Die Rolle der Phosphatidylserin Decarboxylase für die mitochondriale Phospholipid-Biosynthese in Arabidopsis thaliana

Dissertation
zur Erlangung des akademischen Grades
„doctor rerum naturalium"
(Dr. rer. nat.)
in der Wissenschaftsdisziplin „Biochemie“

eingereicht an der
Mathematisch - Naturwissenschaftlichen Fakultät
der Universität Potsdam

von
Annika Nerlich

Potsdam, den 15.01.2007
Inhaltsverzeichnis

1. Einleitung ... 1
 1.1 Lipide ... 1

1.2 Biosynthese pflanzlicher Glycerolipide .. 2

1.3 Die Synthesewege von Aminophosphoglyceriden in Pflanzen ... 4

1.4 Transport von Phosphatidylserin vom ER zum Mitochondrium .. 5

1.5 Die Phosphatidylserin Decarboxylase (PSD) .. 7
 1.5.1 PSDs in verschiedenen Organismen ... 8
 1.5.1.1 PSD in *Escherichia coli* ... 8
 1.5.1.2 PSD in *Saccharomyces cerevisiae* ... 9
 1.5.1.3 PSD in Pflanzen .. 9

1.6 Funktionen von PS und PE ... 10

1.7 Mitochondrien und deren Funktion .. 11

1.8 Zielsetzung .. 14

2. Materialien und Methoden .. 15
 2.1 Geräte, Chemikalien, Kits und Enzyme... 15

 2.2 Synthetische Oligonucleotide.. 18

 2.3 Plasmide und Konstrukte... 19

 2.4 Bakterienstämmme... 20

 2.5 Pflanzenmaterial.. 20

 2.6 Medien ... 21

 2.7 Sequenzierungen und Sequenzanalysen.. 22

 2.8 Molekularbiologische Methoden.. 22
 2.8.1 Klonierungen .. 22
 2.8.2 Transformation von *Arabidopsis thaliana* ... 23
 2.8.3 Southern Blot Analysen ... 23
 2.8.4 Northern Blot Analysen .. 25
 2.8.5 Semiquantitative real-time PCR ... 25
 2.8.6 Isolation genomischer DNA aus *Arabidopsis* Blättern (Kurzprotokoll) 26
 2.8.7 Amplifizierung von Genloci und Aufreinigung des PCR Produkts ... 26
 2.8.8 Identifizierung von T-DNA Insertionsmutanten .. 27
 2.8.9 Western Blot Analysen ... 27
 2.8.10 Lokalisierungsstudien mit GFP-Konstrukten .. 28
2.9 Biochemische Methoden ... 28
 2.9.1 Lipidanalysen.. 28
 2.9.1.1 Lipidextraktion aus A. thaliana .. 28
 2.9.1.2 Lipidextraktion aus Mitochondrien ... 29
 2.9.1.3 Auftrennung der polaren Lipide über Dünnschichtchromatographie ... 29
 2.9.1.4 Visualisierung und Lokalisierung der Lipide auf einer Dünnschichtplatte 29
 2.9.1.5 Gaschromatographische Analyse von Fettsäuremethyl estern ... 30
 2.9.2 Isolation von Mitochondrien.. 30
 2.9.3 Isolation von Protoplasten.. 31
 2.9.4 Färbung von Mitochondrien mit MitoTracker® Orange... 32
 2.9.5 Konfokale Fluoreszenz Laserscanning Mikroskopie .. 32
 2.9.6 PSD-Enzymtest .. 32
 2.9.6.1 PSD-Enzymtest mit A. thaliana ... 32
 2.9.6.2 PSD-Enzymtest mit E. coli .. 33
 2.9.6.3 PSD-Enzymtest mit Mitochondrien .. 34
 2.9.7 Extraktion von Nukleotiden und Analyse mit HPLC ... 34
 2.9.8 Messung der Atmungsraten mit Sauerstoffelektrode ... 35
 2.9.9 Alexander-Färbung ... 36
 2.10 Anzucht von Arabidopsis thaliana ... 36
 2.10.1 Induktion des Ethanol induzierbaren Promotors .. 36
 2.10.2 Kreuzung von A. thaliana ... 37
 2.10.3 Infiltration von A. thaliana Blüten mit Jasmonsäure ... 37
 2.10.4 Elektronenmikrokopische Aufnahmen von A. thaliana ... 37
 2.11 Anzucht von Escherichia coli ... 37

3. Ergebnisse ... 39
 3.1 Expression verschiedener PSDs in heterologen Systemen und in Arabidopsis thaliana 39
 3.1.1 Heterologe Expression von atPSD2 und atPSD3 in E. coli .. 39
 3.1.2 Heterologe Expression von atPSD2 und atPSD3 in S. cerevisiae .. 40
 3.1.3 Charakterisierung transgener Arabidopsis Überexpressionslinien ... 41
 3.1.3.1 Überexpression von atPSD3 in Arabidopsis Col-0 Wildtyppflanzen unter Kontrolle eines konstitutiven Promotors ... 42
 3.1.3.2 Überexpression von atPSD3 in Arabidopsis Col-0 Wildtyppflanzen unter Kontrolle eines ethanol induzierbaren Promotors ... 42
 3.1.3.3 Überexpression von ppPSD in Arabidopsis Col-0 Wildtyppflanzen unter Kontrolle eines konstitutiven Promotors ... 42
 3.2 Subzelluläre Lokalisierung der Phosphatidylserin Decarboxylasen aus Arabidopsis 43
 3.3 Expressionsanalyse von atPSD1, atPSD2 und atPSD3 in verschiedenen Geweben 44
 3.4 Isolation der T-DNA Insertionsmutanten psd1 und psd1psd2-1psd3-1 .. 45
 3.4.1. Isolation der T-DNA Insertionsmutante psd1 ... 45
3.4.2 Isolation einer psd1psd2-1psd3-1 Dreifachmutante .. 45
3.5 Southern Blot Analyse der psd1psd2-1psd3-1 Dreifachmutante .. 47
3.6 PSD Genexpressionsanalyse in psd1, psd2-1 und psd3-1 ... 48
3.7 PSD-Enzymtest mit psd1 und der psd1psd2-1psd3-1 Dreifachmutante 50
3.8 Phänotypische Charakterisierung der psd1psd2-1psd3-1 Dreifachmutante.............................. 52
3.8.1 Bestäubungsversuche .. 53
3.8.2 Veränderte Blütenmorphologie der psd1psd2-1psd3-1 Mutante .. 53
3.8.3 Pollenvitalitätstest der psd Dreifachmutante .. 55
3.8.4 Samenbildung in Schoten der psd Dreifachmutante ... 56
3.9 Lipidanalysen ... 57
3.9.1 Lipidkomposition in Blättern und Blüten von Col-0 und psd1psd2-1psd3-1 57
3.9.1.1 Fettsäuremuster von PE und PS aus Blättern und Blüten von Col-0 und psd1psd2-1psd3-1. 58
3.9.2 Lipidanalyse isolierter Mitochondrien ... 60
3.10 Charakterisierung der Mitochondrien und deren Funktionalität in psd1 und psd1psd2-1psd3-1 Mutanten ... 61
3.10.1 Analyse der Anzahl der Mitochondrien in psd1 und psd1psd2-1psd3-1 Mutanten 61
3.10.2 Keimungsrate von psd1 und psd1psd2-1psd3-1 bei 21 % und 1 % Sauerstoff 63
3.10.3 Messung der Atmung von psd1 und psd1psd2-1psd3-1 Keimlingen 64
3.10.4 Messung des ADP/ATP-Verhältnisses ... 65
3.10.5 Mitochondrien-Ultrastruktur in psd1psd2-1psd3-1 ... 66
3.10.6 Expressionsanalyse kerncodierter Komplex I Untereinheiten der mitochondrialen Atmungskette ... 67
3.11 Komplementationsanalysen der psd1psd2-1psd3-1 Dreifachmutante 68
3.11.1 Transformation der psd1psd2-1psd3-1 Dreifachmutante mit atPSD1 68
3.11.1.1 Untersuchung der Pollen von WT Col-0, psd1, psd1psd2-1psd3-1 und atPSD1-psd1psd2-1psd3-1 .. 69
3.11.2 Transformation der psd1psd2-1psd3-1 Dreifachmutante mit atPSD3 70
3.12 Homöotische Gene in der psd1psd2-1psd3-1 Dreifachmutante ... 71
3.12.1 Expressionsanalyse von homöotischen Genen der Blütenbildung 71
3.12.2 Überexpression von APETALA3 in psd1psd2-1psd3-1 .. 73
3.13 Isolation und Charakterisierung einer zweiten psd1psd2-2psd3-2 Mutante 74
3.13.1 Isolation und Charakterisierung der psd1psd2-2psd3-2 Mutante 74
3.13.2 Expressionsanalyse von APETALA3 in psd1psd2-2psd3-2 ... 75

4. Diskussion ... 77

4.1 Funktionalität und subzelluläre Lokalisierung einzelner PSDs... 77
4.1.1 Die Gene atPSD1, atPSD2 und atPSD3 codieren für funktionale Phosphatidylserin Decarboxylasen ... 77
4.1.2 *ar*PSD1 ist am Mitochondrium, *ar*PSD2 am Tonoplasten und *ar*PSD3 am ER lokalisiert........... 79

4.2 Charakterisierung der *psd* Mutanten .. 79

4.3 Der Blütenphänotyp der *psd1*psd2-1*psd3*-1 Mutante und mögliche Ursachen 81

4.3.1 Der Einfluss von Jasmonsäure auf die Blütenmorphologie... 81

4.3.2 Der Einfluss der Mitochondrien auf die Blütenmorphologie .. 82

4.3.3 Der Einfluss von homöotischen Genen auf die Blütenmorphologie... 85

4.4 Einfluss des T-DNA Insertionsvektors pD991-AP3 auf den Blütenphänotyp................................. 86

4.4.1 Mehrere Faktoren führen zum Blütenphänotyp der *psd1*psd2-1*psd3*-1 Mutante 89

5. Zusammenfassung.. 90

6. Ausblick... 91

7. Literatur .. 92
Abbildungsverzeichnis

Abb. 1: Eukaryotischer und prokaryotischer Biosyntheseweg der Glycerolipide ... 3
Abb. 2: Synthesewege der Aminophosphoglyceride .. 5
Abb. 3: Translokation und Decarboxylierung von PS in Säugerzellen ... 6
Abb. 4: Die Reaktion der Phosphatidylserin Decarboxylase ... 7
Abb. 5: Phylogenetischer Baum der PSDs aus verschiedenen Organismen ... 9
Abb. 6: Schematische Darstellung des mitochondrialen Energiestoffwechsels 12
Abb. 7: PSD-Aktivitätstest mit Proteinen aus transformierten EH150 Zellen .. 40
Abb. 8: Komplementation der Hefe psd1psd2 Doppelmutante mit Arabidopsis PSD cDNAs 41
Abb. 9: GFP Lokalisierungsstudien von atPSDs in Blattpidermiszellen von A. thaliana 43
Abb. 10: Expressionsanalyse der PSD Gene in verschiedenen Geweben von A. thaliana 44
Abb. 11: Lokalisierung der T-DNA innerhalb der psd Mutanten Linien ... 46
Abb. 12: Southern Blot Analyse zur Identifizierung der psd1psd2-1psd3-1 Dreifachmutante 48
Abb. 13: PSD Expressionsanalyse in psd1, psd2-1, psd3-1 und psd2-1psd3-1 Mutanten 49
Abb. 14: PSD Enzymtest mit Proteinen aus Mikrosomen und aus Mitochondrien 50
Abb. 15: Der Umsatz von PS zu PE in verschiedenen psd Mutanten ... 51
Abb. 16: Wachstumshototyp aller psd Mutanten ... 52
Abb. 17: Schotenbildung der psd1psd2-1psd3-1 Mutante und im WT Col-0 52
Abb. 18: Blütenphänotyp der psd Dreifachmutante .. 54
Abb. 19: Vitalitätstest für Pollen (Alexander-Färbung) in Col-0 und der psd Dreifachmutante 55
Abb. 20: Elektronenmikroskopische Aufnahmen von Pollen aus Col-0 und psd1psd2-1psd3-1 56
Abb. 21: Samenbildung in Schoten von Col-0 und der psd Dreifachmutante 57
Abb. 22: Lipidzusammensetzung in Blättern und Blüten von Col-0 und psd1psd2-1psd3-1 58
Abb. 23: Phospholipidzusammensetzung der Mitochondrien aus Col-0, psd1 und psd1psd2-1psd3-1 ... 60
Abb. 24: Anzahl der Mitochondrien in Protoplasten von WT Col-0, psd1 und psd1psd2-1psd3-1 62
Abb. 25: Immunodetektion von Cytochrom C in psd Mutanten .. 63
Abb. 26: Keimungsraten verschiedener psd Mutanten bei 21 % und 1 % Sauerstoff 64
Abb. 27: Atmungsraten von Col-0, Ws, psd1 und psd1psd2-1psd3-1 Keimlingen 65
Abb. 28: ATP/ADP-Verhältnis in Col-0, Ws, psd1 und psd1psd2-1psd3-1 .. 66
Abb. 29: Elektronenmikroskopische Untersuchung der Ultrastruktur von Mitochondrien 67
Abb. 30: Expressionsanalyse kerncodierter Untereinheiten des Komplexes I in Mitochondrien ... 68
Abb. 31: Komplementation der psd Dreifachmutante mit atPSD1 ... 69
Abb. 32: Lichtmikroskopische Aufnahmen von Staubblättern (A) und Pollen (B) von WT Col-0 (1), psd1 (2), psd1psd2-1psd3-1 (3) und atPSD1-psd1psd2-1psd3-1 (4) ... 70
Abb. 33: Komplementation der psd Dreifachmutante mit atPSD3 .. 71
Abb. 34: Organisation der Blüte in Wirteln (A) und das ABC-Model (B) 72
Abb. 35: Northern Blot Analyse zur Expression von APETALA3, PISTILATA und AGAMOUS in verschiedenen psd Mutanten und Wildtypen .. 72
Abb. 36: Blüte einer mit AP3 transformierten psd1psd2-1psd3-1 Mutante 74
Tabellenverzeichnis

Tab. 1 Kreuzungsschema der Kreuzung von psd2-1psd3-1 mit psd1. ... 46
Tab. 2: Fettsäurezusammensetzung von PE und PS in Col-0 und psd1psd2-1psd3-1. 59
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-DC</td>
<td>zweidimensionale Dünnschichtchromatographie</td>
</tr>
<tr>
<td>ACP</td>
<td>Acyl-Carrier-Protein</td>
</tr>
<tr>
<td>ADP / ATP</td>
<td>Adenosindi- / -tri-phosphat</td>
</tr>
<tr>
<td>AMOZ</td>
<td>Arabidopsis-Medium ohne Zucker</td>
</tr>
<tr>
<td>AP3</td>
<td>APETALA3</td>
</tr>
<tr>
<td>at / A. thaliana</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>BE</td>
<td>Basenaustauschzym</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin (Rinderserumalbumin)</td>
</tr>
<tr>
<td>bs</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA (komplementäre DNA)</td>
</tr>
<tr>
<td>CL</td>
<td>Cardiolipin</td>
</tr>
<tr>
<td>CMP / CDP / CTP</td>
<td>Cytidin- / Mono- / Di- / Triphosphat</td>
</tr>
<tr>
<td>CMS</td>
<td>cytoplasmic male sterility (cytoplasmatisch männliche Sterilität)</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzym A</td>
</tr>
<tr>
<td>coi1</td>
<td>coronatine insensitive1</td>
</tr>
<tr>
<td>Col-0</td>
<td>Columbia 0 (Ökotyp von Arabidopsis)</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammoniumbromid</td>
</tr>
<tr>
<td>dad1</td>
<td>defective in anther dehiscence1</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DC</td>
<td>Dünnschichtchromatographie</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxycytidintriphosphat</td>
</tr>
<tr>
<td>DGDG</td>
<td>Digalaktosyldiacylglycerol</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleinsäuretriphosphat</td>
</tr>
<tr>
<td>ec / E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed sequense Tag (exprimierte Sequenz)</td>
</tr>
<tr>
<td>et al.</td>
<td>et alteri</td>
</tr>
<tr>
<td>Ex</td>
<td>Extine</td>
</tr>
<tr>
<td>fad</td>
<td>fatty acid desaturase</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
</tr>
<tr>
<td>GFP</td>
<td>Grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography (Hochleistungs-Flüssigchromatographie)</td>
</tr>
<tr>
<td>In</td>
<td>Intine</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid (Jasmonsäure)</td>
</tr>
<tr>
<td>LA</td>
<td>Linolenic acid (Linolensäure)</td>
</tr>
</tbody>
</table>
LB Luria Bertani Medium (Anzucht von *E. coli*)
le *Lycopersicon esculentum*
Lk Lipidkörperchen
MAM Mitochondrien assoziierte Membran
MCS Multi cloning site (Multi-Klonierungsstelle)
MES 2-[N-Morpholino]ethansulfonsäure
MGDG Monogalaktosydiacylglycerol
mRNA messenger Ribonukleinsäure
MS Murashige und Skoog (Anzuchtmedium für *Arabidopsis*)
NAD / NADH Nicotinamidadenindinukleotid / reduzierte Form
n.d. nicht detektierbar
PA Phosphatidic acid (Phosphatidsäure)
PC Phosphatidylcholin
PCR Polymerase chain reaction (Polymerase-Kettenreaktion)
PE Phosphatidylethanolamin
PG Phosphatidylglycerol
PI Phosphatidylinositol
Pl / pi *PISTILLATA*
PS Phosphatidylerserin
PSD Phosphatidylerserin Decarboxylase
PSS Phosphatidylerserin Synthase
RNA Ribonukleinsäure
rRNA ribosomale Ribonukleinsäure
sc / *S. cerevisiae* *Saccharomyces cerevisiae*
SDC Serin Decarboxylase
SDS Sodiumdodecylsulfate (Natriumdodecylsulfat)
SL Sulfolipid (Sulfochinovosyldiacylglycerol)
T-DNA Transfer-DNA
UDP Uridin-Diphosphat
Ws Wassilewskija (Okotyp von *Arabidopsis*)
WT Wildtyp
1. Einleitung

1.1 Lipide

Die wichtigsten Vertreter der pflanzlichen Fettsäuren sind Palmitinsäure (16:0), Palmitoleinsäure (16:1 Δ\text{\text{3t}}), Hexadecatriensäure (16:3 Δ\text{\text{7,10,13c}}), Stearinsäure (18:0), Ölsäure (18:1 Δ\text{\text{9c}}), Linolsäure (18:2 Δ\text{\text{9,12c}}) und α-Linolensäure (18:3 Δ\text{\text{9,12,15c}}). Die erste Zahl in den Klammern gibt die Anzahl der Kohlenstoffatome und die zweite Zahl die Anzahl der Doppelbindungen an. Die hochgestellten Zahlen geben die Lage der Doppelbindungen wieder, dabei steht c für cis- und t für trans-Konfiguration. Von den Vertretern der Glycerolipide stellen die Glykoglycerolipide (Galaktolipide, Sulfolipid) in Pflanzen den größten Anteil an Lipiden in Thylakoidmembranen der Chloroplasten dar. Extraplastidäre Membranen sind dagegen hauptsächlich aus Phosphoglycerolipiden (Phospholipiden) aufgebaut.

1.2 Biosynthese pflanzlicher Glycerolipide

Prokaryotischer Syntheseweg (im Chloroplasten)

Glycerol-3-Phosphat → Lysophosphatidat → Phosphatidsäure

Eukaryotischer Syntheseweg (in extraplastidären Membranen)

Glycerol-3-Phosphat → Lysophosphatidat → Phosphatidsäure

Abb. 1: Eukaryotischer und prokaryotischer Biosyntheseweg der Glycerolipide

(nach Ohlrogge und Browse, 1995)

Bei der Glycerolipidsynthese (Abb. 1) wird Glycerol-3-Phosphat durch zwei aufeinanderfolgende Acylierungsschritte zunächst zu Lysophosphatidat und dann zu Phosphatidat umgesetzt. Dabei werden Fettsäuren durch Acyltransferasen (Glycerol-3-Phosphat Acyltransferase, Lysophosphatidat Acyltransferase) auf Glycerol-3-Phosphat übertragen. Bei dem prokaryotischen Syntheseweg ist das Acyl-Acyl-Carrier-Protein (Acyl-ACP) der Fettsäuredonor, im eukaryotischen Syntheseweg ist...

1.3 Die Synthesewege von Aminophosphoglyceriden in Pflanzen

Abb. 2: Synthesewege der Aminophosphoglyceride

Die wichtigsten Syntheseschritte der Umwandlung der Aminophosphoglyceride (abgewandelt nach Rontein et al., 2003). Erläuterungen siehe Text.

1.4 Transport von Phosphatidylserin vom ER zum Mitochondrium

Für die Entstehung und das Wachstum neuer Organelle müssen synthetisierte Lipide innerhalb der Zellen verteilt werden (Bell et al., 1981). Als Beispiel soll die Translokation von PS angeführt werden (Abb. 3).

Abb. 3: Translokation und Decarboxylierung von PS in Säugerzellen
(nach Voelker, 2000)

1.5 Die Phosphatidylserin Decarboxylase (PSD)

Auf die im vorhergehenden Abschnitt erwähnte Phosphatidylserin Decarboxylase (PSD) soll hier näher eingegangen werden. Dieses Enzym (EC-Nummer 4.1.1.65; systematischer Name Phosphatidyl-L-serin-carboxy-lyase) ist für die Synthese von PE aus PS in Pro- und Eukaryoten von Bedeutung (Abb. 4). Der Syntheseweg von PE über die PS-Decarboxylierung mittels PSD wurde 1964 durch Kanfer und Kennedy erstmals beschrieben.

\[
\begin{align*}
&\text{Phosphatidylserin} \\
\rightarrow &\text{PSD} \\
&\text{CO}_2
\end{align*}
\]

Abb. 4: Die Reaktion der Phosphatidylserin Decarboxylase

Die PSD katalysiert die Decarboxylierung von PS zu PE.

Die PSDs gehören zu einer kleinen Familie von Decarboxylasen, die anstelle der weitaus verbreiteteren Pyridoxalphosphat-Gruppe eine Pyruvoyl-Gruppe als prosthetische Gruppe tragen (Li und Dowhan, 1988). Alle bekannten PSDs sind integrale Membranproteine, die aus einer α- und einer β-Kette bestehen. Im nativen Enzym lagern sich diese zu einem Heterodimer oder Multimer zusammen (Dowhan et al., 1974). Untersuchungen zur Prozessierung der PSD erfolgten mit dem Enzym aus *E. coli*. Das bakterielle Gen codiert für ein Proenzym (36 kDa), das in Untereinheiten gespalten wird (7,3 kDa und 28,7 kDa, Voelker, 1997). Die Spaltung in die beiden Untereinheiten erfolgt autokatalytisch zwischen Glycin-253 und Serin-

1.5.1 PSDs in verschiedenen Organismen

1.5.1.1 PSD in Escherichia coli

In prokaryotischen Zellen ist PE das häufigste Membranlipid. Das gesamte PE wird über den PSD-Weg synthetisiert. In E. coli ist nur ein PSD Gen bekannt. Das Genprodukt befindet sich in der inneren Cytoplasmamembran (Dowhan et al., 1974) und stellt weniger als 0,1% an der Gesamtproteinmenge in E. coli dar (Tyhach et al., 1979). Das Enzym ist konstitutiv aktiv und für das Wachstum dieser Bakterien unter Normalbedingungen essentiell (Voelker, 1997). Es konnte eine Mutante (EH150) isoliert werden, die eine temperaturabhängige PSD-Defizienz zeigt (Hawrot und Kennedy, 1975, 1976). In den Mutantenzenellen ist die endogene PSD thermolabil und bei Temperaturen ab 42°C inaktiv. Die dadurch verursachte Reduktion des PE-Gehaltes beeinträchtigt das Wachstum der Zellen.
1.5.1.2 PSD in *Saccharomyces cerevisiae*

In *S. cerevisiae* wurden zwei PSDs identifiziert, PSD1 in der inneren Mitochondrienmembran (Clancey et al., 1993; Trotter et al., 1993) und PSD2 in der Vakuolenmembran und im Golgi-Apparat (Trotter et al., 1995; Trotter und Voelker, 1995). Einzelmutanten der beiden PSDs (*psd1* oder *psd2*) zeigen auf Glukosemedium wildtypähnliches Wachstum. Die Doppelmutante *psd1psd2* ist auxotroph für Ethanolamin oder Cholin (Trotter und Voelker, 1995). Membranen in *psd1psd2* Hefemutanten enthalten im Vergleich zum Wildtyp (WT) anstatt 25 % nur 2% PE, was zu verringertem Wachstum führt (Trotter et al., 1995; Birner et al., 2001). Durch Zugabe von Ethanolamin kann das beeinträchtigte Wachstum und die Reduktion des PE-Gehalts komplementiert werden. Dabei dient Ethanolamin als Vorstufe zur PE-Synthese über den Kennedy-Weg.

1.5.1.3 PSD in Pflanzen

In *A. thaliana* wurden drei Gene identifiziert, die für eine PSD codieren. PSD1 ist mitochondrial lokalisiert (von Orlow, 2003; Rontein et al., 2003) und laut mRNA-Analysen in Pflanzen gering exprimiert (Rontein et al., 2003). Vergleicht man die PSD Proteinsequenzen aus *Arabidopsis* mit anderen bekannten PSD Proteinsequenzen (Abb. 5), so bilden *atPSD2*, *atPSD3* und *PSD2* aus Hefe (*scPSD2*), eine Gruppe und die mitochondrialen PSDs (*atPSD1, scPSD1, lePSD1*) sowie die *ecPSD* aus *E. coli* bilden eine zweite Gruppe.

![Phylogenetischer Baum der PSDs aus verschiedenen Organismen](image)

Abb. 5: Phylogenetischer Baum der PSDs aus verschiedenen Organismen

Dargestellt sind die PSDs aus *Arabidopsis thaliana* (*at*), *Saccharomyces cerevisiae* (*sc*), Tomate (*Lycopersicon esculentum, le*) und *Escherichia coli* (*ec*).
1.6 Funktionen von PS und PE

Mitochondrienmembran (Birner et al., 2001). Wie stark jedoch Auswirkungen eines PE-Defizits in Mitochondrien sein können, zeigt eine Studie an Mäusen, in denen der Verlust der mitochondrial lokalisierten PSD zu Änderungen der Mitochondrienultrastruktur und zu Embryolethalität führt (Steenbergen et al., 2005).

1.7 Mitochondrien und deren Funktion

Abb. 6: Schematische Darstellung des mitochondrialen Energietoffwechsels

Es sind Stoffwechselprozesse in Mitochondrien vereinfacht dargestellt, die Reduktionsäquivalente für die ATP-Synthese liefern. (Nach Alberts et al., 2004, Essential Cell Biology, 2/e. (©2004, Garland Science)

1.8 Zielsetzung

Im *Arabidopsis* Genom konnten drei PSD Gene durch Sequenzvergleiche mit bereits bekannten *PSDs* anderer Organismen identifiziert werden. Um diese Gene als funktionelle Phosphatidylerserin Decarboxylasen charakterisieren zu können, werden sie heterolog in der *E. coli* Mutante EH150 und in der Hefe *psd1psd2* Doppelmutante exprimiert. Zudem soll in Pflanzen die Expression der einzelnen PSD Gene in den verschiedenen Geweben sowie deren subzelluläre Lokalisation untersucht werden.

2. Materialien und Methoden

2.1 Geräte, Chemikalien, Kits und Enzyme

Geräte

Autoklav: Münchner Medizin Mechanik GmbH, München, D
Heizbad mit Thermostat: Gesellschaft für Labortechnik, Bergwedel, D
Waage: Satorius, Göttingen, D
Eppendorf 5417 C (Zentrifuge): Eppendorf AG, Hamburg, D
Varifuge3.OR (Untertischmodell): Heraeus, Hanau, D
Ultrazentrifuge Centricon T-1080 mit Ausschwingrotor TST 41.14: Kontron, AG Zürich, CH
Centrikon T-124 (Zentrifuge): Kontron, Bio-Tek-Neufahrn, D
Vakuüm-Konzentrator: Eppendorf, Hamburg, D
Trennkammer für Dünnschichtchromatographie: Sigma-Aldrich, München, D
Vortex Genie 2: Bender Hobein AG, Zürich, CH
Uvikon 942: Kontron Instruments, Watford, GB
Midi-I Horizontalkammer für DNA-Gelelektrophorese: Ziege, Luckenwalde, D
PCR-Thermocycler, Biometra: BioRad, München, D
UV Stratalinker 1800: Stratagene, Amsterdam, NL
Sample Concentrator: Labtech International, Ringmer, GB
Geldoku: UV-Transilluminator: BioRad, München, D
Phosphoimagescanner BAS: Fuji, Akasaka, JP
Ultraschallbad: Sonorex RK100H: Bandelin, Berlin, D
Ultraschallstab: Sonopuls: Bandelin, Berlin, D
semi-dry Blot Maschine: Biometra GmbH, Göttingen, D
Heizblock: DRI-BLOCK® DB-3A: Techne, Oxford/ Cambridge, UK
1500 Pflanzenanzucht: Phytotron für Arabidopsis-Keimung: York International, York, USA
Biolistic PSD-1000/He Particle delivery System
1100 Psi rupture discs
Leica TCS SP2 Konfokal Fluoreszenzmikroskop
Gaschromatograph Agilent HP6890
Kapillarsäule Supelco SP-2330
Partisal SAX10 Anion Austausch Säule
Sauerstoff Mikrosensor und optisches Mikroskop
Glasfaser Sauerstoff-Messgerät
1-Liter Labor Mixer

Material

Film X-OMAT AR
Hybond N+ Membran und Filter
Klingen mit Griffschutz
DC-Platten: Si250-PA
Silica 60
BAS-1500 Autoradiographie und Imagingplatte BAS-MS 2040
Software für Phosphoimager:
BAS-Reader (Win 3.1, 1999)
Analyse der Phosphoimager-Scans mit Tina Vers. 2.10i
Software zur Analyse von DNA-Sequenzen: DNASTar
Micro Bio-Spin Säulen
3MM Filterpapier
Glasröhrchen mit Schraubkappe
Kapillarröhrchen
Pipetten
Plastikröhrchen (Falcon)
Ultrazentrifugenröhrchen
Plastik-Einmalküvetten

BioRad, München, D
Leica, Wetzlar, D
Agilent, Böblingen, D
Sigma-Aldrich, München, D
Whatman, Maidstone, UK
Micro TX2, Presens, Regensburg, D
VWR International, Darmstadt, D
Kodak, Rochester, NY, USA
Amersham Pharmacia Biotech, Freiburg, D
Merck, Darmstadt, D
J.T.Baker, Philipsburg, USA
Merck, Darmstadt, D
Raytest, Straubenhardt, D
Fuji, Akasaka, JP
Raytest, Straubenhardt, D
DNAStar Inc., Madison, USA
BioRad, München, D
Whatman International Ltd., GB
Schott, Mainz, D
Brand, Wertheim, D
Gibson, FR
BD™ Biosciences, Heidelberg, D
Beckman, Palo Alto, CA, USA
Ratiolab GmbH, Dreieich-Buchschlag, D
GC- und HPLC-Röhrchen
Chemstation Software
Miracloth
Percoll™
Chromeleon Version 6.60
Silwett L-77
Protran® Nitrocellulosemembran
Chromacol, Abimed Analysentechnik, Langenfeld, D
Agilent, Böblingen, D
Calbiochem, Darmstadt, D
Amersham Pharmacia, Uppsala, S
Dionex GmbH, Idstein, D
Helena Chemicals, Fresno, USA
Schleicher & Schuell, Dassel, D

Chemikalien
Allgemeine Chemikalien (z.B. Ethanol, Chloroform) für Puffer, Lösungen und Medien sind in pro analysi Qualität von den verschiedenen Herstellern Merck AG, Darmstadt, D; Fluka, Taufkirchen, D oder Sigma-Aldrich, München, D bezogen worden.

Radiochemikalien
L-3-Phosphatidyl-L-[3-14C]-serin, AmershamPharmacia, Little Chalfont, GB
1,2-dioleoyl, 2,0 GBq/mmol
[α-32P]-dCTP 370 MBq/mmol Hartmann Analytic, Braunschweig, D

Enzyme
T4-DNA Ligase New England Biolabs, Beverly, USA
RNAase Ambion Ltd., Huntington, UK
Restriktionsenzyme Roche, Mannheim, D
Pfu-Polymerase TAKARA BIO INC., Otsu Shiga, J
Taq-Polymerase Invitrogen, Karlsruhe, D
dNTPs Bioline GmbH, Luckenwalde, D
DNAse (RNAse frei) Roche Diagnostics GmbH, Mannheim, D
Macerozyme R-10 Yakult Honsha Co, Tokyo, J
Cellulase R-10 Yakult Honsha Co, Tokyo, J
Kits, Marker, Antikörper

NucleoSpin Plasmid
Macherey & Nagel, Düren, D

NucleoBond 500AX
Macherey & Nagel, Düren, D

QiaQuick Gelextraction Kit
Qiagen, Hilden, D

QIAquick PCR Purification Kit (50)
Qiagen, Hilden, D

Rediprime DNA Labeling System
New England Biolabs, Beverly, USA

Bicinchoninic Acid Protein Assay Kit
Sigma-Aldrich, München, D

TRIzol®-Reagent
Invitrogen, Gibco BRL, Karlsruhe, D

Plant RNA Purification Reagent
Invitrogen, Gibco BRL, Karlsruhe, D

Oligotex mRNA Mini Kit
Qiagen GmbH, Hilden, D

Superscript™ III First-Strand Synthesis System for RT-PCR –Kit
Invitrogen, Gibco BRL, Karlsruhe, D

MitoTracker® Orange CMTMRos
Molecular Probes, Eugene, USA

Precision Plus Protein™ Standard
BioRad, München, D

DNA-Längen- und Mengenstandard
Eurogentec, Serraing, B

„1kbp-Leiter“, SmartLadder

Maus Anti-Cytochrome C Antikörper
BD™ Biosciences, Heidelberg, D

Phosphatase markierter Ziegen-Anti-Maus-Antikörper
Roche, Mannheim

NBT/BCIP Tabletten
Roche, Mannheim, D

2.2 Synthetische Oligonucleotide

Die folgenden Oligonukleotide wurden von der Firma Eurogentec (Seraing, B) hergestellt.

Primer zur Identifizierung der PSD Gene

PD189: 5’-CTCGTTGTTTCTACAGTTACAAACACTAC (atPSD1sense)

PD176: 5’-TGTTTATAAGTAGCCTCGACTCTCAAGTA (atPSD1 antisense)

PD90: 5’-ATGCTCGCTCAACTGCTCATGAAGTATAG (atPSD2 sense)

PD242: 5’-AACTGAGCTCATTTTCTTCCCCTGCTTCT (atPSD2 antisense)

PD88: 5’-CTGCGACATTCTCCAAAGGAAATGATCAAC (atPSD3 sense)

PD185: 5’-GAAATCTAACCCATATGAAGCCTGCCTAT (atPSD3 antisense)
Primer zur Identifizierung der entsprechenden T-DNA

- LB T-DNA Syngenta
 PD206: 5'-TAGCATCTGAATTTACAAATCTCAGTACAC
- LBb1, T-DNA SALK
 PD300: 5'-GCGTGGACCGCTTGCGACACT
- JL-202, T-DNA University of Wisconsin, Madison, USA
 PD 35: 5'-CATTTTATAAACAACGCTCGACATCTAC

Primer für die semiquantitative real-time PCR

PD344: 5'-GCCACTGAAGACTTGATTACCAGAGA (PSD2 sense)
PD345: 5'-GAGTTATTATGCACGAAACAAGAG (PSD2 antisense)
PD348: 5'-CACACTCCACTTGTCTTGC (Ubiquitin sense)
PD349: 5'-TGCTCTTTCCCCGAGAGTCTTCA (Ubiquitin antisense)

Primer für Klonierungen

PD243: 5'-GCCGAATTCATGAAACCTCGTTTTCCTCAAAA (PSD1 sense)
Pd244: 5'-AATGGATCCCGTTCCTCTTTCCATCTTCA (PSD1 antisense)
PD98: 5'-GTCGGTACCTCAGTGGCAAAGATTTTCAGATC (PSD2 antisense)
Pd378: 5'-GCGCCATGGATCAAGGGGCAAAGGAG (PSD2 sense)

2.3 Plasmide und Konstrukte

Vektoren:
- pBinAR-Hyg Höfgen und Willmitzer (1990)
- pBluescript II SK(+) Stratagene, Amsterdam, NL
- pKK-MCS Derivat von pKK-233-2, Clontech, Heidelberg, D
 modifiziert durch H. Schmidt, Hamburg, D
- pGemTeasy Promega, Mannheim, D
- pSRN Caddick et al. (1998)

Donorkonstrukte für weitere Klonierungen

- U19624 (At3g54340) Arabidopsis Biological Resource Center, Columbus, USA
Konstrukte für Lokalisierungsstudien mit Hilfe von GFP

KDEL-GFP Scott et al., (1999)
pA7-KCO1 Czempinski et al., (2002)

Konstrukte für Komplementationsstudien in EH150 Zellen

Klone für Northern Analysen auf Komplex I-Untereinheiten der mitochondrialen Atmungskette (●) und auf ABC Gene (○) in Blüten

- 109115 (At5g0853)
- U13076 (At1g79010)
- U25472 (At5g11770) Arabidopsis Biological Resource Center, Columbus, USA
 - U19624 (At3g54340)
 - U60728 (At5g20240)
 - SQ181c02 (At4g18960) Kazusa DNA Research Institute, Chiba, Japan

2.4 Bakterienstämme

A. tumefaciens (GV 3101) Stratagene, Amsterdam, NL
E. coli XL1 blue Stratagene, Amsterdam, NL
E. coli EH150 Hawrot und Kennedy (1976)
E. coli DH10B Invitrogen, Karlsruhe, D

2.5 Pflanzenmaterial

A. thaliana Columbia-0 ABRC, Columbus, USA
A. thaliana Wassilewskija ABRC, Columbus, USA
psd2-1 (Wassilewskija/ At5g57190) Arabidopsis Knockout Facility, Madison, USA
psd3-1 (Wassilewskija/ At4g25970) Arabidopsis Knockout Facility, Madison, USA
psd2-1psd3-1 von Orlow (2003)
2.6 Medien

Alle Medien und Lösungen wurden mit demineralisiertem Wasser (Millipore, Billerica, USA) hergestellt. Die Lösungen wurden für 25 Minuten bei 125°C sterilisiert.

Anzuchtmedium für A. thaliana: (2MS; Murashige und Skoog, 1962):
0,44 % (w/v) MS, 1 % (w/v) Saccharose (pH 5,8), zur Verfestigung wurde 0,8 % Select-Agar zugegeben

Anzuchtmedium für Bakterien:

YT-Medium:

- 0,8 % (w/v) Pepton
- 0,5 % (w/v) Hefe-Extrakt
- 0,5 % (w/v) NaCl
- pH 7,0

YEB-Medium:

- 0,5 % (w/v) Rindfleisch-Extrakt
- 0,1 % (w/v) Hefe-Extrakt
- 0,5 % (w/v) Pepton
- 0,5 % (w/v) Saccharose
- 2 mM Magnesiumsulfat
- pH 7,0

Für festes Medium wurde 1,5 % (w/v) Bacto Agar vor dem Autoklavieren zugegeben.

Je nach Organismus wurden dem Medium Antibiotika in folgenden Konzentrationen zugegeben:

- Ampicillin: 100 µg / l Medium
- Kanamycin: 50 µg / l Medium
- Hygromycin B: 25 µg / l Medium
- Rifampicin: 100 µg / l Medium
2.7 Sequenzierungen und Sequenzanalysen

2.8 Molekularbiologische Methoden

Es wurden Standardmethoden (Restriktionsanalysen, Ligationen, E. coli und A. tumefaciens Transformationen, elektrophoretische Auftrennung der DNA, Plasmidpräparationen) nach Sambrock et al. (1989) verwendet oder die Protokolle der entsprechenden Kits. DNA Fragmente für Klonierungen wurden mit Pfu-Polymerase von TaKaRa (TAKARA BIO INC., Otsu Shiga, J) amplifiziert. Für die Amplifizierung von PCR-Fragmenten zum Durchsuchen von Mutanten-Populationen wurde Taq-Polymerase (Invitrogen, Karlsruhe, D) eingesetzt.

2.8.1 Klonierungen

pSRN-PSD3

pBinAR-Hyg-PSD3

pBinAR-Hyg-PSD1
pBinAR-Hyg-ppPSD1 (Physcomitrella patens PSD)

pBinAR-Hyg-Apetala3

pKK-MCS-PSD2-C-Terminus

2.8.2 Transformation von Arabidopsis thaliana

Die Erzeugung transgener *A. thaliana* Linien erfolgte durch den *Agrobacterium tumefaciens* vermittelten Gentransfer. Dazu wurden Übernachtkulturen der *Agrobakterien* zentrifugiert (5000 g, 30 min, Raumtemperatur) und die Zellen im gleichen Volumen Infiltrationsmedium (5 % (w/v) Saccharose, 0,22 % (w/v) MS-Salze, 2,5 mM MES-KOH pH 5,7, 44 nM Benzylaminopurin) resuspendiert. Pro Konstrukt wurden 200 ml Bakteriensuspension, 100 ml Infiltrationsmedium und 500 µl Silwett L-77 gemischt. Die Knospen von 6 Wochen alten Pflanzen wurden etwa 10 sec in diese Lösung getaucht (Clough und Bent, 1998). Nach der Samenreife wurden die Samen zur Selektion auf antibiotikahaltige Medienplatten ausgebracht.

2.8.3 Southern Blot Analysen

Die Isolation genomischer DNA erfolgte aus 2-5 g Blattmaterial. In flüssigem Stickstoff zerkleinertes Material wurde mit 25 ml CTAB-Puffer (140 mM Sorbitol, 220 mM Tris-HCl, pH 8, 22 mM EDTA, 800 mM NaCl, 1 % (w/v) Sarkosyl, 0,8 % (w/v) CTAB, pH 8, autoklaviert) 10 min bei 65°C unter gelegentlichem Schütteln inkubiert.
Danach wurden 10 ml Chloroform hinzugefügt, gemischt und die Phasen durch Zentrifugation (5 min, 3000 x g) getrennt. Die wässrige Phase wurde abgenommen, zu 17 ml Isopropanol gegeben und auf Eis die DNA gefällt. Die DNA wurde pelletiert (10000 x g, 5 min) und in 4 ml TE-Puffer gelöst. Nach 10 min Inkubation mit 10 µg RNAase bei Raumtemperatur wurden 400 µl Natriumacetat (3 M, pH 5,2) zugegeben und der Ansatz mit ½ Volumen Rotiphenol™, Roth, D extrahiert. Nach einer weiteren Extraktion mit Chloroform wurde die DNA mit 2 Volumen Ethanol erneut auf Eis gefällt, bei 20000 x g abzentrifugiert und das Pellet mit 70 % Ethanol gewaschen. Nach dem Trocknen des Pellets wurde es in 500 µl TE-Puffer gelöst und die DNA spektrophotometrisch quantifiziert. Für den Southern Blot wurden 50-100 µg genomischer DNA mit Restriktionsenzymen über Nacht geschnitten. Am nächsten Tag wurden erneut 10 U Restriktionsenzym zugegeben und der Ansatz für eine weitere Stunde bei 37°C inkubiert. Die geschnittene DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat und 2,5 Volumen 100 % Ethanol bei –20°C für 30 min gefällt. Die gefällte DNA wurde nun 5 min bei 12000 x g pelletiert und mit 70 % Ethanol gewaschen. Das Pellet wurde getrocknet und in 50 µl TE-Puffer gelöst. Die DANN-Fragmente wurde in einem 0,8 % Agarosegel elektrophoretisch bei 100 V über 4-5 Stunden aufgetrennt. Anschließend wurde das Gel photographisch dokumentiert. Der Transfer der DNA auf die Nylon-Membran (Hybond N+, Amersham Pharmacia Biotech, Freiburg, D) erfolgte mit 0,4 M Natriumhydroxid über Nacht. Am nächsten Tag wurde die auf der Membran befindliche DNA durch cross-linking (UV Stratalinker 1800, Stratagene, Amsterdam, NL) fixiert. Anschließend wurde die Membran in 2 x SSC (1 l 20 x SSC: 175,3 g Natriumchlorid, 88,2 g Natriumcitrat, pH 7,0) angefeuchtet und für 4 h bei 65 °C in Hybridisierungspuffer (250 mM Na₂HPO₄, pH 7,4; 7 % (w/v) SDS, 1 mM EDTA, 1 % (w/v) BSA, 0,1 mg/ml frisch denaturierte Heringsperma-DNA) inkubiert. Als Sonden wurden 70 ng gereinigte PCR- oder DNA-Fragmente verwendet. Nach Denaturierung für 5 min bei 95°C wurde mit Hilfe des „Rediprime DNA-Labelingsystem“ (New England Biolabs, Beverly, USA) und 50 µCi [α-³²P]-dCTP (Hartmann Analytic, Braunschweig, D) eine radioaktive Sonde hergestellt. Die Hybridisierung erfolgte über Nacht bei 65°C. Im Anschluss wurde die Membran mehrfach mit 2 x SSC, 0,1 % SDS gewaschen und in Expositionskassetten mit Verstärkerfolie mit einem Film (Kodak, X-Omat AR Films, Kodak Rochester, USA) bei -80°C exponiert.
2.8.4 Northern Blot Analysen

Die RNA wurde aus 0,1 g Pflanzenmaterial extrahiert. Dafür wurde zu dem in flüssigem Stickstoff zerkleinerten Material 1 ml TRizol®-Reagent (Invitrogen, Gibco BRL, Karlsruhe, D) gegeben und bei Raumtemperatur 10 min inkubiert. Nach Zentrifugation (12000 g, 10 min, 4 °C) wurde zum Überstand 0,2 ml Chloroform/Isoamylalkohol pro 1 ml TRizol® zugegeben und vermischt. Nach einer weiteren Zentrifugation (12000 g, 15 min, 4 °C) wurde die RNA bei Raumtemperatur mit 0,5 Volumen Isopropanol aus dem Überstand gefällt (12000 g, 10 min, 4 °C). Das erhaltene RNA Pellet wurde mit 75 % Ethanol gewaschen und in RNAse freiem Wasser gelöst. Der RNA Gehalt wurde spektralphotometrisch bestimmt. 5-10 µg Total-RNA wurden in 1 x RNA Probenpuffer (0,8 x MEN [1 x MEN = 20 mM MOPS-NaOH, 5 mM Natriumacetat, 1 mM EDTA, pH7,0] 4,44 % Formaldehyd, 40 % Formamid, 0,1 mg/ml Ethidiumbromid, 0,01 mg/ml Bromphenolblau) gelöst, denaturiert (56 °C, 10 min) und elektrophoretisch in einem 1,5 % Agarosegel (1 x MEN, 6 % Formaldehyd, Elektrophoresepuffer: 1 x MEN) getrennt. Der Transfer der RNA auf die Nylon-Membran (Hybond N+, Amersham Pharmacia Biotech, Freiburg, D) erfolgte über Nacht in 10 x SSC (1,5 M NaCl; 0,015 M Natriumcitrat) als Transferpuffer. Anschließend wurde die RNA auf der Membran fixiert (UV Stratalinker 1800, Stratagene, Amsterdam, NL). Die anschließende Hybridisierung wurde, wie im Southern Blot Experiment (2.8.3) beschrieben, durchgeführt.

2.8.5 Semiquantitative real-time PCR

Die RNA für die semiquantitative Real-time PCR wurde wie unter dem Punkt 2.8.4 beschrieben isoliert. Für die Isolation der RNA aus Schoten wurde das Plant RNA Purification Reagent (Invitrogen, Gibco BRL, Karlsruhe, D) und dessen Protokoll verwendet. Die DNA aller erhaltenen total RNAs wurde mit RNAse freier DNase (Roche Diagnostics GmbH, Mannheim, D) entfernt. Aus dem total RNA Gemisch wurde mit Hilfe des Oligotex mRNA Mini Kit (Qiagen GmbH, Hilden, D) die mRNA isoliert. Die isolierten mRNAs dienten anschließend als Vorlage zur Synthese der cDNAs. Dafür wurde das Superscript™ III First-Strand Synthesis System for RT-PCR-Kit (Invitrogen, Gibco BRL, Karlsruhe, D) angewandt. Die semiquantitative real-time PCR fand unter gleichen Bedingungen statt, wie sie für die
Polymerasekettenreaktion (2.8.7) beschrieben wurden. Die Sequenzen der Primer wurden so gelegt, dass ein etwa 120 bp großes Amplicon entstand.

2.8.6 Isolation genomischer DNA aus *Arabidopsis* Blättern (Kurzprotokoll)

Zunächst wurde Pflanzengewebe (~0,5 g) in flüssigem Stickstoff gemörser, mit 550 µl „Shorty“-Puffer (0,2 M Tris-HCl, pH 9,0, 0,4 M LiCl, 25 mM EDTA, 1 % SDS) und 550 µl Phenol/Chloroform (1:1, pH 7,5) gut vermischt. Eine Phasentrennung wurde durch Zentrifugation für 5 min bei 20000 x g erreicht. Die DNA wurde aus dem Überstand mit 500 µl Isopropanol gefällt. Die pelletierte DNA (10 min bei 20000 x g) wurde 30 min an Luft getrocknet und in 500 µl TE-Puffer (10 mM Tris-HCl, pH 8; 1 mM EDTA, pH 8) mit 2 µl RNAase (10 mg/ml Stock) bei 37°C für 10 min inkubiert. Danach erfolgte eine weitere Phenolextraktion mit anschließender Isopropanolfällung. Das Pellet wurde mit 70 % Ethanol gewaschen, getrocknet und in 500 µl TE-Puffer gelöst. Für die PCR wurde 1 µl DNA verwendet.

2.8.7 Amplifizierung von Genloci und Aufreinigung des PCR Produkts

Geringe Mengen DNA können mit Hilfe der Polymerase-Kettenreaktion (PCR) spezifisch amplifiziert werden. Dafür wurden 1-10 ng DNA pro Reaktion in einem Reaktionsvolumen von 25-100 µl eingesetzt. Weiterhin wurden 0,25 mM dNTPs, 1,5 mM MgCl₂, 1 x Reaktionspuffer und 1 U *Taq*-Polymerase (Invitrogen, Gibco BRL, Karlsruhe, D) hinzugefügt. Folgende Temperaturzyklen wurden verwendet:

1. Denaturierung 94 °C 3 min
2. Denaturierung 94 °C 30 sec
3. Annealing 60 °C 30 sec
4. Elongation 72 °C 1 min / 1000 bp
5. Elongation 72 °C 10 min
6. Abkühlen 4 °C ∞

\[34 \text{ Wiederholungen}\]
Sollten Amplicons für Sequenzierungen oder Klonierungen verwendet werden, wurden die Reaktionsansätze mit dem QIAquick PCR Purification Kit (50) (Qiagen, Hilden, D) aufgereinigt.

2.8.8 Identifizierung von T-DNA Insertionsmutanten

Auf der Webseite http://signal.salk.edu/cgi-bin/tdnaexpress wurde eine neue T-DNA Insertionslinie für PSD1 ausgewählt und deren Samen bestellt (SALK-Institute, San Diego, USA). Die psd2-1psd3-1 Doppelmutante wurde mit dieser psd1 Mutante gekreuzt, um eine psd1psd2-1psd3-1 Dreifachmutante zu erhalten. Die verwendeten Primerkombinationen zum Auffinden der jeweiligen Mutanten mittels PCR sind unter dem Punkt Oligonukleotide aufgeführt.

2.8.9 Western Blot Analysen

Die Proteinextraktion erfolgte mit Phenol nach Cahoon et al. (1992). Die Menge an Protein wurde mit der BCA-Methode bestimmt (siehe 2.9.6.1). Für das Gel wurden 60 µg Protein eingesetzt. Zu den Proben wurde Laemmli-Puffer (50 mM Tris HCl [pH 6,8], 100 mM Dithiothreitol, 2 % SDS, 0,1 % Bromphenolblau, 10 % Glycerol) gegeben, bevor sie 10 min bei 60°C denaturiert wurden. Die Proben wurden anschließend auf ein Gel (10 % SDS, 30 % Acrylamid, 1,5 mM Tris [pH 8,8], 10 % Ammoniumpersulfat, TEMED) aufgetragen und aufgetrennt (100 V, Raumtemperatur, Laufpuffer: 25 mM Tris, 250 mM Glycin [pH 8,3], 0,1 % SDS). Als Molekulargewichtsmarker wurde Precision Plus Protein™ Standard (BioRad, München, D) verwendet. Der Transfer der gelelektrophoretisch getrennten Proteine aus SDS-PAGE Gelen auf Nitrocellulosemembranen wurde nach der Methode von Towbin et al. (1979) durchgeführt. Die Übertragung erfolgte mit einer semi-dry Blot Maschine (Biometra GmbH, Göttingen, D) in 20 mM Tris, 150 mM Glycin, 20 % Methanol für 1 h bei 130 mA. Für die Immunodetektion spezieller Proteine auf der Nitrocellulosemembran wurden zunächst unspezifische Bindungsstellen durch eine Inkubation in Blockpuffer (0,3 % Milchpulver, 20 mM Tris HCl [pH 7,5], 150 mM NaCl, 0,1 % Tween 20) über Nacht bei 4°C abgesättigt. Die Inkubation mit gereinigten
monoklonalen Maus Anti-Cytochrome C Antikörper (BD™ Biosciences, Heidelberg, D) erfolgte für eine Stunde bei Raumtemperatur im gleichen Puffer. Unspezifisch gebundene Antikörper wurden durch Waschen mit Blockpuffer entfernt (4 x 10 min). Die Markierung der spezifisch gebundenen, monoklonalen Antikörper erfolgte durch einstündige Inkubation mit einem Phosphatase markiertem Ziegen-Anti-Maus-Antikörper. Nach Entfernung unspezifisch gebundener Antikörper (4 x 10 min waschen in 20 mM Tris [pH 7,5], 50 mM NaCl, 0,05 % Tween 20) erfolgte ein Nachweis der Antikörper bzw. der Proteine in 20 ml Färbelösung (2 NBT/BCIP Tabletten von Roche, Mannheim, D).

2.8.10 Lokalisierungsstudien mit GFP-Konstrukten

Es wurden GFP-Fusionskonstrukte der Gene PSD1, PSD2, PSD3 und GFP-Positivkontrollen mit bekannter Lokalisierung verwendet. Die für die biolistische Methode nötigen Materialien wurden von der Firma BioRad (BioRad, München, D) bezogen. Die DNA wurde an Gold-Microcarrier gebunden und in Blattepidermiszellen transferiert. Dazu wurde ein Biolistic PSD-1000/He Partikel Delivery System (BioRad, München, D) mit 1100 Psi rupture discs verwendet. Die Proben wurden 48 h nach Transformation unter einem Leica TCS SP2 Konfokal Fluoreszenzmikroskop (Leica, Wetzlar, D) betrachtet (siehe auch 2.9.5).

2.9 Biochemische Methoden

2.9.1 Lipidanalysen

2.9.1.1 Lipidextraktion aus A. thaliana

Lipide wurden nach einem modifizierten Protokoll von Bligh und Dyer (1959) isoliert. Für die Lipidextraktion aus Pflanzen wurden etwa 0,1 g Blattmaterial in flüssigem Stickstoff gemörsernt und mit 2 Volumen Methanol/Chloroform/Ameisensäure (1:1:0,1) und 1 Volumen 1 M KCl, 0,2 M H₃PO₄ vermischt. Für eine Phasentrennung wurde das Gemisch 2 min bei 12000 x g zentrifugiert. Die organische, untere Phase wurde im Stickstoffstrom getrocknet und erneut in Chloroform/Methanol (2:1) aufgenommen.
2.9.1.2 Lipidextraktion aus Mitochondrien

Isolierte Mitochondrien (2.9.2) wurden pelletiert (14000 g, 10 min, 4°C) und die Lipide wie im Punkt 2.9.1.1 beschrieben isoliert.

2.9.1.3 Auftrennung der polaren Lipide über Dünnschichtchromatographie

Eindimensionale Dünnschichtchromatographie

Es wurden Si250-PA Platten (J.T.Baker, Phillipsburg, USA) zunächst kurz in 0,15 M (NH₄)₂SO₄ getaucht und zwei Tage getrocknet. Vor der Dünnschichtchromatographie wurden diese Platten 2,5 Stunden bei 120°C aktiviert. Die Beladung der Platten mit Proben erfolgte mit Kapillarröhrchen. Das Laufmittel war Aceton/Toluol/Wasser (91:30:8).

Zweidimensionale Dünnschichtchromatographie (nach Benning et al., 1995):

2.9.1.4 Visualisierung und Lokalisierung der Lipide auf einer Dünnschichtplatte

Dazu wurde die Dünnschichtplatte mit Ninhydrinlösung (0,25 % (w/v) Ninhydrin in Aceton) besprüht. Nach Verdunstung des Lösungsmittels wurde die Platte zur Entwicklung 5 min bei 120°C erhitzt. PE und PS erscheinen violett.

2.9.1.5 Gaschromatographische Analyse von Fettsäuremethylestern

Chromatographisch aufgetrennte Lipide wurden für die gaschromatographische Quantifizierung nach Browse et al. (1986) transmethyliert. Nach Zugabe von 1 ml methanolischer HCl sowie 5 µg Pentadecansäure (15:0) als internen Standard wurden die Proben bei 80°C für 25 min verestert. Nach dem Abkühlen der Proben erfolgte die Extraktion der Fettsäuremethylester durch Zugabe von 1 ml Hexan und 1 ml 0,9 % NaCl und Zentrifugation (235 g, 3 min). Die Hexanphase mit den darin enthaltenen Fettsäuremethylestern wurde abgenommen und im Stickstoffstrom auf 100 µl eingeengt. Nach Überführen in GC-Röhrchen (Chromacol, Abimed Analysentechnik, Langenfeld, D) erfolgte die Analyse von 2 µl Probenvolumen im Gaschromatographen (Agilent HP6890; Agilent, Böblingen, D). Verwendet wurde eine Kapillarsäule (30 m Länge, Durchmesser 750 µm und 0,2 µm Schichtdicke; Supelco SP-2330; Sigma-Aldrich, München, D) und ein Flammenionisationsdetektor. Die Injektionstemperatur betrug 220°C. Als Trägergas wurde Helium mit einer Flussrate von 11 ml/min verwendet. Die Ausgangstemperatur der Säule lag bei 100°C und wurde 1 min lang gehalten. Anschließend wurde die Temperatur innerhalb von 2,40 min auf 160°C erhöht und in weiteren 6 min auf 220°C gesteigert. Diese Temperatur wurde 4 min lang gehalten, bevor die Säule dann in 5 min wieder auf 100°C gebracht wurde. Die Auswertung der Daten erfolgte mit dem Programm Chemstation (Agilent, Böblingen, D).

2.9.2 Isolation von Mitochondrien

Die Isolation der Mitochondrien erfolgte nach einer vereinfachten Version von Klein et al. (1998). Arabidopsis Samen wurden oberflächensterilisiert und in 300 ml Medium (2 MS, 3 % Saccharose, 20 mM Isobutylsäure) für 3 Wochen, im Dunkeln angezogen. Das Pflanzenmaterial wurde im Extraktionspuffer (450 mM Saccharose, 15 mM MOPS, 1,5 mM EGTA-KOH, pH 7,4, 10 mM Dithiothreitol, 6 g/l Polyvinylpyrrolidon)
mit einem Mixer zerkleinert (1 Mal high speed, 2 Mal low speed mit je 30 sec Pause dazwischen). Zelltrümmer wurden durch Filtern der Suspension durch eine Lage Miracloth (Calbiochem, Darmstadt, D) und anschließender Zentrifugation (2000 g, 5 min) abgetrennt. Aus dem Überstand wurden die verbleibenden Zellbestandteile einschließlich Mitochondrien durch Zentrifugation (16000 g, 10 min) pelletiert. Das Pellet wurde in Waschpuffer (300 mM Saccharose, 10 mM MOPS, 1 mM EGTA-KOH, pH 5,2) suspendiert und auf einen Percoll™-Gradienten (18 % / 23 % / 40 %) gegeben. Nach der Zentrifugation (12000 g, 45 min) konnten die Mitochondrien an der Phasengrenze zwischen 40 % und 23 % Percoll™ abgenommen werden. Die so gewonnenen Mitochondrien wurden in Resuspensionspuffer (400 mM Mannitol, 10 mM Tricine-KOH, 1 mM EGTA-KOH, pH 7,2) gewaschen und pelletiert (14000 g, 10 min).

2.9.3 Isolation von Protoplasten

Es wurden 5 g Blattmaterial sehr fein zerkleinert und in 30 ml Enzymlösung (0,25 % Macerozyme R-10 (Yakult Honsha Co, Tokyo, J), 1,0 % Cellulase R-10 (Yakult Honsha Co, Tokyo, J), 400 mM Mannitol, 8 mM CaCl₂, 5 mM MES-KOH, pH 5,6) für 5 h bei Raumtemperatur und leichtem Schütteln inkubiert. Die Protoplasten wurden durch einen 100 µm Filter filtriert und danach bei 46g, 4°C für 5 min sedimentiert. Die pelletierten Protoplasten wurden in W5 Puffer (154 mM NaCl, 125 mM CaCl₂, 5 mM KCl, 5 mM Glucose, 1,5 mM MES-KOH, pH 5,6) aufgenommen und auf 20 ml 21 % Saccharose gegeben. Die Trennung der intakten von den zerstörten Protoplasten erfolgte durch Zentrifugation bei 78 g, 4°C für 10 min. Die intakten Protoplasten sammelten sich an der Interphase und wurden pelletiert (55 g, 4°C, 5 min). Anschließend wurden die Protoplasten erneut in W5 Puffer aufgenommen und 30 min auf Eis belassen.
2.9.4 Färbung von Mitochondrien mit MitoTracker® Orange

Isolierte Protoplasten wurden 1 h auf Eis mit MitoTracker® Orange CMTMRos (Molecular Probes, Eugene, USA) inkubiert. Die Fluoreszenz markierten Mitochondrien wurden unter dem Konfokalmikroskop (Excitation 554 nm, Emmision 576 nm) betrachtet und dokumentiert.

2.9.5 Konfokale Fluoreszenz Laserscanning Mikroskopie

2.9.6 PSD-Enzymtest

2.9.6.1 PSD-Enzymtest mit A. thaliana

Es wurden 0,5 g Blattmaterial geerntet und in ca. 8 ml Extraktionspuffer (50 mM Tris-HCl, pH 7) mit etwas Seesand bei 4°C gemörsernt. Die Zentrifugation (1 min, 4°C, 1200 x g) trennte die Zelltrümmer und den Seesand ab. Die Microsomenmembranen aus dem Überstand wurden durch Zentrifugation (1 h, 4°C, 100000 x g) in der Ultrazentrifuge pelletiert. Das Pellet wurde in 150 µl Extraktionspuffer aufgenommen. Um für die Enzymreaktion die gleichen Proteinmengen einsetzen zu können, wurden die Proteinkonzentrationen der Ansätze nach der BCA-Methode bestimmt. Dafür stellt man eine Verdünnung der Probe in 50 µl Gesamtvolumen her und versetzt diese mit 1 ml BCA Reagenz (Bicinchoninic Acid Protein Assay Kit, Sigma-Aldrich, München, D) (50 Teile Bicinchoninic Acid + 1 Teil CuSO₄-Lösung). Das
Gemisch wird für 15 min bei 60°C inkubiert und die Extinktion bei 560 nm bestimmt. Die Ermittlung des Proteingehalts erfolgt über eine Eichgerade. Pro Reaktionsansatz sollte 1 mg Protein in 50 mM Tris-HCl, pH 7, 0,1 % Triton X-100 eingesetzt werden. Zur Bestimmung der PSD-Enzymaktivität wurde die von Dowhan et al. (1974) beschriebene Methode leicht verändert. Als Substrat wurden 0,01 µCi (130 ng) L-3-Phosphatidyl-L-[3-14C]-serin, 1,2-dioleoyl (Amersham Pharmacia, Little Chalfont, GB) und 1,3 µg PS in 75 µl 50 mM Tris-HCl, pH 7, 0,1 % Triton X-100 eingesetzt. Durch die katalysierte Decarboxylierung von PS zu PE und Kohlendioxid wurde das entstehende Produkt PE ebenfalls radioaktiv markiert. Im Anschluss an die Reaktion (1 h, Raumtemperatur) wurden die Lipide PS und PE durch Zugabe von 200 µl Chloroform/Methanol (2:1) und 100 µl 1 M KCl, 0,2 M H₃PO₄ extrahiert. Die Auftrennung erfolgte mittels Dünnschichtchromatographie mit Si250-PA Platten (J.T.Baker, Phillipsburg, USA) in Chloroform/Methanol/Wasser (65:25:4) als Laufmittel. Anschließend wurde die Verteilung der Radioaktivität zwischen dem Edukt und dem Produkt über Autoradiographie mit dem Phosphoimager (Raytest, Straubenhardt, D) detektiert. Die Autoradiographie mit dem Phosphoimager stellt eine Alternative zu dem üblichen Nachweis mit dem Röntgenfilm dar. Die Detektion des Lipidmusters im Lipidextrakt erfolgte durch über Nacht Exposition der getrockneten DC-Platten auf der Phosphoimager-Platte. Diese konnte mit dem Gerät BAS 1500 (Raytest, Straubenhardt, D) ausgelesen werden. Durch Abgleich mit dem 1:1 Ausdruck konnten so die Phospholipide auf der DC lokalisiert werden. Die Quantifizierung der schwarzen Banden wurde im Programm „TINA“ (Raytest, Straubenhardt, D) durchgeführt. Dieses Programm ermittelt die Stärke der Pixeldichte auf dem Phosphoimager in bestimmten Bereichen des Bildes, welche zuvor als Regionen definiert wurden. Die Schwärzung (Pixeldichte) steht im direkten Verhältnis zur Menge des radioaktiven Lipids.

2.9.6.2 PSD-Enzymtest mit E. coli

Der in vitro Enzymtest wurde mit E. coli auf der Grundlage des unter 2.9.6.1 beschriebenen Tests durchgeführt. Es wurde eine 200 ml Kultur angeimpft und mit 0,5 mM IPTG induziert. Am nächsten Tag wurden die Zellen geerntet (6000 x g, 5 min). Die Zellen wurden mit 100 mM Kaliumphosphatpuffer pH 7,0 (4 g KH₂PO₄ + 10,7 g K₂HPO₄ in 100 ml = 1 M Kaliumphosphatpuffer) gewaschen und anschließend

2.9.6.3 PSD-Enzymtest mit Mitochondrien

Für den Enzymtest wurde die Proteinkonzentration der isolierten Mitochondrien mit der BCA-Methode bestimmt und der Enzymtest durchgeführt (siehe 2.9.6.1).

2.9.7 Extraktion von Nukleotiden und Analyse mit HPLC

Etwa 100 mg gefrorenes Blattmaterial wurde in flüssigem Stickstoff zerkleinert und mit 1 ml auf -20°C temperierter 16 % Trichloressigsäure in Diethylether versetzt. Der Ansatz wurde 2 min gemischt und mindestens 20 min auf Eis inkubiert, bevor 300 µl 16 % Trichloressigsäure in Diethylether mit 5 mM EGTA pro 100 mg Blattmaterial zugegeben wurden. Nach 3 stündiger Inkubation auf Eis wurde zentrifugiert (20800 g, 10 min). Der wässrige Überstand wurde zu 5 ml Wasser-gesättigtem Diethylether gegeben, gemischt und erneut zentrifugiert (1400 g, 4°C, 5 min). Die Etherphase wurde verworfen und die wässrige Phase erneut mit Diethylether gewaschen. Die wässrige Phase wurde in ein frisches Reaktionsgefäß überführt und der pH-Wert mit 5 M KOH, 1 M Triethanolamin auf 6-7 eingestellt. Zum Verdunsten des restlichen Diethylethers wurde das Reaktionsgefäß 30 min offen stehen gelassen. Um den eventuell entstandenen Niederschlag zu entfernen, wurde ein weiteres Mal 10 min bei 20800 g und 4°C zentrifugiert. Der klare Überstand wurde in HPLC-Röhrchen überführt und durch Hochleistungs-Flüssigchromatographie, unter Verwendung des HPLC-Systems 450 MT2 (Probeninjektor Cotati 9125, UV Detektor 430; Kontron
Instruments, Eiching, D) vermessen. Die Kalibrierung erfolgte über einen externen Standard. Es wurden 20 µl der Probe injiziert. Die Proben wurden zunächst über eine selbst gefüllte Partisal 10 SAX Vorsäule, dann mit einer Durchflussrate von 1 ml pro min durch eine Partisal-SAX10 (N(CH₃)₃⁺) Anionen Austausch Säule (Whatman, Maidstone, UK) geleitet. Zum Aufbau des Gradienten wurden die Puffer A (40 mM NH₃PO₄, pH 2,8 mit H₃PO₄) und B (750 mM NH₄PO₄, pH 3,7) verwendet. Der Gradient sah folgendermaßen aus: 0 min 95 % Puffer A, 12 min 95 % Puffer A, 15 min 50 % Puffer A, 20 min 10 % Puffer A, 34 min 0 % Puffer A, 36 min 0 % Puffer A, 37 min 95 % Puffer A, 42 min 95 % Puffer A. Die Detektion erfolgte mit dem UV/VIS Detektor bei 254 nm. Zur Integration der Peaks wurde die Software Chromeleon Version 6.60 (Dionex GmbH, Idstein, D) verwendet.

2.9.8 Messung der Atmungsraten mit Sauerstoffelektrode

Für die Bestimmung der Atmungsraten wurden Arabidopsis Samen oberflächensterilisiert und in 300 ml Medium (2 MS, 3 % Saccharose, 20 mM Isobutylsäure) für 3 Wochen, in Dunkelheit angezogen. Vor der Messung wurde frisches Medium zu den Keimlingen gegeben und 48 h Luft durch die Kolben geleitet, um die Keimlinge in den verschiedenen Kolben in einen ähnlichen physiologischen Zustand zu bringen. Anschließend wurde den Keimlingen frisches MS-Medium mit 1 % Saccharose zugegeben, der Kolben luftdicht verschlossen und sofort mit der Messung begonnen. Die Messung erfolgte in Dunkelheit mit einem Sauerstoff Mikrosensor, der mit einem optischen Glasfaser Sauerstoff-Messgerät (Microx TX2, Presens, Regensburg, D) verbunden war. Diese Art des Sensors ermöglichte die präzise schnelle Messung von Änderungen der Sauerstoffkonzentration innerhalb des Mediums. Es wurden im Abstand von 1 min die Sauerstoffkonzentrationen gespeichert, bis sich ein Gleichgewicht einstellte. Die Atmungsrate wurde im linearen Bereich der aufgezeichneten Kurve in Bezug auf die Trockenmasse der Keimlinge bestimmt.
2.9.9 Alexander-Färbung

Mit der Alexander-Färbung ist es möglich, entwicklungsfähige Pollen von nicht lebensfähigen Pollen zu unterscheiden. Es wurden Blütenstände geerntet und in FPA50 (5 ml Formaldehyd 37 %, 5 ml Propionsäure, 90 ml Ethanol 50 %) 1-3 h fixiert. Anschließend wurden die Antheren auf Objekträger gebracht und mit wenigen Tropfen Alexander Färbelösung (10 ml Ethanol, 1 ml Malachit Grün [1 % in Ethanol], 5 ml Fuchsinäure [1 % in Wasser], 0,5 ml Orange G [1 % in Wasser], 5 g Phenol, 5 g Chloralhydrat, 2 ml Eisessig, 25 ml Glycerol, 50 ml Wasser) bedeckt. Nach 15 min konnten die Proben unter dem Stereomikroskop (Leica MZ125, Leica, Solms, D) betrachtet werden. Die Wand lebensfähiger Pollen ist grün gefärbt, das Cytoplasma violett.

2.10 Anzucht von Arabidopsis thaliana

Arabidopsis thaliana Samen wurden oberflächensterilisiert, indem die Samen 1 Minute in 70 % Ethanol gewaschen und für maximal 15 Minuten in 5 % (v/v) Natriumhypochlorit, 0,1 % (v/v) Triton X-100 inkubiert wurden. Anschließend wurden die Samen drei Mal mit sterilen Wasser gewaschen. Die Samen wurden in steriler Agarose 0,1 % (w/v) aufgenommen und gleichmäßig auf 2 MS-Medienplatten verteilt, je nach Linie mit oder ohne Antibiotikum. Diese Platten wurden über Nacht bei 4°C vernalisiert. Die *Arabidopsis* Pflanzen wurden 10-14 Tage in Sterilkultur in einer Gewebekulturkammer (22°C, 16 h Tageslänge, 140 µmol m⁻² s⁻¹, 70 % Luftfeuchtigkeit) angezogen. Anschließend wurden die Keimlinge auf Arabidopsis-Erde (Vermiculit und Gartenerde 1:1) pikiert. Das weitere Wachstum erfolgte unter Arabidopsis thaliana Standardbedingungen: Tag: 16h, 20°C, 60 % Luftfeuchte, 120 µmol m⁻² s⁻¹ Licht; Nacht: 16°C, 75 % Luftfeuchte.

2.10.1 Induktion des Ethanol induzierbaren Promotors

Die Induktion des Ethanol induzierbaren Promotors musste erfolgen, bevor die Pflanzen begannen, einen Spross hervorzubringen. Dazu wurden drei Wochen alte Pflanzen genutzt. Pro Pflanze (6 cm Topf) wurde mit 10 ml 0,5 % Ethanol zum
Zeitpunkt 0 h, 6 h, und 16 h bewässert. Das Blattmaterial wurde 29 h nach der ersten Ethanolgabe geerntet.

2.10.2 Kreuzung von *A. thaliana*

2.10.3 Infiltration von *A. thaliana* Blüten mit Jasmonsäure

2.10.4 Elektronenmikrokopische Aufnahmen von *A. thaliana*

Elektronenmikroskopische Aufnahmen verschiedener Gewebe und Organellen von *A. thaliana* Linien wurden durch Michael Melzer am IPK Gatersleben, D angefertigt und freundlicherweise zur Verfügung gestellt.

2.11 Anzucht von *Escherichia coli*

3. Ergebnisse

3.1 Expression verschiedener PSDs in heterologen Systemen und in Arabidopsis thaliana

3.1.1 Heterologe Expression von atPSD2 und atPSD3 in E. coli

Phosphatidylserin Decarboxylasen (PSD) wurden bereits unter anderen aus Hefe und E. coli charakterisiert (Clancy et al., 1993; Trotter et al., 1993; Trotter und Voelker, 1995a; Trotter et al., 1995b; Hawrot und Kennedy, 1975; Hawrot und Kennedy, 1978). Aus Pflanzen sind bisher die lePSD1 aus Tomate (Lycopersicon esculentum) und die atPSD1 aus Arabidopsis identifiziert und untersucht worden (Rontein et al., 2003). Es konnte dabei gezeigt werden, dass atPSD1 in allen Geweben der Pflanze sehr gering exprimiert wird und das Genprodukt im Mitochondrium lokalisiert ist (Rontein et al., 2003). Insgesamt wurden in Arabidopsis drei Gene (atPSD1: At4g16700, atPSD2: At5g57190, atPSD3: At4g25970) durch Vergleich mit Sequenzen bereits bekannter PSD Gene identifiziert (von Orlow, 2003; Rontein et al., 2003). In der vorliegenden Arbeit sollte für die beiden Gene atPSD2 und atPSD3 aus Arabidopsis zunächst die Funktionalität gezeigt werden. Dafür wurden beide cDNAs in den Vektor pKK-MCS kloniert. Da die C-Termini der atPSD2 und atPSD3 ortholog zu ecPSD aus E. coli sind, wurden zusätzlich auch Konstrukte erstellt, die nur den C-Terminus des jeweiligen Proteins trugen. Für den Nachweis der Funktionalität wurde die E. coli Mutante EH150, die eine temperatursensitive PSD Mutation trägt, mit den Konstrukten transformiert. EH150 zeigt bei 37°C Wachstumstemperatur ein Lipidmuster wie ein WT Stamm, z.B. XL1blue. Bei einer Wachstumstemperatur von 42°C jedoch wird die endogene PSD inaktiviert und im Lipidmuster ist eine Akkumulation von PS und eine Reduktion von PE detektierbar (Hawrot und Kennedy, 1975; Hawrot und Kennedy, 1978). Die EH150 Zellen wurden mit folgenden Konstrukten transformiert: pKK-MCS (leerer Vektor), atPSD2, atPSD3, atPSD2-C-Terminus und atPSD3-C-Terminus und bei 37°C angezogen. Aus den EH150 Transformanten wurden Proteine isoliert und mit radioaktiv markierten 14C-PS bei 42°C inkubiert. Die Autoradiographie der anschließend isolierten und aufgetrennten Lipide lässt erkennen, welche Transformanten 14C-PS zu 14C-PE umsetzen konnten. Abb. 7 zeigt, dass in XL1blue Zellen der Umsatz von PS in PE bei 42°C erfolgen kann. Bei der Mutante EH150 sowie bei der mit leerem Vektor
transformierten EH150 Transformante ist dieser Umsatz stark reduziert. Transformation von EH150 mit der vollständigen atPSD3-cDNA führte zu einer schwachen Komplementation der PE-Synthese. Die Transformation mit dem C-Terminus von atPSD3 komplementierte den EH150 Lipidphänotyp vollständig, da die PE-Synthese mit ähnlicher Effizienz wie in XL1blue Zellen erfolgen konnte. Obwohl atPSD2 und atPSD3 auf Aminosäureebene eine starke Identität aufweisen (84,5 %), wurde eine Komplementation mit atPSD2 sowie mit dem C-Terminus von atPSD2 nicht erzielt (Abb. 7).

Abb. 7: PSD-Aktivitätstest mit Proteinen aus transformierten EH150 Zellen

Es wurden Proteine aus mit Arabidopsis cDNAs von atPSD3, atPSD2, atPSD3-C-Terminus und atPSD2-C-Terminus transformierten E. coli Mutanten EH150 isoliert und bei 42°C mit dem 14C markierten Substrat (PS) inkubiert. Die dargestellte Autoradiographie der durch Dünnenschichtchromatographie getrennten Lipide zeigt, welche Transformanten PS zu PE umwandeln können.

3.1.2 Heterologe Expression von atPSD2 und atPSD3 in S. cerevisiae

PSD2 aus Arabidopsis konnte den Lipidphänotyp der EH150 Zellen nicht komplementieren, und somit konnte die Funktionalität dieses Gens nicht gezeigt werden. Aus diesem Grund sollte ein anderes System verwendet werden. PE wird in Hefezyelen hauptsächlich über den PSD Weg synthetisiert. In PSD-defizienten psd1psd2 Hefemutanten ist keine PSD-Aktivität nachweisbar, was dazu führt, dass in Abwesenheit von Ethanolamin kein Wachstum erfolgt, d.h. die psd1psd2 Mutanten sind ethanolaminauxotroph (Trotter et al., 1995b; Birner et al., 2001; Abb. 8B, 2. Sektor). Mit Hilfe dieser Hefe psd1psd2 Mutante wurde bereits die Funktionalität der mitochondrial lokalisierten lePSD1 aus Tomate gezeigt (Rontein et al., 2003). Dies
sollte für atPSD2 und atPSD3 aus Arabidopsis ebenfalls erfolgen. Die mit dem leeren Vektor transformierte psd1psd2 Mutante blieb ethanolaminauxotroph (Abb. 8B, 3. Sektor). Durch die Transformation mit den pflanzlichen cDNAs konnte das Wachstum unter Ethanolaminmangel wiedererlangt werden, was in Abb. 8B, Sektor 4 und 5 zu sehen ist. Unter Zugabe von Ethanolamin ist es allen verwendeten Hefelinien möglich zu wachsen (Abb. 8A).

A: +Ethanolamin B: -Ethanolamin

1: WT S. cerevisiae
2: psd1psd2 S. cerevisiae
3: psd1psd2 S. cerevisiae + leerer Vektor
4: psd1psd2 S. cerevisiae + atPSD3
5: psd1psd2 S. cerevisiae + atPSD2

Abb. 8: Komplementation der Hefe psd1psd2 Doppelmutante mit Arabidopsis PSD cDNAs

Die psd1psd2 Doppelmutante von Hefe (Saccharomyces cerevisiae) ist durch den kompletten Verlust der PSD-Aktivität ethanolaminauxotroph. Die pflanzlichen cDNAs atPSD2 und atPSD3 komplementieren die psd1psd2 Doppelmutante, so dass die Hefe Doppelmutante auch in Abwesenheit von Ethanolamin wächst.

3.1.3 Charakterisierung transgener Arabidopsis Überexpressionslinien

3.1.3.1 Überexpression von \(atPSD3 \) in \(Arabidopsis \) Col-0 Wildtyppflanzen unter Kontrolle eines konstitutiven Promotors

3.1.3.2 Überexpression von \(atPSD3 \) in \(Arabidopsis \) Col-0 Wildtyppflanzen unter Kontrolle eines ethanolinduzierbaren Promotors

3.1.3.3 Überexpression von \(ppPSD \) in \(Arabidopsis \) Col-0 Wildtyppflanzen unter Kontrolle eines konstitutiven Promotors

Da die bisherigen Überexpressionsversuche nicht zu einer erhöhten PSD-Aktivität führten, wurde beim nächsten Versuch keine \(Arabidopsis \) cDNA, sondern eine cDNA aus dem Moos \(Physcomitrella patens \) heterolog in \(Arabidopsis \) überexprimiert. Es wurden aus 25 durch Hygromycin B selektierte Transformanten drei Überexpressionspflanzen identifiziert und ebenfalls der PSD Enzymtest durchgeführt.
Wie in den vorhergehenden Versuchen konnte auch hier keine erhöhte Enzymaktivität gezeigt werden.

3.2 Subzelluläre Lokalisierung der Phosphatidyliner Decarboxylasen aus *Arabidopsis*

Das Enzym *atPSD1* aus *Arabidopsis* ist im Mitochondrium lokalisiert (Rontein *et al.*, 2003; von Orlow, 2003; Abb. 9A). Bei allen bisher bekannten PSDs handelt es sich um Membranproteine, so dass für *atPSD2* und *atPSD3* ebenfalls eine Lokalisierung an interzellulären Membranen erwartet wurde (von Orlow, 2003).

![Diagramm](image)

Abb. 9: GFP Lokalisationssstudien von *atPSDs* in Blattpidermiszellen von *A. thaliana*

Zu sehen sind Blattpidermiszellen, die *atPSD1-GFP, atPSD2-GFP* und *atPSD3-GFP* exprimieren. Das Konstrukt *atPSD1-GFP* wurde in Mitochondrien (Kontrolle: pre-101-GFP) lokalisiert (von Orlow, 2003). Die Kontrolle für die Lokalisierung am Tonoplasten war KCO1-GFP und für die Lokalisierung am Endoplasmatischen Retikulum (ER) war KDEL-GFP.
3.3 Expressionsanalyse von atPSD1, atPSD2 und atPSD3 in verschiedenen Geweben

Es wurden Expressionsanalysen der drei PSD Gene von Arabidopsis durchgeführt, um Rückschlüsse auf Funktionen der einzelnen PSDs zu ziehen. Hierfür wurden für atPSD1 und atPSD3 Northern Blots durchgeführt (Abb. 10). Es stellte sich heraus, dass atPSD2 mit der Northern Blot Analyse nicht eindeutig detektiert werden konnte, da die Sonde mit atPSD3 aufgrund der starken Sequenzhomologie ebenfalls hybridisiert. Deshalb wurde für dieses Gen die semiquantitative real-time PCR mit Primersequenzen über Basenfehlpaarungen zwischen den cDNAs von atPSD2 und atPSD3 verwendet. In Abb. 10 sind die Ergebnisse dargestellt.

![Northern Blot und semiquantitative real-time PCR Ergebnisse](image)

Abb. 10: Expressionsanalyse der PSD Gene in verschiedenen Geweben von A. thaliana

Die Expression von PSD1 und PSD3 konnte mit Northern Blot analysiert werden, PSD2 mit semiquantitativer real-time PCR. rRNA: ribosomale RNA

Von allen drei PSD Genen wird atPSD3 am stärksten transkribiert und konnte in Wurzel, Spross, Blatt und Blüte nachgewiesen werden. Wie bei den anderen beiden Genen, ist auch das Transkript von atPSD3 in Schoten nicht detektierbar. Das Transkriptlevel von atPSD2 ist in Blüten am höchsten. Zusätzlich konnte die Expression von atPSD2 in Blättern detektiert werden während sie in anderen Organen nicht nachzuweisen war. Die Expression von atPSD3 konnte ausschließlich für Blüten gezeigt werden. Um zu belegen, dass bei der semiquantitativen real-time
PCR gleiche Mengen genetisches Material eingesetzt wurden, wurde ein Haushaltsgen (Ubiquitin) amplifiziert. Für Northern Blot Analysen wurde die Menge der ribosomalen RNA (rRNA) als Vergleich eingesetzt.

3.4 Isolation der T-DNA Insertionsmutanten *psd1* und *psd1-psd2-1-psd3-1*

3.4.1. Isolation der T-DNA Insertionsmutante *psd1*

3.4.2 Isolation einer *psd1-psd2-1-psd3-1* Dreifachmutante

Abb. 11: Lokalisierung der T-DNA innerhalb der psd Mutanten Linien

Die Mutanten psd2-1 und psd3-1 wurden aus der T-DNA Insertionspopulation der Arabidopsis Knockout Facility der Universität von Wisconsin, Madison, USA isoliert; die psd1 Mutante aus der T-DNA Insertionspopulation des SALK Instituts, San Diego, USA. Die zur Isolation verwendeten Primer und deren Lage sind für jedes Gen dargestellt.

Tab. 1 Kreuzungsschema der Kreuzung von psd2-1psd3-1 mit psd1.

Nach der Kreuzung der psd2-1psd3-1 Mutante mit der psd1 Mutante sollte eine von 64 Pflanzen in der F2-Generation in allen drei Genen die T-DNA homozygot tragen (orange unterlegt).
Die Isolation der $psd1psd2-1psd3-1$ Dreifachmutante erfolgte über PCR mit den in Abb. 11 dargestellten Primerpaaren (Amplifikation der Gene: $atPSD1$ mit PD176 und PD189; $atPSD2$ mit PD90 und PD242; $atPSD3$ mit PD88 und PD185; Amplifikation der T-DNA Insertion: $psd1$ mit LBb1 und PD176; $psd2-1$ mit PD90 und JL202; $psd3-1$ mit JL202 und PD185). In der F2-Generation konnte eine von 100 durchmusterten Pflanzen gefunden werden, die für zwei PSD Genloci homozygot war und für einen Locus heterozygot ($psd1psd1$ $psd2psd2$ $PSD3psd3$). Von deren Nachkommen (F3) wurden 30 Pflanzen analysiert. Unter diesen 30 Pflanzen konnten drei $psd1psd2-1psd3-1$ Dreifachmutanten isoliert werden. Es ist zu beachten, dass die $psd1psd2-1psd3-1$ Mutante die Ökotypen Col-0 und Ws vereinigt.

3.5 Southern Blot Analyse der $psd1psd2-1psd3-1$ Dreifachmutante

Zur Bestätigung der Ergebnisse der PCR wurde zusätzlich eine Southern Blot Analyse durchgeführt. Dafür wurde die genomische DNA aus allen Linien isoliert und mit EcoRV geschnitten. Die Hybridisierung erfolgte mit genspezifischen PCR Produkten der drei PSD Gene. Das Ergebnis ist in Abb. 12 dargestellt. Der Southern Blot für das Gen $atPSD1$ sollte im WT Banden der Größe 2085 bp, 1580 bp und 585 bp detektieren und in der homozygoten $psd1$ Mutante sowie der $psd1psd2-1psd3-1$ Dreifachmutanten Banden der Größe 2085 bp, 6065 bp und 585 bp. Dabei konnte durch die Anwesenheit der 6065 bp Bande und das Fehlen der 1580 bp Bande in den entsprechenden Mutanten ausgeschlossen werden, dass diese Mutanten für $atPSD1$ heterozygot sind. Im Fall von $atPSD2$ wurde im WT eine 5385 bp große Bande erwartet. Für die Mutanten $psd2-1$, $psd2-1psd3-1$ und $psd1psd2-1psd3-1$ sollten zwei Banden zu sehen sein (7750 bp und 2750 bp). Für $PSD3$ wurden im WT Banden der Größe 5457 bp und 1810 bp erwartet, für die Mutante $psd3-1$, $psd2-1psd3-1$ und $psd1psd2-1psd3-1$ Banden der Größe 5764 bp, 4687 bp und 1810 bp. Die erwarteten Bandenmuster konnten in der Southern Analyse detektiert werden. Somit konnte bestätigt werden, dass es sich bei der durch PCR ermittelten psd Dreifachmutante tatsächlich um die Mutante $psd1psd2-1psd3-1$ handelt.
Abb. 12: Southern Blot Analyse zur Identifizierung der psd1-psd2-psd3-1 Dreifachmutante

Die genomische DNA wurde mit EcoRV geschnitten und mit genspezifischen PCR Produkten von jedem der drei PSD Gene hybridisiert. Rot markierte Fragmente sind spezifisch für die Mutante, grün markierte Fragmente spezifisch für Wildtyp (WT).

3.6 PSD Genexpressionsanalyse in psd1, psd2-1 und psd3-1

Parallel zur Suche der psd Dreifachmutante erfolgte mit Northern Blot Analyse der Nachweis, dass in den zur Kreuzung verwendeten Elternpflanzen kein Transkript des entsprechenden Gens detektierbar ist (siehe Abb. 13). Für atPSD1 wurde Blüten
RNA verwendet, da nur darin die atPSD1 Expression im WT nachzuweisen ist. Die vorher beschriebene Sequenzhomologie zwischen atPSD2 und atPSD3 stellte auch hier ein Problem dar, da mit der atPSD2 Sonde auch atPSD3 hybridisieren konnte. So wurde semiquantitative real-time PCR für atPSD2 durchgeführt. Die Expression von atPSD3 ist in den entsprechenden Mutanten nicht nachzuweisen. Es ist ein Fragment mit falscher Größe zu sehen. So konnte in allen psd Mutanten gezeigt werden, dass das entsprechende Transkript des ausgeschalteten Gens nicht mehr detektierbar ist. Wie schon bei der Expressionsanalyse der einzelnen PSD Gene wurde auch hier gezeigt, dass gleiche Mengen genetischen Materials eingesetzt wurden, indem bei der semiquantitatives real-time PCR ein Haushaltsgen (Ubiquitin) amplifiziert wurde und für die Northern Blot Analyse die Menge der rRNA dokumentiert wurde.

Abb. 13: PSD Expressionsanalyse in psd1, psd2-1, psd3-1 und psd2-1psd3-1 Mutanten

Die Expression von atPSD1 und atPSD3 wurde mit Northern Blot untersucht. Für atPSD2 Expressionsanalysen wurde die semiquantitative real-time PCR genutzt. Die Expression von atPSD1 ist in Blüten-RNA, atPSD2 und atPSD3 in Blatt-RNA gezeigt worden.
3.7 PSD-Enzymtest mit *psd1* und der *psd1psd2-1psd3-1* Dreifachmutante

Die Transkription der Gene in denen die T-DNA inseriert ist, ist nicht nachzuweisen. Der PSD-Enzymtest mit der *psd1* und der *psd1psd2-1psd3-1* Dreifachmutante sollte zeigen, inwiefern die Aktivität der PSDs in den Mutanten beeinträchtigt ist (Abb. 14).

Abb. 14: PSD Enzymtest mit Proteinen aus Mikrosomen und aus Mitochondrien

Es ist in A und B die Autoradiographie der über Dünnschichtchromatographie getrennten Lipide dargestellt. Diese zeigt, welche *psd* Mutanten die Synthese von Phosphatidylethanolamin (PE) aus radioaktiv markiertem Phosphatidylserin (PS) durchführen. A: Enzymtest mit mikrosomalen Proteinen aus *psd2-1*, *psd3-1*, *psd2-1psd3-1*, *psd1psd2-1psd3-1*, WT Col-0 und WT Ws; B: Enzymtest mit mitochondrialen Proteinen aus *psd1* und WT Col-0; C: verwendeter Percoll-Gradient; Intakte, für diesen Enzymtest verwendete Mitochondrien wurden von der Phasengrenze zwischen 40 % und 23 % Percoll abgenommen.

Aus den zu untersuchenden Linien wurden Mikrosomen isoliert und die Proteine mit radioaktiv markiertem 14C-PS inkubiert. Wie in Abb. 14A zu sehen ist, konnte in der *psd* Dreifachmutante kein Umsatz zu Phosphatidylethanolamin (PE) stattfinden. In der *psd3-1* und *psd2-1psd3-1* Mutante konnte eine sehr geringe Menge an PE synthetisiert werden. Dieses wurde wahrscheinlich durch Kontamination mit noch intaktem PSD1 aus Mitochondrien erzeugt. Für den Enzymtest mit PSD1 wurden aus...
etiolierten WT Col-0 und psd1 Keimlingen die Mitochondrien isoliert. In Abb. 14B ist zu sehen, dass mit Mitochondrienproteinen aus WT Col-0 ein Umsatz zu PE möglich war, jedoch nicht mit Mitochondrienproteinen aus psd1 Mutanten.

Um die Enzymaktivität zu quantifizieren, wurde die Pixeldichte der detektierten Spots der Autoradiographie bestimmt und damit der Umsatz von PS zu PE in nmol PE pro min⁻¹mg⁻¹ berechnet (Abb. 15). In Mikrosomen des WT Ws konnte ein Umsatz von 0,00132 nmol PE min⁻¹mg⁻¹ ermittelt werden. Ein ähnlicher Umsatz (0,00136 nmol PE min⁻¹mg⁻¹) war auch in Mikrosomen von psd2-1 Mutanten zu sehen. Im Fall der psd3-1 Mutante war der Umsatz reduziert auf 0,00047 nmol PE min⁻¹mg⁻¹, bei der psd2-1psd3-1 Mutante auf 0,00039 nmol PE min⁻¹mg⁻¹ (Abb. 15). Offenbar ist der Einfluss von PSD2 auf die Gesamtaktivität gering. Die PSD-Enzymaktivität der psd1psd2-1psd3-1 Mutante konnte nicht detektiert werden. Bei isolierten Mitochondrien aus WT Col-0 und psd1 konnte gezeigt werden, dass der Umsatz von 0,00197 nmol PE min⁻¹mg⁻¹ in WT Col-0 auf 0,00013 nmol PE min⁻¹mg⁻¹ in psd1 abnimmt.

Abb. 15: Der Umsatz von PS zu PE in verschiedenen psd Mutanten

Mikrosomale Proteine aus psd2-1, psd3-1, psd2-1psd3-1, psd1psd2-1psd3-1, WT Col-0 und WT Ws sowie mitochondrialle Proteine aus psd1 und WT-Col-0 wurden für den Enzymtest verwendet. Anhand der Umgesetzten Menge von PS zu PE wurde der Umsatz bestimmt. n.d.: nicht detektierbar
3.8 Phänotypische Charakterisierung der psd1psd2-1psd3-1 Dreifachmutante

Wie in Abb. 16 zu sehen ist, sind keine Unterschiede im Wachstum zwischen den Mutanten, insbesondere der psd1psd2-1psd3-1 Mutante und den WT Pflanzen Ws und Col-0 unter Standardbedingungen sichtbar.

Abb. 16: Wachstumsphänotyp aller psd Mutanten

Das Wachstum ist in allen untersuchten Linien ähnlich. Zu sehen sind etwa 6 Wochen alte, unter Standardbedingungen angezogene psd Mutanten.

Je älter die psd Dreifachmutanten wurden, umso auffälliger wurde, dass diese kaum Schoten bildeten. In der Abb. 17 soll verdeutlicht werden, dass bei der psd Dreifachmutante im Gegensatz zu WT Col-0 die Bestäubung oft nicht erfolgte und somit kaum Schoten gebildet wurden.

Abb. 17: Schotenbildung der psd1psd2-1psd3-1 Mutante und im WT Col-0

In psd1psd2-1psd3-1 Mutanten konnten keine bzw. nur in seltenen Fällen Schoten gebildet werden.
3.8.1 Bestäubungsversuche

3.8.2 Veränderte Blütenmorphologie der psd1psd2-1psd3-1 Mutante

Die veränderte Blütenmorphologie beschränkt sich auf die Blüten- und Staubblätter der psd1psd2-1psd3-1 Mutante. Dabei fällt zunächst auf, dass die Blütenblätter kürzer sind als im WT Col-0 (siehe Abb. 18 Reihe A). Entfernt man die Kelchblätter der psd Dreifachmutante, so sind die Blütenblätter sichtbar (siehe Abb. 18 Reihe A rechtes Bild). Die Blütenblätter sind grün und kelchblattähnlich. In Reihe B (Abb. 18) sind die Staubblätter von WT Col-0 und der psd Dreifachmutante zu sehen. Die WT Col-0 Staubblätter reichen bis zur Narbe und die gelben Pollen sind zu sehen (Abb. 18, B). Die Staubblätter der psd1psd2-1psd3-1 Mutante sind kürzer als die vom WT. Zudem scheint es, als könnten die Pollensäcke nicht aufreißen und die Pollen entlassen. Die Staubblätter in dieser Abbildung (Abb. 18, Reihe B) und in Abb. 18, Reihe C, linkes Bild, stellen die typischen Staubblätter der der psd1psd2-1psd3-1 Mutante dar. Es konnten zusätzlich stärker veränderte Staubblätter gefunden werden. In diesen seltenen Fällen sahen die Staubblätter zum einen Fruchtblättern mit Stigma ähnlich (Abb. 18, C, Mitte), zum anderen Kelchblättern (Abb. 18, C, rechtes Bild). Die Veränderung der Staubblätter wurde in 30 Blüten untersucht. Es konnten jedoch keine Regelmäßigkeiten festgestellt werden. Das heißt, es kamen in einer Blüte fruchtblattähnliche Staubblätter in unterschiedlicher Anzahl vor (1 und 2) oder aber auch in Kombination mit kelchblattähnlichen Staubblättern, die auch einzeln in einer
Blüte vorkamen. Einige Blüten zeigten eine reduzierte Anzahl an Staubblättern. Selten waren wildtypähnliche Staubblätter zu beobachten, die die Fruchtblätter bestäuben konnten und so Samen der \textit{psd1psd2-1psd3-1} Mutante entstehen konnten.

\textbf{Abb. 18: Blütenphänotyp der \textit{psd} Dreifachmutante}

Dargestellt sind die Veränderungen der Blütenblätter der \textit{psd1psd2-1psd3-1} Mutante (Reihe A, rechts) und deren typischen Staubblätter (Reihe B, rechts) im Vergleich zum WT. In Reihe C sind fruchtblättähnliche Staubblätter (Mitte) und kelchblättähnliche Staubblätter (Rechts) der \textit{psd1psd2-1psd3-1} Mutante zu sehen.
3.8.3 Pollenaktivitätstest der psd Dreifachmutante

Abb. 19: Vitalitätstest für Pollen (Alexander-Färbung) in Col-0 und der psd Dreifachmutante

Vitale Pollen werden violett gefärbt, nicht vitale Pollen grün. Der Balken in den Bildern entspricht 50 µm. A: Pollensack von WT Col-0; B: Pollensack von psd1psd2-1psd3-1; C: kelchblattähnliches Staubblatt von psd1psd2-1psd3-1

noch genaueres Bild der Pollen von WT Col-0 und der psd Dreifachmutante zu erhalten, wurden diese unter dem Elektronenmikroskop betrachtet (Abb. 20).

![Elektronenmikroskopische Aufnahmen von Pollen aus Col-0 und psd1psd2-1psd3-1](image)

Abb. 20: Elektronenmikroskopische Aufnahmen von Pollen aus Col-0 und psd1psd2-1psd3-1

Die Pollen sind 3100fach vergrößert dargestellt. Michael Melzer, IPK, Gatersleben; In: Intine; Ex: Extine; V: Vakuole; Lk: Lipidkörperchen

Im Vergleich zu Pollen aus Col-0 Blüten ist in Pollen von psd1psd2-1psd3-1 eine erhöhte Anzahl kleiner Vakuolen festgestellt worden. Weiterhin fällt auf, dass in Pollen der psd Dreifachmutante weniger bzw. kaum Lipidkörperchen sichtbar sind (siehe Abb. 20). Die Veränderung in der Morphologie der Staubblätter und Pollen könnte die Ursache für die stark reduzierte Bildung von Schoten sein.

3.8.4 Samenbildung in Schoten der psd Dreifachmutante

Betrachtet man die geöffneten Schoten von WT Col-0 unter der Stereolupe, so sind in ihr viele Samen aneinander gereiht (Abb. 21). In Schoten der psd1psd2-1psd3-1 Mutante sind nicht so viele Samen angelegt (Abb. 21). Von diesen wenigen Samen scheinen einige nicht voll entwickelt zu sein (Abb. 21, Pfeile und rechtes Bild). Möglich ist, dass diese kleineren Samen nicht keimungsfähig sind. Die
wildtypähnlichen Samen der \(psd1psd2-1psd3-1 \) Mutante sollten hingegen keimungsfähig sein.

Abb. 21: Samenbildung in Schoten von Col-0 und der \(psd \) Dreifachmutante

In Schoten von WT Col-0 sind die Samen aneinander gereiht (oberes Bild). In der \(psd1psd2-1psd3-1 \) Mutante sind nicht an allen Samenanlagen Samen gebildet worden (Bild unten links). Von den wenigen gebildeten Samen scheinen einige nicht voll entwickelt zu sein. Sie sind kleiner als die Col-0 Samen sowie auch weniger grün (Pfeile Bild unten links und Bild unten rechts).

3.9 Lipidanalysen

3.9.1 Lipidkomposition in Blättern und Blüten von Col-0 und \(psd1psd2-1psd3-1 \)

Um zu sehen, ob durch den totalen Verlust der PSD-Aktivität eine Verschiebung der Lipidzusammensetzung erfolgt ist, wurden Lipide aus Blättern und Blüten der WT Col-0 Pflanzen und der \(psd \) Dreifachmutante isoliert. Diese wurden anschließend durch zweidimensionale Dünnenschichtchromatographie (2D-DC) getrennt, ausgekratzt, transmethyliert und anhand von Fettsäuremethylestern mittels Gaschromatographie (GC) quantifiziert. Das Ergebnis ist in Abb. 22 zu sehen.
Abb. 22: Lipidzusammensetzung in Blättern und Blüten von Col-0 und psd1psd2-1psd3-1

Die Lipide wurden über 2D-DC aufgetrennt und transmethyliert. Die Fettsäuremethylester wurden über DG, 1,5 % PI, 1,5 % PS, 8 % PE und 15 % PC zusammengesetzt. Die Blütenlipide setzten sich aus etwa 25 % MGDG, 6 % PG, 12 % DGDG, 4 % PI, 4 % PS, 20 % PE und 30 % PC zusammen. Es war kein Unterschied zwischen der psd Dreifachmutante und dem WT festzustellen.

3.9.1.1. Fettsäuremuster von PE und PS aus Blättern und Blüten von Col-0 und psd1psd2-1psd3-1

Aus den Daten der Gaschromatographie konnten die Fettsäurezusammensetzungen aller Lipide bestimmt werden (Tab. 2). Phospholipide, wie PS und PE, bestehen hauptsächlich aus Palmitinsäure (16:0), Linolsäure (18:2) und Linolensäure (18:3). Außerdem konnte zuvor gezeigt werden, dass PS aus dem ER und der Plasmamembran von Pflanzen reich an langkettigen Fettsäuren wie Docosansäure (22:0) und Tetracosansäure (24:0) ist (Vincent et al., 2001; Bohn et al., 2001). Die Fettsäurezusammensetzung von PE und PS aus Blüten und Blättern von WT Col-0 und psd1psd2-1psd3-1 ist in Tab. 2 dargestellt.
Tab. 2: Fettsäurezusammensetzung von PE und PS in Col-0 und psd1psd2-1psd3-1

Lipide wurden aus Blättern und Blüten isoliert und mittels zweidimensionaler Dünnschichtchromatographie getrennt. Die Quantifizierung der Fettsäuremethylester erfolgte mit GC. Die Daten sind in mol % angegeben.

<table>
<thead>
<tr>
<th></th>
<th>Blätter</th>
<th></th>
<th>Blüten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PE</td>
<td>WT Col-0</td>
<td>psd1psd2-1psd3-1</td>
<td>WT Col-0</td>
</tr>
<tr>
<td>16:0</td>
<td>21,3 ± 2,6</td>
<td>21,8 ± 0,5</td>
<td>21,3 ± 0,8</td>
<td>19,7 ± 1,0</td>
</tr>
<tr>
<td>16:1</td>
<td>0,4 ± 0,2</td>
<td>0,1 ± 0,1</td>
<td>0,5 ± 0,4</td>
<td>0,4 ± 0,2</td>
</tr>
<tr>
<td>16:2</td>
<td>0,2 ± 0,1</td>
<td>0,2 ± 0,0</td>
<td>0,3 ± 0,2</td>
<td>0,5 ± 0,1</td>
</tr>
<tr>
<td>16:3</td>
<td>1,0 ± 0,4</td>
<td>0,8 ± 0,5</td>
<td>0,1 ± 0,2</td>
<td>0,3 ± 0,0</td>
</tr>
<tr>
<td>18:0</td>
<td>0,9 ± 0,8</td>
<td>1,4 ± 0,1</td>
<td>1,6 ± 0,5</td>
<td>1,4 ± 0,1</td>
</tr>
<tr>
<td>18:1</td>
<td>2,6 ± 0,5</td>
<td>2,5 ± 0,1</td>
<td>2,6 ± 1,1</td>
<td>2,5 ± 0,3</td>
</tr>
<tr>
<td>18:2</td>
<td>38,5 ± 1,0</td>
<td>38,5 ± 1,1</td>
<td>36,1 ± 2,9</td>
<td>35,0 ± 0,7</td>
</tr>
<tr>
<td>18:3</td>
<td>33,8 ± 3,3</td>
<td>33,0 ± 0,9</td>
<td>35,8 ± 2,9</td>
<td>38,7 ± 2,5</td>
</tr>
<tr>
<td>22:0</td>
<td>0,2 ± 0,2</td>
<td>0,4 ± 0,2</td>
<td>0,2 ± 0,0</td>
<td>0,3 ± 0,1</td>
</tr>
<tr>
<td>24:0</td>
<td>0,4 ± 0,3</td>
<td>0,6 ± 0,3</td>
<td>0,4 ± 0,1</td>
<td>0,4 ± 0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>13,9 ± 1,0</td>
<td>15,0 ± 2,1</td>
<td>16,1 ± 5,2</td>
<td>13,6 ± 1,2</td>
</tr>
<tr>
<td>16:1</td>
<td>1,4 ± 0,6</td>
<td>1,2 ± 0,4</td>
<td>0,6 ± 0,4</td>
<td>0,8 ± 0,1</td>
</tr>
<tr>
<td>16:2</td>
<td>0,9 ± 0,4</td>
<td>1,4 ± 1,1</td>
<td>0,9 ± 0,2</td>
<td>0,7 ± 0,1</td>
</tr>
<tr>
<td>16:3</td>
<td>0,6 ± 0,1</td>
<td>0,8 ± 0,1</td>
<td>0,6 ± 0,8</td>
<td>0,2 ± 0,2</td>
</tr>
<tr>
<td>18:0</td>
<td>4,5 ± 0,8</td>
<td>4,0 ± 0,1</td>
<td>4,5 ± 1,1</td>
<td>5,3 ± 0,7</td>
</tr>
<tr>
<td>18:1</td>
<td>2,7 ± 0,7</td>
<td>2,4 ± 0,3</td>
<td>2,3 ± 0,5</td>
<td>1,8 ± 0,2</td>
</tr>
<tr>
<td>18:2</td>
<td>27,6 ± 1,0</td>
<td>26,9 ± 1,4</td>
<td>27,8 ± 3,1</td>
<td>25,0 ± 0,2</td>
</tr>
<tr>
<td>18:3</td>
<td>32,4 ± 2,2</td>
<td>35,3 ± 2,5</td>
<td>38,5 ± 5,1</td>
<td>41,6 ± 3,7</td>
</tr>
<tr>
<td>22:0</td>
<td>3,8 ± 0,5</td>
<td>3,5 ± 0,4</td>
<td>2,2 ± 0,2</td>
<td>3,1 ± 1,0</td>
</tr>
<tr>
<td>24:0</td>
<td>7,2 ± 1,3</td>
<td>6,6 ± 1,1</td>
<td>1,3 ± 0,1</td>
<td>2,0 ± 0,4</td>
</tr>
</tbody>
</table>

Die Fettsäurezusammensetzung von PE und PS in WT Col-0 und psd1psd2-1psd3-1 ist in den Blättern sowie auch in den Blüten ähnlich. Sehr langkettige Fettsäuren konnten vor allem in PS detektiert werden. In allen anderen Membranlipiden waren
3.9.2 Lipidanalyse isolierter Mitochondrien

Es könnte sein, dass die Mitochondrien der psd1 und psd1psd2-1psd3-1 Mutante durch Veränderung des Lipidmusters der Mitochondrienmembran in ihrer Funktion eingeschränkt sind. Daher wurden Mitochondrien isoliert und deren Lipide analysiert. Das Ergebnis ist in Abb. 23 zu sehen.

Die Lipide wurden aus Arabidopsis Keimlingen isoliert, die drei Wochen bei Dunkelheit im Flüssigmedium angezogen wurden.

Die Lipide setzen sich aus ungefähr 22 % CL (WT Col-0: 20,6 %, psd1: 25,3 %, psd1psd2-1psd3-1: 23,1 %), 4,5 % PG (WT Col-0: 4,2 %, psd1: 4,7 %, psd1psd2-1psd3-1: 4,8 %) und 34 % PC (WT Col-0: 36,3 %, psd1: 29,7 %, psd1psd2-1psd3-1: 34,3 %) zusammen. Im WT Col-0 sind zudem noch 34,0 % PE
und 5,0 % der Lipide PI und PS. Im Vergleich zum WT Col-0 ist in diesen Lipiden (PE, Pl/PS) in den Mutanten psd1 und psd1psd2-1psd3-1 ein Unterschied zu finden. Die Mutante psd1 hat etwas weniger PE (32,5 %) und mehr PS und PI (7,7 %). In der psd1psd2-1psd3-1 Mutante ist der Unterschied deutlicher, PE ist um etwa 6 % (28,2 %) reduziert und PS um knapp 5 % (9,7 %) erhöht. Die Lipide Pl und PS waren mit diesem System nicht trennbar.

3.10 Charakterisierung der Mitochondrien und deren Funktionalität in psd1 und psd1psd2-1psd3-1 Mutanten

3.10.1 Analyse der Anzahl der Mitochondrien in psd1 und psd1psd2-1psd3-1 Mutanten

Abb. 24: Anzahl der Mitochondrien in Protoplasten von WT Col-0, psd1 und psd1psd2-1psd3-1

Zusätzlich sollte die Anzahl der Mitochondrien mit einer Western Blot Analyse überprüft werden. Dafür wurden Proteine aus Blättern und etiolierten Keimlingen isoliert und mit ihnen ein Western Blot durchgeführt. Anhand von Unterschieden der Bandenintensität der etwa 60 kDA großen Proteinkomplexe von Cytochrom C sollte zu erkennen sein, ob die Anzahl der Mitochondrien in den Mutanten im Vergleich zum WT verändert ist. Dies konnte in diesem Versuch jedoch nicht festgestellt werden (Abb. 25).
Abb. 25: Immunodetektion von Cytochrom C in psd Mutanten

Es wurden 60 µg Protein aus grünen Blättern und aus etiolierten Keimlingen aufgetragen. Die Detektion der mitochondrien spezifischen Cytochrom C Bande erfolgte mit einem monoklonalen Maus Antikörper (BD™ Biosciences, Heidelberg, D).

3.10.2 Keimungsraten von psd1 und psd1psd2-1psd3-1 bei 21 % und 1 % Sauerstoff

Die veränderte Lipidzusammensetzung könnte die Funktionalität der Mitochondrien, insbesondere die Respiration, negativ beeinflussen. Inwieweit diese in der mitochondrialen psd1 Mutante und in der psd Dreifachmutante betroffen ist, sollte die Untersuchung der Keimungsfähigkeit der Linien WT Col-0, WT Ws, psd1 und psd1psd2-1psd3-1 bei 1 % Sauerstoff über drei Wochen zeigen. Während der Respiration werden durch die Cytochrom C Oxidase Elektronen auf Sauerstoff übertragen, der mit vier Protonen aus der Matrix zu Wasser reagiert. Bei 1 % Sauerstoff kann dieser Prozess kaum ablaufen. Damit die Sauerstoffkonzentration konstant gehalten werden konnte, wurden die Keimlinge im Dunkeln angezogen, wodurch Photosynthese, bei der Sauerstoff entsteht, nicht stattfinden kann. Als Kontrolle wurden die verschiedenen Linien bei 21 % Sauerstoff unter denselben Bedingungen angezogen. Die Samen wurden steril auf 2MS-Medium in Weckgläsern ausgebracht, welche in Boxen verblieben, in denen die entsprechende Sauerstoffkonzentration eingestellt wurde. In Abb. 26 ist zu sehen, dass bei 21 % Sauerstoff von allen angezogenen Linien ähnlich viele Samen keimten (WT Col-0: 90,41 %; WT Ws: 84,18 %; psd1: 88,41 %; psd1psd2-1psd3-1: 85,20 %). Bei 1 % Sauerstoff keimten alle Linien erwartungsgemäß etwas schlechter (WT Col-0:
84,81 %; psd1: 77,62 %). Überraschenderweise keimten die Samen der Linie WT Ws schlechter (29,06 %) als die psd Dreifachmutante (54,4 %). Es kann aufgrund des Unterschiedes zwischen den beiden Wildtyppflanzen Col-0 und Ws bei 1 % Sauerstoff keine Aussage zum Einfluss der Mutationen auf die Keimungsrate getroffen werden.

![Bar chart showing germination rates of different psd mutants under 21% and 1% oxygen](chart.png)

Abb. 26: Keimungsrate verschiedener psd Mutanten bei 21 % und 1 % Sauerstoff

Arabidopsis Keimlinge wurden bei 21 % bzw. 1 % Sauerstoff im Dunkeln angezogen. Die Keimungsrate wurde aus der Anzahl der gekeimten und der ungekeimten Samen bestimmt.

3.10.3 Messung der Atmung von psd1 und psd1psd2-1psd3-1 Keimlingen

Ist die Respiration der Mitochondrien beeinträchtigt, so läuft die Atmung der Pflanzen nicht optimal. Dafür wurde die Abnahme der Sauerstoffkonzentration im Medium durch Atmung von Keimlingen gemessen. Keimlinge wurden für drei Wochen in Flüssigmedium angezogen. Durch die Anzucht bei Dunkelheit wurde Photosynthese verhindert. Vor der Respirationsmessung wurden die Keimlinge 48 h mit Luft begast, um alle Keimlinge in einen vergleichbaren physiologischen Zustand zu bringen. Anschließend wurde frisches Medium zugegeben und die Abnahme der Sauerstoffkonzentration innerhalb des Mediums aufgezeichnet, bis sich ein
Gleichgewicht einstellte. In Abb. 27 sind die ermittelten Atmungsraten in % Sauerstoff, der pro Minute und mg Trockenmasse der Keimlinge veratmet wurde, dargestellt. Wie schon im vorangegangenen Experiment ist hier ein Unterschied zwischen beiden Wildtypen zu erkennen, Col-0: 0,0282 % min⁻¹ mg⁻¹, Ws: 0,0157 % min⁻¹ mg⁻¹. Die Atmung von psd1 (0,0302 % min⁻¹ mg⁻¹) war ähnlich zum WT Col-0 (0,0282 % min⁻¹ mg⁻¹). Die Atmung der psd1 psd2-1 psd3-1 Keimlinge (0,0202 % min⁻¹ mg⁻¹) war vergleichbar mit der Atmung von WT Ws (0,0157 % min⁻¹ mg⁻¹).

Abb. 27: Atmungsraten von Col-0, Ws, psd1 und psd1 psd2-1 psd3-1 Keimlingen

Die Atmung wurde mit etiolierten Keimlingen bei Dunkelheit in Flüssigkultur gemessen. Dabei wurde die Sauerstoffabnahme im Flüssigmedium aufgezeichnet und ins Verhältnis zur Trockenmasse gesetzt.

3.10.4 Messung des ADP/ATP-Verhältnisses

ATP/ADP-Verhältnisse auf (Col-0: 2,2494; Ws: 1,8458; psd1: 1,8941; psd1psd2-1psd3-1: 1,9728).

Abb. 28: ATP/ADP-Verhältnis in Col-0, Ws, psd1 und psd1psd2-1psd3-1

Die Nukleotide ATP und ADP wurden aus Blüten isoliert und mit Hilfe von HPLC analysiert.

3.10.5 Mitochondrien-Ultrastruktur in psd1psd2-1psd3-1

Es konnte gezeigt werden, dass die Lipidzusammensetzung der Mitochondrien der psd1psd2-1psd3-1 Mutante verändert ist. Dies könnte einen Einfluss auf die Ultrastruktur der Mitochondrien haben. Aus diesem Grund wurden elektronenmikroskopische Aufnahmen von Mitochondrien aus Col-0 und psd1psd2-1psd3-1 erstellt. Da die drastischsten Veränderungen die Blüten- und Staubblätter betreffen, wurden Mitochondrien in diesen Blütenorganen untersucht. Wie in Abb. 29 deutlich wird, sind keine Unterschiede in der Ultrastruktur der Mitochondrien aus Blüten- bzw. Staubblättern sichtbar.
Abb. 29: Elektronenmikroskopische Untersuchung der Ultrastruktur von Mitochondrien

Mitochondrien in Blüten- (A) und Staubblättern (B) von WT Col-0 und psd1psd2-1psd3-1 bei 55000facher Vergrößerung. Michael Melzer, IPK, Gatersleben

3.10.6 Expressionsanalyse kerncodierter Komplex I Untereinheiten der mitochondrialen Atmungskette

Die veränderte Lipidzusammensetzung der Mitochondrien könnte zu einer Einschränkung der mitochondrialen Respiration führen. Es konnte durch Zabaleta et al. (1998) und Gómez-Casati et al. (2002) gezeigt werden, dass die Expression verschiedener kerncodierter Untereinheiten des Komplexes I der Atmungskette erhöht wird, wenn die Mitochondrien nicht intakt sind. Deshalb wurde die Expression der kerncodierten Komplex I Gene für das NADH bindende Protein (At5g08530), PSST (At5g11770) und TYKY (At1g08530) im Northern Blot analysiert. Wie in Abb. 30 zu sehen ist, sind die Gene At5g08530 und At1g08530 im Vergleich zu At5g11770 sehr schwach exprimiert. Hinsichtlich der Expression aller drei
kerncodierten Untereinheiten des Komplex I konnten zwischen den analysierten Linien keine Unterschiede detektiert werden.

Abb. 30: Expressionsanalyse kerncodierter Untereinheiten des Komplexes I in Mitochondrien
Blüten-RNA wurde isoliert und mit den Sonden für das NADH-bindende Protein (At5g08530), PSST (At5g11770) und TYKY (At1g08530) hybridisiert.

3.11 Komplementationsanalysen der psd1psd2-1psd3-1 Dreifachmutante

3.11.1 Transformation der psd1psd2-1psd3-1 Dreifachmutante mit atPSD1

Abb. 31: Komplementation der psd Dreifachmutante mit atPSD1

Es wurde die cDNA der mitochondrialen atPSD1 in die psd1psd2-1psd3-1 Mutante transformiert. Damit konnte die Morphologie einer WT Blüte wieder hergestellt werden. Zur besseren Einsicht in die Blüte wurden das vorderste Kelch- und Blütenblatt entfernt.

In Abb. 31 ist rechts eine mit atPSD1 komplementierte psd1psd2-1psd3-1 Dreifachmutante dargestellt. Diese kann normale Blütenblätter ausbilden, die Staubblätter reichen bis zur Narbe wie im WT Col-0 und der Pollen kann aus den Pollensäcken treten. Außerdem konnten Schoten beobachtet werden und eine wildtypähnliche Samenproduktion. Von 28 Transformanten waren 16 hinsichtlich der Samenproduktion komplementiert. Die Bestätigung, dass es sich weiterhin um den genetischen Hintergrund der psd Dreifachmutante handelte, erfolgte über PCR.

3.11.1.1 Untersuchung der Pollen von WT Col-0, psd1, psd1psd2-1psd3-1 und atPSD1-psd1psd2-1psd3-1

Inwieweit die Vitalität der Pollen wieder vollständig hergestellt werden konnte, sollten lichtmikroskopische Untersuchungen zeigen. Die Staubblätter von WT Col-0, psd1 und atPSD1-psd1psd2-1psd2-1 ähneln sich. Die Morphologie der Staubblätter der psd1psd2-1psd2-1 Mutante unterscheidet sich deutlich vom WT Col-0 (Abb. 32, A). Zwischen den Pollen aus WT Col-0 und aus psd1 Mutanten konnten keine Unterschiede festgestellt werden (Abb. 32, B, 1 und 2). Anders verhält es sich bei der psd1psd2-1psd3-1 Mutante. Bei ihr sind viele kleine oder aber eine sehr große
Vakuole innerhalb der Pollen zu sehen, ein Zeichen für Degradation (Abb. 32, B, 3). In der mit atPSD1 transformierten psd1psd2-1psd3-1 Mutante treten solche großen Vakuolen in den Pollen seltener auf. Dafür sind mehr wildtypähnliche Pollen vorhanden. Zusätzlich sind deformierte Pollen zu sehen (Abb. 32, B, 4).

Abb. 32: Lichtmikroskopische Aufnahmen von Staubblättern (A) und Pollen (B) von WT Col-0 (1), psd1 (2), psd1psd2-1psd3-1 (3) und atPSD1-psd1psd2-1psd3-1 (4)

Die Staubblätter und Pollen wurden für einen besseren Kontrast mit Toluidinblau angefärbt. Michael Melzer, IPK, Gatersleben

3.11.2 Transformation der psd1psd2-1psd3-1 Dreifachmutante mit atPSD3

Durch Transformation der atPSD1 cDNA in die psd Dreifachmutante konnte der Blütenphänotyp komplementiert werden. Dies sollte auch mit der atPSD3-cDNA durchgeführt werden, welche in vivo am stärksten transkribiert wird und die stärkste Enzymaktivität zeigte. Die cDNA wurde ebenfalls hinter den 35S Promotor im Vektor pBinAR-Hyg kloniert. In Abb. 33 ist zu sehen, dass die Transformation der psd Dreifachmutante mit der atPSD3-cDNA zur Komplementation des Blütenphänotyps führt. Die Bestätigung, dass es sich weiterhin um den genetischen Hintergrund der psd Dreifachmutante handelte, erfolgte über PCR.
Abb. 33: Komplementation der psd Dreifachmutante mit atPSD3

Es wurde die cDNA der atPSD3 in die psd1psd2-1psd3-1 Mutante transformiert. Damit konnte die Morphologie einer WT-Blüte wieder hergestellt werden. Zur besseren Einsicht in die Blüte wurde das vorderste Kelch- und Blütenblatt entfernt.

3.12 Homöotische Gene in der psd1psd2-1psd3-1 Dreifachmutante

3.12.1 Expressionsanalyse von homöotischen Genen der Blütenbildung

von Kelchblättern (A), Blütenblättern (A und B), Staubblättern (B und C) und Fruchtblättern (C) zu bewirken.

Abb. 34: Organisation der Blüte in Wirteln (A) und das ABC-Model (B)

Zu den ABC-Genen gehören APETALA1 und APETALA2 als Vertreter der A-Gene, APETALA3 und PISTILLATA als Vertreter der B-Gene und AGAMOUS als Vertreter des C-Gens. Da die psd Dreifachmutante nur Veränderungen im 2. und 3. Wirtel zeigt, sollte überprüft werden, wie stark die Expression von APETALA3, PISTILLATA und AGAMOUS in Blüten von psd1psd2-1psd3-1 ist. Für APETALA3 konnte eine deutliche Reduktion der Transkription in psd2-1, psd3-1, psd2-1psd3-1 und psd1psd2-1psd3-1 nachgewiesen werden (Abb. 35).

Abb. 35: Northern Blot Analyse zur Expression von APETALA3, PISTILATA und AGAMOUS in verschiedenen psd Mutanten und Wildtypen

Aus Blüten wurde RNA isoliert und mit den entsprechenden Sonden hybridisiert. Um zu zeigen, dass gleiche Mengen RNA eingesetzt wurden, ist die rRNA Bande abgebildet.
Der Blütenphänotyp der psd Dreifachmutante ist vergleichbar dem Blütenphänotyp der ap3 Mutante. Es könnte also sein, dass die Reduktion der AP3 Expression die Ursache für die veränderte Blütenmorphologie ist. Für APETAL3 (AP3) konnte zudem gezeigt werden, dass die komplementierte atPSD1-psd1psd2-1psd3-1 Pflanze eine Transkription ähnlich den beiden WT Pflanzen erreicht. Die Menge des AGAMOUS Transkripts ist in psd3-1 und psd2-1psd3-1 reduziert, PISTILLATA in psd2-1, psd2-1psd3-1 und am stärksten in psd3-1 reduziert (Abb. 35).

3.12.2 Überexpression von APETAL3 in psd1psd2-1psd3-1

3.13 Isolation und Charakterisierung einer zweiten psd1psd2-2psd3-2 Mutante

3.13.1 Isolation und Charakterisierung der psd1psd2-2psd3-2 Mutante

Abb. 37: Blüten von Col-0 und der psd1psd2-2psd3-2 Mutante

Zur besseren Einsicht in die Blüte wurde das vorderste Kelch- und Blütenblatt entfernt.

3.13.2 Expressionsanalyse von APETALA3 in psd1psd2-2psd3-2

Die Expression von AP3 war in der psd1psd2-1psd3-1 Mutante stark reduziert. Bei der psd1psd2-2psd3-2 Mutante ist eine normale Blütenmorphologie zu beobachten. Es sollte überprüft werden, inwieweit die Expression von AP3 in ihr verändert ist. Das Ergebnis ist in Abb. 38 dargestellt.

Abb. 38: Expression von APETALA3 in verschiedenen psd Mutanten

Aus Blüten wurde RNA isoliert und mit der AP3 cDNA hybridisiert. Um zu zeigen, dass gleiche Mengen RNA eingesetzt wurden, ist die rRNA abgebildet.
Die Expression von AP3 in den Mutanten psd2-2, psd3-2, psd2-2psd3-2, psd1 und psd1psd2-2psd3-2 ist ähnlich zur Expression in beiden WT-Pflanzen Col-0 und Ws. Die psd1psd2-1psd3-1 Mutante zeigte erneut eine starke Reduktion der AP3 Expression. In der mit atPSD1 komplementierten psd1psd2-1psd3-1 Mutante ist die APETALA3 Expression wie im WT.
4. Diskussion

4.1 Funktionalität und subzelluläre Lokalisierung einzelner PSDs

4.1.1 Die Gene atPSD1, atPSD2 und atPSD3 codieren für funktionale Phosphatidylserin Decarboxylasen

Sequenzvergleichsanalysen mit bereits bekannten PSDs führten zur Identifizierung von drei Genen (atPSD1, atPSD2 und atPSD3), die für PSDs in Arabidopsis codieren. In der vorliegenden Arbeit wurde durch Expression in PSD-defizienten Linien von E. coli (EH150 Mutante) und Hefe (psd1psd2 Mutante) gezeigt, dass diese Gene für funktionelle PSDs codieren. Vergleichbare Studien zeigten die erfolgreiche Komplementation des Lipidphänotyps der EH150 Mutante von E. coli mit der cDNA von scPSD1 aus Hefe und der bsPSD cDNA aus Bacillus subtilis (Clancey et al., 1997; Matsumoto et al., 1998). Die Komplementation der Hefe-Doppelmutante psd1psd2 mit der mitochondrialen lePSD1 aus Tomate war erfolgreich, wenn entweder der N-terminale Bereich von lePSD1, der für die Lokalisierung des Enyzms im Mitochondrium verantwortlich ist, durch den N-terminalen Bereich der mitochondrialen scPSD1 aus Hefe ersetzt wurde, oder wenn das Enzym ohne den N-terminalen Bereich exprimiert wurde (Rontein et al., 2003). Somit wird die mitochondrialen Targeting Sequenz im N-terminalen Bereich der lePSD1 in Hefe nicht erkannt. Dies könnte darauf hinweisen, dass der N-terminale Bereich der PSDs Targeting-Sequenzen enthält, die für die spezifische subzelluläre Lokalisierung verantwortlich sind.

Die vollständigen cDNAs von atPSD2 und atPSD3 wurden zunächst heterolog in der PSD-defizienten E. coli Mutante EH150 exprimiert. Die Transformanten zeigten jedoch keine Komplementation des Lipidphänotyps der EH150 Mutante (Abb. 7). Es kam nur zu einer erfolgreichen Komplementation, wenn EH150 mit dem atPSD3 C-Terminus transformiert wurde (Abb. 7). Dieser ist zu dem E. coli Enzym ortholog. Dieses Ergebnis zeigt, dass der N-terminale Bereich des Proteins für die Enzymaktivität nicht essentiell ist. Transformanten mit dem C-Terminus von atPSD2, der ebenfalls zu dem E. coli Enzym ecPSD ortholog ist, zeigten jedoch keine Komplementation des Lipidphänotyps der EH150 Mutante (Abb. 7). Enzymaktivitätstests mit der Arabidopsis Mutante psd2-2 zeigten eine ähnliche PSD-
Enzymaktivität wie WT Pflanzen (Abb. 14). Im Gegensatz dazu zeigte die psd3-2 Mutante eine Reduktion der Enzymaktivität (Abb. 14). Der Verlust des atPSD2 Gens in Arabidopsis hat also kaum Einfluss auf die gesamte PSD-Aktivität. Die in dem in planta Experiment gezeigte geringe Enzymaktivität von atPSD2 könnte in E. coli die Ursache für die nicht erfolgte Komplementation sein. Der Transfer der vollständigen cDNAs von atPSD2 und atPSD3 in die Hefedoppelmutante psd1psd2 führte zur Komplementation des ethanolaminoxotrophen Wachstumsphänotyps (Abb. 8). Die N-terminale Extension ist vor allem in PSDs aus Eukaryoten vorhanden. PSD-Enzyme, die keine lange N-terminale Extension enthalten, sind hauptsächlich PSDs aus Prokaryoten und Mitochondrien. atPSD2 und atPSD3 gehören somit zu den „eukaryotischen“ PSDs und dies könnte eine Erklärung dafür sein, dass die Transformation mit atPSD2 oder atPSD3 die „eukaryotische“ psd1psd2 Hefemutante komplementieren kann. Die Komplementation von EH150, als Vertreter der Prokaryoten, durch Expression „prokaryotischer“ PSDs (bsPSD und scPSD1) wurde bereits gezeigt (Clancey et al., 1997; Matsumoto et al., 1998). Jedoch ist die Komplementation von EH150 durch Transformation mit den vollständigen „eukaryotischen“ PSD- cDNAs aus Arabidopsis nicht möglich. Es kann ebenfalls nicht ausgeschlossen werden, dass die Prozessierung des pflanzlichen Enzyms wegen des verhältnismäßig langen N-terminalen Bereichs in E. coli gestört wird. Da die PSD eine posttranslationale Modifikation durchlaufen muss, um in Form funktioneller Untereinheiten mit korrekt gebildetem Cofaktor aktiv werden zu können, ist dieser Schritt besonders kritisch für den Funktionsnachweis des exprimierten Proteins.

Es wurden die cDNA von atPSD3 und die orthologe cDNA aus Physcomitrella patens (ppPSD) in Arabidopsis WT-Pflanzen überexprimiert. Transformanten mit erhöhter Transkription des jeweiligen Gens wurden identifiziert, zeigten jedoch keine erhöhte Enzymaktivität. Rontein et al. (2003) isolierte eine Arabidopsis psd1 „knock-up“ Mutante (SAIL_508_C12) mit einem 6- bis 13fachen Anstieg der atPSD1 Expression und einer 9fach höheren PSD-Aktivität in den Mitochondrien verglichen mit dem WT. Der Grund dafür, dass die erhöhte Transkription von atPSD1 zu einer erhöhten Enzymaktivität führt, die erhöhte Transkription von atPSD3 jedoch nicht, könnte an der Lokalisierung der Enzyme in unterschiedlichen Kompartimenten der Zelle liegen. atPSD1 ist in Mitochondrien und atPSD3 im ER lokalisiert (Abb. 9). So könnte es sein, dass es im ER zu einem Mangel an PS oder zu einer Produktüberschusshemmung kommt, im Mitochondrium jedoch nicht. Zudem sind
posttranskriptionale Regulationsmechanismen bekannt, die die Stabilität, die Translationseffizienz (Mignone et al., 2002) oder den Export der mRNA aus dem Nukleus kontrollieren (Sommer und Nehrass, 2005) und auf diese Weise die PSD-Aktivität der Transformanten beeinflussen könnten.

4.1.2 atPSD1 ist am Mitochondrium, atPSD2 am Tonoplasten und atPSD3 am ER lokalisiert

Die ersten PSDs höherer Pflanzen wurden in Tomate und Arabidopsis identifiziert, wobei es sich um mitochondriale Enzyme handelt (Rontein et al., 2003; von Orlov 2003). atPSD2 und atPSD3 enthalten im Gegensatz zu atPSD1 einen N-terminalen Bereich, der auf eine Lokalisierung außerhalb der Mitochondrien hinweisen könnte. Mit Hilfe der Analyse von GFP-Fusionsproteinen wurde atPSD2 am Tonoplasten und atPSD3 am ER lokalisiert (Abb. 9). Die im Nukleus detektierte Fluoreszenz in Abb. 9 (atPSD2-GFP und atPSD3-GFP) könnte eventuell daher rühren, dass das PSD-GFP Fusionsprotein gespalten und das GFP in den Nukleus transportiert wird. Die Ergebnisse für die Lokalisierung der Arabidopsis PSDs zeigen, dass die Synthese von PE über den PSD-Weg am ER, im Tonoplast und im Mitochondrium erfolgen kann.

4.2 Charakterisierung der psd Mutanten

PE als eines der häufigsten Phospholipide ist Bestandteil der ER-, Tonoplast-, Nukleus-, Mitochondrien- und der Plasmamembran, jedoch nicht der Plastiden. Die Synthese von PE kann in Pflanzen über drei Biosynthesewege erfolgen, durch den Transfer von Phosphoethanolamin auf DAG, mittels der Aminoalkoholphosphotransferase, durch die PSD katalysierte Decarboxylierung von PS oder durch Kopfgruppentausch an PS durch Ethanolamin. Um den Beitrag des PSD-Wegs an der PE-Synthese zu untersuchen, wurden aus den T-DNA Insertionsmutanten psd1, psd2-1 und psd3-1 die psd2-1psd3-1 Doppelmutante und die psd1psd2-1psd3-1 Dreifachmutante erzeugt. Mit Northern Blot Analysen und semiquantitativer real-time PCR konnte für alle psd Einzelmutanten keine Transkription der entsprechenden

Die Mutation der mitochondrialen PSD aus Mäusen führte zu Veränderungen der Mitochondrienstruktur und -größe mit der Folge, dass die Embryonen absterben (Steenbergergen *et al.* 2005). In der *psd*1 Mutante sowie der *psd*1*psd*2-1*psd*3-1 Mutante von *Arabidopsis* wurden keine Veränderung der Ultrastruktur oder der Größe der Mitochondrien festgestellt (Abb. 29). Vermutlich hat die totale PSD-Defizienz und die damit verbundene leichte Veränderung der Lipidzusammensetzung der Mitochondrien keinen Einfluss auf die Größe und Ultrastruktur der Mitochondrien.

4.3 Der Blütenphänotyp der *psd*1*psd*2-1*psd*3-1 Mutante und mögliche Ursachen

4.3.1 Der Einfluss von Jasmonsäure auf die Blütenmorphologie

(coi1, Feys et al., 1994; Xie et al., 1998), durch die Dreifachmutante fad3 fad7 fad8, deren Linolensäuresynthese (LA, ausgangsprodukt der JA Synthese) gestört ist, (McConn und Browse, 1996) und durch die Arabidopsis Mutante „defective in anther dehiscence1“ (dad1; Ishiguro et al., 2001). In diesen Mutanten ist die Organisation und Differenzierung der Zellen im Pollensack normal, jedoch kann der Pollensack nicht aufreißen und die Pollen entlassen. Zudem sind die Pollen nicht vital. In der dad1 Mutante können diese Defekte durch die Zugabe von JA oder Linolensäure wieder aufgehoben werden, so dass bestäubungsfähige Pollen entstehen können (Ishiguro et al., 2001). Die psd Dreifachmutante zeigte im Hinblick auf die Pollensäcke einen vergleichbaren Phänotyp wie die dad1 Mutante. Daher wurden die Blüten der psd1psd2-1psd3-1 Mutante ebenfalls mit JA infiltrierte, was jedoch die WT-Blütenmorphologie nicht wiederherstellen konnte. So konnte ausgeschlossen werden, dass der Biosyntheseweg der JA von der PSD-Defizienz der psd Dreifachmutante betroffen war und zu den Pollensackveränderungen führt.

4.3.2 Der Einfluss der Mitochondrien auf die Blütenmorphologie

psd1psd2-1psd3-1 Mutante in diesen Experimenten lagen zwischen den Werten der beiden Ökotypen (Abb. 26 und Abb. 27). Obwohl im WT Ws keine veränderte Blütenmorphologie auftritt, kann jedoch nicht ausgeschlossen werden, dass die reduzierte Respiration einen geringen Beitrag zu der Blütenveränderung in der psd1psd2-1psd3-1 Mutante leistet.

entlassen Lipidbestandteile, die die Exine der Pollen überziehen (Piffanelli und Murphy, 1998). Die elektronenmikroskopische Analyse der Pollen von Col-0 und psd1psd2-1psd3-1 zeigte Unterschiede der Exine hinsichtlich der Lipidkörperchen und Vakuolen (Abb. 20). In Pollen von psd1psd2-1psd3-1 Mutanten sind kaum Lipidkörperchen, jedoch deutlich mehr kleine Vakuolen sichtbar (Abb. 20). Lichtmikroskopische Untersuchungen der psd1psd2-1psd3-1 Pollen zeigten ebenfalls Abnormalitäten zum WT. Die psd1psd2-1psd3-1 Pollen besitzen auffällig große Vakuolen (Abb. 32), was ein Hinweis für Apoptose sein könnte. Diese Ergebnisse lassen vermuten, dass die Pollenentwicklung nicht normal ablaufen kann.

4.3.3 Der Einfluss von homöotischen Genen auf die Blütenmorphologie

Untersuchung der Expression von AP3 und PI zeigt eine Reduktion des AP3 Transkripts in psd2-1, psd3-1, psd2-1psd3-1 sowie psd1psd2-1psd3-1 Blüten (Abb. 35). Die Transkription von PI in der Mutante psd1psd2-1psd3-1 ist ähnlich zu beiden Wildtypen (Abb. 35). Die Transformation der psd1psd2-1psd3-1 Mutante mit AP3 führte zur Bildung normaler Blüten (Abb. 36). So ist der Blütenphänotyp der psd1psd2-1psd3-1 Mutante auf eine reduzierte AP3 Expression zurückzuführen. Zusätzlich führte die Transformation der psd1psd2-1psd3-1 Mutante mit der mitochondrialen atPSD1 (Abb. 31) und der atPSD3 (Abb. 33) zur Wiederherstellung des normalen Blütenphänotyps. Es war bis zu diesem Zeitpunkt unklar, welche Verbindung zwischen PSD-Defizienz und AP3 Expression besteht.

4.4 Einfluss des T-DNA Insertionsvektors pD991-AP3 auf den Blütenphänotyp

Neben den psd2-1 und psd3-1 Mutanten wurden auch psd2-2 und psd3-2 Mutanten isoliert (Nerlich, 2004). Sie besaßen ebenfalls Insertionen in codierenden Bereichen der PSD Gene und eine reduzierte PSD-Enzymaktivität, wie sie für die psd2-1 und psd3-1 Mutanten beschrieben wurde (Nerlich, 2004). Es handelt sich also auch bei diesen Mutanten um Null-Mutanten. Mit diesen psd2-2 und psd3-2 Mutanten wurde eine weitere psd Dreifachmutante erzeugt, psd1psd2-2psd3-2, deren Blüten keinen Unterschied zu WT-Blüten zeigten (Abb. 37). Der Unterschied der beiden Dreifachmutanten lag zum einen darin, dass die zur Kreuzung verwendeten Mutanten aus unterschiedlichen T-DNA Populationen isoliert wurden und somit unterschiedliche T-DNA Vektoren beibehalten. Zum anderen vereinigt die Mutante psd1psd2-1psd3-1 die Ökotypen Ws und Col-0, während die psd1psd2-2psd3-2 im Ökotyp Col-0 vorliegt. Bei psd2-1 und psd3-1 handelt es sich um T-DNA Insertionsmutanten der Arabidopsis Knockout Facility der Universität von Wisconsin, Madison, USA. Diese verwendete für die Transformation der WT Ws Pflanzen mit T-DNA einen Vektor (pD991-AP3), der den Promotor des APETALA3 Gens enthält. Ein Vergleich der pD991-AP3 Vektorsequenz mit der APETALA3 Gensequenz zeigte, dass der Teil des Vektors pD991-AP3, der als AP3-Promotor deklariert wurde, mit dem etwa 500 bp langen DNA-Stück der AP3 Sequenz vor dem ATG Startcodon übereinstimmt (Abb. 39).
Abb. 39: Sequenzvergleich des Vektors pD991-AP3 mit dem Gen APETALA3

Über Sequenzvergleiche des AP3 Gens mit Klonen exprimierter Sequenzen (Expressed Sequence Tags; EST) der NCBI Datenbank wurde der EST EG501838.1 identifiziert. Mit Hilfe dieses ESTs konnte der Transkriptionsstart bei 366 bp im AP3 Gen ermittelt werden. Der Bereich zwischen Transkriptionsstart und dem Startcodon wird als 5'-untranslatierte Region (5'-UTR) bezeichnet. Dieser Bereich zeigt Sequenzübereinstimmungen mit dem Vektor pD991. Der Bereich des 5'-UTRs im AP3 Gen, der mit der Vektorsequenz übereinstimmt, kann zu einer so genannten Co-Suppression des endogenen APETALA3 Gens führen und somit zu dem ap3

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Sequenz</th>
<th>Länge (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pD991-AP3</td>
<td>ATGGGCTTTT AACACCAATA TAAAACCTTG CTCACACCT AAACACTTTT</td>
<td>300</td>
</tr>
<tr>
<td>APETALA3</td>
<td>n mmCACACCT AAACACTTTT</td>
<td>20</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>GTTTAAGCTTA GGGTAACTTC AAAAGCCCAA CCAATCCAC CTGCACGTAT</td>
<td>350</td>
</tr>
<tr>
<td>APETALA3</td>
<td>GTTTAAGCTTA GGGTAACTTC AAAAGCCCAA CCAATCCAC CTGCACGTAT</td>
<td>70</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>TTTAAGCTTTT GTTCCCCTTC TTACCAAG AGTCAATTTA TTAAAGCAGT</td>
<td>400</td>
</tr>
<tr>
<td>APETALA3</td>
<td>TTTAAGCTTTT GTTCCCCTTC TTACCAAG AGTCAATTTA TTAAAGCAGT</td>
<td>120</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>GTCTTGTAAT TATACCAACA TGACTGTCCG TTGATTAAAA CAGTGTCTTG</td>
<td>550</td>
</tr>
<tr>
<td>APETALA3</td>
<td>GTCTTGTAAT TATACCAACA TGACTGTCCG TTGATTAAAA CAGTGTCTTG</td>
<td>270</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>TAATTTAAAA AATCAGTTTA CATAAAATGA AATTTTATCA TTGTGGTCTTC</td>
<td>600</td>
</tr>
<tr>
<td>APETALA3</td>
<td>TAATTTAAAA AATCAGTTTA CATAAAATGA AATTTTATCA TTGTGGTCTTC</td>
<td>320</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>ATCAACTTCT GAACCTACCT TTTACAAAT AGGCAACTAC TTCACTTCTTC</td>
<td>650</td>
</tr>
<tr>
<td>APETALA3</td>
<td>ATCAACTTCT GAACCTACCT TTTACAAAT AGGCAACTAC TTCACTTCTTC</td>
<td>370</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>AGTAACTCAA GTGACCCTT TACTTCTCA ACTCATCTCA TCTCTTTCTA</td>
<td>700</td>
</tr>
<tr>
<td>APETALA3</td>
<td>AGTAACTCAA GTGACCCTT TACTTCTCA ACTCATCTCA TCTCTTTCTA</td>
<td>420</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>TTTCATTTCT TTTCTTCTAC TATCTTCTCA GCTCTTCTCA CCAATGGGG</td>
<td>750</td>
</tr>
<tr>
<td>APETALA3</td>
<td>TTTCATTTCT TTTCTTCTAC TATCTTCTCA GCTCTTCTCA CCAATGGGG</td>
<td>470</td>
</tr>
<tr>
<td>pD991-AP3</td>
<td>TACCGATATC CTCGAGTCTA GAGGATCCCC CCACTATCC TATGCAAGAC</td>
<td>800</td>
</tr>
<tr>
<td>APETALA3</td>
<td>TACCGATATC CTCGAGTCTA GAGGATCCCC CCACTATCC TATGCAAGAC</td>
<td>520</td>
</tr>
</tbody>
</table>
Die einzige Linie, die den pD991-AP3 Vektor enthält und keine Reduktion der AP3-Expression zeigt, ist die mit atPSD1 transformierte psd1psd2-1psd3-1 Mutante (Abb. 38). Es scheint, als würde die Transformation mit atPSD1 die Co-Suppression wieder aufheben können. Inwieweit die in die psd1psd2-1psd3-1 Mutante eingebrachten Konstrukte Einfluss auf die Co-Suppression von AP3 haben, wird in künftigen Studien durch die Transformation mit dem leeren Vektors untersucht.

4.4.1 Mehrere Faktoren führen zum Blütenphänotyp der psd1psd2-1psd3-1 Mutante

5. Zusammenfassung

Die durch Phosphatidylserin Decarboxylase (PSD) katalysierte Decarboxylierung von Phosphatidylserin (PS) zu Phosphatidylethanolamin (PE) ist für Mitochondrien in Hefe und Mäusen von essentieller Bedeutung. Im Rahmen der vorliegenden Doktorarbeit wurde erstmalig die Rolle dieses PE-Syntheseweges in Pflanzen untersucht.

Die drei in Arabidopsis identifizierten PSD Gene atPSD1, atPSD2, atPSD3 codieren für Enzyme, die in Membranen der Mitochondrien (atPSD1), der Tonoplasten (atPSD2) und des Endoplasmatischen Retikulums (atPSD3) lokalisiert sind. Der Beitrag der einzelnen PSDs zur PE-Synthese wurde anhand von psd Null-Mutanten untersucht. Dabei stellte sich atPSD3 als das Enzym mit der höchsten Aktivität heraus. Alternativ zum PSD-Weg wird in Arabidopsis PE auch mittels Aminoalkoholphosphotransferase synthetisiert. Der Verlust der gesamten PSD-Aktivität, wie es in der erzeugten psd Dreifachmutante der Fall ist, wirkt sich ausschließlich auf die Lipidzusammensetzung in der Mitochondrienmembran aus. Demzufolge wird extramitochondriales PE hauptsächlich über die Aminoalkoholphosphotransferase synthetisiert. Die veränderte Lipidzusammensetzung der Mitochondrienmembran hatte jedoch keinen Einfluss auf die Anzahl, Größe und Ultrastruktur der Mitochondrien sowie auf das ADP/ATP-Verhältnis und die Respiration.

6. Ausblick

Zu dem Blütenphänotyp der *psd1,psd2-1,psd3-1* Mutante trägt die Reduktion der *APETALA3* Expression sowie eine geringe Schädigung der Mitochondrien bei. Die *psd1,psd2-2,psd3-2* Mutante hingegen zeigt keine Reduktion der *APETALA3* Expression und auch keine veränderte Blütenmorphologie. Geht man ebenfalls von einer Schädigung der Mitochondrien in der *psd1,psd2-2,psd3-2* Mutante aus, so könnten Stressexperimente durchgeführt werden, die erhöhte Anforderungen an die Funktionalität der Mitochondrien stellen (Sauerstoffmangel, Inhibierung der Atmungskette). Damit könnte möglicherweise die Schädigung der Mitochondrien nachgewiesen werden.

Durch Transformation mit *atPSD1* wird die *psd1,psd2-1,psd3-1* Mutante hinsichtlich ihres Blütenphänotyps und der Reduktion der *AP3* Expression komplementiert. Inwieweit die Komplementation der *AP3* Expression durch Störung der *AP3* Co-Suppression durch ein eingebrachtes Konstrukt erfolgt, soll eine Transformation mit dem leeren Vektor zeigen.
7. Literatur

Ardail D., Lerme F., Louisot P. (1991) Involvement of contact sites in phosphatidylserine import into liver mitochondria. J. Biol. Chem. 266, 7978-7981

Feys B. F., Benedetti C. E., Penford C. N., Turner J. G. (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759

Galliard T. (1968a) Aspects of lipid metabolism in higher plants-I. Identification and quantitative determination of the lipids in potato tubers. Phytochemistry 7, 1907-1914

Galliard T. (1968b) Aspects of lipid metabolism in higher plants-II. Identification and quantitative determination of the lipids from the pulp of pre- and post-climacteric apples. Phytochemistry 7, 1915-1922

Jellito T., Sonnewald U., Willmitzer L., Hajirezaei M. R., Stitt M. (1992) Inorganic pyrophosphate content and metabolites in leaves and tubers of potato and tobacco plants expressing *E. coli* pyrophosphatase in their cytosol: biochemical evidence that sucrose metabolism has been manipulated. Planta 188, 238-244

Kanfer J., Kennedy E. P. (1964) Metabolism and function of bacterial lipids. II. Biosynthesis of Phospholipids in *Escherichia coli*. J. Biol. Chem. 239, 1720-1726

McConn M., Browse J. (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8, 403-416

Storey M. K., Clay K. L., Kutateladze T., Murphy R. C., Overduin M., Voelker D. J. (2001) Phosphatidylethanolamine has an essential role in *Saccharomyces cerevisiae* that is independent of its ability to form hexagonal phase structures. J. Biol. Chem. 276, 48539-48548

Vance J. E., Vance D. E. (1988) Does rat liver Golgi have the capacity to synthesize phospholipids for lipoprotein secretion?. J. Biol. Chem. 263, 5898-5909

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt zu haben. Ich versichere ebenfalls, dass die Arbeit an keiner anderen Hochschule eingereicht wurde.

Potsdam, den 15.01.07
Danksagung

Für die Bereitstellung des Themas, die fachliche Betreuung der Dissertation und die exzellenten Arbeitsbedingungen am Max Planck Institut für molekulare Pflanzenphysiologie möchte ich mich bei Prof. Dr. Lothar Willmitzer und PD Dr. Peter Dörmann bedanken. Zudem danke ich Herrn PD Dr. Peter Dörmann dafür, dass er meine Arbeit mit sehr viel Einsatz und großer Fachkenntnis betreute. Seine Begeisterung für die wissenschaftliche Forschung wird mir stets ein Ansporn sein.

Großer Dank gilt auch den lieben Mitgliedern der AG Dörmann und weiteren Mitgliedern des Instituts für Ihre Hilfe und freundliche Zusammenarbeit.

Ich danke besonders Melanie von Orlow für die Bereitstellung der psd Mutanten und einiger Konstrukte.

Außerdem danke ich Michael Melzer für die Anfertigung der elektronenmikroskopischen Aufnahmen und Dennis Rontein für die heterologe Expression von atPSD2 und atPSD3 in der psd1psd2 Hefemutante.

Joost von Dongen war eine große Hilfe bei den Sauerstoffmessungen und der Bestimmung der Keimungsraten, auch ihm gilt mein Dank.

Weiterhin möchte ich mich bei den Gätnern für die hervorragende Betreuung der Arabidopsis Pflanzenanzucht bedanken.

An dieser Stelle sei auch den Technikern, dem IT-Team und der Mitarbeiterin der Medienküche, Brigitte Amthor, gedankt.