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Abstract. Business process management experiences a large uptake by
the industry, and process models play an important role in the analysis and
improvement of processes. While an increasing number of staff becomes
involved in actual modeling practice, it is crucial to assure model quality
and homogeneity along with providing suitable aids for creating models.
In this paper we consider the problem of offering recommendations to the
user during the act of modeling. Our key contribution is a concept for
defining and identifying action patterns - chunks of actions often appearing
together in business processes. In particular, we specify action patterns
and demonstrate how they can be identified from existing process model
repositories using association rule mining techniques. Action patterns
can then be used to suggest additional actions for a process model. Our
approach is challenged by applying it to the collection of process models
from the SAP Reference Model.

1 Introduction

Business process management experiences a large uptake by the industry, as more
and more companies analyze and improve their processes to stay competitive.
Process models being formal representations of business processes facilitate many
tasks in the domain of business process management. Thereby, instead of being an
art of a few specialists, business process modeling becomes a daily routine of office
staff. This development implies several challenges in terms of an efficient and
effective modeling support. In particular, many staff members have low modeling
competence and model only on an irregular basis [20]. For this reason, process
modeling tools have to incorporate techniques to help these casual modelers to
conduct their work in a productive way.

A research of business process modeling has revealed several approaches to
make modeling more efficient. This research can be classified into two main
categories. On the one hand, reference modeling aims to increase productivity
based on the reuse principle: models are created for a specific domain and are
meant to be customized in different application projects. On the other hand,
different types of patterns describe recurring situations in a domain independent
way. The potential of both approaches is hardly reflected by current tool features.
Whilst most of the pattern sets for processes and workflows are mainly used for
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model verification and modeling language analysis, the existing reference models
are tightly coupled with their partial domain and can hardly be used in other
settings. Against this background, we define a concept of action patterns. In
contrast to well known workflow patterns, action patterns are closely related to
semantic content of a process model. Meanwhile, unlike reference models, action
patterns are abstract enough to be applicable in various domains. In this context,
the term action essentially refers to the verb that describes the work content of
a textual activity label.

The contribution of this paper is a formal description of action patterns and
an approach for identification of patterns in existing process model collections
based on association rules mining. The mined action patterns can be used to
suggest additional activities to the modeler during a modeling act. We specify
two classes of patterns. Co-occurrence action patterns signify sets of actions that
are likely to appear jointly in a model. Behavioral action patterns describe how
co-occurring actions are related to each other in terms of behavioral constraints.
This information allows us to identify the control flow position where an activity
has to be added.

The rest of the paper is structured as follows. Section 2 provides a motivating
example to illustrate our approach. Section 3 formalizes the action pattern concept
and presents two classes of action patterns: co-occurrence action patterns and
behavioral action patterns. Section 4 describes the evaluation of our approach by
deriving action patterns from the SAP Reference Model. In Section 5 we present
an outlook of the related work. Section 6 concludes the paper.

2 Motivating Example

An intrinsic complexity of business processes together with process models hetero-
geneity, originating from a variety of stakeholders and modeling purposes, calls for
sophisticated support for process modeling. We distinguish two important drivers
for such modeling support. On the one hand, the support aims at facilitating the
design of a standalone process model. This kind of modeling support includes
means to accelerate process model creation, assure correct model execution se-
mantics, and increase model conciseness. However, the focus is purely on the
isolated creation of a dedicated model: the application domain of this model
is not taken into account. On the other hand, the rationale behind modeling
support might be homogeneity of the modeling efforts. Process models created
within a certain domain, might it be an organizational unit or a process model
collection, should be modeled in a consistent and similar manner. In this case the
emphasis is on avoiding redundancies and contradictions, as well as on enforcing
modeling guidelines.

We illustrate the use case of domain-aware modeling support by means of the
example in Fig. 1, which shows fragments of two EPCs from the SAP Reference
Model [9]. Both business processes originate from the SAP material management
and describe production planning. We see that the processes have a similar
structure and semantics. For the long-term planning (Fig. 1(a)), as well as for
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Fig. 1. Fragments of two similar planning processes from the SAP Reference Model

the master production scheduling (Fig. 1(b)), two similar planning steps are
performed concurrently, and in both cases are succeeded by an evaluation. In
Fig. 1 we highlight the activities which are interesting for us with grey color.
Given these models, the creation of a model for a related process, e.g., a short-time
production planning, might be supported as follows. After the modeler creates a
function Short-Term Planning - Total Planning, we suggest to insert a concurrent
function Short-Term Planning - Single Item on the fly. This recommendation
can be derived from the analysis of the already existing models. We might also
alert the modeler if he saves the model for short-term planning without having
inserted a function for planning evaluation. The modeler might reconsider the
modeling decisions and insert such a function, or rename an existing function,
which has been intended to model the evaluation step, but was labeled differently
(e.g., function planning calculation can be renamed to planning evaluation).

For obvious reasons, such domain-aware modeling support has to take into
account semantics of existing process models. In this case semantics is not
restricted to the model execution semantics. Instead, semantics has to be given
in terms of concepts of the application domain. Applied to Fig. 1, a dependency
between the planning steps (total planning vs. single-item), as well as their
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relation to the planning evaluation, are examples of semantic dependencies
specific for an application domain. The question how to derive a formalization of
domain knowledge is crucial for a domain-aware modeling support.

To formalize domain knowledge, one might apply semantic annotations for
all elements of the process. In this case, semantic information is represented in a
structural way. This enables straight-forward processing and simplifies the usage
for modeling support. However, this approach has an obvious drawback, since it
requires semantic annotation of all model elements as a preliminary step. For
a large collection of process models such a preliminary step requires enormous
efforts and, thus, might not be feasible.

Thereafter, we follow another approach relying on the analysis of model
element labels. The goal of this analysis is to understand the meaning of labels
and extract domain knowledge out of an existing process model collection. Such
an approach has to deal with the high ambiguity of a natural language. However,
our experience (see [18]), as well as the experience of other researchers (see [4]),
proves that label analysis is feasible. Besides, to simplify model comprehension
for humans, modelers often stick to one schema when labeling model elements.
An example is verb + noun schema employed for activity labeling. Analysis of
such labels can be seen as an automated operation. The analysis outcome is the
mapping of each activity to an action for which the activity stays in the model.
For instance, from activity labeled with send notification one can derive that
action send is performed over object notification.

In this paper we focus on supporting the modeler with recommendations on
actions potentially missing in a process model. In general case, such recommen-
dations depend on various model elements and other factors, but we focus on
the analysis of activities. We are driven by two major reasons. First, giving rec-
ommendations on the missing actions (i.e., activities on the model level) requires
exhaustive investigation of the existing ones. Second, a lion’s share of business
process model semantics is given by the activities. Hence, we formulate the
recommendations based on the analysis of activities. To formalize the knowledge
extracted from a process model collection we propose to use the notion of action
patterns—groups of actions which often appear together in business processes.
In the next section we elaborate on the concept of action patterns. However,
before we proceed with action patterns discussion, we would like to summarize
the assumptions used in this work:

Assumption 1 A process model collection is large enough to extract domain
knowledge.

Assumption 2 An activity label signifies an action.
Assumption 3 There is a mechanism interpreting an activity label as an action.
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3 Action Patterns

Pattern is a useful concept that organizes knowledge related to “a problem which
occurs over and over again in our environment, and then describes the core
solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” [3]. While originally defined
for architecture, this concept was adapted to software engineering in the 1990s
(see [6]). In business process management, patterns have been defined, among
others, for control flow [25], data flow [21], resources [22], and collaboration [14].
Also the MIT Process Handbook [15] can be related to the idea of describing a
core solution to a recurring problem.

This section discusses the notion of actions patterns in order to meet the
requirements for modeling support outlined above. First, Section 3.1 presents our
formal framework for action patterns. Then, Section 3.2 defines co-occurrence
action patterns. Finally, Section 3.3 specifies behavioral action patterns based on
behavioral profiles.

3.1 Formal Framework

In order to formalize the concept of an action pattern we need to introduce a
number of auxiliary concepts. First, we postulate Γ to be the universal alphabet
of labels. Based thereon, we define the notion of a process model enriched with
labeling information.

Definition 1 (Process Model). A tuple PM = (A,G,F, s, e, t, l) is a process
model , where:
– A is a finite nonempty set of activities;
– G is a finite set of gateways;
– A ∩G = ∅ and N = A ∪G is a finite set of nodes;
– F ⊆ N ×N is the flow relation, such that (N,F ) is a connected graph;
– s ∈ A is the only start activity, such that •s = ∅, where •n =
{n′ ∈ N |(n′, n) ∈ F} for node n;

– e ∈ A is the only end activity, such that e• = ∅, where n• =
{n′ ∈ N |(n, n′) ∈ F} for node n;

– t : G �→ {and, xor, or} is a mapping that associates each gateway with a
type;

– l : A �→ Γ is a mapping assigning to each activity a label.

In the remainder, we do not formalize the execution semantics of a process
model, but assume an interpretation of the model following on common execution
semantics. Such semantics, in particular for the OR construct, has been presented
in the existing work (see [16] as an example for EPCs).

To grasp the meaning of activities humans interpret their labels. In the context
of this work interpretation of labels has great importance. Hence, we formalize it,
introducing an alphabet of action terms T and a label interpretation function.
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Definition 2 (Action Function). For a given process model PM =
(A,G,F, s, e, t, l), the action function v : Γ �→ T derives an action from a label.
As a shorthand notation, we introduce va : A �→ T for deriving an action from a
label of an activity a ∈ A, i.e., va(a) = v(l(a)). We also use VPM =

⋃
a∈A{va(a)}

to denote the set of all actions of a process model.

Returning to the example with send notification label, the result of action function
v is send. We also formalize the notion of a process model collection as follows.

Definition 3 (Process Model Collection). A tuple C = (PM, V ) is a
process model collection , where:
– PM is a nonempty finite set of process models with elements PMi =

(Ai, Gi, Fi, si, ei, ti, li), where i = 1, 2, . . . , |PM|;
– V =

⋃
i=1,2,...,|PM| VPMi

is the set of all actions in the model collection.

It is natural to expect that in a large collection of process models one can
observe sustainable relations between actions (action patterns). Recognition of
action patterns resembles uncovering patterns in large data collections. The
latter problem is in the focus of data mining. In particular we are interested in
association rule learning—a well established technique for discovering relations
between variables in large databases. An example of an association rule in a
commerce domain is a statement that if customers buy coffee and milk, they
usually buy sugar as well. Association rule learning enables discovery of such
statements from the analysis of basket data in supermarkets. The initial idea of
association rule learning was presented by Agrawal, Imielinski, and Swami in [1].
More advanced algorithms were presented in [2].

Further the generic formalism of association rule learning is adapted both
for co-occurrence and behavioral action patterns. We introduce the set of items
I. Let us observe a collection of transactions C, where each transaction T is a
set of items, i.e., T ⊆ I. Given a set of items X ⊆ I, we say that transaction T
satisfies X, if X ⊆ T . An association rule in a collection C is an implication of
the form X ⇒ Y , where X ∩ Y = ∅ and X,Y ⊂ I.

Based thereon, two elementary notions can be defined, i.e., support and
confidence. A set X ⊆ I has support n in a collection C, if n transactions satisfy
set X. We denote the support for set X with supp(X). Support can be related to
statistical significance. In the context of action pattern retrieval we are interested
in sets that have high support. Let us require the minimum level of support for
sets to be minsup. Then X is called a large set if supp(X) ≥ minsup (and a small
set otherwise). An association rule X ⇒ Y holds in transaction collection C with
confidence c = supp(X∪Y )

supp(X) , if at least c share of transactions satisfying X, satisfies
Y as well. The confidence for a rule X ⇒ Y is denoted as conf(X ⇒ Y ). A rule
confidence reflects its strength. As in the case with support, we are interested in
the rules with high confidence values. Hence, we introduce the minimal accepted
level of confidence—minconf . Following [1], we claim that we are interested in
the rules X ⇒ Y for which X

⋃
Y is large and the confidence is greater than

user specified minconf .
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(a) Process model collection

Model Actions

A allocate analyze calculate collect evaluate settle summarize

B allocate analyze asses calculate distribute entry evaluate reconcile repost
settle split

C allocate analyze calculate cost settle

D allocate analyze calculate evaluate settle

E allocate analyze collect calculate distribute evaluate settle summarize

F allocate budget calculate copy define evaluate plan reconcile settle split
transfer

G allocate budget calculate copy cost define plan reconcile settle split transfer

(b) Large action sets of size 1

Set Support

{allocate} 7

{analyze} 5

{calculate} 7

{evaluate} 5

{settle} 7

(c) Large action sets of size 2

Set Support

{allocate analyze} 5

{allocate calculate} 7

{allocate evaluate} 5

{allocate settle} 7

{analyze calculate} 5

{analyze settle} 5

{calculate evaluate} 5

{calculate settle} 7

{evaluate settle} 5

Table 1. Derivation of large action sets in a process model collection given minsup = 5

3.2 Co-occurrence Action Patterns

The first class of action patterns is co-occurrence action patterns. Nomen est
omen, these patterns capture sets of actions which often co-occur together in
business processes, ignoring any ordering relations between these actions. In
terms of association rules learning, we interpret actions as items, while process
models—as transactions. Hence, a model collection is a collection of transactions.
We say that a process model PM = (A,G,F, s, e, t, l) satisfies an action set X, if
X ⊆ VPM . A co-occurrence action pattern is defined as an association rule on the
domain of actions V associated with values for minimal support and confidence.

Definition 4 (Co-occurrence Action Pattern). CAP =
(R,minsup,minconf) is a co-occurrence action pattern in process model
collection C = (PM, V ), where:
– R is an association rule X ⇒ Y , where X,Y ⊂ V ;
– minsup is the value of the required minimal support;
– minconf is the value of the required minimal confidence.

From a user perspective such a pattern recommends the actions which are expected
to appear in the process model given the current constellation of actions.

Mining of co-occurrence action patterns has two phases. In the first phase we
seek for association rules X ⇒ Y , such that X

⋃
Y is a large set. In the second
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phase the mined large sets are used for derivation of patterns—rules that have a
high confidence level.

A search for large sets is a computationally intensive task. In this paper we
set our choice on Apriori algorithm, since it is efficient and simple [2]. In terms
of large action sets this algorithm works as follows. As the input the algorithm
takes the process model collection C = (PM, V ) and the minimal support value
minsup. For every action v ∈ V , a one element action set is constructed, {v}.
Then, for each action set, the algorithm checks its support. If the support is not
less than minsup, the set is large. The derived 1-large sets are used as the input
for the next step. In the k-th step the algorithm constructs sets of size k from
k − 1 large sets and checks if they are large. The algorithm terminates, once all
the large sets are found. Table 1 illustrates the first (see Table 1(b)) and the
second steps (see Table 1(c)) of Apriori work for the model collection captured
in Table 1(a) given minsup = 5.

After large sets have been retrieved, the second phase explores each large
set for rules with high confidence level. A rule A ⇒ B is defined by two sets:
antecedent (A) and consequent (B). We consider all possible partitions of a
large set into two sets, one of them to become an antecedent and the other—a
consequent. For each partitioning we check, if it results in a rule with a confidence
level greater than minsup.

3.3 Behavioral Action Patterns

Co-occurrence action patterns do not provide information about how the missing
actions have to be introduced into the process model. As the next step, we
consider action patterns that are enriched with information on relations between
actions. First, we present preliminaries on behavioral relations and afterwards
introduce the notion of a behavioral action pattern.

Behavioral Relations In order to capture behavioral aspects of a process on
the level of pairs of activities, we apply the notion of behavioral profiles [28].
Such a profile consists of three relations that partition the cross product of all
activities. Definition 1 does not specify execution semantics. However, for defining
a behavioral profile, we impose syntactical requirements for the definition of all
complete traces of a process model. That is, the (potentially unbounded) set of
complete process traces TPM for a process model PM = (A,G,F, s, e, t, l) is a set
of lists of the form s ·A∗ · e, such that a list entry contains the execution order
of activities. Further on, we use a ∈ σ with σ ∈ TPM to denote that an activity
a ∈ A is a part of a complete process trace. The behavioral profile is grounded
on the notion of weak order. Two activities of a process model are in weak order,
if there exists a trace in which one node occurs after the other.

Definition 5 (Weak Order Relation). Let PM = (A,G,F, s, e, t, l) be a
process model, and TPM—its set of traces. The weak order relation �PM ⊆ (A×A)
contains all pairs (x, y), such that there is a trace σ = n1, . . . , nm in TPM with
j ∈ {1, . . . ,m− 1} and j < k ≤ m for which holds nj = x and nk = y.
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Depending on how two activities of a process model are related by weak order,
we define three relations forming the behavioral profile.

Definition 6 (Behavioral Profile). Let PM = (A,G,F, s, e, t, l) be a process
model. A pair (x, y) ∈ (A×A) is in one of the following relations:
– strict order relation �PM , if x �PM y and y ��PM x;
– exclusiveness relation +PM , if x ��PM y and y ��PM x;
– observation concurrency relation ||PM , if x �PM y and y �PM x.

The set of all three relations is the behavioral profile of PM .

We illustrate the behavioral profile by means of the model in Fig. 2. For instance,
(Template allocation) � (Overhead calculation) holds as there exists no trace,
such that the latter function occurs before the former. With �−1

PM as the inverse
relation for �PM , (Revaluation completed) �−1

PM (Template allocation) also
holds. It is worth to mention that �PM ,�−1

PM ,+PM , and ||PM partition the
Cartesian product of activities A×A for a process model PM = (A,G,F, s, e, t, l).

Settle ...

Action: settle

Template 
allocation 

(sales order)

Process costs 
were allocated

Revaluation of 
actual prices

Revaluation 
completed

Overhead 
calculation 

(manufacturing 
order)

Action: allocate

Action: calculate

Co-occurrence action pattern:

{allocate, calculate} => {settle}

Behavioral action pattern:

{allocate � calculate} =>
{allocate � settle, calculate � settle}

Fig. 2. Exemplary suggestion
based on action patterns

The Concept of Behavioral Action Pat-
terns We introduce behavioral action pat-
terns as a mechanism enabling suggestions on
how the missing actions should be introduced
in a designed process model. Such patterns
provide more information to the user than
co-occurrence action patterns. However, we
perceive behavioral patterns not as a mech-
anism replacing co-occurrence patterns, but
rather as a complimentary mechanism: while
co-occurrence action patterns suggest which
actions are missing, behavioral action pat-
terns hints on action relations. Assume a user
designs a process model containing actions
allocate and calculate; co-occurrence action
pattern {allocate, calculate} ⇒ {settle} is
available (see Fig. 2). This pattern suggests
to add action settle in the process model.
Then, we can look up a suitable behavioral
action pattern describing relations between
these three actions. Behavioral action pat-
tern {allocate � calculate} ⇒ {allocate �
settle, calculate � settle} provides a desired
recommendation.

To formalize the concept of relations between actions, we propose to adapt
the behavioral relations between activities introduced earlier. We say that actions
v1 and v2 are in relation R in a process model PM = (A,G,F, s, e, t, l), if there
are two activities a, b ∈ A, such that (a, b) ∈ R ∧ va(a) = v1 ∧ va(b) = v2. Within
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one process model a pair of actions (v1, v2) may be more than in one relation.
This holds if there are several activities that signify action v1, or action v2, or
both actions.

Definition 7 (Behavioral Action Pattern). BAP = (R,minsup,minconf)
is a behavioral action pattern in process model collection C = (PM, V ), where:
– R is a rule X ⇒ Y , where X,Y ⊂ V × {�,�−1,+, ||} × V , i.e., X and Y

constitute of pairs of actions for which behavioral relations are specified;
– minsup is the value of the required minimal support;
– minconf is the value of the required minimal confidence.

Mining of behavioral action patterns resembles the approach introduced for
co-occurrence action patterns. In the first phase we seek for large action sets. In
the second phase we inspect the relations between the actions of each large set. In
terms of association rules derivation, action relations are treated as items, while
large action sets are interpreted as collections. Provided minsup and minconf
values, we can derive behavioral action patterns.

4 Evaluation based on the SAP Reference Model

To validate the proposed concepts and algorithms, we have conducted an exper-
iment. The goals of the experiment were: 1) to check if it is possible to derive
action patterns from a collection of process models and 2) to learn which support
and confidence values are encountered in practice. The experiment consists of
two parts: in the first part co-occurrence action patterns have been studied, in
the second—behavioral action patterns.

The experiment studies the SAP Reference Model [9], a process model col-
lection that has been used in several works on process model analysis [16]. The
collection captures business processes that are supported by the SAP R/3 soft-
ware in its version from the year 2000. It is organized in 29 functional branches
of an enterprise, like sales or accounting, that are covered by the SAP software.
The SAP Reference Model includes 604 Event-driven Process Chains (EPCs).
All of these models have been considered in the first part of experiment for
deriving co-occurrence patterns. In the second part, inspecting behavioral action
patterns, the number of models was 421. The decrease in the model number is
due to the exclusion of models with ambiguous instantiation semantics (cf., [5])
or behavioural anomalies (cf., [16]). At this stage we derived actions from activity
labels manually. We foresee that this step can be automated in the future and
are currently investigating techniques enabling the automation.

In the first part of the experiment we have derived co-occurrence action
patterns. The first question to be answered is which values of support and
confidence indicate relevant patterns. While higher values indicate that the
pattern is more reliable, we aim to understand which values to be expected. In
the SAP Reference Model the support value for all action sets is under 10, which
is quite low given the fact that some actions appear several hundred times [17].
Next, it is hard to predict what is the minimally acceptable confidence level.
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minconf
minsup

2 3 4 5 6 7 8 9

0.50 522396 7395 2353 680 563 41 29 17

0.55 511373 6979 2247 665 550 34 23 13

0.60 510517 6123 2089 610 504 33 22 12

0.65 510498 6104 2070 591 497 26 16 9

0.70 484061 5569 1535 563 469 20 12 6

0.75 483415 4923 1477 505 421 19 11 6

0.80 483176 4684 1238 501 417 15 10 5

0.85 483135 4643 1197 460 417 15 10 5

0.90 483095 4603 1157 420 377 7 3 2

0.95 483093 4601 1155 418 375 5 1 0
Table 2. Dependency of co-occurrence pattern number in the SAP Reference Model
on minsup and minconf values

We conducted a set of experiments varying the level of support from 2 to 9 and
the level of confidence from 0.5 to 0.95. Table 2 summarizes the results of these
experiments. It shows that there is almost half a million patterns with support
2, 17 patterns with support of 9, and not a single pattern has support 10. To
illustrate how the derived patterns look like, we zoom into one cell of the table
and list the patterns with minsup = 7 and minconf = 0.95:

– {pick} ⇒ {process}
– {level} ⇒ {evaluate}
– {permit} ⇒ {process}
– {archive enter} ⇒ {process}
– {allocate calculate} ⇒ {settle}

The results show that for the studied model collection the maximum support
value is small. On the one hand, this is caused by unsystematic usage of labels:
often the derived actions are semantically close, but are treated as different
actions. An automatic clustering based on WordNet’s synonym sets (see [19])
might help to achieve better support in the future. On the other hand, this fact
can be explained by the heterogeneity of process models. The presence of process
variants in the collection leads to the fact that some action patterns, especially
of size 5-7, identify these variants in the model set.

Model
Action pair

(allocate, calculate) (allocate, settle) (calculate, settle)

A � � �
B � � �
C � � �
D � � �

Table 3. Derived behavioral profiles for action set {allocate, calculate, settle}
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(a) Action set {allocate, calculate, settle}

minconf
minsup

2 3 4 5

0.50 12 12 12 0

0.55 12 12 12 0

0.60 12 12 12 0

0.65 12 12 12 0

0.70 12 12 12 0

0.75 12 12 12 0

0.80 12 12 12 0

0.85 12 12 12 0

0.90 12 12 12 0

0.95 12 12 12 0

(b) Action set {analyze, allocate, settle}

minconf
minsup

2 3 4 5 6

0.50 170 12 4 2 0

0.55 161 12 4 2 0

0.60 157 8 3 2 0

0.65 157 8 3 2 0

0.70 130 8 3 2 0

0.75 129 7 2 1 0

0.80 129 7 2 1 0

0.85 129 7 2 1 0

0.90 129 7 2 1 0

0.95 129 7 2 1 0

Table 4. Dependency of behavioral action patterns number for 2 action sets on minsup
and minconf values

Behavioral action patterns originate from the inspection of behavioral con-
straints between actions in large action sets. Hence, derivation of behavioral
patterns is possible only after minsup for action sets is given. In the experiment
we considered those process models from the SAP Reference Model that can
be mapped to free-choice Petri nets. Table 3 provides an example of relations
for actions allocate, calculate, settle. Table 4(a) shows the number of patterns
that can be derived for this set depending on the minsup and minconf values
for relations. A more vivid example is the action set {analyze, allocate, settle},
for which the number of behavioral patterns varies greatly (see Table 4(b)). A
concrete example of a behavioral action pattern which can be derived from Table 3
is {allocate � calculate} ⇒ {allocate � settle, calculate � settle}. This pattern
prescribes that the three actions are sequentially constrained. They should appear
in the process model such that first it is allocated, then calculated, and finally
settled, which is a standard sequence of activities for financial assets.

5 Related Work

Our work can be related to different contributions to business process modeling.
We focus on the three areas patterns for business processes, intelligent modeling
support, and research on activity labels.

There is a wide variety of patterns proposed for business processes and busi-
ness process modeling. On the technical level, the workflow pattern initiative
has identified various patterns for the specification of control flow [25], data flow
[21], and resources [22] in workflow management systems. On a more conceptual
level, Lonchamp proposed a set of collaboration patterns defining abstract build-
ing blocks for recurrent situations [14]. Tran et al. formalize process patterns
using UML concepts [24]. Most closely related to our work is the research by
Thom et al. [23]. In their work, the authors identify so-called activity patterns
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that specify eight different types of micro workflows like approval or decision. Our
action pattern approach builds on the same observation that certain activities
often occur jointly to achieve an over-arching goal. In contrast to this work, we
do not assume a priori knowledge on which patterns might occur in a process,
but focus on their discovery.

The potential of improving business process modeling using intelligent support
and recommendations has been recognized only recently. Hornung et al. define a
concept to provide recommendations to the modeler based on search techniques
[8]. The idea is to find similar models in the process repository and propose
them as extensions to the currently being modeled process. This idea is in line
with our approach, but requires a match not only in terms of actions, but also
business objects and other textual content. We deem our approach to be more
flexible and applicable across different modeling contexts. Further experiments
are needed to check comparative strengths and weaknesses. A different stream of
research investigates in how far social software and interactive web applications
(Web 2.0) can provide recommendations to the modeler. Koschmider et al. propose
a solution that enables collaborative modeling and user recommendations [11,
12]. In contrast to our work, the approach builds on behavior and suggestions
of other modelers. Control flow correctness issues are addressed in [13] where
the authors offer continuous verification of process models during modeling.
In [10] the authors study how cooperative modeling is supported by fragment-
driven modeling approach. However, this paper primary focuses on describing the
infrastructure for cooperative modeling, but not on the derivation of fragments
(or action patterns). Gschwind et al. employ control flow patterns to accelerate
business process modeling and minimize the number of modeling errors [7]. The
authors develop a suggestion mechanism considering structural patterns and the
model structure at hand. Also the work by Weber et al. on change patterns can
be mentioned in relation to intelligent modeling support [27].

Recent contributions identify a textual analysis of activity labels as a im-
portant step to improve the pragmatic quality of process models. For instance,
different labeling schemes and their impact on model understanding has been
analyzed in [18]. Textual labels are also used for matching and comparing process
models [8, 26]. Recent works by Becker et al. reuse parsing techniques from
computer linguistics to efficiently identify the various parts of an activity label [4].
While we have derived the actions manually for our experiment reported in this
paper, we are currently working on automating this step by using the approach
taken by Becker et al.

6 Conclusion

In this paper we have addressed the challenge of assisting the designer in modeling
a process. We defined the concept of action patterns, which capture co-occurrences
of actions in existing process model collections. Our contribution is an approach
based on association rules mining that identifies sets of actions that likely imply
further actions. In this way, action patterns can be used to suggest additional
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activities to the modeler. Furthermore, we utilize behavioral profiles to capture
behavioral relations between co-occurring actions. Therefore, we also provide
information on how an additional action should be included in the process model.
Our approach has been validated using the SAP Reference Model.

At the present stage, we analyze activity labels to derive actions only. We do
not consider business objects, which are also references in the labels of model
elements. While this might be regarded as a limitation, we made this design
choice to identify recurring patterns that hold for different business objects.
Taking business objects into account offers several advantages, including object
life cycle mining. A mined object life cycle is a helpful tool as it facilitates
advanced modeling support. Another potential direction of the future work
involves synonym recognition. Using thesauri like WordNet would allow to cluster
actions that are closely related and gain stronger support for related patterns.
In this context, it might also be possible to consider action hierarchies like the
one developed for the MIT Process Handbook. Derivation of behavioral action
patterns implies construction of behavioral profiles for the corresponding process
models. To construct behavioral profiles with adequate performance, we restricted
the set of investigated process models to those which can be mapped to free-choice
Petri nets. The next step is to improve the underlying algorithms and widen the
class of models which can be handled. All these directions are rather unexplored
for process models, and are on our future research agenda.
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