
M O D E L I N G A N D E X E C U T I N G B AT C H A C T I V I T I E S I N B U S I N E S S
P R O C E S S E S

luise pufahl

business process technology group

hasso plattner institute

university of potsdam

potsdam , germany

dissertation

zur erlangung des akademischen grades eines

“doctor rerum naturalium”
– dr . rer . nat. –

March, 2018

Luise Pufahl: Modeling and Executing Batch Activities in Business Processes,
eingereicht an der Digital-Engineering-Fakultät
des Hasso-Plattner-Instituts und der Universität Potsdam. März 2017

Published online at the
Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-408013
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408013

A B S T R A C T

Business process automation improves organizations’ efficiency to per-
form work. Therefore, a business process is first documented as a pro-
cess model which then serves as blueprint for a number of process in-
stances representing the execution of specific business cases. In existing
business process management systems, process instances run indepen-
dently from each other. However, in practice, instances are also col-
lected in groups at certain process activities for a combined execution
to improve the process performance. Currently, this so-called batch pro-
cessing is executed manually or supported by external software. Only
few research proposals exist to explicitly represent and execute batch
processing needs in business process models. These works also lack a
comprehensive understanding of requirements.

This thesis addresses the described issues by providing a basic con-
cept, called batch activity. It allows an explicit representation of batch
processing configurations in process models and provides a correspond-
ing execution semantics, thereby easing automation. The batch activity
groups different process instances based on their data context and can
synchronize their execution over one or as well multiple process activ-
ities. The concept is conceived based on a requirements analysis con-
sidering existing literature on batch processing from different domains
and industry examples. Further, this thesis provides two extensions:
First, a flexible batch configuration concept, based on event process-
ing techniques, is introduced to allow run time adaptations of batch
configurations. Second, a concept for collecting and batching activity
instances of multiple different process models is given. Thereby, the
batch configuration is centrally defined, independently of the process
models, which is especially beneficial for organizations with large pro-
cess model collections. This thesis provides a technical evaluation as
well as a validation of the presented concepts. A prototypical imple-
mentation in an existing open-source BPMS shows that with a few ex-
tensions, batch processing is enabled. Further, it demonstrates that the
consolidated view of several work items in one user form can improve
work efficiency. The validation, in which the batch activity concept
is applied to different use cases in a simulated environment, implies
cost-savings for business processes when a suitable batch configuration
is used. For the validation, an extensible business process simulator
was developed. It enables process designers to study the influence of a
batch activity in a process with regards to its performance.

iii

Z U S A M M E N FA S S U N G

Die Automatisierung von Geschäftsprozessen verbessert die Effizienz
von Organisationen im Bearbeiten ihrer Aufgaben. Dafür wird ein Ge-
schäftsprozess zunächst als Prozessmodell dokumentiert, der dann als
Vorlage für eine Menge von Prozessinstanzen, welche die Ausführung
von Geschäftsfällen repräsentieren, dient. In existierenden Prozess-
management-Systemen werden Prozessinstanzen komplett unabhängig
voneinander ausgeführt. In der Praxis jedoch werden Instanzen häufig
zur Verbesserung der Prozessperformance an bestimmten Prozessakti-
vitäten in Gruppen gesammelt, um diese gebündelt auszuführen. Das
sogenannte Batch Processing wird zurzeit nur manuell oder durch ex-
terne Software unterstützt. Wenige Forschungsarbeiten existieren, um
Batch Processing-Konfigurationen in Prozessmodellen explizit zu reprä-
sentieren und sie automatisiert auszuführen. Zusätzlich fehlt es diesen
Arbeiten an einem umfassenden Verständnis der Anforderungen.

Die vorliegende Dissertation befasst sich mit den oben genannten Fra-
gestellungen, indem ein Batch Activity-Konzept entwickelt wird. Dieses
erlaubt es Batch Processing-Aktivitäten in Geschäftsprozessen zu spe-
zifizieren als auch zu konfigurieren und mittels einer zusätzlich be-
reitgestellten Ausführungssemantik zu automatisieren. Die Batch Activi-
ty kann verschiedene Prozessinstanzen auf Basis ihres Datenkontextes
gruppieren und deren Ausführung über ein oder mehrere Aktivitäten
synchronisieren. Das Konzept basiert auf einer Anforderungsanalyse,
welche existierende Forschungsarbeiten zum Thema des Batch Proces-
sings aus unterschiedlichen Domänen als auch Praxisbeispiele berück-
sichtigt. Weiterhin werden zwei Erweiterungen des Basiskonzeptes in
dieser Arbeit vorgestellt: Erstens wird ein Konzept zur flexiblen Anpas-
sung der Batch-Konfiguration zur Ausführungszeit basierend auf Tech-
niken der Ereignisverarbeitung vorgestellt. Zweitens wird ein Konzept
eingeführt, um Aktivitätsinstanzen von verschiedenen Prozessmodel-
len zu sammeln und zu konsolidieren. Dabei wird die Batch-Konfigu
ration unabhängig von Prozessmodellen zentral definiert, was beson-
ders für Unternehmen mit großen Prozesssammlungen hilfreich ist. Die
vorliegende Dissertation beinhaltet eine technische Evaluation als auch
eine Validierung der eingeführten Konzepte. Eine prototypische Im-
plementierung in ein bestehendes, open-source Prozessmanagement-
System zeigt, dass Batch Processing mit wenigen Erweiterungen inte-
griert werden kann. Zusätzlich wird demonstriert, dass die konsolidier-
te Darstellung von mehreren Prozessfällen in einer Benutzeransicht die
Arbeitsleistung von Endanwendern verbessern kann. Die Validierung,
in der das Batch Activity-Konzept in unterschiedlichen Anwendungsfäl-
len in einer simulierten Umgebung eingesetzt wird, impliziert Prozess-

v

kosteneinsparungen, wenn eine geeignete Batch-Konfiguration gewählt
wird. Für die Validierung wurde ein erweiterbarer Geschäftsprozess-
simulator entwickelt. Dieser ermöglicht es Prozessmodellierern, den
Einfluss einer Batch Activity auf einen Prozess mit Hinblick auf dessen
Performance zu untersuchen.

vi

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following pub-
lications:

• Luise Pufahl, and Mathias Weske. Batch Activities in Process
Modeling and Execution. In Service-Oriented Computing (ICSOC),
pages 283–297. Springer, 2013.

• Luise Pufahl, Andreas Meyer, and Mathias Weske. Batch Regions:
Process Instance Synchronization based on Data. In Enterprise
Distributed Object Computing (EDOC), pages 150–159. IEEE, 2014.
[Best Student Paper]

• Luise Pufahl, Nico Herzberg, Andreas Meyer, and Mathias Weske.
Flexible Batch Configuration in Business Processes based on Events.
In Service-Oriented Computing (ICSOC), pages 63–78. Springer, 2014.

• Luise Pufahl, and Mathias Weske. Batch Processing Across Mul-
tiple Business Processes Based on Object Life Cycles. In Business
Information Systems (BIS), pages 195–208. Springer, 2016. [Best
Paper]

• Luise Pufahl and Mathias Weske. Enabling Batch Processing in
BPMN Processes.. In BPM Demos, pages 28–33. Springer, 2016.

• Luise Pufahl, and Mathias Weske. Requirements Framework for
Batch Processing in Business Processes. In Business Process Mod-
eling, Development and Support (BPMDS), pages 85–100, Springer,
2017.

• Luise Pufahl, Tsun Yin Wong, and Mathias Weske. Design of an
Extensible BPMN Process Simulator. In BPM Workshops, accepted,
2017.

In addition to above publications as part of this thesis, I was also
involved in the following research indirectly contributing to this thesis:

• Andreas Meyer, Luise Pufahl, Kimon Batoulis, Dirk Fahland, and
Mathias Weske. Automating data exchange in process choreogra-
phies. Information Systems, 53:296–329, 2015.

• Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske.
Modeling and Enacting Complex Data Dependencies in Business
Processes. In Business Process Management (BPM), pages 171–186.
Springer, 2013.

• Luise Pufahl, Ekaterina Bazhenova, and Mathias Weske. Evalu-
ating the Performance of a Batch Activity in Process Models. In
BPM Workshops, pages 277–290. Springer, 2014.

• Andreas Meyer, Luise Pufahl, Kimon Batoulis, Sebastian Kruse,
Thorben Lindhauer, Thomas Stoff, Dirk Fahland, and Mathias

vii

Weske. Automating Data Exchange in Process Choreographies.
In Advanced Information Systems Engineering (CAiSE), pages 316–
331. Springer, 2014.

• Luise Pufahl, and Mathias Weske. Parent-child Relation Between
Process Instances. In BPM Forum, pages 20-37. Springer, 2015.

• Luise Pufahl, Sankalita Mandal, Kimon Batoulis and Mathias Weske.
Re-evaluation of Decision based on Events. In Business Process
Modeling, Development and Support (BPMDS), pages 68–84, Springer,
2017.

viii

A C K N O W L E D G M E N T S

“Research only works in a research ecosystem to reshape your ideas.” One
of the valuable sayings I got during working on my PhD from my su-
pervisor Mathias Weske. Looking back, I had a great and very pleasant
research ecosystem influencing me in a very valuable way in writing
my thesis. This research ecosystem was first and foremost created by
my supervisor Mathias Weske to whom goes my special thanks. He
introduced me as a former ’Information Systems’-student to the world
of computer science research with continuous encouragement, patience,
fruitful discussions, and valuable hints to find my way. Additionally, I
want to especially thank Jan Mendling who triggered my enthusiasm
for Business Process Management during my Master studies with his
lectures at the Humboldt University Berlin where he also presented new
research topics, such as C-EPCs which I still remember. I also want to
thank my second reviewer, Stefanie Rinderle-Ma, for valuable feedback,
and interesting talks that we had at different conferences. She is a role
model for me as a successful female researcher.

Many thanks to my colleagues within the BPT group who formed a
special, warmhearted, and enjoyable research ecosystem. Especially, I
want to mention here Andreas Meyer and Dirk Fahland with whom I
shared a very intensive and successful research work. Thank you both
for your inspiration and your valuable feedback questioning always ev-
ery detail. Furthermore, I also enjoyed the research collaboration with
my colleagues Andreas Solti, Nico Herzberg, Ekatherina Bazhenova,
Marcin Hewelt, Sankalita Mandal, and Kimon Batoulis. Also thanks to
my teaching partners Matthias Kunze and Kimon Batoulis for the great
teaching work together which I always enjoyed and which also helped
me a lot to understand things in more depth. Thank you Adriatik,
Andreas, Dimka, Francesca, Kimon, Katya, Marcin, and Sankalita for
proof-reading my thesis.

All my thanks goes to my husband Marian, my love, for supporting,
listing, and pushing me to believe in my work in all those years. Thanks
for your patience, your strength, and thanks for our daughter Melina
who is our joy and pride. I also want to thank my family and my
friends for their support. Especially I want to thank my mum who was
always there to take Melina to give me some space to work; my father,
my brother Jonas, and my best friends Anne and Jule for always being
there and listening.

Luise Pufahl
11th October, 2017

ix

C O N T E N T S

I introduction & background 1

1 introduction 3

1.1 Motivation 3

1.2 Problem Statement 5

1.3 Research Objectives and Research Framework 6

1.4 Summary of Contributions 8

1.5 Structure of the Thesis 10

2 preliminaries 13

2.1 Process Models 14

2.2 Business Process Model and Notation 15

2.3 Data Aspects in Process Models 18

2.4 Process Execution 20

2.5 Events and Business Processes 24

3 related work 27

3.1 Original Domains of Batch Processing 27

3.2 Batch Processing in Business Process Management 32

3.3 Conclusion 36

II basic concepts 39

4 requirements analysis 41

4.1 Scenarios Requiring Batch Processing 42

4.2 Requirements Analysis 47

4.3 Objectives and Prioritization of Requirements 54

5 batch activity 57

5.1 Process Instance Grouping with Data Views 58

5.2 Modeling 62

5.3 Execution Semantics 71

5.4 User Involvement 77

5.5 Conclusion 79

III extended concepts 83

6 flexible batch configuration with events 85

6.1 Motivating Example and Requirements 86

6.2 Flexible Configuration Concept 89

6.3 Validation of Flexible Batch Activity Configurations 96

6.4 Conclusion 99

7 batch processing across multiple business processes 101

7.1 Motivating Example 102

7.2 Requirements and Design Objectives 103

7.3 Batch Specification in Object Life Cycles 106

7.4 Extension to Connected Batch Transitions 110

xi

xii contents

7.5 Conclusion 114

IV evaluation and conclusions 115

8 proof-of-concept implementation 117

8.1 Implementation of the Batch Activity 117

8.2 Implementation of Multi-Process Batching 121

8.3 Conclusion 124

9 application to use cases 125

9.1 Extensible BPMN Process Simulator 127

9.2 Performance Measures for Batch Activities 129

9.3 Application to an Administrative Process 131

9.4 Application to an Online Retailer Process 136

9.5 Conclusion 141

10 conclusions 143

10.1 Summary of Thesis Results 143

10.2 Limitation and Discussion 146

10.3 Future Research 149

V appendix 151

bibliography 153

L I S T O F F I G U R E S

Figure 1 Business process life cycle 4

Figure 2 Design science process and its application 7

Figure 3 Contributions of the thesis 9

Figure 4 Elements of BPMN business process diagrams 16

Figure 5 Online retailer BPMN process diagram 18

Figure 6 Data class ’Order’ with its object life cycle 19

Figure 7 BPMS architecture 21

Figure 8 Online retailer BPMN process diagram with ex-
emplary running instances 22

Figure 9 Activity life cycle 23

Figure 10 Different type of production processes 28

Figure 11 Shipment process to allow batching of shipments 45

Figure 12 Leave application process to allow batching of
vacation request 46

Figure 13 Classification of requirements 47

Figure 14 Requirements framework for integrating batch
processing in business processes 48

Figure 15 Comparison of the eight scenarios based on the
requirements framework 53

Figure 16 Prioritization of requirements for setting the de-
sign objectives 55

Figure 17 Online retailer BPMN process diagram with ex-
emplary running instances 58

Figure 18 Data view example 59

Figure 19 Conceptual model for batch activities 63

Figure 20 Exemplary configurations of batch activities 64

Figure 21 Batch activity configuration integrated into BPMN
specification 69

Figure 22 Integration of the Batch Activity in EPCs 70

Figure 23 Execution semantics of the batch activity exem-
plified 71

Figure 24 Life cycle of a batch cluster 72

Figure 25 Parallel execution 75

Figure 26 Sequential-per-activity execution 76

Figure 27 Sequential-per-case execution 77

Figure 28 Possibility for user involvement in different batch
cluster states 78

xiii

xiv List of Figures

Figure 29 Comparison of existing batch processing solu-
tions 80

Figure 30 Blood testing process 86

Figure 31 Events influencing a batch cluster 90

Figure 32 Conceptual model for integrating batch activities
and event processing concepts 91

Figure 33 Extended batch cluster life cycle 94

Figure 34 Reassignemnt of process instances 95

Figure 35 System architecture to realize batch adjustments 96

Figure 36 Number of expired blood samples for different
simulation runs 98

Figure 37 Average waiting time for the technician in the
different settings 99

Figure 38 Business process models of an electricity sup-
plier 102

Figure 39 Exemplary task list 103

Figure 40 OLC of the data class ’Customer Letter’ 105

Figure 41 OLC of the data class ’Customer Letter’ with a
batch transition 106

Figure 42 Main steps to batch instances of multiple pro-
cesses. 107

Figure 43 Illustration of algorithm to batch instances of mul-
tiple processes 108

Figure 44 Resulting batch work item 109

Figure 45 Extended OLC considering automatic envelop-
ing 110

Figure 46 Extended OLC considering signing of letters 111

Figure 47 OLC of ’Customer Letter’ with sequential con-
nected batch transitions 112

Figure 48 OLC of ’Customer Letter’ with similar batch tran-
sitions being connected 113

Figure 49 bpmn.io extension to configure batch activities 118

Figure 50 Architecture of the extended Camunda engine 119

Figure 51 Sequence diagram visualizing the interaction among
added classes 120

Figure 52 Batch work item in the Camunda Worklist App 121

Figure 53 Architecture of the extended Camunda engine
for multi-process batching 122

Figure 54 Choose-Task-form and batch work item 123

Figure 55 Plug-in structure of the BPMN process simula-
tor 128

List of Figures xv

Figure 56 Application of batch activity concept to an office
room relabeling process 132

Figure 57 Simulation results regarding process cost and batch
size for the administrative use case 133

Figure 58 Simulation results regarding cycle time for the
administrative use case 135

Figure 59 Application of batch activity concept to the on-
line retailer process 137

Figure 60 Simulation results for the retailer use case 139

Figure 61 Average waiting time until enablement of a batch
cluster 140

L I S T I N G S

Listing 1 Threshold rule to exemplify the batch activation
rule 66

Listing 2 Threshold rule with due date 66

Listing 3 MinMax rule as extension to consider future in-
stances 67

Listing 4 Activation rule with fast track option 68

Listing 5 Batch activity representation in the BPMN XML 70

Listing 6 Definition of a Machine-Maintance-Event 92

Listing 7 Definition of a batch adjustment rule 93

Listing 8 Exemplary batch adjustment 93

xvii

A C R O N Y M S

Business Process Management

Business Process Simulation

Business Process Model And Notation

Business Process Management System

Event-Condition-Action

Event Processing Platform

Case Management Model And Notation

Central Processing Unit

Discrete Event Simulation

Earliest-due-date

Event-driven Process Chain

First-come-first-served

Fundamental Modeling Concepts

Information Technology

Object Life Cycle

Unified Modeling Language

Extensible Markup Language

Yet Another Workflow Language

xix

BPM

BPS

BPMN

BPMS

ECA

EPP

CMMN

CPU

DES

EDD

EPC

FCFS

FMC

IT

OLC

UML

XML

YAWL

Part I

I N T R O D U C T I O N & B A C K G R O U N D

1
I N T R O D U C T I O N

This chapter motivates this thesis and describes why an explicit design and
configuration of batch processing requirements in business process models is needed.

It provides the tackled problems, the research objectives, and the scientific
contribution of this thesis. Finally, it concludes with providing an outline of the

thesis.

1.1 motivation

“Businesses are made of processes” [23]. For running a successful busi-
ness, organizations need to facilitate excellence in running their busi-
ness processes. A business process is a set of connected activities which
is carried out to reach a certain business goal and is continuously re-
peated [130]. A major driver for companies to focus on their business
processes is to reduce their costs, to improve their productivity, as well
as to increase the customer satisfaction [37]. Business Process Manage-
ment (BPM) as a management discipline positions business processes in
the center of its efforts. It is a tool for a controlled execution of business
processes and their continuous improvement [23] by providing a set
of concepts, methods, and techniques for the documentation, analysis,
execution, and optimization of business processes [113]. “BPM has the
power to innovate and continuously transform businesses and entire
cross-organizational value chains” [122].

First interest in
business processes

The interest in business processes has arisen in the late 1980s [35]. On
the one hand, works were published on statistical process control (leading
to Six Sigma) analyzing with statistical methods the performance and
output of work to isolate root causes of performance problems [17]. On
the other hand, works were presented on business process re-engineering
identifying the need for continuous improvement of end-to-end pro-
cesses [35].

These ideas led in the 1990s to information technology (IT) solutions
where processes became first class citizens, particularly in business pro-
cess management systems (BPMSs), formerly called workflow management
systems [115, 122]. A BPMS usually consists of a process-design com-
ponent, in which business processes can be visually captured, and
a process-runtime component, which guides the execution of the de-
signed processes and interacts with the users [52]. Each business pro-
cess executed in such a system mostly follows the process life cycle [26,
130] as shown in Figure 1. In the first phase, the Design & Analysis,

3

4 introduction

Design &
Analysis

Configura‐
tionEnactment

Evalution

Figure 1: The business process life cy-
cle, adapted from [26, 130]

the process is discovered by con-
ducting interviews or workshops
with stakeholders, or identified by
analyzing execution data. Then,
it is documented by a process
modeling language, e. g., Busi-
ness Process Model and Nota-
tion (BPMN) [71], Case Man-
agement Model and Notation
(CMMN) [73], Unified Model-
ing Language (UML) Activity Di-
agrams [72], Event-driven Pro-
cess Chains (EPCs) [98], or
Yet Another Workflow Language
(YAWL) [114]. The resulting pro-
cess model is an abstraction of the
real world process and describes its structure [52]. Such a model can be
used to find process improvement possibilities for redesigning it. For
executing it in a BPMS, the final process model is enriched with techni-
cal information, and then deployed on the system in the Configuration
phase. During the execution in a BPMS in the so-called Enactment phase,
a process can be monitored, and later execution data can be analyzed
in the Evaluation phase for further improvements.

In general, process models serve as blueprint for a number of process
instances where one instance represents the execution of one business
process case [130]. As Russell et al. [95] observed in existing BPMSs,
“each of these is assumed to have an independent existence and they
typically execute without reference to each other”. This means that
the instances of a process run independently from each other in such
systems. Also during process model design, it is assumed that instances
have no relation to each other.

Need for batch
processing

In practice, we can observe cases where the consolidated execution
of several instances is cheaper or faster than to process them individu-
ally. This means that groups of instances are collectively executed for
specific activities in a process. For instance, in healthcare, it is more
time-efficient to first collect a set of blood samples taken from patients
to deliver them to the laboratory instead of bringing each one of them
separately. In logistics, it is more cost-efficient to combine parcels to
be sent to the same recipient instead of handling each parcel separately.
Or, when calling a software service in a business process, bundling sev-
eral service requests can help to reduce the number of service calls in
order to save costs or avoid a denial of service. The approach used for
such use cases – called batch processing [53] – allows business processes,
which usually act on a single item, to bundle the execution of a group of
process instances for particular activities to improve their performance.

1.2 problem statement 5

1.2 problem statement

Missing support for
batch processing in
business processes

Currently neither on the process design level nor on the process ex-
ecution level concepts exist to support batch processing in business
processes: Existing process modeling languages (e. g., BPMN, UML,
CMMN, EPC, or YAWL) do not support the explicit design or config-
uration of batch requirements in process models. In Production work-
flow [52] providing well-known concepts for process execution in BPMSs,
Leymann and Roller propose a so-called bundle activity. However, this
is focused on running multiple instances to handle several sub-items in
one process. It does not discuss the synchronized execution of different
process instances. Also the often referenced set of identified control-
flow patterns for business processes by van der Aalst et al. [117], which
describe the basic structural patterns for process modeling and execu-
tion, does not consider the batching of several process instances.

Batch Processing is well discussed in other research domains, espe-
cially in operations management. Here, various techniques are pro-
vided for production systems [60, 82] or queuing systems [63, 70] to
schedule jobs or customers in a batch. However, it is not discussed how
to integrate these techniques explicitly in business process models.

In practice, batching of instances is either enacted manually or hard-
coded in software. Some BPMS providers, e. g., the Process Maker [41],
allow to manually create batches during process execution in the user
interface [40]. Since no support exists to configure the batch processing
in the process model, it is also mainly driven at run time by the users.
Organized manually, the rules of batch execution might be unclear for
all process stakeholders. As the batch processing can not be enforced
in the manual setting, it might be forgotten during process enactment
resulting in lower process performance. If the batch execution is con-
trolled by an external software, the batch configurations are not trace-
able for the process owner and the participants. Also, adaptations on
them result in high efforts, because the IT department usually has to
get involved.

Currently only a small set of theoretical contributions exists on in-
tegrating batch processing in business process models explicitly, not
hidden in the system implementation, e. g., in [53, 69, 96]. These re-
search works provide solutions for specific scenarios and do not have
a complete overview of requirements. They are limited with respect to
various aspects, for instance, incomplete automatic support, no support
for multiple resources, or technical complex batch definition schema.
Additionally, no prototypical implementations are given to evaluate the
feasibility of the introduced concepts.

Summarized, batch processing techniques exist in other domains, but
they are currently neither integrated in concepts on the process design
level, nor on the process execution level leading to manual or hard-

6 introduction

coded solutions, which are connected with higher efforts in maintain-
ing, enforcing, and monitoring batch activities.

1.3 research objectives and research framework

Regarding the given problem statement, the overall goal of this thesis
is to provide a concept to specify batch processing requirements on
the process design level, and to support their automatic execution in a
BPMS. The batch specification in a process model has the advantages
that the rules of batch processing are explicit for all process stakehold-
ers and can be better communicated. Further, the batch activity can
also be included in the process simulation to validate it and to identify
the most optimal configuration. The automatic batch execution in a
BPMS avoids a manual work-around and supports an automatic batch
monitoring.

Therefore, the main goal of this thesis is to introduce a new process
modeling element for batch activities. We aim at a language-independent
batch activity concept describing the syntax and semantics of batch activ-
ities which can be integrated in process modeling language having the
concept of activities. In contrast to operations management, it is not
the goal to design a new batch scheduling techniques, but we want to
reuse proposed techniques, such that performance improvements can
be achieved with a batch activity. Additionally, we also want to con-
sider in this thesis flexibility needs with regards to batch activities, and
as well multi-process batching.

Applied design
science process

For reaching the research objectives, the work in this thesis follows
the steps of the design science process proposed by Pfeffers et al. [76]
and complies with the design science guidelines of Hevner et al. [123].
The design science process provides researchers in Information Sys-
tems a procedure to identify real world problems and to create use-
ful research artifacts for solving them, and consequently contributing
to the body of scientific knowledge [76]. We consider this process as
suitable, because currently no elaborated concept for process modeling
languages exists to specify batch activities which can also be automat-
ically executed by a BPMS. The design science process as depicted in
Figure 2 includes six steps: (1) problem identification and motivation,
(2) definition of solution objectives, (3) design and development, (4)
demonstration, (5) evaluation, and (6) communication.

Next to the design science process, it is illustrated in Figure 2 how
we applied the process in the work of this thesis. This is described in
more detail in the following:

1. Problem identification and motivation: The first step of the design
science process is dedicated to define a relevant real world prob-
lem and to justify the solution [76]. Problem relevance, one of
the design science guidelines by Hevner et al. [123], highlights
the importance of building technology-based solutions which are

1.3 research objectives and research framework 7

1. Problem

identification and

motivation

2. Definition of

solution objectives

3. Design and

development

4. Demonstration

& 5. Evaluation

6. Communication

Missing concept in process

modeling languages for specifying

and executing batch activities

Requirements analysis based on

collected real-world scenarios and

on related work

Batch activity concept

 Extensions:

 - Flexible batch configuration

 - Batching over multiple process models

- Application to BPMN specification

- Comparison to existing solutions

- Proof-of-concept implementation

- Application to different use cases

Communication of findings via

scholarly publications and an entry in

a blog of a commercial BPMS vendor

Figure 2: Design science process adapted from Peffers et al. [76] and its appli-
cation in this thesis.

relevant for business problems. In line with this, the thesis aims at
developing a concept to make batch activities explicit in process
modeling languages, which are used by organizations to docu-
ment and execute their business processes. Thereby, the general
benefits of process models [42, 99] are also used for batch activities
as for example, a better communication of batch configurations,
their automation, and their monitoring.

2. Definition of solution objectives: The second step of the design sci-
ence process focuses on the solution objectives by describing how
a new artifact is expected to support the solution of a problem [76].
It could be observed that existing solutions on integrating batch
processing in business processes are limited to the requirements
of specific scenarios. This thesis provides a requirements analy-
sis by analyzing the state of the art literature as well as several
collected real world scenarios having a need for batch processing.
Based on this, the objectives of this thesis are set.

3. Design and development: In the third step, the artifact is actually
created [76]. The artifact of this thesis is a batch activity concept for
process models. It is a meta-model for batch activities describing
the syntax, more precisely the configuration parameters of a batch
activity, and its execution semantics.

8 introduction

4. Demonstration and
5. Evaluation: The fourth step of the design science process, the

demonstration, in which the artifact is applied to solve one or
more instances of the problem, provides the input to the fifth step,
the evaluation. The evaluation step is dedicated to observe and
measure the artifact in the demonstration to determine whether
the artifact is able to solve the problem, and whether the objec-
tives are reached [76]. We evaluate the concept by means of an
application of the batch activity concept to existing control-flow
oriented process modeling language (such as BPMN, UML activ-
ity diagrams, and EPCs), a comparison of the concept to existing
solutions, and a proof-of-concept implementation in an existing
open-source BPMS. Further, single-case mechanism experiments
[133] are conducted in which the batch activity is applied to dif-
ferent use cases in a simulated environment. Thereby, we want
to study the effect of batch activities on the process performance
in terms of time and costs – the two major process performance
dimensions [26] – in order to predict their influence on real world
processes.

6. Communication: The sixth and last step of the design science pro-
cess recommends to communicate the developed artifact and its
effectiveness to researchers and also practitioners. Also Hevner
et al. [123] see the importance in this by defining the guideline
to communicate the research. Following this, the resulted arti-
fact and their evaluations are communicated via scholarly articles.
Furthermore, we communicate our results also to practitioners by
a entry1 in a blog of a commercial BPMS.

By evaluating and by communicating the batch activity concept, it
is improved and additional artifacts are developed. With several it-
erations through demonstration, evaluation, and communication back
to design and development, this thesis provides two extensions of the
batch activity concept. On the one hand, a concept to allow a flexible
batch configuration, and on the other hand, a concept for batching over
multiple business processes are developed, which are also evaluated
and communicated as presented in this thesis.

1.4 summary of contributions

In the light of the discussed research objectives, we want to outline the
contributions of this thesis. Mainly, this work contributes with a con-
cept to explicitly represent batch activities in business process models
and to execute them automatically.

This can be further divided into the following sub-contributions which
are also illustrated in Figure 3:

1 https://blog.camunda.org/post/2016/10/batch-processing-with-camunda/

1.4 summary of contributions 9

A B

C

D

Batch Activity

Events

A
Batch

Activity

Process Execution

printed sent

Send

customer letter
i

Print

customer

letter

Send
customer

letter

Send
customer

letter

I. Requirements Framework for

Integrating Batch Processing in

Business Processes

II. Batch Activity

Extensions
III. Flexible Batch

Configuration

IV. Batching over

Multiple Process Models

groupedBy = {custId, custAddress}

activationRule = ThresholdRule (2 instances, 15min),

maxBatchSize = 3

executionOrder = parallel

groupedBy = {custId, custAddress}

activationRule = ThresholdRule (2 instances, 15min)

maxBatchSize = 3

executionOrder = parallel

groupedBy: {custName,

 custAddress}

Figure 3: Contributions of the thesis.

I. Requirements Framework: By analyzing the state of the art literature
as well as several collected industry examples having a need for
batch processing, this thesis provides a requirements framework
for integrating batch processing in business process models. The
requirements in the framework are structured into four classes:
(1) process model, (2) batch assignment, (3) batch execution, and (4)
context. The resulting framework covers the aspects which need
to be considered when developing a concept to explicitly capture
batch processing in process models. Further, it can support the
comparison of existing solutions.

II. Batch Activity: The main contribution of this thesis is the batch
activity concept. The batch activity is a new type of process
modeling element to explicitly represent batch requirements on
the model level. With it, a process designer can define the set
of connected activities in a business process for which a batch
execution is required. Further, several configuration parameters

10 introduction

allow the process designer to individually setup a batch activity.
Additionally, the batch activity is able to group process instances
according to their specific context data. The resulting model-
ing concept is applied to the mainly used process modeling lan-
guage BPMN [36] as well as UML Activity Diagrams, and EPCs
to demonstrate its feasibility. For supporting its automatic execu-
tion, we provide an execution semantics and prove it through a
prototypical implementation in an existing open-source BPMS.

III. Flexible Batch Configuration: The configuration of batch processing
at design time does not always guarantee an optimal process ex-
ecution, since exceptions occurring during process execution may
influence the batch processing. This thesis presents a concept,
based on event processing techniques, to allow flexible adjust-
ments of different configuration parameters, if a relevant event
occurs.

IV. Batching over Multiple Process Models: Organizations being active
in BPM often manage large collections of process models in which
also similar activities (or even fragments) in different process mod-
els can be found. This offers the opportunity to bundle activity
instances of different business processes for an improved perfor-
mance of several processes. An object life cycle (OLC) shows the
data manipulations of a data artifact independently from process
activities. With OLCs, identical behavior within business pro-
cesses on data artifacts across the process model boundaries can
be identified. Thus, this thesis provides a concept to specify batch
requirements not only in an individual process model, but also in
a centrally given OLC valid for several process models.

1.5 structure of the thesis

Following the design science process presented before, this thesis is
structured as follows:

part i : background After the introduction, this part covers the
preliminaries as well as the related work. The preliminaries (Chapter 2)
introduce existing concepts and formalisms for process modeling and
execution which will be used in this thesis. In related work (Chapter 3),
we elaborate on the state of art literature. On the one hand, the us-
age and techniques of batch processing in other domains are presented,
such as operations management and computer science, where it orig-
inated from. On the other hand, support for batch processing in the
BPM domain is discussed in detail.

part ii : basic concepts The second part focuses on the main con-
cept. Following the design science process [76], a requirements analysis

1.5 structure of the thesis 11

is firstly conducted based on the related work and on collected exam-
ples from industry originating from different domains by interviewing
process experts. These scenarios and the requirements framework are
presented (Chapter 4) in this part. Further, we discuss here the design
objectives of the batch activity concept. Based on this, the concept of
batch activities is introduced (Chapter 5). In this chapter, we first evolve
data views as a technique to group process instances based on their data
characteristics. This is followed by the modeling concept of batch activ-
ities and their execution semantics. Finally, the presented batch activity
concept is discussed by comparing it to existing solutions based on the
requirements framework.

part iii : extended concepts The discussion of the batch activity
concept reveals that two main aspects are not considered so far. On the
one hand the flexibility during batch processing, and on the other hand,
batching over multiple business processes. This part centers around
these two aspects. First, a concept for flexible batch configuration with
events (Chapter 6) is presented. In this chapter, an analysis is given
on how events may influence the batch execution. Based on this, batch
adjustment rules are introduced. These can adapt a configuration of a
batch activity, if a relevant event is identified. Secondly, batch process-
ing across multiple business processes (Chapter 7) is introduced. With
a motivating example, we start the elicitation of requirements. Then,
the batch transition is presented as an extension of an OLC to indicate
which related activities can be batched. Finally, an optional batch execu-
tion semantics is defined including a user approval to avoid undesired
behavior.

part iv : evaluation and conclusions The last part focuses
on the evaluation of the batch activity concept and the conclusions. The
prototypical implementation (Chapter 8) of the batch activity and of
the multi-process batching concept in Camunda [13], an existing open-
source BPMS, is discussed which serves as technical evaluation. Further,
the application of the batch activity (Chapter 9) to two different use
cases in a simulated environment is presented. It is used as validation
of the basic concept to predict its effect on the performance of real
world processes. Thereby, a simulation tool supporting batch activities,
and performance measures for batch activities are presented. Finally,
the thesis is concluded in which the contributions are summarized, and
open problems as well as future research directions are elaborated.

2
P R E L I M I N A R I E S

This chapter proceeds with introducing concepts and formalisms for process modeling
and execution. This thesis introduces a new process modeling element to capture
batch activities and support their automatic execution. Therefore, in this chapter,

process models are firstly formalized and then, the most common process modeling
language Business Process Model and Notation (BPMN) is shortly presented.

Additionally, concepts and formalisms with respect to a) data aspects in process
models, b) the process execution, and finally c) events in business processes are

introduced.

Business Process
Management

Business Process Management (BPM) inspects the work conducted
in an organization and tries thereby to exploit improvement opportuni-
ties [26]. While organizing and managing the work, the focus of BPM
is on business processes. For this purpose, it provides a set of concepts,
methods, and techniques to support organizations in the documenta-
tion, analysis, execution and optimization of their business processes
[113]. By applying BPM, the key artifact which is created are process
models [113].

A business process consists of a set of activities jointly realizing a
business goal in an organization and technical environment; each pro-
cess belongs to one organization, but may interact with other organiza-
tions [8, 130]. Whereas process orchestrations give a detailed view on
the internal behavior of a business process with its to-be performed ac-
tivities and their execution constraints, process choreographies describe
the interaction between two or more business processes [21]. Chore-
ographies focus on the public behavior of the collaborating entities [6].

Process life cycleBPM initiatives usually follow a process life cycle [26, 130] (cf. Fig-
ure 1) in which the process model is first discovered, often captured
with a process modeling language. After analyzing the discovered pro-
cess with validation or verification techniques (e. g., soundness [121]),
the process might be redesigned. The resulting process model is then
mostly used for process implementation. The process implementation
phase (or also called the process configuration phase) can be supported
by different means. For example, a set of policies and procedures can be
introduced, which employees need to follow, certain software services
supporting the process can be implemented, or the complete process
can be deployed in a business process management system (BPMS) –
a dedicated software to support business processes [26]. Weske [130]
defines a BPMS as a “generic information system driven by explicit pro-
cess representations, e. g., process models, to coordinate the enactment
of business processes.” For executing a process in a BPMS, the process

13

14 preliminaries

model needs to be enriched with technical information. During process
enactment, the process gets monitored and controlled. Data captured in
this phase can be used for process evaluation in which on the one hand,
defined key performance indicators can be checked [61], or on the other
hand, the conformance between execution and the existing model can
be analyzed by using process mining techniques [112]. The evaluation
results can lead to new process redesign requirements which trigger a
new iteration of the process life cycle. In the following, concepts and
formalisms regarding process modeling and execution are introduced
which are later used as basis for developing the batch activity concept.

This chapter is structured as follows: First process models are formal-
ized in Section 2.1, followed by a introduction into BPMN in Section 2.2,
the state-of-the-art language for the graphical representation of busi-
ness processes. Then, the representation of data in process models is
defined in Section 2.3. This is followed by an introduction into aspects
related to the process execution in Section 2.4, and finally events in the
context of business processes are defined in Section 2.5.

2.1 process models

Process models depict the behavior of a set of similarly executed pro-
cedures in an organization. As all models, they are an abstraction of
the real world, and they are created with a purpose [131]; each pro-
cess model has a modeling goal which can range from process docu-
mentation and staff training, over process redesign, to process imple-
mentation [8]. In [130], Weske distinguishes between three different
abstraction levels for business processes: organizational, operational
and implemented processes. Whereas organizational processes are usu-
ally high-level textual description of processes including the process in-
puts, outputs and responsibilities, operational process models capture the
process activities, their relation as well as organizational information
such as the assignment of activities to resources. Implemented process
models extend and adapt the operational ones with technical aspects
needed for the implementation, e. g., necessary data used in the process
or service calls. In general, the set of activities and their control flow
structure are captured by business process models. An extensive list of
control flow structures, which might exist, are presented as control flow
patterns by Aalst et al. [117]. In this thesis, we also want to consider the
data perspective layer representing the processed data within a process,
hence, we formally define a business process model as follows:

2.2 business process model and notation 15

Process model
definitionDefinition 2.1 (Process Model).

A process model m = (N,CF,D,DF, typea, typet, typeg) maps to
• a finite non-empty set N = A∪ E∪G of control flow nodes being

activities A, events E, and gateways G (A, E, and G are pairwise
disjoint),

• a control flow relation CF ⊆ N ×N such that (N,CF) is a con-
nected graph,

• a finite non-empty set D of data nodes whereby N∩D = ∅,
• a data flow relation DF ⊆ (D×A ∪ E) ∪ (A ∪ E×D) specifying

input and output data dependencies of activities or events.
Function typea : A → {task, subprocess} assigns each activity a type,
the function typet : A→ {user, service,unspecified} specifies the type
of each task, and the function typeg : G → {and, xor} gives each gate-
way a type. J

An activity of a process model can be either non-decomposable – a
task – or can have internal behavior – a subprocess. A task can be
further specified by a task type: a task can be either executed by users
(i. e., user), usually via a user-interface, or automatically executed by
a software service (i. e., service). Further, task can send or receive in-
formation from other business processes with which the process model
interacts. This is usually realized in a BPMS with a user or service
task [26]. Manual tasks as discussed by Weske [130] are not considered
here, because we require that each process model can be executed by
a BPMS. Therefore, manual tasks have to be transformed into user or
service task as described by Dumas et al. [26]. An and-gateway al-
lows for concurrent behavior in a process and xor-gateway allows to
select between several paths in a process model. In the next section, the
industry-standard for business process modeling, BPMN, is presented
in which more details on process models are discussed.

2.2 business process model and notation

Several languages exists for specifying process models, for example
BPMN [71], Unified Modeling Language (UML) Activity Diagrams [72],
Event-driven Process Chains (EPCs) [98]. In this thesis, processes are
represented with the BPMN notation as it dominates the process stan-
dards space [36]. An exhaustive discussion is not in the scope of this
section; thus, we refer the reader to [11, 15, 32, 130, 132] for a more
detailed introduction into the BPMN specification.

BPMN provides support for process modeling efforts on different ab-
straction levels – from an operational level to an implementation level.
Thereby, BPMN focuses on business processes including organizational,
data, information technology (IT)-system, and decision aspects. In case
that more details are needed on the enumerated aspects, process mod-

16 preliminaries

els can be supplemented with other models, such as organizational
charts, data models, or architectural models [11]. The standard was
released in its current version BPMN 2.0 in January 2011 by the Object
Management Group [71] and it includes different types of diagrams
not only for process orchestrations, but also for process choreographies.
Since this thesis will introduce a batch activity concept for process or-
chestrations, we will focus on BPMN business process diagrams. In the
following, the core elements of BPMN process diagrams are presented
followed by the running example of this thesis.

P
o
ol

La
n
e

A
La

n
e

B

Activity

Flow Objects

Gateway

Events

Sequence Flow

Connecting

Objects

Message Flow

Data
Object

Artefacts

Anno-
tation

Swimlanes

Association

Start EndInterme-

diate

Text

Figure 4: Elements of BPMN business process diagrams used in this thesis.

BPMN core elements

The core element set of BPMN business process diagrams can be dis-
tinguished in four categories [130]: flow objects, connecting objects, ar-
tifacts, and swimlanes as shown in Figure 4. Each element has a set
of own attributes which can be used to refine the element in order to
prepare the process implementation [132]. The BPMN specification is
flexible enough to also allow adding customized elements or attributes
to the meta-model by so-called extension elements and still being BPMN-
compliant [71]. In the remaining, we want to present for each main
category those elements which are used in this thesis.

Flow objects BPMN describes a process as a graph of flow objects that can be activ-
ities, gateways, or events [71]. Activities are units of work; they require
time to be performed and can be atomic or non-atomic. An atomic ac-
tivity is a task which can not be further decomposed, and a non-atomic
activity is a sub-process with internal behavior. Atomic activities can
be supplemented with a task type characterizing it further, e. g., a user
task conducted by task performer by interacting with a system, a service
task calling a software service, or a message task sending or receiving a
message to/from a partner.

2.2 business process model and notation 17

Gateways are required to specify more advanced behavior than se-
quences of flow objects. They have the generic shape of a diamond and
can be enriched with a symbol specifying their behavior. Here, we want
to focus on exclusive gateways (expressed by a × marker) and parallel
gateways (expressed by a + marker). Exclusive or xor-gateways are
used to select one of several alternative paths or to merge them. For
selecting a path, the condition expressions of the outgoing flows are
evaluated and the first one evaluating to true is triggered. In case none
of the condition expression evaluate to true, the default path is selected,
if available. Parallel or and-gateways can trigger and synchronize sev-
eral concurrent sequence flows.

The Event element is a dedicated mechanism of the BPMN specifi-
cation to represent that processes can handle certain events (catching
events) of their environment or that they provide events (throwing
events) to their environment. Events in BPMN take no time and rep-
resent that a certain state has been reached. Three event types are
distinguished in the BPMN specification: start, intermediate, and end
events. Whereas start events are always catching and indicate when
a process is instantiated, intermediate events specify events occurring
during process execution which can be catching or throwing. End
events are throwing and indicate where a path of a process will end.
Each type of event can be further differentiated by triggers, e. g., mes-
sage, signal, or error.

Connecting objects
and swimlanes

Whereas sequence flow connects the flow objects describing the order
between them, associations represent a link between an artifact and a
flow element or a pool. Message flows are used to indicate message ex-
change between different process participants (i. e., individual, an orga-
nizational entity etc.), each running an individual process represented
by a pool. Pools can be further sub-divided by lanes which represent
different task performers within an organization; a task performer is re-
sponsible for the activities inside its lanes. A task performer can be a
specific individual, a group, an organizational role or position [11].

ArtifactsArtifacts are contextual information which can be added to business
process diagrams, e. g., data objects and annotations. The data objects
are structured information which are consumed or produced by activi-
ties or events. Each data object has a name which usually references a
data class. It can optionally reference a data state representing the state
of the data contained in the data object. We will discuss data aspects
in process models in more depth in the next section. Process designers
can use annotations to add explanations to any flow object.

Running example

In the following, we want to introduce an online retailer process as
running example shown as BPMN diagram in Figure 5. As indicated
by the message start event, the process is initialized as soon as an order

18 preliminaries

O
n
li
n
e
 R

e
ta

il
e
r

Order

received

Analyze

order

Order

[received]

Take items

out of stock
Pack order Ship order

Archive

order

Order

[prepared]

Order

[packed]

Order

[shipped]

Order

[accepted]

Order

state?
Order.state
= accepted

Cancel

order

Cancellation sent

Order.st
ate
=

rejectedOrder
[rejected]

Order

[archived]

Customer

Figure 5: Online retailer process depicted as BPMN process diagram.

by a customer is received. The customer is depicted as collapsed pool
which has an own process, but from which we abstract. The receiving
message event creates as output an Order data object in state received.
The created Order object is read by the subsequent service task Analyze
order which decides whether the order is accepted or rejected. This is
indicated by the two output data objects, one in state accepted and one
in state rejected. If the order is accepted, the upper branch is executed
on which a robot takes the ordered items out of the stock, and then a
warehouse employee packs them into a parcel. Afterwards, the parcel
is shipped represented by a sending message task, and then archived
by a software service. We assume that the sending or receiving message
tasks are implemented in a BPMS as service or user task. In case the
order is rejected, a service task cancels the order and the process ends
with a cancellation message sent to the customer.

2.3 data aspects in process models

Following the BPMN specification, created and consumed structured
data in processes is represented by so-called data objects. As this term
is usually associated with the run time representation, we use the term
data nodes representing the access on data in process models as intro-
duced in Definition 2.1.

We refer to a data node d ∈ D being read by an activity a ∈ A or
an event e ∈ E, i. e., (d,a), (d, e) ∈ DF, as input data node and to a data
node d being written by an activity a or event e, i. e., (a,d), (e,d) ∈ DF,
as output data node. The above given process model in Figure 5 has
one start event, two alternative end events, six activities, one gateway,
and multiple data nodes read and written by activities and events. Each
data node has a name, e. g., Order, and a specific data state, e. g., received
or sent. Data nodes sharing the same name refer to the same data class;
here: Order.Data class A data class describes the structure of data nodes (or data
objects) in terms of attributes and possible data states. A data object
is the run time representation of a data node consisting of a value for
each attribute. Data objects are formalized in the subsequent section

2.3 data aspects in process models 19

focusing on process execution aspects. A data node (object) maps to
exactly one data class being formalized as follows:

Definition 2.2 (Data Class).
A data class c = (name, J,olc) maps to

• a name,
• a finite set J of data attributes
• an object life cycle olc.

J

Order

-oid

-state

-arrivalDate

-cid

-address

-...

(a) Data class
attributes.

received

rejected
archived

accepted prepared

packed

shipped

Analyze order
Take items

out of stock

Pack order

Analyze order Ship order

Archive order

(b) Object Life Cycle.

Figure 6: Data class Order for the online retailer process with its object life cycle.

We refer to Cm as set of data classes utilized in one process model
m. Figure 6 shows the Order data class of the retailer process with
an excerpt of its data attributes, such as oid, state, arrivalDate, cid, and
address. Further, its object life cycle (OLC) is depicted as labeled state
transition system. Object life cycleAn OLC [45] represents the logical and temporal
order of data states in which a data node (or a data object) could be.
A data state [64] denotes a situation of interest for the execution of a
business process. For instance, state accepted of object Order indicates
that the activity Analyze Order is completed successfully and that the
items of the order can now be taken out of the stock. Supplementing
process models, OLCs describe allowed data manipulations by process
activities for one data class.

Definition 2.3 (Object Life Cycle).
An object life cycle olc = (S, si, T ,Σ, ζ) maps to

• a finite non-empty set S of data states, and an initial data state
si ∈ S,

• a data state transition relation T ⊆ S×S describing the logical and
temporal dependencies between data states,

• and a finite set Σ of actions representing the manipulations on
data objects (S and Σ are disjoint).

Function ζ : T → Σ assigns an action to each data state transition. J

20 preliminaries

OLC denotes the set of all object life cycles, such that the funtion lc :

C → OLC returns for a given data class c its olc. Based on this, a data
node is formalized as follows:

Definition 2.4 (Data Node).
A data node d = (c,name, s) maps to

• a data class c,
• a name,
• and a state s ∈ S, lc(c) = (S, si,SF, T ,Σ, ζ) where S denotes the set

of data states of the olc of the corresponding data class c.
J

A data transition of an OLC with its assigned action can be used by
activities in different process models. Such an activity has a input data
node being in the input state of the transition and has an output data
node in the output state of the transitions. For instance, the activity Pack
order in Figure 5 transforms the Order object from prepared to packed as
also described in Figure 6b. In case OLCs are not available, it is also
possible to derive them automatically from the process models in a
repository [65] by extracting the life cycle states from the data nodes
and the transitions from the process activities. Regarding the interplay
of the process and the data side, we assume process models and the
OLCs of the data classes Cm to be consistent; i. e., all data manipu-
lations induced by some activity in the process model are covered by
data state transitions in the corresponding object life cycles (cf. the
notion of object life cycle conformance [50, 66]). Further, we assume that
each activity acts at least on one data node. That means that an activity
utilizes at least one single data state transition of an object of some data
class such that function ε : A→ P(U) with U ⊆

⋃
TOLC (all transitions

of all object life cycles) returns a set of transitions for a given activ-
ity. For reducing complexity of discussion, we apply the connection
between process models and object life cycles through consistent label
matching, i. e., the activity label of the same activity refers to the same
action. Alternatively, in practice, string matching techniques (e. g., in
[110]) could handle this connection.

2.4 process execution

In this work, we assume that business processes are executed by means
of a BPMS. Therefore, the architecture of such a system is discussed in
this section. Furthermore, process instances representing the execution
of business process cases are formally defined in this section.

BPMS architecture

An architecture of such a BPMS is given, for example, in [26, 52, 130]. In
Figure 7, we represent the BPMS architecture as Fundamental Modeling

2.4 process execution 21

 BPMS

Process

Instance

Data

Process Model,

Data Model

and OLC

Repository

Process

Designer

Process and

Data Modeler

Process Engine

Work

Item List

Handler

Services

Process

Administration

and Monitoring

Process

Data

Execution

Data

R

Process

Performer

R

R R

R

Process

Analyst

R

R

Figure 7: Architecture of a BPMS focusing on the execution of business pro-
cesses and considering process data aspects.

Concepts (FMC) block diagram [47] and extend it by data aspects. FMC
block diagrams are used to model the static compositional structure
of software systems. Whereas the ellipses represent data storages on
which the active software components – shown as rectangles – can have
read or write access, actors which interact with the system are repre-
sented as rectangles with a stylized figure of a human. Process design-
ers shown as actors can design business processes, data classes, and
object life cycles with the Process and Data Modeler component which
stores them in a repository. The main component which guides the
execution of business processes is the Process Engine which can access
all repository elements. Process participants can start processes over
the Work Item List Handler. Then, a process instance is initiated; exe-
cutions of process models are represented by process instances with
each instance i belonging to exactly one process model m. As soon
as a process instance is started, the process engine initiates the process
activities in their prescribed sequence.

Work itemsIn case of a user task, the process engine creates a work item, which
realizes the link between a to-be executed activity instance and its task
performer [130]. A task performer is a process participant which is re-
sponsible to execute a specific task. If more than one task performer
for an activity are available, several work items are created. The work
item which is selected by one of the task performers is executed while
the others are withdrawn [39, 130]. Several work items are, for instance,
created in case of Role-based Distribution [95], where one or several task
performers are part of a role, e. g., a clerk. If this role is assigned as
resource for an activity, then all members of this role get a work item
provided as soon as it is executed. An extensive list on resource alloca-
tion patterns can be found in the work of Russell et al. [95].

22 preliminaries

In case of a service task, the respective service is called by the pro-
cess engine. For each state change of a process instance, e. g., start or
termination of an activity instance, the process engine logs it with a
time stamp in the Execution Data storage, such that a BPMS is able to
provide execution logs for tracking the execution of a process. Further,
the engine is able to read and update data processed by the business
processes in the Process Data storage. We assume that all data objects
created by the process instances are made persistent and can be access
by the process engine. The process analysts can monitor the process
instances by means of the Process Administration and Monitoring compo-
nent. After introducing the BPMS architecture, the following subsection
continues with formalizing process instances.

O
n
li
n
e
 R

e
ta

il
e
r

Order

received

Analyze

order

Order

[received]

Take items

out of stock
Pack order Ship order

Archive

order

Order

[prepared]

Order

[packed]

Order

[shipped]

Order

[accepted]

Order

state? Order.state
= accepted

Cancel

order

Cancellation sent

Order.st
ate
=

rejectedOrder
[rejected]

Order

[archived]

Customer

Figure 8: Online retailer process diagram with exemplary running instances
represented as labeled token. The label, e.g., PI1: CID12, references
the respecting process instance id and customer id.

Process instance

In Figure 8, several process instances are visualized in the example
retailer process by labeled tokens. The label of the token gives informa-
tion about the process instance id and the customer id referencing
the customer who has placed the order. Each process instance has an
id and contains a set of activity instances – the run time representation
of an activity – and a set of processed data objects. The current state
of a process instance is given by the states of its activity instances and
its processed data objects. For example, process instance with the id 5

in Figure 8 has for all activities an initialized activity instance, besides
the Analyze order activity instance being enabled, and its Order object is
in state received. In the following, first activity instances and then data
objects and their states are formalized.

Activity instance Each activity instance traverses through different life cycle states dur-
ing its execution [130] as shown in Figure 9. With start of a process
instance, each activity is initialized; the instance is in the init state. As
soon as the incoming flow(s) of an activity are triggered, the instance
gets enabled and is in state ready. With the disabled state, activity in-
stances can be temporally disabled, where it is not accessible by the

2.4 process execution 23

init ready running

initialize enable begin

skipped

terminated

canceled

terminate

skip

cancel

not started closed

disabled

skip

re-enable
disable

Figure 9: Life cycle state transitions of activity instances, adapted from [130].

process performer or a software service, and can later be re-enabled.
When the task performer begins to execute an activity instance in state
ready, the state changes to running, and finally the activity instance is
terminated. In case that a different path is selected as the one on which
the activity of an instance is during the execution of a process instance,
then the activity instance transfers from not started into the skipped state.
If an attached boundary event occurs, a running activity instance transi-
tions into the state canceled. Based on this activity life cycle, an activity
instance is formally defined as:

Definition 2.5 (Activity Instance).
An activity instance ai = (i,a, z) maps to

• a process instance i, ai ∈ AIi where AIi is a set of activity in-
stances of the process instance i,

• an activity a, and
• a current state z ∈ {init, ready,disabled, running, terminated,
skipped, canceled}

J

Data objectFor each process instance, an arbitrary set of data objects exists. For-
mally, a data object is defined as follows:

Definition 2.6 (Data Object).
A data object o = (c, ρ) maps to

• a data class c describing its structure and
• a data state ρ which comprises a valuation of all attributes Jc of

the data class c. Let V be a universe of attribute values. Then,
the data state ρ : Jc → V is a function which assigns each attribute
j ∈ Jc a value v ∈ V that holds in the current state of object o.

J

At any point in time, a data object is in exactly one data state. The
state may change over time through updates performed by activities or
events which are represented in process models by data output nodes,
i. e., a ∈ A, e ∈ E, (a,d), (e,d) ∈ DF. We assume that a data class
attribute jstate ∈ Jc exists which represents the explicit OLC state and
that, for any data object, ρ(jstate) returns as value a OLC state s ∈

24 preliminaries

S, lc(c) = (S, si,SF, T ,Σ, ζ) of the data class c to which the object belongs.
O denotes the set of all data objects stored in the BPMS process data
storage.

With the definition of activity instances and data objects, a process
instance is formalized as follows:

Definition 2.7 (Process Instance).
A process instance i = (m,AI,Oi,α) maps to

• a process model m,
• a finite, non empty set of activity instances AI,
• a finite set of data objects Oi ⊆ O which are created or updated

by the process instance i.
The function α : AI→ Am is surjective and ensures that to every activ-
ity am ∈ Am in the set of activities of the process model m at least one
activity instance ai ∈ AI for the process instance i exists. J

The state of a process instance i changes either if an activity instance
ai ∈ AI has transitioned into a new life cycle state or the state of a data
object oi ∈ Oi has been updated.

2.5 events and business processes

In Section 2.2, events are presented as modeling construct of BPMN.
Event elements are used to represent that a specific type of event (i. e.,
happening in the process environment) is relevant for a process and
can be received by it (catching event), or that a specific type of event is
produced by a process (throwing event) [71]. Catching events in process
models can either be produced by other business processes running in
the same BPMS, or external events.

Internal events of a business process are “state changes of objects
within the context of a business process” [138] where such objects can
be, among others, activities, data objects, or the entire process. Typical
events are for example the activity transitions which are shown in Fig-
ure 9, such as the enabling of an activity. The logging and distribution
of such events is usually controlled by the process engine.

External event An external event represents a “real world happening occurring in a
particular point in time at a certain place in a certain context” [38], for
instance, weather warnings, traffic updates, stock ticks. The integration
of event processing and business processes is an emerging field [48].
It takes the advantage of a wide variety of event sources to improve
business processes [55], for example, by triggering processes or specific
activities to react flexible on certain situation, by using information of
events for an improved decision making in processes, etc. An external
event is either present in an external event source, or an Event Process-
ing Platform (EPP). As event sources produce events in diverse formats,
and one event source can be relevant for several business processes, it
is more efficient that the detection of events being relevant for process

2.5 events and business processes 25

execution is conducted with EPP [7] to which the BPMS then needs to
be connected.

A set of associated events which are totally ordered in time form an
event stream [29]. EPPs are able to perform different operations on event
streams (e. g., transformation or aggregation) and can derive “higher-
level knowledge from lower-level system events in a timely and online
fashion” [43]. Further, the EPP notifies subscribers about certain events
and provides them in a structured form [29]. A BPMS can be such a
subscriber, and hence, can receive events, and react on them according
to the process specification [43].

Structured eventsA structured event is a derivation of an event object consisting of an
identifier, a time stamp, and some event content in the payload, e. g.,
a set of key-value-pairs or a tree-structure expressed in the Extensible
Markup Language (XML) [38]. A structured event type describes a class
of structured events that have the same format. A business process exe-
cuted in a BPMS can be the receiver of such an event by subscribing to
it via a catching event in the process model. Such a structured event can
either start a process instance (if the structured event is referenced in
the start event), continue with the process execution (if it is referenced
in a intermediate event), trigger an exception (if it is referenced in a
boundary event), etc. Thereby, such an event can also update a data
object of a process instance i, if there is a data output node d written
by the catching event e, i. e., (e,d) ∈ DF in the process model m of i.

After having introduced the needed concepts and formalisms for the
work of this thesis, the next chapter discusses the related work based
on which the objectives of this thesis are set.

3
R E L AT E D W O R K

This chapter elaborates on the work that is related to the research presented in this
thesis. It discusses existing works on batch processing in general and in the Business

Process Management (BPM) domain. These works serve as basis for a requirements
analysis for integrating batch processing into business processes, which is introduced

in succeeding chapter. This chapter is partly based on the published paper
“Requirements Framework for Batch Processing in Business Processes” [86].

The term “Batch processing” has been around for several decades: In
operations management, batch processing is a method to produce similar
products in batches. Those so-called batch processes give the flexibility to
provide a variety of products, but try to reach efficiency by producing
in batches [107]. Further, batch services handling groups of customers
are studied in operations management with the help of queuing the-
ory. In computer science, batch processing is a common term used for
programs processing a series of jobs one after another without any user
interaction [108].

In this chapter, we first look in Section 3.1 into operations manage-
ment and computer science where batch processing originates from. Af-
terwards, the current support of batch processing in the BPM domain is
studied in Section 3.2, and in particular, existing concepts to explicitly
represent batch processing on the process model level are discussed.
Finally, a summary of related work is given in Section 3.3.

3.1 original domains of batch processing

For introducing batch processing to business process models, we first
want to study how batch processing is used in other domains. Thereby,
important concepts might be observed which are also relevant to be
considered for business processes. First, batch processing in operations
management is discussed, where it originates from, followed by batch
processing in computer science.

Operations Management

Batch processing is especially studied in the field of operations manage-
ment focusing on the processes which produce the products or services
of an organization [107]. In particular, operations management sup-
ports the design, execution, and control of operations which convert
resources into desired goods and services [2, 14, 59]. Manufacturing
processes can include batch (flow) processes [59] where identical jobs

27

28 related work

are processed or transported in batches to utilize the same machine or
tool setup [107]. In service systems, customers may be also treated in
batches. Especially, entertainment services (e. g., roller coasters) oper-
ate in this way that the service is only provided, if a certain number
of customers is available [134]. Such batch services are studied with the
help of queuing theory [63]. This subsection has a closer look on batch
processes as well as on batch services.

batch process In operations management, several types of pro-
cesses are distinguished which are different in terms of how the mate-
rials or information are processed [107]. When focusing on production
processes, those are categorized in jobbing processes, batch processes, mass
processes, and continuous processes as shown in Figure 10.

C
o
n
ti

n
u
o
u
s

P
ro

c
e
ss

M
a
ss

P
ro

c
e
ss

Batch

Process

Jobbing

Process

Output variety

Degree of repetitiveness of operation

V
o
lu

m
e

high

low

highlow

Figure 10: Different type of production processes compared with regards to
the volume produced, the output variability, and the degree of
repetitiveness of the operation, adapted from Arora [2]

Jobbing processes are characterized by producing a great variety of
products with low volumes; they are designed to meet specific cus-
tomer requirements [107]. A batch process is a special type of jobbing
process which is used to be more efficient by processing similar jobs in
a batch, but still having the flexibility to produce a variety of products
in different volumes [59]. Because of this, batch processes support a
wider range of volumes and variety levels than other processes [2, 107].
Usually, in such a system, general purpose machines are utilized which
can be adjusted to produce different outputs [2]. Finally, mass processes
and continuous processes are much more efficient by producing high vol-
umes, but allowing a low variety of products [107]. Whereas in mass
processes, the production follows a pre-defined sequence of steps, in a
continuous production, the flow is continuous rather than discrete [14].

For the design of a batch process, especially the physical layout of
such a system is important where the diversity of products, their indi-
vidual flow patterns, and production volumes have to be considered [2].

3.1 original domains of batch processing 29

Together, with the physical layout also the sequence of activities has to
be designed. Applied process modeling languages in manufacturing,
such as scientific-management flowcharts (representing the flow of pro-
duction) or information-system flowcharts [107], do not represent batch
activities explicitly in the charts.

Scheduling of
batches

Further, a research challenge is the scheduling of jobs in a batch pro-
cess which is concerned to determine the batch size as well as the order
of the jobs processed [2]. One the one hand, the time required to pro-
cess a job strongly varies because of differences in setups, processing
requirements, etc. [59]. On the other hand, the jobs run through differ-
ent stages, where each stage is scheduled individually, but the stages
need to be coordinated [59]. With scheduling, organizations can reach
different goals as for example, minimizing the average flow time, min-
imizing average number of jobs in the systems [59]. Thereby, different
scheduling policies can be used, such as earliest-due-date (EDD) (i. e.,
jobs are ordered according to their due date), critical-ratio (i. e., jobs are
ordered according to the amount of time until the due data divided by
remaining amount of processing) etc. [59]. Depending on the schedul-
ing goal, an optimization problem is designed considering the schedul-
ing environment, as well as job and family characteristics [34]. The
optimization problem is then solved with mathematical programming
method (e. g., , dynamic programming), heuristics, or simulations [60].
In [60, 82], surveys on scheduling algorithms with batching are given.
Thereby, two types of scheduling models are distinguished, the serial
batching (i. e., similar jobs are scheduled together to save setup costs
being still executed in sequence) and parallel batching (i. e., batches of
jobs which can be executed at the same time). The surveys show that
scheduling algorithms are designed specific to an individual situation
of an organization, for instance, processing stage, type of jobs, and goal
of scheduling.

Additionally, exceptions and variability during a batch process are
also recognized in scheduling, and studied [107]. Several works on
dynamic scheduling due to resource-related (e. g., machine breakdown)
or job-related (e. g., job cancellation) issues are presented in the review
of Ouelhadj and Petrovic [74].

Optimal batch sizeAn important question of batch processing is the size of a batch.
Whereas large batches in a batch process have the advantage that the
machine utilization is high, because of a reduced number of setups,
smaller batches can decrease the overall processing time of a customer
order, because a customer order might be scattered over different batches
[82]. As large batches are connected with relatively high in-process in-
ventories between the processing stages, Just-in Time initiatives try to
reduce the batch size in batch processes to shorten the cycle time of
jobs [59].

30 related work

batch service Service operations can also profit from batching
[105, 106]. Simons and Russel [105] present a case study of batching in
mass service operations selecting the example of a court. The authors
infer from interviews and observations that batching can also help to re-
duce setup and processing time/cost in mass services, but may increase
flow time similar as in the manufacturing domain. Additionally, they
recommend to consider for batching decisions in service operations the
complexity of scheduling and the utilization of resources which can fluctuate
due to batching [105].

In queuing theory, it is a long tradition to study the batch service
problem [63] which was first considered by Bailey [3] who describes it
as follows: “Customers arrive at random, form a single queue in order
of arrival and are served in batches.” Queuing theory provides different
techniques to analyze systems with queues, and allow to calculate im-
portant parameter on them, such as the expected waiting time, or the
expected length of a queue [63, 137]. These techniques are also used
for quantitative analysis of business processes, but they can only give
measures on one activity at a time [26].

In queuing theory, parallel batch processing is mainly discussed, where
it is assumed that a resource with a capacity greater one exists which
can handle several customers in parallel (e. g., a roller coaster, or a blood
testing machine) [3]. The primary object of investigations is the identi-
fication of the optimal point in time to start a batch based on analytical
methods [63]. Thereby, different optimization policies are proposed.

Optimization
policies

An often discussed optimization policy is the threshold rule, originally
called the general bulk service rule [70]. It states that a batch is started,
when the length of the waiting queue with customers is equal or greater
than a given threshold (i.e., a value between one and the maximum
server capacity) and the server is free [70]. The rule can be also ex-
tended by a maximum waiting time, such that a group of less than
the threshold is also served, when a certain waiting time of the longest
paused customer is exceeded [70]. Several studies (e. g., [100, 102, 104])
investigate how to determine an optimal threshold value, as well as
expected waiting time and service cost under varying assumptions con-
cerning the distribution of arrival and service times, as well as capacity
constraints of server and queue (an overview is, for example, given
by Medhi [63]). The versatile threshold rule presented, for example, by
Maity and Gupta [57] is a generalization of the rule where the thresh-
old is a random value between a given lower and upper bound. Cost
can be also used as control limit in an optimization policy as studied
by [20, 126, 127]. Thereby, the waiting cost of customers are also con-
sidered by associating waiting times with certain cost, for instance, the
losses in future sales [18]. If the cost of waiting are higher than the
service cost and the server is free, then a batch is activated.

3.1 original domains of batch processing 31

Computer Science

Batch Processing
Operating Systems

Batch processing in computer science originates from the days of
punch cards where it was time-consuming to provide input to main-
frames [108]. The earliest operating systems were batch processing op-
erating systems with the main goal to avoid cost-intensive idle time of
the central processing unit (CPU) by processing batches of user jobs
without any need of a user interaction [22]. In such a system, a human
computer operator provides a sequence of user jobs, the so-called batch,
where the jobs are independent to each other. All functionality on a
batch, such as accepting the batch, scheduling it, allocating memory,
and returning the results in a file are taken over by a batch monitor. Sim-
ilar to operations management, different scheduling algorithm are used
with the focus to complete a batch in a limited amount of time [108]. Ex-
amples are the first-come-first-served (FCFS) (i. e., jobs are ordered as
provided), or the shortest-job-first (i. e., jobs are ordered based on the
predicted time a job needs) [108]. The performance of such systems is
evaluated by the CPU utilization, by the throughput time (i. e., the amount
of work done per unit of time), and by the turnaround time (i. e., the
time needed from proving a job until returning the results of it) [108].
The turnaround time includes not only the time required for the batch
execution, but also the time needed to accept a batch and to return
the results. Still, the utilization of the CPU was the most important
aspect, because running a mainframe was connected with high costs in
the 1960s and 1970s [108]. With the development of computers, other
operating systems (e. g., time sharing or distributed operating systems)
were developed to provide more user convenience and faster response
times [22].

Batch applicationsStill, batch (processing) applications are today used in interactive sys-
tems to process large amount of data on a regular basis [9]. For exam-
ple, they support the computation of the monthly bill of telephone cus-
tomers, the generation of tax reporting documents, or the bulk loading
of data from a online transactional system to a data warehouse [9]. In
computer science, mainly the design, the implementation, and the opti-
mization of batch application is studied, for example in [5, 9, 27]. Also
different frameworks exist for supporting the development of batch ap-
plications, for instance Jem The Bee1 or SpringBatch2 for Java. The
general idea is that a batch application takes as input a record-oriented
file, whose records represent a sequence of request messages [9]. The
main goal of batch applications is to process large amount of data in a
short time frame. Thus, the emphasize is to reduce the number of data
base accesses [5], such that the order of the records might be optimized
with regards to the processed data. For realizing a fast data access, also
persistence frameworks should support this by enabling bulk-reads and
bulk-updates, as well as streaming of persistent data [5]; an evaluation

1 http://jemthebee.org/

2 http://projects.spring.io/spring-batch/

http://jemthebee.org/
http://projects.spring.io/spring-batch/

32 related work

of different frameworks in this regard can be found by Barcia et al. [5].
As result of a batch job, a new file is created with the output for each
job, such that the input file is still unmodified to repeat the batch pro-
gram in case it fails [9]. A batch job can be scheduled at a given time,
when sufficient capacity is available (typically at night or weekend) [9].
The response time of a batch job is not important, but usually it has
to finish in a certain batch window after which the results are awaited,
and online transactions on the data have to be again possible [9, 27].
Strategies to optimize batch jobs, specifically in the IBM mainframe z/OS
environment, are discussed by Ebbers et al. [27].

In business process management systems (BPMSs), batch applica-
tions might be also used in their implementation or in the implemen-
tation of some service tasks. For example in Camunda [13], an open-
source java-based BPMS, a batch processing interface is provided to
process developers. The batch processing interface allows process de-
velopers to design and execute asynchronous maintenance jobs over
multiple process instances in the process engine, e. g., for migrating, for
canceling, or for deleting process instances [12]. However, such batch
features are usually hidden in the system implementation and cannot
be used on the process model level to configure a batching of several
process instances. An exception is commercial BPMS provider Process
Maker [41]. In this system, process designers can specify for a process
activity that a consolidation of activity instances is allowed, and they
can design how the consolidation is visualized. The actual selection of
activity instances for a batch has to be done manually in the user inter-
face during process execution [40]. Thus, batch activities are here only
supported on the user interface, but not by the process engine itself.
After discussing batch processing in BPMS, the next section elaborates
on research works with regards to batch processing in the BPM domain.

3.2 batch processing in business process management

Need for batching In general, a need for batch processing in business processes was
identified since a decade until today by different research works: For
instance, van der Aalst et al. [118] list batching as an escalation strategy
to avoid deadline violations. They propose to group tasks in batches,
for instance based on their location, and assign them to one resource.
As limitation of this strategy, the authors mention that batching efforts,
e. g., the time to form a batch, are involved. In business process redesign
in which an existing process is improved regarding its flow time, cost,
quality, or flexibility [26], batch processing can be an option for im-
provement. Reijers and Mansar [93] have collected a set of heuristics
which can stimulate redesign ideas including the case-based work heuris-
tic. This heuristic states that it might be helpful for some processes to
remove activities with batching, but in others it might be beneficial to
introduce batch processing to improve the process flow time or cost.

3.2 batch processing in business process management 33

Recently, Fdhila et al. [30] present a classification and formalization of
instance-spanning constraints, among which the execution of instances
in batches is mentioned. In the area of process mining, Martin et al. [58]
recently recognized that resources can organize their work in batches,
and that the batching behavior also influences the process performance.
With their work, different types of batch activities (i. e., serial, simul-
taneous, concurrent batching), and metrics (e. g., batch size, duration
of a case in a batch, or waiting time) on them can be discovered to
get insights in their business value. However, the mentioned research
works give no details on how exactly batch processing should be incor-
porated in business process modeling and execution. In the following
paragraphs, we first discuss the limited support of batch processing in
the BPM domain. Then, closely related work and their limitations are
presented, followed by works which focus on additional aspects, such
as flexibility during batch processing.

support for batch processing in bpm Existing process model-
ing notations (e. g., Business Process Model and Notation (BPMN) [71],
Case Management Model and Notation (CMMN) [73], Unified Mod-
eling Language (UML) Activity Diagrams [72], Event-driven Process
Chains (EPCs) [98], or Yet Another Workflow Language (YAWL) [114])
do not support the explicit representation of batch processing needs in
business processes. This is further illustrated in the next chapter, the
requirement analysis. There, we present examples how batch process-
ing is integrated in BPMN processes with the current set of modeling
elements and discuss resulting issues and limitations.

Production Workflow by Leymann and Roller [52] summarizes and
presents important technical concepts for BPMSs. Thereby, the authors
introduce a so-called bundle activity. This allows on running multiple ac-
tivity instances to handle several sub-items of one process instance and
to bundle their results at their termination to provide them to main pro-
cess instance. However, it provides no support for collecting different
process instances at specific activities to execute them in groups.

The control flow patterns [117], an extensive list of control flow struc-
tures that might exist in process modeling languages or BPMSs, include
no pattern related to batch activities. A common assumption is that
batch requirements can be solved with Multi-Instance control flow pat-
terns [117], which provide a means to trigger multiple instances of an
activity in the scope of a process instance and synchronize their termi-
nation; these instances are still independently handled. This pattern
is similar to the bundle activity proposed by Leymann and Roller [52].
As batch processing aims at collectively executing a set of instances,
batch requirements needs to be differently incorporated. The resource
patterns Piled Execution and Simultaneous Execution in [95] cover some
aspects of batch processing: While Piled Execution pipelines and allo-
cates similar tasks to one resource whereby the execution is still done in

34 related work

sequence, Simultaneous Execution allows users to work on several tasks
simultaneously while focusing on the switch between them rather than
on a collective execution of several work items.

closely related research works Currently, only few research
works, e. g., [49, 53, 69, 77, 96, 116] exist in BPM on the integration of
batch processing which are discussed in the following.

Batching in process
fragment-oriented

approaches

The process fragment-oriented approaches Proclets by Aalst et al. [116]
and Philharmonic Flow by Künzle and Reichert [49] highlight the need
for batch-oriented activities to handle sets of data entities (e. g., a set
of reviews for a paper, a set of applications for a job offer) in an activ-
ity. This means, batch-oriented activities are simply used to handle a
set of multiple data objects created within the context of one process in-
stance, but not to synchronize the execution of several process instances.
In control-flow oriented process modeling languages as BPMN, this is
solved by a read or write association between an activity and a data
object list.

The research works by Sadiq et al. [96], Liu et al. [53], and Natschläger
et al. [69] incorporate batch processing explicitly into process models
by introducing a new type of activity, called combound activity, batch ac-
tivity, or combined-instance activity. Since these works are closely related
to the work of this thesis, they will be discussed in detail in the next
paragraphs.

Combound activity
by Sadiq et al.

Sadiq et al. refer in their work [96] to a “contradiction between the
preferred work practice and some fundamental principles behind work-
flow systems”, and identify in different scenarios, an e-learning pro-
cess and an order process, the need to group several activity instances
for specific tasks in order to work on them in parallel. The authors
differentiate between an auto-invoked and user-invoked assignment of
activity instances to batches. They also observe that certain scenarios
require a specific grouping of instances regarding their data character-
istics, whereby the authors state that this should be mainly user-driven.
Batch processing is enabled in their work by establishing compound ac-
tivities in process models with a grouping- and ungrouping-function. It
generates one static activity instance based on several ones and split-
ting it after task execution. As stated, the grouping-function can be
either auto-invoked with a predefined number of required instances,
or user-invoked, creating a batch with user-selected instances. Waiting
on a pre-defined number of instances has the drawback that process
instances might get stuck or have high waiting time if the required
threshold is not met. The user-invocation leads to a manual batch or-
ganization where rules are not explicitly defined and errors can occur.
Since this work sketches a first solution proposal and does not aim at a
complete solution, a detailed execution semantics is not given.

Batch activity by
Liu et al.

The batch activity by Liu et al. [53] aims at integrating the batch service
problem of operations management into business processes. Hence, they

3.2 batch processing in business process management 35

request instances arriving at a batch activity that they firstly have to be
collected in a queue and, then they are assigned to batches based on an
algorithm. Thereby, the activity instances should be grouped according
their data characteristics. The batch assignment and the scheduling
of a batch on a resource should be conducted at an optimal point in
time. For this, they follow only the threshold rule by [70] according
to which the batch assignment and scheduling is activated when the
resource is free, and a certain time (or number of instances) is reached.
Thereby, the authors have a strong limitation that the batch activity is
only processed by one resource. The functionality of the grouping and
scheduling algorithm is not further discussed in this work. Proposals
for solving this can be found in a later works [54, 129]. In [54], a tech-
nique is proposed to group activity instances regarding their input data
based on attributes selected at design time. As the author assume that
a group of instances is then consolidated into one batch instance, their
provide additional data operation techniques for this transformation.
Wen et al. [129] discuss a batch scheduling algorithm for minimizing
the total waiting time and cost of the activity instances, but ignore the
grouping of instances, and do not discuss the influence of the algo-
rithm on the overall batch activity concept. Based on the introduced
batch activity [53], also a discovery technique by Wen et al. [128] is
proposed to support the design of batch activities. Thereby, the authors
limit themselves to parallel batch activities, and assume that only one
representative instance of a batch has event data for the batch execution
and the others not. Based on this assumption, the discovery algorithm
identifies the batch activities and to which batch each instance belongs
in order to complement the event data. The configuration details of a
batch activity are not discovered.

Combined-instance
activity by
Natschläger et al.

Natschläger et al. propose in [68, 69] a combined-instance activity to
process several instances of an activity in parallel. They highlight that
constraints, such as resource capacities and the type of instances that
can be processed together, should be incorporated. Batch processing
is considered by the authors as non-compulsory, only if an optimal
batch for an activity instance exists, it is activated. For each activity
instance arriving at a combined-instance activity, different batch can-
didates might exist and the most optimal batch has to be identified.
Thereby, instances which can arrive in future should be also taken into
account. As the authors are focused on the production and logistic do-
main, a batch should be scheduled on a resource. A batch is activated if
all future instances have arrived at the combined-instance activity or a
certain due date is reached. For the identification of the optimal batch,
possible batch candidates are created considering the given constraints.
Then, the optimization function provided by the process designer is
solved, and the most optimal batch is taken. This selected batch has
then to be monitored, if the future instances will still arrive (in time).
In case that a batch does not come off, its assigned resource was unnec-

36 related work

essarily reserved. A concrete implementation in a BPMS is not given
for evaluating the proposed optimization and scheduling algorithm re-
garding the system performance. During batch execution, instances of
a batch are merged and split later again. Thereby the authors do not
discuss how it is ensured that instances keep their data. Further, a com-
plex definition of constraints and an optimization function are required
for solving the optimization and scheduling problem which might have
a negative influence on the usability of the combined-instance activity.
All presented concepts in this section focus on single batch activities
only.

works covering further aspects Additionally to the presented
parallel batch concepts above, Aalst et al. defined in [115] that “batch
processing is when an employee is able to perform a number of work
items of the same type ... without switching back to the worklist han-
dler", similar to the Piled Execution resource pattern.Sequential batching

by Pflug et al.
Based on this

idea, Pflug and Rinderle-Ma [77] provide a dynamic queuing approach
to classify arriving instances at critical activities based on instance at-
tributes. The work by the authors is further extended in [78] to se-
quences of activities. In these approaches, instances need to be col-
lected, and if the resource is free, they are dynamically clustered into
groups, which are then allocated to resources for sequential execution.
This approach is only useful for activities with long waiting queues.
Classification is done by an algorithm, but certain setup time is needed
to identify the most suitable classification mechanism for a use case.

Flexibility Flexibility is beside time, cost, and quality, one important perfor-
mance dimension and multiple research efforts focus on the enabling
of flexibility in business processes. Reichert and Weber distinguish four
major flexibility needs, namely support for variability, looseness, adap-
tation, and evolution [92]. Research work by Wong et al. [135] exists to
allow flexibility of batch activities, in particular it supports the adapta-
tion ability. In their work, the authors present a monitoring concept of
manual batch activities in order to react on exceptions.

3.3 conclusion

Batch processing is a common technique in computer science to process
large amount of data without any user interaction. Although batch pro-
cessing might be used in the system implementation of existing BPMSs,
batch activities in process models to handle groups of similar process
instances together are not fully supported yet. Nevertheless, the design
concepts of batch processing systems given in computer science and the
evaluation measures (e. g., turnaround time) might be beneficial for the
realization of batch activities in a BPMS. A difference is that in case of
batching user tasks, the task performer should be able to enter input to
the batch.

3.3 conclusion 37

Batch processing in operations management is used to process simi-
lar products or groups of customers in batches to be more efficient.
Thereby, the size of a batch is an important objective of investigation,
because larger batches help to reduce the execution costs, but can lead
to increased cycle times as it requires certain time to fill the batch. This
leads additional to longer queues or extended in-process inventories.
Also in business processes, batch processing can be used to lower the
average execution costs per instance as several instances are served in
one batch. Batching can be done in parallel, but as well as in sequence
to save setup costs. Nevertheless, cycle time is an important perfor-
mance indicator in business processes [26]. On the one hand, the cycle
time of an instance can increase by waiting for other instances to be
batched with them. On the contrary, batching can also decrease process-
ing times by handling a set of instances in one step. Summarized, an
concept on integrating batch processing into business processes needs
to assure an optimal trade-off between time and cost. For this, in man-
ufacturing processes, optimization problems for scheduling customer
jobs are defined and solved, each being specified for a specific setting.
In contrast, queuing theory assumes that to-be processed cases arrive
randomly and are assigned to batches which applies well for many
business processes. They provide optimization policies for the trade-off
between time and cost – batch activation rules – which can be reused
for business processes.

A small set of research works exist in the BPM domain which allow
an explicit representation of batch requirements on the process model
level, not hidden in the implementation. The existing solutions are
currently bound to specific use cases and do not have a comprehensive
understanding of requirements of different scenarios: The compound
activity by Sadiq et al. [96] is mainly driven by users selecting and
assigning manually instances to batches. Whereas Liu et al. [53] tar-
get processes, where the batch activity is only executed by one single
resource. Natschläger et al. [69] requires the definition of complex con-
straints and an optimization function for solving an optimization and
scheduling problem. Such a complexity is mainly relevant in transporta-
tion and manufacturing processes. In the work of this thesis, we target
the limitations of existing works by developing a concept to model and
execute batch activities being applicable to different type of business
processes.

Part II

B A S I C C O N C E P T S

4
R E Q U I R E M E N T S A N A LY S I S

This chapter presents a requirements analysis for integrating batch processing in
business processes. The related work shows that existing solutions are linked to

specific scenarios and lack on a complete understanding of requirements. The
following requirements analysis is based on related work, and furthermore, on real

world scenarios taken from different domains. The resulting requirements framework
provides an overview of aspects which need to be considered when developing a batch
activity concept for business processes. Further, it fosters the comparison of existing

solutions. This chapter is based on the published paper “Requirements Framework for
Batch Processing in Business Processes” [86].

The previous chapter, which has discussed related work, revealed
that existing solutions to explicitly represent batch processing in pro-
cess models are linked to specific scenarios, and lack on a complete
understanding of requirements. This chapter provides a requirements
analysis based on which a batch activity concept is introduced in the
following chapters.

For the requirements analysis, we also interviewed experts from dif-
ferent domains about business processes with batch activities. Further,
we scanned forums of existing business process management system
(BPMS) providers (e. g., Bizagi [10], Camunda [13]) to collect scenarios
having a need for batch processing. Thereby, we could identify exam-
ples how batch processing is currently integrated in process models
with existing process modeling elements. In this chapter, two of those
example are presented, and related issues with the proposed solutions
are discussed. With the insights from the scenarios and the require-
ments of the related work, this chapter presents a requirements frame-
work for integrating batch processing into business processes. The re-
quirements framework captures aspects to be considered, while design-
ing a batch processing concept for business processes. These aspects are
used to set the design objectives of the batch activity concept introduced
in this thesis. Additionally, it should foster a comparison of existing
and future solutions.

The chapter is structured as follows: Firstly, Section 4.1 introduces
the collection of scenarios from different domains requiring batch pro-
cessing and study their needs to complement existing research work.
These, together with the discussed literature, provide the basis for the
requirements framework presented in Section 4.2. This section also
discusses the completeness of the framework as well as an application
of the framework to structurally compare the requirements of the col-

41

42 requirements analysis

lected scenarios. Finally, the objectives for the batch activity concept and
a prioritization of the given requirements are discussed in Section 4.3.

4.1 scenarios requiring batch processing

Scenarios from industry and their requirements were collected by in-
terviewing experts, and scanning forums of existing BPMS providers
(e. g., Camunda [13], Bizagi [10]). The interviews were conducted with
internal process analysts of the organization. They were asked open
questions regarding details on the batch processing use case, its current
implementation, and challenges. First, the scenarios are presented in
an overview. In the second half of this section, two examples are given,
illustrating how batch processing is tried to be integrated with existing
modeling elements, and their related issues are discussed.

Overview of scenarios

Table 1 presents eight identified scenarios from five different domains:
health care, retail, manufacturing, business administration, and finance.
For each scenario, its origin, a short description and the problem con-
text are introduced.

Table 1: Scenarios requiring batch processing and their requirements

Scenario Origin Description Problem Context

Health Care

SC-1
Blood
Sample
Test
Process

Expert
inter-
view
with a
Dutch
Hospital

If a blood test is needed, it is
taken and brought by a nurse
to the laboratory where the
test is conducted. Usually a
nurse delivers several
samples to save
transportation time. In the
laboratory, several blood
samples from different wards
are collected to save machine
costs.

- Batch activities are currently
manually organized; automation can
help to fill batches optimally and to
consider the expiration of blood
samples
- Machine and nurse have an upper
limit in the number of blood samples
which they can handle
simultaneously
- Blood samples are ordered based
on their expiration time at the
laboratory
- In case of emergencies, blood
samples have to be immediately
transported to the laboratory

4.1 scenarios requiring batch processing 43

Scenario Origin Description Problem Context

Retail

SC-2
Order
process

Expert
inter-
view
with a
German
Retailing
Com-
pany;
Entry in
Ca-
munda
Foruma

Customers place orders on
the online retailer website.
For each accepted order, the
articles are taken out of stock.
Then, they are packed in a
parcel and shipped. Often,
no transportation costs are
charged with the effect that
customers place multiple
orders in short time frames.
In such situation, orders of
the same customer could be
packed and shipped together
to save shipment costs.

- Expert interview → batch
processing rules are hard-coded,
cannot be easily accessed by
stakeholders
- Camunda Forum → tries to
implement it with existing BPMN
elements leading to a complex
workaround where activation rules
cannot be specified
- Grouping of cases in specific
batches by customer is needed
- Priority customers need a special
treatment
- Batch processing spans over several
activities
- Need for batching is optional, only
if other orders of a customer exist
batch processing should take place

SC-3
Process
of ship-
ping
orders
abroad

Expert
inter-
view
with a
German
Retailing
Com-
pany

Shipments to other countries
are collected. Collected
orders of one day to one
country are then transported
to the respective country,
where they are handed over
to a local shipment company.

- Manual rule that activates a batch
of orders for one country once a day
→ efficiency could be increased by
using a batch activation rule
balancing the cost savings with the
waiting times of the customers
- Grouping of cases in specific
batches by country is needed

SC-4
Return
han-
dling
process

Expert
inter-
view
with a
German
Retailing
Com-
pany

Customers can return some
or all ordered items in a
defined time frame. In case
of advanced payment, they
are reimbursed. Every
financial transaction is
associated with costs such
that the retailer waits some
time in case that another
return is received to bundle
them. In case that all items
are returned or the time
frame is closed,
reimbursement is done
immediately.

- Batch processing rules are
hard-coded, cannot be easily
accessed by stakeholders, the
activation considers whether the
return is complete and whether the
return time frame is still open
- Need for batching is optional, only
if returns are still open and the
return time frame is not closed
- Grouping of cases in specific
batches by customer is needed

Manufacturing

SC-5
Manufact-
uring
process

Expert
inter-
view
with a
British
Manufac-
turer of
Glasses

On the production line, some
activities require that the
work orders are processed as
a batch. Here, the employees
manually release the batches
to the line when the previous
batch was finished. Further,
all work orders with a
manufacturing fault are
collected and batches of them
are sent back for
reprocessing.

- Batch activities are currently
manually organized → automation
would help to fill batches efficiently
and to consider maximum
processing time
- Production line has an upper
bound in the number of work orders
which it can handle simultaneously
- Batch processing spans over several
activities

44 requirements analysis

Scenario Origin Description Problem Context

Business Administration

SC-6
Leave
appli-
cation
process

Entry in
Ca-
munda
Forumb

If an employee wants to take
vacation, the request needs a
manager’s approval. In case
of many requests, manager
prefer to work on the bulk of
cases in one user view and
decide each case.

- Batch is manually created and
activated by the manager
- User processes the instances here in
sequence, despite the visualization
should be in one user view
- Grouping of cases in specific
batches by responsible manager is
needed

SC-7
Invoice
pro-
cessing
process

Entry in
Bizagi
Forumc

If an invoice is received, it is
forwarded to the responsible
individual for approval. A
common practice is not to
approve each incoming
invoice immediately, but to
check regularly the set of
received invoices to minimize
the time to get familiar.

- Stakeholders tried to implement use
case with existing BPMN elements
leading to a complex workaround
- Batch should be activated after a
certain time
- User processes the instances of a
batch here in sequence
- Grouping of cases in specific
batches by responsible person is
needed

Finance

SC-8
Send
cus-
tomer
notifi-
cation

Expert
inter-
view
with a
German
Online
Bank

Certain events, e. g., the
opening of a bank account,
trigger several processes
which all send out a
customer notification (e. g.,
welcome letter, credit card,
ATM card). Although those
notifications are created by
different processes, they can
be batched for sending only
one letter to save shipment
costs and increase the
customer experience.

- Batch processing of customer
notification created by multiple
processes is considered as important,
but not realized today
- Grouping of cases in specific
batches by customer is needed
- Need for batch processing is
optional, only if other notifications
for a customer should be sent out,
batch processing should take place

a forum.camunda.org/t/building-a-batch-through-a-process/1722
b https://groups.google.com/d/msg/camunda-bpm-users/nJoPZg7dLo4/

0Q-OpHVHFQAJ
c feedback.bizagi.com/suite/en/topic/add-existing-entities-to-a-collection

Suitable activities
for batching

The given scenarios in Table 1 show that batch processing is needed
in different domains. In the given scenarios, batch processing is often
manually organized where an automated approach can increase effi-
ciency. It can be observed that most of the candidates for batching are
routine activities with a high processing rate, such as transportation
tasks or fully automated tasks on machines. Some candidates, like the
leave application or the invoice processing, involve also a decision by a
user, but they are still highly repetitive activities. Based on this, it can
be assumed that batch processing is useful for routine activities process-
ing a high number of cases which can be executed automatically, but
as well with user-involvement. These types of processes have a higher
rate of created batches which have in turn an higher influence on the
overall process performance.

From the forum entries, it becomes apparent that stakeholders al-
ready try to support batch processing by applying existing process mod-

forum.camunda.org/t/building-a-batch-through-a-process/1722
https://groups.google.com/d/msg/camunda-bpm-users/nJoPZg7dLo4/0Q-OpHVHFQAJ
https://groups.google.com/d/msg/camunda-bpm-users/nJoPZg7dLo4/0Q-OpHVHFQAJ
feedback.bizagi.com/suite/en/topic/add-existing-entities-to-a-collection

4.1 scenarios requiring batch processing 45

eling elements, but these workarounds are complex and error-prone. In
the following, two examples are shown and discussed.

Workarounds to integrate batch processing

The first example depicted in Figure 11 is about the shipment part of
the order process presented in SC-2. Master-instance

approach
Here, batch processing should allow

to process the goods of shipments to the same address together. As
soon as a shipment is received, it is checked whether another exists to
the same address. If not, then some time is passed – expressed by a
timer event– until it is further processed. After waiting, it is checked
again whether other shipments to the same address exist. But now
the current shipment instance is the so-called master instance to which
the other existing ones might be added. If similar shipments exist, the
loop sub-process organizes that the goods of each similar shipment are
added to the currently processed one and a message is sent out to each
one to terminate it. Independently whether instances are added or not,
the shipment is processed and sent. With this, the process terminates.

Shipment

received

 Check whether a

shipment exists for

this address

no

yes

Shipment was processed

by another instance

 Check whether

other shipments

exist with same

address

no
Process

shipment

Shipment

completed

Shipment

processed

 Attach goods

of other

shipment

process instance Shipment

processed

yes

Wait X Time

Figure 11: Shipment process as proposed in the Camunda Forum1 to allow
batching of shipments to the same address.

The presented solution has two major draw-backs. On the one hand,
the process structure is quite complex, and the batch activity (here the
Process shipment activity) as well as its configuration is not immediately
visible, because several preparation activities had to be added. On the
other hand, it includes several issues: For instance, message events
are indented for inter-process communication by the BPMN specifica-
tion, but not for intra-process communication [71]. Further, no upper
bound of a batch can be indicated in this solution. The synchronization
between the process instances has to be organized indirectly over the
process data, which is error-prone. Thereby, it has to be ensured that
after the master instance finishes the Check whether other shipments exist-
activity, no new instantiated process instance can identify this shipment
instance again. Otherwise, it would wait forever without being pro-
cessed. Another issue is that the instances of the attached shipments
are already terminated before the shipment actually is conducted. Re-
sults of it can not be written back into the original shipment instance,
and the monitoring of those attached instance is not correct, because
they end before the shipment itself happens.

46 requirements analysis

Vacation request

received

Check vacation

request

Vacation request
accepted

accept

Vacation request
rejected

rejected

(a) Leave application process

Shipment

received

 Check whether

a shipment

exists for this

adress

no

yes

Shipment was processed

by another instance

 Check whether

other shipments

exist with same

address

no
Process

shipment
Shipment

completed

Shipment

processed

 Attach goods of

other shipment

process instance
Shipment

processed

yes

Wait X Time

Vacation request

received

Check vacation

request

Vacation request
accepted

accept

Vacation request
rejected

rejected

Select vacation

requests to be

processed

together

Create

a list view

 Approve/

Reject

vacation

requests

on the list

 Auto-

complete the

„Check vacation

request“ activity

(b) Administrative batch processing process

Figure 12: Leave application process as proposed in the Camunda Forum2 to
allow batching of vacation requests.

Another option to the master-instance approach is to have an adminis-
trative process organizing the batch processing as shown in the example
in Figure 12.Approach with

administrative batch
processing process

This example shows the Leave application process as pre-
sented in SC-6. The basic process of the leave application as modeled
in Figure 12a prescribes that a received vacation request is checked by
a manager who either approves or rejects it. The process ends with
the respective message to the employee who has sent the request. In
order to check several vacation requests together, the manager does not
work on the individual Check vacation request-work items. Instead, the
manager would start the Administrative batch processing process shown
in Figure 12b. The first activity of this process allows the manager to
select a number of vacation requests. The selected list is then visualized
by the next service activity in one user view. After rejecting or approv-
ing vacation requests in the list view, the Auto-complete service activity
terminates then the enabled user tasks of the Leave application process
and stores the respective data in each instances of the process.

Also this solution is structurally complex, because it involves a sec-
ond process model including several pre-and post-processing steps for
the batch processing. Additionally, the batching is mainly organized
manually in this solution. The user has to start the administrative batch
processing process, has to select the instances for batching, and has to
start the batch activity. The administrative process only supports in
creating the consolidated work list, and in writing the results back .
Further, no correct monitoring is possible as in the previously example,
because the actual start of the Check vacation request-activity can not be
correctly logged.

Summarized, both solutions have several issues, and are individual
solutions for specific use cases. In this chapter, requirements for batch
processing in business processes will be analyzed to create a general

4.2 requirements analysis 47

batch activity concept easy to use, and useful for different application
areas.

4.2 requirements analysis

The requirements framework presented in this section gives an overview
on the requirements which have to be considered when developing
a batch processing concept for business process models. Besides, the
framework can help comparing the capabilities of existing and future
solutions.

Applied methodFor the requirement analysis, we firstly deduced all mentioned re-
quirements from examining related work, and summarized them. The
result was compared with external scenarios and extended where nec-
essary. Then, the collected requirements were classified. The resulting
framework was then discussed, and improved with a group of six BPM
experts. The final result is presented below.

Categories of Batch Processing in
Business Processes

R2 Batch

creation

R1 Process

Model

R3 Batch

execution

R4 Context

(a) simple activity execution

Queue of waiting

activity instances

A batch of

activity

instances

(b) batch

activity

execution

Task Performer/

Software Service

Conduct
blood test

Conduct
blood test

Conduct
blood test

Figure 13: Classification of requirements for integrating batch processing in
business processes.

Classification of
requirements

First, the requirements classification is introduced. Figure 13 visual-
izes a simple activity execution in comparison to an activity execution
with batch processing behavior – a batch activity execution. As an
example, the Conduct blood test activity from the presented healthcare
process (cf. Table 1) is taken. Based on this, Figure 13 also shows
the four requirement classes: R1 Process Model, R2 Batch Creation, R3
Batch Execution, and R4 Context. Unlike the simple activity execution,
an activity instance in the batch execution is not directly offered by the
process engine to a task performer or software service, because it is
firstly paused to allow the instance being grouped with others. Since
batched activity instances can originate from one or several connected
activities in one process model as well as in different process models,
a Process Model class is defined. From the queue of activity instances,
batches are created, and then provided to task performers (or services),
where the batch execution takes place. Hence, a Batch creation phase

48 requirements analysis

can be distinguished from a Batch execution phase; each one of them is
represented as a class in the framework. Changes in the execution con-
text of a process instance can influence both, simple and batch activity
execution. These changes can require certain reactions, e.g. handling of
exceptions during the batch creation or execution, which are reflected
by the Context class.

Requirements Framework

Figure 14 depicts the resulted requirements framework. After each re-
quirement’s name, its origin – the related work in brackets and the
scenarios in parenthesis – are shown. Next, the requirements of each
class will be presented in detail.

R1 Process Model

• R1.1 Involved activities
[78](SC-2, SC-5)

• R1.2 Involved process models

(SC-8)

R4 Context

• R4.1 Adaptation [74,107,135]

(SC-1)

• R4.2 Variability [92]

R2 Batch creation

• R2.1 Optionality
[69] (SC-2, SC-4, SC-8)

• R2.2 Grouping
[53,69,77,96] (SC-2-4, SC-6-8)

• R2.3 Instance Scheduling [53]

(SC-1)
• R2.4 Resource capacity

[53,69] (SC-1, SC-5)

• R2.5 Batch assignment [96]

(manual in SC-6, otherwise auto)

R3 Batch execution

• R3.1 Activation mechanism
[53,69,96] (SC-1, SC-3-5, SC-7)

• R3.2 Batch scheduling
[69,77] (user-initiated in

SC-2, SC-6-8; otherwise auto)
• R3.3 Execution strategy

[58,77] (sequential in SC-6/7,
otherwise parallel)

Figure 14: Requirements framework for integrating batch processing in busi-
ness processes.

r1 process model . A batch operationR1 Process Model in a business process can
involve one or several activities being part of one or several processes.
Thus, aspects which have to be considered during setting up batch pro-
cessing in business processes are the involved activities and involved
process models.
(R1.1) Involved activities: In several scenarios, we observe that batch
processing operations can span not only over one activity but also over
several connected ones, whereby the activities can be also executed by
different actors. In the scenarios, batch operations are not interrupted.
Therefore, the activities need to be connected. A single-instance activity
between two batch activities would lead to two different batch opera-
tions.
(R1.2) Involved process models: Batch processing can be conducted

4.2 requirements analysis 49

for process instances of one process model, but as well for process in-
stances of various process models. In most of our given scenarios, batch
processing is bound to one process, but in SC-8 the activity Send out

notification is used by several processes, such that several created
notifications to one customer can be collected and sent together. Or-
ganizations being active in Business Process Management (BPM) often
manage large collections of processes where similar activities (or even
process fragments) can be found in different processes [124]. Repetitive
activities (or process fragments) offer the chance to use batch processing
benefits and reduce costs over instances of multiple process models.

r2 batch creation. In the batch creation phase, R2 Batch Creationactivity instances
are assigned to batches. Batch assignment requires the following five
aspects to be considered.
(R2.1) Optionality: First of all, it must be taken into account whether
batch processing is optional. Either each process instance of a batch
activity is used for batching (i.e., (1) batching is required), or only the
ones which can form a batch (i.e., (2) batching is optional) whereas
all other instances are processed as single instance. For optional batch
processing, the decision can be based on all enabled instances of a batch
activity, as well as on instances which will reach the batch activity in a
future state [69].
(R2.2) Grouping: In studies from queuing theory, it is discussed that
customers may be homogeneous or heterogeneous in their demand [75].
In case of homogenous demands, the process instances can be assigned
to any available batch. If they are heterogeneous, then they have to be
grouped in homogenous batches, such that different types of batches
have to be formed. Also in several scenarios, a grouping of cases in
specific batches by customer (SC-2, SC-4, SC-8), by country (SC-3), or
by responsible employee (SC-6-7) is necessary. In [53, 69], grouping is
conducted based on context data of process instances, where a group-
ing specification is given at runtime. A dynamical grouping for each
batch assignment iteration is proposed in [77].
(R2.3) Instance Scheduling: All relevant activity instances which are
used for batching are queued for the assignment to a batch. Hence,
the application of a scheduling policy is necessary, e. g., first-come-first-
served (FCFS) [108], earliest-due-date (EDD) [59]. If no prioritization
of process instances is necessary for the batch assignment, FCFS can be
applied as it could be also observed in most of the collected scenarios.
For a prioritization of instances, for example based on their due date,
other scheduling policies need to be used. For instance, EDD is useful
in the health care scenario SC-1 to make sure that blood samples do
not expire. Further, scheduling policies are presented in operations
management, e. g., in [59].
(R2.4) Resource Capacity: An important constraint of a batch operation
is the maximum capacity of the resource responsible for batch execution

50 requirements analysis

[53, 69], also discussed in operations management (e. g., in [3, 82]. For
instance, the blood testing machine may be able to test at maximum 50

blood samples in a run. This capacity determines the maximum size of
a batch.
(R2.5) Batch Assignment: The process instances collected at a batch
activity need to be assigned to a batch. Sadiq et al. [96] distinguish
between a user-invoked batch assignment, creating a batch with user-
selected instances, or an auto-invoked assignment, where the system as-
signs process instances to batches based on a specific mechanism. The
user-invoked batch assignment is a manual approach where rules are
not explicit, and benefits of batch processing might not be fully usable.
However, in certain use cases, it might be required. If execution data
is captured, then it is possible after a while to identify the rules for the
auto-invoked mechanism with process mining techniques [58]. An auto-
invoked mechanism has to consider the grouping, order of the instance
queue and the resource capacity. Thereby, batch scheduling techniques
as reviewed in [82] might be used. The auto-invoked mechanism can be
further sub-divided in continuous assignment, where each arriving in-
stance is assigned, e. g., in [69], or resource-dependent assignment, where
the assignment is conducted as soon as the resource is free, e. g., in
[53, 77].

r3 batch execution. In the batch execution phase,R3 Batch Execution a batch has to
be first activated by an activation mechanism, and then be provided to
the task performer.
(R3.1) Activation Mechanism: Batch processing is used to save execu-
tion costs. Thereby, instances have to be stopped and paused in their ex-
ecution in order to wait for others with which the paused instances can
be executed in a batch. Pausing instances can increase their cycle time.
Hence, time and cost appear to be in conflict, and the trade-off between
them has to be managed. This is the responsibility of the batch activa-
tion mechanism that determines when a batch operation can be started.
The resource availability is always the prerequisite for the execution of a
batch such that an activation mechanism usually describes the earliest
possible moment when the execution of a batch can be started. We
can distinguish between (1) user-invoked activation (i.e., starting self- or
system-created batches) and (2) auto-invoked activation. User-invocation
has similar disadvantages as discussed for Requirement R2.5. For auto-
invoked activation, rules or constraints have to be defined by the process
designer which can be checked by the system to activate a batch. If
a batch scheduling algorithm is used, the batch activation is implicitly
given by scheduling a batch on the resource.
(R3.2) Batch Scheduling: After activation, enabled batches need to be
queued and scheduled for execution. In some use cases, often where
machines are involved, an automatic scheduling (regarding a schedul-
ing policy) as proposed in [53, 77] is needed. In use cases where hu-

4.2 requirements analysis 51

mans are mainly involved (e. g., SC-2, SC-6-8), user-initiated schedul-
ing (i.e., the system shows a possible schedule, but the user can decide
which batch to execute) might be used, as done for work items in [95].
For the latter, batch processing concepts should consider that batches
are not always immediately executed by the task performer.
(R3.3) Execution Strategy: Batch processing occurs in two versions:
(1) parallel and (2) sequential execution [60, 82]. Also, Martin et al.
[58] distinguish between simultaneous/concurrent (i. e., parallel) and
serial (i. e., sequential) batch activities. In parallel batch execution, the
activity instances of a batch can be processed by the task performer
simultaneously, because its capacity is greater than one. All instances
of a batch are terminated together. In sequential batch execution, the
task performer enacts the activity instances one after another. They are
processed as batch because they share the same setup, e.g., a familiar-
ization phase [77]. Activity instances of a batch are in different activity
life cycle states during the batch execution, some might be already ter-
minated, whereas others are still executed. In the latter case, the order
of the batch might have an influence. Scheduling strategies, e.g., FCFS,
EDD might be relevant here as well [115].

r4 context. Context information R4 Contextreflects changing circumstances
during process execution [97] and can support the design of a flexible
batch processing concept. Flexibility is defined as the ability to react on
changes [26]. Current work and scenarios reveal mainly requirements
targeting adaptability of batch processing.
(R4.1) Adaptation: (1) Exception and (2) special cases can have influ-
ence and might require adaptations during (a) batch creation and (b)
batch execution as it was discussed in operation management work,
e. g., in [74, 107] and in the BPM domain by [135]. For example, if
the blood testing machine has to be maintained, exception handling is
triggered, such that all batches are finished before the start of mainte-
nance. Special cases often require a special treatment. In case of batch
processing, special cases are process instances which cannot follow the
normal batch procedure. For example, if a customer has selected the
fast delivery option, their order has to be sent out as soon as possible.
For these cases, the option of fast handling should be provided.
(R4.2) Variability: In addition to process adaptation, three other major
flexibility needs are differentiated [92]. Whereas looseness and evolu-
tion are needs targeting the modeling paradigm respectively the BPMS,
variability is also relevant for batch processing in business processes.
Several customer groups, several product types etc. which are handled
by one process model can require different batch configuration variants,
e. g., different activation mechanisms. For instance, a premium cus-
tomer group can require that its members are only handled optionally
as batch, whereas for all other customer groups the batch processing
mechanism is always applied.

52 requirements analysis

Discussion of Completeness

The requirements framework consists mainly of aspects which were
elicited based on a structured state-of-art review. Due to this method-
ological choice, it includes mainly requirements which are already sup-
ported. Since only a limited number of contributions enabling batch
processing in business processes exists, we included also use cases
from practice in the requirements analysis. Thereby, we interviewed
interested domain experts and scanned the forums of existing BPMS
providers. Nevertheless, the interviewees have currently no solution in
place with which they can explicitly represent batch processing configu-
rations in process models. Hence, they might not be able to think about
every aspect needed yet. This can lead to further requirements in the
future. We think that especially the requirements targeting flexibility
in Context group can get get more detailed in future. With the elicited
requirements from literature and scenarios, a given classification of re-
quirements was proposed which was discussed and validated with a
group of BPM experts. In future, it should be further validated with
BPMS providers and domain experts. We are confident that the frame-
work covers the most important aspects, but we can not guarantee its
completeness.

Application of the Requirements Framework

Next, we apply the framework to structurally compare the require-
ments of the given scenarios in Section 4.1 for setting the objectives
of the batch activity concept introduced in the work of this thesis.

In Figure 15, all scenarios are listed with their needed configuration
for each aspect of the requirements framework. For example for the
blood sample test in SC-1, we can observe that the batch processing is
required for a single activity and a single process, instances have to be
always executed in a batch (i. e., no optionality allowed), no grouping is
necessary, etc. The table indicates that use cases exist with a strong need
for an automatic batch processing support, e. g., no optionality, auto-
invoked batch assignment, activation, and scheduling as observed in
SC-1, and SC-3-5. On the contrary, the other use cases request more user
involvement during assignment, activation, or scheduling and even op-
tionality. Therefore, we distinguish between two preliminary types: (1)
automated batch activities and (2) user-involved batch activities. These
are described in more detail in the following.

Automated batch activities (e. g., in SC-1, SC-3-5) are either executed
by machines or by software services (e. g., the automatic triggering of a
financial transaction in the return handling scenario). Batch processing
can span over a single or multiple activities. Batching is here required
(i. e., no optionality allowed) and the instances are executed in parallel.
In the works of operations management, we could also observe that
sequential batching on machines is important [82]. For full-automation,

4.2 requirements analysis 53

SC
1

- B
lo

od

Sa
m

pl
e

Te
st

SC
2

- O
rd

er

pr
oc

es
s

SC
-3

 -
Sh

ip
pi

ng

Ab
ro

ad
SC

-4
 -

Re
tu

rn

Ha
nd

lin
g

SC
-5

 -
M

an
u-

fa
ct

ur
in

g
SC

-6
 -

 L
ea

ve

Ap
pl

ic
at

io
n

SC
-7

 -
In

vo
ic

e
SC

-8
 -

 C
us

to
m

er

no
tif

ic
at

io
ns

Pr
oc

es
s M

od
el

R1
.1

In
vo

lv
ed

 a
ct

iv
iti

es
sin

gl
e

m
ul

tip
le

sin
gl

e
sin

gl
e

m
ul

tip
le

sin
gl

e
sin

gl
e

sin
gl

e
R1

.2
In

vo
lv

ed
 p

ro
ce

ss
es

sin
gl

e
si

ng
le

sin
gl

e
sin

gl
e

sin
gl

e
si

ng
le

si
ng

le
m

ul
tip

le
Ba

tc
h

Cr
ea

tio
n

R2
.1

O
pt

io
na

lit
y

no
ye

s
no

no
no

ye
s

no
ye

s
R2

.2
Gr

ou
pi

ng
no

ye
s

ye
s

ye
s

no
ye

s
ye

s
ye

s
R2

.3
In

st
an

ce
 sc

he
du

lin
g

ED
D

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

R2
.4

Re
so

uc
e

ca
pa

ci
ty

lim
ite

d
un

lim
ite

d
un

lim
ite

d
un

lim
ite

d
lim

ite
d

un
lim

ite
d

un
lim

ite
d

un
lim

ite
d

R2
.5

Ba
tc

h
as

sig
nm

en
t

au
to

-in
vo

ke
d

au
to

-in
vo

ke
d

au
to

-in
vo

ke
d

au
to

-in
vo

ke
d

au
to

-in
vo

ke
d

us
er

-in
vo

ke
d

au
to

-in
vo

ke
d

us
er

-/
au

to
-

in
vo

ke
d

Ba
tc

h
Ex

ec
ut

io
n

R3
.1

Ac
tiv

at
io

n
m

ec
ha

ni
sm

au
to

-in
vo

ke
d

ba
se

d
on

 c
os

t
an

d
du

e
da

te

us
er

-/
au

to
-

in
vo

ke
d

ba
se

d
on

 c
os

t a
nd

 ti
m

e

au
to

-in
vo

ke
d

ba
se

d
on

 c
os

t
an

d
tim

e

au
to

-in
vo

ke
d

ba
se

d
on

 re
tu

rn

co
m

pl
et

ed

au
to

-in
vo

ke
d

ba
se

d
on

 c
os

t
an

d
tim

e

us
er

-in
vo

ke
d

au
to

-in
vo

ke
d

ba
se

d
on

 ti
m

e
us

er
-/

au
to

-
in

vo
ke

d

R3
.2

Ba
tc

h
sc

he
du

lin
g

au
to

m
at

ic
us

er
-in

iti
at

ed
au

to
m

at
ic

au
to

m
at

ic
au

to
m

at
ic

us
er

-in
iti

at
ed

us
er

-in
iti

at
ed

us
er

-in
iti

at
ed

R3
.3

Ex
ec

ut
io

n
st

ra
te

gy
pa

ra
lle

l
pa

ra
lle

l
pa

ra
lle

l
pa

ra
lle

l
pa

ra
lle

l
se

qu
en

tia
l

se
qu

en
tia

l
pa

ra
lle

l
Co

nt
ex

t
R4

.1
Ad

op
tio

n
ne

ed
ed

-
-

-
-

-
-

-
R4

.2
Va

ria
bi

lit
y

-
-

-
-

-
-

-
-

Figure 15: Comparison of the eight scenarios based on the requirements frame-
work resulting in two types of batch activities: automated (in white)
and user-involved (in grey).

instances are automatically assigned to batches, an auto-invoked activa-
tion mechanism is applied, and the batches are automatically scheduled

54 requirements analysis

on the resources. In case of machine-support, the capacity is usually
limited.

User-involved batch activities (e. g., in SC-2, SC-6-8) can involve multi-
ple activities and in scenario SC-8 we see an example of batching over
several processes. However, this might be also possible for automated
batch activities, as process model aspects seemed to be independent from
the types. Specific for user-involved batch activities is that batching is,
in most cases, optional and some user involvement might be desired,
for instance, in the batch assignment (cf. SC6 and SC8), in the batch
activation (cf. SC-2, SC-6 and SC-8), or in the batch scheduling (cf. SC-
2, SC-6-SC8). Reasons for user-involvement might be to increase the
flexibility, to handle special cases, or to fulfill legal requirements which
might request that process experts have to check created batch clusters
first. This means that user-involved batch activities are user tasks which
can be executed more efficiently by introducing additional batching, if
possible. Depending on the use case, it has to be decided to which de-
gree the user-involvement is desired: process performers might simply
get auto-generated batches on which they can decide when to work.
Or, they might be also able to activate, or create batches on their own.
Additionally, user-involved activities may be executed in parallel or in
sequence by the users. For the latter, it is important that a decision can
be made for each individual case. From a user interface perspective,
two options are possible; cases could be individually represented, or
a comprehensive user view can be chosen, where individual data for
each case can be entered.

Currently, information on the flexibility needs is limited. A reason is
that since many scenarios are currently manually executed, flexibility is
always possible, and thus, practitioners do not foresee which flexibility
needs they might have. This needs to be further investigated. Further,
the two types of batch activities should be further validated on other
use cases in future.

Based on these insights, the following section discusses the objectives
for the batch processing concept presented in this thesis.

4.3 objectives and prioritization of requirements

Non-functional
objectives

We aim at a basic batch activity concept for business processes sup-
porting automated as well as user-involved batch activities which is
useful and easy applicable by practitioners. Further, the concept should
be generic, such that it is applicable to different control-flow oriented
process modeling languages. Next, we elaborate on these objectives:

O1 Usability: Our goal is to provide a concept for batch activities
with which practitioners can quickly specify batch processing needs in
process models They should be able to identify areas in a process model
where batch processing should be conducted and can easily configure
them. Further, we also want to provide an execution semantics, such

4.3 objectives and prioritization of requirements 55

that the batch activity can be added to existing BPMSs for the automatic
execution of the specified batch configuration.

O2 Usefulness: The process performance dimensions time, cost, and
quality are in close relation to each other [26]. If one dimension should
be improved, it has influence on the others. If, for example, the quality
of a service should be improved, time or cost of the service will increase.
It means that cost reductions as aimed by batch processing are usually
associated with an increase in time With our batch processing concept,
we want to provide a mean for process stakeholders that helps them to
create batch activities with the respective process configuration which
reduces process costs with almost no negative influence on time.

O3 Generalization: The concept introduced in the work of this thesis
should be generic concept, such that it can be applied to process model-
ing languages which conform the process model definition introduced
in Definition 2.1.

Functional
objectives

After identifying the non-functional requirements, we now prioritize
the functional requirements which are supported by the batch activity
concept introduced in the next chapter. A summary of the require-
ments prioritization is shown in Figure 16. Regarding the category R1
Process Model, the focus is on single processes only as nearly all collected
scenarios (besides scenario SC-8) are bound to one process, but batch
processing over several activities is supported.

R1 Process Model
• R1.1 Involved activities (+)

• R1.2 Involved
process models (-)

R4 Context
• R4.1 Adaptation (+)

• R4.2 Variability (-)

R2 Batch creation
• R2.1 Optionality (+)

• R2.2 Grouping (+)

• R2.3 Instance Scheduling
(only FCFS)

• R2.4 Resource capacity (+)

• R2.5 Batch assignment (+)

R3 Batch execution
• R3.1 Activation

mechanism (+)

• R3.2 Batch scheduling (-)

• R3.3 Execution strategy (+)

Figure 16: Prioritization of requirements for setting the design objectives.

In category R2 Batch Creation, almost all requirements are prioritized
besides the instance scheduling. In existing works of enhancing process
models with batch processing capabilities, and also in most BPMSs,
FCFS is applied as scheduling policy. Hence, we also plan to use it,
and do not support the selection between different policies. Restrictive

56 requirements analysis

batch processing is especially required if activity costs are high. Op-
tional batch processing is needed for use cases, where the customer
satisfaction is more fragile. We will consider both, such that optional-
ity is supported. The necessity of grouping activity instances can be
observed in most of the presented scenarios, as well as in most of the
discussed related work of the BPM domain. Resource capacity defines
the maximum size of a batch, and is therefore, an important factor to
be considered. For batch assignment, we aim at an auto-invoked mech-
anism to fully use the advantages of batch processing. For supporting
also user-involved batch activities, we want to strengthen the user in-
volvement in the batch assignment by allowing users to adapt batches.

In category R3 Batch Execution, the most important requirement is
the activation mechanism, if no scheduling technique is applied. Batch
scheduling techniques are not utilized for the batch activity concept
of this thesis, because many input data is requested by them, such as
constraints and goal function, and the instances have to be available
in advanced to define useful schedules. In contrast, we plan to apply
batch activation rules proposed in queuing theory which help to bal-
ance process cost and time, such that the pausing of instances has no
notable influence on the overall process cycle time. The Batch schedul-
ing after the batch activation is not in focus of this work. Each BPMS
usually has an allocation mechanism implemented for work items, as
well as service calls. A batch is either a consolidated work item or a
service call of several activity instances. Hence, the batch scheduling is
outsourced to the respective component of a BPMS (cf. Figure 7). As
related work discusses the importance of both, parallel and sequential
execution strategy, we pursue the support of both strategies.

Regarding the category R4 Context, we focus here on the adaptation
to special cases which is not discussed so far. From the collected scenar-
ios, it could be observed that batch processing should be not applied to
each process instance, e.g., emergency cases in the blood testing process,
orders where the customer has selected a fast delivery. Thus, we want
to consider this to allow a successful application of batch activity in
practice. Further, we want to support the user involvement in the batch
creation and execution, targeting flexibility in general.

After presenting the requirements framework, and using it for set-
ting the design objectives, the next chapter introduces the batch activity
concept.

5
B AT C H A C T I V I T Y

After setting the design objectives, this chapter introduces the batch activity for
explicitly specifying the batch execution of process instances in a process model.

Thereby, the grouping of process instances regarding their context data is an
important aspect. Hence, data views are defined to identify similar instances. While
presenting the design of a batch activity with its configuration parameter, details are
given on the batch activation rule managing the trade-off between cost and time, and

on integrating the batch activity in process modeling languages, such as BPMN.
This chapter provides an execution semantics for the automatic batch activity

execution. Further, user involvement strategies are discussed. The chapter concludes
with a discussion of the presented concept by comparing the batch activity with
related work. This chapter is based on the published papers “Batch Activities in

Process Modeling and Execution” [83] and “Batch Regions: Process Instance
Synchronization based on Data” [89].

Based on the requirements analysis and the deduced design objec-
tives of the previous chapter, this chapter introduces a new type of
activity – the batch activity. It enables batch processing in a business pro-
cess for automatic as well as user-involved batch activities which can be
single activities or activities with an internal behavior. This chapter dis-
cusses on the example of BPMN [71], UML Activity Diagrams [72], and
EPC [98] how to integrate the concept in a process modeling language.

With the configuration parameters of a batch activity, a process de-
signer is able to specify the batch execution in a process model, e. g.,
when a batch is started (activation rule), how many instances are al-
lowed at maximum in a batch (batch size), and how the batch is ex-
ecuted (parallel vs. sequential). Further, batch activities are able to
group process instances regarding their specific instance data. This is
enabled with data views on process instances, an abstracted view on the
relevant process instance data.

Data views are formalized, and an algorithm to identify clusters of
process instances with the same data view is presented in Section 5.1.
Section 5.2 provides the concept of batch activities, and describes its
integration into process modeling concepts. The batch activity config-
uration parameters are presented in general, whereby details on the
grouping of instances, and on the batch activation rule is provided in
this section. Also the integration into different control-flow oriented
process modeling languages is discussed in this section. In Section 5.3,
the corresponding execution semantics for batch activities being user
tasks, service tasks, or sub-processes is presented. As observed in the
previous chapter, also user involvement during batch assignment, and

57

58 batch activity

execution is needed in certain use cases. A proposal for the batch
activity concept is discussed in Section 5.4. A comparison on the re-
quirements framework of the introduced batch activity to other related
solutions can be found in Section 5.5. The prototypical implementation
of the concept is discussed in the evaluation part in Chapter 8.

5.1 process instance grouping with data views

In the requirements frameworks, it is shown that grouping of instances
in specific batches is important for most of the use cases. This section
presents a concept to group instances based on their data characteristics.
As described in the preliminaries, each instance acts on multiple data
objects which give the instance a context and characterize it. However,
not all data is relevant to compare process instances and to identify
similar ones; only specific attributes of the utilized data objects are of
interest. In database systems research, the concept of views allows to
extract relevant data by projection [103]. In this section, this concept
of views is applied to business processes instances to identify related
ones based on data – being called data views for process instances. In
the remainder of this section, a motivation for the grouping of process
instances is given, followed by the formalization of data views, and
algorithms to cluster instances based on data views.

O
n
li
n
e
 R

e
ta

il
e
r

Order

received

Analyze

order

Order

[received]

Take items

our of stock
Pack order Ship order

Archive

order

Order

[prepared] Order

[packed]

Order

[shipped]

Order

[accepted]

Order

state? Order.state

= accepted

Cancel

order

Cancellation sent

Order.state

= rejected
Order

[rejected]

Order

[archived]

Customer

PI
1:

 C
ID

12

PI
2:

 C
ID

14

PI
3:

 C
ID

12

PI
5:

 C
ID

12
PI

4:
 C

ID
12

Figure 17: Online retailer process diagram with exemplary running instances
represented as labeled token. The label, e.g., PI1: CID12, references
the respecting process instance id and customer id.

Motivation for Grouping Process Instances

Let us return to the running example introduced in Chapter 2, given
in Figure 17. In times where customers often do not have to pay any
shipment costs, online retailers face the situation that customers place
several orders with the same shipping address within a short time.
Batch processing can be used for this Online retailer process to batch
orders of the same customers during the packing- and sending-activity
in order to save transportation costs. It has to be assured that only
orders are batched which are from the same customer, and have the

5.1 process instance grouping with data views 59

same shipping address. For example, by looking on the customer ids of
the illustrated process instances in Figure 17, process instance P1 can be
potentially grouped with P3, P4, and P5 acting on an order of the same
customer with the id CID12, but not with P2. This handles an order of
the customer with the id CID14.

Instance similarity
metric vs. data
views

Similar instances can be identified, for instance, with a similarity met-
ric as proposed by Pflug and Rinderle-Ma in [79]. This attribute sim-
ilarity metric returns a similarity score for two given instances based
on their attribute values. The disadvantage is that instances have to
be compared pairwise, and the process engine has to request the data
storage for each comparison. Therefore, we propose the concept of data
views – an abstracted view on the process instance data – for grouping
process instances.

Data View Definition

A data view is a projection on the values of multiple data object attributes
of a process instance which might change with the progress of the pro-
cess instance. Thereby, only attributes defined as relevant by the pro-
cess designer specified in a data view definition are considered. Process
instances with identical values for all defined attributes are considered
similar. Formally, we define the data view as follows:

Definition 5.1 (Data View).
Let X = [x1, x2, . . . , xk] be a list of fully qualified data attributes of

interest in process model m referred to as data view definition, where for
each x ∈ X holds that x = c.j, such that c ∈ Cm ∧ j ∈ Jc. Then, a data
view for a process instance i is a list of values V ′ = [v1, v2, . . . , vk]. Given
the relevant attribute xl = c.j, 1 6 l 6 k, the corresponding value vl is
calculated by data view function ϕ(x, i) = ϕ(c.j, i) = ρo(j), where the
data state function ρ as given in Definition 2.6 returns a value for the
given attribute j, and object o is an instance of class c used in process
instance i. J

Order

oid state arrivalDate cid

1 prepared 9.10.2013 CID12

2 prepared 9.10.2013 CID14

3 accepted 10.10.2013 CID12

4 received 10.10.2013 CID12

5 received 10.10.2013 CID12

...

...

...

...

...

...

...

address

Anystreet 1

Street 5

Teststreet 2

Anystreet 1

Anystreet 1

...

Data View Definition:

OrdersBySameCustomer

PI1
PI4

PI5

PI2

PI3

Figure 18: Example of a data view definition and the resulting data view clus-
ters.

The data view function ϕ(x, i) returns for a given relevant data attribute
x = c.j the value of a data object o of class c of the given process
instance i. To identify the corresponding data object o from the given

60 batch activity

fully qualified data attribute x and the process instance i, the auxiliary
function θ : I×C → O is used. θ(c, i) = o scans the set of data objects
and returns one object corresponding to data class c by name matching.
Then, the data view function ϕ uses the data state function ρo(j) to
return the value of the given data attribute j of the object o. The data
view function is executed once for each relevant data attribute x = c.j
to construct the data view V ′ for one process instance i.

Let us illustrate this on the running example. In the online retailer
process, it is aimed to group, i. e., distinguish, the process instances
with respect to the customer address and the customer identifier. Thus,
the list of fully qualified relevant attributes X comprises
x1 = Order.address and x2 = Order.cid; we reference this data view
definition as OrdersBySameCustomer (cf. Figure 18). Both attributes refer
to data class Order. Considering process instance PI1, after execution
of activity Take order out of stock, the current state of the correspond-
ing Order data object is ρOrder(state) = prepared. Based thereon, the
data state function returns the following values for the given attributes:
ρOrder(address) = Anystreet 1 and ρOrder(cid) = CID12. Thus, the
resulting data view for PI1 is [Anystreet 1, CID12]. Referring to Fig-
ure 18, it is highlighted together with the data views for the other pro-
cess instances in the presented data object table.

Data views are not only simple projection on one single data class. In
a data view definition, attributes of multiple data classes being used by
a process model can be used. It enables to consider the complete data
characteristic of a process instance for the grouping.

Data view cluster Instances of one process model can now be grouped based on their
data view by assigning each instance to one data view cluster. Process
instances with identical data views are collected in the same cluster. A
data view cluster is defined as follows.

Definition 5.2 (Data View Cluster).
Let I be a set of process instances of one process model m. A data

view cluster q is a set of process instances I ′ ⊆ I of m, where all process
instances i ∈ I ′ share the same data view V ′. J

The set of all data view clusters of one process model is denoted as Q.
As illustrated in Figure 18, grouping the process instances PI1 to PI5
based on data view definition OrdersBySameCustomer, process instances
PI1, PI4, and PI5 belong to one cluster while PI2 and PI3 belong to
two separate clusters because either the customer identifier (PI2) or the
customer address (PI3) differs.

Based on these formalisms, we now present and explain in the next
subsection the algorithms to first calculate the data view for a process
instance in a specific state and to second assign a process instance to
the corresponding data view cluster based on its data view.

5.1 process instance grouping with data views 61

Clustering Algorithms

Algorithm 1 describes the implementation of the data view function
introduced in Definition 5.1.

Algorithm 1 Data view creation.

Input: X, i
Output: V ′

1: V ′ ← new List();
2: for all x ∈ X do
3: v← ϕ(x, i);
4: V ′.add(v);
5: end for

As discussed, the data view function requires a list X of relevant and
fully classified data class attributes – which may come from different
data classes – and a process instance i to compute its data view. First,
V ′, the variable to hold the data view, i. e., the list of values for the given
attributes X, is initialized as an empty list (line 1). Line 2 to 5 iterate
over all specified attributes x ∈ X. For each attribute x, function ϕ(x, i)
is applied. It returns the current value v of x of the corresponding data
object of process instance i. This value is added to the list V ′ (line 4).
The result of the algorithm is the list V ′ representing the data view for
the process instance i.

Algorithm 2 Data view cluster assignment.

Input: X, i, Q
Output: Q

1: foundCluster← false;
2: V ′

i ← dataView(X, i);
3: for all q ∈ Q do
4: V ′

q ← dataView(X,γ(q));
5: if V ′

i = V ′
q then

6: foundCluster← true;
7: q← q∪ {i};
8: break;
9: end if

10: end for
11: if foundCluster = false then
12: p← {i};
13: Q← Q∪ {p};
14: end if

Algorithm 2 assigns a process instance i to a corresponding data view
cluster by using Algorithm 1. As input, it requires the list X of data
class attributes, the corresponding process instance i, and the set Q of
currently existing data view clusters for the respecting process model;

62 batch activity

this set may also be empty. The output of the algorithm is the updated
set Q of data view clusters with either an additional cluster q ∈ Q with
the given instance i or the same number of clusters with one of them
now containing instance i. For computation, first, a Boolean variable
foundCluster indicating whether a matching cluster is found gets ini-
tialized with value false (line 1). Then, the data view for the process
instance i is calculated using Algorithm 1 and is saved in list V ′

i . Lines
3 to 10 iterate over all input clusters Q. First, for a cluster q, the data
view is calculated. Therefore, an instance assigned to it is taken with
the auxiliary function γ : Q → I, which returns a process instance j
from a given data view cluster q ∈ Q, and this instance is provided
as input to Algorithm 1. The result is assigned to list V ′

q. Afterwards,
the data view V ′

q of cluster q is compared to data view V ′
i of the given

process instance i. If they are equal, variable foundCluster is set to
true (line 6), the process instance is added to the corresponding cluster
q (line 7), and the iteration is aborted (line 8). If no corresponding
cluster is found during the iteration, the process instance i is added to
a new data view cluster p (line 12). This new cluster in turn is added
to the set Q of data view clusters (line 13).

By applying the second algorithm to all instances of one process
model, they can be grouped into data view clusters based on the data
information they carry at that point in time. The algorithm can also
be applied on a subset of instances. Referring to the batch activity be-
ing discussed in the next section, this subset may comprise all process
instances for which the batch activity is enabled.

5.2 modeling

In the following section, the modeling concept of batch activities and
their configuration parameters is presented. One of the configuration
parameters, the batch activation rule which is responsible for balancing
cost and waiting time, is introduced in detail in the next subsection.
Further, an application of the concept to process modeling languages is
shown at the end of this section.

Batch Model and its Configuration Parameters

For introducing batch activities, the process model definition in Defi-
nition 2.1 has to be extended. A process model consists of nodes and
edges, and acts as a blueprint for a set of process instances which are
related to exactly one process model. A node in a process model can
represent an event, a gateway, or an activity. Each activity is associated
with an arbitrary number of activity instances which are in a certain
life cycle state (see Figure 19). An activity can be either a single task
(i. e., a user, a service, or unspecified task), or an activity with internal
behavior.

5.2 modeling 63

Activity

-type_a: Enumeration

-type_t: Enumeration

Batch Model

-groupedBy: DataViewDefintion

-activationRule: ActivationRule

-maxBatchSize: Integer

-executionOrder: Enumeration

Activity Instance

-lifeCycleState:

Enumeration

Batch Cluster

-lifeCycleState:

Enumeration

1..maxBatchSize

0..1

1 0..*

1 0..*

1

0..1

Figure 19: Conceptual model for batch activities represented as UML class di-
agram [72].

These concepts are extended by the batch model shown in the class
diagram of Figure 19; an activity becomes a batch activity, if it is asso-
ciated with a batch model which in turn can only be related to exactly
one activity. The internal behavior of a batch activity can consist of
activities, events, and gateways with the limitation that conditions on
exclusive gateways (type = xor) must be designed, such that all process
instances of one batch follow the same path. A batch model describes
the conditions for the batch execution, and can be configured by the
process designer. Next, we describe the four given configuration pa-
rameters:

• The groupedBy is from type DataViewDefinition and defines how
the process instances are grouped by specifying the relevant at-
tributes for identifying similar ones. We assume that process in-
stances do not change their data view during the execution of
a batch activity, i.e., no task within a batch activity updates an
attribute specified in the data view definition. If no data view
definition is provided, process instances are grouped upon their
arrival order.

• The activationRule provides the possibility to specify when a batch
of instances is enabled. The process designer selects an activation
rule type and provides the required user inputs. In case that no
activation rule is given, batch processing is optional. That means
that instances do not wait explicitly for others, but in case match-
ing partners exist, it is grouped with them. The details on activa-
tion rules are provided later in this section.

• The maxBatchSize is of type integer and limits the batch capacity
by specifying the maximum number of instances processed in a
batch. It can be used to incorporate limits of involved resources.

64 batch activity

A B

C

D

Batch Activity

groupedBy = OrdersBySameCustomer
activationRule = ThresholdRule(2 instances, 30 min),
maxBatchSize = 3

executionOrder = parallel

(a) Example Process 1.

E
Batch

Activity

groupedBy = Ø
activationRule = Ø
maxBatchSize = 3

executionOrder = parallel

(b) Example Process 2.

Figure 20: Exemplary configurations of batch activities in two abstract pro-
cesses.

• The executionOrder is of type enumeration and describes whether
instances of a batch are executed in parallel or sequential. Parallel
execution means that all instances of one task are executed simul-
taneously, and are terminated before the next task is executed the
same way. In case of sequential execution, instances of a batch
are executed one after another, but it needs only one initial setup
or familiarization phase. For batch activities being a sub-process,
sequential execution can be task-based, the sequential variant of
parallel execution, or case-based where all nodes within a batch
activity are executed for one process instance (case) before the
next instance can be started.

Each batch activity has an arbitrary number of batch clusters. A clus-
ter’s behavior (instance level) is defined by the batch model’s configu-
ration. A batch cluster is responsible for the batch execution and com-
prises a positive natural number of activity instances with maxBatchSize
specifying the upper limit. The instances of a batch are not merged into
a single one to retain their autonomy outside of the batch activity and
to allow exception handling of single instances.

Batch activity
examples

Figure 20 shows exemplary batch activity configurations for two ab-
stract processes. The batch activity in Figure 20a is a sub-process with
three activities B, C, and D. For the groupedBy parameter, the process
designer selected the data view definition OrdersBySameCustomer intro-
duced in the previous section; thus only instances which have the same
cid and address are grouped in a cluster. As activation rule, a Threshol-
dRule is chosen which activates a batch cluster either if two instances
are available, or a maximum waiting time of 30 minutes is reached. The
maximum batch size is three; as the maximum batch size is higher than
the maximal threshold, further instances can be added to the batch
cluster although it was already activated as long as the processing is
not started by the task performer. Finally, the executionOrder defines
that all instances are processed in parallel. Process 2 presented in Fig-
ure 20b illustrates an example where batch processing is conducted for
one activity with an empty groupedBy parameter. This means instances
are assigned to clusters based on their arrival time. If a batch cluster
has reached its maximum batch size, a new cluster is created as soon

5.2 modeling 65

as a new instance arrives. Further, no activation rule is given; optional
batch processing is selected. Thus, batch clusters are immediately acti-
vated, and provided to the task performer/service similar to the simple
activity execution. If further instances arrive, and the cluster was not
executed yet, then instances can still be added to it.

In the next subsection, we provide details on the activation rule.

Batch Activation Rule

As described, the process designer selects an activation rule type for
a batch model, and configures it with the required user inputs. Speci-
fying the activation rule requires to find an optimal trade-off between
reduced execution cost and increased waiting time. The optimal con-
figuration settings are derived from expert knowledge, simulations, or
statistical evaluations.

We assume that business process management system (BPMS) sup-
pliers provide different types of activation rules in advance. In this
section, the general concept of batch activation rules, and four different
types of rules are introduced, two versions of the threshold rule and two
extensions of it. The threshold rule is an often considered rule in queuing
theory which states that a batch is started, when the length of the wait-
ing queue with customers is equal or greater than a given threshold (i.e.,
a value between one and the maximum server capacity) and the server
is free [70]. This rule can be extended by a maximum waiting time, such
that a group smaller than the set threshold is also served. Further, in
this section, an extension of the threshold rule is discussed to consider
also instances arriving in future, and an activation rule considering a
fast track option is shown.

In general, an activation rule relies on the concept of Event-Condition-
Action (ECA) rules. Originally, ECA rules were used in active database
systems [19]. Basic elements of an ECA rule are an event E triggering
the rule, a condition C which has to be satisfied, and an action A being
executed in case of fulfillment of the condition [51].

Definition of the
batch activation rule

Thus, we define an activation rule as a tuple E×C×A:

• An event E is either an atomic event or a composite event being
a composition of atomic events through logical operators, as for
instance AND or OR. Differently to the preliminaries, here we
focus on internal system events of the process engine, such as a
change of the batch cluster size, or a specific time event.

• A condition C is a boolean function. The input elements to such
a function can be system parameters (e.g., actual length of waiting
queue), user inputs (e.g., threshold), or a combination of both
(e.g., total service costs = (variable costs ∗ actual length of wait-
ing queue) + constant costs) connected by a relational expres-
sion. The composition of several atomic conditions with logical
operators is called composite condition.

66 batch activity

• The action A is always the enablement of the associated batch
cluster.

An example for the batch activation rule, the threshold rule, is given
below.

Threshold rule 1 Act ivat ionRule ThresholdRule
On Event

(bc . s i z e _ increased) OR (timer _ event)
I f Condition

(bc . s i z e > THRESHOLD)OR
6 (bc . l i f e t i m e > MAXWAITINGTIME)

Do Action
Enable bc

End Act ivat ionRule �
Listing 1: Threshold rule to exemplify the batch activation rule.

In this activation rule in Listing 1, the user inputs are indicated by
capitals. It consists of a composite event saying that the rule is triggered
when a new activity instance is added to the associated batch cluster bc
or when no new one was added for a specific period, such that a timer
event is fired. With triggering the rule, the given composite condition
is checked. It states that either the batch cluster size has to be equal or
greater than the user-specified threshold, or the lifetime of bc has to be
equal or greater than the user-specified maximum waiting time. If the
condition evaluates to true, bc gets enabled (i. e., activated).

Threshold rule with
due date

Next, we want to discuss an alternative variant of the threshold rule.
In some scenarios (e. g., in SC-1), we could observe that processed data
artifacts can have a due date until when they need to be handled, e. g.,
blood samples have an expiration time.
1 Act ivat ionRule ThresholdRule

On Event
(bc . s i z e _ increased) OR (timer _ event)

I f Condition
(bc . s i z e > THRESHOLD)OR

6 (system . time > (bc . dueDate − BUFFER))
Do Action

Enable bc
End Act ivat ionRule �

Listing 2: Threshold rule with due date.

The due date could be considered in the threshold rule by adapting
line 6 as done in Listing 2. This line compares instead of maximum
waiting time, the current system time with bc.dueDate being the due
date of the batch cluster from which a Buffer (i. e., a given time du-
ration by the user) is subtracted. The due date of a batch cluster is
defined by the earliest due date of its containing activity instances. The
buffer is subtracted from the due date such that the batch can be still
processed before its due date is reached.

The threshold rule in its current design has the disadvantage that
it only considers instances which are already contained in the batch
cluster. Instances which might arrive in future are not taken into ac-

5.2 modeling 67

count. Therefore, we want to extend the current threshold rule, such
that running instances which still have to pass the batch activity are
considered as well. This information may be integrated into the event
or condition definition of an activation rule. In Listing 3, we provide
the so-called MinMax activation rule which considers the existence of
future instances in its condition.
1 Act ivat ionRule MinMaxRule

On Event
(bc . s i z e _ increased) OR (timer _ event)

I f Condition
((Minimum condi t ion) AND ! (S i m i l a r P I ())) OR

6 (Maximum condi t ion)
Do Action

Enable bc
End Act ivat ionRule �

Listing 3: MinMax rule as extension to consider future instances.

MinMaxRuleThis rule activates a batch cluster, if a minimal number of instances
are assigned to it, and no other similar instance exist which can arrive at
the activity in a future state (i. e., batch activity instance of the process
instance is still in state init). Otherwise, if at least one process instance
with the same data view can be observed, the activation is postponed
until the maximum condition is fulfilled. Similar to the ThresholdRule,
the MinMaxRule triggers the check of the condition, if the size of the
batch cluster bc is increased, or when no new one was added for a spe-
cific period, such that a timer event is fired. The condition is a logical
expression requiring that either the minimum condition is true while
there exists no other instance with the same data view, or the maximum
condition is true to trigger the action. The existence of other process in-
stances is checked with function SimilarPI(). The function first creates
the data views for all running process instances whose batch activity
instance is still in state init, and then assigns each one to a data view
cluster. If there exists a data view cluster with the same data view as
the batch cluster bc, the function returns true. The configuration of the
maximum and minimum conditions is similar to the threshold rule, but
is up to the process designer. We propose to include timing constraints
in order to avoid deadlocks.

FastTrackRuleThe general case discussed so far assume that the execution of a sin-
gle activity instance can be postponed in favor of optimizing the overall
business process. However, some cases may require an immediate exe-
cution of an activity instance. For instance, if the blood sample analysis
is part of an emergency case, the analysis must be started as soon as
the blood sample is received. However, this does not mean that already
waiting blood samples which fit the same batch cluster as the emer-
gency case are ignored. Instead, the analysis of all blood samples of
this cluster should be started immediately. The fast track option can be
included in the activation rule. An example of such a rule is shown in
Listing 4.

68 batch activity

1 Act ivat ionRule FastTrackRule
On Event

(bc . s i z e _ increased) OR (timer _ event)
I f Condition

((dataView (ATTRIBUTES , i _ a i) = VALUES) OR (. . .)
6 Do Action

Enable bc
End Act ivat ionRule �

Listing 4: Activation rule with fast track option.

For the given activation rule, the process designer provides a data
view definition Attributes and defines the expected values as Values.
This defines the data characteristic of instances for activating the fast
track option. If the activation rule is activated by one of the specified
events, then the data view function is called with the given data view
definition Attributes and the process instance iai being parent of the
last assigned activity instance ai. The resulting data view is compared
to the Values. In case both values are overlapping, the batch cluster
is enabled. For instance, if Attributes = Order.priority and Values

= high are given for our retailer example, then process instances pro-
cessing a ’high priority’-order would enable batch clusters. The activa-
tion rule can have further conditions.

The different presented rules show that the activation rule which is
based on ECA rules is a flexible concept based on which different types
of activation rules can be provided.

Application to Process Modeling Languages

In the remainder of this section, it is described how the batch activity
concept can be integrated into a process modeling language on the ex-
ample of the BPMN standard [71] which dominates the process model
standard space. Additionally, it is discuss how it can be added to other
control-flow oriented process modeling languages as UML Activity Di-
agrams and EPCs.

Integration into
BPMN

In section Section 4.1, it is shown that with the existing BPMN mod-
eling elements batch processing can not be precisely specified. In the
BPMN specification, the Activity class being the abstract super class
for all concrete Activity types in BPMN has currently no possibility
to define batch activities. Therefore, additional properties have to be
added to it.

As described in the preliminaries in Section 2.2, the BPMN specifi-
cation [71] supports explicitly to add new attributes and properties to
existing constructs by so-called extensionElements. The data class di-
agram in Figure 21 shows a small extract of the Activity class from
the BPMN specification. Each BPMN activity can contain a set of
modeler-defined Properties. For extending the BPMN specification, a
BatchActivity-class is added which inherits from the Property-class,
and consists of the previously introduced configuration parameters.

5.2 modeling 69

Activity Property

- name:String

BatchActivity

- name: String

- activationRule: ActivationRuleType

- maxBatchSize: Integer

- executionOrder: {parallel, sequential}

groupedBy

- name:String

dataViewElement

- name:String

- dataAttribute:String

<<Interface>>

ActivationRuleType

- UserInputs: Map

Figure 21: Batch activity configuration integrated into BPMN specification:
small excerpt from the BPMN specification [71] extended by the
batch activity class (shown in blue lines).

The attributes of the BatchActivity-class are an activationRule which
references an ActivationRuleType-interface. This interface can be used
by different types of activation rules which can be specified (e. g., a
ThresholdRule, a FastTrackRule etc.). Further, the maxBatchSize-attribute
being from type Integer can be used to define the maximum number
of instances being allowed in a batch, and the executionOrder-attribute
can be used to either select a parallel or sequential batch execution. Addi-
tionally, a groupedBy-class is associated to the BatchActivity-class for
specifying dataViewElements, each of them referencing a data attribute.

After introducing the general concept of extending BPMN by batch
activities, we also want to show how the batch activity configuration
can be integrated in the interchangeable BPMN XML specification. In
Listing 5, a proposal is shown on the exemplified sub-process given
in Figure 20a. The extensionElements of the sub-process include a
batch activity element Several data view elements can be added to the
groupedBy-parameters (cf. line 5-6 in Listing 5). For the activation rule,
a rule with its specific inputs has to be selected. The inputs are specified
as properties in the selected activation rule (cf. line 9 in Listing 5). The
maxBatchSize and the executionOrder are simply defined as elements.
The presented extensionElements can be also added to BPMN tasks,
such as a user task, service task etc.

70 batch activity

<bpmn:subProcess id="Task_0z95iaa" name="Batch Activity">

2 <bpmn:extensionElements>

<batch:batchActivity>

<batch:groupedBy>

<batch:dataViewElement>Order.cid</batch:dataViewElement>

<batch:dataViewElement>Order.address</batch:

dataViewElement>

7 </batch:groupedBy>

<batch:activationRule>

<batch:thresholdRule threshold="2" timeout="PT30M"/>

</batch:activationRule>

<batch:maxBatchSize>3</batch:maxBatchSize>

12 <batch:executionOrder>parallel</batch:executionOrder>

</batch:batchActivity>

</bpmn:extensionElements>

<...>

</bpmn:subProcess> �
Listing 5: Batch activity representation in the BPMN XML shown on an

example sub-process.

Integration into
UML and EPCs

In a similar way, also UML Activity Diagrams [72] can be extended.
The UML standard also provides an extension mechanism; in a so-
called Profile, meta-classes can be extended to adapt them for different
purposes [72]. The batch activity can be integrated by designing a pro-
file in which a Batch Activity would be defined as new stereotype
(i. e., “defines an extension for one or more meta-classes, and enables
the use of specific terminology or notation in place of, or in addition to,
the ones used for the extended meta-class"’[72]).

Event

received

A

A finished

Batch

Activity

Batch

Activity

finished

groupedBy = OrdersBySameCustomer
activationRule = ThresholdRule(2 instances, 30 min),
maxBatchSize = 3

executionOrder = parallel

Figure 22: Integration of the Batch Activity
in EPC shown on the exemplified
process given in Figure 20a

meta-classes” [72]) This Batch
Activity-stereotype would
then inherit the attributes
and restrictions from the
Activity meta-class, and
include the batch configu-
ration parameters as dis-
cussed above. EPCs [98] are
another often used process
modeling language, how-
ever their focus is rather re-
lated to a semi-formal pro-
cess documentation than a
formal process specification
[130]. EPCs do not provide
an explicit extension mecha-
nism. The modeling language of EPCs consists of events (shown as
hexagon), functions (shown as rectangles), and connectors (shown as

5.3 execution semantics 71

circles) which are connected via control flow. As functions represent
the unit of works, those can be used and extended visually by the batch
configuration parameters as illustrated in Figure 22. This does not allow
an automatic batch execution, but it can be used as a starting point for
discussion with other process stakeholders.

Summarized, we applied the introduced batch activity concept to
BPMN, and also discussed how an application would look like for UML
Activity Diagrams and EPCs. Thereby, the feasibility of the concept
could be shown. Currently, we focused on control-flow orientated pro-
cess modeling languages; flexible process modeling languages, such as
Case Management Model and Notation (CMMN) [73] and declarative
workflow modeling [119] are not discussed so far. The listed languages
also have the notion of activities and activity instances, such that an
integration seems to be possible which need to be further analyzed.

5.3 execution semantics

This section discusses the execution semantics of a batch activity. Thereby,
the execution semantics for a batch activity being a user task, a ser-
vice task or a sub-process is presented. First the execution semantics
is explained on an example. Then, the lifecycle of a batch cluster is
described, followed by the execution details for batch activities with an
internal behavior.

Take items
out of
stock

Pack order

Order
received

[ready]

BC2 – CID14,Street 5

[init]

[maxloaded] [running] [terminated]

Task
performer

BC3 – CID12, Teststreet 2

[init]

offer BC execute BC

Ship order

[init]

PI1
PI4

PI2

BC1 – CID12, Anystreet 1

Batch Activity

groupedBy = OrdersBySameCustomer
activationRule = MinMax (min(2 instances, 15min),
maxBatchSize = 3 max(3 instances, 30 min))

executionOrder = parallel

Figure 23: Execution semantics of the batch activity exemplified on a con-
densed version of the online retailer process.

Exemplified execution semantics

Figure 23 illustrates the online retailer example in a condensed version.
In this example, batch processing is used to pack orders of the same
customer in one parcel and send them together in order to save ship-

72 batch activity

ment costs. Hence, the batch activity consists of two activities. For
the groupedBy-parameter, the process designer selected the data view
definition OrdersBySameCustomer as introduced in Section 5.1. Thus,
the process instances are grouped based on the customer ID and the
shipping address of their processed Order object. Furthermore, the Min-
MaxRule is selected with two instances or 15 minutes for the minimum
condition, and three instances or 30 minutes for the maximum condi-
tion. The capacity (maxBatchSize) of a batch cluster is set to three.

If a process instance, e. g., PI5, reaches the batch activity, its execution
is interrupted by transferring the activity instance into the disable state;
a disabled activity instance is temporarily deactivated (cf. Section 2.4).
Then, the batch activity configuration is evaluated. If the groupedBy-
parameter is specified, the data view of the process instance is created
and it is added to the corresponding batch cluster. In the given example,
OrderingBySameCustomer is specified as groupedBy-parameter leading to
the data view CID12, Anystreet 1 for process instance PI5. It is as-
signed to the batch cluster BC1 sharing the same data view. If a process
instance does not match to any, such as the second arrived instance PI3,
a new batch cluster is created, and initialized, here BC3 with CID12,

Teststreet 2 as data view.

Batch cluster life cycle

For batch clusters, we define a life cycle similar to the activity instance
life cycle (cf. Section 2.4) to describe the steps of the batch cluster’s
execution.

init ready running

initialize enable begin

terminated

terminate

maxloaded

reach

maxBatchSize
begin

Figure 24: Life cycle state transitions of a batch cluster.

Figure 24 summarizes the states of a batch cluster, and the transitions
between them. In the following, these are described in detail, thereby,
we start with the explanation for a batch activity being a single task and
extend this to batch sub-processes afterwards:

• init - Upon arrival of an activity instance requiring a new batch
cluster, it gets initialized by transitioning to state init, where arriv-
ing instances sharing the same data view can now be assigned to
the cluster. In the init state, the activation rule is checked, e. g., in
case of instance addition, or after a certain time duration.

5.3 execution semantics 73

• ready - As soon as the predefined activation rule is fulfilled, the
batch cluster transfers into the ready state. In case no activation
rule was defined, the batch cluster transitions immediately from
init to ready. If the batch activity is a user task, the batch cluster
is offered as work item to the task performer. In case of a service
task, the batch cluster aggregates the input to the service for its
containing activity instances. It then calls the service with the
aggregated input. Newly arriving activity instances can still be
added to a batch cluster in state ready. Then, the service request
is repeated with the new aggregated input.

• maxloaded - If a cluster has reached the maxBatchSize, the cluster
transfers into the maxloaded state. In this state, no instance can
be added to the cluster anymore. A batch cluster can also change
from init to maxloaded, if already in init the maximum capacity of a
cluster is achieved. This state transition ensures flexibility for the
activation rule definition, because certain rules might not focus
on the number of instances, e.g., start at 4pm. Also in this case,
the batch cluster is provided to the respective software service or
to the task performer.

• running - Once the batch cluster is allocated to a service or task
performer, they may start with its execution. Then, the batch clus-
ter transitions into the running state. Also in this state, no instance
can be added anymore. The instances of a cluster can be either ex-
ecuted in parallel, or in sequence depending on what the process
designer has defined as executionOrder. In case of user task, a batch
work item is generated for the parallel execution which aggregates
the work items of all activity instances of a cluster allowing a joint
visualization and execution in one step.

• terminated - As soon as the batch work is completed, the clus-
ter changes into the terminated state. Then, the resulting data of
the batch work item or the service call is distributed to each in-
dividual activity instance which are terminated, too. In case of
sequential execution, the batch cluster terminates as soon as the
last instances of the batch was processed. With termination of the
cluster, the process instances continue their execution individually
for the control flow nodes after the batch activity.

Assignment of
instances to batch
clusters

After having introduced the life cycle of a batch cluster, next, an algo-
rithm is presented in Algorithm 3 (as an extension of Algorithm 2) for
assigning activity instances of a batch activity to batch clusters:

Algorithm 3 takes as input an activity instance ai, the currently avail-
able batch clusters Q, and the data view definition X referenced in the
groupedBy-parameter. First, a boolean variable foundCluster is initial-
ized with false. Then, if Q is not empty, the data view of each cluster
q ∈ Q is compared to the data view of the process instance iai, parent of

74 batch activity

Algorithm 3 Algorithm for adding an activity instance ai to a batch
cluster
Input: ai, Q, X
foundCluster← false;
if Q not empty then

for each q ∈ Q do
if dataView(X, iai) == dataView(X,γ(q)) then

if lifeCycleState(q) = INIT || READY then
q← {ai};
foundCluster← true;
break;

end if
end if

end for
end if
if foundCluster == false then

initialize batch cluster c;
c← {ai};
Q← {c}

end if

the activity instance ai, with the help of the data view function. If they
are equal, the state of this cluster has to be checked, because instances
can be only added, if the cluster is in state init or ready. If this is the
case, the instance ai is added to the currently selected q, and the loop
is interrupted. If no existing cluster could be identified for adding ai,
cluster c is initialized, and instance ai is added to c. Finally, c is added
to the set of existing clusters Q.

Let us come back to the presented example in Figure 23. With process
instances PI1, PI2, and PI4 having already arrived at the batch activity,
the batch clusters BC1 and BC2 are in state init. Checking the activa-
tion rule for cluster BC1 reveals that the minimum rule is satisfied but
evaluating function SimilarPI() shows that there is another instance
running with the same data view – PI5 The maximum condition with
three arrived instances is not yet satisfied; thus, the activation rule is not
yet fulfilled. The arrival of PI5 adds this instance to cluster BC1. The
batch cluster changes into state ready, because the maximum condition
is now satisfied.

Batch work item In the ready state, the batch cluster is offered – in case of a user task
– to the task performer of the first task in the batch sub-process. In this
example batch configuration, parallel execution was selected; thus the
instances of the batch cluster are provided as batch work item to the
task performer. In case of sequential execution, only the work item of
the first instance is given. We propose that a batch is assigned to the
same employee for all user tasks within the batch sub-process (i.e., case
handling resource pattern [95]) to ensure that the batch is performed
uninterruptedly. However, other resource allocation patterns can also
be applied.

5.3 execution semantics 75

As the arrival of PI5 also satisfies the maxBatchSize of three, the state
is transitioned to maxloaded, and no further instance addition is allowed.
With termination of the first user task Pack order, the results of the activ-
ity are distributed to batch cluster’s instances, and the activity instances
are terminated. However, the batch cluster is not terminated, because
the batch activity is in this example a sub-process. The batch cluster
creates also for the Send order-activity a batch work item for the task
performer. Details on the execution of a running batch cluster over
several tasks are given in the next subsection. The batch cluster’s state
changes to terminated as soon as all control flow node instances of the
batch sub-process instances assigned to the cluster have terminated.

Execution details for batch sub-processes

In this subsection, more execution details starting from the enablement
of a batch cluster are given for the case that the batch activity is a sub-
process. Additional details on the execution of batch activities being a
user task as well as a service task are also provided.

With the configuration parameter executionOrder, the process designer
selects the type of batch execution. They may choose parallel as in the
previous example, sequential per activity, or sequential per case. Their dif-
ferent execution behaviors are illustrated as simplified UML Sequence
Diagrams in Figure 25, Figure 26, and Figure 27 using an example
where two process instances are synchronized within one batch cluster.

Task
Performer/

Software Service

Batch
Cluster

PI1.AI1
PI2.AI1

re-enable()

aggregate() provide

batchInput()

terminate(R)terminate(Ri)

start()

PI2.AI2e
n
a
b
le
()

aggregate()

PI1.AI2

provideData()

start()

provideData()

provide

batchInput()

Figure 25: Parallel execution of two in-
stances.

parallel execution. In
parallel execution, if a batch
cluster is enabled (or it is
maxloaded), then the batch
cluster re-enables its assigned
instances. This is shown
in Figure 25 where the dis-
abled instances PI1.AI1 and
PI2.AI1 of the first activity in
the batch sub-process are re-
enabled, one of each assigned
process instance PI1 and PI2.
With enablement, an activity instance would usually execute directly
its activity behavior (i. e., in the case of a user task creating a work item
for the task performer, or in case of a service task doing a service call).
Here, the batch cluster acts as interface between the activity instances
and the task performer (or the service) to organize the batch execution.
Thus, each activity instance provides its input data to the batch clus-
ter. The batch cluster aggregates this input data of all instances and
provides it as batch input to the task performer (or software service).

To detail this, in case of a user task, the batch cluster aggregates
the data input of the activity instances into one batch work item, and

76 batch activity

provides it to the task performer for parallel execution.Batching of user
tasks vs. service

tasks

In case of a
service task, the data input is aggregated into a format that the service
can handle. Here, two cases can be differentiate:

• If the software service can handle only one input and batching is
used to get the results for several similar requests, then the service
is only called with one of the data inputs which should be the
same for all activity instances in a cluster.

• If the service can handle multiple inputs, and batching is used to
reduce the number of calls of a service, then an aggregated input
for the service is generated.

As soon as the task performer starts the batch work item or the
service starts working on the requests, all activity instances are tran-
sitioned into the running state by the batch cluster. With termination of
the batch work item (or the service), the combined result R is sent to
the batch cluster. The cluster, then, provides each activity instance with
the individual outputs Ri of the task execution. The activity instance
is terminated which results in activation of its outgoing sequence flow
leading to the enablement of the subsequent activity instances – PI1.AI2
and PI2.AI2 in Figure 25. These instances again provide their data in-
puts to the batch cluster and the above described steps are repeated
until all control flow node instances of the batch activity are terminated.
Then, also the batch cluster terminates.

Task
performer/

Software service

Batch
Cluster

PI1.AI1
PI2.AI1

re-enable()

provideData()

provide(PI1.AI1)

terminate(R)

start()

terminate(R)

start()

terminate(R)

provide(PI2.AI1)

terminate(R)

generateList()

start()

start()

e
n

a
b
le

()

provideData()

PI1.AI1
PI2.AI1

generateList()

Figure 26: Sequential per activity execution.

sequential-per-case exe-
cution. Similarly to the par-
allel execution, in the sequential
per activity execution, shown in
Figure 26, the batch cluster re-
enables all disabled instances of
the first node. Again, all data
inputs of the activity instances
are provided to the batch clus-
ter. This time, they are ar-
ranged in a list specifying the
order in which the batch clus-
ter provides the work items
one after another to the task
performer (or in which order the service is called). In Figure 26, first,
the work item (or the service input) of activity instance PI1.AI1 is pro-
vided. With its termination, the first activity instance of the next process
instance is provided – PI2.AI1. When all instances of the first activity
are terminated, and the data inputs of the subsequent activity are pro-
vided to the batch cluster, a new list is generated specifying the order in
which the instances of the second activity are processed. This continues
for all activities in the batch activity.

5.4 user involvement 77

sequential-per-activity execution. In the sequential per case

Task
performer/

Software service

Batch
Cluster

PI1.AI1

re-enable()

provideData()
provide(PI1.AI1)

terminate(R)
start()

terminate(R)

PI1.AI2

...

provideWorkItem()

provide(PI2.AI1)

start()

PI2.AI1
re-enable()

provideData()

...

provide(PI1.AI2)

e
n
a
b
le
()

Figure 27: Sequential per case execution.

execution, shown in Figure 27,
all nodes in the batch activ-
ity are executed for the first
process instance assigned to
the batch cluster, before the
nodes of the second process in-
stance can be started. Thus,
only the disabled activity in-
stance PI1.AI1 of the first pro-
cess instance PI1 is re-enabled
by the batch cluster. Then, the
batch cluster provides the work
item/service input of PI1.AI1
to the task performer/software service. If it is finished, the work item of
the subsequently enabled activity instance PI1.AI2 of the same process
instance is provided. When all nodes of the first process instance PI1 are
terminated, the disabled activity instance PI2.AI1 of the second process
instance PI2 is enabled by the batch cluster, and all activity instances
of this process instance are processed as described above for the first
process instance. The batch cluster terminates, if all assigned process
instances are processed.

5.4 user involvement

The previous chapter – the requirements analysis – revealed that user
involvement is desired in certain use cases during batch assignment,
during the batch activation, or in the batch scheduling. In this section,
we want to discuss where and how user involvement can be incorpo-
rated in the presented concept.

Currently, task performers get presented, in case of a user task, the
batch cluster in the user interface, when it is in state ready. Then, they
can start it at any time. In case of a service activity, the batch cluster is
not visible. In the following, we mainly discuss involvement strategies
explicitly for user tasks; however, they can be also applied to service
tasks. In case of service tasks, it has to be additionally defined which
resource is responsible to monitor the batch clusters, e. g., the process
owner.

Different options of
user involvement

For different user involvement strategies, the state in which the batch
cluster can be accessed by the task performers can be different (i. e.,
init, ready, running) which has different implications being shown in
Figure 28. The earlier a batch cluster is shown to a task performer, the
more the user is involved. Further, the actions by task performers on
batch clusters can be strengthened or limited. Thereby, we differentiate
two basic actions by task performers: they can start the batch execu-

78 batch activity

tion, or can adapt a batch cluster (cf. Figure 28). Next, the user action
possibilities per state, in which a batch cluster can be, are discussed.

Implication Implication

RUNNING
Batch cluster is

only auto-started

With fulfillment of

activation rule, batch

cluster is auto-started

- no adaptation allowed

READY - can exclude instances
Excluded instance(s) are assigned to

another batch cluster

- can join batch cluster

with another one, if max

BatchSize is not reached

Add instances of the other cluster

to the selected one and delete it

INIT

Task performer

can start batch

cluster at any

time after its

initialization

Batch cluster can also

transition from init state

into running state

- can add future arriving

instances for which the

batch cluster has to wait,

if maxBatchSize is not

reached

Batch cluster has to check, whether

assigned future instances might still

arrive. Despite the activation rule

might be fulfilled, batch cluster is

only enabled, if future instances

have arrived.

State in which

batch cluster

is shown

Degree of

user

involvement

Task performer

can start batch

cluster at any

time

Start batch cluster Adapt batch cluster

Actions of user involvement

Figure 28: Possibility for user involvement in different states of a batch cluster
and their implications - the current configuration is shown in bold.

The latest point in time in which a batch cluster can be presented to
a task performer is in its running state. In this case, the batch cluster
has to be allocated to a resource, and is then, auto-started similar to
Commencement on Allocation resource patterns described in [95]. The
task performer has to immediately start with its execution. Currently,
the batch cluster is provided as soon as the activation rule is fulfilled
(i. e., in the ready state). Here, users can decide for themselves, when
to start with the execution. For increasing the user involvement, the
batch cluster could be already shown when it is initialized (i. e., in the
init state). Then, users can decide on their own when the most optimal
point in time is to start a batch. Thereby, they are still supported by the
BPMS which indicates whether the batch cluster is still init or already
ready.

No matter which state a cluster has, BPMS providers can configure
to which extent the task performers are allowed to adapt a batch cluster.
Currently, no adaptations are allowed on the batch cluster. Additionally,
we differentiate three adaptation possibilities:

• users can exclude instances from a cluster,

• they can join a cluster with another one, or

• they can add process instances which arrive in future at the batch
activity.

When allowing users to exclude instances from a batch cluster, these
instances need to be assigned to a different cluster which is still not
maxloaded, running or terminated. If no fitting cluster exists, a new one
has to be initialized. For allowing task performers to join different
batch clusters, it has to be ensured that the join does not contradict the

5.5 conclusion 79

maxBatchSize. For joining the two clusters, instances of one batch cluster
are added to the other one and the selected one is deleted. For the last
option in which users can add future arriving instances on which the
batch cluster has to wait, the batch cluster is obliged to check regu-
larly whether the assigned future instances might still arrive. Future
instances can only be assigned, if the maxBatchSize is not reached, yet.
With adding future instances, the batch cluster, despite the activation
rule might be fulfilled, is only enabled, if they have arrived.

In this section, different options for involving users in the batch
assignment, activation, and scheduling were presented. However, in-
creasing the user involvement is also connected with certain risks. For
instance, batch cluster adaptations could lead to errors or the opti-
mization potential is not fully used anymore. We assume that BPMS
providers configure the batch activity in their process engine based on
their customer requirements. A possibility might be to provide differ-
ent kinds of batch activities, such as an automatic batch activity with less
user involvement, and a user-involved batch activity with more adapta-
tion possibilities for the task performers.

5.5 conclusion

This chapter presented the main concept of the thesis – the batch activ-
ity. A batch activity is a new process modeling element with several
configuration parameters and with an own execution semantics to sup-
port its automatic execution in a BPMS. Additionally, data views were
introduced for characterizing process instances based on their data, and
identifying similar ones. Data views were used, in case of the batch ac-
tivity, to group and cluster process instances in specific batches. The ac-
tivationRule – the configuration parameter to activate a batch for execu-
tion – was discussed in detail, because this rule is essential for balancing
between the overall cost reduction by batch processing, and the possible
increase in cycle time for a single process instance. It is based on the
general concept of ECA rules to enable a flexible design. In the course
of this chapter, several examples of activation rules were presented, e. g.,
the threshold rule known from queuing theory, and extensions of it to
consider also future instances or a fast track option. At the end of this
chapter, different user involvement options during batch creation and
execution, and their implications on the concept were presented. Here,
it was shown that the batch activity concept supports automatic as well
as user-involved batch activities in business processes.

Next, we want to compare the presented batch activity concept to re-
lated research work based on the requirements framework. The com-
parison is shown in Figure 29. Thereby, we have focused on the works
presented in [53, 69, 78, 96] which aim at improving the process perfor-
mance by extending it with batch processing.

80 batch activity

Sadiq et al. 2005

[96]

Liu et al. 2007

[53]

Natschläger et al.

2015 [69]

Pflug et al. 2016
[78]

Batch activity concept

Process Model

R1.1 Involved activities single single single multiple multiple

R1.2 Involved processes single single single single single

Batch Creation

R2.1 Optionality - - + - +

R2.2 Grouping - + + + +

R2.3 Instance scheduling not defined FIFO FIFO FIFO FIFO

R2.4 Resouce capacity - + + - +

R2.5 Batch assignment user-/auto-invoked auto-invoked auto-invoked auto-invoked user-/auto-invoked

Batch Execution

R3.1 Activation mechanism - auto-invoked auto-invoked auto-invoked user-/auto-invoked

R3.2 Batch scheduling user-initiated auto-initiated auto-initiated auto-initated user-/auto-initiated

R3.3 Execution strategy parallel parallel parallel sequential parallel/sequential

Context

R4.1 Adoption

- - - -
fast track option, user

involvement strategies

R4.2 Variability - - - - -

Figure 29: Comparison of existing batch processing solutions based on the re-
quirements framework.

With regards to the Process Model category, it can be observed that
most related research works focused so far on single activities, only
Pflug et al. [78] considers sequences of activities. We have extended
this to batch processing over a set of connected activities, including
also concurrent behavior. However, all existing solutions including the
presented one are currently bound to single business processes.

Regarding the Batch Creation category, the developed batch activity
concept supports all mentioned requirements; thereby, we want to high-
light the following aspects: Optionality is supported by the batch activ-
ity, if no activation rule is defined. Then, each arriving instance is
compared with other enabled activity instances of the batch activity,
and in case of matching partners, those are executed by one cluster.
Natschläger et al. [69] considers also possible future instances which
might arrive. If future instances assigned to a batch do not arrive any-
more, the batch simply stops waiting in their concept. In this chapter,
the MinMaxRule is more flexible in this regards; it waits for any similar
future instance as long as the maximum timeout is not reached. If the
future instances are not available anymore, the threshold is lower and
can lead to an immediate activation of the respective batch cluster. As
given in Figure 29, almost all given solutions support the grouping of
process instances into specific batches. Whereas in [53, 69] as well as in
the work of this thesis the grouping constraints are defined at design
time, in [78] instances are dynamically grouped for each batch assign-
ment. Dynamically grouping requires a clustering algorithm which
leads to meaningful results for the respective use case. Finding the most
useful clustering algorithm and its correct specification is connected
with high effort. We decided for a static grouping mechanism, because
we observe in the collected use cases presented in Section 4.1 that the
grouping parameters are usually known before, e. g., by customer, by
country, by responsible employee. With the presented dataView-concept,
the grouping parameter can be quickly defined by process designers.
Regarding the batch assignment, the approaches by [53, 69, 78] follow an

5.5 conclusion 81

auto-invoked batch assignment approach, because they want to ensure
the efficient generation of batch clusters with the support of technol-
ogy. Additional to that, this chapter discussed different possibilities
for users to adapt batch clusters. In [96], batches are either generated
by a system or created by the users whereas we suggest a combined
approach where the system proposes batch clusters which users might
adapt.

The Batch Execution category includes the batch activation mecha-
nism. The activation mechanism is essential for batch processing as
it defines when to activate a batch cluster to balance cost reduction and
waiting time. For supporting effective batch processing in business pro-
cesses, almost all solutions provide an auto-invoked batch activation. In
the work by [53, 77], batch activation is connected with the batch assign-
ment, because scheduling algorithms are used. As soon as a resource is
free, instances are assigned to batches from which a batch is scheduled
on the resource, and immediately activated. However, it assumes that
resources executing the batch are only involved in the batch activity. In
practice, task performers are usually responsible for different activities
in several processes. Therefore, in the batch activity concept presented
in this chapter, batch clusters are created and activated independently
from the resource availability similar to the concept of work items in
BPMSs [130]. Thereby, activation rules are based on ECA rules and can
be flexibly designed. We assume that the activation rules are defined by
the BPMS vendors which have the technical expertise and an overview
about different use cases from their customers. Process designers in
turn can select between different provided activation rules, and only
have to fill out requested inputs without taking care about the techni-
calities. In contrast, in [69], Natschläger et al. request process designers
to specify a complex optimization function and constraints.

Additionally to the auto-invoke mechanism, this work also discusses
the possibility that users can start batch clusters on their own, if a
use case scenario requests more flexibility in the batch activation. In
this presented batch activity concept, batch clusters are allocated af-
ter their activation to task performers similar as work items. It al-
lows that batch clusters can be allocated based on different resource
allocation patterns [95]. Based on the selected resource allocation pat-
tern, task performers could either individually organize their queue of
batch work items, or it can be organized by the BPMS. Therefore, the
presented batch activity allows auto-invoked, as well as user-initiated
batch scheduling in contrast to the other works. Furthermore, the batch
activity supports both batch execution strategies, whereas other solu-
tions either support parallel or sequential batch execution (cf. Figure 28).

Regarding the Context category, existing works have not discussed
flexibility aspects in batch processing. In this chapter, first flexibility
aspects were introduced. Currently, the adaptation of a batch activity
by considering special cases with a fast track option in the batch activa-

82 batch activity

tion and allowing users to adapt batch clusters. Wong et al. present in
[135] a technique to monitor batch activities and exceptions in manual
process environments, or environments with heterogeneous IT-systems.
However, they do not discuss how to react and handle changes in pro-
cess environment automatically in the batch creation and execution.

Based on the above given discussion of the presented batch activity
concept in comparison to other solutions, we can derive two important
directions for future research. On the one hand, the enlargement of
flexibility aspects during batch processing, and on the other hand, the
extension to multi-process batch processing. In the following chapters,
extensions of the developed batch activity concept are presented which
target these two aspects.

Part III

E X T E N D E D C O N C E P T S

6
F L E X I B L E B AT C H C O N F I G U R AT I O N W I T H E V E N T S

The previous chapter presented the batch activity concept to enable batch processing
in business processes. Several configuration parameters allow the process designer to
individually setup the batch execution. However, specifying the rules at design time

does not always guarantee optimal batch execution, since changes in the process
environment represented by events occurring during process execution might

influence it. Reacting on these events and changing the specified configuration
parameters is required for increasing the process flexibility. In this chapter, event

processing techniques are applied to the batch activity to react on relevant changes.
Therefore, batch adjustment rules are introduced and their integration in the BPMS

architecture is given. The application of batch adjustments to a healthcare use case in
a simulation implicates that they help to compensate losses caused by the exceptional
behavior. This chapter is based on the published paper “Flexible Batch Configuration

in Business Processes based on Events” [88].

Changes in the
process environment
might influence
batch processing

Events represent “real world happening occurring in a particular
point"’ [38]. They indicate and inform about changes or exceptions
in the business process environment. The sensing and observation of
events is important for business processes to allow an adequate reaction
on changes [55].

Events may also influence the execution of batch activities. For ex-
ample, in the online retailer example, if a certain parcel size is not
available anymore, the maximum batch size should be reduced. As
the rules for batch execution are defined at design time, a batch activity
cannot react flexibly on such events. Task performers might observe
such changes and might adapt batch clusters, if necessary, based on
the user involvement strategies introduced in Chapter 5. This approach
is driven manually and highly depends on the amount of time which
users have to observe batch clusters. Therefore, this chapter aims at an
automatic support. It introduces a concept to apply event processing
techniques [29] to batch activities to allow flexible adjustments of the
batch configuration based on run time changes. Event types are selected
at design time that trigger an adjustment of certain batch clusters at run
time.

This chapter provides (i) an overview on how events can change each
batch configuration parameter, and (ii) a concept which allows the flex-
ible adaptation of the batch activity configuration triggered by an event
occurrence.

The chapter is structured as follows. Section 6.1 presents a motivat-
ing example originating from a real world scenario of the healthcare
domain. This is followed by an analysis on how events may influence a

85

86 flexible batch configuration with events

batch configuration and presents the corresponding requirements. Sec-
tion 6.2 introduces the concept of flexible adaptation of batch activities
based on event processing techniques. In Section 6.3, this concept is
validated by applying it to the healthcare scenario in a simulation envi-
ronment. Section 6.4 concludes the chapter.

6.1 motivating example and requirements

In this section, first a healthcare process, a blood testing process is pre-
sented to motivate the need for flexible batch processing. Then, the
influence of events on each batch activity’s configuration parameter is
analyzed. Based on this analysis, requirements for flexible batch pro-
cessing are deduced.

Blood Testing Process

Motivating example In Figure 30, the blood testing process briefly described in Section 4.1
is captured as Business Process Model and Notation (BPMN) process
diagram. If there is a blood test required for a patient at the ward,
the process is initiated. First, the blood test order is prepared before a
blood sample is taken from the respective patient. Afterwards, a nurse
transports the sample and the blood test order to the laboratory, where
the blood sample is first prepared for testing. Then, the actual test is
conducted by a blood analysis machine. The laboratory possesses one
machine for each type of blood test. As the blood analysis machines
have an interface to the central hospital information system, the results
are published. Then, the results are accessible by the physicians in the
respecting ward. There, they can evaluate the blood test result for a
patient and can use it for diagnostics.

Event 1: Maintenance

of blood analysis

machine is planned

Structured Events

Blood test

needed Prepare

blood test

order

Take

blood

sample

Transport

sample and

order to lab

Prepare

blood

sample

Conduct

blood test

Publish

blood test

result

Evaluate

blood test

result

Event 3: Transport

sample and order

to lab started

Event 2: Section B

of blood analysis

machine is not

available

Batch Activity

Batch Activity

groupedBy = Order.testType

activationRule = Threshold(50 instances, 1h)

maxBatchSize = 100

executionOrder = parallel

groupedBy = Order.ward

activationRule = Threshold(20 instances, 1h)

maxBatchSize = 150

executionOrder = parallel

Figure 30: Blood testing process with two batch activities.

6.1 motivating example and requirements 87

Within the given process, two batch activities are specified. As sev-
eral blood test orders incur at a ward, the nurse would not bring each
individually to the laboratory. In fact, a nurse delivers several blood
samples together to save transportation cost which is captured by the
batch activity Transport sample and order to lab. The second batch activity
is a sub-process which consists of the activities Conduct blood test and
Publish test results and enables to collect multiple blood samples before a
test run on a blood analysis machine is started to save machine costs. So
far, the configuration parameters are defined at design time and cannot
be adapted at run time. However, changes and exceptions within the
business process, or in its execution environment might require adapta-
tion. Following, we discuss three example events being of relevance for
batch activities in the blood testing process:

Example events
influencing the
batching of blood
samples

Planned maintenance of a machine: This event indicates that the mainte-
nance of a machine is planned. During the maintenance, the machine
is not available to conduct tests of the specific type. Blood samples
being part of a batch cluster which is not yet enabled might expire,
because the waiting time of the collected process instances increases
by the maintenance time. Thus, in such situations, the blood analysis
should be started shortly before the maintenance takes place to avoid
expired blood samples.

Partial unavailability of a machine: Let us assume that a blood analysis
machine contains four sections to process blood samples among which
one fails. Then, the capacity of the machine is reduced by one quar-
ter. Hence, the maximum number of process instances allowed to be
contained by a batch cluster should be reduced accordingly.

Transportation of a set of blood samples of the same type is started: It might
happen that the timeout is almost reached for a batch cluster while
a transportation of blood samples to the laboratory requiring the same
test is started. The respective batch cluster may delay its activation until
the instances arrive to improve cost savings.

These examples show that there exist various situations requiring a
flexible adjustment of predefined batch processing behavior in order to
(1) reduce costs, (2) avoid increased waiting time, and (3) ensure correct
batch execution, e. g., a reduced capacity of the task performer. In the
next subsection, an analysis is performed to set the requirements for
flexible batch cluster adjustment.

Events and Batch Activities

As discussed above, it is valuable for organizations to design batch
processing in a flexible manner. Thus, created batch clusters can be
adjusted according to the changes of the process environment notified
by events. Here, adjustments refer to changes on the batch cluster con-
figuration parameters. Therefore, we want to analyze how the configu-
ration of a batch cluster can be adapted and by which events. Further,

88 flexible batch configuration with events

we want to discuss the validity of events and in which states a batch
cluster can be still adjusted.

Possible adjustments
of a batch activity’s

configuration

Table 3 provides an overview how the configuration parameters (1)
groupedBy, (2) activationRule, (3) maxBatchSize, and (4) executionOrder can
be adjusted at run time. More precisely, the table discusses how a
parameter can be changed (type of change), the influence a change has
on a batch cluster and its assigned process instances (influence), and the
types of events triggering a specific adjustment (events indicating) with
corresponding event examples.

Configuration
parameter

Type of
changes

Influence Events indicating Examples

groupedBy - aggregate
- refine
- restructure

- cancel existing
batch cluster(s)
and assign
process instances
to new clusters

- need for
aggregation or
division of batch
clusters or batch
cluster
restructuring

- if staff gets ill,
a nurse might
have to organize
the transport of
two wards

activationRule - adapt rule
parameter
- use a new
rule

- adapt
configuration of
batch cluster

- change in avail-
ability of task per-
former/material
- the arrival/delay
of instances

- change of
process instance
properties

- maintenance of
the blood
testing machine

- start of the
transport of
several samples
- blood sample
expires

maxBatchSize - increase
- decrease

- adapt
configuration of
batch cluster and,
if necessary,
remove process
instances

- a change in the
capacity of task
performer, used
resource etc.

- section of the
blood testing
machine is not
available

executionOrder - select
other type
of execution

- adapt
configuration of
batch cluster

- change of
resource or
resource type

- usage of a
replacement
machine acting
differently

Table 3: Classification on how batch clusters can be changed and by which
events.

In the table, all types of adjustments are considered. It is ensured that
for each parameter still a value is given which can also be undefined
for the first three parameters. Usually, the configuration of a batch
cluster is only adapted as reaction on an event. In case of changing
the groupedBy-parameter, existing batch clusters have to be canceled,
and the corresponding process instances need to be reassigned to new
ones, because the data view of the existing clusters do not match the
adapted groupedBy-parameter. For example, a grouping regarding the
Order.ward results in batch clusters with data views General Surgery
and Endoscopic Surgery. If the groupedBy-parameter is adjusted to Or-
der.section, the data views above are not valid anymore. Thus, both
batch clusters need to be canceled and their instances reassigned to a

6.2 flexible configuration concept 89

cluster with data view Surgery. Whereas a change of the activation rule
has only influence on the moment when a batch cluster is activated, re-
ducing the maximum batch size may result in batch clusters exceeding
the newly set limit. Then, the newest assigned process instances are
removed from the corresponding cluster and get assigned to another
or a new batch cluster accordingly. Hence, a concept of flexible batch
adjustments needs to consider that process instances might need to be
reassigned to another cluster.

Validity of eventsEvents can be relevant for none, one, or a set of existing batch clusters.
Further, events can be valid for a certain time frame, such that an event
might be relevant for batch cluster created after the occurrence of an
event. The validity of an event should be considered during the event
correlation.

As described in the previous chapter, during a batch cluster’s lifetime,
it may pass the states init - ready - maxloaded - running - terminated. When
a task performer starts execution of a batch cluster, it transitions to
state running. From this moment, no adjustments shall be done on
the respective batch cluster anymore. Therefore, we assume that batch
clusters can only be adjusted in states init, ready, or maxloaded.

Having presented multiple types of changes according to the configu-
ration parameters and their implications, we derive three requirements
to implement above observations:

(R-1) Identify event types relevant for adjusting batch clusters of a
batch activity,

(R-2) Correlate the events to the respective cluster at run time by
considering the validity of events,

(R-3) Adjust batch cluster correspondingly including reassignment
of instances being removed from clusters.

6.2 flexible configuration concept

In the following, we describe the basic idea of the batch adjustment
concept by referring to the blood testing example introduced in Sec-
tion 6.1. Afterwards, the newly introduced batch adjustments and their
batch adjustment rules are presented, before we explain an approach for
process instance reassignment and describe an architecture for realizing
the presented batch adjustment concept.

Basic Idea

We assume that events are centrally observed and stored by an Event
Processing Platform (EPP). If a relevant event is observed, the corre-
sponding batch cluster gets adjusted accordingly, cf. Figure 31.

The batch adjustment concept builds on structured events. As de-
scribed in Section 2.5, a structured event is a derivation of an event ob-
ject consisting of an identifier, a time stamp, and some structured event
content, e. g., a set of key-value-pairs or a tree-structure expressed in

90 flexible batch configuration with events

Structured Events

A
Batch

Activity

Process Execution

groupedBy

activationRule

maxBatchSize

executionOrder

Figure 31: Events influencing the properties of a batch cluster during run time.

the Extensible Markup Language (XML). Structured events are usually
the result of one or several normalized events processed by the EPP. A
structured event type describes a class of structured events that have
the same format.

We propose a concept that enables run time flexibility of batch clus-
ters by batch adjustments following a batch adjustment rule.Flexibility of batch

configurations
A batch adjust-

ment is triggered by a certain event and may result in the adaptation of
some parameters of one batch cluster. The events to react on, the con-
ditions that need to be met, and the adjustments that might need to be
applied are defined in the batch adjustment rule. The structure of a batch
adjustment rule follows Event-Condition-Action (ECA) rules originat-
ing from the database domain [19]. Each ECA rule consists of events
E triggering the rule, a condition C which has to be satisfied, and an
action A being executed in case of fulfillment of the condition. Events
to react on are described by their event type, e. g., an event indicating
the maintenance of a machine. The condition information enables the
correlation of the event to the corresponding batch cluster, e. g., only the
batch clusters containing process instances with blood samples for this
machine are interested in the event. The described action specifies the
particular adjustment of a batch cluster, e. g., the immediate execution
of a batch cluster.

The connection of events and the batch activity concept is illustrated
in the class diagram of Figure 32. One batch model can have an arbi-
trary set of batch adjustment rules which are provided by the process
designer. They extend the set of configuration parameters of batch
activities. A batch adjustment rule refers to at least one structured
event type. The structured event types describe based on which events
a batch adjustment is triggered. If a structured event occurs which
is relevant for a set of batch clusters, then for each batch cluster one
batch adjustment is created. Thus, a batch adjustment rule can have
an arbitrary set of batch adjustments being related to one or several
structured events, but each adjustment is assigned to only one batch
cluster. During the lifetime of a batch cluster, it can be adapted by
an arbitrary set of batch adjustments. Batch adjustment rules, and the
resulting batch adjustments are explained in detail using an example in
the next subsection.

6.2 flexible configuration concept 91

-groupingCharacteristic

-activationRule

-maxBatchSize

-executionOrder

Batch Model Batch Cluster

1 0..*

Activity Instance

1

0..*

0..1

1..*1..maxBatchSize

Batch Adjustment Rule Batch Adjustment

1

0..*

1 0..*

Structured Event Type Structured Event

0..*

1..*

0..*

1..*

1 0..*

Model Level Instance Level

groupedBy

Activity

1 0..*

1

0..*0..1

Figure 32: Conceptual model for integrating batch activity and event process-
ing concepts represented by a UML Class Diagram [72]. The model
level shows the design time concepts and the instance level shows
their run time artifacts.

Batch Adjustment Rule and Batch Adjustments

A batch adjustment rule, following ECA rules, describes how and under
which conditions a batch cluster needs to be adjusted during run time.
In this subsection, we first give an example of a structured event, describe
then the structure of a batch adjustment rule followed by the structure of
a batch adjustment.

structured event. The events that need to be considered for an
adjustment of a batch cluster are described by their event type. For
example, an event type describes events that indicate a planned main-
tenance of the blood analysis machine, cf. Listing 6. The event should
be provided some time before the maintenance starts, such that batch
clusters, which has not be enabled yet, can be activated and finished
before the start of the maintenance. This information is composed of
fine-grained information of normalized events indicating the mainte-
nance need and the schedule of the service technician.

The event machineMaintancePlannedb contains information about the
name of the corresponding machine. Further, it holds an ID and a
timestamp as these are mandatory fields of structured events. The ID
of the resulting event is uniquely generated (getGUID()) and the times-
tamp is set to the actual time of creation (getTime(now)). The remain-
ing data is collected from two normalized events machineStatusn and

92 flexible batch configuration with events

technicianSchedulen that need to be correlated. This is done by defining
constraints in the WHERE-clause of the SELECT statement.

machineMaintancePlannedb . e x t r a c t i o n =
{ machineMaintancePlannedb . id = getGuid () ;

machineMaintancePlannedb . timeStamp = getTime (now) ;
4 SELECT

machineStatusn . name ,
FROM

machineStatusn ,
t echnic ianSchedulen

9 INTO
machineMaintancePlannedb . MachineName

WHERE
machineStatusn . name =
technic ianSchedulen . machineID AND

14 machineStatusn . s t a t u s = " MaintenanceNeeded " AND
technic ianSchedulen . s t a t e = " planned " AND
technic ianSchedulen . time − getTime (now) <= machine (name) . getRuntime ()

} �
Listing 6: Definition of the structured event type machineMaintancePlannedb

that captures the information about a maintenance in near future.
This event results from events of the machine itself (event
type machineStatusn) and the technician schedule (event type
technicianSchedulen).

In the example, it is checked whether the events target the same ma-
chine followed by a check for the maintenance need of the machine
and the action of a planned maintenance by the service technician. The
event shall be created exactly one machine run before the maintenance
takes place. Thus, a time constraint is set to create the corresponding
business event, if time until the maintenance is equal or lower to the
time needed for a run of the machine (machine(name).getRuntime()
returns the duration of a run of machine name).

batch adjustment rule . The event type machineMaintancePlannedb
can be used as trigger for a batch adjustment rule which adapts the acti-
vation rule of batch clusters to avoid expired blood samples in case of a
maintenance. The proposed batch adjustment rule is shown in Listing 7,
illustrating its basic structure. The condition part of the batch adjust-
ment rule ensures that batch adjustments are only created for batch clus-
ters for which the event is of relevance. In our example, the events of
type machineMaintancePlannedb are relevant for all batch clusters which
have the same blood testing type as the machine to be maintained and
are not yet enabled for execution (i. e., in state init). Those should be
enabled before the maintenance takes place.

The instances of the blood testing batch activity are grouped based on
their blood test type (cf. Figure 30) with groupedBy = Order.bloodTestType.
Thus, the batch cluster’s data view provides information which blood
test type its assigned process instances require, e. g., BC1(BloodTestA).
The data view of the batch cluster can be used for the condition, cf.
Listing 7 line 2 and 3.

6.2 flexible configuration concept 93

Structure of a batch
adjustment rule

ON EVENT
(machineMaintancePlannedb)

3 IF CONDITION
(batchClus ter . dataView == machineMaintancePlannedb . name AND

batchClus ter . s t a t e == " INIT ")
ACTION

b a t c h c l u s t e r . a c t i v a t i o n R u l e =Threshold (5 0 , 0 h) �
Listing 7: Definition of a batch adjustment rule to start batch clusters before a

maintenance takes place.

Based on this example, we can observe that a specific batch cluster,
or a set of specific batch clusters for which an event is relevant can be
identified based on its characteristics, i. e.,

1. data view,

2. current state,

3. number of instances contained in a cluster, and

4. characteristics of the cluster’s instances.

If no condition is described, a batch adjustment is created for all batch
clusters which are in the init, ready, or maxloaded state. Clusters being
already accepted by the task performer are not adapted anymore.

The last part of the batch adjustment rule is the definition of actions
that need to be performed when an event has occurred and the condi-
tions are fulfilled. These actions can use information of the underlying
events to specify the adjustments of the particular batch cluster. Re-
ferring to our example, the action should enable the batch execution
before maintenance, cf. Listing 7 line 4. With this action, the activation
rule of the cluster is adjusted, in this case a threshold rule which was
introduced in this thesis in Section 5.2. It is adapted, such that either
50 blood sample are triggered or the batch cluster waits 0 hours, mean-
ing that the cluster is immediately enabled to be finished before the
maintenance starts.

batch adjustment. Batch adjustment rules are used to create batch
adjustments for batch clusters. A batch adjustment holds the ID of the
corresponding batch cluster and the action that need to be taken to
change certain parameters of the batch cluster. Applying the batch ad-
justment rule of our example, a batch adjustment as shown in Listing 8

is generated for batch cluster 1234.
Example of a batch
adjustment

batchClus ter . id = 1234

batchClus ter . a c t i v a t i o n R u l e = " Threshold (5 0 , 0 h) " �
Listing 8: Exemplary batch adjustment created for batch cluster 1234.

The batch adjustment mentioned above will replace the activation
rule Threshold (50,1h) of batch cluster 1234 by Threshold (50, 0h). With

94 flexible batch configuration with events

regards to the generation of batch adjustments, if an event is received, it
is immediately checked whether this event is relevant for any available
batch cluster. For each relevant cluster, a batch adjustment is performed.
In case the event is valid for a certain time period, the event is stored.
For each further initialized cluster, it is checked whether this event ap-
plies. Upon invalidation of the event, it is removed from the event
storage.

After presenting the structure of batch adjustment rules and the gen-
eration of batch adjustments, the next subsection discusses the special
case where a batch cluster is not only adapted, but a reassignment of
process instances is necessary.

Reassignment of Process Instances - Adapting execution semantics of the batch
activity

init ready running terminated

maxloaded canceled

Figure 33: Lifecycle of batch cluster ex-
tended by canceled state.

A batch adjustment usually re-
sults in the adaptation of the
configuration of one batch clus-
ter. Sometimes, it can also trigger
(a) the reduction of instances con-
tained by the batch cluster in case
of a decreased maxBatchSize, or (b)
the cancellation of a batch cluster
in case of a changing groupedBy-parameter. The extended lifecycle of
batch clusters with the canceled state is shown in Figure 33; a cancella-
tion is only possible from states init, ready, and maxloaded. In all cases,
process instances have to be reassigned to other or new batch clusters.

In general, process instances that arrive at a batch activity are tem-
porarily deactivated and assigned to the queue of the batch activity in
the order of their arrival time (first-come-first-served (FCFS)). The batch
activity organizes the assignment of process instances to batch clusters
and, if necessary, initializes new batch clusters.

Procedure of
reassigning

instances

If a process instance, in case of an adjustment, is reassigned, it should
be prioritized, because it already experiences a longer waiting time than
newly arriving instances at the batch activity. Thus, the reassigned pro-
cess instance is placed in the front of the queue based on its arrival time
at the batch activity. Then, it is assigned to an existing, or new batch
cluster. In the example of Figure 34, the number of instances of the
batch cluster BC1 have to be reduced because an event indicated that an
error of a machine section has occurred. Then, the newest assigned in-
stances are removed from the size-reduced cluster. The process instance
with the arrival time 10:07 is placed at the beginning of the queue, then
the instance with 10:10 is added followed by the newly arrived instance
at 10:36.

Often batch activities have an activation rule with a time constraint
which describes the maximum waiting time for a process instance in
a batch cluster. In the example process of Figure 34, the threshold

6.2 flexible configuration concept 95

Event:

ErrorOfMachineSection

Prepare

blood

sample

Conduct

blood test

Publish

blood test

result

77

BC1 –
BloodTestA

10:07

10:10

10:36

Structured Events

Queue of batch

activity instances

Batch Adjustment:

maxBatchSize = 100 -25

Batch Activity

groupedBy = Order.testType

activationRule = Threshold(50 cases, 1h)

maxBatchSize = 100

executionOrder = parallel

Figure 34: Reassignment of process instances in case of a reduced maxBatch-
Size.

rule states that either 50 instances have to be available or the waiting
time of 1h is exceeded to activate the batch cluster. For assuring the
maximum waiting time also for reassigned process instances, we pro-
pose the usage of the batch adjustment concept here. If an instance is
added to a batch cluster which was arrived at the batch activity earlier
than the batch cluster was created (or one of its instances), an event
is created. This event triggers a batch adjustment which reduces the
time constraint of the batch cluster by the difference between the batch
cluster’s creation time and the reassigned instance arrival time at the
batch activity.

Architecture

Next, an architecture is proposed for the technical implementation which
supports the flexibly adaption of batch cluster configurations. Figure 35

presents the main components and their interactions as Fundamental
Modeling Concepts (FMC) block diagram [47]. The architecture is struc-
tured into three parts: event producer, EPP, and BPMS. The process engine
of the BPMS, which controls process execution and batch handling, is
an event producer and event consumer at the same time. It consumes
events provided by the EPP by being connected to the Event Consumer
Interface.

Several event producers (event sources) can be connected via an appro-
priate event adapter to the EPP. The EPP itself normalizes the received
raw events and creates structured events based on defined rules. Event
consumers are connected by an event consumer interface.

Extended BPMS
architecture to
integrate batch
adjustments

The BPMS comprises the process engine and the modeling environ-
ment (cf. in Section 5.3). With the latter, process models can be created
for being executed within the process engine which are stored in the

96 flexible batch configuration with events

Event

Source 1

Event

Source n

Process

Engine

...

Event Producer

E
v
e
n
t

A
d
a
p
te

rs

Normalized

Events

Event Processing Platform

E
v
e
n
t

C
o
n
su

m
e
r

In
te

rf
a
c
e

Event

Normalization

Process Model

 Repository

BPMS
Process Engine

Process Execution

Batch

Activity

Batch Adjustment

Handler

Process and

Data Modeler

Batch Activity

Configuration

Process Instance

Database

Batch Activities

with Batch

Adjustment Rules

Batch

ClusterStructured

Event

Creation

Figure 35: System architecture to realize batch adjustments during process ex-
ecution.

process model repository. While modeling a process, batch activities
can be designed with the batch activity configurator. Thereby, the pro-
cess designer can define batch adjustment rules used at run time to
adapt batch activities. Those are saved together with the process model
in the repository on which the process engine has access during run
time. As soon as a process model with a batch activity is deployed
on the process engine, a batch activity object is initialized in the engine.
This batch activity object is responsible to assign process instances to
batch clusters. During process deployment, the batch adjustment handler
registers for events at the event consumer interface that are specified in
the batch adjustment rules of a batch activity. If the handler receives a
registered event from the EPP, then the event is evaluated and the batch
adjustments for the relevant batch clusters are created which trigger the
corresponding actions. The batch adjustment handler has an internal list
of all batch clusters which are in state init, ready, or maxloaded as these
are the only ones that might be affected by events. Additionally, the
event is stored for its validity period, if any, to allow later application
to new batch clusters.

6.3 validation of flexible batch activity configurations

In this section, we present an application of the introduced batch ad-
justment concept to the blood testing process described in Section 6.1
to study its effect. For this, we conducted a single-case mechanism ex-
periment [133]. Single-case mechanism experiments are used in design
science to apply an artifact to its context in a laboratory environment
to predict its influence and its contributions. Therefore, we applied the
concept in a simulation of the business process to compare the effect
of batch adjustments to the situation without them (i. e., normal batch
execution).

As described, the laboratory uses a batch activity to synchronize sev-
eral blood samples for the blood analysis to save machine costs. The
blood analysis machine needs to be maintained regularly on request.

6.3 validation of flexible batch activity configurations 97

Based on an event informing about the maintenance some time before
it actually starts, the configuration of a running batch cluster can be
adjusted. With the adjustment, the cluster is started in-time to decrease
the number of expired blood samples due to unavailability of the ma-
chine. A blood sample expires after a certain time frame, because the
blood structure changes. Then, the blood sample is not useful for medi-
cal analysis anymore. An often conducted blood test is the coagulation
test which has to be undertaken the latest after 4 hours according to
guidelines [80]. However, the guidelines do not provide statistics of
expiration of blood tests. By interviewing process experts, we assumed
an expiration time after 120 minutes. Each expired blood sample causes
costs of taking a new one.

Simulation setup

For the evaluation, the blood testing process is simulated to compare
the number of expired blood samples in case of normal batch execution
(i. e., without run time adaptations) to flexible batch execution as pre-
sented in this chapter. Therefore, the laboratory part of the blood test-
ing process was implemented as simulation1 with DESMO-J [33, 111],
a Java-based framework for discrete event simulation. The simulation
starts with the arrival of process instances, i. e., blood samples, at the
laboratory. Each process instance is terminated after finishing the blood
test. On average, using an exponential distribution, every 12 minutes, a
nurse brings 20± 5 blood samples (normally distributed) to the labora-
tory. For this simulation, we assumed that only one one blood analysis
machine exists. One run of the machine for analyzing blood samples
takes 25 minutes. The machine can handle maximum 100 blood sam-
ples in one analysis.

For the simulation, the laboratory selected ThresholdRule(50 instances,
1h) as activation rule requiring 50 instances or a timeout after one hour
to enable a batch cluster (cf. Figure 30). If a batch cluster fulfills this
rule, it queues for being processed by the machine.

The machine is already in use for a longer time period. Thus, twice
a week, every 3.5 days with a deviation of 1 day, a maintenance is re-
quired. Thereby, different durations of the maintenance are simulated:
30, 45, and 60 minutes, for testing the effect of the batch configuration
adaptation for different settings of the context. Additionally, an simu-
lation experiment without any maintenance is executed to compare the
results of it to the flexible batch handling.

For the flexible batch handling, some time before the technician ar-
rives, an event regarding the maintenance is provided. For studying
how much before an event should be provided for having a positive im-
pact, different simulation experiments are conducted where the event
is sent 1, 1.5, or 2 times the blood analysis run, i. e., 25, 37.5, or 50 min-

1 The simulation source code and the reports of the different simulation runs are avail-
able at http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig.

http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig

98 flexible batch configuration with events

utes respectively, before the technician arrives. When the technician
arrives, they are prioritized, but a current analysis on the machine is
not interrupted.

Results

Several simulation runs with different settings to observe the impact of
flexible batch adjustments were conducted. Figure 36 summarizes the
results of the simulation runs over a period of two years. It shows the
results for a maintenance time of 30 minutes, 45 minutes and 60 minutes
(intercept 2, 3 and 4) with the result where no maintenance takes place
(intercept 1). The black bars provide the numbers of expired blood
samples, if (1) no adjustments are made at run time. The different gray
bars (2)-(4) show the results for event triggered batch adjustments, if
the event is sent 25, 37.5, or 50 minutes before the technician arrives.

If no maintenance is conducted, 1,738 samples would expire due to
exponential arrival of these blood samples, and resulting waiting times
at the machine. If the maintenance is conducted at average twice a week
as indicated above, the number of expired blood samples increases by
0.7%, 14%, and 29% for 30, 45 and 60 minutes maintenance duration,
respectively (cf. black bars in Figure 36). It can be observed that the
number of expired blood samples increase with longer maintenance
durations. Whereas for 30 minutes no difference can be observed, in
case of 60 minutes, already 29% more blood samples would become
unusable.

17
38

17
50 19
79 22

43

16
95

17
51 18
63

17
25

17
35 19
53

17
89

17
36 20

09

0

500

1000

1500

2000

2500

 W/o maintenance Maintenance duration:
30 min

Maintenance duration:
45 min

Maintenance duration:
60 min

(1) Usual (2) Event – 1.0 run earlier (3) Event – 1.5 runs earlier (4) Event – 2.0 runs earlier

Figure 36: Number of expired blood samples in two years for different simu-
lation runs.

Applying flexible batch adjustments aims at reducing the number
of expired blood samples. The recognition of the event indicating the
maintenance directly activates all initialized batch clusters by changing
the activation rule accordingly (cf. line 4 in Listing 7). The impact of
the batch adjustment rule with respect to the point in time the event is
sent is shown by the different gray bars (2)-(4). In case of 30 minutes
maintenance time, only small reductions, and even an increase can be
observed if the event is published 50 minutes before the maintenance.
For the others, we observe significant improvements. The improvement
is at 13% and 20% for 45 and 60 minutes maintenance time, respectively.

6.4 conclusion 99

With these numbers, the maintenance was almost compensated. The
highest improvements for the different settings are mostly observed for
the middle gray bar ((2) Event – 1.0 run earlier). It indicates that it is
beneficial to inform about the maintenance one analysis run before the
start of the maintenance.

9.
4

62

7.
93

62

7.
7

78

7.
5

67

8.
15

67

7.
87

62

7.
55

74

7.
93

78

7.
87

83

8.
81

75

7.
93

75

7.
72

82

0
10
20
30
40
50
60
70
80
90

avg. waiting time # 0‐waitings avg. waiting time # 0‐waitings avg. waiting time # 0‐waitings

30 45 60

(1) Usual (2) Event – 1.0 run earlier (3) Event – 1.5 runs earlier (4) Event – 2.0 runs earlier

Figure 37: Average waiting time and zero-waitings for the technician in the
different settings.

The simulation results indicate that the waiting time for the tech-
nician slightly increases, on average less than a minute as shown in
Figure 37. In most cases, we can observe that the number of zero-
waitings increases, because starting an analysis run shortly before the
technician arrives, increases the chance that the run is terminated just
upon arrival. However, sometimes a run may only be started shortly
before the technician’s arrival as some other analysis run was still busy.
Then, the technician must wait longer resulting in a higher distribution
of waiting times and a higher total average waiting time. Nevertheless,
the cost savings due to reductions in expired blood samples will be
higher than the technician costs due to small increases in the waiting
time.

Summarizing above observations, flexible batch adjustments are use-
ful in cases where certain external events have a strong influence on
the batch processing, as in case of maintenance with a duration of 45

or 60 minutes. Further, the improvements of the batch adjustments are
also dependent on the time of an event being published. This should
be analyzed and validated in advanced.

6.4 conclusion

In this chapter, we showed the necessity to adjust batch executions flex-
ibly due to run time changes. A concept was introduced to apply event
processing techniques to batch activities enabling flexible adjustments
of batch configuration parameters based on events representing run
time changes. Grounded in the principle of Event-Condition-Action
rules, relevant events are identified, and then compared to defined con-
ditions. If the conditions are fulfilled, the configured actions are exe-

100 flexible batch configuration with events

cuted as a batch adjustment for the corresponding batch cluster. The
concept also includes the possibility to reassign process instances of an
adjusted batch cluster to avoid inconsistencies. In future, it should be
evaluated whether further techniques are necessary to ensure that batch
adjustments does not lead to inconsistencies .

An architecture was presented showing details about a technical im-
plementation and the components that are necessary to apply the con-
cept with a BPMS in conjunction with a EPP. We showed the applica-
bility of the introduced concept of batch adjustments on a healthcare
use case in a simulated environment. It implies that batch adjustments
can compensate losses caused by the exceptional behavior, if the exter-
nal events have a strong influence on the batch processing. Further, it
also indicates that the time when event is published is relevant for the
success of the adaptation.

By integrating more information about the process environment, e. g.,
the availability of resources, the presented concept can be extended.
Currently, batch adjustment rules are a technical approach, such that
the process designer might need support by an IT specialist for the defi-
nition of batch adjustment rules. In future, the concept can be enhanced
with a more user-friendly interface for specifying the rules.

7
B AT C H P R O C E S S I N G A C R O S S M U LT I P L E B U S I N E S S
P R O C E S S E S

As the developed batch activity concept focuses on instances of a single process, this
chapter introduces a batch processing concept across multiple business processes.

Organizations being active in Business Process Management (BPM) often manage
large collections of process models where similar activities (or even process fragments)

can be found. This offers the opportunity to save execution cost over activity
instances of different business processes. In this chapter, we first set the design

objectives based on a motivating example, and then, present a concept which uses
data object life cycles to centrally define the batch requirements ending with a

discussion of it. This chapter is based on the published paper “Batch Processing
across multiple Business Processes based on Object Life Cycles” [84].

Large process model
repositories offers
opportunity for
multi-process batch
processing

Existing solutions discussed in Chapter 3 [53, 69, 77, 96] which enable
batch processing in business processes are limited to process instances
of a single process model. Also, the introduced batch activity in Chap-
ter 5 focuses on single process models. However, we can observe that
organizations, which document their business processes, have to man-
age large repositories of hundred, or even thousand of process models
[28, 136]. In those, certain process activities, or even process fragments,
might be reused in multiple process models. For instance, in finance,
sending notifications to the customer is required in multiple processes,
such as account opening, credit card issue, and loan approval. Al-
though customer notifications are created in different processes, they
can be batched for sending only one letter to the customer instead of
several ones for saving cost. Despite different techniques for clone de-
tection, e.g. by Dumas et al. [25], still not all repeating activities are out-
sourced into shared sub-processes, especially small process fragments
consisting of one or two activities.

Based on these considerations, this chapter introduces a concept to
allow batch processing across the process model boundaries. In a large
process model repository, process models are frequently added, deleted,
and changed. Therefore, we aim at a centralized batch configuration
which is valid for multiple process models and is independent of such
updates of the repository. Here, object life cycles (OLCs) [45] describing
the allowed manipulations on a data object (cf. Section 2.3) are used.
With OLCs, identical behavior of business processes on their data ob-
jects across the process model boundaries can be identified. They are
centrally given and accompany process models.

In following section, a motivating example is discussed in detail from
which specific requirements of batch processing across multiple pro-

101

102 batch processing across multiple business processes

cesses are deduced in Section 7.2. Further, the design objectives are set.
Section 7.3 introduces the concept of multi-process batch processing
by considering OLCs. This basic concept for single data state transi-
tions is then extended to multiple, connected data state transitions in
Section 7.4 to generalize it. Section 7.5 concludes the chapter. The pro-
totypical implementation of the concept is discussed in the evaluation
part in Chapter 8.

7.1 motivating example

New electricity contract (Copy)

Electricity
contract received Create

welcome
letter

Print
customer

letter

Send
customer

letter

Copy of
contract sent

Cancel contract
with former

supplier

Rejection
information sent

Copy of contract
received

Check
contract

Calculate
monthly

advanced
payment

Create
letter w adv.

monthly
payments

Send
customer

letter

Copy of contract
received

Check
contract

Print
customer

letter

Send
customer

letter

Receive
current

electricity
meter

14 days
Send

reminder

Print
customer

letter

Electricity
contract

accepted

Monthly
advanced
payment
calculated

Customer
letter

printed

Customer
letter

sent

Customer
letter

printed

Customer
letter

sent

Electricity
contract

accepted

Electricity
contract

rejected

Electricity
contract

received

Electricity
contract

accepted

Customer
letter

printed

Customer
letter

sent

Create
letter requesting
current electricity

meter

(a) Contract acceptance process.

New electricity contract (Copy)

Electricity
contract received Create

welcome
letter

Print
customer

letter

Send
customer

letter

Copy of
contract sent

Cancel contract
with former

supplier

Rejection
information sent

Copy of contract
received

Check
contract

Calculate
monthly

advanced
payment

Create
letter w adv.

monthly
payments

Send
customer

letter

Copy of contract
received

Check
contract

Print
customer

letter

Send
customer

letter

Receive
current

electricity
meter

14 days
Send

reminder

Print
customer

letter

Electricity
contract

accepted

Monthly
advanced
payment
calculated

Customer
letter

printed

Customer
letter

sent

Customer
letter

printed

Customer
letter

sent

Electricity
contract

accepted

Electricity
contract

rejected

Electricity
contract

received

Electricity
contract

accepted

Customer
letter

printed

Customer
letter

sent

Create
letter requesting
current electricity

meter

(b) Advanced payment process.

New electricity contract (Copy)

Electricity
contract received Create

welcome
letter

Print
customer

letter

Send
customer

letter

Copy of
contract sent

Cancel contract
with former

supplier

Rejection
information sent

Copy of contract
received

Check
contract

Calculate
monthly

advanced
payment

Create
letter w adv.

monthly
payments

Send
customer

letter

Copy of contract
received

Check
contract

Print
customer

letter

Send
customer

letter

Receive
current

electricity
meter

14 days
Send

reminder

Print
customer

letter

Electricity
contract

accepted

Monthly
advanced
payment
calculated

Customer
letter

printed

Customer
letter

sent

Customer
letter

printed

Customer
letter

sent

Electricity
contract

accepted

Electricity
contract

rejected

Electricity
contract

received

Electricity
contract

accepted

Customer
letter

printed

Customer
letter

sent

Create
letter requesting
current electricity

meter

(c) Meter reading process.

Figure 38: Business process models of an electricity supplier for handling a
new customer with similar activities.

This section discusses the motivation based on the example of an
electricity supplier. The supplier manages a repository to document its
business processes. Figure 38 represents three business processes of this
repository upon which we motivate our work and the requirements.

The model in Figure 38a shows the process of getting a new electric-
ity contract by a customer which is either accepted or rejected. If the
electricity contract is rejected, the customer is informed about that. In
case of acceptance, a welcome letter is created which is then printed
and sent to the customer. As soon as an electricity contract is accepted,

7.2 requirements and design objectives 103

a copy is also sent to other departments where the Advanced payment
process, shown in Figure 38b, and the Meter reading process, shown in
Figure 38c, are initiated. In the Advanced payment process, the monthly
advanced payment rates, which the customer has to pay, are calculated
based on the contract information. The rates are included in a customer
letter which is printed and sent to the customer. In the Meter reading
process, the customer is requested to provide the current electricity me-
ter. Therefore, a letter is created that is then printed as customer letter
and sent to the customer.

In these three processes, customer letters are printed and sent to the
customer. These repeating activities allow to batch activity instances
from multiple process models. Let us discuss this option on the Send
customer letter activity.

Advantages of
consolidated
handling of the
customer letters

Executing these processes in a business process management system
(BPMS) may lead to a situation where the employee John has four as-
signed work items as depicted in Figure 39. It can be observed that four
instances of activity Send customer letter are assigned to John; three of
them require a sending to customer Boyson in London – one for each of
the three presented processes – and one of them requires a sending to
customer Thomsan in Madrid. Although handled by three different pro-
cesses, the three customer letters to be sent to Boyson

Work item list

Send customer letter

(Contract acceptance process)

Boyson,

London

Send customer letter

(Meter reading process)

Thomsan,

Madrid

Send customer letter

(Meter reading process)

Boyson,

London

Send customer letter

(Advanced payment process)

Boyson,

London

Figure 39: Work item list of employee John
showing recently assigned ac-
tivity instances.

could be enveloped and sent as
one mail.

Consolidating the handling
of these three customer letters
by putting them in one envelop
has the advantages that (1) cost
for sending mails can be re-
duced, and (2) the customer re-
ceives only once one envelop
with all important information.
If we assume mailing costs of
0.50 EUR per letter, the company can already save for this example 1.00

EUR. If we assume around 500 new customers per month, the electricity
supplier can save up to 6000 EUR per year. Based on these considera-
tions, this chapter introduces a concept to allow batch processing across
different process models. Involving several process models in the batch
execution leads to specific requirements which we want to discuss in
the following section.

7.2 requirements and design objectives

This section discusses requirements specific to batch processing across
multiple process models. Further, it describes how we want to approach
the given requirements by discussing our design objectives.

104 batch processing across multiple business processes

Requirements in a Multi-Process Setting

Based on the introduced example, four requirements are identified which
are presented in detail.

r1-centrally defined batch specification. At design time,
the batch processing specification has to be defined by the process
designer. Process models, also the ones given by the electricity sup-
plier, are constantly adapted to changing environments; they are added,
changed, and deleted from process repositories [136]. Therefore, the
batch configuration should be given independently from individual
process models, centrally defined and accessible by all targeted process
models.

r2-resource authorization. If instances of different processes
are batched, the question arises whether all resources being involved in
the different processes are allowed to execute the batch. In our example,
the first two processes are executed by the Customer Service, whereas the
meter reading process is in responsibility of the Meter Reading Data Man-
agement. The batch of Send customer letter(s) could be executed by em-
ployees of both departments. However, it might be required that only
employees of the Customer Service are allowed to handle such batches.
This requires a concept for authorizing resources to execute batches
over multiple processes.

r3-optional batch processing . Most of the existing batch pro-
cessing solutions for business processes, except [69], have a compulsory
approach and wait for an explicit number of activity instances to be ex-
ecuted as batch. If, for example, two instances are required to start a
batch execution, the activity instance of Send customer letter for customer
Thomsan, Madrid (see Figure 39) can only be started when a second letter
for this customer is available. This means that the advanced payment
letter is sent later than intended leading to a delay in payment. In the
given case, the cost savings for sending only two letters together may
not compensate the costs for waiting for the second letter. Thus, an
optional batch processing approach seems to be beneficial, if more than
one process model are involved.

r4-user approval for batch assignment. However, neither
run time information, nor design time specifications might cover all
information required to decide whether multiple activity instances of
different models shall be batched. For example, if the welcome letter to
customer Boyson (see Figure 39) has to sent individually due to a special
marketing campaign, then this letter shall not be batch together with the
other two letters. Thus, the user-involvement should be increased in a
multi-process setting in which the task performer approves firstly the

7.2 requirements and design objectives 105

printed sent
Send

customer letter
i

Print

customer letter

Figure 40: Object life cycle of the data class Customer Letter.

proposed batches – whether all, some or no process instance is executed
as batch.

Design Objectives and Assumptions

In the following, it is described how we want to approach the given
requirements. Let us start with requirement R1, the centrally defined
batch specification.

Using OLCs for a
central batch
configuration

As described in Section 2.3, business processes act on data; process
activities read data and update them. The allowed data manipulations
by process activities for one class of data objects are given in a OLC.
OLCs are centrally given and accompany process models.

In Figure 40, the OLC for the objects of type Customer Letter is given,
derived from the three given process models in Figure 38. Actions used
for transitioning from one state to another directly map to activities in
the corresponding process models, e. g., to reach state sent from state
printed, activity Send customer letter must be executed. The transitions
of an OLC can be used to enrich them with batch information which
then applies to all process models using the corresponding action.

Requirement R2, the resource authorization, will be not targeted by
the introduced concept in this chapter. It is assumed that the same
activity in different process models has the same resource assignment
and that all resources are allowed to execute the created batch clusters.

If batch processing is optional, then an instance is only processed in a
batch, when other instances are available to which it can be grouped. In
the BPMS architecture given in Section 2.4, it was shown that a BPMS
has access to a storage containing all data objects created by its process
instances. These data objects will be used to tackle Requirement R3,
the optional batch processing, to identify whether instances can be ex-
ecuted as a batch. Data query language provide fast means to identify
similar data objects.

For requirement R4, the final user approval of the batch assignment,
we aim at a concept where the system calculates potential batches and
proposes these candidates to the task performer. The task performer,
then, finally decides which identified activity instances can be handled
as a batch and which not. This leads to a composition of a user-invoked
and auto-invoked batch assignment where first the system proposes an
assignment which can be adapted by the user.

106 batch processing across multiple business processes

7.3 batch specification in object life cycles

In this section, we introduce the concept for specifying the batch exe-
cution in OLCs. We distribute the discussion into two parts. First, the
design of batch transitions in OLCs is formally defined followed by the
corresponding execution semantics.

Design

Following the preliminaries in Chapter 2, one OLC per data class is cen-
trally defined in an organization. A state transition can be used in dif-
ferent process models. For our purpose, a new type of state transition:
the batch transition is introduced. A batch transition carries information
to create, and subsequently to execute batch clusters.

Batch Transition
Definition Definition 7.1 (Batch Transition).

Let t ∈ Tolc be a transition of an object life cycle olc. Then, function
β : Tolc → {true, false} returns true, if t is a batch transition, and returns
false otherwise. T ′

olc ⊆ Tolc denotes the set of all batch transitions of
olc. Each batch transition gets assigned a batch configuration function
γ : T ′ → DVDwhereDVD is the set of all data view definitions. A data
view definition dvd ∈ DVD is a list of data attributes X = [x1, x2, . . . , xk]
where for each x ∈ X holds that x = c.j, such that c = lc−1(olc)∧ j ∈
Jc. J

printed sent

Send

customer letter
i

Print

customer letter

Grouping Characteristic:

LettersBySameCust =

[cust_name, cust_address]

Figure 41: Object life cycle of data class Customer Letter with the batch transi-
tion Send customer letter.

Figure 41 shows an example OLC for data class Customer Letter of the
electricity supplier scenario. It contains a batch transition – the one re-
ferring to action Send customer letter – with a specific grouping charac-
teristic. We visualize batch transitions by bold edges and connected
with a batch configuration, a textual annotation including the group-
ing characteristic. All process activities using this batch transition are
candidates for batch processing. The grouping characteristic helps to
identify which type of instances can be processed together. It references
a data view definition which we have introduced in Section 5.1. In the
concept presented in this chapter, the data view definition DVD can
only contain data attributes of the data class lc−1(olc) = c to which
the object life cycle olc with the batch transition t belongs. In the given
example, the data view definition consists of data attributes cust_name
& cust_address; hence, only activity instances for which the customer

7.3 batch specification in object life cycles 107

letter objects are addressed to the same customer may be executed as a
batch.

An activity of a process model can have several output data nodes
referring to different data classes. Thus, several object life cycle tran-
sitions may exist for an activity. Following the concept of case objects
from business artifacts [16], one class of objects drives the execution.
Thus, we require only one of the transitions being for a batch transition.
The related data manipulation is in the focus of the batch processing,
and the remaining outputs are byproducts.

Execution Semantics

Based on the design time batch specifications, we present the algorithm
on processing batches of activity instances, first focusing on user tasks
and later discussing the generalization. Algorithm of

creating batch work
items across
multiple processes

The algorithm consists of five
subsequent steps as visualized in Figure 42. First it is checked whether

(1) Check whether

activity instance is

a batch candidate

(2) Select

matching

data objects

(4) Provide batch

processing candidates

to user

(3) Retrieve related

activity instances of

data objects

Activity
instance

(5) Provide and

execute batch

work item

Figure 42: Main steps of the algorithm to batch instances of multiple processes.

an activity instance is a batch candidate (1), then all relevant data ob-
jects for batch processing are selected (2) to which the related activity in-
stances are retrieved (3), the batch processing candidates are proposed
to the user (4) and finally, if the user has selected more than one in-
stance, the batch work item is created and provided (5). The steps for
the running example are visualized in Figure 43 and explained in detail
in the following.

(1) check whether activity instance is a batch candidate .
During process execution, activity instances can be in states init, ready,
running, terminated, and disabled (cf. Section 2.4). If an activity instance
is ready for execution, all matching OLC transitions U of the correspond-
ing activity a ∈ A are retrieved by function ε : A → P(U) introduced
in the preliminaries in Section 2.3. The resulting set U of transitions
is checked for the existence of a batch transition, i. e., each transition
t ∈ U is checked whether β(t) = true. As mentioned above, we require
that β returns true for at most one transition per activity. If a batch
transition t̂ was found, the activity instance âi is a candidate for batch
processing, and the corresponding data object ô is retrieved. Therefore,
an auxiliary function θ : I× C → O is needed which returns the data
object o belonging to the given process instance i ∈ I for the given
data class c ∈ C. Hence, the batch candidate object ô is retrieved with
θ(i

âi
, lc−1(olc)) = ô where the process instance i

âi
is given by the

currently checked activity instance âi. The data class is given by using
the inverse function lc−1(olc) = c returning the data class c for the ob-

108 batch processing across multiple business processes

2. Pre-selected data objects

CL2-5 [created] – Boyson, London

CL3-6 [created] – Boyson, London

CL1-7 [created] – Thomsan, Madrid

For process instance 1-21, the activity

„Send customer letter“ is enabled and is

a candidate for batch processing.

2a) All data objects of the

same class and in the same

state are selected.

3. Selected data objects

CL2-5 [created]

CL3-6 [created]

Grouping

characteristic:

[cust_name,

cust_address]

2b) All data objects sharing

the data view with the batch

candidate object are selected

1. Running data objects

Customer Letter2-5 [created]

Customer Letter3-6 [created]

Customer Letter1-7 [created]

Electricity Contract1-31 [received]

Customer Letter3-16 [sent]

Invoice4-18 [created]

Customer Letter1-21 [created]

4. Related AIs of data objects

AI “Send customer letter“ for PI 2-5

AI “Send customer letter“ for PI 3-6

Batch candidate object:

CL1-21 [created] – Boyson, London

 Would you like to execute

“Send customer letter“

(Contract acceptance process)

of PI 1-21 with:

“Send customer letter“

(Advanced payment process)

for PI 2-5

“Send customer letter“

(Meter reading process)

for PI 3-6

(1) Check whether

activity instance is

candidate for batching

(2) Select matching

data objects

(4) Provide batch

processing candidates

to user

(3) Retrieve related

activity instances of

data objects

Figure 43: Illustration of algorithm to process activity instances of multiple
process models in a batch.

ject life cycle olc to which the batch transition t̂ belongs. For example,
activity instance 1-21 is identified as batch candidate. Since, the identi-
fied batch transition belongs to the Customer Letter object life cycle, the
Customer Letter object in state printed and with id 1-21 is retrieved (see
last row of most-left table in Figure 43).

(2) select matching data objects . Next, all data objects shar-
ing the data class and data state (i. e., the value of the data attribute
jstate representing the OLC state) with the in (1) identified data object
ô are pre-selected. In Figure 43, the most-left table shows all currently
processed data objects O of the electricity supplier. The Customer Let-
ter in state printed referring to the process instance with id 1-21 to be
processed by the current activity instance is the candidate for batch pro-
cessing (shown in bold font). The second table of Figure 43 visualizes
the projectionO ′ on the set of data objectsO such that all objects refer to
data class Customer Letter and are in state printed. In the given example,
this are three data objects in total. From this set, all objects sharing the
data view with ô are finally selected. In our example, the grouping
characteristic consists of data attributes cust_name and cust_address of
data class Customer Letter. For the current processed data object ô, we
find the values Boyson and London. All data objects O ′′ ⊆ O ′ having
identical values (i. e., the same data view) are selected as shown by the
third table in Figure 43. If the data view definition is empty or not
defined, then O ′′ = O ′ holds. These two described steps can be also
conducted by one data base query.

(3) retrieve related activity instances of data objects .
Batch processing works on activity instance level. Thus, next, the ac-
tivity instances of the selected data objects O ′′ must be determined.
As given in Definition 2.6, each object contains its corresponding pro-
cess instance. For activity instance determination, the auxiliary func-
tion η : O → AI is used. AI denotes the set of all currently existing

7.3 batch specification in object life cycles 109

activity instances. The η-function retrieves the corresponding related
activity instance which is currently in state ready, and refers to an ac-
tivity a reading a data node d, where the state matches the one from
ô ((d,a) ∈ DF). The most-right table in Figure 43 shows the resulting
activity instances for the data objects O ′′. Identified activity instances
may refer to different process models. In our example, one identified
activity instance refers to the Advanced payment process, and the other to
the Meter reading process while the batch candidate refers to the Contract
acceptance process.

(4) provide batch processing candidates to users . The
identified activity instances are transferred from state ready into state
disabled; a disabled activity instance is temporarily deactivated in its
processing. Then, the user is asked which of the identified activity
instances shall be processed in a batch with the batch candidate. In the
example, activity instances for activity Send customer letter of the pro-
cess instances 2-5 and 3-6 may be grouped in a batch with the activity
instance of 1-21. The gray-colored box on the bottom-right in Figure 43

visualizes this. One of the responsible task performers decides whether
all additionally identified activity instances, a subset of them, or none
are joined into one batch work item. Equally to the batch activity, also
here a batch work item aggregates the work items of all selected activity
instances allowing joint visualization, and execution in one step. The
task performer is then responsible for executing the batch work item,
if at least some activity instances are joined. Otherwise, the batch can-
didate is handled as a single activity instance. Finally, those activity
instances that are not selected for batch processing are transferred back
into state ready.

(5) provide and execute batch work item . All selected activ-
ity instances, and the batch candidate that

complete

 Send customer letter

 (Batch work item)

 Contract acceptance process 1-21

 Name

 Address

 Advanced payment process 2-5

 Name

 Address

 Meter reading process 3-6

 Name

 Address

Boyson

London

Boyson

London

Boyson

London

QuickPost
Mailing

Service

Figure 44: Resulting batch work
item of Figure 43 if
all activity instances
are selected.

are jointly realizing the batch work item
are added to a batch cluster. A batch
cluster is a container collecting activity
instances that can be executed together.
It may pass multiple states during its
lifetime as described in the batch activ-
ity concept in Section 5.3. First, a batch
cluster is initialized. In the next state,
the ready state, it aggregates the data
input of all contained activity instances
into a single work item – the batch work
item. Further activity instances can be
added still in this state by expanding
the batch work item accordingly. Ad-

110 batch processing across multiple business processes

ditions are allowed until the task performer starts its execution (i. e.,
the batch cluster transitions into state running). Figure 44 visualizes
the batch work item for the example under the assumption all iden-
tified activity instances were selected. Upon completion of the batch
work item, the output data is stored by the batch cluster for each ac-
tivity instance individually. Then, all activity instances are terminated.
Subsequently, the batch cluster terminates as well, and the succeeding
activity instances are handled again separately.

Approach for service
tasks

As introduced in the preliminaries, activities are distinguished into
user, service, or unspecified tasks. Handling of user tasks is discussed
above. Targeting, service tasks, step (4) needs to be automated by
adding all batch candidates to the batch. Alternatively, a responsible
role can be specified to handle this step. Step (5) remains conceptually
unchanged. Instead of creating the batch work item, the batch cluster
aggregates the input data (i. e., into a format which can be handled by
the referenced service) and provides it to software service. Unspecified
task can be not executed in a BPMS, such that it needs to be transformed
into a user or service task.

The presented concept is evaluated as proof-of-concept in a prototyp-
ical implementation – an extension of an existing open-source BPMS
– in Chapter 8. In the next section, an extension of this basic concept
is discussed to several connected transition to allow, on the one hand,
batch processing over multiple connected activities (or data transitions)
and, on the other hand, batch processing over activities which have
different inputs but the same output.

7.4 extension to connected batch transitions

This section discusses a generalization of the concept being currently
focus on single batch transitions to allow also the synchronization over
several connected transitions. First, the need for connected batch transi-
tions is motivated followed by the definition of the batch configuration,
which is valid for several batch transitions and the description of its
execution semantics.

Extended requirements

Necessity for batch
processing over

multiple subsequent
data transitions

In practice, the necessity for batch processing over multiple subse-
quent data transitions can be observed. Let us take the example of the

enveloped sent

Send

customer letter
i

Print

customer letter
printed

Envelope

customer letter

Figure 45: Extended OLC of the data class Customer Letter with the new state
enveloped for automatic enveloping of letters

electricity supplier: Usually in an automated mail print environment,

7.4 extension to connected batch transitions 111

a letter is printed, then it is immediately automatically put in an enve-
lope, and finally it is sent. The object life cycle is adapted to met this
data flow changes shown in Figure 45. An additional state enveloped is
added between the states printed and sent, and an additional data tran-
sition Envelope customer letter is supplemented which allows the tran-
sition between the printed to enveloped. Besides the Send customer letter
transition, batch processing should include the printing and enveloping
of customer letters as well. It ensures that the customer letters which
should be sent together are also put in one envelope. Thus, the batch
execution should start in this example with the Print customer letter,
and end with the Send customer letter transition. This example shows
that also in multi-process environments batch processing is needed for
a set of connected activities (or transitions, respectively) similar to the
batch activity.

Necessity for batch
processing over
multiple similar
data transitions

printed senti
Print

customer

letter

signed

Sign customer

letter

Send customer

letter

Figure 46: Extended OLC of the data class Cus-
tomer Letter with the new state signed
to allow the signing of letters

Further, it can be ob-
served in existing busi-
ness processes that activ-
ities providing the same
result, e. g., sending a let-
ter, might have different
inputs. These activities
are similar in this regard
that they handle data ob-
jects of the same class,
but the input states of
these objects are different. For instance, an activity in a process sends
unsigned letters whereas an activity in another process sends only
signed letters. They would map to different object transitions, despite
these two activities conducting the same action on the data objects. The
algorithm presented in the previous section cannot handle these cases
properly. Only letters being in the same data state before sending can
be executed as batch. Despite of different input states, customer letters
can still be grouped as batch and sent within one envelope, if they share
the same addressee.

Assume, the Contract acceptance process in Figure 38a requires the Cus-
tomer Letter to be signed before it is sent, a corresponding activity is
added between activities Print customer letter and Send customer letter.
The data flow is adapted accordingly. The OLC is changed as well to
match these data flow changes which is visualized in Figure 46. The
additional data state signed is added as successor of state printed and
as predecessor of state sent. The corresponding data state transitions
get associated to the actions Sign customer letter and Send customer letter
respectively.

112 batch processing across multiple business processes

Design

For serving the discussed needs, we want to introduce connected batch
transitions. Connected batch transitions allow, on the one hand, batch
processing over several succeeding activities (or transitions), and on the
other hand, batch processing over similar transitions having different
input states, but the same output state. Therefore, the batch config-
uration function is extended and gets independent from single batch
transitions for being valid for a set of batch transitions. We define a
batch configuration as follows:

Batch Configuration
Definition Definition 7.2 (Batch Configuration).

Given an object life cycle olc with a set of Tolc transitions, the batch
configuration assigns a data view definition dvd ∈ DVD to a subset
T ′
olc ∈ P(Tolc) by the function γ : BT → DVD, where BT ⊆ P(Tolc).
∀ Tbt ∈ BT → ∀ t ∈ Tbt : β(t) = true∧ ∀ T ′

bt ∈ BT : Tbt ∩ T ′
bt = ∅. For

t1 = (sn, sm), t2 = (sx, sy) ∈ Tbt, t1��=t2, it also holds:
• (sn, sm), (sx, sy) ∈ Tbt ⇒ (((sn, sm), (sx, sy) ∈ (v0, ..., vn), where

(vi, vi+1) ∈ Tbt) (sequentially connected transitions) (∨(sm =

sy)) (transitions with different input state, but the same output
state)

J

A batch configuration describes the batch processing requirements for
a set of connected transitions which are all batch transitions (β(t) =

true). Each batch transition takes only part in one subset. The batch
transitions of such a set can be connected in two different ways: Either
the transitions create a path through the object life cycle, or all batch
transitions share the same output state.

enveloped sent

Send

customer letter
i

Print

customer letter
printed

Envelope

customer letter

Grouping Characteristic:

LettersBySameCust =

[cust_name, cust_address]

Figure 47: OLC of the Customer Letter with the sequential connected batch tran-
sitions.

Visually, the batch configuration is represented by associations be-
tween the corresponding batch transitions. We assume that the object
life cycle designer decides based on the business context which transi-
tions can be connected. In case of sequential connected transitions as
shown in Figure 47, the association line starts at the first transition of
the sequence and ends with the last one. The grouping characteristic is
connected to the association line. Similar, it is visualized for connected
batch transitions with the same output.

7.4 extension to connected batch transitions 113

printed senti
Print

customer

letter

signed

Sign customer

letter

Send customer

letter

Grouping Characteristic:

LettersBySameCust =

[cust_name, cust_address]

Figure 48: OLC of the Customer Letter with con-
nected batch transitions between sim-
ilar transitions with different inputs.

As shown in Figure 48,
an association line con-
nects similar batch tran-
sitions to which also
the grouping characteris-
tic is attached. Based
on the presented de-
sign adaptations, the ex-
ecution semantics needs
to be adapted as well.
These adaptations are
discussed in the next subsection.

Extension of the Execution Semantics

Extension for
sequential connected
batch transitions

For sequentially connected batch transitions, the execution semantics
does not change for the first batch transition of the sequence. How-
ever, after its execution, the cluster is not terminated. Additionally,
two changes are done on the existing execution semantics, such that no
new cluster has to be created for the succeeding batch transitions, in
specifically in step (1) and step (5).

• Step (1): After it was identified that an activity references a batch
transition, it has to be additionally checked whether the process
instances of the just enabled activity instance is part of a batch
cluster. If this is true, the activity instance gets disabled. All steps
are skipped until step 5, because the cluster already exists. As
soon as all instances of the cluster are disabled for currently run-
ning activity, the cluster aggregates the activity execution infor-
mation of all contained activity instances and provides the batch
work item to the task performer. As the cluster is already in the
running state, no instances can be added anymore.

• Step (5): This step has to be extended with a check after the ter-
mination of the batch work item whether the cluster can be ter-
minated. Thereby, the cluster checks whether all defined batch
transition of a batch configuration are already completed. If this
is the case, the cluster transfers into the terminate state and deletes
all references to it.

Extension for
similar batch
transitions

For supporting the selection of activity instances referring to different
batch transitions with a different input, but having the same output
state, step (2) has to be extended.

• After checking whether the currently enabled activity instance is
a candidate for batch processing, the set O ′ of pre-selected data
objects is expanded. All data objects sharing the same data class
and being in one of the data states that are source states of the
connected batch transitions are added. Thereby, alignment of data

114 batch processing across multiple business processes

objects to processes must be considered since the same data state
may be utilized differently in process models (cf. state printed
of data class Customer Letter). In the aforementioned example,
this includes all data objects of class Customer Letter being in state
printed – if they refer to the Advanced payment process or Meter
reading process –, or signed – if they refer to the Contract acceptance
process.

The remaining steps are applied as described in the previous section.

7.5 conclusion

This chapter presented a concept to process a group of activity instances
of different processes as batch in order to improve process performance
in large process collections with repeating activities. The requirements
for batch processing are centrally defined in OLCs which describe the
allowed data manipulations of data objects used in the business pro-
cesses. The presented concept is an optional batch processing approach
that is started as soon as matching partners for an instance can be iden-
tified based on run time information, the currently existing data objects.
Further, identified batch processing candidates are proposed to a task
performer who selects the proper candidates. This ensures a correct
batch assignment in a multi-process setting. We consider the presented
concept light-weight, since it only uses few additional concepts (most
prominently the batch transitions) which are well embedded in existing
research works.

Currently, the multi-process batch processing concept allows all task
performers who are permitted to execute one of the activities referenc-
ing the batch transition to perform the batch. In future, the current
work could be enhanced by a user authorization concept.

In this chapter, activity instances are not delayed to avoid unneces-
sary waiting times. Further cost saving potentials by grouping future
activity instances also into a batch are not considered yet. Considering
this, the current batch configuration of the batch transition can be eas-
ily extended by the configuration parameters of the batch activity, for
instance, with the activation rule. Thereby, activation rules specific for
the multi-process setting should be developed.

Part IV

E VA L U AT I O N A N D C O N C L U S I O N S

8
P R O O F - O F - C O N C E P T I M P L E M E N TAT I O N

After having introduced the batch activity concept and extending this to batch
processing across multiple business processes, this chapter presents the prototypical
implementation of the concepts to evaluate their feasibility by extending an existing

open-source BPMS. For the implementation, the Camunda BPM platform, a
Java-based, lightweight BPMN process engine was used. The implementation shows
that with a few extensions, batch processing is enabled. It also demonstrates that the
consolidated view of several work items in one user form leads to an improved work

efficiency for users. This chapter is partly based on the published paper “Enabling
Batch Processing in BPMN Processes.” [85].

The batch activity concept presented in Chapter 5, and the batch pro-
cessing across multiple business processes presented in Chapter 7 is
realized by extending a Java-based, open-source BPMN process engine,
the Camunda BPM platform [13]. This business process management
system (BPMS) enacts process models imported in the BPMN XML for-
mat. Additionally, Camunda provides an open-source BPMN process
modeler called bpmn.io. This modeler is used to enable the model-
ing, and configuration of batch activities. The implementation and the
screen casts are available at http://bpt.hpi.uni-potsdam.de/Public/
BatchProcessing.

First, the prototypical implementation of the batch activity concept
is presented in Section 8.1. It is followed by the demonstration of the
prototypical implementation for batch processing across multiple busi-
ness processes in Section 8.2. A summary of the results is given in
Section 8.3.

8.1 implementation of the batch activity

For the implementation, the Camunda Modeler bpmn.io was adapted
to enable a quick design of batch activities. More precisely, the sub-
process element was extended as shown in Figure 49. Besides the gen-
eral sub-process attributes, batch configuration parameters, e. g., the
groupedBy-parameter, the activation rule and the maximum batch size
can be defined by the process designer in the extended Camunda Modeler
(cf. Figure 49). In the prototypical implementation, currently parallel
batch execution is supported.

As a result, the Camunda Modeler can produce a BPMN XML file
based on a designed process model, which can be then deployed in
the Camunda BPM platform for process execution. If a batch activity
is added in a process model, then the extended Camunda Modeler adds

117

bpmn.io
http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing
http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing
bpmn.io

118 proof-of-concept implementation

Figure 49: bpmn.io extension to configure batch activities on the example of
the online retailer process with a batch activity to save shipping
costs.

extension elements to the sub-process for adding the batch configuration
as described in Section 5.2.

Figure 50 depicts a high-level architecture of the Camunda BPM plat-
form as FMC block diagram1 with the extensions for enabling batch
processing. Thereby, adapted components are represented in yellow
and new added components are shown in orange. As already described,
the Camunda Modeler was extended, such that batch activities with its
configuration parameters can be defined. As shown in Figure 50, a pro-
cess designer can design a process with it, and then, store the resulting
model as BPMN XML-file in a process model repository accessed by the
Camunda Engine. Additionally, the process designer can create HTML
forms for each specified user task in the process model. They also have
to be stored, such that they are accessible by the engine.

Extended Camunda
architecture with
batch processing

capabilities

The Camunda Engine itself was extended by four additional classes
and the BPMN Parser was adapted. The added classes, and the adap-
tions are described in detail in the following.

The BatchActivity class stores the configurations of each identified
batch activity in a BPMN XML-file and manages the assignment of pro-
cess instances to batch clusters. The BatchCluster class governs the batch
execution for its assigned group of process instances. The BatchBehavior
class includes the internal behavior of a batch activity, or of each activity
being part of a batch activity sub-process, respectively. In the Camunda
Engine, every process activity gets a task behavior (e. g., user task, ser-
vice task) assigned, describing the internal activity behavior. In order to
reuse these behaviors and limit the engine extension, the BatchBehavior
is an extension of the normal task behavior and includes additional
methods for the batch execution defined by an interface. This is driven
by the idea that one of the cluster instances leads the batch execution
by first merging the data of all cluster instances, and then, executing
the usual task behavior. Currently, this is implemented for user tasks

1 A short introduction into FMC block diagrams can be found in Section 2.4

bpmn.io

8.1 implementation of the batch activity 119
BatchRegionImpl

Extended Process
Modeler

R

Process Model
Repository

HTML Forms

Worklist Web-Application

BPMN Parser UserTask
BatchBehavior

Execution

UserTask
ActivityBehavior

R

R

BatchActivity BatchCluster

Task
Manager

R
R

R R

Process
Variables

R

R

BatchTimer
Job

R

R

R

R R

Process
Designer

Task
Performer

Camunda
Engine

Figure 50: Architecture of the extended Camunda engine with batch process-
ing capabilities (as FMC block diagram [47]): adapted components
are shown in yellow and new components are shown in orange.

(cf. UserTaskBatchBehavior in Figure 50), but can be applied in a similar
way to service and script tasks which is explained later in this section.
A BatchTimerJob class was added to enable the time-out defined in the
threshold rule. Additionally, the BPMN parser was adapted to read
batch activities’ specifications, and to instantiate a BatchActivity object
and a BatchTimerJob object for each defined batch activity in a process,
as well as to instantiate a BatchBehavior object for each activity of a batch
activity sub-process.

Returning to the overall architecture presented in Figure 50, process
participants, the so-called Task Performers, can access the Camunda En-
gine via the Worklist Web-Application in which they can start new process
instances of deployed process models, and can perform user tasks. For
each started process instance, Camunda creates an Execution object rep-
resenting the state of the corresponding process instance. An Execution
can access the activity behavior of the currently enabled nodes of a
process instance. In Figure 51, the interaction of an Execution with the
BatchBehavior, the BatchActivity, and the BatchCluster class is shown on
the example of a user task.

As soon as an Execution object enables an activity with a batch behav-
ior, it is added by the BatchActivity to a cluster. If no batch cluster is
currently available, a cluster is first created, and then, the add()-method
of the cluster is called in which also the activation rule is checked.
Currently, our implementation supports the threshold rule. If a batch
cluster fulfills a batch activation rule, the cluster calls the composite()-
method of the BatchBehavior merging the data of all instances. In case
of the user task, a JSON variable with all instance data is created and
stored as process variable. This can be later reused during the user
form design. In case of a service or script task, the Camunda engine

120 proof-of-concept implementation

execution3execution2 batchActivityuserTaskBatchBehaviorexecution1

execute(exec) assignToCluster(exec)

batchCluster

checkActivationRule()execute(exec) assignToCluster(exec)
addInstance(exec)

checkActivationRule()composite(executions)

executeBA(batchExec)

super: execute(exec)

taskManager

createTask(exec)

execute(exec) assignToCluster(exec) addInstance(exec)

addNewInstance(exec,batchExec)

signal()

super: signal()leaveActivity()

checkActRule()

checkActRule()

addInstance(exec)

new()

Figure 51: Sequence diagram visualizing the interaction among added classes
BatchBehavior, BatchActivity, and BatchCluster to the Camunda Engine.

calls either a specified Java class or a script defined by a process devel-
oper. Thereby, the JSON variable can be also used to execute code on
the aggregated instance data, for example, calling an external service
with aggregated input. In this case, the Java service or the script has to
be designed in a way that it is able to handle the JSON variable.

After the composite()-method has prepared the JSON variable, the
executeBA()-method is called with one representative instance of the
cluster, the batchExecution. With the executeBA()-method, the BatchBe-
havior calls the execute()-method of its super class. Now, the normal
UserTaskActivityBehavior is executed in which a work item for the task
performer is prepared. As soon as the task performer wants to access
the batch work item in the Worklist Web-Application, the TaskManager
takes the created HTML Forms by the process designer, and the stored
JSON variable (cf. Figure 50) to create the content of the batch work
item.

Visualization of a
batch work item

Figure 52 shows the batch work item for the Ship order activity of the
retailer example. The JSON variable was used to visualize all orders
of one customer in a table. The task performer can easily inspect all
orders and has to enter the value for the logistics provider only once, as
it is valid for all orders. Instead of three work items, the task performer
has to process only one, which can lead to time savings.

Our implementation provides also the feature to add new instances,
while the first activity in a batch activity sub-process is not completed
yet. The corresponding addNewInstances()-method simply adapts the
JSON variable.

With completion of a batch work item, the TaskManager calls the
signal()-method of the BatchBehavior distributing newly added data
(e. g., the logistics provider in Figure 52) to all other cluster instances.
Finally, with the last batch work item, also the batch cluster is termi-
nated. The implementation shows that a small number of extensions
are necessary in a BPMS to enable batch processing, which have no

8.2 implementation of multi-process batching 121

Figure 52: Batch work item for the Ship order activity of the online retailer
example visualized in the Camunda Worklist Web-Application.

significant influence on the engine performance. In case of user tasks,
the implementation shows that batch activities have the advantage that
task performers have several items consolidated in one work item im-
proving their work efficiency, because they do not need to open several
ones.

8.2 implementation of multi-process batching

Batch processing across multiple business processes, which was pre-
sented in Chapter 7, relies on annotated data in business processes and
their object life cycles. Current standard BPMS do not support the han-
dling of data objects during process execution [67]. Instead, process
data is stored in some engine-internal data structures or process vari-
ables. The Camunda BPM platform is no exception in this regard. For
the prototypical implementation, we use it to show that the concept
introduced in Chapter 7 can be implemented in a standard BPMS with-
out direct support for data objects. The architecture of the resulting
extended Camunda Engine is shown in Figure 53.

Extended Camunda
architecture with
multi-process batch
processing
capabilities

While process models can be created using the Camunda Process Mod-
eler, the object life cycles (OLCs) can be created in an extension of the
so-called Process Editor2 (cf. Figure 53). With this editor, it is possible
to design OLCs, as well as batch transitions with additional data state
transition information (i. e., a Boolean value specifying whether it is
a batch transition, a set of Strings specifying the grouping character-

2 https://github.com/BP2014w1/processeditor

https://github.com/BP2014w1/processeditor

122 proof-of-concept implementationMulti-processBatchingImpl

Camunda Process
Modeler

R

Process Model
Repository

OLC XML
Files

Worklist Web-Application

BPMN Parser

Execution

UserTask
ActivityBehaviour

R

R

Batch
Behavior BatchCluster

Task
Manager

R
Process

Variables

R

OLC Parser OLC
Manager

Data
Manager

R

R

R

R
Choose-
Process

R

R

R

R RExtended Process
Editor

R

Task
Performer

Process
Designer

Camunda
Engine

Figure 53: Architecture of the extended Camunda engine for enabling batch
processing across multiple business processes (as FMC block di-
agram [47]): adapted components are shown in yellow and new
components are shown in orange.

istic referencing process variables, and a set of connected transitions).
The resulting OLC model can then be stored as XML file by the ex-
tended process editor. We added to the Camunda Engine an OLCParser
to retrieve the OLC information from the generated XML files, and an
OLCManager to access an OLC for a given data type.

Additionally to OLCs, the process designer can store multiple process
models in a process model repository accessible by the Camunda Engine.
We assume that the process models which should be involved in the
batching are available in this repository. The Camunda Engine does not
handle data nodes annotated in process models out of the box. Thus,
the BPMN parser was extended to consider annotated data nodes and
their data associations. A DataManager was added which allows to
retrieve the input and output data nodes for a given process activity.
In the remainder of this section, we detail our implementation on the
example of user tasks; service and script tasks can be handled similarly
with the assumption that the Java service or the script referenced by
such tasks can handle aggregated input.

The UserTaskActivityBehavior class responsible for executing the be-
havior of a user task is extended in the following way: When a user
task gets enabled, the central BatchBehavior class (cf. Figure 53) is called.
A method of this class checks by using the DataManager, and the OL-
CManager the related data state transitions of the user task whether one
of them is a batch transition. If yes, all currently enabled user task
instances are retrieved. Based on the input and output data nodes of
their related activities, it is checked which user tasks reference the same
batch transition as the newly enabled one, or a connected batch transi-

8.2 implementation of multi-process batching 123

tion. All positively identified user task instances are pre-selected. Next,
the grouping characteristic of them is checked. Therefore, the values of
the given process variables in the grouping characteristic are retrieved
for the current user task. These are compared to the corresponding
values for the pre-selected ones. A matching data view adds the corre-
sponding user task to the set of selected instances. Visualization of the

user approval and
the batch work item

If some matching
user task instances were found, the BatchBehavior calls another process
deployed in the engine, the so-called Choose-Process. With this, it is
possible to provide the identified similar user task instances to the task
performer in a Choose Tasks-form as shown in Figure 54a. A Choose Tasks-
form presents the just enabled user task (cf. CurrentTask in Figure 54a)
and all selected ones (cf. OtherTask in Figure 54a) and asks which of
the identified instances can be consolidated in a batch work item. It
is shown to all task performers which are allowed to execute the just
enabled user task.

(a) Choose-Tasks-form provided to the task per-
former to select activity instances for batch pro-
cessing.

(b) Batch work item with the forms
of all selected activity instances
for user task Send customer let-
ter.

Figure 54: Choose-Task-form and batch work item visualized in Camunda
Worklist Web-Application.

If one or more user tasks are selected by one of the task performers,
a work item batch is created. Thereby, the BatchBehavior disables the
execution of all selected user task instances first. Then, it aggregates
the data of all instances and continues the execution of the UserTaskAc-
tivityBehavior for the just enabled user task with the aggregated data.
In this case, the UserTaskActivityBehavior provides a batch work item
to the task performers in which the form variables of all instances are
shown in one view (cf. Figure 54b) It can be terminated by one click
on Complete Task. As soon as the batch work item is terminated, the

124 proof-of-concept implementation

BatchBehavior terminates the other user task instances, and if necessary,
adds updated data to them.

Summarized, we added a new OLC parser to the Camunda Engine and
made small adaptation on the BPMN parser for parsing data objects to
make the engine data-aware. With this, each activity can be checked
whether it is a batch candidate. A central BatchBehavior class is respon-
sible for this check, for the user approval, and for batch execution which
can be reused for other activity types. Our implementation shows that
batch work items can be created and executed, and several bones can
also run in parallel. Further, it shows that if the Choose-Tasks-form is
not yet executed, new user tasks can be added dynamically. Further, an
existing batch work item can also be combined with a new work item,
if a task performer approves it.

8.3 conclusion

The proof-of-concept implementation showed that both concepts could
be integrated in an existing BPMS with small extensions on it. Only
a small set of components had to be adapted, e. g., the parser and a
small set of constructs, e. g., the batch activity and the batch cluster
had to be added. Although the BPMS does not consider data objects in
business processes, the multi-process batching concept on OLC could
be enabled. In case of user tasks, both implementations show that the
visualization of several work items in one user view improves the work
efficiency, because the task performer do not have to open each work
item individually. In future, both prototypes could be integrated in one
system.

9
A P P L I C AT I O N T O U S E C A S E S

This chapter presents the validation of the introduced batch activity concept.
Therefore, single-case mechanism experiments are used to study the effect of batch

activities on two different use cases with the help of a simulation. Business process
simulation (BPS) is an important mean for the quantitative process analysis. Based

on this, we can predict how the batch activity concept can support business processes
in future, and its influence on the process performance. For the BPS, an extensible

BPMN process simulator is developed and extended by the functionality to simulate
batch activities. The simulation results implicate cost reductions with a slightly

positive influence on the cycle time, if a suitable batch activity is applied. The
simulator can be also used by process designers in future to simulate their processes

and to validate selected batch configurations.

Single-case
mechanism
experiments

In this chapter, the batch activity concept is validated by applying it to
use cases in single-case mechanism experiments. In design science, it is
essential to predict the influence of an artifact and to justify its contri-
bution to the stakeholder goals [133]. Therefore, single-case mechanism
experiments are used to study the effects of the mechanisms of an ar-
tifact in interaction with its context in a laboratory environment [133].
For such experiments, a validation model is created with a model of
the artifact and a model of the context which are fed with test scenarios
to observe the results [133]. With such a validation model (1) possible
effects of an artifact on its context, (2) the trade-off (i. e., comparison to
alternative artifacts), and (3) the sensitivity of artifacts (i. e., comparison
to an alternative context) can be studied [133].

In this thesis, single-case mechanism experiments are used to apply
the batch activity concept to different use cases in a simulated environ-
ment to predict its effect on the real world. The following scenarios are
used for the experiments:

• An administration use case: The process of this use case is about
the relabeling of the nameplates of office rooms in an organization,
e. g., in the case of new arriving employees. In this process, the
clerk can combine the relabeling of several office rooms in order
to save working time, thus labor costs. This scenario is used to
validate the trade-off between having a batch activity versus no
batch processing.

• An online retailer use case: This process is our running example
introduced in Section 2.2. In this use case, batch processing can
be used to combine several orders of the same customer during

125

126 application to use cases

packing and sending the parcel to save shipment costs. This sce-
nario is used to compare the effect of different batch activation
rules.

The main goal of batch activities is lower the process cost as well as
the processing time as several instances are served in one batch. Nev-
ertheless, batch activities can also increase the process cycle time as it
requires certain time to fill the batch. Thus, we want to conduct a quan-
titative analysis of the selected business processes in order to compare
the process cost and the cycle time with and without batch activities.

Queuing systems vs.
simulation

In a previous work in [87], we studied the performance of a batch
activity in comparison to a simple activity with the help of techniques
from queuing theory. By using queuing systems, such as M/M/11 for
simple activities and M/M(a,b)/12 for batch activities [63], the average
cost and the average waiting time can be calculated. However, there are
certain limitations with regards to queuing systems [87]. If alternative
batch activation rules to the threshold rule (cf. Section 5.2) should be
evaluated, the equations of the queuing system becomes more com-
plicated, hardly applicable in practice. A fundamental limitation of
queuing systems is that they focus on the evaluation of one activity at
a time and not on the whole process. However, a batch activity can
influence, for example, the instance-arrival at the subsequent activities
which should be considered in the evaluation. Queuing networks can
be utilized to extend the analysis to the whole process. However, those
become quite complex [26]. An alternative method for measuring of
the performance of business processes is the BPS.

Business process simulation (BPS) is a cost-efficient mean for quanti-
tative analysis of business processes [120] which provides insights into
throughput times, resource utilization, and process costs of different
process alternatives [26]. Existing BPS tools do not support the batching
of instances as identified in [120]; thus, an open-source BPMN process
simulator was developed by Pufahl et al. [90]. This BPMN process sim-
ulator provides, in comparison to existing ones, an extensibility mech-
anism to enlarge the functionality of the simulator to new features by
adding plug-ins.

In the remainder, this chapter is structured as follows: In Section 9.1,
the extensible BPMN simulator is shortly presented including the batch
activity plug-in which is used later to conduct different simulation ex-
periments. Then, measures for validating and evaluating the perfor-
mance of a batch activity are presented in Section 9.2, which are used

1 Queue system is given in the Kendall’s notation [46] has a single task performer, where
arrivals are determined by a Poisson process and service time has an exponential dis-
tribution.

2 Queue system given in the Kendall’s notation [46] has a single task performer, where
arrivals are determined by a Poisson process. With that, the service commences in
batches, when the queue size reaches or exceeds a threshold value a, and the capacity
of the service is b, so that 1 6 a 6 b. As well, the service time is independent of the
batch size and has an exponential distribution.

9.1 extensible bpmn process simulator 127

for the single-case mechanism experiments. In Section 9.3, the single-
case mechanism experiment with the administrative use case is pre-
sented and the simulation results with regards to no batching and with
batching are presented and discussed. This is followed by the retailer
use case in Section 9.3 to which different activation rules are applied.
Finally, a summary of the results is given and discussed in Section 9.5.

9.1 extensible bpmn process simulator

BPS is an important means for quantitative analysis of business pro-
cesses [120], but it is also used by researchers to evaluate new process
modeling artifacts.

With the BPMN standard being the state-of-the-art language for the
graphical representation of business processes, BPMS vendors already
provide BPMN simulators (e. g., Bizagi Modeler, Trisotech Modeler, Boni-
taSoft, and Visual Paradigm [31]). With these simulators, a translation
of a BPMN process diagram in a specific simulation language is not
necessary anymore. However, the commercial as well as academic
products, such as BIMP [1], are proprietary and do not support the
extensibility by new BPMN constructs. Thus, CPN Tools [91] relying
on colored petri nets (CPNs) is mainly applied for process simulation
in research [44]. But CPN Tools requires a manual translation of the
BPMN process diagrams into CPNs and expert knowledge to work
with the tool. Therefore, we developed an extensible BPMN process
simulator [90], called Scylla3, which is used in this thesis to validate the
batch activity concept.

Design of the
extensible BPMN
process simulator

The extensible BPMN process simulator builds on discrete event sim-
ulation (DES). With DES, a real-world process is captured as a finite set
of events in time, i. e., each event occurs at a certain point in time and
marks the change of the process state [4]. As no changes occur between
events, the simulation jumps from one event to another, allowing DES
to run fast and independently from real process time in contrast to
continuous systems. Tumay [109] describes DES as the “most powerful
and realistic tool for analyzing the performance of business processes”,
which provides “statistical input and output capabilities and advanced
modeling elements [...].” The BPMN process simulator uses DESMO-
J [33, 111] as DES framework which has not only gained wide accep-
tance in the academic community; it is also the foundation of many
commercial simulation software. It provides blueprints for simulation
models in which discrete events and entities can be defined. In the fol-
lowing, the plug-in structure as extensibility mechanism of the business
process simulator is shortly presented followed by a description of the
batch activity plug-in.

3 Its source code is available at https://github.com/bptlab/scylla.

128 application to use cases

plug-in structure . The simulator provides a designed plug-in
structure consisting of several abstract classes which defines entry points
into the simulation environment.The plug-in structure is shown in Fig-
ure 55 in which the so-called pluggable-classes are categorized into the
different stages of simulation: parsing, initialization, execution, and
reporting.

Parser
Pluggable

Distribution
Conversion
Pluggable

EventOrderType
Pluggable

Parsing Initialization Execution Reporting

OutputLogger
Pluggable

ExternalEvent
Pluggable

ProcessInstance
GenerationEvent

Pluggable

BPMNConstructs
Pluggable

EventCreation
Pluggable

EventScheduling
Pluggable

Figure 55: Pluggable-classes of the BPMN process simulator as entry points for
writing plug-ins categorized into the different steps of a simulation.

The ParserPluggable offers an entry point to the input parsers, such
that new simulation input, e. g., a new BPMN element, can be parsed.
During initialization of the discrete simulation model, the DESMO-J dis-
tribution for the arrival rate and activity distributions are set. The entry
point DistributionConversionPluggable allows the initialization of ad-
ditional distributions. While executing a simulation experiment, events
are generated, stored in queues, and if an event occurs, their event rou-
tines are executed which usually results in new events. Different entry
points are available to influence DES events: EventCreationPluggable
to generate new type of events, EventSchedulingPluggable to influence
the scheduling of events, and EventOrderTypePluggable to adapt the
priorities of events and to change their order in the queues. For influenc-
ing the implemented BPMN behavior of the simulator, two entry points
exist: one on the process instance level – ProcessInstanceGeneration-

EventPluggable– and one on the BPMN events level – BPMNConstructs-

Pluggable. The latter ones includes several sub-classes to influence
the behavior of the minimum set of BPMN elements supported by
the basic simulator, for instance, the BPMNStartEventPluggable or the
TaskEnableEventPluggable. The ExternalEventPluggable offers the
opportunity to add behavior which is not strictly related to a single
process instance, but to the general behavior of business process simu-
lation. Finally, a plug-in entry point is available to extend the simulator
logs and output reports, the OutputLoggerPluggable.

batch activity plug-in. The extensible BPMN process simulator
provides a plug-in for batch activities. For realizing a batch activity,
five entry points were used. First of all, the BatchParserPlugIn ex-
tending the ParserPluggable is created to parse the extension elements
used for a batch activity consisting of different batch configuration pa-
rameters, such as the batch activation rule. For a batch activity, the

9.2 performance measures for batch activities 129

challenge is that the normal activity behavior has to be adapted. Ac-
tivity instances are interrupted in their execution and only if a certain
condition is fulfilled, a batch of instances is executed. Therefore, the
BatchTaskEnablePlugIn extending the TaskEnablePluggable ensures
that enabled batch activity instances are assigned to a batch cluster
after activity enablement. In case a new batch cluster has to be cre-
ated, a new type of event – a BatchClusterStartEvent – is prepared. It
implements the blueprint of a DESMO-J discrete event with the batch
cluster as its entity. Its event routine schedules all task-begin-event ob-
jects of the instances in the batch cluster. Additionally, it selects one
process instance representing the batch execution. This representative
process instance is executed as usual. For the remaining instances, the
BatchTaskBeginPlugIn ensures that the task-begin-event routine is not
executed, instead their task-terminate-events are scheduled. After the
representative instance was executed, the BatchTaskTerminatePlugIn

allows that the task-terminate-events of the others are activated and that
resulted logging data of the representative ones are taken over by the
others. Finally, the BatchLogger extending the OutputLoggerPluggable

creates a report with batch-specific performance indicators, such as
maximum and average waiting time of the batch clusters.

9.2 performance measures for batch activities

Before presenting the single-case mechanism experiments, we want to
define performance measures based on which the success of a batch
activity can be measured. With regards to Dumas et al. [26], the per-
formance measures for business processes are time, cost, quality, and
flexibility.

Process cost and
cycle time as batch
activity performance
measures

As discussed in the related work chapter in Section 3.1, batch pro-
cessing can be used to lower the average execution costs per instance as
several instances are served in one batch. However, the cycle time of an
instance can increase by waiting for other instances to be batched with
them. On the contrary, batching can also decrease processing times by
handling a set of instances in one step. Therefore, we focus on perfor-
mance measures with regards to cost and time on which we want to
elaborate in the following:

• Process cost: Process costs are the costs associated to execute a pro-
cess instance. There can be variable costs, which occur each time a
process is executed, and fixed costs, which are overhead costs un-
affected by the intensity of processing and have to be distributed
over the process instances [24]. Serving several process instances
in a batch can save processing costs, such as labor or material costs,
but as well as setup costs, such as setting-up a machine or time
needed to get familiar with a specific type of work [2, 107]. The
size of batches influences the cost of process with a batch activity:

130 application to use cases

– Batch size: The higher the number of instances in a batch, the
lower are the average costs per process instance, as the costs
of setting up and executing a batch are distributed over all
instances. Therefore, the batch size can explain the cost per
instance. Batch activation rules as introduced in Section 5.2
have an implication on the size of the batch cluster and can,
thereby, influence the process cost.

• Process cycle time: Although the main goal of batch processing
is to reduce process cost, it is equally important to measure the
cycle time of the process instances influenced by a batch activity.
The cycle time is the time to handle a process instance from the
start to the end [26]. The goal of batch processing is to reduce
the cycle time of process instances by handling several instances
in a group [77], because the average time per instance needed for
setups or familiarization can be reduced by distributing it over the
group. However, process instances have to be interrupted in their
execution at a batch activity to add them to a batch cluster and
to fill the batch cluster until the batch activation rule is fulfilled
[70]. In some use case, the cycle time might be not crucial and an
increase of it is accepted, if the process costs can be significantly
lowered. Still, it is important to analyze the success of a batch
activity. Further measures are helpful to explain a certain cycle
time.

– Turnaround time: Turnaround time is defined [108] as the
time needed from the moment of proving a job to a batch
until returning the results of it. In the batch activity concept
introduced in this thesis, an activity instance being enabled
at a batch activity is immediately added to a cluster. Thus,
we define the turnaround time as the time a process instance
spends in a batch cluster, from adding it until the termination
of the batch cluster.

– Waiting time: The turnaround time also includes the waiting
time of process instances until a batch is started. This is idle
time for a process instance. We can differentiate between
the waiting time until a batch cluster is enabled which is
dependent on the design of the batch activation rule, and the
waiting time until the batch cluster is started which is addi-
tionally dependent on the availability of the resource being
responsible for the batch execution. Further, waiting time
can occur at the activity succeeding the batch activity, be-
cause the batch activity releases groups of instances. These
three different types of waiting times can help to identify a
beneficial batch activity configuration and can also give im-
plications on the overall process design, e. g., the number of
resources of the activity succeeding a batch activity.

9.3 application to an administrative process 131

– Proportion of reached due date: In some business processes, due
dates have to be fulfilled. Then, it is important to measure
how often the due date is reached. A batch activity should
be configured, such that the requested proportion of reached
due dates can be fulfilled.

Further measures for batch activities, which can be investigated, but
are not considered in this validation, are throughput time [108], and re-
source utilization [107] – both mainly used in the production and com-
puter systems domain. Throughput time is the amount of work done
per unit of time. It can be applied to analyze the performance of the
resource allocated to a batch activity, or it is also helpful to compare
different types of resources. If a resource has high fix costs (i. e., asset
and maintenance costs), then the goal is to have a high utilization of the
resource which can be measured by the resource utilization.

9.3 application to an administrative process

In this section, we present an application of the batch activity concept
to an administration process in a single-case mechanism experiment.
For validating the concept before an application in real life, the batch
activity is used in a simulation of the process. The process itself is about
the relabeling of the nameplates of office rooms in an organization, for
instance, in case of new arriving employees. Batch processing can be
used in this process to decrease the working time of the responsible
clerk by combining the relabeling of several office rooms. In the follow-
ing, the setup of the simulation experiments is explained, and then the
results of them are presented and discussed.

setup of simulation experiments . Based on interviews with
the expert, we design the process as shown in Figure 56a. As soon as a
request for relabeling is received, the clerk first checks it and identifies
the due date when the nameplate has to be changed. One day before,
the clerk usually prints the office labels and goes to the respective office
to attach it to the office door. Afterwards, the internal room list is
updated.

With respect to the proposed concept of batching, the clerk can print
the labels, and attach them for several requests together as shown in Fig-
ure 56b. Thereby, working time can be saved, because the printer has to
be only set up once, the clerk only has to walk around once for a group
of requests, etc. In the current process, the clerk sometimes manually
batches re-labeling requests. This is done rather randomly and does not
follow specific rules; therefore it is not considered in the simulation.

Simulation
experiments for the
administrative use
case

We define two different simulation experiments, each simulating 150

instances (i. e., simulation of half a year, because in average one request
per day arrives), to compare the performance of the process in case of (1)

132 application to use cases

Room

relabeling

request received

Check and
define due

date Due Date
 -1Day

Prepare
print outs

Hang print

outs up

Update

room list

every day in avg.
(exponential)

avg. 4 min
(exponential)

avg. 6 min
(exponential)

btw. 5 – 30 min
(uniform)

avg. 2 min
(exponential)

btw. 0.5 – 21 d
(uniform)

(a) Current process with simulation parameters.

Room

relabeling

request received

Check and
define due

date

Print office

labels

Attach

labels to

office room

Update

room list

groupedBy = Ø
activationRule = ThresholdRule(Ø, DueDate-1day)
maxBatchSize = Ø
executionOrder = parallel

(b) Process with batch activity.

Figure 56: Application of batch activity concept to an office room relabeling
process.

no batching, and (2) applying the batch activity. The two experiments
are described in more detail in the following:

1. No batching: For this case, the process model as given in Figure 56a
is used. Further, the simulation parameters discussed with the
process expert are used for the simulation, which are visualized
in Figure 56a. These parameters are explained in the following
in more detail. Once a day a request for a re-labeling is received,
sometimes the inter-arrival time is higher, therefore an exponen-
tial distribution with a mean value of one day is selected for the
inter-arrival time of instances. The request is then checked mostly
in four minutes. For this task duration, an exponential distribu-
tion is selected, because sometimes additional inquiries are neces-
sary for a few requests leading to a longer task duration. In some
cases, requests are arriving short-termed, and in other cases, they
are handed in much in advanced. Therefore, we assume together
with the process expert a uniform distribution for the timer event
where all values between 0.5 and 21 days are equally possible.
For preparing the label, the clerk has to feed special paper into
the printer, and then print the prepared forms. This takes usually
around six minutes, and in case there is a issue with the printer,
sometimes longer, leading to an exponential distribution with a
mean of 6 minutes. For attaching the label a uniform distribution
with values between 5 to 30 minutes was selected as the clerk not
only has to go to offices in their own building, but they also have
to walk to other office buildings. Finally, the room list is updated,
usually taking around two minutes. Additionally, it was consid-
ered in the simulation that the clerk responsible for this process
works on it two hours in the morning from Monday to Friday.

9.3 application to an administrative process 133

2. Batch activity: For the application of the batch activity concept, we
use the batch configuration depicted in Figure 56b. The batch ac-
tivity sub-process includes the printing of office labels, and hang-
ing them up. Updating the room list could be also included in the
batch activity, but we exclude it in order to observe the waiting
time at it as subsequent activity to the batch activity. For this
process, no grouping of instances is necessary, and the maximal
batch size is unlimited. The activation rule is a threshold rule with
a due date, such that a batch cluster is activated one day before
the earliest due date of its included instances. We selected parallel
processing. Although the clerk executes the requests sequentially
in any order, all cluster items are shown at once to the task per-
former in one batch work item. For the simulation, the process
model as given in Figure 56b is used, and the inter-arrival time
of instances and activity duration as visualized in Figure 56a are
re-used to allow a comparison.

simulation results . Running the simulation experiments resulted
in different activity event logs based on which the relevant performance
measures are calculated, such as process cost, batch size, cycle time, pro-
portion of reached due date, and waiting time at the subsequent activ-
ity. Turnaround time and waiting time at the batch activity as proposed
in the previous section are not so relevant for this use case, because
the most important aspect is to reach the due date. The simulation
files, the activity event logs and the calculation are available at http:

//bpt.hpi.uni-potsdam.de/Public/BatchProcessing.

0 €

2 €

4 €

6 €

8 €

10 €

12 €

14 €

16 €

18 €

20 €

No batching Batch activity

1.10 €

14.63 €

11.12 €

33.84 €
27.72 €

4.10 €

(a) Process cost.

0

2

4

6

8

10

12

14

16

18

20

Batch activity

1.00

17.00

4.50

(b) Batch size.

Figure 57: Simulation results regarding process costs and batch size for the ad-
ministrative use case shown as box plot diagrams visualizing the
minimum value, the lower quartile, the median, the upper quartile,
and the maximum value of the data.

Results regarding
process cost

First, the process cost are presented. Thereby, we assume that the
clerk has an hourly wage of 30AC. For the calculation of the costs, the

http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing
http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing

134 application to use cases

actual working time of the clerk (i. e., the sum of all activity durations
without waiting time) per instance is multiplied by their wage. In case
of the batch activity, the activity duration of the two activities Prepare
print outs and Hang print outs up are divided by the number of instances
of the batch cluster. The results are shown in Figure 57a as box plot
diagrams. Box plot diagrams [62] are means to represent numerical
data through their quartiles; thereby, the maximum value, the mini-
mum value, the upper and lower quartile, as well as the mean value are
shown. In case of no batching, most cases have costs between 12.93AC
to 16.09AC, whereas, in case of a batch activity, many cases have costs
between 2, 90AC to 6.35AC. This means that the batch activity reduces the
process costs by around 72% (i. e., around 10.00AC per process instances).
The maximum value of 27.72AC the experiment with the Batch activity
is similar to the maximum value of 33.84AC in the experiment with No
batching, because some batch clusters consist only of one instance. Fig-
ure 57b shows the batch size; in most cases, the size of a batch cluster
is between 2.75 to 7 instances. At maximum, also a batch cluster with
17 instances can be observed.

Results regarding
cycle time

The results regarding the cycle time measuring the time from receiv-
ing a request until the end are shown in Figure 58a. In case of no
batching, process instances are handled in 7.17 to 17.70 days which
includes also the waiting time until the due date is reached (cf. timer
event in Figure 56a). If a batch activity is applied with the proposed
configuration, most of the cases are then handled in between 2.89 to
6.45 days. By taking the mean value, the cycle time is reduced by 65%
in the case of applying a batch activity.

Additionally, it is measured how many days before the actual due
date the office room is relabeled. As shown in Figure 58b, if no batching
is applied, most requests are fulfilled -0.62 to 0.35 days before the due
date. This means that most of the cases are finished exactly on the due
date, sometimes half a day later which is still acceptable. In 26 cases
out of the 150 cases (17.3%), the due date is not reached by one or two
days (cf. minimum value). In 22 of these cases, the due dates are at the
weekend where the clerk is not available, but the re-labeling is finished
on the next Monday, such that they are still on time. However, 4 cases
(2.7%) do not meet the due date in case of no batching. If a batch activity
is applied, most requests are fulfilled earlier, between 1.97 to 11.97 days
in advance. In 4 cases (2,7%), the due date was not reached by one day
(cf. minimum value), but their due date is dated on a weekend. Thus,
no case is finished late in the case of a batch activity. Finally, the waiting
time at the subsequent activity of the batch activity (cf. Update room list
in Figure 56a) is on average 4:14 minutes with a median value of 3:18

minutes. This is, compared to a cycle time of several days, very low.

discussion. The results of the simulation experiments show signif-
icant process costs reduction by around 72%, if a batch activity is ap-

9.3 application to an administrative process 135

0

5

10

15

20

25

No batching
0.16

Batch activity

23.87

12.61 12.26

4.41

1.59

(a) Cycle time.

‐5

0

5

10

15

20

No batching Batch activity

20.97

5.98

-1.03

0.98

0.26

-2.86

(b) Amount of days the re-labeling is finished before due date.

Figure 58: Simulation results regarding cycle time for the administrative use
case shown as box plot diagrams.

plied. For the real-world process, the cost reduction might be a little
less, because batching is already randomly applied. However, if batch
processing is regularly used based on specific rules, a significant im-
provement of the process cost is still expected.

The simulation experiments show that batch processing can reduce
the cycle time of the cases, because the waiting time until the due date
is actively used to handle requests together with others. This leads to
the situation that the relabeling is terminated in advanced for most of
the cases (mostly between 2 to 12 days in advance). In this presented ad-
ministrative use case, the process expert does not consider the advanced
termination as an issue. However, if it is desired that the request should
be finished less days before the due date, two counteractions might be
possible. On the one hand, the batch configuration could be adapted,
for example, the groupedBy-parameter could be used to group requests
having the due date in the same work week. Then, the requests would
be finished only a few days before the due dates. On the other hand,

136 application to use cases

the user involvement strategy allowing the task performers to reassign
instances to other clusters as presented in Section 5.4 could be activated.
With this, the task performers could reassign requests, whose due date
is later than the others, to a new batch cluster. Both counteraction
would lead to a smaller average batch size, such that cost benefits might
be less as in the current setting.

In this use case, the waiting time of the subsequent activity to the
batch activity is quite low, because its task duration is low and its allo-
cated resource, the clerk, has also a low resource utilization, also due
to batch processing. This might be different in other use cases.

Summarized, we conclude based on the insight of the simulation ex-
periment that batch processing applied in a regular manner can offer
the potential to reduce processing time in this relabeling process, and
thereby, lead to process cost reductions. However, it needs to be men-
tioned that the reduction of labor cost is only valuable, if the labor can
be allocated to other relevant tasks for an organization.

9.4 application to an online retailer process

In this section, the batch activity is applied to the running example of
this thesis – the Online retailer process – also in a simulated environment.
As described in Section 5.1, batch processing can be used in this process
to consolidate orders of the same customers during the packing- and
sending-activity in order to save shipment cost. Thereby, we want to
investigate different batch activation rules, on the one hand the Thresh-
oldRule and on the other hand the MinMaxRule (cf. Section 5.2). In the
following, the setup of the simulation experiments is explain, and then
the results of them are presented and discussed.

setup of simulation experiments . We define three different
type of simulation experiments to compare the process performance in
case of (1) no batching, (2) a batch activity with a ThresholdRule, and
(3) a batch activity with a MinMaxRule. These types of experiments
are used for running several experiments to analyze different configu-
rations.Simulation

experiments for the
retailer use case

Each experiment simulates 15,000 instances (i. e., simulation of
one month with around 50 orders arriving each day). The three types
of experiments are described in the following in more detail:

1. No batching: The simulation focuses on the activities happening in
the warehouse of the retailer as shown in Figure 59a which also
visualizes the simulation parameters. We assume a mid-size re-
tailer which receives in average every 30 minutes an order, some-
times the inter-arrival time is higher. Therefore, an exponential
distribution with a mean value of 30 minutes is selected for the
inter-arrival time of instances. At first, a robot, available 24h a
day, takes the items of an order out of the stock and delivers
them for packing. This takes in the most cases 30 minutes. In

9.4 application to an online retailer process 137

Order

received

Take items

out of stock
Pack order Ship order

Archive

order

every 30 min in avg.
(exponential)

avg. 30 min
(exponential)

btw. 5 – 15 min
(uniform)

avg. 7 min
(exponential)

avg. 10 sec
(exponential)

Roboter (1, 24h) Warehouse
employee (1, 24h)

Information system
(1, 24h)

(a) Current process with simulation parameters.

Batch ActivityOrder

received

Take items

out of stock
Pack order Ship order

Archive

order

Order

groupedBy = Order.CustomerID
activationRule = ThresholdRule(2 instances, 10 min
 vs. 20 min
 vs. 60 min)
maxBatchSize = 3

executionOrder = parallel

(b) Process with a batch activity having a ThresholdRule with different time-
outs.

Batch ActivityOrder

received

Take items

out of stock
Pack order Ship order

Archive

order

Order

groupedBy = Order.CustomerID
activationRule = MinMaxRule(min(1 instance),

 max(2 instances, 1h))
maxBatchSize = 3

executionOrder = parallel

(c) Process with a batch activity having a MinMaxRule.

Figure 59: Application of batch activity concept to the online retailer process.

rare cases, it takes longer, if an issue occurs, such that an expo-
nential distribution is chosen. A warehouse employee packs the
items of an order in a parcel and prepares it for the shipment.
The actual shipment of the order is not simulated, because this is
performed by an external logistic provider. It is assumed that the
warehouse employees work in shifts, such that 24h one warehouse
employee is available. The duration of packaging is depending on
the parcel size which can take between 2 to 15 minutes uniformly
distributed. For preparing the shipment, an exponential distri-
bution with a mean value of 7 minutes is selected. Finally, an
order is archived by an information system which needs usually
10 seconds. It might take longer in some rare cases, if its utiliza-

138 application to use cases

tion is high due to the usage by other departments. Hence, an
exponential distribution with a mean value of 10 seconds is used.

2. Batch activity - ThresholdRule: For the simulation experiments with
the batch activity, the process model depicted in Figure 59b is
utilized. In this process model, a batch activity surrounding the
activities Pack order and Ship order is added. For batching orders
by the same customer, the groupedBy-parameter of the batch activ-
ity makes sure that only orders with the same Order.CustomerID

are added to the same batch cluster. The presented BPMN pro-
cess simulator in Section 9.1 is also able to simulate the creation
of data objects consisting of several data attributes. For each given
data attribute, the type and a distribution has to be selected for
simulating different values. Thus, an Order-data object including
CustomerID as data attribute is simulated. In the current simula-
tion setup, the orders are handled within a day and around 50

orders are arriving each day. Therefore, a discrete distribution
for the CustomerID over 50 different IDs is selected where each
has proportion of 0.02 to be selected. Further, a threshold rule
is installed as batch activation which is triggered, if at least two
process instances are added to a cluster or a certain timeout is
met. It is assumed that most customers only send a second order
within one day, not a third one. Thus, a threshold of two instances
is picked in this use case, but we want to study the effect of differ-
ent timeouts. We selected 60 minutes, 30 minutes, and 10 minutes,
because we assumed that an order should not be interrupted for
more than an hour. The orders are handled by the batch activity
in parallel. Additional to the process model, the inter-arrival time
of instances and activity duration as visualized in Figure 59a are
re-used for the simulation to allow a comparison.

3. Batch activity - MinMaxRule: This simulation experiment is similar
to the last one, only the batch activation rule of the batch activity
is adapted. The threshold rule has the disadvantage that a batch
cluster waits the maximum waiting time also if no other potential
instance for the batch cluster exists. The proposed MinMaxRule
in Section 5.2 tries to avoid this by observing the instances which
might arrive in future at the batch activity. In this simulation ex-
periment, a MinMaxRule as depicted in Figure 59b is used which
is activated when a cluster has at least one instance (minimum
condition). If future arriving instances with the same data view
are observed, then it is activated in case of two instances or the
timeout of one hour has reached (maximum condition), because
we want to make sure that a cluster waits enough time for the
future arriving instance.

9.4 application to an online retailer process 139

simulation results . The simulation reports of five different sim-
ulation experiments are used to calculate process cost and cycle time.
The simulation files, the simulation reports and the calculation are avail-
able at http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing.

10.07 €
10.01 €
(‐0.7%)

9.89 €
(‐1,9%)

9.71 €
(‐3,6%)

9.91 €
(‐1.7%)

1:05:04

1:14:47
(+14.9%)

1:33:27
(+43.6%)

2:01:46
(+87.1%)

1:04:56
(‐0.2%)

0:00:00

0:30:00

1:00:00

1:30:00

2:00:00

2:30:00

3:00:00

9.00 €

9.50 €

10.00 €

10.50 €

11.00 €

No batching
#parcels: 15000

ThresholdRule(2
instances, 10 minutes)

#parcels: 14900

ThresholdRule(2
instances, 30 minutes)

#parcels: 14714

ThresholdRule(2
instances, 1 hour)
#parcels: 14459

MinMaxRule(min(1
instance), max(2
instances, 1 hour))
#parcels: 14753

Average costs for packing and shipping an order Average cycle time

Figure 60: Simulation results for the retailer use case showing the average ac-
tivity costs of packing and shipping as well as the average cycle time
per instance for the case of (1) no batching, (2) a batch activity with
a ThresholdRule with different timeouts, (2) a batch activity with a
MinMaxRule.

In Figure 60, the average costs (depicted as balk) for the Pack order
and Ship order activity as well as the average cycle time (depicted as mea-
suring point) resulting from the different simulation experiments are
shown. For the calculation of the activity costs, an hourly wage for the
warehouse employees of 25AC, and shipment costs of 3AC per parcel are
assumed. Results regarding

cost and time
In the case of no batching, a parcel is packed and shipped for

each received order to the customer, in total 15,000 parcels (cf. X-axis
in Figure 60). In this case, the costs for an order are in average 10.07AC
and the cycle time is in average 1:05 hours.

By applying a batch activity with a ThresholdRule(2 instances, 10 min-
utes), the average costs can be slightly decreased by 0.7% to 10.01AC,
because 100 parcels less are sent, in total 14900. The average cycle time
increases by a few minutes to 1:15 hours. In Figure 61, the average
waiting times of a batch cluster until its enablement are depicted for
the different experiments with a batch activity. It shows an waiting
time of 09:58 for this threshold rule. Hence, the increase in cycle time
is mainly due to the specified maximum waiting time in the activation
rule. Almost all instances have to wait additional 10 minutes; only a
few less which can be batched with another instance.

With a ThresholdRule(2 instances, 30 minutes), the average costs can be
decreased to 9.89AC (−1.9%). With this batch activity configuration, the
online retailer can save 2, 813AC in one month (handling 15000 orders).
On the contrary, the cycle time is increased by 43.6% to 1:33 hours, also
mainly due to the waiting time until enablement of a batch cluster (cf.
Figure 61). For the third batch activity configuration, the average costs

http://bpt.hpi.uni-potsdam.de/Public/BatchProcessing

140 application to use cases

can be decreased to 9.71AC (−3.6%). Here, the online retailer can save
5, 448AC in a month. However, the cycle time is increased by 87.1% to
2:02 hours.

In contrast, the MinMaxRule can decrease the average costs by −1.7%
to 9.91AC (similar to the case of ThresholdRule(2 instances, 30 minutes))
with also a minor positive effect on the cycle time, a reduction of −0.2%.
Reasons for this are that average waiting time at the batch activity is
only 00:53 minutes, and the average waiting time at the pack and send
order activities is decreased by few seconds, because 247 process in-
stances are handled in a batch.

0:09:58

0:29:42

0:58:52

0:00:53
0:00:00

0:30:00

1:00:00

1:30:00

ThresholdRule(2
instances, 10 minutes)

#parcels: 14900

ThresholdRule(2
instances, 30 minutes)

#parcels: 14714

ThresholdRule(2
instances, 1 hour)
#parcels: 14459

MinMaxRule(min(1
instance), max(2
instances, 1 hour))
#parcels: 14753

Figure 61: Simulation results regarding the average waiting time until enable-
ment of a batch cluster for the simulation experiments with a batc
activity.

discussion. This use case demonstrates the effect of different batch
activation rules. Based on the simulation results, the online retailer can
reduce the cost of packing and shipping a parcel by the ThresholdRule,
if an increase of the cycle time is accepted. In case of a threshold rule
with a timeout of one hour, process cost reduction of 5, 448AC per month
can be achieved, if an increase of the average cycle time of one hour is
acceptable. In this case, it seems beneficial to include the Take items out
of stock-activity in the batch activity to avoid any in-process inventories.

If no increase in the cycle time is accepted, then the proposed Min-
MaxRule outperforms the ThresholdRule suggested in queuing theory
literature. It offers a cost reduction of 2, 521AC per month, and a slightly
improved cycle time. For comparing the success of different activation
rules, the increase in cycle time needs to be associated with certain
costs, loss in future sales [18] or in-process inventory cost, as we have
discussed in [87]. This can help to identify the most beneficial activation
rule based on the notion of cost.

9.5 conclusion 141

9.5 conclusion

In this chapter, the results of the validation of the batch activity concept
were presented. Two different use cases - an administrative use case
and an online retailer use case - were simulated to compare their pro-
cess performance regarding time and cost in the case of batching and
no batching. Therefore, an extensible BPMN process simulator was
developed which supports the simulation of batch activities. This sim-
ulator can be used by process designers to validate the configuration
of a batch activity. In future, we want to extend the simulator that it
also supports the identification of an optimal batch activation rule for
a business process based on the notion of costs. Therefore, process
analysts have to provide additionally to the resource and material cost
of a batch activity also the cost of waiting.

For the validation, performance measures for a batch activity were
introduced with regards to cost and time. In future, these can be ex-
tended to quality and flexibility performance measures, from which we
abstract in this thesis.

Both use cases showed that a trade-off between time and costs have
to be solved when applying a batch activity. Depending on the specific
goals in a process, a suitable batch configuration have to be identified.
For example in the first use case, the re-labeling of nameplates at office
rooms, labor costs could be significantly reduced by handling several re-
quests in a batch. On the contrary, many requests were finished several
days in advanced. If this should be avoided, a different batch activation
rule as the proposed one needs to be selected. In the online-retailer
process, the newly introduced MinMaxRule in this thesis offers cost re-
duction with no increase in cycle time outperforming the ThresholdRule
proposed by queuing theory [70]. However, if an increase in cycle time
is accepted, further cost savings can be reached with a ThresholdRule, or
a differently configured MinMaxRule.

Currently, simulation models of the business processes and a model
of the artifact (the batch activity plug-in of the simulator) were used for
the validation with certain assumptions. For instance, we assume that
the clerk in the administrative process is available each working day
which is different in real life due to vacation and illness. Based on this,
the effects of a batch activity can only be predicted. However, the results
of the simulation experiments demonstrate that a batch activity can
offer cost savings, if a suitable batch activation rule for the respective
use case is selected. In future, the batch activity applied in real world
use cases should be evaluated.

10
C O N C L U S I O N S

This chapter provides a summary of the main results of this thesis and concludes the
work. First, the main contributions, i. e., (1) the requirements framework, (2) the

batch activity concept, (3) the integration of flexibility in batch activities, (4) the
multi-process batch processing concept, are summarized. Then, the chapter provides a

discussion of each contribution and its limitations. Based on this, the options for
future research are discussed with regards to batch processing in business processes.

Organizations use business process models to document, analyze,
and redesign their conducted work, but also to enact and monitor their
business processes. Batch processing, where groups of process instances
(i. e., the actual executions of a business process) are collected for spe-
cific process activities and are executed collectively in order to save
cost or time, is present in many real life business processes. In this
thesis, it was shown that batch processing requirements could not be
captured neither on the process design level (i. e., by a process model-
ing language), nor on the process execution level (i. e., by a business
process management system (BPMS)). Manually executed batch activi-
ties or hard-coded solutions have the disadvantages that the batch pro-
cessing rules are not traceable for the stakeholders, cannot be easily
validated or improved, and cannot be easily monitored. In this thesis,
we introduced a concept to capture batch activities explicitly in process
models – not hidden on the implementation level. It also provides an
execution semantics to automatically execute batch activities in a BPMS.
This concept was extended to consider flexibility aspects during batch
execution and to allow batch processing over multiple business pro-
cesses; both research direction have not been discussed in related work,
so far.

In the remainder of this chapter the main results are presented in
Section 10.1. The results and their limitations are discussed in Sec-
tion 10.2. In Section 10.3, areas of future work are presented based on
the discussed limitations.

10.1 summary of thesis results

In the related work provided in Chapter 3, it was observed that batch
processing is considered in other domains, such as computer science
and operations management. Whereas batch processing in computer
science is used to efficiently process large amount of data with no user
interaction where the design and implementation of such systems is
discussed, in operations management batch processing is used to pro-

143

144 conclusions

cess similar products or groups of customers for being more efficient
where the balance between reduced costs and increase in cycle time is
studied. Only a small set of research works in the Business Process Man-
agement (BPM) domain exists on the integration of batch processing in
business process models by explicitly representing batch activities. The
presented solutions in those works focuses on a specific scenarios and
lack on a complete understanding of requirements. Therefore, the work
of this thesis has started in Chapter 4 with a requirements analysis for
integrating batch processing in process models. Based on the resulting
requirements framework, the design objectives were set. The thesis
provided in Chapter 5 a new modeling element – the batch activity with
several configuration parameters – and explains how the batch activity
can be automatically executed. The feasibility of the batch activity con-
cept is shown in Chapter 8 by a proof-of-concept implementation in an
existing BPMS. An application of it to different use cases in a simulated
environment in Chapter 9 implied process cost reduction for business
processes, if a suitable batch configuration is selected. Aspects of flexi-
bility during the batch execution by different means (i. e., flexible design
of the batch activation rule, user involvement strategies, and flexible
batch configuration based on events) were presented and discussed in
Chapter 5 and Chapter 6. Additionally, the basic concept was extended
to batch processing across multiple different process models in Chap-
ter 7 which was also evaluated by a proof-of-concept implementation
in Chapter 8. In particular, the results of this thesis can be summarized
as follows:

I. Requirements Framework: In this thesis, a requirements framework
for integrating batch processing in business processes was pre-
sented. It was developed based on related work and comple-
mented by requirements from collected industry examples, taken
from different domains. The requirements framework gives in-
sight into the aspects which need to be considered for developing
a batch processing concept for business process models. Addi-
tionally, it fosters also the comparison of existing solutions. In
this thesis, the requirements framework was used to structurally
compare the requirements of the collected real world scenarios
whereby two preliminary types of batch activities – automated
batch activities and user-involved batch activities – were identified.
Further, it was used to set our design objectives, and to compare
the developed batch activity concept to other related work.

II. Batch Activity Concept: The main result of this thesis is the batch ac-
tivity concept. The concept describes the syntax of a batch activity
with its batch configuration parameters which need to be speci-
fied by the process designer. Specifically, we present in details the
groupedBy-parameter for grouping instances in specific batches
based on their data context with so-called data views and the batch
activation rule being responsible for balancing the cost reductions

10.1 summary of thesis results 145

with additional waiting time. Different types of activation rules
were formalized, such as the threshold rule identified in opera-
tions management of which extensions were developed, e. g., the
MinMaxRule to consider future instances. Further, it gives an exe-
cution semantics of the batch activity. This describes the life cycle
of batch clusters (i. e., the actual representations of batch execu-
tions) and the interaction of batch clusters with process instances
and the activity resources (i. e., task performers or services). The
feasibility of the concept was shown by a prototypical implemen-
tation in an existing, open-source BPMS. The application of the
batch activity to different use cases shows that process cost can be
reduced with acceptable or even positive influence on the cycle
time, if a suitable batch activation rule is selected. For supporting
automated batch activities as well as user-involved batch activi-
ties, different levels of user involvement and the way they might
be realized were presented in this thesis.

III. Integration of Flexibility in Batch Activities: This thesis showed that
flexibility aspects of batch activities are not discussed by existing
related work in the BPM domain. In the work of this thesis, flex-
ibility for batch activities was provided by different means: First
of all, batch activation rules, which are using Event-Condition-
Action (ECA)-rules, can be flexibly designed, such that special
cases that have a need for immediate execution can be considered.
The thesis presented here the so-called FastTrackRule. Further, the
presented user involvement strategies allow task performers to re-
act dynamically on changes and exceptions in the process environ-
ment (e. g., by starting batch clusters when needed, re-assigning
instances to another batch cluster, or waiting for specific future in-
stances). Finally, this thesis presents a concept to integrate event
processing techniques for a flexible batch configuration. In this,
batch adjustment rules are defined by the process designer which
specify for which event type which type of batch clusters need to
be adapted and how. Thereby, an analysis was also provided on
how events can change the batch configuration parameters. The
application of the batch adjustment rules to a healthcare scenario
in a simulated environment showed that they help to compensate
the losses caused by the exceptional behavior in this use case.

IV. Multi-process Batch Processing Concept: This thesis could show that
batch processing across several different business processes is use-
ful is certain use cases and was not yet discussed by existing re-
lated work. Therefore, the thesis provide a requirements analy-
sis for the multi-process setting based on a motivating example.
The presented multi-process batch processing concept allows a
centrally defined batch specification in an object life cycle (OLC).
OLCs complement process models and describe allowed actions

146 conclusions

of business processes on data artifacts across the process-model
boundaries. The basic concept of batch transitions was additionally
extended in this thesis to multiple connected batch transitions (to
allow also batching in process fragments) and to multiple similar
batch transitions (to allow batching of activities having different
data inputs but producing the same output). The requirement of
optional batch processing in a multi-process setting was enabled
by activating the batch processing only when similar activity in-
stances are detected. Further, the concept includes a user approval
where the task performer has to accept identified batches by the
system. The feasibility of the concept was shown by a prototypical
implementation in an existing open-source BPMS.

10.2 limitation and discussion

requirements framework . In this thesis, the requirements frame-
work supported the definition of the design objectives as well as the
comparison of the developed batch activity concept with other related
work. However, currently none of the existing batch processing solu-
tions proposed by the BPM research is actively used in practice. Hence,
the framework might get more detailed or extended with the applica-
tion of the solutions in future. Especially, the information for multi-
process setting were restricted to one collected batch processing sce-
nario having involved several process models. But also the information
on the flexibility needs were limited, because many of the collected sce-
narios for the requirements analysis are currently executed manually.
Thereby, flexibility is always possible and, thus, practitioners do not
foresee which requirements regarding flexibility they might have.

So far, the requirements framework was validated with a group of
BPM experts. Further validations with practitioners or BPMS providers
might be needed. By applying the framework to structurally compare
the requirements of the collected real world scenarios, we identified two
type of batch activities – automated batch activities and user-involved
batch activities. More use cases should be investigated to validate these
types.

batch activity concept. With the batch activity concept, we tar-
geted O1 Usability, O2 Usefulness, and O3 Generalization. Next, we want
to discuss the concept with regard to these objectives:

• O1 Usability: The batch activity is new type of activity with a list
of configuration parameters. It was design in the same manner
as existing process modeling elements. With the configuration
parameters of a batch activity, a process designer is able to spec-
ify the batch execution: which instances are grouped in a batch
(groupedBy), when a batch is started (activationRule), how many
instances are allowed at maximum in a batch (maxBatchSize) and

10.2 limitation and discussion 147

how the batch is executed, either parallel or sequential (execu-
tionOrder). Thereby, it is assumed that process designers are able
to fill the configuration parameters based on expert knowledge.
The latter two parameters, maxBatchSize and executionOrder, are
mainly dependent on the resource which handles the batch clus-
ter. The groupedBy-parameter depends on the type of cases being
processed in batches whether they need to be grouped for batch-
ing or not. Here, a static grouping concept based on the process
instance data was used, because we observed in the collected use
cases that the grouping parameters are usually known before, e. g.,
by customer, by country, by responsible employee. A dynamic
grouping concept would have the advantages that no grouping
parameter needs to be pre-specified and the way of grouping can
also change during the execution. It is especially helpful for use
cases where batching is used to share the same setup (e. g., a famil-
iarization phase) between process instances, because a dynamical
grouping can identify most optimal groups. However, dynam-
ically grouping requires a clustering algorithm which leads to
meaningful results for the respective use case. Finding the most
useful clustering algorithm and its correct specification is realized
with high effort. The concept of activation rules allows to flexible
design different types of rules. As it is a technical concept which
uses ECA-rules, we proposed that BPMS vendors design the ac-
tivation rules and offer them to the practitioners. A set of batch
activation rule types were given in this thesis as examples based
on insights of the queuing theory. Then, process designers only
have to provide the requested input to the configuration parame-
ters. Summarized, we believe, based on the given discussion, that
practitioners can quickly apply the batch activity concept. How-
ever, the usability of the batch activity was not yet studied in a
user study. If batch activities were already manually executed
and process logs exist on those executions, batch processing dis-
covery techniques as proposed by Liu et al. [128] and Martin et al.
[58] can also be used to solve the design problem and to identify
the batch configuration. However, these are first attempts in this
direction and need to be further researched to discover a batch
activity and its configuration.

• O2 Usefulness: In practice, every process is different and has unique
characteristics. The batch activity, therefore, represents a concept
that can be adapted to the specific circumstances for improving
the process performance. Especially, the activation rule of the
batch activity provides a mean to configure batch execution, such
that cost benefits can be achieved without major influence on time
and quality of the process. The application to use cases showed
that a suitable configuration can lead to success, process cost re-
duction with an acceptable increase in waiting time, whereas non-

148 conclusions

suitable configurations can lead to not wanted behavior. Usually
practitioners build on their working experience and are able to
define a correct configuration. Queuing theory can help to iden-
tify for the batch activation rule, the most optimal threshold [63].
Additional to that, this thesis presented a BPMN process simula-
tor extended with batch activities which can be used to validate a
batch configuration.

• O3 Generalization: In this thesis, it was shown that the batch ac-
tivity concept can be integrated in existing process modeling lan-
guages on the example of the Business Process Model and Nota-
tion (BPMN) notation dominating the standard space. Addition-
ally, an integration to Unified Modeling Language (UML) Activity
Diagrams and Event-driven Process Chains (EPCs) was also dis-
cussed in this thesis. Concretely in BPMN, the batch activity is a
user task, a service task or a sub-process with additional attributes
whereby none of the existing concepts were changed; they are ex-
tended by utilizing the extensions elements explicitly supported
by the BPMN specification. Therefore, the concept is standards-
conform with regards to the BPMN notation. Currently, we have
focused on process modeling languages with explicit control-flow
relations. However, the batch activity concept might be also useful
for flexible business process modeling languages, such as Case
Management Model and Notation (CMMN) [73] or declarative
modeling [119], to batch certain cases for specific tasks. For in-
stance in CMMN, the proposed extensions on BPMN notation
can be similarly added to the CMMN tasks, bu this needs further
evaluations.

integration of flexibility in batch activities . In the re-
quirements framework, adaptation and variability of batch activities
was required to increase the flexibility of those. Adaptation is the ability
to react on exceptions or special cases during batch creation or batch
execution, whereas variability is the ability to provide different batch
configuration variants for different customer groups, product types, etc.
being handled by a process model. In this thesis, we provided means
to support adaption ability of batch activities. Known special cases and
exceptions occurring during the batch creation phase can be handled
by means of the presented FastTrackRule activation rule (providing an
immediate start for special cases) and by the introduced batch adjust-
ments rules (providing a flexible batch configuration based on events).
For the latter, a first application to a use case indicates positive results
in Section 6.3, but further evaluations are needed.

Changes which occur during the batch execution can not be handled
by these presented means, this is enabled by the user involvement
strategies for the batch activity presented in this thesis. In particular,
these involvement strategies foster adaptations in the batch creation as

10.3 future research 149

well as in the batch execution phase for known and unknown exception
or special cases. This thesis has focused on presenting those different
involvement strategies, but it was not discussed so far, how a user inter-
face for batch monitoring and adaptation should be designed. Further,
theses strategies are driven manually. They depend on the amount of
time which users have to observe batch clusters, such that additional
technical support might be helpful. Especially handling of errors, inter-
nal as well as external, are usually handled automatically and was not
discussed yet.

multi-process batch processing concept. The multi-process
batch processing concept introduced in this thesis uses OLCs to cen-
trally specify the batch configurations. OLCs might not be necessarily
be available in an organization, but they can also be automatically de-
duced from the existing process models in a process repository based
on the work by Meyer and Weske [65]. In the prototypical implemen-
tation, it could be shown that the needed OLCs can be integrated in
an existing BPMS by adding a few new components. For the concept
and the prototypical implementation, we assumed in this work that
the process model, which should be involved in batch processing, are
deployed together with the respective OLC in one BPMS.

Currently all task performers assigned to one of the activities ref-
erencing the batch transition are allowed to perform a batch cluster.
This could be enhanced by a user authorization concept for the batch
creation and execution.

The presented concept is an optional batch processing approach that
is started as soon as matching partners for an instance can be identified
based on run time information. Here, the activity instances do not
wait actively for each other. However, if scenarios exist where this is
required, the introduced batch transition can be simply extended with
the batch activation rule introduced in the basic concept.

10.3 future research

In this thesis, a batch activity concept was introduced to capture batch
requirements in process models and to automatically execute them
based on a requirements framework. Additionally, means to allow
flexibility during the batch activity execution and a concept for batch
processing across multiple process models were presented. These intro-
duced batch processing concepts are first important steps, but future
work can be focused on the directions provided below.

The introduced batch processing concepts for business processes pro-
vide modeling as well as execution concepts. However, the support of
users in the batch activity design and execution can be elaborated in
future research:

150 conclusions

batch activity design. In particular, in the batch activity design,
batch activities (or batch transition in a multi-process setting) are cur-
rently identified and configured based on expert knowledge by the pro-
cess designers. The developed BPMN process simulator, which is able
to simulate business process with batch activities, could be extended to
identify an optimal batch activation rule for a process. Another possi-
bility, in case execution logs exist, is to use process mining techniques
allowing for the automated discovery of batch activities from those
event logs; first approaches in this direction are presented in [58, 128].
However, those techniques are not capable to mine a complete batch
configuration, such that more research work in this direction is needed.
Further, an application of the batch processing concepts presented in
this thesis, e. g., in a user study or in a technical action research [133],
will give more insights into the usability and usefulness of the pre-
sented concepts. These might also lead to new requirements which
extend or detail the introduced requirements framework.

batch activity execution. Regarding the batch execution, we
plan to develop a user interface for the monitoring and adaptation of
batch clusters. Additionally, it should be researched whether event pro-
cessing techniques, which have been already applied in the batch cre-
ation phase to adapt clusters, can be also applied in the batch execution
phase to allow additional flexibility and to handle exceptions. Recent
research efforts focus on process predictions, for instance, on predicting
the remaining time [81, 94], delays [101], or the process outcome [56].
These types of techniques could support and optimize the batch acti-
vation. In this work, we assume that the instances for batching are all
running in the same BPMS. In future work, this assumption could be
relaxed and batching of processes and process instances in distributed
systems could be researched. Thereby, research works on coordinating
services, for example in [125], could be considered.

With regards to flexibility of batch activities, this thesis presented
different means to support the batch activity adaptation, but the ability
to allow variability of batch activities was not discussed yet. In future, a
concept to allow variability of the batch activity configurations, maybe
supported by the batch processing discovery techniques, can be devel-
oped. Going a step further, the current batch activity concept which
is a design and implementation concept could be used as basis for a
dynamically batch processing concept where batches can be created at
any activity, if certain conditions are fulfilled.

Part V

A P P E N D I X

B I B L I O G R A P H Y

[1] Madis Abel. Lightning fast business process simulator. Master’s the-
sis, Institute of Computer Science, University of Tartu, 2011. (Cited on
page 127.)

[2] K.C. Arora. Production and Operations Management. Laxmi Publications
Pvt Limited, 2004. (Cited on pages 27, 28, 29, and 129.)

[3] Norman T.J. Bailey. On queueing processes with bulk service. Journal
of the Royal Statistical Society. Series B (Methodological), 16(1):80–87, 1954.
(Cited on pages 30 and 50.)

[4] Jerry Banks. Discrete-event system simulation. Pearson Education India,
1984. (Cited on page 127.)

[5] Roland Barcia, Geoffrey Hambrick, Kyle Brown, Robert Peterson, and
Kulvir Singh Bhogal. Persistence in the Enterprise: A Guide to Persistence
Technologies. developerWorks Series. Pearson Education, 2008. (Cited on
pages 31 and 32.)

[6] Alistair Barros, Thomas Hettel, and Christian Flender. Process choreog-
raphy modeling. In Handbook on Business Process Management 1, pages
257–277. Springer, 2010. (Cited on page 13.)

[7] Anne Baumgraß, Mirela Botezatu, Claudio Di Ciccio, Remco Dijkman,
Paul Grefen, Marcin Hewelt, Jan Mendling, Andreas Meyer, Shaya Pour-
mirza, and Hagen Völzer. Towards a methodology for the engineering
of event-driven process applications. In International Conference on Busi-
ness Process Management (BPM), pages 501–514. Springer, 2015. (Cited on
page 25.)

[8] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process Manage-
ment: A guide for the design of business processes. Springer Science & Busi-
ness Media, 2013. (Cited on pages 13 and 14.)

[9] Philip A Bernstein and Eric Newcomer. Principles of Transaction Process-
ing. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers, 1997. (Cited on pages 31 and 32.)

[10] Bizagi. Bizagi BPM Suite. https://www.bizagi.com/. (Cited on pages 41

and 42.)

[11] Patrice Briol. BPMN, the Business Process Modeling Notation Pocket Hand-
book. LuLu. com, 2008. (Cited on pages 15, 16, and 17.)

[12] Camunda. Batch processing interface to the camunda engine. https://
docs.camunda.org/manual/7.7/user-guide/process-engine/batch/, .
(Cited on page 32.)

[13] Camunda. Camunda BPM platform. https://www.camunda.org, . (Cited
on pages 11, 32, 41, 42, and 117.)

153

https://www.bizagi.com/
https://docs.camunda.org/manual/7.7/user-guide/process-engine/batch/
https://docs.camunda.org/manual/7.7/user-guide/process-engine/batch/
https://www.camunda.org

154 bibliography

[14] Richard B. Chase, F. Robert Jacobs, and Nicholas J. Aquilano. Operations
Management for Competitive Advantage. McGraw-Hill Higher Education,
10 edition, 2004. (Cited on pages 27 and 28.)

[15] Michele Chinosi and Alberto Trombetta. BPMN: An introduction to the
standard. Computer Standards & Interfaces, 34(1):124–134, 2012. (Cited on
page 15.)

[16] David Cohn and Richard Hull. Business Artifacts: A Data-centric Ap-
proach to Modeling Business Operations and Processes. IEEE Data Engi-
neering Bulletin, 32(3):3–9, 2009. (Cited on page 107.)

[17] Sue Conger. Six sigma and business process management. In Handbook
on Business Process Management 1, pages 127–146. Springer, 2015. (Cited
on page 3.)

[18] Mark M Davis. How long should a customer wait for service? Decision
Sciences, 22(2):421–434, 1991. (Cited on pages 30 and 140.)

[19] Umeshwar Dayal. Active Database Management Systems. In Proceedings
of the Third International Conference on Data and Knowledge Bases: Improv-
ing Usability and Responsiveness, pages 150–169, 1988. (Cited on pages 65

and 90.)

[20] Rajat K. Deb and Richard F. Serfozo. Optimal control of batch service
queues. Advances in Applied Probability, 5(2):340–361, 1973. (Cited on
page 30.)

[21] Gero Decker. Design and analysis of process choreographies. PhD thesis,
University of Potsdam, 2009. (Cited on page 13.)

[22] Dhananjay M Dhamdhere. Operating Systems: A Concept-based Approach,
2E. Tata McGraw-Hill Education, 2006. (Cited on page 31.)

[23] Dirk Draheim. Business process technology: A unified view on business pro-
cesses, workflows and enterprise applications. Springer Science & Business
Media, 2010. (Cited on page 3.)

[24] Marlon Dumas, Wil MP van der Aalst, and Arthur HM ter Hofstede.
Process-aware information systems: bridging people and software through pro-
cess technology. John Wiley & Sons, 2005. (Cited on page 129.)

[25] Marlon Dumas, Luciano García-Bañuelos, Marcello La Rosa, and Reina
Uba. Fast detection of exact clones in business process model reposito-
ries. Information Systems, 38(4):619–633, 2013. (Cited on page 101.)

[26] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of business process management, volume 1. Springer, 2013.
(Cited on pages 3, 4, 8, 13, 15, 20, 30, 32, 37, 51, 55, 126, 129, and 130.)

[27] M. Ebbers, E. Ramos, J. van Cappelle, L. Duijvestijn, T. Kaneki,
M. Packer, and IBM Redbooks. Approaches to Optimize Batch Processing
on z/OS. IBM Redbooks, 2012. (Cited on pages 31 and 32.)

[28] Chathura C Ekanayake, Marcello La Rosa, Arthur HM Ter Hofstede,
and Marie-Christine Fauvet. Fragment-based version management for

bibliography 155

repositories of business process models. In OTM Confederated Interna-
tional Conferences "On the Move to Meaningful Internet Systems" (CoopIS),
pages 20–37. Springer, 2011. (Cited on page 101.)

[29] Opher Etzion and Peter Niblett. Event processing in action. Manning
Publications Co., 2010. (Cited on pages 25 and 85.)

[30] Walid Fdhila, Manuel Gall, Stefanie Rinderle-Ma, Juergen Mangler, and
Conrad Indiono. Classification and formalization of instance-spanning
constraints in process-driven applications. In International Conference
on Business Process Management (BPM), pages 348–364. Springer, 2016.
(Cited on page 33.)

[31] António Paulo Freitas and José Luís Mota Pereira. Process simulation
support in BPM tools: The case of BPMN. In 5th International Conference
on Business Sustainability (BS). 2100 Projects, 2015. (Cited on page 127.)

[32] Jakob Freund and Bernd Rücker. Praxishandbuch BPMN 2.0. Carl Hanser
Verlag GmbH Co KG, 2014. (Cited on page 15.)

[33] Johannes Göbel, Philip Joschko, Arne Koors, and Bernd Page. The Dis-
crete Event Simulation Framework DESMO-J: Review, Comparison To
Other Frameworks And Latest Development. In European Conference
on Modelling and Simulation (ECMS), pages 100–109, 2013. (Cited on
pages 97 and 127.)

[34] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rin-
nooy Kan. Optimization and approximation in deterministic sequencing
and scheduling: a survey. Annals of discrete mathematics, 5:287–326, 1979.
(Cited on page 29.)

[35] Michael Hammer. What is business process management? In Handbook
on Business Process Management 1, pages 3–16. Springer, 2010. (Cited on
page 3.)

[36] Paul Harmon. State of business process management 2016,
2016. URL http://www.bptrends.com/bpt/wp-content/uploads/

2015-BPT-Survey-Report.pdf. (Cited on pages 10 and 15.)

[37] Paul Harmon and Celia Wolf. The state of business process man-
agement, 03 2016. URL http://www.bptrends.com/bpt/wp-content/

uploads/2015-BPT-Survey-Report.pdf. (Cited on page 3.)

[38] Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event Process-
ing Platform for Business Process Management. In Enterprise Distributed
Object Computing (EDOC), pages 107–116. IEEE, 2013. (Cited on pages 24,
25, and 85.)

[39] David Hollingsworth and UK Hampshire. Workflow management coali-
tion: The workflow reference model. Document Number TC00-1003, 1995.
(Cited on page 21.)

[40] Process Maker Inc. Batch routing plugin of process maker 3.0. http:

//wiki.processmaker.com/3.0/Batch_Routing{#}Overview, . (Cited on
pages 5 and 32.)

http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://wiki.processmaker.com/3.0/Batch_Routing{#}Overview
http://wiki.processmaker.com/3.0/Batch_Routing{#}Overview

156 bibliography

[41] Process Maker Inc. Processmaker workflow & bpm software suite.
https://www.processmaker.com/, . (Cited on pages 5 and 32.)

[42] Marta Indulska, Peter Green, Jan Recker, and Michael Rosemann. Busi-
ness process modeling: Perceived benefits. Conceptual Modeling (ER),
pages 458–471, 2009. (Cited on page 7.)

[43] Christian Janiesch, Martin Matzner, and Oliver Müller. Beyond pro-
cess monitoring: A proof-of-concept of event-driven business activity
management. Business Process Management Journal, 18(4):625–643, 2012.
(Cited on page 25.)

[44] Monique Jansen-Vullers and Mariska Netjes. Business process
simulation–a tool survey. In 7th Workshop on the Practical Use of Coloured
Petri Nets and CPN Tools, 2006. (Cited on page 127.)

[45] Gerti Kappel and Michael Schrefl. Object/behavior diagrams. In Interna-
tional Conference on Data Engineering (ICDE), pages 530–539. IEEE, 1991.
(Cited on pages 19 and 101.)

[46] David G Kendall. Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain. The An-
nals of Mathematical Statistics, pages 338–354, 1953. (Cited on page 126.)

[47] Andres Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Mod-
eling Concepts: Effective Communication of IT Systems. Wiley, 2005. (Cited
on pages 21, 95, 119, and 122.)

[48] Julian Krumeich, Benjamin Weis, Dirk Werth, and Peter Loos. Event-
driven business process management: Where are we now? Business
Process Management Journal, 20(4):615–633, 07 2014. (Cited on page 24.)

[49] Vera Künzle and Manfred Reichert. PHILharmonicFlows: Towards a
Framework for Object-aware Process Management. Journal of Software
Maintenance and Evolution: Research and Practice, 23(4):205–244, 2011.
(Cited on page 34.)

[50] Jochen Küster, Ksenia Ryndina, and Harald Gall. Generation of busi-
ness process models for object life cycle compliance. Business Process
Management, pages 165–181, 2007. (Cited on page 20.)

[51] Zakir Laliwala, Rahul Khosla, Pritha Majumdar, and Sanjay Chaudhary.
Semantic and rules based event-driven dynamic web services composi-
tion for automation of business processes. In Services Computing Work-
shops (SCW), pages 175–182. IEEE, 2006. (Cited on page 65.)

[52] Frank Leymann and Dieter Roller. Production workflow: Concepts and
Techniques. Prentice Hall, 2000. (Cited on pages 3, 4, 5, 20, and 33.)

[53] Jianxun Liu and Jinmin Hu. Dynamic batch processing in workflows:
Model and implementation. Future Generation Computer Systems, 23(3):
338–347, 2007. (Cited on pages 4, 5, 34, 35, 37, 49, 50, 79, 80, 81, and 101.)

[54] Jianxun Liu, Yiping Wen, Ting Li, and Xuyun Zhang. A data-operation
model based on partial vector space for batch processing in workflow.
Concurrency and Computation: Practice and Experience, 23(16):1936–1950,
2011. (Cited on page 35.)

https://www.processmaker.com/

bibliography 157

[55] David Luckham. The power of events: An introduction to complex
event processing in distributed enterprise systems. In International Work-
shop on Rules and Rule Markup Languages for the Semantic Web, pages 3–3.
Springer, 2008. (Cited on pages 24 and 85.)

[56] Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon Dumas, and
Chiara Ghidini. Predictive monitoring of business processes. In Inter-
national Conference on Advanced Information Systems Engineering, pages
457–472. Springer, 2014. (Cited on page 150.)

[57] Arunava Maity and UC Gupta. Analysis and optimal control of a queue
with infinite buffer under batch-size dependent versatile bulk-service
rule. Opsearch, 52(3):472–489, 2015. (Cited on page 30.)

[58] Niels Martin, Marijke Swennen, Benoît Depaire, Mieke Jans, An Caris,
and Koen Vanhoof. Retrieving batch organisation of work insights from
event logs. Decision Support Systems, 2017. (Cited on pages 33, 50, 51,
147, and 150.)

[59] Joseph S Martinich. Production and operations management: An applied
modern approach. John Wiley & Sons, 2008. (Cited on pages 27, 28, 29,
and 49.)

[60] Muthu Mathirajan and Appa Iyer Sivakumar. A literature review, clas-
sification and simple meta-analysis on scheduling of batch processors
in semiconductor. The International Journal of Advanced Manufacturing
Technology, 29(9-10):990–1001, 2006. (Cited on pages 5, 29, and 51.)

[61] D McCoy, R Schulte, Frank Buytendijk, Nigel Rayner, and A Tiedrich.
Business activity monitoring: The promise and reality. Gartner, Gart-
ner’s Marketing Knowledge and Technology Commentary COM-13-9992, 2001.
(Cited on page 14.)

[62] Robert McGill, John W. Tukey, and Wayne A. Larsen. Variations of box
plots. The American Statistician, 32(1):12–16, 1978. (Cited on page 134.)

[63] Jyotiprasad Medhi. Stochastic models in queueing theory. Academic Press,
2002. (Cited on pages 5, 28, 30, 126, and 148.)

[64] Andreas Meyer. Data perspective in business process management. PhD
thesis, University of Potsdam, 2015. (Cited on page 19.)

[65] Andreas Meyer and Mathias Weske. Activity-centric and Artifact-centric
Process Model Roundtrip. In Business Process Management Workshops,
pages 167–181. Springer, 2013. (Cited on pages 20 and 149.)

[66] Andreas Meyer and Mathias Weske. Weak Conformance between Pro-
cess Models and Synchronized Object Life Cycles. In Service-Oriented
Computing (ICSOC), pages 359–367. Springer, 2014. (Cited on page 20.)

[67] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske. Mod-
eling and Enacting Complex Data Dependencies in Business Processes.
In International Conference on Business Process Management (BPM), pages
171–186. Springer, 2013. (Cited on page 121.)

[68] Christine Natschläger, Andreas Bögl, and Verena Geist. Optimizing Re-
source Utilization by Combining Running Business Process Instances, pages
120–126. Springer International Publishing, 2015. (Cited on page 35.)

158 bibliography

[69] Christine Natschläger, Andreas Bögl, Verena Geist, and Miklós Biró.
Optimizing resource utilization by combining activities across process
instances. In European Conference on Software Process Improvement, pages
155–167. Springer, 2015. (Cited on pages 5, 34, 35, 37, 49, 50, 79, 80, 81,
101, and 104.)

[70] M. Neuts. A general class of bulk queues with poisson input. The Annals
of Mathematical Statistics, 38(3):759–770, 1967. (Cited on pages 5, 30, 35,
65, 130, and 141.)

[71] OMG. Business Process Model and Notation (BPMN), V. 2.0, 2011.
(Cited on pages 4, 15, 16, 24, 33, 45, 57, 68, and 69.)

[72] OMG. Unified Modeling Language (UML), Version 2.5, 2015. (Cited on
pages 4, 15, 33, 57, 63, 70, and 91.)

[73] OMG. Case Management Model and Notation (CMMN), V. 1.1, 2016.
(Cited on pages 4, 33, 71, and 148.)

[74] Djamila Ouelhadj and Sanja Petrovic. A survey of dynamic schedul-
ing in manufacturing systems. Journal of scheduling, 12(4):417–431, 2009.
(Cited on pages 29 and 51.)

[75] Katerina P Papadaki and Warren B Powell. Exploiting structure in adap-
tive dynamic programming algorithms for a stochastic batch service
problem. European Journal of Operational Research, 142(1):108–127, 2002.
(Cited on page 49.)

[76] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. Journal of Management Information Systems, 24(3):45–77, 2007.
(Cited on pages 6, 7, 8, and 10.)

[77] Johannes Pflug and Stefanie Rinderle-Ma. Dynamic instance queuing in
process-aware information systems. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pages 1426–1433. ACM, 2013.
(Cited on pages 34, 36, 49, 50, 51, 81, 101, and 130.)

[78] Johannes Pflug and Stefanie Rinderle-Ma. Application of dynamic in-
stance queuing to activity sequences in cooperative business process
scenarios. International Journal of Cooperative Information Systems, page
1650002, 2016. (Cited on pages 36, 79, and 80.)

[79] Johannes Pflug and Stefanie Rinderle-Ma. Process instance similarity:
Potentials, metrics, applications. In OTM Confederated International Con-
ferences "On the Move to Meaningful Internet Systems" (CoopIS), pages 136–
154. Springer, 2016. (Cited on page 59.)

[80] Benoît Polack, Jean-François Schved, and Bernard Boneu. Preanalytical
recommendations of the ’groupe d’etude sur l’hemostase et la throm-
bose’(geht) for venous blood testing in hemostasis laboratories. Patho-
physiology of Haemostasis and Thrombosis, 31(1):61–68, 2001. (Cited on
page 97.)

[81] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano
de Leoni. Data-aware remaining time prediction of business process

bibliography 159

instances. In Neural Networks (IJCNN), 2014 International Joint Conference
on, pages 816–823. IEEE, 2014. (Cited on page 150.)

[82] Chris N Potts and Mikhail Y Kovalyov. Scheduling with batching: A re-
view. European journal of operational research, 120(2):228–249, 2000. (Cited
on pages 5, 29, 50, 51, and 52.)

[83] Luise Pufahl and Mathias Weske. Batch Activities in Process Modeling
and Execution. In International Conference on Service-Oriented Computing
(ICSOC), pages 283–297. Springer, 2013. (Cited on page 57.)

[84] Luise Pufahl and Mathias Weske. Batch processing across multiple busi-
ness processes based on object life cycles. In International Conference on
Business Information Systems (BIS), pages 195–208. Springer, 2016. (Cited
on page 101.)

[85] Luise Pufahl and Mathias Weske. Enabling batch processing in bpmn
processes. In BPM (Demos), pages 28–33, 2016. (Cited on page 117.)

[86] Luise Pufahl and Mathias Weske. Requirements framework for batch
processing in business processes. In Business Process Modeling, Develop-
ment and Support (BPMDS). Springer, 2017. (Cited on pages 27 and 41.)

[87] Luise Pufahl, Ekaterina Bazhenova, and Mathias Weske. Evaluating
the performance of a batch activity in process models. In Business Pro-
cess Management Workshops, pages 277–290. Springer, 2014. (Cited on
pages 126 and 140.)

[88] Luise Pufahl, Nico Herzberg, Andreas Meyer, and Mathias Weske. Flex-
ible batch configuration in business processes based on events. In Inter-
national Conference on Service-Oriented Computing (ICSOC), pages 63–78.
Springer, 2014. (Cited on page 85.)

[89] Luise Pufahl, Andreas Meyer, and Mathias Weske. Batch regions: pro-
cess instance synchronization based on data. In Enterprise Distributed
Object Computing Conference (EDOC), pages 150–159. IEEE, 2014. (Cited
on page 57.)

[90] Luise Pufahl, Tsun Yin Wong, and Mathias Weske. Design of an Extensi-
ble BPMN Process Simulator. In Business Process Management Workshops,
2017. (Cited on pages 126 and 127.)

[91] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen,
Jacob Frank Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren
Christensen, and Kurt Jensen. Cpn tools for editing, simulating, and
analysing coloured petri nets. In International Conference on Applica-
tion and Theory of Petri Nets, pages 450–462. Springer, 2003. (Cited on
page 127.)

[92] Manfred Reichert and Barbara Weber. Enabling flexibility in process-aware
information systems: Challenges, methods, technologies. Springer Science &
Business Media, 2012. (Cited on pages 36 and 51.)

[93] Hajo A Reijers and S Liman Mansar. Best practices in business process
redesign: an overview and qualitative evaluation of successful redesign
heuristics. Omega, 33(4):283–306, 2005. (Cited on page 32.)

160 bibliography

[94] Andreas Rogge-Solti and Mathias Weske. Prediction of business pro-
cess durations using non-markovian stochastic petri nets. Information
Systems, 54:1–14, 2015. (Cited on page 150.)

[95] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and
David Edmond. Workflow resource patterns: Identification, representa-
tion and tool support. In International Conference on Advanced Information
Systems Engineering (CAiSE), pages 216–232. Springer, 2005. (Cited on
pages 4, 21, 33, 51, 74, 78, and 81.)

[96] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Karsten Schulz. When
workflows will not deliver: The case of contradicting work practice. In-
ternational Conference on Business Information Systems (BIS), 5:69–84, 2005.
(Cited on pages 5, 34, 37, 50, 79, 81, and 101.)

[97] Oumaima Saidani and Selmin Nurcan. Towards context aware business
process modelling. In Business Process Modeling, Development, and Support
(BPMDS), volume 7, page 1, 2007. (Cited on page 51.)

[98] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process
modeling using event-driven process chains. Process-aware information
systems, pages 119–146, 2005. (Cited on pages 4, 15, 33, 57, and 70.)

[99] Wasana Sedera, Guy G Gable, Michael Rosemann, and Robert W Smyth.
A success model for business process modeling: findings from a multi-
ple case study. In PACIS 2004 Proceedings. 38., 2004. (Cited on page 7.)

[100] Shokri Z Selim. Time-dependent solution and optimal control of a bulk
service queue. Journal of Applied Probability, 34(1):258–266, 1997. (Cited
on page 30.)

[101] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Man-
delbaum. Queue mining–predicting delays in service processes. In In-
ternational Conference on Advanced Information Systems Engineering, pages
42–57. Springer, 2014. (Cited on page 150.)

[102] Karabi Sikdar and UC Gupta. Analytic and numerical aspects of batch
service queues with single vacation. Computers & operations research, 32

(4):943–966, 2005. (Cited on page 30.)

[103] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database Sys-
tem Concepts, 4th Edition. McGraw-Hill Book Company, 2001. (Cited on
page 58.)

[104] SH Sim and JGC Templeton. Steady state results for the m/m (a, b)/c
batch-service system. European Journal of Operational Research, 21(2):260–
267, 1985. (Cited on page 30.)

[105] Jacob V Simons and Gregory R Russell. A case study of batching in a
mass service operation. Journal of Operations Management, 20(5):577–592,
2002. (Cited on page 30.)

[106] Jacob V. Simons Jr., Gerard Burke, and Gregory R. Russell. A cost-based
model for customer batching in mass service operations. Journal of Ser-
vice Science Research, 3(2):123–151, 2011. (Cited on page 30.)

bibliography 161

[107] Nigel Slack, Stuart Chambers, and Robert Johnston. Operations and pro-
cess management: principles and practice for strategic impact. Pearson Edu-
cation, 2009. (Cited on pages 27, 28, 29, 51, 129, and 131.)

[108] Andrew Tanenbaum. Modern operating systems. Pearson Education,
Inc.,4th Revised edition, 2014. (Cited on pages 27, 31, 49, 130, and 131.)

[109] Kerim Tumay. Business process simulation. In Proceedings of the 27th con-
ference on Winter simulation, pages 55–60. IEEE Computer Society, 1995.
(Cited on page 127.)

[110] Esko Ukkonen. Algorithms for approximate string matching. Informa-
tion and control, 64(1-3):100–118, 1985. (Cited on page 20.)

[111] Department of Computer Science University of Hamburg. DesmoJ
- A Framework for Discrete-Event Modeling and Simulation. http:

//desmoj.sourceforge.net/. (Cited on pages 97 and 127.)

[112] Wil MP van der Aalst. Process Mining - Discovery, Conformance and En-
hancement of Business Processes. Springer, 2011. (Cited on page 14.)

[113] Wil MP van der Aalst. Business process management: a comprehensive
survey. ISRN Software Engineering, 2013, 2013. (Cited on pages 3 and 13.)

[114] Wil MP van der Aalst and Arthur HM ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005. (Cited on
pages 4 and 33.)

[115] Wil MP van der Aalst and Kees Max van Hee. Workflow management:
models, methods, and systems. MIT press, 2004. (Cited on pages 3, 36,
and 51.)

[116] Wil MP van der Aalst, Paulo Barthelmess, Clarence A Ellis, and Jacques
Wainer. Proclets: A framework for lightweight interacting workflow
processes. International Journal of Cooperative Information Systems, 10(04):
443–481, 2001. (Cited on page 34.)

[117] Wil MP van der Aalst, Arthur HM ter Hofstede, Bartek Kiepuszewski,
and Alistair P Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003. (Cited on pages 5, 14, and 33.)

[118] Wil MP van der Aalst, Michael Rosemann, and Marlon Dumas.
Deadline-based escalation in process-aware information systems. De-
cision Support Systems, 43(2):492–511, 2007. (Cited on page 32.)

[119] Wil MP van der Aalst, Maja Pesic, and Helen Schonenberg. Declara-
tive workflows: Balancing between flexibility and support. Computer
Science-Research and Development, 23(2):99–113, 2009. (Cited on pages 71

and 148.)

[120] Wil MP van der Aalst, Joyce Nakatumba, Anne Rozinat, and Nick Rus-
sell. Business process simulation. In Handbook on Business Process Man-
agement 1, pages 313–338. Springer, 2010. (Cited on pages 126 and 127.)

[121] Wil MP van der Aalst, Kees M van Hee, Arthur HM ter Hofstede,
Natalia Sidorova, HMW Verbeek, Marc Voorhoeve, and Moe Thandar
Wynn. Soundness of workflow nets: classification, decidability, and

http://desmoj.sourceforge.net/
http://desmoj.sourceforge.net/

162 bibliography

analysis. Formal Aspects of Computing, 23(3):333–363, 2011. (Cited on
page 13.)

[122] Jan vom Brocke and Michael Rosemann. Handbook on business process
management. Springer, 2010. (Cited on page 3.)

[123] R Hevner Von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS quarterly, 28(1):
75–105, 2004. (Cited on pages 6 and 8.)

[124] Barbara Weber, Manfred Reichert, Jan Mendling, and Hajo A Reijers.
Refactoring large process model repositories. Computers in Industry, 62

(5):467–486, 2011. (Cited on page 49.)

[125] Andreas Weiß, Vasilios Andrikopoulos, Michael Hahn, and Dimka
Karastoyanova. ChorSystem: A Message-based System for the Life Cy-
cle Management of Choreographies. In OTM Confederated International
Conferences "On the Move to Meaningful Internet Systems" (CoopIS), pages
503–521. Springer-Verlag, 2016. (Cited on page 150.)

[126] Howard J Weiss. The computation of optimal control limits for a queue
with batch services. Management Science, 25(4):320–328, 1979. (Cited on
page 30.)

[127] Howard J Weiss and Stanley R Pliska. Optimal control of some markov
processes with applications to batch queueing and continuous review
inventory systems. The Center for Mathematical Studies in Economics and
Management Science, Discussion Paper, 214, 1976. (Cited on page 30.)

[128] Yiping Wen, Zhigang Chen, Jianxun Liu, and Jinjun Chen. Mining batch
processing workflow models from event logs. Concurrency and Computa-
tion: Practice and Experience, 25(13):1928–1942, 2013. (Cited on pages 35,
147, and 150.)

[129] Yiping Wen, Jianxun Liu, Zhigang Chen, and Buqing Cao. Dynamic
scheduling optimization for instance aspect handling in workflows. In
Semantics, Knowledge and Grids (SKG), 2014 10th International Conference
on, pages 57–62. IEEE, 2014. (Cited on page 35.)

[130] Mathias Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Second Edition. Springer, 2012. (Cited on pages 3, 4, 13, 14, 15,
16, 20, 21, 22, 23, 70, and 81.)

[131] Matthias Kunze Mathias Weske. Behavioural Models: From Modelling Fi-
nite Automata to Analysing Business Processes. Springer International Pub-
lishing, 2016. (Cited on page 14.)

[132] Stephen A White. BPMN modeling and reference guide: understanding and
using BPMN. Future Strategies Inc., 2008. (Cited on pages 15 and 16.)

[133] Roel J Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014. (Cited on pages 8, 96, 125, and 150.)

[134] Ray Wild. Essentials of Operations Management. Cengage Learning EMEA,
2002. (Cited on page 28.)

bibliography 163

[135] Tsun Yin Wong, Susanne Bülow, and Mathias Weske. Monitoring batch
regions in business processes. In CAiSE Workshops, pages 317–323.
Springer, 2015. (Cited on pages 36, 51, and 82.)

[136] Zhiqiang Yan, Remco M. Dijkman, and Paul W. P. J. Grefen. Business
Process Model Repositories - Framework and Survey. Information & Soft-
ware Technology, 54(4):380–395, 2012. (Cited on pages 101 and 104.)

[137] Armin Zimmermann. Stochastic Discrete Event Systems. Springer, 2007.
(Cited on page 30.)

[138] Michael zur Muehlen and Robert Shapiro. Business process analytics.
In Handbook on Business Process Management 2, pages 137–157. Springer,
2010. (Cited on page 24.)

All links were last followed on October 4, 2017.

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	Listings
	Acronyms
	Introduction & Background
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objectives and Research Framework
	1.4 Summary of Contributions
	1.5 Structure of the Thesis

	2 Preliminaries
	2.1 Process Models
	2.2 Business Process Model and Notation
	BPMN core elements
	Running example

	2.3 Data Aspects in Process Models
	2.4 Process Execution
	BPMS architecture
	Process instance

	2.5 Events and Business Processes

	3 Related Work
	3.1 Original Domains of Batch Processing
	Operations Management
	Computer Science

	3.2 Batch Processing in Business Process Management
	3.3 Conclusion

	Basic Concepts
	4 Requirements Analysis
	4.1 Scenarios Requiring Batch Processing
	Overview of scenarios
	Workarounds to integrate batch processing

	4.2 Requirements Analysis
	Requirements Framework
	Discussion of Completeness
	Application of the Requirements Framework

	4.3 Objectives and Prioritization of Requirements

	5 Batch Activity
	5.1 Process Instance Grouping with Data Views
	Motivation for Grouping Process Instances
	Data View Definition
	Clustering Algorithms

	5.2 Modeling
	Batch Model and its Configuration Parameters
	Batch Activation Rule
	Application to Process Modeling Languages

	5.3 Execution Semantics
	Exemplified execution semantics
	Batch cluster life cycle
	Execution details for batch sub-processes

	5.4 User Involvement
	5.5 Conclusion

	Extended Concepts
	6 Flexible Batch Configuration with Events
	6.1 Motivating Example and Requirements
	Blood Testing Process
	Events and Batch Activities

	6.2 Flexible Configuration Concept
	Basic Idea
	Batch Adjustment Rule and Batch Adjustments
	Reassignment of Process Instances - Adapting execution semantics of the batch activity
	Architecture

	6.3 Validation of Flexible Batch Activity Configurations
	Simulation setup
	Results

	6.4 Conclusion

	7 Batch Processing across Multiple Business Processes
	7.1 Motivating Example
	7.2 Requirements and Design Objectives
	Requirements in a Multi-Process Setting
	Design Objectives and Assumptions

	7.3 Batch Specification in Object Life Cycles
	Design
	Execution Semantics

	7.4 Extension to Connected Batch Transitions
	Extended requirements
	Design
	Extension of the Execution Semantics

	7.5 Conclusion

	Evaluation and Conclusions
	8 Proof-of-Concept Implementation
	8.1 Implementation of the Batch Activity
	8.2 Implementation of Multi-Process Batching
	8.3 Conclusion

	9 Application to Use Cases
	9.1 Extensible BPMN Process Simulator
	9.2 Performance Measures for Batch Activities
	9.3 Application to an Administrative Process
	9.4 Application to an Online Retailer Process
	9.5 Conclusion

	10 Conclusions
	10.1 Summary of Thesis Results
	10.2 Limitation and Discussion
	10.3 Future Research

	Appendix
	Bibliography

