Positionelle Klonierung von Tbc1d1 als Kandidatengen für Adipositas

Dissertation
zur Erlangung des akademischen Grades
„doctor rerum naturalium“
(Dr. rer. nat.)

ingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Potsdam

vorgelegt von
Katja Leicht
aus Potsdam

Potsdam-Rehbrücke, Dezember 2008
Inhaltsverzeichnis

1 Einleitung ... 1

1.1 Adipositas - Definition und Epidemiologie 1

1.2 Ursachen und Folgen der Adipositas 2

1.2.1 Exogene und genetische Faktoren für die Ausprägung der Adipositas .. 4

1.2.1.1 Monogene Adipositas bei Mausmodellen 5

1.2.1.2 Monogene Adipositas bei Menschen 6

1.2.1.3 Genomweite Analysen 6

1.2.2 Tiermodelle zur Untersuchung der Adipositas 7

1.2.2.1 Die Maus als Modellsystem 7

1.2.2.2 Polygene Mausmodelle 8

1.2.3 Identifizierung von Suszeptibilitätsloci für komplexe Merkmale ... 8

1.2.3.1 Kopplungsanalysen zur Identifikation von Adipositas-QTL ... 8

1.2.3.2 Möglichkeiten zur Eingrenzung von QTL 9

1.3 Der Adipositas-QTL Nob1 .. 11

1.3.1 Die Mausstämme NZO und SJL 11

1.3.2 Identifizierung des Adipositas-QTL Nob1 12

1.3.3 Genomische Lokalisation und stammspezifische Herkunft des Nob1 .. 14

1.4 Zielsetzung der Arbeit .. 15

2 Material und Methoden .. 16

2.1 Material ... 16

2.1.1 Versuchstiere .. 16

2.1.2 Bakterienstämmme .. 16

2.1.3 Plasmid- und Expressionsvektoren 17

2.1.4 Enzyme, Standards und Reaktionskits 17

2.1.5 Nährmedien, Puffer, Lösungen 18

2.1.5.1 Bakterienkulturmedien 18

2.1.5.2 Puffer, Lösungen .. 18
2.1.6 Sonstige Materialien

2.1.7 Synthetische Oligonukleotide (Primer)

2.2 Methoden

2.2.1 Tierexperimentelle Methoden

2.2.1.1 Haltungsbedingungen

2.2.1.2 Phänotypische Charakterisierung

2.2.1.3 Tötung der Tiere und Gewebepräparation

2.2.2 Molekularbiologische Methoden

2.2.2.1 Isolation von genomischer DNA aus Mausschwänzen

2.2.2.2 Isolation von Plasmid-DNA aus E. coli Bakterien

2.2.2.3 Isolation von Gesamt-RNA aus Mausgeweben

2.2.2.4 Herstellung einer Erststrang-cDNA aus Gesamt-RNA

2.2.2.5 Primerdesign

2.2.2.6 Amplifikation von DNA mit Hilfe der Polymerasekettenreaktion (PCR)

2.2.2.7 Gelelektrophoretische Auftrennung von DNA

2.2.2.7.1 Agarosegel

2.2.2.7.2 Denaturierendes Agarosegel

2.2.2.8 Aufreinigung von DNA-Fragmenten

2.2.2.9 Sequenzierung von DNA

2.2.2.9.1 Sequenzierungs-PCR

2.2.2.9.2 DNA-Fällung nach der S-PCR

2.2.2.9.3 Auswertung der Sequenzierung

2.2.2.10 Klonierung von DNA-Fragmenten

2.2.2.10.1 Herstellung eines Plasmid-T-Vektors

2.2.2.10.2 Ligation von DNA-Fragmenten in einen Plasmid-T-Vektor

2.2.2.10.3 Ligation mit dem TOPO TA Cloning Kit

2.2.2.11 Kultivierung von E.coli-Zellen (DH5α)

2.2.2.11.1 Herstellung chemisch kompetenter DH5α-Zellen

2.2.2.12 Transformation von Plasmid-DNA in chemisch kompetente DH5α-Zellen

2.2.2.13 Blue-White-Selektion

2.2.2.14 Macroarray-Methode
2.2.2.14.1	Gene auf dem Array .. 33
2.2.2.14.2	Aufbringen der DNA auf eine Nylonmembran (Spotting) .. 34
2.2.2.14.3	Prozessieren der Membranen .. 35
2.2.2.14.4	Herstellung einer radioaktiv markierten cDNA aus Gesamt-RNA 35
2.2.2.14.5	Radioaktive Markierung des PCR-Produktes Ara179 (Guide dot) mit $\alpha^{[33P]}$-dCTP 38
2.2.2.14.6	Hybridisierung der Macroarrays ... 39
2.2.2.15	Microarray-Methode .. 40
2.2.2.16	Analyse der Genexpression mittels quantitativer Real Time-PCR (qRT-PCR) 41

3 ERGEBNISSE .. 43

3.1 Zucht und phänotypische Charakterisierung der Versuchstiere 43
3.2 Auswahl der Transkripte des Nob1 für die Herstellung des Macroarray 44
 3.2.1 Auswahl von weiteren Kandidatengenen außerhalb des QTL Nob1 45
 3.2.2 Auswahl von Kontrollsonden ... 47
3.3 Expressionsanalysen .. 47
 3.3.1 Design und Herstellung der Sonden ... 48
 3.3.2 Präparative PCR .. 48
 3.3.3 Herstellung der Filter ... 51
 3.3.4 cDNA-Synthese und Hybridisierung der Macroarrays 51
 3.3.5 Auswertung der Macroarrays .. 54
 3.3.6 Hybridisierung der Microarrays ... 54
 3.3.7 Ergebnisse der Array-Analysen ... 57
3.4 Sequenzierung der Kandidatengene .. 58
 3.4.1 Deletion in Exon 18 des Gens Tbc1d1 bei SJL-Mäusen ist stammspezifisch ... 60
 3.4.2 Sequenzierung weiterer Kandidatengene im Peak-Bereich des Nob1 62
3.5 mRNA-Expressionsanalysen des Gens Tbc1d1 .. 65
 3.5.1 Untersuchung auf differentielle Expression zwischen SJL- und NZO-Mäusen 65
3.5.2 Isoformen von Tbc1d1 .. 66
3.5.3 mRNA-Expression von Tbc1d4 ... 68
3.5.4 Verteilung von Tbc1d1 in verschiedenen Muskelfasern im Skelettmuskel des Mausstammes C57BL/6J 68
3.5.5 Untersuchung auf differentielle Expression im Skelettmuskel der Mausstämmen NZO, C57BL/6J und C57BL/6Job/ob ... 69
3.6 Untersuchung weiterer Kandidatengene 71
4 DISKUSSION ... 73
4.1 Auswahl des Mausmodells für die Expressionsanalysen 73
4.2 Expressionsanalysen mit Hilfe von Macroarrays und Microarrays ... 74
4.2.1 Differentiell exprimierte Gene .. 74
4.3 Sequenzierung der Kandidatengene 75
4.3.1 Deletion im Tbc1d1-Gen ist SJL-spezifisch 76
4.4 Tbc1d1SJL – kausale Genvariante für QTL Nob1 77
4.4.1 Haplotypenanalyse ... 77
4.4.2 Sequenzierung von anderen Genen in der Peak-Region des Nob1 .. 79
4.4.3 Verringerte Expression von Tbc1d1 bei SJL-Mäusen 81
4.4.4 Tbc1d1-Expressionsprofil und –Isoformen bei NZO-Mäusen ... 81
4.4.5 Tbc1d1-Expression ist nicht gewichtsabhängig 82
4.4.6 Mögliche Funktion von Tbc1d1 ... 83
4.5 Weitere Kandidatengene ... 85
4.5.1 Abhydrolase domain containing 1 (Abhd1) 86
4.5.2 Arachidonate 5-lipoxygenase activating protein (Alox5ap) ... 86
5 ZUSAMMENFASSUNG ... 88
6 LITERATURVERZEICHNIS ... 89
7 ANHANG ... 107
ABBILDUNGSVERZEICHNIS

Abb. 1.1: Pathophysiologie des Metabolischen Syndroms.

Abb. 1.2: Phänotypischer Vergleich der Inzucht-Mausstämmte Swiss Jim Lambert (SJL) und New Zealand obese (NZO).

Abb. 1.3: Darstellung der LOD-score-Kurven für den Adipositas-QTL Nob1.

Abb. 1.4: Interaktion des Adipositas-QTL Nob1 mit dem Diabetes-QTL Nidd/SJL und Einfluss der Diät auf die Diabetesprävalenz.

Abb. 2.1: Zeitlicher Versuchsablauf des Tierexperiments.

Abb. 2.2: Schematischer Aufbau einer Blot-Apparatur zum Transfer einer gelelektrophoretisch aufgetrennten cDNA auf eine Nylonmembran.

Abb. 3.1: Darstellung der evidence viewer von zwei ausgewählten Transkriptionsmodellen innerhalb des Nob1.

Abb. 3.2: Flussschema des Designs genspezifischer Primer für PCR-Produkte am Beispiel des Gens Ttbk1.

Abb. 3.3: Strategie zur Amplifikation von DNA-Sonden für die Herstellung von Macroarrays.

Abb. 3.4: Denaturierendes Agarosegel zur Bestimmung der Länge von revers transkribierten cDNAs.

Abb. 3.5: Exemplarische Darstellung gescannter Macroarrays.

Abb. 3.6: Ausgewählte Scatter-Plots der exprimierten Nob1-Gene bei weiblichen NZO- und SJL-Mäusen.

Abb. 3.7: Validierung der differentiell exprimierten Gene auf Chromosom 5 von SJL- und NZO-Mäusen.

Abb. 3.8: Sequenzausschnitt des Gens Tbc1d1 mit Hilfe der Software SeqScape.

Abb. 3.9: Charakterisierung der Deletion von sieben Basenpaaren im Gen Tbc1d1 bei SJL-Mäusen.

Abb. 3.10: Darstellung von Verwandtschaftsverhältnissen von Maus-Inzuchtstämmen.

Abb. 3.11: Nob1.24-Fragment und Peak-Region des Nob1.

Abb. 3.12: Darstellung der relativen Expression des Gens Tbc1d1 in verschiedenen Geweben von NZO- und SJL-Mäusen.

Abb. 3.13: Darstellung der Tbc1d1-Isoformverteilung in verschiedenen Geweben von NZO-Mäusen.

Abb. 3.14: Expression von Tbc1d4 in unterschiedlichen Geweben von NZO- und SJL-Mäusen.
Abb. 3.15: Darstellung der Tbc1d1-Expression in zwei unterschiedlichen Muskelfasertypen des Skelettmuskels bei C57BL/6J-Mäusen.

Abb. 3.16: Vergleich der Tbc1d1-mRNA-Expression im M. gastrocnemius zwischen verschiedenen Mausstämmen.

Abb. 3.17: Korrelation der Körpergewichte mit der Tbc1d1-Expression im Skelettmuskel von NZO-Mäusen.

Abb. 3.18: Plot der Expression von Tbc1d1 im Skelettmuskel von C57BL/6J-Tieren im Zeitverlauf.

Abb. 3.19: Expressionsunterschiede des Gens Abhd1 in verschiedenen Geweben von SJL- und NZO-Mäusen.

Abb. 3.20: Expressionsunterschiede des Gens Alox5ap in verschiedenen Geweben von SJL- und NZO-Mäusen.

Abb. 4.1: Positionelle Klonierung von Tbc1d1 im Adipositas-QTL Nob1.
TABELLENVERZEICHNIS

Tab. 1.2: Einige monogene Adipositasformen in Mausmodellen.
Tab. 3.1: Phänotypische Charakterisierung der Versuchstiere für die Arrayexperimente.
Tab. 3.2: Kandidatengene aus einem genomweiten RNAi-Screening nach Genen, die den Fettgehalt beim Fadenwurm C. elegans beeinflussen.
Tab. 3.3: Ausgewählte Kontrollsonden für die Macroarrays.
Tab. 3.4: Nutzung unterschiedlicher Templates zur Herstellung der DNA-Sonden für die Macroarrays.
Tab. 3.5: Überblick über die hybridisierten Macroarrays.
Tab. 3.6: Vergleich der nicht betrachteten Nob1-Transkripte mit den durchgeführten Macro- bzw. Microarrays.
Tab. 3.7: Differentiell exprimierte Gene zwischen NZO- und SJL-Mäusen auf Chromosom 5.
Tab. 3.8: Sequenzanalyse der codierenden Bereiche der Gene im Peak-Bereich des Nob1 bei den Mausstämmen SJL und NZB.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AICAR</td>
<td>aminoimidazole carboxamide ribonucleotide</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AMPK</td>
<td>Adenosin Monophosphat aktivierte Proteinkinase</td>
</tr>
<tr>
<td>B6</td>
<td>C57 Black, C57BL/6</td>
</tr>
<tr>
<td>BAT</td>
<td>Brown Adipose Tissue, braunes Fettgewebe</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BW</td>
<td>Body Weight, Körpergewicht</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>Chr.</td>
<td>Chromosom</td>
</tr>
<tr>
<td>cM</td>
<td>centiMorgan</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>db</td>
<td>diabetic</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>aqua purificata</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>2´-Desoxynukleotid-5´-triphatphat</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed Sequence Tag</td>
</tr>
<tr>
<td>et al.</td>
<td>und andere</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>F1</td>
<td>erste Filialgeneration</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase-activating protein</td>
</tr>
<tr>
<td>CTP</td>
<td>Cytosintriphosphat</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>H₂O</td>
<td>Wasser</td>
</tr>
<tr>
<td>HCl</td>
<td>Chlorwasserstoff</td>
</tr>
<tr>
<td>HFD</td>
<td>Hochfett-Diät</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LOD</td>
<td>Logarithm of the Odds</td>
</tr>
<tr>
<td>M. musculus</td>
<td>Mus musculus</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erklärung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center of Biotechnology Information</td>
</tr>
<tr>
<td>NON</td>
<td>Non-obese Non-Diabetic</td>
</tr>
<tr>
<td>NZB</td>
<td>New Zealand black</td>
</tr>
<tr>
<td>NZO</td>
<td>New Zealand obese</td>
</tr>
<tr>
<td>ob</td>
<td>obese</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pH</td>
<td>potentiaw Hydrogenii</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative Trait Locus</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative RealTime-PCR</td>
</tr>
<tr>
<td>Rab</td>
<td>Ras-related in brain</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Diät</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SJL</td>
<td>Swiss Jim Lambert</td>
</tr>
<tr>
<td>SM</td>
<td>Small Mouse</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>S-PCR</td>
<td>Sequenzierungs-PCR</td>
</tr>
<tr>
<td>T2DM</td>
<td>Typ-2-Diabetes mellitus</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>T_M</td>
<td>Schmelztemperatur</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>WAT</td>
<td>White Adipose Tissue, weißes Fettgewebe</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-chloro-3-indolyl-ß-D-galactopyranoside</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>Δ</td>
<td>delta</td>
</tr>
<tr>
<td>®</td>
<td>eingetragenes Warenzeichen</td>
</tr>
<tr>
<td>♀</td>
<td>weiblich</td>
</tr>
<tr>
<td>♂</td>
<td>männlich</td>
</tr>
</tbody>
</table>
Purin- und Pyrimidinbasen
A Adenin
G Guanin
C Cytosin
T Thymin

Ein-Buchstaben-Code der Aminosäuren
Alanin A
Arginin R
Asparagin N
Asparaginsäure D
Cystein C
Glutaminsäure E
Glutamin Q
Glycin G
Histidin H
Isoleucin I
Leucin L
Lysin K
Methionin M
Phenylalanin F
Prolin P
Serin S
Threonin T
Tryptophan W
Tyrosin Y
Valin V
1 EINLEITUNG

1.1 Adipositas - Definition und Epidemiologie

Adipositas stellt weltweit ein immer größer werdendes Gesundheitsproblem dar. Unter Adipositas versteht man die Vermehrung des Körpergewichtes mit überproportionaler Zunahme des Körperfettanteils. Dabei ist das Fettverteilungsmuster für das Gesundheitsrisiko von besonderer Bedeutung. Untersuchungen an adipösen Patienten haben ergeben, dass insbesondere eine viszerale Fettakkumulation zu einem erhöhten Erkrankungsrisiko für das Metabolische Syndrom führt (Cheung et al., 2007; Fox et al., 2007).

Zur Klassifikation der Adipositas gibt es zwei wichtige Modelle. Die World Health Organisation (WHO) definiert Adipositas über den sogenannten Body Mass Index (BMI), der sich aus dem Verhältnis von Körpergewicht (kg) und der Körperlänge zum Quadrat (m²) errechnet (Tab. 1.1).

<table>
<thead>
<tr>
<th>BMI</th>
<th>WHO Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 18,5</td>
<td>Untergewicht</td>
</tr>
<tr>
<td>18,5 – 24,9</td>
<td>Normalgewicht</td>
</tr>
<tr>
<td>25,0 – 29,9</td>
<td>Übergewicht</td>
</tr>
<tr>
<td>30,0 – 34,9</td>
<td>Adipositas Grad 1</td>
</tr>
<tr>
<td>35,0 – 39,9</td>
<td>Adipositas Grad 2</td>
</tr>
<tr>
<td>> 40</td>
<td>extreme Adipositas</td>
</tr>
</tbody>
</table>

Die Beurteilung des Adipositasgrades aufgrund des BMI geht jedoch nicht auf geschlechts- und altersspezifische Unterschiede ein. Bei der Betrachtung des BMI sollte beachtet werden, dass Frauen einen höheren Körperfettanteil aufweisen als Männer und dass bei Menschen, die älter als 60-65 Jahre sind, der Körperfettanteil zunimmt (Syme et al., 2008; Garaulet et al., 2002; Ross et al., 1994). Auch wird für Südasiaten, Chinesen und Aboriginals eine andere Adipositas-Klassifikation gefordert, da der BMI bei diesen Menschen generell geringer als bei Menschen in Industrieländern ist (Mascie-Taylor et al., 2007; Razak et al., 2007). Ein weiterer Nachteil des BMI ist, dass die Verteilung des Körperfettes nicht betrachtet wird.
Die Körperfettverteilung wird durch den Taillen-Hüft-Quotient (waist hip ratio, WHR) berücksichtigt (Garnett et al., 2008). Dieses anthropometrische Maß wird bei Frauen ab einem Wert von ≥ 0,85 und bei Männern von ≥ 1,0 mit einem erhöhten Risiko für das Metabolische Syndrom assoziiert (WHO, 2003). Zudem gilt ein Taillenumfang von ≥ 88 cm (Frauen) bzw. von ≥ 102 cm (Männer) ebenfalls als ein mit Adipositas assoziiertes Krankheitsrisiko (Han et al., 1997).

Die Prävalenz der Adipositas nimmt stetig zu und betrifft weltweit ungefähr eine halbe Milliarde Menschen (Rössner, 2002). In den USA stieg die Prävalenz in den letzten 25 Jahren um 40 %, so dass ungefähr zwei Drittel der amerikanischen Bevölkerung als übergewichtig betrachtet werden (Ogden et al., 2006; Bonow und Eckel, 2003). Bedenklich ist, dass schon bei Kindern und Jugendlichen knapp 14 % der 2 bis 5-jährigen und etwa 18 % der 6 bis 19-jährigen als adipös einzustufen sind (Ogden et al., 2006). Auch in Deutschland steigt die Zahl der an Adipositas erkrankten Menschen rapide an. So stieg die Prävalenz der moderaten Adipositas von 1985 bis 2002 bei Männern von 16,2 % auf 22,5 % und bei Frauen von 16,2 % auf 23,5 % (Helmer und Strube, 2004). Als übergewichtig gelten sogar etwa 50 % der deutschen Männer und 70 % der deutschen Frauen (Bergmann und Mensink, 2005). Auch unter Kindern (5 bis 6-jährige) und Jugendlichen (13 bis 15-jährige) beträgt die Adipositasprävalenz bereits 7 % bzw. 8 % (Wabitsch et al., 2002).

1.2 Ursachen und Folgen der Adipositas

Die wichtigsten Ursachen der Adipositas sind vermehrte Nahrungsaufnahme und erhöhte Nahrungsfettanteile bei gleichzeitigem Bewegungsmangel. Die nicht durch Bewegung verbrauchte Nahrungsenergie wird in Form von Fetteinlagerungen vor allem im Fettgewebe gespeichert.

Fettgewebe ist nicht nur ein Speichergewebe für den Körper, sondern auch ein endokrines Organ, das sogenannte Adipokine sezerniert – Hormone, die für die Energiehomöostase eine wichtige Rolle spielen (Kershaw und Flier, 2004; Klaus, 2004). Dazu zählen u.a. Leptin und Adiponectin. Leptin nimmt in der hypothalamischen Regulation von Hunger und Sättigung eine zentrale Rolle ein, indem es zum einen die Bildung der appetitanregenden Neuropeptide Agouti-related protein (ARP) und Neuropeptide Y (NPY) unterdrückt und zum anderen die Bildung der appetitzügelnden Neuropeptide Proopiomelanocortin (POMC) und Cocaine- and Amphetamine-Regulated Transcript (CART) fördert (Ahima et al., 1996). Adiponectin, das u.a. eine verstärkte β-Oxidation von Fettsäuren in Muskelgewebe bewirkt, wird bei adipösem Phänotyp vermindert sezerniert (Hu et al., 1996). Ein weiteres, allerdings kontrovers diskutiertes Adipokin ist Resistin. Es wird mit der Entstehung von Insulinresistenz bei Mäusen in Verbindung gebracht, jedoch ist seine Funktion beim Menschen unklar (Rajala et al., 2004; Silha et al., 2003, Heilbronn et al., 2004).

- Abdominale Adipositas (Taillenumfang bei Männern > 102 cm, bei Frauen > 88 cm)
- Bluthochdruck (≥ 130/85 mmHg)
- Erhöhter Nüchtern-Blutzuckerspiegel (> 110 mg/dL)
- Erhöhte Triglycerid-Werte (> 150 mg/dL)
- Erniedrigtes HDL-Cholesterin (Männer < 40 mg/dL, Frauen < 50 mg/dL)

Bis zum jetzigen Zeitpunkt sind die pathologischen und pathobiochemischen Beziehungen zwischen Adipositas, Insulinresistenz und den anderen Teilsymptomen des Metabolischen Syndroms (Hypertonie, Dyslipoproteinämie) nicht vollständig geklärt. Durch epidemiologische Studien und andere Untersuchungen konnten jedoch Beziehungen zwischen einzelnen Teilsymptomen nachgewiesen werden (Joost et al., 2000).

Die Prävalenz des Metabolischen Syndroms beträgt in Deutschland 19,8 % (Männer 22,7 %, Frauen 18,0 %; Kriterien des NECP ATP III; Moebus et al., 2007).

![Abb. 1.1: Pathophysiologie des Metabolischen Syndroms. Modifiziert nach Muddajah und Solanki, 2006](image)

1.2.1 Exogene und genetische Faktoren für die Ausprägung der Adipositas

1.2.1.1 Monogene Adipositas bei Mausmodellen

Neben Mausmodellen mit Mutationen stellen genetisch veränderte Mäuse einen wichtigen Beitrag zur Untersuchung der genetischen Ursachen der Adipositas dar. Beispiele sind die knockout-Mausmodelle für den Melanin concentrating hormone receptor (MCHR1) und den Melanocortin 4 receptor (MC4R), die beide einen adipösen Phänotyp aufweisen (Chen et al., 2002; Huzar et al., 1997). Jana Buchmann et al. zeigten, dass das Ausschalten des Cholesterin-Transporters ATP-binding cassette, subfamily G, member 1 (Abcg1) zu verringertem Körpergewicht sowie Körperfettanteil führte und dass bei den knockout-Tieren
keine Hochfettdiät-induzierte verminderte Glucose-Toleranz und Fettleber auftrat (Buchmann et al., 2007).

Tab. 1.2: Einige monogene Adipositasformen in Mausmodellen.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Chr.</th>
<th>Symbol</th>
<th>Erbgang</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agouti yellow (A')</td>
<td>2</td>
<td>A'</td>
<td>dominant</td>
<td>Yen et al., 1994</td>
</tr>
<tr>
<td>Diabetes (db)</td>
<td>4</td>
<td>Lepr</td>
<td>rezessiv</td>
<td>Chen et al., 1996</td>
</tr>
<tr>
<td>Obese (ob)</td>
<td>6</td>
<td>Lep</td>
<td>rezessiv</td>
<td>Zhang et al., 1994</td>
</tr>
<tr>
<td>Tubby (tub)</td>
<td>7</td>
<td>Tub</td>
<td>rezessiv</td>
<td>Coleman & Eicher, 1990</td>
</tr>
<tr>
<td>Fat (fat)</td>
<td>8</td>
<td>Cpe</td>
<td>rezessiv</td>
<td>Coleman & Eicher, 1990</td>
</tr>
<tr>
<td>Fatty liver dystrophy (fld)</td>
<td>12</td>
<td>Lpin</td>
<td>rezessiv</td>
<td>Verheijen et al., 2003</td>
</tr>
</tbody>
</table>

1.2.1.2 Monogene Adipositas bei Menschen

Beim Menschen treten ebenfalls autosomal rezessive Formen der Adipositas auf. Beispiele dafür sind Mutationen in den Genen für Leptin (LEP; Strobel et al., 1998; Montague et al., 1997), Leptinrezeptor (LEPR; Clement et al., 1998), POMC (Krude et al., 1998), Prohormon-Convertase 1 (PCSK1; Jackson et al., 1997) und MC4R (Farooqi et al., 2003). Diese Mutationen treten sehr selten auf, so dass durch sie nur ein geringer Anteil der humanen Adipositas erklärt werden kann. Unter den genannten Fällen zeigt die MC4R-Mutation die höchste Prävalenz. So wird diese Mutation bei 1,7 % der adipösen Europäer gefunden (Stutzmann et al., 2008). Trotz ihrer Seltenheit weisen diese Mutationen auf die zentrale Rolle dieser Proteine für die Energiehomöostase des Menschen hin (Tsigos et al., 2002).

1.2.1.3 Genomweite Analysen

Eine weitere Möglichkeit zur Identifizierung von Kandidatengenen für Adipositas sind genomweite Analysen (genome wide analysis, GWA). Hierfür werden genetische Marker verwendet, die über das gesamte Genom verteilt sind. Solche Marker können Mikrosatellitenmarker oder Single Nucleotide Polymorphisms (SNPs) sein. Deren Allelhäufigkeit wird mit dem untersuchten Merkmal assoziiert. Genomweite Analysen werden vorrangig bei der Suche nach Kandidatengenen für polygene Krankheiten wie z.B. Adipositas und T2DM angewandt. In letzter Zeit wurden mit Hilfe dieser Methode mehrere Kandidatengene identifiziert: Fat mass and obesity associated (FTO; Dina et al., 2007); Frayling et al., 2007), Glucose-6-phosphatase catalytic subunit 2 (G6PC2; Chen et al., 2008)
EINLEITUNG

und ATP-binding cassette, subfamily B (MDR/TAP member 11) (ABCB11; Chen et al., 2008), sowie Catenin, beta like 1 (CTNNBL1; Liu et al., 2008). Verschiedene SNPs im FTO -Gen werden mit erhöhtem BMI, Insulinsensitivität und gesteigertem Grundumsatz in Verbindung gebracht, allerdings sind die Funktionen der SNPs ungeklärt (Do et al., 2008; Scuteri et al., 2007). Aktuell wird eine Rolle des Gens in der Regulation der Lipolyse und im Verteilungsmuster der Fettdepots diskutiert (Zabena et al., 2008), ebenso wie die Eigenschaft der DNA-Demethylierung (Jia et al., 2008) oder der Einfluss von FTO auf den Appetit (Wardle et al., 2008). Loos et al. (2008) fassen in ihrer Metaanalyse mehrere GWA zusammen. Den stärksten Effekt hatte ein Polymorphismus im FTO-Gen, der homozygot einen Gewichtsunterschied von ca. 4 kg bewirkt. Viele andere bekannte SNPs haben eine viel geringere Effektstärke. Die Autoren assoziieren auch einen SNP mit Adipositas, der 188 kbp proximal des MC4R-Gens lokalisiert ist. Eine funktionelle Verbindung ist allerdings aufgrund der relativ großen Entfernung des beschriebenen SNP zum MC4R-Gen fragwürdig.

1.2.2 Tiermodelle zur Untersuchung der Adipositas

Zur Charakterisierung der genetischen Ursachen sowie der molekularen und pathobiochemischen Mechanismen der humanen Adipositas bedient man sich geeigneter Tiermodelle, die vergleichbare Symptome zum menschlichen Krankheitsbild aufweisen (Brockmann und Bevova, 2002). Dazu eignen sich besonders Nager (Gonzalez-Navarro et al., 2007; Oswal und Yeo, 2007), aber auch einige Säugetierspezies wie Hunde (Tsunoda et al., 2008; Kim et al., 2003) und Katzen (Henson und O'Brien, 2006; Hoenig, 2006). Dabei ist es wichtig, dass Adipositas durch verstärkte Aufnahme von Fetten und Kohlenhydraten mit der Nahrung oder durch genetische Faktoren hervorgerufen werden kann. Auch ein erhöhter Blutzuckerspiegel sowie Triglyceridwerte sollten durch eine entsprechende Diät induzierbar sein.

1.2.2.1 Die Maus als Modellsystem

1.2.2.2 Polygene Mausmodelle

1.2.3 Identifizierung von Suszeptibilitätsloci für komplexe Merkmale

1.2.3.1 Kopplungsanalysen zur Identifikation von Adipositas-QTL

In den letzten Jahren wurden in verschiedenen Arbeitsgruppen durch Kreuzungsmodelle und Kopplungsanalysen verschiedene Suszeptibilitätsloci für Adipositas im Genom der NZO-Maus identifiziert (Taylor et al., 2001; Reifsnyder et al., 2000). Dafür wurden jeweils zwei Maus-Inzuchtstämme ausgewählt, die sich in dem zu untersuchenden Merkmal (*Trait*) unterscheiden – für die Untersuchung der Adipositas sind geeignete *Traits* Körpergewicht und Fettgewebanteil. Durch Verpaarung und Weiterzüchtung (F2-Generation oder Rückkreuzungen) wurde eine chromosomale Rekombination erreicht (Brockmann und Benova, 2003). Nach Bestimmung von Körpergewicht und –zusammensetzung sowie der Genotypisierung der Nachkommen mit polymorphen genetischen Markern wurde eine

1.2.3.2 Möglichkeiten zur Eingrenzung von QTL

Da QTL meist eine große Anzahl von Kandidatengenen beinhalten, kann nicht ohne weiteres auf die für das Merkmal verantwortliche Genvariante geschlossen werden. Zur Eingrenzung von QTL können verschiedene Strategien verfolgt werden.

- Sequenzierung

- Analyse der Genexpression

- Rekombinant kongene Linien

Eine weitere Strategie zur Eingrenzung von QTL ist die Züchtung rekombinant kongener Mauslinien. Dabei werden durch Rückkreuzung Subfragmente des QTL auf einen anderen Stamm übertragen. Dadurch kann der kritische QTL-Bereich auf eine Größe von wenigen cM reduziert werden (Fehr et al., 2002). Gene innerhalb eines solchen kleineren QTL-Fragments können einzeln auf Expressionsunterschiede oder Unterschiede in der Basenabfolge der Gene untersucht werden (Abiola et al., 2003).

- Haplotypenanalyse

Haplotypenanalysen gehen von einer gemeinsamen Vererbung von genomischen Blöcken aus, ohne dass eine Rekombination innerhalb dieser Blöcke stattfindet. Dabei werden polymorphe Bereiche mit einer länger zurückliegenden Rekombination assoziiert, nicht-polymorphe Abschnitte jedoch mit einer nahen Verwandtschaft (Paigen et al., 2008; Reuveni et al., 2007; Petkov et al., 2004 und 2005). Haplotypen werden mit Hilfe von Mikrosatellitenmarkern und SNPs bestimmt. Durch die Anwendung von so erstellten Haplotypenkarten kann ein QTL auf polymorphe Bereiche zwischen den Kreuzungspopulationen weiter eingegrenzt werden (Moritani et al., 2006). Auch Kandidatengene wurden in aktuellen Studien mit Hilfe einer Haplotypenanalyse identifiziert (Dokmanovic-Chouinard et al., 2008; Pletcher et al., 2004).
1.3 Der Adipositas-QTL Nob1

1.3.1 Die Mausstämme NZO und SJL

Der New Zealand Black- (NZB-) Stamm, der dem NZO-Stamm am nächsten verwandt ist, entwickelt eine moderate Adipositas (ca. 11 % im Vergleich zu ca. 40 % Körperfettanteil bei NZO-Mäusen, Jürgens et al., 2006), eine starke Hypercholesterinämie sowie eine leichte Hypertonie (Ortlepp et al., 2000). Sowohl NZO-Tiere (Igel et al., 1997) als auch NZB-Mäuse weisen mehrere Mutationen im Leptinrezeptor-Gen auf, so dass diesen Mutationen keine funktionelle Bedeutung bei der Ausprägung der extremen Adipositas beim NZO-Stamm zukommen kann. Eine weitere Mutation, die beide Stämme tragen, ist eine Punktmutation im Gen, das für das Phosphatidyl-Transport-Protein (Pctp) kodiert. Ein Aminosäureaustausch (Arg120His) führt zu einem inaktiven Protein. Dies erklärt möglicherweise den gestörten Phosphatidylcholin-Metabolismus bei NZO-Mäusen (Pan et al., 2006a, Pan et al., 2006b).

EINLEITUNG

Abb. 1.2: Phänotypischer Vergleich der Inzucht-Mausstämme *Swiss Jim Lambert* (SJL) und *New Zealand obese* (NZO). (A) Der deutliche Unterschied im Körpergewicht der adulten Tiere ist hauptsächlich auf eine erhöhte Fettmasse bei NZO-Mäusen zurückzuführen. (B) NZO-Mäuse weisen im Vergleich zu SJL-Mäusen ein höheres Körpergewicht, sowie erhöhte Blutglucosespiegel und Serumsinsulinwerte auf. Diese Merkmale spiegeln das humane Metabolische Syndrom wieder (*p<0,01; **p<0,001; modifiziert nach Ortlepp *et al.*, 2000).

1.3.2 Identifizierung des Adipositas-QTL Nob1

Zur Aufklärung der genetischen Ursachen der polygenen Erkrankungen der NZO-Maus wurden verschiedene Kreuzzungsansätze durchgeführt und mögliche Kandidatengene untersucht.

Aus der kombinierten Analyse zweier Rückkreuzungen mit den Inzuchtstämmen NZO und SJL ergab sich ein LOD-score (BMI) von ca. 8 beim genetischen Marker D5Mit302 (61,8 Mbp, NCBI Build 37.1; Giesen, Dissertation 2004). Dieser als Nob1 (*New Zealand obese 1*) bezeichnete Suszeptibilitätslocus für Hochfett-Diät-induziertes Körpergewicht auf Chromosom 5 umfasst ca. 45 Mbp (LOD > 3,3; Abb. 1.3).

NZO-Nob1-Allelträger (homozygot und heterozygot) wiesen signifikant höhere Körpergewichte, eine stärkere Gewichtszunahme, erhöhte BMI und Körperfettanteile im Vergleich zu homozygoten SJL-Allelträgern auf. Zudem waren die Plasma-Insulinwerte

Ein wesentliches Merkmal des Nob1 war dessen Kopplung mit einer Hochfett-Diät (HFD) während bei Fütterung einer Standard-Diät (SD) keine genotypbedingten Gewichtsunterschiede zu sehen waren (Giesen, 2004). Diese Beobachtung macht Nob1 zu einem sehr interessanten Adipositas-QTL, da dieser Suszeptibilitätslocus zu einer diätabhängigen Gewichtszunahme führt. Diese Diätabhängigkeit scheint sich auf den Fettanteil zu beziehen, weil die verwendete HFD neben einem erhöhten Fettanteil (HFD: 16 %; SD: 5 %) einen ähnlich hohen Anteil an Kohlenhydrat-Anteil wie die verwendete Standard-Diät enthält (HFD: 46,8 %; SD: 48 %). Diese Zusammensetzung entspricht ungefähr der „Cafeteria-Diät“ (Darimont et al., 2006), die in Industrieländern zu einem so rasanten Anstieg in der Adipositas-Prävalenz führt (Larson et al., 1995). Der Hochfett-Diät-spezifische Nob1-Effekt lässt auf eine Diät-induzierte Veränderung im Stoffwechsel schließen, die mit einer oder mehreren Genvarianten innerhalb des Nob1 assoziiert sind. Da eine Diät mit einem hohen Fettanteil zu Adipositas, Insulinresistenz und im Weiteren zum Metabolischen Syndrom führen kann, sind für eine weitere Untersuchung von Genen und deren Expression besonders die Gewebe interessant, die eine wichtige Rolle in der Entstehung der Adipositas spielen – dazu zählen Fettgewebe, Skelettmuskel, Leber und Hypothalamus.

Im gleichen Rückkreuzungsmodell von NZO- und SJL-Mäusen wurde auf dem distalen Chromosom 4 ein QTL für Diabetes identifiziert (Nidd/SJL), der auf einer Genvariante im SJL-Genom beruht. Allerdings ist für die Ausprägung des diabetischen Phänotyps ein erhöhtes Körpergewicht im frühen Lebensalter (8 Wochen) nötig (Plum et al., 2002). Unter dem Einfluss einer fettreichen Diät interagieren Nidd/SJL und Nob1 miteinander in Bezug auf die Höhe der Diabetesprävalenz. Sind beide Risiko-Allele (Nidd/SJL und Nob1/NZO) vorhanden, erkranken die Tiere zu einem früheren Zeitpunkt und die Diabetesprävalenz liegt deutlich höher als bei den Tieren, die jeweils nur ein Risiko- Allel tragen (Plum et al., 2002; Abb. 1.4).

1.3.3 Genomische Lokalisation und stammspezifische Herkunft des Nob1

Der QTL Nob1 ist auf Chromosom 5 zwischen den Mikrosatellitenmarkern D5Mit389 und D5Mit259 lokalisiert. Dieser Bereich entsprach dem Konfidenzintervall der LOD-score-Kurve, für den der berechnete LOD-score-Wert größer als 3,3 war und somit eine signifikante Korrelation zwischen Körpergewicht und auftretendem Genotyp vorlag. Diesem Bereich von ca. 27 cM, der einem Chromosomenabschnitt von ungefähr 50 Mbp entspricht, wurden etwa 500 Genmodelle zugeordnet (NCBI-Gendatenbank, Build 36.1, 2006).

1.4 Zielsetzung der Arbeit

Ziel der vorliegenden Arbeit war es, Kandidatengene für Adipositas im Bereich des Nob1 zu identifizieren. Dazu sollten folgende Analysen durchgeführt werden:

(1) Untersuchung auf Expressionsunterschiede zwischen den Mausstämmen NZO und SJL

(2) Sequenzierung von Kandidatengenen

Die verantwortliche(n) Genvariante(n) für den Nob1 sollte(n) durch den Sequenzvergleich der codierenden Genabschnitte zwischen NZO und SJL identifiziert werden.

(3) Weitere Expressionsanalysen

Die identifizierte(n) Genvariante(n) sollte(n) durch die Untersuchung der mRNA-Expression in weiteren Geweben auf ihre mögliche Funktion im Stoffwechsel untersucht werden.
2 MATERIAL UND METHODEN

2.1 Material

2.1.1 Versuchstiere

Im Rahmen dieser Arbeit wurden folgende Mausinzuchtstämme verwendet:

- für die Macro- und Microarray-Experimente:

 NZO/HIBom (Taconic, M+B, Ry, Dänemark)
 SJL/NBom (Taconic, M+B, Ry, Dänemark)

- für quantitative Real-Time-PCR-Versuche:

 C57BL/6JCrI (Charles River Laboratories, Sulzfeld)
 B6.V-Lepob/J (Charles River Laboratories, Sulzfeld)

- für Sequenzierungen:

 AKR/J (Universität Marburg, AG Heldmaier/Klingenspor, eigene Zuchtkolonie)
 FVB/N (Charles River Laboratories, Sulzfeld)
 NON/LtJ (Jackson Labor über Fa. Charles River Laboratories, Sulzfeld)
 NZB/OlaHsd (Fa. Harlan, Borchen)
 SM/JCrI (Jackson Labor über Fa. Charles River Laboratories, Sulzfeld)
 SWR/J (Universität Marburg, AG Heldmaier/Klingenspor, eigene Zuchtkolonie)

Alle tierexperimentellen Versuche wurden durch das Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg unter dem Geschäftszahlen 32-44457+36 genehmigt.

2.1.2 Bakterienstämme

Zur Vervielfachung von Plasmid-DNA wurden folgende Bakterienstämme verwendet:

DH5α
Hanahan et al., 1983

TOP 10 F'
Invitrogen, Groningen, Niederlande
2.1.3 Plasmid- und Expressionsvektoren

Folgende Plasmid- und Expressionsvektoren wurden in dieser Arbeit benutzt:

Plasmidvektoren
- pBlueskript®II-KS
 Stratagene, La Jolla, USA
- pCR2.1-TOPO
 Invitrogen, Carlsbad, USA

Expressionsvektoren
- pGEX.3X
 Amersham Pharmacia Biotech, Freiburg

2.1.4 Enzyme, Standards und Reaktionskits

Die verwendeten Enzyme sowie Molekulargewichts- und Längenstandards wurden von den Firmen **New England Biolabs** (Schwalbach), **Boehringer** (Mannheim), **Roche Diagnostics GmbH** (Mannheim), **MBI Fermentas GmbH** (St. Leon-Roth) und **BioRad** (München) bezogen. Soweit nicht anders beschrieben, wurden die Produkte und Reaktionskits nach Herstellerangaben eingesetzt.

Folgende Reaktionskits wurden verwendet:
- BCA Protein Assay Kit
 Pierce, Rockford, IL, USA
- BigDye® Terminator v3.1 Cycle Sequencing Kit
 Applied Biosystems, Foster City, USA
- GenElute™ Plasmid Miniprep Kit
 Sigma, Deisenhofen
- InViSorb™ Genomic DNA Kit II
 InViTek GmbH, Berlin
- Qiagen Gel Extraction Kit
 Qiagen, Hilden
- Qiagen Midi-/Maxipräparationskit
 Qiagen, Hilden
- Rapid Ligation Kit
 Promega, Madison, USA
- TNT® T7 Quick Coupled Translation System
 Promega, Mannheim
- Wizard® SV Gel and PCR Clean-Up System
 Promega, Mannheim
- First Strand cDNA Synthesis-Kit™
 Amersham Pharmacia Biotech, Freiburg
- TaqMan® Universal PCR Master Mix:
 - No AmpErase® UNG
 Applied Biosystems, Foster City, USA
 - TOPO™ TA Cloning ® Kit
 Invitrogen, Carlsbad, USA
2.1.5 Nährmedien, Puffer, Lösungen

Alle verwendeten Medien, Puffer und Lösungen wurden mit destilliertem, entionisiertem Wasser (ddH₂O) hergestellt und falls nicht anders angegeben durch Autoklavieren (20 min/121 °C/1 bar) oder Filtration (0,45 µm) sterilisiert. Die Einstellung des pH-Wertes erfolgte bei Bedarf vor dem Autoklavieren mit 10 % HCl oder 10 % NaOH.

2.1.5.1 Bakterienkulturmedien

<table>
<thead>
<tr>
<th>Nährmedium</th>
<th>Zutaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Medium</td>
<td>1 % Pepton; 1 % NaCl; 0,5 % Hefeextrakt</td>
</tr>
<tr>
<td>LB-Agar</td>
<td>1 % Pepton; 1 % NaCl; 0,5 % Hefeextrakt; 1,5 % Agar</td>
</tr>
</tbody>
</table>

2.1.5.2 Puffer, Lösungen

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin-Stammlösung</td>
<td>100 mg/ml in ddH₂O</td>
</tr>
<tr>
<td>Kanamycin-Stammlösung</td>
<td>30 mg/ml in ddH₂O</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>0,5 % Hefeextrakt; 2,0 % Trypton; 10 mM NaCl; 2,5 mM KCl; 10 mM MgCl₂; 2 % Glucose</td>
</tr>
<tr>
<td>TAE (1x)</td>
<td>40 mM Tris-Aacetat; 1 mM EDTA; pH 8,0</td>
</tr>
</tbody>
</table>

2.1.6 Sonstige Materialien

Acrylamid/Bis 19:1 (Bio-Rad, München)
APS (Merck, Darmstadt)
TEMED (Bio-Rad)
EDTA (Merck)
Ficoll 400 (Sigma)
Xylencyanol FF (Merck)
Bromphenolblau (Merck)
Tris-HCl (ICN Biomedicals, OH, USA)
Borsäure (Merck)

2.1.7 Synthetische Oligonukleotide (Primer)

Alle in der vorliegenden Arbeit verwendeten Primer wurden von den Firmen MWG Biotech (Darmstadt Ebersberg), Invitrogen (Karlsruhe) oder Sigma (Deisenhofen) bezogen. Sie waren HPLC-gereinigt, lyophilisiert und wurden nach entsprechender Verdünnung für die PCR-Reaktion oder für die Sequenzierung von DNA eingesetzt.

Primer für die quantitative Real-Time PCR (SybrGreen®)

<table>
<thead>
<tr>
<th>Gennname</th>
<th>Primersequenz forward (5'→3')</th>
<th>Primersequenz reverse (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>2310045A20Rik</td>
<td>CTCCCAGGGGAAAAAATTCAGACC</td>
<td>GCCGAAGATGAAAGTGAAGGAAAGG</td>
</tr>
<tr>
<td>Pgm1</td>
<td>TGTCGACCTGAAAATCTGCAACC</td>
<td>AGAAGGGGACTACTGTGCAACC</td>
</tr>
<tr>
<td>Cpeb2</td>
<td>CACCACGAAATTCCTCGC</td>
<td>TCGATCCTGTGCTATTTCTG</td>
</tr>
<tr>
<td>Gabra4</td>
<td>TCTCACCATAAGGCTGGAAGG</td>
<td>GATAACAGTCGTGCCCAATGAGG</td>
</tr>
<tr>
<td>Pcdh7</td>
<td>GCATTATGCGTCTGCAACG</td>
<td>TGCATAATGCGCAGCAACC</td>
</tr>
<tr>
<td>Mrfap1</td>
<td>ATGCTGATCCAGATGCAAGG</td>
<td>GAATCCATGGCTGGAAGG</td>
</tr>
<tr>
<td>Mpv17</td>
<td>CAACTCGAGGGGAGAATCCACC</td>
<td>CACGGTCATCGATCAAGG</td>
</tr>
<tr>
<td>Ucn</td>
<td>TGGGGCAGGACACTCGGATAC</td>
<td>TCCGCTAAGGAGGAGGGA</td>
</tr>
<tr>
<td>Letm1</td>
<td>CAGGGGAGAGTGCTGATGACC</td>
<td>GTGCCACACTTCACTACC</td>
</tr>
<tr>
<td>Qdpr</td>
<td>TGGGCAAGGGAGAAGATCCAG</td>
<td>ACCACCTGAGTTAGCCTG</td>
</tr>
<tr>
<td>Igfbp7</td>
<td>AGCAACGGGCATCACCTACCC</td>
<td>GCTGAACACTGACAGGTGACC</td>
</tr>
<tr>
<td>Rhoh</td>
<td>AGAAACCCACCGACTGTCCTCC</td>
<td>GAGAAACAGTGCCGCTTTGG</td>
</tr>
<tr>
<td>Spp1</td>
<td>TGCACCCAGATCCTATAGGCC</td>
<td>AGCAATCCTCGGCTGCTG</td>
</tr>
<tr>
<td>Alox5ap</td>
<td>AGATGCGTACCCCACCTTCC</td>
<td>CGAAGGACATGAGGAACAGG</td>
</tr>
<tr>
<td>Aacs</td>
<td>CAGAGGATCCACCCCAACAGG</td>
<td>AGGTGGACCTGGAGAAGG</td>
</tr>
<tr>
<td>Mll5</td>
<td>ATTTGATCGACGGGAGGTTGC</td>
<td>AAGCTAGCGCTGTTTTCTGC</td>
</tr>
<tr>
<td>Ppp1cb</td>
<td>GATTGTGCGTAGCTCATGGG</td>
<td>TCGGTGTAATGGCCTGTTG</td>
</tr>
<tr>
<td>Insig1</td>
<td>TGATGAGCCACATCTTTCCC</td>
<td>GAGGCTGCTAAGGAGG</td>
</tr>
<tr>
<td>Abhd1</td>
<td>TTCAATCGACCCACCTAGGG</td>
<td>GACGGGAGGCAGAGAACAGG</td>
</tr>
<tr>
<td>Spink2</td>
<td>CTCCCTGGTGCAAGACCTTTGC</td>
<td>GTCTCCCTGATTTCTAGC</td>
</tr>
</tbody>
</table>

Primer zur Klonierung der Volllängen- Tbc1d1-cDNA:

Fwd: 5'-'TGCGTCGACGAGCGAGACGACTGTGAGGAGG-3'
Rev: 5'-'ATCGTATACAAACACCGGACTGGAAGG-3'
Tbc1d1-Sonde und Primer für die TaqMan-RealTime-PCR (2 x markiert: 5' 6-FAM; 3' TAMRA):

1) alle Isoformen

Fwd: 5'-AGTGGCCACTCCACAGAAG-3'
Rev: 5'-TCCTGTACTGGGCAAATG-3'
Sonde: 5'-ACTCCCCGAGCAGATATGAAGATTATTCCGAGCTG-3'

2) lange Isoform

Fwd: 5'-ATGTGGACCATCTTCCTGG-3'
Rev: 5'-GCTCTCCACTGGAATTGTG-3'
Sonde: 5'TTCAGCTCCGCTCCACCTCGTCTTAA-3'

Zusätzlich wurden je eine TaqMan-Sonde der Firma ABI für die Gene Tbc1d1 und Tbc1d4 verwendet.

Primer zur Identifikation der 7 bp-Deletion des Gens Tbc1d1 in Exon 18:

Fwd: 5'-GAGCAGGTCAGCTGTCACTTT-3'
Rev: 5'-TGAGACCTTGGCAGTATCCA-3'

Primer zur PCR-Amplifikation von Genen in Plasmiden:

M13 forward 5'-GTAAAACGACGGCCAGT-3'
M13 reverse 5'-GGAAACAGCTATGACCAT-3'
T3 5'-ATTAACCCTCACTAAAGGGA-3'
T7 5'-TAATACGACTCACTATAGGG-3'
pME forward 5'-CTTCTGCTCTAAAGGCTGCG-3'
pME reverse 5'-CGACCTGCAGCTCGAGCACA-3'
2.2 Methoden

2.2.1 Tierexperimentelle Methoden

2.2.1.1 Haltungsbedingungen

Die verwendeten Tiere wurden nach den Richtlinien zur Tierhaltung und des Tierschutzes gehalten.

Den Zuchttieren stand eine Standard-Diät (SD) zur Haltung von Nagern (1314; Fa. Altromin, Lage) mit 5 % Fett (Sojaöl), 48 % Kohlenhydraten und 22,5 % Eiweiß sowie keimfreies und entkalktes Wasser ad libitum zur Verfügung. Das Standardfutter war cholesterinfrei und hatte einen Energiegehalt von 12,5 kJ/g.

Die Versuchstiere wurden drei Wochen nach der Geburt abgesetzt. Danach erhielten sie entweder eine SD zur Haltung von Nagern (1314; Fa. Altromin, Lage, siehe oben) oder ein Hoch-Fett-Diät (HFD) zur Haltung von Nagern (Typ C1057; Fa. Altromin, Lage) mit 16 % Fett (Sojaöl), 46,8 % Kohlenhydraten und 17,1 % Eiweiß (ME: 17,2 kJ/g, 4,1 kcal/g). Futter und Wasser standen den Tieren jederzeit ad libitum zur Verfügung.

Die Tiere wurden nach Geschlecht getrennt und als Geschwistergruppen in Käfigen zu 2-6 Tieren gehalten.

2.2.1.2 Phänotypische Charakterisierung

Zur Erhebung phänotypischer Daten und zur Gewinnung von unterschiedlichen Geweben der Inzuchtstämmen NZO und SJL wurde ein Tierexperiment über 12 Wochen durchgeführt. Drei Wochen nach der Geburt wurden die Jungtiere abgesetzt und entweder auf einer SD oder auf einer HFD gehalten. Nach 4, 8 bzw. 12 Wochen wurden 6-8 Tiere pro Gruppe getötet und verschiedene Gewebe für die Array-Experimente entnommen (Abb. 2.1).

Die phänotypische Charakterisierung begann in der 4. Lebenswoche. Dazu wurde wöchentlich das Körpergewicht mit Hilfe einer elektronischen Waage (± 0,1 g) (Fa. Satorius, Göttingen) und die Körperzusammensetzung (Körperfett, Muskelmasse und freier Wassergehalt) mittels NMR-Methode (nuklear magnetic resonance,

Abb. 2.1: Zeitlicher Versuchsablauf des Tierexperiments. Nach Absetzen der Tiere in Woche drei wurden die Mäuse auf den unterschiedlichen Diäten gehalten (SD bzw. HFD) und in Lebenswoche 4, 8 bzw. 12 zur Gewebeentnahme getötet (x).

2.2.1.3 Tötung der Tiere und Gewebepräparation

Im Alter von 4, 8 bzw. 12 Wochen wurde den Tieren unter Ätheranästhesie durch eine Herzpunktion mit EDTA-Monovetten (4,5 ml; Fa. Sarstedt, Nümbrecht) Blut entnommen. Das EDTA-Blut wurde 10 min bei 4000 × g und 4 °C zentrifugiert, das Plasma abgenommen und bei -80 °C gelagert. Folgende Organe wurden präpariert, in Folie eingepackt und bis zur Lagerung in flüssigem Stickstoff aufbewahrt: weißes Fettgewebe (white adipose tissue, WAT), braunes Fettgewebe (brown adipose tissue, BAT), Leber, Skelettmuskel (SM), Herz, Pankreas, Niere, Dünn darm, Dickdarm und Hypothalamus. Die Langzeitaufbewahrung der Gewebeproben erfolgte bei -80 °C.
2.2.2 Molekularbiologische Methoden

2.2.2.1 Isolation von genomischer DNA aus Mausschwänzen

Aus Schwanzspitzen von Mäusen wurde genomische DNA mit Hilfe des *InViSorb™ Genomic DNA Kit II* (InViTek GmbH, Berlin) isoliert. Diese Methode der DNA-Isolation beruht auf einem Salzpräzipitationsverfahren. Der Ablauf des Protokolls wurde beibehalten, allerdings wurden die Mengen an Puffern wie folgt geändert:

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Menge (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysepuffer G</td>
<td>200 µl</td>
</tr>
<tr>
<td>Proteinase K (20 mg/ml)</td>
<td>10 µl</td>
</tr>
<tr>
<td>Bindungspuffer</td>
<td>460 µl</td>
</tr>
<tr>
<td>Waschpuffer</td>
<td>3 x 700 µl</td>
</tr>
<tr>
<td>Elutionspuffer D</td>
<td>210 µl</td>
</tr>
</tbody>
</table>

Die Konzentration der erhaltenen DNA wurde photometrisch bestimmt und mit ddH₂O auf 10 ng/µl eingestellt.

2.2.2.2 Isolation von Plasmid-DNA aus *E. coli* Bakterien

Die Bakterien wurden durch Zentrifugation der üNK gewonnen, in TE-Puffer resuspendiert und mittels alkalischer Lyse aufgeschlossen (0,1 M NaOH; 0,5 % SDS; in TE-Puffer). Die DNA wurde anschließend in saurem Milieu (3 M NaOAc) mit Ethanol gefällt. Das DNA-Pellet wurde in TE-Puffer aufgenommen und bei -20 °C gelagert.

In einigen Fällen (für den Einsatz in Sequenzier-Reaktionen oder zur *in vitro*-Translation) wurde die Plasmid-DNA aus den Zellen mit dem *GenElute™ Plasmid Miniprep Kit* (Sigma-Aldrich, Steinheim) gemäß den Herstellerangaben isoliert.

TE-Puffer: 10 mM Tris; 1 mM EDTA; pH 8,0

2.2.2.3 Isolation von Gesamt-RNA aus Mausgeweben

MATERIAL UND METHODEN

28S-Banden im Gel deutlich zu sehen, wurde die RNA weiterverarbeitet. RNA-Proben, bei denen das nicht der Fall war, wurden verworfen. Die RNA wurde bei -80 °C gelagert.

2.2.2.4 Herstellung einer Erststrang-cDNA aus Gesamt-RNA

Für weitere Analysen der Genexpression mittels Real-Time-PCR oder als Matrise für eine PCR wurde die mRNA (messenger RNA) in eine einzelsträngige cDNA umgeschrieben. Dieser Vorgang erfolgte durch das Enzym Reverse Transkriptase (RT). Reverse Transkriptasen verwenden RNA als Matrise und synthetisieren an das 3'-Ende eines Primers die komplementäre DNA (cDNA). Für jede Reaktion wurden 2 µg Gesamt-RNA eingesetzt.

Die entstandene cDNA wurde bei -20 °C gelagert.

Protokoll einer Erststrang-cDNA-Synthese aus Gesamt-RNA

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt-RNA</td>
<td>2 µg</td>
</tr>
<tr>
<td>Hexa-Nukleotid-Primer</td>
<td>200 ng</td>
</tr>
<tr>
<td>dNTPs</td>
<td>500 µM (gesamt)</td>
</tr>
</tbody>
</table>

→ 5 min 65 °C zum Anlagern der Primer, 2 min auf Eis

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>DTT</td>
<td>4 mM</td>
</tr>
<tr>
<td>SuperScript™ III Reverse Transcriptase</td>
<td>200 units</td>
</tr>
</tbody>
</table>

→ 5 min 25 °C und 60 min 50 °C inkubieren, 15 min 70 °C zur Denaturierung des Enzyms

2.2.2.5 Primerdesign

Für das Design genspezifischer Primer-Paare (Produktlänge 300-500 bp) wurde die gesamte Sequenz der mRNA des Gens mittels der BLAST Software (http://www.ncbi.nlm.nih.gov/BLAST/) gegen die NCBI-Datenbank für bekannte mRNAs und ESTs (Expressed Sequence Tags) abgeglichen. Es wurden nur solche Bereiche der mRNA in Betracht gezogen, die keine Sequenzhomologien zu anderen bekannten Genen oder zu anderen Isoformen desselben Gens aufwiesen. Waren solche Bereiche nicht vorhanden, konnte dieses Gen nicht in das Experiment einbezogen werden. Gab es mehrere dieser spezifischen Bereiche, wurde der Bereich bevorzugt, der am nächsten am 3'-Ende der mRNA lag. Die Analyse der Exonstruktur der Gene wurde mit der BLAT Search Software (http://genome.ucsc.edu/cgi-bin/hgBlat) durchgeführt. Für das Primerdesign wurden Exone genutzt, die länger als 300 bp waren. War keines der Exone eines Gens länger als 300 bp,

2.2.2.6 Amplifikation von DNA mit Hilfe der Polymerasekettenreaktion (PCR)

Die Polymerase-Ketten-Reaktion (Polymerase Chain Reaction, PCR) ist eine molekularbiologische Methode, um größere Mengen kleiner DNA-Fragmente herzustellen (Saiki et al., 1985; Mullis et al., 1986). Dabei wird der von zwei Primern flankierte DNA-Abschnitt (Matrize, engl. Template) mittels des Enzyms DNA-Polymerase in mehreren Temperaturzyklen vervielfältigt (Denaturierung, Primerhybridisierung, Elongation).

Standardprotokoll für die erste PCR (10 µl Reaktionsvolumen):

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template genomische DNA/ cDNA</td>
<td>20 ng/ 25 ng</td>
</tr>
<tr>
<td>Primer 5'→3'</td>
<td>500 nM</td>
</tr>
<tr>
<td>Primer 3'→5'</td>
<td>500 nM</td>
</tr>
<tr>
<td>10 x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>dNTPs</td>
<td>250 µM pro dNTP</td>
</tr>
<tr>
<td>JumpStart REDAccuTaq DNA Polymerase</td>
<td>0,5 U</td>
</tr>
</tbody>
</table>

Temperaturprogramm für den Thermocycler:

<table>
<thead>
<tr>
<th>Zyclus 1-30:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung 96 °C</td>
</tr>
<tr>
<td>Denaturierung 94 °C</td>
</tr>
<tr>
<td>Primerhybridisierung 55-60 °C</td>
</tr>
<tr>
<td>Elongation 68 °C</td>
</tr>
<tr>
<td>Finale Elongation 68 °C</td>
</tr>
<tr>
<td>Halten 4 °C</td>
</tr>
</tbody>
</table>

Die Menge von mindestens 6 µg PCR-Produkt wurde in einer zweistufigen PCR-Reaktion amplifiziert. Dazu erfolgte eine Reamplifizierungs-PCR. Von der ersten PCR wurde 1 µl auf
ein 1,5 %-iges Agarosegel aufgetragen, um die Qualität der PCR zu überprüfen (siehe 2.2.2.7.1.). War nur eine distinkte und starke Bande der erwarteten Größe zu sehen, wurden je nach Bandenstärke 0,5-1 µl dieser ersten PCR ohne Reinigung der PCR als Ausgangsprodukt für die zweite PCR verwendet (Reamplifizierung). Waren in der ersten PCR mehr als eine distinkte Bande zu sehen, wurde die gesamte restliche erste PCR auf ein 1,5 %-iges Agarosegel aufgetragen, die Bande mit der richtigen Größe unter UV-Licht ausgeschnitten und mit Hilfe des Wizard® SV Gel and PCR Clean-Up Systems (Promega, Mannheim) nach Herstellerangaben aufgereinigt (20 µl Elutionsvolumen). Dieses gereinigte Produkt diente daraufhin als Matrize für die Reamplifizierungs-PCR.

Zeigte ein PCR-Produkt eine sehr schwache einzelne Bande, wurde die restliche Reaktion ebenfalls mit dem Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim) aufgereinigt ohne sie jedoch vorher über ein Agarosegel aufzutrennen, um die Ausbeute des PCR-Produkt zu erhöhen. Das gereinigte Produkt wurde dann in einen T-Vektor ligiert und in chemisch kompetente E.coli-Zellen transformiert (siehe 2.2.2.10.). Als Template für die Reamplifizierungs-PCR wurde dann die DNA eines positiven Klon einer Transformation genutzt. Mit dieser Klonierungsstrategie wurde die Effizienz der Reamplifikation erheblich gesteigert.

Standardprotokoll für die Reamplifizierungs-PCR (4-6 x 50 µl Reaktionsvolumen):

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template erste PCR</td>
<td>0,5-1 µl</td>
</tr>
<tr>
<td>Primer 5'→3'</td>
<td>400 nM</td>
</tr>
<tr>
<td>Primer 3'→5'</td>
<td>400 nM</td>
</tr>
<tr>
<td>5 x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>dNTPs</td>
<td>250 µM pro dNTP</td>
</tr>
<tr>
<td>GoTaq DNA Polymerase</td>
<td>2 U</td>
</tr>
</tbody>
</table>

Temperaturprogramm für den Thermocycler:

<table>
<thead>
<tr>
<th>Zyclus 1-25:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>95 °C 2 min</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>95 °C 30 sek</td>
</tr>
<tr>
<td>Primerhybridisierung</td>
<td>57-62 °C 30 sek</td>
</tr>
<tr>
<td>Elongation</td>
<td>72 °C 60 sek</td>
</tr>
<tr>
<td>Finale Elongation</td>
<td>72 °C 10 min</td>
</tr>
<tr>
<td>Halten</td>
<td>4 °C</td>
</tr>
</tbody>
</table>

MATERIAL UND METHODEN
Von den Reamplifizierungen wurden zur Qualitätsprüfung je 1 µl auf ein 1,5 %iges Agarosegel aufgetragen. Die restlichen 200-300 µl PCR-Produkt wurden mittels des PCR-
Purification Kits gereinigt (Elutionsvolumen 100 µl ddH₂O). Je 0,5 µl des Eluats wurden wiederum auf ein 1,5 %iges Agarosegel aufgetragen und mit Hilfe des MassRulers (MBI Fermentas, St. Leon-Roth) die Konzentration der DNA-Lösung mit der ImageQuant Software densitometrisch bestimmt.

2.2.2.7 Gelelektrophoretische Auftrennung von DNA

2.2.2.7.1 Agarosegel

Um PCR-Produkte oder andere DNA-Fragmente sichtbar zu machen, wurden sie in einem Agarosegel elektrophoretisch nach ihrer Größe aufgetrennt. Kleinere DNA-Fragmente bewegen sich schneller durch die Gelmatrix als größere Fragmente. Dabei bedient man sich der Eigenschaft der negativen Ladung der DNA, die beim Anlegen einer elektrischen Spannung zum positiven Pol wandert. Die Anfärbung der DNA erfolgte mit Ethidiumbromid, einem unter UV-Licht fluoreszierenden Farbstoff (Endkonzentration 0,5 µg/ml Gellosung). Als Größenstandards wurden die 100 bp- oder 1 kb-DNA-Leiter benutzt (MBI Fermentas, St. Leon-Roth).

2.2.2.7.2 Denaturierendes Agarosegel

Die Auftrennung einer mit α³²P]-dCTP markierten cDNA erfolgte mit Hilfe eines denaturierenden Agarosegels. Hierfür wurden 0,5 g Agarose in 50 ml Millipore-Wasser durch Erhitzen gelöst. Die Lösung wurde auf 60 °C abkühlen lassen. Dann wurden 500 µl NaOH (5 M) und 100 µl EDTA (0,5 M) zugegeben und das Gel gegossen.

- Elektrophorese - Puffer : 50 ml
 NaOH 5 M 500 µl
 EDTA 0,5 M 100 µl
 ddH₂O ad 50 ml

- Proben-Ladepuffer: 10 ml Stocklösung 6 x
 NaOH 5 M 600 µl
 EDTA 0,5 M 120 µl
 Ficoll 1,8 g
 Bromophenolblau 0,1 %
 ddH₂O ad 10 ml
MATERIAL UND METHODEN

• Probenvorbereitung:
 • Probenvolumen auf 8 µl mit ddH₂O auffüllen
 • je 2 µl EDTA (50 mM) zugeben, bei 95 °C für 5 min denaturieren und auf Eis stellen
 • je 2 µl Proben-Ladepuffer zugeben

Die Proben (ca. 200 000 cpm) und der ebenso vorbereitete Größenmarker (300 000 cpm) wurden nun auf das Gel geladen und die DNA elektrophoretisch aufgetrennt.

2.2.2.8 Aufreinigung von DNA-Fragmenten

Die DNA-Fragmente, die in einem Agarosegel aufgetrennt wurden bzw. die sich in einem PCR-Reaktionsgemisch befanden, wurden mit dem Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim) nach Herstellerangaben aufgereinigt. Die DNA-Lösungen wurden bei -20 °C gelagert.

2.2.2.9 Sequenzierung von DNA

Die Sequenzierung von DNA (als PCR-Produkt oder als Insert in einem Vektor) erfolgte mittels der Kettenabbruchmethode nach Sanger et al., bei der nur ein Primer in die PCR (S-PCR, Sequenzier-PCR) eingesetzt wird. Im Reaktionsgemisch befinden sich 3′-,5′-Didesoxynukleotide, die unterschiedliche Fluophore tragen und von der Polymerase in den neuen DNA-Strang eingebaut werden. Die fehlende 3′-Hydroxylgruppe der Didesoxynukleotide verhindert die Verlängerung des Stranges und so kommt es zum Abbruch der Synthese. Dieser Abbruch geschieht zufällig an einer Stelle des DNA-Stranges. Die so entstandene markierte DNA wird in einer Kapillarelektrophorese nach ihrer Größe aufgetrennt und die unterschiedlichen Fluophore mit einem Laser im ABI PRISM® 3100- bzw. 3130-Avant Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) detektiert.
2.2.2.9.1 Sequenzierungs-PCR

Für die S-PCR wurde das *Big Dye Terminator v3.1 Cycle Sequencing Kit* verwendet (Foster City, CA, USA). Ein Reaktionsansatz hatte ein Volumen von 10 µl.

Standardprotokoll für eine S-PCR

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template PCR-Produkt/ Plasmid-DNA</td>
<td>10-20 ng/ 200-500 ng</td>
</tr>
<tr>
<td>Primer</td>
<td>40 nM</td>
</tr>
<tr>
<td>Terminator Ready Reaction Mix</td>
<td>2 µl</td>
</tr>
<tr>
<td>5 x Puffer</td>
<td>1 x</td>
</tr>
</tbody>
</table>

Temperaturprogramm für den Thermocycler:

<table>
<thead>
<tr>
<th>Zyclus 1-20:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>96 °C</td>
</tr>
<tr>
<td>15 sek</td>
<td></td>
</tr>
<tr>
<td>Zyclus 1-20:</td>
<td>95 °C</td>
</tr>
<tr>
<td>10 sek</td>
<td></td>
</tr>
<tr>
<td>Primerhybridisierung</td>
<td>50 °C</td>
</tr>
<tr>
<td>5 sec</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>60 °C</td>
</tr>
<tr>
<td>4 min</td>
<td></td>
</tr>
<tr>
<td>Halten</td>
<td>4 °C</td>
</tr>
</tbody>
</table>

2.2.2.9.2 DNA-Fällung nach der S-PCR

Die entstandenen Kettenabbruchfragmente der S-PCR wurden mit Ethanol präzipitiiert, um sie von Salzen und überschüssigen markierten Nukleotiden zu reinigen. Das DNA-Pellet wurde in Formamid aufgenommen.

Protokoll einer Ethanol-Fällung nach S-PCR (alle Schritte bei Raumtemperatur)

- Überführen der Reaktion (10 µl) in ein 1,5 ml Reaktionsgefäß
- Zugabe von 3 µl Natriumacetat (3 M, pH 5,2), 62,5 µl Ethanol abs. und 14,5 µl HPLC-Wasser
- 15-20 min inkubieren
- 20 min bei 13000 Upm zentrifugieren, Überstand vorsichtig abnehmen
- Zugabe von 150 µl Ethanol (70 Vol %) zum Waschen, 5 min bei 13000 Upm zentrifugieren, Überstand vorsichtig abnehmen, Pellet 5 min trocknen lassen
- Pellet in 20 µl Formamid (Hi-Di-Formamide) aufnehmen, vortexen
2.2.2.9.3 Auswertung der Sequenzierung

2.2.2.10 Klonierung von DNA-Fragmenten

2.2.2.10.1 Herstellung eines Plasmid-T-Vektors

PCR-Produkte, die mit einer Taq-Polymerase amplifiziert wurden, tragen einen 3'-Adenosin-Überhang. Um diese Produkte in einen Vektor zu ligieren, wurde ein so genannter T-Vektor hergestellt.

Dazu wurde der Ausgangsvektor BlueScriptIIKS+ mit dem Restriktionsenzym SmaI blunt end, d.h. ohne überhängende Enden, aufgeschnitten. Nun wurden an die Enden mit der GoTaq – Polymerase dTTPs (2 mM Endkonzentration) angefügt (1 h, 72 °C). Der so entstandene Vektor mit dTTP-Überhängen wurde über ein Agarosegel und das Gel Extraction Kit (Qiagen, Hilden) nach Herstellerangaben aufgereinigt. Die Konzentration der DNA-Lösung wurde bestimmt, auf eine Konzentration von 100 ng/µl eingestellt und bei -20 °C gelagert.

2.2.2.10.2 Ligation von DNA-Fragmenten in einen Plasmid-T-Vektor

Den Vorgang der Synthese einer Phosphodiesterbindung zwischen zwei DNA-Strängen bezeichnet man als Ligation.

Die Ligation von REDAccuTaq-PCR-Produkten (Insert) in den selbst hergestellten T-Vektor (100 ng Vektor) erfolgte in einem molaren Verhältnis von Vektor:Insert = 1:3 durch das Enzym T4-Ligase (Roche, Mannheim) über Nacht (14 h) bei 16 °C.

2.2.2.10.3 Ligation mit dem TOPO TA Cloning Kit

Für die Ligation von PCR-Produkten wurde in einigen Fällen auch das TOPO™ TA Cloning® Kit (Invitrogen, Karlsruhe) verwendet. Die Besonderheit des bei diesem System verwendeten pCR2.1-TOPO-Vektors ist eine mit dem offenen Plasmid verknüpfte Topoisomerase, die einen DNA-Strang mit dem Vektor verbinden kann und dabei freigesetzt wird. Topoisomerasen dienen der Relaxation von DNA-Strängen, indem sie Phosphodiester-
bindungen spalten und dabei eine kovalente Bindung mit der DNA ausbilden. Durch eine chemische Reaktion mit einer 5'-Hydroxylgruppe eines anderen DNA-Stranges wird die Topoisomerase freigesetzt, die die DNA-Stränge verbindet. Der pCR2.1-TOPO-Vektor besitzt an den 3'-Enden einen Thymidinüberhang, wodurch das PCR-Produkt, das einen Adeninüberhang besitzt, problemlos mit dem Vektor ligiert werden kann.

2.2.2.11 Kultivierung von E.coli-Zellen (DH5α)

Die Anzucht von E. coli zur Herstellung von Kulturen erfolgte über Nacht (üN) bei 37 °C und 220 UpM auf dem Schüttelinkubator in LB-Flüssigmedium, das bei Bedarf mit dem entsprechenden Antibiotikum versehen wurde. Ampicillinresistente rekombinante E. coli DH5α wurden in LB-Flüssigmedium mit 100 µg/ ml Antibiotikum kultiviert.

Die kurzzeitige Lagerung von rekombinanten Bakterienklonen erfolgte bei 4 °C auf Agarplatten; zur Lagerung über längere Zeit dienten 15 %-ige Glycerin-Bakterien-Suspensionen bei -80 °C.

LB-Medium: 1 % Pepton; 1 % NaCl; 0,5 % Hefeextrakt
LB-Agar: 1 % Pepton; 1 % NaCl; 0,5 % Hefeextrakt; 1,5 % Agar

2.2.2.11.1 Herstellung chemisch kompetenter DH5α-Zellen

Die Zellen wuchsen bei RT bis zu einer E₆₀₀ nm von 0,4-0,6 in 400 ml SOC- Medium und wurden dann auf Eis gestellt. Die Zellernte erfolgte mit 2500 x g bei 4 °C. Mit 100 ml eiskaltem TB-Puffer wurden die Zellen resuspendiert, 10 min inkubiert, erneut abzentrifugiert und in 30 ml TB-Puffer aufgenommen. Dann wurde DMSO bis zur Endkonzentration von 7 % zugegeben, 10 min bei 4 °C inkubiert, aliquotiert und in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei –80 °C.

SOC-Medium: 0,5 % Hefeextrakt; 2,0 % Trypton; 10 mM NaCl; 2,5 mM KCl; 10 mM MgCl₂; 2 % Glucose

TB-Puffer: 10 mM Pipes; 15 mM CaCl₂; 250 mM KCl → pH auf 6,7 einstellen; 55 mM MnCl₂ (erst nach pH - Werteinstellung zugeben, da sich sonst Braunstein - Präzipitate bilden); sterilfiltrieren

2.2.2.12 Transformation von Plasmid-DNA in chemisch kompetente DH5α-Zellen

Als Transformation wird der Vorgang bezeichnet, bei dem kompetente Bakterien unter speziellen Bedingungen Plasmid-DNA aufnehmen. Chemisch kompetente Zellen nehmen DNA durch einen Hitzeschock auf.
Standardprotokoll für eine Transformation ligierter T-Vektoren in chemisch kompetente DH5α-Zellen

- 100 µl kompetente Bakterien auf Eis auftauen (Transformationseffizienz 1×10^7) und in ein gekühltes Reaktionsgefäß überführen
- Zugabe des Ligationsansatzes, Inkubation auf Eis 30 min
- Hitzeschock 30 sek bei 42 °C, danach 90 sek auf Eis
- Zugabe von 500 µl SOC-Medium, Inkubation für 60 min bei 37 °C und 220 Upm
- Ausplattieren auf Agarplatten mit LB-Medium mit X-Gal und Ampicillin, da der BlueScriptIIKS+ eine Resistenzkassette für Ampicillin beinhaltet (dadurch wachsen nur Kolonien aus Bakterien, die den Vektor aufgenommen haben)
- Inkubation über Nacht bei 37 °C im Brutschrank

Standardprotokoll für eine Transformation des TOPO-Vektors in chemisch kompetente TOP10 Zellen

- 25 µl TOP10-Zellen (Invitrogen, Karlsruhe) auf Eis auftauen und in ein gekühltes Reaktionsgefäß überführen
- Zugabe des Ligationsansatzes, Inkubation auf Eis 30 min
- Hitzeschock 30 sek bei 42 °C, danach 90 sek auf Eis
- Zugabe von 500 µl SOC-Medium, Inkubation für 60 min bei 37 °C und 220 Upm
- Ausplattieren auf Agarplatten mit LB-Medium mit X-gal und Ampicillin, da der pCR2.1-TOPO-Vektor eine Resistenzkassette für Ampicillin beinhaltet (dadurch wachsen nur Kolonien aus Bakterien, die den Vektor aufgenommen haben)
- Inkubation über Nacht bei 37 °C im Brutschrank

2.2.2.13 Blue-White-Selektion

Die weißen Kolonien wurden mit einer Pipettenspitze gepickt und in 75-100 µl Millipor-Wasser aufgelöst. Davon wurden 1-2 µl in eine Colony-PCR mit M13-Sequenzierprimern und
Go-Taq-Polymerase eingesetzt, um positive Klone zu identifizieren (Protokoll und Temperaturprogramm siehe Reamplifizierungs-PCR bei 2.2.2.6).

Von den identifizierten positiven Klonen wurden 5 ml LB-Medium (mit Ampicillin) mit 25 µl der Bakteriensuspension angeimpft und über Nacht bei 37 °C inkubiert.

2.2.2.14 Macroarray-Methode

Mit Hilfe dieser Methode kann die Expression verschiedener Gene (bis zu 5000 Gene) gleichzeitig untersucht werden. Dazu benötigt man immobilisierte einzelsträngige DNA-Fragmente der zu untersuchenden Gene (Sonden) auf einem Filter (Okuno et al., 2001; Gemma et al., 2001) und einzelsträngige Gewebs-cDNAs von Tieren unter verschiedenen Bedingungen (Probe), die radioaktiv oder fluoreszent markiert sind. Lässt man die Probe mit den immobilisierten Sonden reagieren (Hybridisierung), so binden spezifisch die cDNA-Moleküle, deren komplementäres DNA-Fragment auf dem Filter vorhanden ist. Anhand der Intensität des Markierungssignals lassen sich Rückschlüsse über die Menge an vorhandener cDNA und damit der mRNA eines Gens ziehen (Bellin et al., 2007; Kahlem et al., 2004). Unterscheiden sich diese Mengen bei einem Gen zwischen zwei Bedingungen (z.B. unterschiedliche Haltungsdüten, verschiedenes Maaalter), so spricht man von einem differentiell exprimierten Gen.

2.2.2.14.1 Gene auf dem Array

Der zu untersuchende Abschnitt des Chromosoms 5 reichte von 31,1 Mbp bis 93,5 Mbp und beinhaltete 302 Gene. Diese sind im Anhang in Tabelle A1 aufgeführt. Für die Auswahl der zu untersuchenden Gene wurden folgende Kriterien verwendet:

- Für das jeweilige Transkript mussten mindestens eine mRNA oder ein EST (Expressed Sequence Tag) in den Datenbanken des NCBI (National Center for Biotechnology Information) oder UCSC (University of California, Santa Cruz) beschrieben sein.

- Es musste eine eindeutige Lokalisation in der Nob1-Peak-Region durch die NCBI-Datenbank oder durch die UCSC-Datenbank vorliegen.

- Das Transkript durfte keine Pseudo-RNA sein und für kein ribosomales Protein codieren.
Zusätzlich wurden 38 Gene untersucht, die in einem RNAi-Screening des Wurms C.elegans mit einem veränderten Fettgehalt assoziiert wurden (Ashrafi et al., 2003) und die gleichzeitig in einem QTL für verändertes Körpergewicht bei NZO-Mäusen lokalisiert waren.

Als Kontrollgene dienten 217 zufällig ausgewählte Gene aus dem gesamten Mausgenom. Sie wurden vom Max-Planck-Institut für Molekularbiologie (Berlin Dahlem) aus der RZPD-cDNA-Bibliothek (Mouse UniGene Set RZP2.1) als cDNA-Klone zur Verfügung gestellt. Einziges Ausschlusskriterium war, dass die Gene nicht in Bereichen lagen, die in anderen Kreuzungsversuchen im Zusammenhang mit verändertem Körpergewicht standen.

Von allen zu untersuchenden Genen wurden mindestens 6 µg DNA mittels zweistufiger PCR hergestellt, lyophilisiert und in Wasser aufgenommen, so dass die Lösungen eine Konzentration von 300 ng/µl hatten (siehe 2.2.2.6).

2.2.2.14.2 Aufbringen der DNA auf eine Nylonmembran (Spotting)

Das Überführen der DNA-Lösungen (Sonden) auf Nylon-Membranen erfolgte durch den Spotting-Roboter K2 (Kaybee Engineering Limited, Essex, Großbritannien; modifiziert durch Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem). Dazu wurde ein Gel-Blotting-Papier (GB004, Schleicher&Schuell) in 0,4 M NaOH getränkt und mittig auf dicke Kunststoffplatten (slabs) gelegt. Die Nylon-Membranen (22,2 x 22,2 cm; Hybond-N+, Amersham Pharmacia Biotech Europe) wurden beschriftet, ebenfalls in 0,4 M NaOH getränkt und faltenfrei auf die Blotting-Papiere aufgelegt. Um eventuelle Luftblasen und überschüssige Flüssigkeit zu entfernen, wurden die Membranen mit einer sterilen Glaspipette glattgerollt und anschließend in den Roboter gelegt. Aufgrund der Größe der Membranen und der verwendeten Mikrotiterplatten ergaben sich pro Membran 6 Arrays.

Die Sonden wurden in einem 5 x 5-Muster aus vier Mikrotiterplatten (384 Vertiefungen) in Quadruplikaten gespottet, das heißt, dass jede Sonde viermal auf einem Array vorhanden war. Ein positives Signal wurde nur dann in die Auswertung einbezogen, wenn alle vier Spots einer Sonde nach der Hybridisierung ein positives Signal zeigten. So wurden falsch positive Signale ausgeschlossen. Jede Sonde wurde 10 x pro Spot übertragen, so dass genügend DNA für die Hybridisierung auf der Membran vorhanden war (ca. 10 ng).

MATERIAL UND METHODEN

Das 5x5-Muster sah wie folgt aus:

![Musterbild](image)

- ☀ ☀ ☀ ☀ ☀
- ☉ ☀ ☀ ☀ ☉
- ☀ ☉ ☀ ☀ ☀
- ☀ ☀ ☉ ☀ ☀
- ☀ ☀ ☀ ☀ ☉
- ☉ ☉ ☉ ☉ ☉
- ☔ ☔ ☔ ☔ ☔
- ☉ ☐ ☐ ☐ ☉
- ☐ ☐ ☐ ☐ ☐
- ☐ ☐ ☐ ☐ ☐
- ☔ ☔ ☔ ☔ ☔

Zu untersuchendes Gen von Platte 1
Zu untersuchendes Gen von Platte 2
Gen von der Kontrollplatte
Guide dot

2.2.2.14.3 Prozessieren der Membranen

Nach dem Spotten der DNA-Sonden wurden die Membranen noch kurz im Roboter belassen, damit die DNA leicht antrocknen konnte. Für eine erfolgreiche Hybridisierung muss die DNA einzelsträngig vorliegen. Zur Denaturierung der Sonden wurden die Membranen mit der DNA-Seite nach oben für 4 min auf zwei in Denaturierungslösung getränkte Gel-Blotting-Papiere und anschließend 2 x 2 min auf zwei in Neutralisierungslösung getränkte Gel-Blotting-Papiere gelegt. Danach wurden die Membranen getrocknet und die DNA durch UV-Fixierung (0,4 J/cm²) an die Membran gebunden. Die fertigen Arrays wurden bei Raumtemperatur luft- und lichtgeschützt bis zur Hybridisierung aufbewahrt (modifiziert nach Uhde-Stone et al., 2003).

Denaturierungslösung: 1,5 M NaCl; 0,5 M NaOH
Neutralisierungslösung: 1,5 M NaCl; 0,5 M Tris-HCl pH 7,4

2.2.2.14.4 Herstellung einer radioaktiv markierten cDNA aus Gesamt-RNA

Um Gene zu finden, die mit den gespotteten Sonden auf der Membran interagieren, wurde die mRNA eines Gewebes durch eine reverse Transkription in eine einzelsträngige cDNA umgeschrieben. Diese cDNA wurde mit α[^3P]-dCTP (Hartmann Analytic GmbH, Braunschweig) markiert, um die Interaktion später anhand der β-Strahlung sichtbar zu machen. Für jede Reaktion wurden 10 µg Gesamt-RNA und 100 µCi α[^3P]-dCTP eingesetzt.

Protokoll einer Erststrang-cDNA-Synthese mit α[^3P]-dCTP

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt-RNA</td>
<td>10 µg</td>
</tr>
<tr>
<td>oligo (dT)₂₀-Primer</td>
<td>1 µg</td>
</tr>
</tbody>
</table>

→ 5 min 65 °C zum Anlagern der Primer, 2 min auf Eis
MATERIAL UND METHODEN

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>DTT</td>
<td>4 mM</td>
</tr>
<tr>
<td>dATP, dGTP, dTTP</td>
<td>je 0,5 mM</td>
</tr>
<tr>
<td>$\alpha^{[32P]}$-dCTP</td>
<td>100 µCi</td>
</tr>
<tr>
<td>dCTP</td>
<td>2,8 µM</td>
</tr>
<tr>
<td>RNasin</td>
<td>40 units</td>
</tr>
<tr>
<td>SuperScript™ III Reverse Transcriptase</td>
<td>200 units</td>
</tr>
</tbody>
</table>

\rightarrow 1,5 h 45 °C inkubieren; 15 min 70 °C zur Denaturierung des Enzyms; plus je 0,5 µl RNaseH (40 units/µl) \rightarrow 20 min 37 °C inkubieren

Um die cDNA von überschüssigen Nukleotiden und dem Reaktionsgemisch zu befreien, wurde sie mit dem Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim) wie folgt gereinigt:

- Zugabe von je 50 µl ddH₂O
- Zugabe von je 75 µl Bindungspuffer \rightarrow je 0,75 µl abnehmen zur Bestimmung der Einbaurate von $\alpha^{[32P]}$-dCTP, 155 µl auf Säule geben, 1 min stehen lassen, 1 min bei 6000 Upm zentrifugieren, Durchlauf getrennt auffangen
- Zugabe von 2x 300 µl Waschpuffer, je 1 min bei 6000 Upm zentrifugieren, 2 min bei 13000 Upm leer zentrifugieren
- Ethanol 2 min abdampfen lassen, 2 x 75 µl warmes ddH₂O (50 °C) zugeben, je 1 min bei 13000 Upm eluieren
- Durchlauf auf dieselbe Säule geben, 1 min stehen lassen, 1 min bei 6000 Upm zentrifugieren
- Zugabe von 2x 300 µl Waschpuffer, je 1 min bei 6000 Upm zentrifugieren, 2 min bei 13000 Upm leer zentrifugieren
- Ethanol 2 min abdampfen lassen, 50 µl warmes ddH₂O (50 °C) zugeben, 2 min bei 13000 Upm zentrifugieren; je 1 µl abnehmen zur Bestimmung der Einbaurate von $\alpha^{[32P]}$-dCTP

Die Einbaurate von $\alpha^{[32P]}$-dCTP wurde mit Hilfe eines Beta-Counters bestimmt. Dieser misst die freierwerdende Lichtenergie, die von Elektronen ausgeht, die durch β-Strahlung angeregt und dadurch auf ein höheres Energieniveau gehoben werden. Dazu wurde jeweils ein Aliquot der Reaktion vor und nach der Reinigung entnommen und mit Szintillationsflüssigkeit (Ultima Gold, Perkin Elmer) versetzt. Aus der gemessenen Strahlungsintensität (cpm, counts per minute) wurde die Einbaurate in Prozent errechnet. Die Probe wurde nur verwendet, wenn die Einbaurate über 60 % lag. Zur weiteren Qualitätsüberprüfung der cDNA wurde diese über ein denaturierendes Agarosegel aufgetrennt, um die Länge der entstandenen cDNA-
Moleküle zu bestimmen. Als Größenmarker wurde ein mit $\alpha^{[32P]}$-dCTP (Hartmann Analytic GmbH, Braunschweig) markierter Lambda DNA/Hind III Größenstandard (Promega, Mannheim) verwendet.

Protokoll für die Markierung des Größenstandards Lambda DNA/Hind III mit $\alpha^{[32P]}$-dCTP

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda DNA/ HindIII</td>
<td>1 µg</td>
</tr>
<tr>
<td>10x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>dATP, dGTP, dTTP</td>
<td>je 16 µM</td>
</tr>
<tr>
<td>$\alpha^{[32P]}$-dCTP</td>
<td>20 µCi</td>
</tr>
<tr>
<td>Klenow Enzym</td>
<td>10 units</td>
</tr>
</tbody>
</table>

→ 20 min 37 °C inkubieren; 1 µl EDTA (500 mM, pH 8,0) zum Abstoppen der Reaktion zugeben

Anschließend wurde die Probe zur Entfernung überflüssiger Nukleotide mit dem Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim) wie oben beschrieben gereinigt.

Für das Bloten der cDNA wurde die Methode von Southern (1975) verwendet. Das Prinzip dieses Blotverfahrens besteht darin, dass gelelektrophoretisch getrennte DNA-Fragmente denaturiert, auf Membranen transferiert und fixiert werden. Während des Transfers der DNA bleiben die Positionen auf dem Gel erhalten, so dass man auf der Membran ein identisches Replikat des Gels erhält. Es wurden keine Nitrozellulosefilter, sondern Nylonmembranen (Hybond-N+, Amersham Pharmacia Biotech Europe) verwendet. Alle Arbeitsschritte wurden bei Zimmertemperatur ausgeführt. Das Gel wurde für 10 min in 2 N HCl gelegt, um die Proteine zu depurinieren. Danach wurde eine Blot-Apparatur aufgebaut (siehe Abb. 2.2) und die cDNA aufgrund von Kapillarkräften über Nacht auf die Nylonmembran transferiert. Am nächsten Tag wurde die Membran luftblasenfrei in Saran-Folie gewickelt. Darauf wurde ein Phosphoimager-Film (PI-Film) gelegt und für mehrere Stunden exponiert. Der Film wurde dann am Phosphoimager eingescannt.
2.2.2.14.5 Radioaktive Markierung des PCR-Produktes Ara179 (Guide dot) mit $\alpha^{[33P]}$-dCTP

Als Kontrolle für eine gleichmäßige Hybridisierung diente ein PCR-Fragment aus dem Gen CWLP von Arabidopsis thaliana, das im Mausgenom nicht vorkommt. Dieses wurde mit $\alpha^{[33P]}$-dCTP (Hartmann Analytic GmbH, Braunschweig) nach der Random-Primer-Labeling-Methode (Feinberg & Vogelstein, 1983) markiert und zum Hybridisierungsmix extra zugegeben.

Protokoll der CWLP-Markierung mit $\alpha^{[33P]}$-dCTP

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Produkt Ara179</td>
<td>100 ng</td>
</tr>
<tr>
<td>10x Puffer</td>
<td>1 x</td>
</tr>
<tr>
<td>Hexa-Nukleotid-Primer</td>
<td>100 ng</td>
</tr>
</tbody>
</table>

5 min bei 95 °C denaturieren, danach auf Eis stellen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>dATP, dGTP, dTTP</td>
<td>je 16 µM</td>
</tr>
<tr>
<td>$\alpha^{[33P]}$-dCTP</td>
<td>10 µCi</td>
</tr>
<tr>
<td>Klenow Fragment</td>
<td>10 units</td>
</tr>
</tbody>
</table>

20 min bei 37 °C inkubieren; Zugabe von je 12,5 µM dATP, dGTP, dTTP und dCTP

5 min bei 37 °C inkubieren; zum Abstoppen der Reaktion 1 µl EDTA (0,5 M, pH 8,0) zugeben
Anschließend wurden überschüssige Nukleotide in den Proben durch Reinigung mit dem Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim) wie oben beschrieben entfernt und die Einbaurate bestimmt.

2.2.2.14.6 Hybridisierung der Macroarrays

Verwendete Lösungen:

- Hybridisierungspuffer (100 ml):
 60 ml 20 x SSC
 10 ml 100 x Denhardt's (2 % BSA, 2 % Polyvinylpyrrolidone, 2 % Ficoll)
 1 ml Heringssperma-DNA (10 mg/ ml)
 5 ml 10 % SDS (erst zum Schluss nach dem Erwärmen zugeben)
 24 ml ddH₂O

- Waschlösung 1: 1 x SSC/ 0,1 % SDS
- Waschlösung 2: 0,3 x SSC/ 0,1 % SDS
- Waschlösung 3: 0,1 x SSC/0,1 % SDS

Standardprotokoll für eine Hybridisierung von cDNA-Macroarrays

- Blot 5 min bei RT in ddH₂O stark schütteln; Achtung: Blot muss überall bedeckt sein!!
- Blot mind. 2 h bei 65 °C in Hybridisierungspuffer inkubieren (8 ml – 15 ml, je nach Größe der Rollflasche) = Prähybridisierung
- Denaturierung der cDNA (Probe, inklusive des Guide dots) 10 min bei 95 °C
- Hybridisierung: Puffer austauschen, gesamte Probe (45-70 Mio. cpm + 0,1-0,2 Mio. cpm Guide dot) zugeben, 16 h bei 65 °C hybridisieren
- Waschen (alle Lösungen werden auf 55 °C vorgewärmt)
 * 20 min Waschlösung 1 65 °C Rollflasche
 * 10 min Waschlösung 2 65 °C Rollflasche
 * 10 min Waschlösung 3 65 °C Schale
 * auf Whatman-Papier lufttrocknen, in Saran-Folie blasenfrei einwickeln
- Exposition: 16 h Phosphoimager-Film, scannen am Phosphoimager Typhoon (GE Healthcare Europe GmbH, Freiburg)

2.2.2.14.7 Auswertung der Macroarrays

Die Auswertung der gescannten Filme erfolgte densitometrisch mit der ImageQuant Software (Version 5.2, Molecular Dynamics) Diese Software bestimmt die Pixeldichte der einzelnen Spots und rechnet sie in Zahlen um.
Die Quadruplikate der Gene wurden gemittelt, so dass jedem Gen ein Intensitätswert zugeordnet wurde.

Da die Hybridisierungen der Filter sehr unterschiedlich waren und somit auch die Gesamtintensitäten der Markierung, wurden die Rohdaten auf den Median aller Werte eines Filters normalisiert. Diese normalisierten Werte wurden dann für jeweils eine Bedingung gemittelt (z.B. SJL – 8 Wochen alt – Standard Diät – Braunes Fettgewebe) und die Standardabweichung bestimmt. Pro Bedingung wurden 2-3 Filter hybridisiert.

Als differentiell exprimiert wurden Gene bezeichnet, die folgende Kriterien erfüllten:

- Die normalisierte Intensität musste größer als zwei Scan-Einheiten sein (Spots mussten makroskopisch zu sehen sein).
- Die Änderung musste mindestens zweifach sein.
- Der Wert der Änderung musste größer sein als die Summe der Standardabweichung beider untersuchter Bedingungen.

2.2.2.15 Microarray-Methode

Mit DNA-Microarrays kann die Genexpression von mehr als 20 000 Genmodellen auf einmal untersucht werden. In der vorliegenden Arbeit wurden die Genexpressionen zwischen den Mausstämmen NZO und SJL auf Chromosom 5 miteinander verglichen.

exprimiert wurden dabei die Gene betrachtet, deren Expressionsunterschied zwischen den zu untersuchenden Bedingungen mehr als zweifach war.

2.2.2.16 Analyse der Genexpression mittels quantitativer Real Time-PCR (qRT-PCR)

Die TaqMan-qRT-PCR wurde mit 25 ng cDNA und 1 µl Sonde inklusive Primer (Applied Biosystems, Foster City, CA, USA) sowie 1x TaqMan® Universal PCR Master Mix, No AmpErase® UNG (Applied Biosystems, Foster City, CA, USA) durchgeführt. Der 1x TaqMan® Universal PCR Master Mix enthält 400 µM dATP, dCTP, dGTP, 800 µM dUTP; 0,2 U UNG (AmpErase Uracil N-glycosylase) und 1 U Amplitaq-Gold-DNA-Polymerase. Während der PCR-Amplifikation spaltet die Taq-Polymerase mit ihrer 5'-nukleolytischen Aktivität die Sonde. Die Emission des 5'-Reporterfluoreszenzfarbstoffs wird nicht mehr durch die räumliche Nähe des 3'-Quencherfluoreszenzfarbstoffs unterdrückt. Somit kann der 5'-Reporterfluoreszenzfarbstoff mittels eines Argon-Lasers angeregt und das emittierte Licht gemessen werden. Die Intensität der Lichtemission ist wiederum direkt proportional zu der Menge des gebildeten PCR-Produkts.
Beide qRT-PCR-Methoden erfolgten in optisch durchlässigen 96-Well-Platten mit optisch durchlässigen Verschlussfolien. Kurz bevor die Platte in das Applied Biosystems 7300 Real-Time-PCR-System (Applied Biosystems, Foster City, CA, USA) eingesetzt wurde, fand eine Zentrifugation für eine Minute bei 1,5 x g statt, damit die gesamte Flüssigkeit am Boden der Wells lag. Ein Dekontaminierungsschritt bei 50 °C für 2 min zum Abbau eventuell vorhandener Uracil-haltiger Amplikons einer vorhergehenden qRT-PCR wurde vorgenommen. Es schloss sich eine initiale Denaturierung für 10 min an, anschließend folgten 40 Zyklen mit je einer Denaturierung für 15 sek bei 95 °C und einem kombinierten Annealing- und Extensionsschritt für 1 min bei 60 °C, entsprechend der Empfehlung von Applied Biosystems (Foster City, CA, USA).

3 ERGEBNISSE

3.1 Zucht und phänotypische Charakterisierung der Versuchstiere

Um Kandidatengene für Nob1 zu identifizieren, wurden Expressionsstudien mit RNA aus Geweben der Parentalstämme SJL und NZO durchgeführt. Für diese Analysen wurden männliche und weibliche NZO- und SJL-Mäuse verwendet. Sie wurden unter Standardbedingungen gehalten (siehe 2.2.1) und über einen Zeitraum von zwölf Wochen phänotypisch charakterisiert. Die verabreichten Diäten waren wie folgt zusammengesetzt:

- Standard-Diät (SD): 48 % Kohlenhydrate, 22,5 % Proteine, 5 % Fett (Sojaöl)
- Hochfett-Diät (HFD): 46,8 % Kohlenhydrate, 17,1 % Proteine, 16 % Fett (Sojaöl)

Wie in Tab. 3.1 gezeigt, waren NZO-Mäuse suszeptibel für eine Gewichtszunahme bei Fütterung einer HFD. SJL-Mäuse dagegen waren resistent gegenüber einer diätbedingten Gewichtszunahme. Der Gewichtsunterschied zwischen SD- und HFD-gefütterten Tieren betrug bei NZO-Weibchen ca. 18 g, bei SJL-Weibchen dagegen ca. 1 g. Weibliche NZO-Tiere nahmen in acht Wochen ca. 35 g zu, die vor allem auf eine Zunahme des Fettanteils (ca. 27 g) zurückzuführen waren, während SJL-Weibchen im gleichen Zeitraum nur etwa 5 g zunahmen.

Tab. 3.1: Phänotypische Charakterisierung der Versuchstiere für die Arrayexperimente. Gezeigt sind die Mittelwerte (MW) und Standardabweichungen (SD) für die Körpergewichte (KG), Fettgehalte und Muskelmasse der NZO- und SJL-Mäuse bei Fütterung einer (A) Standard-Diät bzw. (B) Hochfett-Diät. [n] – Tierzahl

A Standard-Diät

<table>
<thead>
<tr>
<th>Mauslinie</th>
<th>Geschlecht</th>
<th>Lebenswoche</th>
<th>KG (g)</th>
<th>Fett (g)</th>
<th>Muskel (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZO</td>
<td>♂</td>
<td>4</td>
<td>19,4</td>
<td>3,5</td>
<td>14,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>31,9</td>
<td>10,0</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>38,8</td>
<td>14,8</td>
<td>23,5</td>
</tr>
<tr>
<td>SJL</td>
<td>♂</td>
<td>4</td>
<td>13,9</td>
<td>1,2</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>18,2</td>
<td>2,1</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>19,0</td>
<td>2,0</td>
<td>14,9</td>
</tr>
</tbody>
</table>

B Hochfett-Diät

<table>
<thead>
<tr>
<th>Mauslinie</th>
<th>Geschlecht</th>
<th>Lebenswoche</th>
<th>KG (g)</th>
<th>Fett (g)</th>
<th>Muskel (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZO</td>
<td>♂</td>
<td>4</td>
<td>21,6</td>
<td>4,6</td>
<td>15,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>40,6</td>
<td>18,5</td>
<td>23,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>56,5</td>
<td>31,3</td>
<td>28,8</td>
</tr>
<tr>
<td>SJL</td>
<td>♂</td>
<td>4</td>
<td>23,0</td>
<td>5,1</td>
<td>17,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>30,7</td>
<td>7,4</td>
<td>28,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>38,4</td>
<td>10,9</td>
<td>31,3</td>
</tr>
<tr>
<td>SJL</td>
<td>♂</td>
<td>4</td>
<td>14,4</td>
<td>1,6</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>18,3</td>
<td>2,2</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>20,1</td>
<td>2,8</td>
<td>15,4</td>
</tr>
</tbody>
</table>

Tab. 3.1: Phänotypische Charakterisierung der Versuchstiere für die Arrayexperimente. Gezeigt sind die Mittelwerte (MW) und Standardabweichungen (SD) für die Körpergewichte (KG), Fettgehalte und Muskelmasse der NZO- und SJL-Mäuse bei Fütterung einer (A) Standard-Diät bzw. (B) Hochfett-Diät. [n] – Tierzahl
3.2 Auswahl der Transkripte des Nob1 für die Herstellung des Macroarray

- **RefSeq-Modelle**: zumeist experimentell validierte Genmodelle, die durch beschriebene mRNAs und Expressed Sequence Tags (ESTs, 500 bis 800 bp-lange Nukleotidsequenzen einer transkribierten mRNA) unterstützt werden. Die RefSeq-Sequenz eines Transkriptes ist dabei die wahrscheinlichste Sequenz der mRNA, die alle zugeordneten ESTs und mRNAs berücksichtigt. Ihre Sequenz-Identitätsnummer beginnt meist mit den Buchstaben NM_[Nr.].
- **„LOC“-Modelle**: vorhergesagte Genmodelle, für die keine orthologen Gene in anderen Spezies bekannt sind (Kriterien laut NCBI). Die bioinformatisch bestimmte Sequenz beginnt mit den Buchstaben XM_[Nr.].

Jedes im QTL-Bereich lokalierte Genmodell wurde bioinformatisch auf eine mögliche Expression geprüft. Das wichtigste Kriterium war dabei die Anzahl der zugehörigen mRNAs und ESTs. Für die Expressionsanalysen wurden neben bekannten Genen (mit beschriebenem Protein) hauptsächlich RefSeq-Modelle ausgewählt. Zusätzlich wurden solche Genmodelle einbezogen, für die mehrere ESTs oder mindestens eine mRNA in der Gendatenbank angegeben waren (Evidence viewer, NCBI). Viele „LOC“-Modelle, für die das nicht der Fall war, wurden nicht analysiert sowie Pseudogene und Gene, die für ribosomale RNAs codierten, wurden ausgeschlossen (Σ etwa 200 Genmodelle).

Nach der bioinformatischen Analyse der Genmodelle wurde mit Hilfe der BLAST- und der BLAT-Software überprüft, ob homologe Abschnitte im Genom zu finden waren oder ob es Bereiche innerhalb der Sequenz gab, die im Genom mehrfach auftraten. Dies geschah, um die Spezifität zu erhöhen und repetitive Sequenzen in DNA-Sonden zu verhindern. Konnte

Legende

- **Genome sequence (C)**
- **model exons, single (M)**
- **mRNA exons, single (G, R)**
- **model exons, overlapping (M)**
- **mRNA exons, overlapping (G, R)**

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Alignment</th>
<th>Mausstamm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT 03905.7</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK061324.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK009520.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK152270.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK137807.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK138668.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK140195.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GAK143753.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>GBC066868.1</td>
<td></td>
<td>CD1</td>
</tr>
<tr>
<td>GSE410099.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
<tr>
<td>RN1M 008994.1</td>
<td></td>
<td>C57BL/6J</td>
</tr>
</tbody>
</table>

EST-Häufigkeit

- 1 EST
- 2-5 ESTs
- 6-20 ESTs
- 21-99 ESTs
- >100 ESTs

Abb. 3.1: Darstellung der evidence viewer von zwei ausgewählten Transkriptionsmodellen innerhalb des Nob1. Der evidence viewer (NCBI) gibt einen Überblick der bekannten ESTs und mRNAs für ein Transkript und läßt Schlussfolgerungen über eine mögliche Expression dieses Modells zu. In den gezeigten Fällen (A) Ppargc1a und (B) D5Ertd579e deutet die Anzahl der ESTs und mRNA-Sequenzen auf ein exprimiertes Gen hin. Von beiden Genmodellen wurden Sonden für die Expressionsstudien durch Macroarrays hergestellt.

3.2.1 Auswahl von weiteren Kandidatengenen außerhalb des QTL Nob1

In einem genomweiten Screening mit Hilfe der RNAi-Technik wurden bei dem Fadenwurm C. elegans 417 Gene identifiziert, deren Ausschalten eine erniedrigte bzw. erhöhte Fetteinlagerung zur Folge hatte (Ashrafi et al., 2003). Annette Schürmann und Hadi Al-Hasani identifizierten 38 orthologe Mausgene, die einem bekannten Adipositas-QTL bei NZO-Mäusen...
zugeordnet waren (Tab. 3.2). Diese Gene wurden ebenfalls mit Hilfe der Macroarrays auf Expressionsunterschiede zwischen NZO- und SJL-Mäusen untersucht.

Tab. 3.2: Kandidatengene aus einem genomweiten RNAi-Screening nach Genen, die den Fettgehalt beim Fadenwurm *C. elegans* beeinflussen. Gezeigt sind orthologe Mausgene, die einem Adipositas-QTL zugeordnet werden konnten. Chr. – Chromosom; Pos (Bp) – genomische Position in Basenpaaren; A – Plum, unveröffentlichte Daten; B – Taylor et al., 2001; C – Leiter et al., 1998; D – Reifsnyder et al., 2000; E – Giesen et al., 2003

<table>
<thead>
<tr>
<th>C. elegans Symbol</th>
<th>M. musculus Symbol</th>
<th>Entrez Gene ID</th>
<th>Chr.</th>
<th>Pos (Bp)</th>
<th>NZO-QTL</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>T19D2.2 Ptp4a1</td>
<td>19243</td>
<td>1</td>
<td>30894290</td>
<td>Nzoq1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>TAG-172 clk1</td>
<td>12747</td>
<td>1</td>
<td>58368549</td>
<td>Nzoq1, Obq7</td>
<td>B, D</td>
<td></td>
</tr>
<tr>
<td>C36A4.5 Prg4</td>
<td>96875</td>
<td>1</td>
<td>64325891</td>
<td>Nzoq1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F11C1.6 Nr5a2</td>
<td>26244</td>
<td>1</td>
<td>138776858</td>
<td>Obq8</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C46H11.2 Fmo3</td>
<td>14262</td>
<td>1</td>
<td>164821165</td>
<td>Obq9</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C24A11.9 Pdss1</td>
<td>56075</td>
<td>2</td>
<td>22747728</td>
<td>D2Mit235/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C09G9.7 Pax8</td>
<td>18510</td>
<td>2</td>
<td>90836477</td>
<td>Obq10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T14B1.1 Trim44</td>
<td>80965</td>
<td>2</td>
<td>102201738</td>
<td>Obq10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>F56H11.6 Tbk2</td>
<td>140810</td>
<td>2</td>
<td>120542044</td>
<td>Obq10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>F46G11.3 Bmp2k</td>
<td>140780</td>
<td>5</td>
<td>97237990</td>
<td>D5Mit81</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C13D9.7 Scl24a6</td>
<td>170756</td>
<td>5</td>
<td>120771808</td>
<td>Chol1/NZO</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Y49E10.20 Scarb1</td>
<td>20778</td>
<td>5</td>
<td>125630052</td>
<td>Chol1/NZO</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>B0280.3 Rplia</td>
<td>19895</td>
<td>6</td>
<td>70721733</td>
<td>Obq13</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Y37A1A.1 Setmar</td>
<td>74729</td>
<td>6</td>
<td>108030821</td>
<td>Obq14</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Y57A1OB.1 March8</td>
<td>71779</td>
<td>6</td>
<td>116303741</td>
<td>Obq14</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>ZK909.3 Hdcc3</td>
<td>68695</td>
<td>7</td>
<td>80216849</td>
<td>Obq15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K02D3.2 Star5</td>
<td>170460</td>
<td>7</td>
<td>83508201</td>
<td>Obq15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>F56F3.4 Zfand6</td>
<td>65098</td>
<td>7</td>
<td>84555535</td>
<td>Obq15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>T07C12.5 Tyr</td>
<td>22173</td>
<td>7</td>
<td>87369171</td>
<td>Obq15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Y11D7A.9 Frag1</td>
<td>233575</td>
<td>7</td>
<td>102096894</td>
<td>D7Mit220/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Y6B3B.10 Lass1</td>
<td>93898</td>
<td>8</td>
<td>73244775</td>
<td>D8Mit008/SJL</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>VF13D12L.1 Isyna1</td>
<td>71780</td>
<td>8</td>
<td>73523469</td>
<td>D8Mit008/SJL</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F52H2.2 Scl7a5</td>
<td>20539</td>
<td>8</td>
<td>124802592</td>
<td>D8Mit013/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B0301.0 Kcnk1</td>
<td>16525</td>
<td>8</td>
<td>128881259</td>
<td>D8Mit013/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F46C5.6 Ppp4r4</td>
<td>74521</td>
<td>12</td>
<td>104770775</td>
<td>Nzoq2</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>8 F16B4.9 Ppara</td>
<td>19013</td>
<td>15</td>
<td>85563541</td>
<td>D15Mit241/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B0265.8 chkb</td>
<td>12651</td>
<td>15</td>
<td>89275685</td>
<td>D15Mit241/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Y38F1A.9 Cntr1</td>
<td>12805</td>
<td>15</td>
<td>91956371</td>
<td>D15Mit241/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Y53C12A.1 Pkmty1</td>
<td>268930</td>
<td>17</td>
<td>23454062</td>
<td>Obq4b</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>F49E11.4 Pt16</td>
<td>74116</td>
<td>17</td>
<td>29046244</td>
<td>D17Mit175/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F45H7.4 Pim1</td>
<td>18712</td>
<td>17</td>
<td>29217823</td>
<td>D17Mit175/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F39D8.2 Pkmox1</td>
<td>18771</td>
<td>17</td>
<td>31312405</td>
<td>D17Mit175/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C17E4.3 March2</td>
<td>224703</td>
<td>17</td>
<td>33325384</td>
<td>D17Mit175/NZO</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F14H8.1 Osbpl1a</td>
<td>64291</td>
<td>18</td>
<td>13084888</td>
<td>D18Mit60</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>K03B8.3 Mep1b</td>
<td>17288</td>
<td>18</td>
<td>21215353</td>
<td>D18Mit60</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F14D12.2 Lims2</td>
<td>225341</td>
<td>18</td>
<td>32074516</td>
<td>D18Mit60</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>ZK686.4 Zmat2</td>
<td>66492</td>
<td>18</td>
<td>36919896</td>
<td>D18Mit60</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Auswahl von Kontrollsonden

Mit den gewählten Kontrollen sollte die Effizienz und Qualität der Hybridisierungen der Macroarrays evaluiert werden können (Tab. 3.3 und Tab. A2 im Anhang). Die Kontrollsonden wurden aufgrund verschiedener Eigenschaften ausgewählt: (1) Gene, deren Expression sich zwischen verschiedenen Mausstämmen und unterschiedlichen Geweben nicht oder kaum verändert (= housekeeping gene); (2) Gene, die gewebsspezifisch exprimiert werden; (3) Gene des Lipid- und Glucose-Metabolismus; (4) zufällig ausgewählte Unigene-Tanskripte aus der RZPD-cDNA-Bibliothek Mouse unigene Set 2, die über das gesamte Genom verteilt waren. Da diese Transkripte aus einer cDNA-Bibliothek stammen, kann davon ausgegangen werden, dass sie exprimiert werden und dienen deshalb der Kontrolle der Hybridisierung. Für die Auswahl galten dieselben Kriterien wie für die Auswahl der Nob1-Kandidatengene (siehe 3.2).

Tab. 3.3: Ausgewählte Kontrollsonden für die Macroarrays. Gezeigt sind die Kontrollsonden der Gruppen (1) – (3) und ihre Funktion. Chr. – Chromosom; Pos (Bp) – genomische Position in Basenpaaren

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Entrez Gene ID</th>
<th>Chr.</th>
<th>Pos (Bp)</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipor1</td>
<td>72674</td>
<td>1</td>
<td>136231877</td>
<td>Fett-Metabolismus</td>
</tr>
<tr>
<td>H3f3a</td>
<td>15078</td>
<td>1</td>
<td>182650277</td>
<td>housekeeping Gen</td>
</tr>
<tr>
<td>Crat</td>
<td>12908</td>
<td>2</td>
<td>30237756</td>
<td>)-Oxidation</td>
</tr>
<tr>
<td>Pck1</td>
<td>18534</td>
<td>2</td>
<td>172796011</td>
<td>Fett-Metabolismus, Gluconeogenese</td>
</tr>
<tr>
<td>Cpt2</td>
<td>12896</td>
<td>4</td>
<td>107421465</td>
<td>Fettsäuretransport</td>
</tr>
<tr>
<td>Slc4a2</td>
<td>20535</td>
<td>5</td>
<td>23935383</td>
<td>gewebsspezifische Expression</td>
</tr>
<tr>
<td>Slc4a4</td>
<td>54403</td>
<td>5</td>
<td>90009307</td>
<td>gewebsspezifische Expression</td>
</tr>
<tr>
<td>Acacb</td>
<td>100705</td>
<td>5</td>
<td>114426516</td>
<td>Fettsäuresynthese</td>
</tr>
<tr>
<td>Gapdh</td>
<td>407972</td>
<td>6</td>
<td>125131222</td>
<td>housekeeping Gen</td>
</tr>
<tr>
<td>Canx</td>
<td>12330</td>
<td>11</td>
<td>50169013</td>
<td>Prozessierung von Antigenen</td>
</tr>
<tr>
<td>Art1</td>
<td>11840</td>
<td>11</td>
<td>59044380</td>
<td>housekeeping Gen</td>
</tr>
<tr>
<td>Srebf1</td>
<td>20787</td>
<td>11</td>
<td>60036798</td>
<td>Cholsterin-Metabolismus, Transkriptionsfaktor</td>
</tr>
<tr>
<td>Acaca</td>
<td>107476</td>
<td>11</td>
<td>84011658</td>
<td>Fettsäuresynthese</td>
</tr>
<tr>
<td>Fasn</td>
<td>14104</td>
<td>11</td>
<td>120640331</td>
<td>Fettsäuresynthese</td>
</tr>
<tr>
<td>Cpt1b</td>
<td>12895</td>
<td>15</td>
<td>89253113</td>
<td>Fettsäuretransport (langkettig)</td>
</tr>
<tr>
<td>Pcx</td>
<td>18563</td>
<td>19</td>
<td>4594345</td>
<td>Pyruvat-Metabolismus, Citratcycclus</td>
</tr>
<tr>
<td>Sodt</td>
<td>20249</td>
<td>19</td>
<td>44460863</td>
<td>Fettsäuresynthese</td>
</tr>
</tbody>
</table>

3.3 Expressionsanalysen

Um mögliche Genvarianten zu identifizieren, die den Gewichtseffekt des Nob1-Allels hervorrufen, wurden die zuvor ausgewählten 302 Nob1-Transkripte mit Hilfe von Macroarrays auf Expressionsunterschiede zwischen NZO und SJL untersucht.
3.3.1 Design und Herstellung der Sonden

Die Sequenzierung der PCR-Produkte von ca. 3 % aller Sonden (Whsc1, Msx1, Cxcl10, CD38, A730089K16Rik, 9030227G01Rik, Cdk12, 2310045A20Rik, C530008M17Rik, Cxcl9, Brdg1-pending) zeigte, dass die gewünschten PCR-Produkte amplifiziert wurden und damit auch die Primerspezifität.

3.3.2 Präparative PCR

Die DNA-Sonden wurden mit Hilfe der PCR-Technik hergestellt. Als Matrize (Template) für die DNA-Sonden sollte genomische DNA von C57BL/6J-Mäusen verwendet werden bzw. einzelsträngige cDNA (C57BL/6J-Mäuse), die durch reverse Transkription von mRNA entstand. Für die Sonden, die als cDNA-Klone von der RZPD-cDNA-Bibliothek Mouse unigene Set 2 bezogen wurden, diente Plasmid-DNA als Template (Tab. 3.4). Einige der Sonden, deren Template genomische DNA war, zeigten eine geringe PCR-Ausbeute (19 %). Diese PCR-Produkte wurden mit Hilfe einer TA-Klonierung in einen Sequenzierungsvektor eingebracht und anschließend mit Hilfe der jeweiligen Sequenzier-Primer amplifiziert (Abb. 3.3). Durch die Anwendung dieser Klonierungsmethode konnte die PCR-Ausbeute um das drei- bis vierfache gesteigert werden. Es gab nur zwei Transkripte der insgesamt 340 Kandidatengene, die sich weder mit Hilfe der Klonierungstechnik noch durch die Nutzung eines zweiten Primerpaares in ausreichender Menge amplifizieren ließen (Gm1676, BC061212).

Tab. 3.4: Nutzung unterschiedlicher Templates zur Herstellung der DNA-Sonden für die Macroarrays.

<table>
<thead>
<tr>
<th>Template</th>
<th>Anzahl der Sonden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomische DNA gesamt</td>
<td>201</td>
</tr>
<tr>
<td>- davon kloniert</td>
<td>38</td>
</tr>
<tr>
<td>cDNA</td>
<td>46</td>
</tr>
<tr>
<td>RZPD-Unigene-cDNA-Klone Nob1</td>
<td>112</td>
</tr>
<tr>
<td>RZPD-Unigene-cDNA-Klone Kontrollen</td>
<td>217</td>
</tr>
</tbody>
</table>
Template Menge herzustellen, wurde eine präparative PCR durchgeführt. Dazu diente die erste PCR als Vorstufe für die zweite PCR, eine sogenannte Reamplifizierungs-PCR. Mit dieser Methode sollte eine finale DNA-Menge von 3-10 µg pro Sonde amplifiziert werden. Um eine ausreichende Anzahl an Macroarrays zur Verfügung zu haben (ca. 80 Nylon-Filter), wurde erneut auf Homologien zu anderen Genen im gesamten Genom untersucht. Für das Design der Primer (Primer3-Software) wurde ein Bereich gewählt, der keine oder sehr wenige Homologien zu anderen Genen aufweist (> 300 bp). Die Basensequenz des elektronischen PCR-Produktes wurde erneut auf Homologien zu anderen Genen im gesamten Genom untersucht (BLAST-Software).

Um eine ausreichende Anzahl an Macroarrays zur Verfügung zu haben (ca. 80 Nylon-Filter), sollte eine finale DNA-Menge von 3-10 µg pro Sonde amplifiziert werden. Um diese DNA-Menge herzustellen, wurde eine präparative PCR durchgeführt. Dazu diente die erste PCR als Template für die zweite PCR, eine sogenannte Reamplifizierungs-PCR. Mit dieser Methode wird eine höhere DNA-Ausbeute erreicht. Das Gesamt-PCR-Volumen lag – je nach Effizienz...

Durch die angewandte Reamplifizierungsmethode wurde eine hohe DNA-Ausbeute erreicht. Für den größten Teil der Sonden wurde eine gesamte DNA-Menge von 3-15 µg erreicht, für 18 % der Sonden sogar mehr als 16 µg DNA.

Abb. 3.3: Strategie zur Amplifikation von DNA-Sonden für die Herstellung von Macroarrays. Nach der ersten PCR wurde ein Aliquot der Reaktion auf ein Agarosegel aufgetragen, um die Qualität und Quantität zu überprüfen (S = Größenstandard). PCR-Produkte mit starker Bande (hohe Effizienz) wurden direkt in die Reamplifizierungs-PCR eingesetzt, solche mit schwacher Bande (geringe Effizienz) wurden erst in einen Plasmidvektor eingebracht und anschließend reamplifiziert. Die Konzentration der aufgereinigten PCR-Reaktionen wurde mit drei unterschiedlichen Mengen des MassRulers (a, b, c) durch lineare Regression mit der Software ImageQuant bestimmt. Dabei entsprachen die Pixel-Intensitäten der 500 bp-Bande von a) 2,5 µl; b) 5 µl und c) 10 µl den DNA-Mengen von a) 25 ng; b) 50 ng und c) 100 ng.
3.3.3 Herstellung der Filter

Für die Herstellung der Filter wurde die doppelsträngige DNA durch ein alkalisches Milieu denaturiert. Dies war notwendig, um später die einzelsträngige radioaktiv markierte cDNA binden zu können. Jede Sonde wurde durch einen Roboter vierfach auf den Filter gespottet, so dass für die Auswertung vier Einzelwerte zur Verfügung standen. Dieser Prozess wurde am MPI für Molekulare Genetik (Berlin) in Zusammenarbeit mit Claus Hultschig durchgeführt (siehe 2.2.2.14.2 und 2.2.2.14.3).

3.3.4 cDNA-Synthese und Hybridisierung der Macroarrays

Die erfolgreiche Hybridisierung der Arrays setzt eine Einbaurate des radioaktiv markierten Nukleotids in die cDNA von mind. 50 % voraus. Dies wurde durch den Einsatz von zusätzlichem nicht markiertem dCTP und durch die Modifizierung des Reinigungsprotokolls erreicht. Der erste Durchlauf des Reaktionsgemisches, der eigentlich nur Reaktionspuffer, Enzym und nicht eingebaute Nukleotide enthalten sollte, wurde aufbewahrt und nach der ersten Elution nochmals auf die Reinigungssäule (Säulenchromatographie) gegeben. Die Elution der radioaktiv markierten cDNA nach dieser zweiten Bindung an die Silica-Matrix der Säule erfolgte zweimal mit warmem destilliertem Wasser (50 °C). Durch diese Modifizierungen erhöhte sich die Ausbeute von 25 % auf 60-70 %. Zusätzlich ist es für die Hybridisierung des gesamten Filters immens wichtig, dass die revers transkribierten cDNAs aus Gesamt-mRNAs Längen bis zu 1500 bp erreichen, weil einige DNA-Sonden bis zu 1500 bp vom 3'-Ende der mRNA entfernt lagen. Dies wurde mit Hilfe von denaturierenden cDNA-Gelen überprüft. Das Gel wurde auf einen Nylonfilter geblottet und die Länge der cDNAs mit Hilfe eines radioaktiv markierten Größenstandards bestimmt (Abb. 3.4).
Abb. 3.4: Denaturierendes Agarosegel zur Bestimmung der Länge von revers transkribierten cDNAs. Die mit $\alpha^{[32}\text{P}]$-dCTP markierten cDNAs wurden nach der Methode von Southern auf eine Nylonmembran geblottet, auf einen Phosphoimager-Film exponiert und mit einem Phosphoimager gescannt. Zu sehen sind cDNAs aus Gesamt-mRNAs von (A) Leber, SJL weiblich, 8 Wochen, SD und (B) Leber, NZO weiblich, 8 Wochen, SD. Beide cDNA-Gemische enthalten cDNAs, die bis zu 1500 bp lang sind und eignen sich daher zur Hybridisierung der Macroarrays.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NZO</td>
<td>SD</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HFD</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SJL</td>
<td>SD</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HFD</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
3.3.5 Auswertung der Macroarrays

Nach der Auswertung der Pixelintensitäten mit der *ImageQuant*-Software wurden die vier Einzelwerte jeder Sonde gemittelt und dieser Mittelwert auf den Median der Gesamtintensität aller Spots normalisiert (Herwig *et al*., 2001).

Eine Möglichkeit der Auswertung von Array-Experimenten sind Scatter-Plots. Dabei werden die normalisierten Intensitäten der Sonden zweier Bedingungen gegeneinander aufgetragen. Werden Gene unter den untersuchten Bedingungen differentiell exprimiert, weicht der resultierende Punkt von der Ideallinie ab (Abb. 3.6).

Als differentiell exprimiert wurden Gene bezeichnet, die folgende Kriterien erfüllten:

- Die normalisierte Intensität musste größer als zwei Scan-Einheiten sein (Signal der Spots auf dem PI-Film musste makroskopisch sichtbar sein).
- Die Änderung musste mindestens zweifach sein.
- Der numerische Wert der Änderung musste größer sein als die Summe der Standardabweichung beider Bedingungen.

Die Gene, die als differentiell exprimiert identifiziert wurden, sind in Tab. 3.7 aufgelistet.

3.3.6 Hybridisierung der Microarrays

Für die vorliegende Arbeit wurden nur Expressionsunterschiede von Genen auf Chromosom 5 betrachtet.

Ein Vergleich der Transkripte im Bereich des *Nob1* auf dem Macroarray und Microarray zeigte elf Transkripte, die exklusiv mit dem Macroarray analysiert wurden und zwölf Transkripte, die nur mit den Microarrays untersucht wurden (Tab. 3.6).

Die Gene, die eine differentielle Expression im weißen Fettgewebe zwischen SJL- und NZO-Mäusen zeigten, sind in Tab. 3.7 aufgelistet.
Tab. 3.6: Vergleich der nicht betrachteten \textit{Nob1}-Transkripte mit den durchgeführten Macro- bzw. Microarrays. Dargestellt sind Transkripte, die (A) ausschließlich Hilfe des selbst hergestellten Macroarray bzw. (B) nur durch den Einsatz des kommerziell erhältlichen Affymetrix-Chips \textit{Mouse 430.2} auf ihre Expression untersucht wurden. Grundlage der Lokalisation der Transkripte war (A) die NCBI-Gendatenbank (Build 36.1) bzw. (B) die Affymetrix-Annotation für den Bereich 29-93 Mbp des Chr. 5.

<table>
<thead>
<tr>
<th>Genname</th>
<th>EntrezGene ID</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110019K23Rik</td>
<td>665563</td>
<td>-</td>
</tr>
<tr>
<td>9430027B09Rik</td>
<td>77272</td>
<td>hypothetisch</td>
</tr>
<tr>
<td>\textit{Dnajc5g}</td>
<td>231098</td>
<td>hypothetisch</td>
</tr>
<tr>
<td>\textit{G6pd2}</td>
<td>14380</td>
<td>beschrieben, NP_062341</td>
</tr>
<tr>
<td>\textit{Pdlim1}</td>
<td>54132</td>
<td>beschrieben, NP_058557</td>
</tr>
<tr>
<td>\textit{Rbpj}</td>
<td>19664</td>
<td>beschrieben, 3 Isoformen</td>
</tr>
<tr>
<td>\textit{Slc10a4}</td>
<td>231290</td>
<td>beschrieben, NP_775579</td>
</tr>
<tr>
<td>\textit{Ugt2b35}</td>
<td>243085</td>
<td>beschrieben, NP_766469</td>
</tr>
<tr>
<td>\textit{Ugt2b5}</td>
<td>22238</td>
<td>beschrieben, NP_033493</td>
</tr>
<tr>
<td>\textit{UTP3}</td>
<td>65961</td>
<td>beschrieben, NP_075541</td>
</tr>
<tr>
<td>\textit{Zar1}</td>
<td>317755</td>
<td>beschrieben, NP_777366</td>
</tr>
</tbody>
</table>

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Genname & EntrezGene ID & Protein \\
\hline
1700021O21Rik | 75536 | - \\
1700031L13Rik | 67327 | - \\
2210406O10Rik | 76710 | - \\
2900064F13Rik | 73043 | - \\
4930421C12Rik | 78788 | - \\
4930432L08Rik | 74621 | - \\
4930478P22Rik | 74429 | - \\
AW125296 | 13839 | - \\
B930098A02Rik | 320462 | - \\
C030009O12Rik | 77328 | - \\
C630010D07Rik | 665563 | hypothetisch, 2 Isoformen |
D\textit{cun1d4} | 100737 | hypothetisch |
\hline
\end{tabular}
\end{table}
Nach der Auswertung aller Array-Experimente wurden 17 Gene auf Chr. 5 als differentiell exprimiert identifiziert, davon 14 Gene im Bereich des Nob1 (Tab. 3.7).

Tab. 3.7: Differentiell exprimierte Gene zwischen NZO- und SJL-Mäusen auf Chromosom 5. Durch Experimente mit Macro- und Microarrays wurden 18 Gene auf Chr. 5 gefunden, die entweder zwischen beiden Maustämmen oder durch den Einfluss der Diät innerhalb eines Mausstammes differentiell exprimiert wurden. Die Verifizierung erfolgte mit quantitativer RealTime-PCR, dabei konnte die differentielle Regulation bei 7 der 18 Gene bestätigt werden (fette Schrift). WAT = weißes Fettgewebe; BAT = braunes Fettgewebe

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Gewebe</th>
<th>Array</th>
<th>genomische Position auf Chr. 5</th>
<th>normalisierte Arrayintensitäten NZO:SJL</th>
<th>verifiziert durch qRT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mll5</td>
<td>WAT</td>
<td>Microarray</td>
<td>23 Mbp</td>
<td>2,93</td>
<td>x</td>
</tr>
<tr>
<td>Insig1</td>
<td>WAT</td>
<td>Microarray</td>
<td>28 Mbp</td>
<td>0,82</td>
<td>x</td>
</tr>
<tr>
<td>Mpv 17</td>
<td>Hypothalamus</td>
<td>Microarray</td>
<td>31 Mbp</td>
<td>6,60</td>
<td></td>
</tr>
<tr>
<td>Abhd1</td>
<td>WAT</td>
<td>Microarray</td>
<td>31 Mbp</td>
<td>0,46</td>
<td>x</td>
</tr>
<tr>
<td>Ppp1cb</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>32 Mbp</td>
<td>3,16</td>
<td></td>
</tr>
<tr>
<td>Ppp1cb</td>
<td>WAT</td>
<td>Microarray</td>
<td>32 Mbp</td>
<td>2,00</td>
<td>x</td>
</tr>
<tr>
<td>Letm 1</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>34 Mbp</td>
<td>4,52</td>
<td></td>
</tr>
<tr>
<td>Mrap 1</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>37 Mbp</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>Cpeb2</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>43 Mbp</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Qdpr</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>46 Mbp</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>2310045A20Rik</td>
<td>BAT</td>
<td>Macroarray</td>
<td>54 Mbp</td>
<td>0,44</td>
<td>x</td>
</tr>
<tr>
<td>Pgm1</td>
<td>BAT</td>
<td>Macroarray</td>
<td>64 Mbp</td>
<td>0,43</td>
<td></td>
</tr>
<tr>
<td>Tbc1d1</td>
<td>Skelettmuskel</td>
<td>Macroarray</td>
<td>64 Mbp</td>
<td>3,25</td>
<td>x</td>
</tr>
<tr>
<td>Gabra 4</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>71 Mbp</td>
<td>4,22</td>
<td></td>
</tr>
<tr>
<td>Igfbp7</td>
<td>Hypothalamus</td>
<td>Macroarray</td>
<td>78 Mbp</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>Spink2</td>
<td>WAT</td>
<td>Microarray</td>
<td>78 Mbp</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td>Aacs</td>
<td>WAT</td>
<td>Microarray</td>
<td>126 Mbp</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>Alox5ap</td>
<td>WAT</td>
<td>Microarray</td>
<td>149 Mbp</td>
<td>1,08</td>
<td>x</td>
</tr>
</tbody>
</table>

Zur unabhängigen Bestätigung der Ergebnisse aus den Array-Experimenten wurden die Genexpressionen mit q-RT-PCR ermittelt und zwischen den Stämmen NZO und SJL verglichen. Die Expressionsunterschiede bei den Genen 2310045A20Rik, Tbc1d1, Mll5, Insig1, Abhd1, Ppp1cb und Alox5ap wurden validiert (siehe Tab. 3.7).

Die Riken-cDNA 2310045A20Rik wurde im braunen Fettgewebe von SJL-Mäusen stärker exprimiert als bei NZO-Mäusen (1,03±0,26 vs. 0,33±0,07). Tbc1d1 zeigte im Skelettmuskel der SJL-Tiere eine deutlich erniedrigte Expression im Vergleich zu NZO-Tieren (0,13±0,05 vs. 1,71±0,73). Die Gene Abhd1 und Insig1 zeigten im weißen Fettgewebe der SJL-Tiere eine höhere Expression (3,93±0,26 vs. 1,14±0,57 und 1,64±0,21 vs. 1,02±0,19) als bei den NZO-Tieren. Die Gene Mll5 und Ppp1cb hingegen wiesen im weißen Fettgewebe der NZO-Mäuse
(1,00±0,09 vs. 0,34±0,17 und 1,00±0,11 vs. 0,75±0,09) eine erhöhte Expression im Vergleich zu den SJL-Mäusen auf. Eine Expression des Genes \textit{Alox5ap} war nur im weißen Fettgewebe von NZO-Tieren zu detektieren, bei SJL-Tieren war keine Expression nachzuweisen (1,12±0,53 vs. 0,02±0,004; siehe Abb. 3.7).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Validierung der differentiell exprimierten Gene auf Chromosom 5 von SJL- und NZO-Mäusen. Mit quantitativer Real-Time-PCR verifizierte differentielle Genexpression der Gene, die zuvor mit Array-Experimenten identifiziert wurden. Dargestellt sind die Mittelwerte aus 3-6 unabhängigen Experimenten, die statistische Auswertung erfolgte mit dem Mann-Whitney-Test (*p<0,05; **p<0,01). Die Untersuchungen wurden im braunen Fettgewebe sowie Skelettmuskel (Macroarray) und weißen Fettgewebe (Microarray) durchgeführt.}
\end{figure}

3.4 Sequenzierung der Kandidatengene

Zur weiteren Untersuchung der potentiellen Kandidatengene aus den Expressionsstudien wurden die codierenden Bereiche der Gene \textit{2310045A20Rik}, \textit{Mll5}, \textit{Insig1}, \textit{Ppp1cb} und \textit{Tbc1d1} sequenziert und nach Unterschieden zwischen den Stämmen NZO und SJL gesucht. Als Referenzsequenz diente dabei die Basensequenz des Stammes C57BL/6J. \textit{Tbc1d1} war das einzige Gen, in dem Abweichungen zur Referenzsequenz gefunden wurden.

Im Gen \textit{Tbc1d1} des SJL-Stammes (SJL/NBom) wurde eine Deletion von sieben Basenpaaren (4047del\textit{ACTCGCT}) im Exon 18 identifiziert (Abb. 3.8). Diese Deletion führt zur Verschiebung des Leserasters der mRNA und zu einem aberranten Protein bei SJL-Mäusen (Abb. 3.9). Diese Deletion wurde ebenfalls in der Sublinie SJL/J detektiert. Das Gen \textit{Tbc1d1} (\textit{tre-2/USP6, BUB2, cdc16 domain family member 1}) gehört zur Familie der Rab-GAP-Proteine (\textit{Rab-GTPase activating proteins}). Die Rab-GAP-Domäne ist eine konservierte Region in GTPase-aktivierenden Proteinen, die mit kleinen Rab-G-Proteinen interagieren können.
Das Gen *Tbc1d1* ist auf Chr. 5 bei 64,6 Mbp lokalisiert (NCBI, Build 37.1, 2008). In der Gendatenbank *Ensembl* werden zwei Genmodelle beschrieben. Das längere Modell, das auf der mRNA AK122445 beruht, umfasst 5711 bp in 22 Exons. Das kürzere Modell beruht auf der mRNA AK154591 und umfasst 5432 bp in 20 Exons, wobei die Exons 12 und 13 des längeren Modells nicht enthalten sind. Im proximalen Teil des Proteins liegen zwei Phosphotyrosin-Bindungsstellen, im distalen Proteinbereich ist eine funktionelle *Rab-GTPase activating protein*-Domäne lokalisiert (*Rab-GAP-Domäne; Abb. 3.9A*). Die Deletion von sieben Basenpaaren in Exon 18 des Gens befindet sich in der Rab-GAP-Domäne des Proteins. Die resultierende Leserasterverschiebung führt zu einem vorzeitigen Stop-Codon innerhalb dieser funktionellen Domäne (*Abb. 3.9B*). Die Folge ist ein aberrantes Protein, das seine ursprüngliche katalytische Funktion nicht mehr wahrnehmen kann, weil der dafür essentielle Glutaminfinger im TBC1D1-Protein von SJL-Mäusen fehlt (*Abb. 3.9C*). Dieser Glutaminfinger ist Teil eines *Zwei-Finger-Mechanismus*, der für die katalytische Funktion von GYP-Proteinen der Hefe sowie deren orthologe GAP-Proteine in Säugetieren angenommen wird (Pan *et al.*, 2006).

Der vorzeitige Abbruch des Proteins wurde experimentell von Ulrike Bernhardt mit Hilfe einer *in vitro* Translation bestätigt. Durch den Einbau von radioaktiv markiertem Methionin in das Protein konnte die Proteinbande auf einem Phosholmager-Film sichtbar gemacht werden. Das *in vitro* translatierte SJL-Protein zeigte eine Bande mit geringerem Molekulargewicht als das *in vitro* translatierte Protein der C57BL/6J-Mäuse (117 kDa vs. 141 kDa).
3.4.1 Deletion in Exon 18 des Gens Tbc1d1 bei SJL-Mäusen ist stammspezifisch

Mehrere Inzucht-Mausstämmen wurden mit Hilfe der Sequenzierung des Exons 18 des Gens Tbc1d1 auf das Vorhandensein der 7 bp-Deletion untersucht. Dazu wurden insgesamt neun Inzucht-Mausstämmen ausgewählt. Diese können in zwei Gruppen eingeteilt werden:
ERGEBNISSE

- Dem SJL/NBom-Stamm nahe verwandt: SJL-Sublinie SJL/J, FVB, SWR
- Dem SJL/NBom-Stamm entfernt verwandt: C57BL/6J, NZO, NZB, NON, SM, AKR

Die im SJL/NBom-Mausstamm identifizierte Deletion wurde ebenfalls in der Sublinie SJL/J gefunden. Alle anderen untersuchten Mauslinien wiesen keine Deletion in Exon 18 des \textit{Tbc1d1}-Gens auf (Abb. 3.10). Somit kann von einer SJL-spezifischen Deletion ausgegangen werden.

3.4.2 Sequenzierung weiterer Kandidatengene im Peak-Bereich des Nob1

Die Nob1-Peak-Region wird aufgrund eines polymorphen Haplotypenblocks zwischen NZO- und SJL-Mäusen durch die Mikrosatellitenmarker D5Mit82 und D5Mit15 (60,3 Mbp bzw. 65,8 Mbp) begrenzt (Abb. 3.11). Dieser Bereich ist innerhalb des Nob1.24-Fragments lokalisiert. Dieses Fragment entstand bei einem Kreuzungsexperiment der Mausstämme SJL und C57BL/6J von Stephan Scherneck (rekombinant kongene Mauslinie SB6Nob1.24; 53-77 Mbp; Abb. 3.11). Tiere, die homozygot das SJL-Nob1.24-Fragment aufwiesen, zeigten ein signifikant geringeres Körpergewicht als Tiere, die das B6-Nob1.24-Fragment (homozygot und heterozygot) trugen.

Tbc1d1 ist in der Peak-Region des QTL Nob1 lokalisiert. In der Nob1-Peak-Region kartieren insgesamt 26 Genmodelle, die sich aus sechs theoretischen Modellen (Bezeichnung: LOC + Nummer, z.B. LOC100041543), einem Pseudogen, drei Genmodellen des Riken-Consortiums mit bekannten mRNAs und mehreren ESTs sowie sechzehn Genmodellen mit bekannten mRNAs oder Proteinen zusammensetzen (Abb. 3.11). Für die theoretischen Modelle gibt es keine beschriebene mRNA oder ESTs, die dieser genomischen Region zugeordnet werden. Mit Ausnahme des am proximalen Ende lokalisierten Gens G6pd2 und des Pseudogens Ppia-ps22 kann allen anderen Genen ein humanes Ortholog auf dem korrespondierenden Abschnitt auf Chromosom 4 zugeordnet werden. Diese 19 Gene wurden auf Sequenzunterschiede in den codierenden Genbereichen, nicht aber die Introns der Gene, zwischen SJL und C57BL/6J untersucht (die Sequenzierung von Pgm1 erfolgte von Katja Schmolz im Rahmen ihrer Dissertation). Zusätzlich erfolgte die Sequenzierung von 1,6 kbp der 5'-flankierenden Region von Tbc1d1. Insgesamt wurden etwa 41,7 kbp sequenziert. Als Referenzsequenzen dienten, soweit vorhanden, C57BL/6J-mRNA-Referenzsequenzen der NCBI-Genbank. Waren diese
nicht verfügbar, wurden bekannte mRNA-Sequenzen anderer Stämme genutzt. Zur Auswertung wurde das Programm SeqScape verwendet.

In der 5'-flankierenden Region von Tbc1d1 wurden keine SJL-spezifischen Austausche identifiziert. In sechs Peak-Genen wurden 12 SNPs identifiziert, die allerdings auch beim Stamm NZB detektiert und teilweise auch in beschriebenen cDNAs von C57BL/6J gefunden wurden. In den übrigen Genen wurden keine weiteren SJL-spezifischen Austausche identifiziert (Tab. 3.8).

<table>
<thead>
<tr>
<th>Chr.</th>
<th>Position Start (Mbp)</th>
<th>Symbol</th>
<th>Chr. Position Start (Mbp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>62,20</td>
<td>G6pd2</td>
<td>G6PD X 153,41</td>
</tr>
<tr>
<td>5</td>
<td>62,37</td>
<td>LOC100041543</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>62,98</td>
<td>Centd1</td>
<td>CENTD1 4 35,74</td>
</tr>
<tr>
<td>5</td>
<td>64,04</td>
<td>3110047P20Rik</td>
<td>KIA1239 4 36,92</td>
</tr>
<tr>
<td>5</td>
<td>64,09</td>
<td>LOC100042133</td>
<td>Hnt 17 70,64</td>
</tr>
<tr>
<td>5</td>
<td>64,20</td>
<td>0610040J01Rik</td>
<td>C4orf19 4 37,13</td>
</tr>
<tr>
<td>5</td>
<td>64,30</td>
<td>Rell1</td>
<td>RELL1 4 37,27</td>
</tr>
<tr>
<td>5</td>
<td>64,38</td>
<td>LOC100041636</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>64,43</td>
<td>LOC100041646</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>64,48</td>
<td>Pgm1</td>
<td>PGM2 4 37,50</td>
</tr>
<tr>
<td>5</td>
<td>64,55</td>
<td>Tbc1d1</td>
<td>TBC1D1 4 37,57</td>
</tr>
<tr>
<td>5</td>
<td>64,71</td>
<td>Ppla-ps22</td>
<td>PPA 7 44,80</td>
</tr>
<tr>
<td>5</td>
<td>64,83</td>
<td>LOC433894</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>64,99</td>
<td>LOC100042198</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>65,19</td>
<td>Klf3</td>
<td>KLF3 4 38,34</td>
</tr>
<tr>
<td>5</td>
<td>65,32</td>
<td>Tlr1</td>
<td>TLR1 4 38,47</td>
</tr>
<tr>
<td>5</td>
<td>65,34</td>
<td>Tlr6</td>
<td>TLR6 4 38,50</td>
</tr>
<tr>
<td>5</td>
<td>65,36</td>
<td>9130005N14Rik</td>
<td>FAM114A1 4 38,55</td>
</tr>
<tr>
<td>5</td>
<td>65,46</td>
<td>Tmem156</td>
<td>TMEM156 4 38,64</td>
</tr>
<tr>
<td>5</td>
<td>65,52</td>
<td>Kln5</td>
<td>KLHL5 4 38,72</td>
</tr>
<tr>
<td>5</td>
<td>65,59</td>
<td>Wdr19</td>
<td>WDR19 4 38,86</td>
</tr>
<tr>
<td>5</td>
<td>65,65</td>
<td>Rfc1</td>
<td>RFC1 4 38,97</td>
</tr>
<tr>
<td>5</td>
<td>65,74</td>
<td>Klb</td>
<td>KLB 4 39,08</td>
</tr>
<tr>
<td>5</td>
<td>65,78</td>
<td>Rpl9</td>
<td>RPL9 4 39,13</td>
</tr>
<tr>
<td>5</td>
<td>65,78</td>
<td>Lias</td>
<td>LIAS 4 39,14</td>
</tr>
<tr>
<td>5</td>
<td>65,80</td>
<td>Ugdh</td>
<td>UGDH 4 39,18</td>
</tr>
</tbody>
</table>

Abb. 3.11: Nob1.24-Fragment und Peak-Region des Nob1. Die Peak-Region umfasst ca. 5 Mbp und wird durch die Mikrosatellitenmarker D5Mit82 (60,3 Mbp) und D5Mit15 (65,8 Mbp) begrenzt. Dies entspricht einem polymorphen Haplotypenblock zwischen den Mausstämmen SJL und NZO (rote Markierung; grüne Bereiche sind nicht polymorph). Dieser Abschnitt des Chromosoms ist zwischen den Mausstämmen SJL und NZB nicht polymorph. NZB ist der nächstverwandte Mausstamm zu NZO, in einer Kreuzung dieser beiden nah verwandten Stämme wurde keine signifikante Korrelation des Körpergewichts mit einem bestimmten Genotyp im Nob1-Bereich erreicht. In der Nob1-Peak-Region sind 26 Genmodelle lokalisiert. Fett hervorgehoben sind die Genmodelle, deren humane Orthologe auf dem syntänen Abschnitt auf Chromosom 4 zu finden sind. *D5Mit302 ist der Peak-Marker des QTL Nob1.
Tabelle 3.8: Sequenzanalyse der codierenden Bereiche der Gene im Peak-Bereich des Nob1 bei den Mausstämmen SJL und NZB

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pcdh7</td>
<td>54216</td>
<td>58109328</td>
<td>NM_018764</td>
<td>3210</td>
<td>+</td>
<td>D285E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6pd2</td>
<td>14380</td>
<td>62200122</td>
<td>NM_019468</td>
<td>1542</td>
<td>+</td>
<td>G601T</td>
<td>A231V</td>
<td>rs29551589</td>
<td>auch bei A/J, DBA/2J</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cand1f</td>
<td>319007</td>
<td>64041409</td>
<td>XM_120247</td>
<td>5229</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N64437843 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57915</td>
<td>64551450</td>
<td>NM_019636</td>
<td>3489</td>
<td>+</td>
<td>del3009-3015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rbc1</td>
<td>16596</td>
<td>65194762</td>
<td>NM_004953</td>
<td>1035</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tfr1</td>
<td>21887</td>
<td>65316073</td>
<td>NM_003682</td>
<td>2388</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tfr6</td>
<td>21889</td>
<td>65344345</td>
<td>NM_011604</td>
<td>2421</td>
<td>+</td>
<td>a1946g</td>
<td>+</td>
<td>H601V</td>
<td>mRNA Sequenz für C57BL/6J ist AK137602; BA233584</td>
</tr>
<tr>
<td>913000014Trik</td>
<td>68303</td>
<td>65361351</td>
<td>NM_026687</td>
<td>1710</td>
<td>+</td>
<td>a1946g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm6m158</td>
<td>243025</td>
<td>65484189</td>
<td>XM_144292</td>
<td>1038</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klf3</td>
<td>71778</td>
<td>65522910</td>
<td>NM_151174</td>
<td>771</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>War19</td>
<td>213681</td>
<td>65589952</td>
<td>NM_163391</td>
<td>3849</td>
<td>+</td>
<td>g3821a</td>
<td>+</td>
<td>R1172K</td>
<td>mRNA Sequenz für C57BL/6J ist AK147970; BA282556</td>
</tr>
<tr>
<td>Rorc</td>
<td>19057</td>
<td>65653097</td>
<td>NM_011258</td>
<td>3396</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kfrd1</td>
<td>83379</td>
<td>65736550</td>
<td>NM_031180</td>
<td>3129</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rps9d</td>
<td>20005</td>
<td>65779604</td>
<td>NM_012192</td>
<td>579</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lies</td>
<td>79464</td>
<td>65827236</td>
<td>NM_034471</td>
<td>1122</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uqcth</td>
<td>22225</td>
<td>65804460</td>
<td>NM_003468</td>
<td>1482</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) NCBI’s *Mus musculus* Genome Build 37.1 (Juli, 2008); b) Länge der codierenden Sequenz; c) Referenzstamm ist C57BL/6J, Positionen beziehen sich auf die Referenzsequenz mit der angegebenen Accession Nummer (RefSeq Acc. No.); d) lange Isoform, beste Übereinstimmung mit AK122445 (Ensembl Transcript ID: ENSMUST00000043893); NCBI’s RefSeq accession (NM_019636) für Genbereich (EntrezID 57915) bezieht sich auf die kurze Isoform; RefSeq Sequenz für Tfr6 und War19 beziehen sich auf C3H/He bzw. BALB/C; angegeben sind die korrespondierenden accessions für C57BL/6J.
3.5 mRNA-Expressionsanalysen des Gens \textit{Tbc1d1}

3.5.1 Untersuchung auf differentielle Expression zwischen SJL- und NZO-Mäusen

Zur Untersuchung des Expressionsprofils von \textit{Tbc1d1} wurden q-RT-PCR-Experimente mit cDNA folgender Gewebe durchgeführt: Leber, WAT, BAT, Herz, Pankreas, Niere, Dünndarm, Colon, Hypothalamus. Dabei zeigte sich neben der Bestätigung der erniedrigten Expression im Skelettmuskel von SJL-Mäusen (0,13±0,05 vs. 1,71±0,73 bei NZO-Tieren) eine deutlich geringere \textit{Tbc1d1}-Expression in allen untersuchten Geweben. Die höchsten mRNA-Expressionsraten wurden in der Niere (2,74±0,56) und im Skelettmuskel (1,71±0,73) von NZO-Mäusen gefunden. Etwas geringer wurde \textit{Tbc1d1} in Hypothalamus (1,47±0,30), Herz (1,23±0,48) und Pankreas (0,89±0,30) exprimiert. Schwache Expression zeigten Dünndarm, Colon und BAT. In Leber und WAT konnte keine mRNA-Expression detektiert werden (Abb. 3.12).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Abb. 3.12: Darstellung der relativen Expression des Gens \textit{Tbc1d1} in verschiedenen Geweben von NZO- und SJL-Mäusen. Die Daten wurden mit q-RT-PCR ermittelt; es wurden je 3-6 männliche, 8 Wochen alte Tiere untersucht, die mit Standard-Diät gefüttert wurden. SJL-Tiere wiesen im Vergleich zu NZO-Tieren in allen untersuchten Geweben eine geringere Expression auf. Die stärksten Expressionsraten bei NZO-Mäusen zeigten der Skelettmuskel (SM), das Herz (HE), Pankreas (P), Niere (N) und Hypothalamus (HT). Dargestellt sind die Mittelwerte und Standardabweichungen aus 3-6 Experimenten. L – Leber, WAT – weißes Fettgewebe, BAT – braunes Fettgewebe, DD – Dünndarm, CO – Colon}
\end{figure}
3.5.2 Isoformen von \(Tbc1d1 \)

Nach dem Auftreten von PCR-Doppelbanden (500 bp vs. 800 bp) im Zuge der Klonierung der \(Tbc1d1 \)-cDNA wurden mehrere Gewebe auf die Expression von verschiedenen \(Tbc1d1 \)-Isoformen untersucht. Bei der Sequenzierung der cDNA von \(Tbc1d1 \) in Skelettmuskel und WAT von NZO-Mäusen wurde ebenfalls festgestellt, dass unterschiedliche Genvarianten in beiden Geweben vorlagen. Im WAT fand sich eine um ein Exon kürzere Form (Exon 12 fehlt) und im Skelettmuskel eine Form, die das Exon 12 enthielt. Zur Analyse der gewebsspezifischen Expression der Isoformen wurden zwei TaqMan-Sonden für die qRT-PCR verwendet. Die TaqMan-Sonde, die spezifisch die lange Isoform detektiert, wurde in Exon 12 lokalisiert. Die TaqMan-Sonde für alle Isoformen ist in Exon 14 und 15 lokalisiert (Abb. 3.13A und B). Die Expression der Isoformen wurde auf die \textit{beta-Actin}-Expression in den jeweiligen cDNAs normalisiert. In einer qRT-PCR mit einer definierten Menge der klonierten langen Isoform als template und je der Sonde für die lange bzw. für alle Isoformen wurde durch vergleichbare Ct-Werte die Vergleichbarkeit beider Sonden sichergestellt.
Abb. 3.13: Darstellung der Tbc1d1-Isoformverteilung in verschiedenen Geweben von NZO-Mäusen. (A) PCR-amplifizierte Doppelbanden in verschiedenen Geweben von NZO-Mäusen. Die Primer sind in Exon 11 und 14 lokalisiert, sodass das PCR-Produkt der kurzen Isoform eine Länge von etwa 500 bp hat, dagegen zeigte das PCR-Produkt der langen Isoform eine ungefähre Länge von 800 bp. (B) Lokalisation der Primer (P) für die PCR-Reaktion sowie der TaqMan-Sonden (S) für die quantitative Bestimmung der Isoformverteilung. (C) Quantitative Bestimmung der Isoformverteilung mit Hilfe der qRT-PCR und der spezifischen TaqMan-Sonden. Mit der PCR- und qRT-PCR-Methode wurden ähnliche Verteilungsmuster der beiden Isoformen erhalten. Die lange Isoform kam verstärkt in Skelettmuskel (SM), Herz (HE) und Hypothalamus (HT) vor, während ein größerer Anteil der kurzen Isoform in Leber (L), WAT, BAT, Pankreas (P), Niere (N), Dünndarm (DD) und Colon (CO) zu finden war.

Mit beiden Methoden (PCR und qRT-PCR) zeigte sich eine gewebsspezifische Expression der beiden Tbc1d1-Varianten. Die lange Isoform fand sich mehr im Skelettmuskel, Herz und Hypothalamus. Die kürzere Isoform wurde verstärkt in den folgenden Geweben gefunden: Leber, WAT, BAT, Pankreas, Niere, Dünndarm und Colon (Abb. 3.13A und C). Die Sequenz der langen und kurzen Isoform ist im Anhang zu finden.
3.5.3 mRNA-Expression von Tbc1d4

Das dem Tbc1d1 nächste verwandte Gen Tbc1d4 (AS160) wurde mit der GLUT4-Translokation im Skelettmuskel in Verbindung gebracht (Sano et al., 2003; Kane und Lienhard, 2002). Eine Untersuchung der mRNA-Expression der Gene Tbc1d1 und Tbc1d4 bei NZO-Männchen zeigte signifikant verschiedene Ct-Werte von Tbc1d1 in Pankreas (0,06±0,02 vs. 0,03±0,01) und Hypothalamus (0,02±0,004 vs. 0,003±0,001), im Skelettmuskel und WAT wurde kein Unterschied detektiert.

Das Fehlen der Tbc1d1-mRNA bei SJL-Mäusen wird im Vergleich zu NZO-Mäusen nicht durch eine verstärkte Expression von Tbc1d4 kompensiert. Nur im weißen Fettgewebe wurde bei SJL-Tieren eine leicht höhere mRNA-Expression von Tbc1d4 gemessen (0,023±0,009 vs. 0,013±0,004 bei NZO-Tieren; Abb. 3.14).

3.5.4 Verteilung von Tbc1d1 in verschiedenen Muskelfasern im Skelettmuskel des Mausstamms C57BL/6J

Zur Untersuchung der mRNA-Expression von Tbc1d1 in unterschiedlichen Muskeltypen, die sich im Hinblick auf die Nutzung von Energie aus aeroben bzw. anaeroben Stoffwechselprozessen unterscheiden, wurden qRT-PCR-Experimente durchgeführt. Dazu wurden von Susanne Neschen verschiedene Muskelareale bei B6-Mäusen präpariert. Der Musculus gastrocnemius ist dabei eine Mischung von glycolytischen und oxidativen Fasern, der Musculus soleus stellt das Modell für überwiegend oxidative Fasern dar. Der M. gastrocnemius wurde in glycolytische und oxidative Fasern disseziert. Die erfolgreiche Trennung wurde mit Hilfe des Vergleichs der UCP2-mRNA-Expression in den cDNAs der unterschiedlichen Muskelfasern überprüft (Samec et al., 1998). Die relative mRNA-
Expression von UCP2 zeigte in den Fasern des *M. soleus* die höchsten Werte (8,46±2,53), in den glykolytischen Fasern des *M. gastrocnemius* die geringsten Werte (2,84±0,79). Die getrennten oxidativen Fasern des *M. gastrocnemius* wiesen zwar höhere Werte auf (5,41±2,77) als die glykolytischen Fasern, allerdings nicht so hoch wie die Fasern des *M. soleus*. Somit muss davon ausgegangen werden, dass die Trennung der oxidativen Fasern nicht ganz erfolgreich war bzw. dass noch viele glykolytische Fasern enthalten waren. Für die Analyse der *Tbc1d1*-Expression wurden deshalb nur cDNAs von *M. soleus* und *M. gastrocnemius* (glykolytisch) verwendet. *Tbc1d1*-mRNA wurde zu einem signifikant höheren Anteil (p<0,005) in den glykolytischen Fasern des *M. gastrocnemius* gefunden und kaum im oxidativen *M. soleus* (5,39±1,80 vs. 1,22±0,47; Abb. 3.15).

Abb. 3.15: Darstellung der *Tbc1d1*-Expression in zwei unterschiedlichen Muskelfasertypen des Skelettmuskel bei C57BL/6J-Mäusen. Das Ergebnis aus den q-RT-PCR-Versuchen zeigte eine signifikant stärkere Expression in den glykolytischen Fasern des *M. gastrocnemius* (*M. gastrocn. w*) als im *M. soleus*. Untersucht wurden männliche, acht Wochen alte Tiere, die mit SD gefüttert wurden. Dargestellt sind die Mittelwerte und Standardabweichungen aus je 6 Experimenten; ** p<0,005 (Mann-Whitney-Test).

3.5.5 Untersuchung auf differentielle Expression im Skelettmuskel der Mausstämmen NZO, C57BL/6J und C57BL/6J*ob*ob

Für die weiteren Untersuchungen wurde Skelettmuskel-cDNA (*M. gastrocnemius*) verschiedener Mausstämmen mit Hilfe der q-RT-PCR analysiert. Zunächst wurde untersucht, ob *Tbc1d1* gewichtsabhängig exprimiert wird. Dazu wurde die mRNA-Expression von *Tbc1d1* zwischen dem normalgewichtigen Stamm C57BL/6J und den adipösen Stämmen C57BL/6J*ob*ob sowie NZO verglichen. Zwischen den Stämmen C57BL/6J und C57BL/6J*ob*ob wurde kein Unterschied in der *Tbc1d1*-mRNA-Expression gemessen. Die *Tbc1d1*-
Expression bei C57BL/6J- und C57BL/6Job/ob -Mäusen war jedoch signifikant höher als bei NZO-Mäusen (Abb. 3.16).

Abb. 3.16: Vergleich der \textit{Tbc1d1}-mRNA-Expression im \textit{M. gastrocnemius} zwischen verschiedenen Mausstämmen. Untersucht wurden je 4-6 männliche Tiere, die mit SD gefüttert wurden. Die Expression der \textit{Tbc1d1}-mRNA weist zwischen den Stämmen C57BL/6J (B6) und C57BL/6Job/ob (ob/ob) keinen signifikanten Unterschied auf. Beide Stämme zeigen jedoch eine signifikant höhere Expression als NZO-Tiere. Dargestellt sind die Mittelwerte und Standardabweichungen aus je 4-6 Experimenten; ** \(p<0.005 \) (Mann-Whitney-Test).

In einer zweiten Analyse wurde die Expression von \textit{Tbc1d1} bei weiblichen NZO-Mäusen gemessen, die aufgrund von verschiedenen Diätbedingungen (SD bzw. HFD) ein unterschiedliches Köpergewicht aufwiesen. Hier konnte ein tendenzieller Anstieg der Expression mit steigendem Köpergewicht ermittelt werden (Abb. 3.17).

Abb. 3.17: Korrelation der Köpergewichte mit der \textit{Tbc1d1}-Expression im Skelettmuskel von NZO-Mäusen. Die mit q-RT-PCR ermittelten \textit{Tbc1d1}-Expressionswerte wurden mit den entsprechenden Köpergewichten der Mäuse korreliert. Die untersuchten weiblichen Tiere waren zwischen 4 und 22 Wochen (n=3-6) alt und wurden mit Standard-Diät (SD) bzw. Hochfett-Diät (HFD) gefüttert. Dabei ergab sich Tiere, die mit SD gefüttert wurden, nur eine leichte Korrelation. Die Korrelation war bei HFD-gefütterten Tieren etwas stärker. Jeder Punkt zeigt ein Tier mit Gewicht und entsprechender relaterter Expression der \textit{Tbc1d1}-mRNA.
Weiterhin wurde untersucht, ob die Tbc1d1-mRNA-Expression im Skelettmuskel mit dem Lebensalter korreliert. Bei C57BL/6J-Mäusen wurde ein Anstieg der mRNA-Expression mit steigendem Lebensalter ermittelt (Abb. 3.18).

Abb. 3.18: Plot der Expression von Tbc1d1 im Skelettmuskel von C57BL/6J-Tieren im Zeitverlauf. Es wurden qRT-PCR-Experimente mit cDNAs von je 4-8 weiblichen Mäusen durchgeführt, die mit SD gefüttert wurden. Es zeigte sich, dass die mRNA-Expression von Tbc1d1 im Skelettmuskel mit zunehmendem Lebensalter der Tiere signifikant stärker wurde (C57BL/6J: $r^2 = 0.74$).

3.6 Untersuchung weiterer Kandidatengene

Zwei weitere Gene wurden aufgrund ihrer differentiellen Expression zwischen NZO- und SJL-Mäusen näher mit Hilfe der qRT-PCR untersucht.

Das Gen *Abhydrolase domain containing 1 (Abhd1)*, ein transmembranes Protein (Edgar und Polak, 2002), ist auf Chr. 5 bei 23 Mbp lokalisiert und damit in der Nähe des *Peak*-Bereichs des Adipositas-QTL *Obq11* (Taylor et al., 2001).

Für das Gen *Abhd1* zeigte sich eine generell niedrigere Expression bei NZO- im Vergleich zu SJL-Tieren. Signifikante Unterschiede wurden im braunen Fettgewebe (1.03 ± 0.31 vs. 0.09 ± 0.05), Leber (1.01 ± 0.17 vs. 0.27 ± 0.20), Niere (7.01 ± 0.40 vs. 0.66 ± 0.14), Dünndarm (1.05 ± 0.24 vs. 0.24 ± 0.20) und Hypothalamus (0.47 ± 0.12 vs. 0.11 ± 0.03) detektiert. Eine tendenziell erniedrigte Expression zeigte sich bei NZO-Mäusen im Vergleich zu SJL-Mäusen im Skelettmuskel (1.21 ± 0.80 vs. 1.00 ± 0.73) und Pankreas (0.69 ± 0.65 vs. 0.53 ± 0.64) (Abb. 3.19).
ERGEBNISSE

Abhd1

<table>
<thead>
<tr>
<th>WAT</th>
<th>BAT</th>
<th>L</th>
<th>SM</th>
<th>P</th>
<th>N</th>
<th>DD</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 3.19: Expressionsunterschiede des Gens Abhd1 in verschiedenen Geweben von SJL- und NZO-Mäusen. SJL-Männchen zeigten eine signifikant höhere Expression des Gens Abhd1 im WAT, BAT, Leber (L), Niere (N), Dünn darm (DD) und Hypothalamus (HT). Im Skelettmuskel (SM) und Pankreas (P) war dieser Unterschied nicht zu beobachten. Dargestellt sind jeweils die Mittelwerte und Standardabweichungen aus 3-6 Experimenten; * p<0,05 (Mann-Whitney-Test).

Das Gen *Arachidonate 5-lipoxygenase activating protein (Alox5ap)* codiert für das aktivierende Protein des Enzyms 5-Lipoxygenase (5LO), das den ersten Schritt der Synthese von Leukotrien B4 (LTB4) aus Arachidsäure katalysiert (Dixon et al., 1990). Es wird dem distalen Ende des Chr. 5 zugeordnet und ist als Suszeptibilitätsger für Adipositas und Insulinresistenz sowie Schlaganfall bekannt (Helgadottir et al., 2004; Kaaman et al., 2006). Die fehlende Expression des Gens Alox5ap bei SJL-Mäusen im weißen Fettgewebe wurde in allen anderen untersuchten Geweben bestätigt: BAT, Leber, Skelettmuskel, Pankreas, Niere, Dünn darm und Hypothalamus (Abb. 3.20).

Alox5ap

<table>
<thead>
<tr>
<th>WAT</th>
<th>BAT</th>
<th>L</th>
<th>SM</th>
<th>P</th>
<th>N</th>
<th>DD</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Sequenzierung der codierenden cDNA-Bereiche beider Gene wies keine Unterschiede in der Basenfolge zwischen SJL- und NZO-Mäusen auf. Die 5’UTR sowie die genomischen Regionen, die ca. 1,5 kbp proximal der Gene lokali siert sind und mögliche Promotorsequenzen enthalten, wurden nicht sequenziert, da eine PCR-Amplifikation dieses Bereichs bisher erfolglos war.
4 DISKUSSION

Im Rahmen der vorliegenden Arbeit sollten Kandidatengene für Adipositas im Bereich des QTL Nob1 identifiziert werden.

4.1 Auswahl des Mausmodells für die Expressionsanalysen

Der Adipositas-QTL Nob1 wurde in einem Rückkreuzungsmodell der Kreuzungspartner NZO und SJL identifiziert (Kluge et al., 2000). Der NZO-Stamm stellt in dieser Kreuzung das Modell für eine frühe Diät-induzierbare Adipositas dar, während der SJL-Stamm den schlanken Gegenpart übernimmt, der resistent gegenüber einer Diät-induzierten Adipositas ist (Jürgens et al., 2006; Festing 1997).

Für die mRNA-Analysen wurden Tiere verwendet, die acht Wochen alt waren, um einen möglichst frühen Zeitpunkt der Adipositas auf Ebene der Genexpression zu untersuchen (5-wöchige Fütterung der entsprechenden Diät).

4.2 Expressionsanalysen mit Hilfe von Macroarrays und Microarrays

Zur Identifizierung unterschiedlich exprimierter Gene auf Chr. 5 zwischen den Mausstämmen NZO und SJL wurden im Rahmen dieser Arbeit Macroarray- und Microarray-Experimente durchgeführt. Mit Hilfe der selbst hergestellten Macroarrays wurde die Expression von 302 Transkripten des Nob1 im Bereich 29-93 Mbp untersucht.

Im Verlauf dieser Arbeit wurden zusätzlich Expressionsanalysen mit Hilfe der Microarray-Technik durchgeführt. Für die vorliegende Arbeit wurden nur die Transkripte mit unterschiedlicher Expression zwischen den Mausstämmen SJL und NZO auf Chromosom 5 betrachtet.

In Tab. 3.6 sind die Transkripte im Nob1-Bereich dargestellt, deren mRNA-Expression exklusiv mit Macroarrays bzw. Microarrays untersucht wurden. Beide Methoden decken den größten Teil der Transkripte im Nob1 ab. Mit den Macroarrays wurden exklusiv acht Transkripte mit beschriebenem Protein und drei Genmodelle ohne beschriebenes Protein im Nob1 untersucht, während mit den Microarrays exklusiv zwölf Genmodelle ohne beschriebenes Protein analysiert wurden.

4.2.1 Differentiell exprimierte Gene

Die Expressionsanalysen erfolgten mit RNAs weiblicher NZO- und SJL-Mäuse, die aus den Geweben weißes und braunes Fett, Skelettmuskel, Hypothalamus sowie Leber isoliert
wurden. Die Arrays wurden mit revers transkribierten cDNAs dieser Gewebe-RNAs hybridisiert.

In den Macroarray-Experimenten zeigten die Gene *Mpv 17, Ppp1cb, Letm 1, Mrfap 1, Cpeb2, Qdpr, 2310045A20Rik, Pgm1, Tbc1d1, Gabra 4, Igfbp7* eine differentielle Expression zwischen NZO- und SJL-Mäusen. Die Microarray-Experimente zeigten für die Gene *Mll5, Insig1, Abhd1, Ppp1cb, Spink2, Aacs, Alox5ap* eine differentielle Expression zwischen NZO- und SJL-Mäusen (Tab. 3.7). Die Änderung der Expression zwischen den Stämmen schwankte zwischen 1,2- bis 6,6-fach.

Die anschließende quantitative Real-Time-PCR (qRT-PCR) verifizierte folgende differentiell exprimierte Gene:

2310045A20Rik, Tbc1d1, Mll5, Ppp1cb, Insig1, Abhd1 und Alox5ap

Nur zwei von elf Genen, die mit den Macroarray-Analysen eine differentielle Expression zeigten, konnten mit Hilfe der qRT-PCR validiert werden. Bei den Microarray-Experimenten wurde die differentielle Expression bei fünf von sieben Genen bestätigt (Tab. 3.7; Abb. 3.7). Somit weisen die Microarrays eine deutlich bessere Validierungsrate auf.

Die Analyse der Expression der 38 Kandidatengene aus dem *C. elegans-Screening* zeigte keine Unterschiede zwischen NZO- und SJL-Mäusen.

4.3 Sequenzierung der Kandidatengene

Der einzige Unterschied in der Basenabfolge zwischen NZO- und SJL-Mäusen wurde für *Tbc1d1* detektiert. Die Deletion von sieben Basen im Exon 18 des SJL-Gens (4047delACTCGCT) führt zu einer Verschiebung des Leserasters und zu einem vorzeitigen Stop-Codon (Abb. 3.9B). *Tbc1d1* (*tre-2/USP6, BUB2, cdc16 domain family member 1*) gehört
zur Familie der Rab-GAP-Proteine (*Rab-GTPase activating proteins*). Es ist das nächstverwandte Gen zum Rab-GAP-Protein *AS160* (*Tbc1d4*). Das vorzeitige Stop-Codon im SJL-Gen befindet sich in der funktionellen GAP-Domäne (*TBC-Domäne*). Das resultierende Protein bricht in dieser TBC-Domäne ab, so dass die katalytische Funktion nicht mehr gewährleistet ist (*nonsense mutation*, Abb. 3.9C).

Beim Inzuchtmausstamm SJL ist eine weitere Mutation beschrieben, die eine Veränderung des Phänotyps zur Folge hat. Das Gen Dysferlin (*Dysf*) weist eine Deletion von 171 bp auf. Das dadurch um 57 Aminosäuren verkürzte Protein führt zu einer Muskeldystrophie bei SJL-Mäusen ab einem Alter von 6-8 Monaten (Weller *et al.*, 1997; Bittner *et al.*, 1999).

Nonsense-Mutationen treten auch bei anderen Inzuchtstämmen auf. Frazer und Mitarbeiter führten eine Sequenzanalyse verschiedener Mausinzuchtstämme durch (Frazer *et al.*, 2007). Sie identifizieren beim Referenzmausstamm C57BL/6J zehn Gene, die eine *nonsense-Mutation* aufweisen (*Atp10d, Ttk, Mtg1, Gprc2a-rs1, Olfr421, Ptprv, Klr12/13/23, 2610208M17Rik, 5832418A03Rik, Camp*). Mögliche Veränderungen des Phänotyps, die durch das vorzeitige Stop-Codon verursacht werden, sind jedoch nicht bekannt.

4.3.1 Deletion im *Tbc1d1*-Gen ist SJL-spezifisch

4.4 $Tbc1d1^{SJL}$ – kausale Genvariante für QTL Nob1

4.4.1 Haplotypenanalyse

Neben Expressionsanalysen und Sequenzierungen von Genen kann zur Identifizierung von Kandidatengenen auch eine Haplotypenanalyse durchgeführt werden (Dokmanovic-Chouinard et al., 2008; Pletcher et al., 2004). Dieses Konzept setzt eine gemeinsame Vererbung von genomischen Blöcken voraus, ohne dass eine Rekombination innerhalb dieser Blöcke stattfindet. Demnach weisen nicht-polymorphe Bereiche zwischen zwei Maus-Inzuchtstämmen auf eine nahe Verwandtschaft hin, während polymorphe Bereiche auf eine länger zurückliegende Rekombination deuten und demzufolge keine nahe Verwandtschaft anzunehmen ist (Paigen et al., 2008; Reuveni et al., 2007; Petkov et al., 2005). Mit der Haplotypenanalyse wurden Verwandtschaftsverhältnisse von Maus-Inzuchtstämmen bestimmt und Stammbäume erstellt (Frazer et al., 2007; Petkov et al., 2004). Haplotypen
werden mit Hilfe von Mikrosatelitenmarkern und SNPs bestimmt. Die Dichte dieser Marker variiert zwischen verschiedenen Mausstämmen. Der C57BL/6J-Stamm gehört zu den Stämmen mit sehr hoher Markerdichte (> 10 Mio. SNPs gesamt), für den SJL-Stamm (mittlere Markerdichte) sind >166 000 SNPs beschrieben. Der NZO-Stamm dagegen gehört zu einer Gruppe mit geringer Markerdichte (ca. 27 000 SNPs gesamt), somit vergrößert sich der Abstand zwischen den beschriebenen Markern. Die Markerdichte variiert beim NZO-Stamm z.B. für die Nob1-Region zwischen wenigen Basenpaaren und mehr als 300 Kilobasenpaaren. Da für die Bereiche zwischen den Mikrosatelitenmarkern und SNPs keine Information über mögliche Sequenzunterschiede vorliegen und die meisten Marker in intronischen Sequenzen von Genen oder in Bereichen zwischen Genen liegen, in denen keine funktionalen Mutationen vermutet werden, kann die Haplotypenanalyse bei Stämmen mit geringer Markerdichte nur eine Approximation über polymorphe bzw. nicht-polymorphe Chromosomenabschnitte sein. Yalcin und Mitarbeiter fanden eine unerwartet hohe Komplexität der Haplotypen zwischen den von ihnen untersuchten Stämmen A/J, AKR, BALB, C3H, C57BL/6, DBA, I und RI. Sie raten deshalb davon ab, Kandidatengene nur aufgrund einer Haplotypenanalyse zu identifizieren (Yalcin et al., 2004).

Eine Haplotypenanalyse der Nob1.10-Region zur Identifizierung von SJL-spezifischen Polymorphismen zwischen den Mausstämmen SJL und NZO zeigte insgesamt 189 beschriebene SNPs, für die Allelinformationen der beiden Mausstämme vorlagen – unabhängig davon, ob sich die Allele unterschieden. In die Analyse wurden zusätzlich die Stämme NZB und C57BL/6J einbezogen, da deren Kreuzung mit dem NZO-Stamm keine Abhängigkeit des Körpergewichtes vom Nob1-Genotyp zeigte. Die Anzahl der beschriebenen SNPs, für die Allelinformationen aller Mausstämme vorlagen, änderte sich nicht (siehe Tab. A3 im Anhang; http://www.jax.org/phenome/snp.html). Von diesen 189 SNPs sind 89 SNPs SJL-spezifisch. Sie werden sechs Genen zugeordnet, wobei allein 83 SNPs in Introns des Gens Corin lokalisiert sind. Vier weitere SNPs sind Introns der Gene Txk, Tec und Slain2 zugeordnet. Die verbliebenen zwei SNPs liegen (1) im untranslatierten Genbereich von Cnga1 (rs31537882) bzw. (2) in Exon 4 des Gens Rasl11b (rs13478326). Dieser codierende SNP führt jedoch nicht zu einem Aminosäureaustausch. Für den SNP im UTR von Cnga1 kann eine funktionelle Mutation nicht ausgeschlossen werden, ohne das Gen auf Expressionsunterschiede zu untersuchen. Die chromosomale Lokalisation von Cnga1 ist jedoch ca. 10 Mbp vom Nob1-Peak entfernt, was nicht auf einen kausalen Zusammenhang zum Nob1-Phänotyp hinweist. Wird die Haplotypenanalyse auf den Peak-Bereich des Nob1 (62-66 Mbp) begrenzt, gibt es keinen einzigen SJL-spezifischen SNP.

Diese Methode ist demnach nicht für die Identifizierung von Mutationen geeignet, die erst in den letzten 50-60 Jahren auftraten, wie es für die Deletion im Tbc1d1-Gen des SJL-Stammes der Fall ist, sondern für Mutationen, die schon bei Stämmen auftraten, aus denen sich durch weitere Zucht verschiedene Linien entwickelten, die diese Mutationen ebenfalls tragen.
4.4.2 Sequenzierung von anderen Genen in der Peak-Region des Nob1

Die Nob1-Peak-Region wird aufgrund eines polymorphen Haplotypenblocks zwischen NZO- und SJL-Mäusen durch die Mikrosatellitenmarker D5Mit82 und D5Mit15 (60,3 Mbp bzw. 65,8 Mbp) begrenzt (Abb. 4.1).

Mit Hilfe von Genexpressionsanalysen wurden sieben Gene auf Chr. 5 identifiziert, die eine differentielle mRNA-Expression zwischen den Mausstämmen NZO und SJL zeigten. Die Sequenzierung der codierenden Abschnitte dieser Gene zeigte eine SJL-spezifische Deletion von sieben Basen im Gen *Tbc1d1* (rot), die zum vorzeitigen Abbruch des Proteins in der funktionellen Rab-GAP-Domäne führt (loss-of-function-Mutation). Eine rekombinant kongene Mauslinie, die ein 24 Mbp-großes SJL-Fragment des *Nob1* trägt (*Nob1*.24), zeigt geringere Körpergewichte als Wildtyp-Tiere. Innerhalb dieses *Nob1*.24 ist die Nob1-Peak-Region aufgrund eines polymorphen Haplotypenblocks lokalisiert (D5Mit82-D5Mit15; 60-66 Mbp), der 19 Gene zugeordnet sind. In den codierenden Bereichen dieser Gene wurde keine weitere SJL-spezifische Mutation detektiert.
4.4.3 Verringerte Expression von Tbc1d1 bei SJL-Mäusen

Tbc1d1 zeigt eine deutlich verringerte mRNA-Expression bei SJL-Mäusen im Vergleich zu NZO-Tieren in allen untersuchten Geweben (Abb. 3.12). Dieser Befund wurde durch die Verwendung von zwei unterschiedlichen TaqMan-Sonden validiert. Der Expressionsunterschied kann nicht auf Sequenzunterschiede zwischen SJL und NZO im genomischen Bereich 1,5 kbp proximal des Gens zurückgeführt werden, da die Basenabfolge keine Unterschiede zwischen beiden Stämmen aufweist. Befindet sich der Promotor proximal dieses Bereiches oder in Introns des Tbc1d1-Gens, kann hier keine Aussage über mögliche Sequenzunterschiede und deren Folgen auf die Expression getroffen werden, da diese Regionen nicht sequenziert wurden.

4.4.4 Tbc1d1-Expressionsprofil und –Isoformen bei NZO-Mäusen

Das mRNA-Expressionsmuster von Tbc1d1 in NZO-Mäusen zeigte eine gewebsspezifische Verteilung. In Skelettmuskel, Herz, Pankreas, Niere und Hypothalamus zeigte sich eine stärkere Expression, während in weißem und braunem Fettgewebe, Leber, Dünn- und Dickdarm nur eine geringe Expression detektiert wurde (Abb. 3.12). Auch beim Menschen ist eine vorwiegendeExpression in Skelettmuskel und Herz zu finden (Stone et al., 2006).

Im Zug der Klonierung von Tbc1d1 wurden zwei Isoformen identifiziert. Die lange Isoform umfasst 22 Exone, für die kurze Isoform wird Exon 11 alternativ mit Exon 14 verbunden. Die Basensequenz der Exone 12 und 13 codieren für 93 Aminosäuren, die auch in TBC1D1-Proteinsequenzen von Ratte und Schimpanse, allerdings nicht beim Menschen gefunden werden. Die Expression dieser splice-Varianten wurde mit Hilfe von zwei TaqMan-Sonden in qRT-PCR-Analysen validiert. Dabei zeigte sich eine gewebsspezifische Expression. So wurde die langeIsoform überwiegend in Skelettmuskel, Herz und Hypothalamus exprimiert, während in weißem Fettgewebe, Niere und Pankreas fast ausschließlich die kurze Isoform
zu finden war (Abb. 3.13). Diese gewebsspezifische Isoformverteilung von Tbc1d1 deckt sich mit der von humanem AS160 (Baus et al., 2008), dessen lange Isoform ebenfalls überwiegend in Skelettmuskel und Herz exprimiert wird. Die kurze Isoform, der Exon 11 und 12 fehlen, wird in den meisten humanen Geweben exprimiert.

Aufgrund der prädominanten Expression der Tbc1d1-mRNA im Skelettmuskel wurden die weiteren Experimente mit Skelettmuskel-cDNA durchgeführt. Hierfür ist der verwendete Muskeltyp von Bedeutung, da sich glykolytische und oxidative Muskeltypen in ihrer Substratverwertung und Funktion unterscheiden (Widmaier et al., 2004). Tbc1d1-mRNA wurde fast ausschließlich in glykolytischen Muskelfasertypen des M. Gastrocnemius nachgewiesen, während die mRNA in oxidativen Fasern des M. Soleus so gut wie nicht zu detektieren war (Abb. 3.15). Diese Ergebnisse werden durch Daten von Taylor und Mitarbeitern bestätigt, die eine sieben- bis zehnfach höhere Tbc1d1-Expression (mRNA und Protein) in glykolytischen Muskelfasern von Tibialis anterior und Extensor digitorum im Vergleich zum M. Soleus nachweisen. Im Gegensatz dazu wird AS160 überwiegend in Fasern des M. Soleus sowie im weißen und braunen Fettgewebe exprimiert (Taylor et al., 2008).

Die nahe Verwandtschaft von Tbc1d1 und AS160 sowie ihre vermutlich ähnliche Substratspezifität (Rab2, Rab8a, Rab10; Roach et al., 2007) lässt die Vermutung zu, dass bei SJL-Tieren das fehlende Tbc1d1 durch eine verstärkte Expression von AS160 kompensiert wird. Diese Hypothese wurde jedoch nicht bestätigt. Nur im weißen Fettgewebe von SJL-Mäusen wurde eine höhere mRNA-Expression von AS160 detektiert als bei NZO-Mäusen (Abb. 3.14). Allerdings wurde dieser Befund im Rahmen dieser Arbeit nicht auf Proteinebene untersucht.

4.4.5 Tbc1d1-Expression ist nicht gewichtsabhängig

Der Befund der geringeren Expression von Tbc1d1 bei schlanken SJL-Mäusen führte zur Vermutung, dass Tbc1d1 bei adipösen Mausmodellen verstärkt exprimiert sein könnte.

Um dies zu überprüfen wurde die mRNA-Expression von Tbc1d1 im Skelettmuskel (M. Gastrocnemius gesamt) von schlanken C57BL/6J- (B6) und adipösen C57BL/6J*ob/ob*-Mäusen (ob/ob) verglichen. Diese beiden Modellstämme wurden für den Vergleich ausgewählt, da der adipöse Phänotyp der ob/ob-Mäuse nur auf eine Punktmutation im Leptin-Gen zurückzuführen ist (monogene Adipositas). Der Gewichtsunterschied der untersuchten Mäuse betrug ca. 20-25 g. Die Expressionsanalyse von Tbc1d1 in Skelettmuskeln der Stämme C57BL/6J (B6) und C57BL/6J*ob/ob* (ob/ob) wies jedoch keine signifikanten Unterschiede auf.
Weiterhin wurde die mRNA-Expression von \textit{Tbc1d1} bei B6-Mäusen mit der von NZO-Mäusen verglichen, wobei NZO-Mäuse ein polygenes Adipositasmodell darstellen (Gewichtsunterschied der untersuchten Tiere ca. 15-20 g). Überraschenderweise zeigten NZO-Tiere im Vergleich zu B6-Tieren eine signifikant geringere Expression von \textit{Tbc1d1} (Abb. 3.16).

Somit kann nicht von einer gewichtsabhängigen \textit{Tbc1d1}-Expression ausgegangen werden, da die mRNA-Expression bei schlanken B6-Mäusen und monogen adipösen ob/ob-Mäusen keine Unterschiede aufwies, und die mRNA-Expression von \textit{Tbc1d1} bei B6-Mäusen sogar höher war als bei polygen adipösen NZO-Mäusen.

Daraufhin wurde die mRNA-Expression von \textit{Tbc1d1} bei NZO- und B6-Mäusen mit unterschiedlichem Alter und Gewicht untersucht. Wie in Abb. 3.17 dargestellt, gibt es einen tendenziellen Anstieg der \textit{Tbc1d1}-mRNA-Expression mit wachsenden Körpergewichten verschiedener weiblicher NZO-Mäuse, der bei Fütterung einer HFD etwas stärker ist als bei SD-gefütterten Tieren. Bei C57BL/6J-Mäusen korreliert der Anstieg der \textit{Tbc1d1}-mRNA-Expression im Skelettmuskel mit zunehmendem Lebensalter und damit indirekt mit steigendem Körpergewicht (Abb. 3.20).

4.4.6 Mögliche Funktion von \textit{Tbc1d1}

TBC1D1 zählt zur Proteinfamilie der Rab-GAPs, die bei Mäusen mehr als 20 Proteine umfasst (http://www.ensembl.org). Im menschlichen Genom werden mehr als 50 Rab-GAPs gefunden (Pfeffer, 2005). Rab-GAP-Proteine besitzen eine TBC-Domäne \textit{(Tre-2, Bub2 and Cdc16, TBC)}, die für ihre GTPase-aktivierende Funktion essentiell ist (Pan \textit{et al.}, 2006; Albert \textit{et al.}, 1999). Rab \textit{(Ras-related in brain)} -Proteine sind kleine hochkonservierte GTPasen, die eine zentrale Stellung in der Regulation vesikulärer Transportprozesse einnehmen (Übersichtsdarstellungen sind Grosshans \textit{et al.}, 2006 sowie Stenmark und Olkkonen, 2001). Einige Rab-Proteine (Rab5 und Rab6) werden mit der Translokation von Proteinen zu ihren intrazellulären Speicherkompartimenten in Verbindung gebracht (Nielsen \textit{et al.}, 1999; Echard \textit{et al.}, 1998).

Das nächstverwandte Rab-GAP-Protein zu TBC1D1 ist TBC1D4, dessen TBC-Domäne zu 79 % identisch mit der von TBC1D1 ist. TBC1D4 – auch AS160 (Akt substrate 160 kDa) genannt – wurde als letztes Glied in der Insulin-stimulierten GLUT4-Translokation identifiziert. AS160 bindet im phosphorylierten Zustand Rab-Proteine, die GLUT4-Transporter an der Translokation zur Plasmamembran hindern (Sano et al., 2003; Kane und Lienhard, 2002). Diese Rolle von AS160 wird in neueren Studien auch für TBC1D1 diskutiert. In 3T3-L1-Adipocyten hemmt eine Überexprimierung von TBC1D1 die Insulin-stimulierte GLUT4-Translokation zur Plasmamembran (Chavez et al., 2008). Allerdings kommt TBC1D1 in 3T3-L1-Adipocyten natürlicherweise nicht vor (Chadt et al., 2008). Zusätzlich zur Regulation der GLUT4-Translokation wird für TBC1D1 die Regulation der GLUT1-Expression über den mTOR-Signalweg beschrieben. Einer siRNA-vermittelten Verringerung der TBC1D1-Expression folgt eine gesteigerte GLUT1-Expression (Zhou et al., 2008).

Die gesteigerte Tbc1d1-Expression bei älteren Tieren könnte ein Grund für die verminderte Insulinsensitivität sein, falls es wie AS160 eine Rolle in der GLUT4-Translokation spielt. Altersabhängige Proteinexpressionen sind ebenfalls für Insulinrezeptoren (IR) in Skelettmuskeln von Ratten beschrieben. Hier werden in alten Tieren weniger IR mit einer hohen Affinität exprimiert (Torlińska et al., 2000). Auch eine geringere Insulinsensitivität, Insulin-stimulierter Glucose-Transport und Lipogenese wird bei älteren Ratten beobachtet (Kamel et al., 2004).

Denkbar wäre eine ergänzende regulatorische Funktion der beiden Proteine TBC1D1 und AS160, da sie über verschiedene Kinasen (AMPK bzw. Akt) reguliert werden können (Chen et al., 2008) und eine gewebsspezifische Proteinexpression zeigen – TBC1D1 vorwiegend im Skelettmuskel, AS160 in Skelettmuskel und Fettgewebe. Auch die Regulation weiterer Translokationsprozesse im Muskel sind möglich, denn AMPK-vermittelte Regulationsmechanismen im Muskelgewebe betreffen auch den Lipidstoffwechsel (Nilsson et al., 2006; Long et al., 2005) und freie Fettsäuren gelangen, ebenso wie Glucose, über Transportproteine in die Zellen (Chabowski et al., 2005; Luiken et al., 2002). Neue Ergebnisse zu Tbc1d1 in unserer Abteilung deuten auf eine Regulation des Fettsäure-Metabolismus hin. Mäuse der rekombinant konnatalen Linie S6Nob1.10, die homozygot das SJL-Allel (Nob1.10SJL/SJL) aufweisen, zeigen eine signifikant höhere Oxidation von Palmitinsäure im Skelettmuskel als Mäuse, die homozygot das B6-Allel (Nob1.10B6/B6) tragen. Im C2C12-Muskelzellmodell weisen Zellen mit verringriger TBC1D1-Expression ebenfalls eine erhöhte Fettsäureaufnahme und –oxidation auf im Vergleich zu TBC1D1-überexprimierenden C2C12-Zellen, die den gegenteiligen Effekt zeigen (Chadt et al., 2008).
Zusammenfassend lässt sich sagen, dass Tbc1d1 ein sehr plausibles Kandidatengen im Nob1 ist, das für dessen suppressiven Gewichtseffekt verantwortlich scheint. Darauf deuten hin:

1) die genomische Position im Peak des QTL
2) die SJL-spezifische LOF-Mutation
3) Assoziation von seltenen humanen TBC1D1-Varianten mit Adipositas (R125W; Meyre et al., 2008; Stone et al., 2006)
4) Mäuse, die ein Fragment des Nob1 der SJL-Maus tragen, in dem die mutierte Form von Tbc1d1 lokalisiert ist (Nob1.10), zeigen geringere Körpergewichte und Fettmasse im Vergleich zu Tieren, die ein intaktes Tbc1d1-Gen aufweisen
5) putative Funktion im Metabolismus von Glucose aufgrund der nahen Verwandtschaft zu AS160 sowie der Muskeltyp-spezifischen mRNA-Expression; mögliche Regulation des Fettsäurestoffwechsels im Skelettmuskel.

Um die funktionellen Eigenschaften des Gens Tbc1d1 näher zu untersuchen, sind eine Kombination aus der Charakterisierung von transgenen Mäusen, die das Protein im Skelettmuskel vermehrt exprimieren, und Knockout-Mäusen sowie metabolische Studien in Zellmodellen geplant. In vitro können mit Hilfe quantitativer Real-Time-PCR oder Western Blot zudem die Reaktionen von überexprimiertem Tbc1d1 bzw. si-RNA-vermitteltem Tbc1d1-knockdown in Zellen auf Schlüsselprozesse des Glucose- bzw. Fettstoffwechsels und Transportmechanismen untersucht werden.

4.5 Weitere Kandidatengene

4.5.1 Abhydrolase domain containing 1 (Abhd1)

4.5.2 Arachidonate 5-lipoxygenase activating protein (Alox5ap)

Arachidonsäure-Metaboliten werden mit verschiedenen inflammatorischen Erkrankungen wie Asthma und Arthritis assoziiert (Holloway et al., 2008). Verschiedene Studien beim Menschen zeigen eine positive Korrelation von ALOX5AP-Polymorphismen mit einem erhöhten Risiko für Schlaganfall und Herzinfarkt (Linsel-Nitschke et al., 2008; Lõhmussaar et al., 2005; Helgadottir et al., 2004). Bei Mäusen wird 5LO als Suszeptibilitätsgen für Artherosklerose beschrieben (Mehrabian et al., 2002), ebenso wie pleiotrope metabolische Effekte auf Adipositas und Funktionen des Pankreas (Mehrabian et al., 2008).

Eine weitere Untersuchung der SJL-Sequenzen des nicht codierenden Bereiches und der potentiellen Promotorregion dieses interessanten Kandidatengens kann Aufschluss geben, ob die fehlende Expression auf eine Mutation in diesen Bereichen zurückzuführen ist. Um zu überprüfen, ob die LTB4-Biosynthese durch das Fehlen von Alox5ap inhibiert wird, ist ein enzymatischer LTB4-Nachweis mit Hilfe eines ELISAs (Enzyme-linked Immunosorbent Assay) mit dem Plasma von SJL-Tieren geplant.
ZUSAMMENFASSUNG

Nob1 (New Zealand obese 1) bezeichnet einen Adipositas-QTL auf Chr. 5 der Maus (LOD_{BMI} >3,3), der in einem Rückkreuzungsexperiment der Mausstämmen NZO (adipös) und SJL (schlank) identifiziert wurde. Um Kandidatengene für Adipositas zu finden, wurden mehr als 300 Nob1-Transkripte mit Hilfe von Genexpressionsanalysen auf Unterschiede in stoffwechselrelevanten Geweben zwischen beiden Mausstämmen untersucht. Sieben Gene zeigten eine differenzielle Expression: 2310045A20Rik, Tbc1d1, Ppp1cb, Mll5, Insig1, Abhd1 und Alox5ap. Die codierenden Bereiche dieser Gene wurden anschließend auf Sequenzunterschiede zwischen NZO und SJL untersucht. Nur im Gen Tbc1d1, das im Peak-Bereich des Nob1 lokalisiert ist, wurde eine SJL-spezifische Deletion von sieben Basen detektiert, die zu einer Leserasterverschiebung und einem vorzeitigen Abbruch des Proteins in der funktionellen Rab-GAP-Domäne führt (Loss-of-Function-Mutation). Interessanterweise wurde eine Variante von TBC1D1 (R125W) in Kopplungsanalysen mit Adipositas beim Menschen assoziiert (Stone et al., 2006). TBC1D1 zeigt eine hohe Homologie zu TBC1D4 (AS160), das im Insulinsignalweg eine wichtige Rolle spielt. In 17 weiteren Genen im Peak-Bereich des Nob1 wurde keine weitere SJL-spezifischen Mutation detektiert. Bei NZO-Tieren erfolgte die Tbc1d1-mRNA-Expression vorwiegend in glycolytischen Fasern des Skelettmuskels. Zudem wurden zwei gewebsspezifisch exprimiertes Tbc1d1-Isoformen identifiziert, die sich durch alternatives Splicen der Exone 12 und 13 unterscheiden.

Die im Rahmen dieser Arbeit gefundenen Ergebnisse machen Tbc1d1 zu einem plausiblen Kandidatengen für den Nob1-QTL. Welche Funktion Tbc1d1 im Glucose- und Fettstoffwechsel des Skelettmuskels hat, muss in weiteren Analysen untersucht werden.

Summary

Nob1 (New Zealand obese 1) has been identified as an obesity QTL on chromosome 5 (LOD_{BMI} >3,3) in a backcross experiment of obese NZO and lean SJL mice. To identify candidate genes for obesity expression profiling experiments with RNA from metabolic tissues were performed with more than 300 Nob1-genes. Seven genes showed differences in mRNA expression levels between both strains: 2310045A20Rik, Tbc1d1, Ppp1cb, Mll5, Insig1, Abhd1, and Alox5ap. Sequencing of the coding regions of these genes revealed a SJL-specific deletion of seven basepairs in the Tbc1d1 gene that is located in the peak region of Nob1. This mutation leads to a frameshift resulting in a truncated protein that lacks the important Rab-GAP-domain (Loss-of-Function-mutation). Interestingly, linkage analysis of the R125W-variant of TBC1D1 has been recently associated with human obesity. TBC1D1 shows high homology to TBC1D4 (AS160) that plays an important role in the insulin signaling pathway. No other SJL-specific mutations were detected in 17 further genes in the Nob1 peak region. In NZO mice Tbc1d1 mRNA is predominantly expressed in glycolytic fibres of skeletal muscle. Two isoforms were identified differing in alternative spliced exons 12 and 13 and showing a tissue specific mRNA expression.

The results presented in this work make Tbc1d1 a very feasible candidate gene to be causal for Nob1. The function of Tbc1d1 in the metabolism of carbohydrates and fat has yet to be analyzed.
6 LITERATURVERZEICHNIS

Tabelle A1: Übersicht über die Gene auf dem Macroarray

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ Chr.</th>
<th>Pos. (Bp)</th>
<th>Array-Position interne ID</th>
<th>Template erste PCR Größe PCR-Produkt (bp)</th>
<th>Primer for (5‘→3’)</th>
<th>Primer rev (5‘→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slc30a3</td>
<td>22794</td>
<td>nob 5</td>
<td>31362681</td>
<td>1E17</td>
<td>280 C</td>
<td>379 GACATGGAGCCTTCTCTGG</td>
<td>AAAGCCAGAGGAAAAAGAGG</td>
</tr>
<tr>
<td>Dnaic5g</td>
<td>231098</td>
<td>nob 5</td>
<td>31384900</td>
<td>1H20</td>
<td>1A10 P</td>
<td>224 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Trnp54</td>
<td>58522</td>
<td>nob 5</td>
<td>31393292</td>
<td>1P23</td>
<td>1E7 P</td>
<td>371 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ucn</td>
<td>22226</td>
<td>nob 5</td>
<td>31414569</td>
<td>1N10</td>
<td>177 G</td>
<td>402 CGGCACATGATACAGAGG</td>
<td>GCTTTCTGTACCCCCATACG</td>
</tr>
<tr>
<td>Mpv17</td>
<td>17527</td>
<td>nob 5</td>
<td>31417896</td>
<td>1O10</td>
<td>178 C</td>
<td>376 GACAGCTGGATCAGTAGGG</td>
<td>GAAAGTGGCTAATGCGACAGC</td>
</tr>
<tr>
<td>Gtf3c2</td>
<td>71752</td>
<td>nob 5</td>
<td>31417896</td>
<td>1O10</td>
<td>179 C</td>
<td>376 GACAGCTGGATCAGTAGGG</td>
<td>GAAAGTGGCTAATGCGACAGC</td>
</tr>
<tr>
<td>Eif2b4</td>
<td>13667</td>
<td>nob 5</td>
<td>31417896</td>
<td>1O10</td>
<td>179 C</td>
<td>376 GACAGCTGGATCAGTAGGG</td>
<td>GAAAGTGGCTAATGCGACAGC</td>
</tr>
<tr>
<td>Snx17</td>
<td>266781</td>
<td>nob 5</td>
<td>31432361</td>
<td>1G1</td>
<td>267 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Zfp153</td>
<td>101023</td>
<td>nob 5</td>
<td>31477548</td>
<td>1P10</td>
<td>179 G</td>
<td>473 ATACGCTCTGTCTCATCTGG</td>
<td>GAGCCCCAGGTAAAAAGACC</td>
</tr>
<tr>
<td>Pmm19g</td>
<td>12026</td>
<td>nob 5</td>
<td>31479248</td>
<td>1B11</td>
<td>224 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ntpp</td>
<td>1372</td>
<td>nob 5</td>
<td>31519486</td>
<td>2B4</td>
<td>393 T3</td>
<td>T7</td>
<td>T7</td>
</tr>
<tr>
<td>Ir172</td>
<td>67661</td>
<td>nob 5</td>
<td>31567695</td>
<td>1A7</td>
<td>242 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Fndc4</td>
<td>64339</td>
<td>nob 5</td>
<td>31569464</td>
<td>1C1</td>
<td>267 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Gckr</td>
<td>231103</td>
<td>nob 5</td>
<td>31477548</td>
<td>1P10</td>
<td>179 G</td>
<td>473 ATACGCTCTGTCTCATCTGG</td>
<td>GAGCCCCAGGTAAAAAGACC</td>
</tr>
<tr>
<td>Zip513</td>
<td>269639</td>
<td>nob 5</td>
<td>31756548</td>
<td>1K21</td>
<td>224 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>4930548H24Rik</td>
<td>67656</td>
<td>nob 5</td>
<td>31762439</td>
<td>1P22</td>
<td>224 M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Xab1</td>
<td>74254</td>
<td>nob 5</td>
<td>31771342</td>
<td>1H22</td>
<td>1C7 P</td>
<td>459 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Slc4a1ap</td>
<td>20534</td>
<td>nob 5</td>
<td>31812716</td>
<td>1N24</td>
<td>1F9 P</td>
<td>342 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Mtp33</td>
<td>66845</td>
<td>nob 5</td>
<td>31890565</td>
<td>2B2</td>
<td>2E1 P</td>
<td>389 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Rbks</td>
<td>71336</td>
<td>nob 5</td>
<td>31901019</td>
<td>1A21</td>
<td>1A8 P</td>
<td>231 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Bre</td>
<td>10797</td>
<td>nob 5</td>
<td>31974264</td>
<td>2H3</td>
<td>211 P</td>
<td>611 T3</td>
<td>T7</td>
</tr>
<tr>
<td>Fosl2</td>
<td>14284</td>
<td>nob 5</td>
<td>32413221</td>
<td>1B11</td>
<td>181 G</td>
<td>468 AGCTGCTTTCTCTGTACCC</td>
<td>TGAAGATTTCCCATGACTGG</td>
</tr>
<tr>
<td>Phb1</td>
<td>75156</td>
<td>nob 5</td>
<td>32509290</td>
<td>1A16</td>
<td>260 G</td>
<td>368 CTGGTCAACCTTGTGAGCTCTCCTGCTG</td>
<td>CTGGTCAACCTTGTGAGCTCTGTCCTGCTG</td>
</tr>
<tr>
<td>Ppp1cb</td>
<td>24047</td>
<td>nob 5</td>
<td>32735423</td>
<td>1J24</td>
<td>1F9 P</td>
<td>342 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>yes1</td>
<td>22612</td>
<td>nob 5</td>
<td>32887813</td>
<td>1C11</td>
<td>182 G</td>
<td>393 AGAGAGCTGGTGCTTTGCTG</td>
<td>GGCTGCTTTTAAACAACTTG</td>
</tr>
<tr>
<td>Psd</td>
<td>320951</td>
<td>nob 5</td>
<td>33102483</td>
<td>1M16</td>
<td>272 G</td>
<td>403 CACTGACCTCTCATACATGG</td>
<td>CATGAGCTTTCTGCAGATCG</td>
</tr>
<tr>
<td>C3300019G07Rik</td>
<td>215476</td>
<td>nob 5</td>
<td>33106063</td>
<td>1I23</td>
<td>1E11 P</td>
<td>365 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Depdc5</td>
<td>277854</td>
<td>nob 5</td>
<td>33300725</td>
<td>1F22</td>
<td>1C5 P</td>
<td>266 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ywah</td>
<td>22629</td>
<td>nob 5</td>
<td>33356999</td>
<td>2G1</td>
<td>212 P</td>
<td>520 T3</td>
<td>T7</td>
</tr>
<tr>
<td>Slc5a1</td>
<td>20537</td>
<td>nob 5</td>
<td>33478860</td>
<td>1E15</td>
<td>248 G</td>
<td>430 GACATCGCTTCTGTAGTCG</td>
<td>AAAGGACTGATTTGGACACTCC</td>
</tr>
<tr>
<td>Spon2</td>
<td>10069</td>
<td>nob 5</td>
<td>33530373</td>
<td>1J23</td>
<td>1E12 P</td>
<td>292 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ctb1</td>
<td>13016</td>
<td>nob 5</td>
<td>33564587</td>
<td>1L20</td>
<td>1A3 P</td>
<td>404 M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Mtea</td>
<td>59003</td>
<td>nob 5</td>
<td>33689668</td>
<td>1B17</td>
<td>277 C</td>
<td>417 AGAGAGCTGGTGCTTGTG</td>
<td>ACTGAGCTGGATCTAGACC</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Typ</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-Position</td>
<td>interne ID</td>
<td>Template erste PCR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4933407H18Rik</td>
<td>71101</td>
<td>nob</td>
<td>5</td>
<td>33695552</td>
<td>1D11 183</td>
<td>G</td>
<td>386</td>
</tr>
<tr>
<td>2410018C17Rik</td>
<td>74504</td>
<td>nob</td>
<td>5</td>
<td>33917207</td>
<td>1G22 1C6</td>
<td>P</td>
<td>281</td>
</tr>
<tr>
<td>Slbp</td>
<td>20492</td>
<td>nob</td>
<td>5</td>
<td>33965158</td>
<td>2H2 2A7</td>
<td>P</td>
<td>537</td>
</tr>
<tr>
<td>0610009G24Rik</td>
<td>68386</td>
<td>nob</td>
<td>5</td>
<td>33970896</td>
<td>1E11 184</td>
<td>G</td>
<td>469</td>
</tr>
<tr>
<td>Tacc3</td>
<td>21335</td>
<td>nob</td>
<td>5</td>
<td>33988355</td>
<td>1I1 1B4</td>
<td>P</td>
<td>263</td>
</tr>
<tr>
<td>Fgrf3</td>
<td>14184</td>
<td>nob</td>
<td>5</td>
<td>34039254</td>
<td>1F11 185</td>
<td>C</td>
<td>488</td>
</tr>
<tr>
<td>Lemt1</td>
<td>56384</td>
<td>nob</td>
<td>5</td>
<td>34057347</td>
<td>1F15 249</td>
<td>G</td>
<td>428</td>
</tr>
<tr>
<td>Wsc2h</td>
<td>24116</td>
<td>nob</td>
<td>5</td>
<td>34214772</td>
<td>1L24 1F7</td>
<td>P</td>
<td>359</td>
</tr>
<tr>
<td>Gm1673</td>
<td>381633</td>
<td>nob</td>
<td>5</td>
<td>34300511</td>
<td>1H17 283</td>
<td>C</td>
<td>303</td>
</tr>
<tr>
<td>BC034068</td>
<td>269642</td>
<td>nob</td>
<td>5</td>
<td>34318459</td>
<td>1O20 1A6</td>
<td>P</td>
<td>318</td>
</tr>
<tr>
<td>Poln</td>
<td>272158</td>
<td>nob</td>
<td>5</td>
<td>34324042</td>
<td>1G15 250</td>
<td>G</td>
<td>403</td>
</tr>
<tr>
<td>BC023822</td>
<td>231123</td>
<td>nob</td>
<td>5</td>
<td>34470736</td>
<td>2J2 2D1</td>
<td>P</td>
<td>629</td>
</tr>
<tr>
<td>Mdx4</td>
<td>17122</td>
<td>nob</td>
<td>5</td>
<td>34490743</td>
<td>2M2 2012</td>
<td>P</td>
<td>430</td>
</tr>
<tr>
<td>Zfyve28</td>
<td>231125</td>
<td>nob</td>
<td>5</td>
<td>34511731</td>
<td>1H15 251</td>
<td>G</td>
<td>470</td>
</tr>
<tr>
<td>BC037112</td>
<td>231128</td>
<td>nob</td>
<td>5</td>
<td>34760176</td>
<td>1F15 252</td>
<td>G</td>
<td>418</td>
</tr>
<tr>
<td>Tnip2</td>
<td>231130</td>
<td>nob</td>
<td>5</td>
<td>34817515</td>
<td>1L24 1F7</td>
<td>P</td>
<td>401</td>
</tr>
<tr>
<td>Sh3b2p2</td>
<td>24055</td>
<td>nob</td>
<td>5</td>
<td>34842662</td>
<td>2C1 1G5</td>
<td>P</td>
<td>351</td>
</tr>
<tr>
<td>Add1</td>
<td>11518</td>
<td>nob</td>
<td>5</td>
<td>34926150</td>
<td>1N16 273</td>
<td>G</td>
<td>440</td>
</tr>
<tr>
<td>0610009O03Rik</td>
<td>68294</td>
<td>nob</td>
<td>5</td>
<td>34950502</td>
<td>2P1 2D6</td>
<td>P</td>
<td>382</td>
</tr>
<tr>
<td>2610033O07Rik</td>
<td>75416</td>
<td>nob</td>
<td>5</td>
<td>34955389</td>
<td>1A11 1A11</td>
<td>P</td>
<td>235</td>
</tr>
<tr>
<td>Gprk2</td>
<td>14772</td>
<td>nob</td>
<td>5</td>
<td>34977235</td>
<td>1A23 1D4</td>
<td>P</td>
<td>328</td>
</tr>
<tr>
<td>Hdh</td>
<td>15194</td>
<td>nob</td>
<td>5</td>
<td>35078646</td>
<td>1H11 187</td>
<td>G</td>
<td>413</td>
</tr>
<tr>
<td>A930005O4Rik</td>
<td>403174</td>
<td>nob</td>
<td>5</td>
<td>35243995</td>
<td>1E16 264</td>
<td>G</td>
<td>426</td>
</tr>
<tr>
<td>Rs21</td>
<td>71729</td>
<td>nob</td>
<td>5</td>
<td>35283064</td>
<td>1Q11 2C3</td>
<td>P</td>
<td>371</td>
</tr>
<tr>
<td>Hgfac</td>
<td>54426</td>
<td>nob</td>
<td>5</td>
<td>35358416</td>
<td>1N22 2D12</td>
<td>P</td>
<td>329</td>
</tr>
<tr>
<td>A930013K19</td>
<td>231134</td>
<td>nob</td>
<td>5</td>
<td>35397357</td>
<td>1J1 188</td>
<td>G</td>
<td>411</td>
</tr>
<tr>
<td>Lpax1</td>
<td>16976</td>
<td>nob</td>
<td>5</td>
<td>35408354</td>
<td>1O23 1E5</td>
<td>P</td>
<td>358</td>
</tr>
<tr>
<td>Adra2c</td>
<td>11553</td>
<td>nob</td>
<td>5</td>
<td>35598505</td>
<td>1J11 189</td>
<td>G</td>
<td>460</td>
</tr>
<tr>
<td>Hmx1</td>
<td>15371</td>
<td>nob</td>
<td>5</td>
<td>35705968</td>
<td>1J21 1B5</td>
<td>P</td>
<td>236</td>
</tr>
<tr>
<td>A930033C23Rik</td>
<td>77965</td>
<td>nob</td>
<td>5</td>
<td>35713678</td>
<td>1K11 190</td>
<td>G</td>
<td>464</td>
</tr>
<tr>
<td>Cpz,Hmx1</td>
<td>242039</td>
<td>nob</td>
<td>5</td>
<td>35819074</td>
<td>1B24 1E9</td>
<td>P</td>
<td>309</td>
</tr>
<tr>
<td>2310079F23Rik</td>
<td>78890</td>
<td>nob</td>
<td>5</td>
<td>35873856</td>
<td>2A1 1G12</td>
<td>P</td>
<td>448</td>
</tr>
<tr>
<td>4931431C16Rik</td>
<td>74364</td>
<td>nob</td>
<td>5</td>
<td>35898863</td>
<td>1J15 253</td>
<td>G</td>
<td>499</td>
</tr>
<tr>
<td>Acox3</td>
<td>80911</td>
<td>nob</td>
<td>5</td>
<td>35928094</td>
<td>1C23 1D6</td>
<td>P</td>
<td>231</td>
</tr>
<tr>
<td>Htra3</td>
<td>78558</td>
<td>nob</td>
<td>5</td>
<td>35978419</td>
<td>1J14 237</td>
<td>G</td>
<td>438</td>
</tr>
<tr>
<td>Sh3tcf</td>
<td>231147</td>
<td>nob</td>
<td>5</td>
<td>36014028</td>
<td>2B1 1G3</td>
<td>P</td>
<td>282</td>
</tr>
<tr>
<td>Ablim2</td>
<td>231148</td>
<td>nob</td>
<td>5</td>
<td>36173987</td>
<td>1K15 254</td>
<td>G</td>
<td>432</td>
</tr>
<tr>
<td>2600003E23Rik</td>
<td>70292</td>
<td>nob</td>
<td>5</td>
<td>36318580</td>
<td>2K2 2D10</td>
<td>P</td>
<td>422</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Typ.</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-Position</td>
<td>interne ID</td>
<td>Template erste PCR</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Sorcs2</td>
<td>81840</td>
<td>nob</td>
<td>5</td>
<td>36333990</td>
<td>1E22</td>
<td>1C4</td>
<td>P</td>
</tr>
<tr>
<td>2310020A21Rik</td>
<td>76943</td>
<td>nob</td>
<td>5</td>
<td>36520915</td>
<td>1L18</td>
<td>305</td>
<td>G</td>
</tr>
<tr>
<td>Gpaf1</td>
<td>17713</td>
<td>nob</td>
<td>5</td>
<td>36722277</td>
<td>1B21</td>
<td>1A9</td>
<td>P</td>
</tr>
<tr>
<td>AA474455</td>
<td>231151</td>
<td>nob</td>
<td>5</td>
<td>36769764</td>
<td>1M18</td>
<td>306</td>
<td>G</td>
</tr>
<tr>
<td>4921513E08Rik</td>
<td>66717</td>
<td>nob</td>
<td>5</td>
<td>36801686</td>
<td>1D21</td>
<td>1B10</td>
<td>P</td>
</tr>
<tr>
<td>Tbc1d14</td>
<td>100855</td>
<td>nob</td>
<td>5</td>
<td>36801080</td>
<td>2P2</td>
<td>2D5</td>
<td>P</td>
</tr>
<tr>
<td>D5Ertd579e</td>
<td>320661</td>
<td>nob</td>
<td>5</td>
<td>36938344</td>
<td>1C16</td>
<td>262</td>
<td>G</td>
</tr>
<tr>
<td>Mfap1</td>
<td>67568</td>
<td>nob</td>
<td>5</td>
<td>37031155</td>
<td>1M20</td>
<td>1A4</td>
<td>P</td>
</tr>
<tr>
<td>Man2b2</td>
<td>17160</td>
<td>nob</td>
<td>5</td>
<td>37096521</td>
<td>1C17</td>
<td>278</td>
<td>G</td>
</tr>
<tr>
<td>Ppp2r2c</td>
<td>269643</td>
<td>nob</td>
<td>5</td>
<td>37240123</td>
<td>1C22</td>
<td>1C2</td>
<td>P</td>
</tr>
<tr>
<td>Wfs1</td>
<td>22343</td>
<td>nob</td>
<td>5</td>
<td>37294352</td>
<td>2C9</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Gababnt7p</td>
<td>76071</td>
<td>nob</td>
<td>5</td>
<td>37316566</td>
<td>1L16</td>
<td>271</td>
<td>C</td>
</tr>
<tr>
<td>Crmp1</td>
<td>12933</td>
<td>nob</td>
<td>5</td>
<td>37530437</td>
<td>1A17</td>
<td>276</td>
<td>G</td>
</tr>
<tr>
<td>Evc</td>
<td>59056</td>
<td>nob</td>
<td>5</td>
<td>37583790</td>
<td>1M15</td>
<td>256</td>
<td>G</td>
</tr>
<tr>
<td>Evc2</td>
<td>68525</td>
<td>nob</td>
<td>5</td>
<td>37649542</td>
<td>1A22</td>
<td>1C11</td>
<td>P</td>
</tr>
<tr>
<td>Stk32</td>
<td>64293</td>
<td>nob</td>
<td>5</td>
<td>37735073</td>
<td>1P17</td>
<td>281</td>
<td>G</td>
</tr>
<tr>
<td>Cyt1</td>
<td>231161</td>
<td>nob</td>
<td>5</td>
<td>38023767</td>
<td>1N15</td>
<td>257</td>
<td>G</td>
</tr>
<tr>
<td>Mx5.1,W98246</td>
<td>17701</td>
<td>nob</td>
<td>5</td>
<td>38108809</td>
<td>2M1</td>
<td>282</td>
<td>P</td>
</tr>
<tr>
<td>Stx16</td>
<td>71116</td>
<td>nob</td>
<td>5</td>
<td>38327499</td>
<td>1J20</td>
<td>1A2</td>
<td>P</td>
</tr>
<tr>
<td>Nsg1</td>
<td>18196</td>
<td>nob</td>
<td>5</td>
<td>38425274</td>
<td>1F24</td>
<td>1F12</td>
<td>P</td>
</tr>
<tr>
<td>Zfp509</td>
<td>75079</td>
<td>nob</td>
<td>5</td>
<td>38487954</td>
<td>1L14</td>
<td>253</td>
<td>G</td>
</tr>
<tr>
<td>Lyar</td>
<td>17089</td>
<td>nob</td>
<td>5</td>
<td>38508788</td>
<td>1H24</td>
<td>1F3</td>
<td>P</td>
</tr>
<tr>
<td>2810021014Rik</td>
<td>66309</td>
<td>nob</td>
<td>5</td>
<td>38548390</td>
<td>1O15</td>
<td>258</td>
<td>G</td>
</tr>
<tr>
<td>Otap1</td>
<td>21906</td>
<td>nob</td>
<td>5</td>
<td>38591779</td>
<td>1L11</td>
<td>191</td>
<td>G</td>
</tr>
<tr>
<td>Wdr1</td>
<td>22388</td>
<td>nob</td>
<td>5</td>
<td>38515063</td>
<td>1C24</td>
<td>1F1</td>
<td>P</td>
</tr>
<tr>
<td>682024L24Rik</td>
<td>100515</td>
<td>nob</td>
<td>5</td>
<td>38690197</td>
<td>1O22</td>
<td>1D2</td>
<td>P</td>
</tr>
<tr>
<td>Cerk</td>
<td>27278</td>
<td>nob</td>
<td>5</td>
<td>38904710</td>
<td>1N11</td>
<td>193</td>
<td>C</td>
</tr>
<tr>
<td>Hs3atf</td>
<td>15476</td>
<td>nob</td>
<td>5</td>
<td>39002183</td>
<td>1A4</td>
<td>58</td>
<td>G</td>
</tr>
<tr>
<td>Pdlim1</td>
<td>54132</td>
<td>nob</td>
<td>5</td>
<td>40324844</td>
<td>1D15</td>
<td>247</td>
<td>C</td>
</tr>
<tr>
<td>Rab28</td>
<td>100972</td>
<td>nob</td>
<td>5</td>
<td>41913245</td>
<td>1O11</td>
<td>194</td>
<td>C</td>
</tr>
<tr>
<td>Bapx1</td>
<td>12020</td>
<td>nob</td>
<td>5</td>
<td>42094412</td>
<td>1P11</td>
<td>195</td>
<td>G</td>
</tr>
<tr>
<td>Cpeb2</td>
<td>231207</td>
<td>nob</td>
<td>5</td>
<td>43577291</td>
<td>2F1</td>
<td>1H1</td>
<td>P</td>
</tr>
<tr>
<td>C1qtnf7</td>
<td>109323</td>
<td>nob</td>
<td>5</td>
<td>43803605</td>
<td>2B1</td>
<td>2C6</td>
<td>P</td>
</tr>
<tr>
<td>5730506K17Rik</td>
<td>231214</td>
<td>nob</td>
<td>5</td>
<td>44018101</td>
<td>1B12</td>
<td>197</td>
<td>C</td>
</tr>
<tr>
<td>Fbx15</td>
<td>242960</td>
<td>nob</td>
<td>5</td>
<td>44032861</td>
<td>2A2</td>
<td>2D7</td>
<td>P</td>
</tr>
<tr>
<td>Bst1</td>
<td>12182</td>
<td>nob</td>
<td>5</td>
<td>44107154</td>
<td>2J1</td>
<td>2C7</td>
<td>P</td>
</tr>
<tr>
<td>Cd38</td>
<td>12494</td>
<td>nob</td>
<td>5</td>
<td>44193634</td>
<td>2O1</td>
<td>2B4</td>
<td>P</td>
</tr>
<tr>
<td>Fagf1p1</td>
<td>14181</td>
<td>nob</td>
<td>5</td>
<td>44267109</td>
<td>1P15</td>
<td>259</td>
<td>G</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Typ. Chr.</td>
<td>Array-Position</td>
<td>interne ID</td>
<td>Template erste PCR</td>
<td>Größe PCR-Produkt (bp)</td>
<td>Primer for (5'→3')</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Prom1</td>
<td>19126 nob</td>
<td>5</td>
<td>44281862</td>
<td>1E4</td>
<td>P</td>
<td>361</td>
<td>M13 for</td>
</tr>
<tr>
<td>4932414K12Rik</td>
<td>23125 nob</td>
<td>5</td>
<td>4463411</td>
<td>1G24</td>
<td>F2</td>
<td>478</td>
<td>M13 for</td>
</tr>
<tr>
<td>Ldb2</td>
<td>16826 nob</td>
<td>5</td>
<td>44760390</td>
<td>1C12</td>
<td>G</td>
<td>436</td>
<td>C</td>
</tr>
<tr>
<td>75785</td>
<td>5</td>
<td>45260036</td>
<td>1B16</td>
<td>261</td>
<td>G</td>
<td>402</td>
<td>TCTCTCTGCTGGATG</td>
</tr>
<tr>
<td>4930435H24Rik</td>
<td>73975 nob</td>
<td>5</td>
<td>45398784</td>
<td>1G9</td>
<td>154</td>
<td>496</td>
<td>C</td>
</tr>
<tr>
<td>963031F12Rik</td>
<td>110391 nob</td>
<td>5</td>
<td>45712629</td>
<td>1K9</td>
<td>159</td>
<td>435</td>
<td>C</td>
</tr>
<tr>
<td>76321</td>
<td>5</td>
<td>45781629</td>
<td>1O6</td>
<td>101</td>
<td>G</td>
<td>477</td>
<td>G</td>
</tr>
<tr>
<td>Med28</td>
<td>66999 nob</td>
<td>5</td>
<td>4580549</td>
<td>19</td>
<td>156</td>
<td>350</td>
<td>C</td>
</tr>
<tr>
<td>963031F12Rik</td>
<td>319251 nob</td>
<td>5</td>
<td>4587651</td>
<td>1M9</td>
<td>160</td>
<td>435</td>
<td>C</td>
</tr>
<tr>
<td>757305O710Rik</td>
<td>209707 nob</td>
<td>5</td>
<td>45981752</td>
<td>1J9</td>
<td>157</td>
<td>443</td>
<td>C</td>
</tr>
<tr>
<td>Slit2</td>
<td>20563 nob</td>
<td>5</td>
<td>48273041</td>
<td>1N9</td>
<td>161</td>
<td>486</td>
<td>C</td>
</tr>
<tr>
<td>4933428G9Rik</td>
<td>66768 nob</td>
<td>5</td>
<td>48860591</td>
<td>1P8</td>
<td>144</td>
<td>404</td>
<td>C</td>
</tr>
<tr>
<td>Kpnip4</td>
<td>80334 nob</td>
<td>5</td>
<td>4887749</td>
<td>2G3</td>
<td>210</td>
<td>356</td>
<td>C</td>
</tr>
<tr>
<td>963031F12Rik</td>
<td>70693 nob</td>
<td>5</td>
<td>50275628</td>
<td>1G7</td>
<td>113</td>
<td>409</td>
<td>C</td>
</tr>
<tr>
<td>Ppargcl_e8.2</td>
<td>19017 nob</td>
<td>5</td>
<td>51742494</td>
<td>1K2</td>
<td>159</td>
<td>435</td>
<td>C</td>
</tr>
<tr>
<td>Dhsx5</td>
<td>13204 nob</td>
<td>5</td>
<td>52438468</td>
<td>1F9</td>
<td>P</td>
<td>324</td>
<td>C</td>
</tr>
<tr>
<td>963031F12Rik</td>
<td>76321 nob</td>
<td>5</td>
<td>52520268</td>
<td>1G1</td>
<td>13</td>
<td>460</td>
<td>C</td>
</tr>
<tr>
<td>Lgi2</td>
<td>24361 nob</td>
<td>5</td>
<td>52817644</td>
<td>11</td>
<td>5</td>
<td>455</td>
<td>C</td>
</tr>
<tr>
<td>4933428G9Rik</td>
<td>211006 nob</td>
<td>5</td>
<td>52920844</td>
<td>1P9</td>
<td>163</td>
<td>478</td>
<td>C</td>
</tr>
<tr>
<td>Plk2b-pending</td>
<td>67073 nob</td>
<td>5</td>
<td>53029855</td>
<td>1K6</td>
<td>96</td>
<td>404</td>
<td>C</td>
</tr>
<tr>
<td>Zcchc4</td>
<td>78796 nob</td>
<td>5</td>
<td>53071302</td>
<td>1A10</td>
<td>164</td>
<td>445</td>
<td>C</td>
</tr>
<tr>
<td>Anapc4</td>
<td>52026 nob</td>
<td>5</td>
<td>53123300</td>
<td>1P6</td>
<td>102</td>
<td>307</td>
<td>C</td>
</tr>
<tr>
<td>Sic34a2</td>
<td>20531 nob</td>
<td>5</td>
<td>53326329</td>
<td>1C1</td>
<td>K3</td>
<td>754</td>
<td>C</td>
</tr>
<tr>
<td>2310046A20Rik</td>
<td>231238 nob</td>
<td>5</td>
<td>53955324</td>
<td>2D3</td>
<td>288</td>
<td>324</td>
<td>C</td>
</tr>
<tr>
<td>181001310Rik</td>
<td>66278 nob</td>
<td>5</td>
<td>53555479</td>
<td>1K19</td>
<td>321</td>
<td>565</td>
<td>C</td>
</tr>
<tr>
<td>Rpsnh</td>
<td>19664 nob</td>
<td>5</td>
<td>53878593</td>
<td>1F1</td>
<td>2</td>
<td>417</td>
<td>C</td>
</tr>
<tr>
<td>Ccakar</td>
<td>12425 nob</td>
<td>5</td>
<td>53967322</td>
<td>1A1</td>
<td>K1</td>
<td>460</td>
<td>C</td>
</tr>
<tr>
<td>Tbc1d19</td>
<td>67249 nob</td>
<td>5</td>
<td>54097086</td>
<td>1A9</td>
<td>145</td>
<td>351</td>
<td>C</td>
</tr>
<tr>
<td>Stim2</td>
<td>116873 nob</td>
<td>5</td>
<td>54408463</td>
<td>1E1</td>
<td>K5</td>
<td>874</td>
<td>C</td>
</tr>
<tr>
<td>4932414J04Rik</td>
<td>319216 nob</td>
<td>5</td>
<td>58004376</td>
<td>1N7</td>
<td>122</td>
<td>430</td>
<td>C</td>
</tr>
<tr>
<td>Pcd7</td>
<td>54216 nob</td>
<td>5</td>
<td>58009938</td>
<td>1D1</td>
<td>K4</td>
<td>742</td>
<td>C</td>
</tr>
<tr>
<td>G6pd2</td>
<td>14380 nob</td>
<td>5</td>
<td>62097121</td>
<td>1M1</td>
<td>12</td>
<td>455</td>
<td>C</td>
</tr>
<tr>
<td>Cent1d</td>
<td>212285 nob</td>
<td>5</td>
<td>63054331</td>
<td>1P2</td>
<td>31</td>
<td>481</td>
<td>C</td>
</tr>
<tr>
<td>3110047P20Rik</td>
<td>319807 nob</td>
<td>5</td>
<td>63925493</td>
<td>1A3</td>
<td>32</td>
<td>413</td>
<td>C</td>
</tr>
<tr>
<td>0610041O10Rik</td>
<td>76261 nob</td>
<td>5</td>
<td>64136987</td>
<td>1N1</td>
<td>13</td>
<td>435</td>
<td>C</td>
</tr>
<tr>
<td>AA536743</td>
<td>100532 nob</td>
<td>5</td>
<td>64188208</td>
<td>1C3</td>
<td>34</td>
<td>496</td>
<td>C</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Pos.</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-internal ID</td>
<td>Template primer forward (5'→3')</td>
<td>M13 for</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>pgm1</td>
<td>66681</td>
<td>64378440</td>
<td>1D3</td>
<td>5</td>
<td>64378440</td>
<td>GGGGAGCATCTGAAAAAGG</td>
<td>CACAACTTAGGAACCATCTTGG</td>
</tr>
<tr>
<td>Tbc1d1</td>
<td>57915</td>
<td>64452837</td>
<td>1O1</td>
<td>14</td>
<td>410</td>
<td>CTGAGATCATCAGCTCCATCC</td>
<td>CATGTCTGTGGGCTGAACC</td>
</tr>
<tr>
<td>Gm1683</td>
<td>381697</td>
<td>64874363</td>
<td>1K17</td>
<td>286</td>
<td>C</td>
<td>AAGGAGAAGTGTCTGGGAAGG</td>
<td>GGTGCTGGATCCTTTGAAGC</td>
</tr>
<tr>
<td>Klf3</td>
<td>16599</td>
<td>65082714</td>
<td>1L1</td>
<td>8</td>
<td>G</td>
<td>GGGGTCATTTACTCCACACC</td>
<td>GTCCATCTCTTCCGACAAGG</td>
</tr>
<tr>
<td>Tlr1</td>
<td>21897</td>
<td>65203800</td>
<td>1P1</td>
<td>15</td>
<td>G</td>
<td>CTCTCATTGTCCAAGCTGAGG</td>
<td>TAGTGCTGACGGACACATCC</td>
</tr>
<tr>
<td>Tlr6</td>
<td>21899</td>
<td>65232113</td>
<td>1A2</td>
<td>16</td>
<td>G</td>
<td>CCAAGACAGAAAACCCATCG</td>
<td>GGAAAGTCAGCTTCGTCAGG</td>
</tr>
<tr>
<td>9130005N14Rik</td>
<td>68303</td>
<td>65320723</td>
<td>1F3</td>
<td>37</td>
<td>G</td>
<td>ACTGCAGGTCTCCCACATCC</td>
<td>GCCATGCTTGAGAAAAATAGGG</td>
</tr>
<tr>
<td>Klhl5</td>
<td>71778</td>
<td>65435204</td>
<td>1I8</td>
<td>135</td>
<td>G</td>
<td>CAGTACGTTCAAGCCACAGC</td>
<td>CAGTGACATCCTATCACAGTCG</td>
</tr>
<tr>
<td>Wdr19</td>
<td>213081</td>
<td>65538039</td>
<td>1I2</td>
<td>24</td>
<td>G</td>
<td>CTAAATGACCGCACTTCGTG</td>
<td>AAGGCTTTGATCGGTAGGAAG</td>
</tr>
<tr>
<td>Recc1</td>
<td>19687</td>
<td>65540987</td>
<td>1B2</td>
<td>17</td>
<td>G</td>
<td>GGCCTTTAGAGGAACAATGC</td>
<td>TCTGACCCAGCCTACACTCC</td>
</tr>
<tr>
<td>Klb</td>
<td>83379</td>
<td>65627541</td>
<td>1J2</td>
<td>25</td>
<td>G</td>
<td>TTCAAGTGGAAGGGAGTTGG</td>
<td>ATGCATACCTGTGCCAAACC</td>
</tr>
<tr>
<td>Ugdh</td>
<td>22235</td>
<td>65709241</td>
<td>1K2</td>
<td>26</td>
<td>G</td>
<td>TTGGCAAAAAGGTGTCTTCC</td>
<td>GAGAACGAGACTGCCTTTCC</td>
</tr>
<tr>
<td>1110003E01Rik</td>
<td>68552</td>
<td>65725956</td>
<td>1G3</td>
<td>39</td>
<td>G</td>
<td>GGACTAACGTCCTGGTGTGG</td>
<td>AAATGCTCACTGTCCCAAGG</td>
</tr>
<tr>
<td>Hip2</td>
<td>53323</td>
<td>65834066</td>
<td>1L2</td>
<td>27</td>
<td>G</td>
<td>CGCAGTAATAGTGGCCTTGTC</td>
<td>TTTTTGCAGTCTCCAATGGT</td>
</tr>
<tr>
<td>9030416H16Rik</td>
<td>71521</td>
<td>65901877</td>
<td>1N8</td>
<td>141</td>
<td>C</td>
<td>CCTGTGAAGGAAAGGAGAGC</td>
<td>AACTTCATTGGGAGGACTGG</td>
</tr>
<tr>
<td>B3bp</td>
<td>333789</td>
<td>66106187</td>
<td>1C9</td>
<td>148</td>
<td>G</td>
<td>TTTCTATGGGCTTGGACCTG</td>
<td>GGATTTGAAGTGCTTGTTGC</td>
</tr>
<tr>
<td>Rhoh</td>
<td>74734</td>
<td>66142337</td>
<td>1J3</td>
<td>42</td>
<td>G</td>
<td>TGCTGAGCTCAATCAAGTGC</td>
<td>ATCCTGGGCAAGTCTCTTCC</td>
</tr>
<tr>
<td>Chrna9</td>
<td>231252</td>
<td>66246258</td>
<td>1K1</td>
<td>7</td>
<td>G</td>
<td>TGTCACCTATTTCCCCTTCG</td>
<td>CAGAGGGACGTTTTCTGAGG</td>
</tr>
<tr>
<td>4921525L17Rik</td>
<td>70918</td>
<td>66540293</td>
<td>1L3</td>
<td>44</td>
<td>G</td>
<td>ACATCAGGGGCAAACATGC</td>
<td>AAAGCCAACTCATAGGACAAGC</td>
</tr>
<tr>
<td>Apbb2</td>
<td>11787</td>
<td>66580347</td>
<td>1J8</td>
<td>136</td>
<td>G</td>
<td>GTCACGACCAATGTGAAACG</td>
<td>GGACAGCAAAATGAACTTGG</td>
</tr>
<tr>
<td>Uchl1</td>
<td>22223</td>
<td>66955373</td>
<td>1E2</td>
<td>20</td>
<td>G</td>
<td>CTTCTCTGCCGTGGCTCTC</td>
<td>GGACTAGACAAACCaCATCCAG</td>
</tr>
<tr>
<td>3732412D22Rik</td>
<td>77569</td>
<td>67027210</td>
<td>1K16</td>
<td>270</td>
<td>G</td>
<td>ATAAGGGGCTTGATGTGAGG</td>
<td>TGCATTCCTTTCGTGTCTGG</td>
</tr>
<tr>
<td>Phox2b</td>
<td>18935</td>
<td>67373527</td>
<td>1N2</td>
<td>29</td>
<td>G</td>
<td>GTAAGGAGGCCAGTGTGGAG</td>
<td>TACGGACTGCTCTGGTGGTC</td>
</tr>
<tr>
<td>Tmem33</td>
<td>67878</td>
<td>67539831</td>
<td>1N3</td>
<td>47</td>
<td>G</td>
<td>AGAGCATCGCCTTTATCAGC</td>
<td>TTTCATGATGTAGGCACAGC</td>
</tr>
<tr>
<td>Slc30a9</td>
<td>109108</td>
<td>67586090</td>
<td>1O3</td>
<td>48</td>
<td>G</td>
<td>CAGTGTGCATGGGTAACACC</td>
<td>GACCTCTGTGCACATCAAGC</td>
</tr>
<tr>
<td>9430027B09Rik</td>
<td>77272</td>
<td>67660313</td>
<td>1P3</td>
<td>49</td>
<td>G</td>
<td>GATCTCCCCTGCGTTTAGG</td>
<td>CACGGACTGTGTCATCTTGG</td>
</tr>
<tr>
<td>D830007B15Rik</td>
<td>330096</td>
<td>67892372</td>
<td>1O19</td>
<td>325</td>
<td>G</td>
<td>CTGTGAATAGGCCACACAGG</td>
<td>CCCAGGTGGTTAGTGAAACC</td>
</tr>
<tr>
<td>Atp8a1</td>
<td>11980</td>
<td>67898289</td>
<td>1C5</td>
<td>70</td>
<td>C</td>
<td>TTGTTTGAATGGCCTCTTCC</td>
<td>CTTGAGATTTCGCCTCAAGC</td>
</tr>
<tr>
<td>Kctd8</td>
<td>243043</td>
<td>69389582</td>
<td>1B4</td>
<td>51</td>
<td>G</td>
<td>AGGTCACCAAGCAGAACTCG</td>
<td>TCTTGTCGTCTCGGTACTGG</td>
</tr>
<tr>
<td>Yipf7</td>
<td>75581</td>
<td>69795803</td>
<td>1M6</td>
<td>99</td>
<td>C</td>
<td>ATAATCAGGAGCCGAGTTGC</td>
<td>CCACACAGCCATATGACACC</td>
</tr>
<tr>
<td>AA407726</td>
<td>231729</td>
<td>71372852</td>
<td>1C4</td>
<td>52</td>
<td>G</td>
<td>CAGAATCGGATGTCAAAAGC</td>
<td>AATGCTCCAAATGTGACTGG</td>
</tr>
<tr>
<td>Gabra2</td>
<td>14393</td>
<td>71850517</td>
<td>1C10</td>
<td>166</td>
<td>G</td>
<td>CAGAATCGGATGTCAAAAGC</td>
<td>AATGCTCCAAATGTGACTGG</td>
</tr>
<tr>
<td>Commd8</td>
<td>27784</td>
<td>72438380</td>
<td>1B22</td>
<td>1C12</td>
<td>P</td>
<td>M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Corin</td>
<td>53419</td>
<td>72579126</td>
<td>1B5</td>
<td>69</td>
<td>G</td>
<td>CTCCAAAAGAAATCCCAAGG</td>
<td>TGGGCTTAAGCAGAAACTGG</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez ID</td>
<td>Gene ID</td>
<td>Typ</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-Position</td>
<td>interne ID</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>nfxl1</td>
<td>100978</td>
<td>nob 5</td>
<td>72831797</td>
<td>1E10</td>
<td>168 G</td>
<td>CATTTTGGTGGTGTCTGACG</td>
<td>TGCGTTTATTAGCTGCTTCG</td>
</tr>
<tr>
<td>Zar1</td>
<td>317755</td>
<td>nob 5</td>
<td>72860219</td>
<td>1A7</td>
<td>103 G</td>
<td>GTACGTCGACAGCCACCAG</td>
<td>CCACACTGTTCCGGTCCTC</td>
</tr>
<tr>
<td>Cncg</td>
<td>12788</td>
<td>nob 5</td>
<td>72882830</td>
<td>1F10</td>
<td>169 G</td>
<td>GATGCAGCAGAAACTCAAGC</td>
<td>CCCTGGGTACATTTGATTCC</td>
</tr>
<tr>
<td>3830408G10Rik</td>
<td>70701</td>
<td>nob 5</td>
<td>72949503</td>
<td>1B8</td>
<td>126 G</td>
<td>CCCTAAAAGGTGGGTCATCC</td>
<td>GTTACCCAAAGTGGGTCAGG</td>
</tr>
<tr>
<td>Txk</td>
<td>22165</td>
<td>nob 5</td>
<td>72975424</td>
<td>2F3</td>
<td>2C1 P</td>
<td>T3 T7</td>
<td>T3 T7</td>
</tr>
<tr>
<td>Tec</td>
<td>21682</td>
<td>nob 5</td>
<td>73061514</td>
<td>2D2</td>
<td>2A1 P</td>
<td>pME for pMe rev</td>
<td>pME for pMe rev</td>
</tr>
<tr>
<td>5033405K12Rik</td>
<td>75991</td>
<td>nob 5</td>
<td>73227633</td>
<td>1K21</td>
<td>1B6 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>E130304D01</td>
<td>231290</td>
<td>nob 5</td>
<td>73286039</td>
<td>1C8</td>
<td>127 G</td>
<td>GACAACCTCA CCCTGTCTCC</td>
<td>GAGATTTCCACCAGGACAGC</td>
</tr>
<tr>
<td>2510002A14Rik</td>
<td>72313</td>
<td>nob 5</td>
<td>73299325</td>
<td>1D8</td>
<td>129 G</td>
<td>CTTGTTGGTGACCGCAGAGG</td>
<td>CCAGTGTGTGTTTGGAGACG</td>
</tr>
<tr>
<td>9030227G01Rik</td>
<td>73378646</td>
<td>nob 5</td>
<td>73378646</td>
<td>2B3</td>
<td>2B6 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Ociad1</td>
<td>68095</td>
<td>nob 5</td>
<td>73571937</td>
<td>1J22</td>
<td>1C9 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Ociad2</td>
<td>433904</td>
<td>nob 5</td>
<td>73602399</td>
<td>1G10</td>
<td>170 C</td>
<td>AGTGTCCACTCATGGGAACC</td>
<td>GGAAGCAGATGGTTGTGACC</td>
</tr>
<tr>
<td>C130090K23Rik</td>
<td>231293</td>
<td>nob 5</td>
<td>73685362</td>
<td>1B9</td>
<td>146 C</td>
<td>GTGGTCAGGAAGTGGATTGC</td>
<td>GAACCCGATAGCATCAGTCC</td>
</tr>
<tr>
<td>BC031901</td>
<td>231296</td>
<td>nob 5</td>
<td>73885777</td>
<td>1D17</td>
<td>279 G</td>
<td>CATTAGGGAACTGGCCACAC</td>
<td>CTGCGCTTCACATTTCTCTG</td>
</tr>
<tr>
<td>Sgcb</td>
<td>24051</td>
<td>nob 5</td>
<td>73912245</td>
<td>1H10</td>
<td>171 G</td>
<td>AGGACAAAGGGCTGAAGTGG</td>
<td>CTCGCTGACCTTCAGTTTCC</td>
</tr>
<tr>
<td>Spata18</td>
<td>73472</td>
<td>nob 5</td>
<td>73930555</td>
<td>1L21</td>
<td>1B7 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Usp46</td>
<td>69727</td>
<td>nob 5</td>
<td>74017213</td>
<td>1J10</td>
<td>173 G</td>
<td>AAAGTCAGCAGCCCCTGTG</td>
<td>TGTTCTGAGCCAGAAATAGTGC</td>
</tr>
<tr>
<td>Rascl2</td>
<td>68927</td>
<td>nob 5</td>
<td>74079885</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>C381644G06Rik</td>
<td>231326</td>
<td>nob 5</td>
<td>74871686</td>
<td>2C1</td>
<td>2E5 P</td>
<td>T3 T7</td>
<td>T3 T7</td>
</tr>
<tr>
<td>Srrsa2</td>
<td>21982</td>
<td>nob 5</td>
<td>74906039</td>
<td>5</td>
<td>100 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Exoc1</td>
<td>21982</td>
<td>nob 5</td>
<td>74906039</td>
<td>5</td>
<td>100 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Cep4</td>
<td>381644</td>
<td>nob 5</td>
<td>74871686</td>
<td>2C1</td>
<td>2E5 P</td>
<td>T3 T7</td>
<td>T3 T7</td>
</tr>
<tr>
<td>A9C009072Rik</td>
<td>231326</td>
<td>nob 5</td>
<td>74906039</td>
<td>5</td>
<td>100 P</td>
<td>M13 for M13 rev</td>
<td>M13 for M13 rev</td>
</tr>
<tr>
<td>Nmu</td>
<td>56183</td>
<td>nob 5</td>
<td>75284133</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>Pdcl2</td>
<td>231326</td>
<td>nob 5</td>
<td>75284133</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>Nmu</td>
<td>56183</td>
<td>nob 5</td>
<td>75284133</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>Pdcl2</td>
<td>231326</td>
<td>nob 5</td>
<td>75284133</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>Pdcl2</td>
<td>231326</td>
<td>nob 5</td>
<td>75284133</td>
<td>1F8</td>
<td>132 G</td>
<td>GGTTCCAGAAAGAGCAGTGG</td>
<td>GTGCCCATCTTGTGTCAGG</td>
</tr>
<tr>
<td>Name</td>
<td>Gene ID</td>
<td>Entrez ID</td>
<td>Typ</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-Position</td>
<td>interne ID</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Srp72</td>
<td>66661</td>
<td>76848477</td>
<td>nob</td>
<td>5</td>
<td>78049477</td>
<td>1N23</td>
<td>1E5</td>
</tr>
<tr>
<td>1700023E05Rik</td>
<td>71868</td>
<td>76848456</td>
<td>nob</td>
<td>5</td>
<td>78090833</td>
<td>1G21</td>
<td>1E5</td>
</tr>
<tr>
<td>Hod</td>
<td>74318</td>
<td>76848435</td>
<td>nob</td>
<td>5</td>
<td>78161762</td>
<td>1F19</td>
<td>1A5</td>
</tr>
<tr>
<td>Spink2</td>
<td>69982</td>
<td>76848424</td>
<td>nob</td>
<td>5</td>
<td>78279880</td>
<td>1N20</td>
<td>1A5</td>
</tr>
<tr>
<td>Rest</td>
<td>19712</td>
<td>76848402</td>
<td>nob</td>
<td>5</td>
<td>78340275</td>
<td>1G21</td>
<td>1B2</td>
</tr>
<tr>
<td>56412</td>
<td>231380</td>
<td>76848383</td>
<td>nob</td>
<td>5</td>
<td>87183680</td>
<td>2C2</td>
<td>2E2</td>
</tr>
<tr>
<td>Gnrhr</td>
<td>14715</td>
<td>76848362</td>
<td>nob</td>
<td>5</td>
<td>87259479</td>
<td>1I12</td>
<td>2G2</td>
</tr>
<tr>
<td>Tmprss11d</td>
<td>231382</td>
<td>76848341</td>
<td>nob</td>
<td>5</td>
<td>87377421</td>
<td>1G16</td>
<td>2B2</td>
</tr>
<tr>
<td>Tmprss11a</td>
<td>194597</td>
<td>76848302</td>
<td>nob</td>
<td>5</td>
<td>87484502</td>
<td>1N12</td>
<td>2G2</td>
</tr>
<tr>
<td>243085</td>
<td>231384</td>
<td>76848283</td>
<td>nob</td>
<td>5</td>
<td>87595786</td>
<td>1K12</td>
<td>2G2</td>
</tr>
<tr>
<td>Tmprss11f</td>
<td>243086</td>
<td>76848244</td>
<td>nob</td>
<td>5</td>
<td>87780187</td>
<td>1M19</td>
<td>3B2</td>
</tr>
<tr>
<td>Ugt2b34</td>
<td>100727</td>
<td>76848203</td>
<td>nob</td>
<td>5</td>
<td>87964322</td>
<td>1J12</td>
<td>3G2</td>
</tr>
<tr>
<td>Ugt2b1</td>
<td>71773</td>
<td>76848164</td>
<td>nob</td>
<td>5</td>
<td>87991324</td>
<td>1I12</td>
<td>3G2</td>
</tr>
<tr>
<td>Ugt2b35</td>
<td>243087</td>
<td>76848125</td>
<td>nob</td>
<td>5</td>
<td>88074187</td>
<td>1M12</td>
<td>4B2</td>
</tr>
<tr>
<td>Ugt2b5</td>
<td>22238</td>
<td>76848086</td>
<td>nob</td>
<td>5</td>
<td>88141516</td>
<td>1F16</td>
<td>3G2</td>
</tr>
<tr>
<td>Ugt2b38</td>
<td>100559</td>
<td>76848047</td>
<td>nob</td>
<td>5</td>
<td>88463381</td>
<td>1P16</td>
<td>3G2</td>
</tr>
<tr>
<td>Sult1b1</td>
<td>56362</td>
<td>76848008</td>
<td>nob</td>
<td>5</td>
<td>88589239</td>
<td>1D19</td>
<td>3G2</td>
</tr>
<tr>
<td>Sultn</td>
<td>53315</td>
<td>76847970</td>
<td>nob</td>
<td>5</td>
<td>88629190</td>
<td>1N14</td>
<td>3G2</td>
</tr>
<tr>
<td>Sult1e1</td>
<td>20860</td>
<td>76847931</td>
<td>nob</td>
<td>5</td>
<td>88650498</td>
<td>1P12</td>
<td>3G2</td>
</tr>
<tr>
<td>Csna</td>
<td>12990</td>
<td>76847892</td>
<td>nob</td>
<td>5</td>
<td>88740784</td>
<td>1A13</td>
<td>3G2</td>
</tr>
<tr>
<td>Csnb</td>
<td>12991</td>
<td>76847853</td>
<td>nob</td>
<td>5</td>
<td>88767948</td>
<td>1B13</td>
<td>3G2</td>
</tr>
<tr>
<td>Csnb</td>
<td>12992</td>
<td>76847814</td>
<td>nob</td>
<td>5</td>
<td>88800525</td>
<td>1C13</td>
<td>3G2</td>
</tr>
<tr>
<td>Smr2</td>
<td>22239</td>
<td>76847775</td>
<td>nob</td>
<td>5</td>
<td>88800583</td>
<td>1D13</td>
<td>3G2</td>
</tr>
</tbody>
</table>
Tabelle A1: Übersicht über die Gene auf dem Macroarray (Fortsetzung)

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Chr.</th>
<th>Pos. (Bp)</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template erste PCR</th>
<th>Größe PCR-Produkt (bp)</th>
<th>Primer for (5′→3′)</th>
<th>Primer rev (5′→3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambn</td>
<td>11698</td>
<td>nob</td>
<td>5</td>
<td>89530551</td>
<td>1J13</td>
<td>221 G</td>
<td>G</td>
<td>428</td>
<td>CGCTCTCAGTCTACAAATGG</td>
<td>TGCTCTAACACACTTCATGC</td>
</tr>
<tr>
<td>Enam</td>
<td>13801</td>
<td>nob</td>
<td>5</td>
<td>89625355</td>
<td>1K13</td>
<td>222 G</td>
<td>G</td>
<td>439</td>
<td>TGGAGATGTTGCTGCTACTG</td>
<td>AGGACTTCTACGTTGGTGG</td>
</tr>
<tr>
<td>Igj</td>
<td>16069</td>
<td>nob</td>
<td>5</td>
<td>8959573</td>
<td>2K1</td>
<td>2C8 P</td>
<td>568</td>
<td>T3</td>
<td>M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Criz1</td>
<td>65981</td>
<td>nob</td>
<td>5</td>
<td>89628950</td>
<td>1J22</td>
<td>1C8 P</td>
<td>265</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>D5Bwg0860e</td>
<td>52822</td>
<td>nob</td>
<td>5</td>
<td>89715148</td>
<td>2E1</td>
<td>1G7 P</td>
<td>426</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Gsfl1</td>
<td>231413</td>
<td>nob</td>
<td>5</td>
<td>89733691</td>
<td>1M22</td>
<td>1D11 P</td>
<td>284</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Mobi1a</td>
<td>68473</td>
<td>nob</td>
<td>5</td>
<td>89795458</td>
<td>1J16</td>
<td>269 G</td>
<td>200</td>
<td>TCTCTTTCTGCAGTCCTCA</td>
<td>AAGTCAAGAGAGGATCAGCT</td>
<td></td>
</tr>
<tr>
<td>Dck</td>
<td>13178</td>
<td>nob</td>
<td>5</td>
<td>89836507</td>
<td>1P21</td>
<td>1C10 P</td>
<td>571</td>
<td>pME (21)</td>
<td>pME rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Slc4a4</td>
<td>5403</td>
<td>nob</td>
<td>5</td>
<td>90102386</td>
<td>2E2</td>
<td>2A2 P</td>
<td>208</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Gc</td>
<td>14473</td>
<td>nob</td>
<td>5</td>
<td>90492767</td>
<td>1K22</td>
<td>1D1 P</td>
<td>417</td>
<td>TCAAGACAGCTCTTGTACAG</td>
<td>AGAGCTATCAGGGTGTCAC</td>
<td></td>
</tr>
<tr>
<td>Gpr74</td>
<td>10443</td>
<td>nob</td>
<td>5</td>
<td>90602627</td>
<td>1P21</td>
<td>1C10 P</td>
<td>563</td>
<td>G120 (15)</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Bco383111</td>
<td>231430</td>
<td>nob</td>
<td>5</td>
<td>91286683</td>
<td>1N19</td>
<td>324 P</td>
<td>406</td>
<td>TGGTGCCCAGGTCGTTG</td>
<td>CAGGTTGAGTGATGTCACACAG</td>
<td></td>
</tr>
<tr>
<td>Ankr17</td>
<td>81702</td>
<td>nob</td>
<td>5</td>
<td>91328998</td>
<td>1G20</td>
<td>1A1 P</td>
<td>440</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Alp,albumin1</td>
<td>11576</td>
<td>nob</td>
<td>5</td>
<td>91583627</td>
<td>1D23</td>
<td>1D7 P</td>
<td>355</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Afl,albumin1</td>
<td>280662</td>
<td>nob</td>
<td>5</td>
<td>91594242</td>
<td>1F23</td>
<td>1D9 P</td>
<td>208</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Rasa6</td>
<td>73246</td>
<td>nob</td>
<td>5</td>
<td>91678283</td>
<td>1M13</td>
<td>224 G</td>
<td>444</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cxcl5</td>
<td>20311</td>
<td>nob</td>
<td>5</td>
<td>91834577</td>
<td>2E3</td>
<td>4B9 P</td>
<td>436</td>
<td>T7</td>
<td>M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cxcl7</td>
<td>57349</td>
<td>nob</td>
<td>5</td>
<td>91843717</td>
<td>1N13</td>
<td>225 C</td>
<td>458</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cxcl4</td>
<td>56744</td>
<td>nob</td>
<td>5</td>
<td>91847641</td>
<td>1M24</td>
<td>4F8 P</td>
<td>356</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Gm1960</td>
<td>330122</td>
<td>nob</td>
<td>5</td>
<td>91862817</td>
<td>1H16</td>
<td>267 G</td>
<td>417</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cxcl1</td>
<td>14825</td>
<td>nob</td>
<td>5</td>
<td>91960810</td>
<td>1G19</td>
<td>317 G</td>
<td>216</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cxcl2</td>
<td>20103</td>
<td>nob</td>
<td>5</td>
<td>91979096</td>
<td>1H19</td>
<td>318 G</td>
<td>199</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Epgn</td>
<td>71920</td>
<td>nob</td>
<td>5</td>
<td>92010716</td>
<td>1H16</td>
<td>266 C</td>
<td>400</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ere5</td>
<td>13874</td>
<td>nob</td>
<td>5</td>
<td>92149821</td>
<td>1P13</td>
<td>227 G</td>
<td>480</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Arg1</td>
<td>11839</td>
<td>nob</td>
<td>5</td>
<td>92214798</td>
<td>1A14</td>
<td>228 C</td>
<td>441</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Btc</td>
<td>12223</td>
<td>nob</td>
<td>5</td>
<td>92432460</td>
<td>1B14</td>
<td>229 G</td>
<td>484</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Rchyl1</td>
<td>68098</td>
<td>nob</td>
<td>5</td>
<td>93024749</td>
<td>1K24</td>
<td>1B6 P</td>
<td>345</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Thap6</td>
<td>381650</td>
<td>nob</td>
<td>5</td>
<td>93044757</td>
<td>1A18</td>
<td>292 C</td>
<td>426</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Cdk2</td>
<td>53886</td>
<td>nob</td>
<td>5</td>
<td>93097508</td>
<td>2C3</td>
<td>2B7 P</td>
<td>517</td>
<td>T7</td>
<td>M13 for</td>
<td>M13 rev</td>
</tr>
<tr>
<td>E430034L04Rik</td>
<td>23881</td>
<td>nob</td>
<td>5</td>
<td>93127355</td>
<td>1C14</td>
<td>230 C</td>
<td>427</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Vdp-pending</td>
<td>56041</td>
<td>nob</td>
<td>5</td>
<td>93213137</td>
<td>1H23</td>
<td>1E10 P</td>
<td>419</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>U90926</td>
<td>57425</td>
<td>nob</td>
<td>5</td>
<td>93285094</td>
<td>1D14</td>
<td>231 C</td>
<td>403</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Ppar2</td>
<td>19203</td>
<td>nob</td>
<td>5</td>
<td>93301465</td>
<td>1E14</td>
<td>232 G</td>
<td>364</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Asah1</td>
<td>67111</td>
<td>nob</td>
<td>5</td>
<td>93351344</td>
<td>2G2</td>
<td>2A5 P</td>
<td>876</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Sdade1</td>
<td>231452</td>
<td>nob</td>
<td>5</td>
<td>93359201</td>
<td>2G14</td>
<td>4F4 P</td>
<td>488</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
<tr>
<td>Art3</td>
<td>109979</td>
<td>nob</td>
<td>5</td>
<td>93407779</td>
<td>1G14</td>
<td>234 G</td>
<td>422</td>
<td>M13 for</td>
<td>M13 rev</td>
<td>M13 rev</td>
</tr>
</tbody>
</table>
Tabelle A1: Übersicht über die Gene auf dem Macroarray (Fortsetzung)

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Chr.</th>
<th>Pos. (Bp)</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template</th>
<th>erste PCR Größe PCR-Produkt (bp)</th>
<th>Primer for (5'→3')</th>
<th>Primer rev (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cxcl10</td>
<td>15945</td>
<td>nob</td>
<td>5</td>
<td>93421838</td>
<td>2N1</td>
<td>2B3</td>
<td>P</td>
<td>252 T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cxcl11</td>
<td>56066</td>
<td>nob</td>
<td>5</td>
<td>93434896</td>
<td>1F14</td>
<td>233</td>
<td>G</td>
<td>491 CAAATATCGAGGCCACAGGC</td>
<td>GCACTCAATGTCGAGCAAG</td>
<td></td>
</tr>
<tr>
<td>Nup54</td>
<td>269113</td>
<td>nob</td>
<td>5</td>
<td>93510323</td>
<td>1H14</td>
<td>235</td>
<td>G</td>
<td>443 ACAACAGAGGCTTACAGGC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Scarb2</td>
<td>12492</td>
<td>nob</td>
<td>5</td>
<td>93516513</td>
<td>1I14</td>
<td>236</td>
<td>G</td>
<td>350 CAGCCGGAGAAAACGAAAG</td>
<td>TCGAGCGACAGAAGACAG</td>
<td></td>
</tr>
<tr>
<td>Slc24a6</td>
<td>170756</td>
<td>ce</td>
<td>5</td>
<td>120771808</td>
<td>1K4</td>
<td>60</td>
<td>G</td>
<td>56 T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chkb</td>
<td>12651</td>
<td>ce</td>
<td>15</td>
<td>89257665</td>
<td>1F20</td>
<td>336</td>
<td>G</td>
<td>108 CAAATATCGAGGCCACAGGC</td>
<td>GCACTCAATGTCGAGCAAG</td>
<td></td>
</tr>
<tr>
<td>clk1</td>
<td>12747</td>
<td>ce</td>
<td>1</td>
<td>58368549</td>
<td>1L6</td>
<td>97</td>
<td>C</td>
<td>491 ACTGTGAAGCTGCTCAATCG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Cntr1</td>
<td>12805</td>
<td>ce</td>
<td>5</td>
<td>91966371</td>
<td>1B6</td>
<td>87</td>
<td>G</td>
<td>451 GACCTTGGCTCCTGTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Fno3</td>
<td>14262</td>
<td>ce</td>
<td>1</td>
<td>164821165</td>
<td>1G4</td>
<td>56</td>
<td>G</td>
<td>494 AGAGAGGCTCAGGCTACTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Kcnk1</td>
<td>16525</td>
<td>ce</td>
<td>8</td>
<td>128812599</td>
<td>1O5</td>
<td>83</td>
<td>G</td>
<td>421 CACTCTTGGCTCCTGTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Lrp1</td>
<td>16971</td>
<td>ce</td>
<td>10</td>
<td>127024773</td>
<td>1F6</td>
<td>77</td>
<td>G</td>
<td>469 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Mep1b</td>
<td>17288</td>
<td>ce</td>
<td>1</td>
<td>58368549</td>
<td>1L6</td>
<td>97</td>
<td>C</td>
<td>491 ACTGTGAAGCTGCTCAATCG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Pik3c2a</td>
<td>18704</td>
<td>ce</td>
<td>7</td>
<td>116209200</td>
<td>1L5</td>
<td>80</td>
<td>G</td>
<td>303 AATCCACGTCTTGGCTTCCAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Pim1</td>
<td>18712</td>
<td>ce</td>
<td>12</td>
<td>29172623</td>
<td>1B6</td>
<td>33</td>
<td>G</td>
<td>303 GACCTTGGCTCCTGTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Pknox1</td>
<td>18711</td>
<td>ce</td>
<td>7</td>
<td>31312405</td>
<td>1F6</td>
<td>91</td>
<td>G</td>
<td>451 ACTGTGAAGCTGCTCAATCG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Ppara</td>
<td>19013</td>
<td>ce</td>
<td>2</td>
<td>85563451</td>
<td>1D4</td>
<td>53</td>
<td>G</td>
<td>455 AGTGCATTGACGCTACAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Ptp4a1</td>
<td>19400</td>
<td>ce</td>
<td>1</td>
<td>90846773</td>
<td>1G5</td>
<td>74</td>
<td>G</td>
<td>303 GACCTTGGCTCCTGTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Rapn</td>
<td>19900</td>
<td>ce</td>
<td>1</td>
<td>127024773</td>
<td>1F6</td>
<td>91</td>
<td>G</td>
<td>451 ACTGTGAAGCTGCTCAATCG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Rpt6</td>
<td>20539</td>
<td>ce</td>
<td>8</td>
<td>124805292</td>
<td>1N5</td>
<td>82</td>
<td>G</td>
<td>439 AATCCACGTCTTGGCTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Scarb1</td>
<td>20778</td>
<td>ce</td>
<td>5</td>
<td>125630052</td>
<td>1J1</td>
<td>6</td>
<td>G</td>
<td>447 CACCTTGGCTCCTGTCCTCC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>22173</td>
<td>ce</td>
<td>7</td>
<td>87369173</td>
<td>1J5</td>
<td>79</td>
<td>G</td>
<td>432 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Nr5a2</td>
<td>26424</td>
<td>ce</td>
<td>1</td>
<td>138776858</td>
<td>1E4</td>
<td>54</td>
<td>G</td>
<td>432 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Pdss1</td>
<td>56075</td>
<td>ce</td>
<td>2</td>
<td>22477287</td>
<td>1E5</td>
<td>72</td>
<td>G</td>
<td>365 TGGACGCAAAACACTACCTC</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Osbp1a</td>
<td>64291</td>
<td>ce</td>
<td>18</td>
<td>13084888</td>
<td>1C6</td>
<td>88</td>
<td>G</td>
<td>458 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Zfad6</td>
<td>65098</td>
<td>ce</td>
<td>7</td>
<td>84555553</td>
<td>1M8</td>
<td>139</td>
<td>C</td>
<td>450 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Zmat2</td>
<td>66492</td>
<td>ce</td>
<td>18</td>
<td>36919696</td>
<td>1J6</td>
<td>95</td>
<td>G</td>
<td>491 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Hddc3</td>
<td>68695</td>
<td>ce</td>
<td>7</td>
<td>80216649</td>
<td>1M4</td>
<td>62</td>
<td>G</td>
<td>416 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>March5</td>
<td>71779</td>
<td>ce</td>
<td>6</td>
<td>116303741</td>
<td>1M4</td>
<td>62</td>
<td>G</td>
<td>449 GCCCTGATGTACGAGCAAGG</td>
<td>GTCAGCTTGGCTGAGCAAG</td>
<td></td>
</tr>
<tr>
<td>Isyna1</td>
<td>71780</td>
<td>ce</td>
<td>8</td>
<td>73523469</td>
<td>1P4</td>
<td>65</td>
<td>G</td>
<td>250 GCCCTGATGTATGAGAAG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Pit1</td>
<td>71416</td>
<td>ce</td>
<td>17</td>
<td>29046227</td>
<td>1J5</td>
<td>90</td>
<td>G</td>
<td>401 GCCCTGATGTACGAGCAAGG</td>
<td>GTCAGCTTGGCTGAGCAAG</td>
<td></td>
</tr>
<tr>
<td>Setmar</td>
<td>74729</td>
<td>ce</td>
<td>6</td>
<td>10803021</td>
<td>1L4</td>
<td>61</td>
<td>G</td>
<td>402 GCCCTGATGTACGAGCAAGG</td>
<td>GTCAGCTTGGCTGAGCAAG</td>
<td></td>
</tr>
<tr>
<td>Trim44</td>
<td>80965</td>
<td>ce</td>
<td>2</td>
<td>10201758</td>
<td>1H5</td>
<td>75</td>
<td>G</td>
<td>476 GCCCTGATGTACGAGCAAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Lass1</td>
<td>93898</td>
<td>ce</td>
<td>8</td>
<td>73247757</td>
<td>1M5</td>
<td>81</td>
<td>G</td>
<td>488 GCCCTGATGTACGAGCAAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Prg4</td>
<td>96875</td>
<td>ce</td>
<td>1</td>
<td>64325891</td>
<td>1F4</td>
<td>55</td>
<td>G</td>
<td>436 GCCCTGATGTACGAGCAAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Bmp2k</td>
<td>140780</td>
<td>ce</td>
<td>5</td>
<td>97237990</td>
<td>1J4</td>
<td>59</td>
<td>G</td>
<td>458 GCCCTGATGTACGAGCAAGG</td>
<td>GCCCTGATGTATGAGAAG</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Typ</td>
<td>Chr.</td>
<td>Pos. (Bp)</td>
<td>Array-Position</td>
<td>interne ID</td>
<td>Template erste PCR</td>
<td>Größe PCR-Produkt (bp)</td>
<td>Primer for (5′→3′)</td>
<td>Primer rev (5′→3′)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Tbk2</td>
<td>140810</td>
<td>ce</td>
<td>2</td>
<td>120542044</td>
<td>1K8</td>
<td>137</td>
<td>C</td>
<td>443</td>
<td>CATGGTGTTGAGTTTGTGG</td>
<td>CAACAGGGATTCATCCTCG</td>
</tr>
<tr>
<td>Stand5</td>
<td>170460</td>
<td>ce</td>
<td>7</td>
<td>83508201</td>
<td>1L8</td>
<td>138</td>
<td>C</td>
<td>440</td>
<td>GCTACCCATGGGAACTCC</td>
<td>TGGTTAAGCTCCTCACCAC</td>
</tr>
<tr>
<td>March2</td>
<td>224703</td>
<td>ce</td>
<td>17</td>
<td>33235284</td>
<td>1G6</td>
<td>92</td>
<td>G</td>
<td>437</td>
<td>CGGATCCACATCATCCTTCC</td>
<td>CCAAGCTAGTGCAAGGATAC</td>
</tr>
<tr>
<td>Lims2</td>
<td>225341</td>
<td>ce</td>
<td>18</td>
<td>32074516</td>
<td>1I6</td>
<td>94</td>
<td>G</td>
<td>474</td>
<td>CTTGGTGTTGACATACCTTC</td>
<td>GAAGGAGATTGGGGCTCCTC</td>
</tr>
<tr>
<td>Fag1</td>
<td>233575</td>
<td>ce</td>
<td>7</td>
<td>12096894</td>
<td>1O4</td>
<td>64</td>
<td>G</td>
<td>316</td>
<td>CTGGTGTTGACATACCTTC</td>
<td>ACCAAGTGGTTGACATACCT</td>
</tr>
<tr>
<td>Pkmyt1</td>
<td>268930</td>
<td>ce</td>
<td>17</td>
<td>120343030</td>
<td>1D6</td>
<td>89</td>
<td>G</td>
<td>455</td>
<td>GACGTTCAGTCAAGAATGAG</td>
<td>AGTTCTGAGGGCCATCCTAG</td>
</tr>
</tbody>
</table>

Abkürzungen: ID – Identitätsnummer; nob – Nob1-Gen; ce – C. elegans-Gen; con – Kontroll-Gen; Chr. – Chromosom; Pos. (Bp) – Position auf Chromosom 5 in Basenpaaren (basierend auf NCBI Build 36.1, 2007); PCR – Polymerase-Kettenreaktion; G – genomische DNA; C – cDNA; P – Plasmid-DNA; bp – Basenpaare; für – in Leserichtung; rev - komplementär
Tabelle A2: Übersicht über die RZPD-Kontrollgene auf dem Macroarray

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Pos_Chr.</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template erste PCR</th>
<th>PCR Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pcdh11x</td>
<td>245578</td>
<td>uni</td>
<td>X x e1</td>
<td>3B01</td>
<td>RK 001</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Ppig</td>
<td>228005</td>
<td>uni</td>
<td>2 C2</td>
<td>3C01</td>
<td>RK 002</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>S1c7a6os</td>
<td>66432</td>
<td>uni</td>
<td>8 D3</td>
<td>3D01</td>
<td>RK 003</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Zfp185</td>
<td>22673</td>
<td>uni</td>
<td>cM</td>
<td>3E01</td>
<td>RK 004</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Rnf17</td>
<td>30054</td>
<td>uni</td>
<td>14 c1</td>
<td>3G01</td>
<td>RK 005</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Ntn2i</td>
<td>18209</td>
<td>uni</td>
<td>17 A3.3</td>
<td>3H01</td>
<td>RK 006</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Og9x</td>
<td>18292</td>
<td>uni</td>
<td>11 45.0 cM</td>
<td>3J01</td>
<td>RK 007</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Nlgn1</td>
<td>192167</td>
<td>uni</td>
<td>3 a3</td>
<td>3L01</td>
<td>RK 010</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Chek1</td>
<td>12649</td>
<td>uni</td>
<td>9 a5.3</td>
<td>3N01</td>
<td>RK 011</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>C330003B14Rik</td>
<td>105594</td>
<td>uni</td>
<td>14 a3</td>
<td>3O01</td>
<td>RK 012</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>AA407452</td>
<td>57867</td>
<td>uni</td>
<td>6</td>
<td>3P01</td>
<td>RK 013</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Cnih4</td>
<td>98417</td>
<td>uni</td>
<td>1 h4</td>
<td>3B02</td>
<td>RK 014</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Tlr8</td>
<td>170744</td>
<td>uni</td>
<td>X x f5</td>
<td>3C02</td>
<td>RK 016</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Vwf</td>
<td>22371</td>
<td>uni</td>
<td>6 60.8 cM</td>
<td>3E02</td>
<td>RK 017</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>A630082K20Rik</td>
<td>338523</td>
<td>uni</td>
<td>6</td>
<td>3F02</td>
<td>RK 018</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Gpr150</td>
<td>238725</td>
<td>uni</td>
<td>13 C1</td>
<td>3G02</td>
<td>RK 019</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Zfp664</td>
<td>72020</td>
<td>uni</td>
<td>16 C1.3</td>
<td>3I02</td>
<td>RK 020</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>D130020L05Rik</td>
<td>319760</td>
<td>uni</td>
<td>12</td>
<td>3J02</td>
<td>RK 021</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Pili5</td>
<td>69706</td>
<td>uni</td>
<td>12 C3</td>
<td>3L02</td>
<td>RK 022</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>4930471M09Rik</td>
<td>75787</td>
<td>uni</td>
<td>6</td>
<td>3M02</td>
<td>RK 024</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Srda5a</td>
<td>78925</td>
<td>uni</td>
<td>13 39.0 cM</td>
<td>3N02</td>
<td>RK 025</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Pde10a</td>
<td>23984</td>
<td>uni</td>
<td>17 a1</td>
<td>3P02</td>
<td>RK 026</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>BC027231</td>
<td>212547</td>
<td>uni</td>
<td>16 b4</td>
<td>3A03</td>
<td>RK 028</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Pag</td>
<td>94212</td>
<td>uni</td>
<td>3 A1</td>
<td>3C03</td>
<td>RK 030</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>2610304G08Rik</td>
<td>70470</td>
<td>uni</td>
<td>2 h2</td>
<td>3D03</td>
<td>RK 031</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>2310057B04Rik</td>
<td>69690</td>
<td>uni</td>
<td>13</td>
<td>3F03</td>
<td>RK 032</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>LOC545428</td>
<td>545428</td>
<td>uni</td>
<td>2 C3</td>
<td>3G03</td>
<td>RK 033</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Mrp63</td>
<td>67840</td>
<td>uni</td>
<td>14 c2</td>
<td>3H03</td>
<td>RK 034</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Ppp2r3c</td>
<td>26931</td>
<td>uni</td>
<td>12 57.0 cM</td>
<td>3J03</td>
<td>RK 035</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Dmt2</td>
<td>110333</td>
<td>uni</td>
<td>10 50.0 cM</td>
<td>3K03</td>
<td>RK 036</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Adrm1</td>
<td>56436</td>
<td>uni</td>
<td>2 h4</td>
<td>3L03</td>
<td>RK 042</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Hoxb9</td>
<td>15417</td>
<td>uni</td>
<td>11 56.0 cM</td>
<td>3O03</td>
<td>RK 044</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Tac4</td>
<td>93670</td>
<td>uni</td>
<td>11 d</td>
<td>3P03</td>
<td>RK 045</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Adcyap1</td>
<td>11516</td>
<td>uni</td>
<td>17 e5</td>
<td>3B04</td>
<td>RK 047</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Tmem77</td>
<td>67171</td>
<td>uni</td>
<td>3 F3</td>
<td>3C04</td>
<td>RK 048</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Ptdss2</td>
<td>27388</td>
<td>uni</td>
<td>7 f4</td>
<td>3E04</td>
<td>RK 051</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Rmmt1</td>
<td>67390</td>
<td>uni</td>
<td>11 B5</td>
<td>3G04</td>
<td>RK 063</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Hrmt16</td>
<td>99890</td>
<td>uni</td>
<td>3 F3</td>
<td>3J04</td>
<td>RK 071</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Pcdh19</td>
<td>279653</td>
<td>uni</td>
<td>X E3</td>
<td>3L04</td>
<td>RK 077</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Trub1</td>
<td>72133</td>
<td>uni</td>
<td>19 D2</td>
<td>3M04</td>
<td>RK 081</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2310058N22Rik</td>
<td>71921</td>
<td>uni</td>
<td>12</td>
<td>3N04</td>
<td>RK 082</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>C1ta4</td>
<td>12477</td>
<td>uni</td>
<td>1 30.1 cM</td>
<td>3P04</td>
<td>RK 083</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>5830448L21Rik</td>
<td>76057</td>
<td>uni</td>
<td>6</td>
<td>3A05</td>
<td>RK 084</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Up49</td>
<td>224836</td>
<td>uni</td>
<td>17 c</td>
<td>3C05</td>
<td>RK 085</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Cnot2</td>
<td>72068</td>
<td>uni</td>
<td>10 d2</td>
<td>3D05</td>
<td>RK 086</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ches1</td>
<td>71375</td>
<td>uni</td>
<td>12 f1</td>
<td>3E05</td>
<td>RK 087</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>1110059M19Rik</td>
<td>68800</td>
<td>uni</td>
<td>X x a3.3</td>
<td>3G05</td>
<td>RK 088</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Aпал1</td>
<td>11783</td>
<td>uni</td>
<td>10 48.0 cM</td>
<td>3H05</td>
<td>RK 089</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>4833439L19Rik</td>
<td>97820</td>
<td>uni</td>
<td>13 B1</td>
<td>3I05</td>
<td>RK 090</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ptpn22</td>
<td>19260</td>
<td>uni</td>
<td>3 F3</td>
<td>3K05</td>
<td>RK 091</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Name</td>
<td>Entrez Gene ID</td>
<td>Typ</td>
<td>Pos_Chr.</td>
<td>Array-Position</td>
<td>interne ID</td>
<td>Template erste PCR</td>
<td>PCR Primer</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Osbp3</td>
<td>71720</td>
<td>uni</td>
<td>6 b3</td>
<td>3L05</td>
<td>RK 092</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>A930007B11Rik</td>
<td>77944</td>
<td>uni</td>
<td>16</td>
<td>3N05</td>
<td>RK 093</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ccl2</td>
<td>20296</td>
<td>uni</td>
<td>11 46.5 cM</td>
<td>3O05</td>
<td>RK 094</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rbm16</td>
<td>106583</td>
<td>uni</td>
<td>17 a1</td>
<td>3A06</td>
<td>RK 095</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>A630076J17Rik</td>
<td>319929</td>
<td>uni</td>
<td>3 f2.3</td>
<td>3B06</td>
<td>RK 096</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Aldh12a1</td>
<td>69748</td>
<td>uni</td>
<td>7 B3</td>
<td>3C06</td>
<td>RK 097</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>A730046J16</td>
<td>329124</td>
<td>uni</td>
<td>1 b</td>
<td>3E06</td>
<td>RK 098</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ankrd13d</td>
<td>68423</td>
<td>uni</td>
<td>19 A</td>
<td>3F06</td>
<td>RK 099</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ifih1</td>
<td>71586</td>
<td>uni</td>
<td>2 c3</td>
<td>3H06</td>
<td>RK 100</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2310067B10Rik</td>
<td>71947</td>
<td>uni</td>
<td>11 e2</td>
<td>3I06</td>
<td>RK 101</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Shox2</td>
<td>20429</td>
<td>uni</td>
<td>3 31.6 cM</td>
<td>3J06</td>
<td>RK 102</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>a</td>
<td>50518</td>
<td>uni</td>
<td>2 89.0 cM</td>
<td>3N03</td>
<td>RK 103</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Gis</td>
<td>14660</td>
<td>uni</td>
<td>1 25.9 cM</td>
<td>3M06</td>
<td>RK 105</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Zap70</td>
<td>22637</td>
<td>uni</td>
<td>1 20.5 cM</td>
<td>3O06</td>
<td>RK 106</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Stk19</td>
<td>54402</td>
<td>uni</td>
<td>17 b1</td>
<td>3P06</td>
<td>RK 107</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2310002J15Rik</td>
<td>67859</td>
<td>uni</td>
<td>2 a3</td>
<td>3B07</td>
<td>RK 108</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Dapk3</td>
<td>13144</td>
<td>uni</td>
<td>10 43.0 cM</td>
<td>3C07</td>
<td>RK 110</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Edn1</td>
<td>13614</td>
<td>uni</td>
<td>13 26.0 cM</td>
<td>3D07</td>
<td>RK 111</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rps12</td>
<td>20042</td>
<td>uni</td>
<td>10 A3</td>
<td>3F07</td>
<td>RK 112</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Zfp354a</td>
<td>21408</td>
<td>uni</td>
<td>11 28.0 cM</td>
<td>3G07</td>
<td>RK 113</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rims4</td>
<td>241770</td>
<td>uni</td>
<td>2 h3</td>
<td>3E03</td>
<td>RK 114</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Mmp15</td>
<td>17388</td>
<td>uni</td>
<td>8 45.5 cM</td>
<td>3A07</td>
<td>RK 117</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>6230429P13Rik</td>
<td>76134</td>
<td>uni</td>
<td>16 b2</td>
<td>3J07</td>
<td>RK 118</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2310002L13Rik</td>
<td>75577</td>
<td>uni</td>
<td>18 e2</td>
<td>3M07</td>
<td>RK 120</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Gpc1</td>
<td>14733</td>
<td>uni</td>
<td>1 d</td>
<td>3N07</td>
<td>RK 122</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Cd80</td>
<td>12519</td>
<td>uni</td>
<td>16 28.0 cM</td>
<td>3I07</td>
<td>RK 123</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2810067K19Rik</td>
<td>77041</td>
<td>uni</td>
<td>13 c1</td>
<td>3J08</td>
<td>RK 124</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>P4k2b</td>
<td>67073</td>
<td>uni</td>
<td>5 C1</td>
<td>3K02</td>
<td>RK 125</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Pad7a</td>
<td>18583</td>
<td>uni</td>
<td>3 7.0 cM</td>
<td>3O02</td>
<td>RK 126</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rbm2</td>
<td>56516</td>
<td>uni</td>
<td>10 d3</td>
<td>3P07</td>
<td>RK 128</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Plekhg4</td>
<td>102075</td>
<td>uni</td>
<td>8 d3</td>
<td>3O07</td>
<td>RK 129</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Pparbp</td>
<td>19014</td>
<td>uni</td>
<td>11 d</td>
<td>3A08</td>
<td>RK 130</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>A830058L05Rik</td>
<td>210503</td>
<td>uni</td>
<td>17 a3.2</td>
<td>3D04</td>
<td>RK 131</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ptpg</td>
<td>19270</td>
<td>uni</td>
<td>14 2.0 cM</td>
<td>3D02</td>
<td>RK 132</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Tsga14</td>
<td>83922</td>
<td>uni</td>
<td>6 a3.3</td>
<td>3B08</td>
<td>RK 133</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Mmp19</td>
<td>58223</td>
<td>uni</td>
<td>10 70.0 cM</td>
<td>3D08</td>
<td>RK 134</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>5133401H06Rik</td>
<td>71305</td>
<td>uni</td>
<td>3</td>
<td>3A09</td>
<td>RK 135</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Dab2</td>
<td>13132</td>
<td>uni</td>
<td>15 6.7 cM</td>
<td>3E08</td>
<td>RK 136</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2610027H17Rik</td>
<td>71811</td>
<td>uni</td>
<td>14</td>
<td>3M08</td>
<td>RK 137</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Mecp2</td>
<td>17257</td>
<td>uni</td>
<td>X x 29.6 cM</td>
<td>3F08</td>
<td>RK 138</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rbm3</td>
<td>207181</td>
<td>uni</td>
<td>9 f3</td>
<td>3E07</td>
<td>RK 141</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ngyl1</td>
<td>59007</td>
<td>uni</td>
<td>14 4.0 cM</td>
<td>3C08</td>
<td>RK 142</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>9030611O19Rik</td>
<td>104943</td>
<td>uni</td>
<td>12 a2</td>
<td>3F05</td>
<td>RK 143</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Txinp</td>
<td>56338</td>
<td>uni</td>
<td>3</td>
<td>3L07</td>
<td>RK 144</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Hoxb13</td>
<td>15408</td>
<td>uni</td>
<td>11 56.0 cM</td>
<td>3H08</td>
<td>RK 147</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Kcnk2</td>
<td>16526</td>
<td>uni</td>
<td>1 h6</td>
<td>3I08</td>
<td>RK 148</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2310014D11Rik</td>
<td>69633</td>
<td>uni</td>
<td>19 c3</td>
<td>3K08</td>
<td>RK 149</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Asb5</td>
<td>76294</td>
<td>uni</td>
<td>8 b3.1</td>
<td>3H02</td>
<td>RK 151</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Akap10</td>
<td>56697</td>
<td>uni</td>
<td>11 b2</td>
<td>3D06</td>
<td>RK 152</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Dctn4</td>
<td>67665</td>
<td>uni</td>
<td>18 d2</td>
<td>3G06</td>
<td>RK 153</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
</tbody>
</table>
Tabelle A2: Übersicht über die RZPD-Kontrollgene auf dem Macroarray (Fortsetzung)

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Pos_Chr.</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template</th>
<th>PCR Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubg1</td>
<td>103733</td>
<td>uni</td>
<td>10</td>
<td>41.0 cM</td>
<td>3O04</td>
<td>RK 154</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Npc1</td>
<td>18145</td>
<td>uni</td>
<td>18</td>
<td>4.0 cM</td>
<td>3N08</td>
<td>RK 155</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>D130059P03Rik</td>
<td>320538</td>
<td>uni</td>
<td>6</td>
<td>b1</td>
<td>3O08</td>
<td>RK 156</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dhx30</td>
<td>72831</td>
<td>uni</td>
<td>9</td>
<td>f2</td>
<td>3J05</td>
<td>RK 157</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Amigo1</td>
<td>229715</td>
<td>uni</td>
<td>3</td>
<td>F3</td>
<td>3B05</td>
<td>RK 158</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>D030056L22Rik</td>
<td>225995</td>
<td>uni</td>
<td>19</td>
<td>B</td>
<td>3P08</td>
<td>RK 159</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>D030011O10Rik</td>
<td>320560</td>
<td>uni</td>
<td>6</td>
<td>g3</td>
<td>3B09</td>
<td>RK 160</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Bace2</td>
<td>56175</td>
<td>uni</td>
<td>16</td>
<td>c4</td>
<td>3M05</td>
<td>RK 161</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Vamp4</td>
<td>53330</td>
<td>uni</td>
<td>1</td>
<td>85.0 cM</td>
<td>3C09</td>
<td>RK 162</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Ltap</td>
<td>93840</td>
<td>uni</td>
<td>1</td>
<td>19.4 cM</td>
<td>3D09</td>
<td>RK 163</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Gga1</td>
<td>106039</td>
<td>uni</td>
<td>15</td>
<td>e2</td>
<td>3P05</td>
<td>RK 164</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Iqgap1</td>
<td>29875</td>
<td>uni</td>
<td>13</td>
<td>15.0 cM</td>
<td>3F09</td>
<td>RK 165</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>E330022O07</td>
<td>330804</td>
<td>uni</td>
<td>8</td>
<td>c1</td>
<td>3H09</td>
<td>RK 167</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>1810011O10Rik</td>
<td>69068</td>
<td>uni</td>
<td>8</td>
<td>a2</td>
<td>3J09</td>
<td>RK 168</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Aven</td>
<td>74268</td>
<td>uni</td>
<td>2</td>
<td>E4</td>
<td>3K09</td>
<td>RK 169</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Txndc13</td>
<td>52837</td>
<td>uni</td>
<td>2</td>
<td>77.0 cM</td>
<td>3M09</td>
<td>RK 170</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Plac1</td>
<td>56096</td>
<td>uni</td>
<td>X</td>
<td>16.0 cM</td>
<td>3H04</td>
<td>RK 171</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dcp2</td>
<td>70640</td>
<td>uni</td>
<td>18</td>
<td>B3</td>
<td>3N09</td>
<td>RK 172</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>E430014B02Rik</td>
<td>320908</td>
<td>uni</td>
<td>17</td>
<td>3P09</td>
<td>RK 173</td>
<td>P M13 forward/T7</td>
<td></td>
</tr>
<tr>
<td>Calca</td>
<td>12310</td>
<td>uni</td>
<td>7</td>
<td>54.0 cM</td>
<td>3A04</td>
<td>RK 174</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Ccr2</td>
<td>12772</td>
<td>uni</td>
<td>9</td>
<td>71.9 cM</td>
<td>3I03</td>
<td>RK 175</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Ulk2</td>
<td>29869</td>
<td>uni</td>
<td>11</td>
<td>B2</td>
<td>3K04</td>
<td>RK 176</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Rgag4</td>
<td>331474</td>
<td>uni</td>
<td>8</td>
<td>a2</td>
<td>3J09</td>
<td>RK 168</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dhdh</td>
<td>71755</td>
<td>uni</td>
<td>7</td>
<td>B2</td>
<td>3B10</td>
<td>RK 178</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Pik3cb</td>
<td>74769</td>
<td>uni</td>
<td>9</td>
<td>E4</td>
<td>3D10</td>
<td>RK 179</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Gcei2</td>
<td>14525</td>
<td>uni</td>
<td>16</td>
<td>B5</td>
<td>3E10</td>
<td>RK 180</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Phf12</td>
<td>268448</td>
<td>uni</td>
<td>11</td>
<td>b5</td>
<td>3G10</td>
<td>RK 181</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dapk2</td>
<td>13143</td>
<td>uni</td>
<td>9</td>
<td>32.0 cM</td>
<td>3H10</td>
<td>RK 182</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Cd209e</td>
<td>170780</td>
<td>uni</td>
<td>8</td>
<td>A1.1</td>
<td>3I0</td>
<td>RK 183</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>C530028O21Rik</td>
<td>319352</td>
<td>uni</td>
<td>6</td>
<td></td>
<td>3K10</td>
<td>RK 184</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Sla9a3</td>
<td>105243</td>
<td>uni</td>
<td>13</td>
<td>43.0 cM</td>
<td>3L10</td>
<td>RK 185</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Sla23a2</td>
<td>54338</td>
<td>uni</td>
<td>2</td>
<td>g2</td>
<td>3N10</td>
<td>RK 187</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Pdlim7</td>
<td>67399</td>
<td>uni</td>
<td>13</td>
<td>B2</td>
<td>3O10</td>
<td>RK 188</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Pik4cb</td>
<td>107650</td>
<td>uni</td>
<td>3</td>
<td>f2.1</td>
<td>3P10</td>
<td>RK 189</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dlgh2</td>
<td>23859</td>
<td>uni</td>
<td>7</td>
<td>d3</td>
<td>3B11</td>
<td>RK 190</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Sial7c</td>
<td>20447</td>
<td>uni</td>
<td>3</td>
<td>h3</td>
<td>3C11</td>
<td>RK 191</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Salt2</td>
<td>50524</td>
<td>uni</td>
<td>14</td>
<td>b-c1</td>
<td>3E11</td>
<td>RK 193</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dennd2d</td>
<td>72121</td>
<td>uni</td>
<td>3</td>
<td>F2.3</td>
<td>3F11</td>
<td>RK 194</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Ext2</td>
<td>58193</td>
<td>uni</td>
<td>3</td>
<td>g1</td>
<td>3G11</td>
<td>RK 195</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Tm9sf1</td>
<td>74140</td>
<td>uni</td>
<td>14</td>
<td>c1</td>
<td>3I11</td>
<td>RK 196</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Cd274</td>
<td>60533</td>
<td>uni</td>
<td>19</td>
<td>C2</td>
<td>3J11</td>
<td>RK 197</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Mrps5</td>
<td>77721</td>
<td>uni</td>
<td>2</td>
<td>f3</td>
<td>3L11</td>
<td>RK 198</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Dzip11</td>
<td>72507</td>
<td>uni</td>
<td>9</td>
<td>F1</td>
<td>3M11</td>
<td>RK 200</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>BC024561</td>
<td>232983</td>
<td>uni</td>
<td>7</td>
<td>a2</td>
<td>3N11</td>
<td>RK 201</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Asxl2</td>
<td>75302</td>
<td>uni</td>
<td>12</td>
<td>A1.1</td>
<td>3P11</td>
<td>RK 202</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Zfp64</td>
<td>22722</td>
<td>uni</td>
<td>2</td>
<td>98.0 cM</td>
<td>3A12</td>
<td>RK 203</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>C1qtnf1</td>
<td>56745</td>
<td>uni</td>
<td>11</td>
<td>e2</td>
<td>3D12</td>
<td>RK 208</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Amacr</td>
<td>17117</td>
<td>uni</td>
<td>15</td>
<td>b1</td>
<td>3E12</td>
<td>RK 210</td>
<td>P M13 forward/T7</td>
</tr>
<tr>
<td>Nphp3</td>
<td>74025</td>
<td>uni</td>
<td>9</td>
<td>61.0 cM</td>
<td>3G12</td>
<td>RK 212</td>
<td>P M13 forward/T7</td>
</tr>
</tbody>
</table>
Tabelle A2: Übersicht über die RZPD-Kontrollgene auf dem Macroarray (Fortsetzung)

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Pos_Chr.</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template erst PCr</th>
<th>PCR Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srpx</td>
<td>51795</td>
<td>uni</td>
<td>X A1.2</td>
<td>3H12</td>
<td>RK 213</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>4732496G21Rik</td>
<td>320162</td>
<td>uni</td>
<td>11 e1</td>
<td>3J12</td>
<td>RK 215</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Srpx2</td>
<td>68792</td>
<td>uni</td>
<td>X E3</td>
<td>3K12</td>
<td>RK 216</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2610206C17Rik</td>
<td>72495</td>
<td>uni</td>
<td>7 d2</td>
<td>3L12</td>
<td>RK 217</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Dock10</td>
<td>210293</td>
<td>uni</td>
<td>1 C4</td>
<td>3N12</td>
<td>RK 218</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>4933425L03Rik</td>
<td>71169</td>
<td>uni</td>
<td>12 A3</td>
<td>3O12</td>
<td>RK 219</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>1700123A16Rik</td>
<td>73610</td>
<td>uni</td>
<td>10 C1</td>
<td>3P12</td>
<td>RK 222</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>9330180L21Rik</td>
<td>77268</td>
<td>uni</td>
<td>14 a3</td>
<td>3B13</td>
<td>RK 223</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>0610013E23Rik</td>
<td>76892</td>
<td>uni</td>
<td>11 C</td>
<td>3C13</td>
<td>RK 224</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Gzm3B</td>
<td>14939</td>
<td>uni</td>
<td>14 20.5 cM</td>
<td>3E13</td>
<td>RK 226</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Stard4</td>
<td>170459</td>
<td>uni</td>
<td>18 b1</td>
<td>3H13</td>
<td>RK 229</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Gtrgeo22</td>
<td>110012</td>
<td>uni</td>
<td>10 43.0 cM</td>
<td>3I13</td>
<td>RK 230</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>LzTr1</td>
<td>93730</td>
<td>uni</td>
<td>9 71.1 cM</td>
<td>3J13</td>
<td>RK 231</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>4932438H23Rik</td>
<td>74387</td>
<td>uni</td>
<td>16 c3.3</td>
<td>3L13</td>
<td>RK 232</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>1810037C20Rik</td>
<td>66294</td>
<td>uni</td>
<td>X a7.1</td>
<td>3M13</td>
<td>RK 233</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Klhdc1</td>
<td>271005</td>
<td>uni</td>
<td>12 c2</td>
<td>3O13</td>
<td>RK 234</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Trim17</td>
<td>56631</td>
<td>uni</td>
<td>B1.3</td>
<td>3N06</td>
<td>RK 235</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Nic1</td>
<td>66257</td>
<td>uni</td>
<td>9 f2</td>
<td>3A14</td>
<td>RK 237</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Nktr</td>
<td>18087</td>
<td>uni</td>
<td>9 71.0 cM</td>
<td>3C14</td>
<td>RK 238</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Homer2</td>
<td>26557</td>
<td>uni</td>
<td>7 d1</td>
<td>3D14</td>
<td>RK 239</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Lum</td>
<td>17022</td>
<td>uni</td>
<td>10 61.0 cM</td>
<td>3F14</td>
<td>RK 242</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>6530415H11Rik</td>
<td>76245</td>
<td>uni</td>
<td>7 e2</td>
<td>3G14</td>
<td>RK 243</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Klh18</td>
<td>270201</td>
<td>uni</td>
<td>9 F2</td>
<td>3H14</td>
<td>RK 244</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Psma3</td>
<td>26446</td>
<td>uni</td>
<td>11 58.3 cM</td>
<td>3J14</td>
<td>RK 245</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Spata13</td>
<td>219140</td>
<td>uni</td>
<td>14 30.5 cM</td>
<td>3K14</td>
<td>RK 246</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Pgm5</td>
<td>226041</td>
<td>uni</td>
<td>19 b</td>
<td>3M14</td>
<td>RK 251</td>
<td>P</td>
<td>T3/T7</td>
</tr>
<tr>
<td>9830124H08Rik</td>
<td>219105</td>
<td>uni</td>
<td>14 C3</td>
<td>3N14</td>
<td>RK 252</td>
<td>P</td>
<td>T3/T7</td>
</tr>
<tr>
<td>Zdhhc2</td>
<td>70546</td>
<td>uni</td>
<td>8 a4</td>
<td>3O14</td>
<td>RK 271</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>2610306H15Rik</td>
<td>72514</td>
<td>uni</td>
<td>19 c2</td>
<td>3A15</td>
<td>RK 272</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Stxbp5</td>
<td>78808</td>
<td>uni</td>
<td>10 A2</td>
<td>3B15</td>
<td>RK 273</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Spna2</td>
<td>20740</td>
<td>uni</td>
<td>2 18.0 cM</td>
<td>3D15</td>
<td>RK 274</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Cnot1</td>
<td>234594</td>
<td>uni</td>
<td>8 D1</td>
<td>3F15</td>
<td>RK 276</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Stambpl1</td>
<td>76630</td>
<td>uni</td>
<td>19 C1</td>
<td>3H15</td>
<td>RK 277</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Jmjd1c</td>
<td>108829</td>
<td>uni</td>
<td>10 B5.1</td>
<td>3K15</td>
<td>RK 279</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Neo1</td>
<td>18007</td>
<td>uni</td>
<td>9 b</td>
<td>3L15</td>
<td>RK 280</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>4930429A22Rik</td>
<td>208718</td>
<td>uni</td>
<td>1 c5</td>
<td>3M15</td>
<td>RK 281</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Smarcalc1</td>
<td>13990</td>
<td>uni</td>
<td>6 29.69 cM</td>
<td>3O15</td>
<td>RK 283</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Prkcs9</td>
<td>19089</td>
<td>uni</td>
<td>9 6.0 cM</td>
<td>3P15</td>
<td>RK 284</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Gan</td>
<td>209239</td>
<td>uni</td>
<td>8 e1</td>
<td>3A16</td>
<td>RK 285</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Fmr1nb</td>
<td>207854</td>
<td>uni</td>
<td>X A7.1</td>
<td>3C16</td>
<td>RK 286</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Mrpl21</td>
<td>353242</td>
<td>uni</td>
<td>19 A</td>
<td>3D16</td>
<td>RK 287</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Acsl6</td>
<td>216739</td>
<td>uni</td>
<td>11 29.35 cM</td>
<td>3F16</td>
<td>RK 288</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Exoc8</td>
<td>102058</td>
<td>uni</td>
<td>8 E2</td>
<td>3G16</td>
<td>RK 289</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>Cenpe</td>
<td>229841</td>
<td>uni</td>
<td>3 0.1 cM</td>
<td>3I16</td>
<td>RK 290</td>
<td>P</td>
<td>M13 forward/reverse</td>
</tr>
<tr>
<td>D630004K10Rik</td>
<td>103210</td>
<td>uni</td>
<td>10</td>
<td>3M16</td>
<td>RK 296</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Cspg6</td>
<td>13006</td>
<td>uni</td>
<td>19 d2</td>
<td>3N16</td>
<td>RK 297</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>1700021K02Rik</td>
<td>65971</td>
<td>uni</td>
<td>10 b4</td>
<td>3P16</td>
<td>RK 298</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>2900056L01Rik</td>
<td>73050</td>
<td>uni</td>
<td>15</td>
<td>3A17</td>
<td>RK 299</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Hspa4l</td>
<td>18415</td>
<td>uni</td>
<td>3 B</td>
<td>3C19</td>
<td>RK 324</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Dnajc17</td>
<td>69408</td>
<td>uni</td>
<td>2 36.0 cM</td>
<td>3D19</td>
<td>RK 326</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
</tbody>
</table>
Tabelle A2: Übersicht über die RZPD-Kontrollgene auf dem Macroarray (Fortsetzung)

<table>
<thead>
<tr>
<th>Name</th>
<th>Entrez Gene ID</th>
<th>Typ</th>
<th>Pos_Chr. Position</th>
<th>Array-Position</th>
<th>interne ID</th>
<th>Template erste PCR</th>
<th>PCR Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mthfs</td>
<td>107885</td>
<td>uni</td>
<td>9</td>
<td>3F19</td>
<td>RK 327</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Guk1</td>
<td>14923</td>
<td>uni</td>
<td>11 b1.3</td>
<td>3G19</td>
<td>RK 328</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Rnf111</td>
<td>93836</td>
<td>uni</td>
<td>9 39.0 cM</td>
<td>3I19</td>
<td>RK 330</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Pdc11</td>
<td>18572</td>
<td>uni</td>
<td>19 d2</td>
<td>3J19</td>
<td>RK 331</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Abbp</td>
<td>233099</td>
<td>uni</td>
<td>7 B1</td>
<td>3L19</td>
<td>RK 332</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Bcat2</td>
<td>12036</td>
<td>uni</td>
<td>7 23.0 cM</td>
<td>3M19</td>
<td>RK 333</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Zbtb41</td>
<td>226470</td>
<td>uni</td>
<td>1 F</td>
<td>3O19</td>
<td>RK 334</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Matn2</td>
<td>17181</td>
<td>uni</td>
<td>15 b3.3</td>
<td>3P19</td>
<td>RK 336</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Klf15</td>
<td>66277</td>
<td>uni</td>
<td>6 d1</td>
<td>3B20</td>
<td>RK 337</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Emp3</td>
<td>13732</td>
<td>uni</td>
<td>7 24.5 cM</td>
<td>3C20</td>
<td>RK 338</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Nfatc2ip</td>
<td>18020</td>
<td>uni</td>
<td>7 f3</td>
<td>3E20</td>
<td>RK 339</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Thoc4</td>
<td>21681</td>
<td>uni</td>
<td>11 E2</td>
<td>3F20</td>
<td>RK 340</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Fem1c</td>
<td>240263</td>
<td>uni</td>
<td>18 c</td>
<td>3H20</td>
<td>RK 341</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Sip1</td>
<td>66603</td>
<td>uni</td>
<td>12 c2</td>
<td>3I20</td>
<td>RK 345</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>B3galT3</td>
<td>26879</td>
<td>uni</td>
<td>3 e2</td>
<td>3K20</td>
<td>RK 347</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Tmem17</td>
<td>103765</td>
<td>uni</td>
<td>11 A3.2</td>
<td>3L20</td>
<td>RK 348</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
<tr>
<td>Ing3</td>
<td>71777</td>
<td>uni</td>
<td>6 a3</td>
<td>3N20</td>
<td>RK 350</td>
<td>P</td>
<td>M13 forward/T7</td>
</tr>
</tbody>
</table>

Abkürzungen: ID – Identitätsnummer; uni – RZPD-Unigene-Kontrollgen; Pos. Chr. – Position auf Chromosom; PCR – Polymerase-Kettenreaktion; P – Plasmid-DNA
Sequenz-Alignment Tbc1d1

NZO-l: NZO lange Isoform
NZO-k: NZO kurze Isoform
SJL-k: SJL kurze Isoform

NZO-l: NZO lange Isoform
NZO-k: NZO kurze Isoform
SJL-k: SJL kurze Isoform

Startcodon

AS 1

MEAITFTARKHPFP

AS 15

NEVSVDGLQQLPSLVPHSL

2f

AS 35

TTMPLPMLPVVAEVRRLSGQC

AS 55

SKKEPRTKQVRWLWSPSGLRL

1r

AS 75

CEPFDLEKSQPWDPPLICSSIF

AS 95

EKPKQRVHLIHNHSDPSYSF
ANHANG

NZO-l

<table>
<thead>
<tr>
<th>AS 115</th>
<th>A C L I K E D A A H R Q S L C Y V F K A</th>
</tr>
</thead>
</table>

PCR-Produkt Macroarray

<table>
<thead>
<tr>
<th>AS 135</th>
<th>D D Q T K V P E I I S S I R Q A G K A</th>
</tr>
</thead>
</table>

AS 155

<table>
<thead>
<tr>
<th>AS 175</th>
<th>V L F C G R V T V A H K K A P A L D</th>
</tr>
</thead>
</table>

AS 195

<table>
<thead>
<tr>
<th>AS 215</th>
<th>T G Q P S A P G P R P M R K S F S Q P G</th>
</tr>
</thead>
</table>

AS 235

<table>
<thead>
<tr>
<th>AS 255</th>
<th>S S F D N D I E N H L I G G H N V Q P</th>
</tr>
</thead>
</table>

AS 275

<table>
<thead>
<tr>
<th>AS 295</th>
<th>I S P D T K K I A L E K N F K E I S F C</th>
</tr>
</thead>
</table>

AS 315

<table>
<thead>
<tr>
<th>AS 335</th>
<th>S Q G I R H V D H F F I C R E C S G G</th>
</tr>
</thead>
</table>

NZO-k

<table>
<thead>
<tr>
<th>AS 115</th>
<th>A C L I K E D A A H R Q S L C Y V F K A</th>
</tr>
</thead>
</table>

PCR-Produkt Macroarray

<table>
<thead>
<tr>
<th>AS 135</th>
<th>D D Q T K V P E I I S S I R Q A G K A</th>
</tr>
</thead>
</table>

SJL-k

<table>
<thead>
<tr>
<th>AS 115</th>
<th>A C L I K E D A A H R Q S L C Y V F K A</th>
</tr>
</thead>
</table>

PCR-Produkt Macroarray

<table>
<thead>
<tr>
<th>AS 135</th>
<th>D D Q T K V P E I I S S I R Q A G K A</th>
</tr>
</thead>
</table>

NZO-l

<table>
<thead>
<tr>
<th>AS 155</th>
<th>D D Q T K V P E I I S S I R Q A G K A</th>
</tr>
</thead>
</table>

PCR-Produkt Macroarray

<table>
<thead>
<tr>
<th>AS 175</th>
<th>V L F C G R V T V A H K K A P A L D</th>
</tr>
</thead>
</table>

AS 195

<table>
<thead>
<tr>
<th>AS 215</th>
<th>T G Q P S A P G P R P M R K S F S Q P G</th>
</tr>
</thead>
</table>

AS 235

<table>
<thead>
<tr>
<th>AS 255</th>
<th>S S F D N D I E N H L I G G H N V Q P</th>
</tr>
</thead>
</table>

AS 275

<table>
<thead>
<tr>
<th>AS 295</th>
<th>I S P D T K K I A L E K N F K E I S F C</th>
</tr>
</thead>
</table>

AS 315

<table>
<thead>
<tr>
<th>AS 335</th>
<th>S Q G I R H V D H F F I C R E C S G G</th>
</tr>
</thead>
</table>
ANHANG

NZO-l GCAGTGGCGGCTTTCATTTTGTCTGTTACGTGTTCCAGTGCACAAATGAAGCTCTGGTTG 1320 bp
NZO-k GCAGTGGCGGCTTTCATTTTGTCTGTTACGTGTTCCAGTGCACAAATGAAGCTCTGGTTG 1320 bp
SJL-k GCAGTGGCGGCTTTCATTTTGTCTGTTACGTGTTCCAGTGCACAAATGAAGCTCTGGTTG 1320 bp
**

AS 335 G S G G F H F V C Y V F Q C T N E A L V
NZO-l ACGAGATCATGATGACTCTGAAGCAGGCTTTCACGGTAGCTGCGGTGCAGCAGACGGCTA 1380 bp
NZO-k ACGAGATCATGATGACTCTGAAGCAGGCTTTCACGGTAGCTGCGGTGCAGCAGACGGCTA 1380 bp
SJL-k ACGAGATCATGATGACTCTGAAGCAGGCTTTCACGGTAGCTGCGGTGCAGCAGACGGCTA 1380 bp
**

AS 355 D E I M M T L K Q A F T V A A V Q Q T A
NZO-l AGGCACCAGCCCAGCTCTGTGAGGGCTGCCCCTTGCAAGGCCTGCACAAGCTCTGCGAAA 1440 bp
NZO-k AGGCACCAGCCCAGCTCTGTGAGGGCTGCCCCTTGCAAGGCCTGCACAAGCTCTGCGAAA 1440 bp
SJL-k AGGCACCAGCCCAGCTCTGTGAGGGCTGCCCCTTGCAAGGCCTGCACAAGCTCTGCGAAA 1440 bp
**

AS 375 K A P A Q L C E G C P L Q G L H K L C E
NZO-l GGATAGAGGGAATGAATTCATCTAAAACCAAATTAGAACTCCAGAAGCACTTGACCACAC 1500 bp
NZO-k GGATAGAGGGAATGAATTCATCTAAAACCAAATTAGAACTCCAGAAGCACTTGACCACAC 1500 bp
SJL-k GGATAGAGGGAATGAATTCATCTAAAACCAAATTAGAACTCCAGAAGCACTTGACCACAC 1500 bp
**

AS 395 R I E G M N S S K T K L E L Q K H L T T
NZO-l TGACCAATCAGGAGCAGGCCACCATATTCGAGGAGGTTCAGAAATTGAGACCAAGAAACG 1560 bp
NZO-k TGACCAATCAGGAGCAGGCCACCATATTCGAGGAGGTTCAGAAATTGAGACCAAGAAACG 1560 bp
SJL-k TGACCAATCAGGAGCAGGCCACCATATTCGAGGAGGTTCAGAAATTGAGACCAAGAAACG 1560 bp
**

AS 415 L T N Q E Q A T I F E E V Q K L R P R N
NZO-l AGCAGCGAGAGAATGAATTAATTATTTCTTTTCTGAGGTGCTTATATGAAGAGAAGCAAA 1620 bp
NZO-k AGCAGCGAGAGAATGAATTAATTATTTCTTTTCTGAGGTGCTTATATGAAGAGAAGCAAA 1620 bp
SJL-k AGCAGCGAGAGAATGAATTAATTATTTCTTTTCTGAGGTGCTTATATGAAGAGAAGCAAA 1620 bp
**

AS 435 E Q R E N E L I I S F L R C L Y E E K Q
NZO-l AGAGGTCCTTAACAGAGTCCCTAGAGAGCATTCTGTCCCGGGGTAATAAAGCCAGAGGCC 1800 bp
NZO-k AGAGGTCCTTAACAGAGTCCCTAGAGAGCATTCTGTCCCGGGGTAATAAAGCCAGAGGCC 1800 bp
SJL-k AGAGGTCCTTAACAGAGTCCCTAGAGAGCATTCTGTCCCGGGGTAATAAAGCCAGAGGCC 1800 bp
**

AS 455 K E H S T G E P K Q T L Q V A E N I
NZO-l TGCAGGACCATTCCGCCAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
NZO-k TGCAGGACCATTCCGCCAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
SJL-k TGCAGGACCATTCCGCCAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
**

AS 475 G S D L P P S A S R F R L D S S T L S N
NZO-l CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
NZO-k CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
SJL-k CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
**

AS 495 K R S L T E S L E I S R G N K A R G
NZO-l TGCAGGACCTTCCCGACAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
NZO-k TGCAGGACCTTCCCGACAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
SJL-k TGCAGGACCTTCCCGACAGTGTGGATCTGGACAGCTCCACTTCTAGTACTCTAAGTAACA 1860 bp
**

AS 515 L Q D H S A S V D L D S S T L S N
NZO-l CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
NZO-k CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
SJL-k CCAGCAAAGAGCTGTCCATGGGTGACAAGGAGGCCTTCCCCGTCTCTGAGACCTCCTTCA 1920 bp
**

AS 535 T S K E L S M G D K E A F P V S E T S F
ANHANG

6f
NZO-1 AGCTCCTTGCTCCTCACAGTGAAGTGAGTGACCGGCCACATTGCAAGAATG 1980 bp
NZO-k AGCTCCTTGCTCCTCACAGTGAAGTGACCGGCCACATTGCAAGAATG 1980 bp
SJL-k AGCTCCTTGCTCCTCACAGTGAAGTGACCGGCCACATTGCAAGAATG 1980 bp

7f
AS 555 K L L G S D D L S D S E G H I A E E

AS 575 S A L S P Q Q A F R R R A N T L S H F

AS 595 P V E C P A P P E P A Q S S P G V S Q R

Lange Isoform forward
NZO-1 TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2480 bp
NZO-k TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2305 bp
SJL-k TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2298 bp

AS 615 K L M R Y H S V S T E T P H E R N V D H

Lange Isoform Sonde
NZO-1 TTACCCCTCCTGCCCTCCCAACCTTTCTTATAGCTAACAAAACACATCTTCAGGAG 2240 bp
NZO-k TTACCCCTCCTGCCCTCCCAACCTTTCTTATAGCTAACAAAACACATCTTCAGGAG 2160 bp
SJL-k TTACCCCTCCTGCCCTCCCAACCTTTCTTATAGCTAACAAAACACATCTTCAGGAG 2155 bp

Lange Isoform revers
NZO-1 AGCTG
NZO-k AGCTG
SJL-k AGCTG

AS 675 E Q S G N A V P K R R D F E S K A N H L

AS 695 G D T G T P V K T R R H S W R Q I F

Alle Isoformen forward Alle Isoformen Sonde
NZO-1 TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2480 bp
NZO-k TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2305 bp
SJL-k TTTCGAGTGGCCACTCCACAGAAGGCTTGTGACTCCCCGAGCAGATATGAAGATTATTCCG 2298 bp

AS 715 L R V A T P Q K A C D S P R S Y E D Y S

AS 735 E L G E L P R S P L E P V C E D G P F

AS 555

AS 575

AS 595

AS 615

AS 675

AS 695

AS 715

AS 735

Nacho Isoform Sonde
NZO-1 CAGTAGAGTGCCCTGCGCCTCCAGAACCTGCCCAGAGCTCTCCAGGGGTCTCTCAAAGGA 2100 bp
NZO-k CAGTAGAGTGCCCTGCGCCTCCAGAACCTGCCCAGAGCTCTCCAGGGGTCTCTCAAAGGA 2100 bp
SJL-k CAGTAGAGTGCCCTGCGCCTCCAGAACCTGCCCAGAGCTCTCCAGGGGTCTCTCAAAGGA 2100 bp

AS 575

AS 595
ANHANG

ZNO-l GGAGGCAAAGCGCCCGGCCCAGCACTCCAGAGCCAGACTGCACCCAGCTGGAGCCCACAG 3900 bp
ZNO-k GGAGGCAAAGCGCCCGGCCCAGCACTCCAGAGCCAGACTGCACCCAGCTGGAGCCCACAG 3745 bp
SJL-k GGAGGCAAAGCGCCCGGCCCAGCACTCCAGAGCCAGACTGCACCCAGCTGGAGCCCACAG 3738 bp

**

AS1195 R R Q S A R P S T P E P D C T Q L E P T
Stoppcodon 10r

ZNO-l GCGATTGA
 CCGCTGCCAGAAGAGACTGTGCACCA
 TTAACACTGTCCAAGCCTTAATCAAG 3960 bp
ZNO-k GCGATTGA
 CCGCTGCCAGAAGAGACTGTGCACCATTAACACTGTCCAAGCCTTAATCAAG 3805 bp
SJL-k GCGATTGA
 CCGCTGCCAGAAGAGACTGTGCACCATTAACACTGTCCAAGCCTTAATCAAG 3798 bp

**

AS1215 G D -

ZNO-l AGAGATGGAGATCAGAGGACAGAGAAGAGAGAGCTTCTCAGGGAGGAAACTGGCTGACCAG 4020 bp
ZNO-k AGAGATGGAGATCAGAGGACAGAGAAGAGAGAACTTCTCAGGGAGGAAACCGGCTGACCAG 3865 bp
SJL-k AGAGATGGAGATCAGAGGACAGAGAAGAGAGAACTTCTCAGGGAGGAAACTGGCTGACCAG 3858 bp

**

ZNO-l CCTGCAGATCCTTTTGAGCTCAGAACTTGGGATTGGAGGACAAAAGTCTCAGAGTTATTG 4080 bp
ZNO-k CCTGCAGATCCTTTTGAGCTCAGAACTTGGGATTGGAGGACAAAAGTCTCAGAGTTATTG 3925 bp
SJL-k CCTGCAGATCCTTTTGAGCTCAGAACTTGGGATTGGAGGACAAAAGTCTCAGAGTTATTG 3918 bp

**

ZNO-l TTGTTTTTGGTTCTAATCCGTCCCCTTTCCAGTCCTGGTTTGTGA 4126 bp
ZNO-k TTGTTTTTGGTTCTAATCCGTCCCCTTTCCAGTCCTGGTTTGTGA 3971 bp
SJL-k TTGTTTTTGGTTCTAATCCGTCCCCTTTCCAGTCCTGGTTTGTGA 3964 bp

**
Tabelle A3: Annotierte SNPs im Nob1.10-Fragment

SNPs data downloaded from Mouse Phenome Database (http://www.jax.org/phenome)

<table>
<thead>
<tr>
<th>Pos_Chr 5 (Mbp), NCBI Build 37</th>
<th>NCBI Gen-Annotation</th>
<th>dbsNP 128 Annotation</th>
<th>SJ/LJ</th>
<th>C57BL/6J</th>
<th>NZB/BINJ</th>
<th>NZO/HILJ</th>
<th>dbsNP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.221.936 0610040J01Rik_intron1</td>
<td>I</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>rs3703900</td>
<td></td>
</tr>
<tr>
<td>64.289.838 0610040J01Rik_exon4</td>
<td>Cn Q22sL</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>rs13459170</td>
<td></td>
</tr>
<tr>
<td>64.342.904 AA536743_intron1</td>
<td>RelI</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs6281588</td>
<td></td>
</tr>
<tr>
<td>64.371.068</td>
<td></td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>rs3715307</td>
<td></td>
</tr>
<tr>
<td>64.403.638</td>
<td></td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>rs3711950</td>
<td></td>
</tr>
<tr>
<td>64.488.209 Pgm1_intron1</td>
<td>I</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs3090421</td>
<td></td>
</tr>
<tr>
<td>64.580.894 Tbc1d1_intron2</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>rs33138184</td>
<td></td>
</tr>
<tr>
<td>64.636.772 Tbc1d1_intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>rs13478297</td>
<td></td>
</tr>
<tr>
<td>64.742.568 Tbc1d1_UTR</td>
<td>U</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs4225234</td>
<td></td>
</tr>
<tr>
<td>64.748.771</td>
<td></td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs6152354</td>
<td></td>
</tr>
<tr>
<td>64.976.129</td>
<td></td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs13478298</td>
<td></td>
</tr>
<tr>
<td>65.070.491</td>
<td></td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>rs3718814</td>
<td></td>
</tr>
<tr>
<td>65.141.993</td>
<td></td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs6265085</td>
<td></td>
</tr>
<tr>
<td>65.174.170</td>
<td></td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>rs13478299</td>
<td></td>
</tr>
<tr>
<td>65.220.902 Klf3_UTR</td>
<td>U</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>rs33654267</td>
<td></td>
</tr>
<tr>
<td>65.434.464</td>
<td></td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>rs13478300</td>
<td></td>
</tr>
<tr>
<td>65.581.998</td>
<td></td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>rs13478301</td>
<td></td>
</tr>
<tr>
<td>65.985.125 Hip2_intron5</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs6158897</td>
<td></td>
</tr>
<tr>
<td>66.098.141</td>
<td></td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>rs6339313</td>
<td></td>
</tr>
<tr>
<td>66.166.364 B3bp_intron1</td>
<td>I</td>
<td>G</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>rs33750349</td>
<td></td>
</tr>
<tr>
<td>66.287.414 RhoH_UTR</td>
<td>U</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs13478305</td>
<td></td>
</tr>
<tr>
<td>66.436.553 BC013481_intron4</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>rs3717298</td>
<td></td>
</tr>
<tr>
<td>66.546.701</td>
<td></td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>rs13478307</td>
<td></td>
</tr>
<tr>
<td>66.605.988</td>
<td></td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs3656989</td>
<td></td>
</tr>
<tr>
<td>66.893.864 Apbb2_intron2</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs6267669</td>
<td></td>
</tr>
<tr>
<td>67.053.114</td>
<td></td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>rs4225252</td>
<td></td>
</tr>
<tr>
<td>67.053.356</td>
<td></td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>rs4225248</td>
<td></td>
</tr>
<tr>
<td>67.118.611</td>
<td></td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>rs3719870</td>
<td></td>
</tr>
<tr>
<td>67.289.020</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs3711269</td>
<td></td>
</tr>
<tr>
<td>67.538.359</td>
<td></td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>Q</td>
<td>rs13478309</td>
<td></td>
</tr>
<tr>
<td>67.682.480 Tmem33_UTR</td>
<td>U</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs4225260</td>
<td></td>
</tr>
<tr>
<td>67.739.262 Slc30a9_exon15</td>
<td>Cs R450</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>rs13478310</td>
<td></td>
</tr>
<tr>
<td>67.746.690 Slc30a9_UTR</td>
<td>U</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs13472234</td>
<td></td>
</tr>
<tr>
<td>67.751.433</td>
<td></td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs3684754</td>
<td></td>
</tr>
<tr>
<td>67.962.986</td>
<td></td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs6170457</td>
<td></td>
</tr>
<tr>
<td>67.964.307</td>
<td></td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>rs3659098</td>
<td></td>
</tr>
<tr>
<td>67.991.066</td>
<td></td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>rs3662462</td>
<td></td>
</tr>
<tr>
<td>68.029.080</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs13478311</td>
<td></td>
</tr>
<tr>
<td>68.173.759 Atp8a1_intron6</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs3656462</td>
<td></td>
</tr>
<tr>
<td>68.479.206 AY616753_intron1</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs6227779</td>
<td></td>
</tr>
<tr>
<td>68.657.752</td>
<td></td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>rs3691938</td>
<td></td>
</tr>
<tr>
<td>68.757.363</td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs6379111</td>
<td></td>
</tr>
<tr>
<td>68.915.049</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs6383560</td>
<td></td>
</tr>
<tr>
<td>69.028.813</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs6411304</td>
<td></td>
</tr>
<tr>
<td>69.285.572</td>
<td></td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>O</td>
<td>rs13478313</td>
<td></td>
</tr>
<tr>
<td>69.381.914</td>
<td></td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs3088773</td>
<td></td>
</tr>
<tr>
<td>69.445.794</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs6320498</td>
<td></td>
</tr>
<tr>
<td>69.527.299 Kctd8_intron1</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs31502646</td>
<td></td>
</tr>
<tr>
<td>69.791.826</td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs3090910</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A3: Annotierte SNPs im Nob1.10-Fragment (fortgesetzt)

SNPs data downloaded from Mouse Phenome Database (http://www.jax.org/phenome)

<table>
<thead>
<tr>
<th>Pos_Chr 5 (Mbp), NCBI Build 37</th>
<th>NCBI Gen-Annotation</th>
<th>dbSNP 128 Annotation</th>
<th>SJL/J</th>
<th>C57Bl/6J</th>
<th>NZB/B1NJ</th>
<th>NZO/HlLtJ</th>
<th>dbSNP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.950.340</td>
<td>Guf1 intron4</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>rs13478315</td>
</tr>
<tr>
<td>70.161.982</td>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>rs13478317</td>
</tr>
<tr>
<td>70.285.784</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>rs6242879</td>
</tr>
<tr>
<td>70.337.197</td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs3691920</td>
</tr>
<tr>
<td>70.427.585</td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs6168670</td>
</tr>
<tr>
<td>70.428.167</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs3675400</td>
</tr>
<tr>
<td>70.535.508</td>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs3681370</td>
</tr>
<tr>
<td>70.706.851</td>
<td></td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs6158490</td>
</tr>
<tr>
<td>70.759.816</td>
<td></td>
<td></td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs3722869</td>
</tr>
<tr>
<td>70.805.830</td>
<td></td>
<td></td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>rs3695107</td>
</tr>
<tr>
<td>71.133.300</td>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>rs13478320</td>
</tr>
<tr>
<td>71.261.822</td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs3086560</td>
</tr>
<tr>
<td>71.288.983</td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs6394819</td>
</tr>
<tr>
<td>71.402.113</td>
<td>Gabra2 intron6</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs3678516</td>
</tr>
<tr>
<td>71.405.050</td>
<td>Gabra2 intron5</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs6182670</td>
</tr>
<tr>
<td>71.563.636</td>
<td>Corin intron14</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs6207667</td>
</tr>
<tr>
<td>71.664.263</td>
<td>Corin intron15</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs6207521</td>
</tr>
<tr>
<td>71.898.391</td>
<td>4930503B16Rik intron1</td>
<td>Cox7b2 I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs6397126</td>
</tr>
<tr>
<td>72.024.636</td>
<td>Gabra4 intron7</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs6308779</td>
</tr>
<tr>
<td>72.024.736</td>
<td>Gabra4 intron7</td>
<td>I</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs6309329</td>
</tr>
<tr>
<td>72.264.046</td>
<td>Gabrb1 intron4</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>rs13478321</td>
</tr>
<tr>
<td>72.361.750</td>
<td>Gabrb1 intron4</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs3090696</td>
</tr>
<tr>
<td>72.569.708</td>
<td>Corin intron16</td>
<td>Corin I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs29634610</td>
</tr>
<tr>
<td>72.693.499</td>
<td>Corin intron2</td>
<td>Atp10d I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs33334153</td>
</tr>
<tr>
<td>72.695.780</td>
<td>Corin intron1</td>
<td>Atp10d I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs29585183</td>
</tr>
<tr>
<td>72.695.782</td>
<td>Corin intron1</td>
<td>Atp10d I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs33295762</td>
</tr>
<tr>
<td>72.699.204</td>
<td>Corin intron16</td>
<td>Corin I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs29729006</td>
</tr>
<tr>
<td>72.711.078</td>
<td>Corin intron16</td>
<td>Corin I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs29501536</td>
</tr>
<tr>
<td>72.733.958</td>
<td>Corin intron11</td>
<td>I</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs31531926</td>
</tr>
<tr>
<td>72.740.459</td>
<td>Corin intron10</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs31532723</td>
</tr>
<tr>
<td>72.767.561</td>
<td>Corin intron5</td>
<td>I</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs29663222</td>
</tr>
<tr>
<td>72.771.632</td>
<td>Corin intron5</td>
<td>I</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs31536491</td>
</tr>
<tr>
<td>72.819.678</td>
<td>Corin intron4</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs31530883</td>
</tr>
<tr>
<td>72.819.976</td>
<td>Corin intron4</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs31531954</td>
</tr>
<tr>
<td>72.819.980</td>
<td>Corin intron4</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs29533762</td>
</tr>
<tr>
<td>72.820.152</td>
<td>Corin intron4</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs31531955</td>
</tr>
<tr>
<td>72.820.193</td>
<td>Corin intron4</td>
<td>I</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs29627778</td>
</tr>
<tr>
<td>72.836.689</td>
<td>Corin intron3</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs33364329</td>
</tr>
<tr>
<td>72.838.447</td>
<td>Corin intron3</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs29519782</td>
</tr>
<tr>
<td>72.838.484</td>
<td>Corin intron3</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs31529812</td>
</tr>
<tr>
<td>72.838.782</td>
<td>Corin intron3</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs31530684</td>
</tr>
<tr>
<td>72.839.572</td>
<td>Corin intron3</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs31530685</td>
</tr>
<tr>
<td>72.840.346</td>
<td>Corin intron3</td>
<td>I</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs31530688</td>
</tr>
<tr>
<td>72.841.716</td>
<td>Corin intron3</td>
<td>I</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs29586243</td>
</tr>
<tr>
<td>72.843.155</td>
<td>Corin intron3</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs31531447</td>
</tr>
</tbody>
</table>
Tabelle A3: Annotierte SNPs im Nob1.10-Fragment (fortgesetzt)

SNPs data downloaded from Mouse Phenome Database (http://www.jax.org/phenome)

<table>
<thead>
<tr>
<th>Pos Chr 5 (Mbp), NCBI Build 37</th>
<th>NCBI Gen-Annotation</th>
<th>dbsNP 128 Annotation</th>
<th>SJ/LJ</th>
<th>C57BL/6J</th>
<th>NZB/BINJ</th>
<th>NZO/HLJ</th>
<th>dbSNP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.843.238 Corin intron3</td>
<td>I</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.843.250 Corin intron3</td>
<td>I</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.844.726 Corin intron3</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.846.204 Corin intron2</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.847.975 Corin intron2</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.855.723 Corin intron2</td>
<td>I</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.856.016 Corin intron2</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.856.344 Corin intron2</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.856.653 Corin intron2</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.856.812 Corin intron2</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.856.915 Corin intron2</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.031 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.061 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.183 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.425 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.638 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.890 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.857.938 Corin intron2</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.860.214 Corin intron2</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.860.839 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.861.958 Corin intron2</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.862.061 Corin intron2</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.862.350 Corin intron2</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.862.383 Corin intron2</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.863.438 Corin intron1</td>
<td>I</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.864.085 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.866.613 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.866.727 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.867.059 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.868.763 Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.868.790 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.868.939 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.869.079 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.869.177 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.869.687 Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.869.851 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.869.977 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.870.036 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.870.846 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.870.864 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.871.723 Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.874.354 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.880.073 Corin intron1</td>
<td>I</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.880.347 Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.881.687 Corin intron1</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.881.695 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.881.896 Corin intron1</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.882.461 Corin intron1</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>72.882.599 Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Tabelle A3: Annotierte SNPs im *Nob1*.10-Fragment (fortgesetzt)

SNPs data downloaded from Mouse Phenome Database (http://www.jax.org/phenome)

<table>
<thead>
<tr>
<th>Pos_Ch5 (Mbp), NCBI Build 37</th>
<th>NCBI Gen-Annotation</th>
<th>dbSNP 128 Annotation</th>
<th>SJL/J</th>
<th>C57BL/6J</th>
<th>NZB/BINJ</th>
<th>NZO/HILJ</th>
<th>dbSNP ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.885.539</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs31539608</td>
</tr>
<tr>
<td>72.886.877</td>
<td>Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs29581748</td>
</tr>
<tr>
<td>72.887.074</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs33079144</td>
</tr>
<tr>
<td>72.887.173</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs31539610</td>
</tr>
<tr>
<td>72.887.199</td>
<td>Corin intron1</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs33443091</td>
</tr>
<tr>
<td>72.887.332</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs33383576</td>
</tr>
<tr>
<td>72.887.392</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs29546745</td>
</tr>
<tr>
<td>72.887.880</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs33651837</td>
</tr>
<tr>
<td>72.887.891</td>
<td>Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs29585729</td>
</tr>
<tr>
<td>72.887.910</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs33497761</td>
</tr>
<tr>
<td>72.893.073</td>
<td>Corin intron1</td>
<td>I</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs29558760</td>
</tr>
<tr>
<td>72.893.245</td>
<td>Corin intron1</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs29821164</td>
</tr>
<tr>
<td>72.893.418</td>
<td>Corin intron1</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs33479331</td>
</tr>
<tr>
<td>72.893.650</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs33051943</td>
</tr>
<tr>
<td>72.893.673</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs33065405</td>
</tr>
<tr>
<td>72.893.741</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs33641059</td>
</tr>
<tr>
<td>72.894.077</td>
<td>Corin intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs29672975</td>
</tr>
<tr>
<td>72.894.259</td>
<td>Corin intron1</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs29513378</td>
</tr>
<tr>
<td>72.895.053</td>
<td>Corin intron1</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs29672239</td>
</tr>
<tr>
<td>72.995.337</td>
<td>Cnga1 UTR</td>
<td>U</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs31537882</td>
</tr>
<tr>
<td>73.123.583</td>
<td>Tlxk intron3</td>
<td>I</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>rs3710735</td>
</tr>
<tr>
<td>73.152.037</td>
<td>Tec intron14</td>
<td>I</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>rs6259856</td>
</tr>
<tr>
<td>73.188.279</td>
<td>Tec intron3</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs6340166</td>
</tr>
<tr>
<td>73.345.508</td>
<td>Slain2 intron1</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs3669361</td>
</tr>
<tr>
<td>73.519.551</td>
<td>Fryl intron8</td>
<td>I</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>rs6409508</td>
</tr>
<tr>
<td>73.587.235</td>
<td>Fryl intron2</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs3090429</td>
</tr>
<tr>
<td>73.700.837</td>
<td>Ociad1 intron7</td>
<td>I</td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>rs4225267</td>
</tr>
<tr>
<td>73.733.816</td>
<td>Cun1d4 intron5</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs3707918</td>
</tr>
<tr>
<td>73.915.675</td>
<td>Dcnun1d4 intron5</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs3708666</td>
</tr>
<tr>
<td>74.027.161</td>
<td>Sgcb intron5</td>
<td>I</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>rs3670420</td>
</tr>
<tr>
<td>74.033.683</td>
<td>Sgcb intron2</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>rs4138743</td>
</tr>
<tr>
<td>74.052.186</td>
<td>Spata18 intron4</td>
<td>I</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>rs13478325</td>
</tr>
<tr>
<td>74.061.192</td>
<td>Spata18 intron7</td>
<td>I</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>rs3689647</td>
</tr>
<tr>
<td>74.219.749</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs6136111</td>
</tr>
<tr>
<td>74.266.175</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs3672247</td>
</tr>
<tr>
<td>74.594.595</td>
<td>Ras11b exon4</td>
<td>Cs</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>rs13478326</td>
</tr>
<tr>
<td>74.595.178</td>
<td>Ras11b UTR</td>
<td>U</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>rs29566744</td>
</tr>
<tr>
<td>74.791.288</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>rs6161105</td>
</tr>
<tr>
<td>74.815.531</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>rs6354067</td>
</tr>
<tr>
<td>74.855.253</td>
<td>Scfd2 intron4</td>
<td>I</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>rs3672514</td>
</tr>
<tr>
<td>74.876.268</td>
<td>Scfd2 intron3</td>
<td>I</td>
<td>G</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>rs3700540</td>
</tr>
</tbody>
</table>
Tabelle A 4: Primer zur Sequenzierung der Kandidatengene

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Primersequenz</th>
<th>Nummer</th>
<th>Template</th>
<th>Gewebe</th>
<th>PCR-Produkt-Länge (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centd1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAGGTTTGAGCACATGAAACAG</td>
<td>S1</td>
<td>genomische DNA</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>CTCTCGGACAGAGCAGGTCA</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCGAGTAAATGCGGGACATC</td>
<td>S3</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>GCGGGAGCTTTCTCAATAGC</td>
<td>S4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTACAAAGGGGCTTGGAGG</td>
<td>S5</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>652</td>
</tr>
<tr>
<td></td>
<td>CGGGGTATCAAATGCTGTTC</td>
<td>S6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGAGGAAGGAGGCCACTACAAG</td>
<td>S7</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>658</td>
</tr>
<tr>
<td></td>
<td>CAACTGTGATGCAAATGGGTAGGG</td>
<td>S8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACGCGGATATCCACACTGTC</td>
<td>S9</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>658</td>
</tr>
<tr>
<td></td>
<td>TGCTCAAATCTGGGATTC</td>
<td>S10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACTGGGCCCACCACTCCTTCTCTCTCTCC</td>
<td>S11</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>697</td>
</tr>
<tr>
<td></td>
<td>GTGGTGACCTGTGGTCTTTT</td>
<td>S12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCAAATCCTCTTCTCTCTCTCTCTCTCTCT</td>
<td>S13</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>TGCTGTACCCCTCTTGTACGTGTC</td>
<td>S14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGAGGAGCTAACAAATACAGG</td>
<td>S15</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>CAGGATGAAAAGACCATTTG</td>
<td>S16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAAGGCTGAAATGCTTCA</td>
<td>S17</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>689</td>
</tr>
<tr>
<td></td>
<td>TCTGGTGCTGTTGCTGTCGTC</td>
<td>S18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCGTGTTCCTGCGTCACTTTG</td>
<td>S19</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>GACAGATTGCTGGGTTCCTCTCTCTC</td>
<td>S20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGAGGGTTATCTGCTGATTC</td>
<td>S21</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>GCCTATTTCTGCTGATCC</td>
<td>S22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3110047P20Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGGAGAACAGCCCAAGATAAAGAATC</td>
<td>S23</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>GGAATAGCCACCCGAGGTTC</td>
<td>S24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACAAGACTGAGGAGCTCTGTCGAGG</td>
<td>S25</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>TTGTGCTACCTGCAAGGG</td>
<td>S26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCCCTGAGAGTACCTTCTACCTG</td>
<td>S27</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>674</td>
</tr>
<tr>
<td></td>
<td>GAACTCAACAGGCCAGACG</td>
<td>S28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAACTACTGCAAGAAAGAGAAGAGGG</td>
<td>S29</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td>TGCCCAAGAAGACATCTCACAG</td>
<td>S30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTAGGAGGCAAGAAGGATG</td>
<td>S31</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>AACGCAACTGTTGGACTGTCAG</td>
<td>S32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAAAAGGGAAGCTGATCTACGT</td>
<td>S33</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>TGCTAGCTCAGCAGACTCTTGT</td>
<td>S34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCAACATTGTACCGACCTCTG</td>
<td>S35</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>TTCAACCCAGCAGACTCTAAG</td>
<td>S36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGTGAGGAGACTGTGCTGAGG</td>
<td>S37</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>674</td>
</tr>
<tr>
<td></td>
<td>CTCCTCTTCTGGGGGAGATGG</td>
<td>S38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGGAGTTGAGGAGGAGGAGTAG</td>
<td>N1</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>AGGAAGGGGCGGTGAGATTAC</td>
<td>N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGAGGTGATGAGGAGGCCAGA</td>
<td>N3</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>GACAGCAGCATCCAAATCA</td>
<td>N4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGGTTGAGATTTCAGGTGTATG</td>
<td>N5</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>CCATCCTTGGAGATTTCACG</td>
<td>N6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACTCTGTGCCAGAGCACTTATG</td>
<td>N7</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>GGAAGTGCTCAGGAGGTGTGATTCCAT</td>
<td>N8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGATTGCCCTCCTACTTGG</td>
<td>N9</td>
<td>genomische DNA</td>
<td></td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>TTCTGAGGTGTCGACTTGGG</td>
<td>N10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TATAAAATCCCGCCATTG</td>
<td>N11</td>
<td>genomische DNA</td>
<td></td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>CAGGGTGCAACCGAGAAAG</td>
<td>N12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Primersequenz</td>
<td>Nummer</td>
<td>Template</td>
<td>Gewebe</td>
<td>PCR-Produkt-Länge (bp)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>0610040J01Rik</td>
<td>CGGGTCTACTAAACATCATGG</td>
<td>S39</td>
<td>genomische DNA</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTTTTGTTGGCGTATTATGG</td>
<td>S40</td>
<td>genomische DNA</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGACCAGATCAGTCACCTG</td>
<td>S41</td>
<td>genomische DNA</td>
<td>739</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCCCTCACTGCCTCATGGCC</td>
<td>S42</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCTGGAGTACCACCATAGAC</td>
<td>S43</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGATGGCCCTATACAGCAAG</td>
<td>S44</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aa536743</td>
<td>ATGGACACCCGGAATACATC</td>
<td>S45</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>799</td>
</tr>
<tr>
<td></td>
<td>GCCCTTTGGGTTTGATCC</td>
<td>S46</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>AGACCAGATCAGTCACCTG</td>
<td>N13</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>CCTCCACTGTCGAGATGAT</td>
<td>N14</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>655</td>
</tr>
<tr>
<td>Tlr1</td>
<td>AAGAACCTAGGGAGCAAGAG</td>
<td>S47</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>AGTGCTAACGTCGCGAAGAG</td>
<td>S48</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>TACGTTCTGGGCTGAGGACGC</td>
<td>S49</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>643</td>
</tr>
<tr>
<td></td>
<td>AACACAGATCAGCAATGAGGC</td>
<td>S50</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>CTCGATTTCCACATCTCTTG</td>
<td>S51</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>GCAGCAGATGAGGAGGAGGAG</td>
<td>S52</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>ACCAGCTCTTTGTGCCTGC</td>
<td>S53</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>696</td>
</tr>
<tr>
<td></td>
<td>TCCCACTGACGCAGAATC</td>
<td>S54</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCCCACTGACGCAGAATC</td>
<td>S55</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCCCACTGACGCAGAATC</td>
<td>S56</td>
<td>genomische DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tlr6</td>
<td>GCTTCTCTGGCGTCTCGAGCG</td>
<td>S57</td>
<td>genomische DNA</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAAAGTCACTGCGACAGAG</td>
<td>S58</td>
<td>genomische DNA</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAGACACACTGCAGCAACAG</td>
<td>S59</td>
<td>genomische DNA</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGCATCTGCAGCAACACC</td>
<td>S60</td>
<td>genomische DNA</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGAGGAGATGGGAGGAGGAG</td>
<td>S61</td>
<td>genomische DNA</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAGAGGAGATGGGAGGAGGAG</td>
<td>S62</td>
<td>genomische DNA</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCATCCCTAAAGATGATCACC</td>
<td>S63</td>
<td>genomische DNA</td>
<td>671</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTTCCTCAATGCCTCTCTTG</td>
<td>S64</td>
<td>genomische DNA</td>
<td>671</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTCCTACATCCATGCTTTTG</td>
<td>S65</td>
<td>genomische DNA</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCACACTCTCCAATCAGG</td>
<td>S66</td>
<td>genomische DNA</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>9130005N14Rik</td>
<td>GCCCTCCCATACCAGATCC</td>
<td>S67b</td>
<td>genomische DNA</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGATCTCAGGTGCTTTCTCC</td>
<td>S68b</td>
<td>genomische DNA</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACATGGAAGAGCACTGTCAGG</td>
<td>S69</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>CTGCACGTCTCTCTCTCTCG</td>
<td>S70</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>CGGAGTCTAGATTGAGTATTG</td>
<td>S71</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>694</td>
</tr>
<tr>
<td></td>
<td>TCGAGATCTAGCTTACACAG</td>
<td>S72</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>694</td>
</tr>
<tr>
<td></td>
<td>AAAGCCTCTAGTCTCTATTG</td>
<td>S73</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>GCTTTGTAGTGTCTCTTAAT</td>
<td>S74</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>600</td>
</tr>
<tr>
<td>Wdr19</td>
<td>TGAGACCTTTGAAATGAGAC</td>
<td>S75</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>AGGATATTCTTGCCAACCAC</td>
<td>S76</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>AGTAACCGAGATGGAGAACAC</td>
<td>S77</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>AGAGCCCTACTGCGCAGAAG</td>
<td>S78</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>TGACTGTCTCCTGACCAGAG</td>
<td>S79</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>GGCAGTTTCTCCCAAAGAGC</td>
<td>S80</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>TGATGCGACCTATGAGATCCTC</td>
<td>S81</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>CAATGCTGACGAGCTTACAG</td>
<td>S82</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>ATGTGGGACAGATGATTGCG</td>
<td>S83</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>679</td>
</tr>
<tr>
<td></td>
<td>CGAGATCGACCTTGTCTTG</td>
<td>S84</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>GCCAATTTCTCCTCAGTCTC</td>
<td>S85</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>TGCAGACTGCTCTCTCTTG</td>
<td>S86</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>AGGCCAAAGATGAACTGCTG</td>
<td>S87</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>664</td>
</tr>
</tbody>
</table>
Tabelle A 4: Primer zur Sequenzierung der Kandidatengene (fortgesetzt)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Primersequenz</th>
<th>Nummer</th>
<th>Template</th>
<th>Gewebe</th>
<th>PCR-Produkt-Länge (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wdr19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S89</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>CAGACAGACAGAAGCACCAC</td>
<td>S90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATTTCCAGAGGGACAGTAGG</td>
<td>S95</td>
<td>genomische DNA</td>
<td></td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>AGGACAGACAGAAGCACCAC</td>
<td>S96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S97</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>739</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAGAGCACAGAACACACAGG</td>
<td>S99</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>619</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATCAAGAAGGTCTGTCTTG</td>
<td>S101</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S103</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S105</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S107</td>
<td>genomische DNA</td>
<td></td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>GAGACAGAAGAGGCCACCAC</td>
<td>S108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mll5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTCTGTTGCTTCCTGACAG</td>
<td>S109</td>
<td>genomische DNA</td>
<td></td>
<td>565</td>
</tr>
<tr>
<td></td>
<td>CTCTGTTGCTTCCTGACAG</td>
<td>S110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGTCTGCCTCTAGTCCTG</td>
<td>S111</td>
<td>genomische DNA</td>
<td></td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>TGGTCTGCCTCTAGTCCTG</td>
<td>S112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGACTGGTGTTAGCTCAGG</td>
<td>S113</td>
<td>genomische DNA</td>
<td></td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>CGACTGGTGTTAGCTCAGG</td>
<td>S114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTCTGACAGCTTTCTTAG</td>
<td>S115</td>
<td>genomische DNA</td>
<td></td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>GCTCTGACAGCTTTCTTAG</td>
<td>S116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCTCTGACAGCTTTCTTAG</td>
<td>S117</td>
<td>genomische DNA</td>
<td></td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>GCTCTGACAGCTTTCTTAG</td>
<td>S118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abhd1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTCTGGCTCAGGGATTGATG</td>
<td>S119</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>CTCTGGCTCAGGGATTGATG</td>
<td>S120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGTCACCTGTGGACTTG</td>
<td>S121</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>TGGTCACCTGTGGACTTG</td>
<td>S122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGAGTGCTGGCTGCTGGAGG</td>
<td>S123</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>CGAGTGCTGGCTGCTGGAGG</td>
<td>S124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TACGAGGGTGGACTCGTAC</td>
<td>S125</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>TACGAGGGTGGACTCGTAC</td>
<td>S126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGGCAGAAGAATGGGACAC</td>
<td>S127</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>AGGCAGAAGAATGGGACAC</td>
<td>S128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCATAAAACAGCTCCCAG</td>
<td>S129</td>
<td>cDNA</td>
<td>Gehirn</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>CCATAAAACAGCTCCCAG</td>
<td>S130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2310045A20Rik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCCAGGAGACAGACAGAAG</td>
<td>S131</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>CCCAGGAGACAGACAGAAG</td>
<td>S132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTCGCTGGTGGAGTGGACG</td>
<td>S133</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>674</td>
</tr>
<tr>
<td></td>
<td>GTCGCTGGTGGAGTGGACG</td>
<td>S134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCAATGCACTGCTAGTGG</td>
<td>S135</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>TCAATGCACTGCTAGTGG</td>
<td>S136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ppptcb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGGAAAGAAGAATGGGACAC</td>
<td>S137</td>
<td>genomische DNA</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>AGGAAAGAAGAATGGGACAC</td>
<td>S138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGGAAAGAAGAATGGGACAC</td>
<td>S139</td>
<td>genomische DNA</td>
<td></td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>AGGAAAGAAGAATGGGACAC</td>
<td>S140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATGATCAAGAAGGACTCGAG</td>
<td>S141</td>
<td>cDNA</td>
<td>Gehirn, Leber</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>CATGATCAAGAAGGACTCGAG</td>
<td>S142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Primersequenz</td>
<td>Nummer</td>
<td>Template</td>
<td>Gewebe</td>
<td>PCR-Produkt-Länge (bp)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Tmem156</td>
<td>CCTGTCTGGAGTAGTGTGGTTCC</td>
<td>S143</td>
<td>cDNA</td>
<td>Hoden</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>ATTCGCCGACCTTTCCCTGTGG</td>
<td>S144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGTGATAGGCGATCTGTGG</td>
<td>S145</td>
<td>cDNA</td>
<td>Hoden</td>
<td>616</td>
</tr>
<tr>
<td></td>
<td>TCACTATTGCTGTGGTGGAG</td>
<td>S146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGAGATGCGGATCTGACTGAC</td>
<td>S159</td>
<td>genomische DNA</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>GTAGGCCCTCCGGTCGCACC</td>
<td>S160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTTTCCTGAGTTTCCA CTGGGAAGTGTGTTTCC</td>
<td>S143</td>
<td>cDNA</td>
<td>Hoden</td>
<td>627</td>
</tr>
<tr>
<td></td>
<td>CGTATGTCAACAGCAGCAGG</td>
<td>S144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCGGTAACCAGATGGTTATCCT</td>
<td>S149</td>
<td>genomische DNA</td>
<td></td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>CATACACAGCAGACTTCC</td>
<td>S150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGGCAAACCTAGAAGAGAG</td>
<td>S151</td>
<td>genomische DNA</td>
<td></td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>GGTCCGTTGATGACACCTG</td>
<td>S152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GATGCAAGAAGTTGAATCACAC</td>
<td>S153</td>
<td>genomische DNA</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>AGAACAGGACACACACACAC</td>
<td>S154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGGTCGATGCCTGACC</td>
<td>S155</td>
<td>genomische DNA</td>
<td></td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>TCTTTGGGTCGTTCC</td>
<td>S156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rpl9</td>
<td>CTTCGTAGTCTGGCACTACC</td>
<td>S147</td>
<td>genomische DNA</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>CGTATGTCAACAGCAGCAGG</td>
<td>S148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCGGTAACCAGATGGTTATCCT</td>
<td>S149</td>
<td>genomische DNA</td>
<td></td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>CATACACAGCAGACTTCC</td>
<td>S150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGGCAAACCTAGAAGAGAG</td>
<td>S151</td>
<td>genomische DNA</td>
<td></td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>GGTCCGTTGATGACACCTG</td>
<td>S152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GATGCAAGAAGTTGAATCACAC</td>
<td>S153</td>
<td>genomische DNA</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>AGAACAGGACACACACACAC</td>
<td>S154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGGGTCGATGCCTGACC</td>
<td>S155</td>
<td>genomische DNA</td>
<td></td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>TCTTTGGGTCGTTCC</td>
<td>S156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G6pd2</td>
<td>CATCTATCTACCTGGGCTGTGCC</td>
<td>S157</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
</tr>
<tr>
<td></td>
<td>TATCATTGGCCACGTCTTCC</td>
<td>S158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klhl5</td>
<td>AGTCTCGACAGGGACCTCCA</td>
<td>N17</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
</tr>
<tr>
<td></td>
<td>CAAGAGCTGGCTGATCTACA</td>
<td>N18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACATGCTGGCTGATCTACA</td>
<td>N19</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>GTGCCCAAAGGGCAACTGAT</td>
<td>N20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recc1</td>
<td>AGCCCGGATAAGCAAATTACC</td>
<td>N21</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
</tr>
<tr>
<td></td>
<td>TTTCTTTTGCTGTGCAACC</td>
<td>N22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCTCAGAAGAGATCTCTTACC</td>
<td>N23</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>TGATTTGCAAAAGGCTCTAG</td>
<td>N24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGCAGTTGCTGAGAGTGA</td>
<td>N25</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>CAATGGAACACTGACACCT</td>
<td>N26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGAAAAAGAACGGGCCCTAG</td>
<td>N27</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>GTGCGTGCTCCTCTGCTCACC</td>
<td>N28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAAGAGTGAACAGGGCAACTG</td>
<td>N29</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>CTGAGGCCCATACTCCGACA</td>
<td>N30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGGCTGCACTCAAGAACAATA</td>
<td>N31</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>GGGGTATTGCTAAAAACCTCTT</td>
<td>N32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATCATTGAGATCTCTGATG</td>
<td>N33</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>TCCGAGATCTGTAGAGCCTC</td>
<td>N34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCAGGGCTGATCTCCAGAG</td>
<td>N35</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>CCAGGGCTGATCTCCAGAG</td>
<td>N35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGGGGAGAAGCTGGTCTGCG</td>
<td>N37</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>ACTGGCCGAGAGAGTTAGTT</td>
<td>N38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGACCTGACCCATACTACAC</td>
<td>N39</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>AAAAGTTGAGACCATGCTCTTCC</td>
<td>N40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lias</td>
<td>TGACTCCAGCAGCAGAGTG</td>
<td>N65</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
</tr>
<tr>
<td></td>
<td>TAATCAGAGGCCCCACTTGC</td>
<td>N66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CATGGAATATGCGCATTTTCCA</td>
<td>N67</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>GCCCAGCATTGATCGTGGTTT</td>
<td>N68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAAAATCTCCTGGGAAGATCG</td>
<td>N69</td>
<td>cDNA</td>
<td>Gehirn, Hoden</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>GCCATCAGACCTTGCAACAC</td>
<td>N70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ugdh</td>
<td>ACTGGTGACATTCCCAAAGG</td>
<td>S161</td>
<td>cDNA</td>
<td>Gehirn</td>
</tr>
<tr>
<td></td>
<td>GAAGAGAGACTGCTCTTCC</td>
<td>S162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klb</td>
<td>CCACCTCAGAGGAGTTCG</td>
<td>S163</td>
<td>cDNA</td>
<td>Gehirn</td>
</tr>
<tr>
<td></td>
<td>AGCCAGATGGAGATGAAC</td>
<td>S164</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A 4: Primer zur Sequenzierung der Kandidatengene (fortgesetzt)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Primersequenz</th>
<th>Nummer</th>
<th>Template</th>
<th>Gewebe</th>
<th>PCR-Produkt-Länge (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tbc1d1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAGGAAACACGTATGAC T1f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>643</td>
</tr>
<tr>
<td></td>
<td>CAGCATCTTGAAGTCGAACG T1r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGCCGAGGTAGGAAGACTCA T2f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>AGAGAACACCTCACCGTCTG T2r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCCTTTCACGCTCTGGACT T3f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>TCCCTCTATCTCTTTCGAGA T3r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTCTAGGGCGAGAGTCT T4f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>GGCCTCTGGGTCTATTACCC T4r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAAACGAGACCGAGAGAAT T5f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>CAGGGCACTCTACTGGGAAA T5r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTGACTCAGGGCGCAGCTT T6f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>CAGCCTTGTTCTGGATT T6r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGGAGGAGGCGGTTGTCCAG T7f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>CTCTTCAGAGAGGGACTCT GAGAAT T7r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGGTCCAGAAAGCGAGGTAGG T8f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>CAGGTTCAGGCCCTACAAGA AAGAAT T8r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGAGGCAGTGGAACCTGGT T9f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>CAGTGTGGGAGATGGTGTTCT T9r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTCCAGGAGATCGAGGTCA T10f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>TGCTGCACAGCTCTCCATGG T10r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGCGAGAGTAAAGCTGAAGCAG GTAAAACGAGGCGCCAGTG T11f</td>
<td>pCR2.1-TOPO</td>
<td></td>
<td></td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>CAGCCAGAGTTACAACACTCC T11r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTGGGCGAAAACCTCAATACC ex18for</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>GCATCCATGGGTGATAGAGG ex18rev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGGCACCGACGGCTATCGT ex18rev</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>CTGGAAACCCAAAAGGTTGAG P2f</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>488</td>
</tr>
<tr>
<td></td>
<td>TCCCAGAAGTCCAAGCCGTC P2r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTTGGTGTGGTGGCTGTGG P3f</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>ACCTCTGACAGACACCTCC P3r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTAAACCCACATGGCCAGCTA P4f</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>554</td>
</tr>
<tr>
<td></td>
<td>GTGAGGAGGCTTCTGAGCT P4r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGGAGACAGATCGGCAGCT P5f</td>
<td>genomische DNA</td>
<td></td>
<td></td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>CTCAGCTGGCTGCTCTGG P5r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Danksagung

Ich danke Herrn Prof. Dr. Dr. Hans-Georg Joost für die freundliche Überlassung des interessanten Themas und die anregenden Diskussion der Ergebnisse im Datenclub.

PD Dr. Hadi Al-Hasani danke ich für die gute Betreuung, die wertvollen Anregungen und die Diskussion sowie kritische Auseinandersetzung mit den Daten.

Ich danke Dr. Reinhart Kluge und dem Team des MRL für die fachgerechte Betreuung der Mäuse, die Hilfe bei der Präparation der Mausgewebe und die stetige Hilfsbereitschaft in allen Fragen.

Dem MPI (Berlin Dahlem) sowie den Firmen Signature (Potsdam) und Microdiscovery (Berlin) danke ich für die gute Zusammenarbeit bei den Array-Experimenten, besonders Thomas Przewieslik für die Hilfe beim Spotten der Arrays.

Stellvertretend für die technischen Mitarbeiter der Abteilung Pharmakologie danke ich Peggy Großmann und Susanne Neubert für die Isolation der Gewebe-RNA. Der gesamten Abteilung danke ich für die Unterstützung bei den Laborversuchen und die gute Arbeitsatmosphäre.

Dem Deutschen Institut für Ernährungsforschung danke ich für die hervorragenden Arbeitsbedingungen und das immer offene Ohr des Personalreferates, wenn's mal nicht so gut lief.

Ich danke meinen Doktoranden-Kollegen für die vielen anregenden Gespräche, Diskussionen und Hilfe bei Experimenten, besonders Katja Schmolz für die nicht nur anfängliche Begleitung und Marco Teichert für die Amplifikation vieler DNA-Sonden. Ganz besonders danke ich Ulrike Bernhardt, Alexandra Chadt, Tanja Dreja und Kathrin Warnke für unsere gemeinsame Zeit mit Höhen und Tiefen, das umfangreiche Korrekturlesen (dafür vielen Dank auch an Dr. Stephan Scherneck) und vor allem für das viele Lachen. Ihr seid sehr wertvolle Menschen, die diese Zeit viel schöner gemacht haben.

