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A B S T R A C T

To what extent cities can be made sustainable under the observed mega-
trends of urbanization and climate change remains a matter of unre-
solved scientific debate. Our inability in answering this question lies
partly in the deficient knowledge regarding pivotal human-environment
interactions. Regarded as the most well documented anthropogenic cli-
mate modification, the urban heat island (UHI) effect – the warmth of
urban areas relative to the rural hinterland – has raised great public
health concerns globally. Worse still, heat waves are being observed and
are projected to increase in both frequency and intensity, which further
impairs the general well-being of urban dwellers.

Albeit with a substantial increase in the number of publications on
UHI in the recent decades, the diverse urban-rural definitions applied in
previous studies have remarkably hampered the general comparability
of results achieved. In addition, few studies have attempted to synergize
the land use data and thermal remote sensing to systematically assess
UHI and its contributing factors. As a consequence, it remains a chal-
lenge to achieve a complete picture of the UHI effect.

Given these research gaps, this work presents a general framework to
systematically quantify the UHI effect based on an automated algorithm,
whereby cities are defined as clusters of maximum spatial continuity on
the basis of land use data, with their rural hinterland being defined
analogously. By combining land use data with spatially explicit surface
skin temperatures from satellites, the surface UHI intensity can be cal-
culated in a consistent and robust manner. This facilitates monitoring,
benchmarking, and categorizing UHI intensities for cities across scales.
In light of this innovation, the relationship between city size and UHI in-
tensity has been investigated, as well as the contributions of urban form
indicators to the UHI intensity.

Apart from a novelty in methodology, the achievements of this work
are three-fold. Firstly, a log-linear relationship between surface UHI in-
tensity and city size has been confirmed among the 5,000 European cities
and settlements. The relationship can be extended to a log-logistic one,
when taking a wider range of small-sized cities into account.

Secondly, this work reveals a complex interplay between UHI intensity
and urban form. City size is found to have the strongest influence on the
UHI intensity, followed by the fractality and the anisometry. However,
their relative contributions to the UHI intensity depict a pronounced
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regional heterogeneity, indicating the importance of considering spatial
patterns of UHI while implementing UHI adaptation measures.

Lastly, this work presents a novel seasonality of the UHI intensity
for individual clusters in the form of hysteresis-like curves, which im-
plies a phase shift between the time series of UHI intensity and back-
ground temperatures. Combining satellite observation and urban bound-
ary layer simulation, the seasonal variations of UHI are assessed from
both screen and skin levels. Taking London as an example, this work at-
tributes the discrepancies between the seasonality observed at different
levels mainly to the peculiarities of surface skin temperatures associated
with the incoming solar radiation. In addition, the efforts in classifying
cities according to their UHI characteristics highlight the important role
of regional climates in determining the UHI.

In summary, this work delivers manifold contributions to the under-
standing of the UHI phenomenon, which have complemented and ad-
vanced a number of previous studies. It serves as one of the first studies
conducted to systematically and statistically scrutinize the UHI. The out-
comes of this work are of particular relevance for the overall spatial plan-
ning and regulation at meso- and macro levels in order to harness the
benefits of rapid urbanization, while proactively minimizing its ensuing
thermal stress.
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Z U S A M M E N FA S S U N G

Inwiefern Städte unter den beobachteten Megatrends der Urbanisierung
und des Klimawandels nachhaltig gestaltet werden können, bleibt in der
wissenschaftlichen Diskussion umstritten. Dies ist zum Teil auf unzurei-
chende Kenntnisse der ausschlaggebenden Mensch-Umwelt-Interaktionen
zurückzuführen. Als die am vollständigsten dokumentierte anthropo-
gene Klimamodifikation hat der Urbane Hitzeinsel (UHI) Effekt – eine
Temperaturerhöhung von Stadtgebieten im Vergleich zu umliegenden
ländlichen Räumen – weltweit große Sorgen hinsichtlich der Gesundheit
der Bevölkerung hervorgerufen. Dazu kommt noch ein immer häufige-
res und intensiveres Auftreten von Hitzewellen, wodurch das allgemeine
Wohlbefinden der Stadtbewohner weiter beeinträchtigt wird.

Trotz eines deutlichen Anstiegs der Zahl der UHI-bezogenen Veröf-
fentlichungen in den letzten Jahrzehnten haben die unterschiedlichen
Definitionen von städtischen und ländlichen Gebieten in bisherigen Stu-
dien die allgemeine Vergleichbarkeit der Resultate stark erschwert und
beschränkt. Darüber hinaus haben nur wenige Studien den UHI-Effekt
und seine Einflussfaktoren anhand einer Kombination der Landnutzungs-
daten und der thermischen Fernerkundung systematisch untersucht. Da-
her bleibt die Herausforderung, ein vollständiges Bild des UHI-Effektes
zu erhalten, weiterhin bestehen.

Angesichts der Forschungslücken, stellt diese Arbeit einen allgemei-
nen Rahmen zur Quantifizierung von UHI-Intensitäten mittels eines au-
tomatisierten Algorithmus vor, wobei Städte als Agglomerationen maxi-
mal räumlicher Kontinuität basierend auf Landnutzungsdaten identifi-
ziert, sowie deren ländliche Umfelder analog definiert werden. Durch
Verknüpfung der Landnutzungsdaten mit Landoberflächentemperatu-
ren von Satelliten kann die UHI-Intensität robust und konsistent berech-
net werden. Dies erleichtert die Überwachung, das Benchmarking, und
die Kategorisierung von UHI-Intensitäten für Städte auf verschiedenen
Ebenen. Anhand dieser Innovation wurde nicht nur der Zusammenhang
zwischen Stadtgröße und UHI-Intensität untersucht, sondern auch die
Auswirkungen der Stadtform auf die UHI-Intensität quantifiziert.

Neben dieser methodischen Innovation sind die Ergebnisse dieser Ar-
beit im Folgenden zusammengefasst. Erstens wurde eine log-lineare Be-
ziehung zwischen UHI-Intensität und Stadtgröße unter Berücksichtigung
der 5,000 europäischen Städte und Siedlungen bestätigt. Werden kleine-
re Städte auch berücksichtigt, ergibt sich eine log-logistische Beziehung.

v



Zweitens besteht ein komplexes Zusammenspiel zwischen den Indi-
katoren der Stadtform und der UHI-Intensität: die Stadtgröße stellt den
stärksten Einfluss auf die UHI-Intensität dar, gefolgt von der fraktalen
Dimension und der Anisometrie. Allerdings zeigen ihre relativen Beiträ-
ge zur UHI-Intensität eine signifikante regionale Heterogenität, welche
die Bedeutung räumlicher Muster während der Umsetzung von UHI-
Anpassungsmaßnahmen hervorhebt.

Des Weiteren ergibt sich eine neue Saisonalität der UHI-Intensität für
individuelle Städte in Form von Hysteresekurven, die eine Phasenver-
schiebung zwischen den Zeitreihen der UHI-Intensität und der Hinter-
grundtemperatur andeutet. Diese Saisonalität wurde anhand von Luft-
und Landoberflächentemperaturen untersucht, indem die Satellitenbe-
obachtung und die Modellierung der urbanen Grenzschicht kombiniert
wurden. Am Beispiel von London ist die Diskrepanz der Saisonalitäten
zwischen den beiden Temperaturen vor allem auf die mit der einfal-
lenden Sonnenstrahlung verbundene Besonderheit der Landoberflächen-
temperatur zurückzuführen. Darüber hinaus spielt das regionale Klima
eine wichtige Rolle bei der Entwicklung der UHI.

Zusammenfassend leistet diese Arbeit vielfältige Beiträge zum tiefe-
ren Verständnis des UHI-Phänomens. Erweitert und vorangebracht wur-
den die Schlussfolgerungen von mehreren vorherigen Studien. Diese Ar-
beit ist eine der ersten Studien dieser Art, die eine systematische und
statistische Untersuchung des UHI-Effektes ermöglicht. Die Ergebnisse
sind von besonderer Bedeutung für die allgemeine räumliche Planung
und Regulierung auf Meso- und Makroebenen, damit sich Vorteile der
rapiden Urbanisierung nutzbar machen und zeitgleich die daraus resul-
tierende Hitzebelastung proaktiv vermindern lassen.
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1
I N T R O D U C T I O N

1.1 motivation

To date, more than half of the world’s population lives in cities. The per-
centage of urban residents is expected to soar further, reaching 66 % by
2050, which equals approximately another 2.5 billion people (United Na-
tions, 2015). Cities are on one hand hubs of great efficiency, innovation,
and knowledge sharing due to higher concentration of human capital
and better life quality than rural areas (Shapiro, 2006; Bettencourt and
West, 2010); on the other hand, the accelerated urbanization has brought
about a multitude of social and environmental problems, such as traffic
congestion, air pollution, and heat stress (OECD, 2014). Some problems
may even transcend city borders, resulting in far-reaching consequences.

Worthy of particular mention is human-induced climate change caused
primarily by anthropogenic Greenhouse Gas (GHG) emissions. Although
cities are estimated to cover merely 0.45 % to 3 % of the global land
(Gamba and Herold, 2009; Liu et al., 2014), they account for approxi-
mately 70 % of total anthropogenic GHG emissions (UN-Habitat, 2011).
The changing climate is likely to have triggered an unprecedented se-
quence of extreme weather events in the last decades (IPCC, 2014). In
particular, heat waves such as the ones swept across Europe in summer
2003, Russia in 2010, and the USA in 2011 are expected to occur with
a higher frequency and duration in the future (Fischer and Schär, 2010;
Coumou and Rahmstorf, 2012). The increased heat waves, together with
the poor emergency management and ill-prepared health services have
led to excess morbidity and mortality predominantly in the elderly pop-
ulation (Fouillet et al., 2006; Oudin Åström et al., 2011; Zhang et al.,
2015).

Cities bear the brunt of intensifying heat waves, as people and assets
are increasingly concentrated in cities. Worse still, the lack of surface
moisture and greatly diminished advective cooling typically present dur-
ing heat waves further exacerbate the Urban Heat Island (UHI) effect – an
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2 introduction

elevated temperature of urban areas relative to their rural surroundings
(Oke, 1973). This makes cities more vulnerable and decreases the liveli-
hoods and well-being of urban dwellers (Oke, 1987; Li and Bou-Zeid,
2013). Moreover, the UHI is shown to increase energy consumption for
air-conditioning in cities, which in turn results in extra release of waste
heat and air pollutants into the atmosphere during energy production
(Akbari et al., 2001). All this together causes an additional mean tem-
perature increase of up to 2

◦C in cities (Ohashi et al., 2007; Salamanca
et al., 2011; de Munck et al., 2013); an ensuing degradation of air quality
associated with urban smog formation (Akbari et al., 2001; Akbari, 2005);
and substantial CO2 emissions, which might impede human efforts to-
wards a sustainable low-carbon society. In the worst emission scenario,
when the UHI is taken into account, the total economic costs of climate
change for cities are estimated to reach 10.9 % of GDP by 2100 (Estrada
et al., 2017). This is 2.6 times larger than without considering the UHI.

Therefore, in view of climate change mitigation and adaptation, it is
of increasing importance to better understand the principle of urban
climate. Incorporating the knowledge acquired into urban planning and
design practices is urgently needed in order to shape our cities more
climate-resilient, liveable, and sustainable (Mills, 2014).

1.2 status quo of empirical uhi studies

The study of the Urban Heat Island (UHI) can be dated back to Luke
Howard’s The climate of London in which he first recognized the effect
of urban areas on local climate through his meteorological observations
(Howard, 1833; Mills, 2014). Considered as the most well documented ex-
ample of anthropogenic climate modification (Arnfield, 2003), the UHI
has been gaining gradually more importance in the last decades. The
study of the UHI addresses two of the most serious environmental chal-
lenges today – urbanization (population growth) and climate change –
and their reciprocal impacts (Kalnay and Cai, 2003; Parker, 2010; Stewart
and Oke, 2012).

1.2.1 Formation and attribution of the UHI

As summarized by Oke (1987), the formation of the UHI phenomenon
can be ascribed to (in descending order of importance):

(i) the anthropogenic modification of natural landscapes (reduced al-
bedo, less vegetation, increased roughness and thermal admittance)
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Figure 1.1: Schematic of the surface energy balance and the boundary layers
over urban areas– Urban Boundary Layer (UBL) and Urban Canopy Layer (UCL),
as well as spatial scales (horizontal) and levels (vertical) of urban meteorology
and climatology. The notations are clarified in detail below Eq. (1.1). (adapted
from Oke, 1988; Kato and Yamaguchi, 2005).

and the consequent changes in the surface energy budget (Oke,
1982; Oke, 1988; Georgescu et al., 2009);

(ii) anthropogenic heat (Sailor and Lu, 2004; Sailor, 2011) released from

• vehicles and industrial sites through fossil fuel combustion,

• heating, ventilation and air-conditioning for buildings,

• and human metabolism;

(iii) increased incoming long-wave radiation caused, e.g., by air pollu-
tion (Rouse et al., 1973; Oke et al., 1991; Nunez et al., 2000).

These modifications result in a series of atmospheric and thermophysical
changes in the urban boundary layer, favoring heat storage and trapping
in cities. As a consequence, the air temperature-based UHI intensity usu-
ally reaches its maximum on clear, calm nights and could be as much as
12
◦C (Oke, 1987).
Similarly, the formation of the UHI can also be described from an

energy budget perspective. The energy balance of urban surface without
significant advection, as illustrated in Fig. 1.1, can be expressed as:

Q∗ +QF = QH +QE +QG (1.1)
Q∗ = K∗ + L∗ = K↓ −K↑ + L↓ − L↑

where
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Q∗ net all-wave radiation (asterisk indicates net radiation, similarly here-
inafter),

QF anthropogenic heat flux,

QH sensible heat flux,

QE latent heat flux,

QG conduction to or from soil,

K short-wave radiation (arrows indicate incoming ↓ or outgoing ↑, simi-
larly hereinafter),

L long-wave radiation.

From the point of view of incoming energy, urban built-up areas, usu-
ally sealed with concrete or asphalt, have lower albedo than the natural
land cover, which remarkably decreases the outgoing short-wave radia-
tion (K↑−). Moreover, dense building blocks and relatively narrow roads
between them form the urban street canyon structure characterized by
a small sky-view factor. This results simultaneously in an increase of
short-wave absorption (K∗+) and net long-wave radiation (L∗+) due to
radiation trapping (Arnfield and Grimmond, 1998; Kusaka and Kimura,
2004; Ryu and Baik, 2012). The excess heat absorbed and trapped is even
harder to dissipate from cities, since the increased aerodynamic rough-
ness of urban areas dramatically reduces the wind speed, and so does
the advective cooling (Coceal and Belcher, 2005).

Furthermore, air pollution plays a minor but non-negligible role in am-
plifying the UHI. A high concentration of suspended particulate matter
coincident with air pollution could slightly increase the long-wave radi-
ation reaching the surface (L↓+) by re-emitting the absorbed short-wave
radiations downward (Estournel et al., 1983; Oke et al., 1991; Nunez
et al., 2000). Therefore, it is reasonable to expect that measures aiming
to reduce ambient air pollution will bring about a range of co-benefits,
among others, attenuated UHI intensity and decreased mortality (Sted-
man, 2004).

With regard to the heat fluxes, cities are characterized by a high frac-
tion of impervious surfaces (less vegetation and less moisture availabil-
ity) and an abundance of construction materials with high thermal ad-
mittance (ability to store and release heat). These properties alter the
partitioning of surface energy fluxes in favor of the sensible heat (QH+)
rather than the latent heat (QE−), i.e. the incoming radiation is trans-
formed into heat instead of a flux of moisture into the atmosphere.
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In the last decades, the aforementioned causative factors of the UHI
have been confirmed and further broadened through a variety of stud-
ies around the world (see, e.g., Arnfield, 2003; Voogt and Oke, 2003 for a
review). Urbanization and climate change proceed at an unprecedented
speed. There is an increasing concern about the impact of the enhanced
radiative forcing on the UHI, which is induced by the soaring GHG con-
centration in the atmosphere. McCarthy et al. (2010) used an urban land
surface scheme coupled to a global climate model to quantify the im-
pact of climate change on the UHI. They suggested that climate change
could potentially increase the UHI by 30 % in regions coincident with
rapid population growth. Under this new challenge, an update on our
knowledge about the UHI is due in the future, taking climate change
into account.

1.2.2 Scales and levels of the UHI

With respect to the methodology, studies addressing the urban climate
can be mainly categorized into:

(i) modeling approaches of varying complexity which aim at simulating
the surface energy balance in Eq. (1.1) by appropriately parametriz-
ing urban land surfaces and dominant physical processes over cities
(see, e.g., Kanda, 2007; Grimmond et al., 2010, 2011; Best and Grim-
mond, 2015 for review);

(ii) empirical approaches, conventionally based on observational near-
surface (2 m) air temperature or surface skin temperature data,
attempting to calculate the UHI intensity of cities and to assess
the contribution of various site-specific descriptive quantities (e.g.,
population density, imperviousness, greenness, climatological fac-
tors) to the UHI intensity (Arnfield, 2003; Imhoff et al., 2010; Weng
et al., 2011).

In both approaches, two terms have to be distinguished: scale and level.
The former refers to the horizontal resolution of investigations, whereas
the latter refers to the vertical dimension.

Depending on the purpose of application and computational capaci-
ties, the modeling approaches can be performed at multiple scales rang-
ing from micro-scale (1 - 10

4 m2), through local/neighborhood scale (10
5

- 10
7 m2) and regional/meso-scale (10

8 - 10
10 m2), to global scale (> 10

10

m2), as shown in Fig. 1.1.
In an urban microclimate model (e.g. ENVI-met model), urban ele-

ments such as building blocks, streets, and trees are adequately resolved.
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The interactions between urban elements and the surrounding atmo-
sphere are solved using Computational Fluid Dynamics (CFD) models
(Bruse and Fleer, 1998). Due to the computationally demanding nature
of microclimate models, their application has long been restricted to as-
sessing the impact of small-scale urban design scenarios and estimating
the human thermal comfort in an area covering not more than a couple
of streets (Chow et al., 2011; Taleghani et al., 2015).

In comparison, models of moderate resolution (at local and regional
scales) are more efficient in terms of computation, making them ex-
tremely advantageous for regional or global-scale modeling. As a trade-
off, each urban grid cell is represented as a set of urban canopy parame-
ters such as aspect ratio (ratio of wall height to street width), vegetation
fraction, sky view factor, etc. Best and Grimmond (2015) summarized
the results obtained from the first urban land surface model comparison
project (see Grimmond et al., 2010, 2011) and concluded that the simple
models may perform as well as the complex ones. They suggested the
selection of models should ". . . balance the requirement for complexity within
models against what is actually required for a model to be fit for purpose".

Therefore, the scale does matter when studying the urban climate, not
least when implementing adaptive and mitigating strategies against the
UHI, because such solutions exhibit significant scale-dependent efficacy
(Georgescu et al., 2015). In empirical studies, the scale is determined
by the density of measurement networks or the spatial resolution of
sensors.

Depending on the sensed medium and the height at which the mea-
surement is taken, the UHI can be defined at different levels (see Fig. 1.1):

(i) Urban Boundary Layer (UBL) level (air temperature),

(ii) Urban Canopy Layer (UCL) level (air temperature),

(iii) Screen level (air temperature),

(iv) Skin level (surface skin temperature),

(v) Subsurface level (soil/groundwater temperature).

Air temperatures could be measured in the Urban Canopy Layer (UCL)
and the Urban Boundary Layer (UBL). The former lies between the ground
and mean rooftops, whereas the latter is above the UCL up to the height
where the influence of UCL can still be detected (Roth et al., 1989). More
often, air temperatures are measured at 2 m height (screen level) by
weather stations located in urban/rural areas or mobile transect. These
measurements possess a long-term record, but a lack of spatial details.



1.2 status quo of empirical uhi studies 7

Moreover, weather stations are unevenly distributed and located mostly
in the Northern Hemisphere and with a relatively large number in de-
veloped countries. This raises concerns about the representativeness of
the results obtained.

On the contrary, surface skin temperatures sensed by air-borne or
space-borne platforms are superior in delivering a spatially explicit rep-
resentation of the UHI, but relatively inferior in tracking the UHI with
high temporal frequency. However, for remote and inaccessible regions
where ground-based measurements can hardly be undertaken, satellite-
based sensors can still provide observations in a near-real-time manner.

Since Rao (1972) first investigated the UHI based on satellite observa-
tions, sensor technologies have been evolving constantly, thereby increas-
ing both the quality and quantity of surface skin temperature data. The
literature addressing the UHI by means of thermal remote sensing has
been growing in the last decades (see, e.g., Voogt and Oke, 2003; Tom-
linson et al., 2011 for a review). These studies, by virtue of their broad
geographical coverage and variety of adopted sensors, have notably com-
plemented and reinforced the overall understanding of the UHI.

The UHI can nevertheless be investigated by measuring subsurface
temperatures (usually ground water temperatures) beneath the urban/ru-
ral surfaces with the aim of establishing a relation between the surface
landscape and the underlying shallow aquifers (see, e.g., Ferguson and
Woodbury, 2007; Zhu et al., 2010; Menberg et al., 2013).

UHI studies conducted at different levels are distinguished from each
other in terms of measurement techniques, mediums sensed, and more
importantly, in terms of predominant underlying physical processes. It
is therefore crucial to precisely document the methodology applied in
studies for better searchability and comparability (Arnfield, 2003). In
this thesis, it is the surface UHI effect and its contributing factors that
are primarily addressed. The following section will take a detailed look
at the fundamentals of the thermal remote sensing of the UHI and the
underlying operational sensors.

1.2.3 Thermal remote sensing of the UHI

Under cloud-free conditions surface skin temperature can be estimated
by sensors with Thermal Infrared (TIR) spectral bands (8-13µm) onboard
– either geostationary or polar orbiting – satellites. At first the brightness
temperature is inversed from Top of Atmosphere (TOA) radiances cap-
tured by the sensors according to the Planck’s law. Based on the bright-
ness temperature, the surface skin temperature can be obtained as long
as the following three effects are corrected or compensated for: i) atmo-
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spheric attenuation, ii) angular effects, and iii) surface emissivity effects
(Dash et al., 2002; Li et al., 2013).

Given a priori knowledge of land surface emissivities which can be es-
timated using classification-based models (e.g., Snyder et al., 1998), three
groups of methods are available to compensate for the aforementioned
effects, thus are able to retrieve surface skin temperature: i) single-chan-
nel methods, ii) multi-channel methods, and iii) multi-angle methods.
Among others, Radiative Transfer Equation (RTE) and Generalized Split
Window (GSW) are the two most frequently used algorithms pertaining
to the methods i) and ii), respectively.

RTE corrects the at-sensor radiance measured by a single TIR window
channel to surface radiance (Li et al., 2013). This approach is typically
used for sensors with only one TIR band, such as the ones onboard
Landsat series. Without relying on an a priori knowledge or estimates of
atmospheric profiles, the GSW approach retrieves the temperature based
on the differentiated absorption in adjacent TIR bands. It is less sensitive
to the uncertainties of atmospheric conditions and the instrument noises
(Wan and Dozier, 1996). Therefore, this approach is widely used for sen-
sors with several TIR bands, such as MODIS and AVHRR. More technical
details in regards to the advantages and disadvantages of these retrieval
approaches are reviewed and summarized in Dash et al. (2002), Weng
(2009), and Li et al. (2013).

This radiometric temperature obtained is also known as Land Sur-
face Temperature (LST), a term preferably used in the remote sensing
community. It denotes the surface radiometric temperature confined to
the instantaneous field-of-view of the sensor (Prata et al., 1995). The
more tilted a sensor is, the more vertical surfaces (e.g., walls, façade)
are sensed. This view-angle-dependent characteristic is termed thermal
anisotropy of LST which has been widely observed and investigated in
various cities (Lagouarde et al., 2004; Lagouarde et al., 2012; Hu et al.,
2014, 2016).

Physically, the radiometric temperature differs from thermodynamic
or aerodynamic temperatures (air temperature) sensed by, e.g., a ther-
mometer for a medium in thermal equilibrium (Li et al., 2013). These
two temperatures are only equivalent for homogeneous and isothermal
surfaces, which is seldom the case for surfaces in reality, in particular
for the complex urban environment. Furthermore, regarding the current
spatial resolution of TIR bands, a satellite pixel, ranging from 30 m to
∼4 km (see Tab. 1.1), is an ensemble of several surface types with differ-
ent temperatures and emissivities. With regard to urban areas, it is urban
canyon structures and construction materials, alongside other artificial
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landscapes (e.g., parks, lakes) that account primarily for the anisotropy
(Voogt, 2008; Hu et al., 2016).

To minimize the anisotropy that inheres in LST measurements, there
are in practice two strategies available (Hu et al., 2016):

(i) restricting the sensor view angles within a narrow range. As for
MODIS LST data, Hu et al. (2014) suggested a zenith view angle
threshold of 35

◦. This measure ensures a quasi bird’s eye or “quasi-
nadir” view of land surface while maintaining sufficient amount
of data for further analyses.

(ii) temporally compositing LST over a longer period. Holderness et al.
(2013) assessed the temporally averaged LST data at daily, monthly,
and seasonal level and suggested that the monthly mean value of
LST is the optimal balance between the level of sensitivity and ag-
gregation, enabling the distinction of heat wave years from normal
ones.

Table 1.1 lists the available operational sensors and their basic informa-
tion. Geostationary satellites can capture diurnal cycles of surface skin
temperatures with very high temporal resolution (up to 15 min) and
moderate spatial resolution (e.g., for SEVIRI, 3 km at nadir but increas-
ing to ∼6 km when the viewing zenith angle gets larger). However, due to
orbital constraints, the data cover only a constant region of the Earth. In
contrast, sensors onboard polar orbiting satellites can provide LST data
with consistent periodicity, high spatial resolution, and global coverage
(Hu et al., 2016). Among them, MODIS is well suited for systematically
monitoring and comparably assessing the UHI for a multitude of cities
(see, e.g., Peng et al., 2012; Clinton and Gong, 2013; Zhou et al., 2013),
particularly due to its short revisit periods and a relatively high accuracy
of better than 1 K in most cases (Wan, 2008).

1.3 towards systematic surface uhi assessment : challenges

and research gaps

The availability of remotely sensed surface skin temperature with global
coverage, as described in detail in Sec. 1.2.3, has given rise to a sub-
stantial number of empirical surface UHI studies conducted in cities
of varying sizes and climatic conditions worldwide (Voogt and Oke,
2003; Weng, 2009). Simple schemes based on the dichotomous defini-
tion of urban-rural areas are widely used as an approach to quantifying
the UHI intensity and conducting inter-comparisons between different
cities. However, a recent review by Stewart (2011) revealed generally
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poor scientific practice in the observational UHI literature. The major-
ity of studies failed to communicate the site exposure and land cover
characters, which compromised the scientific soundness of these studies.
Besides, another ambiguity stems from diverse urban/rural definitions
existing in the literature, also hampering the comparability of UHI stud-
ies. Therefore, how to quantify the UHI effect from a systematic and
comprehensive perspective across countries constitutes one of the earli-
est motivations of this thesis.

1.3.1 A consistent cross-scale definition of UHI intensity

Different delineations of urban/rural areas and metrics used to quantify
the UHI intensity lead to incomparable results. Schwarz et al. (2011) com-
pared the indicators for quantifying surface UHI based on MODIS LST
data for 263 European cities with special respect to the consistency in
their temporal variations. They found general weak correlations among
the UHI indicators, although they were all supposed to quantify the
magnitude of UHI. This inconsistency caused by a non-unified urban
definition applies both to case studies focusing on one or several cities
and to ensemble (or cross-sectional) studies considering a large num-
ber of cities spread across countries. In the latter case, administrative
boundaries of cities are usually demarcated according to the economic
connections rather than the spatial continuity of built-up areas, making
“city” a notion subject to country-specific peculiarities (Rozenfeld et al.,
2008).

Results based on inconsistent UHI metrics could be misleading or
even erroneous, which underlines the importance of a unified city def-
inition and UHI metric. The fact that urban areas expand, shrink, and
morph continuously requires an agile nature of the conceived method.
It has to be adjusted to the dynamic urban land use at a reasonable pace.
These challenges together give rise to the first research question (RQ1).

Research Question 1
How can one systematically quantify the intensity of UHI across
scales despite the complexity and diversity of urban systems?

1.3.2 The size effect of UHI

As one of the most intuitive and fundamental parameters of a city, the
city size (either measured by population or surface area) and its relation-
ship with the UHI have remained a topic of interest in previous UHI
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studies. Among the earliest ones are those by Fukui (1957), Chandler
(1967), and Oke (1973). In general, the city size is observed to positively
correlate with the UHI intensity, i.e. the larger a city is, the more inten-
sive is its UHI. More precisely, a linear relationship between the UHI
intensity and the logarithm of city size has been found in Europe (Oke,
1973), North America (Oke, 1973; Imhoff et al., 2010), and Japan (Sak-
abikara and Matsui, 2005). Moreover, the UHI intensity is also found to
scale sublinearly with the population density of cities (Steeneveld et al.,
2011). As our review proceeded, it seemed that no consensus could be
achieved due in large part to the following two facts:

i) Cities considered in the studies are selected arbitrarily or confined
to the data availability, which questions the representativeness of
data. The regression based on such data is very likely to be biased
with a large degree of uncertainty.

ii) Some studies are conducted several decades ago, and many changes
have occurred since their publication, such as the accelerating ur-
banization, and the rapid development of sensor techniques. In
particular, the latter aspect has remarkably altered the landscape
of research, enabling us to revisit the size effect of UHI with an
unprecedented depth and breadth.

Given these shortcomings of previous studies, the relationship between
city size and UHI intensity needs some overdue updating in the era of
Earth Observation, which comprises the focus of the second research
question (RQ2).

Research Question 2
How does the city size determine the surface UHI intensity in the
era of Earth Observation?

1.3.3 The urban form and heat

Each city presents its unique footprint on the Earth surface that can be
characterized by a series of urban form (or landscape) indicators (Mc-
Garigal and Marks, 1994; Schwarz, 2010). The urban form exerts such a
fundamental and profound impact on the functionality of a city that the
aspects affected could hardly be enumerated completely: for instance, en-
ergy use in both transportation and residential sectors (Frank et al., 2006;
Ewing and Rong, 2008), air quality (Stone, 2008), GHG emissions (Grazi
et al., 2008), and vulnerability to extreme heat events (Stone et al., 2010),
as well as public health (U.S. Environmental Protection Agency, EPA,
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2001). Thus, a better understanding of urban form is of great relevance
for the ongoing debate of sustainability and helps urban planners con-
ceptualize solutions at distinct levels to achieve desirable urban forms
(Jabareen, 2006).

On the other hand, cities are increasingly argued as fractal in form, i.e.
presenting a statistical self-similarity or scale-invariance (Batty and Lon-
gley, 1987b; Batty and Longley, 1994). Viewing cities from a perspective
of fractal geometry opens up new possibilities to analyse cities, which at-
tempts to gain general insights into spatial organization of cities and its
implications for urban planning. To this end, the third research question
(RQ3) aims to bridge long-established analyses of urban climate with the
burgeoning new science of cities (Batty, 2008).

Research Question 3
How does the urban form determine the surface UHI intensity?

1.3.4 The seasonality of UHI

The UHI intensity measured using air temperatures at screen level is
well known to differ from that based on surface skin temperatures at
the skin level (Norman and Becker, 1995; Prihodko and Goward, 1997;
Jin and Dickinson, 2010). Prigent et al. (2003) compared the surface skin
temperature with in situ measured air temperatures and suggested two
different dominant regimes accounting for the discrepancy between the
two temperatures: solar insolation during daytime and longwave radi-
ation balance at night. A high share of vegetation, high soil moisture,
and cloudy conditions are observed to converge the two temperatures
(Prigent et al., 2003; Mostovoy et al., 2006; Gallo et al., 2011).

Since the surface skin temperature-based UHI exhibits a pronounced
seasonality that can be quantified by hysteresis (Zhou et al., 2013), it
is still unknown whether similar patterns exist in the air temperature-
based UHI. Although a large body of literature has documented the
seasonal variation of UHI, they are based either on the air temperature
(Jauregui, 1997; Wilby, 2003; Kim and Baik, 2005) or on the surface skin
temperature (Tran et al., 2006; Pongrácz et al., 2010), and rarely on both
(Cui and Foy, 2012). Given this research gap, the fourth research question
(RQ4) is devoted to addressing the seasonality of the UHI intensity by
means of both observations and urban climate modelling.

Research Question 4
How does the UHI intensity vary seasonally at both screen and
skin levels?
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1.3.5 The typology of cities according to the UHI characteristics

The necessity of a scheme for the classification of cities originates from
the fact that a one-size-fits-all type of adaptive and mitigating strategies
against the UHI is generally not available (UN-Habitat, 2011; Georgescu
et al., 2015). An adequate classification of cities according to their UHI
characteristics (e.g., seasonality, magnitude) may give hints about whether
or to which extent measures alleviating the UHI suggested by various
case studies can be further transferred and implemented in other cities.
This is gaining importance in the context of global warming, because
strategies adapted to local conditions are of great demand for a myr-
iad of cities which have suffered or are projected to unceasingly suffer
from heat stress (Gago et al., 2013). It is also because approaches (e.g.,
micro-scale climate models, meso-scale urban canopy models) employed
in case studies leading to the concrete adaptation measures (e.g., green
roofs, cool pavement) are becoming increasingly sophisticated and com-
putationally intensive (Schubert and Grossman-Clarke, 2013; Sun et al.,
2016; Li et al., 2014). It is not realistic to conduct studies with such a high
level of detail for each city, due in part to the limited computational ca-
pacity. On the other hand, the efficacy of adaptation measures seems to
be strongly dependent on the city addressed in the case study, which
calls for scrutiny of the commonality between cities.

Assuredly, some measures could nevertheless be adopted with an
equally good adaptive performance in a wide range of cities. However, it
is reasonable and logically sound to postulate that cities sharing similar
UHI characteristics may more likely better benefit from a certain type
of adaptation measures than those exhibiting completely different UHI
features. The objective of the fifth research question (RQ5) is to develop
a sound scheme to identify the typology of cities, making full use of
UHI intensity data over years generated from the analyses conducted to
answer the RQ1. RQ5 can therefore be expressed as

Research Question 5
What is a plausible scheme to classify cities according to their
UHI characteristics, and what is their geographical pattern?

1.4 structure of the thesis

This thesis is organized as follows (a visual outline can be seen in Fig. 1.2).
Chapter 2 addresses extensively almost all of the aforementioned re-
search questions except RQ3, providing a general framework for the sub-
sequent chapters. However, owing to its concise and heuristic nature,
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Chapter 2 is unable to give in-depth insights into RQ2 and RQ4 which
remain to be explicitly tackled in Chapters 3 and 4, respectively.

Chapter 3 mainly focuses on the impact of urban form on the UHI
from a fractal perspective. The contributions of city size and two urban
form indicators (fractality and anisometry) to the surface UHI are quan-
tified, taking regional heterogeneities into account. Moreover, a simple
model is used to elaborate the linkages between the heat transfer, city
size, and fractality.

Chapter 4 is dedicated to analyzing the seasonality of the UHI inten-
sity at the screen and skin levels, taking the Greater London area as an
example. To this end, satellite observations and urban climate modeling
are combined, contributing to understanding the relationship between
air temperature and surface skin temperature.

Finally, Chapter 5 discusses and summarizes the findings of the indi-
vidual chapters with regard to their implications for sustainable urban
planning and climate change adaptation.

RQ1  
 Unified UHI 

Quantification 

RQ2  
Size effect of 

UHI 

RQ3 
Urban form 

and Heat 

RQ4 
Seasonality of 

UHI 

RQ5 
Typology of 

UHI 

Chapter 3 
The role of city size and urban form  

in the surface UHI 

Chapter 4 
Assessing seasonality in the  

surface UHI of London 

Chapter 5 
Synthesis 

Chapter 2 
On the statistics of the UHI 

Figure 1.2: The outline of the thesis and the relation of chapters to the discussion
of the research questions.

The four appendices give supplementary information about

• Details of the methodology utilized to quantify the UHI (Appendix A);

• Derivation of the relation between heat transfer, urban area, and
fractal dimension (Appendix B);

• Influences of City Clustering Algorithm (CCA) parameters on the
surface UHI intensity (Appendix C).
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• Analysis of surface skin temperature decay under two boundary
definitions (Appendix D);

Furthermore, it is worth mentioning that due to the cumulative nature
of this thesis, a certain degree of recurrence is unavoidable.
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U R B A N H E AT I S L A N D S TAT I S T I C S F O R E U R O P E 1

abstract

We perform a systematic study of all cities in Europe to assess the Ur-
ban Heat Island (UHI) intensity by means of remotely sensed land sur-
face temperature data. Defining cities as spatial clusters of urban land
cover, we investigate the relationships of the UHI intensity, with the clus-
ter size and the temperature of the surroundings. Our results show that
in Europe, the UHI intensity in summer has a strong correlation with the
cluster size, which can be well fitted by an empirical sigmoid model. Fur-
thermore, we find a novel seasonality of the UHI intensity for individual
clusters in the form of hysteresis-like curves. We characterize the shape
and identify apparent regional patterns.

keywords : Urban Heat Island, Statistics, Europe, Typology, Hysteresis,
Seasonality

1 This chapter is based on the published paper Zhou, B., D. Rybski, and J. P. Kropp
(2013). “On the statistics of urban heat island intensity”. In: Geophys. Res. Lett. 40.20,
pp. 5486–5491. doi: 10.1002/2013GL057320
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2.1 introduction

The Urban Heat Island (UHI) is a phenomenon, where urban areas experi-
ence elevated temperatures relative to the surrounding hinterland (Oke,
1987). Most studies addressing the UHI effect can roughly be categorized
into approaches of (i) numerical modeling the physical processes and (ii)
empirical analysis, whereas the latter is either based on (a) air tempera-
ture records from weather stations or (b) Land Surface Temperature (LST)
from remote sensing.

In the last decades, causative factors of the UHI effect given by Oke
(1982) have been confirmed and further broadened through a variety of
studies around the world. Compared to non-built surroundings, built-up
areas of cities differ considerably in albedo, thermal capacity, roughness,
etc. which can significantly modify the surface energy budget (Arnfield,
2003). A number of studies suggest that the intensity of UHI could be in-
creased by anthropogenic heating (including contributions from vehicles,
building sector, and human metabolism) (Sailor and Lu, 2004) as well as
CO2 and pollutants emissions (Taha, 1997; McCarthy et al., 2010).

In terms of methodology, physically-based numerical models simulate
urban energy balance fluxes through the parameterization of urban sur-
face processes (for an overview we refer to Masson, 2005; Grimmond et
al., 2010). Empirical approaches, based on either air temperature or LST,
attempt to reveal the linkage between the UHI intensity and various de-
scriptive indicators of cities, spanning from biophysical properties (e.g.
vegetation, imperviousness) to socio-economic indices (e.g. population
density) (Weng et al., 2011; Holderness et al., 2013).

For a long time, UHI studies suffered from inconsistency and insta-
bility with regard to the urban-rural definition, hindering the intercom-
parison between results. Schwarz et al. (2011) compared indicators for
quantifying the surface UHI with different urban-rural definitions and
reported weak correlations among the indicators.

In any case, only individual, few, or up to hundreds of cities have been
studied. We overcome this limitation in the number of considered cities
by automatically quantifying the effect for all cities in Europe. Therefore,
we apply a three step approach. First, we identify cities in the form of
spatial clusters of urban land cover. Second, for each cluster we deter-
mine a boundary around the urban cluster of approximately equal area
to the cluster area. Third, we calculate LST means of both, cluster and
boundary, and define the UHI intensity as the difference between both
mean temperatures. Applying this procedure for the entirety of Europe
(constrained by the CORINE data, see Sec. 2.2), we are able to quan-
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tify the UHI intensity for ∼130,000 clusters in total from which there are
almost 2,000 larger than 13 km2.

We analyze two types of correlations. First, we investigate the UHI
intensity of all clusters as a function of the cluster size. We find a charac-
teristic increase with cluster area which we describe by a sigmoid curve.
The UHI intensity is seasonally dependent and the saturation is maximal
in summer (mean up to 3

◦C) and considerably smaller in winter. Sec-
ond, we study the UHI intensity of individual clusters as a function of the
boundary temperature. Two findings are striking. On the one hand, not
all cluster exhibit increasing UHI intensities with increasing boundary
temperatures. For several, the opposite is found, i.e. decreasing cluster
temperature with increasing boundary temperature (inverse UHI effect).
On the other hand, we find seasonal differences. For the same boundary
temperature, different UHI intensities are measured in spring and fall –
a pronounced seasonality is found for many clusters, reflecting a charac-
teristic signature and regional heterogeneity due to climate conditions.

2.2 data

Our work makes use of two major datasets, (i) land cover information
and (ii) Land Surface Temperature (LST).

We base the identification of the urban clusters on the CORINE land
cover data of the year 2006 at 250 m spatial resolution, covering 38 Euro-
pean Environmental Agency member states and cooperating countries
except Greece, with a total area of 5.8×10

6 km2 (Büttner et al., 2007). The
44 distinguished land use classes are subordinated into 5 main groups:
(a) artificial surface, (b) agricultural areas, (c) forest and semi-natural ar-
eas, (d) wetlands, and (e) water bodies. Subsequently, the land cover data
is reclassified into urban and non-urban ones as described in (Simon et
al., 2010), i.e. binary data.

The LST data sets include the MYD11A2 Version 5 data from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua
platform, providing 8-day-mean LST with a spatial resolution of ∼1000 m,
at around 13:30 and 01:30 local time, respectively. We assessed in this pa-
per the LST daytime data from 2006 to 2011. The validation of LST Version
5 data with in-situ measurements indicated that the accuracy of LST data
is better than 1

◦C in most cases (Wan, 2008).
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Figure 2.1: Example of a city cluster and a temperature pattern. (a) Urban clus-
ter identified by CCA (red) and boundary (green hashed) for the Greater London
Area with l = 500m. The urban area of other clusters (pink) are excluded from
the identified boundary area. (b) LST for the same area as in (a) captured by the
MODIS Aqua at ∼13:30 local time from 02 June 2006 to 09 June 2006. The urban
cluster and the urban heat distribution are in agreement.

2.3 method

We define the UHI intensity of a city cluster (labeled with index i), as
the difference between the temperature in the cluster and that of the
surroundings, i.e. ∆T (i) = T

(i)
C − T

(i)
B , where T (i)C and T (i)B are mean tem-

peratures of the cluster and the boundary, resp. This definition involves
three steps:

1. Since administrative city boundaries differ from the actual extent,
we define cities as clusters of urban land cover. Accordingly, to
identify the European cities, we apply the City Clustering Algo-
rithm (CCA) as proposed by Rozenfeld et al. (2008) to land cover
rather than to population data, since fine-grained population cen-
sus data are mostly unavailable. CCA involves a clustering param-
eter l determining up to which distance urban cells are connected
with each other, i.e. urban cells within that distance are assigned
to the same cluster. We specify l = 500 m, i.e. double the resolu-
tion of the CORINE data. We denote the cluster size as S(i)C . The
highly populated region of Belgium, the so-called Flemish Dia-
mond (Brussels-Antwerp-Ghent-Leuven, see Appendix A, Fig. A.5)
becomes the largest urban cluster under this initialization. Paris,
the second largest urban agglomeration, is followed by London
and Milan.

2. Analogously, we designate the surroundings of a cluster as the ap-
proximate equal-sized boundary area devoid of urban cells of other
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clusters and sea waters. The boundary is built by consequently
forming layers of cell size width around the city cluster (see Ap-
pendix A.1 for details). Consistently, we denote the boundary size
as S(i)B . A similar UHI intensity calculation has been conducted by
Peng et al. (2012), suggesting minor influence of the boundary size,
i.e. 50 %, 100 %, and 150 % of the cluster size.

3. Since LST data are based on clear-sky conditions, we define a cover-
age threshold, i.e. the UHI intensity is regarded as valid only if the
LST values are available for at least 50 % of the cluster and bound-
ary cells. Moreover, quality control data are supplied with each
MODIS pixel, classified into 4 levels (i.e. 6 1 ◦C, 6 2 ◦C, 6 3 ◦C, >
3 ◦C) which we denote as ε. While calculating mean temperatures
of clusters and boundaries, we use ε for weighting. First, the pixels
with an mean LST error ε > 3 ◦C are filtered out. Then, the weights
are assigned inversely proportional to ε2, i.e.W = 1/ε2. The cluster
temperature T (i)C is therefore aW-weighted arithmetic mean of grid
cell temperatures. Analogously, T (i)B denotes the boundary temper-
ature, considered as a measure for the background temperature. Fi-
nally, we calculate ∆T (i) = T (i)C − T

(i)
B .

Figure 2.1 (a) shows an example of a cluster identified by CCA and its
boundary for the Greater London Area. As can be seen in Fig. 2.1 (b),
the urban heat pattern mostly matches with the identified cluster, i.e.
the city cluster exhibits elevated temperatures. The analogous Figure for
mean summer temperatures can be found in Appendix A.2, Fig. A.2.

2.4 analysis

We systematically analyze the UHI intensities, ∆T , for all city clusters
identified from the CORINE data by two means, (i) correlations with the
cluster size and (ii) correlations with the boundary temperature. In the
first case, the ∆T of all clusters are related to the corresponding cluster
sizes at one observation (∆T vs.SC for a fixed date) and in the second
case, the ∆T of one cluster are related to the corresponding boundary
temperatures at all available observations (∆T vs. TB for a fixed cluster).

2.4.1 UHI intensity and city size

It is commonly believed that the UHI effect correlates with cluster size
(Oke, 1973), but the characteristics of this correlation are poorly under-
stood. Thus, we investigate how the UHI intensity depends on cluster
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size by plotting ∆T as a function of the cluster size for all clusters and
two observations in Fig. 2.2 (a) and (b). Various features can be observed.
For large clusters the typical intensity reaches maximum values of ∼2 ◦C
in July [Fig. 2.2 (a)] and ∼1 ◦C in February [Fig. 2.2 (b)]. There is consid-
erable spreading of ∼±2 ◦C, possibly reflecting local conditions.

In order to characterize the correlations, we perform a binning proce-
dure. Choosing the number of bins and the number of clusters in the
first bin (largest clusters), the number of clusters in subsequent lower
bins increases exponentially. After identifying the bin limits, the cluster
sizes and UHI intensities are averaged in each bin. This binning is moti-
vated by the power-law size distribution of cities (e.g. Rozenfeld et al.,
2011). The binned values in Fig. 2.2 (a) and (b) suggest a sigmoid relation
on a logarithmic scale of cluster size. We employ the empirical function

∆T =
a

1+ (SC/b)−c
, (2.1)

where a is the maximum value at which the fitting curve saturates and
b, c determine the inflection and steepness of the curve, respectively.

Non-linear least square optimization is used for fitting Eq. (2.1) to the
binned values. We find very good agreement between the fitted curves
and the empirical values. However, individual city clusters can exhibit
UHI intensities considerably above or below the fitting curve. Thus, the
fit only characterizes typical behavior.

All parameters are studied time-dependently. In Fig. 2.2 (c) the param-
eter a, i.e. the saturation value, is plotted versus time for all available ob-
servations. The seasonal variability is reflected in the typical saturation
UHI intensity with maximum values of up to 3 ◦C in summer (Jun-Aug)
and down to 0.5 ◦C in winter (Dec-Feb). The other parameters exhibit
seasonal variability as well. In Appendix A.3 we compare exemplarily
LST with 2 m air temperature and find correlations between the temper-
ature records but no correlations between the UHI intensities.

Despite good fitting performance, we need to mention that the analy-
sis does not provide insights into whether there is actual saturation or
not, since such a conclusion is restricted by the small number of large
cities (as also seen in the power-law city size distribution). Nevertheless,
it is apparent that the increase of UHI intensity with cluster size deceler-
ates among larger city clusters.

2.4.2 UHI intensity and surrounding temperature

Since in the previous analysis much information has been averaged out
by considering the ensemble of all clusters, next we study individual
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Figure 2.2: Urban Heat Island intensity as a function of cluster size and sea-
sonal variability. Typical dependence for (a) summer days (04 July 2007 to 11

July 2007) and (b) winter days (02 February 2008 to 02 February 2008) at ∼13:30

local time. Blue dots denote the mean of each bin with the data of individual
clusters (grey dots) underlaid. The summer fitting curve exhibits a larger slope
and asymptote. 95% confidence intervals of the fitting based on binned data are
shown by dashed-dotted lines. The standard deviations σ around the fits are
shown by green dashed curves. (c) Time series of the parameter a which the fit-
ting curve saturates at [see Eq. (2.1)]. The grey bars indicate the 95% confidence
intervals, suggesting a naturally larger uncertainty in parameter estimation in
winter.
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clusters. We select a cluster and plot the corresponding UHI intensity
values of all observations versus the associated boundary temperature,
in order to study ∆T given a certain temperature in the surroundings.

Figure 2.3 displays four examples. Since the raw values of ∆T versus
TB exhibit poor correlations in many cases, we calculate monthly means
which are indicated by filled triangles and letters in Fig. 2.3. As can be
seen, there are significant seasonal variations. In Paris [Fig. 2.3 (a)], the
UHI intensity differs between ∆T ≈ 3.3 ◦C in May and ∆T ≈ 1 ◦C in
September for the same boundary temperature of TB ≈ 22 ◦C. A numer-
ical simulation performed by Georgescu et al. (2012) reported a maxi-
mum UHI intensity during summer for the Arizona Sun Corridor. The
UHI was found to be less pronounced during spring and fall, and the
least in winter.

In order to better characterize the UHI patterns, we perform a Fourier
approximation of both, the time series of boundary temperatures, TB,
and UHI intensities, ∆T ,

F(t) =

ν∑
n=1

(gn cos
2πnt

P
+ hn sin

2πnt

P
) + g0 , (2.2)

where F(t) represents either, TB or ∆T , P = 46 the number of observations
for each year, t the times {t; t = 1, 2, ...276}, g, h the Fourier coefficients,
and specifically g0 is referred to as the mean of F(t).

The order of the analysis, ν, is determined through the Akaike Infor-
mation Criterion (AIC) (Akaike, 1973), which makes trade-offs between
the number of regression parameters and fitting errors. Due to small
sample size, we apply an adjusted version by Sugiura (1978). We find
that for the majority of clusters, the boundary temperature and the UHI
intensity can be well described with the second order Fourier Series
(ν = 2) involving five parameters each.

Examples of fitted Fourier curves are given by solid lines in Fig. 2.3.
While in Fig. 2.3 (a) and (b) a positive relation can be observed (high
UHI intensity coincides with high boundary temperature), in Fig. 2.3 (c)
and (d) the opposite is found (but with smaller amplitude). This inverse
UHI effect is also known as the Oasis Effect (Oke, 1987; Brazel et al., 2000;
Georgescu et al., 2011), being attributed to the arid climate and the inter-
play with vegetation.

Beyond the positive or negative trend of UHI intensity vs. bound-
ary temperature, the hysteresis-like shape of the fitted curve for Paris
[Fig. 2.3 (a)] is evident and basically absent in the case of Milan [Fig. 2.3 (b)].
As a consequence, in the former, very different UHI intensities can oc-
cur given the same boundary temperature, i.e. higher UHI intensities in
spring compared to fall. The directionality is always clockwise, in this
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Figure 2.3: UHI characteristics of individual city clusters. The UHI intensity ∆T
is plotted versus the boundary temperature TB. The values are drawn as small
circles, while monthly means are given as red triangles together with the stan-
dard deviations (grey error bars). The fitted curves according to Eq. (2.2) are
plotted as green solid lines. (a) Paris, (b) Milan, (c) Madrid, and (d) Nicosia.
The majority of city clusters exhibit a positive correlation between ∆T and TB
and clockwise hysteresis-like curves.

case with low UHI intensity in winter, higher values in spring, highest
in summer, and vanishing intensity in fall. Depending on the location,
similar behavior is found for many European city clusters.

The described seasonality in the shape of a hysteresis-like curve repre-
sents a phase shift between the UHI intensity and the boundary temper-
ature. We hypothesize that this phenomenon could be due to a differing
seasonality in the city and the surroundings, e.g. the temperature in the
city follows the astronomical seasons driven by solar radiation and the
temperature in the surroundings follows the meteorological seasons cor-
responding to the regional climate. However, our attempts to trace this
claim down to differing vegetation properties of cities with more or less
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pronounced seasonality were unsuccessful. Another explanation could
be phenology, i.e. the different climate in the city and the surroundings
could lead to differing onsets of phenological phases so that, e.g. the
greening occurs sooner or later.

Last we want to verify how the UHI patterns are spatially distributed.
Therefore, we classify the city clusters according to their hysteresis-like
features. We perform the K-means clustering algorithm (Jain and Dubes,
1988) on the first harmonics g0, g1 and h1 (6 parameters, counting ∆T
and TB separately) of the largest 2000 clusters. Each parameter is normal-
ized before running the K-means clustering, i.e. X∗ = (X−µ)/σ, where µ
is the mean of each parameter and σ is its standard deviation. To obtain
an appropriate number of clusters (K), we use the mean silhouette s̄ to
evaluate the clustering performance as described by Rousseeuw (1987).
We run the K-means clustering 200 times with predefined values of K to
assess the non-deterministic nature of the algorithm. As can be seen in
Fig. 2.4 (a), for K = 7, s̄ is relatively large and exhibits the smallest vari-
ability, indicating a high clustering stability. City clusters are grouped
into the same clusters when they are given the same cluster indices in
most of the cases (more than 140 times out of 200 runs).

As can be seen in Fig. 2.4 (b–d), the various groups are situated in
distinct geographical regions. Group 1 is mostly located in the North-
West of Europe, i.e. British Isles and parts of the Atlantic Coasts. Cities
of Group 2 are exclusively found in Scandinavia and the Eastern Baltic
Coast. While Group 3 consists of Eastern European cities, Group 4 is
found in Central Europe. Many large cities are assigned to Group 6,
which also covers Central Europe. Group 5 and 7 are both situated in
the Mediterranean regions but split into coastal and hinterland cities.
Each group represents a specific type of UHI seasonality. Groups 1, 3, 4,
and 6 are located in the temperate climate zone, which includes the ma-
jority of cities. For Group 2, the gentle rises of the curve [see Fig. 2.4 (i)]
at both ends could be due to additional household heating in winter
and prolonged daylight hours with an increase in absorbed radiation
in summer, resp. Groups 4 and 6 exhibit similar hysteresis-like curves
but with different magnitude [Fig. 2.4 (e) and (f)], which is in line with
their common geography and the large fraction of big cities in Group
6. Similarly, Groups 5 and 7 differ in their proximity to the coasts but
the seasonality is related [Fig. 2.4 (j) and (k)]. At water courses, part of
the surface energy is converted into latent heat, resulting in lower mean
temperatures. Although the grouping is based on the Fourier parameters
only, the regional patterns emerge, suggesting that the UHI seasonality
is not random, but stems from local climate conditions. Our results are
consistent with earlier findings by Imhoff et al. (2010) who suggested
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(k)

Figure 2.4: Regional patterns of UHI seasonality. (a) Boxplots of mean silhouette
for varying cluster number K (200 runs for each K-value). For K = 7, the mean
silhouette reaches a local maximum with the lowest variability. (b)-(d) Spatial
distribution of the 7 groups identified using K-means clustering on the first
Fourier coefficients. The largest 200 cities are marked with dots, where the size
is proportional to the logarithm of the urban area. The panels include insets
displaying the frequency of each group. In general, Group 1, 3, 4 and 6 are
located in the temperate climate zone, whereas Group 2 is in the high latitudes.
Group 5 and 7 are in the Mediterranean climate zone but differentiated into
coastal and inland variants. There is an apparent concentration of large cities in
Group 6. (e)-(k) Hysteresis-like curves of the respective clusters [as in Fig. 2.3].
The clusters whose data-to-centroid distances are below the 25th percentile, are
drawn with colors varying from yellow (closest) to red. The remaining are set
to background (grey).
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a clear effect of the ecological setting (biomes) on diurnal and seasonal
UHI intensities in the continental USA.

2.5 summary

While most studies investigating the UHI intensity are restricted to indi-
vidual case studies or a limited number of cities, we introduce a statisti-
cal approach for the systematic assessment of the UHI effect of all cities
and towns in Europe. This analysis is possible because it is entirely based
on remote sensing data (land cover and land surface temperature) and
the systematic treatment by means of the city clustering algorithm.

We study how the UHI intensity depends on the city cluster size. The
empirical values suggest a sigmoid shape and the employed fitting func-
tion reaches an asymptotic constant value for large city clusters. In light
of ongoing urbanization in many parts of the world, the actual shape of
the relation between UHI intensity and city size is of particular interest.
Further analyses are necessary to clarify if there is saturation for large
city sizes or not. Individual city clusters exhibit intensities considerably
above or below the typical size dependence, whereas the spreading is
larger in summer. The identification of further explanatory variables of
this variability is left for future studies.

The analysis of the UHI intensity depending on the boundary temper-
ature leads to the surprising phenomenon of intra-annual variations of
the UHI effect. For many city clusters, the same background tempera-
ture comes with very different UHI intensities in spring and in fall. We
attribute this phenomenon to the astronomical seasonality of cities and
the meteorological seasonality of the surroundings (implying a phase
shift). We identify 7 city cluster types which exhibit regional separation.
These findings suggest a climatological basis for this new phenomenon.
So far, it must be left unanswered but the explanation could be an inter-
esting starting point for future work.
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abstract

Urban climate is determined by a variety of factors, whose knowledge
can help to attenuate heat stress in the context of ongoing urbaniza-
tion and climate change. We study the influence of city size and urban
form on the Urban Heat Island (UHI) phenomenon in Europe and find
a complex interplay between UHI intensity and city size, fractality, and
anisometry. Due to correlations among these urban factors, interactions
in the multi-linear regression need to be taken into account. We find that
among the largest 5,000 cities, the UHI intensity increases with the loga-
rithm of the city size and with the fractal dimension, but decreases with
the logarithm of the anisometry. Typically, the size has the strongest in-
fluence, followed by the compactness, and the smallest is the influence
of the degree to which the cities stretch. Accordingly, from the point of
view of UHI alleviation small, disperse, and stretched cities are prefer-
able. However, such recommendations need to be balanced against e.g.
positive agglomeration effects of large cities. Therefore, trade-offs must
be made regarding local and global aims.

keywords : Urban Heat Island, fractality, anisometry, city size

1 This chapter is based on the published paper Zhou, B., D. Rybski, and J. P. Kropp
(2017). “The role of city size and urban form in the surface urban heat island”. In: Sci.
Rep. 7.1, p. 4791. doi: 10.1038/s41598-017-04242-2

29

http://dx.doi.org/10.1038/s41598-017-04242-2


30 urban form and heat

3.1 introduction

Urban Heat Island (UHI) is a commonly observed phenomenon world-
wide, describing an elevated temperature of urban areas compared to
their surroundings. It arises from anthropogenic modification of nat-
ural landscapes and the consequent atmospheric and thermophysical
changes in the urban boundary layer (Oke, 1987). Understanding UHI
is of great relevance in the current discussion on sustainable urban de-
sign. In particular, heat waves have been observed more persistent and
more frequent in the last decades (Coumou and Rahmstorf, 2012; Let-
tenmaier et al., 2014), and are projected to intensify in the future (Meehl
and Tebaldi, 2004). Furthermore, heat waves are shown to pose an added
stress on cities (Li and Bou-Zeid, 2013), raising serious concerns regard-
ing general well-being and potential threats to human health, which in
turn demands effective adaptation measures to alleviate the UHI.

The UHI effect arises from the anthropogenic modification of nat-
ural landscapes and the consequent atmospheric and thermophysical
changes in the urban boundary layer (Oke, 1987). The formation of UHI
can be mainly ascribed to an increased absorption and trapping of so-
lar radiation in built-up urban fabrics associated with high thermal ad-
mittance of construction materials and the urban canyon structure. An-
thropogenic heat release from transport and buildings in the purpose of
heating and air conditioning further exacerbate the UHI. Other factors,
such as population density, built-up density, and vegetation fractions
can also directly or indirectly contribute to the formation of UHI. How-
ever, studies based on different spatial scales, more precisely, the verti-
cal scales (urban screen, -canopy, -boundary levels) and the horizontal
scales (mirco-, local, regional scales) may lead to varying results on the
individual contributions of each factor (Arnfield, 2003).

UHI studies can be approximately categorized in two domains regard-
ing the number of investigated cities. On the one hand, case study work
focuses on one or a few cities and assesses the UHI characteristics with a
high level of detail. On the other hand, ensemble or cross-sectional stud-
ies investigate a large number of cities aiming at achieving an under-
standing of common characteristics or fundamental differences arising
among them. The availability of remote sensing surface skin temperature
with global coverage has given rise to a number of systematic empirical
studies of the latter type. In the following we focus on surface skin tem-
perature and only mention the type explicitly (i.e. surface or 2 m) when
necessary.

A global UHI study across more than 400 big cities (Peng et al., 2012)
revealed that the average annual intensity during daytime is higher than
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during nighttime and that the daytime intensity correlates negatively
with the difference of vegetation cover and activity between urban and
suburban areas. Similar diurnal patterns were found in an analysis of 32

Chinese cities (Zhou et al., 2014). A follow-up work by Zhou et al. (2015)
based on the same Chinese cities suggested an exponential decay of the
UHI along urban-rural gradients, the rate and extent exhibit site-specific
diurnal and seasonal variations. In Europe, the UHI intensity of urban
agglomerations exhibits a size dependency, and can typically reach a
maximum of approx. 3

◦C in summer and 0.5 ◦C in winter (Zhou et al.,
2013).

A study based on 65 cities in North America found that the annual
mean daytime and nighttime UHI are positively correlated with the
precipitation and the logarithm of population, respectively (Zhao et al.,
2014). It was suggested that the enhanced aerodynamic roughness of
densely vegetated rural areas in the humid climate zone (with abun-
dant precipitation) leads to less efficient convection, which hampered
the heat transfer from urban to rural areas and resulted in an intensi-
fied UHI. This outcome at first glance seems to differ from previous
studies by Lee and Baik (2010) and Lemonsu et al. (2013) based on air
temperature, stating that a deficit of precipitation in the summer leads to
stronger rural warming than in urban areas, i.e. a diminished UHI. How-
ever, there are substantial differences between these studies besides the
data type. The positive correlation in Zhao et al. (2014) is regressed out
of annual mean data (UHI intensity against precipitation) among scores
of cities (cross-sectional), whereas the studies by Lee and Baik (2010) and
Lemonsu et al. (2013) are based on data of individual case study cities
across time (temporal).

Another global study comprehensively assessed the dependence of
UHI on various urban intrinsic factors, regardless of geographic and
climatic factorsClinton and Gong, 2013. Night light, urban area and veg-
etation are, inter alia, dominant ones accounting for the UHI or urban
heat sinks, whereas population and urban structure were found to be of
less relevance.

These studies have in common that land cover data is combined with
remotely sensed surface skin temperature, i.e. urban land cover is used
to define the physical extent of urban areas enabling to systematically
extract the temperatures inside the cities and in their rural surround-
ings. To date, this methodology is an established standard protocol for
robustly benchmarking the thermal stress across cities, and for decipher-
ing statistical features of the UHI associated with biophysical and socio-
economical indicators. These merits can scarcely be promised by the con-
ventional case study work.
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In order to gain an understanding of the UHI phenomenon and its rel-
evance in terms of urban design, insights about the influencing factors
are necessary. On the one hand, the UHI intensity of a city is subject
to the empirical metrics and indicators used for quantifying the phe-
nomenon (Schwarz et al., 2011). On the other hand, while analyzing
its physical essence, it is determined by a variety of factors which can
roughly be categorized into (i) external and (ii) intrinsic ones (Oke, 1982).
External factors include location (lat./lon.) (Wienert and Kuttler, 2005),
background climate (in particular wind) (Imhoff et al., 2010; Zhou et al.,
2013), proximity to water courses (associated with sea- or lake-breeze
circulation), etc., whereas intrinsic ones depict city-specific features (e.g.,
city size, land cover fractions, anthropogenic heat releases) which, de-
spite being outcomes of long-run urbanization, can be regulated and
reshaped.

How to alleviate the UHI effect is another issue of considerable inter-
est. Local interventions (e.g. parks of various sizes, green and cool roofs)
are shown to have a limited influence on local climate. The cooling dis-
tance, i.e. the maximum distance within which the cooling effect of such
green spaces can still be detected, ranges from tens to hundreds meters
(Feyisa et al., 2014; Zupancic et al., 2015). Possibilities to influence intrin-
sic properties – including the overall urban form – are very limited in
cities of developed countries due to small growth rates or even negative
ones. In contrast, dramatic urbanization is taking place in developing
countries, so that insights about how the urban form affects UHI intensi-
ties could provide guidance for the large scale planning of cities, where
there is a great demand of new infrastructure.

Thus, we search for traceable signatures between features of urban
form and UHI intensity. We consider three features of urban form which
break down the spatial shape of the urban extent into single values. First,
city size, since it has been shown previously that larger cities tend to
have higher UHI intensities. Second, the fractal dimension which repre-
sents an established measure to characterize the compactness of a city.
Third, anisometry which we revealed as an important measure of city
shape, quantifies to which extent a city’s length is greater than its width.
Examples include cities extending along valleys, rivers, country borders,
etc. As we show below, interactions among the three indicators need to
be taken into account which implies that the influence of each of them
on the UHI intensity cannot be separated.
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3.2 data and methods

3.2.1 Datasets

CORINE urban morphological zones (UMZ) 2006 data at 250 m spatial
resolution are used for delineating urban areas in Europe. For countries
where raster UMZ data are not available, e.g. UK and Switzerland, we
generated the UMZ data based on the CORINE Land Cover 2006 data
following the method described in Simon et al. (2010). The processed
UMZ data, containing binary urban/non-urban information for 38 Euro-
pean countries, are projected to the sinusoidal coordinate system which
is consistent with that used in the LST data.

We used the MODIS Aqua 8-day composite (MYD11A2, Version 5)
LST products for the summer months (June-July-August, JJA) from 2006

to 2013, in total 104 observations across 8 years. The data are at 926.6 m
≈ 1 km spatial resolution, and are measured at 13:30 (daytime) and 01:30

(nighttime) local solar time. In this study, we focus on the daytime LST,
because the daytime surface UHI is more pronounced than that of the
nighttime. Complementary results based on nighttime LST can be found
in Appendix B.1. According to the pixel-wise LST error flag inherent
in MYD11A2, we disregard pixels with LST error > 2K. We also omit-
ted pixels with view zenith angle >35

◦ to minimize the anisotropy bias
caused by the view angle, while guaranteeing a sufficient data quantity
for further analyses (Hu et al., 2014). Based on the processed LST data,
multi-annual summer mean LST is calculated.

3.2.2 Urban heat island (UHI) intensity

We followed the methodology employed in previous studies (Peng et
al., 2012; Zhou et al., 2013, 2016) to calculate the surface UHI intensity.
Cities are defined via the City Clustering Algorithm (CCA) (Rozenfeld
et al., 2008, 2011; Fluschnik et al., 2016) based on the UMZ data, with
a clustering parameter l = 250m, being in accordance with the spatial
resolution. According to CCA, any pair of urban cells with a distance
no larger than l are assigned to the same urban cluster. We defined an
equal-area belt region around an identified city cluster as its rural or
suburban reference, devoid of water courses and urban pixels of other
clusters. The surface UHI intensity of an urban cluster is defined as the
difference between average urban and rural temperature (Zhou et al.,
2013, 2016), i.e. ∆T = TC − TB. In contrast to previous studies (Zhou
et al., 2013, 2016), here we base our analysis on temporally aggregated
temperature data, namely multi-annual summer mean LST. Moreover, in
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contrast to Zhou et al. (2013), here we disregard small city clusters and
consider only the largest 5,000 clusters corresponding to cluster areas
SC > 6.1 km2.

3.2.3 Fractal Dimension

We used the box-counting algorithm to compute the fractal dimension
Df for each urban cluster (Bunde and Havlin, 1996). Therefore, we count
the number of boxes N of size r× r necessary to fully cover the consid-
ered urban cluster. Assuming N(r) ∼ r−Df , the linear regression to ln(N)

vs. ln(r) provided the slope which corresponds to the fractal dimension
Df. The conventional method is to initialize r to the minimum cell size
and stepwise double it until N(r) = 1. It turned out that this 2-based
exponential sampling method led to a discreteness artefact and denser
sampling was more robust.

Thus, we adopted a denser sampling strategy by incrementing r by 1

and omitting any point (r,N(x)) if the count N(r) = N(r− 1). Sampling
can be seen in Fig. 3.1 (d–f).

3.2.4 Anisometry

We computed the anisometry (A) of city clusters similar to the method in
Medalia and Hornik (1972). We defined the anisometry of a city cluster
as the ratio of the city cluster’s maximum Feret’s diameter to its mini-
mum Feret’s diameter. The Feret’s diameter is the distance between two
parallels tangent to an object along a certain direction. In order to illus-
trate the relative stretch of clusters, we drew the equivalent ellipse of a
city cluster by assigning the maximum and minimum Feret’s diameters
to the axes of the ellipse [see Fig. 3.1 (a–c)]. The ellipse centers at the cen-
troid of a city cluster. Analog to the cluster size, we use the logarithms
of anisometry (lnA) throughout the study to reduce the skewness.

3.2.5 Quantile regression

Quantile regression is a method for estimating the impact of observed
covariates on quantiles of the response variable (Koenker and Bassett, Jr.,
1978; Koenker and Hallock, 2001). In contrast to ordinary least squares
regression, quantile regression is particular applicable for the model
with heterogeneous variance, e.g. in the presence of heteroscedasticity,
where the former approach usually misestimates the real relationship
or fails to detect the nonzero changes (Cade and Noon, 2003). Quantile
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regression finds wide application in disciplines, where data are seldom
normally distributed, e.g. ecology (Cade and Noon, 2003), climatology
(Donner et al., 2012; Mueller and Seneviratne, 2012), etc. Assuming a re-
gression function Y = βX+ ε. The estimators for the quantile τ, i.e. βτ
are obtained by minimizing the sum of asymmetrically weighted abso-
lute residuals. The weights are given by the function ρτ (Koenker and
Hallock, 2001).

βτ = arg min
n∑
i=1

ρτ(Yi −βXi)

3.2.6 Multi-linear regression

We employed the general multi-linear model to quantify the relation
between the UHI intensity ∆T and predictive variables – the logarithm
of city size lnSC, fractal dimension Df, and the logarithm of anisometry
lnA. We use the general ansatz

∆T = a+ b lnSC + cDf + d lnA+ eDf lnSC + fDf lnA
+ g lnSC lnA+ hDf lnSC lnA , (3.1)

where a, . . . ,h are eight parameters, and e.g. Df lnSC is the interaction
between fractal dimension and city size. We used the forward and back-
ward stepwise regression to determine the variables in the multi-linear
model. The Bayesian Information Criterion was used to add and remove
terms in the model, and to avoid data-overfitting.

3.3 results

Following the methodology employed in previous studies (Zhou et al.,
2013, 2016), we combine land cover data with remote sensing temper-
ature data and define the surface UHI intensity ∆T as the difference be-
tween the average temperature within the considered urban cluster and
the average temperature within an equal area belt around it (see Meth-
ods Section for details). In contrast to Zhou et al. (2013), here we con-
sider the 5,000 largest urban clusters in Europe and average the summer
months (June, July, August) daytime observations from 2006 to 2013. In
the following we investigate how the UHI intensity ∆T depends on (i)
the size, (ii) the fractality, and (iii) the anisometry of the city clusters.
Therefore, we need to measure the three quantities for all considered
city clusters.
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(i) The city size SC is simply given by the number of cells constituting
the city clusters multiplied by the area of each cell, 6.25× 10−2 km2.
Due to Zipf’s law for cities (Auerbach, 1913; Zipf, 2012; Rozenfeld
et al., 2011; Rybski, 2013; Fluschnik et al., 2016) there are many
small cities and few large ones so that we use the logarithm of city
size, lnSC, in order to reduce the skewness.

(ii) We compute the fractal dimension using the box counting method,
assuming n ∼ r−Df , where n is the number of (square) boxes of side
length r necessary to cover the structure, see Methods Section. In
Fig. 3.1 (a–c) we show 3 examples of city clusters differing in size
and fractality. The corresponding box-counting results for varying
r are shown in Fig. 3.1 (d–f) and linear regressions in the log-log
scale provide the slopes which are an estimate of the fractal dimen-
sions Df. The fractal dimension Df can be considered as a measure
of compactness, i.e. compact cities have usually large values of Df.

(iii) The anisometry A of a city cluster is defined as the eccentricity of
the equivalent ellipse of the city cluster, i.e. the ratio of major axis to
its minor axis, see Methods Section. It is a measure for the extent to
which the city deviates from an approximate circular shape (A →
1), i.e. to which extent it’s length is greater than its width (A > 1).
Figure 3.1 (a–c) also illustrates the anisometry by means of ellipses.
As can be seen, the stretched shape of Belgrade is reflected in a
higher value of A. Again, we use the logarithm, i.e. lnA.

Figure 3.2 consists of scatter-plots where the daytime UHI intensity is
plotted separately vs. the three quantities – binned values and regres-
sions are included for illustrative purposes. In Fig. 3.2 (a), ∆T is dis-
played as a function of the city size. As expected and consistent with
previous work (Oke, 1982; Park, 1986; Imhoff et al., 2010; Clinton and
Gong, 2013; Zhou et al., 2013; Zhao et al., 2014), the UHI intensity in-
creases with city size and doubling the city size leads to approximately
0.4 ◦C additional UHI intensity. Studies of UHI intensities in relation to
population size go back to Oke (1973), who reported both a logarith-
mic and a power-law (exponent ≈1/4) relation between UHI intensity
and population. In Fig. 3.2 we also include quantile regressions and find
that there is heteroscedasticity in the form of stronger spreading of ∆T
among large cities.

In Fig. 3.2 (b) the influence of the fractal dimension on the UHI inten-
sity is shown. In the range where most cities are found, ∆T typically
increases by roughly 2

◦C with increasing Df. This finding suggests that
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Figure 3.2: UHI intensity (∆T ) as a function of (a) logarithm of urban cluster
size lnSC, (b) fractal dimension Df, and (c) logarithm of anisometry lnA, and
quantile regressions (QR) as well as ordinary least square regression (OLS). The
grey pixels indicate the number of cities that are covered by them (the darker,
the higher the density). For visual purpose, the symbols represent averages in
equal-width bins and their error-bars represent the standard deviations. The
straight lines are linear regressions to raw data, whereas the dashed lines repre-
sent the results of quantile regressions. For the quantiles 0.1 and 0.9 we obtained
the following slopes: (a) [0.24,0.80], (b) [2.05, 5.50], (c) [-0.58, -0.91].

more compact cities have more pronounced UHI intensities. The litera-
ture on UHI intensity and fractality is very limited. The fractal analy-
sis of surface skin temperature related to vegetation abundance (Weng
et al., 2004) cannot be easily compared with our results since here we
study the urban cluster which leads to the UHI. In a more general sense,
the influence of urban form has been studied for the example of Beijing
metropolitan area (Yang et al., 2016), and it has been reported that, com-
pared to a compact city, a dispersed one is efficient in reducing mean ur-
ban heat island intensity, but affects the thermal feedback at the regional
scale. Last, in Fig. 3.2 (c) ∆T is plotted as a function of the anisometry.
As one would expect from intuition, the UHI intensity decreases with in-
creasing anisometry, by approximately 1.5 ◦C in the shown range. Thus,
more circular cities seem to exhibit elevated UHI intensities. The above
mentioned heteroscedasticity is also observed in Fig. 3.2 (b) and (c), and
the spreading of ∆T is wider among cities with larger Df and smaller
lnA.

Correlations among the three quantities lnSC, Df, and lnA require a
more complex analysis. While anisometry and cluster size are essentially
uncorrelated with a Pearson correlation coefficient ρ of −0.05 [see Ap-
pendix B, Fig. B.2 (a)], fractal dimension and anisometry (ρ = −0.61) as
well as cluster size and fractal dimension (ρ = 0.30) exhibit moderate cor-
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relations, as shown in Appendix B, Fig. B.2 (b) and (c), respectively. On
the one hand, cities with lower fractal dimension tend to exhibit higher
anisometry, i.e. more compact cities also tend to be more circular. This
correlation is the strongest among the three variables considered. On
the other hand, larger cities tend to exhibit higher fractal dimensions,
i.e. they are more compact. It has been reported previously (Shen, 2002;
Encarnação et al., 2012; Rybski et al., 2013) that city size and fractal di-
mension are positively correlated, i.e. larger cities in terms of population
or urbanized area have higher fractal dimensions.

Thus, we employ multi-linear regression in order to characterize the
complex interplay between the UHI intensity and the three factors. Lin-
earity, however, still represents an approximation – but a reasonable one
– as will be discussed with the following example. The correlations be-
tween UHI intensity and city size SC have been fitted according to a
log-logistic function (Zhou et al., 2013)

∆T(SC) =
a

1+ (SC/b)−c
, (3.2)

where the parameters a,b, c determine the saturation value, the inflec-
tion point, and the steepness, respectively. However, the sigmoid-shape
of Eq. (3.2) takes only effect far from the inflection point, i.e. SC � b or
b � SC. (i) For small clusters [ln(SC) → −∞] the accuracy of ∆T is lim-
ited by the resolution of land surface temperature data (≈1 km×1 km).
In order to have a reasonable estimate, both cluster and belt tempera-
ture should be based at least on a few gridded values. (ii) Due to Zipf’s
law for cities (see above), for large clusters [ln(SC) → ∞] the sample of
cities reduces considerably. As a consequence, there are simply too few
data points carrying information on whether or not ∆T(SC) saturates.
Thus, it is justified to expand Eq. (3.2) in the mid-range. Since around
the inflection point the logistic function F(x) = 1/(1+ exp(−x)) can be
approximated by F(x) ≈ 1/2+ 1/4x (Weisstein, 2016) , Eq. (3.2) can be
approximated by the logarithmic function

∆T(SC)/a ≈ c/4 · ln(SC/b) + 1/2 for SC ≈ b (3.3)

which corresponds to a linear polynomial of lnSC.
After having motivated the linear approximation, we finally apply

the multi-linear regression. In the absence of correlations among the
intrinsic urban factors a simple linear combination according to ∆T =

a+ b lnSC + cDf + d lnA, where a, . . . ,d are parameters, would be suf-
ficient. Due to the correlations, all interaction terms need to be taken
into account. By interaction the statistical correlations between 2 indepen-
dent variables is meant as it occurs in multicollinearity. We performed
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a stepwise linear regression with interactions (see Sec. 3.2.6) to all 5,000

considered city clusters and obtain

∆T = −1.86−0.85 lnSC +1.11Df +1.45 lnA+0.83Df lnSC −1.17Df lnA
(3.4)

with R2 = 0.34, all fitting parameters carry the unit ◦C. According to the
analysis, only six out of eight terms contribute statistically to ∆T . These
are the offset, the three urban factors, and the interaction terms between
fractal dimension and size as well as between fractal dimension and
anisometry. Consistent with the absence of correlations between size and
anisometry [see Appendix B, Fig. B.2 (a)], the corresponding interaction
term is missing. Similarly, the three-point-correlation term proportional
to Df lnSC lnA statistically does not add information.

As a consequence of the remaining interaction terms, the (linear) de-
pendence of ∆T on e.g. Df has a varying slope depending on the con-
sidered values of lnSC and lnA. For fixed values, e.g. lnSC = 5 and
lnA = 0.5, Eq. (3.4) simplifies to ∆T(Df) = −5.38+ 4.67Df. However, for
other values of lnSC and lnA both, slope and intercept, are different.
A similar effect occurs for ∆T(lnSC) and ∆T(lnA). Due to this complex
interplay, it can hardly be visualized in two dimensions how the UHI
intensity depends on all of the three intrinsic urban factors.

Following the above example, Figure 3.3 illustrates the linear depen-
dencies of the UHI intensity on one urban factor when the other two are
kept constant. Therefore, we fix two of the factors, simplify Eq. (3.4) to
a linear form depending only on the third factor, and extract slope and
intercept. Then we rasterize the two fixed factors, repeat the procedure,
and display the slope and intercept as shown in Fig. 3.3.

In Fig. 3.3 (a) we observe that ∆T(Df) is steepest for large cities with
small anisometry and less steep for small cities with large anisometry.
The diagonal stripes are due to the interactions of Df with lnSC and lnA.
In Fig. 3.3 (b), ∆T(lnSC) has its largest slope for compact cities, i.e. large
Df, which only occurs in combination with small anisometry. In this case,
the slope only changes along Df (horizontal stripes) – interactions with
lnA have not been found. Lastly, the slope of ∆T(lnA) is mostly negative
[Fig. 3.3 (c)], with the steepest negative slopes observed for cities with
a large fractal dimension. The vertical stripes illustrate the interactions
with Df, i.e. there would be no stripes in the absence of interactions.

At this point we still do not know which of the three factors has the
strongest influence. The reason is that due to different ranges (e.g. Df is
roughly within 1.2 and 1.8, while lnA is roughly in the range between 0

and 2.5), the parameters obtained in Eq. (3.4) are not comparable. Thus,



3.3 results 41

2 3 4 5 6 7

lnS
C

0.5

1

1.5

2

ln
A

-7
-6

-5-4-3

-2

-1

1 2 3 4 5 6 7

Intercept [°C]

0.5 1 1.5 2

lnA

1.2

1.3

1.4

1.5

1.6

1.7

D
f

-0.7-0.6

-0.5

-0.5

-0.4

-0
.4-0

.3-0
.2

0.1 0.2 0.3 0.4 0.5 0.6

Intercept [°C]

1.2 1.3 1.4 1.5 1.6 1.7

D
f

2

3

4

5

6

7

ln
S

C

0

0.5

1

1.5

2

2.5

3

3.5
4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Intercept [°C]

Slope
 [°C]

(a) Slope
 [°C]

(b) Slope
 [°C]

(c)

Figure 3.3: Visualization of Eq. (3.4) as obtained from multi-linear regression
for ∆T(lnSC,Df, lnA). The panels display the slope (colors) and the intercept
(countour lines) of the linear relation between ∆T and one urban factor given
the other two urban factors are kept constant. For fixed values of lnSC and
lnA, Eq. (3.4) simplifies to (a) ∆T = slope ·Df + intercept. Rastering through
the relevant ranges of lnSC and lnA we show for each combination the cor-
responding slope and intercept. Analogously, panels (b) and (c) represent
∆T = slope · lnSC + intercept and ∆T = slope · lnA + intercept, respectively.
Combinations which do not occur in the data are kept white. Please note that
the range of values covered by the color bar differs among the panels; the figure
illustrates the regression, Eq. (3.4) – not the actual data.

we repeat the multi-linear regression, but normalize the data previously
to zero mean and unit standard deviation, e.g. D∗f = (Df − 〈Df〉)/σDf

where 〈Df〉 is the mean and σDf the standard deviation. Then we obtain

∆T = 0.71+0.33 lnS∗C +0.23D∗f −0.10 lnA∗+0.06D∗f lnS∗C −0.03D∗f lnA∗

(3.5)

whereas the 95% confidence interval of the parameters is±0.03 or smaller.
Now we can insert the average values 〈lnS∗C〉 and 〈lnA∗〉 as typical
values (which are both zero due to normalization) and obtain ∆T =

0.71+ 0.23D∗f . Accordingly, from analogous considerations for the other
factors, we see that city size has the strongest influence (0.33 lnS∗C), fol-
lowed by fractality (0.23D∗f ), and smallest is the influence of anisometry
(−0.10 lnA∗). Consistent with Fig. 3.2, ∆T increases with lnS∗C as well as
with D∗f and decreases with lnA∗. However, due to the above discussed
interaction, the ranking is only valid for typical cities in our sample and
including further small cities could affect the overall outcome. Moreover,
we perform a rather basic normalization and we cannot exclude that the
skewed distributions could affect the resulting parameters.

Since it has been argued that the UHI intensity based on daytime LST
are overestimated (Mohan and Kandya, 2015), we also included an anal-
ysis based on nighttime LST in Appendix B.1.2. Due to overall weaker
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intensities, the dependencies on the city size, fractality, and anisometry
are less pronounced. Nevertheless, the relative contributions are consis-
tent with the daytime results.

Certainly, the regression Eq. (3.4) and (3.5) can hardly capture the
huge variations of urban form and heat island intensities for entire Eu-
rope. For instance, Berlin (SC = 854.69 km2, Df = 1.66 and lnA = 0.4)
is the largest city among the ones shown in Fig. 3.1, the measured
and predicted temperatures are 3.12

◦C and 3.34
◦C. For Belgrade (SC =

227.56 km2,Df = 1.54 and lnA = 0.99) and Birmingham (SC = 606.38 km2,
Df = 1.75 and lnA = 0.25), the measured ∆T are 1.39

◦C and 3.75
◦C; the

predicted ∆T are 1.82
◦C and 3.82

◦C, respectively. The three examples
suggest that the predictive power of the global regression model, i.e.
based on the full sample of cities, is rather limited, which could be due
to regional inhomogeneities.

Therefore, we adopted two different sampling strategies to assess the
robustness of the results against the regional inhomogeneities. We first
divided the study area into 9 zones of similar number of cities and ap-
plied the multi-linear regression in Eq. (3.5), independently. As shown in
Fig. 3.4 (a), city size dominates in most cases, followed by fractal dimen-
sion, whereas in South Europe anisometry has a larger impact on the
UHI. Second, we created subsamples of varying number of cities with
and without replacement and applied stepwise regression to the sub-
samples. Figure 3.4 (b) and (c) reveal that as the sample size increases,
our model in Eq. (3.5) tends to appear more frequently. We conclude that
our model has a good global performance, while at local scale the model
should be used with certain precaution.

3.4 discussion

In summary, we explore the recently established methodology, which
systematically combines urban land cover and remote sensing surface
skin temperature, in order to characterize the UHI intensities of a vast
number of cities. Studying the largest 5,000 European urban agglomera-
tions, we find a complex interplay among the correlations with intrinsic
urban factors. Among the three considered large scale urban features,
typically city size has the strongest influence, followed by the fractality
– and the anisometry presents the weakest influence. That is, in gen-
eral, the larger, the more compact (high fractal dimension), and the less
stretched (small anisometry) the cities are, the stronger their UHI inten-
sity tends to be.

Our empirical findings on the dependence of the UHI intensity on the
city size and form could be attributed to the scale effect of convection
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Figure 3.4: Robustness of multi-linear regression under spatial and random
sampling. In panel (a) we divide the study area into 9 partitions (blue rectan-
gles) of similar size and separately apply linear regression according to Eq. (3.5)
to the normalized quantities. The pie-charts depict the resulting coefficients (for
negative values the absolute value has been taken). The area of the pie-charts
is proportional to the number of cities in the partition. Only statistically signif-
icant coefficients (at 95 % level) are labeled. City size dominates in most cases,
followed by fractal dimension, whereas in the south the anisometry becomes
important. In panels (b) and (c) the results of stepwise regression on randomly
sampled cities (500 repetitions) without and with replacement, respectively, are
displayed. In both cases, as the sample size increases, Model A i.e. Eq. (3.5)
becomes the most probable model. Model B and C give better estimates under
small sample size, and have the forms ∆T ∼ lnSC + Df + lnA+ Df lnSC [i.e. f,
g, h ' 0 in Eq. (3.1)] and ∆T ∼ lnSC + Df + lnA+ lnSC lnA [i.e. e, f, h ' 0 in
Eq. (3.1)], respectively.
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(Sakai et al., 2009). As derived in Appendix B.3, by adopting an idealized
urban configuration, the UHI intensity is approximately proportional to
S
(1−aDf)(1−m)
C with a ≈ 0.43 and 1 −m > 0. For a fixed fractal dimen-

sion, as the urban area increases, the heat convection (quantified by the
convection heat transfer coefficient h) diminishes, resulting in a higher
surface temperature. Analogously, for a fixed surface area SC, an increas-
ing fractal dimension Df weakens the convection and leads to a higher
surface temperature.

Our results can be relevant for urban policy and planning in the con-
text of global warming and local UHI adaptation.

1. Avoid large cities.
How the UHI intensity depends on city size is in particular rele-
vant in world regions of ongoing urbanization. Policies could be
developed for incentives to also populate medium size and small
cities, i.e. thereby to control the exponent of Zipf’s law for cities
(Auerbach, 1913; Zipf, 2012; Rozenfeld et al., 2011; Rybski, 2013;
Fluschnik et al., 2016), which relates the relative frequency of large
and small cities.

2. Avoid compact cities.
More compact urban clusters have larger fractal dimensions (Makse
et al., 1998). Qualitatively, it is comprehensible that urban sprawl
and polycentric form lead to smaller fractal dimensions. Urban
planning can influence these features of urban form.

3. Avoid rotund cities (i.e. approximately rotational invariance).
It is plausible that stretched cities have lower UHI intensities since
the distances to the city border are shorter, in favor of enhanced
atmospheric convection. Thus, from an UHI alleviation perspec-
tive, cities extending along natural or artificial topographic lines
are preferable over those developing mostly around their center.

Certainly, such recommendations need to be opposed to other advan-
tages and disadvantages. In particular, keeping cities small and the con-
sequent ameliorated urban climate should be balanced against positive
agglomeration effects of large cities such as shorter trip lengths (Louf
and Barthelemy, 2014). Scattered and anisometric cities come along with
more traffic, which has negative side effects, including increased an-
thropogenic heat and CO2 emissions. Thus, trade-offs on the local scale
need to be made, when implementing urban factors. Moreover, from a
global point of view it has been argued that compact cities are preferred
because of their potentials in reducing energy consumption and CO2
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emissions (Martilli, 2014). However, as mentioned above such recom-
mendations should also be adjusted according to regional specificities
(see Fig. 3.4).

Our work adds to previously gained understanding on how compact
urban form increases the UHI intensity and on the problems of transfer-
ring such insights into spatial planning (Debbage and Shepherd, 2015;
Schwarz and Manceur, 2015). Thus, our results also contribute to the
ongoing discussion on the effectiveness of urban forms – in particular,
single-centric (compact city) vs. poly-centric city (dispersed city) – as a
means for alleviating heat islands as a negative impact of urbanization
(Yang et al., 2016).

This study is also an example on how concepts from fractal geometry
are of use in city science. For three decades, it has been argued that cities
are fractal in form (Batty and Longley, 1987a,b; Batty and Longley, 1994),
and the relation between fractal structures and urban areas has received
widespread attention (Encarnação et al., 2012). The fractal dimension of
urban agglomerations is a measure of their compactness. Thus, in this
study we contribute to the view on cities from a fractals perspective and
postulate that the correlations between cluster size and fractal dimension
are a manifestation of multi-fractality at the regional scale.

Last but not least, our work opens a perspective for future studies
in various directions. First, since here we solely investigate surface skin
temperature, an apparent question to be raised is to what extent similar
correlations of UHI intensities with urban form also appear consider-
ing air temperature. Due to data limitations this can hardly be verified
empirically, so that numerical modeling (De Ridder et al., 2015) could
represent an alternative. Second, we focus on large scale features of ur-
ban form, i.e. intrinsic factors. It could be interesting to test whether
the consideration of external factors, foremost wind, would improve the
characterization of the influence of intrinsic factors on the UHI intensi-
ties. Third, we study ensemble data, i.e. quantify correlations among the
sample of cities, and do not consider temporal dynamics. It is important
to verify if our findings also hold for an individual city under growth
scenarios reflecting the features of urban form (Yang et al., 2016). Lastly,
can numerical models reproduce our findings or lead at all to compara-
ble results (Zhou et al., 2016)?
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abstract

This paper assesses the seasonality of the Urban Heat Island (UHI) ef-
fect in the Greater London Area. Combining satellite based observations
and urban boundary layer climate modeling with UrbClim model, we
are able to address the seasonality of UHI intensity, based on both land
surface temperature (LST) and 2 m air temperature, for four individual
times of the day (LT0130, LT1030, LT1330, LT2230) and the daily means
derived from them. An objective of this paper is to investigate whether
the UHI intensities based on both quantities exhibit similar hysteresis-
like trajectory that is observed for LST when plotting the UHI intensity
against the background temperature. The results show that the UrbClim
model can satisfactorily reproduce both the observed urban-rural LSTs
and 2 m air temperatures, as well as their differences and the hystere-
sis in the surface UHI. However, the hysteresis-like seasonality is largely
absent in both the observed and modeled 2 m air temperatures. A con-
ducted sensitivity simulation of the UHI intensity to incoming solar radi-
ation suggests that the hysteresis of the LST can mainly be attributed to
the seasonal variation in incoming solar radiation.

keywords : Urban Heat Island, seasonality, London, UrbClim, Model,
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4.1 introduction

As climate change and urbanization globally continue, studies address-
ing their reciprocal impacts are gaining growing importance (Kalnay and
Cai, 2003; Parker, 2010; UN-Habitat, 2011). The Urban Heat Island (UHI)
effect, observed as an elevated temperature of urban areas relative to
rural ones, relates to both challenges, and is a persistent focus of ur-
ban climate and environmental studies (Arnfield, 2003; Stewart and Oke,
2012). The UHI effect emerges through (1) land surface modification (re-
duced albedo, less vegetation, increased roughness and thermal admit-
tance) which favors heat storage and trapping in the city (Oke, 1982),
and (2) anthropogenic heat release (from vehicles, buildings, and hu-
man metabolism) (Ichinose et al., 1999; Sailor and Lu, 2004). It can also
be caused partially by (3) increased incoming long-wave radiation as a
consequence of air pollution (Rouse et al., 1973). However, air pollutants
mostly have a minor or even negligible influence on the UHI, which has
been demonstrated through field measurements (Nunez et al., 2000) and
modelling (Estournel et al., 1983; Oke et al., 1991).

Conventionally, the UHI intensity is assessed by using 2 m air tem-
perature data obtained from urban and rural weather stations. The air
temperature based UHI intensity usually reaches its maximum on clear,
calm nights and could be as much as 12 ◦C (Oke, 1987). Since the 1970s,
remotely sensed surface skin temperature data have been used to study
urban climate, including the UHI effect. Constant development in sensor
technologies and better understandings of atmospheric physics have re-
markably enhanced both, the quality and the quantity, of data, making
a multi-scale investigation of urban climate possible (Tomlinson et al.,
2011). In the last decades, UHI studies based on thermal remote sens-
ing have increased the knowledge on (1) spatial patterns of UHI and its
correlation with diverse contributing variables, e.g. sky view factor and
vegetation; (2) urban surface energy balance; and, to a lesser extent, (3)
surface-air relations (Voogt and Oke, 2003; Weng, 2009).

However, the surface skin temperature, in general, differs from the
2 m air temperature (Norman and Becker, 1995; Jin and Dickinson, 2010).
Prigent et al. (2003) compared the surface skin temperature with in situ
measured air temperatures. They found a positive difference between
the surface skin temperature and the air temperature during daytime
and a negative difference at night, which they attributed mainly to a
quicker response of surface temperatures to solar radiation. Dense vege-
tation and high soil moisture can diminish the difference by altering the
partitioning of surface heat fluxes in favor of the latent heat flux. More-
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over, the surface skin temperature and the 2 m air temperature converge
under cloudy conditions (Prigent et al., 2003; Gallo et al., 2011).

To systematically quantify the UHI intensity, land cover data has been
employed to define the spatial extent of cities as contiguous urban clus-
ters (following Rozenfeld et al., 2008), surrounded by a non-urban belt of
equal area (Peng et al., 2012). Combining this urban/non-urban defini-
tion with remote sensed Land Surface Temperature (LST) data, Zhou et al.
(2013) calculated the UHI intensity – defined as the average temperature
in the urban cluster minus the average temperature in the non-urban sur-
roundings (background temperature) – in an automated and systematic
manner for all European agglomerations.

One of the findings Zhou et al. (2013) present is the region-specific sea-
sonality of the surface UHI intensity occurring in a large number of cities.
Plotting the UHI intensity as a function of the background temperature
exhibits a clockwise loop with higher intensities in spring than in fall.
The causes of this hysteresis are unclear, and it is unknown if a similar
phenomenon also takes place for 2 m air temperature.

Table 4.1 lists some previous works which documented the seasonal
variation of UHI intensities. These studies attribute the seasonality mainly
to climate and synoptic conditions, e.g. monsoon, wind speed, relative
humidity, cloudiness and vegetation, and to a lesser extent to anthro-
pogenic heat release. However, conclusions such as to what extent each
factor determines the seasonality are difficult to generalize, as the stud-
ies differ considerably in terms of data used (Tair versus surface skin tem-
perature), data acquisition method (automobile traverse, remote sensing
and weather station observation), UHI intensity metrics (daily maximum
versus mean), and choice of rural reference (station-dependent or fairly
arbitrary), as well as the time span of observation (from one-year to
multi-year).

Nevertheless, there are still some features in common: During the day,
UHI intensities based on the surface skin temperature measured by satel-
lites are found to be the highest in the wet summer season and weaker in
the dry season, whereas the air temperature based UHI intensities show
less obvious seasonal variations. Weaker UHI intensities are usually ob-
served in windier and cloudier months, i.e. the UHI is inversely related to
wind speed and cloudiness, as summarized by Arnfield (2003). Recently,
Schatz and Kucharik (2014) investigated explicitly the seasonality of UHI
in Madison, Wisconsin, by using a densely deployed sensor network.
They emphasize the key role of vegetation and snow-cover conditions in
shaping the seasonality of UHI intensity, whereas factors such as wind
and clouds only fluctuate the seasonality to a certain extent. These find-
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ings are consistent with earlier works (Imhoff et al., 2010; Peng et al.,
2012).

However, little effort has been made to address seasonality by inte-
grating observations with increasingly more sophisticated urban climate
modeling. In this work, we modeled the urban climate of London by the
urban boundary layer climate model UrbClim (De Ridder et al., 2015).
Combined with a standardized methodology for quantifying the UHI
(Zhou et al., 2013), we were able to assess the hysteresis of this example.

In brief, the aim of this study is to verify (1) if the model can reproduce
the hysteresis in the surface temperatures of London, (2) if the hysteresis
effect also occurs in the 2 m air temperature and (3) if the phase shift be-
tween astronomical and meteorological cycle is a plausible explanation
for the observed hysteresis effect.

4.2 numerical model , experiment set-up, and model eval-
uation

4.2.1 The UrbClim model

The model simulations in this study were performed with the urban
boundary layer climate model UrbClim, designed to cover agglomeration-
scale domains at a very high spatial resolution (De Ridder et al., 2015).
UrbClim consists of a land surface scheme containing urban physics cou-
pled to a 3-D atmospheric boundary layer module.

The land surface scheme is based on the soil-vegetation-atmosphere
transfer scheme of De Ridder and Schayes (1997), but is extended to
account for urban surface physics. This urbanization is accomplished by
representing the urban surface as a rough impermeable slab, with appro-
priate values for the albedo, emissivity, thermal conductivity, and volu-
metric heat capacity. The main feature of the extension of the scheme is
the inclusion of a parameterization of the inverse Stanton number, which
is known to be much higher in urban areas (Kanda et al., 2007; De Ridder
et al., 2012). Further details can be found in De Ridder et al. (2015).

The land surface scheme takes part of its input variables (wind speed,
temperature and specific humidity close to the surface) from values sim-
ulated in the atmospheric boundary layer model, a 3-D model of the
lower atmosphere, extending to a constant height of 3 km.

The atmospheric boundary layer module is tied to synoptic-scale meteoro-
logical fields through the lateral and top boundary conditions, to ensure
that the synoptic forcing is properly taken into account. This model is
represented by conservation equations for horizontal momentum (con-
sidering zonal and meridional wind speed components u and v, respec-
tively), potential temperature, specific humidity, and mass (involving
the vertical wind speed component w). Pressure fields are not calculated
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internally, but prescribed from a large-scale host model from which Ur-
bClim receives its boundary conditions, hence only the synoptic-scale
pressure gradient is accounted for. By doing so we avoid the complexi-
ties associated with a full mesoscale meteorological model. More impor-
tantly, it allows the use of much longer time increments in the numerical
solver and a lower model top (since no absorbing layer is required to
damp gravity waves), which makes the model much faster.

The large-scale driving model specifies the lateral and top boundary
conditions, the synoptic-scale pressure gradient, and the down-welling
radiation and precipitation – the variables required by the land surface
scheme. This one-way nesting approach allows the UrbClim model to
account for the effect of synoptic weather on local climate (De Ridder
et al., 2015).

Terrain elevation data are taken from the GMTED2010 dataset (Daniel-
son and Gesch, 2011), which has a global coverage and is freely available.
The spatial distribution of land cover types, needed for the specification
of required land surface parameters, is taken from the 2006 CORINE
land cover data for Europe (Büttner et al., 2007).

The urban land cover percentage is specified using the urban soil scal-
ing raster data files distributed by the European Environment Agency.
Maps of vegetation cover fraction are obtained from the Normalized
Difference Vegetation Index (NDVI) acquired by the MODIS instrument
on-board the TERRA satellite platform. Vegetation cover fraction is spec-
ified as a function of the NDVI, using the linear relationship proposed by
Gutman and Ignatov (1998), and then interpolated to the model grid.

Model grid cells featuring exclusively non-urban land use types are
divided into vegetation and bare soil (the complementary fraction). In
the case of grid cells containing urban land use, the urban fraction as
derived from the urban soil sealing raster data takes precedence over
the NDVI-based fractional vegetation cover data in case both sum to over
100 %. In case they sum to less than that, the remaining fraction is as-
signed to bare soil.

Each of the surface types within a grid cell has its own energy bal-
ance and corresponding temperature, although the model employs ag-
gregated values for both the aerodynamic and the thermal roughness
length parameters. The urban surface cover has an associated very low
thermal roughness length which strongly inhibits the turbulent transfer
of heat from the urban substrate to the atmosphere, so that a relatively
large share of the available radiant surface energy flux is converted to
storage heat rather than to turbulent sensible heating of the atmosphere.
This, together with the typically high values of thermal inertia of urban
materials, leads to the large storage heat flux values typically observed
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(or estimated as a residual of the surface energy balance) over urban
areas (Piringer et al., 2007).

The urban substrate is represented as a massive slab, which is dis-
cretized in six vertical layers, and its specific volumetric heat capacity
(2× 106 Jm−3 K−1) and thermal conductivity (2Wm−1 K−1) values are
in line with values found in the literature for urban areas (see, e.g. , Oke,
1987; Pielke, 2002). Evaporation from the urban surface is included by
implementing a fractional surface wetness parameter, which accounts
for the amount of water stored on the urban substrate, calculated as the
difference between precipitation on the urban fraction and evaporation
of the stored water. The maximal fraction of wet surface is set as 0.14,
with a maximum storage capacity of 1.17 kgm−2. Both parameters have
been estimated recently by Wouters et al. (2015).

The evolution of the temperature profile in the soil is calculated using
the same heat diffusion equations as those used for the urban slab. The
main difference is that, for soil, the volumetric heat capacity and ther-
mal conductivity are functions of soil moisture content, as in De Ridder
and Schayes (1997). Water transport in the soil is described by means
of Richards’ equation (Garratt, 1992), accounting for infiltration of rain
water in the soil and the uptake of soil water by plant roots. Here also,
the reader is referred to De Ridder and Schayes (1997) for more details.

4.2.2 Experiment set-up

The model described above was applied to simulate a 7-year period
(2006-12) for the wider urban agglomeration of London, driven by mete-
orological data from the ERA-Interim reanalysis dataset of the European
Centre for Medium-range Weather Forecasting (ECMWF).

The domain was configured with 161×161 grid cells in the horizontal
direction, using a spatial resolution of 1 km, equal to the resolution of the
MODIS data. In the vertical direction, 20 levels were specified, with the
first level 10 m above the displacement height, the resolution smoothly
decreasing upward to 250 m at the model top located at 3 km height.
This vertical discretization closely matched that of the ECMWF model
(De Ridder et al., 2015).

The simulation was initialized on 1 December 2005 at LT0000. Ini-
tial soil temperature and soil moisture data were taken from the ERA-
Interim reanalysis. The sea temperatures in the model were treated sep-
arately, and they were adopted from the ERA-Interim reanalysis during
the whole simulated period and not calculated internally.

In order to assess the sensitivity of the observed hysteresis effect in
the surface UHI of London to the annual cycle of the incoming short-
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wave radiation, a sensitivity experiment was carried out. In this scenario,
referred to as SR experiment, the input short-wave radiation from the
ERA-Interim reanalysis was rescaled with a daily factor so the clear-sky
maximum radiation was always equal to the value of 21 March, when
it almost equaled its annual mean value. Thus, all year round, the daily
cycle of incoming short-wave radiation under clear sky conditions re-
mained constant, eliminating the annual cycle. Note that we did not
change the temporal variation of the incoming radiation. Cloudy condi-
tions remained cloudy. The values only were rescaled.

4.3 data and uhi intensity calculation

We used the same UHI intensity definition as explored by Zhou et al.
(2013). The idea is to define a city by its physical extent, i.e. via ur-
ban land cover. Overlaying the city delineation (and an equal area belt
around it) and the heat map, the average temperatures in the city and
its surroundings are calculated so that the difference between city and
background temperatures (i.e. the belt temperatures) provides the inten-
sity. A similar methodology has been used in prior research (Peng et al.,
2012).

In detail, the calculation of the UHI intensity, ∆T , consists of the fol-
lowing steps:

1. We applied the City Clustering Algorithm (Rozenfeld et al., 2008,
2011) to CORINE land cover data at 250m resolution. The algo-
rithm assigns any two urban cells to the same urban cluster if their
distance is lower or equal to a threshold distance l. As in Zhou et
al. (2013), we used l = 500m and obtained the London city cluster
[Fig. 4.1 (a)].

2. A belt of approximately equal size as the cluster was determined
by consecutively enclosing layers of non-urban land use, avoiding
other urban cells (Zhou et al., 2013, Supplementary Material).

3. Based on the gridded temperature fields, we calculated the average
temperatures in the cluster, TC and in the belt, TB. The temperature
is either LST from MODIS or modeled 2 m air temperatures as
described in Sec. 4.2. The UHI intensity was then calculated as ∆T =

TC − TB. In any case, the resolution is 1 km, consistent with that
used in MODIS. Figure 4.1 (b) shows, as an example, the annual
mean 2 m air temperature map from the UrbClim model.

The 2006 CORINE land cover data used in this study includes 38 Eu-
ropean Environmental Agency member states (Büttner et al., 2007). The
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44 distinguished land surface classes include artificial land coverage and
are reclassified into urban and non-urban in accordance with Simon et
al. (2010).

We used the MOD11A2 and MYD11A2 Version 5 data, from MODIS
Terra and Aqua platforms, respectively. Determined by overpass times,
the Terra satellite provides twice-daily data at around local time (LT)
1030 and LT2230, whilst the Aqua data are collected at LT1330 and
LT0130. Both data are aggregated into a 8 day temporal resolution, which
corresponds to 46 observations annually. Wan (2008) validated LST V5

data with in situ measurements, indicating an accuracy better than 1 ◦C
in most cases.

By averaging the four periods MODIS data for each observation, we
obtained gridded temperature fields of daily means. To minimize bias
caused by cloud contamination inherent in the data, we based our cal-
culation of each grid cell only on complete data. Gridded daily means
based on incomplete data are omitted. Unless specified differently, we
use daily averages for our analyses hereafter. Moreover, we disregarded
observations where either cluster or belt were affected by at least 50 %
cloud cover. Finally, we had 276 valid observations (86 % of the total)
from 2006 to 2012 (the UrbClim simulations were run over the same
period).

We plotted the UHI intensity, ∆T , as a function of the background tem-
perature, TB, and calculated the monthly averages of both quantities.
In order to better assess the hysteresis, we performed a second order
Fourier approximation of both times series, in agreement with Zhou et
al. (2013).

4.4 results

4.4.1 Observed and modeled 2 m air temperature comparison

The UrbClim model has already been successfully validated regarding
its energy fluxes, 2 m air temperatures, and urban-rural temperature dif-
ferences for the cities of Ghent (Belgium) and Toulouse (France) (De
Ridder et al., 2015). The LST in the UrbClim land surface scheme, too,
have been validated in the past with satellite data. In De Ridder (2006),
the urban parameterization is tested for the city of Paris, and the simu-
lated LST compared favorably to observed values obtained from thermal
infrared satellite imagery. Afterwards, the land surface scheme was cou-
pled to a mesoscale atmospheric model and applied to both Paris and
the German Ruhr area, again yielding good comparisons between sim-
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ulated and observed LST from thermal infrared satellite imagery (De
Ridder et al., 2008, 2012).

Regarding the London domain in this study, we were able to obtain
2 m air temperature measurement data from a location inside the city
center (St. James Park, 51.504

◦N 0.129
◦W) and in the rural surroundings

(Charlwood, 51.144
◦N 0.230

◦W) for the period 2010-12. Unfortunately,
the urban station is located inside a park, which is known to be cooler
than a true urban environment, so the measurements do not capture
the full extent of the London UHI effect. In order to obtain comparable
statistics as in the LST analysis, the data were aggregated into a 8 day
temporal resolution which corresponded to 46 observations each year.
The error statistics of the UrbClim model for both locations are shown
in Tab. 4.2. The overall performance of the model is good, with a bias of
only a few tenths of a degree, root mean square errors below 1 ◦C, and
correlation coefficients above 0.98.

However, the focus of this evaluation is on the model’s ability to re-
produce observed urban-rural temperature differences. The simulated
temperature differences agree fairly with the observed ones, with a neg-
ligible bias, a root mean square error below 0.5 ◦C, and correlation coef-
ficients up to 0.7.

In order to evaluate the model’s ability to reproduce the spatial pattern
of 2 m air temperatures, measurement data from 6 additional locations
in and around the city were gathered for the year 2011. The locations
of the measurement stations are shown in Fig. 4.1 (b), with the annual
mean 2 m air temperature from the UrbClim model in the background.
Figure 4.1 (c) depicts the linear relationship between modeled and ob-
served values, with a bias of 0.22 and a coefficient of determination (R2)
of 0.90, suggesting the model can properly reproduce the observation
regarding its annual mean spatial pattern.

4.4.2 Observed and modeled land surface temperature comparison

We calculated the LST UHI intensity for London from measurements as
detailed in Sec. 4.3, which we compare in the following with the results
of the UrbClim model (see Sec. 4.2). Empirical and modeled tempera-
tures have spatial and temporal overlap, and we calculate the UHI inten-
sities in the analogous manner.

First, we want to analyze if the UrbClim model reproduces the hysteresis-
like seasonality in the LST. Therefore, the UHI intensity, ∆T , is plotted ver-
sus the background temperature, TB. For both quantities, the raw data in
8 day resolution is aggregated to monthly means.
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year Tu Tr ∆T

Bias RMSE CORR Bias RMSE CORR Bias RMSE CORR

2010 0.08 0.73 0.99 0.01 0.64 0.99 0.07 0.29 0.70

2011 0.26 0.93 0.99 0.17 0.91 0.98 0.17 0.42 0.59

2012 0.12 0.87 0.99 0.05 0.98 0.98 0.07 0.36 0.65

Table 4.2: Error statistics for the simulated (versus observed) urban (St. James
Park, Tu) and rural (Charlwood, Tr) 2 m air temperatures and their differences
(∆T ). The quantities given are the bias, root mean square error (RMSE), and
correlation coefficient (CORR).

Figure 4.2 exhibits the raw values, the monthly means with standard
deviations, and second order Fourier approximation. Figure 4.2a-b shows
the LST results for the MODIS data and the UrbClim model, respectively.
In the case of the measured data, the monthly background temperature
ranges between slightly over than 0 ◦C and almost 20 ◦C, whereas the
UHI intensity is between somewhat lower than 1 ◦C and almost 3 ◦C. The
modeled data shows similar ranges, although slightly smaller UHI inten-
sity in summer and slightly higher background temperature in winter.

Despite considerable spreading of the 8 day values, the monthly val-
ues exhibit the characteristic clockwise course in both Figs. 4.2 (a) and (b),
which imply a phase shift between the UHI intensity and the background
temperature. The UHI intensity reaches its peak around the summer sol-
stice, i.e. in the strongest incoming solar radiation, while the maximum
values of background temperature occur around the end of July and the
beginning of August. As can be seen in Fig. 4.2 (a), the typical UHI inten-
sity in May is, by approximately one degree, larger than in September.
The modeled data in Fig. 4.2 (b) shows a similar effect, although a bit less
pronounced in May/September. Overall, the hysteresis-like seasonality
in the modeled LST matches the observed pattern for London. The dif-

TC TB ∆T

Bias 0.18 0.21 -0.03

RMSE 1.19 1.23 0.40

CORR 0.99 0.98 0.86

Table 4.3: Error statistics for the simulated 8 day averaged LST versus observed
MODIS LST for urban cluster (TC), belt (TB) and their differences (∆T ).
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Figure 4.2: Seasonality of UHI intensity for the London city cluster based on em-
pirical MODIS (LST), observations (2 m temperatures), and modeled UrbClim
results (both). The inset icons denote how the UHI intensity (∆T ) is calculated,
i.e. based either on the mean temperature difference between urban area and its
surrounding [(a)-(c)], or on the temperature difference between St. James Park
(urban) and Charlwood (rural) [(d), (e)]. The UHI intensity, ∆T , is plotted as a
function of the background temperature, TB. The numbers (1-12) within the plot
correspond to months of the year. The panels (a), (b) show the results for land
surface temperatures, whereas the panels [(c)-(e)] are for the 2 m air tempera-
tures. The comparison between the observed and modeled 2 m air temperatures
[(d), (e)] is based on data from 2010 to 2012.

ferences in the shape of the Fourier approximations are minor compared
to the spreading of the raw data and the resulting standard deviations.

The simulated 8 day averaged LST agree with the observations, both
for the city cluster and the belt (Tab. 4.3). The UrbClim model also per-
forms well in simulating the LST based UHI, with a bias of −0.03 and a
correlation coefficient of 0.86.

4.4.3 Modeled land surface and 2 m air temperature comparison

The described hysteresis-like seasonality has been reported and repro-
duced (Sec. 4.4.2) only for land surface temperature so far. Next, we
want to verify if the phenomenon occurs also in the 2 m air temperature.
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First, we investigate if the hysteresis is present in the measurement
data from the stations St. James Park and Charlwood for the years 2010-
2012 and if the UrbClim model shows comparable results. Afterwards,
we focus on the full modeled period (2006-12) to make a comparison
with the LST analysis. The comparison between measurements and model
results regarding a potential hysteresis-like seasonality is presented in
Figs. 4.2 (d) and (e). A hysteresis-like seasonality is absent in both the
observations and the model results, as all year round the UHI intensity
for 2 m air temperatures is between 1 and 2 ◦C.

Figures 4.2 (b) and (c) show the results for the modeled LST and 2 m
air temperature, respectively. Here, we calculate the daily mean temper-
ature by averaging the four times of the day. While the background tem-
perature, TB, exhibits a similar range in both cases, it is apparent that
the modeled 2 m air temperature is not significantly different between
the seasons. The maximum deviation of approximately 0.2 ◦C occurs be-
tween April and October (Fig. 4.2 (c)). In comparison to the size of the
spreading, this effect can be neglected.

As we do not observe any significant hysteresis-like seasonality in the
daily mean 2 m air temperature in both the model and the observations,
we can conclude that it must be a phenomenon that is restricted to land
surface temperature. In other words, the UHI intensities derived from
LST and air temperature constitute different seasonalites.

In Fig. 4.2 (c), ∆T is approximately constant throughout the year. Un-
der the climate conditions, relatively high UHI episodes can occur, even
in winter, during dry and sunny periods. Since sunny episodes and rain-
fall events are possible all over the year, ∆T is almost constant.

4.4.4 Seasonality of daytime and nighttime UHI intensities

Figure 4.3 shows the seasonality of air temperature based UHI for both
daytimes and nighttimes. It is generally known that the nighttime UHI
is larger than the daytime UHI for air temperatures (Oke, 1987). The UHI
intensity reaches its peak of about 2 ◦C at LT0130 in spring (April/May),
whereas the minimum UHI intensity occurs at LT1330 (about 0.5 ◦C). On
clear sky days, during the daytime, the surface is heated by solar ra-
diation, and the boundary layer becomes unstable, favoring convection
and turbulent mixing. This mixing hampers the formation of a strong
near-surface UHI since a lot of warm air is transported upwards to the
atmosphere. After the sunset the surface cools and the boundary layer
becomes stable, favoring stronger near-surface temperature gradients.
The difference in cooling rate between urban and rural area intensifies
further the UHI. This process might explain the bimodal seasonality at
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Figure 4.3: The seasonality of modeled air temperature. Background tempera-
tures (TB) and UHI intensities (∆T ) are shown for 4 local times of the day (a)
LT0130, (b) LT1030, (c) LT1330 and (d) LT2230, which are consistent with the
MODIS overpass times. The data are fitted by second order Fourier approxima-
tion.

LT2230. Due to the late sunset time (about LT2120) in June and July, the
stabilization of the boundary layer occurs after LT2230. The UHI inten-
sity reaches its peak several hours after sunset, and at LT0130 is approx-
imately 0.4 ◦C larger than at LT2230 in June/July.

Table 4.4 shows the partial correlation matrix of UHI intensities for dif-
ferent times of the day. For LST based UHI intensities, from both observa-
tion and simulation, highly positive correlations are found between indi-
vidual times of the day (Tab. 4.4 (a) and (b)). For air temperature based
UHI intensities, high correlations are found solely between daytime UHI
intensities (LT1030 and LT1330), and between nighttime UHI intensities
(LT0130 and LT2230), whereas non-significant and even negative corre-
lations are found between daytime and nighttime UHI intensities. This
difference suggests that the LST based UHI intensities exhibit similar sea-
sonalities at various times during the day, while this consistency across
times does not exist with respect to air temperature based UHI intensities.
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When averaging to daily mean, the air temperature based UHI seasonal-
ity is attenuated. This could explain why the LST based daily mean UHI
exhibits a pronounced seasonality throughout the study period, whereas
a similar trend is absent for the air temperature based UHI.

A previous study conducted by Wilby (2003) assessed both daytime
and nighttime UHI intensities based on 2 m air temperature data ob-
served from 1961 to 1990 at two weather stations (St. James Park and Wis-
ley, 30 km from London). He reported a maximum nighttime UHI inten-
sity in August (2.2 ◦C) and a minimum in January (1.1 ◦C), whereas there
was no remarkable seasonality in the daytime UHI intensity. We recalcu-
lated the UHI intensity in a similar way to Wilby (2003), i.e. defining the
nighttime UHI intensity ∆Tmin = min(T tC)−min(T tB), t ∈ {LT0130, LT2230},
and the daytime UHI ∆Tmax = max(T tC) − max(T tB), t ∈ {LT1030, LT1330}.
As can be seen from Figs. 4.4 (a) and (b), in the present study the day-
time UHI intensities have low values (about 0.5 ◦C) throughout the year,
while the nighttime UHI intensity reaches its maximum in April/May
(about 2.0 ◦C). Considering the difference in studying period, UHI defini-
tion and large data spreading in the previous study, it is reasonable to
conclude that our findings are consistent and well comparable with the
previous ones.

4.4.5 Sensitivity to the annual cycle in the radiation

We found that UrbClim reproduces the hysteresis-like seasonality in the
LST based UHI and that the effect is largely absent in the 2 m air temper-
ature UHI (Sec. 4.4.3). Next, we want to investigate a possible mechanism
behind the hysteresis-like seasonality. It has been hypothesized that the
phenomenon is due to the phase shift between astronomical and mete-
orological seasons: the land surface temperature in the city follows the
astronomical seasons driven by solar radiation and the temperature in
the surroundings follows the meteorological seasons corresponding to
the regional climate (Zhou et al., 2013).

Here, we test this hypothesis by performing a model run with manip-
ulated external driving. As detailed in Sec. 4.2.2, in the sensitivity exper-
iment the clear-sky maximum short-wave radiation (SR experiment) is
kept constant throughout the year. In Fig. 4.5, we compare the LST UHI
intensities of MODIS with the ones obtained from the SR experiment.
While in Fig. 4.2 the daily averages are plotted, in Fig. 4.5 we study the
4 times of the day separately.

During the day times it can be seen that the hysteresis shape greatly
diminishes in the manipulated model run and only small UHI intensities
in the LST remain, in contrast to the unaltered data observed with large
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Figure 4.6: Monthly means of soil moisture for London, derived from NOAA
Climate Prediction Center soil moisture data at a 0.5◦ × 0.5◦ grid.

maximum ∆T of approximately 4 ◦C in June. During the night times how-
ever, the UHI intensities of the SR experiment still exhibit a slight hystere-
sis shape, in contrast to the night times of the MODIS data where the
phenomenon does not occur. This remaining hysteresis at night could
be due to a combination of the higher soil moisture and colder deep soil
temperatures in spring, compared to autumn, keeping the rural LST low
and therefore increasing the UHI effect. Indeed, observations indicate a
seasonality in the soil moisture content in the London region, which re-
sults in larger thermal admittance and a decrease of warming rate in the
rural areas in spring compared to autumn. Figure 4.6 shows the 7-year
(2006-12) monthly mean soil moisture for the Greater London Area, ob-
tained from the NOAA Climate Prediction Center (CPC) soil moisture
data (Fan, 2004). However, the UrbClim model appears to be too sen-
sitive to this effect, as it can not be seen in the nighttime MODIS data.
During daytime the seasonality of soil moisture plays a minor role in the
hysteresis effect, as the astronomical seasonality is dominant.

4.5 summary and discussion

In this paper we have analyzed the seasonal variation of UHI intensities
by combining satellite-based observations from MODIS and simulations
with the urban boundary layer climate model UrbClim. Based on both
LST and 2 m air temperature, the seasonality of UHI intensity from 2006

to 2012 has been investigated. Although both are supposed to describe
the magnitude of city warming compared to the surrounding, they con-
stitute different seasonalities. We find that the model reproduces the
hysteresis effect in the surface UHI intensities. In the observed and mod-
eled 2 m air temperature, the phenomenon is largely absent, suggesting
that the seasonality is due to peculiarities of the LST. Both, observed
and simulated, LST based UHI intensities exhibit consistent seasonality
across the different times of the day. However, the seasonality of UHI in-
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tensities based on air temperature is rather a function of the time of the
day.

A sensitivity test has been conducted by rescaling the incoming short-
wave radiation so that the clear-sky maximum radiation is always equal
to the value of 21 March. In this case the surface UHI intensity is consid-
erably reduced, supporting that the hysteresis is due to a delay between
the meteorological seasonality, driving the background temperature, and
the astronomical seasonality, driving the city temperature.

In future work it could be of interest to relate this perception with the
earlier findings by Runnalls and Oke (2000). They suggested that sea-
sonalities of UHI intensity could be mainly attributed to the difference in
thermal admittance between urban and rural areas, which determines
the warming and cooling rate of each part. For urban areas, the thermal
admittance could be seen as constant throughout the year. The warming
rate of urban areas is proportional to the solar radiation during the day-
time, while its cooling rate due to infrared emission is almost constant
during the nighttime. In the non-urban area, where the thermal admit-
tance is highly subject to soil moisture and vegetation, the warming and
cooling rates exhibit pronounced seasonal variations. Around the sum-
mer solstice the urban warming rate reaches its maximum, and so is the
difference between urban and rural warming. As a consequence of this
difference, the UHI intensity peaks in June/July.

Our results indicate that the seasonality of the soil moisture in the
London region can contribute to seasonal variations of the UHI intensity.
Although this effect is less pronounced in the case of London, but we
expect that larger differences (e.g. in more semi-arid conditions) could
contribute significantly to hysteresis-like curves in other regions.





5
S Y N T H E S I S

5.1 general achievements

This work at hand has presented a general framework to systematically
quantify the UHI effect using a standardized approach based on City
Clustering Algorithm (CCA), whereby cities are defined as clusters of max-
imum spatial continuity derived from CORINE land use data, with their
rural hinterland being defined analogously. By combining land use data
with spatially explicit surface skin temperatures from MODIS sensors, the
UHI intensity can be calculated in a consistent and robust manner. This
facilitates monitoring, benchmarking, and categorizing UHI intensities
across scales. In light of this innovation, the relationship between city
size and surface UHI intensity has been systematically investigated, as
well as the contributions of urban form indicators, inter alia fractality
and anisometry, to the UHI intensity. Simulating the UHI in the Greater
London area using an urban boundary layer model – UrbClim, the sea-
sonal variations of UHI have been assessed from both screen (air tem-
perature) and skin (surface skin temperature) levels. These outcomes are
of particular relevance for the overall spatial planning and regulation at
meso- and macro levels. They help harness the benefits of rapid urban-
ization, while proactively minimizing its ensuing thermal stress.

In the following sections, the contributions of each chapter to answer-
ing the research questions raised in Sec. 1.3 will be highlighted and dis-
cussed in a broader perspective. Some caveats and challenges will be
addressed, followed by final remarks and the outlook for future work.

5.2 answers to the research questions

Research Question 1
How can one systematically quantify the intensity of UHI across
scales despite the complexity and diversity of urban systems?

69
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To overcome the problem resulted from the inconsistent definition
of urban/rural areas, the CCA has been applied to delineate city clus-
ters (as detailed in Sec. 2.3). Since the CCA is based on the remotely
sensed land use data, the quality of land use data is crucial for its overall
performance. So far, land use mapping using remote sensing has been
achieved with simultaneously a high spatial resolution (varying from
30 m to 1 km) and classification accuracy (Schneider et al., 2009; Friedl et
al., 2010; Gong et al., 2013; Ban et al., 2014). This goes along with an ob-
serving network composed of tens of commercial and non-commercial
satellites, which ensures a frequent update of land cover data at a global
scale. All this together renders the land use data-based CCA an approach
of global applicability enabling tracking the dynamics of urban land use
at an appropriate pace.

However, the CCA and the analogous algorithm to define the rural
surroundings are by no means an invariable approach. The choice of
underlying land use data and the setting of inherent parameters (e.g.,
threshold distance, l, and boundary/cluster ratio) can remarkably affect
the functionality of the algorithms and the ensuing results (Fluschnik
et al., 2016). In practice, medium-resolution land use data as used in this
work are preferred, because they can avoid the conjunction of distant
cities through highway traffic networks resolved in high-resolution data,
at the same time attaining an optimum spatial accuracy.

Moreover, as shown in Fig. C.1, a large value of l (in this case, 3-fold of
the spatial resolution of land cover data) has resulted in an overestima-
tion of urban area in Paris and the formation of a super-cluster agglomer-
ated from several scattered cities. As a consequence, the computed UHI
intensities are smaller than in the scenarios with smaller l.

Peng et al. (2012) analyzed the impact of boundary/cluster ratio on
the derived UHI intensities, suggesting that conclusions remained un-
changed under different boundary/cluster ratios. This is consistent with
our experiment, taking Berlin as an example (Figs. C.2 and C.3). The
UHI intensity increases with the ratio, i.e. larger boundary/cluster ra-
tio leads to a pronounced UHI intensity. Nevertheless, the UHI intensi-
ties between varying ratios exhibit a pronounced temporal correlation.
Therefore, we consider the impact caused by this factor to be small.

Due to the fascinating nature of CCA, there is, in parallel with the con-
duction of the research underlying this dissertation, a boom of literature
that adopted this approach in studying the surface UHI, both globally
(Clinton and Gong, 2013) and regionally (Zhou et al., 2014). One of the
recent findings is an exponential decay of UHI along the urban-rural
gradient (Zhou et al., 2015). To check its general validity, we presented
in Appendix D two variants for defining the buffers: 1) equal-ratio and
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2) equal-distance. We demonstrate that the conclusion by Zhou et al.
(2015) is equivalent to the established two-dimensional Gaussian model
proposed by Streutker (2002, 2003).

Furthermore, the CCA is not confined to population and land cover
data. It can be extended, e.g. to remotely sensed nighttime light data
which have increasingly been seen as a good proxy for tracking human
activities (Imhoff et al., 1997; Elvidge et al., 1999; Levin and Zhang, 2017).

Research Question 2
How does the city size determine the surface UHI intensity in the
era of Earth Observation?

The relationship between surface UHI intensity and city size is an
issue of great importance from the viewpoint of UHI alleviation. This
work has systematically investigated the relationship between city size
measured by surface area and surface UHI intensity based on MODIS
LST products. Two kinds of relationships are revealed: i) a log-logistic
relationship [Eq. (2.1)], and ii) a log-linear relationship (in Sec. 3.3). These
seemingly inconsistent relationships are obtained under different assump-
tions: the former one is derived using a full sample of city clusters
identified in Europe totaling ∼ 130,000, whereas the latter is based on
a subsample of the largest 5,000 city clusters in Europe (corresponding
to cluster areas SC >6.1 km2). More specifically, the log-logistic relation-
ship approximates the log-linear one when taking cities in the mid-range
into account.

According to Eq. (2.1) it can be deduced that small city clusters (SC →
0) are supposed not to show warmth relative to their vicinity, whereas
the UHI intensity for large cities (SC → ∞) saturates at a certain value.
This deduction seems quite plausible from a physical perspective, given
the fact that the energy to support the UHI is finite; and the increased
urban-rural temperature gradient intensifies the convection (Oke, 1973).
However, this log-logistic relationship has a limited usage due to the
following two reasons.

i) The computation of temperature for both city clusters and its vicin-
ity should be based on a minimum number of LST values to obtain
a plausible estimation relative to the accuracy of LST data.

ii) Zipf’s law postulates an extremely low probability of emergence of
huge cities, which makes it difficult to verify the value of saturation
[parameter a in Eq. (2.1)].

In contrast, the log-linear relationship applies in particular to cities
in the mid-range. This is consistent with the results of Imhoff et al.
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(2010), who suggested, however, a larger slope and a positive intercept
for cities in North America. This discrepancy can be ascribed to a more
pronounced UHI in North America than in Europe (Oke, 1973) and a
different definition of rural reference.

Moreover, the log-linear relationship implies a differentiated impact
of urbanization on cities of varying size with respect to the ensuing
change in thermal conditions. Under the same area increase, smaller
cities are expected to experience a more severe temperature increase
than larger ones. This is of particular relevance for developing countries
where rapidly growing population and accelerating urbanization are re-
sulting in considerable urban dynamics in the form of newly emerging
cities, merge of small and mid-sized cities together, and rise of megaci-
ties. As urbanization is increasingly viewed as inevitable and ultimately
desirable, it seems difficult to balance efficiency gains against the rapid-
ity of urban growth. To compensate the consequence of an intensify-
ing UHI, city-level adaptation strategies (e.g. cool pavements and roofs,
green infrastructure) should top the priority list of sustainable urban
planning and practices. These measures are expected to bring about both
economic and health benefits and to synergize the global mitigation ef-
forts (Estrada et al., 2017).

Research Question 3
How does the urban form determine the surface UHI intensity?

A complex interplay has been revealed between UHI intensity and
urban form indicators considered in this work. In general, there is a pos-
itive correlation between UHI intensity and fractality, whereas the UHI
intensity negatively correlates with anisometry (Fig. 3.2). These correla-
tions are more pronounced during daytime than nighttime, as compara-
bly observed between Fig. 3.2 and Fig. B.1.

Quantitatively, the relationship of UHI intensity with city size and
urban form indicators can be described using multiple linear regression
[Eq. (3.4)]. Performing the same analysis on the normalized data, we are
able to identify the relative contributions of each indicator on the UHI
intensity: City size is found to have the strongest influence on the UHI
intensity, followed by the fractality and the anisometry.

However, their relative contributions to the UHI intensity depict a pro-
nounced regional heterogeneity. As shown in Fig. 3.4, in the Mediter-
ranean region, the anisometry has a much stronger influence than in
any other regions, although city size is still the dominating factor. This
reveals a distinct urbanization pathway in the Mediterranean region.
While growing in size, cities in the Mediterranean region have tended
to expand in an anisometric manner. This may be subject to the char-
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acteristic geographical conditions of this region, in particular consider-
ing many cities are situated along coastlines. As a consequence, the in-
creased anisometry, together with the cooling effect of sea breezes can
to some extent compensate the intensifying UHI alongside the increased
city size.

Relating city size and form with the scale effect of convection (Sakai et
al., 2009), this work also provided a theoretical explanation about the in-
terplay among the UHI intensity, city size and form (see Appendix B.3).
Ideally, for a fixed fractal dimension, an increase in urban surface di-
minishes the heat convection, thus resulting in a higher surface tempera-
ture. Analogously, for a fixed urban area, an increasing fractal dimension
weakens the convection and leads to a higher surface temperature.

These findings suggest that small, less fractal/ sprawling, and stretched
cities perform better in harnessing negative effects of the UHI, which is
consistent with previous studies (Clinton and Gong, 2013; Yang et al.,
2016). However, UHI alleviation measures based on such findings should
be discussed in a broader context of climate change, taking the global
climate mitigation goal into account. In view of that compact cities are
more capable of creating co-benefits of efficiency gains and reduction in
per capita CO2 emissions (Martilli, 2014), a multi-scale loss/gain analy-
sis of urban planning measures is necessary to reconcile local and global
adaptations in cities (Georgescu et al., 2015).

Undoubtedly, other urban form indicators such as the configuration
and composition of cities could also be utilized to study the interplay
between UHI and urban form, as addressed in Chow et al. (2011) and
Schwarz and Manceur (2015). However, this work demonstrates one of
the early works in assessing the UHI from a fractal perspective and is
expected to stimulate further research to scrutinize the UHI combining
the burgeoning new science of city (Batty, 2008).

Research Question 4
How does the UHI intensity vary seasonally at both screen and
skin levels?

By plotting the surface UHI intensity as a function of the background
temperature, a remarkable diversity has been observed among city clus-
ters, not only from the correlation perspective, but also regarding the
seasonal variations these two variables present. From the former view-
point, this work revealed that for most European cities, a background
temperature increase resulted in an intensifying surface UHI. The min-
imum and maximum surface UHI intensities occurred in winter and
summer, perspectively. In contrast, the Urban Cool Island or Oasis Effect
was also widely observed in cities predominantly located in the Mediter-
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ranean region. During the summer, mean surface temperatures within
those city clusters could be even lower than in their rural surroundings.

On the other hand, the time series of surface UHI intensities and
background temperatures can be jointly illustrated using hysteresis-like
curves, as detailed in Sec. 2.4.2. For many city clusters, the same back-
ground temperature comes with a higher UHI intensity in spring con-
trasted with a discernibly lower UHI intensity in fall (Fig. 2.3). This im-
plies a phase shift between the time series of UHI intensity and back-
ground temperatures. Due to an abundance of construction materials
of high thermal inertia in cities, the urban surface temperature is much
influenced by the annual cycle of solar radiation. Its increase deceler-
ates after the summer solstice. In comparison, in the vegetated rural
surroundings, the temperature tends to follow the meteorological sea-
sonality. All this together results in a maximum surface UHI intensity
occurring approximately at the summer solstice.

We extended the analysis on the seasonality to the screen level, taking
the Greater London area as an example. According to the model results,
the pronounced seasonality/hysteresis observed at the skin level was
absent at the screen level. In London, the air temperature-based UHI in-
tensity was quite stable and remained about 1.5 ◦C throughout the years
investigated (2010-2012), as shown in Figs. 4.2 (d) and (e). We ascribe the
vanishing seasonality foremost to the comparably weak diurnal varia-
tion of air temperatures both in cities and rural surroundings, leading
to smaller UHI intensities in value. Meanwhile, the UHI intensity at the
skin level exhibits similar seasonality at various times during the day,
whereas the air temperature based UHI intensity demonstrates distinct
seasonalities across times (see Fig. 4.3 and Tab. 4.4). The latter process
depends considerably upon the stability of boundary layer. When aver-
aging to daily means, the seasonality based on the air temperature is
attenuated and therefore can hardly be observed.

The relationship between near-surface air temperature and surface
skin temperature has long been recognized as a key to link the UHI
at screen and skin levels. However, the high correlation observed in pre-
vious studies (Prihodko and Goward, 1997; Gallo et al., 2011) and in
Figs. A.4 (b) and (d) are attributable in large part to the seasonal cycle
embedded in the both temperatures. Therefore, it may be inadequate to
claim a good performance of a model merely targeting a high correla-
tion between observed and simulated temperatures throughout a long
period, while it is incapable of reproducing the diurnal and seasonal
cycles of the UHI intensity. By contrast, the work at hand sheds light
on the assessment of seasonality from both observation and modeling
perspectives.



5.2 answers to the research questions 75

Research Question 5
What is a plausible scheme to classify cities according to their
UHI characteristics, and what is their geographical pattern?

This work develops a data-driven scheme to classify cities according
to their UHI characteristics (as detailed in Sec. 2.4.2). The time series
of UHI intensities and background temperatures are broken down into
quantifiable harmonics obtained from the second order Fourier approx-
imation. Based on the harmonics, cities can be classified using typical
clustering models (e.g. K-means clustering algorithm). Although urban
form does influence the UHI intensity, as addressed in this work, and
can also be used to classify cities (Huang et al., 2007; Schwarz, 2010),
classification schemes based on the relatively static urban form indica-
tors fail to capture the temporal characteristics of the UHI.

As depicted in Fig. 2.4, seven groups were identified. The spatial dis-
tribution of these groups demonstrates a pronounced regional hetero-
geneity, which well coincides with the climate zones. Two findings are
worthy of particular mention.

i) The fact that large cities across different climate zones are predomi-
nantly classified into the same group (Group 6 in Fig. 2.4) may indi-
cate that the UHI effect in large cities may go beyond geographical
constraints and exhibit some common features globally.

ii) The method applied is able to distinguish inland and coastal cities
in the Mediterranean region, although their seasonalities resemble
each other in shape. The difference can be mainly ascribed to the
proximity to water courses and the ensuing enhanced convection
in the form of sea breeze.

Simple though the solution is, this approach provides a data-driven
alternative to classify cities with regard to the UHI characteristics. To
date, we are increasingly aware that cities are seldom an isolated system,
yet are connected and sorted by commonalities and disparities. Under-
standing the essential differences as well as the common features that
coexist among cities is, therefore, of great importance in the context of
the ongoing discussion about sustainability. For practitioners in urban
planning, the classification delivers a very first screening of measures to
know whether the measures for alleviating the UHI targeting a certain
city can be further transferred and implemented in their own cases.
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5.3 constraints and caveats

Despite the advances this work has made in broadening the insights into
the surface UHI, there are still several constraints and caveats that need
to be mentioned.

Firstly, one should bear in mind that the accuracy of MODIS LST data
of better than 1 K was obtained in optimum conditions (Wan, 2008). Val-
idation field campaigns were conducted over homogeneous land cover,
such as lakes and agricultural fields. This gives rise to concern that the
de facto accuracy may be lower, in particular for urban pixels which are
characterized by a remarkable inhomogeneity. Though the latest Version
6 LST products of MODIS are evaluated to be much better than the previ-
ous versions (Wan, 2014), the problem associated with the inhomogene-
ity of urban areas remains unsolved. The uncertainty may exceed the
calculated UHI intensity in the worst case. However, the utilization of
8-day LST composites and averaging data over years could significantly
reduce the uncertainty caused by the low accuracy.

Secondly, a majority of this work focuses on the UHI intensity – the
temperature difference between city clusters and their rural surround-
ings. Based on the empirical findings, alleviation measures are suggested
with the aim of reducing the UHI intensity. However, these measures do
not necessarily result in a decrease of overall temperatures (Schwarz and
Manceur, 2015). Therefore, it is more proper to consider lowering UHI
intensities and overall temperatures at the same time, while conceiving
of UHI mitigation strategies.

In this work, it leaves unanswered how the UHI will develop under
the impact of global climate change. This is due to the fact that high-
resolution spatially explicit temperature projections are generally not
available. Dynamically downscaled projections typically available at a
spatial resolution of ∼3 km are too coarse to resolve urban scale features
(Grossman-Clarke et al., 2017), whereas statistical downscaling is highly
reliant on a sufficient amount of past observations (Trzaska and Schnarr,
2014). As a trade-off, the downscaled temperature projections obtained
by using the computationally inexpensive UrbClim model (Lauwaet et
al., 2015) can be utilized in the future work to fill this research gap.

Furthermore, this work does not employ any Digital Elevation Model
(DEM) to eliminate the influence of elevation, which applies in particular
to cities located in mountainous regions or those extending across varied
landscapes. These shortcomings need to be properly addressed in the
future work.



5.4 final remarks and future work 77

5.4 final remarks and future work

This work as a whole has complemented and advanced a number of pre-
vious work by virtue of the enormous amount of cities considered. Such
a large sample size achieved through the utilization of an innovative
automated city clustering algorithm enables this work to systematically
and statistically scrutinize the UHI. The log-linear relationship between
city size and UHI intensity suggested by Oke (1973) and Imhoff et al.
(2010) has been confirmed and extended to a log-logistic relationship,
when taking a wider range of small-sized cities into account. The contri-
bution of urban form to the UHI has been assessed and discussed from
a fractal perspective. This attempt is expected to open up new avenues
for understanding the UHI from a broader context, for instance, from
the urban scaling perspective. In addition, the efforts in classifying cities
according to their UHI characteristics have highlighted the importance
of regional climates in determining the UHI.

Despite the broad range of issues covered in this work, there are still
an array of interesting questions and critical thinking which remain to
be addressed. Prospectively, I would like to raise three points for future
consideration.

i) It is promising to extend the analyses performed in this work to a
broader scale as a response to the accelerating urbanization world-
wide. Particular attention will be paid to cities in the Global South.
They are expected to bear the brunt of negative impacts of cli-
mate change, including a deteriorating thermal well-being. How
their UHIs developed in the past and proceed under future climate
change scenarios will be the main focus of the envisaged work.

ii) The UHI exhibits a good agreement with human activities and the
anthropogenic heat resulting therefrom (Ichinose et al., 1999; Sailor
and Lu, 2004). However, anthropogenic heat release data are con-
ventionally estimated at a city level, restricting the investigation
of its influence on the UHI at a regional or global scale. Yet, hu-
man activities can be estimated increasingly by means of remotely
sensed nighttime light data (Elvidge et al., 1999) which are seen as
a good proxy for the anthropogenic heat release (Dong et al., 2016).
Combining thermal and nighttime light remote sensing is antici-
pated to fill the gap as to what extent anthropogenic heat release
influences the UHI at a global scale. This may also help to explain
the seasonality observed in cities at high latitudes [see Fig. 2.4 (i)].
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iii) The urban/rural binarism delivers a simple yet intuitive solution
to study urban-related issues. However, this approach is far from
flaw-free, since the difference between urban and rural areas looks
scarcely like a cliff. Instead, it is characterized by a gradual change
in building/street morphology, functionality, and surface cover, etc.
The classification scheme – Local Climate Zones (LCZ) proposed
by Stewart (2011) and Stewart and Oke (2012) seems a promising
candidate to deal with this ambiguity. This new-rising scheme may
refine the classification approach proposed in this study to gain a
better understanding the commonalities among cities.
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This Supplementary Material consists of the following additional details
and results:

• Boundary Generation Algorithm

• Summertime mean land surface temperature (LST) of Greater Lon-
don and surroundings

• Exemplary comparison of LST and 2 m air temperature as well as
the corresponding urban heat island (UHI) intensities

• Largest city cluster, Flemish Diamond

a.1 boundary generation algorithm

The boundary of a cluster refers to the area surrounding it. The area
of the boundary is specified to be of approximately equal size as the
cluster area, i.e. S(i)B ' S

(i)
C . After each city cluster has been identified,

the boundaries are constructed under the following constraints:

• Every cluster must have at least one boundary layer.

• A non-urban cell can serve as boundary cell for more than one
cluster.

The boundary of a considered city cluster is then built layer by layer as
follows:

1. An arbitrary non-urban grid cell adjacent to the considered city
cluster is the first cell marked as belonging to the layer.

2. Iteratively, for a non-urban cell, if any of its 4-connected cells is a
confirmed layer cell, and any of its 8-connected cells is an urban
cell of the same cluster, then the cell is attributed to the layer.
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3. The procedure is continued until no more cells can be attributed to
this layer.

4. The next layer is built by iteratively adding a non-urban cell, if any
of its 4-connected cells is a confirmed cell of the previous layer.

5. Successively, further layers are added and the procedure is stopped
if the total number of boundary cells (i.e. the sum of layer cells) is
lager than the number of cluster cells. The boundary stops growing
when S(i)B > S(i)C .

After finishing the iterative generation of layers which together form
the boundary, it has to be decided whether the area including the last
layer is closest to the area of the cluster or if the area excluding the
last layer is closer. If bj is the number of boundary cells created in the

jth layer, the total size of the boundary with n layers is S(i)B =
n∑
j=1
bj.

To decide whether the nth layer should remain in the boundary, the
following criterion must be fulfilled:

ln
n∑
j=1

bj − lnSC 6 lnSC − ln
n−1∑
j=1

bj ,

⇒
n−1∑
j=1

bj

n∑
j=1

bj 6 S
2
C, (A.1)

i.e. the geometric mean of boundary sizes with n− 1 and n layers must
be less than the cluster size. Otherwise, the nth boundary layer is omit-
ted, and only n− 1 layers are used to represent the boundary, as illus-
trated in Fig. A.1 (d) and (e). The algorithm is illustrated in Fig. A.1 for
a cluster with 349 cells and the procedure stops with 4 layers, whereas a
boundary consisting of 3 layers is chosen with 311 cells.

a.2 summer mean land surface temperature (lst) of greater

london and surroundings

Figure A.2 shows the summertime (June-July-August) mean land sur-
face temperature averaged over 6 years (2006-2011), as obtained from
MODIS MYD11A2 data (see data Section in the main article). Similar to
the results shown in the main article [Fig. 2.1 (b)], the urban cluster iden-
tified by City Clustering Algorithm (CCA) (Rozenfeld et al., 2008, 2011)
agrees well with the heat pattern and vice versa. Due to the cooling ef-
fect of vegetation, parks within the city and around can be seen due to
their lower temperatures.
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Figure A.1: Illustration of the boundary generation algorithm. (a) The various
clusters have been identified, as indicated with colors. The considered cluster
in the center (grey) has 349 grid cells. (b)-(e) The boundary is built by con-
sequently forming layers around the considered city cluster, devoid of urban
cells of other clusters. Closed inner non-urban pixels are not taken into account.
The boundary stops growing when the boundary is larger than the cluster. To
decide whether the last generated layer should remain as the boundary, the cri-
terion in Eq. (A.1) is applied, resulting finally in a boundary consisting of three
layers in this example.
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Figure A.2: 6-year (2006-2011) summer (June-August) mean land surface tem-
perature for the Greater London area derived from MYD11A2 datasets, i.e. LST
at approximately 13:30 local time. The city cluster and the urban heat distri-
bution are in agreement. The blue pixels within the cluster are zones with rel-
atively lower temperatures within the urban cluster, where the land cover is
characterized by a large share of green areas.

a.3 exemplary comparison of lst and 2 m air temperature

as well as the corresponding uhi intensities

The comparison of UHI intensities is based on

• MODIS LST as detailed in the data Section of the main article and

• 2 m air temperature records from the German Weather Service
(DWD).

Berlin is chosen as an example to conduct the comparison. The air tem-
perature records from the weather stations in Berlin and vicinity are in
hourly resolution, covering 2006 to 2010. The data from 12:30 CET to
14:30 CET, about the overpass time of Aqua satellite, are averaged and
then aggregated into 8-day resolution which are in accordance with the
temporal resolution of the MODIS data. Figure A.3 shows the stations
used for this comparison, among which Alexanderplatz, Tegel, Dahlem,
Buch, Tempelhof, Schönefeld are within the city cluster of Berlin. The
remaining three stations – Potsdam, Köpenick, and Lindenberg – are
used to represent the boundary, since they are located in non-urban
space. Analogous to the definition of LST-based UHI intensity, the UHI
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Figure A.3: Locations of weather stations in Berlin and vicinity, where 2 m air
temperature are measured. The orange area represents the cluster for Berlin,
while its boundary is outlined with grey line. The pink areas are other clusters
near Berlin. To obtain the UHI intensity, we calculate the urban temperature
through averaging the data from Alexanderplatz, Tegel, Dahlem, Buch, Tempel-
hof, Schönefeld, whereas the rural temperature is calculated form the records
measured at Potsdam, Köpenick, and Lindenberg.

intensity obtained from the 2 m air temperature is defined as the mean
temperature difference between urban stations and non-urban stations
(”boundary”). Figure A.4 (a), (c) and (e) shows the time series of clus-
ter temperatures (TC), boundary temperatures (TB), and the difference
between them (∆T ), respectively, retrieved from LST and 2 m air temper-
atures. Strong correlations are found between the different temperature
measurements [Fig. A.4 (b) and (d)], as suggested earlier by Prihodko
and Goward (1997). However, the UHI intensity derived from these two
methods shows no correlations [Fig. A.4 (f)]. The LST based UHI inten-
sity shows apparent seasonal cycles, whereas the same seasonality can
hardly be seen for the UHI intensity derived from air temperature data
[Fig. A.4 (e)]. By contrast, the air temperature based "midday" UHI inten-
sity fluctuates around 0

◦C.
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Figure A.4: Comparison of LST and 2 m air temperature as well as the resulting
UHI intensities. The cluster records are shown in panel (a) calculated from LST
(red) and air temperature (blue). The difference of both is green. Panel (b) is the
scatter plot of air temperatures with LST. The analogous for the boundary is de-
picted in panel (c) and (d). Panel (e) shows the resulting UHI intensities. There
is an apparent seasonal variability for the LST based UHI intensity, whereas the
air temperature based UHI is relatively stable throughout the year. No signifi-
cant correlations can be found between them, as seen in panel (f).
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Figure A.5: Urban cluster (red) and boundary (green) identified by CCA for the
largest cluster in the scope of this study. The cluster contains mainly the Flemish
Diamond (a multi-centered urban agglomeration of Brussels, Ghent, Antwerp
and Leuven) and Liège, characterized by scattered urban areas. Cluster and
boundary are to some extent interwoven, which should not harm the analysis,
since the temperature corresponds well with the land cover as seen in Fig. A.2.

a.4 largest city cluster , flemish diamond

Figure A.5 depicts the largest city cluster as identified in this study for
comparison with Greater London in Fig. 2.1.
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This Supplementary Information includes

1. Analyses on the nighttime UHI

2. Correlations between variables

3. Linking heat transfer coefficient, area, and fractal dimension.

b.1 analyses on the nighttime uhi

b.1.1 Bivariate regression

2 4 6
−1

−0.5

0

0.5

1

1.5

2

2.5

∆T

lnS
C

∆T = 0.26⋅ lnS
C
 −0.33

r2 = 0.36

1.2 1.4 1.6
D

f

 

 

∆T = 1.49⋅ D
f
 −1.93

r2 = 0.15

∆T = 1.49⋅ D
f
 −1.93

r2 = 0.15

0.5 1 1.5 2
lnA

∆T = −0.15⋅ lnA +0.44

r2 = 0.02

∆T = −0.15⋅ lnA +0.44

r2 = 0.02

bins OLS QR 0.9 QR 0.75 QR 0.5 QR 0.25 QR 0.1

(a) (b) (c)(a) (b) (c)

Figure B.1: Nighttime surface UHI intensity (∆T ) as a function of (a) logarithm
of urban cluster size lnSC, (b) fractal dimensionDf, and (c) logarithm of anisom-
etry lnA. Compared to Fig. 3.2 in Chapter 2, the absolute values of regression
slopes are smaller.
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b.1.2 Multi-linear regression

The result obtained from a step-wise multi-linear regression based on
5,000 city clusters, without normalizing the dependent variables – lnSC,
lnA, Df.

∆T = −1.03− 0.10 lnSC + 0.11Df + 0.53 lnA

+ 0.21Df lnSC − 0.33Df lnA (R2 = 0.41) (B.1)

Analogous to Eq. (3.4) in Chapter 3.
The relation based on normalized dependent variables

∆T = 0.33+ 0.17 lnS∗C + 0.09D∗f + 0.01 lnA∗

+ 0.01D∗f lnS∗C − 0.01D∗f lnA∗ (R2 = 0.41) (B.2)

Analogous to Eq. (3.5) in Chapter 3.
Since the nighttime surface UHI is generally weaker than that during

daytime (which can be seen from the value range of the Y-axis), the pa-
rameters obtained from the multi-linear regression are also correspond-
ingly smaller. However, these results are consistent with the findings in
Chapter 3, i.e. city size exerts the strongest influence (0.17 lnS∗C), fol-
lowed by fractality (0.09D∗f ), and anisometry (0.01 lnA∗).

b.2 correlations between ln SC , Df and ln A
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Figure B.2: Correlations among intrinsic urban factors (a) lnA vs. lnSC, (b) Df

vs. lnA, and (c) lnSC vs.Df. The grey pixels indicate the number of cities that
are covered by them (the darker, the higher the density). The Pearson correla-
tion coefficient ρ is provided in each panel.
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b.3 linking heat transfer coefficient, area , and fractal

Energy balance of urban surfaces

The energy balance of urban surface can be written as

Q∗ = K ↓ −K ↑ +L ↓ −L ↑
= QH +QE +QG

where

K short-wave radiation (arrows indicate incoming and outgoing),

Q∗ net all-wave radiation,

QH sensible heat flux,

L long-wave radiation (arrows indicate incoming and outgoing),

QE latent heat flux,

QG conduction to or from soil.

Regardless of the anthropogenic heat release, surface temperature (Tsurface)
is mainly determined by the sensible heat flux QH, as QH = h∆T =

h(Tsurface − Tair), where h is the convection transfer coefficient. To sim-
plify the problem, we idealize the urban surface as a flat horizontal
isotropic plate, without taking into account the surface roughness. The
convection heat transfer coefficient h – more precisely, how h is related
to object size – is crucial to study the scale effect of the surface tempera-
ture (Sakai et al., 2009).

Convection heat transfer coefficient h

The convection heat transfer coefficient h can be expressed by using the
dimensionless Nusselt number Nu (the ratio of convective to conductive
heat transfer),

h = Nu · k/L (B.3)

where

h convection heat transfer coefficient [W m−2 K−1],

L characteristic length [m],

k thermal conductivity [W m−1 s−1].
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Empirically, the Nusselt number for a flat plate under turbulent forced
convection can be expressed as

Nu = C · Rem · Prn (B.4)

where

C ' 0.0296 (Johnson and Rubesin, 1948),

Re Reynolds number [dimensionless],

Pr Prandtl number [dimensionless],

m ≈ 0.8 (empirical number, Johnson and Rubesin, 1948),

n ≈ 2/3 (empirical number, Johnson and Rubesin, 1948).

The Prandtl number is defined as the ratio of momentum diffusivity
to thermal diffusivity,

Pr =
cpµ

k
(B.5)

where

cp [J kg−1 K−1],

µ dynamic viscosity [N S m−2],

k thermal conductivity [W m−1 s−1].

The Reynolds number is defined as the ratio of inertial forces to vis-
cous forces

Re =
ρ v L

µ
(B.6)

where

ρ density [kg m−3],

v wind speed [m s−1].

Combining Eqs. (B.3) to (B.6) we obtain (Sakai et al., 2009)

h = Ck1−nρmµn−mvmcnpL
m−1

h ∼ Lm−1 (m− 1 < 0). (B.7)

According to Lovejoy (1982) and Batty and Longley (1994), the perime-
ter P of an object is given by the area (S) raised to the power of D̂f/2, i.e.
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P ∼ SD̂f/2, where D̂f is the fractal dimension of the perimeter. Thus, the
characteristic length is L = S/P ∼ S1−D̂f/2. Equation (B.7) can be rewritten
as

h ∼ S(1−D̂f/2)(m−1) (1 6 D̂f 6 2, 1−m > 0). (B.8)

To illustrate the influence of surface area S and fractal dimension Df,
we consider a constant influx of solar radiation. For a fixed fractal di-
mension, the convection transfer coefficient h decreases with increasing
surface area S, resulting in a higher surface temperature. Analogously,
for a fixed surface area S, the convection transfer coefficient h decreases
with increasing fractal dimension Df, resulting in a higher surface tem-
perature.
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Figure B.3: The box fractal dimension Df versus the envelope fractal dimen-
sion D̂f. It can be seen that the box fractal dimension is always larger than the
envelope fractal dimension.

It is worth mentioning that the fractal dimension D̂f of the perimeter,
also called as envelope fractal dimension, is different from the fractal
dimension calculated in this study. The latter one is also known as box
fractal dimension. We estimated both the envelope and box fractal di-
mensions by applying the box counting method to the urban outline
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(envelope) and urban area, respectively (Batty and Longley, 1994). As
shown in Fig. B.3, the box fractal dimension is always larger than the en-
velope fractal dimension. Analyzing our data, we obtained empirically
P ∼ SaDf , with a ≈ 0.43. Since the term 1− aDf in Eq. (B.8) is still posi-
tive, the conclusions are not affected.



C
I N F L U E N C E O F C C A PA R A M E T E R S O N T H E S U R FA C E
U H I I N T E N S I T Y

This Appendix addresses the influence of the CCA parameters – i) thresh-
old distance l, and ii) ratio of boundary area to cluster area – on the
calculated UHI intensities, taking Paris and Berlin as examples, respec-
tively.

As shown in Fig. C.1, with the increase of l to 3-fold of the cell size, i.e.
750 m, the city cluster of Paris includes more urban areas extending from
the northern edge of Paris. The UHI intensities based on this scenario are
smaller than the other two scenarios throughout the year. The scenarios
S01 (l = 250m) and R02 (l = 500m) depict slight difference both with
respect to the identified cluster form and the derived UHI intensity.

Figure C.1: Influence of CCA-burning distances on the UHI intensity. (a) Paris
identified with CCA-burning distances l = 250m (S01), 500 m (R02), 750 m
(R03). (b) Time series of mean ∆T over 8 years from 2006 to 2013. The green
band indicates the standard deviation for R02. The standard deviations for S01

and R03 are of the same order, and are not shown here.

93



94 influence of cca parameters on the surface uhi intensity
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Figure C.2: The city cluster of Berlin, identified with l = 500m, with boundaries
of different size, ranging from 1.0 to 4.0 SC. The boundaries are defined in a
cumulative way where the outer larger boundaries include the inner smaller
ones.

Figure C.2 illustrates the city cluster of Berlin and its boundaries of
varying sizes. The UHI intensities based on each setting are shown in
Fig. C.3. As observed, the larger the ratio is, the more pronounced is the
UHI intensity. This applies for most cities situated in temperate climate
zones, where the vegetated/arable boundary areas exhibit lower tem-
perature than cities. Including a larger area into the boundary further
lowers the mean temperature of boundaries, thereby increasing the UHI
intensity. This is also consistent with the findings in Appendix D that
the background temperature follows a pronounced decay.
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D
D E C AY O F S U R FA C E S K I N T E M P E R AT U R E U N D E R
T W O A P P R O A C H E S O F B U F F E R D E F I N I T I O N

In this Appendix an analytical relation of the surface temperature decay
from a city outwards under two different approaches of buffer definition
is derived.

Assuming an ideal city centered at point (x0,y0). The surface skin
temperature field above the city, as first proposed by Streutker (2002),
follows a two-dimensional Gaussian function g,

g(x,y) = A exp

(
−

(
(x− x0)

2

2σ2x
+

(y− y0)
2

2σ2y

))
,

where A is the amplitude and σx,σy are the x and y spatial extents of the
Gaussian surface. To further simplify the problem, we let x0 = y0 = 0

and σx = σy = σ, and idealize the urban area as a circle with radius R0,
as shown in Fig. D.1. The urban area is then D = {(x,y) ∈ R2 : x2 + y2 6
R20}. Transformed into polar coordinates, D = {(ρ,φ) ∈ R2 : 0 6 ρ 6
R0, 0 6 φ 6 2π},

g(ρ,φ) = A exp(−
ρ2

2σ2
) (D.1)

The mean temperature of the city T0 is

T0 =

∫∫
D g(ρ,φ)ρdρdφ∫∫

D ρdρdφ
(D.2)

=

∫2π
0

∫R0
0 Ae−

ρ2

2σ2 ρdρdφ∫2π
0

∫R0
0 ρdρdφ

. (D.3)
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Figure D.1: Schematic of an ideal city and its non-urban buffers overlapped
with a Gaussian surface temperature field defined in Eq. (D.1), firstly proposed
by Streutker (2002).

Making the substitution u = − ρ2

2σ2
, we obtain du = − ρ

σ2
dρ.

T0 =
−Aσ2

∫− R2
0

2σ2

0 eu du
∫2π
0 dφ

πR20

=
2πAσ2(1− e−

R2
0

2σ2 )

πR20

=
2Aσ2(1− e−

R2
0

2σ2 )

R20
(D.4)

After the city cluster has been identified, there are two approaches to
defining the surrounding buffers – circular rings around the city cluster,
namely

i) Equal-ratio buffer definition,

ii) Equal-distance buffer definition.

In i), two adjacent buffers are of the same area, whereas they are of the
same width in ii).
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d.1 equal-ratio buffer definition

Zhou et al. (2015) delineated the exponential decay of surface skin tem-
perature away from urban areas using a equal-ratio buffer definition. d
represents the distance from the urban area in units [multiple of urban
area]. The non-urban buffer zones extend themselves layer by layer out-
wards with an increment of ∆d [in Zhou et al. (2015), ∆d = 0.5], i.e. each
buffer zone is ∆d of the urban area by size. If d = 0 denotes no buffer,
equivalent to the urban area D. The buffer zone with d = {∆d, 2∆d, . . . }
away from the urban outline is D ′ = {(ρ,φ) ∈ R+2 : r1 6 ρ 6 r2, 0 6 φ 6
2π, r22 − r

2
1 = ∆dR

2
0, r

2
2 = (d+ 1)R20}.

The mean temperature of the buffer zone D ′, Td is presented as,

Td =

−Aσ2
∫− r2

2
2σ2

−
r2
1

2σ2

eu du
∫2π
0 dφ

π(r22 − r
2
1)

=
2Aσ2(e−

r12

σ2 − e−
r2
2

2σ2 )

r22 − r
2
1

(D.5)

=
2Aσ2(e−

r12

2σ2 − e−
r2
2

2σ2 ) · e
r2
2

2σ2

(r22 − r
2
1) · e

r2
2

2σ2

=
2Aσ2(e

∆dR2
0

2σ2 − 1)

∆dR20 e
(d+1)R2

0
2σ2

=
2Aσ2(e

∆dR2
0

2σ2 − 1)

∆dR20 e
R2
0

2σ2

e−
R2
0

2σ2
d

= A ′ e−
R2
0

2σ2
d. (D.6)

As ∆d,A, R0 are predefined or city-specific constants,A ′ = 2Aσ2 (e
∆dR2

0
2σ2 −1)

∆dR20e
R2
0

2σ2

is a constant. The mean temperature away from the urban decays expo-

nentially, with a decay rate of −
R20
2σ2

. This relation has been empirically
described in Chinese cities (Zhou et al., 2015).
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d.2 equal-distance buffer definition

In the equal-distance buffer definition, each buffer is generated consecu-
tively with a predefined radical increment ∆l outwards. Buffer area with
a distance l from the urban outskirts can be written as L ′ = {(ρ,φ) ∈
R+2 : r1 6 ρ 6 r2, 0 6 φ 6 2π, r2 − r1 = ∆l, r2 = R0 + l}. Analogously, as
deduced above, the mean tempearture of L ′ is the same as Eq. (D.5),

Tl =
2Aσ2(e−

r12

2σ2 − e−
r2
2

2σ2 )

r22 − r
2
1

=
2Aσ2(e−

(r2−∆l)2

2σ2 − e−
r2
2

2σ2 )

(r2 + r1)(r2 − r1)

=
2Aσ2e−

(r2−
∆l
2

)2

2σ2 [e(
r2∆l

2σ2
−3∆l

2

8σ2
)
− e(−

r2∆l

2σ2
+∆l

2

8σ2
)
]

(2r2 −∆l)∆l

=
2Aσ2e−

(r2−
∆l
2

)2

2σ2 e−
∆l2

8σ2 [e(
r2∆l

2σ2
−∆l

2

4σ2
)
− e(−

r2∆l

2σ2
+∆l

2

4σ2
)
]

2r2∆l−∆l2

=
2Aσ2e−

∆l2

8σ2 e−
(r2−

∆l
2

)2

2σ2 2sinh( r2∆l
2σ2

− ∆l2

4σ2
)

2r2∆l−∆l2

≈
Aσ2e−

∆l2

8σ2 e−
(r2−

∆l
2

)2

2σ2
2r2∆l−∆l

2

σ2

2r2∆l−∆l2

≈ A ′e−
(r2−

∆l
2

)2

2σ2

≈ A ′e−
(l+R0−

∆l
2

)2

2σ2 , (D.7)

where, A ′ = Ae−
∆l2

8σ2 . As shown in Eq. (D.7), the exponential decay of Tl
with l does not apply here. However, the relationship can be described
by the first order Gaussian model, i.e. the Tl decays approximately with
l2. In comparison to the equal-ratio buffer definition, the surface tem-
perature based on the equal-distance buffer definition exhibits a more
pronounced decrease.
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