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Zusammenfassung

In dieser Arbeit geht es um Varifaltigkeiten, deren erste Variation lokal
endlich ist. Eine m dimensionale Varifaltigkeit V in Rn ist ein Radonmaß
auf dem Produkt Rn × G(n,m) mit der Grassmann-Mannigfaltigkeit
G(n,m). Das zugehörige Gewichtsmaß ‖V ‖ auf Rn erhält man durch
Projektion auf Rn. Die Notation für Varifaltigkeiten richtet sich nach
Allard [All72]. In den Kapiteln 3 und 4 werden die notwendigen Begriffe
bereitgestellt.

In Kapitel 5 geht es um die erste Variation δV der Varifaltigkeit V . Das
ist eine lineare Abbildung, welche jedem kompakt getragenem Vektorfeld g
eine reelle Zahl, genauer gesagt das Integral über die relative Divergenz
von g zuordnet. Es wird gezeigt, wie die erste Variation mittels Integration
dargestellt werden kann. Korrespondiert die Varifaltigkeit zu einer glatten,
eigentlich eingebetteten m dimensionalen Untermannigfaltigkeit M des
Rn ohne Rand, das heißt V ist gegeben durch

V (A) = H m(M ∩ {x : (x,Tan(M,x)) ∈ A}) für A ⊂ Rn ×G(n,m),

was ‖V ‖ = H m xM impliziert, so lässt sich die erste Variation ausdrücken
durch die mittlere Krümmung von M . Dieser Zusammenhang motiviert
die Definition der verallgemeinerten mittleren Krümmung h(V ; ·) für Vari-
faltigkeiten. Das im Sinne des Rieszschen Darstellungssatzes zu δV resul-
tierende Radonmaß auf Rn wird mit ‖δV ‖ bezeichnet und totale Variation
genannt. Ferner wird definiert, was eine unzerlegbare Varifaltigkeit ist. Ist
eine Varifaltigkeit unzerlegbar, so ist der Träger spt ‖V ‖ des Gewichts-
maßes zusammenhängend. Andererseits ist jede Varifaltifkeit, die zu einer
zusammenhängenden geschlossenen glatten Untermannigfaltigkeit des Rn

korrespondiert unzerlegbar.
In Kapitel 6 wird die isoperimetrische Ungleichung bewiesen. Sie besagt,

dass das Maß geeigneter Teilmengen des Rn beschränkt ist durch den Rand
und durch die Krümmung dieser Menge. Gleichwohl ist dieser Zusammen-
hang nicht linear. Mathematisch ausgedrückt lautet die isoperimetrische
Ungleichung wie folgt. Es gibt eine positive und endliche Konstante Γ,
sodass

‖V ‖{x : 1 ≤ Θm(‖V ‖, x)} ≤ Γ‖V ‖(Rn)1/m‖δV ‖(Rn)

falls ‖V ‖(Rn) < ∞. Dabei bezeichnet Θm(‖V ‖, ·) die m dimensionale
Dichte von ‖V ‖ und die Konstante Γ hängt nur von der Dimension m
der Varifaltigkeit V ab. Gilt Θm(‖V ‖, x) ≥ 1 für ‖V ‖ fast alle x und 0 <
‖V ‖(Rn) <∞, so lässt sich die isoperimetrische Ungleichung vereinfachen
zu

‖V ‖(Rn)1−1/m ≤ Γ‖δV ‖(Rn).

Die wichtigsten Hilfsmittel des Beweises stellen die klassische Monotonie
Identität (in der Version von Menne [Men16a, 4.5]) und ein Lemma von
Simon [Sim83, 18.7], welches erlaubt, den Überdeckungssatz von Vitali
anzuwenden, dar.

In Kapitel 7 wird untersucht werden, wie sehr sich die Menge {x :
1 ≤ Θm(‖V ‖, x)} von der Menge spt ‖V ‖ unterscheidet. Im folgenden
sei angenommen, dass Θm(‖V ‖, x) ≥ 1 für ‖V ‖ fast alle x gilt. Mithilfe
der isoperimetrischen Ungleichung wird gezeigt, dass der m dimensionale
Dichtequotient von ‖V ‖ durch eine positive Zahl nach unten beschränkt ist,
sofern der Ableitungsquotient von ‖δV ‖ nach ‖V ‖1−1/m klein ist. Ist V
unzerlegbar, so kann die Voraussetzung an den Ableitungsquotienten re-
duziert werden zu der Annahme, dass der 1 dimensionale Dichtequotient
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von ‖V ‖ x |h(V ; ·)|m−1 klein genug ist. Sei V eine m dimensionale Vari-
faltigkeit in Rn, ‖δV ‖ ein Radonmaß, V unzerlegbar, Θm(‖V ‖, x) ≥ 1 für
‖V ‖ fast alle x, ‖δV ‖ absolut stetig bezüglich ‖V ‖ und h(V ; ·) lokal zur
Potenz (m− 1) summierbar. Es wird gezeigt, dass dann

Θm
∗ (‖V ‖, x) ≥ 1 für H 1 fast alle x ∈ spt ‖V ‖.

Auf die Unzerlegbarkeit von V kann nicht verzichtet werden.
In Kapitel 8 wird der geodätische Abstand in abgeschlossenen Teilmen-

gen des Rn, das heißt die kürzeste Länge von stetigen Verbindungskurven
zwischen zwei Punkten eingeführt. Ist dieser Abstand zwischen zwei Punk-
ten endlich, so gibt es eine minimale stetige Verbindungskurve. Diese kann
Lipschitz-stetig und nach Bogenlänge parametrisiert gewählt werden. Sei V
eine Varifaltigkeit wie im letzten Abschnitt der Beschreibung von Kapitel 7
und spt ‖V ‖ kompakt. Es wird gezeigt, dass dann der Durchmesser d von
spt ‖V ‖ bezüglich dem geodätischen Abstand beschränkt ist durch

d ≤ Γ

∫
|h(V, x)|m−1 d‖V ‖x

wobei Γ eine positive und endliche Konstante ist, die nur von der Dimen-
sion m der Varifaltigkeit abhängt und der Ausdruck 00 als 1 interpretiert
werden soll. Auf die Unzerlegbarkeit von V kann nicht verzichtet werden.
Absolut Stetigkeit von ‖δV ‖ bezüglich ‖V ‖ wird nur für m ≥ 3 benötigt.
Den Hauptteil des Beweises liefern die Techniken aus Kapitel 7. Diese
können verwendet werden, indem der geodätische Abstand approximiert
wird durch eine Folge von Metriken auf spt ‖V ‖, welche für Punkte, die
im eigentlichem Sinn nahe beieinander liegen, dem euklidischen Abstand
gleich sind.

Abstract

The main results of this thesis are formulated on the following set of
hypotheses. Suppose m ≤ n are positive integers, V is an m dimensional
rectifiable varifold in Rn, the total variation ‖δV ‖ is a Radon measure,
‖δV ‖ is absolutely continuous with respect to the weight measure ‖V ‖, V is
indecomposable, Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x and the generalized
mean curvature h(V ; ·) is locally summable to the power m−1 with respect
to ‖V ‖.

If m is at least 2, then it will be shown in this thesis that

Θm
∗ (‖V ‖, x) ≥ 1 for H 1 almost all x ∈ spt ‖V ‖.

One cannot drop the assumption that V is indecomposable.
If spt ‖V ‖ is compact, then the intrinsic diameter d of spt ‖V ‖ will be

estimated in terms of the generalized mean curvature h(V ; ·) by

d ≤ Γ

∫
|h(V ;x)|m−1 d‖V ‖x

where Γ is a positive and finite number depending only on m. This gener-
alizes the diameter control for closed and connected smooth submanifolds
of Rn of Topping [Top08]. However, it was not known whether the present
hypothesis implies that two points in spt ‖V ‖ have finite geodesic dis-
tance in spt ‖V ‖. The absolute continuity of ‖δV ‖ with respect to ‖V ‖
is only needed for m ≥ 3. One cannot drop the assumption that V is
indecomposable.
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1 Introduction

In this thesis the objects of investigation are varifolds with locally finite first
variation, first introduced by Almgren [Alm65]. The definition and notation for
varifolds in this thesis follow Allard [All72]. As a consequence of the isoperimetric
inequality, the main results of this thesis are an estimate of the set where the
density quotient is small and an estimate of the intrinsic diameter with respect
to the support of the weight measure in terms of the generalized mean curvature.

The isoperimetric inequality for varifolds was first published by Allard [All72].
Allard shows in [All72, 7.1] the existence of a constant γ such that

‖V ‖(Rn)1−1/m ≤ γ‖δV ‖(Rn)

whenever V is an m dimensional varifold in Rn satisfying 0 < ‖V ‖(Rn) <∞ and
Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x. The constant γ only depends on m and n.
Loosely speaking, the isoperimetric inequality says that the measure of a set is
bounded by its boundary and its mean curvature. The isoperimetric inequality
has lots of applications. Some of them are part of this thesis. Michael and Simon
improve in [MS73, 2.1], see also [Sim83, 18.6], the isoperimetric inequality for
the class of rectifiable varifolds with finite weight for which the first variation
is absolutely continuous with respect to the weight measure in this way that
the constant γ only depends on the dimension of the varifold. Menne indicates
in [Men09, 2.2] that the isoperimetric inequality holds true for all rectifiable
varifolds with finite weight and a constant depending only on the dimension of
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the varifold. In this thesis it will be proved in Section 6 that the isoperimetric
inequality holds true for all varifolds with finite weight and a constant depending
only on the dimension of the varifold.

Suppose V is an m dimensional varifold in Rn and the total variation ‖δV ‖
is a Radon measure. Then the dimension of the set spt ‖V ‖ might be strictly
greater than m, see 5.16. Instead, the subset {x : 1 ≤ Θm(‖V ‖, x)} of spt ‖V ‖ is
of geometric interest. In particular the question of how much the mentioned set
differs from the support of the weight measure arises. This question is answered
for one dimensional varifolds in Euclidean space by Menne [Men16a, 4.8]. To
study this question for higher dimensions, suppose V is an m dimensional recti-
fiable varifold in Rn, m is at least 2, ‖δV ‖ is a Radon measure, Θm(‖V ‖, x) ≥ 1
for ‖V ‖ almost all x, the total variation ‖δV ‖ is absolutely continuous with
respect to ‖V ‖ and the generalized mean curvature h(V ; ·) is locally summable
to the power m− 1 with respect to ‖V ‖. In this case, Menne shows in [Men09,
2.9, 2.11] that there holds

either Θm
∗ (‖V ‖, x) ≥ 1 or Θm(‖V ‖, x) = 0

for H 1 almost all x ∈ spt ‖V ‖. Nevertheless, it may happen that the set of those
x ∈ spt ‖V ‖ for which Θm(‖V ‖, x) = 0 has positive m dimensional Hausdorff
measure. A sufficient condition to avoid this is the additional assumption that
the varifold is indecomposable, see 5.10. This is a strong condition which implies
amongst other things that the support of the weight measure is connected. In
this thesis it will be proved in Section 7 that the hypothesis described above
implies

Θm
∗ (‖V ‖, x) ≥ 1 for H 1 almost all x ∈ spt ‖V ‖.

In view of the isoperimetric inequality it seems natural that not only the
measure of a set is bounded by its mean curvature but also the diameter of a set
without boundary. This dependence is already described for immersed manifolds
in the following way. Suppose m is a positive integer, M is a connected and
closed m dimensional manifold smoothly immersed in Rn with mean curvature H
and intrinsic diameter dint. Topping shows in [Top08] the existence of a finite
constant C(m) satisfying

dint ≤ C(m)

∫
M
|H|m−1 dµ,

where µ is the measure on M induced by the ambient space and the con-
stant C(m) only depends on m. Menne rephrases this result in the unpublished
notes [Men12b] in the context of indecomposable varifolds. That is if V is
an m dimensional rectifiable varifold in Rn, ‖δV ‖ is a Radon meausre, V is
indecomposable, ‖δV ‖ is absolutely continuous with respect to ‖V ‖, spt ‖V ‖
is compact, the generalized mean curvature h(V ; ·) is locally summable to the
power (m − 1) with respect to the weight measure ‖V ‖ and Θm(‖V ‖, x) ≥ 1
for ‖V ‖ almost all x, then the extrinsic diameter dext of spt ‖V ‖ is estimated in
terms of the generalized mean curvature h(V ; ·) by

dext ≤ Γ

∫
|h(V ;x)|m−1 d‖V ‖x

where the constant Γ only depends on m and the expression 00 should be
interpreted as 1. The absolute continuity of ‖δV ‖ with respect to ‖V ‖ is only
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needed if m ≥ 3. In this thesis it will be proved in Section 8 that the inequality
above can be sharpened by replacing the extrinsic diameter of spt ‖V ‖ by its
intrinsic diameter. It was not known that the present hypothesis implies that
two points in spt ‖V ‖ have finite geodesic distance in spt ‖V ‖. One cannot drop
the assumption that the varifold V is indecomposable.

A reference for the measure theoretic statements used in this thesis is [Fed69].

Acknowledgement

The author would like to thank Prof. Dr. Ulrich Menne for hints and discussions
concerning this thesis.

2 Notation

The notation of Federer [Fed69] and Allard [All72] will be used throughout
the thesis. Amongst other things, this means P denotes the set of positive
integers and D(Rn,R) denotes the space of all real valued smooth functions with
compact support in Rn. Based on Menne [Men16a], the following modification
and additional notation are employed. If f is a relation, then f [A] = {y : (x, y) ∈
f for some x ∈ A} whenever A is a set, see [Kel75, p. 8]. For each positive
integer n, the number β(n) denotes the least positive integer in the Besicovitch
Federer covering theorem [Fed69, 2.8.14] for Rn. That is if G is a family of
closed balls in Rn with sup{diamB : B ∈ G} <∞, then there exist disjointed
subfamilies G1, . . . , Gβ(n) of G such that

{x : B(x, r) ∈ G for some 0 < r <∞} ⊂
⋃⋃
{Gi : i = 1, . . . ,β(n)}.

A further constant γ(m) for the isoperimetric inequality, which depends on
positive integers m will be defined in 6.9. Be also aware of the conventions
described in 3.8 and 3.9.

3 Preliminaries

This section is a collection of definitions and elementary measure theoretic
statements which are preparations for this thesis and will be needed later on.
These include some notations concerning Radon measures and the notion of
Grassmann manifold.

3.1 Definition (see [Fed69, 2.2.1]). Suppose φ is a measure over a topological
space X.

Then the closed set

X ∼
⋃
{U : U is open and φ(U) = 0}

is called the support of φ and is denoted by sptφ.

3.2 Remark. Suppose the topology of X has a countable basis.
Then φ(X ∼ sptφ) = 0. In this case there holds

φ = φ x sptφ.
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If X is a metric space, then it follows

sptφ = X ∩ {x : φ(U(x, r)) > 0 whenever 0 < r <∞}.

3.3. Suppose φ is a Borel regular measure over a topological space X and f
maps a subset of X into R.

Then there holds

lim
s→r−

φ{x : f(x) < s} = lim
s→r−

φ{x : f(x) ≤ s} = φ{x : f(x) < r}

for all r ∈ R. Moreover, if f is a Borel function and r ∈ R such that φ{x :
f(x) < t} <∞ for some t > r, then

lim
s→r+

φ{x : f(x) < s} = lim
s→r+

φ{x : f(x) ≤ s} = φ{x : f(x) ≤ r}.

These facts may be verified by [Fed69, 2.1.5 (1)] and [Fed69, 2.1.3 (5)].

3.4 Theorem (see [Fed69, 2.2.3]). Suppose φ is a Borel regular measure over a
topological space X and A is a countably φ measurable subset of X.

Then there exist Borel subsets B and D of X such that

D ⊂ A ⊂ B and φ(B∼D) = 0.

Proof. Choose φ measurable subsets A1, A2, . . . of X such that

A =
⋃∞
i=1Ai, φ(Aj) <∞

for all positive integers j. The conclusion follows from [Fed69, 2.2.3] by taking
D =

⋃∞
i=1Di and B =

⋃∞
i=1Bi where the Dj and Bj are Borel subsets of X

which correspond to j ∈P such that Dj ⊂ Aj ⊂ Bj and φ(Bj ∼Dj) = 0.

3.5 Theorem (see [Fed69, 2.4.10]). Suppose φ is a Borel regular measure over a
topological space X, X is countably φ measurable, f is a nonnegative φ measurable
function and

ψ(A) =
∫ ∗
A
f dφ whenever A ⊂ X.

Then ψ defines a Borel regular measure over X and all φ measurable sets
are ψ measurable.

Proof. Assume A is any subset of X. By [Fed69, 2.10.4] and [Fed69, 2.2.3] it
remains to show∫ ∗

A
f dφ = inf{

∫
B
f dφ : B is a Borel subset of X and A ⊂ B}.

Obviously the left hand side is less or equal to the right hand side. To prove the
reverse inequality suppose

∫ ∗
A
f dφ <∞ and let ε > 0. Choose a φ step function

u such that u(x) ≥ 0 for φ almost all x, u(x) ≥ f(x) for φ almost all x in A and

ε+
∫ ∗
A
f dφ ≥

∫
udφ.

Let

P = X ∩ {x : f(x) ≤ u(x)}.
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Then P is φ measurable and 3.4 ensures the existence of a Borel subset D of X
such that

D ⊂ P and φ(P ∼D) = 0.

There holds
φ(A∼D) ≤ φ(A∼P ) + φ(A ∩ P ∼D) = 0.

Choose a Borel subset C of X such that A∼D ⊂ C and φ(C) = 0. For the
Borel set B = D ∪ C it follows A ⊂ B and∫

udφ ≥
∫
B
udφ ≥

∫
B
f dφ

which completes the proof.

3.6. Suppose X is a topological space and A is a subset of X.
Then the Borel family generated by the relative topology of A in X equals

the set
{A ∩B : B is a Borel subset of X}.

Hence, if φ is a Borel regular measure over X, then φ|2A is a Borel regular
measure over A. This may be verified with help of [Fed69, 2.1.2].

3.7 Theorem (see [Fed69, 2.2.17]). Suppose X and Y are locally compact and
separable metric spaces, µ is a Radon measure over X and f : X → Y is a µ
measurable function.

Then f#µ is a Borel regular measure over Y .

Proof. Assume A is a µ measurable subset of X such that µ(A) < ∞. Use
Lusin’s theorem [Fed69, 2.3.5] to construct a sequence C1, C2, . . . of compact
subsets of X such that for each positive integer i there holds f |Ci is continuous
and

Ci ⊂ A∼
⋃i−1
j=1 Cj , µ(A∼

⋃i
j=1 Cj) < 1/i.

Then µ(A∼
⋃∞
j=1 Cj) = 0 and Ci∩Cj = ∅ whenever i, j ∈P and i 6= j. Since X

is countably µ measurable, this procedure provides a sequence K1,K2, . . . of
pairwise disjointed compact subsets of X such that f |Ki is continuous whenever
i ∈P and

µ
(
X ∼

⋃∞
j=1Kj

)
= 0.

By 3.6 and [Fed69, 2.2.17], (f |Ki)#µ|2Ki is a Radon measure over Y whenever
i ∈P. Since

f#µ =

∞∑
j=1

(f |Kj)#µ|2Kj ,

the conclusion follows.

3.8 (see [Fed69, 2.5.13, 14]). Suppose X is a locally compact Hausdorff space
and µ is a Radon measure over X. Let

K (X)

denote the space of continuous real valued functions on X with compact support.
Sometimes the notation

µ(f) for
∫
f dµ when f ∈ K (X)
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will be used. This is natural since the Riesz representation theorem asserts
that Radon measures over X correspond in this way with the linear functionals
on K (X) wich are nonnegative on the nonnegative members of K (X). The
notation above also will be used to define Radon measures over X.

3.9 (Grassmann manifold, see [All72, 2.3]). Suppose n is a positive integer and
k is a nonnegative integer not exceeding n.

Then the so-called Grassmann manifold

G(n, k)

is defined to be the space of k dimensional subspaces of Rn. Suppose S ∈ G(n, k).
Then there exists exactly one member P of Hom(Rn,Rn) such that

P ◦ P = P, P ∗ = P and imP = S.

This induces an injective map G(n, k)→ Hom(Rn,Rn). A member of G(n, k)
also will be considered as its evaluation under this injection. Moreover, G(n, k)
will be endowed with a metric by the requirement that the injection above is
distance preserving with respect to the operator norm over Hom(Rn,Rn). With
this metric G(n, k) is compact.

The following definition will be needed to define varifolds in a smooth
submanifold of some Euclidean space.

3.10 Definition (see [All72, 2.5]). Suppose k ≤ m ≤ n are nonnegative integers,
1 ≤ n and M is a smooth m dimensional submanifold of Rn.

Then define

Gk(M) = (M ×G(n, k)) ∩ {(x, P ) : P ⊂ Tan(M,x)}.

3.11 Remark. Define a map F : M ×G(n, k)→ R by letting

F (x, P ) = Tan(M,x) • P = trace(Tan(M,x) ◦ P )

whenever x ∈ M and P ∈ G(n, k), where Tan(M,x) and P are considered as
members of Hom(Rn,Rn), see 3.9. Then F is continuous and Gk(M) = F−1{k}.
Therefore, Gk(M) is closed in M×G(n, k) and Gk(M) itself is a locally compact
and separable metric space. Moreover, the projection map of Gk(M) onto M is
proper.

4 Varifolds

This section is a summary of [All72, Section 3], which is supposed to make
reading the thesis easier. The notion of varifold and rectifiable varifold in a
smooth submanifold of some Euclidean space will be recalled. Moreover, it will
be shown how to apply a smooth mapping to a varifold. Notice that the following
approach is more general than the approach of rectifiable varifolds in [Sim83,
Section 4], which does not need the notion of Grassmann manifold. This will
be indicated at the end of this section. According to [All72, 4.8 (2), 3.5 (1)],
there exist varifolds with locally bounded first variation which are not rectifiable.
Hence, in view of the isoperimetric inequality 6.5 the following more general
approach makes sense for this thesis.
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4.1. A useful set of hypotheses is gathered here for later reference.
Suppose 0 ≤ k ≤ m ≤ n are nonnegative integers, 1 ≤ n, M is a smooth m

dimensional submanifold of Rn, U is an open subset of Rn, M ⊂ U , i : M → U
is the inclusion map and i is proper.

4.2 Definition (Varifold, see [All72, 3.1]). Suppose k, m, n and M are related
as in 4.1.

Then V is said to be a k dimensional varifold in M if and only if V is a
Radon measure over Gk(M). Let

Vk(M)

be the weakly topologized space of k dimensional varifolds in M . Whenever
V ∈ Vk(M), let

‖V ‖(A) = V (Gk(M) ∩ {(x, P ) : x ∈ A}) for A ⊂M.

In view of 3.7 and 3.11, ‖V ‖ is a Radon measure over M ; it is called the weight
of V .

4.3 Definition (Mapping a varifold, see [All72, 3.2]). Suppose k, m, n and M
are related as in 4.1, V ∈ Vk(M), µ ≤ ν are nonnegative integers, 1 ≤ ν, N is a
smooth µ dimensional submanifold of Rν and F : M → N is smooth.

Then the Borel regular measure

F#V

over Gk(N) is characterized by the requirement that

F#V (B) =

∫
{(x,P ):(F (x),DF (x)[P ])∈B}

|Λk(DF (x) ◦ P )|dV (x, P )

whenever B is a Borel subset of Gk(N).

4.4 Remark. One may use 3.5 and 3.7 to see that such a Borel regular mea-
sure F#V exists. The properness of the inclusion map i makes sure that i#V is
a varifold in U .

4.5 Theorem (see [All72, 3.5]). Suppose k, m, n, M and U are related as
in 4.1, E is an H k measurable subset of M which meets every compact subset
of U in an (H k, k) rectifiable subset of U and v(E) is defined by

v(E)(A) = H k{x : (x,Tank(H k xE, x)) ∈ A}

whenever A ⊂ Gk(M).
Then v(E) ∈ Vk(M). Moreover,

‖v(E)‖ = H k xE.

Proof. Use [Fed69, 3.2.25] and 3.7 for a possible approach.

4.6 Remark. This notation is ambiguous since v(E) could be considered a
member of Vk(U). It will always be clear in which space v(E) shall lie.
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4.7 Definition (Rectifiable varifolds, see [All72, 3.5]). Suppose k, m, n and M
are related as in 4.1.

Then V ∈ Vk(M) is said to be a k dimensional rectifiable varifold in M if
there are positive real numbers c1, c2, . . . and H k measurable subsets E1, E2, . . .
of M which meet every compact subset of U in an (H k, k) rectifiable subset
of U such that

V =

∞∑
j=1

cjv(Ej).

Let
RVk(M)

denote the space of k dimensional rectifiable varifolds in M .

4.8 Remark. Suppose M is an H m measurable and countably (H m,m) rec-
tifiable subset of Rn, θ : Rn → R is a nonnegative H m measurable function,
M = {x : θ(x) > 0} and the Borel regular measure µ over Rn defined by

µ(A) =
∫ ∗
A
θ(x) dH mx whenever A ⊂ Rn

is a Radon measure. In other words, v(M, θ) is a rectifiable m-varifold in the
sense of [Sim83, Section 4]. Its weight equals µ.

Let r1, r2, . . . be a sequence of positive real numbers such that

lim
j→∞

rj = 0,
∑∞
j=1 rj =∞

and let g1, g2, . . . are the characteristic functions of the sets E1, E2, . . . which are
inductively defined by

Ei = {x : θ(x) ≥ ri +
∑i−1
j=1 rjgj(x)}

whenever i ∈P. If i ∈P and K is a compact subset of Rn, then H m(K∩Ei) ≤
r−1i µ(K ∩ Ei) < ∞. Therefore, Ei meets every compact subset of Rn in an
(H m,m) rectifiable subset of Rn. By [Fed69, 2.3.3] there holds

θ =
∑∞
j=1 rjgj .

It follows (∑∞
j=1 rj‖v(Ej)‖

)
(B) = µ(B)

for all Borel subsets B of Rn by [Fed69, 2.4.8]. Hence,

V =
∑∞
j=1 rjv(Ej)

defines an m dimensional rectifiable varifold in Rn which satisfies ‖V ‖ = µ.
There holds

θ(x) = Θm(µ, x) for H m almost all x ∈ Rn,

V (α) =
∫
α(x,Tanm(µ, x))θ(x) dH mx whenever α ∈ K (Gm(Rn))

by [All72, 3.5 (1)(b)].
Now suppose V is any m dimensional rectifiable varifold in Rn. Then there

holds
‖V ‖(A) =

∫ ∗
A

Θm(‖V ‖, x) dH mx whenever A ⊂ Rn

12



and {x : Θm(‖V ‖, x) > 0} is an H m measurable and countably (H m,m)
rectifiable subset of Rn by [All72, 3.5 (1)] and [All72, 2.8 (5)]. Hence,

v
(
{x : Θm(‖V ‖, x) > 0},Θm(‖V ‖, ·)

)
is a rectifiable m-varifold in the sense of [Sim83, Section 4].

This shows that the notion of rectifiable varifold in Euclidean space given in
this section leads to the same notion of rectifiable varifold in [Sim83, Section 4].

5 The First Variation of a Varifold

This section is based on [All72, Section 4]. Motivated by the variational formula
[All72, 4.1], one associates with each varifold in a smooth submanifold M of some
Euclidean space, a real valued linear map on X (M), called the first variation of
the varifold. If this first variation is representable by integration, one obtains
the generalized mean curvature vectorfield, which is the same as the mean
curvature vector field [All72, 2.5 (2)] whenever the varifold corresponds to a
smooth submanifold of Euclidean space. Given a varifold in a smooth manifold
properly embedded in some open set U of an Euclidean space, it will be shown
how to extend this varifold to a varifold in U . The first variations of these
varifolds are related by a simple formula. This makes it possible to apply the
isoperimetric inequality 6.7, which is stated for varifolds in some Euclidean space
to varifolds in an appropriate submanifold of some Euclidean space. Moreover,
the formula [All72, 4.10 (1)] which shows how to cut a varifold, motivates a
definition of indecomposable varifolds. Varifolds which correspond to connected
and compact submanifolds of some Euclidean space are indecomposable. A class
of varifolds which are decomposable will be given. Finally, it will be shown how
to construct examples of varifolds which will be useful later on.

5.1 Definition (First variation of a varifold, see [All72, 4.2]). Suppose k, m, n
and M are related as in 4.1 and V ∈ Vk(M).

Then the linear function

δV : X (M)→ R

defined by

δV (g) =
∫

(Dg(x) ◦ P ) • P dV (x, P ) for g ∈X (M)

is called the first variation of V , where X (M) denotes the space of smooth
vector fields with compact support in M . The total variation of δV

‖δV ‖

is defined by letting

‖δV ‖(G) = sup{δV (g) : g ∈X (M), spt g ⊂ G and |g| ≤ 1}

whenever G is an open subset of M and

‖δV ‖(A) = inf{‖δV ‖(G) : G is open in M, A ⊂ G}

whenever A is any subset of M .

13



5.2 Remark. An analogous approach of the Riesz representation theorem [Sim83,
4.1] shows that ‖δV ‖ defines a Borel regular measure over M . Clearly there
holds

spt ‖δV ‖ ⊂ spt ‖V ‖.

Suppose U is an open subset of Rn, M = U and g ∈X (U). Then there holds

(Dg(x) ◦ P ) • P = Dg(x) • P = div(P ◦ g)(x)

whenever (x, P ) ∈ Gk(U).

5.3 (Functions of bounded variation). Suppose n is a positive integer, U is an
open subset of Rn, V ∈ RVn(U) and ‖δV ‖ is a Radon measure.

Then Θn(‖V ‖, ·) has locally bounded variation in U and if ‖δV ‖(U) < ∞,
then Θn(‖V ‖, ·) has bounded variation in U in the sense of [EG92, 5.1].

On the other hand, for each nonnegative function f which has bounded
variation in U one obtains a varifold V ∈ RVn(U) such that ‖δV ‖(U) <∞ by
letting

V (α) =
∫
α(x,1Rn)f(x) dL nx whenever α ∈ K (Gn(U)).

Actually ‖δV ‖(U) = ‖Df‖(U). In particular the isoperimetric inequality for
bounded sets with finite perimeter in Rn [EG92, 5.6.2 (i)] is a special case of 6.7.

5.4 (Representing the first variation by integration, see [All72, 4.3]). Suppose k,
m, n, M and i are related as in 4.1, V ∈ Vk(M) and ‖δV ‖ is a Radon measure.

Then well known representation theorems [Fed69, 2.5.12] assert the existence
of a ‖δV ‖ measurable function η(V ; ·) with values in Sn−1 such that

η(V ;x) ∈ Tan(M,x) for ‖δV ‖ almost all x

and
δV (g) =

∫
g(x) • η(V ;x) d‖δV ‖x for g ∈X (M).

Notice that η(V ; ·) is ‖δV ‖ almost unique.
Moreover, the theory of symmetrical derivation [Fed69, 2.8.18, 2.9] implies

the following. The formula

(‖δV ‖/‖V ‖)(x) = lim
r→0+

i#‖δV ‖B(x, r)/i#‖V ‖B(x, r) for ‖V ‖ almost all x

defines a real valued ‖V ‖ measurable function,

h(V ;x) = −(‖δV ‖/‖V ‖)(x)η(V ;x) for ‖V ‖ almost all x

defines a ‖V ‖ measurable function with values in Rn such that

h(V ;x) ∈ Tan(M,x) for ‖V ‖ almost all x

and such that if

‖δV ‖sing = ‖δV ‖ x{x : (‖δV ‖/‖V ‖)(x) =∞},

then

δV (g) = −
∫
g(x) • h(V ;x) d‖V ‖x+

∫
g(x) • η(V ;x) d‖δV ‖singx

14



whenever g is a Borel function with values in Rn such that g(x) ∈ Tan(M,x)
for x ∈M and

∫
|g|d‖δV ‖ <∞, where δV (g) is defined to be the value of the

unique ‖δV ‖(1) continuous extension of δV to

L1(‖δV ‖,Rn) ∩ {h : h(x) ∈ Tan(M,x) for ‖δV ‖ almost all x}.

The function h(V ; ·) is called the generalized mean curvature vector of V .

The following theorem is a generalization of [All72, 4.8 (3)].

5.5 Theorem. Suppose m ≤ n are positive integers, U is an open subset of Rn,
a ∈ U , V ∈ Vm(U) and ‖V ‖({a}) > 0.

Then there holds ‖δV ‖({a}) =∞.

Proof. Choose S ∈ G(n,m) and v ∈ Sn−1 such that

V ({a} ×W ) > 0, |S(v)| > 0

for all neighbourhoods W of S in G(n,m). Then, for

l =
∫
{a}×G(n,m)

|P (v)|2 dV (x, P )

there holds 0 < l < ∞. Let 0 < ε < 1 such that U(a, ε) ⊂ U and let
4ε−1 < λ <∞. It will be shown that

lλ−m‖V ‖U(a, ε) ≤ ‖δV ‖U(a, ε).

For this purpose choose a smooth function ϕ : R→ R such that

0 ≤ ϕ ≤ 1, ϕ′ ≤ 0,

ϕ(t) = 1 for −∞ < t ≤ 2−1λ−1,

ϕ′(t) ≤ −λ2 for t = λ−1,

ϕ(t) = 0 for 2λ−1 ≤ t <∞.

Let b = a− λ−1v and define g ∈X (U) by

g(x) = −ϕ(|x− b|)(x− b)

for x ∈ U . There holds |x− a| − λ−1 ≤ |x− b| ≤ |x− a|+ λ−1 whenever x ∈ U .
Hence, spt g ⊂ B(a, 3λ−1) ⊂ U(a, ε) and |g| ≤ 1. By [All72, 2.3 (2)(3)(4)] one
calculates

Dg(b) • P = 0,

Dg(x) • P = −ϕ′(|x− b|)|x− b|−1|P (x− b)|2 − ϕ(|x− b|)m

for b 6= x ∈ U and P ∈ G(n,m). Therefore,∫
Dg(x) • P dV (x, P )

≥
∫
{a}×G(n,m)

−ϕ′(λ−1)λ|P (λ−1v)|2 dV (x, P )−m‖V ‖U(a, ε)

≥ lλ−m‖V ‖U(a, ε)

and the conclusion follows.
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5.6 (see [All72, 4.4]). Suppose 1 ≤ k ≤ m < n, M , U and i are related as in 4.1
and V ∈ Vk(M).

Then, if k = m, [All72, 2.5(2)] yields

δ(i#V )(g) = δV (Tan(M, g))−
∫

Nor(M, g)(x) • h(M,x) d‖V ‖x

whenever g ∈X (U) and if k < m, [All72, 2.5(3)] yields

δ(i#V )(g) = δV (Tan(M, g))−
∫

Nor(M, g)(x) • h(M ;x, P ) dV (x, P )

whenever g ∈X (U).

5.7 Theorem. Suppose m ≤ n are positive integers, U is an open subset of Rn,
j : U → Rn is the inclusion map, V ∈ Vm(U) and j[spt ‖V ‖] is closed in Rn.

Then j#V ∈ Vm(Rn), ‖j#V ‖ = j#‖V ‖ and ‖δ(j#V )‖ = j#‖δV ‖.

Proof. Clearly there holds (j#V )(B) = V (Gm(U) ∩B) for all Borel subsets B
of Gm(Rn). Hence, ‖j#V ‖ = j#‖V ‖. By 3.2, this leads to

spt ‖j#V ‖ = j[spt ‖V ‖]

as j[spt ‖V ‖] is closed in Rn. Let G be an open subset of U , g ∈ X (U) such
that spt g ⊂ G and define ḡ = g ∪ ((Rn∼U) × {0}). Then spt ḡ = j[spt g],
ḡ ∈ X (Rn) and δ(j#V )(ḡ) = δV (g). Therefore, ‖δ(j#V )‖ ≥ j#‖δV ‖. Now
let G be an open subset of Rn and g ∈ X (Rn) such that spt g ⊂ G. Choose
a smooth function ϕ : Rn → R such that 0 ≤ ϕ ≤ 1, sptϕ ⊂ U ∩ G and
spt g∩j[spt ‖V ‖] ⊂ Int{x : ϕ(x) = 1}. Then spt(ϕg)|U ⊂ U∩G, (ϕg)|U ∈X (U)
and δ(j#V )(g) = δV ((ϕg)|U). Hence, ‖δ(j#V )‖ ≤ j#‖δV ‖.

5.8 Lemma (see [All72, 4.5]). Suppose m, n, M and U are related as in 4.1, W
is an open and connected subset of U , Y is an open subset of Rm, ψ : W → Y
and ϕ : Y →W are smooth, ψ ◦ ϕ = 1Y and W ∩ imϕ = W ∩M .

Then, for V = v(M) ∈ Vm(M) there holds

δV (g) = 0 whenever g ∈X (M) and spt g ⊂W ∩M.

Proof. See the first part of the proof [All72, 4.5].

5.9 Theorem. Suppose 1 ≤ m < n, M , U and i are related as in 4.1 and
V = v(M) ∈ Vm(M).

Then there holds i#V = v(M) ∈ Vm(U) and

δ(i#V )(g) = −
∫
M
g(x) • h(M,x) dH mx

whenever g ∈X (U).

Proof. The first statement follows as Tanm(H m xM,x) = ∅ for H m almost
all x ∈ U ∼M by [Fed69, 2.10.19 (4)]. Let g ∈X (U). Notice that M ∩ spt g is
compact and choose a finite covering of M ∩ spt g which consists of open sets W
as in 5.8. Take a partition of unity subordinate to this open covering. Then 5.8
leads to δV (Tan(M, g)) = 0. The conclusion follows by 5.6.
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5.10 Definition (see [Men16a, 6.2]). Suppose m ≤ n are positive integers, U
is an open subset of Rn, V ∈ Vm(U) and ‖δV ‖ is a Radon measure.

Then V is called indecomposable if and only if there exists no Borel subset E
of U such that

‖V ‖(E) > 0, ‖V ‖(U ∼E) > 0, (δV ) xE = δ(V xE ×G(n,m))

where ((δV ) xE)(g) = δV (χEg) whenever g ∈X (U) and χE is the characteristic
function of E, see [Men16a, 2.20].

5.11 Theorem (see [Men16a, 6.5]). Suppose m ≤ n are positive integers, U
is an open subset of Rn, V ∈ Vm(U), ‖δV ‖ is a Radon measure and V is
indecomposable.

Then spt ‖V ‖ is connected.

Proof. See the proof of [Men16a, 6.5].

5.12 Theorem. Suppose 1 ≤ m < n, M and U , are related as in 4.1, M is
connected, V = v(M) ∈ Vm(U) and ‖δV ‖ is a Radon measure.

Then V is indecomposable.

Proof. Assume E is a Borel subset of U such that H m(M ∩ E) > 0 and
(δV ) xE = δ(V xE ×G(n,m)). Let W = V xE ×G(n,m). Then W ∈ Vm(U),
spt ‖W‖ ⊂ spt ‖V ‖ ⊂M and ‖δW‖ is a Radon measure. One calculates by 5.9
and [All72, 2.5 (2), 3.5 (1)(b)]

0 = ((δV ) xE)(g)− δ(V xE ×G(n,m))(g)

= −
∫
E
g(x) • h(M,x) d(H m xM)x−

∫
E×G(n,m)

Dg(x) • P dV (x, P )

= −
∫
E×G(n,m)

(D Tan(M, g)(x) ◦ P ) • P dV (x, P )

= − δW (Tan(M, g))

whenever g ∈ X (U). Hence, [All72, 4.6 (3)] implies W = v(M). This means
H m xM = H m x(M ∩ E), H m(M ∼E) = 0.

5.13 Remark. The previous proof is based on the proof [Men16a, 5.9 (1)].

5.14 Lemma. Suppose m < n are positive integers, G is a nonempty countable
family of compact and smooth m dimensional submanifolds of Rn, E =

⋃
G,

H m(E) <∞, V = v(E) ∈ RVm(Rn) and H m(M ∩N) = 0 whenever M,N ∈
G and M 6= N .

Then there holds

Θm(‖V ‖, x) = 1 for ‖V ‖ almost all x,

δV (g) = −
∑
M∈G

∫
M
g(x) • h(M,x) dH mx whenever g ∈X (Rn)

and if
∑
M∈G

∫
M
|h(M,x)|dH mx <∞, then ‖δV ‖ is a Radon measure, ‖δV ‖

is absolutely continuous with respect to ‖V ‖ and for all M ∈ G there holds

h(V ;x) = h(M,x) for H m almost all x ∈M.
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Proof. First notice that E is (H m,m) rectifiable and H m measurable. By
[Fed69, 3.2.19] there holds

Θm(‖V ‖, ·) = Θm(H m xE, ·)

is H m almost equal the characteristic function of E. The definition of the
approximate tangent space [Fed69, 3.2.16] implies

Tanm(H m xM,x) ⊂ Tanm(H m xE, x) whenever M ∈ G and x ∈ Rn.

Therefore, if M ∈ G

Tanm(H m xM,x) = Tanm(H m xE, x) for H m almost all x ∈M

by [Fed69, 3.2.19]. One calculates with help of [All72, 3.5 (1)(b)], Lebesgue’s
bounded convergence theorem and 5.9

δV (g) =
∫

Dg(x) • Tanm(H m xE, x)Θm(H m xE, x) dH mx

=
∑
M∈G

∫
M

Dg(x) • Tanm(H m xM,x) dH mx

= −
∑
M∈G

∫
M
g(x) • h(M,x) H mx

whenever g ∈X (Rn). Now assume∑
M∈G

∫
M
|h(M,x)|dH mx <∞.

Whenever M ∈ G let χM be the characteristic function of M in Rn. Lebesgue’s
bounded convergence theorem implies

δV (g) = −
∫
g(x) •

(∑
M∈G h(M,x)χM (x)

)
dH mx

whenever g ∈X (Rn). Therefore, ‖δV ‖ is absolutely continuous with respect to
‖V ‖ and

δV (g) = −
∫
g(x) • h(V ;x) d(H m xE)x

whenever g ∈X (Rn). This implies the conclusion.

5.15 Remark. The previous lemma gives a quantity of examples for varifolds
which are decomposable.

5.16 Theorem (see [Men16a, 14.1]). Suppose m < n are positive integers and
U is an open and bounded subset of Rn.

Then there exists V ∈ RVm(Rn) such that

‖V ‖(Rn) <∞, spt ‖V ‖ = ClosU,

Θm(‖V ‖, x) = 1 for ‖V ‖ almost all x

and if m ≥ 2, then ‖δV ‖ is a Radon measure and

δV (g) = −
∫
g(x) • h(V ;x) d‖V ‖x for g ∈X (Rn),∫
|h(V ;x)|m−1 d‖V ‖x <∞.
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Proof. Define

S = Rn ∩ {(x1, . . . , xn) :
∑m+1
i=1 x2i = 1, xm+2 = . . . = xn = 0}

which is an embedding of the m dimensional sphere and

Q(x, r) = Rn ∩ {(y1, . . . , yn) : |xi − yi| < r for i = 1, . . . , n},
S(x, r) = rS + x

whenever x = (x1, . . . , xn) ∈ Rn and 0 < r <∞. Define furthermore

Fi = {Q(x, 2−i) : 2i−1x ∈ Zn}, Gi = Fi ∩ {Q : Q ⊂ U},
Hi = {S(x, 2−i(n+1)) : 2i−1x ∈ Zn, Q(x, 2−i) ⊂ U}

for all positive integers i. Choose an integer k such that U ⊂ Q(0, 2k). Then
for each positive integer i, the set Gi consists of at most 2n(k+i) elements. For
E =

⋃∞
i=1

⋃
Hi it follows

H m(E) ≤
∑∞
i=1 2n(k+i)(m+ 1)α(m+ 1)(2−i(n+1))m

≤ 2nk(m+ 1)α(m+ 1)(1− 2−m)−1 <∞.

Hence, one may define V = v(E) ∈ RVm(Rn). Notice that each Fi is a disjointed
family and Rn =

⋃
{ClosQ : Q ∈ Fi} whenever i is a positive integer. So it is

easy to see that spt ‖V ‖ = ClosU . By 5.14, the case m = 1 should now be clear.
Hence, suppose 2 ≤ m. Notice that |h(M,x)| = m(2−i(n+1))−1 whenever i is a
positive integer, M ∈ Hi and x ∈M . Therefore, one calculates∑

{
∫
M
|h(M,x)|dH mx : M ∈

⋃∞
i=1

⋃
Hi}

≤
∑∞
i=1 2n(k+i)(m+ 1)α(m+ 1)(2−i(n+1))mm(2−i(n+1))−1

≤ 2nk(m+ 1)α(m+ 1)m <∞.

Remember that the intersection of two different m dimensional spheres in Rm+1

always has H m measure zero. According to 5.14, it follows that ‖δV ‖ is a
Radon measure,

Θm(‖V ‖, x) = 1 for ‖V ‖ almost all x,

δV (g) =
∫
E
g(x) • h(V ;x) dH mx for g ∈X (Rn)

and for all M ∈
⋃∞
i=1Hi there holds

h(V ;x) = h(M,x) for H m almost all x ∈M.

One calculates∫
|h(V ;x)|m−1 d‖V ‖x
≤
∑∞
i=1 2n(k+i)(m+ 1)α(m+ 1)(2−i(n+1))m(m(2−i(n+1))−1)m−1

≤ 2nk(m+ 1)α(m+ 1)mm−1 <∞

which completes the proof.

5.17 Remark. The previous proof is based on [Men09, 1.2].
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5.18 Example. Suppose m ≤ n are positive integers, T ∈ G(n,m), f : Rm → Rn

is an orthogonal injection, im f = T , θ : Rm → R is a nonnegative Borel
function, θ is locally Lm summable and the Borel regular measure µ over Rn is
defined by

µ(A) =
∫ ∗
A∩T θ(f

∗(y)) dH my whenever A ⊂ Rn.

The area formula [Fed69, 3.2.5] yields

µ(B) =
∫
θ(f∗(y))N(f |f∗[B ∩ T ], y) dH my

=
∫
f∗[B∩T ]

θ(x) dLmx

for all Borel subsets B of Rn. In particular µ is a Radon measure. For each
positive integer i define

Mi = T ∩ {y : i−1 ≤ θ(f∗(y)) ≤ i}.

Then there holds

i−1H m(Mi ∩ S) ≤ µ(Mi ∩ S) ≤ iH m(Mi ∩ S) whenever S ⊂ Rn,

Tanm(µ xMi, a) = Tanm(H m xMi, a) = T for H m almost all a ∈Mi,

T ⊂ Tanm(µ, a) for H m almost all a ∈Mi,

T ⊂ Tanm(µ, a) for H m almost all a ∈ T ∩ {y : θ(f∗(y)) > 0}.

In view of 4.8,

V (α) =
∫
T
α(y, T )θ(f∗(y)) dH my whenever α ∈ K (Gm(Rn))

defines an m dimensional varifold V in Rn with ‖V ‖ = µ. Assume g ∈X (Rn).
One calculates

δV (g) =
∫
T

Dg(y) • T θ(f∗(y)) dH my =
∫

Dg(f(x)) • T θ(x) dLmx

=
∫

div(f∗ ◦ g ◦ f)(x)θ(x) dLmx

and if θ is a Lipschitzian function, it follows

δV (g) = −
∫

(f∗ ◦ g ◦ f)(x) • grad θ(x) dLmx

= −
∫

(g ◦ f)(x) • (f ◦ grad θ)(x) dLmx

= −
∫
T
g(y) • (f ◦ grad θ ◦ f∗)(y) dH my.

Hence, if |g| ≤ 1, then there holds

δV (g) ≤
∫
f∗[spt g]

| grad θ(x)|dLmx.

6 Isoperimetric Inequality

In this section the isoperimetric inequality for varifolds in some Euclidean space
with locally finite first variation will be proved. An important tool for the proof
is the monotonicity identity in the version of Menne [Men16a]. In contrary
to Simon’s monotonicity identity [Sim83, 17.3, 17.4], this allows to neglect
the assumptions that the varifold is rectifiable and that its total variation is
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absolutely continuous with respect to the weight. Moreover, a lemma of Simon
[Sim83] will be employed, see 6.3. This is designed to apply the Vitali covering
theorem. In contrary to the Besicovitch Federer covering theorem, which is used
in the proof of Allard’s isoperimetric inequality [All72, 7.1], the Vitali covering
theorem does not involve a constant depending on the ambient space. Once
the isoperimetric inequality for varifolds in some Euclidean space is proved, an
isoperimetric inequality for varifolds in an appropriate submanifold of some
Euclidean space follows instantly by 5.6.

6.1 Theorem (Monotonicity identity, see [Men16a, 4.5, 4.6]). Suppose m ≤ n
are positive integers, U is an open subset of Rn, V ∈ Vm(U) and ‖δV ‖ is a
Radon measure.

Then there holds

t−m‖V ‖B(a, t) +
∫
(B(a,s)∼B(a,t))×G(n,m)

|x− a|−m−2|P⊥(x− a)|2 dV (x, P )

= s−m‖V ‖B(a, s) +
∫ s
t
u−m−1

∫
B(a,u)

(x− a) • η(V, x) d‖δV ‖x dL 1u

whenever a ∈ Rn, 0 < t ≤ s < r and B(a, r) ⊂ U .

Proof. See [Men16a, 4.2, 5, 6].

6.2 Remark. The preceding theorem is a slight generalization of [Sim83, 17.3,
17.4].

6.3 Lemma (see [Sim83, 18.7]). Suppose m is a positive integer, f and g are
real valued functions on {t : 0 < t <∞}, f is bounded and non-decreasing and

1 ≤ lim sup
t→0+

t−mf(t),

s−mf(s) ≤ r−mf(r) +

∫ r

s

t−mg(t) dL 1t

whenever 0 < s < r <∞.
Then there exists r such that 0 < r ≤ µ = (2m+1 limt→∞ f(t))1/m and

f(5r) < 2−15mµg(r).

Proof. First notice that the hypothesis 1 ≤ lim supt→0+ t
−mf(t) yields 0 < f

and 0 < µ <∞. Assume the conclusion were false. That is

2−15mµg(r) ≤ f(5r) for all 0 < r ≤ µ.

If m ≥ 2, then for 0 < s < µ/5 it would follow by the Transformation formula
[Fed69, 3.2.6]

sup
s≤t≤µ

t−mf(t) ≤ µ−mf(µ) +
2

µ

∫ µ

s

5−mt−mf(5t) dL 1t

= µ−mf(µ) +
2

5µ

∫ 5µ

5s

t−mf(t) dL 1t

= µ−mf(µ) +
2

5µ

(∫ µ

5s

t−mf(t) dL 1t+

∫ 5µ

µ

t−mf(t) dL 1t

)
≤ µ−mf(µ) +

2

5
sup
s≤t≤µ

t−mf(t) +
2

5µ
lim
t→∞

f(t)

∫ 5µ

µ

t−m dL 1t

≤ µ−m lim
t→∞

f(t) +
2

5
sup
s≤t≤µ

t−mf(t) +
2

5(m− 1)
µ−m lim

t→∞
f(t)
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and therefore,

1

2
≤ 1

2
sup

0<t≤µ
t−mf(t) = lim

s→0+

1

2
sup
s≤t≤µ

t−mf(t) < 2µ−m lim
t→∞

f(t) = 2−m,

a contradiction.
If m = 1, then

5 ≤ 2 exp(1) ≤ exp(2),

2

5

∫ 5µ

µ

t−m dL 1t =
2 log(5)

5
≤ 4

5
< 1

in the calculation above leads to the same result.

6.4 Remark. The previous lemma and its proof are adaptations of [Sim83, 18.7].
The conclusion of this lemma holds true for the following hypothesis.

Suppose m is a positive integer, f and g are bounded and non-decreasing
functions on {t : 0 < t <∞} and

1 ≤ lim sup
t→0+

t−mf(t) <∞,

s−mf(s) ≤ r−mf(r) +
∫ r
0
t−mg(t) dL 1t

for all 0 < s < r <∞.
With regard to the proof [Sim83, 18.7] and the application [Sim83, 18.6], this

is a necessary correction of the hypothesis [Sim83, 18.7]. According to [All72,
5.5 (1)], the hypothesis above would have been enough for the purpose of this
thesis. See the proof 6.5.

6.5 Theorem (Isoperimetric inequality). Suppose m is a positive integer.
Then there exists a positive and finite number Γ with the following property.
If n ≥ m is an integer, V ∈ Vm(Rn) and ‖δV ‖ is a Radon measure, then∫

{x:1≤ϕ(x)Θ∗m(‖V ‖,x)} ϕd‖V ‖

≤ Γ
(∫
ϕd‖V ‖

)1/m (∫
ϕd‖δV ‖+

∫
|P (gradϕ(x))|dV (x, P )

)
.

whenever ϕ ∈ D(Rn,R) with 0 ≤ ϕ. Here Γ = 5m21/mα(m)−1/m.

Proof. Let V ∈ Vm(Rn) such that ‖δV ‖ is a Radon measure, ϕ ∈ D(Rn,R)
such that 0 ≤ ϕ and define

Vϕ(α) =
∫
α(x, P )ϕ(x) dV (x, P ) whenever α ∈ K (Gm(Rn)).

Then Vϕ ∈ Vm(Rn) and

‖Vϕ‖(B) =
∫
B
ϕd‖V ‖

whenever B is a Borel subset of Rn. Let U be an open subset of Rn, g ∈X (Rn)
such that spt g ⊂ U and |g| ≤ 1. Then, by [All72, 2.3 (4)] and 5.4

δVϕ(g) =
∫

Dg(x) • P dVϕ(x, P ) =
∫

(Dg(x) • P )ϕ(x) dV (x, P )

=
∫

D(ϕg)(x) • P dV (x, P )−
∫

(Dϕ(x) g(x)) • P dV (x, P )

=
∫
ϕ(x)g(x) • η(V, x) d‖δV ‖x−

∫
P (g(x)) • gradϕ(x) dV (x, P )

=
∫
ϕ(x)g(x) • η(V, x) d‖δV ‖x−

∫
g(x) • P (gradϕ(x)) dV (x, P )

≤
∫
U
ϕd‖δV ‖+

∫
U×G(n,m)

|P (gradϕ(x))|dV (x, P )
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and hence

‖δVϕ‖(U) ≤
∫
U
ϕd‖δV ‖+

∫
U×G(n,m)

|P (gradϕ(x))|dV (x, P ).

Approximating closed sets by open sets from above like in 3.3 yields

‖δVϕ‖(A) ≤
∫
A
ϕd‖δV ‖+

∫
A×G(n,m)

|P (gradϕ(x))|dV (x, P )

for all closed subsets A of Rn. In particular ‖δVϕ‖ is a Radon measure. Let
a ∈ Rn such that

1 ≤ ϕ(a)Θ∗m(‖V ‖, a).

The continuity of ϕ leads to

Θ∗m(‖Vϕ‖, a) = ϕ(a)Θ∗m(‖V ‖, a).

Define a function h : {t : 0 < t <∞} → R by letting

h(t) =
∫
B(a,t)

ϕd‖δV ‖+
∫
B(a,t)×G(n,m)

|P (gradϕ(x))|dV (x, P )

for 0 < t <∞. By 6.1 it follows

s−m‖Vϕ‖B(a, s) ≤ r−m‖Vϕ‖B(a, r) +
∫ r
s
t−m‖δVϕ‖B(a, t) dL 1t

≤ r−m‖Vϕ‖B(a, r) +
∫ r
s
t−mh(t) dL 1t

whenever 0 < s ≤ r < ∞. Applying 6.3 with f = α(m)−1‖Vϕ‖B(a, ·) and
g = α(m)−1h provides 0 < r ≤ (2m+1α(m)−1‖Vϕ‖(Rn))1/m such that∫

B(a,5r)
ϕd‖V ‖ ≤ Γ(

∫
ϕd‖V ‖)1/m

∫
B(a,r)

ϕd‖δV ‖

+ Γ(
∫
ϕd‖V ‖)1/m

∫
B(a,r)×G(n,m)

|P (gradϕ(x))|dV (x, P ),

where Γ = 5m21/mα(m)−1/m. Doing so for all a ∈ {x : 1 ≤ ϕ(x)Θ∗m(‖V ‖, x)}
and applying Vitali’s covering theorem [Fed69, 2.8.5, 6, 8] to the resulting family
of closed balls, it follows∫

{x:1≤ϕ(x)Θ∗m(‖V ‖,x)} ϕd‖V ‖

≤ Γ
(∫
ϕd‖V ‖

)1/m (∫
ϕd‖δV ‖+

∫
|P (gradϕ(x))|dV (x, P )

)
,

which completes the proof.

6.6 Remark. The preceding theorem is a generalization of [All72, 7.1] since in
[All72, 7.1] the constant Γ depends on m and n. Moreover, the preceding theorem
is a slight generalization of [Sim83, 18.6] since in [Sim83, 18.6] the hypothesis
includes that V is rectifiable and ‖δV ‖ is absolutely continuous with respect
to ‖V ‖. Finally, the preceding theorem is a slight generalization of [Men09, 2.2]
since in [Men09, 2.2] the varifold V is assumed to be rectifiable.

The proof of the previous theorem is an adaptation of the proof [Sim83, 18.6].

6.7 Corollary. Suppose m ≤ n are positive integers, V ∈ Vm(Rn) and either
‖V ‖(Rn) <∞ or 0 < ‖δV ‖(Rn).

Then there holds

‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} ≤ Γ‖V ‖(Rn)1/m‖δV ‖(Rn)

for Γ = 5m21/mα(m)−1/m.
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Proof. This directly follows from 6.5 with help of Lebesgue’s increasing con-
vergence theorem [Fed69, 2.4.7] and Lebesgue’s bounded convergence theorem
[Fed69, 2.4.9].

6.8 Remark. There exists no positive and finite number ∆ satisfying

‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} ≤ ∆‖V ‖(Rn)1/m‖δV ‖{x : 1 ≤ Θ∗m(‖V ‖, x)}

whenever V ∈ Vm(Rn) and ‖V ‖(Rn) <∞.
To see this, define functions ϕ : {t : 0 ≤ t < ∞} → R and θ : Rm → R by

letting

ϕ(t) = sup{0, inf{1, (2− t)}} whenever 0 ≤ t <∞,
θ(x) = ϕ(|x|) whenever x ∈ Rm.

Let V be the corresponding varifold as in 5.18 for some T ∈ G(n,m) and θ
as above. In view of 5.18 there holds ‖δV ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} = 0 but
‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} = α(m) and ‖V ‖(Rn) <∞.

6.9 Definition (see [Men09, 2.3]). Suppose m is a positive integer.
Then the smallest real number Γ having the property described in 6.7 is

denoted by γ(m).

6.10 Remark (see [Men09, 2.4]). It is not known to the author whether or not
γ(m) is the same as the constant in [Men09, 2.3]. It could be larger but not
smaller. There holds

m−1α(m)−1/m ≤ γ(m) ≤ 5m21/mα(m)−1/m

as one could take V ∈ Vm(Rm) such that V (α) =
∫
U(0,1)

α(x,1Rm) dLmx

whenever α ∈ K (Gm(Rm)).

6.11 Corollary. Suppose m ≤ n are positive integers, 0 < d <∞, V ∈ Vm(Rn)
and either ‖V ‖(Rn) <∞ or 0 < ‖δV ‖(Rn).

Then there holds

‖V ‖{x : d ≤ Θ∗m(‖V ‖, x)} ≤ γ(m)d−1/m‖V ‖(Rn)1/m‖δV ‖(Rn).

Proof. This is easy to calculate by 6.7.

6.12 Remark. All of the following corollaries can be analogously formulated like
above. But there is no positive and finite number ∆ such that

‖V ‖{x : 0 < Θ∗m(‖V ‖, x)} ≤ ∆‖V ‖(Rn)1/m‖δV ‖(Rn)

for all V ∈ Vm(Rn) with ‖V ‖(Rn) <∞ and ‖δV ‖(Rn) <∞.
To see this, let W be the varifold which corresponds to the m dimensional

sphere, ε > 0 and V = εW . Then ‖V ‖ = ε‖W‖, Θ∗m(‖V ‖, ·) = εΘ∗m(‖W‖, ·)
and ‖δV ‖ = ε‖δW‖. Let ε tend to zero to see that there exists no such ∆.

6.13 Corollary. Suppose m ≤ n are positive integers, U is an open subset
of Rn, j : U → Rn is the inclusion map, V ∈ Vm(U), j[spt ‖V ‖] is closed in Rn

and either ‖V ‖(U) <∞ or 0 < ‖δV ‖(U).
Then there holds

‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} ≤ γ(m)‖V ‖(U)1/m‖δV ‖(U).
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Proof. The corollary above is a slight generalization of 6.7. Its proof follows
from 5.7.

6.14 Remark. One cannot drop the assumption that j[spt ‖V ‖] is closed in Rn.
Otherwise one could take U = Rn ∩ {x : |x| < 1} and V = v(U ∩ T ) ∈ Vm(U)
for some T ∈ G(n,m). Then ‖V ‖(U) = α(m) and ‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} =
α(m) but δV = 0.

6.15 Corollary. Suppose k ≤ m < n are positive integers, M is a smooth
m dimensional submanifold of Rn, the inclusion map i : M → Rn is proper,
V ∈ Vk(M) and ‖V ‖(M) <∞.

Then, if k = m there holds

‖V ‖{x : 1 ≤ Θ∗m(i#‖V ‖, x)}
≤ γ(m)‖V ‖(M)1/m

(
‖δV ‖(M) +

∫
|h(M,x)|d‖V ‖x

)
and if k < m there holds

‖V ‖{x : 1 ≤ Θ∗m(i#‖V ‖, x)}
≤ γ(m)‖V ‖(M)1/m

(
‖δV ‖(M) +

∫
|h(M ;x, P )|dV (x, P )

)
.

Proof. This is a consequence of 5.6.

6.16 Corollary (see [All72, 7.2]). Suppose m < n are positive integers, M is a
smooth m dimensional submanifold of Rn, H m(M) <∞ and

B = lim inf
r→0+

H m−1(M ∩ {x : dist(x, (ClosM)∼M) = r}).

Then there holds

H m(M)1−1/m ≤ γ(m)(B +
∫
M
|h(M,x)|dH mx).

Proof. See the proof [All72, 7.2].

7 Density Bounds

Suppose m ≤ n are positive integers and V is an m dimensional rectifiable
varifold in Rn such that the m dimensional density of ‖V ‖ is at least one outside
a set of ‖V ‖ measure zero. In this section the isoperimetric inequality is used to
study the set of points in spt ‖V ‖ where the lower m dimensional density of ‖V ‖
is strictly less than one. This set will be estimated in terms of the one dimensional
Hausdorff measure. If m < n, then this set might be far away from having finite
m dimensional Hausdorff measure, see 5.16. Therefore, an additional assumption
is required. Here this will be the assumption that V is indecomposable. First a
lemma originally of Allard [All72] is established, see 7.2. This lemma is naturally
related to the notion of indecomposable varifold. Actually, it shows how to
cut a varifold along a level set of a real valued Lipschitzian function f . The
resulting formula allows to make use of the isoperimetric inequality for the
varifold V x{x : f(x) < r} × G(n,m), where r is a positive and appropriate
small number. This will be indicated in 7.5 and provides a lower bound of the
weight’s m dimensional density quotient presupposed the derivative quotient of
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‖δV ‖ by ‖V ‖1−1/m is small. The main part of the final proof is to reduce the
mentioned assumption on the derivative quotient to the assumption that the one
dimensional density quotient of ‖V ‖ x |h(V ; ·)|m−1 is small. This will be done in
Lemma 7.10. Most of the statements are more general than necessary for the
purpose of this section. This is designed to make use of 7.10 in Section 8.

7.1. A useful set of hypotheses is gathered here for later reference.
Suppose m ≤ n are positive integers, V ∈ RVm(Rn), ‖δV ‖ is a Radon

measure, f : Rn → R is a Lipschitzian function and

F (x) = (‖V ‖,m) ap Df(x) ◦ Tanm(‖V ‖, x)

for ‖V ‖ almost all x.
Notice that f is (‖V ‖,m) approximately differentiable at ‖V ‖ almost all x

and F defines a ‖V ‖ measurable function by [Men12b, 4.5]. Moreover, f is
generalized V weakly differentiable in the sense of [Men16a, 8.3], by [Men16a,
8.7]. Actually F equals the generalized V weak derivative of f .

7.2 Lemma (see [All72, 4.10 (1)], [Men16a, 8.29]). Suppose m, n, V , f and F
are related as in 7.1 and g ∈X (Rn).

Then, for r ∈ R there holds

δV (χf,rg) = δ(V x{x : f(x) < r} ×G(n,m))(g)

− lim
h→0+

h−1
∫
{x:r−h≤f(x)<r}

〈g(x), F (x)〉d‖V ‖x,

where χf,r denotes the characteristic function of {x : f(x) < r}.

Proof. By [Men16a, 8.7], the same method of proof [All72, 4.10 (1)] applies. See
also [Men16a, 8.29] for a more general statement.

Besides the fact that the weight of an indecomposable varifold has connected
support, which also follows from 7.2, see [Men16a, 6.5], the only additional
property of indecomposable varifolds used in this thesis will be the following
theorem. Actually, the theorem shows in which sense the connectedness of the
weight’s support persists if one subtracts sets of weight measure zero.

7.3 Theorem. Suppose m, n, V , f and F are related as in 7.1, V is inde-
composable, S ⊂ spt ‖V ‖, ‖V ‖(Rn∼S) = 0, ‖F (x)‖ ≤ 1 for ‖V ‖ almost all x,
inf f [spt ‖V ‖] < r < s < sup f [spt ‖V ‖] and (spt ‖V ‖) ∩ {x : r ≤ f(x) ≤ s} is
compact.

Then there holds

L 1({y : r ≤ y ≤ s}∼ f [S]) = 0.

Proof. Define µ = f#(‖V ‖ x{x : r ≤ f(x) ≤ s}). Then µ is a Radon measure
over R by 3.7. There holds µ(R) <∞ and

µ(R∼ f [S]) ≤ ‖V ‖(Rn∼S) = 0.

Hence, f [S] is µ measurable and one may apply [Fed69, 2.10.19 (4)] to obtain

Θ1(µ x f [S], y) = 0 for L 1 almost all y ∈ R∼ f [S].
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If
0 < L 1({y : r ≤ y ≤ s}∼ f [S])

were true, there would exist r < y < s such that

Θ1(µ, y) ≤ Θ∗1(µ x f [S], y) + Θ∗1(µ xR∼ f [S], y) = 0.

Then 7.2 would imply

(δV ) x{x : f(x) < y} = δ(V x{x : f(x) < y} ×G(n,m)),

which would be incompatible with the indecomposability of V as one could find
x1, x2 ∈ spt ‖V ‖ such that f(x1) < y < f(x2).

7.4 Remark. A slightly weaker statement and the same method of proof have
been used by Menne in [Men12a, 2.2].

7.5 Theorem. Suppose m, n, V , f and F are related as in 7.1, ‖F (x)‖ ≤ 1
for ‖V ‖ almost all x, 0 < r <∞ and

‖V ‖{x : f(x) ≤ 0} = 0,

0 < ‖V ‖{x : f(x) < s} <∞ for all 0 < s ≤ r,
Θm(‖V ‖, a) ≥ 1 for ‖V ‖ almost all a ∈ {x : f(x) < r}.

Then there holds

r ≤ γ(m)m‖V ‖({x : f(x) < r})1/m

+ γ(m)

∫ r

0

‖δV ‖{x : f(x) < s}‖V ‖({x : f(x) < s})(1/m)−1 dL 1s.

Proof. Define a function µ : R→ R by letting

µ(t) = ‖V ‖{x : f(x) < inf{t, r}} for t ∈ R.

Then µ is non-decreasing and L 1 almost everywhere differentiable by [Fed69,
2.9.19]. Notice that

Θ∗m(‖V x{x : f(x) < s} ×G(n,m)‖, a) = Θ∗m(‖V ‖, a)

whenever 0 < s < r and a ∈ {x : f(x) < s} as f is continuous. Hence, 6.7 and
7.2 yield

µ(s)1−1/m ≤ γ(m)‖δ(V x{x : f(x) < s} ×G(n,m))‖(Rn)

≤ γ(m)

(
‖δV ‖{x : f(x) < s}+ lim

h→0+
h−1‖V ‖{x : s− h ≤ f(x) < s}

)
= γ(m) (‖δV ‖{x : f(x) < s}+ µ′(s))

for L 1 almost all 0 < s < r. Define p : R→ R by letting p(t) = |t|1/m whenever
t ∈ R. Dividing the inequality above by µ(s)1−(1/m) leads to

1 ≤ γ(m)
(
µ(s)(1/m)−1‖δV ‖{x : f(x) < s}+ µ(s)(1/m)−1µ′(s)

)
= γ(m)

(
µ(s)(1/m)−1‖δV ‖{x : f(x) < s}+m(p ◦ µ)′(s)

)
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for L 1 almost all 0 < s < r. The conclusion follows by integrating this inequality
as ∫ r

0
(p ◦ µ)′ dL 1 ≤ Vr

0(p ◦ µ) = µ(r)1/m

by [Fed69, 2.9.19].

7.6 Corollary (see [All72, 8.3], [Men09, 2.5]). Suppose

‖δV ‖{x : f(x) < s} ≤ (2γ(m))−1‖V ‖({x : f(x) < s})1−1/m

for L 1 almost all 0 < s < r.
Then there holds

rm ≤ (2mγ(m))m‖V ‖{x : f(x) < r}.

7.7 Remark. The proof of the previous theorem is an adaptation of [All72, 8.3].
Its corollary is a generalization of [Men09, 2.5]. The hypothesis in the previous
corollary is equivalent to the following.

Suppose Q is dense in {t : 0 < t < r} and

‖δV ‖{x : f(x) ≤ s} ≤ (2γ(m))−1‖V ‖({x : f(x) ≤ s})1−1/m

for all s ∈ Q.
This is a consequence of 3.3.

7.8. Suppose m ≤ n are positive integers, V ∈ RVm(Rn), spt ‖V ‖ is compact,
0 < δ ≤ ∞ and σ is a metric over spt ‖V ‖ such that

σ(x, y) ≤ |x− y| whenever x, y ∈ spt ‖V ‖ and |x− y| ≤ δ.

Let a ∈ spt ‖V ‖. Then σ(a, ·) is a Lipschitzian function as spt ‖V ‖ is compact.
By [Fed69, 2.10.44] there exists a Lipschitzian extension f : Rn → R of σ(a, ·).
As already mentioned in 7.1, f is (‖V ‖,m) approximately differentiable at ‖V ‖
almost all x. By the definition of the (‖V ‖,m) approximative differential [Fed69,
3.2.16] and 3.2, the (‖V ‖,m) approximative differential does not depend on the
Lipschitzian extension f of σ(a, ·). Moreover, according to [Men16b, 6.2] and
[Fed69, 3.2.16], there holds

‖(‖V ‖,m) ap Df(x)‖ ≤ 1

for ‖V ‖ almost all x.

7.9. A useful set of hypotheses is gathered here for later reference.
Suppose m ≤ n are positive integers, V ∈ RVm(Rn), ‖δV ‖ is a Radon

measure, V is indecomposable,

Θm(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x

and

1. either m = 1 and ψ = ‖V ‖,

2. or m = 2 and ψ = ‖δV ‖,

28



3. or m ≥ 3, ‖δV ‖ is absolutely continuous with respect to ‖V ‖ and

ψ(A) =
∫ ∗
A
|h(V ;x)|m−1 d‖V ‖x whenever A ⊂ Rn.

Notice that ψ defines a Borel regular measure over Rn, see 3.5.

7.10 Lemma. Suppose m, n, V and ψ are related as in 7.9, the Borel regular
measure ψ is a Radon measure, 0 < δ ≤ ∞, either δ =∞ or spt ‖V ‖ is compact,
σ is a metric over spt ‖V ‖,

|x− y| ≤ σ(x, y) whenever x, y ∈ spt ‖V ‖,
σ(x, y) = |x− y| whenever x, y ∈ spt ‖V ‖ and |x− y| ≤ δ,

a ∈ spt ‖V ‖, 0 < r < sup{σ(a, x) : x ∈ spt ‖V ‖} and

ψ{x : σ(a, x) ≤ r} < ηr,

where η = (m2m+2β(1)γ(m)m)−1.
Then there holds

rm ≤ (mγ(m))m22m‖V ‖{x : σ(a, x) ≤ r}.

Proof. Define balls with respect to σ by

U(x, s, σ) = spt ‖V ‖ ∩ {y : σ(x, y) < s},
B(x, s, σ) = spt ‖V ‖ ∩ {y : σ(x, y) ≤ s}

whenever x ∈ spt ‖V ‖ and 0 < s <∞. Let S be the set which consists exactly
of those x ∈ spt ‖V ‖ for which

lim sup
s→0+

‖V ‖(B(x, s, σ))(1/m)−1‖δV ‖B(x, s, σ) < (2γ(m))−1

and let P be the set which consists exactly of those x ∈ U(a, r, σ) ∩ S for which

sm ≤ (2mγ(m))m‖V ‖B(x, s, σ) whenever 0 < s < r − σ(a, x).

Let f : Rn → R be any Lipschitzan extension of σ(a, ·). It will be shown that

L 1(f [B(a, r/2, σ) ∩ S∼P ]) < r/2.

For this purpose assume y is any point in f [B(a, r/2, σ) ∩ S∼P ], choose x ∈
B(a, r/2, σ) ∩ S∼P such that f(x) = y and let

s = inf{t : ‖V ‖(B(x, t, σ))1−1/m < 2γ(m)‖δV ‖B(x, t, σ)}.

The definition of S and P and 7.6 in conjunction with 7.8 and 3.2 yield

0 < s < r − σ(a, x), B(x, s, σ) ⊂ B(a, r, σ).

Notice that the hypothesis for m ≥ 3 implies

‖δV ‖(B) =
∫
B
|h(V ; ·)|d‖V ‖
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whenever B is a Borel subset of Rn. By 3.3 and Hölder’s inequality [Fed69,
2.4.14] one calculates for m ≥ 2

(2γ(m))−1‖V ‖(B(x, s, σ))1−1/m ≤ ‖δV ‖B(x, s, σ)

≤ ‖V ‖(B(x, s, σ))1−1/(m−1)ψ(B(x, s, σ))1/(m−1)

and therefore, by 7.6

(2mγ(m))−1s ≤ ‖V ‖(B(x, s, σ))1/m ≤ (2γ(m))m−1ψB(x, s, σ),

s ≤ m(2γ(m))mψB(x, s, σ).

If m = 1, the last inequality directly follows from 7.6. Hence, there holds

m(2γ(m))m
(
f#(ψ xB(a, r, σ))

)
B(y, s) ≥ m(2γ(m))mψB(x, s, σ) ≥ s,

as B(x, s, σ) ⊂ B(a, r, σ) ∩ f−1[B(y, s)]. The Besicovitch Federer covering
theorem leads to

L 1(f [B(a, r/2, σ) ∩ S∼P ]) ≤ 2β(1)m(2γ(m))mψB(a, r, σ) < r/2.

The hypothesis on σ yields that S consists exactly of those x ∈ spt ‖V ‖ for which

lim sup
s→0+

‖V ‖(B(x, s))(1/m)−1‖δV ‖B(x, s) < (2γ(m))−1.

Hence, ‖V ‖(Rn∼S) = 0 by [Fed69, 2.8.18, 2.9.5] and the fact that ‖V ‖{x} = 0
for ‖V ‖ almost all x as V is rectifiable, see also 5.5. In view of 7.8, one may
apply 7.3 to obtain

r/2 = L 1({y : 0 ≤ y ≤ r/2} ∩ f [S]) = L 1(f [B(a, r/2, σ) ∩ S])

≤ L 1(f [B(a, r/2, σ) ∩ S∼P ]) + L 1(f [B(a, r/2, σ) ∩ P ])

< r/2 + L 1(f [B(a, r/2, σ) ∩ P ]).

This means

0 < L 1(f [B(a, r/2, σ) ∩ P ]), B(a, r/2, σ) ∩ P 6= ∅.

Choose any x ∈ B(a, r/2, σ)∩P . Then there holds r− σ(x, a) ≥ r/2 and by the
definition of P

sm(2mγ(m))−m ≤ ‖V ‖B(x, s, σ) ≤ ‖V ‖B(a, r, σ) whenever 0 < s < r/2,

rm ≤ (22mγ(m))m‖V ‖B(a, r, σ)

which completes the proof.

7.11 Remark. The conclusion of the previous lemma is a weaker version of that
in [Top08, 1.2]. Instead of the Michael-Simon Sobolev inequality [Top08, 2.1]
the isoperimetric inequality, or more precisely 7.6, has been used in the proof
above.
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7.12 Lemma. Suppose n is a positive integer, 1 < d <∞, µ is a Radon measure
over Rn, Θd(µ, x) = 0 for µ almost all x, f is a nonnegative µ measurable
function and the Borel regular measure ψ over Rn defined by

ψ(A) =
∫ ∗
A
f dµ whenever A ⊂ Rn

is a Radon measure.
Then there holds

Θ1(ψ, x) = 0 for H 1 almost all x.

Proof. First notice that µ is absolutely continuous with respect to H d by [Fed69,
2.10.19 (1)]. For each positive integer i define

Bi = {x : |x| ≤ i, Θ∗1(ψ, x) > i−1}

and infer from [Fed69, 2.10.19 (3)] that

i−1H 1(Bi) ≤ ψ(Bi).

Since Bi is bounded it follows ψ(Bi) <∞, H 1(Bi) <∞, H d(Bi) = 0, µ(Bi) =
0, ψ(Bi) = 0, H 1(Bi) = 0. The conclusion follows as {x : Θ∗1(ψ, x) > 0} =⋃∞
j=1Bj .

7.13 Remark. The previous proof is an adaptation of [FZ73, p. 152, l. 9–16].

7.14 Theorem. Suppose 2 ≤ m, n, V and ψ are related as in 7.9, ‖δV ‖ is
absolutely continuous with respect to ‖V ‖ and the Borel regular measure ψ is a
Radon measure.

Then there holds

Θm
∗ (‖V ‖, x) ≥ 1 for H 1 almost all x ∈ spt ‖V ‖.

Proof. Let 1 < d < 2. By [All72, 3.5 (1)(a)] it follows that Θd(‖V ‖, x) = 0 for
‖V ‖ almost all x. Apply 7.12 to infer that Θ1(ψ, x) = 0 for H 1 almost all
x ∈ Rn. Now 7.10 implies

Θm
∗ (‖V ‖, x) ≥ (mγ(m))−m2−2mα(m)−1 for H 1 almost all x ∈ spt ‖V ‖.

The conclusion follows by [Men09, 2.11].

7.15 Remark. Suppose m < n. Then one cannot replace the assumption that
V is indecomposable by assuming spt ‖V ‖ to be path-connected instead. To
see this, let V ∈ RVm(Rn) be a varifold which is related to U = Rn ∩ {x :
|x| < 1} as described in 5.16. If there held Θm

∗ (‖V ‖, x) ≥ 1 for H 1 almost all
x ∈ Rn ∩ {x : |x| ≤ 1}, then in particular Θm

∗ (‖V ‖, x) ≥ 1 for H m almost all
x ∈ Rn ∩ {x : |x| ≤ 1} and [Fed69, 2.10.19 (3)] would imply

‖V ‖(Rn ∩ {x : |x| ≤ 1}) ≥H m(Rn ∩ {x : |x| ≤ 1}) =∞.

A contradiction.

7.16 Remark. One cannot drop the assumption that ‖δV ‖ is absolutely continuous
with respect to ‖V ‖. To see this, let T ∈ G(n,m), and V = v(T ∩ {x : |x| ≤
1}) ∈ RVm(Rn). Then Θm(‖V ‖, a) ≤ 1/2 whenever a ∈ T ∩ {x : |x| = 1} and

0 < H m−1(Sm−1) = H m−1(T ∩ {x : |x| = 1}) ≤H 1(T ∩ {x : |x| = 1}).
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7.17 Theorem (see [Men16a, 4.8 (4)]). Suppose n is a positive integer, V ∈
RV1(Rn), ‖δV ‖ is a Radon measure, V is indecomposable and

Θ1(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x.

Then then there holds

Θ1
∗(‖V ‖, x) ≥ ∆ whenever x ∈ spt ‖V ‖,

where ∆ = inf{(23β(1)γ(1)α(1))−1, (γ(1)22α(1))−1}.

Proof. This follows from 7.10. Actually, the theorem is a weaker version of
[Men16a, 4.8 (4)].

8 Geodesic Distance and Diameter Control

Suppose m ≤ n are positive integers, V is an m dimensional rectifiable varifold
in Rn, ‖δV ‖ is a Radon measure, V is indecomposable, ‖V ‖(Rn) < ∞, the
m dimensional density of ‖V ‖ is bounded below by one, outside a set of ‖V ‖
measure zero and if m ≥ 3, then ‖δV ‖ is absolutely continuous with respect
to ‖V ‖. In this section the intrinsic diameter d of spt ‖V ‖ will be estimated in
terms of the generalized mean curvature by

d ≤ Γ
∫
|h(V ;x)|m−1 d‖V ‖x

where the positive and finite number Γ only depends on m. The main part of
the proof is already done in 7.10. First, the notion of geodesic distance over
a closed subset of Rn will be established. If two points have finite geodesic
distance, a shortest path connection of these points exists. Actually, this path
may be chosen to be Lipschitzian and to be parametrized by arclength. It will be
shown how to approximate the geodesic distance by a sequence of metrics, which
are locally Lipschitzian with respect to the Euclidean distance. This allows to
make use of 7.10. Finally, a local property concerning the geodesic distance over
spt ‖V ‖ will be established.

8.1 Definition (Pseudometric, see [Men16b, 2.2]). Suppose X is a set.

Then a map ρ : X ×X → {t : 0 ≤ t ≤ ∞} is called pseudometric over X if
and only if the following three conditions are satisfied.

1. If x ∈ X, then ρ(x, x) = 0.

2. If x, y ∈ X, then ρ(x, y) = ρ(y, x).

3. If x, y, z ∈ X, then ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

8.2 (Continuity of a metric). Suppose n is a positive integer, X is a subset
of Rn and ρ is a metric over X. One calculates

|ρ(x0, y0)− ρ(x, y)| ≤ |ρ(x0, y0)− ρ(y0, x)|+ |ρ(y0, x)− ρ(y, x)|
≤ ρ(x0, x) + ρ(y0, y)
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whenever (x0, y0), (x, y) ∈ X×X. Now assume x0 ∈ X and ρ(x0, ·) is continuous
at x0 with respect to the Euclidean distance over X. Then for each ε > 0 there
exists δ > 0 such that

ρ(x0, x) = |ρ(x0, x0)− ρ(x0, x)| ≤ ε whenever x ∈ X and |x0 − x| ≤ δ.

Hence, the map ρ : X × X → R is continuous with respect to the Euclidean
distance over X ×X if and only if for each a ∈ X, the map ρ(a, ·) is continuous
at a with respect to the Euclidean distance over X.

8.3 (Geodesic distance, see [Men16b, 6.3]). Suppose n is a positive integer and
X is a closed subset of Rn. Whenever 0 < δ ≤ ∞, one may define a pseudometric

σδ : X ×X → R

over X by letting σδ(a, x) for a, x ∈ X denote the infimum of the set of numbers

j∑
i=1

|xi − xi−1|

corresponding to all finite sequences x0, x1, . . . , xj in X with x0 = a, xj = x and
|xi − xi−1| ≤ δ for i = 1, . . . , j and j ∈P.

Define a further pseudometric

ρ : X ×X → R

over X by letting ρ(a, x) for a, x ∈ X denote the infimum of the set of numbers

Vsup I
inf I g

corresponding to continuous maps g : R → X such that g(inf I) = a and
g(sup I) = x for some compact subinterval I of R, where the length of g is
computed with respect to the Euclidean distance.

8.4 Lemma (see [Fed69, 2.5.16]). Suppose n is a positive integer, X is a closed
subset of Rn, g : R→ X is continuous, −∞ < s ≤ t <∞ and Vt

sg <∞.
Then there exists a map G : R→ X satisfying

Vt
sg = V

Vt
sg

0 G, G(0) = g(s), G(Vt
sg) = g(t), Lip(G) ≤ 1.

Proof. See the proof [Fed69, 2.5.16].

8.5 Lemma (see [Men16b, 6.3]). Suppose n, X, σδ and ρ are related as in 8.3
whenever 0 < δ ≤ ∞ and suppose a, x ∈ X.

Then there holds
ρ(a, x) = lim

δ→0+
σδ(a, x).

Proof. First notice that limδ→0+ σδ(a, x) exists in R since σδ(a, x) ≤ σε(a, x)
whenever 0 < ε ≤ δ ≤ ∞. Denote this limit by σ(a, x). First it will be shown
that σ(a, x) ≤ ρ(a, x). For this purpose assume ρ(a, x) < ∞ and let ε > 0.
By 8.4, there exists 0 ≤ u ≤ ρ(a, x) + ε and a map g : R→ X satisfying

Vu
0g ≤ ρ(a, x) + ε, g(0) = a, g(u) = x, Lip(g) ≤ 1.
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Let 0 < δ ≤ ∞, m ∈P and 0 = t0 ≤ t1 ≤ . . . ≤ tm = u, such that |tj−tj−1| ≤ δ
for j = 1, . . . ,m. Then there holds |g(tj)− g(tj−1)| ≤ δ for j = 1, . . . ,m and

σδ(a, x) ≤
∑m
j=1 |g(tj)− g(tj−1)| ≤

∑m
j=1 V

tj
tj−1

g = Vu
0g ≤ ρ(a, x) + ε.

Hence, σ(a, x) ≤ ρ(a, x).

To prove the reverse inequality, assume σ(a, x) <∞. For each positive inte-
ger i choose 0 < δi ≤ 1/i, mi ∈P and a finite sequence a = xi,0, xi,1, . . . , xi,mi =
x in X such that

|xi,j − xi,j−1| ≤ δi for j = 1, . . . ,mi,

σ(a, x)− (1/i) ≤ σδi(a, x) ≤
∑mi

j=1 |xi,j − xi,j−1| ≤ σδi(a, x) + (1/i).

Choose a Lipschitzian function fi : R→ Rn satisfying Lip(fi) ≤ 1 and

fi

(∑k
j=1 |xi,j − xi,j−1|

)
= xi,k for k = 0, . . . ,mi.

There holds

fi(0) = a, fi(t) = x for some σ(a, x)− (1/i) ≤ t ≤ σ(a, x) + (1/i).

The Arzélà Ascoli theorem for Lipschitzian functions [Fed69, 2.10.21] provides
a sequence k1 < k2 < . . . of positive integers and a Lipschitzian function
g : R → Rn such that the sequence fk1 , fk2 , . . . converges locally uniformly
to g. Then Lip(g) ≤ 1, g(0) = a and g(σ(a, x)) = x. Next it will be shown
that im g|{t : 0 ≤ t ≤ σ(a, x)} ⊂ X. For this purpose let 0 ≤ t ≤ σ(a, x). The
construction above provides a sequence t1, t2, . . . of real numbers in {s : 0 ≤ s ≤
σ(a, x) + 1} such that tj → t as j → ∞ and such that for each j ∈ P there
exists k ∈ {0, . . . ,mkj} satisfying fkj (tj) = xkj ,k ∈ X. It follows

|g(t)− fkj (tj)| ≤ |g(t)− fkj (t)|+ |fkj (t)− fkj (tj)|
≤ |g(t)− fkj (t)|+ |t− tj | → 0 as j →∞.

The closedness of X implies g(t) ∈ X. Hence,

ρ(a, x) ≤ V
σ(a,x)
0 g ≤ σ(a, x)

which completes the proof.

8.6 Lemma (Existence of geodesics, see [Men16b, 6.3]). Suppose n, X and ρ
are related as in 8.3, a, x ∈ X and ρ(a, x) <∞.

Then there exists a map g : R→ X such that

g(0) = a, g(ρ(a, x)) = x, Lip(g) ≤ 1,

V
ρ(a,x)
0 g = H 1{g(t) : 0 ≤ t ≤ ρ(a, x)} = ρ(a, x),

g|{t : 0 ≤ t ≤ ρ(a, x)} is injective, g is a Lipschitzian function with respect to ρ,
W = {g(t) : 0 ≤ t ≤ ρ(a, x)} is compact with respect to ρ and ρ|(W ×W ) is
continuous with respect to the Euclidean distance.
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Proof. The second part of the proof 8.5 shows how to construct a map g : R→ X
satisfying

g(0) = a, g(ρ(a, x)) = x, Lip(g) ≤ 1, V
ρ(a,x)
0 g = ρ(a, x).

Assume 0 ≤ t1 ≤ t2 ≤ ρ(a, x) such that g(t1) = g(t2). Then there holds

ρ(a, x) ≤ ρ(a, g(t1)) + ρ(g(t2), x) ≤ Vt1
0 g + V

ρ(a,x)
t2 g ≤ t1 + ρ(a, x)− t2.

Hence, t1 = t2 and g|{t : 0 ≤ t ≤ ρ(a, x)} is injective. This implies

V
ρ(a,x)
0 g = H 1{g(t) : 0 ≤ t ≤ ρ(a, x)}

by [Fed69, 2.10.13]. Whenever −∞ < t1 ≤ t2 <∞, there holds

ρ(g(t1), g(t2)) ≤ Vt2
t1g ≤ |t2 − t1|.

Therefore, g is a Lipschitzian function with respect to ρ and W = {g(t) : 0 ≤
t ≤ ρ(a, x)} is compact with respect to ρ. The continuity of ρ|(W ×W ) follows
from the inequality above, since (g|{t : 0 ≤ t ≤ ρ(a, x)})−1 is continuous.

8.7 Example. For each positive integer i define

Si = R2 ∩ {z : |z| = i−1},
Ti = R2 ∩ {(x, y) : (i+ 1)−1 ≤ (−1)ix ≤ i−1, y = 0}

and define

X = Clos
⋃∞
i=1(Si ∪ Ti).

Then X is compact and path-connected but has infinite diameter with respect
to ρ as in 8.3.

8.8 Example (The comb). For each positive integer i define

Ti = R2 ∩ {(x, y) : x = i−1, 0 ≤ y ≤ 1}

and define

X = R2 ∩ {(x, y) : 0 ≤ x ≤ 1, y = 0} ∪ Clos
⋃∞
i=1 Ti.

Then X has finite diameter with respect to ρ as in 8.3, but ρ is not continuous
with respect to the Euclidean distance.

The essential reason for the non-continuity of the geodesic distance over the
comb, is that the comb has infinite one dimensional Hausdorff measure. This
clarifies the following theorem.

8.9 Theorem. Suppose n, X and ρ are related as is 8.3, X is connected and
H 1(X) <∞.

Then ρ is a metric over X, X is compact with respect to ρ and ρ is continuous
with respect to the Euclidean distance.
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Proof. Assume X consists of at least two elements. The connectedness of X
implies

diamX = sup{H 1(λ[X]) : λ = |x− · | for some x ∈ X} ≤H 1(X).

Therefore, X is compact. According to [EH43, Theorem 2], there exists a
continuous map f : {t : 0 ≤ t ≤ 1} → X satisfying

im f = X, V1
0f ≤ 2H 1(X)− diamX.

Hence, ρ is a metric over X. Define a map s : {t : 0 ≤ t ≤ 1} → R by

s(t) = Vt
0f whenever 0 ≤ t ≤ 1.

Then s is continuous, see [Fed69, 2.5.16], and

ρ(f(t1), f(t2)) ≤ |Vt2
t1f | = |s(t1)− s(t2)|

whenever t1, t2 ∈ {t : 0 ≤ t ≤ 1}. Therefore, f is continuous with respect to ρ
and X is compact with respect to ρ. Next the continuity of ρ will be shown. For
this purpose let a ∈ X and x1, x2, . . . be a sequence in X such that |a− xi| → 0
as i → ∞. In view of 8.2, it is enough to show that there exists a sequence
k1 < k2 < . . . of positive integers such that

ρ(a, xki)→ 0 as i→∞.

The compactness of X with respect to ρ provides a sequence k1 < k2 < . . . of
positive integers and b ∈ X satisfying ρ(b, xki)→ 0 as i→∞. It follows b = a
as |x− y| ≤ ρ(x, y) whenever x, y ∈ X.

8.10 Lemma (see [Men16b, 6.4]). Suppose n, X, 0 < δ ≤ ∞ and σδ are related
as in 8.3 and X is connected.

Then the following three statements hold true.

1. The pseudometric σδ is a metric over X.

2. Whenever x, y ∈ X, there holds |x− y| ≤ σδ(x, y).

3. Whenever x, y ∈ X and |x− y| ≤ δ, there holds σδ(x, y) = |x− y|.

Proof. The statements (2) and (3) directly follow from the definition of σδ. They
imply

σδ(x, y) > 0 whenever x, y ∈ X and x 6= y.

To prove (1), it remains to show that σδ(x, y) <∞ whenever x, y ∈ X. For this
purpose let a be any point in X and define

U(a) = X ∩ {x : σδ(a, x) <∞}.

Then U(a) 6= ∅ as a ∈ U(a). Moreover, X ∩ {y : |x− y| < δ} ⊂ U(a) whenever
x ∈ U(a). Hence, U(a) is open in X. Let x1, x2, . . . be a sequence in U(a)
which converges in X to some x ∈ X. Then there exists an integer j such that
|xj − x| ≤ δ. Therefore,

σδ(a, x) ≤ σδ(a, xj) + δ <∞

and x ∈ U(a). This means that U(a) is closed. The connectedness of X yields
U(a) = X, which completes the proof.
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8.11 Theorem. Suppose m, n, V and ψ are related as in 7.9, ‖V ‖(Rn) <∞
and d is the intrinsic diameter of spt ‖V ‖, that is d = sup ρ[X ×X], where ρ is
the pseudometric over X = spt ‖V ‖ as in 8.3.

Then there holds
d ≤ Γψ(Rn),

for some positive and finite number Γ which depends only on m. In particular
spt ‖V ‖ is compact if ψ(Rn) <∞.

Proof. Assume ψ(Rn) <∞ and V 6= 0. Define constants depending on m by

Γ1(m) = mγ(m)22, Γ2(m) = mγ(m)m22,

∆(m) = mβ(1)γ(m)m2m+2.

Apply 7.10 with δ =∞ to obtain

diam spt ‖V ‖ ≤ sup{Γ1(m),∆(m)}
(
ψ(Rn) + ‖V ‖(Rn)1/m

)
.

Hence, spt ‖V ‖ is compact. Moreover, spt ‖V ‖ is connected by 5.11 as V is
indecomposable. If m = 1, then 7.10 in conjunction with 8.10 and 8.5 implies

d ≤ (Γ1(1) + ∆(1))ψ(Rn).

Now assume m ≥ 2. Let 0 < δ < ∞ and σδ be the pseudometric over X =
spt ‖V ‖ as in 8.3. Suppose a is any point in spt ‖V ‖ and define

r = sup{σδ(a, x) : x ∈ spt ‖V ‖}.

In the case
r ≤ mγ(m)22‖V ‖(Rn)1/m

one calculates by the isoperimetric inequality and Hölder’s inequality

‖V ‖(Rn)1−1/m ≤ γ(m)‖δV ‖(Rn) ≤ γ(m)‖V ‖(Rn)1−1/(m−1)ψ(Rn)1/(m−1),

r ≤ m22γ(m)mψ(Rn) = Γ2(m)ψ(Rn).

In the case
mγ(m)22‖V ‖(Rn)1/m < r,

7.10 in conjunction with 8.10 implies

r ≤ m2m+2β(1)γ(m)mψ(Rn) = ∆(m)ψ(Rn).

In both cases there holds

r ≤ sup{Γ2(m),∆(m)}ψ(Rn).

The conclusion follows for Γ = sup{Γ1(m) + ∆(m),Γ2(m),∆(m)} by 8.5.

8.12 Remark. Obviously one cannot drop the assumption that ‖V ‖(Rn) <∞ as
one could take V = v(T ) ∈ RVm(Rn) for some T ∈ G(n,m).

Moreover, if m ≥ 3, one cannot drop the assumption that ‖δV ‖ is absolutely
continuous with respect to ‖V ‖. To see this, let T be as above and V =
v(T ∩ {x : |x| ≤ 1}) ∈ RVm(Rn). Then h(V ;x) = 0 for ‖V ‖ almost all x but
spt ‖V ‖ = T ∩ {x : |x| ≤ 1}.

Finally, one cannot replace the assumption that the m dimensional density
of ‖V ‖ is bounded below by a positive number ‖V ‖ almost everywhere by the
assumption that spt ‖V ‖ is compact. This follows analogous as in 6.12.
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8.13 Remark. Suppose 2 ≤ m < n. Then one cannot replace the indecompos-
ability condition of V by assuming spt ‖V ‖ to be path-connected. To see this, it
is enough by 5.16 to construct an open and bounded set U such that ClosU is
path-connected but has infinite intrinsic diameter. For this purpose, define

ι : R→ Rn

by letting
ι(t) = (t, 0, . . . , 0) whenever t ∈ R

and define

U(t, r) = U(ι(t), r) whenever t ∈ R and 0 < r <∞,
T = Rn ∩ {x : (2i)−1 < |x| < (2i− 1)−1 for some i ∈P},

U = T ∪
⋃
{U((−1)ia, (2i)−1 − a) : a = 2−1[(2i)−1 + (2i+ 1)−1], i ∈P}.

Then X = ClosU is an analogous example as 8.7 for a compact and path-
connected set which has infinite intrinsic diameter.

Suppose m = 1. Then one can replace the indecomposability condition of V
by assuming spt ‖V ‖ to be connected. This will be shown in 8.16.

8.14 Remark. The preceding theorem is not a generalization of Topping’s di-
ameter control [Top08] for two reasons. First, the corresponding varifold of a
closed m dimensional manifold smoothly immersed in Rn does not need to be
indecomposable. For example, the corresponding varifold of two spheres which
meet exactly in one point is decomposable, see 5.14. Second, the geodesic dis-
tance over an m dimensional manifold smoothly immersed in Rn might be larger
than the corresponding geodesic distance as in 8.3. The distance in 8.3 allows a
shortcut whenever the immersion is not injective. However, the conclusion of the
preceding theorem holds true for varifolds which correspond to m dimensional
smooth connected and closed submanifolds of Rn, see 5.12.

The preceding theorem is a generalization of Menne’s diameter control
[Men12a].

The preceding theorem is an extension of [Men16a, 14.2], see [Men16a, 14.4].

8.15 Theorem. Suppose m, n, V and ψ are related as in 7.9, the Borel regular
measure ψ is a Radon measure, spt ‖V ‖ is compact, ρ is related to X = spt ‖V ‖
as in 8.3, a ∈ spt ‖V ‖ and 0 < r ≤ sup{ρ(a, x) : x ∈ spt ‖V ‖}.

Then there holds

r ≤ Γ
(
ψ{x : ρ(a, x) ≤ r}+ ‖V ‖({x : ρ(a, x) ≤ r})1/m

)
for Γ = sup{mγ(m)22,mβ(1)γ(m)m2m+2}.
Proof. First assume r < sup{ρ(a, x) : x ∈ spt ‖V ‖}. Then 8.5 provides 0 < η <
∞ such that r < sup{σδ(a, x) : x ∈ spt ‖V ‖} whenever 0 < δ < η. Therefore,
7.10 in conjunction with 8.10 leads to

r ≤ Γ
(
ψ{x : σδ(a, x) ≤ r}+ ‖V ‖({x : σδ(a, x) ≤ r})1/m

)
<∞

whenever 0 < δ < η. This implies

r ≤ Γ
(
ψ{x : ρ(a, x) ≤ r}+ ‖V ‖({x : ρ(a, x) ≤ r})1/m

)
by 8.5 and [Fed69, 2.1.3 (5)]. Now the conclusion for r = sup{ρ(a, x) : x ∈
spt ‖V ‖} follows.
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8.16 Theorem. Suppose n is a positive integer, V ∈ V1(Rn), ‖V ‖(Rn) <∞,
‖δV ‖ is a Radon measure,

Θ1(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x,

spt ‖V ‖ is connected, ρ is related to X = spt ‖V ‖ as in 8.3 and d is the diameter
of spt ‖V ‖ with respect to ρ.

Then there holds
d ≤ ‖V ‖(Rn),

ρ is a metric over spt ‖V ‖, spt ‖V ‖ is compact with respect to ρ, ρ is continuous
with respect to the Euclidean distance and the estimate of d is sharp.

Proof. Define
Y = {a : ‖δV ‖{a} > 0}.

Then Y is countable as ‖δV ‖ is a Radon measure and [Fed69, 2.10.19 (3)] in
conjunction with [Men16a, 4.8 (4)] implies

H 1(spt ‖V ‖) = H 1(spt ‖V ‖∼Y ) ≤ ‖V ‖(spt ‖V ‖∼Y ) ≤ ‖V ‖(Rn).

The conclusion follows by 8.9 and 8.6.

A Outlook

This section presents questions based on the results of this thesis.

Isoperimetric inequality, see 6.7. One may investigate whether the isoperi-
metric inequality can be sharpened in the following way.

Suppose m ≤ n are positive integers V ∈ Vm(Rn) and ‖V ‖(Rn) <∞.
Does there hold

‖V ‖{x : 1 ≤ Θ∗m(‖V ‖, x)} ≤ Γ‖V ‖({x : 1 ≤ Θ∗m(‖V ‖, x)})1/m‖δV ‖(Rn)

for some positive and finite number Γ which only depends on m?

Indecomposability condition. The only property of indecomposable vari-
folds used in this thesis, is that one cannot decompose an indecomposable varifold
by cutting the varifold along a level set of a Lipschitzian function in the way
of 7.2. One may investigate whether the indecomposability condition is stronger
than the property described above.

The set where the density is small, see 7.14. One may investigate whether
the conclusion of 7.14 is sharp in the following way.

Suppose 0 < s < 1.
Does there exists a varifold V which satisfies the hypothesis of 7.14 such that

H s(spt ‖V ‖ ∩ {x : Θm
∗ (‖V ‖, x) < 1}) > 0 ?

Diameter control, see 8.11. In view of the case m = 2 and the paper
of Paeng [Pae14], one may investigate whether 8.11 can be generalized to an
inequality which involves the singular part ‖δV ‖sing of the total variation but
does not need the absolute continuity of ‖δV ‖ with respect to ‖V ‖.
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Continuity of the geodesic distance. In view of 8.16 one may investigate
whether the following statement holds true.

Suppose V is a varifold which satisfies the hypothesis of 8.11 and ψ(Rn) <∞.
Is the geodesic distance over spt ‖V ‖ continuous with respect to the Euclidean

distance?
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