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AN OPEN MAPPING THEOREM FOR
THE NAVIER-STOKES EQUATIONS

ALEXANDER SHLAPUNOV AND NIKOLAI TARKHANOV

ABSTRACT. We consider the Navier-Stokes equations in the layer R™ x [0, T]
over R™ with finite 7" > 0. Using the standard fundamental solutions of the
Laplace operator and the heat operator, we reduce the Navier-Stokes equations
to a nonlinear Fredholm equation of the form (I + K)u = f, where K is a
compact continuous operator in anisotropic normed Hélder spaces weighted at
the point at infinity with respect to the space variables. Actually, the weight
function is included to provide a finite energy estimate for solutions to the
Navier-Stokes equations for all ¢ € [0,7]. On using the particular properties
of the de Rham complex we conclude that the Fréchet derivative (I + K)' is
continuously invertible at each point of the Banach space under consideration
and the map I + K is open and injective in the space. In this way the Navier-
Stokes equations prove to induce an open one-to-one mapping in the scale of
Holder spaces.
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INTRODUCTION

The problem of describing the dynamics of incompressible viscous fluid is of great
importance in applications. In 2006 the Clay Mathematics Institute announced it as
the sixth prize millennium problem, see [Fef00]. The dynamics is described by the
Navier-Stokes equations and the problem consists in finding a classical solution to
the equations. By a classical solution we mean here a solution of a class which is well
motivated by applications and for which a uniqueness theorem is available. Essential
contributions have been published in the research articles [Ler34a, Ler34b], [Kol42],
[Hop51], [LS60], [Taol5] as well as surveys and books [Lad70, Lad03]), [Lio61,
Lio69], [Tem79], [FV80], etc.

In physics by the Navier-Stokes equations is meant the impulse equation for the
flow. In the computational fluid dynamics the impulse equation is enlarged by the
continuity and energy equations.

The impulse equation of dynamics of (compressible) viscous fluid was formu-
lated in differential form independently by Claude Navier (1827) and George Stokes
(1845). This is

p(Ow+ (v-V)v) = pAv+ (A +p) Vdive — Vp+ f, (0.1)

where v : X x (0,7) — R3 and p : X x (0,T) — R are the search-for velocity vector
field and pressure of a particle in the flow, respectively, and X is a domain in the
Euclidean space R?, (0,7 is an interval of the time axis. Furthermore, the number
p stands for the mass density, A and p are the first Lamé constant and the dynamical
viscosity of the fluid under consideration, respectively, A = 831 Lot 832 g2+ 833 45 18
the Laplace operator in R?, V and div are the gradient operator and the divergence
operator in R3, respectively, and f is the density vector of outer forces, such as
gravitation and so on, see formulas (15.5) and (15.6) in [LL59, § 15], [Tem79] and
elsewhere.
Usually the impulse equation is supplemented by the continuity equation

Op + div(pv) = g,

see [LL59, § 15].

In order to specify a particular solution of equations (0.1), one usually considers
the first mixed problem in the cylinder X x (0,7') by posing the initial conditions
on the lower basis of the cylinder and a Dirichlet condition on the lateral surface.
To wit,

v(z,0) = w(z), for zelX,

wet) = wlet), for (x,t)€dX x (0,T). 0-2)

It is worth pointing out that the pressure p is determined solely from the impulse
equation up to an additive constant. To fix this constant it suffices to put a moment
condition on p.

If the density p does not change along the trajectories of particles, the flow is said
to be incompressible. It is the assumption that is most often used in applications.
For incompressible fluid the continuity equation takes the especially simple form
dive =01in X x (0,7, i.e., the vector field v should be divergence free (solenoidal).
In many practical problems the flow is not only incompressible but it has even a
constant density. In this case one can just set p = 1 in (0.1) which reduces the
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impulse equation to

3tv+(U'V)U_MAU+VP = (03)
0 .

dive =

in X x (0,7). In this way we obtain what is referred to as but the Navier-Stokes
equations.

After J. Leray [Ler34a, Ler34b], a great attention was paid to weak solutions
to (0.3) with boundary conditions (0.2). Hopf [Hop51] proved that equations (0.3)
under homogeneous data (0.2) have a weak solution satisfying reasonable estimates.
However, in this full generality no uniqueness theorem for a weak solution has been
known. On the other hand, under stronger conditions on the solution it is unique,
see [Lad70, Lad03], who proved the existence of a smooth solution for the two-
dimensional version of the problem.

Traditionally two main directions have been formed in the study of the Navier-
Stokes equations. The first direction is concerned with improvement of the regu-
larity of the weak solution of Hopf [Hop51] using a priori estimates or more refined
methods. The second one is based on the fixed point theorems like those by Ba-
nach or Schauder or mapping degree theory which allow one to attack the nonlinear
problem directly.

On these ways one usually looks first for a suitable uniqueness class of solutions
to the problem. When working in Lebesgue and Sobolev spaces of positive or nega-
tive smoothness, one is aimed at obtaining solvability theorems of certain linearised
versions of the problem in the spaces of generalised functions and establishing a pri-
ori estimates for weak solutions (see for instance the monographs [Lad70], [Tem79]
and the references given there). However, this does not lead to any breakthrough
in the original nonlinear problem, as elementary examples like y = expx show.
Furthermore, on passing to the nonlinear problem in spaces of distributions one
encounters the additional problem on multiplication of distributions. Hence, there
is strong feeling that weak solutions do not completely fit to handle the nonlinearity
of the Navier-Stokes equations.

Actually this observation has motivated clearly the investigation of the linear
and quasilinear systems of parabolic equations in (possibly, weighted) Holder spaces
over cylindrical domains, see for instance [LSUG7], [Sol64], [Sol65], [Bel79], [BS93],
[Sol06], etc. Although the use of Holder spaces guarantees an uniqueness theorem
for the Navier-Stokes equations, one is still not able to derive an existence theorem
in this function scale. What is usually lacking is the compactness or smallness of
the nonlinear term with respect to the parabolic linear part of the equations. The
weighted Hoélder spaces we introduce in the present article serve mainly to get rid
of this drawback.

We now specify the contribution of our paper to a huge amount of works on the
Navier-Stokes equations. In the sequel we consider an initial problem for the Navier-
Stokes equations in the case of non-compressible fluid corresponding to p = 1.
Namely,

ou — pAu+ (u-Viu+Vp = f, if (z,t) € X x (0,7),
diveu = 0, if (x,t) e X x(0,7), (0.4)
u(z,0) = wup(x), if zeX,

where X = R” with n > 2, T > 0 is finite, and p > 0 is a viscosity constant.
As usual, the boundary conditions in this case are replaced by proper asymptotic
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behaviour of the solution at the point of infinity (cf. for instance [Fef00] for the
space of smooth functions).

We develop an operator theoretic approach to the Navier-Stokes equations. The
focus is on elaborating a scale of weighted Holder spaces which provides the open-
ness of the map induced by the Navier-Stokes equations, and the compactness of
the nonlinear term.

Basically an open mapping theorem just amounts to an existence theorem for
all data which are close to any element of the range of the operator. To the best of
our knowledge there have been known no such results for finite energy solutions in
the scale of Holder spaces on a cylinder with unbounded basis. Theorems 10 and
11 of [Lad70, Ch. 4, § 4] contain similar results for weak solutions in spaces of the
Lebesgue type.

On the other hand, when combined with the invertibility of the linear part in
the Navier-Stokes equations, the compactness of the nonlinear term enables one
to invoke the mapping degree theory to get an existence theorem, if there is any.
This is precisely on what the most of current investigations of the Navier-Stokes
equations are focused.

Let us dwell on the content of the paper and the choice of function spaces in
detail. It should be first noted that since the gradient, rotation and divergence
operators are of steady use in the models of hydrodinamics we use the language
of exterior differential forms and the de Rham complex to treat the Navier-Stokes
equations, see Section 1. This allows one to immediately specify the Navier-Stokes
equations within the framework of global analysis on smooth compact manifolds
with boundary. However, we have not been able to uniquely identify the nature of
nonlinearity on forms of degree greater than one.

It is well known that the operator A (9, — uA) admits a matrix factorisation
through the Stokes operator (the principal linear part of the Navier-Stokes equa-
tions), see [LL59, § 15] or Section 1 below. Hence, on aiming at investigation of
the Navier-Stokes equations on functions vanishing at the infinitely distant point,
one should begin with the study of invertibility of the Laplace and heat operators
in the spaces in question. The point at infinity in R™ is naturally thought of as
a conical point of the one-point compactificaion of R™. The analysis close to this
point is traditionally based on the use of weighted spaces, see [Kond66], [HMIG]
for parabolic problems, [AMN14] for Stokes-type equations or [McO79] for elliptic
problems in weighted Sobolev spaces. Still the Laplace operator acts properly in
weighted Sobolev spaces of square integrable functions on R™ merely for n > 5.
Apart from difficulties with multiplication and possible lack of uniqueness this is
an evidence for us to choose the scale of weighted Holder spaces over R™ instead of
Sobolev spaces, see Section 2.

We first introduce weighted Holder spaces over R™ as in elliptic theory and
then anisotropic Hélder spaces over the layer R™ x [0,7T] of finite width T" > 0.
The explicit construction of these Banach spaces provides appropriate embedding
theorems including those on compact embedding, see Section 2. Taking the results
by [McO79], [HM98] and [Behll] as a starting point, we investigate the Laplace
operator and the heat operator in anisotropic weighted Holder spaces with weight
functions prescribing a proper behaviour of its elements at the point at infinity,
see Sections 3 and 4. As usual, a set of prohibited weights appears, for which
the action of the Laplace operator fails to be Fredholm. Note that the range
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of weight exponents, for which the Laplace operator is continuously invertible, is
rather narrow.

As but one useful tool we derive theorems on the invertibility of the differential
of the de Rham complex in both elliptic and parabolic scales of weighted Sobolev
spaces, see Section 3. They actually constitute certain versions of the classical
Hodge theory on the one-point compactification of R™, cf. also the particular
decompositions of [Lad70, Ch. 1, § 2] and [Tem79, Ch. 1, § 1.4] related to the
rotation operator.

The actions of the Laplace and heat operators in the weighted Holder spaces un-
der study prove to be not fully coherent. To wit, in order to achieve the invertibility
of the Laplace operator for lower dimensions 2 < n < 4 or higher smoothness, we
deal with parabolic Holder spaces, where the dilation principle is partially neglected
with regard to the weight. As a result we lose some regularity and weight in the
Cauchy problem for the heat equation in the scale of parabolic Holder spaces un-
der consideration. More precisely, the loss of regularity occurs with respect to the
smoothness of solution in the standard Holder spaces over a cylinder domain with
bounded base.

Using a familiar trick excluding the pressure, and the standard fundamental
solutions of the Laplace and heat operators, we study linearisations of the Navier-
Stokes equations which can be reduced to Fredholm equations of the form (I +
K')g = go, where K’ is a compact pseudodifferential mapping of anisotropic Holder
spaces. As a consequence we get an existence theorem for linearisations of the
Navier-Stokes equations, see Section 5. Note that there is a loss of regularity in the
existence theorem for the linearised Navier-Stokes equations comparing with that
for the reduced equations.

Further development allows one to reduce the Navier-Stokes equations to an
operator equation for the Fredholm type operator I + K with a nonlinear compact
continuous mapping K in anisotropic normed Holder spaces weighted at the point
at infinity with respect to the space variables. Actually, the weight function is
chosen in such a way that the finite energy estimate be fulfilled for solutions of
the Navier-Stokes equations for all ¢ € [0,7]. Next, using the properties of the
de Rham complex we conclude that the Fréchet derivative (I + K)' of the map is
continuously invertible at every point of the Banach space under the consideration
and the map I + K is open and injective in the space. This implies readily that the
reduced Navier-Stokes equations induce an open mapping on the scale of Holder
spaces. Again, a loss of regularity occurs in the open mapping theorem for the
Navier-Stokes equations comparing with that for the reduced equations. However,
the soft formulation of the open mapping theorem is strengthened to a rigorous
result is the Navier-Stokes equations are given a domain being a metric space, see
Section 6.

Part 1. Preliminaries
1. THE NAVIER-STOKES EQUATIONS AND THE DE RHAM COMPLEX

Let Z>¢ be the set of all natural numbers including zero, and let R™ be the
Euclidean space of dimension n > 2 with coordinates z = (x!,...,2"). For a
domain X in R”, we often consider the open cylinder Cp(X) := X x (0,7 over X
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in the space R™™! of variables (x,t). If X = R", we write Cr = R™ x (0,7T) for
short and we sometimes refer to Cp as a layer over R"™.

We are going to rewrite the nonlinear Navier-Stokes equations (0.4) in a more
convenient form. To this end, denote by A7 the bundle of exterior forms of degree
0 < g <nover R". Given a domain X in R", we write 29(X) for the space of all
differential forms of degree ¢ with C'*° coeflicients on X'. These space constitute the
so-called de Rham complex 2 (X) on X whose differential is given by the exterior
derivative d. To display d acting on ¢-forms one uses the designation du := d%u for
u € N9(X) (see for instance [T95al). For the space of differential forms of degree
q with coeflicients of a class F in X we have to use more cumbersome designation
F(X, A9).

By F(X x (0,T), A9) is meant the space of all differential forms of degree ¢ in z
whose coefficients are functions of a class F(X x (0,T)). They have the form

u(z,t) = Z uy(z,t)dz!
1<y <. <ig<n
where the sum is over all increasing multi-indices I = (i1, ...,4,) of the numbers
1,...,n, dz’ stands for the exterior product of the differentials dz, ..., dz% after
each other, and wus(x,t) are functions of class F(X x (0,7)). The parameter ¢ is
included only in the coefficients.
Consider the de Rham complex Q(R?;rol) on the closed half-space R:‘;Ol, ie.,

0 — O®REH S MRS S S MRED -0,

where t is thought of as a parameter and the coefficients of differential forms are
smooth both in x and t. We denote by d* the formal adjoint operator for d, more
precisely, d*g = (d971)*g for g € 0¢ (R?;rol). The Laplacian of .Q'(Rgrol) evaluated
on g-forms reduces to B B

Al:=d'd+dd* = —Ey, A, (1.1)
where kg = (}), Ek, is the unit (k; x ky)-matrix and A the Laplace operator
applied componentwise in the space variable z. Equality (1.1) means that

(Amu)(a,t) =~ > (Dug)(z,t)da’.

1<i1 <. <ig<n

Write H,, = 0; — nA for the heat operator in ]R?;Ol with a constant g > 0. When
extended componentwise to differential forms of degree ¢ it can be written in the
form

Hl = By, 0; + pA”.
By abuse of notation we will omit the index ¢ and write it simply H,, if it causes
no confusion.

Since scalar partial differential operators with constant coefficients commute, we
obviously deduce that

dH, = H,d,
&'H, = H,d", (12)
ete.
If we identify a function u(x,t) = (u1(z,t),. .., u,(x,t)) with values in R™ with

the differential form

U(.’L‘, t) = Z ui($7 t)d.%'l,
i=1
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then using the de Rham complex above we introduce the block matrix of partial
differential operators

Lo OERE) 2R
( df 0 ) : D — D
DRY)  2ORE)
for the linear part of the Navier-Stokes operator of (0.3). The following factorisation
was implicitly used in [LL59, § 15].

Lemma 1.1. We have

1 0

(& ) (om ) = (50" wm)
1% g1 1,90 10 1771

(i e ) (a9 ) = (70" aomy)

Proof. On using (1.1), (1.2) and the rules of multiplication of block-matrices we see
that

[—Iudl*d1 + dOdO*HH AlHi? HMHMdO - dO(HM)z = 0,
do*d**d' +0d°*H, 0, d°*H,d° —0(H,)?* = AOHS,
which proves the first formula. On the other hand,

d“*d'H, + H,d°d"* = AIH}“ d*d'd° + H,d"0 = 0,
d°*H,H, — (H,)?d"* = 0, d°*H,d° — (H,)*0 = AOHS.
This proves the second formula. |

The lemma shows that the investigation of the Navier-Stokes equations is closely
related to the behaviour of the Laplace and the heat operators on functions over
R"™ and ]R?;’Ol, respectively. For weighted Sobolev spaces this behaviour has been
studied in the papers [McO79], [HM98], see also [Beh11], [Mar02].

Our next objective is to rewrite the nonlinear part of the Navier-Stokes equations
in terms of the de Rham complex. Given a smooth vector field v on R", the
derivative of v in the direction of v is called the substantial derivative of v and
denoted by D'v := (v - V)v. To obtain a useful description we make use of the
so-called Hodge star operator on R"

1 QI(R™) — QIR

defined by linearity from dz! A (+dz’) = dx for all multi-indices I = (iq,...,i,)
with 1 <i; <... <44 <n. Asis known,

K(xdal) = (~1)DadyT,

uN*xv = ( Z ulvl)dx (1.3)

1<iy<...<ig<n

and so x(u A *u) = |u|? holds for all differential forms on R™ with real-valued
coefficients.
The following lemma is well known, see for instance [LL59, § 15].

Lemma 1.2. For any smooth differential forms u and v of degree one in R™ it
follows that

(v-V)u+ (u-V)v=d" x (xv Au) + #((xd"u) A v) + *((xd*v) A u). (1.4)
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Proof. Indeed,

n n

dx* (xv Au) = Z Z (v:0ju; + u;0jv;) dw? (1.5)
j=1i=1
and
xdu = Z (Oyuj — Ojuy) * (dz' A da?)
i<j
= > (9iu; — Ojus) (—1) " dali, j],
i<j
where dx[i, j] is the exterior product of the differentials dz?,...,dz™ after each

other among which dz* and da? are omitted. Then

n

(vdu) Av = Z(Z(aiuj—ajui)vk(—1)i+ﬂ'*1dx[i,j]Admk)

k=1 i<y
= Z(aiuj — Ojuq)vi (—=1)" i) + Z(aiuj — Ojui)vi(—=1)" dz[3),
i<j 1<j

and so using (1.3) yields
*((xdu) ANv) = Z(@iuj — Oju;)vida? — Z(@iuj — OQju;)v;da’

i<j 1<j

= Z((’)Zu] - 8jui)vidxj - Z(ajuz - 8iuj)vidxj
i<j i>7

= Z (Z vi(')iuj — Zvlﬁjul)dxj
J=1 i#j i#j

The same reasoning shows that

n

*((xdv) A u) = Z (Zuiﬁivj — Zuiﬁjvi)dxj'

J=1ij i#j
Since, by (1.5),
n
dx* (xv Au) = Z <Uj8jUj + u;0;v; + Z (v;:05u; + w;0;v;) )dacj,
Jj=1 i#j
on gathering the above equalities we arrive at (1.4), as desired. O

In particular, on choosing u = v we get D'u = d° (x(xu A u)/2) + * ((xd*u) A u)
for all one-forms wu.

2. THE HOLDER SPACES WEIGHTED AT THE POINT AT INFINITY

Suppose that X is a (possibly, unbounded) domain in R™ with smooth boundary,
where n > 1.

For s = 0,1,..., denote by C*%(X) the space of all s times continuously differ-
entiable functions on X with finite norm

Co0(®) = Z sup [0%u(z)].

‘a|gsx€X

[l
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Given any 0 < A < 1, we set

[u(z) — u(y)|
z,yeXxX ‘x - y|)\

and write C%*(X) for the space of all continuous functions on the closure of X’ with
finite norm

[ullcon @) = llullcooz + (W) 7
the so-called Holder space. More generally, for s = 0,1, ..., let C**(X) stand for
the space of all s times continuously differentiable functions on X with finite norm

cso@) T Z (0%u), %-

lo]<s

[ull ey = lul
The normed spaces C**(X) with two indices s € Z>( and A € [0, 1] are known to

be Banach spaces.
We are next going to control the growth of functions on X" at the point at infinity.

Set
w(z) = 14|z
w(z,y) = max{w(z),wy)}~ 1+ [z*+[y]?
for z,y € R™. Let § € R. (Note that 0 is tacitly assumed to be nonnegative.)
Denote by C*%9(X) the space of all s times continuously differentiable functions
on X with finite norm

ullgeos @y = sup (w(z))* 0% u(x)].
(X)
la|<s TEX
For 0 < A <1, we introduce
(o= sup (w(z,y) D]

z,yeX ‘.’E - y|>\
TFy
lo—y|<lwl/2
If X does not contain the origin, we define C%*?(X) to consist of all continuous
functions on X, such that

[ullcors@ = lullcoosz) + (W sz
< oQ.
For those domains X which contain the origin we have also to control the Holder

property close to 0. Hence, we let C%*(X) be the space of all continuous functions
on X with finite norm

||u||CO,)\75(}) = ||U||C(),A(ﬁ) + ||u||Co,o,5(}) + <U>)\,6’f,
where U is a small neighbourhood of the origin in X'. Finally, for s € Z>(, we intro-
duce C**%(X) to be the space of all s times continuously differentiable functions
on X with finite norm

Cs26(X) — Z Haauuco-%“la\(?)'

|| <s

[[ul

The normed spaces C**(X) constitute a scale of Banach spaces parametrised
by s € Z>g, A € [0,1] and § € R. We will mostly consider the case X = R" and
U being the unit open ball By = B(0,1) in R®. We will write simply C**° for
the corresponding space when no confusion can arise. The properties of the scale
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are well known, see Section 7 of the Appendix 3 for additional details. Actually
this construction is natural if we think of R™ as a manifold with a singular point
at the point of infinity. The first summand corresponds to a coordinate chart in
the nonsingular part of the manifold while the last two summands of the norm
correspond to a coordinate chart of the point at infinity. We need not glue together
these summands into one norm by means of partition of unity on R"”, for there are
global coordinates in all of R™ and the operators under consideration possess the
transmission property.

Lemma 2.1. The space C**°(R™) is embedded continuously into the Fréchet space
CEMNRM).

loc

Proof. By definition, the space C**9(R™) is embedded continuously into C’lso’g (R™)
for all A € [0,1]. In addition, it is embedded continuously into C**(Bj). Take
2o € R™ away from the closure of B; and choose any ball B(xg, ) around xg with
radius 0 < r < 1. Since |z| > |z¢| —r > 1 —r for all z in the closure of B(xq,r), it

follows that

u(z) — u(y)| u(z) — u(y)|
Uy Blagr) = sup —————+ sup ———
( >k,B(zo,r) o,yeBlag) |z —y|* e BT |z — A
[e—y[<[z]/2 z#y
|e—y|>|z]/2
2>\+1 s
< <U>A,5,B(xo,7‘) + (1 _ ))\ sup (w(x)) |U($)|
z€B(zo,r)
9A+1
<

(]. + m) ||u||cﬂ,)\,5(Rn).

Therefore, C%*9(R™) is embedded continuously into C%*(B(zg,)) for all 2o € R"
with |z9] > 1 and for any r € (0,1). By the Heine-Borel theorem, the space
C9M9(R™) is embedded continuously into C%*(X) for any bounded domain X in
R"™, as desired. (Il

Lemma 2.2. If § > n/2, then there is a constant ¢ = c¢(d) > 0 such that
ol 2y < e(6) ullgoos e
for all u € CO0°(R™).
Proof. The proof is similar to that of Lemma 2.5. ]

By the very definition of the spaces, any derivative 9% maps C**° continuously
into Cs~lelbdotlelif s € 754, A € [0,1] and |a| < s. The following embedding
theorem is expectable.

Theorem 2.3. Suppose that s,s" € Z>g, 0,0 € R>o and A\, N € [0,1]. If§ > ¢’
and s+ X > s' 4+ X then the space C>™° is embedded continuously into the space
Cs' A Moreover, the embedding is compact if 6 > &' and s + X > s + X is
fulfilled.

Proof. 1t is similar to the proof of Theorem 2.6, see also § 7. |

Let us introduce the anisotropic Holder spaces (see [LSUGT], [Sol64], [Sol06],
[Beh11] and elsewhere).
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As usual, we first set

lvllcoojo,ry = sup [v(t)],
t€[0,T]
[o(t') —v(t")]
v = su —_—
< >>\>[07T] t’,t"el[?;,T] ‘t' _ t”|>‘
o
and
lvllcorp, ) = llvllcoop,r) + (V) j0,7)

for functions defined on [0,7]. For s € Z> and A € [0, 1], the space C**([0,T]) is
the usual Holder space on the segment [0, 7] with norm

ollgeno,r = D II(d/dtY vl corpo,my-

J=0

As is well known, this is a scale of Banach spaces.
More generally, given a Banach space B, we denote by C*°(]0, T], B) the Banach
space of all mappings v : [0,7] — B with finite norm

S

coo (0118 = ) S[up } I(d/dt)v| s,

=0 t€l0,

o]

where s € Z>o. We also let

[o(t") —o(t")|5
v = su — =
( >)‘»[07T]1B t’,t”EI[?),T] it — t//|)\
/£t
and let C**([0,T7], B) stand for the space of all functions v € C*°([0,T], B) with
finite norm

Cc=X([0,T],B) — Z ( S[UP

|
=0 “tel0.T]

0]

(d/dty vlls + ((d/dt) )x o115

Weighted Holder spaces which control the behaviour of functions with respect
to the time variable ¢ have been well known, see for instance [Sol06] and elsewhere.
We go to introduce anisotropic Holder spaces which suit well to parabolic theory
and are weighted at x = oo.

The Hélder spaces in question will be parametrised several parameters s, A, d,
X and T. By abuse of notation we introduce the special designation s(s, \,d) for
the quintuple

s(s, A, 0) = (25,)\,5, 3,5).

Let C3(0:09)(C (X)) = C%0([0, T], C*%%(X)) be the space of all continuous func-
tions on Cr(X) with finite norm

HU”cs(o,o,é)(m) = sup  (w(@))’|u(z,t)],
(z,t)eCr (X)

and, for 0 < A < 1,

CSOM) (Cr()) = ([0, T), COM(E)) 1 COV2([0, T), €08 (X))
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is the space of all continuous functions on Cp(X) with finite norm

||UHCS(0~>"5)(T(X))

Hu(7 t/) - u('vt”)Hco,o,é(?)
‘t’ _ t//|A/2

= sup Hu(Ht)”CD,A,é(j) +  sup
t€[0,7] /.t €[0,T]
At

Then .
CSE00(Cr (X)) = () C20([0, 7], C*E=D 00 (X))
j=0
is the space of functions on the cylinder Cr(X) with continuous derivatives %/ u,
for |a| 4+ 25 < 2s, and with finite norm

||U‘ 0s(5.0.9) (C (X)) — Z ”agaguHcs(ﬂ,ﬂ,dHal)(m)'
|a[+25<2s

Similarly,

O Cr (X)) = () (C7([0.7), C*A (@) 0 (0.7, 004 (X))
j=0
is the space functions on Cp(X) with continuous partial derivatives 856{ u, for
|a| + 25 < 2s, and with finite norm

[l O 00 (Cr () = Z ||533gu|\csm,x,wan(m)~
|al+25<2s
We also need a function space whose structure goes slightly beyond the scale of
function spaces C3(529)(Cp(X)). Namely, given any integral k& > 0, we denote by
CFs3(5:X9) (Cp (X)) the space of all continuous functions u on Cr(X) whose deriva-
tives 9%u belong to C3(=}9+I8D(Cr (X)) for all multi-indices 3 satisfying |3] < k,
with finite norm

lull grnensy @y = 2 105Ul gotenss180 @) -
1BI<k
For k = 0, this space just amounts to C5(***I8)(Cr (X)), and so we omit the
index k = 0.
If X = R”, we will simply write it C*3(5*9) if it causes no confusion. The
normed spaces C*3(5:29) are obviously Banach spaces. Let us briefly discuss their
basic properties.

Lemma 2.4. The Banach space C*3(5:29) s embedded continuously into the space
Ck,s(s,)\,O) (E)

loc

Proof. Tt is similar to the proof of Lemma 2.4. O

We note that the function classes introduced above can be thought of as “physi-
cally” admissible solutions to the Navier-Stokes equations (at least for proper num-

bers ¢).

Lemma 2.5. If § > n/2 then there exists a constant ¢ > 0 depending on §, such
that

[us Dl L2@ny < ¢lul
for all t €[0,T] and all u € C3(:0:9),

C(0,0,8)(Cr)
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Proof. Indeed, on passing to the spherical coordinates we obtain

oo [ 0+ o) oda

IA

(s )72

=l /M""T"ldr,
Cs(0,0.9)(Cr) 0 (1+T2)6

where o, is the surface area of the unit sphere in R™. Hence it follows that
“+oo n—1
onT
0) = S d
0= [ G
for this integral converges if § > n/2. O

The following embedding theorem is rather expectable.

Theorem 2.6. Let 5,5 € Z>g, 6,8 € Rso, A, N € [0,1] and k a nonnegative
integer. If s+ X > s + XN and 6 > &', then the space CF3(520) s embedded
continuously into Cks(" A8 - The embedding is compact if s+ X > s + X and
>0

Proof. We begin with the following lemma.

Lemma 2.7. The space CF:3(5:0,9) (Cr) is embedded continuously into the space
Ck,s(s—l,l,&)(@).

Proof. If v € C*3(5:0:9) then by the mean value theorem of Lagrange there is
¥ € (0,1) such that

. , APt dlu(zg, t)(y' — )
070 u(w,t) — 97 uly,t)| ‘; t

|z — y |z —yl

1/2

IA
—

<
Il
-

0 0] u(wy,1)?)

. 1/2
(1) OO 05 3 u(g, 1))

«
Il
—

(w(xﬂ))6+\6|+1

for all admissible 8 and j, where ¢; is the basis vector of the axis z* in R™ and
Ty =z + 9y — ).
Suppose |z — y| < |z|/2. Then, by the triangle inequality, we get

|2]/2 < ||| = Iy — || < |wg| < ||+ 9|y — 2| < (3/2) || (2.1)
whence |z — y| < w(xy) if |z — y| < |z|/2. Moreover, as ||z] — |y|| < |z — y], it
follows that

|z]/2 < [yl < (3/2) |, (2.2)
if |z — y| <|z|/2. Now (2.1) and (2.2) imply that

V13

gw(xg) <w(r) <w(z,y) < N w(z) < V13w(xy) (2.3)

if | —y| < z|/2.
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It follows from (2.3) that

B u(x.t) — P& u(y. t
sup sup (w(x7y))5+\ﬁ|+1| O0iu(x,t) — 0Fdlu(y,t)
te[0,T] \w*ylilw\/z |1, *y|

zF#y

n ot ; ) 1/2
e
< C(E (105 atUHcs(o,o,stl)(@)) ’
i=1

with ¢ being a positive constant independent of uEC’k’S(S’O"S) (Cr).
Arguing in the same way, for u € Ck’s(s’ov‘s)(CT), we conclude by Lagrange’s
mean value theorem that there is 9 € (0,1) with the property that

5+18] 000 u(a,t') — 950 u(x,t")|

su su w(x
xeRg u,wel[?),m( (z)) it — t”\l/?
t'#t”

18809 u(w, tg) (' —t")
= Sup sup (w(x))aﬂﬁl — I 4n(1/2 |
x€R™ t/ t/€[0,T] ‘t —t |
t’;ﬁt”
= sup (w(@)*P sup |t —t"|V?880I u(a, ty)|
rzeR™ t/ ¢/ €[0,T]
tl¢t”

< VT070! ull e osian @)
for all admissible 8 and j, where ty = t' + 9(t"" — t/).

As is well known, the space C*3(5:0.9)(C1(By)) is embedded continuously into
the space C*3(s=1L1.0)(Cr(By)), if s is a nonnegative integer. Thus, C*5(5:0:9)(Cr)

is embedded continuously into C*3(s=1:1.9)(Cr), as desired. O

Now we note that

(w(x y))5’+)\’+|[3‘ ‘afagu(xat) - 356gu(l/7t)|

|z —y|
= (w(z,y)) A |07 0 u(=, t) — 858£u(y,t)| 1 ( |z —y )k_’\/
' "Z‘ - y|)\ (w(xvy))aiél UJ(.Z',y)
whence
(0P8I u(-,t)) a5 mn <2V MO ul- ) smm,s
HfO0< N <A<1andd <J. Besides,
s 1g 0200 u(z, t') — 880 u(x, "))
(w(x)) Al ! |t/ — t//‘/\'/Zt
L (a0 t) — 020 ) 1 e
= w(x ‘t/ _ t//|)\/2 (71)(%'))676/ ’

and so, for 0 < M < A <1 and ¢’ <, we obtain
! . A_A/ ’ .
(w(@)” P Of P u(w, ) x a0, < T) 72 (w(@)” KO ulz, ) x o, 10,7)-
Hence, as C*3(5:20)(Cr(By)) is embedded continuously into CFsX0)(Cr(By))
for A > X > 0, we see that C*5(529)(Cr) is embedded continuously into the space
CFs(s:A8) (Cr) provided A > X > 0 and § > §'. Now applying Lemma 2.7 yields

readily
Ck,s(s,)\,ﬁ) (E) N Ck,s(s',A’,(S') (E)
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ifs+A>s"+XNandd >0

To study the compactness of the embedding we note that C3(0:}0) (B x[0,T)) is
embedded compactly into C5(02-0)(C1(By)) for A > X > 0. Use the standard one
point compactification of R”. Namely, we embed Cr into the compact cylinder C
in R"*2 consisting of all (22, 2%,...,2", 2""1) € R x R™ x [0, T], such that

(%)% + Z(zj)2 =1.

To this end we consider the map

L R™ x [0,T] — R**2

given by ,
|z]* —1 2x .
vz, t) = ((w(:c))2’ (w(m))2’t)’ it oo, (2.4)
(1,0,1), if z=o0.
Indeed,

|22 — 12 S A o R el
() *lewrl =" @er ="

and then, as the points at infinity of R" x [0, 7] correspond to the point (1,0,t) of

cylinder C, the inverse map ¢~ ! is given by
(z1,...,2") n+1 ; 0
_ - —1<
LI(Z): ( 1_ 50 , 2 ), if 1 <2V <1,
(00, 2™ T, if z=(1,0,2"").

The map ¢ is obviously continuous on R™ x [0,7] and at least C'' smooth and
nonsingular on Cr, for

4t )
Oilg = (W) N for 1<i<mn; Oty = 0;
25ij 4" ) L. .
divj = (w(x))? - (w(@))?” for 1<i,57<n; Oy =0, for 1<j5<n
Oitn+1 = 0, for 1<i<m; Ottn+1 = 1.

The function

d((z, 1), (y,t")) = |e(z,t') — o(y, t")]
is obviously a metric on the set R™ x [0,7] = C. We are now in a position to
formulate a compactness criterion a la Ascoli-Arzela theorem.

Lemma 2.8. Let S be a subset of C*3(5:00)(Cr) bearing the following properties:

1) S is bounded in C*3(=:99)(Cr);

2) for any e > 0 there is 6(¢) > 0 such that, for all (z,t'), (y,t") € Cr with
d((z,t), (y,t")) < d(e) and for all u € S, we get

|(w(a))" el ol u(w, ¢') — (w(y))’ TH19g 0ol u(y, )| < e

if ol + 25 < 2s and | < k;

3) for any € > 0 there is () > 0 such that, for all (x,t'), (y,t") € Cp(B1) with
V0T —y2 + 1t — "] < 6() and for allu € S, we have

02 00] u(w, ¢) — 9y o u(y, )] < &

if ol + 25 < 2s and |B] < k.
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Then the set S is precompact in the weighted space CF5(5:0:0") (Cr) for any &' < 6.

Proof. Fix an arbitrary ¢’ < . If S is a bounded set in C*3(5:99)(Cr) then, for
u € S, the functions

w89 (2)
{ (@ Hieflogtooju) (7)), i =€ C\ (10,274,
0, if 2= (1,0,2""1),
are continuous on C for § > §’ because
[+ ()] < 0570l o410 @y (w7 (2))7
for all z € C\ (1,0,2"1), and
17 Hz) = (00, t)

if z — (1,0,t) with some ¢ € [0,T]. In particular, the set {u(®+t%7)} g satisfies
the hypotheses of the Ascoli-Arzeld theorem, and so it is precompact in C(C). In
particular, this means that the set S is precompact in Cks(s,0,6") (Cr), as desired. O

If S is a bounded set in the space C3(%*9)(Cr), then it is obviously bounded in
the spaces C3(0:0:9)(Cy) and €39 (Cr(By)), too. For any 0 < M < A < 1, this
set is precompact in C5(0:2":0)(C1(By)). Moreover, we have

(w(z,y)’ [ule, ) —u(y.t)] < |lul w(z,y)

Icv*y|>A

Cs(o,x,a)(@)(

< 22 HU”cs(m,é)(G)
for all z,y € R™ and ¢ € [0,T], and
(w®)° July,t") = uly,t")| < |ulguonrs @plt — "1
S T>\/2 ||'U,‘ CS((),A.(S)(G)
for all y € R™ and t/,¢" € [0,T].
If |z| < |y| then
[(w@)” ule,t') = (W) u(y, ") < (@) Jul,t) - uly,t)]
+ (@) = (w(y)® [uly, )]
+ (W) fuly, ') —uly,t")],

which is dominated by

- W (w(x,9))’ [u(, ) = u(y, V')

(V2 [(w(@))” — (w(y)”]

(w(y))’July, )]

Wl )P (ww)
(o) @) latos) = o),
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for in this case w(z) < w(z,y) < vV2w(y) and § > § > 0. Hence, for all z,y € R"
with |z] < |y| and ¢/,t” € [0,T] we have

|(w(@))” u(w, ¢') = (w(y)* u(y, t")|
c HUHCSW,N‘;)(G) (( |z —y )A + |t/ - t//|A/2)

T (wl@y) \\w(z,y)
NMllgsoon @) |(w(@)” — (w(y)”|
(w(z,y))°~" (w(z,y))”

with a positive constant ¢ depending on T but not on x, y, t', ¢’ and wu.
Fixe>0. Asd > ¢ >0 and

|(w())” — (w(y))”|

‘x — y| / "
Tl <V, -t < T, ; <2
wizy) | (w(z,9))?
we conclude that there is R > 0 such that
lull csoxar@zy 71|z —y|\> €
' T a— A/2 <
(w(x,y))o=? ((w(x,y)) +| | ) S T
lellcsoon @) [(w@)” = ww)®] _ =
(w(zw,y))°=% (w(z,y))" 4

for all x and y satisfying |z|? + |y|* > R?, and for all #/,#” € [0,T]. Since the
function w(z) and the map «(z,t) are continuous on Cr, they are equicontinuous on
the cylinder Cr(BpR), where Bg stands for the ball of radius R around the origin in
R™. On this cylinder the metric d((x,t'), (y,t”)) defines the same topology as the
standard metric (|z —y|? 4|t/ —t"|?)!/? as well as the metric (|z —y|> 4 [t —t"])!/2.
Hence, there is a positive number §(¢) depending on e, such that

[ull csonsr@zy 71|z —y|\> I A2 €
(w(z,9))~" <<w(x,y)) H=PR) < g
[ull gs00.0 @7y |(w(@))® = (w(y)”| < £
(w(z,y))o=? (w(z,y))* 4

for all (z,t'), (y,t") € Cr(Bg) satistying d((z,t'), (y,t")) < d(e).

As for any z,y € R™ one has either |z| < |y| or |y| < |z|, on evaluating the
difference |(w(z))® u(z, ') — (w(y))® u(y,t")| we may confine ourselves to the case
|z| < |y|. In particular, (2.5) means that S satisfies the hypotheses of Lemma 2.8,
and so S is precompact in C5(%0:8)(Cr). Hence, (any sequence in) S contains a
subsequence {u,} convergent in C*(0:9:9)(Cp). Without loss of the generality we
may assume that it converges to zero in this space. On the other hand,

w8+ (s t) —uly, 1)]
(w(z,y)) S P

’

e a0 = a1 X (e, 9) e, ) = uly, )X
< (o)) oo
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and

5 Julz, ) — u(z,t”)|
Y

(w(z))
|t/ _ t”‘

slute, ) = e, & () e, ) e )X

v~ 1|3 (w(z)) =X

< ((w@)

Therefore, by (2.3),

N/A 1-X\ /A
tes[lé?nw”)”"s”w < Ct:[%%]<uu>,\,5,n@n 1 | peto.0050 (7
N/A 1=\ /A
C () fojoz1,000:8 ey 10w et o

IN

<uv>)\'/2,[0,T],C""’v5'(R")

with C' > 0 a constant independent of v, and so the sequence {u,} converges to
zero in C3(0X-9)(Cr), too. Hence it follows that S is precompact in C5(0:X9)(Cr).
Thus, C5(©%8) (C1) is embedded compactly into C(OX9)(Cr) if A > X and 6 > §'.
By induction we conclude immediately that the embedding

Ck,s(s,/\,é) (G) N Ck,s(s.,)\',&’) (E)

is compact for any integral numbers k,s > 0, provided that A > A" and § > ¢".
Finally, on applying Lemma 2.7 we see that C*5(>29)(Cr) is embedded com-
pactly into CF:S(s"A-8)(C) if s+-X > s'+ )\ and § > . The proof is complete. [

We also need a standard lemma on the multiplication of functions.

Lemma 2.9. Let s, k be nonnegative integers and \ € [0,1]. If u € C*3:A9)(Cr)
and v € CF3N)(Cr), then the product uv belongs to CF3(:X3+0)(Cr) and

||UU||ck‘s<s,A,6+o">(@) <c ||U||ck"s<s,w)(@)||UHCI«-,5<S-A,6’>(G) (2.6)
with ¢ > 0 a constant independent of u and v.

Proof. Indeed, for |a| +2j < 2s and 3] < k, we get

0P8 (w) = Y (3) (g) (;;)ag’w’ag”ua;**a/ﬂifﬂ’ag—j'v (2.7)

o/ <o

B'<B

i<

whence
|02+89] (uv)| <. Z |09 +5°9] | 09" +8" 9" v
(w(x))ftsfﬁ’*‘a“rﬁ‘ - (w(x))fgi‘aujrﬂ/‘ (w(x))ié/i‘a”"rﬁ”l )

B/<B
J'<i

where o' = a— o/, 8" = — B and j” = j — j/, the constant ¢ depending only on
s and k. Hence it follows that (2.6) is fulfilled for A = 0 because /fg < /f/g
if f>0andg>0.
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We now assume that A € (0,1] and |z — y| < |z|/2. Then using (2.3) and (2.7)
we deduce readily that
1 |05 20 (wv) (1) — 33P0 (wv) (y. ¢)|
(w(z,y)) =00 ~let A=A |z —y|?
< 105+ 0] (e, )] |02 "0 v 1) — 05+ 0] w(y. 1)
c
= ¢ 2 (@)D (wla, ) A — )

B'<B
J'<i

+CZ

a’/<a
B'<B
Ji'<i

102'+8' 0] w(x, t) — 0%+ 0 w(y, )] |09 +8" 8] v(y, t)|
(w(f[7 y))*&*la’+ﬁ/lf>\|x _ y‘)\ (w(y))ié/ila”"’ﬁu‘)

for |a| + 25 < 2s and |B| < k, the constant ¢ depends neither on x and ¢ nor on u
and v. Therefore,

sup (92! (wv) (-, 1)) s 545+ atp) R

te[0,7]
<c Z ”8(; +B8§ u|‘Cs([],[),5+\a’+B’\)(G) sup (8? +8 8{ ’U>)\-,5’+\04”+5”|7R"
a’<a tE[O,T]
BI<p
<3
+c sup (97 79 uhx s+la+p' R |07 ) Vllgsc0.0,6 104571 (E7) -
o <o tE[0,T]
B'<p
i<
Similarly,
1 |02758] (uv) (2, t') — 93P 8] (uv) (z, )]
(w(x))—0—9~la+Al |t — ¢ |M/2
< ey 10245 0] w(a, )| |05+ 0] v(a,t') — 0" 0] w(x, t")]
T (w(@) ol (w(a)) 0l 8"t — g M/2
B'<p
<3
+ ey 105"+ 0f u(w, ') — 05+ 0f u(a, 1)] |05+ 0] v (a, 1)
@) P (w(@)
<5
i'<i

the constant ¢ need not be the same in diverse applications. Hence,

(O5HP0] (uv) (5 ) x 2, [0.7), 00,05+ 5"+l 81 ()

Z o+ 50" o' 48" 5
<c 103 7 0; U||0s<0,0,6+\a'+@'\>(ﬁ) (03 o U>,\/2,[o,T],00,0,6’+|a”+ﬁ”\(Rn)

o' <a
B'<pB
J'<i

a/+ ’ j/ a//+ " =11
+c E (0918 u))\/2)[07T]7Co.o.5+\a'+ﬁ/\(Rn) 02 70] UHcs(0,0,6’+\a”+ﬁ”\)(@)~

a’<a
838
i'<i
Applying the Cauchy-Schwarz inequality we conclude that (2.6) is actually ful-
filled for all A € (0,1], for the estimates of the term ||U’UHck,s<s,x,o>(m) are simi-

lar.
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Lemma 2.10. Suppose that s > 1 and k > 0 are integers and \ € [0,1]. Then it
follows that

1) 0% maps C*35A0)(Cr) continuously into CFelsA D (CL) if |af < k;

2) 0% maps C329)(R"x([0, T]) continuously into C’QHO‘l”\’sfl’%’&H"“ (R™x[0,T)),
if1<l]al <2;

8) & maps C*5A)(Cr) continuously into C*S=3X0(Cr), if 0 < j < s;

4) the heat operator H,, maps CFs(5:2A9)(Cr) continuously into CFS(s=1A0)(Cr).

Proof. The first three assertions follow readily from the definition of the spaces.
To derive the last assertions from the first three ones it suffices to apply Theorem
2.6 according to which the space C""S(S_lv’\"s"'m(@) is embedded continuously into
Ck,s(s—l,)\.,é) (@) O

Aiming at the investigation of linearisations of the Navier-Stokes equations we
now consider the action of differential operators with variable coefficients in the
scale OF3(5:29)(Cr). Set

Pu= Y Pu(z,t)0"u (2.8)
laf<1
for u € C*(R™, A7), where P, are (k, x k,)-matrices of differentiable functions on
Cr and kq the rank of the bundle A9.

Lemma 2.11. Let s > 1 and k > 0 be integers, 0 < X < 1 and 6,0’ > 0. If
the entries of P., |a| < 1, belong to CFHs(=1AS =)@y then (2.8) induces a
bounded linear map

P CRSEA (@ A7) = ORs=IAH (@ p9),

Proof. If 0 < A < 1, then according to Lemma 2.9 and Theorems 2.6 we get
immediately

||Paaau||ck,s(sfl,k,5+5’)(E/lq)

< HPaHC;,:,s(s—l,x,{s/_\(,\)(G7Hom(/lq)>||aau||ck,s(s—1,x,5+|a\)(@,Aq)
< Pallgrst-1a0-1an @ Hom(ay) 1l g t1alse-1.0.0) @7, A0)
< ||Pa||Ck,s(571-k,6’f\al)(@yHom(Aq)) Hu”ck.s(s.k,é)(ﬁ,m)

with some constants ¢’, ¢ and ¢ independent of u € CFs(5:A0) (Crp, A?), because
the space C*3(5:29)(Cr) is embedded continuously into CF+1s(s=1A0) (). O

Lemma 2.10 shows that the scale of weighted spaces C*3(5:X9)(C) does not fully
agree with the dilation principle for parabolic equations so far as it concerns the
weight. Hence, when solving the Cauchy problem for the heat equation, we should
expect some loss of regularity with respect to either the smoothness or the weight.

3. THE DE RHAM COMPLEX OVER WEIGHTED HOLDER SPACES

Motivated by the factorisation of linearised Navier-Stokes equations we are inter-
ested in describing the behaviour of the Laplace operator and the de Rham complex
in the scales C**9 and CF3(29)(Cr). Actually, it is well known and similar to
the behaviour of the Laplace operator in the scale of weighted Sobolev spaces (see
for instance [McOT79]).
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Let H<,, stand for the space of all harmonic polynomials of degree < m in the
space variable z € R™. Denote by R**9T2(R") the range of the bounded linear
operator

A: CPPMRY) — AR (3.1)

induced by the Laplace operator A.
Theorem 3.1. Assume that n > 2, s is a nonnegative integer and 0 < X\ < 1. If
moreover § > 0 and 0+2—n & Z>, then the operator (3.1) is Fredholm. Moreover,
1) (8.1) is an isomorphism, if 0 < 6 < n —2;
2) (8.1) is an injection, if n —24+m < 6 < n—1+m for m € Z>y and its
(closed) range R**°+2(R™) consists of all f € CSMT2(R™) satisfying

f(@)h(z)dx =0
R

whenever h € He,y,.

Proof. See for instance [Behl1], [Mar02]. The key tool in the proof is the Newton
potential

Pf(z) = | oz —y)fy)dy (3-2)
Rn
on all of R™ defined for functions f over R™, where

1
—In ||, for n=2,

dpr)y=< T | 12-n
iL, for n >3,
op 2—m

is the standard two-sided fundamental solution of the convolution type to the
Laplace operator in R” and o,, the area of the unit sphere in R™. Let us briefly
sketch the proof.

The crucial role in the proof is played by the following a priori estimate of
Schauder type for the Laplace operator.

Lemma 3.2. Suppose § > 0. If f € CONF2(R") and u € CO%°(R™) satisfies
Au = f in the sense of distributions in R™, then u € C>M(R™) and

ull czxsgny < € ([Iflconsrz@ny + [lullcoo.s@mny)

with ¢ a constant depending on X\ and & but not on wu.

Proof. The proof is based on a priori estimates of Schauder type for solutions of
elliptic equations, see for instance [GT83] for Holder spaces, [NW73], [McOT79] for
weighted Sobolev spaces, [MR04] for weighted Holder spaces on an infinite cone
and Proposition 2.7 of [Behll] and Theorem 4.21 of [Mar(02] for weighted Holder
spaces on a manifold with conical points.

Indeed, by Lemma 2.1 and elliptic regularity we conclude that any function u
satisfying the hypotheses of the lemma belongs to C’lgo’c)‘ (R™). Using standard a
priori estimates for the Laplace operator yields

IN

lull o2 ) ¢ (1Aullconm) + 1wl cooms) ) -

> 10l o)

lo]<2

(3.3)

IN

¢ ([Aull oz + lullcoo )

for all u as in the statement of the lemma, with ¢ a constant depending on the ratio
of the radii of the balls but not on u. (See for instance Theorem 4.6 in [GT83,
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§ 4.2, § 4.3], cf. also Theorem 9.11 for Lebesgue spaces ibid.) For |z| < 4 one
verifies easily 1 < /14 |z]? < +/17. Therefore, using (2.3) we may write the last
inequality as

Z ||aau||co,x,a+\a\(37) <c (”A“HCOAJM(BT) + HUHCQOJ(E)) (3.4)
lo| <2

for all u as in the statement of the lemma, the constant ¢ depends on § and need
not be the same in diverse applications.

We next consider a spherical layer in R™ of the form r < |z| < 8r, where r > 1
is a fixed constant, and we define the function

up(z) = u(re)

for 1 < |z| < 8. Then
diur(z) = r(Qu)(rz),
Aup(z) = r?(Au)(rz),

that is 72 f(rz). Again by standard a priori estimates we obtain

HaaurHco,/\(E\B2) <c (||Aurllco,x(?8\31) + ‘|Ur“c(),()(?8\31))

for |a| < 2, see for instance Theorem 4.6 in [GT83, § 4.2, § 4.3] and Theorem 9.11
for Lebesgue spaces ibid. For the original function u this reduces to

)
potlal ||8047LHC0,>\(374T\32T)

5 5
< c(r Pl Al con @, +T H“”C“’“(g\B"))

with ¢ a constant depending on the ratio of the radii of the balls but not on u. Note
that if < |z| < 8r then r < /1 + |z]2 < 9r. Therefore, on applying estimate (3.3)
we get

16l gox.5+151 B\ B

S C (HAU‘HCO»N‘HQ(BisT\BT) + HUHCO*O*S(BisT\BT))

for |a| < 2, where the constant ¢ depends on 6 but not on r > 1 and w.
We now choose r = 2™ with m = 0,1,.... For any multi-index « satisfying
la| <2 it follows that

HaauHco,,\,éHB\ (Bym+2\Bym+1)

< c (||Au||c(),>\,5+2(m\B2m) + ||UHC(),(),6(m\B2m)) y

where the constant ¢ depends neither on m = 0,1,... nor on u. Combining
these sequence of inequalities in spherical layers with (3.3) and (3.4) establishes
the lemma. O

Let us continue with the proof of Theorem 3.1. First we note that the Liouville
theorem implies that the operator A is injective on C**9(R™), for any s > 2
and § > 0, and the kernel of the operator A on C**(R") is equal to He,y,, if
-m—-1<d<-—-mwithm=0,1,....

Second, let H,, stand for the set of all homogeneous harmonic polynomials of
degree m with respect to the space variable x. Note that if m is a nonnegative
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integer and § > n — 2+ m then for f € C%0°*2(R") to be in the range of A acting
on CT09(R™) N C2(R™) it is necessary that

fhjd:c:/ (Au)hjdx = lim
Rn

(6uh 8h
R—+o0 lz|=R

v 6y)ds_0

]Rn
for all h; € H; with 0 < j < m, because

Rn—1-0+(—1) — gn-1-(6+1)+j _ pn-2+j-5 _,

as R — +00. Thus for n = 2 the isomorphism described in the item 1) is impossible.
Clearly, the function (w(z))™°~2 belongs to C*0-°+2(R") for any § € R and
all s € Z>p. Our next objective is to Let us construct a formal solution to the
inhomogeneous equation
1

in R™\ {0}. To this end we introduce

oo

a

F(x)zz 2\ (6+2k)/2
2 (1 [af2) G20

as a formal series. Clearly, the coefficients aj are uniquely determined from equality
(3.5).

Lemma 3.3. Let § be a real number different from 0,n —2,n —4,.... The series
F' converges uniformly along with all derivatives on compact subsets away from the
origin in R™. Moreover the function F belongs to C*%%(R™\ By) for any s € Z>q
and it satisfies (3.5).

Proof. Tt easy to verify that

—(8 + 2k)x; ay.
&F(I) = Z (1+|{L“ (5+2k+2)/27
5 B (64 2k) (6 + 2k + 2) 22 ay, (0 + 2k) ay,
azF(JC) - ;)( 1 4 |m| (6+2k+4)/2 (1 4 |x|2)(6+2k+2)/2)
and so
(04 2K) (6 + 2k + 2) |z|? ax (6 + 2k)n ay,
AF (x) kz_o( (1 + |z[?)@+2k+4)/2 - (1+ |x|2)(6+2k+2)/2)

oo

(((5+2k)(5+2k+27n)ak B ((5+2k)((5+2k+2)ak)
(1 + [2]2)(6+2F+2)/2 (1 + [2]2)(6+2R+0)/2

I
g

k=0
(0 4+2-n)ag > (642K) ((64+2k+2—n)ay, — (64+2k—2)as 1)
= a+ |x|2)(5+2)/2 Z (1 + ‘x|2)(6+2k+2)/2

k=1

as formal series. In particular, if

1
ay = ST o
0(6+2—mn)
5+ 2k—2 (3.6)
ay = ——————a}_1

0+2k+2—n
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for k > 1, then

1
O =y ppyen
as formal series. We get
B 1
“T Gr2-n)0+4—n)
042
as =

0+2-n)(0+4-n)(6+6—n)

and more generally
k-1

11 +29)
j=1
E+1 ’
[16+2i-n)
j=1
for k > 3, provided that ¢ is different from 0,n — 2,7 —4,.... From (3.6) it follows
that the convergence domain of the power series

oo
E akzk
k=0

coincides with the unit disc in C. Hence, by the Abel theorem the series F' converges
uniformly along with all derivatives on compact subsets of R™\ {0}. Its sum belongs
actually to C22,(R™\ {0}) N C%09(R™ \ Bl) for

ap =

loc

(o]

-\ %
(w(x))° F( Z (1t m (5+2k)/2 - kg() (14 |z|2)*

Next,

Z 16 + 2k |ag|z:| (w(@))
- 1 + ‘33| (6+2k+2)/2

B ;] \5+2k||ak\
(14 z?) 1/222(1—i-|317|

Formula (3.6) implies that the convergence radius of the series

A

(w(@)"*|0:F ()|

o0

> 16 + 2k||ak| 2

k=0
equals 1 whence

o |6 + 2k]|a
(w(@) o p ()| < 32 02 o
k=0

ie., F e CLO9R™\ By).
We now proceed by induction. For any multi-index o € Z>o we readily verify
that

e 1) = 5 P e
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where P, j are polynomials of degree < || of n variables, such that

Povk (wxx)) ‘ < okl

for all x € R™, the constant ¢ depending on ¢ but not on k. On arguing as above we
deduce that F' € C*%°(R™\ B;) for any nonnegative integer s. By the construction,
F satisfies (3.5). O

Lemma 3.4. If § > 0 then the potential Pf given by (3.2) satisfies A(Pf) = f in
the sense of distributions on R™ for all f € COM+2(R™). Moreover, if 0 < § < n—2
then the potential (3.2) induces the bounded map & : CONMTZ(R™) — CZMI(R™)
forall A € (0,1).

Proof. We begin with n > 2.
Recall that COMT2(R™) < CPA(R™). Fix f € COMA2(R™) with § > 0. First,
for x = 0, we get

1 /(W)
@O < g [ Ty

1 Lf ()l 1 If ()l
d d
Jn(n - 2) /|;J|§1 |y|n72 v Jn(n - 2) /|y|21 |y‘n72 Y

| fllco.0.6 (e 14 |y|2)—(6+2)/2 s
A(/ (1+[y[*) dy+/ |-+ )dy)'
ly|<1 ly|>1

on(n —2) ly["=2

The first integral in the parentheses converges because n — 2 < n, and the second
integral converges because § +n > n.
If x # 0, then

y x
o=yl = lyl| L = ] = i1 - 1/2) = Jyl/2
yl -yl

for all x € R™ satisfying |z| < |y|/2. Hence we obtain

(@f)(2)]
! / /(W) 1 )
o dy+
on(n =2) Jyigatal [y = @772 7 on(n=2) Jyypzape) Iy — 2"
11l co.0.5 () / (1 + |y[?)~(0+2)/2 s
Ton(n—2) dy+/ 27 2|y |-Gt gy ).
on(n=2) ( wi<alel |z —yl"? ly|>2/a] | )

(3.7)

Again the first integral in the last line converges, for n — 2 < n, and the second
integral in the last line converges, for n + § > n. Thus, the potential (®f)(z) is
well defined for all z € R™.

It follows from potential theory (see for instance [Gun34]) that for each R > 0
the integral

1 f()
P(xs f)(x):7/ sy
r Un(n - 2) ly|[<R |.’L‘ - y‘n 2

converges uniformly in the ball By and it belongs to C?*(Bg) provided that f €
COA+2(R™). Clearly the integral

B((1— xpa) (@) = — 1w,

on(n —2) ly|>R |z —y|n—2
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is a C'*° functions of x € Br. We thus deduce that the potential @f belongs to
C*)(Bg) in any ball B, and so &f € CEN(R™) for each f € COMIT2(R™) with
0> 0.

Moreover, it follows from (3.7) that the integral @ f converges uniformly on each
compact set K C R™. For any v € C25. (R™), using Fubini theorem we get

comp

| @p@anas= [ rw@anwis= [ ot

i.e. A(®f) = f in the sense of distributions in R” for each f € C%*%+2(R") with
6 > 0, for e is a fundamental solution of convolution type to the Laplace operator
in R”™.

As f € COMTZ(R™), we get

1w (@)’ *272 fllaqeny < [fllcoosvagn | (w(@) =% (@) Lagrn)

for all 0 < € < § +2, i.e., the function f belongs to W®9+t2=¢(R") for all ¢ > n/e.
If 0 < e < 6 then
—nfg<0<d—e<n—2-n/q
for all ¢ > n/(n —2 —§ +¢). According to [McO79] (see Theorem 8.1 below) we
conclude that @f € W29°=¢(R"). In particular, the potential @ f vanishes at the
infinity point.
Given any f € CO”\’5+2(R"), we get

(w(y)) O+
‘/n |I ’n 2dy S C|‘f||co,0,5+2(R”) /]Rn |I7y|n_2 dy (38)

with ¢ a constant 1ndependent of x and f. As (w(y))~°2 belongs to C**°+2(R")
for any s € Zx (see Example 7.3 below), the potential ®w~9~2 belongs to C<,(R™),
vanishes at infinity and satisfies

A(@w 072 = w072

in R™. On the other hand, the integral &(x p, w™(*?)) is harmonic away from the
closed ball By and it belongs obviously to C*0"=2(R™ \ By) for all s € Z>o. It
follows that

AB((1 =y, Jw172) = w2 (3.9)
in R\ By.

On combining (3.9) and (3.5) we see that the difference
h=o((1—xp)w %)~ F

is a harmonic function in R™ \ B; vanishing at the point of infinity. It can be

recovered via its smooth boundary values on 0B;. Indeed, let {h,(g )(:10)} be the
system of homogeneous harmonic polynomials forming an L? -orthonormal basis on
the unit sphere in R™, where k stands for the polynomial degree and j = 1,..., J(k),
with
(n+2k—=2)(n+k—3)!

El(n —2)!
being the number of polynomials of degree k in the basis, see [Sob74, Ch. XIJ).
Then the results on the exterior Dirichlet problem show that

0o J(k) ) oo J(k) (]

)
() B
Y e = s Y S (1),

k=0 j=1 k=0 j=1

J(k) =
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where
(4) _ (@ 1— —0—2 _F h(]))
x (= xp w5 = B by L2(9B:)
and the series converges uniformly on compact subsets of R\ By. In particular, as

J(k) < ck"?,
|max|hm( 2) < ek

see [Sob74, Ch. XI, § 2)]) and formula (X1.3.23) ibid, the Cauchy-Hadamard formula
yields readily

limsup max (j) <1
ko 4oo 155S (k)' e

and hence
o J(k)
- (1 4 |z[?)1/2\n-2 |Ck| RO (F
1+ ) D2nG) < (LR ()]

2| ZZ || ||

0 k.n/2+n73

< c —

e

with a constant ¢ independent on k. It follows that h € C%%"=2(R" \ By).
On the other hand, as already mentioned, the potential @(xz,w™°"2) belongs
to C*0n=2(R"\ By) for all s =0,1,..., and so

D(w™°7?) = D(xp,w 7% + (1 — xp)Jw 77

is of class C*(R™) N C*%9(R"™ \ By) for all s € Zsg, if 0 < 6 < n — 2. Thus,
D(w=072) € C*99(R™) for all s and 0 < § < n — 2. We now apply estimate (3.8)
to conclude that

B fllcoosmny < [1fllcoostan [S(w°?)|lco.0.s@n
if 0 < § <n—2. Now it follows from Lemma 3.2 that @ is the bounded inverse for
the operator
Az CPM(RY) — COMTAR™)
for all 0 < § < n — 2, as desired. O

Lemma 3.4 gives a proof of the statement 1) for s = 0 and n > 3. (Note that
the statement 1) is actually vacuous for n = 2.)

Further, we may use the following decomposition of the standard fundamental
solution to the Laplace equation

oo J(k)

@) (VB
(l‘ - y) d)(x - O) Z Z (n +h2k( )2h|x|51?{i-)2k 2 (310)

for n > 2, where the series converges umformly along with all derivatives on compact
sets of the cone {|z| > |y|} in R?" (see [SWT1], [Sh192], [McOT79] and elsewhere).
Set

m J(k) h(]) h(J)
¢m(1‘>y) :QS(I* )7 70 +ZZ n+2/<:(< >) >7E+2k72’
k=1 j=1

where = + (x) is a so-called norm smoothing function, i.e., (z) = |z| for |z| > 2
and (x) > 1 for all z € R™.
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Lemma 3.5. Suppose thatn —2+m <6 <n — 14+ m for some m € Z>q. Then
the integral

Bz / b (2.9) f (4)dy

induces a bounded linear operator ®,,, : CO*+2(R™) — C2A(R™) which coincides
with the potential ® on ROMIT2(R™).

Proof. Indeed, since n+m < 6 + 2 < n+ m + 1, the integral

/R f W)y (y)dy

converges because

‘/ f(y)hg)(y)dy’ = ”f”CO’OW(R")/ P () (w(y)) "D dy
Rn -

1 llgo.0.s+2zm) ||h§cj)\|c(631)/R (w(y)) "~ dy,

IN

the last integral being finite for all 0 < k < m because —n —1 <k —0 —2 < —n.
It follows that the integral operator K, induced by the kernel
J(k)

m G ( ()R
() = 6((a) —0) = 3 hy? ((x))hy” (y)

(n + 2k — 2)(x)nt+2k—2

maps COM+2(R™) to functions harmonic outside of the ball By and vanishing at
the point of infinity. Hence the integral (®,,f)(z) converges for all z € R", if
f € COM+2(R™). Moreover, since

P f=Df — K f,
we conclude that @, f € C2MR™) for each function f € CO*9+2(R™) such that

loc
n+m-—2<d<n+m-—1.
As already mentioned, if 0 < ¢ < § + 2, then f belongs to W%#9+2=¢(R") for

allg>n/e. f0<e<d+2—n—m then
n—24+m-n/g<n—-2+m<d—ec<n—1+m—n/q

holds for all ¢ > n/(n—1+m — 6 +¢). Thus, by [McOT79] (see also Theorem 8.1),
we get @, f € W2%9=¢(R"). In particular, the potential @,, f vanishes at the point

of infinity.
For n > 3, it follows from [McO79, Lemma 5] that
(1 + [y %) ,
m\ L, S 5 if 2 Z x|,
oue| S Gty 22
1+ |y™ .
6. 9) ) it 20y <

|z =y 2 (1 [ )

where ¢ is a constant independent of x and y which can be different in diverse
applications. Then

)| om0 0] S el lenssoan) ) TR ),
[2y[> ||
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ITn+m-2<d<n+m-1then0<d—m-n-+2<1<mn-—2 and hence
by the assertion 1) which has already been proved we see that &(w™+"9~%) is of
class C%0:0+2=m=n(R") In particular,

H/|2y>|z|¢m(%y)f(y)dy’

< cllfllconstz@n||@(w

00,5 (Rn)

m+n—6—4) ||CO,0,5+27W77L(R77,).

Similarly,
)| om0 0] < lflonnssgen (o) 2w ) ),

Ifn>3andn+m—-2<d<n+m-1then0<n—-3<d-—-m-1<n-—2
and hence by the assertion 1) we conclude that ¢(w™°~1) € C00-0—m—L(R"), Tt
follows that

[, . onen)swa

CD,O,&(RN)

< C||f||co,x,5+2(Rn) @(wm_(s_l)||C0.0.6—77L—1(Rn)7

and so
[P fllcoo.s@mny < cllfllconsta@ny-
Finally, by construction @,,f coincides with the potential &f on R%*%+2(R")
whence
Ad,f=Ff
for all f € ROM*2m(R™). Now Lemma 3.2 implies that @,,f maps ROMT2(R?)
continuously into C**9(R™) for the corresponding 4.

For s = 2 and n = 2 the proof is similar and follows the same scheme as in
[McO79, Lemma 6] for the weighted Sobolev spaces. O

On summarising we have proved the assertion 2) for s = 2 and n > 2.

Lemma 3.6. Suppose P is a homogeneous partial differential operator P of order
0 < k < s—2 with constant coefficients. Then,

1) P maps C*~2MF2(R™) continuously into RS~2~FA0+2Hk(R™) " provided that
0<d<n—2andn—24+m<di+k<n—2+m+1;

2) P maps R*~2MT2(R™) continuously into RS—2~F-A0+2Hk(R™) " provided that
n—24+m<déi<n—2+m-+1.

Proof. If f € C*~2MF2(R™) where 0 < § < n—2 and n—2+m < 6+k < n—2+m+1,
then m < k and, given any h € H,,, we use the Green formula for P to get

/Rn(Pf)(x)h(x)dac = lim (Pf)(z)h(z)dx

R—+o00 Br
= f(x)(P*h)(z)dz + lim Gp(h, f)
R™ R—+o0 OBgr
= 0,
because P*h = 0 (for m < k!) and the modulus of Gp(h, f) is dominated by
9Br

k—1

RnflRmfj
Z) (1+ |R‘2)(5+2+k717j)/2'

Jj=
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(Here, by Gp(-,-) is meant a Green operator for P.)
Similarly, if f € R*=2MF2(R"), where n —24+m < 6 < n — 2+ m + 1, then
using the Green formula for P yields

/" (Pf)(x)h(z)de = lim (Pf)(x)h(z)dz

R—+4o00 Br

li Gpl(h,
R~1>r£oo OBr P ( f)

| s e+
= 0

for all h € H<pyyp, because P*h € H<,, (for the operators P* and A commute)
and

k—1 Rn—lRm+k—j

— (1+ |R|2)(6+2+k—1=5)/2"
=

‘ . Gp(h,f)‘ <e

O

Finally, we may further argue by induction because on integrating by parts for
f € Cs=2MH2(RM) we get

aa/ f(y) 72dy:/ 0 f(y)72dy
re |Z —y|" re T —y|"

whenever § > 0 and |a| < s — 2. Indeed, if 0 < § <n —2 and f € C*~2M+2(R)
orn—2+m<d<n—2+m+1and f € R*2MF2(R™), then also 9°f is of class
R5727\a|,)\75+2+\a|(Rn) and
OU(@f) = D(0°f) = P (0°f),

which is due to the properties of @ and &, derived above. (Obviously, we have
A0%(®f) = 0°f.) In particular, d*(Df) € COOIFIel(R™) for all |a| < s — 2 accord-
ing to Lemma 3.5. Now using Lemma 3.2 we sce that 9%(&f) € C2M0+lel(R™) for
all o] <s—2, and so &f € C5M(R") satisfies A(Df) = f.

We have thus proved the assertion 2) of the theorem for n > 3 and s > 2. For
s > 2 and n = 2 the proof is similar. |

What about the case § < 07 In the case of Sobolev space a duality argument
might be used. Actually we do not consider 6 < 0 below. For handling the Navier-
Stokes equations we need merely ¢ > 0 if we want to provide a finite energy estimate.

Now we start to study the Laplace operator in the scale C*5(529)(Cr). As the
Laplace operator is not fully consistent with the dilation principle in Cr we should
expect some loss of regularity of solutions to Au = f in this scale of function spaces.

Similarly to the scale C**9, we will use the potential

@O D7 @)= [ oo =) S0y

for function f defined on Cr. The variable ¢ enters into the integral as a parameter
and the pair (z,t) is assumed to be in the finite layer Cr over R".
Actually, we can easily extend Theorem 3.1 to the Laplace operator acting
boundedly as
S S
A - m Cj,O([O,T]702(sfj)+k+2,)\,6(Rn)) N m C‘j’o([O,T}, C2(sfj)+k,>\,6+2(Rn)).
j=0 j=0
(3.11)
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Let C*([0, T, H<y,) be the space of all C® functions of ¢ € [0, T'] with values in the
harmonic polynomials of degree < m in z. Any element h(z,t) can be alternatively
thought of as a polynomial of H<,, whose coefficients are C* functions on [0, T7.

Lemma 3.7. Let n > 2, s, k be nonnegative integers, 0 < X\ < 1 and § > 0 The
operator (3.11) has closed range unless 6 +2 —n € Zx>o. Moreover,

1) it is an isomorphism, if 0 < 6 <n — 2;

2) it is an injection, if n —24+m < § < n—1+4+m for some m € Z>q, and its
range consists of all

f S ﬂ Cj’o([O,TLCQ(S_j)+k,)\,5+2(]Rn))

§=0
satisfying / f(z,t)h(z)dx =0 for all h € H<yp,.
R’n

Proof. First we note that, by the Liouville theorem, a harmonic function on R"
whose growth at the infinity point does not exceed that of |z|™ is a polynomial of
degree m € Z,. Hence, for 6 > 0, the kernel of operator (3.11) consists of those
functions

u € m CI0([0, T], C2s = Hh+200 (Rny)
j=0
which depend on the variable ¢ only and vanish as |z| — 400. This means that

operator (3.11) is injective for all s > 0 and § > 0.
Finally, using Theorem 3.1 yields

sup [|07(D @ I) (-, )|z rr2ns @y
te(0,T]

= sup ||(§I)®I)agf(',t)l‘cz(.e—j)+k+2,>\,5(Rn)
te[0,7)

< e sup (|7 FCDllmempienaian
te[0,T]

for all 0 < j < s and appropriate § and f. |

By Lemma 2.10, the Laplace operator induces a bounded linear operator
A Ck+2,s(s,)\,6)(a) N Ck,s(s,)\,é-&-Z)(@)'

However, we are also aimed at describing the action of the potential ® ® I on
the “parabolic” Holder spaces. To this end, we introduce Ck“‘l*s(s”\"s)(a) NDa
to be the space of all functions u from CF+1s(5:A9)(Cr) with the property that
Au € Ck*s(“""')"‘s"'Q)(E). We endow this space with the so-called graph norm

||U||Ck-+1,s(s,x,5)(G)QDA = HU”CkJrLs(s,A,&)(G) + ||A’U:||Ck-,,s(s,,\,5+2)(@)-

Let C**([0,T], H<,,) stand for the space of all C** functions of ¢ € [0, T] with
values in the harmonic polynomials of degree < m with respect to the variable
z e R™

Corollary 3.8. Suppose that n > 2, k and s are nonnegative integers, 0 < A <1
and 6 >0, 6 +2 —n € Z>o. Then C’k“’s(s*)"‘s)(CT) N Da is a Banach space and
the Laplace operator A induces a continuous linear operator

A - Ck+1,s(s,/\,5) (E) N DA N Ck,s(s,/\,5+2) (E) (312)
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with closed range. Moreover,

1) it is an isomorphism, if 0 < 6 <n — 2;

2)ifn—24+m<d<n—14+m for somem € L, then il is an injection and
its range R¥S(5M042)(Cr) consists of those f € CFS(X0+2)(Cr) which satisfy

f(z, )h(z)dz =0

]Rn
forall h € Hep,.

Proof. We first note that the elements of C*+1:8(s29)(Cr) N D, are C{Z?HS’A
functions of € R™, which is due to elliptic regularity. If {u, } is a Cauchy sequence
in Ck+1s(5:A0)(Cr) N Dy, then it is a Cauchy sequence in CFH15(29)(Cr) and
{Au,} is a Cauchy sequence in the space C*s(=}9+2)(Cr). As the spaces are
complete we conclude that the sequence {u,} converges in C*+1:5(529)(Cr) to an
element v and the sequence {Au,} converges in C*5(29+2)(Cr) to an element f.
Obviously, Au = f is fulfilled in the sense of distributions. Hence, u belongs to
Ck+18(s:A0) (Cr) N DA and it is the limit of the sequence {u,} in this space. We
have thus proved that the space C*+1:5(:X9)(Cr) ND, is Banach. Moreover, by
the very definition of the space, the Laplace operator A induces a continuous linear
operator as is shown in (3.12).

Next, the Liouville theorem implies that a harmonic function in R™ growing as
|z|™ at the point of infinity is a polynomial of order m € Zs(. It follows that
for § > 0 the kernel of A consists of those functions u € C’“*LS(S’)"‘S)(E) NDa
which depend on the variable ¢ only and vanish as || — 4+o00. This means that the
operator A is injective on C*+1:5(520)(Cr) ND 4, provided that s > 0 and § > 0.

Now we need an analogue of Lemmata 3.4 and 3.5.

Lemma 3.9. Assume n > 2, k and s are nonnegative integers, 0 < A < 1 and
0>0,0+2—n¢&Zs>o. Then the potential ® ® I induces a bounded linear operator

Ck,s(s,k,é+2)(@) N Ck—!—l,s(s,)\,é)(a) ODA, Zf 0<§<n— 27
Rk,s(s,)\,6+2)(@) N Ck+1,s(s,)\,z§)(a) ﬂDA, lf n—2< 5’

satisfying A(® @ I) = I on these spaces.
Proof. Indeed, by Theorem 3.1 we get
|(@ & DO f (1) ~ (@@ DI (")t srrnmaan

. |t’ _ t//‘)\/2
t/ £t/
B(O] f (-, ') = 0] (- ")) [l catemsn+rrrons mny
= sup
t/ ¢ €[0,T] |t, - t//‘/\/2
t/ £t

107 (-, t') = 8] F (1)l 2o irsntne2my

IN

sup

t/ /' €[0,T) |t/ _ t//|>\/2
t,;ét”
< ¢ su ||8gf(-,t’) — agf(.7t//)||CQ(Sfj)+k,o,5+2(Rn)
= t’,t”eI[?),T] ‘tl . t//|k/2
t/ £t

for all f in CFsS(5A42)(Cr), if 0 < § < m — 2, or in the range RFS(5A042)(Cr), if
n+m—2<3d<n+m-—1, where c is a constant granted by Lemma 2.7.



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 33

It is clear from Lemmata 3.4 and 3.5 that A(@ ® I)f = f for all functions f in
CFs(A42) (Cr) if 0 < § < n—2, or in RFSEAE2)(Cr) if ndm—2 < 6§ < n+m—1.

On combining what has been proved with the results of Lemma 3.7 we obtain
readily

[(e®I)f) Hck+1,s<s,x,o’)(a)mjA <c Hf”ck,s(s,x,aw(@)

for all function f as above, with ¢ a constant independent of f. ]

On applying this lemma we complete readily the proof of Corollary 3.8, which
has been our goal. |

Lemma 3.10. Suppose that P is a homogeneous partial differential operator of
order 0 < k' < k with constant coefficients which acts in the space variable x.
Then,

1) P maps CFs(sA82) (R7x[0, T]) continuously into REF (X028 (R [0, 1),
fo<d<n—2andn—2+m<5+k <n—1+m for somem € Z>o;

2) P maps R¥S(sX82) (R"x[0, T]) continuously into R+ (s X042 (Rny [0, T7),
ifn—2+m<é<n—14+m for somem € Zxg.

Proof. Indeed, if f € CF5(2+2)(Cr) and

0 < 0 < n-2,
n—24+m < d+k < n—1+m

for some m € Z>o, then m < k' and, for any h € H<,,, using the Green formula
for P yields

/n(Pf)(a;, t)h(x)dx

= lim (Pf)(x,t)h(z)dx

R—+o00 Br

= . f(z,t)(P*h)(z)dx + lim Gp(h, f)

R—+4o0 9Br
= O’

the last equality being a consequence of the facts that P*h = 0, for m < k’, and

k' —1 ;
RTL—lRm—]
Gr(h, )| < c —_
with some constant ¢ independent of R.

Similarly, if f € RFS(A42)(Cr) and n — 2 +m < § < n — 1 +m, then, for any
h € H<pyqk, using the Green formula for P we obtain

/H(Pf)(x, t)h(z)dz

= lim (Pf)(x,t)h(z)dx

R—+o00 Br

f(z,t)(P*h)(z)dx + lim Gp(h, f)
R" R=+00 JoBp

= 0
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because P*h € H<y, (since AP = PA) and

k' —1 ‘s

Rn—lRm+k —J
GP(h’a f)‘ S c E 7 : )
‘ /63R = (1 + |R[2)(GH2+F—1-3)/2

the constant ¢ being independent of R. |

As a corollary we are in a position to describe the behaviour of the de Rham
cohomolgy in the scale of weighted Holder spaces.

For this purpose, for a differential operator A acting on sections of the vector
bundle A? over R”, we denote by C**9(R™, A9) NS, the space of all differential
forms u € C*M(R™, A?) satisfying Au = 0 in the sense of the distributions in R™.
Similarly, we write C*S(5A9)(Cr.. A9) NS4 for the space of all g-forms on R™ with
coefficients from C*5(29)(Cr) satisfying Au (-,t) = 0 in the sense of distributions
for all fixed ¢ € [0, T]. These spaces are obviously closed subspaces of C**¢(R™, A9)
and C’k’s(‘s’)"‘s)(a7 A7), respectively, and so they are Banach spaces under induced
norms.

Corollary 3.11. Let ¢ >0, s € Z>o, 0 <A <1, and § > 0 satisfy 6+2—n & Z>p.
If f € REAOTZHR™, AT NS,, then there is a unique u € CTHAIFTH R AN Sy-,
such that

du=f (3.13)

in R™. Moreover,

||uHCs+1,>\‘(5+1(]Rn7Aq) <c ||fHCs,X,5+2(Rn7Aq+1)

with ¢ a constant independent of f, and if 0 < § < n then the solution u belongs to
RS+I’A’6+1(Rn,Aq).

Proof. Indeed, as f belongs to R*M*2(R", A9F1) Theorem 3.1 and (1.1) imply
that
ng c Cs+2,/\,5(]Rn’Aq+1)’
d*@f c Cs+1’)"5+1(Rn,Aq) de*7
dd*@f € CSMF2(R?, AT,
On the other hand,
A(dd* f — f) = dd*(f — [) =0

in the sense of distributions on R™. Since § > 0, the operator A is injective on
C*MOH2(R™, A7) and hence dd*Pf = f.

If f = 0 then the solution to (3.13) is harmonic in R™ because of (1.1). It follows
that the solution vanishes in all of R™ by the injectivity of the operator A on the
space CSTLAOHL(R? AT for § > 0.

We may now use the Banach closed graph theorem to deduce that the bounded
linear operator

d: CoHEAFLRY A N Sy — CHMFZ(R, AT NS,y

is continuously invertible.
IfoO<d<n—1,then 1 <éd+1<nandso

u = d*dsf c CS+1’/\’5+1(RTL,AQ)



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 35

belongs actually to the range of the Laplace operator by Theorem 3.1. Finally, if
n—1< 6 < n, then, since f € C*T2M(R™ A9F1) belongs to the range of the
operator

A C«s+4,)\,672(Rn Aq+1) N Cs+2,)\,6(Rn Aq+1)
on using Lemma 3.6 we conclude that u = d*®f € RSTHAFL(R? AT). a

Denote by C*s(5:2041)(Cr A9) N Dy the space of all differential forms u €
CFs(A0H) (Cp) A7), such that du € CFS(SA2)(Cr A9HY) | endowed with the
graph norm
HU||ck,s<s,x,a+1>(@,Aq)mpd
= Hu||ck,s(s,)\,6+l)(aﬁAq) + ||du‘|ck,s(s,)\75+2)(G’Aqﬁ—l)-

As in the proof of Corollary 3.8 one shows that C*:5(s:A.0+1) (Cr, A9)NDy is a Banach
space and the differential d induces a bounded linear operator

dy : C’%S(SJJH)(E’ AN Dy — Cvk,S(s,A#?Jr?)(@7 AT,
Corollary 3.12. Let ¢ >0, s € Z>o, k=1,2,..., 0 < A <1, and let 6 > 0 satisfy

§+2—n¢&Zso. Then, for each f € RFSEAF2)(Cp AT N Sy there is a unique
differential form u € C*3($XH0(Cr, AT) N Dy with the property that

du(7t) = f('?t)v
du(t) = 0 (3.14)
in Cr. Moreover,
||u||ck,s(s,)\,5+1)(G’Aq)mpd S (& ||f||ck,s(s,)\,§+2)(G’Aqﬁ»l)

with ¢ a constant independent of f, and if 0 < § < n then the solution u belongs to
Rk,s(SJ\,zSJrl)(E7 A9).

Proof. It runs in much the same way as the proof of Corollary 3.11. As f belongs
to RFs(:A0+2) (. A9+1), Lemma 3.9 and (1.1) imply that

@@1)f € CHEA(Tr, A1) N Dy,
d(@RI)f € CFsEXFTN(Cr AN Sy-,
dd*(@@[)f c Ckfl,s(s,/\76+2)(@, Aq+l).
On the other hand, we obtain
A(dd™ (@@ ) f(-,t) = f(-, 1)) = dd"(f — f)(,t) =0
in the sense of distributions on R™, for each ¢ € [0,T]. Since § > 0, the operator
A is injective on CF=1S(A0+2) (0 A9+ and so dd* (@ @ I)f(+,t) = f(-,t) for all
t € [0,T]. In particular, d*(® ® I)f belongs to C*S(sATD (Cr A7) N Dy, as is easy
to check.

If f(-,t) = 0, then the solution to (3.14) is harmonic in R™ because of (1.1), for
each ¢ € [0,T]. Therefore, it is identically zero by the injectivity of the operator A
on the space C*3(5:X9)(Cp, A9), for § > 0.

Thus, the bounded linear operator

d: Cvk,s(s,>\,6+1)(a7 Aq) N Dd N Ck,s(s,)\,5+2) (@’ Aq+1) N Sd

restricted to the forms satisfying d*u = 0 is continuously invertible by the closed
graph theorem.



36 A. SHLAPUNOV AND N. TARKHANOV

IfO<d<n-—1,thenl <d+1<n and
wi=d (@R I)f € CFSEXNHD(Cr A1) N Sy

belongs to the range of operator (3.12) by Corollary 3.8. If n — 1 < § < n, then, as
(@ I)f € CFLs=A0)(Cp, A7) is in the range of (3.12) by Corollary 3.8, we use
Lemma 3.10 to see that u := d*(® ® I)f € RFS(A9H1)(Cp, A%), as desired. O

Corollary 3.13. Suppose that ¢ > 0, s € Z>o, k is a positive integer, 0 < X\ < 1,
and § > 0 satisfies +2 —n & Zsq. Then, for any u € RFS(5A0) (Cr, A9) satisfying
d*u =0, it follows that N

u=d"(®® I)du.

Proof. Indeed, Lemma 3.10 yields du € RF=18(s:A0+1) (Cp A9+1). Use Lemma 3.9
and (1.1) to see that

u= (P I)(d*d + dd*)u = (& @ I)d*du € C*55X0) (Cr, A7)

and d*(® ® I)du € RF-13(5X9)(Cp, A9).
On the other hand, by the same Lemma 3.9, we have

Ad (@@ du— (@@ Id*du) = d*du — d*du = 0.
Finally, since the Laplacian A is injective on C*~18(5:X0)(Cr A9+1) | we obtain
(P I)du= (P ®I)d"du = u,
as desired. ]

Part 2. Open mapping theorem
4. THE HEAT OPERATOR IN THE WEIGHTED HOLDER SPACES

As usual, we denote by 7, u the restriction of a continuous function u in the layer
Cr to the hyperplane {t = to} in R"*!, where to € [0,7]. The following lemma is
obvious.

Lemma 4.1. Let s,k € Z>¢ and X € [0,1]. The restriction o induces a bounded
linear operator

Y Ck,s(s,/\,é)(@) N CQS-‘rk,)\,&(Rn)'

Let 9, be the standard fundamental solution of the convolution type to the heat
operator H, in R"*1 n>1,
0(t _zf?
vl t) = O
(4 pt)

where 6(t) is the Heaviside function. Denote by

@) = [ [ e =pt=) 10 dys

(!pu,OUO)(ffv t) = - 1/)#(1’ —y,t)uo(y) dy

the so-called volume parabolic potential and Poisson parabolic potentials, respec-
tively, defined for (z,t) € Cp.



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 37

Consider the Cauchy problem for the heat operator in the weighted Holder
spaces. Given functions f in Cr and ug on R™, find a function u in Cp, such
that

{Hﬂu(x,t) = f(z,t) for (z,t)€eR™x(0,7), (4.1)

You(x,0) = wug(x) for zeR".

Lemma 4.2. For each real 6, problem 4.1 has at most one solution in the space
Cs(l,A,&) (E)

Proof. The lemma follows, for instance, from Theorem 16 in [Fri64, Ch. 1, § 9].

There have been also much more advanced results. O

The solution of the Cauchy problem in weighted Holder spaces is recovered from
the data by means of the Green formula.

Lemma 4.3. Assume that § > 0, Then, for each function u € CS(*9)(Cr), it
follows that

u = WM HMU + WIMO You.
Proof. See ibid. (I

The following lemma is a main technical tool in estimating parabolic potentials
in weighted Holder spaces.

Lemma 4.4. For each 6 > 0 and vy > 0 there is a positive constant ¢ depending on
0, v and T, such that

[z —y[*\7 dy 2y—5/2
14 <c(l+
/n ( , ) wu(x y’t) (1 ‘y|2)6/2 < C( |-%'| )

for all (z,t) € Cr.

Proof. First we note that, given any real number r, the function
F(s) = (1+s)re=2

is bounded on [0, 00). It follows that

(14 2s)7e™?
< 27sup ((1 + 8)7675/2) sup ((1 + s)’“e’s/z) (1+s)"
s>0 s>0
< c(l+s)™"
. . |z —y* .
for all s > 0, the constant ¢ depending only on r and ~. Taking s = ut yields
L
immediately
_ 2 CJz—yl? a2 —
(1+u)76 8ut Sc(l-i—'x y| ) "
4t Sut
for all ¢ > 0.

If |z| > 2|y| then

[z =yl = 2| = [y[l = [l = [2[/2] = |=[/2.
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Hence, on choosing r = §/2 we obtain

IN

— 2\ _lz—yl® 1 215/2
(1+ |z —y ) e Bt (1 + |z]?)%/2 . (14 |z*) 7
4/14t (1+ |w7y\2)
8ut

1 2\6/2
(tlap)

- 22 )/
(]‘ + 32ut)
< c(max{1,32uT})%/?,
and so
_zy?
[z —y|*\" (1[z[)22 5 2/ e St
1 —yt) e dy < 1,32uT)? [ ————d
/( -+ 4[Lt ) ¢H($ Y, )(1+‘y|2)5/2 y_C(maX{ 5 1% }) (47Tut)TL/2 Y
Rn Rn

for all (z,t) € Cr, where

_lz—yl?

e 8ut 2\ n/2 B VT
= Ay = (f> / 8t J—2_ — on/2
/Rn (4 pt)n/2 4 7 L6 NET:

reduces to the so-called Gauf8 (-Euler-Poisson) integral.
Finally, if |2| < 2|y|, then

_lz—yl?
lz—y|*\7 (1+|z[*)%/2 5/2 / e But
1 ) —y,t) ——————dy < 20/ —d
/< ) ey )(1+|yl2)‘5/2 v= ‘) Gmputyr2 ™
Rn Rn
_ 2(5+n)/2 ¢,
as is evaluated above. O

Denote by C*s(5:29)(Cr) N Dy, the domain of the heat operator acting in
C*s(5A0)(Cr). This space is topologised and complete (i.e., Banach) under the
graph norm

HU||ck,s<s,x,5>(G)mpHu = ||UHck,s(s,A,5>(@) + ||HuuHck,s(s,A,5>(G)-

Lemma 4.5. Let s,k € Z>¢, 0 < A <1 and 6§ > 0. The parabolic potentials ¥,
and W, o induce bounded linear operators

v, Ck,s(s,A,é)(@) N Ck,s(s,/\,é)(@) n DHw
WM,O . CQs+k,)\,5(]Rn) N Ck:,s(s,)\,zS) (G) n DHM~

Proof. We first prove the boundedness of the operator given by the Poisson par-
abolic potential. It is well known that ¥, o maps C25+kX9(R") continuously into

ClsEA0 R [0, 00)).

loc

Suppose |a| < k + 2s. Then

ag<wu,0u0)(xvt) = - 'L/Ju<$ - yvt)a;uo(y) dy
= LD%O (6auO) (:IE, t)
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for all t > 0, which is due to the properties of convolution. By Lemma 4.4, it follows
that

(w(@))* 102 (@ 0u0) ()]

. (14 faf2) o2
< Ha UOHCO=*:5+|"‘(R”) /]R" wll(x - yat) (1 T |y‘2)(5+‘a|)/2 dy

< CHGQUOHCOW“HM(R")

with ¢ a constant depending on a and 7" but not on ug. Furthermore, we evaluate
easily

(w(z y))5+\a|+/\ |3§Y(Wﬂ,ou0>(x,t) — ag(%’ouo)(%t)\

|z —y|*

(w(a,y)) o ) o Yule - Z,|;)_—y1/‘1§(y =21 0%uo(z) dz
Wiz y))oHal A . 0%uo(z + ) — 0%uo(z +y)|
S ( ( 7y)) Rnd’u( ’t) |(Z+$)*(Z+y)|k

100l go.n 4101 oy (w (2, ) THAN [ 4 (2,)
Rn

dz

dz
(w(w+z,y+2))*Ha

for all z,y € R™ and ¢ > 0. On the other hand, applying Lemma 4.4 we conclude
that

IN

Rn”

Dz, t) (w(z + 2)) 7OV 4z = / Gl — 2) (w(z)) O g
]Rn
1

(w(a)PHer
where ¢ is a constant independent of z and ¢. Since w(z + z,y + z) exceeds both
w(z + z) and w(y + z) and 6 + |a| + A > 0, this implies

N

z,t) (w(z + 2 2))~ O+ gz c !
B e sy ) TS Caxu(e), wl) e

< e(w(w,y))OHEY,

the last inequality being due to the fact that w(z,y) < v/2 max{w(z),w(y)}. The
constant ¢ depends neither on z, y nor on ¢t € [0,7] and it may be different in
diverse applications.

Our next concern will be the Holder continuity of the potential ¥, gug in t. We
get

5+ |8§ (WM,OUO)(xv t/) B a’? (WM,OUO)('T: t”)

(w(x)) [t/ — /2 |
_ 0+ ¢(I*27t/>*¢($*zyt”) fe
= (w(z))*tlel [ Bl ) 8% uo(2) dz‘
_L2
= (w(x))t e B 9%up(z + 2V) — 0™ug(x + 2V/1")
R (47TM)TL/2 |t/ _ t//‘)\/2 ’
which is dominated by the
_L2
(w(m))g+a|\/?\/ﬁ|k/ e 12 dz (4.2)
|t’ _ t”|>‘/2 . (471_M)n/2 (w(x 4 Zﬁ,l‘ + Z\/ﬁ))‘s"‘“""")‘ .
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multiple of the norm [|[0“uo||co.x.5+1al(gn). It Temains to estimate (4.2). To this end
we apply Lemma 4.4 to get

z|? ey \
[ ey )
2 (A2 (w(a + 2V/E) Y o T G y))yarietea
1
<

“ (w(w))dF1alx

with ¢ a constant independent of (x,t) € Cr. Therefore, arguing as above we obtain

|2

e dn |z|* dz 1
L G T Vs T S o
¢ (w(z,y))~CHaY),

IN

We have thus proved that there is a constant ¢ > 0 depending on k, s, A and 9,
such that

||W 70U0||CQ+QS,A,O,A/2,5(@) S C Hu0||ck+2s,k‘6(Rn) (43)

for all ug € C*¥+2529(R"). On applying the embedding given by Theorem 2.6 we
deduce that

, =
107 (¥, ,OUO)”ck.s(sfj,A,é)(@) = ulof A(W/L,OUO)||ck,s<s—j,k.6)(@)

17 1| A7 (,, 0u0) ||ck,s<sfj,x,5>(@)

C || (![/%ouO) ||Ck+25,>\,u,>\/2,5(ﬁ)

IAIA

C||u0‘|ck+2s,)\,6(Rn)

for all j = 0,1,...,s. Hence it follows that the operator ¥, ¢ is bounded in the
desired spaces.

We now turn to the volume parabolic potential ¥,. We will tacitly use the
well-known fact that ¥, maps C*s(29)(Cr) continuously into the local space

Ck,s(s+1,/\,O) (E)

loc

Pick any multi-index o € Z%, with [a] < k + 2s. Using the properties of
convolution in R™ one obtains

t
@ ey = [ o [ we—ue—os s
t

= / A Yu(r —y,t —s) 0y f(y, s)dy ds
0 n
= (0% f)(x, 1)
for all f € C*s(529)(Cr). By Lemma 4.4,

(w(@)* 1107 (2.f) (, 1)

k w(ax)\ o+l
\\aafH0k+2s—\a\,o,xyx/z,aﬂaw(@) /0 /Rﬂ?ﬁu(w —y,t—s) (wgyi) dyds

c Hf||ck+2s,0,k,)\/2,6(a)

IN

IN

for all (z,t) in the layer Cz, the constant ¢ depending on finite 7' but not on f.
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In order to estimate the derivatives of ¥, f in ¢ we now use the fact that v, is
a (right) fundamental solution of convolution type to the heat operator. If f is an
arbitrary function of C*3(=:X9)(Cr) and j = 1,..., s, then Theorem 2.6 yields
107 (@ f)ll onsts-anon )
H@g_lf +HAag_l(Wuf)HCk,s(sfj,A,é)(.)
< “ag71f||ck,s(a—j,>\,5)(.) + Huaf’zAf =+ ,U2A28g72(!p’uf)||Ck,s(s—j,x,5+2)(_)
j—1

DT T A | erasasian ) 4 18 AT @ )| orstesnsian

i=0
S (& (”fHCk,s(s—l,)\,é)(,) + HWﬂf||ck+2s,0,>\,>\/2,6(,)) B

IN

where all function spaces are over the layer Cr which we omit by abuse of notation.
The constant c is independent of f, and so ¥,, acts boundedly in the desired spaces.
O

Our next goal is to show a more subtle result on the volume parabolic potential
¥, which we need in the sequel.

Theorem 4.6. Let s be a positive integer, k € Z>o, 0 < A <1 and § > 0. The
potential ¥,, induces a bounded linear operator

Ck,s(sfl,)\,5+2) (E) — Ck,s(s,)\,é) (@)

Proof. We begin with a weak a priori estimate of Schauder type for the heat oper-
ator in weighted spaces.

Lemma 4.7. Suppose that 0 < X\ < 1 and § > 0. If f € C3ONH+2(Cr) and a
function u € CHOAAN20)(Cr) N C’ISO(CI’/\’O)(G) satisfies Hyu = f in Cr and you = 0
then u belongs actually to the space C3*9(Cr) and

lullgsnn @z < € (Ielloronnsn @) + Iflcaorsin @) )
where ¢ depends on A\ and & but not on f and u.

Proof. First, by Lemma 2.1 and parabolic regularity, we conclude that any function
u satisfying the hypotheses of the lemma belongs to C'ISO(CI’)"O) (Cr). Then, by stan-
dard a priori estimates for solutions of the Cauchy problem for the heat operator
(see for instance [Kry96, Lemma 9.2.1]), there is a constant ¢ > 0 such that

lullosam@zy < € (uloson @) + 1 Hptllson @)

for all u € C3ON(Cr) N C’lso(cl’\)(a) with H,w € C3N(Cr) satisfying you = 0.

Here, C5(*))(Cr) are normed spaces of Holder continuous functions in all of Cz
which include parabolic anisotropy. This scale of function spaces is different from
our scale of weighted spaces, for it does not specify the behaviour of functions at
the infinity points of Cp. However, the corresponding local versions of both scales
coincide.

Let X} and X be two bounded domains in R”, such that X} € &5. Fix a function
X € C..,(X2) which is equal to 1 in a neighbourhood of the closure of X;. An

comp
easy calculation shows that

H,(xu) = x(Hyu) — px(Au) — 2Vx - Vu
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for each distribution u in the cylinder Cr(Xs). As usual, using the multiplication
operator u — yu one concludes that there is a constant ¢ depending merely on the
distance
dist(90X1, 0Xs) = Ig%/fvl |z —yl,
YyEIXy

such that

HUHCS(L)‘)(W) <c <||UHC1,0,A,>\/2(W) + ||HI"UHCS((),)\)(G(X2))> (4'4)

for all functions u € CLOAN2(Cr(Xy)) N CEUY(Cr (X)) which satisfy H,u €
C3(O0N(Cr(Xy)) and you = 0.

In particular, (4.4) applies to any function u satisfying the hypotheses of Lemma
4.7, which yields

[0ull cacon) Errmy) + Z 105 ull oo ey
o <2

< e (Iullernnsa g, + 1Hutll oo i)

with ¢ a constant independent on w. If |z| < 4, then 1 < (1 4 |z[?)Y/? < VIT.
Hence, letting the constant ¢ depend also on § and using (2.3) we can rewrite the
last inequality as

||8tu||cs<o,x,6+2)(m) + Z ||agu||cs(0,m+\a\)(m)
|| <2

< o®) (Il oo @z, + 1 Havl

[9ul

Cs(o,x,5+2)(m)) ’

(03
C=0.7642) (Cr(Ba)) T Z ||axu||cs<o,x.,6+\a\)(m)
lal<2

< C((S) (Huncl.o.x,x/z.a(m) + HHMU|

Cs(ov*»5+2)(CT(B4)))
(4.5)
for all u as in the statement of the lemma.

We now consider a region in R™ of the form r < |z| < 8r, where r > 1 is a fixed
constant, and set

u,(z,t) = u(rz, r’t)
for 1 < |z| <8 and t € [0,7/r?]. Then

&ur(x, t) = T(a1u) (T’.Z’, 7"2t),
0;0uur(z,t) = 12(0;0.u)(ra,r?t),
8tu,.(1:, t) = T2 (atu) (TCL’, T2t)

whence
Hyu,(x,t) =1r? (atv(rm,TZt) — (,uAu)(mc,er)) =r2f(ra,r’t).
On applying estimate (4.4) to u, we obtain

10rtur oo B\ By <00 + D 108l lenon) (BB p0. 772
|| <2

<c (||Ur‘|Cl»0»*ak/2((§g\31)x[0,T/r2]) + ||Huu7"| CS(O»*>((E\B1X[O,T/T2])) )



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 43

where the constant ¢ could be chosen to be independent of r because r > 1 and
0 < T/r? <T. This is equivalent to

542 5
2100l g (B Bany <oy T D T MNOX Ul exo0) (B oy 0.70)
[a]<2
5 542
< C( Z r +|B|||8Bu||05(01>\)((Bg,.\B,.)><[OA,T]) +7r + ||LHUHCS(0,>\)((387,\37_)X[O’T]))7

[BI<1

the constant ¢ > 0 being independent of » > 1 and w.
For r < 2 < 8r, we have r < (1+|2|?)'/2 < 9r. Hence, the latter inequality just
amounts to saying that

HatuHCs(o,,\,Hz)((E\Bzr)x[OYT]) + Z |09 ul
lor|<2

CsOX 0410 (Bay\Bzr) X[0,T])

< ¢(9) (H“||CLOA,A/2,6((BTT\BT)x[o,T]) + ||Huu||cs<o,x,6+2)((BTT\BT)x[o,T]))
holds with some constant ¢(d) > 0 independent of r and w. Choose r = 2™, for

m=20,1,..., to get

||8tu||05(0,%5+2)((4Bzm+2\5’2m+1)X[O,T]) + Z HaguHCS(O-AﬁHaI)((432,,L+2\Bzm+l)><[O,T])
ler|<2

< ¢(9) (||U||cl,0,x,x/2,6((32m+3\BQW)X[o,T]) + “HM“”cs(UM“)((BW,H\BW)x[o,TD)
(4.6)

with ¢(d) a constant independent of w.
Finally, on combining Theorem 2.6 with (4.5) and (4.6) for m = 0,1,... we
obtain the statement of the lemma. g

In the next lemma we present an intermediate assertion towards the complete
proof of Theorem 4.6.

Lemma 4.8. Let s be a positive integer, k € Z>9, 0 < A <1 and § > 0. The
parabolic potential ¥,, induces a bounded linear operator

Ck,s(s—l,)\,6+2) (E) N Ck+1,s(s—1,)\,6) (G)

Proof. 1t is well known that ¥, maps Ck’s(s’l’A"s*Q)(E) continuously into the

Fréchet space Cﬁ)’s(s’)"o) (Cr) provided that 0 < A < 1. Arguing as in Lemma 4.5
we see that

(w(@))° (T f) ()]
(14 |z[)22

t
||f”cs(o,>\,5+2)(@) /(;/Rn wu(ﬁf —y,t— S)Wdyds

IN

IN

t
C
el lewosvn@n T3 00 / o

where ¢ > 0 is a constant depending on 7" but not on x and f because of Lemma
4.4.
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Furthermore, using Lemma 4.4 and (2.3) we obtain

(w(ZL‘,y))6+)‘ |(l*pp«f)(x7t) - (Epﬂf)(y,tﬂ

|z —y|*
< )™ [ ([ et T DT 2  g
(w(z,) "
< Wloorsonn [ / utert =) o I,
<

Wlewssson@ e ),

for & # y, the constant ¢ being independent of f and different in diverse applica-
tions.

In addition, pick ¢, ¢” € [0,T]. Without restriction of generality one can assume
that ¢ < ¢”. To evaluate the difference quotient

(w( ))5 | W f) T t) (W f)(l’,t”)l

| t//|>\/2
we make the changes of variables t’ — s = s’ and t” — s = s” in the integrals in
question. A direct calculation shows that the quotient is majorised by the sum of

two terms
+ / "
s B |[f(y,t" —s) — f(y,t" —s)|
(UJ(IL’)) /0 /]Rn wu(x Y, S) ‘t/ _ t//|k/2 dyds,

o _w@y v y
12 T |t/ _ t//|)\/2 & Rn 'l/}“(m - y7 8) |f(y7t - 8)‘ dyds'
We get

I

t,
L < Hf||cs<0w5+2>(@)/0 /R Yu(z =y, s) (( (()))6)+2dyds
(&
< W ||f| ©s(0.3.642) (Cr)

with ¢ a constant depending neither on z € R™ and t/,¢” € [0,T] nor on f, the last
inequality being due to Lemma 4.4. The term I is estimated by using the mean
value theorem for integrals, for

|t — "] (w(x))®
I < ||f||cs(0 0.542)(C) 171 717 IN/2 |t t”|)‘/2 "/Ju y,tﬂ) Wdy

with an intermediate point ty € (t',t”). On applying Lemma 4.4 once again we get

|t/ _ t//|1f>\/2
I, < CW ||fHCs(o,o,5+2)(@)

and so

(W f) (@, ') = (O f) (@, )]

TG <c ||chs(o,A.é+2>(@)

(w(z))?

with ¢ a constant independent of f. Summarising we see that ¥, induces a bounded
linear operator

CS(O,/\,5+2) (E) N CS(O,)\,(S) (E)
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Similarly, for any multi-index «a € Z>¢ of norm || = 1, it follows by Lemma 4.4
that
8
(w(@)) O (@ f) (2, 1))

T 5+1
T - / / it_y' o— S>E EBMZdyds

IN

bods
Flleswrsva @) iy (:C) te opT] 0o Vt—s

2\/7 ( ) ||fHCS(0 A, 5+7)(CT)5

IN

where ¢ is a constant independent of f. Furthermore, using Lemma 4.4 and (2.3)
we obtain

si1a 192 (W f)(@,t) — 0y (W f)(y, 1))

(w(z,y))
|z —y|*
' 2|7 fla—z8) = fly—=z,5)|
S+14+A B
< (w(x,y)) /(/anllu( )wu( ;t 3) ‘I—y|)‘ dZ)dS
2 L))ot 1A

< ||chs(ou+z>(cT)// 4u(1‘52|s Z’tis)(w((xw—(j,z)—)z))“?%\ dzds
< sup ! _ds

< Hfll 2(0,3,642)
tef OT] Vi—s w(ﬂf Y) © )
for all  # y and t > 0, with ¢ a constant independent of f.
To estimate the difference quotient

1102 (W f) (@, 1) = 05 (W f) (, "))
(w(x))éJr ‘t t//|)\/2

for z € R™ and t/,t" € [0, T], we argue as above. To be definite assume that ¢’ < ¢”.
An immediate calculation shows that the quotient is majorised by the sum of two

terms
Y20 —yl |f(y,t" —5) = fly,t" —s)]|
_ 6+1 ’ ?
I = / /n —_— Y, ) [t — A2 dyds,
)°+t 2|£U yl
L - m / / Ul —y.5) | /(98" — 5)] dyds.
t/ n

One verifies readily that

Y o2de—yl (w(w))**
Ii < Hchs(o,A,Mz)(G)/o/n s ¢u($—y,5)Wdyd5

c T ds
o) Wleworsiaen |75

<

with ¢ a constant independent of both z and ¢, " and f, the last inequality being
a consequence of Lemma 4.4. On the other hand, the term I is estimated by using
the mean value theorem for integrals in a generalised form. More precisely, we
obtain

/, 20 - (w(@)’*+
t
Ié < Hf||cs(0,0,é+2)(CT) |t/ — t//|)‘/2 /]R”/t' 4,“4\/7 ( - y7t19) (w(y))5+2 dyds
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with an intermediate point ty € (¢,t”). Since

n

—<2\/t” t/
v Vs

for all ¢, ¢ satisfying 0 < ¢ <", an application of Lemma 4.4 yields that

, |t/ _ t//|(17)\)/2
I <c W ||f||cs<o,0,6+2)(@)

and so

|07 (D f) (@, 1) — O3 (W f)(x, )]

§
(’LU(,Z')) i |t/ 7 t/,|>\/2 <c ||fHCS(0:>\‘5+2)(G)

with ¢ a constant independent of f. o

Hence, the volume parabolic potential ¥,, maps Cs(0:2,0+2) (Cr) continuously into
C1s0.A9)(Cr). Le., we have proved the statement of the lemma for s=1landk=0.

Suppose s > 1 and k is a positive integer. If f € C*sS(s=LAI+2)(Cr) then, as in
Lemma 4.5,

80‘+BW =Y (aa+5f)

for all multi-indices «, 8 € Z% such that [a| < 2(s — 1) and [8] < k. Hence it
follows that

||W/J,f||CZ(S*I)#»)C«FI.O.A,A/ZE(G) <c ||f||02(571)+k,o,/\.>\/2,5+2(a) (4«7>

where c is a positive constant depending on s, k and 7" but not on f.
For 5 = 2, we have f € C?TF1AN2042(Cr). By the embedding of Theorem 2.6,

||8t(gl,uf)Hckﬂ‘o‘x,x/z‘a(@)
”f + MA(W#f)Hckﬂ,n,x,x/z,é(a)

< Mflleronazser) + er AT orronszaaer
< ”f”ckﬂ,o,x.x/z,a(@) +cu ”waHckJrS,OA,A/z,a(@)
<

c ”chkH,o,x,x/z,au(G)
and so
||WltfHck+3,1,>\,>\/2,5(a) <ec ||f||C’<+2)1~\A/2,5+2(@),

the constant ¢ is independent of f and it may be different in diverse applications.
More generally, for arbitrary s > 1 and 1 < j < s — 1, the embedding of Theorem
2.6 implies

||a;‘,7 (W/Lf)||Ck+1vs(8*1*jy%5>(.)
= ||8§_1f+uA@{_l(Wpf)HC;&.H,S(S,l,j,M)(,)

< ||8g_1f‘|ck+l,s(sfl—j.>\,6)(_) + C||/Jag_2Af + MQAQaz_Q(WHf)||Ck+1,s(s—1—j,)\.6+2)(_)
Jj—1 o

S CZ Hagilﬁ,ulAlf”Ck+1,s(s—1—j,>\,5+2i)(,) + C”[LJAJ (Wuf)||Ck+1,s(s—1—j,k,5+2j)(,)
i=0

<

Cc (Hf||Ck+Ls(sfz,/\,5+2)(G) + ||§pl,,fH02s+k+1,0,>\,>\/2,5(.))
(4.8)
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which is dominated by a constant multiple of || f{|cr.s:-1.1.542) @) With a constant

independent of f. In (4.8) all function spaces are over the domain Cr which we
omit for short.
We thus arrive at an inequality

1 fllcrrrsc—100 @y < Clfllorse—1a5402 @)

showing the boundedness of ¥, in the desired spaces. O

We are now in a position to finish the proof of Theorem 4.6. If f is an arbitrary
function in C*s(s=1):A042)(Cr) and |a| < 2(s — 1), |8] < k, then Lemma 4.8 shows
that 02+°(W, f) = ¥, (9978 f) belongs to C1LOAN2.0+al+81(Cr) and

H#agz—&-ﬁ(g/ﬂf) — 6§+Bf c CS(O’)‘75+|“‘+|B|+2)(E)7
708;1+ﬁ(w;¢f) = 0.

From the estimate of Lemma 4.7 and inequality (4.7) it follows that
||a?+ﬁ(wllf)HCS(I,A,JHMHBI(G) <c ||8a+ﬁfHcs(o,x,aﬂammu)(G) (4.9)
with a positive constant ¢ independent of f. Moreover, arguing as in (4.8) we get
103, D)l cmonnrns(
= 077 f + AT (@uf)loronnszi
< |‘8§71f||ck,0,>\,)\/2,6(,) +c HuafiQAf + M2A28572(Lpﬂf)Hck,o,/\,/\/z,5+2(,)

s—1

S CZ ||8filii,uiﬂif||Ck,o,>\,>\/2,5+2i(,) + Cllﬂsﬂs(wﬂf)||Ck,o,x,x/2,5+25(,)
i=0

< ¢ (||f”ck,s(s—1‘>\,6+2)(,) + ||@HfHCzsy\:,o,x,,\/z,&(,))

(4.10)

which is dominated by ¢ ||fHCk'5(S_1’)"5+2)(G) with a constant ¢ independent of f.
On combining (4.7), (4.8), (4.9), (4.10) we see that the potential ¥, induces a
bounded linear operator

Cflc,s(s—1,>\,6—&-2)(E)*>C«k,s(s,>\,6)(a)7
provided that 0 < A < 1. ]

5. THE LINEARISED NAVIER-STOKES EQUATIONS

Now we begin to study the operators related to a linearisation of the Navier-
Stokes equations. For this purpose, denote by

H,+Vy d )

Ay = ( Yo 0

a linearisation of the Navier-Stokes equations with first order term
Vou = * (*g(o) A u) + * (*dlu A 1)(1)) +d° « (*U(Q) A u)

in Cp, where v and v are fixed one-forms and ¢(® is a fixed two-form, cf.
Lemma 1.2.
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Theorem 5.1. Let n > 2, s be a positive integer, k € Z>o and 6 > n/2. If
the coefficients of v are of class C5("00) the coefficients of v® are of class
C1300.0.=1) and the coefficients of g0 are of class C599) in Cp, then any pair
U= (u,p)" of

W € 0T YN8,

p € CLs005-1)(Ey) (5.1)
satisfying Ay, U = 0 in the layer is identically zero.
Proof. For U = (u,p)T the equality Ay, U = 0 just amounts to saying that
Hu+d = —Vou %n q, (5.2)
You = 0 in R”.

Since 6 > n/2, one may follow [Ler34a] or Theorem 3.2 for n = 2 and Theorem
3.4 for n = 3 of [Tem79], proving the uniqueness result with the use of integration
by parts. Indeed,

Ollu- )12y = 2 (Ort, u) L2(By),s

for we restrict ourselves to real-valued forms. From the properties of u and p listed
in (5.1) we conclude that dp € C3(0:99)(C, A') and the coefficients of the one-forms
u, Oju, Oyu and H,u, dp are square integrable over R™ for each fixed ¢ € [0, T], which
is due to Lemma 2.5. Hence, using (1.1) and the Stokes formula we get

(Hyu + dp,u)p2(gn av)

. 1 "
= RETOO (5 at”u('vt)”%ﬂ(BR,Al) +/~L‘|du('vt)”%2(BR,A2) + plld U('»t)||2L2(BR)
ou
A — | (G = pv)ds)
+ (P, d"u) L2 (By) /{)BRU o Pv)ds
= 2 Ol ) ey + plldu D)2
9 t s L2(Rm, A1) 1% 5 L2(R™,A2)>

for u/u is of class C3(0:0:20+1) "y is of class C5(0:920=1) in the layer C7 by Lemma
2.9 and
Rn—l—(25—1) _ Rn—2§ 50

if R — +o0.
Furthermore, the restrictions which we put on the forms ¢(°) and v, v(?) guar-
antee that the integrals

(*(*g(o) Au),u)p2@mn ary, ($(edu A v(l)), u)p2(re A1y, (d* (*U(Z) A ), u)2(®e AL

converge for each ¢ € [0, 1], for the integrands belong to C3(%:9:2%)(C7) (see Lemmata
2.5 and 2.9). Hence, (5.2) implies

1
) at||u('7t)||%7(]1§"7/11) + ||du(’:t)‘|2L2(]R",A2) = *(Vbu(wt)»U('»t))L2(Rn,A1)-

Since ¢ is of class C*(%:%:9) in the layer Cr, there is a constant ¢ independent of
u € C3(009)(Cp A1), such that

(*(*9(0) A, U)LZ(]RTL’AI) <c ”uH?ﬂ(]R",Al)
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for all ¢ € [0, T]. Besides,
(x(xdu A U(l))’u)lﬁ(ﬂgn’Al)
< o)

=000 @z, an)l1dull L2®n,22) [l L2 e A1)
2
c
< bu||du||%2(]l§",/12) + @ ”v(l)”és(o,o,o)(ﬁAl) Huniz(Rn,Al)
with any constant b > 0, for 2b1by < b3 + b3. Finally we integrate by parts to
observe that
(d(x0® Au),u)p2@n 1) = (+(x0@ Aw), d*u)2gny = 0.

On combining these estimates we see that there is a constant ¢ > 0 independent of
uw and t € [0,T], such that

— (Vou(-t),u(, t)) 2(rn,a1) < C||U(‘at)H2L2(Rn,Al) +plldu, )72 @n a2y (5:3)
for all u € C3(1:0:9)(Cp, AY) N Sy-. Tt follows that

1
50 lu( )72 mn a1y < €llul, )2 @n any

for all ¢t € [0, T7.
Now we note that the from the inequality z'(t) < a(t)z(t) for all ¢ in some
interval of the real axis it follows that

d
o7 (e*A(t)x(t)) <0,
where A is a primitive function for a. Therefore, since A(t) = 2¢t is a primitive for
the function a(t) = 2¢, we conclude that

d —acC
%(e 2 t|‘U(-,t)||iz(Rn,A1)) <0

for all ¢t € [0, T7.
Pick any ¢ € (0,7]. Then

t
d —«CS
/0£<e 2 Hu(.,s)niQ(Rn,Al))ds

e ul ) Z2@n a1y = 1uC 0 Z2@n ary

= M ul, )o@ )
<

because u(z,0) = 0 for all z € R”. Thus,
||'U/(’ t)”%Q(R",Al S 0

for all t € [0,7], i.e., u = 0. Hence it follows that dp = 0, i.e., p does not depend
on x. However, the function |p(t)| is dominated by (1 + |z[?)~©~1/2 as |z| — +oc.
Since § > n/2 > 1 we deduce readily that p(¢) is identically equal to zero, as
desired. (]

As is already mentioned, the scale of weighted spaces C*3(5:X9) in the layer Cp
does not fully agree with the dilation principle for parabolic equations. Differentia-
tion in the time variable ¢ does not lead to increasing the weight exponent § which
results in committing a violation of compact embeddings. In order to get rid of
this shortage we go to slightly modify the above scale by introducing an additional
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Holder exponent X' which should exceed A and thus affect to a gain of “smooth-
ness” in t. This manipulation of function spaces seems to be justified by the refined
structure of the Navier-Stokes equations. For s,k € Z>o and 0 < A < X < 1, we
introduce

]_—Ic,s(s,/\)\”(s)(a) — Ck+17s(s7>\’5) (E) N Ck7s(s7>‘/’6)(a).
When given the norm

||UH_7:1c,s(s,>\,A',5)(@) = HU”CkH,s(s,A,&)(@) + ||u||ck‘s(s‘>\’,5)(a)-
this is obviously a Banach space. To certain extent these spaces are similar to those
with two-norm convergence which are of key importance for ill-posed problems.
If s € Z>p and 0 <A<\ <1, then all statements above on the Laplace operator,
de Rham complex and heat operator are true for the scale F k’s(s”\)‘/"s)(@) instead
of the scale C*3(5:%8)(Cr). The range RF3(5:XX.9)(Cr) of the operator

A ]_-k,s(s,)\.,)\',é)(a) ND, — .}-k,s(s,)\,)\',5+2)(@)

just amounts to the whole space ]—"’“’S(S’/\”\l"s“)(E)7 if 0 < 6 < n—2, and it reduces
to the intersection RF+1:s(s:2042)(C)n Rk-(:X.042) (1) if § belongs to an interval
n—24+m<d<n—1+m.

Lemma 5.2. Let s be a positive integer, k € Z>p, 0 < A < XN <1 and § > ¢'.
Then the embedding

}-k,s(s,)\,k’,(i)(a’ Aq) (_>]:k+1,s(sfl,)\,)\/,6/)(aj Aq)
18 compact.

Proof. By abuse of notation we omit the domain and target bundle in designations.
By Theorem 2.6,

1) the space Ck+1s(s:20) is embedded compactly into Ck+1s(s=1A.6) " gince
s+A>s—1+ XN and d > 0;

2) the space CFs(s:M9) i embedded compactly into CFS(A) for 0 < X < N
and 0 > ¢’;

3) the space CF5(5:20) is embedded continuously into CE+2:s(s=1.2.8")

Hence it follows that if S is a bounded set in

f’k,s(s,k,)\',(i) _ CkJrl,s(s,)\,é) n Ck,s(s,)\/,ﬁ)’

then any sequence from S has a subsequence converging in the space
]_-kJrl,s(sfl,A,)\',é’) _ Ck+2,s(sfl,)\,5’) N C«k«kl,s(sfl,)\/,é’)7

as desired. O

Corollary 5.3. Let n > 2, s be a positive integer, k € Z>o and v > 0.

1) If 0 < X\ < 1 and the coefficients of vV are of class C*SG=1AY=1 " the
coefficients of v are of class C*H1SGE=LAY= and the coefficients of g°) are of
class C*S=1A) in Cr, then the operator Ay, induces a bounded linear operator

AT, MY NSy RTINS, A1)
@ - N
Ck+1"s(s_1’)\’6+—y_1)(5) 02‘9+k’)"6(R”, Al) N Sd*~
2) _[f() <A< XN <1 and the coeﬂicients Of @) are Of class fk,s(s—l,)\,)\”'y—l)’
the coefficients of v@ are of class FETLsG=LAN A=Y 4nd the coefficients of g(©
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are of class Fhs(s=1AX7) 4y Cr, then the operator Ay, induces a bounded linear
operator

]__hs(&)\)\,’&)(@’ AN A Sy ‘/—_-k,s(s—l,)\)\’,&-&-ﬂ’)(E’Al)
o) — 5%
‘7___]9+17S(8717)\7>\/,6+771)(E) CQs+k+1,A75(Rn’ /11) N Sgx.

3) If moreover § > n/2 and the coefficients of vV are of class C300:0) in Cr,

then the null-space of the operators consists of all pairs (0,c)”, where c is a constant.

Proof. This follows from Lemma 2.11 and Theorem 5.1. O

Part 3) of the corollary just amounts to saying that the pressure p is defined up
to a real constant.
Consider now the operators

Wof = dx(xgO A (@@T)f)+dx(xf AolD),
Uof w(xg O N (@@ 1) f) + #(xf Ao D)

which map 2-forms on Cr into 2- and 1-forms, respectively. It follows from (1.1)
and Corollary 3.13 that d(Uyf) = Wy f for f € C*1s(A8)(Cr ) A?), and

d(Vou) = d x (xgO A d*( @ I)du) + d * (xdu A v™D) = Wo(du) (5.4)

for all u € C*3(529)(Cp, AY). Equality (5.4) can be equivalently reformulated by
saying that the pair {Vj, Wy} is a homomorphism of the de Rham complex at steps
1 and 2.

Using these operators allows us to pass for the study of nonlinear Navier-Stokes
equations to a weakly perturbed Cauchy problem for the heat equation in the scale
CF=18(A041) (Cr, A?) rather than to a linearisation of the Navier-Stokes equations
in the scale C*3(5:A9)(Cp, A'). Our next concern will be to describe this trick.

Lemma 5.4. Let s and k > 2 be positive integers, 0 < A< XN <1, and 1 <5 <n
be different fromn —2, n — 1.

1) If the coefficients of g9 are of class C*SE=1ATY and the coefficients of vV
are of class C*S(=1X9) in the layer Cr then the linear operators

UO . Rk—l,s(s,A,é-&—l)(E’ A2) N Ck,s(s—l,)\,6+2)(a7/11)’

Wy : RF-1SGAT(Cn A2) 5 Ch—LsG—1A643) (T A2) (5.5)

are bounded.
2) If, moreover, 1 <5 <n and the coefficients of ') are of class F*s(s=1AN0+1)
the coefficients of vV are of class Fhs(s=LAX0) i the layer Cr then the operators

Uo . kal,s(s,)\,)\'ﬁ{»l)(E’AQ) _ J_—Ic,s(sf1,>\,,\/,5+2)(G’Al)7

W : Rk—l,s(s,)\,/\',5+1)(a7/12) s ‘Fk—l,s(s—l,)\,/\',5+3)(@’AZ) (5-6)

are compact.
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Proof. Let ¢ and v(!) satisfy the hypotheses listed in 1). Pick any ¢’ such that
1 < ¢ < 4. Then, according to Lemmata 2.9 and 3.9, we get

||U0f||Ckvs(sfl,>\,5+2)(.)
¢ (N(g(O)) |d*(® @ I)f“c’“s(b'*l’**‘;l)(') + N(U(l)) ”fHCka(s—l.A,aUrl)(-))

¢ (NGO I llgmscernsrn gy + N D) [ fllgracrnsring)

IN

IN

(5.7)

for all f € C*=18(A0+1)(Cr A?), where we omit the domain and target bundles
for short. The constant ¢ depends neither on ¢(® and v(*) nor on f and it may be
different in diverse applications, and

N(@®) = 19N crae-rrs-s2(y,
N(v(l)) = ||’U(1)Hckys(s—l,)\,6—5’+1)(.)’

Note that N(g(®) and N(v")) are dominated by the norms [|g( || cr.sc—1x550 ()
and o™ | crsta=1,3.5) .y, respectively, for the inequality 6 — ¢’ +2 <6 + 1 is equiv-
alent to 1 < &. As the space CF~ 18X+ (1) ig embedded continuously into
CFs(s=1A ) () e see that

||U0f||ck‘s(s—1,x,5+2)(_) <c ||f‘|ck—1,s(s,)\‘5'+l)(_)

with ¢ a constant independent of f. In particular, for ' = § and 1 < § < n, we
derive the boundedness of the operator Uy in (5.5). Using Lemma 3.10 we conclude
that the operator Wy in (5.5) is bounded, too, for dUy = Wy. This completes the
proof of part 1).

In part 2) we assume that 6 > 1. Then there is a § > 1 such that 6 > ¢§'.
According to Lemma 5.2, if S is bounded set in

]:k—l,s(s,k,)\/,é+1)(.) _ Ck,s(s,k,é—&-l)(.) N Ck—l,s(s,)\/,6+1)(.)
then there is a sequence {f,} in S which converges in the space
‘Fk,s(s—l,)\,/\',é”—b—l)(_) — Ck+1,s(s—1,)\,6'+1)(.) N Ck,s(s—l,/\',5/+1)(_)
to a limit f. By (5.7),
100 — Fllerernsagy
< C(Hg(o)HCkJrl,S(sfl»A,c?Jrl)(.)||fu - fHCkﬁ»l.s(sfl,)\,SUrl)(_)
+Ifo — f||ck+1,s(571‘x,é/+1)(,)HU(I)||Ck+1,s(sflwkﬁé)(.))

— 0
(5.8)

as v — oo. On the other hand, using (5.7) with A" instead of A, we obtain
||U0<f1_/ - f)”ck,s(s—l,)\’,d?#Z)(A)
S C(Hg(o)||Ck,s(s—1,/\’,6+1)(A)||f1/ - f‘|ck,s(s—1,x’,6’+1)(,)

+[fo = chms(s—l,Ahé/H)(.)HU(l)||ck.s<s—m'.6>(.))
— 0
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as v — 00.

We have thus proved that the sequence {Uyf,} converges to Upf in the norm
of the space FFs(s=LAN0+2)(1) " Hence it follows that the map Uy in (5.6) is
compact. Then Lemma 2.10 implies that the map Wy in (5.6) is compact, too,
because Wy = dUj. (Il

Lemma 5.5. Let s > 1 and k > 2 be integers, 1 < § < n be different from n — 2
and n — 1, and the coefficients of g(0 be of class C*36=1LAY) the coefficients of
v be of class CFS=1A0) in Cr. If go € RF1sEAHN(Cr A%) N Sy then any
two-form g on R™ with coefficients in RF~13(:A041(Cr) satisfying

g+ WHW()g = 4go (59)
belongs to RF=1S(5AD(Cr A2) N S,

Proof. Let g € CF=1s(A0+D (0 A2) be a solution to equation (5.9). If n = 2,
then dg = 0 because d? vanishes identically. If n > 3, then from (1.1) and (1.2) it
follows that H,d = dH,,, d¥, = ¥,d, dWyg = 0, and so dg = 0, as desired.

Lemma 5.6. Assume that s and k > 2 are positive integers, 0 < <n is different
from n — 2, n — 1, and the coefficients of ¢g(© are of class C*S(=LAIED - the
coefficients of vV are of class CF565=139) and the coefficients of v are of class
CrH1s(=1A=1) i the layer Cr. Let moreover F = (f,uo)T be an arbitrary pair of

C«k,s(sfl)\,é)(a7 Al) % 025+k’>"6(Rn,A1) de*.
1) If U = (u,p)T € k1860 (Cr  AY) N Sy x CR-L8=LA=D(Cr) satisfies
du € RF1SAHD)(Cr ) A2) and
AU =F (5.10)
then g = du is a solution to equation (5.9) with go = ¥, oduy + ¥, df .
2) Conversely, if g € RF=1(AF(Cr A?) is a solution to equation (5.9) with
go = Yy 0duo + W, df in RF=18(s:A040) (C ) A2), then the pair
v = d'@e Dy,
p d (@@ 1) (f = (Hu+ Vo)u)
belongs to CF13(5X0) (Cp, AY) N Sye x CR 8L (Cr), satisfies (5.10) and, in
addition, du € RFS(5AH) (Cr ) A2),

There is a gap in the smoothness of 4 and p in Lemma 5.6. It is caused by the
lack of smoothing properties of the Newton potential ¢ ® I acting in the parabolic
Holder spaces. Lemma 3.9 guarantees that @ ® I improves the smoothness in x by
one while one would like to have the gain 2. However, we were not able to prove
this.

Proof. 1) Let U = (u,p)” be a solution to (5.10). By (1.2), we get dH,u = H,du,
and so using (5.4) yields
{ Hydu+Wydu = df in Cr,
Yodu = dug on R",
the last equality being due to dvyyu = 7pdu. It remains to apply Lemmata

3.10, 4.3, 4.5 and Theorem 4.6 to conclude that the two-form g = du is of class
RF-18(5:A041) (Cr) and satisfies equation (5.9). (Obviously, g is closed in the layer.)
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2) Set go = ¥y, 0duo + ¥, df. Since d¥, o = ¥, od and d¥,, = ¥,.d, it follows by
Lemmata 3.10 and 3.6 that go € RF=15(A4D)(Cr A2) N Sy, if 0 < § < n. Hence,
any solution g to (5.9) is in RF=1:5(A0+1)(Cr A2) N Sy because of Lemma 5.5.

Now, Corollary 3.12 implies that u = d*(® ® I)g is an one-form with coefficients
in Rk_l’s(s’)"‘s)(@) satisfying du = g in the layer. Using Lemma 4.3 and formula
(5.4) we see that

{ d(Hyu+Vou—f) = 0 in Cr,
d(yu—u) = 0 on R"™
As 0 <6 <nand
Hpu + V()’LL _ f c Ok—l,s(s—l,)\,é)(ﬁ’ Al) ﬁSd,

Corollary 3.12 shows that the function p = d*(® ® I) (f — H,u — Vou) belongs to
the space CF~1s(s=LAI=1) (1) and it satisfies

Hyu+ Vou+dp = f
in Cr. Finally, since

d(you—wug) = 0,

d* (you—up) = 0,
we get You = ug in all of R™ because of Corollary 3.11. Hence, the pair U = (u, p)T
is a solution to (5.10). O

Corollary 5.7. Let s and k > 2 be positive integers, 0 <A< N <1, n/2<d<n
be different from n—2, n—1, and the coefficients of g9 be of class FF-s(s=LAN +1)
the coefficients of vV be of class Fhs(s=1AX0) in the layer Cr. Then the operator

I"'WuWO : Rk—l,s(s,)\,,\’,é-q-l)(@’ /12) de N Rk—l,s(s,)\,>\'75.._1)(E7 AQ) ﬂSd (5.11)

s continuously invertible.

Proof. First we observe by Lemmata 3.10, 5.4 and 5.5 that the operator I + ¥, Wy
is a continuous selfmapping of RF1S(sAN8)(CL A2) 0 S, Our next goal is to
show that this mapping is one-to-one.

Lemma 5.8. Suppose that s and k > 2 are positive integers, n/2 < § < n is
different from n — 2, n — 1, and the coefficients of g(©) are of class C*S(s=1LA0+D)
the coefficients of vV are of class C*35=1A8) in the layer Cr. Then any form
g € RF=18(A4 (€ A2) satisfying (I + W, Wo)g = 0 is identically zero.

Proof. Indeed, Lemma 5.5 yields readily dg = 0 in Cz. Then using Corollary 3.12
and equality (5.4) we deduce that the function u = d*(® ® I)g satisfies du = g and

{d(Hﬂu—l—Vou) = 0 in Cr,
dv = 0 in Cr
whence
diyou) = 7(g9) = (=¥Wog) = 0,
d*(you) = v(d*u) = 0

on R™. According to (1.1), the last two equalities imply that you is a harmonic
one-form on R™. As § > 0 it follows that vyu vanishes at the point at infinity and
hence vou =0 on R”.

Since d(H,u + Vou) = 0, the function

p=—-d(@P®I)(H,u+ Vyu)
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belongs to the space Ck>s(5*1’A’5’1)(E) and satisfies H,u + Vou + dp = 0 in Cr.
Therefore, the pair U = (u,p)? lies in the direct product

Ck72,s(s,)\,6) (E’ Al) NSy ¥ Ck,s(sfl,)\,éfl)(@)

and satisfies Ay, U = 0. Finally, by the uniqueness result of Theorem 5.1 we get
u =0, and so g = 0, too. (I

We are now in a position to complete the proof of Corollary 5.7. According to
Lemma 5.4, the operator (5.11) is Fredholm and its index equals zero. Then the
statement of the corollary follows from Lemma 5.8 and Fredholm theorems. O

Corollary 5.9. Assume that s and k > 2 are positive integers, 0 < X < X < 1,
n/2 < 8§ < n is different from n — 2, n — 1, and the coefficients of g\© are of
class FF36=LAN Y yhe coefficients of vV are of class FFSG=1AXN0) - and the
coefficients of v? are of class FFH1s6=LAN=Y yn the layer Cr. Then for any
pair

F:(f, UO)T c ]_-/k,s(ss,)\,)\/’6)(E7 /11) > C25+k+1’>"6(Rn,A1) ﬂSd*
there is a unique solution

U:(u,p)T c kal,s(s,)\,/\',é)(a’/ll) NSy x ]:Icfl,s(&l,k,/\',&l)(@)

to the equation Ayv,U = F and the corresponding linear operator U = A;OI(F) 18
bounded.

Proof. Tt follows from Corollary 5.7, Theorem 5.1 and Lemma 5.6, for
dF € Rk—l,s(s,)\,)\’,6+1)(5 /12) XR23+k,/\,5+1(Rn /12)
Q’u,oduo + Wudf c Pilcfl,s(s)\’)\’’[SJrl)(G7 /12)7

the latter inclusion being due to Lemma 4.5. (I

6. THE NAVIER-STOKES EQUATIONS AS AN OPEN MAP

We plan to prove that the Navier-Stokes equations can be treated as a nonlinear
injective Fredholm operator with open range in proper Banach spaces. Recall that
a nonlinear operator A : X — Y in Banach spaces X, Y is called Fredholm if it has
a Frechét derivative at each point x¢ € X and this derivative is a Fredholm linear
map from X to Y (see [Sma95]).

For this purpose we set

H,+D'! d D! 0
A= ( o 0) =4+ o)
Clearly, the operator is well defined in the scale of weighted Holder spaces intro-
duced above. For nonlinear Fredholm operators we may use a Sard theorem for
Banach spaces (see [Sma95]) and the Baire category theorem to obtain additional
information on the range of A.
Thus, given any data F' = (f,ug)”, we look for a solution U = (u,p)” of nonlin-

ear Navier-Stokes equations
A()-(4) o

in the scale of weighted Holder spaces on Cr.
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Theorem 6.1. Suppose s > 1 and k are nonnegative integers, n/2 < &, and the
coefficients of g are of class C3(999)  the coefficients of vV are of class C3(0:0:0)
and the coefficients of v®) are of class CV5(00=1) in the layer Cr. Then, for each
pair

FZ(f, UO)T c Ck,s(sfl,)\,é)(a’ Al) > 025+k,)\,6(Rn7A1) NSy

the nonlinear Navier-Stokes type equation

W) ()P =(L) ee

where a is an arbitrary nonnegative real number, has at most one solution in the
space
Ck’S(S’A76)(G,A1) de* > Ck+l,s(sfl7)\,671)(a).

Proof. One may follow the original paper [Ler34a] or the proofs of Theorem 3.2 for
n = 2 and Theorem 3.4 for n = 3 in [Tem79], showing the uniqueness result by
integration by parts. Cf. also Theorem 5.1.

Indeed, let (v/,p"”) and (u”,p”) be any two solutions to (6.1). Then for the
difference (u,p) = (u/ —u”,p’ —p’") we get

( Huu0+ dp ) :a( Dlu”aDlu’ > B ( Vgu ) (6.3)

It is easy to see that
O Hu('?t)H%Z(BR,Al) = 2(0¢u,u) 12(Bp, A1)
for all t € [0,T]. As

- Ck,s(s,k,é) (E’ Al) N Sd*7
p € CkHLs(=1A5-1)(C)

and § > n/2, the coefficients of the one-forms u, 0;u, dyu, H,u and dp are, by
Lemma 2.5, square integrable over all of R™ for each fixed ¢ € [0,7]. Hence it
follows that

(Hyu + dp,w)p2(gn At

. 1 2 2 * 2
= REI}QOO (5 Al Oz2(pg,a1) + plldul L2 (Bg a2y + Bl U O 22 (50
ou
Ay = | (G =) ds)
+ (P, d*u)12(By) /83Ru o, PV )ds

1 n
3 OrlluC Ol T2, any + 1) 10 )72 @n ar)
i=1

because d*u = 0 and R*~1-(20-1) — Rn=25 _y () if R — +00. We have used here
the identity

du(-, t)l[72n a2y + 14" u( ) T2y = D 1050l ) F2(@n a1 (6.4)
i=1
which can be checked, for example, by the Plancherel theorem.

Furthermore, the integrals (D'u/,u)p2rn a1y and (D', u)2@n a1y converge,
for both D'« and D" are one-forms with coefficients of class C5(0:9:9+1) in the
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layer Cr and u € C3(0:0:9(Cp, A') with § > n/2 (see Lemmata 2.5 and 2.9). There-
fore, (6.3) implies

1 n
3 B [lu(-, )1 72 @n a1y + NZ [05u(-, )22 a1y

i=1
= —a ((Dlu/,u)Lz(Rn’m) - (Dlu//,u)Lz(Rn7A1)) - (Vbu, U)LZ(RW.’AI).

A trivial verification shows that

(Dlu' U)Lz(]R" Ay — (Dlu" u)LZ(Rn,7A1)

= Z/ (0 )y — il (Opu) )uy) da

i,7=1

= Z / () — w) (Diu)uj + uf (9 (uf — uf))uy) da
i,j=17R"

= Z/ (ui (95w )uj + wf (Diug)uy) da
i,j=1 "

where u = Z u;dr? and similarly for the forms v’ and u”. As d*u” = 0, it follows

=1
that

X (/ (d* " (ujuy ) Zu (Oyug)u; derZ/ uuuds
Br dBr
= - Z / u) (Oyuj)uj de,

i,7=1

for R*~1739-1 4 0 if R — 400. Since we arrived at the same sum with opposite
sign, we conclude that this sum vanishes. On integrating by parts once again we
obtain

Z/ u; (O] ujdx—Z/ (du)(ujuy) — Z/ u;i(Oiug)uf dr,
i,j=1 i,j=1
and so

1
5 O [Ju(-t ||L2(]R" Ayt MZ [|O5u( ||L2(]R” A1)
=1

= aZ/ i (-, 1) (1) (-, ) (-, t) do — (Vou(-, 1), u(-, 1)) paqrn, ary

i,7=1
for all ¢t € [0, T7.
As both v/ and u have coefficients in C*3(529)(Cr), the pairwise products ulu;
are of class C3(0:0:29)(C), where 26 > 0 by assumption. In particular, the functions
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u; (-, t)uj(-,t) are square integrable over R™ for each fixed ¢ € [0,7] (see Lemma
2.5). By the Cauchy-Schwarz inequality,

Z/ u,(@luj)u; dx < Z ||8,-u]-||L2(R,L) uinHLz(Rn)
ij=17R" ij=1
n 12 , 2 1/2
< (X 10wilEen) (D it )
ij=1 1,5=1
whence
aZ/ i (1) () (-, )t (-, t) d
ij=1"R"
n 2 n
a
< b 3 10 (e + g 2 Tl 06Dl ey
i,j=1 i,j=1

with an arbitrary constant b > 0 independent of v’ and u”, for 2byby < b? + b3.
Then, using estimate (5.3) for the term (Vo(u,u)r2(m», 1) obtained in the proof of
Theorem 5.1, and identity (6.4) we conclude that

1 a? &
3 B lul-, |72 a1y < % Z [Joi (-, )6 (5 |72 ey + €l D720 1)
ij=1
for all t € [0, T, where the constant ¢ depends neither on ¢ nor on «' and u”. Since
u' € C3(009)(Cp, AY), there is another constant C' depending on u/ but not on z
and ¢, such that
o O < C 1+ [of)

for all (z,t) € Cr. Hence it follows that

1 a?
2 Ol Ol ) < (5,€7 + ) Tl o

for all t € [0, 7).

The rest of the proof runs in the same way as that of Theorem 5.1. This leads
immediately to w = 0 and p = 0, i.e., the solutions (v/,p’) and (u”,p’") coincide, as
desired. (I

The nonlinear Navier-Stokes equations reduce in much the same way as the
corresponding linearised equations. To this end we introduce nonlinear pseudodif-
ferential operators

D?g dx(xg Nd*(P®1)g),
Qg = *(xgnd*(@®1)g)
which map two-forms on Cr into two- and one-forms, respectively. By the very
construction, we have d(Qg) = D?yg.
It follows from (1.1) and Corollary 3.13 that
dDY = d * (xdu Au) = d * (xdu A d* (P @ I)du) = D?(du) (6.5)

for all u € CF3(A9) (Cp, AY). Equality (6.5) means that the pair {D',D?} is a
nonlinear homomorphism of the de Rham complex at steps 1 and 2. Using this
homomorphism allows one to reduce the Navier-Stokes equations to a nonlinear
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Cauchy problem for the heat equation in the scale C*1:8(:A0) (Cr A2). We pro-
ceed with an explicit description.

Lemma 6.2. Let s > 1 and k > 2 be integers, 0 < A< XN <1, andlet1 <d<n
be different from n — 2 and n — 1. Then the nonlinear operators

Q . Rk’s(s_l’)"é"_l)(E, A2> N Ck,s(s—l,)\,6+2) (Ey /11),

D2 : RIS (Cp, A2) 5 Ch—1s(s—1A643) (T 42) (6.6)
are continuous. If, in addition, 1 < § < n, then the nonlinear operators
. pk—1,s5(s,\,\,8+1) (7. A2 k,s(s—1,A\\042) (7. Al
9:R (Cr,A*) = F (Cr, AY), 6.7)

D2 - kal,s(s)\’)\”zSJrl)(@’ /12) — ‘}—k—l,s(s717)\,>\')5+3)(@7 /12)
are compact and continuous.
Proof. Indeed, given any elements ¢(*) and g in CFS(=1A+)(Cr) A2), we get
Qg =x(xg Nd" (@ ® I)g)
= #(x(g =g )N (@@ 1)g?V) + (g A" (@ @ I)(g - g'))
+ #(x(g— g AN (@@ T)(g— 9) + 5(xg A d* (@ T)g?).
(6.8)

Fix ¢(© and any real ¢’ satisfying 1 < & < 4. From (6.8) and Lemma 2.9 it
follows that

H Qg — Qg(o) HC}C,S(S—I,A,(H»Z)(,)

< c (||g - 9(0)||ck,s<571m6’+1>(.)||d* (?® I)Q(O)||ck,s<sfl,x,576’+1)(.)

+ Hg(o) Hck.s(s—l,x,afa/w)(.) [d*( @ I)(g — 9(0))||ck,s<s—1-,x,6’>(.)

119 = 9 gt (14 (@ & D(g = 9l gramrrasrn )
< ¢ (llg = 9@ Norsernsr 9@l gratorns-srian,

+ Hg(o) |\Ck,s(571,x,575/+2>(.)||g —g® Hck-,s<s—1,x,a'+1>(.)

119 = 9V N ra-r 050 () llg = 9O lomatemrns-asa ()
< c (||g - 9(0)||ck,s<s—1,x,6’+1>(.)||g(0)||ck,s<s—1,x.a+1>(.)

+ Hg(o)|‘Ck,s(571,x,5+1)(4)|‘g - g(o)||Ck.s(571,x,5'+1)(_)

+llg — g lense-1a040 () llg = 9@ ||ckws<sﬂv*-5+1>(-))
(6.9)

with ¢ a constant independent of ¢(?) and g, the last inequality being due to the fact
that § —§’+2 < d+1 if and only if 1 < ¢’. By abuse of notation we omit the domain
and target bundles in designations. Choosing ¢’ = § we deduce that if g, — ¢(©)
in the space C*s(s=LA+D () then Qg, — Qg® in the space CFS(=1AI+2) (L),
Moreover Lemma 2.10 implies that the sequence dQg, converges to dQg(?) in the
space CF=1s(s=1L,A043) () Thus the nonlinear mappings (6.6) are continuous, as
desired.
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If moreover § > 1 then there is a real ¢’ such that 1 < ¢’ < 4. According to
Lemma 5.2, if S is a bounded set in

.7_-1«—1,5(5,)\,,\’,6+1)(.) _ Ck,s(s,A,éﬂ)(_) n Ck—l,s(s,)\',6+1)(_)

then there is a sequence {g,} C S converging in the space
fk,s(sfl,/\,)\’,é’qtl)(.) _ Ck+1,s(571,/\,6’+1)(.) n Ck,s(sfl,)\’,é’+1)(.)
to a limit g(°). Estimate (6.9) yields
||ng - Qg(o)Hck+1,s(s—1,,\,5+2)(,) — 0,
HQQV — Qg(o)||Ck,s(s—1,>\’,6+2)(_) — 0,

as v — oo. On summing up we see that the sequence Qg, converges to Qg(®)
in the norm of Frs(s=LAN.042)() " Hence, the mapping Q of (6.7) is compact.
Finally, Lemma 2.10 implies that the mapping D? of (6.7) is compact, too, because
it factors continuously through Q. O

Lemma 6.3. Let s > 1 and k > 2 be integers, 0 < A <L and let 0 < 6 < n
be different from n —2 and n —1. If go € RF-18AHD(Cn A%) N Sy, then any
solution g € RF=13(X0+1)(Cr A?) to the equation

9+¥,D% = go (6.10)
automatically satisfies dg (-,t) =0 in R™ for each t € [0,T].

Proof. Indeed, if n = 2, then dg = 0 because d?> = 0. If n > 3, it follows from (1.1)
and (1.2) that

d(g+wv,D?%g) dg + ¥,dD?g
dg
dgo,

and so dg = 0. O

Our next result interprets Lemma 5.6 within the context of (nonlinear) Navier-
Stokes equations.

Lemma 6.4. Suppose that s > 1 and k > 2 are integers, 0 < A< 1, and0 < J <n
is different fromn —2 and n—1. Let moreover F = (f,ug)T be an arbitrary pair of

Ck’s(s_l’)"‘s)(@,/ll) % 025+k’)\’5(R”,A1) ﬂSd*.
1) If U = (u,p)T € CF 1860 (Cp, AY) N Sy x CR-LS=LA=D(Cr) satisfies
du € Rlc—l,s(s,/\,é+1)(E7 Az) and
AU = F (6.11)
then g = du is a solution to equation (6.10) with go = ¥, odug + ¥, df .
2) Conversely, if g € RF=1SEAFTN (O A2) s a solution to equation (6.10) with
go = Yy 0dug + W, df € RF-1Ls(sX040)(Cr A?) then the pair
u (2@ 1)g,
p = d*(@®1I)(f - Hyu— D)
belongs to CF=1SAN(Cr AV N Sy x CF=18(s=LA=1)(Cr) | satisfies (6.11) and
du € Rk—l,s(s,)\,(5+1)(a7 AQ)
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Proof. 1) Let U = (u,p)” be a solution to (6.11). From (1.2) it follows that
dH,u = H,du, and so using (6.5) we obtain

{ H,du(-,t) + D?du(-,t) = df(-,t) on R",

du(-,0) = dug on R"
for all ¢t € [0, T}, the last equality being a consequence of dyou = yo du. It remains
to apply Lemmata 3.10, 4.3, 4.5 and Theorem 4.6 to see that g = du is of class
RF-18(:A041) (Cr) and satisfies equation (6.10). (Obviously, g is closed in the
layer.)

2) Set go = ¥y,0duo + ¥, df. Since d¥, o = ¥, od and d¥,, = ¥,d, it follows by
Lemmata 3.10 and 3.6 that gy € RF=15(5A4)(Cr A2) NSy, if 0 < § < n. Hence,
any solution g to (6.10) is in RF~1s&AHD (Crn A%) N S, because of Lemma 6.3.

Now, Corollary 3.12 implies that u = d*(® ® I)g is an one-form with coefficients
in RF=1s(5:29)(Cr) satisfying du = g € RF-13(5A041)(Cr A?) in the layer. Using
Lemma 4.3 and formula (6.5) we see that

{ d(Hu+D'w—f) = 0 in Cr,
d(yu—u) = 0 on R™

As 0 <6 <nand
Hyu+D'u— feCF1stmbA0(@Cr AN ns,,

an application of Corollary 3.12 shows that p = d*(®®1) (f — Hyu — D'u) belongs
to the space CF~1s(s=LAI=1)(Cr) and it satisfies

Hﬂu—l—Dlu—l—dp:f

in Cr. Finally, since

d(you—wug) = 0,

d* (you —up) = 0,
we get you = ug in all of R™ because of Corollary 3.11. Hence, the pair U = (u, p)’
satisfies (6.11). O

We are already in a position to state an open mapping theorem for the reduced
equation (6.10).

Theorem 6.5. Assume that s and k > 2 are positive integers, 0 < A < X < 1, and
n/2 < & < n is different from n—2 and n—1. Then ¥,D? is a compact continuous
selfmapping of the space RF—1SAN 84D (@0 A2) N S, Moreover, the mapping

I—FW“DQ . Rk—l,s(s,A,A’,&l)(E7 /12) ﬂSd_>Rk—l,s(s,)\,,\'75.9_1)(E7 /12) ﬂSd (6.12)
1s Fredholm, injective, and open.

Proof. First we note that Lemmata 3.10, 6.2 and 6.3 imply that the operator WMD2
maps RE-1Ls(s:AN 04D (0 A2) 0 S, continuously into the space itself. Since we
have D? = dQ, the continuity and compactness of the mapping ¥, D? follow from
Lemma 6.2 and Theorem 4.6. We now turn to the one-to-one property of the
mapping (6.12).

Lemma 6.6. Let s > 1 and k > 2 be integers, 0 < A < 1, and n/2 < § < n be
different from n — 2 and n — 1. If go € RF1SEAN(Cr A%) N Sy then equation
(6.10) has no more than one solution in RF=13(5:A0+1)(Cp A?).
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Proof. Suppose that ¢/, g” € RF=18(A0+0) (. A?) are two solutions to (6.10). By
Lemma 6.3, they satisfy dg’(-,t) = 0 and dg’’(-,t) = 0 in R" for each ¢ € [0,T.

Since gg € RF15(29)(Cr, A2) NSy we see by Corollaries 3.11 and 3.12 that
there are unique forms

uy = d*® (7090) c 025+k’>"5(Rn, Al)7
f _ d*(ds@ I)Hugo c Ckfl,s(sfl,)\,é)(@7/11)’
such that
dug = 7090,
df = HugO

and go = ¥, 0dug + ¥,df in C7. Lemma 5.6 implies that the pairs U’ = (u/,p)7”
and U" = (u”,p")T with

o (PxI)d, u = A (P®I)§’,
p = d(@el)(f-Hu -DW), p’ = d(@®I)(f— L —DW)

belong to CkF=28(A0)(Cp AY) x CFsG=1A=1)(Cr) and satisfy AU’ = F and
AU" = F in the layer, where F' = (f,ug)”. By the uniqueness of Theorem 6.1, we
get U' =U".

In particular, v’ = u”, and so d*(® ® I)g’ = d*(® ® I)g". Since both ¢ and ¢”
belong to RF=18(5A0+1D)(Cr A%) N Sy, it follows that

Ad(@el)g —d(Pe)g") = d(¢d—-g") = 0,
d(g'—=9g") = 0
in Cr. Now Corollary 3.12 yields ¢’ = ¢”, as desired. O

Lemma 6.6 implies immediately that the mapping in (6.12) is actually one-to-
one.

An easy calculation shows that the Frechét derivative of the map I + ¥, D? at
an arbitrary point

g(o) c ]_-k—l,s(s,)\,)\',&+1)(5’ AQ) NS, ]_-lc,s(s—LA,)\’,6+1)(@7 /12) NS,

is given by
(I +%,D%) 0 9= (I +¥,Wo)g.

Here, the mapping Wy is constructed by means of ¢(®) and v = d*(® @ I)g(®,
the latter one-form belonging to

]_-k—l,s(s.),)\/ﬁ)(ﬁ, A1> - .}-k,s(s—l,k,)\/,6)(E7A1).

Now Corollary 5.7 shows that the Frechét derivative (I + J/MDQ);(O) is a continu-

ously invertible selfmapping of the space RE-1s(s:AN0+1) (€ A2) 0 Sy, for each
g'% as above.

Finally, as the Frechét derivative is a continuously invertible linear operator at
each point ¢(© of RE—18(sAN.0+1) (€1 A2)), the openness of (6.12) follows from
the implicit mapping theorem in Banach spaces, see for instance Theorem 5.2.3 of
[Ham82, p. 101]. O

Theorem 6.5 suggests two directions for the development of the topic. First, one
can use the standard fixed point techniques including mapping degree theory to
handle operator equation (6.10). Second, one can take into account the properties
of the so-called clopen set.
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Corollary 6.7. Assumen > 2. Let s > 1 and k > 2 be integers, 0 < A < N < 1,
and let n/2 < § < n be different from n — 2 and n — 1. If the range of mapping
(6.12) is closed then it coincides with the whole destination space.

Proof. Since the destination space is convex, it is connected. As is known, the only
clopen (closed and open) sets in a connected topological vector space are the empty
set and the space itself. Hence, the range of the mapping I + ¥, D? is closed if and
only if it coincides with the whole destination space. (I

When combined with Lemma 6.4, Theorem 6.5 implies that the Navier-Stokes
equations induce an open noncoercive mapping in the function spaces under con-
sideration.

Corollary 6.8. Suppose n > 2. Let s > 1 and k > 2 be integers, 0 < A < N < 1,
and let n/2 < § < n be different from n — 2 and n — 1. Then, for any pair
U0 — (u(0)7p(0))T Of]:k—1,5(‘9.,)\,/\’,(3)(E7 Al) NSy X ]:k—1,s(;~;—1,)\,)\’,6—1)(G)7 such
that

du©® e kal,s(s,A,XﬁJrl)(a, /12),

AU(O) c ‘Fk—l,s(s,k,/\',é)(a’/ll) > 028+k+1’)"6(R”,A1) NSy,
there is ¢ > 0 with the property that for all data F = (f,ug)T of the product
FrsAN0)(Cn AL x Q2 HRHLAS(RY AYY N Sye satisfying the estimate

Id(f = (Hu+DMu) | v ooy + ld(wo —y0u@) | costrrary < e (6.13)
the nonlinear equation AU = F has a unique solution U = (u,p)T in
]_-k—l,s(s,A,X,é)(@7 Al) NSy x ]_-k—l,s(s—l,)\,)\l,é—l)(a)
with du € RE=LSEAN O+ (0 A2).
The proof of the corollary actually shows that ||u — u(o)||fk_1,s(s,x,y75)(,) < ce,
where ¢ is a constant depending only on certain norms of the potentials d*(® @ I)

and ¥, ¥, o, and the inverse operator (I + W#WO)_I, but not on the data f and

ug. Here, the operator Wy is constructed by means of the forms ¢(®©) = du(®) and
1) — 4O
o) =49,

Proof. By Lemma 4.5, the volume parabolic potential ¥, induces bounded linear
operators
Ck+1,s(s,)\,5+1) (E) - Ck+1,s(s,)\,5+1) (E) NDy
o
Ck,s(s,x,a_o_n(a) N Ck,s(s,x,(s-o-l)(a) QDH ,
and hence a bounded linear operator
fk,s(‘s,,\,)\’,é-y-l)(@) _ ‘Fk,s(s,)\,)\’,(iﬁ-l)(@) N ’DH#- (614)

Similarly, Lemma 4.5 implies that the Poisson parabolic potential ¥, o induces
a bounded linear operator

2s+k+1,X,0+1 n k+1,8(s,\,0+1) (7
C (R") — ChFLs( )(Cr) N Dy,.
On the other hand, by Theorem 2.3, the space C?$T*+1LA+1(R™) is continuously

embedded into the space Czs+k”\/>‘s+1(R”). Hence it follows that the potential ¥, o
induces a bounded linear operator

CQs+k+1,/\,5+1(Rn) N Ck’s(s’)‘/’6+1)(@) N Dy,
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and so a bounded linear operator
CEHEFLAOTL (R —y FRSEAN T (@) N Dy, (6.15)

We now apply Lemma 6.4 to see that the form ¢(© = du(%) is a solution to the
equation
(I + WMDz)g(O) _ g(()O)

with the right-hand side g{” := @, odyou(® + ¥,d(H, + D")u(® belonging to the
space RE~18(s A0+ (0 A2). Set

go = ¥, 0dug + ¥, df,

which belongs to FE—1s(s:AN 041 (@1 A2) by Lemma 4.5. An immediate calcula-
tions shows that

Hgo - g(gO)||fk—1,s(s,A.A’,6+1) Cr, A2
( )
< uoll lld(uo — 'YOU(O))||025+kv*=5+1(R",/12)
+ HW;LH ||df - d(H/L + Dl)u(o)||]:k—1,s(s,k.,k’,5+1)(G/p)

where [|@, || and ||&,, o are the norms of bounded linear operators (6.14) and (6.15),
respectively.

If ¢ > 0 in the estimate (6.13) is small enough, then Theorem 6.5 shows that
there is a solution g € RF~1SAN0HD (G0 A2)NS,; to the equation g+¥,D2g = gq.
Finally, the pair

u = d(P®I)g,

p = d(®®I)(f— Hyu— D)
belongs to FF=1s(sAN0) (Cr ALY N Sye x FE-1s(s=LAN0=1)(C1) and satisfies the
nonlinear equation AU = F', which is due to Lemma 6.4. Moreover, du = g belongs
to RE-1s(s:AN041) (@1 A2) as desired. O

In the strict sense of the word Corollary 6.8 is not an open mapping theorem,
for neither the domain nor the target space has been fixed for the Navier-Stokes
equations. In order to strengthen the assertion we turn to the framework of metric
spaces. For this purpose, denote by D4 the set of all pairs U = (u,p)T in the
product

}—kfl,s(s,/\,k’,zs)(a’ Al) NSy x }-kfl,s(sfl,/\,k’,&fl)(@)’
such that
du € Rk—l,s(s,)\,x,é-&-l)(aj /12)7
AU € FrEsEAND(Cp, AY) x C2 TR AT) N1 Sy

Since A is nonlinear, the set D 4 fails to bear a vector space structure. We topologise
it under the metric

d(U,V) = ||U - V| + ||du — dv| + || AU — AV,

where
HU - VH = HU - VH]:k—l,s(s,)\,)\/,é)(G’Al)kafl,s(s—l,x,)\/,é—l)(a);
||dU7 dUH = HdU* dv‘|fk—l.s(s,)\,>\/,6+l)(G,A2)?
||AU - AVH - HAU_AV||]-_7€15(5*>‘1*',5)(G,A1)XC25+IC+1*’\’5(R",A1)

for U = (u,p)T and V = (v,q)T in D4.
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Since the weighted Holder spaces are complete, we conclude immediately that the
metric space D 4 is complete, too. Indeed, choose a Cauchy sequence U, = (u,, )T
in D 4. By the above, the sequences {U, }, {du, } and {.AU, } converge in the Banach
spaces

FELSEAN D) (@, A) (1S x FILSGIAN S0 Gg), FRLSCAN S C, 22),
.}-k,s(s,A,/\’,(S)(E7A1) % 02‘g+k+1’)"6(R”,A1) ﬂSd*,
respectively. Let U = (u,p)? stand for the limit of {U,}. A familiar argument
using embedding theorems and the continuity of the operators d* and A in their
domains shows that the limits of the sequences {du, } and {AU,} just amount to
du and AU, respectively. Thus,

du € ‘7_—]@7175(3’)\))\,75‘?1)(@, A2)’
AU € FRsEAXND(Cp, AY) x CRFRFLAS R, AT) N Sy

Moreover, if h € H<,, is a harmonic polynomial of suitable degree in R", then

/n du(x)h(z)dx = Vlim du, (x)h(z)dx =0

oo Rn

because du, € RF-1SEAN0HD(Crn A2) for all v = 1,2,.... Hence it follows that
du € RF=18AN 040 (@1 A2) and U € D4, which was to be proved.

Corollary 6.9. Suppose n > 2, s and k > 2 are positive integers, 0 <A< N <1,
and n/2 < § <n is different from n — 2 and n — 1. Then the mapping

A Da— ]_-k,s(s,/\,)\’,&) (E’ Al) % C2S+k+1’)\’6(Rn,A1) N Sy (616)
18 continuous, injective and its range is open.

Proof. Indeed, the continuity of mapping (6.16) follows from the very construction
of the space D4. By Theorem 6.1, it is injective. Fix an element U of D 4.
Denote by ||d!|| the norm of the exterior derivative which maps

}-k,s(s,)\,)\’,é)(aj/ll) x C2HRHLAS(RR ALY A S,
continuously into
fk—l,s(s,A,A',6+1)(E7 AQ) « 023+k,/\,5+1(Rn’A2) ns,.
Then, for any pair F' = (f,ug)T of
‘/—_'k,s(s,)\,kl,é)(@’ Al) % 02s+k+1,/\,6(Rn’A1) NSy

satisfying

€
||AU(0) - FH]:k,s(s,)\,)\',S)(G,Al)XC2s+k+1,/\,¢5(Rn.’A1) < m,

we get estimate (6.13) with the constant £ as in Corollary 6.8. Thus, the statement
follows immediately from Corollary 6.8. |

Remark 6.10. For n > 3 and n/2 < § < n — 1 we need not work with the sophis-
ticated scale RE—1s(s:AN041) (@1 A2) 1 S, of function spaces. We may simply use
the scale Fr-1s(sAN040) (@1 A2) N S, instead, which makes the exposition more
transparent.
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We finish the section by mentioning a familiar example by P. Fatou (1922). He
constructed a holomorphic mapping f(z) of C? whose Jacobi matrix f/(z) has a
constant determinant different from zero. The mapping f is a homeomorphism
onto the image, however, the image of f leaves out a closed subset of C? with
nonempty interior. This shows that nonlinear Fredholm mappings may behave
rather intricately.
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Part 3. Appendix
7. PROPERTIES OF WEIGHTED HOLDER SPACES

Recall that the scale of weighted Holder spaces on R™ we deal with is introduced
in Section 2. We now describe briefly the standard properties of these spaces. They
are similar to more common weighted Sobolev space that we consider in Section 8.

Lemma 7.1. If s is a positive integer then C*%9(R™) is embedded continuously
into C*~ 22O (R™) for any 0 < A < 1.
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Proof. If u € C%%9(R™) then by the mean value theorem of Lagrange for each
x,y € R™ there is ¥ € (0, 1) such that

S ouwi - -
lu(z) — u(y)| _ =1 < (ZW@‘U(M)F) / 7

lz —yl |z — y

where zy = = + J(y — ). Hence,

(w(a:, y))6+/\ \u(x) — u(y)|

|z —y[*
(A2 () (S i) Dt F)

Since 0 < A < 1, it follows from (2.3) that

n
<U>A,6,R" < CZ ||aiu||co,0,é+1(Rn)
1=1

for all u € C19%(R™), where ¢ is a constant independent of .

As is well known, the space C*(B;) is embedded continuously into C*~1*(By),
if s =1,2,...and 0 < X\ < 1. Thus, C1%9(R") is embedded continuously into
COA9(R™) and C*0°(R") is embedded continuously into C*~1A9(R™), this latter
follows by induction. ]

Lemma 7.2. If s is a positive integer, then the norm of C**°(R™) is equivalent
to the norm

Z <8QU>A,E + HU| C'=:0.6 (R™) + Z <8QU>X,J+S,R"-

la|=s |a|=s

Proof. By definition,
> (@) g+ lullemos@ny + D> (0w srsrn < |ul

la|=s la|=s

cs,A,S(Rn)

for all u € C**(R™). On the other hand, according to Lemma 7.1 there is a
positive constant ¢ such that

Yo @ unmt Y (" ursalre < clullomosen
la<s—1 laj<s—1
for all uw € C**°(R"). This establishes the lemma. O
Example 7.3. Clearly, the function (w(z))~° belongs to C*%9(R") for all s € Z>.
The function
=t
(w())*+

belongs to C**4(R™) if 0 < A < 1. Indeed, it obviously belongs to C£<,(R™) and

(w(@))’|z* _ (w())"**

(w(@))+A = (w(x))*
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does not exceed one. Moreover, if |z — y| < |z]/2, then (2.1)-(2.3) and the mean
value theorem of Lagrange yield

s |z (w(@) =N — [y (w(y) ~ Y|

(w(z,)) L
(w($7y))5+>\ ||x\/\ _ |y‘>\| N |y\>‘(w(3:,y))5+>‘\((w($))7(5+/\) _ (w(y))*(5+’\)|
(w() ™ o -y g
o gren g WPl =1 () () O — (w(y) )
- w(z,y) |z —yl
< 90FA + M |5_|_)\| (w(w,y))5+)‘+1

w(z,y) (w(wy))0+A+1

which is dominated by a constant independent of x and y.

ceno(rn) 18 equivalent to the norm

Lemma 7.4. The norm ||u|

o |(w(2)) P9 u(a) — (w(y)) M 0u(y)|
Z(@ u) \ zt|ul Cs,U,J(Rn)“FZ sup P .
= N Y
Proof. Cf. [MRO4] for weighted Holder spaces on an infinite cone. One should
consider the cases § + A <1 and § + A > 1 separately. We restrict ourselves to the
second case. On the one hand side, we get

|(w(@))*Pule) — (w(y)* P uly)|

|z —y[*
u(z) —u w(@))t — (w(y)) >
w(xy))oTA e —
< (g + T 0 )
<

c HU”CO.A,&(Rn)
for all u € C%*°(R™), where ¢ > 0 is a constant independent of u (cf. Example

7.3).
. V13
Conversely, if |z —y| < |x|/2 then, by (2.3), we get w(z,y) < Tw(:y) < 2w(x)

and so

e lul@) —u(w)

e
< o [0 Pue) = ) )] | o ) = G
= |z — y|* |z —y|*

|(w(2))* P u(z) — (w(y)Puly)] | (6 + M) (w(we)* Az —y|
<27( 2=y ' EETE )
[(w()*Pu(z) — (w(y)*uly)]

se (HUHCO’O’&(RH) * \w—i&?ﬂ/z |z —y|* )

for all u € C%*9(R™), the constant ¢ does not depend on u and may by different
in diverse applications. O

We proceed to prove Theorem 2.3.
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Proof. For the Holder spaces over bounded domains (i.e., no weight functions are
required) the assertion is well known.

The assertion on the continuous embedding is almost obvious. Indeed, suppose
0<XN<A<land ¢ <6 Then (w(x)) |u(x)| < (w(z))’|u(z)| and

<U>>\’,5’,]R"
s [u(z) —u(y)|
= su w(x, — 0,
\m—y\slw)w\/z( ( y)) Iw—yl*
zFy
_ ‘HAW@ﬁ—u@N(kE—M)**' 5=
= sup wlr,y w\r,y
@ S () @)
zFy

< 2)\_>‘/ <u>>\75,Rn

because |z — y| < |z| + |y| < 2w(z,y). As C¥*(B;) is embedded continuously into
CON(By) for A > X > 0, we see that the space C%*9(R™) is embedded continuously
into CO*" %" (R™) if moreover § > §’. Arguing by induction we see that C* 9 (R") is
embedded continuously into C**%' (R™) for all s € Zs(. Furthermore, from Lemma
7.1 it follows that C**9(R™) is continuously embedded into C*~119(R™), and so
C**3(R™) is embedded continuously into C¥' % (R™) provided that s+ X > s+
and § > ¢, as desired.

To prove the compactness of this embedding we note that C%*(B;) is is em-
bedded compactly into C%* (By) for A > X > 0. We now use the one point
identification of R™ given by the stereographic projection ¢ into the unit sphere S™
in R"*!. Namely, set

lz|2 -1 22
(=) = (G@P wop)
(w(z))?" (w(=))?
for x € R™, cf. (2.4). This is a homeomorphism of R™ onto the complement of the
north pole (1,0) in S*, where we write z = (29, 2”) with 2" = (z1,...,2") for the
coordinates of R™. It is easy to check that the inverse for this map is given by the

formula

Z//

1 _
L (Z)_].*Z(V

and so we obtain a compactification R™ of R™ by adding the infinitely distant point
oo = 1~1(1,0) corresponding to the north pole of S™. By the very construction, the
map ¢ extends to a homeomorphism of R™ onto R™. Moreover, ¢ is a diffeomorphism
of R™ onto S, for
47
Dy = ——, if 1<i<n;
' (%@V i
ij xtx
iy = Y if 1<i,5<n.

(w(x))?  (w(x))*

The function d(z,y) = |c(x) — ¢(y)| is easily verified to be a metric on the

compactification R™. We now prove a compactness criterion a la Ascoli-Arzeld
theorem which is a particular case of Lemma 2.8.

Lemma 7.5. Assume that S is a family in C%%9(R™) possessing the following
properties:
1) S is bounded in C%0°(R™);
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2) for any e > 0 there is 6(¢) > 0 such that for all x,y € R™ with d(x,y) < d(¢)
we get |(w(x))? u(z) — (w(y))¥ u(y)| < e whenever u € S;

3) for any & > 0 there is 6(c) > 0 such that for all x,y € By with |z — y| < 6(¢)
we have |u(x) — u(y)| < € whenever u € S.

Then the family S is precompact in any weighted space 0% (R™) of weight
exponent &' < 9.

Proof. Fix an arbitrary ¢’ < §. If S is a bounded set in C%%%(R") then, for u € S,
the function

u(o)(z) _ { (wtslu)(L_l(z))7 if zeS™\{(1,0)},
0, if z=(1,0),

is continuous on S", for

[ ()] < Hall gy, 5mm) (Wl (2)))7

and ¢:7(z) — oo as z — (1,0). In particular, the set {u(®},cs satisfies the
hypotheses of the Ascoli-Arzeld theorem and thus it is precompact in the space
C(S™). Hence it follows that the family S is precompact in the space €09 (R™),
as desired. 0

If S is a bounded set in C%*°(R") then it is bounded in the spaces C%%(R™)
and C%*(B;). Then it is precompact in coN (By) with any 0 < )\’ < \. Moreover,
we have

(w0 luta) = u(s)| < ooy (L5

A
<2 A (R
) =2 lellenssmny

for all z,y € R™.
If [z < |y[, then

|(w())" u(z) = (w(y))” uly)l
< (w(@)” u(z) = u()| + [(w(@)”  (wy)”| [u)

w(z,y))’|lu(z) —u w(z))? — (w(y))?
(w( (i)()x‘y())‘g—‘s )| +(\/§)5\( ( zl)v(m’y())(gy)) |(w(y))‘5\u(y)\
because 0 < & < § and w(z) < w(z,y) < V2w(y). Combining this with the
aforegoing inequality yields

[(w (@) u(z) = (w(y)) u(y)]

(L=l Blleosormn (@) = (w()”| lulleonsn,

w(z,y)/ (w(z,y))°* = (w(z,y))* (w(w,y))°=?
(7.1)

IN

for all z,y € R™ satisfying |z| < |y|. Clearly, the quotient
|(w(@))” = (w(y)”|
(w(z, y))”

does not exceed 1. Note that by symmetry estimate (7.1) holds actually for all
z,y € R".
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Fix ¢ > 0. As S is bounded in CO*(R™) and ¢ > ¢, it follows that there is
R > 0 such that

|z —yl\ lullgonsn) €

(w@c,y)) (wa, ) = 2

s |(w(x))6/ - (w<y))5" l[ull co.0.5 (mn) €
v2) (w(z,y))” (w(z,y))2=9 <3

for all z,y € R™ satisfying w(z,y) > R, and for all u € S.

Since the map ¢ and the function w(x) are continuous on R™, they are uniformly
continuous on the closed ball Bg. On By the metric d(x,y) defines the same
topology as the standard metric |z —y|. Therefore, there is a small number () > 0
with the property that

|z —y[\* llullcors @ €

(w(ac,y)) (w(z,y))—9 < 2’

5 |(w($))6/ - (w(y))a" HUHCOva‘S(R") €
v (w(z,y))* W@,y 2

for all z,y € B satisfying d(z,y) < d(g), and for all u € S.

Now, estimate (7.1) shows that the family S satisfies the hypotheses of Lemma
7.5. Hence, S is precompact in €09’ (R™), and so S contains a sequence {uy } which
converges to a function in 004’ (R™). There is no loss of generality in assuming
that the limit function is zero. As

LaxY |u(z) — u(y)|

(w(z,y) =
u(z) —u NI ((w(z,y)? |u(z) — u 1-X\/A
- (e gt

we get
() < € () fen el o o g

with ¢ a constant independent of k. Hence, the sequence {uj} converges to zero
in C%9"(R™), too. Thus, the family S is precompact in C%* %' (R™). Arguing by
induction we deduce that C**(R") is embedded compactly into C**"9"(R™), if
s€Zspand A >N, 5> 6.

Finally, suppose that s+ A > s+ X and § > ¢’. Then s > s’ and the embedding
of C**3(R™) into C*"A"¥'(R™) factors through

Cs,)\,(S(Rn) SN Cs’,l,&'(Rn) AN Cs’.)\’,(i’ (Rn)

The first of these embeddings is compact and the second one is continuous. This
establishes Theorem 2.3. (]

As a byproduct of the proof of Theorem 2.3 we see that the norm ||u|
is equivalent to

CsX\8(R7)

Z ||8au||co,1,a+\a\(Rn) + Z HaauHco,A.aﬂ(Rn).
lor| <s—1 loe|=s
Using the scale of weighted Holder spaces on R we introduce in Section 2 the
scale C*3(5:A9)(Cr) of anisotropic Holder spaces in the layer Cr = R™ x [0,T].
These Banach spaces are often referred to as parabolic spaces. A proof similar to
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that of Lemma 7.4 shows that the norm [|ul|cse.a. @) is actually equivalent the
norm

HuHcsu,A,O)(cT(Bl)) + HuHcs(s-O@(@)
[(w(@)) 0200 u(x, t) — (w(y)) 10207 u(y, t)]

+ Z sup sup

—
la|+2; <25t €[0T Im=uIg]=l/2 |z — |
6"‘8j t —80‘8j 2
+ Z sup (w(x))°Hel sup 193 tu(m’/) ” i/;“(x» )|
o] +25<2s TER" t/’tt,',:t[?fﬂ [t/ —t"]

We finish this section by a few explicit examples of functions of parabolic spaces
in the layer Cp.

Example 7.6. The function
2 —5/2 —6/2
flat) = (1 +t)_7/2(1 n 1‘%75) — +t)_(7_6)/2(1 it |x\2)

belongs to C3(=0:9)(Cr) for all s € Z>¢. Indeed, we get
@, t)] < (1460702 (w(x)) .

Furthermore,
oy =0T lz|? \— %2
. - (1 v/2 ‘(1
9f(w.1) (1+1) 1+t( +1+t) ’
—86;.5 |22 \ =% 8(6 + 2)x; lz|? \ -5
3,8 t = »J 1 J 1
Jf(x,) (1+t)77+2( 1+t) * (1+t)77+4 ( +1+t)
whence
1 1
if@ )] € ——— (A t+[a)TE < §(w() O,
1+t) =
0:0;f(x.t)] < — (L4t +[2)7F < c(w() O,
(1+t)=

where the constant ¢ is independent of x and ¢ and it need not be the same in
diverse applications. The differentiation in ¢ does not affect the weight exponent,
for

5+2 1

5af? 22\ -5 5 a2 -4
8 .Z',t = 714 1+ — a Y+2 1+ ’
W@ t) 2(1_“5)%( ) 2(1_,_15)T( 1+t)

and so
000 < T (e < euie)

By induction,

|050] f(,t)]

N

>—(5+|0t|)/2

¢ 2
= ()02 (14t 1ol

¢ (w(z)) 1

IN

for all (z,t) € Cr, the constant ¢ depending only on «, j and ¢, v, T, as desired.
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Note that the function f of this example satisfies

/ |f(z,t)]? dz < oo
RTL
for any one ¢t > 0 if and only if 6 > n/2 (cf. Lemma 2.5).

Example 7.7. The function

1 w2\ M2 1 ,
e (1) *

belongs to C5(0A9)(Cr), for any 0 < X < 1.

Example 7.8. For the function
sin xq

t T b
OO = T
in the layer Cp with finite 7" > 0, we get
= Cs(o,)\,é) (5)7
Hyu € 030X (Cr)

and Yo(u) = 0, but dyu ¢ C3OM+D(Cr) and hence u ¢ CSA)(Cr) (cf. the a
priori estimate of Lemma 4.7).

8. THE LAPLACE OPERATOR IN WEIGHTED SOBOLEV SPACES OVER R"

Given a (possibly, unbounded) domain X in R” and 1 < ¢ < oo, we use the
designation L(X) for the space of all (equivalence classes of ) measurable functions
uw in X, such that the Lebesgue integral of |u|? over X is finite. When equipped

with the norm
4 1/q
oy = ([ ultde) ",
X

the space L(X) is Banach. More generally, for s =0, 1,. .., we denote by W*4(X)

the completion of Cg5,,(X) with respect to the norm

e = ([ X lorudra)”
|| <s
As usual (cf. [McO79]), we denote by W*%9(R") the weighted Sobolev spaces
with the weight index § € R. On using the same weight function w(x) =+/1+ |z
as above we define W*%%(R") to be the completion of C° (R™) with respect to
the norm

corﬂp

0
lullweasen = (35 No®+12 0%l 0 )

la|<s
where s is a nonnegative integer, 1 < ¢ < co and § an arbitrary real number.
The following result is due to [McOT9].

Theorem 8.1. Let 1 < g < oco. The Laplace operator A induces a bounded linear
operator
A WHEO(R™) — WOOOH2Z(RM), (8.1)
which is Fredholm provided that 6 —n + 2+ n/q & Z>o and —6 —n/q & ZL>o.
Moreover,
1) (8.1) is an isomorphism if —n/q < d <n—2—n/q;
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2) (8.1) is an injection with closed range consisting of those f € W4:9+2(R")

which satisfy
f(@)h(z)dz =0
R’!l

forallh € Hep, ifn—2—nj/qg+m <6 <n—2—-n/q+m+1 with some m € Z>q;

3) (8.1) is a surjection with kernel He<p, if —n/q—m —1 <6 < —n/q —m with
some m € Z>o;

4) (8.1) fails to have a closed range if 6 = —m —n/q or § =m+n—2—n/q
with some m € Z>.

Clearly, for n = 2 no isomorphism is possible in (8.1). By the Holder inequality,
the space W%4:9+2(R") is continuously embedded into L?(R™) provided that ¢ > 2
and

n n
o> 5 2 . (8.2)
Hence, if using the scale W%99+2(R™) for solving the Navier-Stokes equations, a
finite energy estimate might be available only if inequality (8.2) is fulfilled.

By Theorem 2.8 of [Beh11], Theorem 8.1 extends to the Laplace-Beltrami oper-
ator in weighted Holder spaces over a compact closed manifold with conical singu-
larity.

To avoid the irregular action of the Laplace operator in the scale C*:3(5:29)(¢;)
we set

Coo,s(s,)\,é)(a) _ n Ck’S(S’A’(S)(E)‘
k=0
This is a Fréchet space topologised under the family of norms Hu||ck.s(s,k,5)(5),
where £ =0,1,....

Corollary 8.2. Letn > 2 and k,s € Z>o, 0 < A < 1. The Laplace operator A
nduces a continuous linear operator

A - Coo,s(s,)\,é)(a) N Coo,s(s,k,6+2)(@), (83)

which is actually normally solvable provided that 6 —n+ 2 € Z>¢ and —§ & Z>p.
Moreover,

1) (8.8) is an isomorphism if 0 < 6 < n — 2;

2) (8.3) is an injection whose (closed) range consists of all f € C3(5:X042)(Cr)
satisfying

f(z, )h(z)dz =0
Rn

forallh € Hep,, if n =2+ m <6 <n—1+4+m with some m € Z>q;

3) (8.3) is a surjection with kernel C**2([0,T), H<p) if —m—1 < § < —m with
some m € Z>q.

Proof. Lemma 3.9 yields
1@ @ Dl rsnricrin@ry < € lrennccrssn @y

for all f € CoS(AH+2)(Cr), if 0 < § < m — 2, or for all f € C3(5:2042)(Cr) in
the range of (8.3), if n —2+m < § < n — 1+ m. Hence, the assertion follows from
Corollary 3.8. ]
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9. A PSEUDODIFFERENTIAL PERTURBATION OF THE HEAT OPERATOR

Having in the mind a linearisation of the Navier-Stokes equations we consider
the perturbation H,, + P of the heat operator by a first order pseudodifferential
operator

Pu = Z P! (z,t)0%u + Z P!'(z,t)0%(® @ I)u,
o<1 lor|<2

where P, and P! are (k, x k,)-matrices of smooth functions on Cr, k, being the
rank of the bundle A9.

Lemma 9.1. Suppose that s, k are positive integers, 0 < A < N <1andd > 0.
If moreover the entries of P!, belong to F¥ Ss=LAN=el)(Cr)  where k' > k and
d' > 2, and the coefficients P!/ vanish, then the operator P induces a compact linear
map

]:k,S(s,A,X,&)(E’ Aq) ‘>].'k75(5—1,>\,>\',5+2)(@7 Aq).

Proof. As 6 > 0 and ¢’ > 2 there is §” > 0 with the property that ¢ < § and
0—06"+4+2<¢. By Lemma 5.2, if S is bounded set in

]_-k,s(s,)\,)\',(S) (E7 Aq) — Ck+1,s(s,/\,5) (57 Aq) N Ck,s(s,A’,é) (E’ Aq),
then there is a sequence {u, } in S which converges in the space
]_-k+1,s(s—1,)\,)\',5”)(a, Aq) _ Ck+2,s(s—1,k,)\’,6”)(a7 Aq) N Cvk+1,s(s—1,)\',(5”)(E7 Aq)

Without loss of generality we may assume that the sequence {u, } converges to zero
in this space.

Since § — 0" +2 < ¢’ it follows that 6 —6” +2—|a] < ¢’ —|a]. Now, as 0 < ¢” < 4,
we get by Lemma 2.9 and Theorem 2.6 that

HP(;aau:/ Hclc+1,s(s47*>5+2)(G’Aq)

< ¢ ||Pa/(||Ck+175(s—1,>\,5—5”+2—\a\)(G7H0m(AQ)) ||8aul/||Ck+1,s<s—1,/\,5”+\al)(@,Aq)
< ¢ ||PD/¢||Ck’+1,s(s—1,)\,<5—6”+2—\a\)(G’HOIn(Aq)) ||Uu||Ck+1+\a\,5(5—1,,\,5”)(57/1(1)
< ¢ ||P(;||ck’+1,s<s—1,x,6’—\a\>(G,Hom(m)) ||Uu||ck+2,s(s—1,x,a”>(@,Aq)

for all multi-indices @ of norm < 1, the constant ¢ is independent of v and it can
be different in diverse applications.
Finally,

||P(/Iaaulj||Ck,s(sfl,)\’,6+2)(a’/lq)

< c HPQHck,s<s—1,w,a—6”+2—\a\>(a,Hom(Aq))||3auu||ck.s<s—1,w,6“+\a\>(G,Aq)
< ¢ HP(;Hck",s(s—l‘k’,ﬁ—é”+2—\a\)(@7Hom(/lq)) ||uu||Ck+\a|,s(s—l,k',5”)(G,Aq)
< ¢ HP;HC’f’»S(SflvA'ﬁ'f\0\)(G7Hom(/1'z)) ||Uu||ck+1,s(s—1,x',a”>(@7”;)

for all multi-indices « satisfying |a| < 1, the constant ¢ being independent of v.
Thus, any sequence {P/0%u,} with |a] < 1 converges to zero in the Banach
space FFs(=LAN042)(Cn A1) as desired. O

Lemma 9.2. Let s, k be positive integers, 0 < X < X < 1 and 6 > 0 satisfy
d+2—n & Z>o. If moreover the coefficients P, vanish and the entries of Pl belong
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to fk/’s(s’l”\’x’é/*“")(@), where k' > k and &' > 2, then the operator P induces
a compact linear map

RFs(5:A0,0) (E’ A7) = }"&S(S*LAJ\’,HZ)(@’ A9).

Proof. As 6 > 0 satisfies 6 + 2 —n ¢ Z>¢, the continuity of the operator P in
the spaces in question follows immediately from Lemma 3.9 and the remark before
Lemma 5.2.

Since § > 0 and &’ > 2 there is §” > 0 with the property that 6” < ¢ and
0 — 06" 4+2<¢. According to Lemma 5.2, if S is a bounded set in

]_-k,s(s,)\,)\',&) (E, Aq) _ Ck+1,s(s,/\,5) (E7 Aq) N Ck,s(s,A’,é) (@’ Aq),
then there is a sequence {u, } in S converging in the space
}~k+1,s(s—1,)\,)\',5”)(a, Aq) _ Cvk-&—2,s(s—1,k,)\’,6”)(E7 Aq) N Ck+1,s(s—1,)\',6”)(a’ Aq)

Without loss of generality we may assume that the sequence {u, } converges to zero
in this space.

Since 6 —0”+2 < ¢, it follows that § — " +2—|a| < §' —|a|. Now, as 0 < §" < 6,
we get by Lemmata 2.10, 2.9 and Theorem 2.6 that

|1P)o%(® @ Iu, HCk‘#l,S(Sfl,)\,(S‘FQ)(G,A([)

<c ||PCI:||Ck+1,s(s—1,)\,5—5”+2—\a\)(G7H0m(/1q)) ||8a(45 & I)uyHCk+1,s(s—1,k,5”+|a\)(G,Aq)

<c ||PC/|(/||Ck+1,s(s—1,)\,5—6”+2—\a\)(G’Hom(/lq)) ||u1_/HC’k-f—\a\,s(s—l,x\,S”)(E,Aq)
<c HP(;/||ck’+1,s(sfl,%,é’f\a\)(@,Hom(m))||uu||ck+2,s(sfl,k-,6”)(G,Aq)

for all multi-indices a of norm < 2, the constant ¢ is independent of v and it can
be different in diverse applications.
Once again using Lemmata 2.10, 2.9 and Theorem 2.6 yields

HP&’@“ (P® I)uu||Ck,s<s*1,kl.6+2)(@’/lq)

IN

¢ HPg||ck,s(s—l,x’,é—é”w—\a\)(G,Hom(m)) [0%(?® I)UVHChs(sfl,Mé”HaI)(G,AQ)

A

¢ HPZYI||ck’,su—l,w,6—5”+2—\a\>(@)Hom(m))||Uu||ck—1+|a\,s(s—l,w,m(a,m)

IN

¢ HP(Z||ck’,s<s—1,x',6'—\a\>(G,Hom(/;q))||Uu||ck+1,s<s—1,x',a“>(@,Aq)

for all multi-indices « satisfying |a| < 2, the constant ¢ being independent of v.
We have thus proved that each sequence { PY0*(®®1)u, } with |«| < 2 converges

to zero in the Banach space ‘7:’“’5(5*1”\7)‘/*5+2)(E, A?). Obviously, this establishes

the lemma. (]

The following corollary is perhaps of limited interest, for the assumptions are
hardly verifiable.

Corollary 9.3. Under the hypotheses of Lemma 9.1 and Lemma 9.2, if moreover
the operator ¥,, P maps RE-s(s:A:2 ’6)(CT,A‘1) into itself, then the linear operator

I—FLDMPI Rk,s(s,/\,)\',é)(E’ Aq) N ‘Rk,s(s,)\,)\',é)(a7 Aq) (91)
is Fredholm of index zero.

Proof. The operator
W#PZ Rk’S(S’A’)\/ﬁ)(E, Aq) N ]%k:,s(s,)\,)\',(?)(E7 Aq)
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is compact because of Lemmata 9.1 and 9.2 and Theorem 4.6. Then the Riesz-
Schauder theory implies that operator (9.1) is Fredholm and its index just amounts
to zero. (I

We finish this section by showing that the structure of the nonlinear term D?
changes drastically when passing from n = 2 to n = 3. To this end, pick any two
sufficiently smooth closed differential forms g and h of degree 2 on R". If n = 2
then

g = g2 dz' A de,
h = h1,2 dﬂ]l /\da:2,
and so
d*(xg Nd*h) = d(xg *d*h)
= d(xgd(xh))

= d(xg) Nd(xh)
In particular, D?g = d(xg) A d (x(® ® I)g).

If n = 3 then
g = 0923 dz? A da® + 93,1 dz® A dxt + g1,2 dz' A dx?,
h = h273 dx? A dx® + h,371 dz3 A dat + hl_yz dx! A dl’Q,
and so an easy calculation shows that
daxt dx? dax?
* (kg Ad*h) = det 92,3 93,1 91,2

O2hi2 — Oshs1  Oshaz — O1h12 Oi1hsy — O2ha3

This formula certainly applies to D2g = d * (xg A d*(® ® I)g), however, it does not
lead to any manageable expression for the nonlinear term.

10. AN ENERGY ESTIMATE FOR T = +00

In the last section we consider the Navier-Stokes equations in the infinite cylinder
Coo :=R" x (0,00) with n =2 or n = 3.

Lemma 10.1. Letn be 2 or 3, n/2 <6 <n, v > 0, and let ug € C>M(R™, A'),
f e ctsOXN(Cr A for all T > 0 and
0% F(z,8)| < e (1 + |2[2) " 1+ 1)~ F (10.1)

for all (x,t) € R™ x [0,00) and || < 1, where ¢ > 0 is a constant independent of
(z,t). If U = (u,p)T belongs to C3HA)(Cp, A1) x C1sOA=I(Cr) for all T > 0
and satisfies

AU = (f7 u0>T

in R™ x [0,00), then sup ||u(-, )|/ L2@n) < oo.
>0

Proof. By Lemma 3.9, we get f = (d*d+ dd*) (PR 1I)f. Set
fo= dd@eDf € CONICr AN S,
Vo= &@eDf e CUOMIIEC),
then the pair U’ = (u,p — p’)T belongs to CS(1A0) (Cp, AY) x CHsOA0=1)(Cr) and
satisfies
AU’ = (f',up)” (10.2)
in R™ x [0, 00).
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According to [Hopb1] there is a weak solution U” = (u”,p")T to the Navier-
Stokes equations

AU// _ (f/7U0)T

in R™ x [0, 00), cf. also Theorem 3.1 of Chapter III in [Tem79]. Moreover, as 6 < n,
it follows from Lemma 3.7 and (10.1) that

I+ a2 |dd@ @ D) f(,t)] < [FCE)consmnan
< ellfCsDlloros@n,any

< e(l+ t)—(’7+2)/2

with some constant ¢ > 0 independent of (z,t) and different in diverse applications.
Hence

IN

o0 dx & dt
"Cot) e mn any it /
/0 £ ¢ Ol (Rn, A1) ¢ e (L4 212972 J, (1 +¢)0+2/2
< c

because § > n/2 and v > 0. The constant ¢ depends on f.
Since d* f' = 0 we conclude that the weak solution v’ satisfies the energy estimate

t
o Oy + 209l s

t
< luoll7e e ) Jr2/~L/0 (W’ (- 8), [/ 8)) p2gn a1y d8

(see Theorem 3.1 of Chapter III and § 3.6 in [Tem79]). Moreover, as the pair
U' = (u,p —p')T is also a strong solution to the Navier-Stokes equations of (10.2)
in Cp for any finite 7' > 0, Theorem 3.8 of Chapter III in [Tem79]) actually implies
that u = 4" in Cr for each T' > 0.

Finally, since

(u(,t), f' () r2@nary < lult)llze@n,an) 1) L2 @n,ar)
<l Ol any + 5 17 C D g aoy
we conclude that
lu Ollz2@nary = lu" G0 Z2@e any
< ol + 5 [ 17 CO
< o
holds for all ¢ € [0, 7] with finite T', as desired. O

Note that for any positive § and « there are constants Q > 0 and ¢ with the
property that

(14 [a)2(1+ )02 < (14t + |2]*)9/2
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for all (z,t) € R™ x [0,00). For example, one can choose @ = 2 max{dJ,y + 2} and
c=1.
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