Modularer Ansatz zu multifunktionellen Polymer-Peptid-Fasern

Dissertation

zur Erlangung des akademischen Grades
„doctor rerum naturalium“
(Dr. rer. Nat.)
in der Wissenschaftsdisziplin „Kolloidchemie“

ingereicht an der Mathematisch Naturwissenschaftlichen Fakultät
der Universität Potsdam

von
Harald Hahn
geboren am 23.08.1980 in Potsdam/ Babelsberg

Golm, März 2009
Online veröffentlicht auf dem
Publikationsserver der Universität Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2009/3301/
URN urn:nbn:de:kobv:517-opus-33016
[http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-33016]
„Wir müssen unbedingt Raum für Zweifel lassen, sonst gibt es keinen Fortschritt, kein Dazulernen. Man kann nichts Neues herausfinden, wenn man nicht vorher eine Frage stellt. Und um zu fragen, bedarf es des Zweifelns.“

Richard P. Feynman

„Ideen, wie absolute Gewißheit, absolute Genauigkeit, endgültige Wahrheit und so fort, sind Erfindungen der Einbildungskraft und haben in der Wissenschaft nichts zu suchen.“

Max Born
Inhaltsverzeichnis:

1. EINLEITUNG UND MOTIVATION .. 1

2. GRUNDLAGEN .. 3
 2.1. Peptide ... 3
 2.2. Strukturbildung vororganisierter Polymer-Peptid-Konjugate .. 8
 2.3. Merrifield Festphasengebundene Peptid Synthese ... 13
 2.3.1. Festphasengebundene Peptid Synthese (SPPS) ... 13
 2.3.2. Schutzgruppen .. 15
 2.3.3. Aktivierungsreagenzien ... 15
 2.3.4. Einfluss des Harzes ... 17
 2.3.5. Freisetzung der festphasengebunden Peptide ... 18
 2.4. Erzeugung von Aziden ... 19
 2.5. „Klick Chemie“ ... 23

3. CHARAKTERISIERUNGSMETHODEN .. 27
 3.1. Massenspektrometrie (MS) ... 27
 3.1.1. Allgemeines .. 27
 3.1.2. ESI-MS .. 28
 3.1.2.1 Ionisation .. 28
 3.1.2.2 Auftrennung und Detektion ... 29
 3.1.3. MALDI-TOF ... 30
 3.1.3.1 Ionisation .. 30
 3.1.3.2 Auftrennung und Detektion ... 30
 3.2. Circular Dichroismus ... 31
 3.2.1. Allgemeines .. 31
 3.2.2. Funktionsprinzip ... 31
 3.3. Rasterkraftmikroskopie (atomic force microscopy, AFM) ... 36
 3.3.1. Allgemeines .. 36
 3.3.2. Messprinzip .. 36

4. DIAZOTRANSFER ZUR ERZEUGUNG BIOLOGISCHER KLICK SUBSTRATE 39
 4.1. Diazotransfer an einem vollgeschützten Peptid der Sequenz GRGDS 39
 4.1.1. Herstellung der vollgeschützten GRGDS Sequenz .. 39
 4.1.2. Diazotransfer am vollgeschützten GRGDS ... 40
 4.2. Diazotransfer an Tryptopentin .. 42
 4.2.1. Herstellung von Tryptopentin ... 42
 4.2.2. Diazotransfer an Tryptopentin ... 43
 4.2.3. 1,3 Cycloaddition an Tryptopentin .. 44
 4.3. Diazotransfer am Harz ... 45
 4.3.1. Herstellung der GRGDS-Peptidsequenz am Harz .. 45
 4.3.2. Diazotransfer an den harzgebundenen GRGDS-Harz Sequenzen 46
5. DIAZOTRANSFER GEFOLGT VON GEZIELTEN MODIFIKATIONEN AN POLYMER-PEPTID-FASERN ... 53

5.1. Design des Polymer-Peptid-Konjugates ... 53
5.2. Entwicklung des Polymer-Peptid-Konjugates (II) ... 54
5.3. Herstellung des aminfunktionalisierten Polymer-Peptid-Konjugates (II) 55
5.4. Diazotransfer an den aminfunktionalen Fasern (II) .. 58
5.5. 1,3-dipolare Addition von Fluorescein an die azidfunktionalisierten Fasern (III) 64
5.6. Baukastensystem der Alkine ... 71
5.7. Weitere Modifikationen an den azidfunktionalen Fasern ... 73

6. ZUSAMMENFASSUNG UND AUSBlick .. 79

7. ANHANG ... 81

7.1. Allgemeine Arbeitsvorschriften .. 81
7.2. Experimenteller Teil: .. 82
7.3. Methoden: ... 101
7.4. Abkürzungsverzeichnis: .. 104
7.5. Literaturverzeichnis .. 106
1. Einleitung und Motivation

In den Polymerwissenschaften haben sich in den letzten Jahren Polymer-Peptid-Konjugate etabliert, sie verknüpfen die Strukturbildungseigenschaften der Peptide mit den Materialeigenschaften synthetischer Polymere. Durch den Polymerblock können gezielt Eigenschaften wie Bioabbaubarkeit, Leitfähigkeit oder Löslichkeit eingestellt werden.

synthetisiert werden. Der Austausch von Threonin gegen Histidin führte zu Nanobändern mit imidazolfunktionalisierten Oberflächen.

Eine Herangehensweise für die kovalente Anbringung der funktionalen Moleküle stellte die 1,3-dipolare Cycloaddition dar. Diese Reaktion beschreibt die konzertierte Umlagerung eines Azides mit einem Alkin zu einem heterocyclischen Fünfring, dem Triazol. Einen einfachen Zugang zur Erzeugung der Azide, bietet der Diazotransfer, ausgehend von aminfunktionalen Polymer-Peptid-Fasern.

Die azidfunktionalisierten Bandstrukturen dienen als Grundbaustein für den modularen Ansatz. An diese Funktionen können über die 1,3-dipolare Cycloaddition verschiedene alkinfunktionalisierte Moleküle angebracht werden. So können die Eigenschaften der Fasern an die jeweilige Aufgabe angepasst werden.
2. Grundlagen

2.1. Peptide

Peptide sind aus mehreren α-Aminosäuren aufgebaut. α-Aminosäuren besitzen mindestens eine Amingruppe und eine Carbonsäuregruppe, die beide an das α-C Atom gebunden sind (siehe Schema 1). Alle 20 natürlich vorkommenden Aminosäuren unterscheiden sich allein durch den Rest R, der ebenfalls an das α-C Atom angebunden ist. Bei einer unverzweigten Kette von bis zu 100 Aminosäuren wird von Peptiden gesprochen. Verbindungen von mehr als 100 Aminosäuren werden als Proteine bezeichnet. Dabei ist die Grenze zwischen Peptiden und Proteinen nicht scharf definiert.

Die chemische Verknüpfung zweier Aminosäuren (R1 und R2) zu einem Dipeptid (Schema 1), wird als Kondensation bezeichnet. Unter Wasserabspaltung entsteht bei der Kondensation der Amin- mit der Carboxylgruppe eine Amidbindung, die durch Mesomerie stabilisiert ist (Abbildung 1). Durch diesen Effekt erhöht sich die Bindungsordnung zwischen Stickstoff und Carbonylkohlenstoff auf ca. 1,5, was die Drehbarkeit der Amidbindung stark einschränkt. Die Diederwinkel der N-C$_\alpha$- (\(\phi\)) und C-C$_\alpha$-Bindung (\(\psi\)) können verschiedene Werte annehmen. Sie bestimmen die Konformation des Peptides.

Abbildung 1. Gezeigt ist ein Tripeptid, der partielle Doppelbindungscharakter der Amibindung (gestrichelt) sowie die Diederwinkel ϕ (phi) und ψ (psi).
Biosynthese der Peptide

Die mRNA besteht aus vier verschiedenen DNA Basen, die Reihenfolge von je drei Basen heißt Codon. An den Ribosomen wird diese Reihenfolge durch die tRNA (engl. transfer RNA) abgelesen. Für jedes Codon auf der mRNA gibt es ein passendes Codon auf der tRNA, das sogenannte Anticodon. In Abhängigkeit des jeweiligen Anticodons bindet eine spezielle Aminosäure an die tRNA, welche die Aminosäure zum Ribosom transportiert.

Abbildung 2. Dargestellt ist die mRNA Transkription im Zellkern, das Wandern der mRNA ins Cytoplasma und die Translation einer Peptidsequenz im Ribosom durch Ablesen der mRNA mit tRNA.

In den Ribosomen bindet die tRNA an die mRNA, wenn Codon und Anticodon exakt zueinander passen. Dabei wird die Aminosäure der tRNA mit dem Ende des bereits

Schema 1. L-Aminosäure (R1) kondensiert mit einer anderen L-Aminosäure (R2) zu einem Dipeptid (R1-R2), sowie mehreren Nebenprodukten, z. B. durch Reaktionen der Aminosäuren mit sich selbst, Bildung von Tripeptiden oder Oligomeren.

Kapitel 2

sie zur Darstellung des Peptidteils zur Anwendung. In Kapitel 2.3 wird näher auf die Festphasengebundene Peptidsynthese eingegangen.

Strukturbildung

Jede Aminosäure hat eine unterschiedliche Tendenz ein bestimmtes Strukturmotiv zu stabilisieren oder zu destabilisieren. Diese Tendenz basiert auf der Funktion ihrer Seitenkette, die Eigenschaften wie elektrostatische oder hydrophobe Wechselwirkungen, beisteuern kann. Die Chou Fasman Parameter geben die Strukturbildungstendenz der
jeweilige Aminosäure empirisch wieder.\[15\] Neben der Art bestimmt die Sequenz (Primärstruktur) der Aminosäuren die Struktur und Funktion der Peptide. Um Struktur und Funktion biologischer und synthetischer Peptide zu steuern, muss daher die Sequenz der Aminosäuren in einem Peptid definiert aufgebaut werden.

Die Anordnung zu einer \(\alpha\)-Helix wird durch intramolekulare Wasserstoffbrückenbindungen zwischen der \(i\)-ten und der \(i+4\)-ten Aminosäure stabilisiert. Bei kleineren \(\beta\)-Faltblattstrukturen (Oligomere) sind die Wasserstoffbrückenbindungen hingegen intermolekular. Erst bei größeren Peptiden, die über Schleifen und Turns verfügen, sind intramolekulare Wasserstoffbrückenbindungen in \(\beta\)-Faltblattstrukturen zu finden.

Die Anordnung der Peptide zu \(\beta\)-Faltblattstrukturen wurde 1933 von Astbury\[16\] für Keratin-Fasern durch Röntgenstreuung nachgewiesen.\[17-19\] Die \(\alpha\)-Helix und das \(\beta\)-Faltblatt, wurden dann durch Röntgenuntersuchungen an kristallinen Peptiden von Pauling und Corey\[20-22\] bestätigt und detailliert beschrieben. Für die \(\beta\)-Faltblattstruktur können eine parallele und eine antiparallele Anordnung unterschieden werden (Abbildung 3).

In der \(\beta\)-Faltblatt-Konformation sind hydrophobe und hydrophile Aminosäuren meist in alternierender Reihenfolge angeordnet.\[23\] Die Reihenfolge der Aminosäuren kann die \(\beta\)-Faltblatt-Konformation weiter stabilisieren. Eine große Bedeutung hat in diesem Zusammenhang der hydrophobe Effekt in Wasser der in Kapitel 2.2 diskutiert wird.

Kapitel 2

lokalisiert ist. Trotz dieser Veränderung behalten Peptidomimetika oft ihre Wirkung, sie werden in vivo jedoch schlecht abgebaut. Dadurch können sie deutlich länger ihre Wirkung entfalten.

2.2. Strukturbildung vororganisierter Polymer-Peptid-Konjugate

Kapitel 2

Der beobachtete Prozess der Strukturbildung kann dazu genutzt werden Polymere zu aggregieren. So können die Vorteile von Peptiden und Polymeren verbunden werden. Der Peptidteil steuert hierbei die Aggregation des Polymerteils. Um die templatvororganisierte Peptidaggregation zur Polymerstrukturierung nutzen zu können, müssen die Polymere mit dem Templat verknüpft werden. Dazu wird eine weitere Funktionalität benötigt, die an dem
Dibenzofuran-Grundkörper nicht vorhanden ist. Einen guten Ausgangspunkt bietet das literaturbekannte Polymer-Peptid System (I), in dem der Polymerteil und die zwei Peptidarme über ein Carbazol Templat miteinander verbunden sind (Abbildung 6).[4] Die Peptidarme sind derart gestaltet, dass hydrophobe und hydrophile Aminosäuren alternierend angeordnet sind, wobei die hydrophile Aminosäure Threonin, die hydrophobe Valin ist. Die durch das Carbazol vororganisierten Peptide bilden ein β-Faltblatt und lösen dadurch die Strukturbildung zu Fasern aus.

![Abbildung 6](image)

Abbildung 6. Dargestellt ist das literaturbekannten Polymer-Peptid-Molekül (I).

Mehrere dieser Polymer-Peptid-Konjugate (I) aggregieren unter Ausbildung eines antiparallelen β-Faltblattes miteinander (Schema 2b). Diese β-Faltblattstruktur (Bandstruktur, Tape) besitzt zwei amphiphilen Seiten, die Seitenketten der hydrophoben Aminosäuren sind auf der einen, die der hydrophilen Aminosäuren auf der entgegengesetzten Seite.[35] Aus zwei dieser β-Faltblattstrukturen entsteht durch den hydrophoben Effekt ein Doppelband (Schema 2c). Der hydrophobe Effekt soll nachfolgend eingehender behandelt werden.

Hydrophober Effekt

In Wasser entsteht aus I ein β-Faltblatt mit amphiphilen Seiten, wobei auf der einen Seite des β-Faltblattes die hydrophoben Seitenketten, auf der entgegengesetzten die hydrophilen Seitenketten liegen (Schema 2b). Die hydrophobe Seite des β-Faltblattes kann keine Wasserstoffbrückenbindungen mit den umgebenden Wassermolekülen ausbilden. Diese Seite ist von einem hochgeordneten Käfig aus Wassermolekülen umgeben. Die damit verbundene hohe Entropie der umgebenden Wassermoleküle ist thermodynamisch
ungünstig. Der hydrophobe Effekt führt zur Bildung von Doppelbändern. Um die hydrophoben Wechselwirkungen mit dem Wasser zu vermeiden ordnen sich zwei dieser Bänder derart an, dass ihre hydrophoben Seitenketten einander zugewandt sind.

Schema 2. Die Darstellung der Organisation von (a) in bänderartige Aggregate (b). Die Bänder besitzen einen β-Faltblattkern und eine PEO Schale. Die einzelnen β–Faltblattstrukturen (b) ordnen sich zu Doppelbändern an (c).[36]

Die beobachteten faserartigen Nanostrukturen (I) sind solche Doppelbänder in deren Inneren die hydrophoben Seitenketten der Aminosäuren Valin liegen. Auf der Außenseite der
Doppelbänder liegen dem Wasser zugewandt die hydrophilen Aminosäurereste Threonin (siehe Abbildung 6).

Modifikationen an (I)

Durch Einspritzen der Polymer-Peptid-Fasern (I) in ethanolische Lösungen mit geringen Kieselsäure Konzentrationen, (2,5 Äq. je Threonin ~ 270 μM) konnten nach zehn Sekunden Reaktionszeit die einzelnen Bänder von I silifiziert werden.[5] Bei höheren Konzentrationen an Silika vernetzten sich die Fasern von I miteinander zu Überstrukturen. Wenn eine Lösung von (I) in eine Lösung mit vorhydrolysiertem TMOS gedruckt wurde, richteten sich diese Überstrukturen, in Abhängigkeit der Druckgeschwindigkeit, aus.[6]

So konnten durch die Selbstaggregation des Templates I makroskopische Netzwerke von orientierten Polymer-Silika-Konjugaten zugänglich gemacht werden. Weiterhin konnten durch Kalzinieren der Silika beschichteten Polymer-Peptid-Fasern I, zylindrische Porenstrukturen erzeugt werden.
2.3. Merrifield Festphasengebundene Peptid Synthese

2.3.1. Festphasengebundene Peptid Synthese (SPPS)

Die kovalente Anbindung der Aminosäuren an ein leichtvernetztes Polymerharz birgt den Vorteil, sämtliche Kupplungsreagenzien im großen Überschuss einsetzen zu können, was die quantitative Umsetzung vereinfacht. Nach erfolgter Reaktion können die überschüssigen Reagenzien durch Waschschritte entfernt werden.

In schwierigen Fällen kann die zu kuppelnde Aminosäure, ohne die N-terminale Schutzgruppe abzuspalten, mehrfach gekuppelt werden. Erst wenn die Kupplung quantitativ ist, wird die Schutzgruppe der nun vollständig gekuppelten Aminosäure abgespalten. Die nächste Aminosäure kann nun an die freie Amingruppe gekuppelt werden. Auch in der automatisierten Synthese wird bei schwierigen Sequenzen zweimal gekuppelt (sog. Doppelkupplungen), um die notwendigen hohen Umsätze zu erreichen.

Der schrittweise Aufbau der Peptidsequenz ist in Schema 3 dargestellt. Im Gegensatz zur Natur wird das Peptid nicht vom N-Terminus zum C-Terminus aufgebaut, sondern anders herum. Die Säuregruppe der Aminosäure wird durch PyBop/ HoBt (Benzotriazol-1-yl-oxytrypyrrolidino-phosphonium-hexafluorophosphat)/ 1-Hydroxybenztriazol) in einen Aktivester überführt. Im ersten Schritt der SPPS der Säuregruppe wird die erste zu kuppelnden Aminosäure mit dem aktivierten Säureende am Polymerharz kondensiert. Durch die Schutzgruppe am Aminende wird eine ungewollte Mehrfachkupplung verhindert. Nach der vollständigen Kupplung wird das Harz gründlich gewaschen, um alle überschüssigen Reagenzien zu entfernen. Dann wird die Amin-Schutzgruppe der harzgebundenen
Aminosäure entfernt. An das Aminende der am Harz befestigten Aminosäure kann nun die nächste Aminosäure gekuppelt werden. Die repetativen Schritte: Entfernen der temporären α-Amin-Schutzgruppe, die Aktivierung der Säuregruppe, die Kupplung der nächsten Aminosäure gefolgt vom Waschen erlauben die Automatisierung des Prozesses.

Schema 3. Abgebildet ist das Kupplungsschema der SPPS. Blau dargestellt sind die wiederholenden Schritte der Kupplung weiterer Aminosäuren zum Aufbau von Peptidsequenzen.
Um möglichst hohe Umsätze bei kurzen Kupplungszeiten zu erreichen, wurde die SPPS stetig weiterentwickelt. Inzwischen steht eine Vielzahl an Parametern zur Verfügung die für den jeweiligen Verwendungszweck optimiert wurden.

Die Art der Schutzgruppen, Aktivierungsreagenzien und das Harzes beeinflussen die Geschwindigkeit und Ausbeuten der einzelnen Schritte. Im Folgenden soll auf diese Faktoren im Hinblick auf die in dieser Arbeit verwendete Fmoc-Strategie (9-Fluorenylmethoxycarbonyl) näher eingegangen werden.

2.3.2. Schutzgruppen

Jede Aminosäure besitzt mindestens zwei funktionelle Gruppen, die α-Carbonsäure und das α-Amin. Um eine Reaktion mit sich selbst zu verhindern, müssen an der Kondensation nicht beteiligten Gruppen geschützt sein. Dadurch wird z. B. eine Polymerisation (Mehrfachkupplung) der Aminosäuren vermieden.

2.3.3. Aktivierungsreagenzien

Wie bereits erwähnt, wurden die Reagenzien im Überschuss eingesetzt, um den Umsatz und die Ausbeuten zu erhöhen. Mit Hilfe von Aktivierungsreagenzien soll der Umsatz noch weiter erhöht werden.

\[
\text{PyBOP} \quad \begin{array}{c}
\text{Aminosäure} \\
\text{DIPEA} \\
\text{Aktivierte Aminosäure}
\end{array}
\]

Schema 4. Mechanismus der Aktivierung einer Aminosäure durch PyBOP/HOBt.

Zusätzlich wird eine nicht nucleophile Base, z. B. DIPEA (N,N-Diisopropylethylamin), verwendet. Dabei dient die Base der Deprotonierung des HOBT’s, sowie der Säuregruppe der Aminosäure zum Carboxylat. Weitere Aktivierungsreagenzien sind in Abbildung 7 zusammengefasst. Sie basieren auf Phosphoniumreagenzien, wie PyAOP. Es finden aber auch Guanidinum/Uroniumreagenzien Verwendung, unter anderem HATU (O-(7-Aza-1-benzotriazolyl)-N,N,N´,N´-tetramethyluroniumhexafluorophosphat) und HBTU. Die Reaktivität der Aktivierungsreagenzien nimmt in folgender der Reihenfolge ab: HATU>HBTU>PyBOP>DIC/HOBt>DCC.[47]
Abbildung 7. Dargestellt sind verschiedene Aktivierungsreagenzien.

Die schonenden Reaktionsbedingungen, z. B. das Arbeiten bei Raumtemperatur, verhindern eine Racemisierung der Aminosäuren. Um bei schwierigen Sequenzen die höchsten Ausbeuten zu erzielen ist die Handkupplung mit PyAOP/ HATU als Aktivierungsreagenzien die beste Möglichkeit. Weiterhin ist es möglich, die Kupplungszeit zu erhöhen und Mehrfachkupplungen durchzuführen, um das gewünschte Peptid zu synthetisieren.

2.3.4. Einfluss des Harzes

Die in der Festphasengebundenen Synthese verwendeten Harze bestehen meist aus Polystyrol, das mit Divinylbenzol quervernetzt wurde. Diese Harze sind unlöslich, quellen aber in organischen Lösungsmitteln. Das Quellverhalten des Harzes ist wichtig, da die Reaktionsgeschwindigkeiten in der Festphasengebundenensynthese diffusionskontrolliert sind. Je besser das jeweilige Harz quillt, desto einfacher können Reagenzien zum Reaktionsort gelangen, desto schneller und vollständiger sind die Reaktionen.\cite{48-50}

Das 2-Chlortrityl Harz quillt wie die meisten Harze in Abhängigkeit der Vernetzung. Bei 1 % Vernetzung quillt es in Dichlormethan auf das vier- bis sechsfache seiner Ausgangsgröße. Ist das Harz stärker vernetzt quillt es deutlich weniger, es quillt also bei
2 % Divinylbenzolanteil nur um den Faktor zwei bis vier. In Wasser hingegen quillt das 2-Chlortritylharz nicht.

Die Geschwindigkeit der Kupplungsreaktionen erhöht sich generell, je kleiner die Harzkugeln sind. In der Praxis sind zu kleine Harzkügelchen jedoch nicht geeignet, da sie durch ihre geringe Größe beim Filtern schwer zurückzuhalten sind. Um ein gutes Verhältnis zwischen Filtrierbarkeit und Reaktionsgeschwindigkeit zu erreichen, haben sich Größen von 75 bis 150 μm bewährt.

Die Größe von Harzen wird vor allem in zwei Einheiten angegeben, entweder in μm oder in Tylor Mesh Größe. Die Tylor Mesh Größe ist invers proportional zum Durchmesser. Gewöhnlich werden zwei verschiedene Harzgrößen verwendet 100-200 mesh, was einem Durchmesser von 75-150 μm entspricht, sowie 200-400 mesh was einem Harzdurchmesser von 35-75 μm gleichkommt.

2.3.5. Freisetzung der festphasengebundenen Peptide

Sowohl bei der Abspaltung des Peptids vom Harz, als auch beim Aufbau der Sequenz spielt die Art des Harzes und der Linker eine entscheidende Rolle. Soll als Beispiel ein vollgeschütztes Peptid vom Harz abspalten werden, eignet sich ein 2-Chlortrityl Harz. Dieser Linker ist sehr säurelabil, so dass schon eine 30%ige Lösung aus Trifluorethanol (TFE) in Dichlormethan genügt, um das Peptid vom Harz abzuspalten. Unter diesen Bedingungen sind etwaige Seitenkettenschutzgruppen wie Boc- oder tBu-Schutzgruppen stabil.
2.4. Erzeugung von Aziden

Schema 5. Verschiedene Nachfolgereaktionen der Staudinger Reaktionen

Es gibt heute unzählige Wege, organische Azide herzustellen. Es können fünf Wege unterschieden werden: a) Einführung der Azidgruppe (Substitution oder Addition), b.) Diazotierung (z. B. von Aminen oder Hydrazinen), c.) Einführung eines Stickstoffatoms, d.) Spaltung von Triazenen sowie durch e.) Umlagerung von Aziden.[55, 56]

Die beiden wichtigsten Methoden in der Polymerwissenschaft, die nucleophile Substitution und der Diazotransfer an primären Aminen sollen nachfolgend näher erläutert werden (Schema 6).

Kapitel 2

Neuere Arbeiten, die Herstellung von Triflatazid in trockenem Acetonitril und Pyridin betreffend, konnten den hohen Überschuss an Natriumazid reduzieren. Dieser Ansatz ist jedoch auf die beiden Lösungsmittel limitiert und kann ebenfalls nicht für wässrige Systeme genutzt werden. [64]

Alles in allem kann zusammengefasst werden, dass der Diazodonor Triflatazid nicht überzeugend im wässrigen Medium funktioniert. Die Verwendung von Triflatazid in wässrigen Lösungen ist durch die Kombination aus Giftigkeit und der Explosivität (im trocknen Zustand) und der Wasserunlöslichkeit nicht möglich.

Aus historischen Gründen wurden die ersten Reaktionen ebenfalls Kupfer(II) katalysiert durchgeführt, allerdings können auch Nickel-, Kobalt- oder Zink(II)salze die Reaktion katalysieren.

Goddard-Borger und Stick testeten den Diazotransfer an kleinen Molekülen. Unter anderem wurde der Diazotransfer an den Aminosäuren Valin, Phenylalanin und Lysin durchgeführt.
An Kohlenhydrat-Derivaten mit primären Aminen wie 2-Galaktosamin und 2-Glukosamin, konnte der Diazotransfer ebenfalls demonstriert werden. Der Diazotransfer wurde meist in Methanol durchgeführt, beim Lysin kam ein Methanol/Wasser Gemisch (50 % v/v) zur Anwendung. Dies deutet die Möglichkeit an, den Diazotransfer mit dem Imidazolsulfonylazid in Wasser durchzuführen. Vom Diazotransfer mit Triflatazid ist bekannt, dass der ebenfalls an Peptidsequenzen an der Festphase mit guten Ergebnissen durchführbar ist. Es ist daher von Interesse den Diazotransfer auf wässrige Systeme zu übertragen, sowie die Voraussetzungen und Ergebnisse des Diazotransfers an der Festphase zu überprüfen. Im Rahmen dieser Arbeit wurde der Diazotransfer verwendet um aus primären Aminen Azide zu synthetisieren. Dabei wurde das Imidazolsulfonylazid unter verschiedenen Bedingungen eingesetzt (Kapitel 4).

In der „Klick Chemie“ dienen Azide der Verknüpfung zweier Moleküle. Dabei reagiert ein Azid mit einem primären Alkin unter Bildung eines 1,2,3-Triazols. Die in dieser Arbeit verwendete „Klick Chemie“ wird daher im nächsten Kapitel näher beschrieben.
2.5. „Klick Chemie“

Der Begriff „Klick Chemie“ (engl. click chemistry) bezeichnet im allgemeinen effiziente, vielseitige Reaktionen mit vollständigem Umsatz. Die Familie der „Klick-Chemie“ läßt sich grob in mehrere Reaktionsklassen einteilen\[69]\n
(a) Cycloadditionen unsättigter Verbindungen z. B. die 1,3-dipolare Additionen, Diels Alder Reaktionen
(b) andere zyklische Reaktionen
(c) Ringöffnungsreaktionen an gespannten Heterocyclen
(d) Additionen an Kohlenstoffmehrfachbindungen (z. B. Mercaptan an primäre Doppelbindungen).

In engem Zusammenhang wird der Begriff „Klick Chemie“ mit der 1963 von Huisgen systematisch untersuchten 1,3-dipolaren Cycloaddition\[70]\ benutzt. Huisgen verwendete auch den Begriff [3+2] Cycloaddition. Diese Umlagerungsreaktion zweier π-Bindungen zu zwei σ-Bindungen läuft schnell und mit hohen Umsätzen ab (Schema 8). Das Prinzip der 1,3-Cycloaddition ist ungleich länger bekannt. Die Arbeit von L.I. Smith aus dem Jahre 1938 gibt einen umfassenden Überblick.\[71]\n

\[\text{Schema 8.} \quad \text{Klick Reaktion: Alkin und Azid reagieren zu einem 1,2,3-Triazolring. Das Natriumascorbat (NaAsc) dient zur Reduzierung des Cu(II).}\]

Ein Jahr später konnten Fokin und Sharpless\[73]\ einen Mechanismus für die Kupfer(I) katalysierte „Klick Reaktion“ vorschlagen, der in Schema 9 dargestellt ist.

Der Zyklus beginnt mit der Bildung von Kupfer-Acetylen, gefolgt von der Anlagerung des Azides an das Kupfer. Weiter verläuft die Reaktion vermutlich über einen sechsgliedrigen Übergangszustand, in dem das Kupfer Bestandteil des Ringes ist.\[74]\ Dieser lagert sich zum
1,2,3-Triazol um. Mit der Abspaltung des Kupfers wird anschließend der Katalysator zurückgewonnen.

Schema 9. Der Mechanismus der Cu(II) katalysierten [3+2] Cycloaddition von Fokin und Sharpless.\cite{73}

Kupfer(I) spielt aber nicht nur in der „Klick Chemie“ eine entscheidende Rolle. In der Natur kommt es unter anderem als Cu\(^{+}/Cu^{II}\) -Paar in Redoxprozessen sowie bei der Sauerstoff-Absorption und Reduktion vor.\cite{75} Die hohe Reaktivität von Kupfer(I)-Verbindungen basiert auf ihrer thermodynamischen Instabilität, was sich in leichter Oxidierbarkeit\cite{76} und Disproportionierung\cite{77} (zu Cu\(^0\) und Cu\(^{II}\)) bemerkbar macht. Daher wird in der Synthesechemie meist unter inerten Bedingungen und in wasserfreien Lösungsmitteln gearbeitet.

In der Natur hingegen gibt es viele Kupfer(I)-haltige Proteinverbindungen\cite{78, 79}, die unter aeroben, wässrigen Bedingungen stabil sind. Will man diese Bedingungen auf chemische
Reaktionen übertragen, muss das katalytisch eingesetzte Kupfer(I) stabilisiert werden. Dazu werden Liganden benötigt, die das Kupfer komplexieren.

Es wurden mehrere Untersuchungen durchgeführt, in denen Thiole, Imine, sowie Halogenide als Kupferliganden für die „Klick Reaktion“ genutzt wurden. Die meisten Liganden sind dabei entweder zu labil (Amine, Halogenide), um das Kupfer zu schützen oder sie sind zu stabil (Nitrile) und unterdrücken die katalytische Wirkung des Kupfer(I). Als sehr effektive Liganden haben sich Poly-1,2,3-Triazolamine herausgestellt. Insbesondere das TBTA (Trisbenzyltriazolmethylamin) schützt Kupfer(I) vor der Oxidation und erhöht zudem seine katalytische Aktivität.

Abbildung 8. Abgebildet ist die Strukturformel von TBTA, ein sehr guter Ligand für die Kupfer(I) katalysierte 1,3-dipolare Addition.

Durch den Vorteil der sanften Reaktionsbedingung, sowie durch die hohen Umsätze, eignet sich die Kupfer (I) katalysierte 1,3-dipolare Cycloaddition hervorragend für die Modifikation von wässrigen Peptidsystemen.

Die „Klick Chemie“ konnte erfolgreich in der Polymerchemie etabliert werden. Die ATRP\(^{[80]}\) (Atom Transfer Radical Polymerisation) bietet mit der Brom Endgruppe eine hervorragende Möglichkeit ein Azid zu erzeugen und daran Alkine zu klicken.\(^{[81-83]}\) Die
1,3-dipolaren Cycloaddition von Aziden und Alkinen konnte an Dendrimeren39, 84-86 und linearen Polymeren87-90 durchgeführt werden. Die Vielseitigkeit der Cycloaddition konnte nicht nur an synthetischen Polymeren, sondern auch an natürlichen Systemen, wie Zellen oder DNA gezeigt werden. 91, 92 Insbesondere bei natürlichen Polymeren, deren Strukturbildung von den funktionellen Gruppen abhängt ist es wichtig, eine regiospezifische und sterospezifische Reaktion zu nutzen, die mit hohen Ausbeuten einhergeht.

Zusammenfassend kann gesagt werden, dass die Kupferkatalysierte [3+2] Cycloaddition eine Ringbildungsreaktion mit hohen Ausbeuten ist. Diese Reaktion stellt eine Möglichkeit dar, ein Alkin mit einem Azid unter Bildung eines 1,2,3-Triazols umzusetzen. Die Cycloaddition erlaubt die Kontrolle über die Regio- und Stereoselektivität. Die Reaktion ist in organischen Lösungsmitteln, aber auch in Wasser, sowie in heterogenen Lösungsmitteln (Zweiphasenreaktion) durchführbar.

Aus diesem Gründen wurde die 1,3-dipolare Cycloaddition in der vorliegenden Arbeit verwendet, um Polymer-Peptidsystemen mit definierten Sekundärstrukturen zu modifizieren. Dabei sollte untersucht werden, ob die peptidkontrollierten Strukturen während der Reaktionsbedingungen stabil sind.
3. Charakterisierungsmethoden

Um Polymer-Peptid-Konjugate zu charakterisieren, stehen mehrere Methoden zur Verfügung. Neben den klassischen Analysemethoden wie Kernspinresonanzspektroskopie (NMR), Infrarotspektroskopie (IR) und Massenspektrometrie (MS) können die gängigen Peptidanalytiken Matrix-Assistet-Laser-Desorption/Ionisation Massenspektrometrie (MALDI-MS) und Circulardichroismus (CD) verwendet werden. Zusätzlich können die klassischen Polymeranalytiken, wie Gel-Permeations-Chromatographie (GPC), Rheologie, Lichtstreuung (LS), Thermogravimetrie (TG) genutzt werden.

Weiterhin stehen Methoden, wie die Rasterkraftmikroskopie (engl. atomic-force-microscopy, AFM), Transmissionselektronenmikroskopie (TEM) oder Rasterelektronenmikroskopie (RTM) zur Verfügung, um Makrostrukturen zu visualisieren. Stellvertretend sollen die Massenspektrometrie, der Circulardichroismus und die Rasterkraftmikroskopie näher erläutert werden.

3.1. Massenspektrometrie (MS)

3.1.1. Allgemeines

Das Interesse daran, größere Biomoleküle wie Proteine massenspektrometrisch zu untersuchen, war groß. Mit Hilfe der gängigen Ionisationsverfahren konnten diese Moleküle entweder nicht ionisiert werden oder es fanden starke Fragmentierungen statt, weil Peptide thermisch instabil und zudem schwer flüchtig sind.

Zur massenspektrometrischen Analyse von Biomolekülen müssen diese unzersetzt als geladene Moleküle in die Gasphase überführt werden. Dafür eignen sich sowohl kontinuierliche Ionisierungsverfahren wie das Elektrospray (ESI) [96] als auch das gepulste Ionisierungsverfahren der MALDI. [97]
3.1.2. ESI-MS

3.1.2.1 Ionisation

Bei der ESI-MS wird eine stark verdünnte Analytlösung \((10^{-3} – 10^{-7} \text{ mol/L})\) verwendet. Gewöhnlicherweise ist das Lösungsmittel leicht verdampfbar, weitere Zusätze wie Säuren oder Basen sind üblich.

Je nach Art des an der Kapillare angelegten Potentials unterscheidet man zwei Ionisationsarten: positive Ionisation oder negative Ionisation. Bei der ES-Ionisation werden nicht nur Quasimolekülionen mit einer Ladung erzeugt und detektiert. Es treten im positiven Modus außerdem Ionenaddukte auf, die die Masse \([\text{M}+\text{aX}]^{\text{a}+}\) besitzen wobei X für Begleitungen, wie Protonen (H\(^+\)), Alkalimetallionen (Na\(^+\), K\(^+\)), etc. steht. Im negativen Modus entstehen Ionen, denen ein Proton [\text{M-H}]\(^{-}\) fehlt.

Für große Makromoleküle sind mehrfach geladene Ionen detektierbar, so treten zum Beispiel neben \([\text{M}+\text{H}]^{\text{1}+}\) auch \([\text{M}+2\text{H}]^{\text{2}+}\) und \([\text{M}+3\text{H}]^{\text{3}+}\) usw. auf. Die Anzahl der Mehrfachladungen nimmt mit der Größe des Analyten und der Anzahl der ionisierbaren Funktionalitäten zu. So treten bei verschiedenen Masse / Ladungsverhältnissen (m/z) Ionenpeaks auf.
Weil die Ionisation in Abhängigkeit von Struktur, Molekülgröße und funktionellen Gruppen stattfindet, kann es in Produktgemischen vorkommen, dass kaum vorhandene Verunreinigungen im Massenspektrum dominieren. Aus diesem Grund bietet sich eine Kopplung dieser kontinuierlichen Ionisationsmethode mit Gaschromatographie (GC) oder High Performance Liquid Chromatographie (HPLC) an, um so quantitative Aussagen zur Zusammensetzung von Analytgemischen zu ermöglichen.

3.1.2.2 Auftrennung und Detektion

Für die Spannung gilt: $U(t) = U + V_0 \cdot \cos(\omega t)$

Über die Einstellung der Frequenz (ω) oder der Spannungen (U, V) lässt sich festlegen, welche Teilchen den Detektor erreichen. Die Flugbahn des Teilchens mit dem richtigen m/z-Verhältnis ist sinusförmig. Bei der sinusförmigen Flugbahn bleiben die Abstände zu den Quadrupolstäben gleich, das geladene Teilchen erreicht den Detektor. Alle anderen Teilchen, die diesen Quadrupol durchlaufen, werden durch die Wechselspannung auf unstabile Flugbahnen gelenkt und kollidieren mit dem Quadrupol oder werden aus dem Quadrupol-Feld herausgeschossen. In Abhängigkeit von den Spannungen U, V und der Frequenz ω erreichen nur diejenigen Teilchen mit dem richtigen m/z-Verhältnis den Detektor. Durch eine Variation dieser Parameter kann ein ganzes Spektrum an m/z Werten aufgenommen werden.

3.1.3. MALDI-TOF

Kapitel 3

(250 kDa) mit der MALDI zu charakterisieren.[103-105] Bis heute hat die MALDI MS weitere Modifikationen erfahren. So konnte die Auflösung der linearen Methode durch Lennon und Brown stark verbessert werden, indem ein gepulster Laser verwendet wurde.[106, 107]

3.1.3.1 Ionisation

Die MALDI stellt eine sehr schonende Ionisation bereit, die gerade für große und komplexe Moleküle, insbesondere Biomoleküle, Anwendung findet.

Bei der MALDI wird der Analyt mit einer Matrix in großem molaren Überschuß (100-100.000 fach) co-kristallisiert. Als Matrix werden kleine Moleküle genutzt, die bei der verwendeten Laserwellenlänge stark absorbieren (z. B. N\textsubscript{2} Laser: $\lambda = 337$ nm). Typische Moleküle für Peptide sind 4-Hydroxy-3-Methoxyzimtsäure (Ferualsäure), Sinapinsäure (SA), 2,5-Dihydroxybenzoesäure (DHB) und α-Cyano-4-hydroxyzimtsäure (ACHC).[108, 109]

Die Analytmoleküle müssen homogen in die Matrixkristalle eingebettet werden. Matrix und Analyt werden dafür zusammen in einem Lösungsmittel gelöst und auf dem Probenträger eingetrocknet. Das so entstehende Matrixgitter wird durch Beschuss mit kurzen (2-5 ns), hochenergetischen Laserpulsen angeregt. Diese Pulse induzieren eine Relaxation im Kristallgitter und führen zu einer gemeinsamen, explosionsartigen Freisetzung von Matrix und Analyt in die Gasphase.[110]

3.1.3.2 Auftrennung und Detektion

Die Genauigkeit und Auflösung wird heute standardmäßig durch Verzögerungsextraktion und Reflektron deutlich verbessert.[106, 111]
3.2. Circular Dichroismus

3.2.1. Allgemeines
Circular Dichroismus (CD) ist eine spektroskopische, chiroptische Technik die auf unterschiedlicher Absorption von links- und rechts-zirkular polarisiertem Licht beruht. Die CD-Spektroskopie bietet die exzellente Möglichkeit, die Faltung und Interaktion von Proteinen in Lösung zu studieren.\[112\]

Schon 1939 beobachtete Mulliken elektronische Übergänge in Molekülen\[113\], 1956 wurden helikale Polymere von Moffitt mittels CD untersucht.\[114\] Damals war noch wenig über die Sekundärstruktur von Proteinen bekannt. Erst nachdem die Daten von Proteinstrukturen durch andere Techniken wie Röntgenkristallstrukturanalyse (RKSA) gewonnen wurden, konnten die gemessenen CD-Spektren mit diesen Daten korreliert werden. Seit 1980 findet ein explosives Wachstum an strukturbiologischen Arbeiten statt. Pro Jahr kommen ca. 2.000 hochauflösende Strukturen von Proteinen in die Protein-Datenbank (PDB).\[115\]

Die CD-Spektroskopie bietet so eine schnelle und günstige Möglichkeit die Konformation von gelösten Proteinen und anderen chiralen Molekülen und Polymeren in Lösung zu untersuchen. \[116-118\] Zwei Voraussetzungen sind für die untersuchten Moleküle notwendig. Zum einen müssen die untersuchten Moleküle chiral und nicht racemisch sein, zum anderen müssen sie Licht in der spezifischen Wellenlänge absorbieren.

3.2.2. Funktionsprinzip
In der klassischen Physik wird Licht als elektromagnetische Welle beschrieben. Die elektrischen und magnetischen Vektoren sind dabei in Ausbreitungsrichtung orthogonal zueinander. Linear polarisiertes Licht kann als eine Kombination zweier zirkularpolarisierter Wellen beschrieben werden. Die eine Komponente rotiert gegen den Uhrzeigersinn (links polarisiertes Licht; L), die andere mit dem Uhrzeigersinn (rechts polarisiertes Licht; R). Sind Amplitude, Wellenlänge und Phase der Komponenten gleich, ergibt die Linearkombination ihrer Vektoren linear polarisiertes Licht.\[119\]

Durchquert ein linear polarisierter Lichtstrahl eine Probe, die links polarisierter (L) und rechts polarisierter (R) Licht zu gleichen Anteilen (\(\varepsilon_L = \varepsilon_R\)) oder gar nicht absorbiert, ist der austretende Lichtstrahl ebenfalls linear polarisiert. Werden jedoch die Komponenten unterschiedlich stark absorbirt (\(\varepsilon_L \neq \varepsilon_R\)), so ist die elektromagnetische Welle nach dem Durchlaufen der Probe zirkular polarisiert (Abbildung 9).

Bei dieser Erklärung wurden zwei Faktoren vereinfacht: Zum einen wird meist sowohl links polarisiertes (L) als auch rechts polarisiertes (R) Licht absorbiert, nur unterschiedlich stark, beides resultiert jedoch in elliptisch polarisiertem Licht. Zum anderen kommt es fast immer vor, dass zusätzlich die Ebene des linear polarisierten Lichtes gedreht wird. Dieser Effekt wird als optische Rotationsdispersion (ORD) beschrieben und basiert auf unterschiedlicher Ausbreitungsgeschwindigkeit von links und rechts polarisiertem Licht im Material. Damit sind in Abhängigkeit der Wellenlänge unterschiedlichen Brechungs-Indices \(n_L \neq n_R \) verbundenen. Das führt dazu, dass zusätzlich zum CD Effekt der sogenannte Cotton Effekt auftritt. \(^{[120, 121]}\)

Abbildung 9. Entstehung von elliptisch polarisiertem Licht; links: eingestrahltes Licht; rechts: nach dem Durchgang durch ein optisch aktives Medium entsteht zirkularpolarisiertes Licht

Aus der entstandenen Ellipse kann die Elliptizität \(\Theta \) berechnet werden, wobei \(\Theta \) über das Verhältnis der Neben- und Hauptachsen der Ellipse (b und a) definiert ist. \(^{[112, 122]}\)

\[
\tan \theta = \frac{b}{a} = \frac{(L-R)}{(L+R)} \tag{Gl. 1}
\]
Die molare Elliptizität errechnet sich durch die molaren Konzentration \(c \) (mol/l) und die Pfadlänge \(l \) (cm) der Küvette:

\[
[\theta]_\lambda = 100 \cdot \theta \cdot (c \cdot L)^{-1} \quad \text{[Grad} \cdot \text{cm}^2 / (\text{dmol})] \quad \text{(Gl. 2)}
\]

Mit Hilfe des Lambert Beerschen Gesetzes kann (Gl. 2) wie folgt umgestellt werden:

\[
[\theta]_\lambda = 3300 \cdot \Delta \varepsilon \quad \text{(Gl. 3)}
\]

Wobei \(\Delta \varepsilon = \varepsilon_L - \varepsilon_R \) ist.

Für Peptide ist es gebräuchlich die molare Elliptizität in das mittlere Molekulargewicht (engl.: mean weight ellipticity, MWE) umzurechnen:

\[
[\theta]_{\lambda, \text{MWE}} = 100 \cdot \theta \cdot M \cdot (c \cdot L)^{-1} \quad \text{[Grad} \cdot \text{g} \cdot \text{cm}^2 / (\text{dmol} \cdot \text{mol})] \quad \text{(Gl. 4)}
\]

Sind die Wiederholungseinheiten \((N_R) \) bestimmt, wie bei bekannten Peptiden oder Makromolekülen, so kann die mittlere molare Elliptizität pro Wiederholungseinheit (engl. Mean residue ellipticity, MRE) berechnet werden:

\[
[\theta]_{\lambda, \text{MRE}} = 100 \cdot \theta \cdot M \cdot (c \cdot L \cdot N_R)^{-1} \quad \text{[Grad} \cdot \text{g} \cdot \text{cm}^2 / (\text{dmol} \cdot \text{mol})] \quad \text{(Gl. 5)}
\]

Die CD-Spektren von Peptiden werden generell in 3 Bereiche unterteilt:

(a) Unter 250 nm: Die Amidbindungen von Peptiden absorbieren im Bereich von 190 nm bis 230 nm und dominieren diesen Bereich.

(b) 250-300 nm: hier liefert die Absorption aromatischer Seiteketten ihren Beitrag zum Circulardichroismus.

(c) 300-700 nm: hier spielt die Absorption extrinsischer Chromophore (wie z. B. Hämoglobin) eine Rolle.

Messungen des Circular Dichroismus an Peptiden sind wichtig für die Ermittlung der Sekundärstruktur. Für Peptide sind mehrere Sekundärstrukturen bekannt. Die häufigsten sind \(\beta \)-Faltblatt, \(\alpha \)-Helix, Turn und ungeordnet Strukturen (engl. random coil). Jede Sekundärstruktur gibt ein eindeutiges CD-Signal (Abbildung 10).
Abbildung 10. CD Spektrum von Peptiden mit repräsentativen Sekundärstrukturen. Gezeigt ist Poly-L-Lysine mit (1) α-Helikalener Konformation, (2) β-Faltblatt Konformation (pH = 11,1), (3) gestreckter Konformation (pH = 5,7),\(^{115}\) sowie Kollagen in (4) nativer Form (triple Helix) sowie in denaturierter Form (5) (random coil)\(^{123,124}\)

Es ist anzumerken, dass die ausgedehnte Struktur von Poly-L-Lysine (vergleich Abbildung 10, (3)) ursprünglich als „random coil“ beschrieben wurde. Das Spektrum konnte aber mit Poly-L-Prolin abgeglichen werden, welches ebenfalls eine ausgedehnte Struktur annimmt, die kein Zufallsknäuel, sondern eine linksgängige Helix bildet.\(^{125}\)

Wie schon beschrieben ist eine Voraussetzung für die Entstehung eines CD-Signals die Absorption in einem spezifischen Wellenlängenbereich. Die Amid Bindung ist durch zwei Übergänge charakterisiert: einem relativ schwachen, aber breiten n→π*-Übergang bei 220 nm und einen intensiven π→π*-Übergang bei 190 nm.

Die Spektren von β-Faltblättern variieren stärker, als die von helikalen Strukturen. Beeinflusst wird das Aussehen der β-Faltblattpektren durch die Anordnung zu parallelen
oder antiparallelen \(\beta \)-Faltblattstrukturen. Weiterhin verändert z. B. die Verdrillung der \(\beta \)-Faltblattstruktur das Aussehen der Spektren stark.

[Graphik: Entfaltung eines CD Spektrums, gezeigt ist das gemessene Spektrum einer \(\alpha \)-Helix und die einzelnen Elektronischen Übergänge, die in ihrer Summe das gemessene Spektrum ergeben, A (\(\pi \rightarrow \pi^* \)-senkrechter Übergang), B (\(\pi \rightarrow \pi^* \)-paralleler Übergang), C (\(n \rightarrow \pi^* \)-Übergang).

Abbildung 11. Entfaltung eines CD Spektrums, gezeigt ist das gemessene Spektrum einer \(\alpha \)-Helix und die einzelnen Elektronischen Übergänge, die in ihrer Summe das gemessene Spektrum ergeben, A (\(\pi \rightarrow \pi^* \)-senkrechter Übergang), B (\(\pi \rightarrow \pi^* \)-paralleler Übergang), C (\(n \rightarrow \pi^* \)-Übergang).

Es stehen weitere Möglichkeiten zur Verfügung, um das Verhalten von Proteinen in Lösung mittels CD zu untersuchen. So kann die Messzelle beheizt werden oder Peptide durch Reagenzien denaturiert (Hofmeister Salze) und neu gefaltet werden.\[116, 132, 133\]

Aus diesen Daten können Aussagen über die Kinetik und Thermodynamik einer Protein Faltung gemacht werden, so sind unter anderem Zwischenstufen der Faltung bestimmbar. Weiterhin können Protein Ligand Wechselwirkungen, sowie die Aggregation von Proteinen untersucht werden.\[116\]
3.3. Rasterkraftmikroskopie (atomic force microscopy, AFM)

3.3.1. Allgemeines

Werden Polymere und Polymeraggregate auf der Nanometerskala untersucht, wird das Auflösungsvermögen der Lichtmikroskopie erreicht. In grober Nähерung entspricht die Auflösung der Hälfte der Wellenlänge des verwendeten Lichtes (für blaues Licht $\lambda = 400 \text{ nm}$ entspricht dies $0,2 \mu\text{m}$). Bei optimaler Gerätebeschaffenheit und der Verwendung von Ölimmersion können praktisch Objekte voneinander unterschieden werden, die $0,3 \mu\text{m}$ voneinander entfernt liegen. Die Ursache hierfür ist das sog. Abbe Limit\footnote{134}:

$$d = \lambda \cdot (2n \sin \alpha)^{-1}$$

Hierbei ist d das Auflösungsvermögen, n der Brechungsindex des Mediums zwischen Objektiv und Gegenstand, α der halbe Öffnungswinkel des Objektivs.

Diese Grenze konnte durch far-field fluorescence microscopy noch deutlich (15-20 nm) herabgesetzt werden.\footnote{135} Diese Technik gehört noch nicht zum Laborstandard, wird aber mit Sicherheit in der Zukunft an Bedeutung gewinnen und bei einigen Problemen einen fantastischen Einblick gewähren. Allerdings ist die Anwendung durch den Einsatz von Fluoreszenzfarbstoffen limitiert.

3.3.2. Messprinzip

Die Cantilever wird durch attraktive (Van der Waals Kräfte) und repulsive Wechselwirkungen mit der Oberfläche unterschiedlich stark gebogen. Diese Verbiegung kann mit optischen Sensoren gemessen werden und ist ein Maß für die zwischen Spitze und Oberfläche wirkende Kraft.

Je nach Art des zu untersuchenden Materials kann aus einer Vielzahl von Messmodi gewählt werden:

Bei dem **Kontaktmodus** (Abbildung 12 a) wird die Spitze der Oberfläche weit angenährt, werden die repulsiven Kräfte zwischen Probe und Spitze gemessen. Der Kontaktmodus kann wiederum in zwei Varianten unterteilt werden.

Wird die Oberfläche abgerastert, ohne die Höhe der Cantilever nachzuregeln ist dies der sogenannte „constant height mode“: Liegt ein Objekt auf der Oberfläche und die Spitze fährt darüber, wird die Cantilever nach oben gebogen. Aus dem Winkel dieser Biegung kann die Höhe des Objektes ermittelt werden. Ein Nachteil des „constant height mode“ ist eine mögliche Beschädigung der Probe durch die ständige Änderung der Auflagekraft.

Der Kontaktmodus eignet sich besonders für harte, gut fixierte Proben. Er erlaubt eine sehr gute Auflösung und liefert weitere Informationen über die Oberfläche, wie Reibungswiderstand, Adhäsion und Elastizität.

Abbildung 12. a.) Kontakt und b.) Tapping mode beim AFM, abgebildet sind Probe, Cantilever, Optik und Piezo – Steuerelemente.
4. Diazotransfer zur Erzeugung biologischer Klick Substrate

4.1. Diazotransfer an einem vollgeschützten Peptid der Sequenz GRGDS

4.1.1. Herstellung der vollgeschützten GRGDS Sequenz:

Bei der Herstellung des vollgeschützten Peptids GRGDS wurde ein 2-Chlortritylharz als Trägermaterial verwendet. Das 2-Chlortritylharz besteht aus Polystyrol, welches mit 1 % 1,4-Divinylbenzol vernetzt ist. Tritylharze bieten in der Peptidchemie den Vorteil, dass angebundene Peptide unter schwach sauren Bedingungen abgespalten werden können. Besonders säureempfindlich sind 2-Chlortritylharze, durch den Chlorsubstituenten in 2-Position an einem der Phenylringe. Sie ermöglichen eine Abspaltung mit 30 % TFE. Dadurch bleiben die Schutzgruppen tBu und Boc in der Seitenkette erhalten.

Mittels festphasengebundener Synthese wurde ein Peptid der Sequenz GRGDS an einem 2-Chlortritylharz aufgebaut. Nach Vollendung der Synthese konnte das Peptid mit TFE in Dichlormethan unter Erhaltung aller Seitenkettenenschutzgruppen vom Harz abgespalten werden. Auf diese Art wurde das Produkt \((G-R(Pbf)-G-D(tBu)-S(tBu))\) analysenrein isoliert was durch IR, NMR und ESI-MS nachgewiesen werden konnte. Das vollgeschützte GRGDS besitzt eine freie Amingruppe. Um den Diazotransfer zu untersuchen, wurde wie nachfolgend beschrieben, die N-terminale Amingruppe des GRGDS in ein Azid überführt.

4.1.2. Diazotransfer am vollgeschützten GRGDS

Das IR-Spektrum zeigt bei $\nu = 2108 \text{ cm}^{-1}$ die charakteristische Schwingungsbande für Azide, die durch die antisymmetrische Valenzschwingung des Azides entsteht. Um die Kinetik des Diazotransfers abzuschätzen, wurde die Reaktion wiederholt. Dabei wurden insgesamt vier Proben nach verschiedenen Reaktionszeiten entnommen. Die Probe wurde mit Chloroform ausgeschüttelt und die Chloroformphase am Rotationsverdampfer eingeengt. Nach Gefriertrocknung aus Wasser/ Acetonitril 50 % (v/v) wurde der farblose Feststoff mittels HPLC-ESI-MS auf seine Zusammensetzung untersucht. Schon nach einer Reaktionszeit von zwei Stunden waren mehr als 80 % Produkt zum Azid umgesetzt. Nach fünf Stunden waren immerhin 97 % umgesetzt. Der nahezu quantitative Umsatz von 99,7 % konnten nach 25 Stunden nachgewiesen werden (Abbildung 13).

Abbildung 13. Mittels RP-HPLC ermittelter Umsatz des Diazotransfers an vollgeschütztem GRGDS in Methanol/ Wasser 50 % (v/v).
Anhand dieser Daten konnte gezeigt werden, dass der Diazotransfer mit hohen Ausbeuten verläuft. Weiterhin legen die Daten nahe, dass Reaktionszeiten von über 10 Stunden bei Raumtemperatur sinnvoll sind. Letztendlich konnte der Diazotransfer an der α-Amingruppe der ersten Aminosäure des vollgeschützten Modellpeptids quantifiziert werden. Um diese Erkenntnisse auf ungeschützte Peptide in Wasser zu übertragen, wurde wie im Nachfolgenden gezeigt der Diazotransfer an Tritrpticin durchgeführt.

4.2. Diazotransfer an Tritrpticin

4.2.1. Herstellung von Tritrpticin

Sowohl bei dem Diazotransfer an GRGDS in Lösung, als auch bei dem Diazotransfer am Harz wurde die N-terminale Aminogruppe der Peptidsequenz in ein Azid umgewandelt. Um die Möglichkeiten des Diazotransfers an der Seitenkette zu überprüfen, wurden dem Tritrpticin zwei weitere Aminosäuren hinzugefügt, Lysin (K) und Glycin (G). Um einen zweiten Diazotransfer zu verhindern, wurde der N-Terminus der Sequenz vor der Abspaltung vom Harz acetyliert. Als finale zu synthetisierende Sequenz ergibt sich: Ac-GK(ε-NH₂)VRRFPWWPFLRR-NH₂ (dabei ist das Aminende (links) acetyliert und das Säureende (rechts) ein Amid).

Aus Vorversuchen war bekannt, dass die Synthese dieses aus 15 Aminosäuren bestehenden Peptids schwierig verläuft. Daher wurde ab der achten zu kuppelnden Aminosäure (W3) durch Dreifachkupplung der Umsatz verbessert. Nach Abschluß der Sequenz und dem Acetylieren des Aminendes wurde das Peptid vom Harz abgespalten und isoliert. Das Produkt wurde im Vakuum getrocknet und gegen Wasser dialysiert (MWCO 500 Da) und lyophilisiert. Das so erhaltene Produkt wurde analysenrein gewonnen, was durch NMR, IR und ESI-MS nachgewiesen wurde.

4.2.2. Diazotransfer an Tritrpticin

Bei der ersten Versuchsdurchführung fand keine Diazotierung statt. NMR, IR und HPLC-MS entsprachen den Werten des Eduktes. Die katalytische Menge an zugegebenem Kupfer(II) (10mol %) wurde vermutlich durch das Peptid gebunden und stand nicht mehr für die Reaktion zur Verfügung. Aus diesem Grund wurde der Diazotransfer mit 2 Äquivalenten Kupfer(II) wiederholt. Die Erhöhung der Kupfer Konzentration ermöglichte den Diazotransfer zu Ac-GK(ε-N₃) VRRFPWWWPLRR-NH₂.

Die HPLC Ergebnisse zeigen den vollständigen Diazotransfer an. Das dazugehörige ESI-Massenspektrum zeigt die zwei, drei und vierfachen Protonenaddukte des ε-acidierten Trittrpticins bei m/z = 1078, 719 und 540 an.

Das IR-Spektrum des azidierten Tritrpticin zeigte antisymmetrische Valenzschwingung des Azides bei ν = 2100,5 cm⁻¹. Es gleicht, mit Ausnahme der Azidbande, dem des Eduktes. Sowohl der negative Kaisertest als auch die HPLC-MS zeigte den vollständigen Diazotransfer an. Das so modifizierte Tritrpticinazid ist für die „Klick Chemie“ zugänglich. Beispielhaft für verschiedene Modifikationen wurde wie nachfolgend gezeigt Propargylamin mit dem Tritrpticinazid umgesetzt.

4.2.3. 1,3 Cycloaddition an Tritrpticin

Um die Zugänglichkeit für weiterführende 1,3-dipolare Cycloadditionen zu demonstrieren, wurde das Tritrpticinazid mit Propargylamin umgesetzt (Schema 12). Nach 18 Stunden Reaktionszeit wurde die Reaktionslösung durch Zugabe von TREN und Dialyse (500 MWCO) gegen Wasser aufgereinigt. Der gefriergetrocknete Feststoff wurde mit IR, ESI-MS und NMR untersucht.
Das IR Spektrum vom modifizierten Trittrpticin Das Fehlen der Azidbande bei $\nu = 2100,5\;\text{cm}^{-1}$ ist ein Hinweis auf die Vollständigkeit der Cycloaddition.

Die ESI-MS zeigte die die drei und vierfach geladenen Natriumaddukte bei $m/z = 737$ und 553 an.

Schema 12. Dargestellt ist die Huisgen Cycloaddition von Propargylamin an der ε-Azid Funktion des Tritrpticins.

Der einfache und vollständige Umsatz zum Triazol zeigt, daß es möglich ist das Tritrpticin kovalent an Alkine zu binden Es sollte weiterhin möglich sein das Tritrpticinazid mit alkinmodifizierten Polymere (Polymeroberflächen) umzusetzen, um so antibakterielle Polymere und Oberflächen zu erzeugen.

4.3. Diazotransfer am Harz

4.3.1. Herstellung der GRGDS-Peptidsequenz am Harz

Es wurden drei verschiedene Harze verwendet. Ein 2-Chlortritylharz, ein HMPA-PEGA Harz sowie ein TentaGel MB –NH$_2$ Harz (Rapp). Diese besitzen ein unterschiedliches Quellverhalten in den verschiedenen Lösungsmitteln.
Das 2-Chlortritylharz ist ein mit 1,4-Divinylbenzol vernetztes Polystyrolharz. Es quillt in DMF und DCM gut, aber in Wasser nicht. DMF ist ein gängiges Lösungsmittel für den Diazotransfer mit Triflatazid, daher wurde der Diazotransfer am 2-Chlortritlychlorid Harz in DMF durchgeführt.

4.3.2. Diazotransfer an den harzgebundenen GRGDS-Harz Sequenzen

Schema 13. Abgebildet ist der Diazotransfer an der ungeschützten Sequenz GRGDS. Der Diazotransfer fand vor der Abspaltung am Harz statt.

Der Diazotransfer am 2-Chlortrityl Harz wurde in DMF durchgeführt. Der Kaisertest war nach zweifacher Reaktion immer noch positiv. Das ESI-MS zeigte nur die Masse des nicht umgesetzten H\textsubscript{2}N-GRGDS: [M\textsubscript{amin}]+ = 491 (100 %, theor. = 490,5 Da). Daraus folgt, dass der Diazotransfer am 2-Chlortritylharz nicht stattgefunden hat.

Der Diazotransfer am TentaGel MB Harz wurde in Wasser durchgeführt. Der Kaiser Test war nach doppeltem Diazotransfer nur schwach positiv. Dies deutet darauf hin, dass noch einige freie Amingruppen vorhanden sind. Das ESI-MS zeigte das Edukt-Produktgemisch von aminfunktionalisiertem H\textsubscript{2}N-GRGDS (m/z = 491) und azidfunktionalisiertem N\textsubscript{3}-GRGDS (m/z = 517). Damit stimmen die Ergebnisse des ESI-MS gut mit dem Kaisertest überein. Die Diazotierung verlief nicht vollständig.

Die Reaktion am HMPA-PEGA-Harz wurde in Wasser/Methanol 50 % (v/v) durchgeführt. Schon nach dem ersten Diazotransfer zeigte der Kaisertest keine Blaufärbung mehr an. Nach dem Abspalten wurde das Peptid analysiert. Das ESI-MS zeigte nur einen Massenpeak bei m/z = 517 an. Der Massenpeak entspricht dabei dem Protonenaddukt des azidfunktionalisiertem GRGDS. Sowohl der Kaisertest, als auch die ESI-MS konnten die vollständige Umsetzung zum Azid nachweisen.

Zusammenfassend kann gesagt werden, dass es möglich ist, den Diazotransfer am Harz durchzuführen. Dabei muss auf die richtige Wahl des Harzes geachtet werden. Es ist wichtig, dass das Harz gut quillt, um eine ausreichende Zugänglichkeit der funktionellen Gruppen zu gewährleisten. Ein Diazotransfer an einem 2-Chlortritylharz in DMF war nicht erfolgreich. Dabei konnte nicht verifiziert werden, was die Ursache dafür war. Mögliche Ursachen könnte die unzureichende Löslichkeit der Reagenzien Kupfersulfat und Kaliumcarbonat sein. Ein Diazotransfer mit DIPEA statt Kaliumcarbonat führte ebenfalls nicht zur Diazotierung.

Tabelle 1. Tabellarische Darstellung der Untersuchungsergebnisse des Diazotransfers an den Harzen.

<table>
<thead>
<tr>
<th></th>
<th>2-Chlortaltritylharz</th>
<th>TentaGel MB Harz</th>
<th>HMPA-PEGA Harz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESI-MS (m/z)</td>
<td>nur Amin (491 Da)</td>
<td>Amin (491 Da)</td>
<td>nur Azid (517)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>und Azid (517)</td>
<td></td>
</tr>
<tr>
<td>Kaiser Test</td>
<td>positiv</td>
<td>schwach positiv</td>
<td>negativ</td>
</tr>
</tbody>
</table>

4.4. Diazotransfer an Chitosan

Der Grad der Deacetylierung kann erheblich variieren, eine vollständige Entschätzung aller Acetylgruppen ist schwierig. Kochen in 120 °C heißer Natronlauge z. B. erzeugt innerhalb von 1-3 Stunden einen Deacetylierungsgrad von 70 % (Schema 14).[146] Ebenso wie der

Die meisten Polysaccharide (Zellulose, Dextran, Pektin) sind neutral oder anionisch geladen. Chitosan hingegen weist durch die Amingruppen kationische Gruppen auf und zeichnet sich durch interessante Eigenschaften aus.Diese beinhalten die Fähigkeit Filme zu bilden, sowie Metalle als Chelatligand zu komplexieren. Die metallbindenden Eigenschaften können z. B. genutzt werden, um Cd147,148 und Hg149 zu komplexieren.

4.1.1. Herstellung von Chitosan Hydrochlorid

4.1.2. Diazotransfer an Chitosan Hydrochlorid

Um die Wasserlöslichkeit des Chitosans zu gewährleisten, sollten nicht alle Amingruppen umgesetzt werden. Daher wurde das Diazotransferreagenz unterstöchiometrisch eingesetzt.

Schema 15. Der Diazotransfer von Chitosan Hydrochlorid zu Chitosanazid in Wasser. Der partielle Umsatz der Amingruppen ermöglicht die Wasserlöslichkeit.

Die im IR detektierte antisymmetrische Valenzschwingung des Azides bei \(\nu = 2115 \text{ cm}^{-1} \) zeigte die qualitative Einführung der Azidgruppe an.

Um diese GPC-Ergebnisse weiter zu verifizieren wurde eine Sedimentations-Geschwindigkeits-Messung mit der Analytischen Ultrazentrifuge (AUZ) durchgeführt. Die Messung wurde in 0,1 mM Essigsäure/Acetat Puffer (pH = 4,5) bei einer Gesamtionenstärke von 154 mM (NaCl) durchgeführt.

Die Sedimentations-Geschwindigkeitsmessung (Tabelle 2) zeigt deutlich, dass das Chitosanazid (A1) mit 0,9 Svedberg langsamer sedimentiert, als das Chitosan Hydrochlorid mit 1,5 Svedberg. Die Geschwindigkeit, mit der die Teilchen in Richtung Boden der Messzelle sedimentieren, hängt von der Molekülmasse, der Dichte und der Form der Teilchen ab. Der Sedimentationskoeffizient sagt aus, wie schnell ein Teilchen sedimentiert, jedoch nicht, auf Grund welcher Eigenschaft. Beim Chitosanazid (A1) resultiert die geringere Sedimentationsgeschwindigkeit aus dem reduzierten Polymerisationsgrad, was sich in der Abnahme der Molekülmasse niederschlägt.
Obwohl eine Änderung des Polymerisationsgrades hätte die verlangsamte Sedimentation auf eine Abnahme der Dichte zurückgeführt werden können. Würde jedoch die Abnahme der Sedimentationsgeschwindigkeit aus der Reduzierung der Dichte resultieren, müsste die Größe (Form) der Moleküle zugenommen haben. Auf Grund der erhöhten Größe hätte in der GPC jedoch ein höheres Gewichtsmittel detektiert werden müssen. Da dies nicht der Fall war, kann die Abnahme der Dichte (mit gleichzeitiger Zunahme der Größe) ausgeschlossen werden.

Der verbesserte zweite Ansatz (Schema 15b) basierte auf mehreren Überlegungen. Der Diazotransfer sollte prinzipiell auch ohne Katalysator funktionieren. Jedoch verlaufen die unkatalysierten Reaktionen langsamer und mit schlechteren Umsätzen. Da vollständige Umsätze die Löslichkeit in Wasser drastisch erniedrigen, ist eine quantitative Umsetzung störend. Die Zugabe von Kaliumcarbonat führte zum teilweisen Ausfallen des Chitosans vor

Mittels IR-Spektroskopie wurde die Azidbande bei $\nu = 2125\text{cm}^{-1}$ gefunden. Die antisymmetrische Valenzschwingung zeigt den Azidtransfer an.

Das NMR-Spektrum zeigte, im Vergleich zu dem NMR-Spektrum des Chitosan Hydrochlorides, einen zusätzlichen Peak bei 3,68 ppm, welcher durch das azidnahe Proton hervorgerufen wird. Eine Bestimmung des Azidierungsgrades konnte mit Hilfe der Integrale erfolgen. Es ergab sich für das Chitosanazid (A2) einen Azidierungsgrad von 8 ± 1 %.

5. Diazotransfer gefolgt von gezielten Modifikationen an Polymer-Peptid-Fasern

Eine Umsetzung an den funktionellen Gruppen muss daher quantitativ sein und speziell an das jeweilige Polymersystem angepasst werden. Außerdem werden gut zugängliche funktionelle Gruppen benötigt, um das gewünschte Produkt zu erhalten.

Nachfolgend soll gezeigt werden, wie das literaturbekannte Polymer-Peptid-System I mit weiteren Funktionen an den Fasern versehen wird. Weiterhin werden verschiedene Funktionen an diese Fasern angebracht.

5.1. Design des Polymer-Peptid-Konjugates

Der modulare Ansatz geht von einem Band aus, deren Oberfläche mit unterschiedlichen Funktionen bestückt werden kann, so können multifunktionelle Systeme und nicht natürliche Funktionen an der Oberfläche der Bänder angebracht werden.

Das Ziel dieser Arbeit war es, eine Polymer-Peptid Nanofaser zu synthetisieren, welche einen Grundbaustein für möglichst breit gefächerte Modifikationen bildet. Das faserbildende Element in dieser Arbeit sollte auf dem Polymer-Peptid-Konjugat I basieren (Abbildung 16). Es sollten durch einfache Reaktionen weitere Funktionalitäten in das System eingebracht werden, die durch Modifikationen in Wasser zugänglich sind.
Wie in den Grundlagen beschrieben, eignet sich die „Klick Chemie“ hervorragend für die Verknüpfung von Molekülen und die Funktionalisierung von Polymeren. Um die 1,3-dipolare Addition nutzen zu können, werden alkin- oder azidfunktionalisierte Fasern benötigt. Azide können mittels des vorgestellten Diazotransferreagenzes leicht aus Amingruppen gewonnen werden. Die Herstellung der aminfunktionalisierten Fasern soll daher im nächsten Schritt näher beschrieben werden.

5.2. Entwicklung des Polymer-Peptid-Konjugates (II)

Das bereits beschriebene Strukturbildungselement der vororganisierten, β-faltblattbildenden Valin-Threonin Einheiten (Kapitel 2.2) in I sollte auch in dem neuen zu synthetisierenden Polymer-Peptid-Konjugat genutzt werden. Das Polymer-Peptid-Konjugat (I) besteht aus einer Polyethylenoxidkette, die an ein Carbazolmolekül angebunden ist (Abbildung 16). An diesem Carbazolmolekül befinden sich zwei vorausgerichtete Peptidarme. Der Peptidteil von I wurde für die neue Aufgabe weiterentwickelt.

Zu I wurden zugängliche Funktionalitäten hinzugefügt, diese sollten später weiter modifiziert werden. Weiterhin sollten die Funktionalitäten auf der dem Lösungsmittel zugewandten Seite des Doppelbandes liegen. Das bekannte Polymer-Peptid-Konjugat I wurde daher pro Peptidarm um zwei zusätzliche Aminosäuren erweitert.

Die Aminosäure Lysin wurde eingefügt, um in der Seitenkette des Peptidrückgrades eine Amingruppe zu erzeugen. Diese Amingruppe kann später in ein Azid überführt werden. An das Azid kann durch die 1,3-dipolare Addition eine große Anzahl an Funktionalitäten geklickt werden. Um die alternierenden Eigenschaften der Seitenkette
(hydrophob-hydrophil) beizubehalten, wurde ein weiteres Valin pro Peptidarm zu kuppeln. Die Veränderungen des Templates I sind in Abbildung 16 dargestellt. Das theoretisch entwickelte Polymer-Peptid-Konjugat II wurde, wie im folgenden beschrieben hergestellt.

5.3. Herstellung des aminfunktionalisierten Polymer-Peptid-Konjugates (II)

Es ist bekannt, dass die Peptidsynthese der VT-Sequenz ab der vierten Aminosäure kaum noch quantitativ abläuft.154 Bei dem Vorläufermodell wurde daher die automatische Synthese ab dem dritten Threonin abgebrochen und die weiteren Aminosäuren per Hand im Glashyphen gekoppelt. Der Grund für die Schwierigkeit der Kupplung weiterer Aminosäuren war die starke Aggregationstendenz des Peptides zu einer β-Faltblattstruktur während der Synthese.155 Mit der Aggregation verbunden ist eine schlechte Zugänglichkeit der funktionellen Gruppen. Die Kupplung von Aminosäuren an aggregierten Peptidsequenzen ist nicht mehr quantitativ.

\textbf{Schema 17.} Unter den chemischen Bedingungen der Abspaltung vom Harz bildet sich aus dem Pseudoprolin (VT)$^{\beta\psi\text{Me,Me}}$-links das natürliche Peptid (VT)$^{\text{nativ}}$-rechts aus. Blau dargestellt ist Threonin, grün Valin, die Sekundärstruktur brechende Pseudoprolin Gruppe ist rot dargestellt. Zur Vereinfachung wurden die anderen Aminosäuren weggelassen.

Unter der Verwendung eines Pseudoprolins (Fmoc-Val-Thr-(psi Me,Me pro)-OH), wurde die native Struktur des Peptides gestört. So konnte die Aggregation der Peptide während der Synthese von II verhindert und die Synthese vollautomatisiert durchgeführt werden. Nach dem Abspalten der Peptidsequenz bildete sich aus dem Pseudoprolin wieder die native VT-Struktur (Schema 17) zurück.

\textbf{Strukturbildung durch gezielte Deaggregation und Aggregation}

Wie bei dem bekannten Polymer-Peptidsystem I fand auch bei der neuen Polymer-Peptid-Verbindung II eine Strukturbildung zu Doppelbändern statt. Das Vorhandensein von

Die erzeugten Nanostrukturen konnten mittels AFM abgebildet werden (Abbildung 17). Die Abstände paralleler Fasern entsprachen dabei der Breite einer Faser. Durch 10faches Messen der Abstände wurde ein Mittelwert für die Breite und Höhe gebildet. Es ergab sich eine durchschnittliche Breite von $23 \pm 2,5$ nm und eine durchschnittliche Höhe von $1,6 \pm 0,2$ nm.

Abbildung 17. Abgebildet sind die Höhenbilder der AFM Fasern, die durch Aggregation von II in Wasser entstehen.

Ein positiver Kaisertest zeigte, dass die Seitenkette der Aminosäure Lysin dem Wasser zugewandt und damit für weitere Reaktionen gut zugänglich (Abbildung 18).

Abbildung 18. Die Seitenansicht der Doppel-Bänder von II, zeigt deutlich die Amingruppe auf den dem Lösungsmittel zugewandten Seiten des Doppelbandes.

Modifikation der Aminfunktionalisierten Fasern (II)
Prinzipiell ist es möglich, eine Amingruppe für verschiedene Modifikationen zu nutzen. Denkbar wären unter anderem Umsetzungen mit Säuren zu Amiden oder mit Ketonen zu Iminen.
Sehr viel vorteilhafter wäre es eine Reaktion nutzen zu können, die in Wasser mit hohen Umsätzen funktioniert. Dabei müssen während der Reaktion sämtliche anderen funktionellen Gruppen inert sein. Eine Einführung von Schutzgruppen würde ebenfalls die Faser zerstören, oder ihre kolloidale Stabilität herabsetzen, dass die Fasern möglicherweise koagulieren. Eine solche Reaktion stellt die „Klick Chemie“ mit der Huisgen 1,3-dipolare Cycloaddition bereit. Für die 1,3-dipolare Cycloaddition werden alkin- oder azidfunktionalisierte Fasern benötigt. Wie in Kapitel 2.4 beschrieben, sind die Azide leicht aus den Amingruppen zugänglich. Aus diesem Grund wurde wie im Folgenden erläutert die Amingruppe in eine Azidfunktion umgewandelt.

5.4. Diazotransfer an den aminfunktionalen Fasern (II)

Zu der Faserlösung wurden 0,2 Äq. Kupfersulfat, 4,2 Äq. Kaliumcarbonat und 2,1 Äq. Imidazol-1-sulfonylazid Hydrochlorid gegeben und die Reaktionslösung über Nacht langsam geschüttelt.

Die Ergebnisse von III werden im Vergleich zu dem aminfunktionalisierten Molekülen (II) dargestellt. In Abbildung 19 werden die MALDI-TOF-Massenspektren von II und III dargestellt. Beide weisen eine Massenverteilung von ΔM = 44,04 ± 0,5 Da auf. Dies entspricht der Wiederholungseinheit des Polyethylenoxids. Die Gesamtmasse des Polymer-Peptid-Konjugates errechnet sich aus den Fragmenten:

\[M_{(n)}^+ = n \cdot M_{[\text{Ethylenoxid}]} + M_{[\text{Templat}]} + 2 \cdot M_{[\text{Peptid}]} + M_{[\text{Endgruppen}]} + M_{[\text{Gegenion}]} \]

\[2 \cdot M_{\text{Peptid}} = 2 \cdot 713,9 \text{ Da} \]

Für die Peptidketten von (III) ergibt sich: 2 \cdot M_{\text{Peptid}} = 2 \cdot (713,9 \text{ Da} + 26 \text{ Da} = 739,19 \text{ Da}).

Jede Wiederholungseinheit eines Ethylenoxides wiegt \(M_{[\text{Ethylenoxid}]} = 44,04 \text{ Da} \). Mit der Masse des Templates \(M_{[\text{Templat}]}=335,19 \text{ Da} \), der Endgruppen (am PEO nur H = 1 Da), sowie des Gegenions: \(M_{[\text{Gegenion}]}=39,1 \text{ Da} \) (Kalium) ergibt sich:

\[M_{(n)}^+ = n \cdot 44,04 + 335,19 + 2 \cdot M_{[\text{Peptid}]} + 39,1 + 1 \cdot [\text{Da}] \]

Mit \(n = 71 \) Wiederholungseinheiten des PEO folgt daraus:

\[M(II)^+ = 71 \cdot 44,04 + 335,19 + 2 \cdot 713,9 + 1 + 39,1 = 4929,93 \text{ Da} \] (exp. 4929,73 Da)

\[M(III)^+ = 71 \cdot 44,04 + 335,19 + 2 \cdot 739,9 + 1 + 39,1 = 4981,93 \text{ Da} \] (exp: 4981,53 Da)

Die beiden Massen wurden in den jeweiligen MALDI-Spektren gefunden. Die Peakverteilungen stammten vom Polyethylenoxidanteil (ΔM_{(PEO)} = 44,04 Da).
Kapitel 5

Abbildung 19. MALDI-TOF-Spektren, links: Spektrum von II, rechts Spektrum von III.

Das Signal-Rausch-Verhältnis der MALDI-TOF-Messung von III ist schlechter, als die Messung des Polymer-Peptid-Konjugates in II. Dies ist u. a. auf das Fehlen der Amingruppen in III zurückzuführen. Diese leicht protonierbare Funktionalitäten erleichtern die Ionisierung des gesamten Moleküls. Fehlt diese Funktionalität (wie in III der Fall), ist die Ionisierung insgesamt schwieriger zu erreichen. Die Ionisierung könnte mit einem Laser stärkerer Leitung verbessert werden, jedoch ist bekannt, dass Azide bei starker Energiezufuhr Stickstoff abspalten, was zu einer relativen Massenabnahme führen würde.

Wird das IR Spektrum des aminfunktionalisierten Templates (II) mit dem des azidfunktionalisierten (III) (siehe Abbildung 20) verglichen, wird ersichtlich, dass die typischen Schwingungsbanden von Peptiden, die Amid(I) Bande (1627 cm⁻¹) und Amid(II) Bande (1548 cm⁻¹), unverändert sind. Dies deutet darauf hin, daß das β-Faltblatt intakt geblieben ist.

Die Bande bei ν = 2100 cm⁻¹ die im Spektrum der Verbindung III zu erkennen ist, wird der asymmetrischen Valenzschwingung des Azides zugeschrieben. Diese typische Azid Schwingungen stellt einen deutlichen Hinweis auf das Vorhandensein der Azidgruppe dar.

Weiterhin ist bei den aminfunktionalisierten Fasern (II) die für primäre Amine typischen Schwingung bei ν = 1672 cm⁻¹ zu erkennen. Nach dem Diazotransfer in Verbindung III wird dieser Peak so klein, dass er von der Amid(I) Bande verdeckt wird.
Kapitel 5

Abbildung 20. IR-Spektren von II und III, deutlich zu sehen das Verschwinden der Aminbande (1672 cm\(^{-1}\)), sowie die Azidbande (2100 cm\(^{-1}\)) nach dem Azidtransfer.

An die azidfunktionalisierten Fasern kann eine große Auswahl an Molekülen angebracht werden. So können viele Eigenschaften, mittels „Klick Chemie“ an die Fasern addiert werden.
werden. Die einzigen Voraussetzungen an das anzubringende Molekül sind eine primäre Alkinfunktion und dessen Wasserlöslichkeit.

Exemplarisch für die weiteren Möglichkeiten, die Eigenschaften der azidfunktionalisierten Faser zu variieren, wurde als erstes ein einfach nachzuweisendes Modellsystem verwendet. Ein Fluoreszenzfärbstoff wurde mit einer Alkingruppe versehen (siehe Anhang) und mittels [3+2] Cycloaddition an die Faser geklickt.

Für die Untersuchung mit der AFM wurde die Lösung der Fasern verdünnt und durch Spincoaten auf Mica präpariert. Es konnte beobachtet werden, dass in Abhängigkeit der Präparation (Verdünnung der Probe, Konzentration, Spincoatgeschwindigkeit, etc.) die Länge der Fasern variierte. Die optimalen Bedingungen waren eine langsame Verdünnung auf die Präparationskonzentration von 0,2 g/L und Spincoaten bei 2500 u·min⁻¹. Unter diesen Bedingungen konnten Fasern bis zu 500 nm Länge beobachtet werden.

Die Fasern wurden ebenfalls hinsichtlich ihrer Breite untersucht. Die Breite der Fasern kann aus der Halbwertsbreite der Fasern (sog. FWHH) bestimmt werden. Da die gemessene Breite durch Faltungseffekte beeinflusst wird, wurde die tatsächlichen Breite als Abstand paralleler, dicht gepackter Fasern bestimmt. Für die Breite wurden auf diese Art Werte von 24 ± 2 nm ermittelt.

Um die Fasern mit TEM zu visualisieren, wurde der Hintergrund mit Schweratomen gefärbt. Hierfür wurde die Lösung der Fasern auf 0,4 g/L verdünnt, auf dem Grid aufgebracht und mit Uranylacetat angefärbt (Abbildung 22).

Die Breite der elektronenkontrastarmen (hellen) Bereiche entsprach der des Peptidkerns, da das PEO vom Uranylacetat durchdrungen wird. Die für den Peptidkern gefundene Breite lag bei 4 ± 0,4 nm. Aus dem Abstand zweier paralleler Fasern wurde im TEM die tatsächliche
Breite der Fasern ermittelt, sie lag bei 16,0 ± 2,0 nm und stimmte gut mit der ermittelten Breite aus den AFM Messungen überein.

Abbildung 22. Die Visualisierung der azidfunktionalisierten Fasern (III).
Links: AFM (Höhenbild) C = 0,2g/L, Rechts: TEM Aufnahme (auf graphitbeschichtetem Kupfernetz, negativ kontrastiert mit Uranylacetat).

5.5. 1,3-dipolare Addition von Fluorescein an die azidfunktionalisierten Fasern (III)

Die azidfunktionalisierten Fasern (III) sind der Basis für die nachfolgenden Modifikationen. Verschiedene alkinfunktionalisierte Bausteine können an die azidfunktionalisierten Fasern angebracht werden. Als Nachweis für das Baukastenprinzip wurde daher ein Fluoreszenzfarbstoff mit Hilfe der 1,3-dipolaren Addition an die Fasern angebracht. Die Visualisierung der fluoreszierenden Fasern erfolgte über Konfokale Mikroskopie.

Schema 19. „Klicken“ des alkinmodifizierten Fluoresceins an die Azid-Fasern III ergeben die fluoresceinfunktionalisierten Fasern IV unter Ausbildung des 1,2,3-Triazolrings.

Der vollständige Umsatz an Azid konnte gut mittels IR detektiert werden. Die Ergebnisse werden vergleichend mit III dargestellt (Abbildung 23). Das IR-Spektrum von IV zeigte keine Azidschwingung bei ν = 2100 cm⁻¹. Dies deutet auf den vollständigen Umsatz der in III vorhandenen Azidgruppen zum 1,2,3-Triazolring hin. Zusätzlich entsteht eine Bande bei 1751 cm⁻¹, die dem 1,2,3-Triazolring zugeordnet werden kann. Die Amid(I) Bande
(\(\nu = 1627\ \text{cm}^{-1}\)) war auch nach der „Klick Reaktion“ unverändert vorhanden, die Amid(II) Bande wurde von \(\nu = 1548\ \text{cm}^{-1}\) zu \(\nu = 1571\ \text{cm}^{-1}\) verschoben. Dies könnte ein Hinweis darauf sein, dass sich die Sekundärstruktur (\(\beta\)-Faltblatt) leicht verändert.

Abbildung 23. IR Spektren der azidfunktionalisierten Fasern (III) (blau) und der mit Fluoresceine modifizierten Fasern (IV) (schwarz).

Das CD-Spektrum von II und III besitzt einen Sattelpunkt im Bereich von 233-238 nm. In vorherigen Arbeiten wurde dieses Charakteristikum auf Absorptionen des Carbazols zurückgeführt. Das Carbazol selbst ist nicht chiral, befindet sich aber in chiraler Umgebung.

Abbildung 24. CD Spektren der Fasern von (II), (III) und (IV): typische β-Faltblatt Struktur Maximum bei 195 nm, Minimum bei 218 nm (II) und 216 nm (III) und (IV).

Die AFM-Aufnahmen von (IV) (Abbildung 25) zeigen deutlich, dass die Faserstruktur nach der Klick Reaktion vorhanden ist. In Abbildung 25 sind weiterhin die aminfunktionalisierten Fasern (II) und die azidfunktionalisierten Fasern (III) dargestellt. Die Länge der Fasern variiert in Abhängigkeit der Faser Konzentration, und Probenpräparation. Durch spincoaten bei 0,2 g/L bei 3000u-min⁻¹ wurden Fasern mit einer Länge zwischen 0,2-0,5 μm gefunden.
Abbildung 25. AFM Aufnahmen (Höhenbilder) der Polymer-Peptid-Fasern II, III und IV.

Aus den AFM Aufnahmen der mit Fluorescein modifizierten Fasern (IV) wurde, analog zu II und III, die Höhe und Breite der Fasern bestimmt. Es wurden Werte für die Höhe von $2,2 \pm 0,3$ nm und für die Breite von 29 ± 3 nm ermittelt.

Aus den TEM Aufnahmen wurden ebenfalls, analog zu II und III die Breite der Fasern aus den Abständen ermittelt, sowie die Breite des Peptidkerns. Für den Peptidkern wurde durchschnittlich die Breiten von $4,8 \pm 0,9$ nm gefunden. Die Abstände zweier paralleler Fasern betrugen $17,1 \pm 1,8$ nm.

Werden die Abstände der Fasern verglichen, so fällt auf, dass diese in der Reihenfolge II, III und IV zunehmen. Die Fasern werden breiter, wobei der größte Zuwachs in der Breite bei (IV) zu verzeichnen ist.

Tabelle 3. Abmessungen der Fasern im festen Zustand, AFM-Aufnahmen auf MICA, tapping mode; TEM mit Uranylacetat negativ kontrastiert.

<table>
<thead>
<tr>
<th></th>
<th>(II)</th>
<th>(III)</th>
<th>(IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstand (AFM)</td>
<td>23 ± 2,5</td>
<td>24 ± 2</td>
<td>29 ± 3</td>
</tr>
<tr>
<td>Höhe (AFM)</td>
<td>1,6 ± 0,2</td>
<td>1,7 ± 0,2</td>
<td>2,2 ± 0,3</td>
</tr>
<tr>
<td>Breite Peptidkern (TEM)</td>
<td>4,4 ± 1,4</td>
<td>4,0 ± 0,4</td>
<td>4,8 ± 0,9</td>
</tr>
<tr>
<td>Abstand (TEM)</td>
<td>15,0 ± 2,1</td>
<td>16,0 ± 2,0</td>
<td>17,1 ± 1,8</td>
</tr>
</tbody>
</table>

Aus den TEM-Aufnahmen der Fasern II - IV wurden die Breite des Peptidkerns und der Abstand der Fasern bestimmt. Die Breite der kontrastarmen Bereiche entspricht dabei näherungsweise der Breite des Peptidkerns der Bänder. Der Abstand zweier paralleler Fasern entspricht der Breite des Polymer-Peptid-Konjugates.

Vergleicht man die Breiten der Peptidkerne, so fällt auf, dass sie im Rahmen der Messgenauigkeit unverändert sind. Wie erwartet hat sich der β-Faltblatt bildende Peptidkern unter den Reaktionsbedingungen nicht verändert. Die Abstände der Fasern nehmen von 15 nm bei Fasern aus II zu 17 nm (Fasern aus IV) leicht zu.

Abbildung 27. Querschnitt der Fasern, das Fluorescein ist ober- und unterhalb des Peptiddoppelbandes lokalisiert und damit dem Lösungsmittel zugewandt.

Abbildung 28. Konfokale Aufnahme der Fluorescein haltigen Fasern (IV),
a.) Durchlicht Bild, b.) Fluoreszenzbild

Die Addition von Fluorescein diente als Modell, um die Möglichkeit weiterer
Modifikationen an den azidfunktionlaisierten Fasern zu veranschaulichen. Die
azidfunktionalisierten Fasern bilden den Ausgangspunkt für die viele weitere Modifizierung
an den Fasern. Die verschiedenen Funktionalisierungen werden mit Hilfe der 1,3-dipolaren
Cycloaddition an die Fasern angebracht. Dadurch können neue Eigenschaften entlang der
Fasern generiert werden. Durch die kovalente Anbringung von verschiedenen Funktionen
können die Eigenschaften der Fasern maßgeschneidert werden. Einige mögliche
Funktionalisierungen, die an die Fasern angebracht wurden, sind nachfolgend beschrieben.
5.6. Baukastensystem der Alkine

Wie bereits in Kapitel 2.5 erläutert, bietet die Klick-Chemie eine gute Möglichkeit, Polymere und anderen Makromolekülen mit Modifikationen zu versehen. Dabei kann eine große Auswahl an Molekülen mit der Azidgruppe umgesetzt werden. Einige dieser Moleküle sind in Tabelle 4 dargestellt.

Diese Moleküle besitzen alle eine Alkingruppe und können über die 1,3-dipolare Addition an die azidfunktionalisierten Fasern geklickt werden. Auf diese Art können die Eigenschaften der Fasern maßgeschneidert werden. Das Fluorescein ermöglichte die Visualisierung der Fasern mit Hilfe von konfokaler Mikroskopie (Kapitel 5.5). Der alkinmodifizierte Zucker kann z. B. Silberionen reduzieren. So sollten die Silberionen entlang der Fasern reduziert und ausgerichtet werden. Sie liegen dann als Metallnanodrähte vor.

Tabelle 4.

Die Tabelle zeigt einige mögliche Alkine, welche an die Fasern angebracht werden können, um deren Eigenschaften zu variieren.

<table>
<thead>
<tr>
<th>Aminfunktion</th>
<th>Säurefunktion</th>
<th>Farbstoff</th>
<th>Multifunktional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propargylamin</td>
<td>Pentinsäure</td>
<td>Fluorescine</td>
<td>PRA</td>
</tr>
<tr>
<td>Pentinsäure-His$_6^-$</td>
<td>Pentinsäure-Asp$_6$</td>
<td></td>
<td>Galactose-alkin</td>
</tr>
<tr>
<td>NTA-Derivat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.7. Weitere Modifikationen an den azidfunktionalen Fasern

Im Rahmen dieser Arbeit wurden drei Arten von alkinfunktionalisierten Carbonsäuren an die Azidgruppen angebracht. Pentinsäure (eine Säurefunktion), NTA (mit drei Säurefunktionalitäten) sowie das Asparaginsäurehexapeptid (sechs Säuregruppen).

Abbildung 29 Die IR-Spektren der modifizierten Fasern V-VII.

Die pentinsäurefunktionalisierten Fasern (V) binden 0,48 Kalziumionen je Fasermolekül. Bei nur zwei funktionellen Carbonylgruppen sind das 0,24 Kalziumionen je Säurefunktion. Die NTA modifizierten Fasern (VI) komplexieren 0,74 Kalziumionen je Molekül. Bei zwei NTA Funktionen das sind rechnerisch 0,37 Kalziumionen je NTA oder auf sechs Carbonsäurefunktionen gerechnet 0,123 Kalziumionen pro Säurefunktion.

Pro Fasermolekül bindet das asparaginsäurefunktionalisierte (VII) die meisten Kalziumionen, gefolgt von dem NTA funktionalisierten (VI) und dem pentinsäurefunktionalisierten (V) Molekül. Dies Beobachtung entspricht dem Chelateffekt. Wird jedoch die Bindung je funktioneller Gruppe berechnet, so bindet V mit 0,24 Kalziumionen je Carboxylgruppe mehr, als VII mit 0,22 und VI mit 0,12. Eine mögliche Ursache für die gute Kalziumbindung in V könnte die hohe Flexibilität der Pentinsäurearme sein. Das NTA-Derivat bindet nicht wie erwartet ein Kalziumion je NTA Funktion. Ein Grund hierfür könnte die vorgegebene Geometrie der Säurefunktionen sein, ebenfalls binden jeweils 2 Säurefunktionen ein Calziumion, daher besitzt das NTA für Kalzium eine unnötig große Anzahl an Carboxylgruppen. Für die 106pm großen Kalziumionen (Radius) besitzt das NTA nicht die optimale Konfiguration. Kleinere Metallionen wie Eisen(II) oder (III), Nickel(II) oder Platin könnten vermutlich wesentlich besser mit dem NTA Derivat wechselwirken.

Tabelle 5. Die drei carbonylmodifizierten Fasern und die von ihnen absorbierte Menge an Kalziumionen.

<table>
<thead>
<tr>
<th>Fasern modifiziert mit</th>
<th>Pentinsäure</th>
<th>NTA-Derivat</th>
<th>Asp6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalzium gebunden [mol]</td>
<td>6,659998 10⁻⁷</td>
<td>3,22516 10⁻⁷</td>
<td>8,13059 10⁻⁷</td>
</tr>
<tr>
<td>Konzentration d. Fasern [g/L]</td>
<td>0,3</td>
<td>0,0999</td>
<td>0,082</td>
</tr>
<tr>
<td>M eines Liganden [g/mol]</td>
<td>5448,62</td>
<td>5710,8</td>
<td>6777,2</td>
</tr>
<tr>
<td>Ca²⁺/ Molekül</td>
<td>0,4838</td>
<td>0,7375</td>
<td>2,6879</td>
</tr>
<tr>
<td>Ca²⁺/ funktioneller Gruppe</td>
<td>0,2419</td>
<td>0,1229</td>
<td>0,224</td>
</tr>
</tbody>
</table>

Diese Werte der funktionalisierten Fasern können mit denen anderer Carbonsäure-Polymere, wie z. B. Polyacrylsäure (PAA) verglichen werden. So bindet PAA pro 71 Carbonylgruppen 15 Kalziumionen. Das entspricht 0,21 Kalziumionen je Carbonylgruppe.[158]

Mit 0,224 Kalziumionen je Carbonylgruppe bindet VII etwas mehr, als das lineare Analogon PAA. Die Pentinsäure modifizierte Faser weist mit 0,24 Kalziumionen je Carbonylgruppe eine noch bessere Bindung auf. Das NTA-Derivat bindet im vergleich zu PAA mit 0,12 Kalziumionen je Carbonsäurefunktion deutlich schlechter.

Abbildung 30. IR Spektroskopie (links) und SEM Aufnahmen (rechts) der Kalziumcarbonatkristalle, die in der Faserlösung von VII nucleiert worden sind. Im IR Spektrum ist das Spektrum von VII (rot) und von den Kalziumcarbonat mit VII (blau) dargestellt.

Weiterhin wurde ein Histidin-Hexapeptid an die Fasern geklickt. Hier musste ein Überschuss an Kupferionen verwendet werden, um eine ausreichende Konzentration an freien
Kapitel 5

Abbildung 31. Dargestellt sind einige Modifikationen an den azidfunktionalisierten Polymer-Peptid-Fasern.

Um Metallionen an den Fasern zu binden und dort zu reduzieren gibt es prinzipiell 2 Wege. Ein Weg ist die Bindung über funktionelle Gruppen und die Reduzierung durch die Zugabe reduzierender Reagenzien. Eine weitere Möglichkeit ist die Reduzierung an der Faser durch
Zuckermoleküle. Daher wurden die azidfunktionalisierten Fasern (III) mit einem alkinfunktionalisierten Zucker (alkinmodifizierte Galactose) umgesetzt. Unter diesen Bedingungen ist ein Überschuss an Kupferionen nachteilig, da der Zucker diese reduzieren würde und dann in oxidierter Form vorliege. Daher wurden nur 10 mol % Kupfer verwendet. Um die Reaktion zu beschleunigen wurden 10 mol % TBTA (siehe Kapitel 2.5) zugesetzt. TBTA erhöht die Reaktivität des Kupfers und schützt es zugleich vor ungewollter Komplexierung durch die Edukte.

Nach 24 Stunden Reaktionszeit wurde etwas TREN dazugegeben und gegen Wasser dialysiert. Das galactosefunktionalisierte Polymer-Peptid-Systeme (IX) wurden gefriergetrocknet und mittels MALDI, NMR und IR untersucht.

Das IR-Spektrum von IX zeigt bei $\nu = 2098 \text{ cm}^{-1}$ eine schwache Bande an, der Zucker konnte demzufolge größtenteils quantitativ an die Fasern angebracht werden (Abbildung 32).

Abbildung 32. Das IR Spektrum des galaktosefunktionalisierten Polymer-Peptid-Systems.

Analog zu der von Gramlich und Carell beschriebenen Silberionenabscheidung an DNA$^{[161]}$ können an den galaktosefunktionalisierten Fasern Silberionen abgeschieden werden. Dies geschieht in weiterführenden Schritten mit Tollens Reagenz. Mit der in der Schwarz-Weiss-Photographie verwendeten Entwicklerlösung können aus diesen Silber(0) Keimen dann Silberdrähten hergestellt werden.
6. Zusammenfassung und Ausblick

Kapitel 6

...dem Elektrospinnen, zu verändern. Weiterhin kann der Diazotransfer an primären Aminen, von Biomolekülen, genutzt werden, um Azide für die 1,3-dipolare Addition zu erzeugen.

Im zweiten Teil der Arbeit wurde der Diazotransfer an den Fasern von Polymer-Peptid-Konjugaten durchgeführt. An den daraus resultierenden, azidfunktionalisierten Fasern konnte mittels 1,3-dipolarer Addition eine Vielzahl funktioneller Gruppen eingeführt werden. Um den Diazotransfer durchzuführen, sind Aminfunktionen in der Seitekette des Polymer-Peptid-Systems Voraussetzung. Das templatvororganisierte, literaturbekannte (VT)2-Strukturbildungsmotiv wurde deshalb um die Aminosäuren Lysin und Valin erweitert.

In weiterführenden Forschungen könnten zusätzliche Moleküle an die Fasern angebracht werden, um deren Eigenschaften an die jeweiligen Anforderungen anzupassen. So könnte z. B. die Anbringung von Dienen und deren anschließende Polymerisation die Polymer-Peptid-Fasern stabilisieren.
7. Anhang

7.1. Allgemeine Arbeitsvorschriften

Kaiser-Test[162]

Das zu analysierende Harz wurde mehrfach mit NMP und DCM, anschließend mit Diethylether gewaschen und im Vakuum getrocknet.

Die verwendeten Lösungen (A, B und C) wurden wie in der Literatur beschrieben hergestellt:

- Lösung A besteht aus 80mg Phenol in 20mL Ethanol,
- Lösung B aus 0,001M KCN in 100mL Pyridin
- Lösung C aus 500mg Ninhydrin in 10 mL Ethanol.

Das gut getrocknete Harz wurde in ein Reagenzglas überführt und mit jeweils 2 Tropfen der Lösungen A-C versetzt. Das Gemisch wurde 5 Minuten auf 80°C erhitzt, dabei wurde alle 30 Sekunden die Färbung des Harzes überprüft. Wenn sich das Harz blau färbt, ist dies ein Indiz für freie Aminfunktionalitäten am Harz.

Peptidsynthese:

Alle Reagenzien und Aminosäuren wurden vor der Reaktion im Vakuum (Exsikkator) getrocknet. Die Aminosäuren wurden bei Iris Biotech gekauft und direkt verwendet.

Diisopropylamin (DIPEA, Acros) wurde fraktioniert destilliert und bis zur Verwendung vor Licht geschützt und gekühlt (4°C) aufbewahrt.

1-Benzotriazoyloxytris(pyrrolidino)phosphonium-hexafluorophosphat (PyBOP, NovaBiochem), 7-azabenzotriazol-1-yloxytris(pyrrolidino)phosphonium-hexafluorophosphat (PyAOP, Applied Biosystems, Darmstadt, Germany) und 2-((1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium-hexafluorophosphat (HBTU, IrisBiotech) wurden im Tiefkühlschrank gelagert.
Synthese der Polymer-Peptid-Konjugate

Die Synthese des 3,6-Bis(N-tert.-Butyloxycarbonyl-3-aminopropyl)-carbazol-9-essigsäure-ethylester-tert.-butylester (Boc-Templat) wurde wie bereits in der Literatur beschrieben hergestellt.\[4\]

Standart Protokoll für Beladung von TentaGel PAP-Harz (Templat-PEO)

Das TentaGel PAP Harz wurde von Rapp Polymere in Tübingen bezogen. Die Beladung des Harzes betrug 0,22 mmol/g. Es wurden 1,2 Äq des Boc-Templat und 2,4 Äq. PyAOP getrennt voneinander in so wenig DMF gelöst, wie möglich. Dann wurden die beiden Komponenten vermischt und mit 4,8 Äq. DIPEA versetzt. Dabei konnte eine Gelbfärbung der Lösung beobachtet werden. Das aktivierte Boc-Templat wurde anschließend zu dem vorgequollenen Harz gegeben.

7.2. Experimenteller Teil:

Herstellung des vollgeschützten Peptides GRGDS

An einem 2-Chlortritylharz wurde die Sequenz GRGDS mittels Standard Fmoc SPPS aufgebaut. Das Peptid wurde zwei Stunden mit 30 % TFE/DCM abgespalten, in Ether ausgefällt und aus Wasser/ Acetonitril (50 % v/v) gefriergetrocknet.

ESI-MS: (m/z in Da): [M+H]\(^+\) = 856 (100 %, M\(\text{theor.}\) = 855);

\[\text{[M+Na]}^+ = 878 (8 \%, M_{\text{theor.}} = 878);\]

\[\text{[2M+H]}^+ = 1711 (10 \%, M_{\text{theor.}} 1711).\]
Kapitel 7

FTIR-ATR (ν in cm$^{-1}$): 2978(w), 2937(w), 2875(w), 1724(m), 1660(s), 1541(s), 1456(w), 1408(w), 1369(m), 1250(s), 1155(s), 1103(s), 995(w), 910(w), 850(w), 810(w), 785(w), 734(w), 667(s)

1H-NMR (400 MHz, DMSO, RT, in ppm):

$\delta = 1,05$ (s, 9H 1Bu(S)), 1,37 (s, 9H, 1Bu(D)), 1,41 (s, 6H, Me (Pbf)), 1,53+1,73 (m, 2H, $\beta+\gamma$-Arg), 2,0 (s, 3H; Me (Pbf)), 2,48 (s, 6H, Me (Pbf)), 2,68 (dd, 1H, β-Asp), 3,01 (m, 1H, β-Asp), 2,96 (s, 2H, δ-Arg), 3,47+3,58 (s, 2H, β-Ser), 3,68-,3,86 (s, 3H, α-Gly + α-Arg), 4,34 (s, 1H, α-Ser), 4,50 (m, 1H, α-Asp), 6,95 (s, 1H, NH), 7,47 (s, 1H, NH), 7,86 (s, 1H, NH), 8,06 (s, 1H, NH), 8,49 (s, 2H, NH)

Diazotierung des vollgeschützten Peptides GRGDS

Das vollgeschützte GRGDS wurde in Methanol/ Wasser (50 % v/v) zusammen mit 2,6 Äq. Kaliumcarbonat, 0,1 Äq. Kupfersulfat gelöst. Nach Zugabe von 1,3 Äq. Imidazolsulfonylazid Hydrochlorid wurde 18 Stunden gerührt. Die Reaktionslösung wurde dreimal mit Chloroform ausgeschüttelt. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und eingeengt, in Diethylether ausgefällt und aus Acetonitril/ Wasser gefriergetrocknet. Das hellblaue Pulver wurde zur Abtrennung des Kupfers in Methanol/ Wasser gelöst und über DOWEX Ionenenaustauscherharz vier Stunden geschüttelt, abdekantiert und erneut gefriergetrocknet. Das gewonnene farblose Pulver wurde dann wurde mit ESI-MS und IR Spektroskopie untersucht. Das Massenspektrum zeigt Signale mit m/z 882, 904 und 919. Dies entspricht den Protonen, Natrium und Kaliumaddukten des azidfunktionalisierten GRGDS.

FTIR-ATR (ν in cm$^{-1}$): 2978(w), 2937(w), 2875(w), 2108 (m), 1724(m), 1660(s), 1541(s), 1456(w), 1408(w), 1369(m), 1250(s), 1155(s), 1103(s), 995(w), 910(w), 850(w), 810(w), 785(w), 734(w), 667(s)

1H-NMR (400 MHz, DMSO, RT, in ppm):

$\delta = 1,1$ (s, 9H 1Bu(S)), 1,43 (s, 6H, Me (Pbf)), 1,46 (s, 9H, 1Bu(D)), 1,58+1,73 (m, 3H, $\beta+\gamma$-Arg), 2,1 (s, 3H; Me (Pbf)), 2,48 (s, 6H, Me (Pbf)), 2,68 (d, 1H, β-Asp), 3,01 (m, 1H, β-Asp), 3,01(s, 2H, δ-Arg), 3,5+3,67 (m, 2H, β-Ser), 3,9 (s, 3H, 2 x α-Gly + α-Arg), 4,36 (s, 1H, α-Ser), 4,74 (m, 1H, α-Asp), 8,3 (br, NH)
Herstellung von Trinitrpticin

Die Sequenz von Trinitrpticin lautet: VRRFPWWWFLRR und wurde am Synthesizer gekuppelt. Das verwendete Harz war ein Tentagel SRam Harz, nach dem Abspalten liegt die Sequenz dadurch am Säureterminus als Amid vor.

Das fertige Produkt wurde mit 95 % TFA (1 %TMBS, 4 %Wasser) für 2 Stunden abgespalten, das Lösungsmittel im Anschluß abgefiltert und eingeengt, in Diethylether ausgefällt, getrocknet und lyophilisiert.

ESI-MS: Die im ESI-MS detektierten Ionenpeaks, beruhen auf mehrfachgeladenen Addukten. Deutlich erkennbar sind die Ionenpeaks von zwei-, drei- und vierfachgeladenen Protonenaddukten. Die einfach geladenen Peaks liegen nicht im Messbereich der ESI-MS ([M theor.] = 2128,58):

- [M+2H]²⁺ = 1065 (10 %, theor. = 1065,3 Da)
- [M+3H]³⁺ = 711 (100 %, theor. = 710,5 Da)
- [M+4H]⁴⁺ = 533 (82 %, theor. = 533,1 Da)

FTIR-ATR (ν in cm⁻¹): 3273(m), 3186(m), 2965(w), 2931(w), 2870(w), 1627(s), 1527(s), 1438(s), 1340(w), 1246(m), 1109(s), 974 (w), 840(w), 740(s)

¹H-NMR (400 MHz, DMSO, RT, in ppm):
δ = 0,79-0,81 (s, 12 H δ-Ile + γ-Val); 1,48+1,63 (m 16H, β+γ-Arg); 1,84 (s, 3H, Ac); 1,87 (m, 2H, β-Pro), 2,75 (s, 2H, β-Pro), 2,93+3,1 (ds, 13H, 2xε-Lys+6xδ-Arg+4β-Phe); 3,3 (s, 1H δ-Pro); 3,5 (s, 6H β-Trp); 3,8 (br. H₂O-Signal); 4,16+4,53 (s, 5H α-H); 4,52+4,57+4,67 (s, 3H α-H), 6,9(t), 7,0(s), 7,1 (s), 7,15(s?), 7,3(m), (32H)*; 7,44(s + 7,5(s) (4H)*; 7,66(s, 3H)*; 7,8+7,9+8,0+8,1+8,22+8,28 (5-6H)*

*aromat. Signale (Trp +Phe) und Amid (NH) liegen übernander, sind kaum getrennt integrierbar
Diazotransfer an Tritrpticin

** ein Versuch mit katalytischen Mengen an Kupfersulfat (0,3 Äq. ergab keinen Umsatz), das könnte durch die Komplexierenden Eigenschaften des Tritrpticins verursacht worden sein, daher wurde im Folgeversuch mit größeren Überschüssen an Kupfersulfat gearbeitet.

ESI-MS:
Die ESI-MS detektierte mehrere Ionenpeaks, die auf mehrfachgeladenen Addukten beruhen, die einfach geladenen Peaks liegen nicht im Messbereich der ESI-MS:

\[[M_{\text{theor.}}] = 2155,6; \]
\[[\text{M}+2\text{H}]^{2+} = 1078 \text{ (12 \%, theor.} = 1078,3 \text{ Da)} \]
\[[\text{M}+3\text{H}]^{3+} = 719 \text{ (100 \%, theor.} = 719,2 \text{ Da)} \]
\[[\text{M}+4\text{H}]^{4+} = 540 \text{ (75 \%, theor.} = 539,6 \text{ Da)} \]
Reinheit laut HPLC-ESI-MS: über 99 %.

FTIR-ATR (\(\nu \text{ in cm}^{-1} \)):
3284(m), 3197(w), 2949(w), 2875(w), 2100 (m), 1647(s), 1531(s), 1436(m), 1338 (w), 1201 (s), 1180(s), 1134 (s), 837(m)

1,3 Huisgen Cycloaddition von Propargylamin an Tritrpticin
Abbildung 33. IR Spektren von Trirpticin (blau), Trirpticinazid (rot) sowie dem Trirpticin mit „angeklicktem“ Propargylamin.

FTIR-ATR (ν in cm$^{-1}$): 3284(m), 3197(w), 2949(w), 2875(w), 1647(s), 1531(s), 1436(m), 1383 (w), 1201 (s), 1180(s), 1134 (s), 837(m)

$M = 2209,66$ g/mol

ESI-MS(m/z): 737 ([M+3]$^{3+}$ theor. = 737,55)

553 ([M+4]$^{4+}$ theor. = 553,41)

Herstellung von Chitosan HCl:

Das Chitosan wurde in Wasser gegeben und soviel HCl addiert, bis es vollständig gelöst war. Anschließend wurde in THF ausgefällt und zweimal aus Wasser gefriergetrocknet.

FTIR-ATR (ν in cm$^{-1}$): 2885 (m), 1624 (s), 1515 (s), 1419 (w), 1378 (m), 1312 (m), 1250 (w), 1152(s), 1066(s), 1033 (m), 897 (m), 668 (s)

1H-NMR (400 MHz, D$_2$O, RT, in ppm):

$\delta = 1,94$ (0, H, s, Acetyl(3H)3), 3,07 (1 H, m, CH-NH$_2$), 3,63+3,79 (5,0 H, br. m, CH$_2$-OH + CH$_2$-OH + CH(NH$_2$)-CH-O-CH), 4,77 (s, 1H, CH(NH$_2$)-CH-O-CH)

13±2 % Acetylschutzgruppen

x bei vollst. Acetylierung
Chitosanazid (A1)

Chitosanazid (A2)

13C-NMR: $\delta = 55,7$ (CH-NH₂); 60,1 (CH₂OH); 70,3 (COH); 74,7(C(OC)CH₂OH); 75,4; 76,1; 76,8(C(NH₂)-CH-O-Ċ); 97,7(C(NH₂)-ĊH-O-C)

1H-NMR (400 MHz, D₂O, RT, in ppm):
$\delta = 1,95$ (0,37 H, s, Acetyl (3H)³), 3,07 (0,91 H, m, CH-NH₂), 3,63+3,79 (5,09 H, br. m, CH-OH + CH₂-OH + CH(NH₂)-CH-O-CH), 4,76 (s, 1H, CH(NH₂)-CH-O-CH)
12±2 % Acetylschutzgruppen

Aus der Abnahme des (CH-NH₂) Signals kann der Umsatz zu Azid bestimmt werden.
Azidierungsgrad: 8 ± 1 % der Amingruppen wurden zu Azid umgesetzt.

³bei vollst. Acetylierung

x FTIR-ATR (v in cm⁻¹): 2878 (m), 2125 (s), 1629 (s), 1521 (s), 1417 (w), 1379 (m), 1264 (w), 1227 (m), 1250 (w), 1205(m), 1149(s), 1067(s), 1037 (s), 897 (m), 835 (m), 800(w), 746(s), 630 (s)

<table>
<thead>
<tr>
<th></th>
<th>Chitosan</th>
<th>Chitosan HCl</th>
<th>Chitosanazid (A1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtsmittel (M_W) [g/mol]</td>
<td>2,57 • 10^5</td>
<td>1,47 • 10^5</td>
<td>8,5 • 10^3</td>
</tr>
<tr>
<td>Sedimentationskoeffizient [S]</td>
<td>n. b.</td>
<td>1,5</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Die GPC Messung wurde in DMSO durchgeführt, die AUZ in Essigsäure/ Acetatpuffer (pH =4,75).

Die Diazotierung änderte den Polymerisierungsgrad nicht. Das konnte durch eine Sedimentationsgeschwindigkeitsmessung (AUZ) nachgewiesen werden:

![Sedimentation coefficient distribution](image)

Abbildung 34. Sedimentationsgeschwindigkeitsmessung von Chitosanhydrochlorid (schwarz), Chitosanazid (A1-rot) und Chitosanazid (A2-grün)

Peptid Synthese am Templat ((DMG-TVTVKV)_2-Templat-PEO)

Das Templat beladene Harz wurde in einen SPPS Reaktor überführt. Die Aminosäuren wurden nach Standard-Fmoc-Protokollen gekuppelt. Da bekannt ist, das Valin-Threoin-Sequenzen schon während der Synthese aggregieren,[163] wurde nach der Kupplung von Valin (V^6) und Lysin (K^5) und Valin (V^4) eine Pseudoprolin Einheit bestehend aus Pseudoprolins (Fmoc-Val-Thr-(psi Me,Me pro)-OH) eingebaut. Alle Aminosäuren wurden automatisiert gekuppelt.

Im Anschluss wurde mittels Handkupplung im Glasreaktor Dimethylglycin (dmG) gekuppelt. Bei der Handkupplung wurden die Aminosäuren und Reagenzien in zehnfachem
Überschuss eingesetzt. Die Kupplung von DMG wurde zweimal wiederholt, bis der Kaiser Test keine freien Amin Gruppen mehr anzeigte. Das fertige Produkt wurde mit 99 % TFA (1 %TMSB) für 6 Stunden abgespalten, die TFA im Vakuum entfernt, den Festen Rückstand in wenig Methanol aufgenommen und zweimal in Diethylether ausgefällt. Der Ether wurde abdekantiert, der Rückstand getrocknet und lyophilisiert.

1H-NMR (400 MHz, DMSO, RT, in ppm):

$\delta = 0,8 \text{ (m, 36H, CH}_3\text{-Val)}, 1,0 \text{ (d, 6H, CH}_3\text{-Thr)}, 1,05 \text{ (d, 6H CH}_3\text{-Thr)}, 1,27 \text{ (m, 4H, } \gamma\text{-CH2-Lys}), 1,49 \text{ (t, 6H, } \delta\text{-CH2-Lys)}, 1,62 \text{ (m, 1 H, } \beta\text{-CH2-Lys)}, 1,72 \text{ (m, 1H, } \beta\text{-CH2-Lys)}, 1,76 \text{ (t, 4H, CH}_2\text{-Templat)}, 1,9-2,0 \text{ (m, 6H, } \beta\text{-CH-Val)}, 2,72 \text{ (br, 4H, } \varepsilon\text{-CH2-Lys)}, 2,78 \text{ (br, 12H, CH}_3\text{-dmG)}, 3,01 \text{ (m, 2H, 4H, CH}_2\text{-Templat)}, 3,20 \text{ (d, 4H CH}_2\text{-Templat)}, 3,49 \text{ (s, 290H, PEO)}, 3,9-4,5 \text{ (mm, 16H, } \alpha\text{-CH-Val/Thr/Lys} + \beta\text{-CH-Thr)}, 4,95 \text{ (s, 2, CH}_2\text{-Carbazole)}, 7,22 \text{ (d, 2H, CH-Templat aromat.), 7,38 \text{ (d, 2H, CH-Templat aromat.)}, 7,65 \text{ (m, 9H, NH)}, 7,88 \text{ (s, 2H, CH-Templat aromat.)}, 7,91 \text{ (d, 4H, NH)}, 8,07 \text{ (t, 3H, NH)}, 8,64 \text{ (d, 2H, NH)}$

FTIR-ATR (ν in cm$^{-1}$):

3273(s), 3086(w), 2960(w), 2874(s), 1788(w), 1672(m - Amin), 1627(s, Amid(I)), 1549(m – Amid (II)), 1466(m), 1456(w), 1400(w), 1359 (w), 1342(s), 1281(m), 1240 (w), 1201 (m), 1172(w), 1144(m), 1103 (s), 1062 (m), 962 (s), 946 (m), 841 (s), 799 (m), 719(m), 706(m), 667(s)

Die Abbildung 35 zeigt das MALDI-TOF-Spektrum des aminfunktionalisierten Templats. Man erkennt deutlich eine Verteilung mit Abständen von 44,05 ± 0,5, die einer Wiederholungseinheit des PEO entsprechen. Die Gesamtmasse des Polymer-Peptid-Konjugates errechnet sich aus den Fragmenten:

$$M^+ = n \cdot M_{[\text{Ethylenoxid}]} + M_{[\text{Templat}]} + 2 \cdot M_{[\text{Peptid}]} + M_{[\text{Endgruppen}]} + M_{[\text{Gegenion}]}$$

Jede Wiederholungseinheit eines Ethylenoxides wiegt $M_{[\text{Ethylenoxid}]} = 44,04 \text{ Da}$, mit der Masse des Templates ($M_{[\text{Templat}]}=335,19 \text{ Da}$), der Peptidketten ($2 \cdot M_{[\text{Peptid}]}=2 \cdot 713,9 \text{ Da}$), der Endgruppen (am PEO nur $H = 1 \text{ Da}$), sowie des Gegenions $M_{[\text{Gegenion}]}= 39,1 = \text{Kalium}$. Für $n = 71$ Wiederholungseinheiten des PEO ergibt sich so:

$$M^+ = 71 \cdot 44,04 + 335,19 + 2 \cdot 713,9 + 1 + 39,1 = 4929,93 \text{ Da (exp.: 4929,73 Da)}.$$
Kapitel 7

Abbildung 35. MALDI-TOF-MS von (II), deutlich zu sehen die Verteilung des Polymeranteils (PEO) von $\Delta M = 44$ Da.

Faserbildung aus ((DMG-TVTVKV)$_2$-Templat-PEO)

Der weiße Feststoff wurde mit reiner TFA für 30 Minuten denaturiert, die TFA am Rotationsverdampfer entfernt und in Methanol aufgenommen. Das Methanol wurde noch 2mal am Rotationsverdampfer entfernt, um die TFA möglichst vollständig zu entfernen. Dann wurde in soviel Methanol aufgenommen, dass eine Konzentration von 5 g/L eingestellt wurde und langsam nach Wasser (10 % je Tag) dialysiert (MWCO = 2000 Da). Die so erhaltenen Fasern konnten mit AFM, TEM und CD nachgewiesen werden.

Diazotransfer an Polymer-Peptid-Konjugat

Es wurde das (DMG-TVTVKV)$_2$-Templat-PEO entweder in Wasser gelöst oder die fertigen Fasern bekannter Konzentration genommen. Zu dieser Lösung wurden 2,4 Äq. Kaliumcarbonat (K_2CO_3), 0,2 - 2 Äq Kupfersulfat ($CuSO_4$) und 2,4 Äq Diazotransferreagenz gegeben. Die Lösung wurde über Nachte schütteln gelassen.

Zur Aufreinigung wurde dialysiert und die überschüssigen Kupferionen mit DOWEX™ Ionenaustauscher Harz entfernt.

Ein kleiner Teil der Lösung wurde lyophilisiert, um die Substanz mit IR, NMR und MALDI-TOF zu charakterisieren.
Kapitel 7

FTIR-ATR (ν in cm⁻¹): 3271(s), 3086(w), 2960(w), 2874(s), 2100(s – Azid), 1627(s, Amid(I)), 1548(m – Amid (II)), 1465(m), 1454(w), 1400(w), 1359 (w), 1342(s), 1278(m), 1240 (w), 1145 (m), 1101 (s), 1061 (m), 962 (s), 946 (m), 881(w), 841 (s), 800(w), 799 (m), 711(m), 669(m)

¹H-NMR (400 MHz, DMSO, RT, in ppm):
δ = 0,79-0,83 (m, 36H, CH₃-Val), 1,0 (d, 6H, CH₃-Thr, J=5,99 Hz), 1,05 (d, 6H, CH₃-Thr, J = 5,77 Hz), 1,28 (m, 4H, γ–CH₂-Lys), 1,47 (t, 6H, δ–CH₂-Lys, J =7,3 Hz), 1,62 (m, 2 H, β–CH₂-Lys), 1,76 (t, 4H, CH₂-Templat), 1,9-1,98 (m, 6H, β-CH-Val), 2,67 (br, 12H, CH₃-dmG), 3,4 (m, 4H, ε-CH₂-Lys), 3,22 (d, 4H CH₂-Templat), 3,49 (s, 290H, PEO), 3,66 (d, 2H, PEO-O-CH₂-CH₂-NH-Gly-Templat), 3,94 (m, 4H, β-Thr), 4,1 (dt, 2H, α-CH-Lys), 4,15-4,4 (mm, 10H, α-CH-Val/Thr), 4,5 (t, 1H, NH), 4,83 (m, 1H, NH), 4,95 (s, 2, CH₂-Carbazol), 7,22 (d, 2H, J = 8,04 Hz, CH-Templat aromat.), 7,37 (d, 2H, CH-Templat aromat.), 7,63 (d, 2H NH, J=8,77Hz), 7,72 (d, 2H, NH, J=8,62Hz), 7,87 (s, 2H, CH-Templat aromat.), 7,88 (d, 2H, NH)), 7,91 (d, 2H, NH), 7,98-8,02 (m, 3H, NH), 8,3 (m, 1H, NH)

Die Abbildung 36 zeigt das MALDI-TOF-Spektrum des azidfunktionalisierten Templats. Man erkennt deutlich eine Verteilung mit Abständen von 44,05 ± 0,5, die einer Wiederholungseinheit des PEO entsprechen. Die Gesamtmasse des Polymer-Peptid-Konjugates errechnet sich aus den Fragmenten:

\[M^+ = n \cdot M_{[Ethylenoxid]} + M_{[Templat]} + 2 \cdot M_{[Peptid]} + M_{[Endgruppen]} + M_{[Gegenion]} \]

Jede Wiederholungseinheit eines Ethylenoxides wiegt \(M_{[Ethylenoxid]} = 44,04 \text{ Da} \), mit der Masse des Templates (\(M_{[Templat]}=335,19 \text{ Da} \)), der Peptidketten^{(a)} (\(2 \cdot M_{[Peptid]}=2 \cdot 739,9 \text{ Da} \)), der Endgruppen (am PEO nur H = 1 Da), sowie des Gegenions \(M_{[Gegenion]} = 39,1 = \text{Kalium} \). Für \(n = 71 \) Wiederholungseinheiten des PEO ergibt sich so:

\[M^+ = 71 \cdot 44,04 + 335,19 + 2 \cdot 739,9^{(a)} + 1 + 39,1 = 4981,93 \text{ Da (exp.: 4981,53 Da)} \]

^{(a)} Der Unterschied in der Masse von (III) im Vergleich zu (II) liegt im Peptidteil. Jeder Peptidarm wiegt 26 Da mehr (Summenformel +2N – 2H). Wird die Masse von (II) (siehe oben) mit dieser Differenz verrechnet (4929,73 Da + 2•26,1 Da), so ergibt sich für (III): 4981,93 Da.
Kapitel 7

Abbildung 36 MALDI-TOF-Spektrum von (III), die Verteilung entsteht durch den Polymeranteil (PEO) und beträgt $\Delta M = 44$ Da.

Ein AFM der Produktlösung bestätigt die Stabilität der Fasern unter den Reaktionsbedingungen:

Abbildung 37. AFM Aufnahme und Querschnitt durch die azidfunktionalisierten Fasern

Herstellung von Alkin funktionalisiertem Fluoresceine

Unter Schutzgas wurden 1 Äq Fluoresceinthiosisocyanat (FTIC) in Wasser gelöst 1,05 Äq Propargylamin dazugegeben. Nach Ablauf der Reaktion wurde die Reaktionslösung an der Vakuumlinie gefriergetrocknet. Der so erhaltene Feststoff wurde mit IR, NMR und ESI-MS charakterisiert.

FTIR-ATR (ν in cm$^{-1}$): 2989 (w), 2902(w), 1743(m), 1737(s), 1575(s), 1460(s), 1382(m), 1309(s), 1242(m), 1205(s), 1172(w), 1107(s), 1041(w), 910(s), 846(s), 760 (m), 667 (w), 628 (w)
1H-NMR (400MHz, DMSO, RT, in ppm):
$\delta = (2,3 \text{ (s, 1H); 3,24 \text{ (d, 2H), 5,25, 5,29 \text{ (2 H NH), 6,52 \text{ (d, 1H), 6,40 \text{ (d 2H), 6,56 \text{ (s 2H),}}}}$
$6,59 \text{ (s 1H), 6,64 \text{ (d, 2H), 7,14 \text{ (s 1H), 7,71 \text{ (d, 1H)}}})$

13C-NMR (400MHz, DMSO, RT, in ppm):
$\delta = (30,8, 68,2, 72,8, 74,1, 102,5, 103,3; 110,3, 113,0; 124,7; 125,5; 127,6; 129,5; 145,5; 147,6, 152,4; 159,9; 169,1)\)

Das MS-Spektrum zeigte nur den Quasimoleküllpeak [M+H]$^+$: ($M_{\text{theor.}} = 444,4 \text{ g/mol; } M_{\text{exp}} = 445 \text{ g/mol}$).

Klicken an dem Polymer-Peptid-Konjugat

FTIR-ATR (ν in cm$^{-1}$): 3269(s), 3086(w), 2961(w), 2872(s), 1749(m), 1627(s, Amid(I)), 1612(w), 1572(m), 1548(w – Amid (II)), 1506(w), 1460(m), 1386 (m), 1321(s), 1250 (w), 1203 (m), 1168(w), 1103 (s), 1062 (w), 1040(m), 995(w), 950 (m), 914(w), 846 (s), 829(w), 819(w), 800(w), 717(m), 690(w), 671(w), 663(w), 646(w), 624(w), 617(w)

Abbildung 38. repräsentativer Querschnitt durch IV, Höhe: (rot): 2,45 nm; Breite 1 (grün): 31,3 nm; Breite 2 (schwarz): 27,3 nm
Herstellung pentinsäurefunktionalisierter Fasern (V)

FTIR-ATR (ν in cm⁻¹): 1722(s – Amid(I)), 1625 (s), 1549(s – Amid(II)), 1466(s), 1454(s), 1398(m), 1357(m), 1342(s), 1303(w), 1278(m), 1240 (s), 1143 (w), 1097(s - PEO), 1058(m), 960(s), 840(s), 711(m)

¹H-NMR (400 MHz, DMSO, RT, in ppm):
δ = 0,78-0,86 (m, 36H, CH₃-Val), 1,0 (d, 6H, CH₃-Thr, J=5,99 Hz), 1,05 (d, 6H, CH₃-Thr, J = 5,77 Hz), 1,22 (m, 3H, γ–CH₂-Lys), 1,49 (m, 2H, β–CH₂-Lys), 1,62 (m, 1 H.), 1,75 (t, 6H, δ–CH₂-Lys, J =7,3 Hz), 1,89-1,99 (m, 6H, β–CH-Val), 2,70* (t, ~2H, β–Pentins.) 2,77* (s, ~12H, CH₃-dmG), 2,08 (m, ~2H, β–Pentins.), 3,0 +3,15 (m, 2+2H, γ-Pentins.), 3,39 (d, 4H CH₂-Templat), 3,49 (s, br, 290H, PEO), 3,66 (t, 2H), 3,93-3,97 (m, 8H, β-Thr + 4H, e-Lys)*, 4,09 (dt, 2H, α–CH-Lys), 4,19-4,4 (mm, 10H, α–CH-Val/Thr), 4,85 (m, 1H, NH), 4,93 (s, 2, CH₂-Carbazol), 7,22 (d, 2H, J = 8,04 Hz, CH-Templat aromat.), 7,37 (d, 2H, CH-Templat aromat.), 7,62 (d, 2H NH, J=8,77Hz), 7,71 (d, 2H, NH, J=8,62Hz), 7,75 (s, 2H, Triazol), 7,86* (s, ~2H, CH-Templat aromat.), 7,87* (d, ~2H, NH)), 8,03 (d, 2H, NH), 8,3 (m, 1H, NH), 8,6 (d, 2H, NH)

*können nicht getrennt integriert werden

Die Masse von V berechnet sich aus folgenden Anteilen: Der Masse des PEO (M[PEO]), der Masse des Templates (M[Templat]), der Masse der Peptidarme (M[Peptid]), der Endgruppe (M[Endgruppe]), sowie des Gegenions (M[Gegenion]). Es ergibt sich daraus:

Jede Wiederholungseinheit eines Ethylenoxides wiegt M[Ethylenoxid] = 44,04 Da. Mit der Masse des Templates (M[Templat]=335,19 Da), der Endgruppen (am PEO nur H = 1 Da), sowie des Gegenions M[Gegenion]= 22,99 Da (Kalium) ergibt sich:
Das Polymer-Peptid-Konjugat besteht aus zwei analogen Peptidketten an die je ein Pentinsäuremolekül mittels 1,3-dipolarer Addition angebracht wurde, für jede Peptidkette von \(V \) ergibt sich daher \(M_{\text{Peptid}} = 739,19 \text{ Da} + 98,10 \text{ Da} = 837,29 \). Mit \(n = 70 \) Wiederholungseinheiten des PEO folgt daraus:

\[
M(IX)^+ = 70 \cdot 44,04 + 335,19 + 2 \cdot 837,29 + 1 + 22,99 = 5116,56 \text{ Da (exp: 5116,76 Da)}
\]

Abbildung 39. MALDI-TOF-MS von \(V \) in der ACHC als Matrix.

Herstellung NTA-Alkin

Zu einer Lösung von Propargylglycin wurden unter Schutzgas 4Äq. \(^1\text{Bu}-\text{Bromacetat} \) und 10Äq. DIPEA gegeben. Bei 55°C wurde die Lösung für 17 Stunden gerührt. Im Anschluss wurde die Lösung eingeengt und mit Cyclohexan: Ethylacetat (3:1) vermischt. Der entstandene Brei wurde abgefiltert und 3 mal mit Ethylacetat gewaschen. Das Filtrat wurde unter reduziertem Druck getrocknet, mit Cyclohexan: Ethylacetat (2:1) gesäult. Das so gewonnene Produkt wurde mit NMR und ESI-MS analysiert:

<table>
<thead>
<tr>
<th>Zuordnung</th>
<th>Gefunden</th>
<th>Theoretisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{M+Na}]^+)</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>([\text{M+H}]^+)</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td>([\text{M+Na-}^1\text{Bu}]^+)</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>([\text{M+Na-}^2\text{Bu}]^+)</td>
<td>400</td>
<td>399</td>
</tr>
<tr>
<td>([\text{M+Na-}^2\text{Bu}]^+)</td>
<td>366</td>
<td>366</td>
</tr>
<tr>
<td>([\text{M+H-}^2\text{Bu}]^+)</td>
<td>344</td>
<td>343</td>
</tr>
<tr>
<td>([\text{M+H-}^3\text{Bu}]^+)</td>
<td>288</td>
<td>287</td>
</tr>
</tbody>
</table>

Tabelle 7 Zuordnung der ESI-MS Signale (\(M^0 = 455,45 \text{ g/mol} \)):
\textbf{Herstellung NTA funktionalisierter Fasern (VI)}

Zu der Lösung der azidfunktionalisierten Fasern wurden unter Argon Schutzgas 1,5 Äq Kupfersulfat, 1,5 Äq NTA-Derivat (vollgeschützt) gegeben. Zu dieser langsam gerührten Lösung wurden 3 Äq Natriumascorbat (NaAsc) gegeben. Unter Schutzgas wurde über Nacht gerührt und dann durch Zusatz von TREN und Dialyse gegen Wasser die Reagenzien entfernt. Das Produkt wurde mit IR und MALDI-TOF und NMR charakterisiert.

\textbf{Herstellung von Asp₆}

Mittels SPPS wurde das Hexapeptid am SRam Harz aufgebaut. An das Amin Ende des Peptides wurde per Handkupplung Pentinsäure gekuppelt, nach vollständiger Kupplung (Kaiser Test) wurde mit 30 % TFA/ DCM vom Harz abgespalten, in Diethylether ausgefällt und dialysiert.

\textbf{1H-NMR (400 MHz, D₂O, RT, in ppm):}
\[\delta = 2,38 \text{ (s, 1H, Alkin H), 2,51 (s, 4H, Pentinsäure), 2,8-3,1 (m, 12 H β-Asp), 3,71 (s, 4H), 4,74 (m, 6H α-Asp)} \]

\textbf{FTIR-ATR (\(\nu \) in cm⁻¹):}
\[3278 \text{ (s), 3076 (w), 2933 (w), 1710 (s), 1643 (s), 1533 (s), 1406 (s), 1340 (w), 1286 (m), 1224 (w), 1180 (s), 914 (m), 833(w) } \]
Herstellung der asparaginsäurefunktionalisierten Fasern (VII)

Zu der Lösung der azidfunktionalisierten Fasern wurden unter Argon Schutzgas 1,5 Äq Kupfersulfat, 1,5 Äq Asparaginsäurehexapeptid gegeben. Zu dieser langsam gerührten Lösung wurden 3 Äq Natriumascorbat (NaAsc) gegeben. Unter Schutzgas wurde über Nacht gerührt und dann durch Zusatz von TREN und Dialyse gegen Wasser die Reagentien entfernt. Das Produkt wurde mit IR und MALDI-TOF und NMR charakterisiert.

FTIR-ATR (υ in cm⁻¹): 1722(s), 1625 (s), 1549(s), 1466(s), 1454(s), 1398(m), 1357(m), 1342(s), 1303(w), 1278(m), 1240 (s), 1143 (w), 1097(s), 1058(m), 960(s), 840(s), 711(m)

¹H-NMR (400 MHz, DMSO, RT, in ppm):
δ = 0,84 (m, 36H, γ-Val), 1,02 (m, 12H, γ -Thr), 1,15 (s, 2H, γ -Lys), 1,23 (s, 2H), 1,29 (m, 1H), 1,48 (d, 2H), 1,5 + 1,65 (m, 4H, β -Lys), 1,77 (m, 4H, Templat), 1,79-1,99 (m 6H, β -Val), 2,23 (s, 12 H, Me-N), 2,33 (s, 4 H, Teil von m β -Asp)**, 2,60 (s, 2H Teil von m β -Asp)**, 2,67 (s, 4H, Pentinsäure), 2,73 (s, 4H, Pentinsäure)*, 2,91 (d, 4H, Me-dmG)*, 3,5 (m, PEO), 3,94 (s, 1H), 4,01 (s, 1H), 4,1 (t, 1H), 4,19 (4,29 (s, 4H α-Thr), 4,40 (s, α-Val), 4,93 (s, 2 H, NH), 6,52 (s, 1H, NH), 6,8 (m, 1H, NH), 7,05 (t, 1H, NH), 7,23 (d, 2 H, Templat, J = 7,05 Hz), 7,37 (d, 2H, Templat, J = 7,05), 7,65 (d, 3H, J =), 7,74 (m, 1 H), 7,88 (s, 3 H), 8,0 (m, 1H, NH), 8,1 (m, 1H, NH), 8,2 (m, 1H, NH)

MALDI-TOF:
Die MALDI TOF-MS Messung gestaltete sich schwierig, da die 12 Carbonsäuregruppen eine positive Ionisierung erschweren. In ACHC als Matrix konnten keine Signale detektiert werden, in DHB war das Spektrum sehr verrauscht, aber auswertbar:

Die Masse von (VII) berechnet sich aus folgenden Anteilen: Der Masse des PEO (M_{PEO}), der Masse des Templates (M_{Templat}), der Masse der Peptidarme (M_{Peptid}), der Endgruppe (M_{Endgruppe}), sowie des Gegenions (M_{Gegenion}). Es ergibt sich daraus:

\[M^+_{(a)} = n \cdot M_{[Etyleneoxin]} + M_{[Templat]} + 2 \cdot M_{[Peptid]} + M_{[Endgruppen]} + M_{[Gegenion]} \]
Jede Wiederholungseinheit eines Ethylenoxides wiegt $M_{\text{[Ethylenoxid]}} = 44,04$ Da. Mit der Masse des Templates ($M_{\text{[Templat]}} = 335,19$ Da), der Endgruppen (am PEO nur $H = 1$ Da), sowie des Gegenions $M_{\text{[Gegenion]}} = 39,1$ Da (Kalium) ergibt sich:

$$M_n = n \cdot 44,04 + 335,19 + 2 \cdot M_{\text{[Peptid]}} + 39,1 + 1 \ [Da]$$

Das Polymer-Peptid-Konjugat besteht aus zwei analogen Peptidketten an die je ein alkinfunktionalisiertes Asparaginsäurehexapeptid ($M = 787,65$ Da) angebracht wurde, für jede Peptidkette von (VII) ergibt sich daher $M_{\text{Peptid}} = 739,19 + 787,65 + 1526,84 = 2053,64$. Mit $n = 56$ Wiederholungseinheiten des PEO folgt daraus:

$$M(VII)^{-} = 56 \cdot 44,04 + 335,19 + 2 \cdot 1526,84 + 1 + 39,1 = 5895,21 \ [Da] \ (\text{exp:} 5896,61 \ [Da])$$

Weiterhin sind dominante m/z Signale zu erkennen, die der Polymerverteilung von M ± 44 Da zugeordnet werden können. Das Spektrum ist relativ verrauscht, was auf eine unzureichende Ionisierung von VII zurückgeführt wurde.

Abbildung 40. MALDI-TOF-MS von VII unter Benutzung von DHB als Matrix.

Herstellung His$_6$

Mittels SPPS wurde das Hexapeptid am SRam Harz aufgebaut. An das Amin Ende des Peptides wurde per Handkupplung Pentinsäure gekoppelt, nach vollständiger Kupplung (Kaiser Test) wurde mit 30 % TFA/ DCM vom Harz abgespalten, in Diethylether ausgefällt und dialysiert.
FTIR-ATR (ν in cm$^{-1}$): 3284 (w), 3136(s), 3028 (s), 2862 (m), 2796 (w), 2640 (w), 1728 (m), 1654 (s), 1625 (w), 1529 (s), 1429 (s), 1350 (w), 1176 (s), 1124 (s), 958 (m), 914 (w), 829 (s), 796 (s), 719 (s), 623 (s)

Herstellung der His$_6$ Fasern (VIII)

FTIR-ATR (ν in cm$^{-1}$): 3269 (s), 3089 (m), 2866 (s), 2100 (s), 1627 (s), 1544 (s), 1465 (s), 1452 (m), 1398 (m), 1359 (m), 1342 (s), 1278 (s), 1238 (s), 1143 (m), 1099 (s), 1061 (w), 960 (m), 943 (m), 840 (s), 823 (w), 801 (w), 761 (w), 704 (m), 663 (w), 623 (m)

Herstellung galactosefunktionaler Polymer-Peptid-Fasern (IX)

Zu der Lösung der azidfunktionalen Fasern (1Äq.) wurden 0,1 Äq. CuSO$_4$, sowie 0,1 Äq. TBTA unter Schutzgas gegeben. Zu dieser Lösung wurde Natriumascorbat (0,5 Äq.), sowie fünf Minuten später der alkinmodifizierte Zucker (1,5 Äq.) gegeben.

Nach 24 Stunden Reaktionszeit wurde dialysiert und gefriergetrocknet. Das erhaltene Molekül wurde mit MALDI-TOF, IR und NMR untersucht.

Die Masse von (IX) berechnet sich aus folgenden Anteilen: Der Masse des PEO (M_{PEO}), der Masse des Templates (M_{Templat}), der Masse der Peptidarme (M_{Peptid}), der Endgruppe ($M_{\text{Endgruppe}}$), sowie des Gegenions (M_{Gegenion}). Es ergibt sich daraus:

$$M'_{\text{IX}} = n \cdot M_{\text{Ethylenoxid}} \cdot M_{\text{Templat}} + 2 \cdot M_{\text{Peptid}} + M_{\text{Endgruppen}} + M_{\text{Gegenion}}$$

Jede Wiederholungseinheit eines Ethylenoxides wiegt $M_{\text{Ethylenoxid}} = 44,04$ Da. Mit der Masse des Templates (M_{Templat}) = 335,19 Da, der Endgruppen (am PEO nur H = 1 Da), des Gegenions $M_{\text{Gegenion}} = 22,99$ Da (Natrium), sowie für jede Peptidkette zusätzlich einmal die Masse des Zuckers von 218,21 Da: (IX) $M_{\text{Peptid}} = 739,19$ Da + 218,21 Da = 957,40. Mit $n = 67$ Wiederholungseinheiten des PEO folgt daraus:

$M(IX) = 67 \cdot 44,04 + 335,19 + 2 \cdot 957,40 + 1 + 22,99 = 5224,66$ Da (exp: 5223,54 Da)

Weiterhin sind dominante m/z Signale zu erkennen, die der Polymerverteilung von $M \pm 44$ Da zugeordnet werden können. Das Spektrum ist relativ verrauscht, was auf eine unzureichende Ionisierung von IX zurückgeführt wurde.
Abbildung 41. MALDI-TOF-MS Spektrum von (IX) in der Matrix DHB.

FTIR-ATR (v in cm⁻¹): 2100(s), 1627(s), 1546(s), 1465(s), 1454(w), 1396(w), 1357(m), 1359(m), 1303(w), 1342(s), 1278(m), 1240(m), 1145(w), 1099(s), 1058(w), 960(s), 947(w), 841(s), 798(w), 709(m)

¹H-NMR (400 MHz, DMSO, RT, in ppm):
δ = 0,79-0,81 (m, 36H, CH₃-Val), 0,98*¹ (d, 6H, CH₃-Thr), 1,03*¹ (d, 6H, CH₃-Thr), 1,21 (m, 6H, δ-CH₂-Lys), 1,47(m, 4H, γ-CH₂-Lys), 1,63 (m, 2 H, β-CH₂-Lys), 1,74 (t, 6H, CH₂-Templat), 1,88-1,98 (m, 6H, β-CH-Val), 2,69 (t, 4H) (2,76 (br, 12H, CH₃-dmG), 3,01 (m, 2H), 3,15 (d, 2H), 3,21 (m, 4H, ε-CH₂-Lys), 3,38 (d, 4H CH₂-Templat), 3,47(s + br, 290H, PEO), 3,66 (d, 2H, PEO-CH₂-CH₂-NH-Gly-Templat), 3,93*⁴ (m, ~4H, β-Thr), 3,95*⁴ (m, ~4H, ε-Lys), 4,1 (dt, 2H, α-CH-Lys), 4,18-4,35* (mm, 12H, α-CH-Val/Thr), 4,83 (m, 1H, NH), 4,91 (s, 2, CH₂-Carbazol), 7,19 (d, 2H, J = 8,04 Hz, CH-Templat aromat.), 7,21 (d, 2H, Templat aromat.), 7,61 (d, 1H, NH), 7,69 (m, 1H, NH), 7,85*² (s, ~2H, CH-Templat aromat.), 7,87*² (m, ~1H, NH), 7,99*³ (s, ~2H, Triazol), 8,02*³ (m, ~1H, NH), 8,61 (m, 1H, NH), 9,59 (br, ~1H)

*nicht getrennt integrierbar
7.3. Methoden:

Zirkular Dichroismus (CD)

Die CD Messungen wurden an dem Spektrometer J 715 der Firma Jasco durchgeführt. Die Schichtdicke der verwendeten Küvette betrug 1mm, die Messungen erfolgten bei Raumtemperatur in einem Messbereich von 300 bis 190 nm.

Die Messparameter waren im einzelnen: Auflösung 0,2 nm, Scangeschwindigkeit 50 nm/min; Response: 4 sec, Bandbreite 1 nm. Für jede Messung wurden 8 Einzelmessungen akkumuliert, die durch das reine Lösungsmittel korrigiert wurden.

Kernresonanzspektroskopie (NMR)

Die NMR-Spektren wurden an einem Bruker DPX 400-Spektrometer in DMSO-d6 bei 400 mHz \((\text{^1}H\text{-NMR}) \), 100 mHz \((\text{^13}C\text{-NMR}) \) gemessen. Die Anteile nicht-deuterierter Lösungsmittel dienten als interne Standards bezogen auf Tetramethylsilan. Die Auswertung der Spektren wurde Mithilfe des Programms Win-NMR von Bruker durchgeführt.

FT-IR-Spektroskopie

Die IR Spektroskopie wurden an einem Gerät der Firma BioRad, Modell FTS 6000 erstellt. Dazu wurden die lyophilisierten Feststoffe direkt auf dem ATR Kristall (abgeschwächte totale Reflexion) unter Verwendung der sog. Golden Gate Technik gemessen.

Bei der Angabe der IR-Spektroskopischen Daten wurden folgende Abkürzungen verwendet: \(\bar{v} = \text{Wellenzahl (cm}^{-1}) \); s = Bande mit starker Intensität, m = Bande mit mittlerer Intensität, w = Bande mit schwacher Intensität. Einzelne Banden wurden speziell zugeordnet, diese Zuordnungen sind in Klammern angegeben.

Rasterkraftmikroskopie (AFM)

Die Aufnahmen wurden mit einem NanoScope IIIa-Gerät der Firma Veeco Instruments, Santa Barbara, CA, USA im „tapping mode“ angefertigt. Es kamen kommerzielle Siliciumspitzen (Typ NCR-W) zum Einsatz, deren Tip-Radius zwischen 6 und 10 nm groß ist. Es wurde keine Tip-Korrektur durchgeführt.
Die Aufnahmen wurden mit einer Kraftkonstante von 42 N·m⁻¹ bei einer Resonanzfrequenz von 285 kHz angefertigt. Die Abbildung wurde mit einem 10x10 μm e-Scanner aufgenommen.

Die Probenpräparation erfolgte durch Spincoating Lösungen (wenn nicht anders angegeben C = 0,2 g/L) auf frisch abgezogenen Mica-Substraten. Es wurden jeweils 5 μl Lösung auf das stehende Substrat aufgetropft, etwa drei Sekunden gewartet und anschließend mit einer Geschwindigkeit von 3000 min⁻¹ zwei Minuten rotiert.

Fluoreszenz
Die Messungen der Fluoreszenz wurden in Kunststoff-Einmalküvetten an einem Lumineszenz Spektrometer der Firma Perkin Elmer, Connecticut, USA bei einer Anregungswellenlänge von 488 nm und einem Emissionsmaximum bei λ = 520 nm durchgeführt.

Massenspektrometrie (MALDI-TOF-MS)

Die Proben wurden in einer Konzentration von 0,1 mg/mL in Methanol/Acetonitril (1:1, mit oder ohne Zusatz von 0,1 % TFA (v/v))gelöst. Es wurde 1μl dieser Lösung mit 1 μl einer a-Cyano-4-Hydroxyzimtsäure-Matrix-Lösung (10 mg/ mL in 0,3 % TFA in Methanol/ Acetonitril (1:1) (v/v)) gemischt. Von dieser Mischung wurde 1 μl auf eine Probenplatte aufgebracht und bei 24 °C getrocknet. Die Messungen wurden bei einer Beschleunigungsspannung von 20 kV durchgeführt. Jedes Spektrum wurde aus 250 Laserpulsen gemittelt.

Elektrospray-Ionisation Massenspektrometrie (ESI-MS)
Die Messungen der erfolgten an einem Gerät (LCMS-ESI-MS PQ8000α) der Firma Shimadzu, Duisburg, Deutschland.

Dieses Gerät kann als HPLC-MS betrieben werden, indem eine YMC-Pack-Pro C18 Säule vorgeschaltet wird. Wurde diese Technik genutzt werden Lösungsmittel- oder Gradient, bei
den jeweiligen Messungen angegeben. Wenn nicht anderes angegeben, wurde ein Gradient von 100 % Methanol zu 100 % Wasser in 30 Minuten.

Die Probe wurde mit einer Konzentration von 1 mg/mL in Methanol mit 0,1 % Ameisensäure (v/v) oder Acetonitril/ Wasser (1:1 v/v) gelöst und anschließend 10 μl dieser Lösung mit dem Autosampler eingespritzt. Es wurde Stickstoff als Trärgas (4,5 mL/min) verwendet. Die Probe wurden (wenn nicht anders angegeben) im positiven Modus mit einer Detektorspannung von 1,6 kV, einer Düsentemperatur von 150 °C und einer Spannung von 4,5 kV gemessen.
7.4. Abkürzungsverzeichnis:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Voller Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Rasterkraftmikroskopie</td>
</tr>
<tr>
<td>App</td>
<td>Annäherung (engl. Approximation)</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Arginin</td>
</tr>
<tr>
<td>Asc</td>
<td>Ascorbinsäure (Vitamin C)</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Asparaginsäure</td>
</tr>
<tr>
<td>AUZ</td>
<td>Analytische Ultrazentrifuge</td>
</tr>
<tr>
<td>Bipy</td>
<td>2,2'-Bipyridin</td>
</tr>
<tr>
<td>BS</td>
<td>Bernsteinsäure</td>
</tr>
<tr>
<td>Boc</td>
<td>tert.-Butoxycarbonyl</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N´-Dicyclohexylcarbodiimid</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichlormethan</td>
</tr>
<tr>
<td>DETA</td>
<td>Diethylenetriamin</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropylethylamin</td>
</tr>
<tr>
<td>DIC</td>
<td>N,N´-Diisopropylcarbodiimid</td>
</tr>
<tr>
<td>dmG</td>
<td>N,N-Dimethylglycin</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>en</td>
<td>Ethylendiamin</td>
</tr>
<tr>
<td>ESI</td>
<td>Elektrosprayionisation</td>
</tr>
<tr>
<td>Fmoc</td>
<td>9-Fluorenylmethoxycarbonyl</td>
</tr>
<tr>
<td>FTIC</td>
<td>Fluoresceinethioisocyanat</td>
</tr>
<tr>
<td>Gln</td>
<td>Glutamin</td>
</tr>
<tr>
<td>His (H)</td>
<td>Histidin</td>
</tr>
<tr>
<td>HBTU</td>
<td>2-(1H-bezontriazole-1-yl)-1,1,3,3,-tetramethyluronium-hexafluorophosphat</td>
</tr>
<tr>
<td>HOBT</td>
<td>1-Hydroxybenztriazol</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochleistungsflüssigchromatographie</td>
</tr>
<tr>
<td>IR-Spektroskopie</td>
<td>Infrarot Spektroskopie</td>
</tr>
<tr>
<td>ITC</td>
<td>Isothermale-Titrations-Calorimetrie</td>
</tr>
<tr>
<td>LS</td>
<td>Lichtstreuung</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Lysin</td>
</tr>
<tr>
<td>MALDI TOF</td>
<td>Matrix Assisted Laser Desorption – Time of Flight</td>
</tr>
<tr>
<td>NMP</td>
<td>n-Methyl-2-Pyrrolidon</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance, Kernmagnetische Resonanz</td>
</tr>
<tr>
<td>NTA</td>
<td>Nitriloessigsäure</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser and Enhancement Spectroscopy</td>
</tr>
<tr>
<td>Ox</td>
<td>Oxalat</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylenoxid</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PyAOP</td>
<td>7-azabenzotriazol-1-yloxytris(pyrrolidino)phosphonium-hexafluorophosphat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Voller Name</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylsäure</td>
</tr>
<tr>
<td>PyBOP</td>
<td>Benzotriazol-1-yl-oxytrypyrrolidino-phosphonium-hexafluorophosphat</td>
</tr>
<tr>
<td>SPPS</td>
<td>Solid Phase Peptid Synthesis</td>
</tr>
<tr>
<td>TBTA</td>
<td>Tris-(benzyltriazolmethyl)amin</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoressigsäure</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Threonin</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilan</td>
</tr>
<tr>
<td>TMSB</td>
<td>Trimethylsilylbromid</td>
</tr>
<tr>
<td>TNBSA</td>
<td>Trinitrobenzolsulfonsäure</td>
</tr>
<tr>
<td>TREN</td>
<td>Trietylenetetraamin</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin</td>
</tr>
<tr>
<td>Trt</td>
<td>Tritylgruppe</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
<tr>
<td>UP</td>
<td>Unpolare Aminosäure</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Valin</td>
</tr>
</tbody>
</table>
7.5. Literaturverzeichnis

Danksagung

Mein besonderer Dank gilt Prof. Dr. Markus Antonietti für die Möglichkeit an seinem Institut zu promovieren, für seinen fachlichen Rat und für seine Begeisterung an der Chemie, die einen immer wieder inspirieren und anspornen können.

Ich danke meinem direkten Betreuer Dr. Hans Börner für seine unzählige Ideen, Vor- und Ratschläge.

Ich danke der gesamten Kaffeecke (das Wort mit den 3e) für die Pausen mit vielen Gesprächen. Im Einzelnen Jessica und Katharina, Nancy und Romina die inzwischen alle zum Kaffee trinken bekehrt wurden, was hoffentlich nicht der Vergessenheit anheim fällt. Besonders danke ich Steffi, die nicht nur mit uns Kaffee und Tee getrunken hat, sondern sich aufopferungsvoll durch meine Hieroglyphen gewühlt hat.

Ein besonderer Dank gebührt Klaus Tauer, Helmut Schlaad, Helmut Cölfen und Arne Thomas, deren Türen tagsüber für Diskussionen zu jedem Thema immer offen standen und nachts immer verschlossen waren (was ich freilich nie überprüft habe).
Für viele AFM, NMR, SEM, TEM, AUZ und GPC Messungen danke ich Anne Heilig, Olaf Niemeyer, Rona Pitschke, Heike Runge, Antje Völkel sowie Marlies Gräwert.

Ich danke allen Freunden und meinen Verwandten, für das ihr Verständnis sowie die Unterstützung und Zuversicht während der Promotion.

Ein unendlich riesiger Dank gilt meiner kleinen Familie, die mich unterstützt, aufgebaut, geschont und motiviert haben. Vielen Dank für eure Liebe!