
illocution of the text and thus assigns one global structure, in contrast to multiple parallel
structures in the analysis of Brandt and Rosengren.

Let us conclude with an appraisal as to whether the presented approaches of dependency
structure of illocutions conform with our requirements and desiderata to represent argu-
mentation structure. The inferentiality requirement is not met, for the same reason as in
the case of constituency structures: The dependency relation types used in these theories
cover different kinds of supporting relations, but are not capable of representing the oppo-
sition when presenting and arguing against possible objections. Lenk introduces symmetric
contrast relations, which is used in his example, however, only for representing semantic
contrast. Dialectical roles are not made explicit in any theory. Extending the set of relations
correspondingly could of course address this shortcoming and at least allow an indirect re-
construction of dialectical roles based on the sequence of attacking relations. The structural
requirements, however, are all met: Dependency structures are compositional. They allow
non-linearity, since edges can cross. Finally, long-distance dependencies are easy to handle,
as nothing forbids a dependency spanning from one end of a text to the other.

Considering our desiderata of text genre and domain independence, only the account
of Schmitt has really been applied to different texts, while the others are focused on their
text genre (business communication for Brandt and Rosengren, and news commentaries for
Lenk). Unfortunately, no scheme has been tested for reliability in annotation experiments.
Annotated corpora are not available – perhaps with the exception of Schmitt, whose data are
available only in the printed text of his dissertation, not in a machine-readable distribution.

Concluding this subsection, we could say we were nearly there. An analysis of the illo-
cutions in an argumentative text provides us with a general description of the communica-
tive purposes of the different segments of the text. But, as we argued, this would not be
enough to determine the structure of argumentation. Hierarchical structures of illocutions
have been proposed – constituency and dependency structures – and we argued that de-
pendency structures fit out needs better, as they allow for long-distance-dependencies and
non-linearities between the segments. The relation sets provide fine-grained distinctions of
support, but do not cover argumentative attacks and are thus not able to (directly or indi-
rectly) represent the dialectical roles involved in argumentation. Here, the theories would
require refinements. Finally, there is rarely any annotated corpus available with illocution-
ary structures, nor is there experimental evidence for the reliability of the corresponding
schemes.

2.2.4 Syntactic accounts of discourse structure

Some accounts of discourse structure have been influenced by syntactic theories. We will
consider two examples. The first is LDM, which largely focuses on the structure building of
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discourse trees, without assuming an intentional or illocutional analysis of the discourse.
The other is D-LTAG, which extends a model of syntax to represent relations across sen-
tences.

Polanyi and Scha [1984] , Polanyi [1988] proposed the ‘linguistic discourse model’ (LDM),
aiming for a formal model of the structure of both monological and dialogical discourse.
They envisage this general model to be the basis on which different phenomena involved
in understanding discourse (such as anaphora, temporal, and deictic expressions) could be
described.

According to their theory, the structure of discourse is represented by a constituency tree.
Clauses representing propositional meaning are the elementary units, as well as discourse
operators. As in previous approaches using tree-structures, the two types of formation prin-
ciples are conjunctive structures and subordinate structures. Sequential relations, such as in
lists, topical, or temporal chains are represented by coordination of discourse constituents,
while dominance relations, such as for causality or elaborations, are constructed as subor-
dinate constituents. Finally, so-called ‘n-ary’ structures are used to represent fixed-sized,
conventionalised constructs, such as if-then conditions.

Most importantly, their model focuses on the incremental process of constructing these
discourse trees, and sketches a paradigmatic discourse parser. This parser consumes the
clauses of the discourse in a left to right fashion and integrates the current clause into
the growing discourse tree. Not all existing nodes are accessible to attach a new clause
to, though: The right frontier constraint regulates that only the last node and all nodes
dominating it are available for attachment.

Whether and how a clause is attached to one of the available nodes is determined by
semantic rules, which compare the semantic representation of the clause and the possible
attachment site. Semantics are specified as higher order logic representations. If for exam-
ple the logic predicate in the current clause can be seen as a subtype of the logic predicate in
the preceding clause, this would be a valid condition of an elaboration, which in turn would
trigger a subordinate structure. Attachment sites on the right frontier are tested from the
leaf nodes (the last clause) up to the root, so local attachment is preferred. If no semantic
rule applies, the current clause is subordinated locally by default.

A more recent presentation of the theory [Polanyi et al., 2004b] elaborates on segmenta-
tion rules, separates intra-sentential and inter-sentential discourse parsing processes, and
presents a more detailed description of the attachment rules. Based upon this, a discourse
parser was implemented [Polanyi et al., 2004a] and used for the downstream tasks of text
summarization of technical reports. In addition, the use of LDM-theoretic discourse struc-
tures for modelling sentiment in film reviews was discussed [Polanyi and van den Berg,
2011] , which may involve a certain degree of argumentation.

Could a LDM structure serve as a representation of argument structure? First of all, for
our requirement of inferentiality, we would need a set of discourse relations that could
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Öhlschläger’s scheme does neither integrate Toulmin’s rebuttal, nor the qualifier. Similarly,
Klein [1980] argued for a recursively applicable argumentation scheme. Furthermore, he
claimed that the distinction between Toulmin’s data and warrant cannot always be drawn
precisely. He proposed a representation of argument that can be conceived basically as a
support tree, with the root node as the main claim and supporting arguments in the unfold-
ing tree structure.

However, all of the schemes discussed so far lack a proper representation of the opponent.
Due to its dialectical nature, argumentations often refer to an explicitly mentioned or at
least supposed opponent, as for instance in the rebutting of possible objections. Wunderlich
[1980] thus interpreted Klein’s support-tree as a ‘decision’-tree, where the root node is the
‘quaestio’, i.e. the question to be decided on. From there, not only arguments for and but
also against the decision unfold recursively. Since there can be pro and contra for every
node in the tree, the opponent’s role is integral to this representation.

Grewendorf [1980] then offered a dialogue-oriented diagram method that also demon-
strates the origin of arguments: It is possible to distinguish between counterarguments that
are brought up by the opponent as explicit attacks, from those that the proponent himself
anticipated in order to refute them. In addition, Grewendorf replaces the tree structure
with a graph, so that nodes can participate in multiple support or attack relations. In the
diagram, the polarity is no longer an attribute of the node but an attribute of the link de-
picted by different types of arrows (see Figure 2.3b). Those with an arrowhead denote
support, those with a circle an attack. Finally, Grewendorf makes the interesting move to
allow support and attack not only for statements (nodes) but also (recursively) for support
and attack relations. Hence it is in principle possible to also represent meta-communicative
disputes. Note that Grewendorf’s account is the first to fulfil all our requirements. However,
Grewendorf provides only a rough outline of his diagram method and no formal specifica-
tion. One of the aspects missing is amongst others a specification for conditions of a node
having multiple support by a series of nodes. As a consequence, authors who took up his
proposal sometimes produced ambiguous graphs that are difficult to interpret, as for in-
stance in [Adachi-Bähr, 2006] .

2.3.2 Freeman's macrostructure of argumentation

A detailed examination of Toulmin’s theory has been presented by Freeman [1991] , whose
goal was to integrate Toulmin’s ideas into the argument diagramming techniques of the
informal logic tradition (see Beardsley [1950] and its refinement by Thomas [1974] ). Re-
cently, an updated but compatible version of the theory has been presented in [Freeman,
2011] . If necessary, we will distinguish between both versions in the following discussion,
but otherwise simply speak of Freeman’s theory.
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the claim, they are now represented as a special ‘even though’ rebuttal in [Freeman, 2011,
p. 29] . This extension of the theory was in our view an advantageous move, as this argu-
mentative strategy appears frequently in argumentative text and could not be adequately
represented before. There are many more noteworthy features of Freeman’s approach that
are beyond the scope of this discussion, as for instance the elaborate and ongoing discussion
of the linked-convergent distinction or the representation of suppositions.

Freeman’s theory fully represents the aspects of inferentiality and dialectics we are in-
terested in, and the formation of complexes is compositional. In terms of linearisation and
long-distance dependencies, again, no commitment is made, as the theory did not aim to
be a text structural model. We thus find all requirements to be fulfilled. The desiderata of
genre and domain independence are also met. What is yet missing is firstly the proof that
argumentation structures can be reliably annotated according to this theory, and secondly
a corresponding resource that can be used to study and model the argumentation in text.10

2.3.3 Pragma-Dialectics

The pragma-dialectical theory of argumentation [van Eemeren and Grootendorst, 1984,
1992, 2004] aims to combine the study of argumentation as a product(the perspective
typically taken in logical analysis and also in descriptive linguistics), and the study of ar-
gumentation as a process(the perspective on the communicative and interactional aspects)
into a holistic investigation of the discourse activity of argumentation. Argumentation is
understood as a complex speech act performed in order to resolve a difference in opinion.
This complex activity is realised by more elementary speech acts or illocutions, such as those
we already studied in Chapter 2.2.3.

The theory has a strong focus on a normative characterisation of rational argumenta-
tion: An ideal model of a critical discussion is presented, where based on rationality and
reasonableness the two roles of the protagonist and the antagonist resolve their conflict-
ing positions in a regimented fashion. First of all, the argumentative discussion is divided
into four stages: In a confrontation phase participants establish that they have conflicting
positions. The opening phase serves the purpose of determining a common ground. In
the argumentation phase then the protagonist presents and defends her claims, while the
antagonist critically questions them. Whether and how the difference of opinion is being
resolved is finally settled in the concluding stage. Most importantly, the authors posit ten
rules all rational participants should ideally follow. Violations of these rules are considered
as fallacies. Three different argumentative schemes are allowed based on causality, compa-
rability, and symptomaticity. The theory is used normatively in relying on its general code of

10The only work we are aware of that applied Freeman’s theory to text in the field of linguistics is [Stede and
Sauermann, 2008] , where ten commentary texts were analysed.
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conduct of critical discussions, but it is also applied in more a descriptive way for describing
failed discussions, or instances of fallacious argumentation.

The examples used by the authors are often dialogue excerpts or transcripts, and it is
indeed the dialogical interaction that is predominantly investigated. However, the theory
is open to monological argumentation as well. Here the distinction between `explicit' and
`implicit' discussion is important: In monological discussion, the role of the antagonist is
not impersonated. The criticism usually brought forward by the antagonist is anticipated
by the author and communicated implicitly. This view is similar to Freeman's hypothetical
dialectical exchange.

In terms of argumentation structure, the pragma-dialectical theory distinguishes between
the following types of complexes which are used to generate large argumentation diagrams
[see van Eemeren and Grootendorst, 1992, p.73-89] : `single' argumentation, with one
premise and one conclusion; `multiple' argumentation, with several independent premises
for one conclusion; `coordinatively compound' argumentation, where several premises are
required to be accepted in order to support the conclusion; and `subordinatively compound'
argumentation, providing a serial chain of subordinated arguments. Finally, the authors
also include unexpressed premises in their diagrams. These complexes are comparable to
the simple, convergent, linked, and serial structures of Freeman. A discussion of the subtle
differences is provided by Snoeck Henkemans[2000] .

Interestingly, the antagonist and the corresponding critical questions or objections are
not directly represented in the argument diagrams. Only supporting relations are shown in
the structure, and claims associated with an attack occur there only indirectly. For instance,
consider the examples discussed by Snoeck Henkemans[2003] : An attack of the antagonist
that was successfully rebutted by the protagonist is simply dropped and not represented in
the structure. In another example an undercutter of the form `But couldn't we do X?' was
(since it was successfully rebutted) transformed into the negated assertion `We can't do X',
or as in a different example turned into a meta-claim `The objection that we can do X is not
a sound argument'. The fact that the antagonist and his attacks are not represented in the
structure may be related to the `Closure Rule', one of the rules of the code of conduct. It
states that a successful defence obligates the antagonist to retract his doubts (and likewise
that a failed defence obligates the protagonist to retract his standpoint). This would mean,
though, that the structure only re�ects the argumentation as the resolved productand does
not re�ect the dialectics of its production.

Although the pragma-dialectic theory is akin to descriptive inquiry and provides a lot of
examples from authentic sources, neither an annotated corpus, nor a proof of reliability of
annotation are available yet.

47





transformed. The theory of argumentation schemes was also a promising candidate that ful-
�lled our requirements, but one that aims for representations that are more detailed than
we require in the �rst place. Nevertheless, we consider this �ne-grained analysis into the
different argumentation schemes and their corresponding critical questions as a subsequent
step that could follow after a coarse-grained analysis of argumentation structure has been
derived. Finally, rather as an outlook, we considered IAT as a means to represent the argu-
mentation structure in monologue text. It has been developed for and successfully applied
to argumentative dialogue and offers a powerful analysis on the locutionary, illocutionary
and inferential level. It is, however, not clear yet how this analysis could be translated for
application to monological text.

Before we choose a candidate theory and move on, it should be highlighted that there has
been considerable effort – approaching the different ways of representing argumentation
from a practical, computational perspective – to represent argumentation in a more general
and theory-agnostic way, an endeavour which lead to the speci�cation of the Argument In-
terchange Format (AIF) [Chesñevar et al., 2006] . Among other things, AIF offers a more
abstract representation in the sense that no strong structural commitments (e.g. by restrict-
ing to trees, or acyclic graphs) or detailed conceptual assumptions (e.g. by restricting to
speci�c relation, scheme, or inference types) are made. This way, it is able to subsume
representations of different theories that we reviewed above, such as for example instances
of the Toulmin scheme, or Freeman-like structures. While this is a clear demonstration of
the representational power of AIF, its main focus is to serve as a common data interface
for multi-agent argumentative systems and to allow easier exchange of data between argu-
mentation tools. We thus conceive it more as a valuable representation format, rather than
as a theory that lends itself to annotation.

To conclude, we consider Freeman's theory as the most prominent and directly suitable
candidate to represent the structure of argumentation for the aims of this work. Our next
goals are therefore, �rst, to derive an annotation scheme for this theory. This will be the
topic of the next chapter. We will then demonstrate that this scheme can yield reliable anno-
tations of argumentation structure in Chapter 4, and �nally present a text corpus annotated
with these structures in Chapter 5.
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but restricting the applicability of the argument. The opponent’s question presented by
Freeman is: ‘Why do your premises make you so sure in light of the following condition?’
With Pollock and Freeman, we call this type of attacking arguments undercutters. They are
represented diagrammatically as arrows with a square arrowhead directed to the body of
the arrow representing the attacked relation. Figure 3.2c shows an example.

(9) [We should tear the building down.] 1 [ It is full of asbestos.] 2 [The building might be
cleaned up, though.] 3

Rebutting and undercutting attacks can sometimes be hard to distinguish on the oppo-
nent side: Is the given segment to be understood as an exception of the inferential move
from premises to conclusion, or as an argument in favour of the conclusion’s negation? A
convenient way to tell them apart is to focus on the attacker’s commitment to the conclu-
sion. If the attacker presents a possible argument for the negation of the conclusion, this is
a clear indicator for a rebutting attack.3 Furthermore, contrary to rebutters of the conclu-
sion, undercutters must be semantically related to the premise in some way. A possible test
would therefore be to see how felicitous the attack is if the premise turns out to be false, is
suspended, or is omitted. A rebutter of the conclusion will presumably be unaffected, while
an exception without inference seems questionable. As an example, consider (7): When
we omit the premise (segment 2), the attack is still a valid move. In (9) on the other hand,
omitting the premise leads to an infelicitous attack.

Defended attacks: Freeman [1991] permits the opponent to provide support to his at-
tacks and so do we. As an example, consider (10). On the text level this means that the
author not only has the chance to present an anticipated argument against her conclusion
or an anticipated exception to her argument, but also to strengthen it by explaining why it
is worth taking this objection into account. All sorts of supporting relations described in the
previous subsection are available for that purpose. Dialectically, this support of an attack
is modelled by a temporal role switch between opponent and proponent. In our argument
diagram these temporal role switches are already resolved, in that all supporting and at-
tacking arguments are related to proponent and opponent according to the main claim. An
example is shown in Figure 3.2d, where a rebutting argument is supported by an additional
premise.

3Note that the opponent can only propose possiblearguments conflicting the proponent. He is not allowed
to assert a proposition in the basic dialectical situation, as his role is defined very restrictively to that of
a constructive partner testing the proponent’s argumentation by asking critical questions. His goal is to
wrench the best possible argument for the main claim from the proponent. He will thus never argue out
of his own interest to convince the proponent of some claim. Consequently, he can neither claim that the
negation of the conclusion holds, nor that some exception holds. He can only present possiblearguments in
favour of the conclusion’s negation or possibleexceptions to some inference from premises to conclusion, in
order to provoke a corresponding reaction of the proponent.
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(a) rebut a rebutter (b) rebut an undercutter (c) undercut a rebutter (d) undercut an undercutter

Figure 3.3: Proponent's counter-attacks of the opponent's attack.

(10) [We should tear the building down.] 1 [On the other hand, many people liked the view
from the roof. ] 2 [On weekends in summer, the roof is usually crowded with sunset
partygoers.] 3

3.4 Counter-Attacks

How can the proponent respond to these challenges? Which possibilities are available to
the author to counter the anticipated attacks? Freeman identi�ed several ways to defend
an argument. We will present what we regard as the most important ones.

Rebut a rebutter: If the attack itself was a rebutter, then the counter-rebutter is an
argument for the negation of the rebutter, i.e. the author is for some reason denying the
anticipated argument against her original claim, as in example (11). For the corresponding
structure see Figure 3.3a.

(11) [We should tear the building down,] 1 [ even though it's supposed to be some touristic
attraction. ] 2 [But, I've never seen any visitor groups there!] 3

Rebut an undercutter: If the attack itself was an undercutter, then the counter-rebutter
is an argument for the negation of the undercutter, i.e. the author is denying that the
exception holds. This is the case in (12). It may be that the exception would undercut her
argument if it were true, but it is not. An example diagram is shown in Figure 3.3b.

(12) [We should tear the building down.] 1 [ It is full of asbestos.] 2 [Some new scienti�c
study reportedly considers asbestos harmless,] 3 [ but that is probably only a hoax.] 4

Undercut a rebutter: Undercutting a rebutter means to present an exception to the argu-
ment for the negated conclusion. The author not only shows that the anticipated argument
against her claim needs to be restricted, but also that the argument is irrelevant for her
claim, because the exception holds. An example would be (13). Figure 3.3c illustrates this
structure.
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(a) rebut an attack's defence (b) undercut an attack's defence (c) counterconsideration

Figure 3.4: Further strategies of counter-attacks.

(13) [We should tear the building down,] 1 [ even though it's supposed to be some touristic
attraction. ] 2 [They'll surely build something more attractive on the site.] 3

Undercut an undercutter: Undercutting an undercutter correspondingly means to pre-
sent an exception to an exception. The author does not even need to address whether
the anticipated exception to her argument holds or not, because she can show that the
anticipated exception itself is rendered irrelevant due to an exception. This constellation is
shown in Figure 3.3d. For instance, consider the following argumentation in (14):

(14) [We should tear the building down.] 1 [ It is full of asbestos.] 2 [ In principle it is possible
to clean it up,] 3 [ but that would be forbiddingly expensive. ] 4

While distinguishing rebutters from undercutters seemed possible though not trivial for
the opponent's attacks, we expect it to be an easier task for the proponent's counter-attacks.
Since the basic dialectical situation only forbids the opponent to assert but not the propo-
nent, it is likely that strong linguistic signals are found when (in rebutting) the negation of
the target is actually claimed, or when (in undercutting) the exception is actually claimed
to be holding.

Undermine an attack's defence: Given that the opponent provided support for his ob-
jection by additional arguments, another strategy to counter his objection is in attacking
those supporting arguments. In this case, the proponent is arguing against the cogency of
the argument in favour of the objection and thus diminishing its strength. The argument
can be attacked either by rebutting the premise in favour of the objection (Figure 3.4a),
or by undercutting the support of the premise for the objection (as shown if Figure 3.4b).
For the sake of brevity we will not present further full examples. The interested reader is
invited to extend the given examples accordingly.

Counterconsiderations: The last possibility to react to an attack is to leave it uncoun-
tered. At �rst glance this seems counterproductive to the author's goal to convince the
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Figure 3.5: Supplemental features

2011] , but we revised it to represent complex structures, as we think, more elegantly.4 The
main difference to Freeman’s original formulation are:

1. We represent each argumentative attack or counter-attack by an individual relation.
Co-indexation of arguments is not required any longer.

2. We make an explicit distinction between rebutting and undercutting attacks, in the
argument diagram and in the formulation of dialectical challenges of the proponent.

3. We represent defended attacks using the very same structural principles of support
that we have on the proponent side, i.e. we prefer a relational representation over
the introduction of complex nested node types.

4. We specified extended features to cope with segmentation issues typically occurring
in authentic text: The process allows the annotators to build a segmentation into
ADUs from the text’s EDUs, including cases of non-argumentative segments, ADUs
spanning over multiple adjacent EDUs, and restatements.

The scheme fulfils our requirements defined in Chapter 2: We have explicit means for rep-
resenting the inferential relations of support, attack, and counter-attacks. Dialectical roles
are directly represented in the proponent and opponent node types. The complex forma-
tion is compositional and not restricted in a way that prohibits non-linear or long-distance
dependencies. From our desiderata, we furthermore consider text genre and domain inde-
pendence fulfilled, given the generality of Freeman’s theory. Before we can start to create
an annotated corpus of argumentation structures using this scheme, however, we first have
to prove that this scheme yields reliable annotations. This question will be investigated in
the next chapter.

4It can be considered as a subset of what can be represented in the Argument Interchange Format [Chesñevar
et al., 2006] .
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4 Agreeing on the structure of
argumentation

In the previous chapters, we first reviewed theories of the structure of argumentation and
then devised an annotation scheme, based on the theoretic work of Freeman [1991, 2011] .
This scheme is formulated and has been published as a scientific contribution, but is not
meant as an instructive guide to be used for the actual annotation. For this purpose, we
formulated annotation guidelines (or a coding manual).

The purpose of this chapter is to report on our annotation experiments and ultimately to
show that the scheme presented in the previous chapter can be used reliably for the creation
of a corpus of argumentation structures. The required methodology will be introduced in
the next section. We will then present the results of three annotation experiments, one on
annotating full argumentation structures in short texts (Section 4.2), one on distinguishing
certain types of argumentative attacks in short texts and in pro and contra commentaries
(Section 4.3), and finally one experiment on argumentative zones for pro and contra com-
mentaries (Section 4.4).

Previously published material

Section 4.2 contains results that have been previously published in different workshop pa-
pers: The results for naive annotators had been presented in [Peldszus and Stede, 2013a] ,
those for the expert annotators in a less elaborate way in [Peldszus, 2014] . The intermediary
group of annotators was not publicly reported on yet. Our approach to cluster annotators
in order to study structure of agreement (Section 4.1.3) was initially presented in [Peld-
szus and Stede, 2013a] . Sections 4.3 and 4.4 have not been published yet. Annotation
guidelines can be found in [Stede, 2016a] .
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4.1 Methodology

4.1.1 Measuring reliability

Various coefficients have been defined for assessing the inter-annotator agreement. A good
overview of the coefficients, their properties, use cases, and sometimes misleading termi-
nological history is given by Artstein and Poesio [2008] and we will follow their formali-
sation. One important property of those coefficients is that they are chance corrected, i.e.
they estimate how much agreement is to be expected by chance due to the frequency of the
categories, and then calculate the agreement above chance. In our annotation (and also
classification) experiments, we will use the following coefficients:

� Cohen's kappa �: A coefficient for two coders that estimates the expected agreement
based on the individual annotator’s category distribution has been presented by Co-
hen [1960] . The general form of this coefficient is � = AO� AE

1� AE , where AO stands for
the observed agreement and AE for the expected agreement.1

� Fleiss' kappa �: Prior to Cohen’s �, Scott [1955] presented the � coefficient, which
estimates the expected agreement differently: Instead of using the category distri-
butions of the individual annotator, it assumes a single category distribution over all
annotators. Fleiss [1971] later generalised this metric for multiple annotators, like-
wise giving it the name �. The general form of the coefficient is equal to Cohen’s �.

� Krippendorff's alpha �: A complimentary formalisation of an agreement coeffi-
cient, which is based on measuring disagreement, has been proposed by Krippendorff
[1980] . The estimation of disagreement relies on a single category distribution over
all annotators, similar to Fleiss’ �. Krippendorff’s � allows multiple annotators. Fur-
thermore, the disagreement can be weighted. In principle every distance function can
serve to define the weight of disagreement, which makes � a very versatile coefficient.
The general form is � = 1 � DO

DE , where DO stands for observed disagreement and DE
for expected disagreement.

The agreement measured with these coefficients ranges between -1 and 1, where 1 is per-
fect agreement, 0 is chance agreement and values below 0 signal agreement below chance.

The interpretation of this scale is not trivial. Krippendorff [1980] interprets the strength
of agreement values quite conservatively and considers only values above 0.8 as good re-
liability and values above 0.67 to only allow “highly tentative and cautious conclusions”.
Landis and Koch [1977] on the other hand propose a more permissive interpretation, where
values above 0.4 are considered as moderate agreement, above 0.6 as substantial, and above

1We will use this metric only for reporting agreement in automatic classification, where there are only two
coders – the gold standard and the system’s prediction.
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are often surrounded by material that is not directly relevant to the argumentation, such as
factual background information, elaborations, or rhetorical decoration, in the constructed
texts all segments were clearly argumentative, i.e. they either present the central claim, a
reason, an objection, or a counter-attack. Merging segments and identifying restatements
was thus not necessary. The texts covered several combinations of the basic constructs in
different linearisations, typically one central claim, two (simple, combined or exemplifying)
premises, one objection (rebutting a premise, rebutting the conclusion, or undercutting the
link between them), and a possible reaction (rebutting or undercutting counter-attacks, or
a new reason that renders the objection uncountered). A (translated) example of a micro
text is given in Figure 4.2.

Theprocedure of the annotation experiment was as follows: All annotators received only
minimal training in the experiment: A short introduction (5 min.) was given to set the topic.
After studying the guidelines ( � 30 min.) and a very brief opportunity to address questions,
the subjects annotated the 23 texts (� 45 min.), writing their analysis as an argumentative
graph in designated areas of the questionnaire.

Interpreting argumentation graphs as segment labels

Since the annotators were asked to assign one and only one argumentative function to each
segment, every node in the argumentative graph has exactly one out-going arc. The graph
can thus be reinterpreted as a list of segment labels.

Every segment is labelled on different levels: The `role'-level speci�es the dialectical role
(proponent or opponent). The `typegen'-level speci�es the general type, i.e. whether the
segment presents the central claim (thesis) of the text, supports or attacks another seg-
ment. The `type'-level additionally speci�es the kind of support (normal or example) and
the kind of attack (rebutter or undercutter). Whether a segment's function holds only in
combination with that of another segment (combined) or not (simple) is represented on
the `combined'-level, which is roughly equivalent to Freeman's `linked premises'. The target
is �nally speci�ed by the segment identi�er (1 . . . 5) or relation identi�er ( a . . . d) on the
`target'-level.

The labels of each separate level can be merged to form a complex tagset. We interpret
the result as a hierarchical tagset as it is presented in Figure 4.3. The label `PSNC(3)' for ex-

[Energy saving light bulbs contain a signi�cant amount of toxins.] 1 [A commer-
cially available bulb may contain for example up to �ve milligrams of mercury.] 2

[That's why they should be taken off the market,] 3 [ unless they're unbreakable.] 4

[But precisely this is unfortunately not the case.] 5

Figure 4.2: A translated example micro text (micro_d21)
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students experienced experts

level # � AO AE � AO AE � AO AE

role 2 .521 .783 .546 .604 .820 .546 1.00 1.00 .614
typegen 3 .579 .719 .334 .658 .766 .318 .945 .965 .363
type 5 .469 .608 .261 .518 .634 .240 .866 .901 .267
comb 2 .458 .727 .497 .449 .697 .449 .895 .948 .503
target (9) .490 .576 .169 .568 .638 .162 .850 .878 .185

role+ typegen 5 .541 .656 .251 .641 .729 .245 .952 .965 .269
role+ type 9 .450 .561 .202 .509 .607 .199 .875 .901 .209
role+ type+ comb 15 .392 .491 .162 .413 .503 .153 .842 .867 .156
role+ type+ comb+ target (71) .384 .436 .084 .424 .471 .083 .831 .846 .088

Table 4.1: Agreement for all annotator groups for the different levels. The number of cate-
gories on each level (without `?') is shown in the second column (possible target
categories depend on text length).

Overall agreement

The agreement in terms of Fleiss's� of all annotators on the different levels is shown in
Table 4.1. The group of 26 student annotators reached an agreement� > 0.45 for all basic
levels. Combining the levels to a complex tagset reduces the agreement. On the full task,
which covers all aspects of the argumentation graph in one tagset, the students only agreed
with � = 0.384. According to the scale of Krippendorff [ 1980] , the annotators of the student
group did neither achieve reliable (� � 0.8) nor marginally reliable (0.67 � � < 0.8)
agreement in our experiment. On the scale of Landis and Koch[1977] , most results can
be interpreted to show moderate correlation (0.4 < � � 0.6), only the two most complex
levels fail. Although typical results in discourse structure tagging usually reach or exceed
the 0.7 threshold, we expected lower results for three reasons: First, the minimal training
of the naive annotators only based on the guidelines; second, the varying commitment to
the task of the annotators in the obligatory setting; and �nally the dif�culty of the task,
which requires a precise speci�cation of the annotator's interpretation of the texts.

The more annotators of the experiencedgroup achieve 5 to 7 points better results in gen-
eral, except for the `comb' level. In contrast, the three expert annotators achieve a very good
agreement. On the basic levels the agreement is substantial with values around� � 0.9 and
yet perfect agreement for the proponent opponent distinction. Even for the full task, the
expert annotators' agreement is substantial, with � = 0.831.

For the complex levels we additionally report Krippendorff's � [Krippendorff, 1980] as a
weighted measure of agreement. We use the distance between two tags in the tag hierarchy
to weigh the confusion (similar to Geertzen and Bunt [2006] ), in order to capture the
intuition that confusing for instance PSNC with PSNS is less severe than confusing it with
OAUS. The results are shown in Table 4.2. As expected, the agreement �gures improve. We
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students experienced experts

level # � DO DE � DO DE � DO DE

role+ typegen 5 .534 .280 .601 .628 .225 .605 .969 .017 .560
role+ type 9 .500 .333 .667 .581 .281 .671 .930 .044 .638
role+ type+ comb 15 .469 .378 .710 .531 .335 .715 .903 .067 .690
role+ type+ comb+ target (71) .425 .454 .789 .473 .419 .795 .865 .105 .779

Table 4.2: Weighted agreement for all annotator groups for the combined levels.

observe an increase of 3 to 6 points on all complex levels, except ‘role+ type’, for all groups
of annotators. The increase is of course highly depending on the definition of the distance
function, which is why Artstein and Poesio [2008] point out that the resulting values can
neither be properly interpreted on the strength scales, nor should they be compared directly
with unweighted scores.

Category confusions

The ‘role’ and ‘comb’ levels are binary decisions, for which an analysis of category confusions
is of limited informativeness. For the other levels, we focus our discussion on confusions
on the on the ‘role+ type’ category level, since this is the most informative level in terms of
granularity.

The high number of annotators in our study makes it infeasible to study the individual
confusion matrices of all different pairs of annotators; it would be 325 pairs alone for the
studentgroup of annotators. We thus built an aggregated confusion matrix, which sums up
the values of category pairs across all normal confusion matrices, and derived from it a con-
fusion probability matrix [Cinková et al., 2012] . Table 4.3 shows the matrix for all three
groups of annotators. Comparing these matrices reveals that the higher agreement of the
experienced annotators and then the experts correlates with less confusion and much more
probability mass on the diagonal cells. As an example, the probability that another anno-
tator agrees when one annotator chooses the OAR label for an opponent’s rebuttal is 0.339
for the student group, 0.478 for the experienced, and 0.794 for the expert group. Some less
frequent labels, such as proponent’s example support (PSE) or the opponent strengthening
his own argument (OSN), caused confusions in the student and the experienced group, but
were very reliably annotated by the experts. Note that the opponent supporting his own
argument by examples (OSE) is a possible category, but not supposed to be found in the
texts.

Two confusions are especially important: All annotator groups confused (to varying de-
grees) the attack subtypes rebutter and undercutter. Distinguishing them is very hard for
both student and experienced annotators and still challenging for the experts. We will
study this more deeply in a dedicated follow-up annotation experiment (see Section 4.3).
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4.3 Experiment 2: Classifying the type of argumentative attacks

One of the more dif�cult decisions in annotating argumentation structure is the distinc-
tion between rebutting and undercutting attacks. In our annotation studies we found a
considerable confusion of these function types for student annotators, as well as for expert
annotators.

In order to investigate this issue more deeply, we devised a follow-up experiment, where
the annotators only classify argumentative attacks into either rebuttals or undercutters, a
simple binary choice. For each decision, we presented to the annotators the whole text as
the context and highlighted one segment as the attacker and another as being attacked.
The annotators then had to decide whether the attacked segment was directly rebutted, or
whether its argumentative function was undercut. To make this decision, the annotator had
to understand the (supporting, attacking or thesis-stating) function of the target segment.

This task has both chances and challenges: On the one hand, annotators can concen-
trate on the desired task and are not distracted by other annotation decisions that would
be required when annotating the full structure (choosing the central claim, distinguishing
proponent and opponent, as well as support and attack). Also, to reduce the cognitive load
of the annotators, we decided not to confront them with graphical representations of the
remaining argumentation structure and instead simply show the text. On the other hand,
we had to ensure a considerable level of text understanding, i.e. we had to provide enough
information to convince our annotators that this item is indeed an instance of an attack and
that the targeted claim is either rebutted or its argumentative function is undercut. We thus
coloured segments as being the central claim, proponent, opponent or non-argumentative
background segments, in order to provide at least a coarse-grained overview of the struc-
ture.

4.3.1 Experimental setup

In total, 12 subjects participated in the annotation experiment: One student annotator
served in the pilot experiment (P). Nine student annotators (A1 - A9) of varying �elds
of study could be recruited over public announcements to participate in the experiments.
They received experiment credit points obligatory in their studies or were remunerated
for their effort. None of them participated in earlier experiments of this work. Finally, two
expert annotators (E1, E2) completed the experiment, both experienced with discourse and
argumentation annotation, one being the author of the guidelines. All subjects are native
German speakers.

The annotation was done in a customweb interface , see Figure 4.9. Each text is pre-
sented in three views: The �rst gives the title of the text, respectively the trigger questions;
and for the procon commentaries a (shortened) version of the background text is shown
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students experts

� AO AE � AO AE

central claim .174 .582 .494 -.030 .941 .943
proponent .144 .591 .522 .836 .929 .564
opponent .201 .598 .497 .727 .893 .608

Table 4.9: Agreement results per type of the attacked segment in terms of Fleiss’ �.

items, corresponding to an observed agreement of AO= 0.941. Due to the nearly identi-
cal label distribution, the agreement expected by chance is likewise very high (AE= 0.943),
which in turn results in a negative � value representing an agreement below chance. When
estimating the expected agreement not only on the central claim items but on all annotation
items (AE= 0.501), the � values are �= 0.882 for central claim, �= 0.858 for proponent and
�= 0.786 for opponent. From this we conclude that expert annotators could better agree on
potential objections presented by the author (where central claim or proponent segments
are attacked) than on the author’s counters of these attacks (where opponent segments are
attacked). This is an interesting finding, since the Krippendorff diagnostics in the exper-
iment on full structure annotation (see Tables 4.4 and 4.5) indicated that the confusions
between opponent attacks on the proponent (OAR and OAU) have a stronger impact on the
overall agreement than proponent counter-attacks on the opponent (PAR and PAU).

Finally, the annotators’ results can be compared to a gold standard . After the annotation
experiments, the experts compared their decisions and agreed on a gold standard. They
disagreed on six items, most of which were edge cases. A comparison of all annotators with
the gold standard, reporting both F1-scores as well as Fleiss’ �, is given in Table 4.10. It
is not astonishing that the expert annotators achieve the highest agreement with the gold
standard. From all other annotators, the student participating in the pilot study scores
best with �= 0.649, much better than the best annotator from the regular student groups
with �= 0.489. Interestingly, there is quite clear divide between five annotators with macro
avg. F1-scores around 0.72, whose agreement with the gold standard can be considered
moderate, and four annotators with scores around 0.50, the agreement of which is close to
or below chance agreement. These two groups of better and worse performing annotators
do not coincide with the annotator groups. Also, they do not align with the two identified
clusters, which indicates that they are in general nearer to the gold standard, but not in a
systematic way.
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� central claim : The segment which best describes the author’s position to the crit-
ical issue, without containing an other argument. Sometimes, the author does not
formulate her claim explicitly in a separate clause, but rather relies on the reader to
understand it from the trigger questions expressed in the headline and tenor of the
text. In this case, the headline can be marked as the central claim, which otherwise
remains unlabelled. (blue)

� proponent : All segments in the proponent’s voice, directly or indirectly in favour
of the central claim. This includes segments supporting the central claim or other
proponent claims, refutations of possible objections, and implicit objections that are
directly refuted in the very same segment (typically nominalisations, as in ‘The idea
of doing X is not helpful here, . . . ’). (green)

� opponent : All segments in the opponent’s voice, directly or indirectly against the
central claim. This includes possible or cited objections to the central claim or its
premises, typically brought forward by the author to be refuted. (red)

� background : Some segments do not have an argumentative function but introduce
the topic and the critical issue to the reader, state factual background information not
pertaining to an argument, or simply represent digression from the topic. (grey)

� upshot : Often, the author ends her argument with a short summarising statement
that is in some sense restating the central claim in a ‘crisp’ or metaphorical favourable
way. If a central claim has already been marked in the text, this final restatement is
marked as an upshot. (purple)

� unlabelled : Only the headline segment should remain unlabelled in texts with an
explicit main claim, see above. (white)

Although this zoning scheme only produces a flat labelling of the EDUs, this represen-
tation already covers essential steps of the argumentative analysis: The central claim and
restatements of it have been identified; arguments in favour of and against the central
claim are marked with the corresponding argumentative role; and all segments that do not
contribute to the whole argumentation because they are not relevant have been excluded.
What is missing is the relational linking between the segments, which is left as a future
step of analysis; but the building blocks for this more fine-grained analysis are set. In the
following experiment, we will investigate how reliably annotators can agree on these basic
labels given pro and contra commentaries.

4.4.2 Experimental setup

In the experiment there are two groups of subjects: One group of annotators are 50 stu-
dents, who are obliged to participate in the experiment as an exercise in a (computational)
linguistics course on text structure. In order to restrict the expenditure of time for each stu-
dent annotator to a reasonable level for an exercise of about one hour of work, the students
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are randomly assigned to ten groups of �ve annotators each, where each group marks a
different set of texts containing two texts only marked by this group and one common text
that is marked by all groups. The majority of the students, but not all of them, are native
speakers of German. Since the course is taught in German, we can assume appropriate pro-
�ciency in German among the participants in the experiment. Concerning their expertise in
the task, the students have learned about discourse structure in general in the course and
especially devoted one session to text zoning approaches, which have been discussed in the
context of scienti�c articles and �lm reviews. Finally, two expert annotators participated
in the study, both experienced in discourse and argumentation annotation and being the
authors of the guidelines. They annotated all texts of the experiment.

For the annotation, we use theweb interface that has already been used in the previous
study, see Section 4.3.1. Again, the text is shown in three views: one with the title and a
short background text, the second with the segmented text to be read once before annotat-
ing, and then the annotation view. In contrast to the previous study, the annotation view
presents the segmented text without any colouring or highlighting. When the annotator
hovers over on of the text's segments, a classi�cation menu with the possible categories ap-
pears right beside it. If one category is chosen, the text segment is coloured correspondingly.
The annotator can freely choose which segments to annotate, in any order even across texts.
Segments without a decision are later interpreted as bearing the category `unlabelled'. An
example annotation view with some segments already classi�ed is shown in Figure 4.11.

The annotation guidelines used in the experiment are seven pages long; a slightly ex-
tended version is published in [Peldszus and Stede, 2016c] . Besides introducing and exem-
plifying the categories of the scheme, they discuss how to arrive at a propositional reading a
segment in the case of fragmentary segments, rhetorical questions, and discourse anaphora.
The annotators are encouraged to follow a step by step procedure, where they �rst identify
the central claim and the upshot, then consider proponent and opponent arguments, and
mark all remaining segments as background. Finally, an example ProCon text is analysed.

As source material , we chose 21 ProCon texts in this experiment. They were selected
from the ProCon corpus according to two heuristics: 14 texts had already been used in a
students' experiment on zoning in ProCon commentaries[Bachmann and Brandt, 2005] .
The remaining seven texts were selected because they feature a potential high number of
counter-arguments signalled by contrastive discourse markers which had been identi�ed
and disambiguated. The texts have been manually segmented into EDUs.

The procedure of the experiment is as follows: After receiving an introduction on argu-
mentative zoning in scienti�c articles and �lm reviews in the course, a 15min presentation
introduced the students to the idea of a similar zoning scheme for pro and contra com-
mentaries, the scheme described above. The presentation explained all categories with an
example text and made the students familiar with the web interface. The annotation itself
was done as a homework, i.e. the students took the guidelines home and completed the ex-
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Figure 4.11: Annotation environment of the zoning experiment.

periment there. Consequently, we can neither measure how long it took the students to read
the guidelines, nor control whether or to what extent they really studied the guidelines.

4.4.3 Results

Of the 50 students, �ve students cancelled their participation in the experiment, which is
why group 3 and 7 only have four members and group 4 only has two members.

The agreement of the students and the experts is reported in Table 4.11. Each group
marked two individual texts, and the common text that was annotated by all groups. The �
values in the table are thus based on the annotation items of three texts. To allow a direct
comparison with the expert annotators, the group-wise expert scores here are based on the
very same items of the three texts a group annotated. The student in-group agreement
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students experts

group � AO AE � AO AE

1 .438 .670 .413 .545 .740 .429
2 .536 .727 .411 .680 .822 .445
3 .304 .616 .449 .531 .736 .436
4 .177 .532 .431 .805 .894 .454
5 .510 .659 .304 .522 .685 .341
6 .380 .572 .310 .298 .556 .367
7 .553 .738 .413 .594 .745 .372
8 .289 .536 .347 .837 .906 .423
9 .407 .586 .302 .866 .912 .344
10 .491 .702 .415 .618 .822 .535

Table 4.11: Zoning results groups.

ranges from �= 0.177 up to 0.553, on average 0.409. The range for the expert agreement
is from �= 0.298 to 0.866, with an average value of 0.630.

Since the common text has been annotated by every annotator, we can directly compare
the student and the expert annotators for this specific instance. These results have to be
read with caution, however, because the item size is very small with only 14 segments that
are compared here. The students reach a considerable agreement of �= 0.519 (AO= 0.711,
AE= 0.400), the experts an excellent agreement of �= 0.874 (AO= 0.929; AE= 0.431)

When assessing the expert agreement on all 21 texts, the corresponding value is �= 0.551
(AO= 0.731; AE= 0.400). The difference of this value to the average group-wise is due to
the (above average) good expert agreement on the common text which positively influences
every group-wise expert score. We can assume that the students’ agreement over the whole
corpus would be likewise smaller.

The large number of annotations for the common text also invites to apply the clustering
of annotators: The dendrogram for all student annotators on the common text is shown in
Figure 4.12. We observe three larger clusters, each of which has some annotators with
a high cluster internal agreement. To understand the characteristics of these clusters, we
investigate the differences in the labelling of the text, which is depicted right below the
dendrogram for each of the annotators aligned with the ordering of the clustering. The
common characteristic of all labellings in the leftmost cluster is that they identify the 7th

and / or 8th segment as the central claim and leave the first segment the headline unlabelled.
Nearly all other annotators label the headline as the central claim, instead. The difference
between the middle and the larger cluster on the right is that the latter tends to classify the
last segment as an upshot, while the middle one analyses it as a proponent’s argument. The
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central claim proponent opponent background upshot unlabelled

central claim 9 9 1 3
proponent 8 183 15 30 1 1
opponent 2 42 4
background 16 4 32 3
upshot 1
unlabelled 5 10

Table 4.12: Confusion matrix for the expert annotators.

presence of these three clusters might indicate a systematic ambiguity in the guidelines.
Nevertheless, we cannot draw this conclusion here, since this result stems from only one
single text and is rather to be attributed to the peculiarities of the common text than to
general decision preferences of the annotators.

Let us now investigate the confusions between categories. We will focus on the ex-
pert annotators’ result here. Table 4.12 shows the confusion matrix. The most frequent
confusion is between background and proponent followed by central claim versus propo-
nent and opponent versus proponent. While the first two confusions are to be expected,
disagreements about the argumentative role are noteworthy. Some of them are due to dif-
ferent interpretations of contrastive markers, where one annotator identified a semantic,
the other a pragmatic contrast (and only the latter would involve a role switch). Others
are caused by perspective switches, where one annotator considers the new perspective to
be that of the opponent, which is later rejected, while the other annotator takes it to be a
deterrent example in the first place.

Another way to investigate confusions is Krippendorff’s category de�nition test , the
results of which are shown in Table 4.13: The best result with a gain of ∆�= 0.181 is
achieved by the opponent category, which has only few confusions with other categories.
The unlabelled category is also very distinguished, as it is only used for headlines in text with
explicit main claims. Future work on category definitions should focus on the background
and the central claim categories. The strong drop for the upshot category is probably due to
the low frequency of this category, causing a very high chance agreement against the rest.

While the confusion matrix could indicate to us which confusions were most frequent,
Krippendorff’s category distinction test can measure how much �we lost due to these con-
fusions. For the result of this test, see Table 4.14. Most agreement is lost due to confusion
between background and proponent, as also suggested by the confusion matrix. The sec-
ond largest loss comes from confusions between central claim and the unlabelled headline,
which was not expected from the frequency of this confusion. Finally it is worth to mention
that eliminating the confusions between proponent and opponent segments do not lead to
a higher agreement. To the contrary, the agreement is significantly decreased when both
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might be considered as unsatisfactory for expert annotators, we found that many
of those disagreements were due to different interpretations of the argumentative
structure of the text, which the experts could mutually agree on. As a result, we have
a multi-labelling or two gold standards, the upper limit of agreement between both
being �= 0.65.

In all our experiments we experienced the strong impact of training and commitment to
the task on the result of non-expert annotators, which is not only relevant for experiments
with undergraduate students but also with crowd-sourced annotation. This especially ap-
plies to a task such as argumentative analysis, where decisions are based on interpretation
of complex meaning that are not easily made explicit and require thorough and often time-
consuming consideration.

The agreement score our expert annotators reached for annotating the argumentation
structure in microtexts (�= 0.83) compares favourably to related work. Stab and Gurevych
[2014b] obtained �U= 0.72 for argument components at the sentence level and �� 0.81 for
argumentative relations in student essays. Stab and Gurevych [2016] reported a higher
�U= 0.77 for argument components and a lower �� 0.73 for argumentative relations in
a follow up experiment. Kirschner et al. [2015] annotated two argumentative and two
organisational relations in scientific text and reported �= 0.43.

After having shown that our scheme for annotating argumentation structure is stable and
reliable for short argumentative texts, we started creating and annotating a corpus of such
texts. On this we will report in the next chapter.
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the relation node and one outgoing edge from the relation node to the target node. This
way, the relations-to-relations can be represented in standard graph theoretic terms. Yet for
automatic prediction, this is still impractical because it is not possible to simply reason over
relations, but required to reason over subgraphs representing relations.

The solution we want to promote here is to convert the argumentation graph into a
dependency tree. The first step to achieve this is to redirect all relations pointing to edges
to point to the source node of the targeted edge. Undercutting relations, for instance, will
target not the relation that is undercut, but the source node of the relation that is undercut.
For linked relations, which have more than one source, the left-most source node is taken
as the head, while all further sources attach to the head with a LINK relation. This way,
we arrive at an argumentation graph that is free of relation nodes. The relations between
ADUs can then be directly used as the edges of a dependency tree.

An example conversion is shown in Figure 5.4. The initial argumentation graph with
relation nodes, an undercutter, and linked premises is shown in the upper Figure 5.4a.
Redirecting those relations that point to other relations to the targeted relation’s source node
yields the structure in Figure 5.4b, which does not have any relation nodes. The relations
there can than be directly used as the edges of a dependency tree, as displayed in the lower
Figure 5.4c. In contrast to the argumentation graphs, relation types are visualised in the
dependency tree through relation labels instead of arrow types. Note that the argumentative
role is not explicitly represented in the dependency graph. However it can be inferred from
the structure, assuming that the root of the structure (the central claim) bears the proponent
role and that all attacking relations (i.e. rebut and undercut) invert the role.

This dependency conversion is loss-less and can easily be undone, if two conditions hold:

1. Every relation type should either target only nodes or only relations, but not both.If
one relation type could point to both normal nodes and relations nodes, it would
not be possible to determine from the dependency structure whether this relation
targets the node or the relation the node is the source of. In our scheme this is not
a problem, as undercut and link relations always target relations, while all other
relation types always target ADUs. If a scheme does not meet this criterion, it could
easily be adjusted by introducing further relation types to disambiguate their target
preference.

2. Every ADU has at most one function, i.e. one outgoing arc.If one ADU has more than
one outgoing relation, it would be impossible to determine from the dependency
structure which of the outgoing relations was targeted. Note that this effectively
rules out divergent argumentation, where multiple conclusion are drawn from one
premise. This might be considered a severe restriction, and it is not hard to construct
an example where divergent argumentation occurs. Indeed, it is technically possible
to represent divergent argumentation in our scheme and in the XML serialisation.
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the ADU in this joint node. See Chapter 3.5 for details. This process was applied automat-
ically.

An example argumentation structure is shown in Figure 5.6a, but note that for the sake
of brevity of the discourse structure comparison it is a text where the ADU segmentation
was already in accord with the EDU segmentation.

RST

The RST annotations have been created according to the guidelines[Stede, 2016b] that
were developed for the Potsdam Commentary Corpus[Stede and Neumann, 2014, in Ger-
man] . The relation set is quite close to the original proposal of Mann and Thompson[1988]
and that of the RST website4, but some relation de�nitions have been slightly modi�ed to
make the guidelines more amenable to argumentative text, as it is found in newspaper com-
mentaries or in the short texts of the corpus we introduce here. Furthermore, the guidelines
present the relation set in four different groups: primarily-semantic, primarily-pragmatic,
textual, multinuclear. The assignment to `semantic' and `pragmatic' relations largely agrees
with the subject-matter / presentational division made by Mann / Thompson and the RST
website, but in some cases we made diverging decisions, again as a step to improve applica-
bility to argumentative text. For example, we see EVALUATION as a pragmatic relation and
not a semantic one. `Textual' relations cover phenomena of text structuring; this group is
motivated by the relation division proposed by Martin [1992] , but the relations themselves
are a subset of those of Mann/ Thompson and the website (e.g., LIST, PREPARATION). Fi-
nally, the `multinuclear' relations are taken from the original work, with only minor modi�-
cations to some de�nitions. The annotation procedure explained in the guidelines suggests
to prefer pragmatic relations over semantic ones in cases of ambiguity or doubt, which is
also intended as a genre-speci�c measure.

All RST annotations on the microtext corpus were done using the RSTTool5. An example
annotation is shown in Figure 5.6c.

In the resulting corpus, there are 467 instances of RST relations, hence on average 4.13
per text. The most frequent relation is by a large margin REASON(178 instances), followed
by CONCESSION(64), L IST (63), CONJUNCTION(44), A NTITHESIS (32), ELABORATION(27),
and CAUSE/ RESULT(22); other relations occur less than 20 times.

SDRT

The SDRT annotations were created following the ANNODIS annotation manual[Muller
et al., 2012b] which was based upon Asher and Lascarides[2003] . The amount of informa-
tion about discourse structure was intentionally restricted in this manual. Instead it focused

4http://www.sfu.ca/rst
5http://www.wagsoft.com/RSTTool/
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(b) Reduced argumentation graph without relation nodes.
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(c) Dependency conversion of the relations base on EDU segmentation.

Figure 5.5: Example dependency conversion of micro_b001 in EDU segmentation.
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Figure 5.6: Example dependency conversions of ARG, RST and SDRT annotations of the text
micro_b013. The original structure is shown in the left column, the dependency
conversion in the right column.
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� microtext-dep-EDU-full: the corpus converted to EDU-based dependency trees, with
the full label set; available only in English;

� microtext-dep-EDU-reduced: the corpus converted to EDU-based dependency trees,
with the reduced label set; available only in English.

After having defined our scheme, validating it in annotation experiments, and using it
to create a resource with argumentation structures, it is now time to investigate how these
argumentation structures can be automatically recognised from text.
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6.1 Related work

In this overview of related work, we will focus on tasks of argumentation mining that are
closely related to the goal of this work: predicting the structure of argumentation. As pre-
sented in Chapter 1.2, this amounts to the tasks of ADU identi�cation, ADU classi�cation,
relation identi�cation, and relation classi�cation. We will thus not consider work on e.g.
the prerequisite step of identifying persuasive texts on a document basis, or ultimately on
reconstructing enthymemes. Also not covered here are information retrieval oriented ap-
proaches such as retrieving supporting or opposing claims or opinions for a given claim
from a larger database, or approaches focusing on the question as to whether a document
or a single claim addresses or adheres to a given prompt or not.

6.1.1 Early work

One of the earlier studies on computational argument analysis with natural language un-
derstanding is that of Cohen [1983, 1987a,b] . She investigated strategies of serialising
arguments in text and presented a model which incrementally processed the propositions
of the argumentation, and consecutively built a tree structure representing the argumen-
tation. The default construction procedure produced claim-�rst or claim-�nal argument
chains. Cue phrases (connectives or phrases such as `in addition' or `as a result') were re-
quired to signal non-default moves that yield parallel or �ipped structures. However, the
mechanism relied on an `evidence oracle', which hints to the model whether one proposi-
tion is evidence for another proposition. A prototypical implementation for this component
was later sketched by Young and Cohen[1991] . It required extensive logic modelling. The
prerequisite of robustly translating natural language to predicate logic was not addressed,
however.

A cognitive modelling approach was taken by Alvarado et al. [ 1986] , Alvarado [1990] ,
who presented a model of text comprehension of editorial text in a political-economical
domain. The system heavily relied on logical representations of domain knowledge, goals,
plans, and strategies. Using the output of a semantic parser the model inferred a represen-
tation of the author's beliefs and integrated them in an argument map. On the basis of this
representation, the comprehension system then derived answers to a posed question about
the author's beliefs and reasoning. The model was exempli�ed on two short fragments of
actual editorials. For applying it to new texts, an extensions of the conceptual and the the-
matic knowledge base would be necessary. It should be noted, though, that the main aim
of this work is to understand the cognitive requirements of processing arguments (in terms
of processes and knowledge structures), especially for refutations and accusations, rather
than providing a model of the natural language of arguments.
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scored with �= 0.44, in comparison to the human annotator performance of �= 0.60 in this
task.

Although sentence-based approaches are by far the most common, some work also uses
clause-based segments. An example is the the experiment of Mochales Palau and Moens
[2009] on the ECHR corpus. As a preprocessing step for distinguishing premises from con-
clusions, they constructed their classification items as clauses, obtained from a syntactical
parser, and classified them as argumentative or not using the maximum entropy model de-
scribed above. Although the performance of this model was assessed for sentence-length
units, the segment-length units and the impact of automatic clause-splitting was not evalu-
ated separately. Apart from this, we are not aware of any work focusing on argumentative
segments as clauses or EDUs exclusively. There are, however, approaches that combine
clause-based segmentation with other classification task (see below).

An interesting take on argumentative relevance based on free token-spans was presented
by Lawrence et al. [2014] , who determined argumentative relevance as the result of a struc-
ture prediction process. They first trained two token-based Naive Bayes models to predict
opening and closing segment boundaries. As a second step they used semantic distance
measures between a predicted segment and its predecessor of a LDA topic model to derive
a non-directed hierarchical structure. Segments which do not exceed a specified similarity
threshold to any preceding segment, are considered non-relevant for the argument and are
not integrated into the structure.

6.1.3 ADU classi�cation

We now turn to segment type classification, where segments of clause or sentence size, or
similar token-spans are labelled with categories that are relevant to the analysis of argumen-
tation. Different type-systems have been proposed for different purposes, including their
role in argumentation structure (claims, premises), their role in the text (central claim/ the-
sis or not), their rhetorical or argumentative function in the text (supporting, attacking),
their verifiability, their dialectical relation to the main claim (the roles of proponent versus
opponent), etc. We will consider examples for each of them.

For legal texts of the ECHR corpus, Mochales Palau and Moens [2009] demonstrated in
their influential work how to classify the segment of a text into premises and conclusions .
The SVM model takes as input clauses that have been predicted to be argumentative using
the Maximum Entropy model described above. They obtain an F-score of 74% for conclusion
and 68% for premise. As features they used among others: subject type, main verb tense,
main verb argumentative types, rhetorical cue phrase classes, argumentative cue phrase
classes, and a contextual feature with the prediction for the previous and next segment.
They also report results of a CFG (used for predicting full argumentation structures; see
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mentioned work and is very fast. Furthermore, the post-editing step produced significantly
better structures, though at the cost of doubling the processing time, which can be still
regarded acceptable.

Ji and Eisenstein [2014] presented a shift-reduce parser that learns not only the parsing
actions but also a low-dimensional vector-space feature representation of the EDUs, which
replaces the sparse lexical features used in prior approaches. The authors stressed the
need to learn these representations directly from the source data while training the target
task. Using pre-trained word-embeddings instead is not advised, as these might not be tied
to the application of interest and thus might impair the parsing process. They reported
improvements in nuclearity detection and relation classification.

In a similar way, Li et al. [2014a] transform EDUs to abstract feature representations.
They used Recurrent Neural Networks and employed two classifiers, one for structure pre-
diction and one for relation classification. Besides vector representations for the leaf nodes
of the trees, they also recursively represented subtrees that leaf nodes attach to. A dis-
tinction between intra- and inter-sentential segments was not made. The most likely tree
was determined using an CKY-like bottom-up algorithm. Given that only a few extra fea-
tures were used in addition to the learned representations, the approach yielded promising,
comparable results, but it did not outperform previous work.

While most of the presented work focused on parsing RST trees as constituency trees, Li
et al. [2014b] converted them to dependency structures and applied dependency parsing
techniques [McDonald et al., 2005a] . They tested both MST based decoding, which can
handle non-projective structures (but the converted dependencies are all projective), as
well as the Eisner-algorithm, which will only predict projective structures. The difference
between both approaches was insignificant. For comparison with related work, the pre-
dicted dependency trees were converted back to constituency trees. The authors reported
improvements in nuclearity detection and relation classification, although to a limited ex-
tent. in comparison to [Ji and Eisenstein, 2014] .

SDRT parsing

A first approach to parse SDRT structures in dialogue transcripts and newswire text was
presented by Baldridge et al. [2007] . They converted the SDRT graphs to dependency trees
and applied a dependency parser [McDonald et al., 2005a] that uses MST to decode the
globally optimal structure. They showed that this approach is superior to a PCFG baseline.

Muller et al. [2012a] compare different decoding approaches, a greedy mechanism, MST,
and A*-search. These are tested on a French corpus of newspaper articles and Wikipedia en-
tries. The authors investigated how linguistically oriented constraints on discourse structure
(such as the right frontier constraint) could be enforced in such a decoding process. Also,
they evaluated a pipeline architecture (where relations are first identified, then labelled)
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structure: Similar to the different label sets used for evaluating the annotation experiments
(see Section 4.2.1), we will extract different label sets from the argumentation structure for
different subtasks of argumentation mining.

When using the microtext corpus in machine learning experiments, we face two problems.
First, the corpus is rather small. This not only restricts the possible selection of machine
learning approaches: Some approaches (as for example deep learning architectures) require
much larger datasets in order to converge, and are thus not applicable in our case. It also has
implications for the experimental setup to reach conclusive results. Second, argumentative
configurations and patterns are not equally distributed in our corpus: For example, there
are more supporting than attacking relations or more proponent than opponent segments,
etc. The distribution of classes a classifier has to learn will be very skewed. This requires a
lot of care when setting up the classifier and evaluating the results.

For a large dataset, it is a reasonable practice to divide it into a fixed training, devel-
opment, and test set before all experimentation, e.g. with a 70/ 10/ 20% proportion. The
feature development as well as potential hyper-parameter tuning can be done on the de-
velopment set, the training set is sufficiently large, and the test set can remain a true blind
test set, whose instances are never looked at. However, this practice is not applicable in this
work for two reasons: First, the experimenter was involved in the annotation of the cor-
pus and can thus not be assumed not to know the instances of the test set. More pressing,
though, is the small size of the corpus: A 20% sample for testing or a 10% sample for devel-
opment is likely to miss less frequent but still characteristic phenomena of the corpus (e.g.
relation types, structural configurations, or cues). In other words, the corpus size is too
small to ensure a representative 20% sample. We therefore rely on k-fold cross-validation
(CV) to get an estimate of the model’s accuracy on all instances of the dataset [Stone, 1974,
Hastie et al., 2013] .

For imbalanced class distributions, the sampling of the instances can be strati�ed , i.e.
the training and the test sample have a similar class distribution. This way, we can avoid
the undesirable situation where less frequent classes are not represented in the test set and
no score could be computed. Furthermore, cross-validation can be repeated with randomly
different foldings of the data. This allows us to have a larger sample of testing scores, which
in turn leads to better approximations when assessing statistical significance in comparing
different experiment conditions.

In our setting, the ultimate goal is to predict the argumentative structure of a whole para-
graph or text. A stratified folding is likely to split up the classification items of one paragraph
or text across multiple folds in order to maximise the similarity of the individual fold’s cat-
egory distributions, with the caveat that we might not predict and evaluate a connected
argumentation structure in one fold. To overcome this, we propose to use a group-wise
stratification: Classification items of one group (in our case of one text) cannot be separated
in stratification. Instead, the group-wise folding seeks to find sets of groups with similar
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class distributions. In all experimental settings that aim for predicting full argumentation
structures (Sections 6.5, 6.6, 6.7 and 6.8), we will use repeated, group-wise, stratified cross-
validation. To allow reproducibility, we have made the resulting train-test-splits publicly
available. In all other experiments, we use repeated, stratified cross-validation only.

For testing the statistical signi�cance of a measured difference between two models for
model selection, we use the Wilcoxon signed-rank test [Wilcoxon, 1945] . As advocated by
Demšar [2006] , it is less sensitive to outliers and does not assume a normal distribution as
the standard paired t-test. We assume a significance level of �= 0.01.

Since we cannot tune the hyperparameters of the models on a designated development
set, we determine the best parameter through an ‘inner’ cross-validation on the training
set. This is also referred to as ‘nested cross-validation’ or ‘double cross’ [Stone, 1974] .
Assume for example a nested 5� 4 CV. The outer 5-fold CV, where the classifier is trained
on 4/ 5 and tested on 1/ 5 of the dataset, is for evaluation only. The inner 4-fold CV on the
training set of the outer CV is used to find the optimal choice of hyperparameters. Once
the best hyperparameters are found, a model is trained on all training set items with these
parameters and then tested on the test set. This procedure has the advantage that the
performance evaluation is less biased by external factors such as sampling [ see Cawley and
Talbot, 2010] , but it evidently comes with a higher computational cost. An experimental
protocol that repeats these nested cross-validations has been presented by Filzmoser et al.
[2009] .

For measuring the performance of our classifiers, we use the following metrics:

� Accuracy is the proportion of correct decisions over all decisions. In a multi-class
evaluation it is highly biased by the distribution of the class labels.

� The F-measure is the harmonic mean of precision and recall. It focuses only on one
class and takes into account true and false positives and false negatives, but does not
consider true negatives.1 We will use this metric for reporting individual class-wise
results.

� In a multi-class setting, even in a dichotomous setting where both classes are of in-
terest, one way to derive a single score is to average the F-scores of the classes. While
micro-averages give equal weight to each classification decision and are thus biased
towards the performance of frequent classes, the macro-averaged F-scores weigh all
classes equally and are thus helpful for determining the performance of the infrequent
classes [Manning et al., 2008] .

� Finally, we will again use the kappa metric, such as Cohen’s � (see Section 4.1) as a
chance-corrected metric. It will allow us to compare the system’s performance against
that of human annotators and opens up a useful continuum between 0.0 and 1.0 for

1This is considered a reasonable simplification in the field of information retrieval where this metric originates
from, because only the relevant documents count for information retrieval.
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the highest F-score on the most complex level. The SVM generally performs well in terms
of accuracy and speci�cally on the most interesting levels for future applications, namely
in target identi�cation and the complex `role + function' and `role+ function+ comb+ target'
levels. For the CRF classi�er, we had hoped that approaching the dataset as a sequence
labelling problem would be of advantage. However, applied out of the box as done here,
it did not perform as well as the segment-based MaxEnt or SVM classi�er. This might be
attributed to our features, which already incooperated some sequential context. Also, it is
in line with the results reported by Park et al. [ 2015] , where CRFs did not improve over
SVMs in a related task.

Overall, the SVM classi�er scored best out of the box, followed by the MaxEnt classi�er. In
the following discussion of the dif�culty of the task and of our experiment with the feature
sets, we will focus on these two classi�ers.

Dif�culty of the levels

Our aim in this study is to obtain a �rst understanding of the dif�culty to model certain
aspects of argumentation structure in the microtexts. For the basic levels except target, the
best classi�ers achieve� > 0.50, which is already good start. On the `role' and the `function*'
level all classes are covered in the predictions with class wise F1-score between 0.60 and
0.90.

On the more �ne-grained `function' level, we have the distinction between rebutting and
undercutting attack, which is not easy to draw with an F1= 0.42 for rebut and F1= 0.36 for
undercut. While the majority class of normal support is quite reliably predicted, example
support is not predicted at all, probably because there are just not enough instances of this
class in the corpus.

The `comb' level, which represents whether a segment is effective only when linked with
another segment, is very problematic. Although the best classi�er yields a good score with
� = 0.56, it turns out that it was not able to learn to predict segments whose relation needs
to be combined with others. The high score is due to a peculiarity of segment-wise extrac-
tion: The label set distinguishes between three classes, segments with combined relations,
segments with single relations, and segments without a relation (i.e. central claims). The
classi�er only learned to distinguish the latter two classes, but did not learn to identify the
rather infrequent combined relations.

For the `target' level, where the classi�ers learn the offset of attachment, the score of
the best model is � = 0.38. Looking at the predicted classes, we observe that the SVM for
example correctly identi�es 84% of the non-attaching central claims, as well as about 60% of
the adjacent targets (with better results for preceding than for subsequent targets), but only
19% of the non-adjacent targets. This result is expected, provided the way we framed the
task here, and we will present an approach that is capable to guide the prediction of whether
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and so we think these devices are definitely worth studying in order to arrive at complete
argumentation analyses.

We obtained good results on our corpus of microtexts, whereas we see room for improve-
ment for the longer and more complex pro/ contra newspaper texts. In an error analysis,
we found that contrastive discourse markers are very important for the classification, but
that they are often indicative not only for pragmatic but also for semantic contrasts. Fur-
thermore, the frequency of certain connectives is different across the corpora.

One of the shortcomings of the experimental setup was the difference in the underlying
segmentation between the microtext and the ProCon corpus. However, in our error analysis
we found this to have only a small impact. Finally, it remains for future work to provide
a more elaborate, quantitative analysis of the linguistic signals of argumentative role and
role switches.

6.5 Study 3: The Evidence Graph - A global model of
argumentation structure

Identifying the structure of argumentation according to our scheme involves choosing one
segment as the central claim of the text, deciding how the other segments are related to the
central claim and to each other, identifying the argumentative role of each segment, and
finally the argumentative function of each relation.

Several of these task have been already tackled in our prior experiments on automat-
ing the recognition of argumentation structure. There, we approached the problem as a
segment-wise classification task (see Section 6.3). Formulating the task this way was suc-
cessful for the recognition of argumentative role and function of a segment. For the au-
tomation of the structure building however, the segment-wise classification of attachment
with only a small context window around the target segment proved to be a very hard task:
The identification of the target of an argumentative relation was especially challenging for
relations between non-adjacent segments. These long-distance dependencies are frequently
found in argumentation graphs. For example, 46% of the relations marked in the corpus
used for this study involve non-adjacent segments. For longer texts this number might in-
crease further: Stab and Gurevych [2014a] report a rate of 63% of non-adjacent relations
in their corpus.

Another problem is, that the predictions of the classifiers presented above cannot nec-
essarily be united to a valid argumentation structure: The predictions might contradict, or
introduce cycles or disconnected segments when interpreting them as a whole structure.
While the predictions might by locally optimal, i.e. in the context of the single classification
instance, they might be dispreferred globally, i.e. in the context of all other classification
instances brought together to determine an overall valid argumentation structure.
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� function (fu): Has the current segment a supporting or an attacking function? In
our data, 290 segments are supports, 174 are attacks, and 112 are the central claim
and thus have no own function.

Note that role and function classification tasks are framed as in our previous study (in
Section 6.3). The ‘comp’ level is obsolete due to the reduction of relation labels. The
segment-wise ‘target’ classification is replaced by pair-wise attachment classification.

6.5.2 Models

We compare two heuristic baseline models and different data-driven models that we de-
veloped, each of them trained and evaluated separately on both language versions of the
corpus. All models are evaluated on the basis of 10 iterations of 5x3-fold nested cross
validation, with a text-wise stratified folding (see Section 6.2 on methodology).

Baseline: attach to �rst

In the English-speaking school of essay writing and debating, there is the tendency to state
the central claim of a text or a paragraph in the very first sentence, followed by supporting
arguments. It is therefore a reasonable baseline to assume that all segments attach to the
first segment. In our corpus, the first segment is the central claim in 50 of the 112 texts
(44.6%).

This baseline (BL-�rst ) will not be able to capture serial argumentation, where one more
general argument is supported or attacked by a more specific one. However, it will cover
convergent argumentation, where separate arguments are put forward in favour of the
central claim (given that it is expressed in the first segment). It will always produce flat
trees. In our corpus, 176 of the 464 relations (37.9%) attach to the first segment.

Baseline: attach to preceding

A typically very strong baseline in discourse parsing is attaching to the immediately pre-
ceding segment [Muller et al., 2012a] . This is certainly true for rhetorical structure trees,
where most of the relations are between adjacent segments. Since argumentation structures
often exhibit non-adjacent relations, this baseline might be considered slightly weaker in
our scenario, but it is still a challenging heuristic.

This baseline (BL-preced.) will always produce chain trees and thus cover serial ar-
gumentation, but not convergent argumentation. In our corpus, 210 of all 464 relations
(45.3%) attach to the preceding segment.
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Learned attachment without decoding

We train a linear log-loss model (simple ) using stochastic gradient descent (SGD) learning,
with elastic net regularisation, the learning rate set to optimal decrease and class weight ad-
justed according to class distribution [Pedregosa et al., 2011] . The following hyper param-
eters are tuned in the inner CV: the regularisation parameter alpha, the elastic net mixing
parameter, and the number of iterations. We optimise for macro averaged F1-score.

For each text segment, we extract binary features for lemma, pos-tags, lemma- and pos-
tag- based dependency-parse triples, and the main verb morphology[Bohnet, 2010] , and
discourse connectives[Stede, 2002] , furthermore simple statistics like relative segment po-
sition, segment length, and punctuation count. These features are equivalent to those in the
prior studies (see Section 6.3.1). Furthermore, we extract for each pair of text segments the
relative distance between the segments and their linear order (is the source before or after
the target). The feature vector for each pair then contains both pair features and segment
features for source and target segment and their adjacent segments.

Note that we experimented with several features, some of which were dismissed from
the �nal evaluation runs due to lack of impact. This included sentiment values and the
presence of negation for segments. Also, similarity measures had been proposed as useful
features. However, in our experiments all following distance measures between pairs of
segments did not affect the results: word-overlap, tf-idf, and LDA distributions.

Learned attachment with MST decoding

The simple model just described might be able to learn which segment pairs actually attach,
i.e., correspond to some argumentative relation in the corpus. However, it is not guaranteed
to yield predictions that can be combined to a tree structure again. A more appropriate
model would enforce global constraints on its predictions. In the simple + MST model, this
is achieved by aminimum spanning tree(MST) decoding, which has �rst been applied for
syntactic dependency parsing[McDonald et al., 2005a,b] and later for discourse parsing
[Baldridge et al., 2007, Muller et al., 2012a] . First, we build a fully-connected directed
graph, with one node for each text segment. The weight of each edge is the attachment
probability predicted by the learned classi�er for the corresponding pair of source and target
segment. We then apply the Chu-Liu-Edmonds algorithm[Chu and Liu, 1965, Edmonds,
1967] to determine the minimum spanning tree, i.e., the subgraph connecting all nodes
with minimal total edge cost (in our case highest total edge probability). This resulting
tree then represents the best global attachment structure for a text given the predicted
probabilities.
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Figure 6.2: An example evidence graph before (left) and after (right) the predicted proba-
bilities of the different levels have been combined in a single edge score.

The Evidence Graph: Joint prediction with MST decoding

All models presented in the previous subsections have in common that they do not rely on
other features of the argumentation graph. However, it is fair to assume that knowledge
about the argumentative role and function of a segment or its likeliness to be the central
claim might improve the attachment classi�cation. Consequently, our next model considers
not only the predicted probability of attachment for a segment pair, but also the predicted
probabilities of argumentative role, function and of being the central claim for each seg-
ment. The predictions of all levels are combined in oneevidence graph.

Additional segment-wise base classi�ers: We train base classi�ers for the role, func-
tion and central claim level using the same learning regime as used in the simple model.
Contrary to the attachment classi�cation, the items are not segment pairs but single seg-
ments. We thus extract all segment-based features as described above for the target segment
and its adjacent segments.

Combining segment and segment-pair predictions: Our goal in this model is to com-
bine the predicted probabilities of all levels in one edge score, so that the MST decoding
can be applied as before. Figure 6.2 depicts the situation before and after the combination,
�rst with separate prediction for segments and segment pairs and then with the combined
edge scores.

The evidence graph is constructed as follows: First, we build a fully connected multigraph
over all segments with as many edges per segment-pair as there are edge types. In our
scenario there are two edge types, supporting and attacking edges. Then we translate the
segment-wise predictions into level-speci�c edge scores.

The edge-score for the central claim levelcci , j is equal to the probability of the edge's
source not to be the central claim. This captures the intuition that central claims are unlikely
to have outgoing edges:

cci , j = p(cci = no) (6.1)
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The edge-score for the argumentative function level fui , j is equal to the probability that the
source segment has the corresponding function:

fui , j =

�
p(fui = sup) for sup. edges
p(fui = att) for att. edges

(6.2)

The edge-score for the argumentative role level roi , j is also determined by the edge type.
Attacking edges involve a role switch (proponent or opponent would not attack their own
claims respectively), while supporting edges preserve the role (proponent or opponent will
only support their own claims respectively):

roi , j =

8
>>>><

>>>>:

p(roi = pro) � p(ro j = pro)+
p(roi = opp) � p(ro j = opp) for sup. edges

p(roi = pro) � p(ro j = opp)+
p(roi = opp) � p(ro j = pro) for att. edges

(6.3)

Finally, of course the edge-score for the attachment level ati , j is equal to the probability of
attachment between the segment pair:

ati , j = p(ati , j = yes) (6.4)

The combined score of an edge wi , j is then defined as the weighted sum of the level-specific
edge score:

wi , j =
�1roi , j + �2fui , j + �3cci , j + �4ati , jX

�n

(6.5)

In our implementation, the combined evidence graphs can be constructed without a
weighting, and then be instantiated with a specific weighting to yield the combined edge
scores wi , j .

Procedure: As before, we first tune the hyperparameters in the inner CV, train the model
on the whole training data, and predict probabilities on all items of the test set. Also,
we predict all items in the training data “as unseen” in a second inner CV using the best
hyperparameters. This procedure is executed for every level. Using the predictions of all
four levels, we then build the evidence graphs for training and test set.

Finding the right weighting: We evaluate two versions of the evidence graph model.
The first version (EG equal) gives equal weight to each level-specific edge score. The second
version (EG best) optimises the weighting of the base classifiers with a simple evolution-
ary search on all evidence graphs of the training set, i.e. it searches for a weighting that
maximises the average level evaluation score of the decoded argumentation structures in
the training set. Finally, all evidence graphs of the test set are instantiated with the selected
weighting (the equal one or optimised one) and evaluated.
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6.7.2 Models

As a baseline, we will use the two heuristic baseline models presented in Section 6.5.2:
BL-�rst , which takes the first segment as the central claim and all other segments as direct
support to it; and BL-preced., which attaches each segment to its preceding segment as
a simple support relation. Note that the purpose of these baselines in this case is not to
seriously challenge the proposed method. It is rather the other MST- or ILP-based methods
presented earlier who have proven to be competitors of the evidence graph model. The pur-
pose of the baselines here is to determine the lower bound using exactly the same methods
as in previous experiments. This will enable us to put these base results in relation to those
derived on different corpus versions in order to quantify the increase in task complexity.

We will not reproduce all other competitors spawned in the previous sections: For the
mstparser-based models from Section 6.5, we have already shown that, despite their ad-
vantage in predicting attachment, the overall performance was not on par with that of the
evidence graph model. Furthermore, they prove to be significantly worse in predicting the
argumentative function – one of the task that will be even more challenging in this study’s
scenarios. The ILP-based decoders from Section 6.6 would be interesting to compare to.
However, the more complex relation set would require customisation of the existing con-
straints and maybe additional constraints for the new relation types, which is out of the
scope of the present study.

The evidence graph model does not require any adaption to the new scenarios. It only
needs to be aware of those relations that are role-inverting. The graph is automatically
populated with edges of all existing relation types, be it only support and attack (as in
previous experiments) or the six different relations of the full EDU-based relation set. We
will, again, only report the results of the EG-equal model, which does not optimise the
weighting of the four base classifier scores but simply assumes an equal weighting.

6.7.3 Results

For evaluating the results of our experiment, we follow the same procedure of the previous
studies and assess the correctness of the predicted structures separately for each of the four
subtasks as macro averaged F1 and also report labelled attachment scores (LAS).

ADU reduced

Let us first, for the ease of comparison, recapitulate the results on the ADU segmented
corpus with the reduced relation-set. They are shown in Table 6.13a and consist of the
baselines as well as the (feature-wise improved) EG-equal model from the previous section.
Remember that baseline results only differ from each other in their attachment strategy
and yield equal results for central claim (always choosing the first segment), role (all pro-
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English German

model cc ro fu at LAS cc ro fu at LAS

BL-first .712 .439 .407 .618 .313 .712 .439 .407 .618 .313
BL-preced. .712 .439 .407 .662 .300 .712 .439 .407 .662 .300
EG-equal .876 .766 .757 .722 .529 .861 .730 .725 .731 .523

(a) Evaluation results for all levels (recapitulation of results from Section 6.6).

English German

relation Precision Recall F1 Precision Recall F1

central claim .801 .801 .801 .777 .777 .777
support .762 .817 .788 .728 .819 .770
attack .736 .641 .683 .730 .563 .630

(b) Individual relations on the function level for the EG-equal model

Table 6.13: Evaluation results for the ADU reducedscenario.

ponent), and function (all support). Also, following a structural heuristic, their results are
consistent across language versions of the corpus. Finally, note that the evidence graph
model produces slightly better predictions for the English version of the corpus than for the
German version, as we already discussed in Section 6.6.

We will additionally report detailed scores for the different relations on the argumentative
function level and later compare them with the results using the more fine-grained relations
set. The results for the reduced relation set are presented in Table 6.13b as precision, recall,
and F1 score for each relation class.

ADU full

We will now turn to the first scenario with more fine-grained structures, using the full re-
lation set on the ADU segmented corpus. The level-wise scores are reported in Table 6.14a.
Comparing these scores against the those with the reduced relation set confirms our ex-
pectation that only the level of argumentative function is affected. On all other levels the
results are stable. The decrease in the scores for argumentative function is observed for
both the baseline models as well as for the evidence graph model. For the baselines, the
drop is quite dramatic, but remember that they only assign support relations and the func-
tion score is a macro average over all classes. With more classes the macro average will
drop, even though roughly the same number of items are correctly predicted. This also has
to be kept in mind when interpreting the function score for the EG-equal model.
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fact that undercuts score lower than rebuts. Compared to the reduced relation set, where
attack relations scored with 0.68 F1, we achieve only an F1 of 0.56 for rebutting and of
0.48 for undercutting relations (in the case of English).

Interestingly, the relations results also differ between the English and the German ver-
sion of the corpus. The quite infrequent linked relations are predicted more accurately in
German, but all other relations achieve better scores in English, even with a difference of
7 points F1 for the undercutting relation. Without further analysis, we can only speculate
here about the possible reasons. We leave it for future work to investigate whether this
language dependence is due to differences in coverage of the lexical features (from parsing
model and connective lexicon), or an artefact of translation, or more generally due to a
difference in the usage, variety and markedness of the discourse connectives across both
languages.

Summing up this scenario, we found that some distinctions from the more fine-grained
relation set, such as between rebutting and undercutting attacks, can be successfully pre-
dicted to some extent. Other relations, such as link and example, are just not covered
sufficiently in the training corpus to be reliably predicted. Also, we want to stress that in-
creasing the complexity of the relation set (even to a degree that certain relations cannot
be predicted) did only affect the function level and thus did not impair the quality of joint
prediction in the evidence graph model for other levels.

EDU reduced

The next scenario is based on the EDU segmentation, but with the reduced relation set.
Recall that only the English version of the corpus offers EDU segmentation. The overall re-
sults are shown in Table 6.15a. In order to quantify the effect of using a more fine-grained
segmentation, we can compare these results with that of the ADU reduced scenario. The
differences for the baseline are relative small: Attachment classification improves by three
points for BL-preced., which is due to the serialisation of join relations during the depen-
dency conversion. Furthermore, there is a small gain of two points in function classification,
as these join relations are mapped to supports by relation set reduction.

The differences of the EG-equal model’s prediction are also rather small. The tasks of cen-
tral claim identification and role classification become a little bit more difficult (a decrease
by two to three points F1) and there is a minor impact on function classification. We thus
focus on individual scores for the relations, which are shown in Table 6.15b: The F-score
for predicting the central claim function is 5 points lower; supporting relations are better
recognised (+ 3 points), due to gains in precision; attacking relations finally are predicted
less accurately (-2 points), due to a loss in precision.

Overall, moving from an ADU segmentation to an EDU segmentation does not make the
task of argumentation mining significantly more complex, as long as we work with a reduced
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