow forward reasoning using equations and implications. Except
for argumentations based on reflexivity, symmetry, and transitivity of equality or
other equivalence relations every single step has to be mentioned to some extent.
For every step a justification has to be stated but this should be a short hint

80

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

only. For instance, theorems have to be mentioned but not the arguments with
which they are instantiated. Furthermore there is an important consequence of
this definition: since structure faithful proofs do only depend on the structure of
Coq proofs but not on the lines of code, they can be developed without having to
write down a Coq proof.

Let us consider an example of a structure faithful proof (figure . What
comes to our attention immediately is the explicit structure given by the symbols
‘+7, “* and ‘-% Apart from that the proof looks similar to a textbook proof.
Most of the justifications in this proof can be found on top of the equality signs.

That justifications usually are only hints in this kind of proof can be seen, for

suc_n_sub_suc_m
example, in Suc n© Suc | fouensub_sue_m) n©&l. Here, we express that the theorem

suc_n_sub_suc_m is used but we do not state explicitly that n from the theorem
is instantiated with n and m with [. This does not only pertain to equational
reasoning: “[...] we have n©l = 0 and therefore by equ_ fct, pred (n&l) = pred 0”
is another example for this less precise kind of argumentation.

The reader should now have an impression of what a structure faithful proof
looks like. So let us now start to analyse this kind of proof. Regarding language we
are close to the goal now. In this respect the only remaining difference to textbook
proofs is that language is not used to structure the proof per se. In particular we
are still not able to give more weight to some of the branches. However, within the
subproofs language already is used freely and therefore structures the argument.
So the use of language is still a big hurdle for students.

The equational reasoning is a new way to condense a lot of steps. Instead of
using different equalities step by step to modify hypotheses or the actual (sub)goal
now different equations are put together while a justification is put above each
equality sign. So far nothing spoils restorability. Yet, the justifications themselves
are only hints now and so some information is really lost.

What sounds like a drawback is actually a feature since omitting details in-
creases readability. The addition of forward elements helps to create a guiding
thread, which again increases readability. Finally, the same is true for the flexible
use of language. For instance, we can accentuate focussing on the essential parts
of a subproof.

There is only a single rather external kind of feedback left. This is the structure
the students can orient themselves on. They can see explicitly where they are in
their proof and therefore it is easier to keep an overview of what is given at the
moment and what is to do next. In addition to that in some parts of the proof
students can orient themselves on the formulations used in (weakened) line by
line comments. Yet, in most situations there is no unique or at least a standard
formulation given to orient oneself on.

81

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

Theorem: Vnm:N, nem#0Vn=m — SucnSm= Suc (nSm).
Proof: Let n, m be arbitrary but fixed natural numbers and let us assume
nom # 0V n=m. We have to prove Suc n © m = Suc (n ©m). We do
this by case analysis of the disjunction.

+ We assume n © m # 0 and show Suc n © m = Suc (n ©m). By the
structure theorem of N we know m =0V (31 : N, m = Sucl). So
we can prove our goal by another case analysis.

* We assume m = 0. Then we do have Suc n©Sm {m =0} Suc n©

0 "% Suc n on the left hand side and Suc (nom) =0

Suc (n 6 0) 229 Sue n on the right hand side. So we have
the same on both sides.

* We assume m = Suc | for some [: N. This delivers Suc n &

m tm = Sucl} Sucn & Sucl {ouc_n_sub_suc_m} n &1 on the left
hand side. On the right hand side we have Suc (n © m) =

{n__sub__suc_m}

Suc (n & Suc 1) = Suc (pred (n ©1)).
— If we could prove n &1 # 0, we would have furthermore
Suc (pred (nS1)) tuepredn} o [, such that left and right
hand side would be equal.

— So it remains to show that n &1 # 0. For this we assume
n &l = 0 and derive a contradiction. On the one hand
we do have 0 % n & m tm=fuely e Suc l {rsub_suc_m}
pred (n ©1). On the other hand we have n © 1 = 0 and

therefore by equ_ fct, pred (n ©1) = pred 0 {pred 0} 0, the

required contradiction.

+ We assume n = m and show Sucn © m = Suc (n © m). On the

left hand side we have Suc n & m tn=m} Sucnon {_edd_n} (1
1. The right hand side

n)en (ndl)on
delivers Suc (n © m) "= Suc (n © n) Sue 0 LN |
q.e.d.

{add_ comm} {n_add_m_sub_n}

{n_sib_n}

Figure 7.3: Example of a structure faithful proof.

82

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

We have now seen an intermediate platform with a considerable improvement
in readability. Except for the explicit structure, with its forward elements and its
reduced demand for precision, it reminds one already of textbook proofs. How-
ever, the explicit structure is still a big support since the requirement to prioritise
different branches to make the proof more linear is not easy to fulfil.

In our comparison with the crossing of a river the next step leads to firm
ground, namely the textbook proofs. They are what we intended to teach the
students. Let it be mentioned, however, that in principle we do not have to stop
at textbook proofs since they are not the least formal kind of argumentation. We
can conceive them as only one further platform in the stream, the other end of
which could be the proof ideas. In this case we would propose proofgumentations
(see section as a further intermediate platform between textbook proofs and
proof ideas.

7.6 How to teach it?

Until now we have presented the different platforms (line by line comments, weak-
ened line by line comments, and structure faithful proofs). In this section we will
focus on the steps between these platforms; i.e. we try to answer how students can
master some stage when the previous ones have already been learned.

In general we propose to spend most of the time with supervised training
sessions where the students work on their own. Though autonomous working on
assignments is definitely not a new idea it is of utmost importance in this case:
the focus is not on contents but on methods and these can be learned best by
applying them. The role of the lecturer should be limited to a brief introduction
of the platform per se, including the presentation of solutions to some examples
before the students start to work on their own. The lecturer should moderate the
discussion of student’s solutions only where appropriate.

So what should assignments for students look like? Of course, they should
mirror the transitions. Therefore a lot of assignments require the students to take
a solution of stage n and to transfer it to stage n + 1. For a better grasp of the
relation between two such stages students are asked to transfer a few solutions of
stage n + 1 back to stage n.

Yet, in the end students are not supposed to start with a Coq proof and transfer
it step by step to textbook proofs but they should be able to develop the latter
directly. So first, distance must be broadened, i. e. we recommend also assignments
that require the transferring from stage n to stage m where neither n nor m is
the immediate successor of the other. Naturally, the farther the treatment of an
intermediate platform m is the farther the distance between n and m can be. In
particular the ending point might be a textbook proof. Second, students must get

83

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

rid of the Coq crutch entirely. So we need assignments that do not presuppose
any solution of a previous stage but instead ask the students to develop a proof of
the respective stage from scratch.

However, in its character these assignments differ from the other ones since
there is no given structure the students can orient themselves on. Therefore these
kinds of exercises should be divided further gradually: the first assignments of this
kind should be to prove theorems which are clear with respect to structure. For
instance, theorems using the pumping lemma are good candidates here, whereas
the latter assignments should be allowed to conceal this structure, like most the-
orems in fact do. Proving that a set is enumerable, for instance, belongs to that
kind of assignment. In such cases students must be trained to find the structure
(including the relevant types) to apply their transition skills from there on.

7.7 Discussion of related work

In visual appearance our different proof styles, including the Coq proofs, resemble
the structured derivations presented by Back in [6]. For instance, we find inden-
tations and justifications similar to ours. Particularly strong is the resemblance
in the case of structure faithful proofs since structured derivations make use of
equational reasoning, too, and the same kind of justifications (like transitivity)
are left implicit. With us Back’s approach shares the idea of transparency on the
teaching and the learning side. However, there is no process of different proof
styles in Back’s case. Furthermore — as already mentioned — the main difference to
our approach is that the whole idea of structured derivations is product-oriented,
while we focus on the proof process.

There is a variety of approaches using proof assistants for teaching. Several
discuss the poor performances of students in proving [58, 85 93, O7]. Tobias
Nipkow calls the student’s creations in [85] LSD trip proofs. H. James Hoover and
Piotr Rudnicki [58] stress that poor proofs can be found even in textbooks. We
only want to add that the inability to create solutions at all might be the biggest
problem.

Many authors agree that feedback is of utmost importance [20], 37, [68), 73], [84]
85,193, 97,99, 109, I13]. The most traditional view is that feedback assures us what
(parts of) proofs are correct [73, 84, 03, 109]. Nipkow [85] stresses gamification
aspects, namely that feedback is addictive and serves as a challenge that causes
students to work a lot harder. Like us, he criticises that conventional homework
corrections have too low a frequency. Wolfgang Schreiner, Alexander Brunhuemer,
and Christoph Furst [99] argue that feedback allows the students to try out differ-
ent approaches ludically. Nathan C. Carter and Kenneth G. Monks [20] require a
frequent, immediate, and clear feedback in the learning process. We would like to

84

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

point out that the last attribute cannot be accomplished in full if proof assistants
employ an automatic justification mechanism, as this may permit steps too big
or reject steps that should be fine but cannot be handled by the system. This
point is conceded in articles on Mizar [58, [109]. On the other hand such proof
assistants can sometimes be used to tell students whether their actual approach
does work. The Sequent Calculus Trainer of Arno Ehle, Norbert Hundeshagen,
and Martin Lange, for instance, uses auto tactics to generate feedback telling the
student whether the actual (sub)goal can be proven, is invalid, or whether the
system does not know yet (see [37]). Similarly, the Natural Deduction Assistant
(NaDeA) of Jorgen Villadsen, Andreas H. Form, and Anders Schlichtkrull issues
a warning when no proof can be found by auto tactics (see [L13])[']] What is com-
pletely new in our approach is the idea to reduce the amount of feedback during
the course, which should cause students to mature and become independent of
feedback eventually.

Many articles attach great importance to using a tool that does not require
students to learn too much of the system before teaching the true contents of the
course. While Nipkow [85] stresses that only a quarter of the time of a course
was devoted to teaching Isabelle/HOL, all Mizar articles (|58, 109, O3]) concede
that learning how to write Mizar proofs is challenging and requires much effort in
courses. Others modify a standard system to avoid problems with the system itself.
The web server ProofWeb [53] was developed to avoid installation issues and prob-
lems with different versions of Coq. The Papuq system [97] is a modification of Coq
that doesn’t require students to learn the original Coq tactics. Instead in every
proof situation it shows a window with natural language suggestions how to pro-
ceed. Still others develop whole new systems designed to fit the didactical needs.
Graham Leach-Krouse, for instance, presents the Carnap framework to bridge to
real proof assistants [73]. It can be restricted to a few functionalities avoiding to
overwhelm students in the beginning. Further functionalities can then be added
later on. Font, Richard, and Gagnon, whose article [43] we already have started to
discuss in section [2.7], present a tutor system called QED-Tutrix for the high school
level. It provides three tabs corresponding to three aspects they emphasize in the
process of finding a proof, namely exploration, construction, and redaction; where
the last amounts to filling in the holes of a whole formal proof fitting the separate
construction of the student. Most consequent are Carter and Monks in [20]. They
introduce a system called Lurch that resembles a word processor and is easy to use
even for non computer affine students. Further examples of new systems designed
to fit the respective didactical needs can be found in [37,[99, 113]. In contrast to all

' Tn the case of wrong steps approaches like the last two can be enriched by a listing of
countermodels, i.e. by a clear, extensional feedback.

85

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

those approaches, we did not modify the Coq proof assistant itself but only added
tactics. We wanted and still intend to concentrate on the conceptional aspects of
the course and for that the original CoqIDE is sufficient (see [67]).

Many approaches using proof assistants, like [37, 53, 58, [73], [113] for instance,
are restricted to logics. Sakowicz and Chrzaszcz [97) treat a simplified version of set
theory in their course. Algebra and number theory is taught with Lurch on top of
logic and set theory in [20]. Trybulec and Rudnicki [I09] concentrate on relations
while Nipkow [85] uses the Isabelle/HOL to teach semantics. We devoted the non
logical part to data structures but could imagine treating other parts, especially
relations, as well in future courses.

In recent times using proof script based proof assistants for teaching has fallen
into disrepute. Instead it is endorsed to use declarative proof assistants (see sec-
tion . Nipkow [85], section 3.3|, for instance, criticises that proof script based
proof assistants are not readable by humans, lack structure, do not make ideas vis-
ible, and — most importantly — have a relation to real proofs that can be compared
to the relation between assemblers and normal programming languages. While the
first point is true without additional bookkeeping or when auto tactics are used
(see section [2.6]), the second and third depend mostly on the person developing the
proof, and the comparison in the fourth is flawed. The implicit argument here is
that one does not have to learn assemblers first to learn programming and in the
same way one does not have to learn proving in a proof script based proof assistant
first. But procedural thinking is firmly fixed in human beings while static truths
are not. Hence more students will have an intuitive grasp of programming than of
proving. Thus students have to learn the basic principles of proving first such that
they become second nature to them. Having said that, however, we do consider
the use of declarative proof assistants as promising whenever the students have
already learned how to prove.

Hoover and Rudnicki in [58] stress a method called structuring of proofs, which
is conducted with the help of the Mizar-MSE proof checker. By structuring they
mean the introduction of indented blocks having assumptions at the beginning,
some steps in between, and a result at the end. Blocks are evaluated as a whole in
the ongoing proof. An implication, for instance, is shown by such a block where
the assumption is the premise and the result is the conclusion of the block. This is
related to our structuring in Coq and the intermediate steps but comprises many
more cases. All the examples given in [58] section A.5], for instance, do not require
any structure in our case. This is because our approach is (initially) analytic while
theirs is synthetic.

What is missing in all cited articles — except for Carter and Monks’ [20], where
students develop proofs with Latex in the end — is a treatment of the relation
between the kind of proofs done in a proof assistant and the more informal textbook

86

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

proofsf'f] One reason is that the focus is often on machine readable proofs and
not on transferring these to textbook proofs. In our opinion the difficulty and the
value of transferring the skill of proving in a proof assistant to the skill of textbook
proving is extremely underestimated.

7.8 Summary and conclusion

Most computer science students have difficulties with proving theorems. We have
developed an approach in which students learn to prove in Coq first and start to
develop textbook proofs only after that. In this chapter we focussed on teaching the
transition to textbook proofs. The main idea was to find intermediate proof styles
that reduce the degree of formality step by step. To do so we made use of the three
adjusting parameters: language, condensation, and the frequency and precision of
justifications. In addition, for each platform we checked whether the readability
of the respective proofs increases and analysed the feedback possibilities.

We started with a concrete instance of high degree proofs, namely proofs in
Coq, and defined new proof styles that depended on this. In concreto, we presented
line by line comments, their weakened version, and structure faithful proofs. The
first was mainly characterised by a leap in language while the second one was
mainly characterised by a leap in condensation. In the transition to structure
faithful proofs all three adjusting parameters played a major role leading to a big
leap in readability. We also described types of assignments that can lead to success
in textbook proving.

The results of our empirical investigations, as discussed in [67] and [I5 sec-
tions 2,8], are quite promising. Students liked to work in Coq and got on well with
the system, technically and contentually. Furthermore the data show that students
do well with the intermediate platforms and the corresponding assignments. The
results regarding the final, decisive transition to textbook proofs indicate a clear
progress but not a panacea for all the problems related to the development of text-
book proofs. The data suggest that one further improvement for the future could
be to stress the formalisation of theorems even more in order to give the students
a better understanding of the relation between formal and informal formulations
of theorems. Regarding that aspect the approach presented by Patrick Jansson,
Solrun H. Einarsdéttir, and Cezar lonescu in [63] might be particularly helpful.

From a bird’s eye perspective our data indicate that — at least for computer
science students — a high degree of formality is not the problem in learning textbook
proofs (but rather the mix of formal and less formal elements) and that it is a good
approach to start proving with a suitable proof assistant even if one only wants

12 This has not to be confused with approaches focussing on automatic translations from
machine proofs to textbook proofs.

87

CHAPTER 7. LEARNING HOW TO PROVE: FROM THE COQ PROOF
ASSISTANT TO TEXTBOOK STYLE

to teach textbook proofs. We expect this to hold for students of mathematics as
well. For a substantiation of this claim we aim at extending our empirical base to
gain reliable data in the future.

In the introduction of this chapter we already discussed a different attempt to
deal with the second step. The key idea is to “change” Coq via so called proof
environments in a way that allows Coq proofs to be much closer to textbook proofs.
In the next chapter we will discuss the core of such proof environments, namely
the medium degree tactics.

88

Chapter 8

Simulating proofs of a medium
degree of formality

8.1 Introduction

In chapter 5| we ascertained that an argumentation serves three purposes: to il-
lustrate ideas, to convince writer and reader, and to deliver objective guarantee.
We argued that low degree argumentations are best regarding the first, medium
degree ones are best regarding the second, and high degree ones are best regarding
the third point. Furthermore we found that medium degree proofs are the best
allrounders. Still, as long as only humans are involved, it is clear that we have
to focus on one of the three aspects to the detriment of the other ones. Instead
it would be highly desirable to combine the advantages of different styles of argu-
mentation to reach more than just one of the three aspects above in full. In this
chapter we will show — or at least substantially indicate — that it is indeed pos-
sible to combine the advantages of medium and high degree proofs by simulating
medium degree proofs with the help of the computer.

Before we consider the simulation itself let us briefly discuss what will be sim-
ulated. It is clear that this cannot be all proofs of a medium degree of formality in
mathematics and so we have to focus on a special domain. Fortunately, we are not
committed to any specific content and thus free to choose whatever serves best as
proof of concept. When choosing a domain there are two extremes to avoid. On
the one hand in logic even textbook proofs usually tend to be very formal and in
that case there is no real difference between medium and high degree proofs. So
(pure) logic is not suited for our kind of investigation. By contrast, most other
domains are too complex. Their single reasoning steps in medium degree proofs
already comprise whole bunches of steps of simpler domains or even whole algo-

89

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

rithms, changing the proof situation significantly]] To avoid both extremes we
chose arithmetic as a suitable level to start with. Here, the difference between
high and medium degree proofs is big but not too big. Furthermore other domains
often are related to arithmetic anyway:.

Apart from the domain of mathematics the single reasoning steps of a medium
degree therein are relevant. To find precisely the correct or usual reasoning steps
of — in our case — arithmetic would require a lot of empirical work] Yet, this is not
an empirical thesis. Instead our approach in this chapter should be understood
as a proof of concept: whatever the real human reasoning of a medium degree of
formality might be the reasoning we simulate should be close enough to see that
it is possible to simulate the actual reasoning, too. The differences in both kinds
of reasoning should be transferable to the simulation by changing the concrete
implementation a little bit.

Now, what does our approach for simulation look like? The main idea is to use
user defined tactics in Coq that represent the single reasoning steps of medium
degree in arithmetic (or what we deem as such). On the one hand such tactics
are beyond the scope of the basic tactic rules Coq is initially providing. On the
other hand our self written tactics — in contrast to Coq’s auto tactics — have still
a precise specification of their behaviour, i. e. they still feel like an one step tactic.
This distinguishes our approach from others (see section .

To really get at a proof of concept it does not suffice to consider just a single
tactic. Instead our selection must be sufficiently broad to at least indicate that all
of arithmetic can indeed be covered. In this thesis we will therefore discuss five tac-
tics, namely drop_identities, suc_pred_to_front, omit_parens, make first,
and drop (sections —, which together comprise a major part of the proof
steps in the implementation of this approach (see [13]). All of the five tactics will
be analysed in the following sequence of steps:

1. Presentation of the corresponding reasoning in medium degree proofs

2. Some illustration of how the respective tactic is used in Coq (contrasted with
a proof without it)

3. Exposition of the implementation
4. Evaluation.

Except for drop all of these tactics are value preserving, i.e. they replace terms
only with terms of equal value. For such tactics the implementation will always be

! In section we will explain the latter problem in more detail.
2 Such an investigation can orient itself, for instance, on Schiller’s thesis [98], which we have
discussed in section

90

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

the same from a particular point on. The idea of that part of the implementation
is given in section [8.7 All this together — we think — will be enough to grasp
the essence of medium degree tactics in the case of arithmetic. A listing of all
tactics, the five mentioned above and the fourteen remaining ones, can be found
in appendix [B]

In the main text we will continue by explaining where the formality in our
approach “hides” (section . Next, we will give some outlook what simulation
of such single reasoning steps might look like in case of more complicated domains
like automata theory (section [8.9). After that, we go some step further and ask
whether low degree proofs can be simulated with the help of the computer, too
(section [8.10]). At the end we provide summary and conclusion (section [8.12)).

8.2 The tactic drop__identities

8.2.1 The corresponding reasoning in medium degree
proofs
When speaking of dropping identities we mean identities in an algebraic sense: 0

is an identity with respect to + and 1 with respect to *. Identities usually appear
in proofs when some special instances are applied to a general rule. For example

n 1
the scalar multiplication of a vector with the unit vector in N2, | m | - | 0 |, would
[0

be computed to nx 1 +m %0+ [* 0.
What is interesting for us, however, is the seemingly harmless ‘= n’, which will
follow. We are not offered an argumentation like the following;:

k+0 =0 for all £ € N since 0 is an absorbing element with respect
to multiplication. In particular we have m « 0 = 0 and [%0 = 0.
Furthermore, since 0 is an identity, we have k 4+ 0 = k for all k and
so in particular m « 0 + [% 0 = 0. For the same reason we obtain
nxl+mxx0+1%x0=nx1 Since 1 is an identity with respect to
multiplication we conclude nx 1 4+m 0+ 1% 0 = n.

Note that the identity 0 in m * 0 and [x 0 is not dropped but m and [are. The
name of the tactic is meant to comprise this behaviour.

Except for the natural language in between the latter argumentation would be
a high degree version, while the simple ‘= n’ is a medium degree representative.
In medium degree proofs often identities are not even written down such that the

n 1
whole calculation of the previous example reduces to | m | -0 | =n.
[0

91

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation

Vnml:Nnxl4+mx*x0+[x0=n
n:N

prove_all _imp_star

e
Z|z

{
nxl+m*x0+1x0=n

use_equ (n_mul_0m) nxl+0+1%0=n

use_equ (n_mul 0 1) nxl+0+0=n

use_equ (n_add_0 0)

nxl+0=n
use_equ (n_mul_1n) POy —
use_equ (n_add_0 n) pra——
prove__equ Qed

Figure 8.1: Proof of Vn m [: Nnx1+ m %0+ [0 = n without the tactic
drop_identities.

8.2.2 Treatment in Coq

Let us stick with the last example and prove the theorem Vnm [: N, nx1+m x
0+41%0 = n in Coq as shown in figure 8.1 We use the form of representation
discussed in section 2.6

The first step in the proof is a conglomerate of logical rules. Its impact is that
all universally quantified variables and all premises are assumed (the variables are
arbitrary but fixed) and the remaining part has to be shown.

The following steps are all of the form use_equ p. In the first case, for instance,
the theorem n_mul O, stating V n : N;n x 0 = 0 is first applied to the m in our
context, yielding a proof of m x 0 = 0. Then, secondly, we use this equality via
use_equ, substituting all occurrences of m * 0 by 0 in the goal. In this case m * 0
occurs only one time so there is only a single replacement. The remaining steps
involving n_add_0 (Vn:N;n+0=mn) and n_mul_1 (V n:Nnx1=n) behave
analogously. The proof can be finished with prove_equ.

By contrast, the proof we would like to have looks like shown in figure [8.2]
Here all previous use_equ steps are condensed into a single application of the
drop_identities tactic.

Next, we show how this tactic can be implemented.

92

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation

Vnml:Nnx1+m*x0+[x0=n

prove_all _imp_star

Z| 2|z

nx1l+m+*x0+1{x0=n

drop__identities
n=n

prove _equ Qed

Figure 8.2: Proof of Vn m Il : Nynx1+m=%x0+1x0 = n with the tactic
drop_ identities.

8.2.3 Implementation

All tactics that we are going to discuss in the main text operate on hypotheses and
goalﬁ, both of which can be equations, negations thereof or inequalities. The tactic
drop_identities now has the special property of being value preserving, i.e. the
left and right hand side of an hypothesis or goal are always replaced by terms of
equal value. For each tactic satisfying this property it suffices to develop a helping
tactic named with the suffix ‘equ_left_in’ that only operates on the left hand side
of hypotheses that are equations. In section [8.7/we will explain why. For now let us
concentrate on the implementation of the tactic drop_identities_equ_left_in.

The way to the tactic drop_identities_equ_left_in is cumulative in char-
acter. Let us start with the application of base cases for addition. This is realised
by the following tactic:

Ltac drop_identities_add_equ_left_in_one_step_base_cases H :=
let T := type of H in lazymatch T with
0+ 7n="7m =>

use_equ (0 _add nn) in Hat 1 (* H : n =m *)
| 7n + 0 = 7m =>
use equ (n_add O n) in Hat 1 (* H : n =m *)

end .

Here, Ltac is the key word that a tactic definition follows, the rather long
drop_identities_add_equ_left_in_one_step_base_cases is the tactic name

3 In the appendix [B| we also discuss tactics, which operate only on hypotheses or only on
goals.

4In the actual code we use @ instead of + since the latter has a fixed meaning. The same will
be true for ® and .

93

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

and H is the hypothesis, on the left hand side of which we want to work on. The
part let T := type of H in lazymatch T with prepares the matching of the
type of H with the following patterns.ﬂ The two different cases are separated by
|. After => a sequence of instructions follows. Between (* and *) stand comments.
The tactic says that if the hypothesis has the form 0 + n = m then the theorem
0_add_n applied with parameter n (stating 0 +n = n) should be used in H at the
first possible position. The latter addendum is necessary since else occurrences
of 0 +n in m would also be replacedf] The treatment of the second base case is
analogous. If there is no matching, i.e. if the hypothesis has any other form the
tactic fails.

The above tactic cannot deal with an equation like (0 +n)+m = [since 0 +n
only occurs in a subterm. The solution is to work recursively:

Ltac drop_identities_add_equ_left_in _one_step H :=
(* Base cases *)
drop_identities_add_equ_left_in_one_step_base_cases H
I
(* Recursive cases x*)
(let T := type of H in lazymatch T with
Suc ?n = 7m =>
left_recursive_unary_op_in_equ
drop_identities_add_equ_left_in one_step H n
| pred ?n = 7m =>
left_recursive_unary_op_in_equ
drop_identities_add_equ_left_in one_step H n
| n + 7m = 71 =>
left_recursive_binary_op_in_equ
drop_identities_add_equ_left_in one step Hnm
end) .

The || means that the part before is executed if it does not fail and if it make
some progress, i.e. the proof situation must change somehow. In our case the
previous tactic is tried. If this is not successful the tactic works recursively with
the subterms (where the terms have to be of the form Suc n = m, pred n =
m, or n +m = [). Since this kind of recursive calling is a general approach
and does not only belong to the drop_identities tactic we use general tactics,
left_recursive_unary _op_in_equ and left_recursive_binary_op_in_equ to
deal with it.

5 The prefix lazy guarantees that the tactic will not try another pattern if the first possible
pattern fails.

6 In this special case this side effect would have no negative consequences because in the tactic
drop_identities the right hand side will be changed anyway. However, it is better when the
helping tactics, too, satisfy clear specifications.

94

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

These meta tactics are given by the following definitions:

Ltac left_recursive_unary_op_in_equ Tac_equ_left_in Hn :=
let H’ := fresh in
(* H: opn=m %)

fact_name (equ_refl n) H’; (x H> : n =n *)
Tac_equ_left_in H’; (x H’ : n’ = n if it doesn’t fail x)
use _uqe H’ in H at 1; clear H> (* H : op n’ =m *).

Ltac left_recursive_binary op_in_equ Tac_equ_left_in Hnm :=

let H’ := fresh in

let S := fresh in

(xH:nopm-=1 %)

(* n can be modified at least one step *)

(fact_name (equ_refl n) H’; (x H’> : n = n *)
Tac_equ_left_in H’; (x H’ : n’ = n if it doesn’t fail *)
use_ugqe H’ in H at 1; clear H> (* H : n’ opm =1 %))

']

(* m can be modified at least one step *)

(fact_name (equ_refl m) H’; (x H’> : m = m *)
Tac_equ_left_in H’; (* H’> : m’ = m if it doesn’t fail *)
set (8 :=n) inHat 1; (*x H: Sopm=1 %)
use ugqe H’ in H at 1; clear H’; (* H : S op m’ =1 %)
change S with n in H; clear S (* H : nopm’ =1 %)).

Note that both tactics expect another tactic, namely Tac_equ_left_in, as one
of their inputs. Note further that we only call these tactics if H is of the form
opn =mornopm = l[. Both tactics use a fresh name for a hypothesis (H’)
to save intermediate results therein. The main trick we are using here as well as
in many other cases is to add an equation of the form n = n first and modify it
on the left (or the right) hand side; here with the help of the input tactic, which
is drop_identities_add_equ_left_in one_step in our case. The new equality
is then used in the original one after which the former is deleted by clear. In
the case of a binary operation this can happen for both subterms. This is why in
the tactic left_recursive_binary_op_in_equ it is first tested whether we can
successfully modify the first subterm and only otherwise we try to change the
second one. This is realised by the || in the definition above.

Since the tactic drop_identities_equ_left_in should drop all identities on
the left hand side of the equation at once we need to repeat the preceding tactic
drop_identities_add_equ_left_in_one_step as long as there is process to be
made. Fortunately, there is a repeat instruction at our disposal when writing Coq
tactics. So the former tactic can be simply implemented by:

95

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Ltac drop_identities_add_equ_left_in H :=
repeat (drop_identities_add_equ_left_in one_step H).

So far our tactic is restricted to addition. Extending it to subtraction and
multiplication, however, is not that difﬁcult[] First of all the base cases have
to be extended. The respective transition from subtraction to multiplication, for
instance, looks like this:

Ltac drop_identities_equ_left_in one_step_base cases H :=
(* The old base cases *)
drop_identities_sub_equ_left_in_one_step_base_cases H
']
(* The new base cases *)
(let T := type of H in lazymatch T with
1 % ?n = "m =>
use_ equ (I mul nn) in Hat 1 (*x H : n = m %)
| n * 1 = 7m =>
use equ (n.mul 1 n) in Hat 1 (*x H : n =m %)
| O x ?n = 7m =>
use_equ (O mul nn) in Hat 1 (* H: 0 =m %)
| ?n *x 0 = ?m =>
use equ (n.mul On) in Hat 1 (*x H : 0 = m %)
end) .

Hence the tactic tries first to apply one of the already implemented base cases and
only otherwise deals with the following four cases.

drop_identities_equ_left_in_one_step is very similar to the already pre-
sented drop_identities_add_equ_left_in one_step. Instead of trying to apply
drop_identities_add_equ_left_in_one_step_base_cases we now try to apply
drop_identities_equ_left_in_one_step_base_cases. Subtraction and multi-
plication are added to the recursive patterns and of course the recursive call has to
be adjusted. The final tactic we are striving for, drop_identities_equ_left_in,
is then again only a repetition of drop_identities_equ_left_in _one_step.

8.2.4 Evaluation

In this first case of a tactic simulating a class of medium degree steps there is
not much to criticise: the tactic does in one step exactly what humans do in such
situations. The only thing that cannot be simulated (this way) is the skipping
in many medium degree proofs, when terms with identities are not even written
down.

7 This — of course — is only true because the previous implementation was optimised regarding
the extensions.

96

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

8.3 The tactic suc_ pred_to_ front

8.3.1 The corresponding reasoning in medium degree
proofs

There is a principled problem with the analysis of the treatment of the successor
function (abbreviated by Suc) and the predecessor function (abbreviated by pred)
in medium degree proofs since most often they are not used at all. Instead we find
only +1 or —1. However, we cannot dismiss Suc and pred altogether because at
least the former is needed as a foundation before we are able to define addition
(or subtraction). So in our analysis of how Suc and pred “are used” in medium
degree proofs we should pretend to see Suc where we actually see +1.

In a case, in which a term (n + 1) + (m + 1) is given, for instance, one usually
would immediately transform it into the equal (n+m)+2 whereby one would leave
the parentheses implicit. Here ‘+2’ replaces +1 + 1 and so can be conceived as a
counting continuation. The analogy in terms of Suc would be Suc n + Suc m =
Suc (Suc (n +m)).

Another example is an occurrence of something like (n 4+ 1) — 1, which would
be reduced to n. Written with Suc and pred the change would be from pred Suc n
to n. What is special here is that pred and Suc eliminate each other. The same is
true for (n + 1) — (m + 1) or Suc n — Suc m respectively.

We might also be tempted to reduce (n—1)+1 to n but this would be a mistake
concerning the natural numbers since it is wrong for n = 0. However, with the
additional knowledge of n # 0 this would be correct and in the analogous version
we would transform Suc pred n to n.

In the case of dropping identities even long terms could be handled in one sweep.
By contrast, humans have to calculate terms like ((n+1)%(m—1)+1)%(m-+1) step
by step. Therefore the tactic suc_pred_to_front should also work successively.

8.3.2 Treatment in Coq

In the following we will analyse the proof of a statement in Coq that involves Suc,
pred, addition, multiplication, and subtraction: Vnml k: N n+m =I1xk—k —
pred (n + Suc m) = pred [* k. This theorem might look a little bit artificial but
it enables us to get the decisive points without too much irrelevant proof steps.
The proof without the use of the tactic suc_pred_to_front is shown in fig-
ure [8.3] After introducing the variables and the hypothesis we change the goal
successively by applying equalities given by theorems representing special situa-
tions of Suc and pred. The first theorem, for instance, states Vnm : N,n+Suc m =
Suc (n +m). This is applied to the concrete n and m of our proof and we obtain

97

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation Vnmlk:Nn+m=Ilxk—k—
pred (n 4 Suc m) = pred [* k

Z| 2|z

prove all imp star
k:N
‘H:n—}—m:l*k‘—k‘
pred (n + Suc m) = pred [* k

use_equ (n_add_suc_m n m) pred (Suc (n+m)) = pred [* k

use_equ (pred_suc_n (n+m)) PR —— 2

use_equ (pred_n_mul_m [k) n+m=I1xk—k

use H Qed

Figure 8.3: Proof of Vnm l k : N,n+m = lxk—k — pred (n+Suc m) = pred [xk
without the tactic suc_pred_to_front.

an equality n 4+ Suc m = Suc (n + m) which is used to modify the goal. The next
two steps are analogous. Finally, we can use our hypothesis to conclude the proof.

Let us compare this proof with the one using the tactic suc_pred_to_front
as shown in figure [8.4] While we have the same beginning we now treat both sides
of the equation simultaneously by using suc_pred_to_front, which incidentally
changes the order of replacement. Since only one step at a time is executed on
both sides, we need to run suc_pred_to_front twice.

The problem of the proof version not using the tactic suc_pred_to_front in
comparison to the one using that tactic is not the length of the proof, i.e the
condensation aspect; the difference in steps is only one here. Instead the different
forms of justification make both proofs very different. In the first one we have to
know (or find out) all the theorems we need to apply. Furthermore, having to pro-
vide all parameters explicitly is annoying. By contrast, in the second proof nothing
like that has to be done. The call of suc_pred_to_front is rather a rough de-
scription of what is happening. Note that in the first proof the three justifications
regarding the treatment of the successor and predecessor function are all different
while in the corresponding steps of the second proof the two justifications are the
same.

98

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation Vnmlk:Nn+m=Ixk—Fk—
pred (n 4 Suc m) = pred [* k

prove all imp star

wigs
22| z|z

’H:n—l—m:l*k—k‘
pred (n + Suc m) = pred [* k

suc_ pred_to front

pred (Suc (n+m)) =1lxk—k

suc_pred to front

n+m=Ixk—k
use H Qed

Figure 8.4: Proof of Vnm k: N,n+m = lxk—k — pred (n+Suc m) = pred [k
with the tactic suc pred to front.

8.3.3 Implementation

Like drop_identities the tactic suc_pred_to_front is value preserving. So
the implementation of the tactic suc_pred_to_front_equ_left_in needs to be
elaborated. However, for reasons that will be discussed two paragraphs below this
does not suffice this time.

As we have already seen, the arithmetical tactics are cumulative with respect
to their restrictions. In case of suc_pred_to_front_equ_left_in we have the
following restricted versions: one for successor and predecessor function only,
one variant allowing also addition, one including subtraction as well, and finally
suc_pred_to_front_equ_left_in itself, which also allows multiplication. We
will only discuss the construction of the second, namely the first one dealing with
addition, because all others are very similar in character and because all relevant
implementation aspects appear in that variant.

We already indicated that the tactic suc_pred_to_front is somewhat excep-
tional. The reason for this is that it can be applied even in proof situation that
require some additional information. Let us consider the modification of the term
n + pred m as an example. We want to shift the predecessor application to the
front but this requires a cut stating m # 0. For avoiding unnecessary cuts, how-
ever, it is a good idea to concentrate on those cases first that allow a successful
application without the use of cuts.

99

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

This is done by a helping tactic. We first consider its base cases:

Ltac suc_pred_to_front_add_equ_left_in_help_base cases H :=
(x The old base cases without cut *)
suc_pred_to_front_suc_pred_equ_left_in_help_base_cases H
I
(x The new base cases without cut *)
(let T := type of H in lazymatch T with
Suc ?n + 7m = 71 =>
use_equ (suc_n add m nm) in Hat 1 (*x H : Suc (n + m)
| ?n + Suc ?m = 71 =>
use_equ (n_add_ suc_mnm) in Hat 1 (* H : Suc (n + m)
end) .

1 %)

1 %)

The tactic comprises the base cases of its more restricted version that only consid-
ers the successor and predecessor function. Furthermore the patterns Suc n+m = [
and n + Suc m = [are added. In both cases a theorem can be applied allowing us

to shift the successor application to the front.

Next, the tactic suc_pred_to_front_add_equ_left_in_help adds the recur-
sive cases and — if possible — executes them, provided that no base case can be

applied:

Ltac suc_pred_to_front_add_equ_left_in _help H :=
(x Base cases without cut *)
suc_pred_to_front_add_equ_left_in_help_base_cases H
I
(* Recursive cases without cut *)
(let T := type of H in lazymatch T with
Suc (?n) = 7m =>
left_recursive_unary_op_in_equ
suc_pred_to_front_add_equ_left _in help Hn
| pred (?n) = ?m =>
left_recursive_unary_op_in_equ
suc_pred_to_front_add_equ_left _in help Hn
| ?7n + ?m = 7?1 =>
left_recursive_binary_op_in_equ
suc_pred_to_front_add_equ_left _in help Hnm
end) .

Now we turn our attention to those situations, in which cuts need to be in-

cluded. Again we start with the base cases:

100

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Ltac suc_pred_to_front_add_equ_left_in _base_cases H :=
let H’ := fresh in
(x The old base cases with cut *)
suc_pred_to_front_suc_pred_equ_left_in base_cases H
I
(x The new base cases with cut x)
(let T := type of H in lazymatch T with
pred 7n + 7m = 71 =>
assert (n # 0);
[(*Fn#0%
idtac
| (x H> : n # 0 *)
use_equ (pred n_add m H’> m) in H at 1; clear H’
(* H: pred (n +m) =1 *)]
| ?n + pred 7m = 71 =>
assert (m # 0);
[(x Fm#0 %)
idtac
| (x H : m # 0 *)
use_equ (n_add_pred_ m n H’) in H at 1; clear H’
(* H: pred (n + m) = 1)]

end) .

As in the tactic implementation of the cutless part the new base cases with cut
comprise the old base cases with cut. To shift the predecessor function to the
front we need the additional information n # 0 (or m # 0 respectively). This
requirement is conveyed to the user with the help of the assert, which generates
two proof tasks. The treatment of the first — requiring it to be different from 0 —
is stated before the | while the treatment of the second one — being the old goal
with the first subgoal as additional hypothesis — is described afterwards. Note that
idtac, the identity tactic, does not change the respective proof situation. So in
such situations the user has to prove n # 0 (or m # 0 respectively) first and then
the predecessor application is shifted automatically to the front.

The implementation of the tactic suc_pred_to_front_add_equ_left_in com-
prises the helping tactic and is — apart from that — essentially the same as in the
case of the latter tactic but with the new base cases (and an error message).

Ltac suc_pred_to_front_add_equ_left_in H :=

(* The case that it is possible to shift without a cut *)
suc_pred_to_front_add_equ_left_in help H

I

101

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

(* Base cases with cut *)
(suc_pred_to_front_add_equ_left_in _base_cases H
|
(x Recursive cases with cut *)
(let T := type of H in lazymatch T with
Suc (7n) = 7m =>
left_recursive_unary op_in_equ
suc_pred_to_front_add_equ_left in Hn
| pred (?n) = ?m =>
left_recursive_unary_op_in_equ
suc_pred_to_front_add_equ_left in Hn
| 7n + ?m = 71 =>
left_recursive_binary_op_in_equ
suc_pred_to_front_add_equ_left in Hn m
end))
I
fail "suc_pred_to_front_add_equ_left_in H:
No Suc or pred can be shifted to the front on the left hand
side".

Let us now briefly discuss the particular difficulties that the cuts are causing
when lifting to suc_pred_to_front. In a situation like n + pred m < [+ Suc k,
for instance, an application of the tactic should yield n + pred m < Suc (I + k)
— without any cuts. More generally, the tactic should introduce new subgoals
only if otherwise no process on both sides was possible. So first it must be tried
out whether the tactic suc_pred_to_front_add_equ_left_in help can be ap-
plied on both sides of the respective hypothesis or goal. If this is not the case
the same has to be done for the left hand side only. If this does not work, nei-
ther, it is tried on the right hand sideff| Only if all these attempts fail the tactic
suc_pred_to_front_add_equ_left_in is applied.

8.3.4 Evaluation

The tactic suc_pred_to_front is special since it does not simulate an actual
reasoning of medium degree proofs but attempts to simulate a reasoning that
itself simulates the treatment of +1 or —1 in terms. The reasoning about +1 and
—1 in medium degree proofs usually separates the concrete forward and backward
countings from the variables and combines them to one single number; usually
being put at the end. By contrast, the simulation of this in terms of Suc and pred

8 What exactly is meant by applying an equ_left_in-tactic on the left or the right hand side
of a hypothesis or goal that does not have to be an equation will be discussed in section

102

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

brings the applications to the front. However, apart from this the treatment is
analogous. In particular the different applications of Suc and pred can erase each
other such that the equivalent to a concrete number, a term beginning only with
applications of Suc or only with applications of pred, remains.

Our tactic is able to simulate the simulation of the treatment of +1 and —1
without problems. Since there are situations where it is difficult to see the outcome
of bringing Suc and pred to front immediately we decided to let the tactic only
do one change at a time — but on both sides of the equation. A drawback of
this decision is that there are situations, too, where we can see the outcome of
bringing Suc and pred to front immediately. This is an example, in which empirical
investigations (with the corresponding version of +1 and —1) would have to be
done to justify or deny this successive behaviour. The salient point, however, is
that any adjustment — if necessary — would be possible.

8.4 The tactic omit_ parens

8.4.1 The corresponding reasoning in medium degree
proofs

In mathematics, addition, multiplication etc. are defined as binary operations writ-
ten in infix notation. One consequence is that in principle any calculation with
three or more arguments has to use parentheses for clarification. For instance one
has to write n+ (m+1) instead of just n+m+1. Due to the associativity law, how-
ever, the former term and (n +m) + [result in the same value. As a consequence
in such cases parentheses can be omitted. In order to avoid further parentheses
there is a binding hierarchy introduced between the different operations. So most
of the time only those parentheses that one cannot avoid with these two kinds
of conventions remainf’] The respective omissions are usually done in one sweep.
Often the whole situation before the omission of parentheses is not even written
down.

In high degree systems and in Coq in particular there is a problem with this
attitude. This is not due to the binding hierarchies, which can be introduced
without any problems, but due to the “do-not-care conventions” corresponding to
associativity. Fortunately, there is some workaround: one can define some normal
form with respect to parentheses and leave the parentheses in that case implicit.
Indeed, this is what we do in our tactic omit_parens. We bring terms into their
respective normal form.

9 Sometimes unnecessary parentheses are used to emphasize that terms belong together; for
instance because the respective construct is replaced in the next step or one needs a special form
to apply a theorem etc.

103

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Vnmlkj:N,
((nsxm)xl+(n+m)+1)xk)=*j
=mxm*xl4+n+m-+1)xkxj
n:N

Initial situation

prove all imp star

B B =
zz!é

(nxm)xl+(n+m)+1)«xk)x*j
=nsxmxl+n+m+1l)xkxj

use__equ (mul_assoc n m () (nxmxl4+(n+m)+1)xk)xy
=nsxmxl4+n+m-+1)xksx*j

use_equ (add_assoc n m) (nxm*xl+n+m+1)*xk)*j
=msxm*xl+n+m+1)*xkx*j

use__equ (mul__assoc

(nxmxl4+n+m+1)kj) (nxm*xl+n+m+1)xkx*j

=msxmxl+n+m-+1)xkxj
prove__equ Qed

Figure 8.5: Proof of Vnm I k j : N, (n*m)xl+ (n+m)+1)xk)xj =
(nxm=1l+n+m+1)x*kx*j without the tactic omit_ parens.

8.4.2 Treatment in Coq

Let us see how we can omit all unnecessary parentheses in the term (((n * m) *
I+ (n+m)+1)xk)*j (figure B.5). After the usual introducing of variables
we have to change the left side of the equation into the right one. We do this
by successively applying the associativity of addition (once) and multiplication
(twice). Furthermore we have to state each time exactly with which parameters
the associativity laws have to be applied. This is especially cumbersome in the
last case since the first term is already very long.

Bear in mind that our goal of omitting parentheses feels rather simple. So the
tactic omit_parens should make the proof simple, too. The three steps applying
associativity laws should become one (condensation) and no mentioning of the
parameters should be necessary (name of process as justification suffices). Indeed
this is the case, as shown in figure [8.6]

104

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Vnmlkj:N,
(nxm)xl+(n+m)+1)xk)=*j
=msxm*xl4+n+m-+1)xkxj
n: N

Initial situation

prove all imp star

(nxm)xl+(n+m)+1)xk)xj
=nsxmxl+n+m+1)xkxj

el i A E
zz!é

omit_ parens (mxmxl+n+m+1)xkxj
=nxmxl+n+m+1)*xkxj
prove _equ Qed

Figure 8.6: Proof of Vn m Il k j : N ((n*xm)«xl+ (n+m)+1)xk)xj =
(nsmx*l+4+n+m+1)*kx*j with the tactic omit_ parens.

8.4.3 Implementation

The implementation of omit_parens is simple. It is a value preserving tactic (with
no cut issues) such that it suffices to care about the implementation of the helping
tactic omit_parens_equ_left_in. The idea is to implement a tactic first that
omits exactly one pair of parentheses — and fails if this is not possible. The true
tactic is then just repetition of the one step version.

For the same reasons as in the previous implementations we skip the restriction
to addition and focus on the multiplication part. Once more, the one step tactic
separates the treatment of the base cases:

Ltac omit_parens_equ_left_in_one_step_base_cases H :=
(* The old base cases *)

omit_parens_add_equ_left_in one_step_base_cases H
I
(* The new base cases *)
(let T := type of H in lazymatch T with

(?7n * ?m) *x 7?1 = 7k =>
use_equ (mul _assocnm 1l) in Hat 1 (* H : n *m * 1 = k %)
end) .

105

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

The old base case is the same as the one added here but with addition instead of
multiplication.

If a term does not have the overall form for omitting parentheses one of its
subterms might have it. So again we need a possibility to forward the job to the
subterms. This can be done canonically already resulting in our one step version:

Ltac omit_parens_equ_left_in one_step H :=
(* Base cases *)
omit_parens_equ_left_in_one_step_base_cases H
']
(* Recursive cases x*)
(let T := type of H in lazymatch T with
Suc ?n = “m =>
left_recursive_unary_op_in_equ
omit_parens_equ_left_in one _step Hn
| pred ?n = 7m =>
left_recursive_unary_op_in_equ
omit_parens_equ_left_in one_step Hn
| n + ?m = 71 =>
left_recursive_binary_op_in_equ
omit_parens_equ_left_in one_step Hn m
| ?n * 7m = 71 =>
left_recursive_binary_op_in_equ
omit_parens_equ_left_in one step Hnm
end) .

If it is possible to omit a pair of parentheses at all then the above tactic
omits exactly one such pair. Hence by repetition we must reach a term having no
omittable parentheses left.

Ltac omit_parens_equ_left_in H :=
repeat (omit_parens_equ_left_in one_step H).

8.4.4 Evaluation

At first glance the tactic omit_parens seems to work perfectly. Like in the medium
degree reasoning all omittable parentheses are in fact omitted. This is done in one
step, which — as already discussed in the case of drop_identities — is the best
we can expect. Furthermore, we do not have to add any unnecessary information;
it suffices to name the process that should happen.

Yet, one should not forget that the parentheses do still exist inside the system.
If, for instance, one wants to put j in (n*m*l+mn+m + 1) x k *x j to the front

106

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

this is not directly possible via the use of commutativity. The reason is that the
system sees (nxm*l+n+m-+1)xk*jas (nxmxl4+n+m+1)*(k=j) instead of
((nxmxl+n+m+1)xk)*j. If we take care of this problem in the implementation
of other tactics as well, however, then the “illusion” can be maintained.

8.5 The tactic make first

8.5.1 The corresponding reasoning in medium degree
proofs

Like the associativity law for operators permits one to omit parentheses the com-
mutativity law allows one to change the position of terms applied to the respective
operations. For instance, (n +m) * (I + k) can be replaced by (k + 1) * (n 4+ m).
Again, the guiding principle is that commutations do not matter, i. e. a do-not-care
attitude.

As already discussed in the case of omitting parentheses the computer is not
able to work with such an attitude. Regarding parentheses we found a normal
form to disguise this problem. Yet, in the case of commutativity there is no
appropriate normal form. Of course there are some conventions, for instance to
write 42 +nxn*m+n 73 as m*n?+ 73 % n+ 42, but these only work in special
contexts stating with which kind of objects one is dealing (in that case polynomials
over n). Sometimes there is no such context and the user would be quite surprised
if the term at hand was ordered in a way that is not comprehensible for him.

8.5.2 Treatment in Coq

As we discussed in the last subsection, in general it is not a good idea to bring
terms in some polynomial normal form. Nevertheless — if required — it must
be possible to make such changes somehow. So let us consider how the term
946*n+2%xn*xn+ 3x*n can be transformed into 2 *xnxn+9*n +9. This
seems to be pretty easy; yet, the proof without make first is a little bit tedious
(see figure [8.7)).

The first difficulty is to bring the two relevant subterms, 6 * n and 3 % n,
together. The idea is to move the disruptive 2 x n x n one position more to the
left. This can be done by using the associativity law backwards first. For this, of
course, we have to realise that there is a subterm 6 xn + 2 *n xn 4 3 xn, which is
implicitly 6 %1+ (2xn*xn+3*n). After the backward use of the associativity law
we obtain (6kn+2%n*n)+3*n, in which we can change 6+n and 2xnxn due to
the commutativity of addition. Using associativity a second time brings 6 * n and
3 x n together. The next phase is to calculate 6 + 3. For this we use distributivity

107

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF

FORMALITY

Next step in Coq

Proof situation

Initial situation

Vn:NI+6xn+2+«xnxn+3%xn

=2xnxn+9*xn+9

prove_all

’n:N‘

9+6*xn+2*xn*xn-+3x%xn
=2xn*xn+9%«n-+9

use__uge (add__assoc
(6%xn) (2xn*n) (3*n))

9+ (6xn+2%xn*xn)+3*n
=2+«nxn+9*xn+9

use__equ (add__comm
(6%xn) (2xn*n))

9+ (2*n*xn+6%n)+3%n
=2xn*xn+9*xn+9

use_equ (add_ assoc
(2xnxn) (6%xn) (3xn))

9+2xnxn+6xn+3xn
=2xn*xn+9%xn—+9

use_uqe (add_mul_distr 6 3 n)

942xn*xn+ (6+3)*n
=2%n*xn+9*xn+9

unfold "+7 at 3

94+2%«xn*n+9%n
=2xn*xn+9%«n-+9

use__equ (add__comm
9(2*xn*xn+9x*n))

(2xn*n—+9%n)+9
=2xnxn+9xn+9

use_equ (add_ assoc

2¥nxn+9xn+9
(2xn%xn) (9%n)9) =2%xn*xn+9*xn-+9
prove__equ Qed

Figure 8.7: Proof of V1 : N9+ 6*n+2*n*xn+3*xn=2*xn*xn+9*xn+9

without the tactic make first.

108

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

backwards to factorise n out. The unfold rule calculates 6 + 3 as 9. After reaching
the same terms on both sides we have to bring them in the same order. This is
again done by using commutativity and associativity.

The corresponding proof using make_first (see figure is more condensed
and has simpler justifications but is a little bit tricky, too: instead of moving the
terms we are interested in, we are moving the uninteresting terms away. In this
case there is only 2 x n x n but in general we have to move every term between
the two terms of interest as well as all the terms behind both interesting terms[”)
The use of distributivity and the calculation is the same as in the previous proof.
The last task, which is typical, is reordering. Once more, the special case we are
considering is simple since we only need to bring 9 * n to the front. If we do not
want to change the term behind the equality sign we can use make_first (9 xn)
at 1 followed by make_first (2xn=*n) at 1 instead, where the number behind
the ‘at’ says that we only want to change the respective occurrence.

8.5.3 Implementation idea

So far we have discussed the implementation of each tactic in much technical
detail and the reader should have gained some grasp of how to do the technical
realisations. Therefore we can switch to the bird’s eye perspective from now on
and focus on the implementation ideas instead.

The tactic make_first_equ_left_in receives a term as input and shifts the
first of its occurrences on the left hand side of the hypothesis — where this is
possible — to the front. The main idea is to separate the search for such an
occurrence and the shifting.

To do so we need a tactic that checks whether the first occurrence of a term is
firstable. This statement needs some clarification. By checking we mean a tactic
that is idtac in case the condition is fulfilled and that otherwise fails. Next, we
call an occurrence of a term (on the left hand side of a hypothesis) firstable if
all ancestors of this occurrence in the term tree are the successor function, the
predecessor function, addition, or multiplicationE-] Furthermore we require that
the occurrence is not a proper part of a number instance: we must prevent that
shifting 4 to the front in n + 5 + 4 yields 5 + n + 4 since 5 is just an abbreviation
for Suc 4.

In the next step we can extend the tactic checking firstability to one that marks
the first firstable occurrence of the term and fails if there is no such occurrence.

10 The latter could be done by one single step via make_first since these terms are all in one
parenthesis. Yet, we have to spend one omit_parens afterwards if we want to avoid parentheses
in the end.

1 An extension to arbitrary unary operations is worth considering while arbitrary binary
operations cannot be considered since they do not need to be commutative.

109

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation Vn:NI+6xn+2+«xnxn+3x%xn
=2xn*xn+9«n+9

n:N
prove_ all 94+6*xn+2xnxn+3*n
=2xnxn+9xn+9

make_first (2 n *n) 2xnxn+9+6*xn+3*xn
=2xn*xn+9*xn-+9

use_uqe (add_mul distr 6 3 n) 2xnxn+9+(64+3)xn
=2+«nxn+9*xn+9

unfold "+ at 3

2«n*n+9+9%n
=2xn*n+9*xn+9

make first (9% n) 9xn+2*«n*n-+9
=9xn+2xn*xkn—+9
prove _equ Qed

Figure 8.8: Proof of Vn :N,94+6xn+2xn*xn+3xn=2*«xn*xn+9xn+9 with
the tactic make first.

This is realised by going through all occurrences successively until a firstable has
been found. Since there does not seem to be a good way for counting indiceq"]
we use a technique we call immunisation to go through: we always check the first
occurrence and substitute it by a new fixed variable if the respective term is not
firstable. So after immunisation the old second occurrence becomes the new first
one. If we reach a firstable occurrence we replace it by another new variable and
all previous substitutions, indicating failures, are changed back. So there is only
one substitution variable left (if there is at least one firstable occurrence), which
we shift to the front afterwards (see below) and only then change back.

So how does the shifting work when we have the guarantee that the term under
discussion occurs at most once?™®| We have a base case stating that nothing needs
to be done if the term to be shifted is the whole left hand side of the respective
hypothesis. If the left hand side is a successor or predecessor application then we

12 The position numbers are of an ML type for natural numbers, not the one of Coq.
13 The tactic cannot expect exactly one occurrence since it has to work with the subterms,
too, which in general do not contain the immunisation variable under discussion.

110

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

can simply create a new hypothesis for the input and work on the left hand side.
For shifting n to the front in the term Suc (m + n), for instance, we create a new
hypothesis stating m +n = m + n and shift n to the front on the left hand side of
this hypothesis before we apply the result to the original hypothesis.

Things are not that simple in the case of addition and multiplication. If we
want to shift n to the front on the left hand side of a hypothesis of the form
m op | = k we first construct a new hypothesis [= [and try to shift n to the
front on the left hand side of this; the result being saved in the new hypothesis as
I" =1 for some [". Now we have to check if n is at the front of I’. This requires an
extra tactic since the n could be nested as the example (n+ j) i = 42 illustrates.
Now, if n is in front of I’ we want to change m op | = k to m op I' = ¥ and
then commute m and the beginning of I’ containing the n. If I’ is itself of the
form j op ¢, however, we have to use the associativity law twice to keep the order
of the noninvolved terms — as far as possible — and to avoid the creation of new
parentheses.

If n is not in front of I a similar procedure — but without the commutation —
is done for m instead of [. If n is not in m neither, the whole tactic behaves like
idtac to enable recursive calls. By contrast, the overall tactic of this subsection,
make first_equ_left_in, would fail in such situations since the tactic trying to
immunise the first firstable occurrence of n, which is applied before, would fail.

8.5.4 FEvaluation

The tactic make _first is further away from the corresponding reasoning in proofs
of a medium degree than the other tactics considered so far. We cannot just
point to two subterms and commute them (if legal). Instead our tactic allows to
bring single terms to the front (if legal). This enables us to bring the subterms
in our desired order but this may require many steps; so condensation cannot be
guaranteed. Sometimes there are ways to make the new arrangement in fewer
steps but to see these is a lot easier for a user realising the implicit parentheses.
Furthermore the handling is often counterintuitive: we have to work with the terms
we are not interested in for the moment to bring the interesting terms together.

Nevertheless the handling of commutativity with the help of make first is
more adequate than without. The justification can at least concentrate on the
terms that are brought to the front and the user does not have to know the
commutativity and associativity law (as well as the names thereof) nor the implicit
parentheses to find some way of rearrangement.

14 This is unproblematic since n is in front of I’ and hence occurs already in I. So n cannot
occur in m since otherwise it would occur at least twice in total, contradicting our assumption.

111

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

A rather easy improvement would be a tactic with two (or more) terms as inputs
that shifts both terms to the end such that these are in one pair of parentheses. A
more challenging betterment would be to somehow track the position of the two
terms (for instance via a path in the syntax tree) and commute only these two
positions via automatic use of associativity and commutativity laws.

However, perhaps the most important purpose of make first is not its direct
use for commutations but its preparative character for the drop tactic, which we
are going to consider next.

8.6 The tactic drop

8.6.1 The corresponding reasoning in medium degree
proofs

When developing proofs of a medium degree of formality we often reach situations,
in which it suffices to show some arithmetical (in)equation or negation thereof. Let
us say, for instance, that n+m? + k2 +2xlxm+1> < 3% k% + (I +m)? + n remains
to be proven. In such cases we simply drop n and k% and show m? + 2 x [* m +
2 < 2% k?+ (I +m)? instead. If we use the first binomial formula we can drop
m? + 2% xm+1? and reach 0 < 2 * k2. This is trivially true for natural numbers
but it also holds for integers, rationals, and reals.

Sometimes we want to drop a term in a hypothesis we already have at our
disposal. In n +m = m + [this is unproblematic and by dropping m we obtain
n = [; whereas in case of multiplication such dropping is only possible for m # 0.

Although the treatment of goals and hypotheses looks similar, on a high degree
of formality it is quite different. In the former case the terms that seem to be
dropped are actually added to the new goal (as sums or factors) and then the
terms are placed in the order of the original goal. In the latter case, by contrast,
we need to use cancellation laws like n +m = n +1 — m = [. If negations are
involved the treatment of goals and hypotheses is exchanged.

8.6.2 Treatment in Coq

In order to see how the dropping of terms works in Coq let us consider the state-
mentVonmlilkj:Nm=#0—=>nsmx*xl=mxk— nxjxl=jx*k. This example
is well suited since we will need the reasoning for dropping terms in a hypothesis
as well as in the goal.

The proof without the use of the tactic drop (and without the use of other
medium degree tactics) is shown in figure . The essential part of the proof
begins by bringing j to the front (steps 3-5). We already know that this could

112

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF

FORMALITY

Next step in Coq

Proof situation

Initial situation

Vnmlkj:Nm=#0
—Snsxmx*l=mx*k
—n*xjxl=7j %k

prove_all imp star

n: N
[m : N
[1:N]

3
Z|z

>~
2

<
B

H:m#0

HO:nsxmxl=m=xk

nxjxl=j%xk

use_uqe (mul_assoc n j)

HO:nxmxxl=m=xk

nxj)xl=jxk

use_equ (mul _comm n j)

HO:nxmxxl=m=xk

(jxn)xl=7jxk

use_equ (mul_assoc j n)

HO:nsxmxl=m=xk

jxnxl=7j5xk

cut (nxl=k)

+1

(HO:nsxmx*l=msxk]|

nxl=k—jxnxl=7x%k

prove_imp

’Hl:n*l:k‘

jxnxl=jxk

use_equ H1 IV STy
prove _equ +1 completed
n HO:nsxmxl=mxk
2 nxl==k
use_uqe (mul_assoc n m () in HO HO:(nxm)xl=mxk
nxl==%k
use_equ (mul_comm n m) in HO HO:(mxn)xl=mxk
nxl==%k
. ’HO:m*n*l:m*k‘
use_equ (mul_assoc m n l) in HO oy B
use (n_mul_m_equ_n_mul 1 H HO) Qed

Figure 8.9: Proof of Vnm ik j:Nm#0—=>nsmxl=mxk —>n*xjxl=jx*xk

without the tactic drop.

113

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation Vaomlkj:Nm#0—>nsmxl=mxk
s nxjxl=j%xk
n: N

[L:N]
[k N]

E

Z,

= [=|3
Z|| 2

prove all imp star
H:m=#0
HO:nxmx*xl=m=xk
nxjxl=j%k
HO:nsmxl=m=xk

<
B

drop j nxl==Fk
drop m in HO
HO:nxmx*xl=m=xk

*1 m # 0
use H +1 completed
. [HO :nxl=k|

nxl==%k
use HO Qed

Figure 8.10: Proof of Vnmlk j: NNm=0—=nsmxl=mxk > nxj*xl =7 %k
with the tactic drop.

have been done in one step using the tactic make_first. Next, we show that
n * [= k suffices to prove the original goal.E] This claim is proven in the subpart
of the proof, marked by ‘+;’, by using the equality. It remains to show n x[=k
(subpart ‘+5’). Here again, the first three steps are only the long version of bringing
m to the front in H0. As the proof illustrates this is the expensive part while the
remainder is just an application of the theorem n_mul m_equ _n mul 1.

The second proof (see figure is more condensed and the justifications are
much simpler. The only two essential steps are the dropping of ;7 and m (the last
one in H0). The first dropping is unproblematic, while the second one requires
the further information of m # 0, which is why we have to branch. Note that we
do not have to be aware of any of the problems regarding parentheses since these
are already managed by the tactic.

15 With other tactics than drop allowed we could have used here prove_by_components_equ,
too (see appendix.

114

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

8.6.3 Implementation idea

The basic idea for the implementation of drop is to use the tactic make_first
— or to be more precise, a variant thereof — to shift the terms to be dropped to the
front of both sides of the respective hypothesis or goal. This separation permits
the respective terms to be eliminated by the use of suitable lemmata.

For the first of the two steps we need to modify the classical make first a little
bit. In n+ (m=1) = 42+1, for instance, both occurrences of [can be shifted to the
front but only the latter one can be modified to become the first operand of the
outermost operation. So we need a tactic “predicate” is_droppable analogous to
is_firstable. Technically, the former differs from the latter inasmuch as there
is no nesting with the successor and predecessor function as well as no mix of
addition and multiplication.

With is_droppable at hand the immunisation of the first droppable can be
done just in the same way we immunised the first firstable. Now we can apply
the tactic make_first_equ_left_in_at _most_one_occurrence since it works for
every firstable term and so for every droppable term in particular.

For the second step, the elimination, all the different cases that may appear
after shifting have to be taken into account. Let us consider two of them when the
dropping is applied to a hypothesis.

| n x ?k =n *x 7j =>
assert (n # 0);
[(x Fn#0 %)

idtac

| (*x H> : n # 0 %)
cut (k = j);
[clear H H’;

prove_imp name H (x H : k = j *)
| use (n_.mul m equ n mul 1 H> H)]]
| n # n *x 7k =>
cut (1 # k);
[clear H;
prove_imp name H (x H : 1 # k %)
| prove_imp name H’; (x H’ : 1 = k, - False *)

mul _equ n in H’; (* H> : 1 * n =k * n %)
use_equ (I_mul n n) in H> at 1; (* H> : n =k * n *)
use_equ (mul _comm k n) in H’; (x H’ : n =n % k %)

use _False (H H’)]

115

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

In the first of both cases we need to know that n # 0. The assert construct
requires a proof of this statement first, which is left via idtac to the user. In the
second branch — where n # 0 is now assumed — we cut with £ = j to replace the
original hypothesis by this new version (n # 0 is also cleared). The second branch
of the second branch, which requires to prove &k = j, is not visible for the user
since it is closed by application of a suitable theorem using n # 0 and the original
hypothesis. The second case is simpler since no additional precondition must be
fulfilled. Again we use a cut to replace the original hypothesis. This happens in
the first branch. The second is closed and therefore invisible to the user. Note
here that 1 # k is defined as 1 = k — False, which is why prove_imp_name can
be used.

The tactic drop is not value preserving. So there is no automatic lifting to
a goal version or inequalities. Hence for the overall tactic all of the following
combining possibilities have to be considered: only addition or also multiplication,
one or two operands on both sides, hypothesis or goal, and equation, negation
thereof, the less equal, or the less than relation. Furthermore we need a variant of
the tactic allowing to point at concrete positions where the corresponding term is
supposed to be dropped. Fortunately, at least in the latter case further inflation can
be avoided: the main tactics can be enriched by a parameter is_at_at_version
while the true tactics are then realised as tactic notations:

Ltac drop_equ_in_meta make first droppable_equ_left_in_version
make first droppable_already_executed is_at _at_versionn Hm 1 :=
let H’ := fresh in let H’’ := fresh in
lazymatch make first_droppable_already_executed with
true =>
idtac

(* This is helpful because it enables the recursive call
belo *)

| false =>
lazymatch is_at_at_version with
true =>

equ_in_at_at make_first droppable_equ_left_in_version

n Hm 1 false
(* If droppable, the mth n on the left and the 1th n on the
right hand side are shifted to the front *)

16The case n * k # n can be treated by referring to the n # n * k case.

116

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

| false =>
equ_in make_first_droppable_equ_left_in _version n H false
(* The first droppable terms on both sides are shifted to
the front. If one side has no droppable term it fails *)
end
end;

Tactic Notation "drop_equ" constr(n) "in" hyp(H) :=
drop_equ_in_meta
make first droppable_equ_left_in false false n H 0 O.

Tactic Notation "drop_equ" constr(n) "in" hyp(H)
"at" integer(m) integer(l) :=

drop_equ_in_meta make_first droppable_equ_left_in
false true n Hm 1

8.6.4 FEvaluation

The tactic drop does a good job in simulating the respective reasoning step: the
same steps are performed and the justification is as simple as this is possible in Coq
since we cannot give no justification at all. Although the tactic does essentially
build on make first it does not share the same disadvantages: we can directly
work with the terms we are interested in and — except for verifications of the form
n # 0 for some n — we always only need one step for one dropping. In particular,
there is no need to take advantage of invisible parentheses.

Nevertheless we can think of some improvements. So far the tactic is not able
to handle situations like n+m < [42x*n, in which we would like to reach m < [+n
by dropping n. Furthermore a term must occur in a contiguous way to be dropped:
inn+5+m=(m+m)+land in n+m+5=(n+m)+I, for instance, n +m
cannot be dropped by the tactic yet.

Let us end the investigation of the drop tactic with a didactical remark. The
implementation of the tactic needs consideration of many cases but in the applica-
tion this can hardly be perceived. In other words, one can drop terms in the right
way without understanding the reasons behind it. Perhaps this can be a part of
an explanation why arithmetically trained pupils in school experience difficulties
when they are facing proofs.

17At this point the elimination part as discussed above starts; in this case for hypotheses
involving multiplication but with a restriction to equalities and negations thereof.
18We changed the position of some parts of the code due to layout reasons.

117

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

8.7 The implementation for the lifting of value
preserving tactics

Up to now in the implementation of value preserving tactics we considered only
versions for modifying the left hand side of hypotheses that are equations. In the
given examples, however, the tactics were used to modify whole hypotheses and
goals. Furthermore, there is no reason why such tactics should only work for equa-
tions and indeed they can be applied to negations of equations and inequations,
too. In this section we discuss how tactics operating only on the left hand side of
equations can be lifted canonically to the corresponding actual tactics[”|

The key idea is the following. If we have some hypothesis or goal of the form
n R m, with R being a binary propositional function, we create two new equalities
namely n = n and m = m as new hypotheses, modify their left hand sides, and
use their equalities backward in the original hypothesis or goal. For the hypothesis
case this is realised by the following meta tactic:

Ltac equ_in_modifications Tac_equ_left inn Hm 1 :=
let H’ := fresh in let H’’ := fresh in

let S := fresh in

(xH : mR1 %)

first

[fact_name (equ_refl m) H’; (x H’ : m = m %)
Tac_equ_left _in n H’; (* H’ : m’ = m %)
fact_name (equ _refl 1) H’’; (x H’> : 1 =1 x)
try (Tac_equ_left in n H’?) (% H?? : 17 = 1 %)

| fact_name (equ_refl m) H’; (x H’ : m = m %)
try (Tac_equ_left_in n H’); (* H> : m’ = m %)
fact_name (equ_refl 1) H’’; (* H’? : 1 =1 %)
Tac_equ_left _in n H’’ (x H’? : 1’ =1 %)];

set (S :=m) inHat 1; (*x H: SR 1 %)

use_uqe H’’ in H; clear H’’; (* H : S R 1’ %)
change S with m in H; clear S; (x H : m R 1’ %)
use _uqe H’ in H at 1; clear H> (* H : m’ R 1’ *).

The input Tac_equ_left_in is the respective tactic version operating on the left
hand side only, n is the input of that tactic (if there is no such input a pseudo
tactic for operating on the left hand side is previously defined, which ignores that
input and hence behaves like the one without the additional parameter), and H
is the hypothesis we want to modify stating that m R [. The tactic must be
applicable at least to one side (possibly without changes). This is realised by

19 As far as we know this technique is unprecedented (see section [8.11]).

118

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

two alternatives given in the first construct. The first requires the left hand
side tactic to be applicable to m while the second does this for [. In each of the
alternatives the application to the other side is tried, too, but if that fails there
are simply no changes made by equ_in_modifications. After the execution of
one of the alternatives the old m and [are replaced by m’ and [’. This requires
some immunisation.

Next, there is a cumulative series of meta tactics called equ_in, lequ_in,
and less_in, which conduct the equ_in _modifications tactic for all relevant
relations. Since they are all constructed in the same way it suffices to consider the
implementation of the last one:

Ltac less_in Tac_equ_left_in n H exactly_one_step :=

let H’ := fresh in

let T := type of H in lazymatch T with

Tm = 71 =>

equ_in Tac_equ_left_in n H exactly_one_step

| ?7m # ?1 =>
equ_in Tac_equ_left_in n H exactly_one_step

| 7m < 71 =>
lequ_in Tac_equ_left_in n H exactly_one_step

| ?m < 71 =>
fact name H H’; (x H’ : m < 1 %)
equ_in modifications Tac_equ_left inn Hm 1; (x H : m’ < 1’ %)
change happened_or_no_change necessary H H’ exactly_one_step;

clear H’
I _ =
fail "The hypothesis must be of the form ... = ..., ... # ...,

< ...,0r ... < ..."

end.

The tactic change_happened_or_no_change necessary checks whether a change
is requested (the last parameter exactly_one_step is true) and — if so — whether
H after the modification differs from its copy before the modifications.

The lifting of a concrete tactic is now realised by tactic notations. Let us
consider the lifting of drop_identities_lequ as an example.

Tactic Notation "drop_identities_lequ" "in" hyp(H) :=
lequ_in drop_identities_equ_left_in pseudo O H false.

Tactic Notation "drop_identities_lequ" :=
lequ drop_identities_equ_left_in_pseudo O false.

119

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

As already mentioned pseudo tactics like drop_identities_equ_left_in_pseudo
are implemented to behave like the corresponding original left hand side tactic but
with one additional input, here 0, without effect. The pseudo tactic has the right
number of input arguments and hence can be applied within the lequ_in and lequ
tactic. The false states that no changes are needed (since drop_identities is
not a one step tactic).

Let it be briefly mentioned that there are variants of all the meta tactics per-
mitting modifications of a particular occurrence or two particular occurrences of
the term under discussion. This is again realised by immunisations. The tactics
we want to use can then again be defined as tactic notations:

Tactic Notation "make first_equ" constr(n)
"at" integer(m) integer(l) :=
equ_at_at make first _equ_left in n m 1 true.

8.8 Where the higher degree of formalism hides

In sections we presented some examples showing that reasoning in medium
degree proofs can be simulated (most times adequately) by tactics in Coq. This
implies that Coq proofs using such tactics should have advantages very close to
the ones of medium degree proofs. Nevertheless there are no concessions regarding
the guarantee aspect of formal proofs whatsoever. As it is the case with any
other completed proof in Coq in the end a completely formal proof object has
been constructed. It does not involve tactics but consists only of A-expressions
and references to applied theorems. For any theorem example_theorem this proof
object can be made explicit by typing Print example_theorem in Coq. So we
have a big win with respect to the illustration of ideas and with respect to the
convincing power but no loss in objective guarantee. How is this possible?

Pattern matching is the key. It explicitly provides the context humans would
subconsciously infer. However, prerequisite for this is that the programmer of
the tactic considered all possible (and impossible) contexts, in which the tac-
tic can(not) be applied, in advance. For instance in the case of the pre-version
drop_identities_add_equ_left_in the possible contexts (with pattern variables
n, m, and [) are 0 +n = m, n+ 0 = m, as well as Suc n, pred n, and n+m = [if
the first two are not applicable.

Now, the context allows the machine to follow a precise sequence of instructions
using the context variables. Such sequences mainly consist of logical and equational
rules, other tactics, the application of theorems, as well as immunisations. Some
instructions may generate new situations not uniquely determined by the context

120

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

at hand. In such cases new contexts are needed and the programmer has to take
care to anticipate them all. Technically this results in nested pattern matchings.
Of course, for each nested context there is again a precise sequence of instructions.

So the answer to the question above is that we have an automatic transition
from the medium degree version of a proof in Coq to one of higher degree, which
is finally converted into a formal proof object. The former transition is possible
because of

1. Coq internal procedures that allow us to use pattern matching

2. preparation work of the programmer anticipating all contexts and imple-
menting their respective treatment.

8.9 Simulating medium degree reasoning in
more complicated domains — a prospect

So far we focussed on arithmetic in our simulation of medium degree reasoning.
This domain was chosen because it is already rich enough to gain decisive insights
regarding the simulation techniques while it is not too complicated to start with.
Let us now outline what simulation of more complicated domains may look like.
We chose automata theory for this as an example since the simulation of medium
degree reasoning here does create problems that are not due to problems in for-
malising automata theory per sef| In fact, automata theory has already been
formalised; even in Coq (see chapter |§] for further details).

In arithmetic it sufficed to develop tactics modifying single hypotheses or goals.
By contrast, in automata theory we often do not only change a single statement
but a whole system of statements at once. The reason behind this behaviour is
that in automata theory complete algorithms — instead of just single theorems —
are applied.

Let us take a look at an example. If we define regular languages to be the
languages described by regular expressions, a textbook proof of a medium degree
of formality that regular languages are closed under complement could look like
the one shown in figure [8.11} where ‘RE’, ‘DFA’, and ‘NFA’ stand for ‘regular ex-
pression’, ‘deterministic finite automaton’, and ‘nondeterministic finite automaton’
respectively.@

20 In calculus, for instance, we would have the formalisation issue of how to formalise the real
numbers.
21 See [59] for further information about these concepts.

121

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Theorem : For all regular languages L the complement L is also regular.
Proof : If L is regular then there exists a regular expression R with
L(R) = L. We apply the transformation that generates an e-NFA N with
L(N) = L(R) = L. Now we convert this into a DFA D = (Q, %, 6, qo, F)
with L(D) = L(N) = L. We define the DFA D" := (Q, %, §, g0, Q\F) and
obtain L(D') = {w € £* | §(go, w) € Q\F} = {w € ¥* | §(go, w) & F} =
“>\{w € 2% | §(¢go,w) € F} = ©\L(D) = L(D) = L. We can con-
ceive the DFA D' as an e-NFA N’ with L(N') = L(D') = L. Next
we use the procedure for eliminating states to reach an RE R’ with
L(R') = L(N'") = L. Hence L is regular if L is. Qed.

Figure 8.11: Textbook proof of the closure of regular languages under comple-
ments.

What is interesting for us in this proof are the transformations, for instance
“the transformation that generates an e-NFA N with L(N) = L(R) = L”. This
statement does not only explain that there is an algorithm for converting REs into
e-NFAs but applies implicitly a theorem stating the preservation of the original
language. Therefore in our simulation a system of statements (R is an RE and
L = L(R)) has to be replaced by a new system (/N is an e-NFA and L = L(N)) in
a single step.

Let us now peruse this idea by comparing two Coq proofs for the closure of
regular languages under complements. First, we will discuss a corresponding proof
not using medium degree tactics (figure 8.10). Then, we will see what a proof with
such tactics may look like (figure .

Up to and including the first use_ex nothing of particular interest happens. At
that point then we want to switch to a DFA representation@7 which is realised in
three steps. First we use the function from_RE_to_DFA and a theorem stating that
this transition is correct, i.e. language preserving. Next, we call the DFA created
by the function D in analogy to the textbook proof given above. The final substep
is to relate L to D, which allows us to delete the now uninteresting relation of L
to R.

The next three steps are devoted to the construction of the complement DFA
and its incorporation into the current proof situation. Again we use a transition
function, this time called complement DFA and a theorem guaranteeing its correct-
ness. As in the previous conglomerate of substeps we introduce a variable, here
D', as a shortcut in analogy to the textbook proof. Finally, we use our previous
results to relate L to the most actual representation; this time D’.

22 A path through an e-DFAs would bring no additional insights. The two single paths can be
composed into a new single one.

122

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF

FORMALITY

Next step in Coq

Proof situation

Initial situation

V L : Lang,is_regular L
— is_regular L

prove_all _imp_star

L : Lang

H :is_regular L

is_regular L

unfold is_ regular in H

H:dR:RE,lang RER=1L

is_regular L

|R:RE]

use ex H H:lang RER=1L
is_regular !|L
H:lang RER=1L
fact HO :lang RE R =lang DFA

(from_ RE_to DFA_correct R)

(from_ RE_to DFA R)

is_regular !L

set (D :=from RE_to DFA R)
in HO

H:lang RER=1L

|D = from_RE_to_DFA R:DFA|

HO:lang RE R =lang DFA D

is_regular !L

use_equ H in HO

H-"deng—RER=1L
HO: L =1lang DFA D

is_regular !|L

fact (compl DFA_ correct D)

HO: L =1lang DFA D
H :lang DFA D
= !(lang DFA IDFAD)

is_regular L

set (D' := IDFA D) in H

HO: L =1lang DFA D
| D' := IDFA D : DFA|
H :lang DFA D
= !(lang DFA D)

is_regular !L

use_uqe HO in H

HO-F=tange—DFAD
H : L= !lang DFA D’)

is_regular !L

fact
(from_ DFA_ to RE_correct D’)

H: L= !(lang DFA D’)
HO :lang DFA D' =lang RE
(from_DFA to RE D)

is_regular L

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation
H: L= !(lang DFA D’)
set (R':=from_DFA_to RE D) | |R':=from DFA to RE D':RE]
in HO HO :lang DFA D’ =lang RE R’
is_regular !L
use_equ HO in H H: L=I(lang RE R)

is_regular !L
fact (equ_fct compl lang H) HO: 'L =!(!(lang_ RE R))
is_regular L

use_equ (compl_compl_lang HO: !|L =lang RE R’
(lang RE R')) in HO is_ regular |L

unfold is_regular I R0: RE, lang RE R0 =L

/
prove ex R lang RE R =1L

switch

'L =lang RE R’
use HO Qed

Figure 8.10: Proof for the closure of regular languages under complements in Coq
not using medium degree tactics.

The path back to regular expressions is similar to the forward aggregations
of steps. After that, however, we have to cope with an additional problem. So
far our gained insights are formulated in terms of L; but our goal is stated in
terms of !L, the complement of L. To bridge the gap both sides of the equation
L =!(lang_ RE R’) have to be complemented. Furthermore we need a theorem
stating that double complementation boils down to the original language.

Only the last four steps are dedicated to the goal. We unfold the definition of
regularity of a language to show that R’ is the RE we are searching for.

Working on this level is irksome. The steps managing the transformation of
the RE to the DFA belong together and constitute only one real change. The same
is true for the backward direction and the steps for construction and incorporation
of the complement DFA. Furthermore in the latter case the conversion regarding
the complement language should be included. In figure we show what such a
proof would look like.

124

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

Next step in Coq Proof situation

Initial situation

V L : Lang,is regular L — is_regular !L
L : Lang
prove_all imp_ star is_ regular L
is_regular !L
H:dR:RE,lang RER=1L
is_regular !L
R-RE
use ex H H:lang RER=1L
is_regular L
D DFA
from RE to DFA R H :lang DFA D =1L
is_regular !L
D' DEFA
make complement DFA D H :lang DFA D' =IL
is_regular !L
R : RE

from DFA to RE D’ H :lang RE R' =L

unfold is_ regular in H

is_regular !L

unfold is_ regular IR :RE lang RE R =T,

prove ex R’

lang RE R =L
use H Qed

Figure 8.11: Proof for the closure of regular languages under complements in Coq
using medium degree tactics.

Except for one switch, starting and ending of the Coq proof with medium de-
gree tactics is the same as in the first version without such tactics. So the essential
changes are in between. Obviously the second proof is condensed here significantly:
it has only three steps left in this part. Each of these steps corresponds to a series
of substeps in the previous proof. The first transition tactic, for instance, does
not only replace R with a DFA D. It replaces what depends on R in the actual
proof situation with a corresponding statement involving D, too. In this case
lang_ RE R has to be replaced by lang DFA D. In case of the complementation
tactic for DFAs it is the complementation of the equation lang DFA D = L that
has to be conducted automatically. Note that the proof with the medium degree
tactics also simplifies the justifications and makes them procedural in character.

125

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

The realisation of such medium degree tactics is anything but trivial. Instead
of a single hypothesis or just the goal the whole actual proof situation has to
be considered. Furthermore there are many relevant situations ((in)equality of
languages, change of components like @) or F' etc.) that have to be anticipated.
However, the advantages are so obvious that developing such tactics should be
worth the effort.

8.10 The simulation of low degree
argumentations

So far we discussed the simulation of medium degree reasoning with the help of
tactics to acquire the benefits of medium degree proofs (and systems) together
with objective guarantee. A natural question reads as follows: can we extend the
results of that project to argumentations having a low degree of formality? Such a
goal sounds very ambitious but it only reflects a very natural interaction between
user and computer: the former is the creator of ideas while the latter calculates
that everything is fine.

First of all, we have to recognise that the required extension cannot be a
continuation of our approach since tactics like the ones we have discussed so far
are not suited for this job. Anticipating of and working with concrete contexts is
essential for their usage. In low degree argumentations, however, the condensation
is too big and the proof situations to imprecise to keep track of the contexts in
advance.

A more appropriate candidate for the simulation of low degree argumentations
might be auto tactics, since they do not need to anticipate any contexts. Instead
they are based on heuristic strategies to autonomously search for solutions without
further interference by humans. In chapter [2, however, we already discussed that
the auto tactics are black boxes that do not have to be suited to simulate low
degree reasoning steps and that — even if they are suited to do so — humans can
use them in their proofs for medium or high degree steps nevertheless. So auto
tactics cannot guarantee low degree argumentations but can they at least enable
such reasoning?

Different proof assistants use auto tactics in different ways. In Coq there are
auto tactics used to prove the actual goal or to modify it or the actual hypotheses.
Some auto tactics like auto are general while others like omega are restricted to
particular domains (in that case arithmetic). Usually, the auto tactics in Coq can
be found in proofs side by side with those tactics that represent basic logical rules.
Yet, this crude mix of low and high degree reasoning is no option when simulating
low degree reasoning. The only way to circumvent this problem would be proof

126

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

scripts that only contain auto tactics and cuts. In that case the proof scripts
would degenerate to declarative proofs. This might be fine but why then not
use Isabelle/Isar or ACL2 instead, which are intended to work in this declarative
fashion?

However, even these alternatives are not completely satisfying. First of all, the
statements of theorems and — in the case of Isabelle/Isar — intermediate proof
situations have to be written down in a high degree way. Second, it is far from
clear that the respective auto tactics can handle the condensation level of low
degree argumentations. In particular this may be the case when a rather simple
idea turns out to be technically demanding. Finally, to simulate a low degree
reasoning the machine must construct a proof object guaranteeing the success of
the approach. Yet, it is a guarantee for the coherence of the argumentation that
is needed instead.

8.11 Related work

Our approach to simulate medium degree reasoning is based on the tactic lan-
guage Liac, which is introduced by David Delahaye in [35]. Delahaye’s motivation
is to define smaller tactics directly in Coq, which before his work had to be done
with the help of the programming language OCaml. He assesses the definition
of tactics in Coq via the Li,. language as a middle way between Coq and pro-
gramming languages. Of course, this reminds us of a medium degree of formality.
Delahaye mentions advantages of proof scripts using tactics defined by the Ly,
language, namely that they are more compact, more simple, more readable, and
more maintainable (see [35]). This again, sounds a little bit like a characterisation
of a medium degree of formality. He even states that pattern matching helps to
handle the proof process, which in turn was our key explanation in section
for tactics being able to simulate medium degree reasoning. However, Delahaye
applies his small tactics in concrete situations and even directly in proofs in the
same way a lambda term is used as an anonymous function. So he uses the Ly,
tactics rather as ad hoc devices. The kind of tactics we presented in this chapter
is probably not what he had in mind.

In [64], an article in which a semantical foundation is given to the Ly, language,
Wojciech Jedynak, Malgorzata Biernacka, and Dariusz Biernacki make some re-
marks in the same spirit as Delahaye. They asses atomic tactics, which are the ones
corresponding to a single rule, as impractical due to their high level of granularity.
Therefore the authors want to reason about Coq scripts using L, tactics. The
tactics they employ, however, are just ad hoc ones trying to prevent repetitions for
the user in practical situations. In particular, there are only aggregates of single
steps but there is no consideration of tactics representing reasoning units.

127

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

With regard to the idea of using tactics to simulate medium degree reasoning
most close to our approach is the work of Thomas Braibant and Damien Pous [I§].
In this article tactics are used to manage parentheses, order, and identities. Ac-
cording to the authors proof scripts without such tactics are too verbose and to
painful to write. On the other hand the authors state explicitly that they want
small rewrite steps instead of a complete decision of a proposition, i.e. they want
rewrite terms in an appropriate way instead of a black box solution of the com-
plete actual goal. This sounds like medium degree of formality. There are further
similarities to our approach. The authors do not want to change the kernel of
Coq and welcome tactics that are written directly in Coq using the Ly,. language.
However, more than half of their code is still written in OCaml. Braibant and Pous
use a presentation of proof scripts that involves the actual proof situation and is
thus similar to ours. Furthermore they strive for simple usability as we do, too.
From our point of view one disadvantage of Braibant’s and Pous” approach is that
the tactics comprise too many different kinds of reasoning steps. Furthermore the
effects of rewriting are sometimes not predictable. So they cannot provide clear
control. The biggest problem of their approach, however, is that it can only be
applied to all value preserving tactics at best. Tactics like drop cannot be im-
plemented by rewriting techniques alone and in domains other than arithmetic
most reasoning steps — we expect — will not be value preserving. Having said that
there are some advantages of their approach as opposed to ours. First of all, their
approach is already implemented not only for natural numbers but more generally
for algebraic structures. Second, their rewriting even works in (nested) arguments
of arbitrary functions. In our case this is true only for the standard operations
successor, predecessor, addition, subtraction, and multiplication. Finally, their
realisation of the tactics works on a syntactical level. This should allow to reduce
the extent of the tactics in favour of Coq theorems about such syntactical terms
and their manipulations.

It should be noted that Schiller, whose PhD thesis we already discussed in
section [2.7] makes a general point of criticism by which our approach is affected
in particular: “The question of appropriate granularity is deferred to the author
of the tactics” ([98, pp.95-96]) We reply to this (or similar) criticism that our
granularity level is indeed fixed for each tactic but that it is the same for all of the
arithmetical tactics; and furthermore, that the level itself is not arbitrary but aims
at corresponding to the steps actually conducted in most of (good) mathematics.
We already said in section [2.7]that we appreciate the idea to bring different degrees
of granularity and — more general — of formality into one proof but we doubt that
an aggregation of elementary steps via auto tactics instead of reasoning units is
the right way to pursue this goal.

128

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

As already mentioned in section [7.1], for each domain our approach of simu-
lating medium degree reasoning can be seen as (the core of) a respective proof
environment. Besides the more essential tactics this comprises a library in each
case, too. So it makes sense to compare our proof environment for arithmetic with
other Coq libraries and projects. In the standard library of the Coq proof assis-
tant [28] natural numbers occur in two ways. First, there is a module Init, which
is loaded every time Coq is started. In that module there are the two submod-
ules Nat and Peano. In the former several functions are defined but no theorems
are given. The latter contains some theorems but also new definitions. Second,
there is a module named Arith (which has to be loaded), in which the submodule
PeanoNat is the most relevant containing some definitions and many theorems.
Both modules are very different in nature with respect to our proof environment.
Already the selection of contents indicates that but the salient difference is the
attitude towards proofs. There are no proofs to be found in [28] but one has to
take a look at the source code [24] to find them. It turns out that only Coq stan-
dard tactics are used, i. e. one finds only a mix of basic rules and auto tactics. The
auto tactics of an arithmetical nature are called ring, omega, field, and fourier.
They are developed to solve arithmetical goals automatically in one step (see [12]
subsections 7.4.1-7.4.4] for further explanation). All four tactics are implemented
in OCaml. There is a file named Tactics.v where tactics are defined inside of Coq
but all of them are neither of a proof environmental nature nor arithmetical.

What about libraries and projects outside the standard library? In [74] differ-
ent math projects in Coq are listed | For evaluating these projects with respect
to similarities with our proof environment in the following we often refer to the
respective source code; because we are interested rather in the methodology than
the concrete contents. The mathematical components project [78] is about algebra
and group theory. For their proofs they use Ssreflect?’] a very technically oriented
variant of proving in Coq that is far away from our proof environment philosophy.
C-CoRN [25], ForMath [44] and math-classes [77] are related projects (see [27]) try-
ing to formalise different domains of mathematics in an efficient way. C-CoRN and
math-classes use standard Coq tactics while ForMath uses Ssreflect. In C-CoRN
there are some further tactics defined but these do not resemble ours at all. In
math-classes natural numbers are seen as instances of type classes, the use of which
can be seen as the essence of that project. The HoTT [60] library pursues a cate-
gory theoretical approach using standard tactics with some modifications. Natural
numbers are consequently conceived as a category. In the HoTT library there are
tactics for rewriting modulo associativity showing once again that a medium de-
gree treatment of parentheses is needed. In Gappa [79] and Flocq [16] exact real

23 We discuss most but not all projects listed there.
24 See [50] for further information.

129

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

arithmetic and floating point arithmetic are investigated. Both approaches are
of a numerical nature and so target efficiency. Russell O’Connor formalised the
Godel-Rosser Incompleteness theorem in Coq (see [87] for the code and [88], Part I
for a delineation of this approach). He simply uses the standard Coq tactics and
the Arith module of the standard library of Coq.

Closest to our approach regarding the concrete implementation of the environ-
ment for natural numbers is a part of the UniMath project [I12]. First of all, a
lot of lemmata are implemented in that part, many of them being similar or even
equal to the ones we have proven. Next, there are many tactics for the handling of
natural numbers. Yet, most of them seem to be auxiliary tactics such that in the
end only five types of tactics remain. Three of them are rather simple and corre-
spond to our tactics basic_fact, contradiction, and exception (see section .
Another type of tactic allows to permute three terms and is thus an alternative
solution to dealing with commutativity and associativity. Very interesting is the
last type of tactic, which allows — if possible — to regroup a goal such that a given
term is then a subterm of the goal. This could be the basis for simulating the con-
sideration of certain parts of a term in other tactics. However, there is a salient
difference to our approach. The tactics in the UniMath project remain on a tech-
nical level. They do not replace the non-logical standard Coq tactics in the proofs
of the theorems{ﬂ and much less are they built to be used in a proof environment
by non Coq experts.

As a last point we want to mention that we believe our lifting technique (see
section — though not far to seek — to be unprecedented. The technique can be
seen as one of rewriting and so relevant literature might be found there. However,
all of the rewriting topics we are aware of are very different from ours in char-
acter. For instance Jacek Chrzaszcz and Daria Walukiewicz-Chrzaszcz present a
vision in [22] that amounts to bringing all relevant rewriting rules directly into the
definition of a function (like addition for an example). Another technique called
generalized rewriting is presented in [I0] by David A. Basin. In that article rewrit-
ing is extended to arbitrary relations (of course under some side conditions) @
Such a possibility can help when dealing with integers (or rationals) of the same
value but which are not equal in the sense of CoqE]

25 In fact, they do not seem to be used at all.

26 Another important aspect of that article is the automation of goals that are generated
when one tries to rewrite something in Nuprl. Since this problem and any way to solve it are
idiosyncratic to the Nuprl system we do not elaborate on this further.

27 There are no quotient types in Coq.

130

CHAPTER 8. SIMULATING PROOFS OF A MEDIUM DEGREE OF
FORMALITY

8.12 Summary and conclusion

In this chapter we presented a way for using self written tactics in Coq to simulate
medium degree reasoning. The goal of this simulation was to reach the same (or
nearly the same) magnitude as medium degree proofs regarding the emphasis on
ideas and regarding the convincing power while the objective guarantee should
soar to maximum. Since we worked in Coq the last requirement was fulfilled
automatically while success in the first two aspects depended on the quality of the
simulation.

The developed tactics are — most of the time — able to condense a bunch
of single high degree steps into one medium degree step. Since the tactics use
pattern matching to infer the actual contexts it is not necessary to give them
much input. Instead their inputs are few in number, intuitive, and usually rather
short. The tactics are named after the process they execute. Taken together the
last observations show that the applications of these tactics are similar to the
justifications of medium degree proofs [

Summarised two of the three most important aspects of formalisms, condensa-
tion and justification, can be simulated quite well by the given tactics. Therefore
we can expect our simulation to have an emphasis on ideas and a convincing power
that is at least close to real medium degree proofs. The third adjusting parameter,
the partial use of natural language, has not been addressed so far. Its realisation
is independent to our approach]

So the simulation of single reasoning steps in the field of arithmetic is a clear
success. Yet, it is only a part of the greater picture. We aim at transferring our
approach to a more complicated case more or less on a par with most other fields
of mathematics: automata theory. Success with this endeavour would point to a
general feasibility of our approach.

28 As discussed, something we cannot simulate is when medium degree proofs give no justifi-
cation at all for some reasoning.
29 The use of natural language is addressed, for instance, by Zinn [I19] and Fiedler [39} [40].

131

Chapter 9

Summary and conclusion

In the first part of this thesis we introduced and analysed the concept of the degree
of formality; for systems as well as for argumentations. We gave a lot of exam-
ples of different degrees for both, beginning in the introduction and then again in
sections[2.4] (systems of Peano arithmetic) and [2.5] (argumentations for the commu-
tativity of natural numbers). The discussion of the examples in chapter [2 already
used a previous analysis, in which we found the use of natural language, condensa-
tion, and frequency and precision of justificationd| as adjusting parameters for the
degree of formality. Furthermore, in chapter 2| we pointed out that proof scripts
of a particular kind can be seen as proofs.

Next, we discussed the work of Curry, which turned out to be decisive in
the subsequent chapters. First, his treatment of logics as independent systems
invited us to think of a system as consisting of a contentual and a logical part.
We called that the logical division. In chapter |4 we extended the logical division
by a formal one such that systems become a quadruple (s,l,k,i) where s is the
subject-specific content, [is the logical content, k is the kind of formalism, and ¢
is the concrete formal instance. We noticed that the degree of formality can be
seen as the value of a degree function taking kinds of formalism as arguments.
This and the resemblance between logics and formalisms, which we demonstrated
in the following sections, helped us to further localise the concept of the degree of
formality.

Second, Curry’s split into an objective and a subjective criterion for truth
influenced our proceeding in chapter [5| in two ways: it motivated our search for
the benefits of the different degrees of formality and led to the concrete listing of
the purposes of argumentations. Regarding the former aspect, one should bear in
mind that Curry’s division had led him to ask what formal systems are acceptable
for what reasons, which is very similar to our question of the different benefits

L The last one, of course, is for argumentations only.

132

CHAPTER 9. SUMMARY AND CONCLUSION

of the different degrees of formality. With respect to the purposes note that the
convincing power can roughly be seen as an equivalent to acceptability and the
objective guarantee as one to provability. However, the illustration of ideas and
the names of the identified purposes were rather influenced by the other literature
we discussed in chapter 5} Once the question of the benefits was asked and the
catalogue of purposes was at hand the answer could be found via an analysis of
the ingredients, i.e. via checking the benefits of the three adjusting parameters.
It became apparent that low degree argumentations are the best regarding ideas,
that medium degree proofs are the most convincing, and that high degree proofs
are the best with respect to objective guarantee. An even more important result,
however, was that medium degree proofs are the most balanced argumentations,
i.e. in contrast especially to high degree systems their performance in their non
special purposes of argumentations is still OK.

In the second part of the thesis we demonstrated the usefulness of the concept
of the degree of formality. First, we showed that the extended pluralistic view
is able to avoid three points of criticism that can be directed at Curry’s view of
mathematics. The critical part, however, was to show that the essence of Curry’s
position, i. e. the harmonisation of objectivity and subjectivity to justify pluralism
in mathematics, is not lost by admitting systems and argumentations of all degrees
of formality. We argued that lower degree argumentations are not futile or even
harmful with respect to the objectivity aspect but that they contribute further
and partially in a manner higher degrees cannot. In particular we were able to
justify Curry’s use of meta argumentations to show different kinds of formalisms
to be equivalent.

Our next application example was of a didactical nature. We wanted to teach
the students how to prove. Since we assumed that difficulties with proving are
not due to the formal aspects but due to a mix of formal and informal aspects we
had an unusual approach: we used the Coq proof assistant to teach students how
to develop high degree proofs first. The idea then was that the students should
manage the transition to textbook proving by stepwise reduction of the degree
of formality. To find suitable in between proof styles we used our knowledge of
the adjusting parameters. The transition to line by line comments was mainly
characterised by a leap in natural language, the one to the weakened line by line
comments by condensation while the transition to structure faithful proofs was
characterised by all three adjusting parameters. First results indicate that our
approach for learning how to prove is a significant help for many — but not all —
students P

2 To avoid confusion we want to mention again that the success of our approach can hardly be
compared to any of those approaches that are not about medium degree proofs. Regarding high
degree proving in Coq the exam results were close to 100% of the maximum, clearly indicating
that this is not the problematic part.

133

CHAPTER 9. SUMMARY AND CONCLUSION

Finally, we showed — as a proof of Conceptﬂ — that it is possible to simulate
medium degree proofs (except for the natural language aspect) with the help of
user defined tactics in Coq. In our view this simulation possibility amounts to the
core of future proof environments and makes our approach very distinct from a
mere library. Regarding the latter point note that the most time consuming aspects
of the development of (the core of) the proof environment in arithmetic were the
initial training with Coq, the development of a suitable style for implementing
the tactics, and finding such an arrangement of the theorems that their respective
proofs consist almost entirely of applications of tactics already implemented at
the respective place. By contrast, to prove all the theorems of the corresponding
library (somehow) was not too big a challenge.

So we have found three examples of very different kinds from different areas,
in which the concept of the degree of formality and our corresponding analysis
thereof turned out to be of great help. By contrast, without such a concept,
i.e. with a dualistic attitude of formal and informal proofs (or argumentations) as
described in the introduction of this thesis, we would not only have been unable
to find solutions to these three examples but we would not even have recognised
the examples as problems that are in need of a solution: Curry’s pluralistic view
of mathematics and so any attempt to improve it would have been of no interest
to us, we would have seen no need to transfer from Coq proofs to “the” informal
proof style, and every thought of a proof environment would have been restricted
to auto tactics, which are not suitable for that jobﬁ All this is clearly enough to
demonstrate the usefulness of the concept of the degree of formality.

However, the true result of this thesis is neither the usefulness of any of the
shown case studies nor the analysis we did before but the demonstration that
seeing the scientific world through the eyes of the degrees of formality, is a very
helpful attitude. Who assumes it can spot and solve problems (from very different
areas) hidden so far, gaining something that might vary significantly from case to
case.

Also for us there is no reason to stop with the three case studies. One of our
future research directions will again pertain to the philosophy of mathematics.
We want to investigate the usage of lower degree systems and argumentations
where corresponding higher ones already exist and where the latter were once
needed to solve problems of the earlier lower degree versions. In concreto, we

3 This restriction has two dimensions. First, other tactics or other tactic behaviour might be
more suitable for the simulation of medium degree proofs. Future empirical investigations can
close this gap. Second, we treated only the domain of arithmetic so far, which we argued to be
a suitable choice to begin with.

4 Otherwise there would already be proof environments used by most mathematicians.

134

CHAPTER 9. SUMMARY AND CONCLUSION

want to compare this situation with what is called second nature, meaning rituals,
attitudes of morality being independent of biology{’| etc., which all evolved by third
nature, i.e. by rational considerations.

In the didactical field we want to collect more data to improve our evaluation
of our approach for teaching students how to prove. To reach more of the students
we plan a video series (in English) for an introduction to Coq in the way we use it.
Furthermore we want to gradually test out at what age Coq in the way we use it
is introduced best. Will it also help soon-to-be freshmen or even pupils? Finally,
in the long run we want, of course, to use our then existing proof environment for
automata theory (see below) in teaching.

Most of our future work, however, will pertain to the area of medium degree
tactics. First of all, there are many minor projects. Lifting our approach for the
natural numbers to integers and rational numbers is the first of them. Then we
want to test our medium degree tactics for different basic but famous theorems and
in different fields like the theory of primes or initial segments of natural numbers.
Next, we want to extend the present medium degree tactics by ones for concrete
calculations, dealing with different representations for the same value like in case
of Suc n and n + 1. Furthermore it would be of much help to have a tool that
automatically generates TEX-code for the proof scripts in the way we presented
them.

The main step in the near future will be the development of (the core of) a
proof environment for automata theory, i.e. the development of suitable medium
degree tactics. As in the case of arithmetic this must not be confused with a
mere formalisation, which for automata theory already began in 1986 (see [69])
and which has already been developed in Coq (see [41], 4, [82]) and the Ssreflect
extension of it (see [36]) | Of how much help these and other existing implemen-
tations will be is difficult to assess in advance. Regarding the proof environment
we have already indicated that the simulation of medium degree reasoning in au-
tomata theory will be more complex than in the case of arithmetic. Yet it might
be simpler to implement than other domains of mathematics; for automata theory
is constructive — and therefore fits Coq’s logic — and operates on structures, which
can be represented easily by the datatypes in Coq.

On the very long run we want to develop a proof environment for ZF set theory
and the meta-argumentations for it. The latter would, for instance, enable one to
formalise forcing[] We guess that problems here might be due to the different

5 Other attitudes of morality pertain to first nature instead.

6 Even substantial parts of the theory of context-free languages have already been formalised
(see [8,[9]) and again this has also been done in Coq, too (see [92]).

7 An gentle introduction to forcing is provided by Timothy Chow in [21].

135

CHAPTER 9. SUMMARY AND CONCLUSION

levels of reasoning, the different logic, and the different concepts of functionsﬁ
In particular there must be some kind of simulation implemented in or outside of
Coq such that the reasoning in and about ZF will nevertheless look like the normal

reasoning in Coq.

8 For instance, a function f in ZF with domain x and range vy is itself of type set, not of type

T =Y.

136

Part 111

Appendix

137

Appendix A

Listing of logical and equational
tactic rules

Logical tactics are tactics that deal with logical connectives independently from
any logic-free content. Equational tactics deal with equations or negations thereof
and are also content-independent. The logical and equational tactics we use in
this thesis and in the corresponding code differ from the built-in ones Coq is
providing.ﬂ Therefore in this appendix we list (most of) the logical and equational
tactics implemented by us. To be more precise, we discuss the behaviour of each
such tactic when it is applied together with the expected input. In each case a first
hint of the respective behaviour is already given by the tactic’s name (for instance
use_and). Furthermore, we state the exact result of applying the tactic, provided
that the preconditions that we have stated before are satisfied] With respect to
the results we only refer to the changes while everything else will stay the same.
If there is a close link to some built-in tactic of Coq this will be also mentioned.
Let us briefly discuss the kind of tactics we are not considering in this appendix.
First, we do not list tactics, like use_true and prove_or, that we only created to
catch particular user mistakes. Second, we do not discuss the ‘_name’-variations
like prove_imp_name, which exist for some tactics that generate a new hypothesis.
In the respective variant the new name is given explicitly. Tactics that have
restricted scopes like use_equ_left are also not considered. Next, we do not list
fixed finite repetitions of tactics like prove_or9 or use_all3. Furthermore, we
do not list variations that are developed to prevent unnecessary hypotheses: the
tactics use_and_first, use_all_and_clear, and clear_all are instances of that
kind. Then, we do not list tactics having an arithmetical extension like basic_fact
or contradiction since these are listed in the subsequent appendix. We do not list

I There are only two built-in tactics we use in the proofs, namely cut and assert.
2 If the preconditions are not satisfied the respective application of the tactic will in most
cases lead to a suitable, user defined error message but we will not discuss that here.

138

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

tactics belonging to path induction since those tactics are not relevant regarding
the topics of this thesis. Finally, we do not list tactics that are only supposed to
be used in the definition of other tactics.

e use H:
— Preconditions: H has to be a hypothesis or theorem. The type of H
must be the goal.
— Result: The actual goal is proven.

— Relation to built-in tactics: The tactic is a synonym for exact.
e use and H:
— Preconditions: H has to be a hypothesis and the type of it must be a

conjunction.

— Result: The first conjunct is the type of a fresh hypothesis H’ while the
second conjunct is the new type of H.

— Relation to built-in tactics: The implementation uses elim, which is
more general.

e use_and_star H:

— Preconditions: H must be a hypothesis and its type must be a propo-
sition.
— Result: If the type of H has the form Py A P, A ... P, (where P, is not

a conjunction) then n — 1 new hypotheses for the first n — 1 conjuncts
are generated while the last conjunct is the new type of H.

e use or H:
— Preconditions: H has to be a hypothesis or theorem. The type of it

must be a disjunction]

— Result: The proof task is replaced by two new ones having the same
goal. In the first of them H states the first disjunct of the original type
of H while in the second H states the second disjunct.

— Relation to built-in tactics: The essential part of the implementation
uses cases.

3 We do not only permit to use V but also the constructive or, which is denoted by +.

139

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

e use or_star H:
— Preconditions: H has to be a hypothesis or theorem and its type must
be a proposition.

— Result: If the type of H is of the form P; V ...V P, (where P, is not a
disjunction) the proof task is replaced by n new ones all having the same

goal. In the mth proof task the type of the hypothesis H is replaced by
the P,,.

e use_imp H H’

— Preconditions: H has to be a hypothesis having an implication P — @)
as its type where P and @) have to be propositionsE] H’ has to be a
hypothesis or theorem of type P.

— Result: The type of H is replaced by Q.

— Relation to built-in tactics: The implementation uses apply.
e use iff H:
— Preconditions: H has to be a hypothesis and the type of it must be a

logical equivalence.

— Result: The forward direction is the type of a fresh hypothesis H’ while
the backward direction is the new type of H.

e use False H:

— Preconditions: H has to be a hypothesis or theorem. The type of H
has to be False.

— Result: The actual goal is proven.
e use not H H”:

— Preconditions: H has to be a hypothesis while H' has to be a hypothesis
or theorem. The type of the former has to be the negation of the type
of the latter.

— Result: H is replaced by False.

4 The addendum after the ‘where’ is necessary since ‘—’ — in contrast to A, V, =, and < — is
not defined exclusively between propositions.

140

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

prove_and:

— Preconditions: The goal must be a conjunction.
— Result: The two conjuncts have to be shown separately.

— Relation to built-in tactics: The tactic uses essentially split, which is
more general.

prove_and_star:

— Preconditions: The goal must be a proposition.
— Result: If the goal is of the form P, A Py A ... A P, (where P, is no
conjunction) n new goals, one for each conjunct, are created.

e prove_or_left:

— Preconditions: The goal must be a disjunction.
— Result: The goal is replaced by its left hand side.

— Relation to built-in tactics: The tactic executes the tactic left.
e prove_or_right:

— Preconditions: The goal must be a disjunction.
— Result: The goal is replaced by its right hand side.

— Relation to built-in tactics: The tactic executes the tactic right.
e prove_imp:

— Preconditions: The goal must be an implication between propositions.E]

— Result: The goal is replaced by the conclusion of the implication while
the premise is the type of a new hypothesis.

— Relation to built-in tactics: The tactic essentially executes intro.

prove_ iff:

— Preconditions: The goal must be an equivalence.

— Result: The goal is replaced by two new ones, the first being the forward
and the second being the backward direction.

5 The reason for the addendum ‘between propositions’ is the same as in the case of use_imp.

141

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

e prove_True:

— Preconditions: The goal must be True.

— Result: The goal is proven.
® prove_not:

— Preconditions: The goal must be a negation.

— Result: There is a new hypothesis stating the interior of the negation
while the goal is replaced by False.

use_all H 1

— Preconditions: H has to be a hypothesis of the form V = : T, P while
the type of ¢t must be T. If H quantifies over the type Type then the
type of t is also allowed to be Set[]

— Result: A new hypothesis is generated stating P[t/x].
e use ex H:

— Preconditions: H has to be a hypothesis or theorem of the form
Jdaz:T, P.

— Result: A new arbitrary but fixed variable 2’ : T is introduced while H
is changed into P[z'/z].

— Relation to built-in tactics: The tactic uses elim for the decisive part
of the implementation.

e prove_all:

— Preconditions: The goal must have the form V = : T, P.

— Result: A new arbitrary but fixed variable 2’ : T is introduced while
the goal is changed into P[z'/x].

— Relation to built-in tactics: The tactic is essentially intro.

6 This tactic is implemented for didactical purposes. In our implementation we prefer to use
fact (see below).
" Type, Set, and Prop are special types in Coq.

142

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

® prove_ex {:
— Preconditions: The goal must have the form 94 x : T, P while the type
of t must be T

— Result: A new arbitrary but fixed variable x’ : T is introduced while
the goal is changed into P[x'/z].

— Relation to built-in tactics: The tactic is essentially exists.

prove_all imp_star:

— Preconditions: The goal must be a proposition.

— Result: If the goal is of the formV z{ : P, ..., Vx,: P,, QE] (where @
is not a universal quantification) new arbitrary but fixed variables « : P;
are introduced while the goal is changed into Q[z}/z1, ...,z /z,].

— Relation to built-in tactics: The tactic behaves similar to intros.

fact H:

— Preconditions: H must be a lemma or a hypothesis.
— Result: A new hypothesis stating the type of H is created.

— Relation to built-in tactics: The implementation makes use of the tactic
generalize.

prove_by_induction:
— Preconditions: The goal must have the form V x : T, P where T has to
be an inductive type.

— Result: In accordance with the T'_ind function Coq is providing new
hypotheses and goals are generated.

— Relation to built-in tactics: The tactic is a restricted version of the
induction tactic provided by Coq.

8 Note that every implication is also a universal quantification.

143

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC

RULES

e prove_by_structure:

— Preconditions: The goal must have the form V = : T, P where T has to

be an inductive type.

— Result: For each constructor in the definition of 7" a new proof task

is generated. In each task and for each input of the constructor there
are arbitrary but fixed variables. In addition, there is an arbitrary but
fixed variable 2’ of type T for each constructor. The goal in each of the
respective tasks is Plx’/z].

— Relation to built-in tactics: The tactic is a restricted version of the

destruct tactic provided by Coq.

e use_equ H (in H') (at n)}

— Preconditions: H must be a theorem or hypothesis of the form a = b

while in the variant with H’ the latter must be a hypothesis. If the
place n is given as further input there must be n occurrences of a in
the goal (or in the hypothesis H' respectively) and the nth occurrence
must be replaceable[!”)

— Result: In the version without ‘at’ all replaceable occurrences of a in

the goal (or in the hypothesis H' respectively) are replaced by b. In the
at-version only the nth occurrence is replaced that way.

— Relation to built-in tactics: The tactic is a restricted version of the

rewrite tactic provided by Coq. However, it does not use the latter
tactic in its implementation.

e use_uqge H (in H') (at n):

— Preconditions: H must be a theorem or hypothesis of the form a = b

while in the variant with H’ the latter must be a hypothesis. If the
place n is given as further input there must be n occurrences of b in
the goal (or in the hypothesis H’' respectively) and the nth occurrence
must be replaceable.

— Result: In the version without ‘at’ all replaceable occurrences of b in

the goal (or in the hypothesis H' respectively) are replaced by a. In the
at-version only the nth occurrence is replaced that way.

— Relation to built-in tactics: The tactic is a restricted version of the

rewrite tactic written with a backward arrow. However, it does not
use the latter tactic in its implementation.

9 Here and in the following parantheses express optional arguments.
10 There can be problems with dependent types which is why this addendum is necessary.

144

APPENDIX A. LISTING OF LOGICAL AND EQUATIONAL TACTIC
RULES

e prove_equ:

— Preconditions: The goal must be of the form a = a.
— Result: The subgoal is proven.

— Relation to built-in tactics: The tactic behaves like the reflexivity
tactic Coq is providing but it does not use the latter tactic in its im-
plementation.

switch (in H):

— Preconditions: The goal (or H respectively) must be an equation or
a negation thereof. In the version with H the latter needs to be a
hypothesis.

— Result: The sides of the goal (or of the hypothesis H respectively) are
switched.
e begin_work_on_term ¢ (in H):
— Preconditions: ¢t must be a term occurring in the goal (or the hypothesis
H respectively).

— Result: The term ¢ is immunised in the goal (or in the hypothesis H
respectively) by some variable S. A new hypothesis is generated stating

S =t.
e end_work_on_termt¢ in (H) H"

— Preconditions: In the goal (or in H respectively) there must occur some
immunisation variable S and H' must be of the form S = t'.

— Result: All occurrences of S in the goal (or of the hypothesis H respec-
tively) are replaced by t’. The immunisation variable and the hypothesis
H' are deleted.

145

Appendix B

Listing of medium degree tactics
in arithmetic

In the following we list all the medium degree tactics we implemented so far. For
every tactic we give a rough description at first[| A precise formulation of the
preconditions follows. Finally, we state the exact behaviour of the tactic when the
preconditions are satisfied. Note that — as in the case of the logical and equational
tactics — we do not give any specifications in case the preconditions are not satisfied.

Before we start we have to explain respectively introduce some terminological
aspects. First, — as in the case of the equational tactics — parentheses after the
name of the tactic state the interior to be optional. n, m etc. are always natural
numbers. We call =, #, <, and < basic relations. =, <, and < are also called
positive basic relations. The type of a hypothesis or a goal that has the form n R m
for some (positive) basic relation R is called (positively) basic. In the former case
the hypothesis itself is then called a (positively) basic hypothesis. Furthermore,
we call the operations +, %, —, Suc, and pred basic, too. Next, a subterm of a term
is called reachable by a set of operations if the subterm coincides with the term
or if the latter is an application of one operation of the set such that the subterm
is reachable with respect to one of the operands. If a term is reachable by the
set of basic operations we call the term basically reachable. When we speak of the
theorems we are providing we mean the theorems proven in our natural numbers
libraryE] If R is a basic relation then Ry € {=p, #5, <p, <p} is meant to be the
corresponding boolean relation. Finally, for the sake of readability we will often
speak of the equation of H, the left hand side of H etc. where we actually mean
the equation of the type of H, the left hand side of the type H etc. The respective
context will leave no room for misunderstandings.

I In contrast to the case of logical and equational tactics the names of the arithmetical tactics
cannot be suggestive enough anymore to fulfil this job.

2 Bear in mind that the medium degree tactics can be seen as the core of a proof environment,
which in particular comprises a library.

146

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

e trans H H’: The first and second statement are transitively linked.

— Preconditions: H, H' are positively basic hypotheses or theorems such
that the right hand side of H coincides with the left hand side of H'.

— Result: A new hypothesis H” is generated relating the left hand side
of H to the right hand side of H'. If < is the basic relation in H or
H' then it is also the basic relation in H”. Otherwise, if < is the basic
relation in A or in H' then this is the case in H”, too. If H and H' are
equations then H” is also an equation.

e basic_fact: Completes a proof when a known basic fact remains to be
proven.

— Preconditions: The actual goal is an atomic proposition or a negation
thereof. Furthermore the goal must be an instance of a theorem we are
providing that has the form P; ... P,G’ where G’ is an atomic formula
or a negation thereof and where each P; is either a universal quantifi-
cation over natural numbers or an implication in which the premise is
a restriction excluding finitely many natural numbers (like n # 0 or
n > 2).

— Result: The actual goal is replaced by subgoals for all restrictions the
P; are representing. If there is no restriction the actual goal is proven.

e contradiction]| H: Completes a proof when a contradiction is reached.

— Preconditions: H is an atomic proposition or a negation thereof. If H
is a negation there must be a theorem we are providing of the form
P, ... P,H where H' is an atomic formula, where each P; is either a
universal quantification over natural numbers or an implication in which
the premise is a restriction excluding finitely many natural numbers,
and where H is the negation of an instance of H'. If H is an atomic
proposition it is the same except for the circumstance that H' has to
be a negation and that H is an instance of the interior of H'.

— Result: The actual goal is replaced by subgoals for all restrictions the
P; are representing. If there is no restriction the actual goal is proven.

3 The tactic is actually called my_contradiction in the code due to a name conflict with a
built-in tactic.

147

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

e change _to_bool (in H): Basic relations are converted into their correspond-
ing boolean versions.

— Preconditions: The actual goal (or the hypothesis H respectively) must
be basic.

— Result: If the actual goal (or the hypothesis H) is of the form n R m
for R € {=,<,<} then it is changed into (n Ry m) = trueE] If the
goal (or the hypothesis H) has the form n # m then it is changed into
(n =g m) = false.

e change_to_prop (in H): The boolean versions of basic relations are con-
verted into their corresponding basic relations.

— Preconditions: The actual goal (or the hypothesis H respectively) must
be of the form (n Rg m) = true, where R € {=, <, <}, or it must be of
the form (n =g m) = false.

— Result: If the actual goal (or the hypothesis H) is of the first form it is
changed into n R m. If it is of the second form it is replaced by n # m.

e prove_by_components_equ: Decomposes equality with respect to the in-
volved operation.

— Preconditions: The goal must be of the form n op m = n’ op m’ where
op is a binary basic operation.

— Result: The actual goal is replaced by two new ones, namely n = n’
and m =m/.

e suc_pred_to_front (in H): A Suc or pred is brought one step to the front.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic. At least at one side of the goal (or the hypothesis H respectively)
it must be possible to extract a Suc or pred, directly or in some basic
subterm. This may require to fulfil some further constraint.

— Result: If there is the possibility to bring a Suc or pred to the front
(including the elimination cases) without a further constraint on both
sides of the goal (or the hypothesis H respectively) this is done. If
this is only possible on one side this is done there and the other side
stays the same. If this is not achievable, neither, the tactic brings
Suc or pred to the front on the left or the right hand side, the left
being prioritised, creating a new subgoal for the cut that was used. If

4 In the actual code B is not a subscript character.

148

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

there are multiple possibilities to bring a Suc or pred to the front the
following prioritisation is used: first the outermost possibility, then the
left subterm, then the right one. If the same term facilitates multiple
shiftings Suc is preferred before pred and the first operand before the
second one.

e drop_identities (in H): Drops the identities and multiplications with 0.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic.

— Result: In the terms on the left and the right hand side of the goal (or
the hypothesis H respectively) all basically reachable 0-summands, 0-
subtrahends, 1-factors, and multiplications containing a 0 are dropped.
Furthermore, subtractions with a O-minuend are evaluated to 0. Apart
from all that the terms stay the same.

e omit_parens (in H): All unnecessary parentheses are dropped.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic.

— Result: In the terms on the left and the right hand side of the goal (or
the hypothesis H respectively) all parentheses in basically reachable
subterms are — if possible — omitted. Apart from that the terms stay
the same.

e make_first n (in H) (at m (I)): The term n is shifted to the front.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic. Furthermore, when no ‘at’ is used there must be a firstable
occurrence of n, i.e. an occurrence which is reachable by the basic
operations Suc, pred, +, and *, on at least one side of the goal (or
of the hypothesis H respectively). If the single at-variant is used the
mth occurrence in the goal (or the hypothesis H respectively) must be
firstable. In case of the double at-variant the mth occurrence on the
left hand side and the [th occurrence on the right hand side must be
firstable.

— Result: When no ‘at’ is used the first firstable occurrence of n is shifted
to the front on both sides if possible. If there is a side on which there is
no firstable n this side stays the same. In the single at-version the mth
occurrence of the goal (or the hypothesis H respectively) is shifted to the
front on the respective side while the other side does not change. In case
of the double at-variant the mth occurrence on the left hand side and

149

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

the [th occurrence on the right hand side are shifted to the front. In all
variants the order and the parentheses of the remaining terms survive as
far as this is possible. Furthermore, all shifted n are isolated as much as
possible, i. e. they become the whole first outermost operand if possible,
the whole first outermost operand of the first outermost operand if this
is not possible etc.

e add n (in H): The term n is added as a summand at the end.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic.

— Result: An n is added as a summand at the end of the left and the right
hand side of the goal (of the hypothesis H respectively). Note however,
that no calculations are done.

e sub n in H: The term n is subtracted at the end.

— Preconditions: The hypothesis H must be of the form m R [with
Re{= <<}

— Result: H is changed into m —n R [—n but in case of R = < a new
subgoal, namely n < m, is also generated.

e sub_from n in H: The type of the hypothesis H is subtracted from n.

— Preconditions: The hypothesis H must be of the form m R [with
Re{=< <}

— Result: If R is the equality relation then H becomesn—m = n—1[. If
R =< then H is changed into n —m >n —[. In the last case (R = <)
the side condition m < n has to be shown first before H is replaced by
n—m>n—I.

e mul n (in H): The term n is added as a factor at the end.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic.

— Result: An n is added as a factor at the end of the left and the right
hand side of the goal (of the hypothesis H respectively). However, in
the following variants n # 0 has to be proven before that: the goal is of
the form m = or m <[(H is of the form m # [or m < [respectively).

150

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

e drop n (in H) (at m 1): The term n is dropped on both sides.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic. When no ‘at’ is used there must be a droppable occurrence of n,
i.e. an occurrence which is reachable by addition only or by multipli-
cation only, on both sides of the goal (or of the hypothesis H respec-
tively). Furthermore, the first droppable occurrences of the respective
sides must be either both reachable by addition or both reachable by
multiplication. In the at-version the mth occurrence on the left hand
side and the [th occurrence on the right hand side must be both reach-
able by addition or both reachable by multiplication.

— Result: When no at is used the first droppable occurrence of n is
dropped on both sides. In the at-version the mth occurrence on the
left hand side and the /th one on the right hand side are dropped. In
all variants, the order and the parentheses of the remaining terms sur-
vive. Furthermore, in all variants a side consisting only of n is seen
as addition with 0 or multiplication by 1, depending on the outermost
operation of the other side (if both sides are n the additional view is
chosen). In the following variants the additional information n # 0 is
needed and has to be shown by the user first: dropping n in the goal
being a negation of an equation between multiplications or being a <-
inequality between multiplications (or dropping n in the hypothesis H
being an equality between multiplications or being a <-inequality be-
tween multiplications respectively). Again, the above cases are meant
to imply sides that are just n.

e exception H: The hypothesis H is replaced by the finitely many possibilities
that remain to prevent H from becoming contradictory.

— Preconditions: The hypothesis H must be basic. Furthermore, there
must be a theorem in the library we are providing that has the form
Vnml ...:N, H — FE where H' is a basic formula and where H is
an instance of the theorem without the conclusion E while the latter
expresses finitely many possibilities of concrete numbers (as n = 0,
n=0Vn=2>5,orn > 2 for instance).

— Result: The hypothesis H is replaced by the instance of E that corre-
sponds to the way in which H is an instance of the anterior part of the
whole theorem.

151

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

e apply_reciprocal (in H): Identical terms occurring as summands in the
minuend and subtrahend of a subtraction are dropped.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic.

— Result: For each of both sides that have a subtraction as outermost
operation all summands appearing in the minuend and in the subtra-
hend as well are dropped. In case of multiple occurrences the first one
is chosen. If afterwards there are no summands left in the subtrahend
only the minuend remains; and if this is the case for the minuend the
whole term is evaluated as 0 (including cases of the form n — n).

e expand (in H) (at n): One of the distributivity laws is applied.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic. In the variant without ‘at’ at least on one side there must be a
subterm of the form mx (I + k), m* (I — k), (m+1) xk, or (m—1) %k
that is reachable by addition, subtraction, and multiplication. In the
at-variant there must be n such subterms in total and with no double
countings in the goal (or the hypothesis H respectively).

— Result: In the variant without ‘at’, on both sides the first suitable sub-
term — if existent — is expanded. There are no further changes. In the
at-version the nth possibility to expand (counted in total and without
doublings) is expanded. On the respective sides the outermost expand-
ing possibilities are counted first, then the ones of the first operand, and
finally the ones of the second operand. In case there are two possibili-
ties in a (sub)term with respect to expansion the first one appearing in
the listing above is chosen.

e factorise n (in H) at m (I): One of the distributivity laws is applied
backwardly.

— Preconditions: The goal (or the hypothesis H respectively) must be
basic. In the double at-version the mth and [th summand must ap-
pear on the same side of the goal (or the hypothesis H respectively)
and comprise an n as factor (not necessarily as outermost operand but
n must be reachable in the mth and [th summand by multiplication
only); where all summands of the whole goal (or of the whole hypothe-
sis H respectively) that we would achieve after omitting all unnecessary
parentheses are counted ((n + 5 * (I + m)) + 3, for instance, has three
summands in this counting). If the single at-version with m = 1 is

152

APPENDIX B. LISTING OF MEDIUM DEGREE TACTICS IN
ARITHMETIC

used the left or the right hand side of the goal (or of the hypothesis H
respectively) must be a subtraction in which n occurs as a factor in the
minuend and in the subtrahend. If m = 2 both sides must fulfil this
requirement.

— Result: In the double at-version the involved side of the goal (or of the
hypothesis H respectively) is replaced by an addition in which the first
summand is of the form n * (k 4 j) where k£ and j are the mth and
the Ith summand without the first occurrence of n as a factor (counted
like the summands above); and in which the second summand is the
old term but without the mth and the [th summand. If the original
term of the involved side only consists of two summands there is no
second summand in the replacing term. In the single at-version with
m = 1 — if factorising n is possible — the left hand side is replaced by
a multiplication in which n is the first factor and the second factor is
the original term but without the first n in minuend and subtrahend.
If this is not possible or if m = 2 this is done for the right hand side.

153

C List of Figures

[[.1 Two (quite good) students discussing their homework.|. 2
[1.2 Lecturer explaining some technical steps somewhere in the middle |
| of some proof.|o 3
1.3 A textbook proof of (z,y) = (u,v) =z =uAy=v|. 3
1.4 Excerpt from a detailed proof of (z,y) = (u,v) >z =uAy=v|. . 4
[2.1 Proot idea for the commutativity of addition.. 18
[2.2 Prootgumentation for Vn m:N. n+m=m4+n| 19
[2.3 Medium degree proot tor Vn m:N. n+m=m+n| 20
[2.4 Base clause in the first order high degree proot ot the commutativity |
| of addition)o 21
[2.5 A-expression as proof for the commutativity of addition.|. 23
[2.6 Proot script ot AN B — B A A after the first step.|. 25
[2.7 Proot script ot AN B — B A A with a wrong beginning.| 25
[2.8 Complete proof script of AN — BAA]l 26
[2.9 High degree proofof Vnm: N, n+m=m+nin Coq| 29
[7.1 Second step divided into many approximately equidistant substeps.| 75
[7.2 Proot exemplitying the line by line comments.| 7
[7.3 Example of a structure faithtul proot.|. 82
8.1 Prootoft Vnm{:Nnx1+mx0-+[%x0=n without the tactic |
| drop identities.| 92
.2 Prootof Vnml:Nnx1+mxx0+1x0 = n with the tactic |
| drop_identities.| 93
8.3 Proof of Vnmlilk:Nn+m=1[0xk—k — pred (n+ Suc m) = |
L pred [* k without the tactic suc_pred to_ front| 98
8.4 Proof f Vnm ik :Nn+m=1xk—k — pred (n+ Suc m) = |
| pred [x k with the tactic suc _pred to front.,| 99
B85 Proof of Vnmlkyj: N ((nxm)xl+(n+m)+1)«xk)*xj = |
| (nxmx{+n+m+1)*k*j without the tactic omit_parens.| . . . 104

154

APPENDIX C. LIST OF FIGURES

8.6 Proof of Vnmlkj: N ({((nxm)*xl+(n+m)+1)xk)xj= |

| (nxmx[+n-+m+1)*kx*j with the tactic omit_parens.|. 105
B.7 Proof of Vn : N, 9+6*xn+2xnsxn+3*xn=2xnxn+9+«n+9 |
| without the tactic make first) 108
B.8 Proofof Vn :N,9+6*«n+2*xn*xn+3«xn=2xn*xn+9*xn+9 |
| with the tactic make first.). 110
8.9 ProotoftVnmlik):Nm=0—nsxmxxl=mxk —n*x)xl= 9%k |
| without the tacticdrop.| L. 113
[8.10 ProototVnm ik j: N m=0—nsmxl=mxk = nxjxl =) xk |
| with the tacticdrop.| L. 114

[8.11 Textbook proof of the closure ot regular languages under complements.{122
[8.10 Proot for the closure of regular languages under complements in |

| Coq not using medium degree tactics.|. 124
[8.11 Proot for the closure of regular languages under complements in |
| Coq using medium degree tactics.| 125

155

Appendix D

Bibliography

1]

Martin Aigner & Giinter M. Ziegler (1998): Proofs from The Book, 2009
edition. ISBN: 978-3-642-00855-9.

George A. Akerlof & Robert J. Shiller (2015): Phishing for Phools — The
Economics of Manipulation and Deception. ISBN:978-0-691-16831-9.

Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo & E. Moran (2006): Innovations in com-

putational type theory using Nuprl. J. Applied Logic 4(4), pp. 428-469,
DOI:110.1016/j.jal.2005.10.005.

Marco Almeida, Nelma Moreira & Rogério Reis (2009): Testing the Equiva-
lence of Regular Languages. In Jirgen Dassow, Giovanni Pighizzini & Bianca
Truthe, editors: Proceedings Eleventh International Workshop on Descrip-
tional Complexity of Formal Systems (DCFES 2009), EPTCS 3, pp. 47-57,
DOI:10.4204/EPTCS.3 4.

Jody Azzouni (2013): The Relationship of Derivations in Artificial Lan-
guages to Ordinary Rigorous Mathematical Proof. Philosophia Mathematica
21(2), pp. 247-254, DOI:/10.1093 /philmat /nkt007.

Ralph-Johan Back (2010): Structured derivations: a unified proof style for
teaching mathematics. Formal Aspects of Computing 22(5), pp. 629-661,
DOI:110.1007/s00165-009-0136-5.

Nimrod Bar-Am (2008): Eztensionalism — The Revolution in Logic.
DOI:10.1007/978-1-4020-8168-2.

156

http://dx.doi.org/10.1016/j.jal.2005.10.005
http://dx.doi.org/10.4204/EPTCS.3.4
http://dx.doi.org/10.1093/philmat/nkt007
http://dx.doi.org/10.1007/s00165-009-0136-5
http://dx.doi.org/10.1007/978-1-4020-8168-2

APPENDIX D. BIBLIOGRAPHY

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Aditi Barthwal & Michael Norrish (2010): A Formalisation of the Normal
Forms of Context-Free Grammars in HOL4. In Anuj Dawar & Helmut Veith,
editors: Computer Science Logic, 24th International Workshop (CSL 2010,
Proceedings), pp. 95-109, DOI:10.1007/978-3-642-15205-4__11.

Aditi Barthwal & Michael Norrish (2014): A mechanisation of some context-
free language theory in HOL/. Journal of Computer and System Sciences
80(2), pp. 346-362, DOI:/10.1016/j.jcss.2013.05.003.

David A. Basin (1994): Generalized Rewriting in Type Theory. Elektronische
Informationsverarbeitung und Kybernetik 30(5/6), pp. 249-2509.

Thomas Bediirftig & Roman Murawski (2010): Philosophie der Mathematik.
ISBN:978-3-11-019093-9.

Yves Bertot & Pierre Castéran (2004): Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Constructions.
DOI:10.1007/978-3-662-07964-5.

Sebastian Bohne: Implementation of the Naturals Project. Available at
https://www.cs.uni-potsdam.de/~sboehne/Naturals Project.tar.gz.

Sebastian Bohne: Mathematisches Argumentieren und Beweisen in Cog.
Available at https://lecture2go.uni-hamburg.de/12go/-/get/v/19876.

Sebastian Bohne & Christoph Kreitz (2017): Learning how to Prove:
From the Coq Proof Assistant to Textbook Style. In Pedro Quaresma &
Walther Neuper, editors: Proceedings 6th International Workshop on The-
orem proving components for Educational software (ThEdu ’17), pp. 1-18,
DOI:10.4204/EPTCS.267.1.

Sylvie Boldo & Guillaume Melquiond: Flocg.
Available at http://flocq.gforge.inria.fr/.

Ana Bove, Peter Dybjer & Ulf Norell (2009): A Brief Overview of Agda -
A Functional Language with Dependent Types. In Stefan Berghofer, Tobias
Nipkow, Christian Urban & Makarius Wenzel, editors: Theorem Proving in
Higher Order Logics, 22nd International Conference (TPHOLs 2009, Pro-
ceedings), pp. 73-78, DOI:10.1007/978-3-642-03359-9 6.

Thomas Braibant & Damien Pous (2011): Tactics for Reasoning Modulo
AC in Coq. In Jean-Pierre Jouannaud & Zhong Shao, editors: Certified

Programs and Proofs - First International Conference (CPP 2011, Proceed-
ings), pp. 167-182, DOI:10.1007/978-3-642-25379-9__14.

157

http://dx.doi.org/10.1007/978-3-642-15205-4_11
http://dx.doi.org/10.1016/j.jcss.2013.05.003
http://dx.doi.org/10.1007/978-3-662-07964-5
https://www.cs.uni-potsdam.de/~sboehne/Naturals_Project.tar.gz
https://lecture2go.uni-hamburg.de/l2go/-/get/v/19876
http://dx.doi.org/10.4204/EPTCS.267.1
http://flocq.gforge.inria.fr/
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-25379-9_14

APPENDIX D. BIBLIOGRAPHY

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]
[27]
28]

[29]

[30]

Alan Bundy (1996): Proof Planning. In Brian Drabble, editor: Proceedings
of the Third International Conference on Artificial Intelligence Planning Sys-
tems (AIPS 1996), pp. 261-267, ISBN: 978-0-929280-97-4.

Nathan C. Carter & Kenneth G. Monks: Using the Proof-Checking Word
Processor Lurch to Teach Proof-Writing. Available at
https://pdfs.semanticscholar.org/9679/6462f47348a3d81326e706f6
d334ebedalc2.pdf

Timothy Y. Chow (2007): A beginner’s guide to forcing. 2008 edition. Avail-
able at https://arxiv.org/abs/0712.1320.

Jacek Chrzaszcz & Daria Walukiewicz-Chrzaszez (2007): Towards Rewrit-
ing in Coq. In Hubert Comon-Lundh, Claude Kirchner & Hélene Kirch-
ner, editors: Rewriting, Computation and Proof, Essays Dedicated to Jean-
Pierre Jouannaud on the Occasion of His 60th Birthday, pp. 113-131,
DOI:10.1007/978-3-540-73147-4_ 6.

Allan Collins, John S. Brown & Ann Holum: Cognitive Apprenticeship:
Making thinking visible. Available at http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.124.8616&rep=repl&type=pdf. The arti-
cle was originally published in 1991 in American educator 15(3).

Coq 8.8.0 — Source code.
Available at https://github.com/coq/coq/releases/tag/V8.8.0.

The Coq Constructive Repository at Nijmegen.
Available at https://github.com/c-corn/corn.

The Coq Proof Assistant. https://coq.inria.fr.

Coq Repository at Nijmegen. http://corn.cs.ru.nl.

The Coq Standard Library.
Available at https://coq.inria.fr/distrib/current/stdlib.

Haskell B. Curry (1939): Remarks on the definition and nature of mathemat-
ics. In Paul Benacerraf & Hilary Putnam, editors: Philosophy of mathemat-
ics — Selected readings, 1983 edition, pp. 202-206, ISBN: 978-0-521-22796-4.
Reprint of a reprint with minor corrections of an article published in Journal
of Unified Science 9, pp. 164-169.

Haskell B. Curry (1941): Some Aspects of the Problem of Mathematical
Rigor. Bulletin of the American Mathematical Society 47, pp. 221-241.

158

https://pdfs.semanticscholar.org/9679/6462f47348a3d81326e706f6d334e5eda0c2.pdf
https://pdfs.semanticscholar.org/9679/6462f47348a3d81326e706f6d334e5eda0c2.pdf
https://arxiv.org/abs/0712.1320
http://dx.doi.org/10.1007/978-3-540-73147-4_6
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.8616&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.8616&rep=rep1&type=pdf
https://github.com/coq/coq/releases/tag/V8.8.0
https://github.com/c-corn/corn
https://coq.inria.fr
http://corn.cs.ru.nl
https://coq.inria.fr/distrib/current/stdlib

APPENDIX D. BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[38]

[39]

[40]

[41]

Haskell B. Curry (1951): OQutlines of a Formalist Philosophy of Mathematics,
1958 edition.

Haskell B. Curry (1963): Foundations of Mathematical Logic, 1977 edition,
ISBN: 978-0-486-63462-3.

Haskell B. Curry (1968): The Purposes of Logical Formalization. Logique
Et Analyse 11(43), pp. 357-366.

John W. Dawson, Jr (2006): Why Do Mathematicians Re-prove Theorems?
Philosophia Mathematica 14(3), pp. 269-286, DOI:10.1093 /philmat /nk1009.

David Delahaye (2000): A Tactic Language for the System Cogq. In Michel
Parigot & Andrei Voronkov, editors: Logic for Programming and Automated
Reasoning, 7th International Conference (LPAR 2000, Proceedings), pp. 85—
95, DOI:|10.1007/3-540-44404-1 7.

Christian Doczkal, Jan-Oliver Kaiser & Gert Smolka (2013): A Constructive
Theory of Regular Languages in Coq. In Georges Gonthier & Michael Norrish,
editors: Certified Programs and Proofs - Third International Conference
(CPP 2013, Proceedings), pp. 82-97, DOI:10.1007/978-3-319-03545-1_ 6.

Arno Ehle, Norbert Hundeshagen & Martin Lange (2017): The Sequent Cal-
culus Trainer with Automated Reasoning - Helping Students to Find Proofs.
In Pedro Quaresma & Walther Neuper, editors: Proceedings 6th Interna-
tional Workshop on Theorem proving components for Educational software

(ThEdu '17), pp. 19-37, DOIL:[10.4204/EPTCS.267.2.

Solomon Feferman (2012): And so on...: reasoning with infinite diagrams.
Synthese 186(1), pp. 371-386, DOI:'10.1007 /s11229-011-9985-6.

Armin Fiedler (2001): Dialog-driven Adaptation of Explanations of Proofs. In
Bernhard Nebel, editor: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI 2001), pp. 1295-1300. Available
at http://ijcai.org/proceedings/2001-1.

Armin Fiedler (2001): User-adaptive proof explanation. Ph.D. thesis, Saar-
land University, Saarbriicken, Germany. Available at http://scidok.sulb.
uni-saarland.de/volltexte/2004/182/index.html.

Jean-Christophe Fillidtre (1997): Finite Automata Theory in Coq: A con-
structive proof of Kleene’s theorem. Technical Report, Research Report 97—
04, LIP-ENS Lyon.

159

http://dx.doi.org/10.1093/philmat/nkl009
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1007/978-3-319-03545-1_6
http://dx.doi.org/10.4204/EPTCS.267.2
http://dx.doi.org/10.1007/s11229-011-9985-6
http://ijcai.org/proceedings/2001-1
http://scidok.sulb.uni-saarland.de/volltexte/2004/182/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/182/index.html

APPENDIX D. BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Richard Fitzpatrick, editor (2007): Fuclid’s Elements of Geometry, 2008
edition. Available at
http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf.

Ludovic Font, Philippe R. Richard & Michel Gagnon (2017): Improving
QED-Tutriz by Automating the Generation of Proofs. In Pedro Quaresma &
Walther Neuper, editors: Proceedings 6th International Workshop on The-
orem proving components for Educational software (ThEdu ’17), pp. 38-58,
DOI:10.4204/EPTCS.267.3.

ForMath: Formalisation of Mathematics. Available at
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath.

Gottlob Frege (1879): Begriffsschrift, a formula language, modeled upon that
of arithmetic, for pure thought. In Jean Van Heijenoort, editor: From Frege
to Godel — A source book in mathematical logic, 2002 edition, ISBN: 978-
0-674-32449-7. The German subtitle of the 1879 version is Fine der arith-
metischen nachgebildete Formelsprache des reinen Denkens.

Gottlob Frege (1884): The Foundations of Arithmetic — A logico-mathe-
matical enquiry into the concept of natural number, 1960 edition. The Ger-
man title of the 1884 version is Grundlagen der Arithmetik — Eine logisch-
mathematische Untersuchung tiber den Begriff der Zahl.

Gottlob Frege (1893 (und 1903)): The Basic Laws of Arithmetic — Exposition
of the System, 1982 edition. ISBN: 978-0-520-04761-7. The original German
version has two volumes. The German title is Grundgesetze der Arithmetik
— begriffsschriftlich abgeleitet.

Michele Friend (2014): Pluralism in Mathematics: A New Position in Phi-
losophy of Mathematics. DOI:10.1007/978-94-007-7058-4.

Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50,
pp. 1-102, DOI:10.1016/0304-3975(87)90045-4.

Georges Gonthier & Roux Stéphane Le (2009): An Ssreflect Tutorial. Tech-
nical Report RT-0367, INRIA.
Available at https://hal.inria.fr/inria-00407778/document.

John Harrison (2016): The HOL Light System — REFERENCE. Available
at http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf.

John Harrison (2017): HOL Light Tutorial. Available at
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf.

160

http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
http://dx.doi.org/10.4204/EPTCS.267.3
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://dx.doi.org/10.1007/978-94-007-7058-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
https://hal.inria.fr/inria-00407778/document
http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf

APPENDIX D. BIBLIOGRAPHY

[53]

[58]

[59]

[60]
[61]

[62]

Maxim Hendriks, Cezary Kaliszyk, Femke Van Raamsdonk & Freek Wiedijk
(2010): Teaching logic using a state-of-the-art proof assistant. Acta Didactica
Napocensia 3(2), pp. 35-48.

Available at https://eric.ed.gov/7id=EJ1056118

David Hilbert (1899): The Foundations of Geometry, 2005 edition. Ebook
#17384 (for the 1950 version). The German title of the 1899 version is Grund-
lagen der Geometrie.

Dirk W. Hoffmann (2011): Grenzen der Mathematik — Eine Reise durch die
Kerngebiete der mathematischen Logik, 2013 edition.
ISBN: 978-3-827-42559-1.

HOL - Interactive Theorem Prover. https://hol-theorem-prover.org,.

Amanda M. Holland-Minkley, Regina Barzilay & Robert L. Constable
(1999): Verbalization of High-Level Formal Proofs. In Jim Hendler & De-
vika Subramanian, editors: Proceedings of the Sixteenth National Confer-
ence on Artificial Intelligence and Eleventh Conference on Innovative Ap-
plications of Artificial Intelligence (AAAI 99), pp. 277-284. Available at
https://www.aaai.org/Papers/AAATI/1999/AAAT99-041.pdf.

H. James Hoover & Piotr Rudnicki (1996): Teaching freshman logic with
MIZAR-MSE. In: Workshop on Teaching Logic and Reasoning in an Illogical
World. Available at http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.52.4770&rep=repl&type=pdf.

John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (1979): Introduction
to Automata Theory, Languages, and Computation, 2001 edition. ISBN: 978-
0-201-44124-6. The two editions are different in character. Motwani was no
author of the first one.

HoTT-library. Available at https://github.com/HoTT/HoTT.

William A Howard (1980): The formulae-as-types notion of construction. In:
To H.B. Curry: essays on combinatory logic, lambda calculus and formalism,
pp. 479-490, ISBN: 978-0-12-349050-6. A 2017 version written in Latex is
available at http://www.dcc.fc.up.pt/~acm/howard?2.pdf.

Jens Hgyrup (2005): Tertium Non Datur — On Reasoning Styles in Early
Mathematics. In Paolo Mancosu, Klaus F. Jgrgensen & Stig A. Pedersen,
editors: Visualization, Explanation and Reasoning Styles in Mathematics,
I[SBN: 978-1-4020-3334-6.

161

https://eric.ed.gov/?id=EJ1056118
https://hol-theorem-prover.org
https://www.aaai.org/Papers/AAAI/1999/AAAI99-041.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.4770&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.4770&rep=rep1&type=pdf
https://github.com/HoTT/HoTT
http://www.dcc.fc.up.pt/~acm/howard2.pdf

APPENDIX D. BIBLIOGRAPHY

[63]

[64]

[65]

[66]

[67]

[68]

Patrik Jansson, Sélrin H. Einarsdéttir & Cezar Ionescu: Framples and Re-
sults from a BSc-level Course on Domain Specific Languages of Mathematics.
This article is not published yet. The most actual version is of the year 2018.

Wojciech Jedynak, Malgorzata Biernacka & Dariusz Biernacki (2013): An
Operational Foundation for the Tactic Language of Coq. In Ricardo
Pena & Tom Schrijvers, editors: 15th International Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP ’13), pp. 25-36,
DOI:110.1145/2505879.2505890.

Morris Kline (1972): Mathematical Thought - From Ancient to Modern
Times, 1990 edition. ISBN:978-0-19-506135-2.

Maria Knobelsdorf & Christiane Frede (2016): Analyzing Student Practices
in Theory of Computation in Light of Distributed Cognition Theory. In Judy
Sheard, Josh Tenenberg, Donald Chinn & Brian Dorn, editors: Proceedings
of the 2016 ACM Conference on International Computing Education Re-
search (ICER 2016), pp. 73-81, DOI:10.1145/2960310.2960331.

Maria Knobelsdorf, Christiane Frede, Sebastian Bohne & Christoph Kre-
itz (2017): Theorem Provers as a Learning Tool in Theory of Computation.
In Josh Tenenberg, Donald Chinn, Judy Sheard & Lauri Malmi, editors:
Proceedings of the 2017 ACM Conference on International Computing Ed-
ucation Research (ICER 2017), pp. 83-92, DOI:10.1145/3105726.3106184.

Maria Knobelsdorf, Christoph Kreitz & Sebastian Boéhne (2014): Teach-
ing Theoretical Computer Science using a Cognitive Apprenticeship Ap-
proach. In J. D. Dougherty, Kris Nagel, Adrienne Decker & Kurt Eiselt,
editors: The 45th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’14), pp. 67-72, DOI:[10.1145/2538862.2538944]

Christoph Kreitz (1986): Constructive Automata Theory Implemented with
the Nuprl Proof Development System. Cornell University. Department of
Computer Science, Ithaca.

Available at https://ecommons.cornell.edu/handle/1813/6619.

Twan D. L. Laan (1997): The evolution of type theory in logic and mathemat-
ics. PhD thesis, Technische Universiteit Eindhoven, DOI:/10.6100/IR498552.

Imre Lakatos (1976): Proofs and refutations — The logic of mathematical dis-
covery, 1983 edition. ISBN: 978-0-521-29038-8. The book was first published
after Lakatos’ death. John Worall and Elie Zahar are the editors.

162

http://dx.doi.org/10.1145/2505879.2505890
http://dx.doi.org/10.1145/2960310.2960331
http://dx.doi.org/10.1145/3105726.3106184
http://dx.doi.org/10.1145/2538862.2538944
https://ecommons.cornell.edu/handle/1813/6619
http://dx.doi.org/10.6100/IR498552

APPENDIX D. BIBLIOGRAPHY

[72] Leslie Lamport (1995): How to Write a Proof. The American Mathematical
Monthly 102(7), pp. 600608,
Available at http://www. jstor.org/stable/2974556.

[73] Graham Leach-Krouse (2017): Carnap: An Open Framework for Formal
Reasoning in the Browser. In: Proceedings 6th International Workshop on
Theorem proving components for Educational software (ThEdu ’17), pp.
70-88, DOI:10.4204/EPTCS.267.5.

[74] List of Coq Math Projects.
https://github.com/coq/coq/wiki/List-of-Coq-Math-Projects.

[75] Paul Lorenzen (1968): Collegium Logicum. In: Methodisches Denken, 1980
edition, pp. 7-23, ISBN: 978-3-518-07673-6.

[76] Penelope Maddy (1990): Realism in Mathematics, 2003 edition. ISBN: 978-
0-19-824035-8.

[77] math-classes — A library of abstract interfaces for mathematical structures
in Coq. Available at https://github.com/math-classes/math-classes.

[78] Mathematical components.
Available at https://github.com/math-comp/math-comp.

[79] Guillaume Melquiond & Erik Martin-Dorel: GAPPA.
Available at https://gforge.inria.fr/projects/gappa/.

[80] Elliott Mendelson (1964): Introduction to Mathematical Logic, 1997 edition.
ISBN: 978-0-412-80830-2.

[81] Julius Moravesik (2004): Logic Before Aristotle: Development or Birth? In
Dov M. Gabbay & John Woods, editors: Handbook of the History of Logic
— Volume I Greek, Indian and Arabic Logic, ISBN: 978-0-444-50466-1.

[82] Nelma Moreira, David Pereira & Simao Melo de Sousa (2012): Deciding Reg-
ular Ezpressions (In-)Equivalence in Cog. In Wolfram Kahl & Timothy G.
Griffin, editors: Relational and Algebraic Methods in Computer Science -
13th International Conference (RAMiCS 2012, Proceedings), pp. 98-113,
DOI:10.1007/978-3-642-33314-9 7.

[83] Michal Muzalewski (1993): An Outline of PC Mizar. Available at
https://pdfs.semanticscholar.org/b819/df93026a857740e20fc5£0b7
5blfea3b305a.pdfl

163

http://www.jstor.org/stable/2974556
http://dx.doi.org/10.4204/EPTCS.267.5
https://github.com/coq/coq/wiki/List-of-Coq-Math-Projects
https://github.com/math-classes/math-classes
https://github.com/math-comp/math-comp
https://gforge.inria.fr/projects/gappa/
http://dx.doi.org/10.1007/978-3-642-33314-9_7
https://pdfs.semanticscholar.org/b819/df93026a857740e20fc5f0b75b1fea3b305a.pdf
https://pdfs.semanticscholar.org/b819/df93026a857740e20fc5f0b75b1fea3b305a.pdf

APPENDIX D. BIBLIOGRAPHY

[84]

[85]

[90]

[91]

[92]

93]

[94]

Julien Narboux (2005): Toward the use of a proof assistant to teach math-
ematics. Available at https://hal.inria.fr/inria-00495952/document!
The Seventh International Conference on Technology in Mathematics Teach-
ing (ICTMT7) <inria-00495952>.

Tobias Nipkow (2012): Teaching Semantics with a Proof Assistant: No More
LSD Trip Proofs. In Viktor Kuncak & Andrey Rybalchenko, editors: Veri-
fication, Model Checking, and Abstract Interpretation - 13th International
Conference (VMCAI 2012, Proceedings), pp. 2438,
DOI:10.1007/978-3-642-27940-9 3.

Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002):
Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
DOI:10.1007/3-540-45949-9.

Russell O’Connor (2005): The Gddel-Rosser 1st incompleteness theorem.
Available at http://r6.ca/Goedel20050512.tar.gz.

Russell O’Connor (2009): Incompleteness and Completeness — Formaliz-
ing Logic and Analysis in Type Theory. PhD thesis, Radboud Universiteit
Nijmegen. Available at http://r6.ca/thesis.rev.fluorine.pdf.

Christine Paulin-Mohring (2015): Introduction to the Calculus of Inductive
Constructions. In Bruno Woltzenlogel-Paleo & David Delahaye, editors: All
about Proofs, Proofs for all, pp. 116—133, ISBN: 978-1-84890-166-7.

Andrzej Pelc (2009): Why Do We Believe Theorems? Philosophia Mathe-
matica 17(1), pp. 84-94, DOI:10.1093 /philmat /nkn030.

Willard v. O. Quine & Joseph S. Ullian (1970): The Web of Belief, 1978
edition. ISBN: 978-0-07-553609-3.

Marcus V. Ramos (2016): Formalization of Context-Free Language Theory.
Ph.D. thesis, Universidade Federal de Pernambuco (Recife). Available at
http://www.marcusramos.com.br/univasf/tese.pdf.

Krzysztof Retel & Anna Zalewska (2005): Mizar as a Tool for Teaching
Mathematics. Mechanized Mathematics and Its Applications 4(1), pp. 35—
42. Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.
6028&rep=repl&type=pdf#page=35|

Alan Robinson (1991): Formal and Informal Proofs. In Robert S. Boyer,
editor: Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 267—
282, ISBN: 978-0-7923-1409-7.

164

https://hal.inria.fr/inria-00495952/document
http://dx.doi.org/10.1007/978-3-642-27940-9_3
http://dx.doi.org/10.1007/3-540-45949-9
http://r6.ca/Goedel20050512.tar.gz
http://r6.ca/thesis.rev.fluorine.pdf
http://dx.doi.org/10.1093/philmat/nkn030
http://www.marcusramos.com.br/univasf/tese.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.6028&rep=rep1&type=pdf#page=35
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.6028&rep=rep1&type=pdf#page=35

APPENDIX D. BIBLIOGRAPHY

[95]

[98]

[99]

[100]

101]

102]

[103]

[104]

[105]

Alan Robinson (2000): Proof = guarantee + explanation. In Steffen Holl-

dobler, editor: Intellectics and Computational Logic — Papers in Honor of
Wolfgang Bibel, pp. 277 — 294, DOI:10.1007/978-94-015-9383-0.

Bertrand Russell (1951): The Autobiography of Bertrand Russell — 1872-
1914, 1967 edition. ISBN: 978-0-671-20358-0.

Jakub Sakowicz & Jacek Chrzaszez (2007): Papuq: a Coq assistant. Pro-
ceedings of PATE 7, pp. 79-96. Available at
http://www.cs.ru.nl/~herman/PUBS/proceedingsPATE. pdf#page=79.

Marvin R. G. Schiller (2010): Granularity Analysis for Tutoring Mathemat-
ical Proofs. PhD thesis, Universitiat des Saarlandes.

Wolfgang Schreiner, Alexander Brunhuemer & Christoph First (2017):
Teaching the Formalization of Mathematical Theories and Algorithms via
the Automatic Checking of Finite Models. In Pedro Quaresma & Walther
Neuper, editors: Proceedings 6th International Workshop on Theorem
proving components for Educational software (ThEdu ’17), pp. 120-139,
DOI:10.4204/EPTCS.267.8.

Jonathan P. Seldin (2005): Curry, Haskell Brooks (1900-82). In John R.
Shook, editor: The Dictionary of Modern American Philosophers — Volumes
1,2,3 and 4, pp. V1:562-567, ISBN: 978-1-84371-037-0.

Jonathan P. Seldin (2009): The Logic of Church and Curry. In Dov M.
Gabbay & John Woods, editors: Logic from Russell to Church, Handbook of
the History of Logic 5, pp. 819-873, DOI:10.1016/S1874-5857(09)70019-6.

Jonathan P Seldin (2011): Curry’s Formalism as Structuralism. Logica Uni-
versalis 5(1), pp. 91-100, DOI:10.1007/s11787-011-0028-3.

Stewart Shapiro (1991): Foundations without Foundationalism — A Case for
Second-Order Logic. ISBN:978-0-19-853391-7.

Stewart Shapiro (2000): Thinking About Mathematics — The Philosophy of
Mathematics. ISBN: 978-0-19-289306-2.

Jorg H. Siekmann, Christoph Benzmiiller & Serge Autexier (2006): Com-
puter supported mathematics with QMEGA. J. Applied Logic 4(4), pp. 533—
559, DOI:110.1016/j.jal.2005.10.008.

165

http://dx.doi.org/10.1007/978-94-015-9383-0
http://www.cs.ru.nl/~herman/PUBS/proceedingsPATE.pdf#page=79
http://dx.doi.org/10.4204/EPTCS.267.8
http://dx.doi.org/10.1016/S1874-5857(09)70019-6
http://dx.doi.org/10.1007/s11787-011-0028-3
http://dx.doi.org/10.1016/j.jal.2005.10.008

APPENDIX D. BIBLIOGRAPHY

106]

[107]

[108]

109

[110]

[111]

[112]

[113]

114]

Robin Smith (2018): Aristotle’s Logic. In Edward N. Zalta, editor: The
Stanford Encyclopedia of Philosophy, spring 2018 edition. Available at
https://plato.stanford.edu/archives/spr2018/entries/
aristotle-logic.

Bruno Snell (1946): The Discovery of the Mind: The Greek Origins of Eu-
ropean Thought, 1953 edition. The German title of the 1946 version is Die
Entdeckung des Geistes — Studien zur Entstehung des europdischen Denkens
bei den Griechen.

Fenner Tanswell (2015): A Problem with the Dependence of Informal
Proofs on Formal Proofs. Philosophia Mathematica 23(3), pp. 295-310,
DOI:10.1093 /philmat /nkv008.

Andrzej Trybulec & Peter Rudnicki (1993): Using Mizar in Computer Aided
Instruction of Mathematics. In: Norvegian-French Conference of CAI in
Mathematics. Available at http://mizar.uwb.edu.pl/project/oslo.pdfl

Alan M. Turing (1937): On Computable Numbers, With an Application to
the Entscheidungsproblem. Proceedings of the London mathematical society
2(1), pp. 230-265. Available at
http://www.cs.unibo.it/~martini/CS/Turing_ Paper_ 1936.pdf.

The Univalent Foundations Program (2013): Homotopy Type Theory — Uni-
valent Foundations of Mathematics. Available at
https://homotopytypetheory.org/book.

Univalent Mathematics Coq files. Available at https://github.com/
UniMath/UniMath/tree/master/UniMath/Foundations.

Jorgen Villadsen, Andreas Halkjeer From & Anders Schlichtkrull (2017):
Natural Deduction and the Isabelle Proof Assistant. Electronic Proceedings
in Theoretical Computer Science (EPTCS) 267, pp. 140-155,
DOI:10.4204/EPTCS.267.9.

Alan Weir (2011): Formalism in the Philosophy of Mathematics. In Ed-
ward N. Zalta, editor: The Stanford Encyclopedia of Philosophy, 2015
edition. Available at https://plato.stanford.edu/archives/spr2015/
entries/formalism-mathematics/. The first and this edition differ sub-
stantially.

166

https://plato.stanford.edu/archives/spr2018/entries/aristotle-logic
https://plato.stanford.edu/archives/spr2018/entries/aristotle-logic
http://dx.doi.org/10.1093/philmat/nkv008
http://mizar.uwb.edu.pl/project/oslo.pdf
http://www.cs.unibo.it/~martini/CS/Turing_Paper_1936.pdf
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath/tree/master/UniMath/Foundations
https://github.com/UniMath/UniMath/tree/master/UniMath/Foundations
http://dx.doi.org/10.4204/EPTCS.267.9
https://plato.stanford.edu/archives/spr2015/entries/formalism-mathematics/
https://plato.stanford.edu/archives/spr2015/entries/formalism-mathematics/

APPENDIX D. BIBLIOGRAPHY

[115] Makarius Wenzel, Lawrence C. Paulson & Tobias Nipkow (2008): The Is-
abelle Framework. In Otmane Ait Mohamed, César A. Munoz & Sofiene
Tahar, editors: Theorem Proving in Higher Order Logics, 21st International
Conference (TPHOLs 2008, Proceedings), pp. 33-38, DOI:10.1007/978-3-
040-71067-7_7.

[116] Makarius Wenzel et al. (2017): The Isabelle/Isar Reference Manual. Avail-
able at http://128.232.0.20/research/hvg/Isabelle/dist/Isabelle/
doc/isar-ref.pdf.

[117] Alfred N. Whitehead & Bertrand Russell (1910): Principia Mathematica.

[118] Freek Wiedijk (1999): Mizar: An Impression.
Available at http://www.cs.ru.nl/F.Wiedijk/mizar/mizarintro.pdf.

[119] Claus W. Zinn (2004): Understanding Informal Mathematical Discourse.
PhD thesis, Friedrich-Alexander Universitidt Erlangen-Niirnberg.

167

http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://128.232.0.20/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf
http://128.232.0.20/research/hvg/Isabelle/dist/Isabelle/doc/isar-ref.pdf
http://www.cs.ru.nl/F.Wiedijk/mizar/mizarintro.pdf

	Title
	Imprint

	Abstract
	Contents
	Introduction
	I Analysis of the concept of the degrees of formality
	Systematic overview of the concept
	Introduction
	What is being formalised? A historical review
	Three adjusting parameters for degrees of formality
	Natural number systems of different degrees of formality
	Argumentations of different degrees validating the commutativity of addition
	Proofs scripts as proofs
	Auto tactics and related work

	Curry in a hurry
	Introduction
	Saving objectivity via formal systems
	Fruitful diversity in mathematics
	How Curry treats logic
	Earlier and later views of Curry
	Discussion of the Literature and Related Work

	Formalisms and logics are similar
	Introduction
	Combinability, formalisms, and re-characterisation of the degrees of formality
	Necessity of combinations
	Monotony and deduction
	Modelling
	Appreciation of logics and the one of higher degrees of formality

	Benefits of the different degrees of formality in argumentations
	Introduction
	The purposes of argumentations
	Contributions of the different aspects of formalisation with respect to the purposes of argumentations
	Benefits of the different degrees of formality

	II Demonstration of the usefulness of the concept of the degrees of formality
	Three points of criticism regarding Curry's view of mathematics
	Introduction
	The three points of criticism
	The three problems in light of the different degrees of formality
	Is objectivity lost?
	Related Work

	Learning how to prove: from the Coq proof assistant to textbook style
	Introduction
	The idea: stepwise reduction of the degree of formality
	A small step for mathematicians but a big one for learners: line by line comments
	Weakened line by line comments
	Structure faithful proofs
	How to teach it?
	Discussion of related work
	Summary and conclusion

	Simulating proofs of a medium degree of formality
	Introduction
	The tactic drop_identities
	The corresponding reasoning in medium degree proofs
	Treatment in Coq
	Implementation
	Evaluation

	The tactic suc_pred_to_front
	The corresponding reasoning in medium degree proofs
	Treatment in Coq
	Implementation
	Evaluation

	The tactic omit_parens
	The corresponding reasoning in medium degree proofs
	Treatment in Coq
	Implementation
	Evaluation

	The tactic make_first
	The corresponding reasoning in medium degree proofs
	Treatment in Coq
	Implementation idea
	Evaluation

	The tactic drop
	The corresponding reasoning in medium degree proofs
	Treatment in Coq
	Implementation idea
	Evaluation

	The implementation for the lifting of value preserving tactics
	Where the higher degree of formalism hides
	Simulating medium degree reasoning in more complicated domains – a prospect
	The simulation of low degree argumentations
	Related work
	Summary and conclusion

	Summary and conclusion

	III Appendix
	Listing of logical and equational tactic rules
	Listing of medium degree tactics in arithmetic
	List of Figures
	Bibliography

