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Zusammenfassung

Innerhalb einer Zelle, im Zytosol, entstehen und arbeiten sehr viele biologische Makromole-
kiile. Die Dichte dieser Molekiile ist sehr hoch und dieses ‘vollgestopfte’ Zytosol hat vielféltige
Auswirkungen auf viele biologische Prozessen wie zum Beispiel Protein-Protein Interaktio-
nen, Genregulation oder die Faltung von Proteinen. Der Ablauf von vielen biochemische Re-
aktionen in dieser Umgebung weicht von denen unter verdiinnte Laborbedingungen ab. Um
die Effekte dieses ‘makromolekularen Crowdings’ zu verstehen, wurde in den letzten Jahren
bereits viel Miihe investiert.

In dieser Arbeit kombinieren wir verschiede Computermethoden, um die Wirkungen des
‘makromolekularen Crowdings’ auf biologische Prozesse besser zu verstehen. Zuerst schla-
gen wir ein Gittermodell vor, um damit die Effekte des ‘makromolekularen Crowdings’ auf
enzymatische Reaktionen zu studieren. Damit stellen wir ein detailliertes Bild zusammen,
wie Crowding die Assoziations- und Dissozotationsraten beeinflusst und wie verschiedene
crowding-Effekte zusammen auf die Gleichgewichtskonstante wirken.

Weiterhin implementieren wir ein Gittermodell der ‘erleichterte Diffusion’. Unsere Ergeb-
nisse zeigen, dass Hindernisse an der DNA die vereinfachte Diffusion beeintrachtigen. Das
Ausmass dieser Wirkung héangt dabei von der Dynamik der Hindernisse an der DNA ab. Im
dem Fall dass Crowder ausschliefSlich in der Losung vorhanden sind, erhohen sich unter be-
stimmten Bedingungen DNA-spezifische Bindungen.

Schliefilich nutzten wir strukturbasierte Techniken um damit die Auswirkungen von Crow-
ding auf die Faltung von Proteinen zu untersuchen. Wir fanden dabei, dass Polymer Crowder
starkere Wirkungen auf die Proteinstabilitdat haben als kugelformige Crowder. Dieser Effekt
verstarkte sich mit der Linge der untersuchten Polymere. Die Methoden die hier vorgeschla-
gen werden, sind generell anwendbar und konnen auch an deutlich komplexeren Systemen
angewandt werden.
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Abstract

The cell interior is a highly packed environment in which biological macromolecules evolve
and function. This crowded media has effects in many biological processes such as protein-
protein binding, gene regulation, and protein folding. Thus, biochemical reactions that take
place in such crowded conditions differ from diluted test tube conditions, and a considerable
effort has been invested in order to understand such differences. In this work, we combine dif-
ferent computationally tools to disentangle the effects of molecular crowding on biochemical
processes. First, we propose a lattice model to study the implications of molecular crowding
on enzymatic reactions. We provide a detailed picture of how crowding affects binding and
unbinding events and how the separate effects of crowding on binding equilibrium act to-
gether. Then, we implement a lattice model to study the effects of molecular crowding on
facilitated diffusion. We find that obstacles on the DNA impair facilitated diffusion. How-
ever, the extent of this effect depends on how dynamic obstacles are on the DNA. For the
scenario in which crowders are only present in the bulk solution, we find that at some condi-
tions presence of crowding agents can enhance specific-DNA binding. Finally, we make use
of structure-based techniques to look at the impact of the presence of crowders on the fold-
ing a protein. We find that polymeric crowders have stronger effects on protein stability than
spherical crowders. The strength of this effect increases as the polymeric crowders become
longer. The methods we propose here are general and can also be applied to more complicated
systems.



Contents

1

Introduction

1.1

1.2
1.3

Introduction . . . . . . . .. e e e e e e
1.1.1 Molecular Crowding and Enzymatic Reactions . ... ... ... ....
1.1.2 Gene EXpression . . . . . . . . . . it
1.1.3 ProteinFolding . . . . . . . . . . . ... ...
OVeIVIEW . . . . o e e e e e e e e e e e e e e e e
List of Publications and author contribution. . . . . . ... ... ... .....

Biochemical reactions in crowded environments

2.1
2.2

2.3

2.4

2.5
2.6
2.7

2.8

Introduction . . . . . . . L e e e e e
Simulationmethods . . . . . ... ... ... ...
2.2.1 Latticemodel . . . ... ... .. ... . e
2.2.2 Off-lattice simulations (ReaDDy) . . . . . . . ... ... ... ......
Effects of crowding on molecular binding . . .. ... ... ...........
2.3.1 Bindingequilibrium . ... ... ... ... . . o0 o oo oL
2.3.2 Kinetics of binding and unbinding . . . ... ... .. ..........
2.3.3 Binding in off-lattice simulations . . . . ... ... ... ... ..., ..
Effect of crowding on diffusion-limited reactions . . . . . .. ... ... ....
2.4.1 Latticesimulations. . . . . . ... ... ... . ... ... ... ...,
2.4.2 Off-lattice simulations . . . . ... ... ... .. ... ..........
Effectsof crowdersize . . . . . . . . . ... L e
Enzymaticreaction. . . . . . . . . . . e e
Discussion: Crowding effects on gene expression . . . . .. ... ... .....
2.7.1 Transcriptionfactors. . . . . . . . .. .. ... .. .
2.7.2 Transcription . . . . . . . . L. e e e e e e e e e e e
2.7.3 Translation . . . . . . . . . . e e e e e e
Concludingremarks . . . . . . . . . . . . . @ i

Facilitated diffusion in the presence of obstacles on the DNA

3.1
3.2
3.3
3.4
3.5

Introduction . . . . . . . . . e e e e e
Lattice model for simulating facilitated diffusion . . . ... ... ... .....
Facilitated diffusion without obstacles . . . . . . .. .. .. ... ... .....
Effect of obstaclesonthe DNA . . . . . . . . . .. . . . ... . . ...
Concludingremarks . . . . . . . . . . . . . . ...

Mechanism of facilitated diffusion during DNA search in crowded environments

4.1
4.2

Introduction . . . . . . . . . . e e e

Resultsand Discussion . . . . . . . . . . o i i i i i e e e e e

4.2.1 The mechanism of facilitation in DNA search: The effect of molecular
crowding on 1D and 3D diffusion . . . ... ... ... .. ........

17
17
19
19
20
21
22
24
26
28
28
30
32
35
37
37
38
39
40



Contents

4.2.2 Effects of crowding fractional volume on the kinetics of finding the DNA

targetsite . . . . . .. L e 62
4.2.3 The effect of the mass of the crowders on the kinetics of the facilitated
diffusion . . . . . . . e e e e e e 63

4.2.4 The effect of the size of the crowders on the kinetics of facilitated diffusion 65
4.2.5 Monte-Carlo simulations of DNA search in the presence of molecular

crowding . . . . ... e e e e e e e e e 65
4.3 ConCluSionsS . . . . v v v e e e e e e e e e e e e e e e e 68
4.4 Materialsand Methods . . . . . . . .. .. ... ... .. e 69
4.4.1 Coarse-grained molecular dynamic simulation model . ... ... ... 69
4.5 On-lattice Monte-Carlo simulations . . . . . ... ... ... .......... 70
5 Effects of non-spherical crowders on protein folding 72
5.1 Introduction . . ... . . . . . . . e 72
5.2 Methods . . . . . . . . . . e e e 74
5.2.1 Coarse-grainedmodel . . ... ... ... ... ... ... ... .. ... 74
5.2.2 Crowdingagents . . . . . . . . . . o i i i i it 74
53 Results . . . . . . . e 75
5.4 Concludingremarks . . . .. .. ... ... ... ... e 80
5.5 Acknowledgements. . . . . . . . ... .. 81
6 Summary and Outlook 82
6.1 Overviewofthemainresults . . ... ... ... ... .............. 82
6.1.1 Enzymaticreactions . . . . ... ... ... ... e 82
6.1.2 Geneexpression . . . . . . . . . ittt e e e e e e e e e e 83
6.1.3 ProteinFolding . . . . . . ... . ... ... . 85
6.2 Outlook . . . . . e 86
6.2.1 Protein synthesis as an enzymaticreaction . ... ... ... ... ... 86
6.2.2 DNA supercoiling and lattice limitations. . . . . .. ... ... ..... 86

6.2.3 Effects of molecular crowding on folding of intrinsically disordered pro-
teins (IDPS) . . . . . . . . e e e 87
6.2.4 Attractive effects of molecular crowding . . . . ... ... ... ..... 87
6.3 Concludingremarks . . .. ... .. ... ... e 88
Appendices 90
A Mechanism of facilitated diffusion during DNA search in crowded environments-SI 92
Al SIMethods . . .. ... . . . e e 92
A.1.1 Searchefficiency . . . ... ... ... . ... ... .. 92
A.1.2 Masseffect . . . ... . e 92



Chapter 1

Introduction

1.1 Introduction

The interior of a cell is a crowded environment in which different macromolecules, such
as DNA, proteins, lipids and sugars, coexist together with highly organized macromolecular
structures like the cytoskeleton. One example is the cytoplasm of the Escherichia coli bacteria,
that can be occupied up to 40% by such macromolecules (1; 2). Moreover, in vivo, almost all
proteins and other macromolecules belong to specific biochemical reaction networks, which
are necessary for them to be active and perform a task in the cell. A great effort has been made
to characterize the attractive interactions between the components of biochemical reaction
networks (3; 4; 5). However, unavoidable repulsive interactions between macromolecules are
typically not considered in vitro studies. In such studies, reactions take place under dilute
solutions that drastically differ from in vivo systems (6). Nonetheless, an increased effort has
been made to understand the effects of the presence of these macromolecules on biochem-
ical processes, including protein-protein binding (7; 8), protein folding (9; 10; 11; 12), gene
expression (13; 14; 15; 16; 17; 18) and enzymatic activity (4; 19; 20; 21).

Molecular crowding is ubiquitous within biological systems, and its effects, although com-
plex, can be generic and described by two principal contributions: On the one hand, binding
equilibria is typically shifted towards the bound state (6; 8). On the other, the presence of
crowders hinders diffusion in the solution (22; 23; 24). Thus, diffusion-limited biochemical
reactions that require an encounter between different reactants cannot take place in the limit
of very high volume occupation.

In the following chapters, we will focus on the effects that molecular crowding has on three
rather general biochemical processes: We start by considering the effects of excluded volume
on enzymatic reactions. Here, we present different reactions that uncouple the effects on
binding equilibria from the effects on diffusion. In addition, we consider a Michaelis-Menten-
like reaction that combines both contributions (25). As an outcome, we see that different
enzymes can exhibit different behaviors under different crowding conditions, as previously
shown by Zhou et. al. (4).
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Figure 1.1 - A) Representation of the cell interior; from (6). B) overall reaction rate as a function
of volume occupation, taken from (6). A non-monotonic behavior is obtained due to competition
between the two opposite principal contributions of molecular crowding. The effects on the binding
equilibria are in blue, and the effects on diffusion are depicted in green. The overall effect is shown as
the red line with a maximum.

Next, we consider the effects of crowding on gene expression. The expression of a gene is a
complex process that involves a series of processes and the orchestration of many molecular
machines. More specifically, gene expression takes place when a specific DNA sequence of
amino-acids is recognized by a DNA binding protein (DBP) (26; 27). Under crowding condi-
tions, the specific recognition of a sequence can be bewildering. For example, if a transcrip-
tion factor is non-specifically bound to the DNA, the presence of crowders can enhance non-
specific binding, reducing, then, the average specific sequence finding time (18; 28). More-
over, many macromolecules bind to the DNA to perform functions such as DNA repair and
initiation of transcription (29; 30; 31). Thus, the DNA can be highly occupied (~ 30%) by
macromolecules. Under these conditions, the DBP’s specific-sequence finding strategy has
to be modified in order to be as efficient as possible (32; 33).

We finally discuss the effects that molecular crowding has on protein folding. Although a
number of experimental and computational studies have been dedicated to understand the
implications of excluded volume on protein folding (10), a systematic approach that takes
different levels of volume occupation with different crowder geometries into consideration is
lacking.

1.1.1 Molecular Crowding and Enzymatic Reactions

The cellular interior is a crowded environment that contains different kinds of macro-
molecules (34). There, the distance between macromolecules is comparable to the size of the
macromolecule itself, see Fig. 1.1A. Thus, complex biochemical reaction networks, such as
transcription, translation, protein-protein binding and protein folding, are expected to have
different behaviors in vivo than in typically dilute test tube conditions (6; 7; 8).
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In particular, the effects of molecular crowding on biochemical reactions can be divided
into two principal components: On the one hand, molecular crowding shifts binding equilib-
ria towards the bound state. This can be understood by the fact that once the associated state
has been formed, more volume is available for the crowders. Thus, the total entropy of the
associated system increases and the bound state becomes more stable (14; 35).

To provide a simple way of depicting the effect of molecular crowding on binding equilibria,
let’s consider a reaction of the type A + B = AB, where A and B are reactants. The latter
reaction is a fully reversible reaction, and can be characterized by a dissociation constant
Kaq,0 = kogt/kon, Where kog is the unbinding rate, k., is the reaction rate and the zero indicates
an absence of crowders in the solution.

More generally, the reaction dissociation constant can be defined as K 4, where ¢ is the
volume occupation fraction of the crowding agents. Thus, the effect on the dissociation con-
stant is purely thermodynamic, and can be characterized by the statistic of the states in which
the receptor is either free or occupied (5). Consider a 3-dimensional lattice with 2 lattice sites
and a total volume V = Q1% where 1 is the lattice spacing. Set a static target or receptor R,
and L ligands and C crowders diffusing into the lattice with a given diffusion constant. If
one ligand finds the receptor, the complex RL is form. At equilibrium, the probability for the
complex to be form can be calculated as:

Sbe—Eb/k'BT

T Spe Bo/ksT 15,

B, (1.1)

where kg is the Boltzmann constant, T is the temperature, S}, is the number of states in
which the complex is formed, Sy}, is the number of states in which the receptor is free, and
E, the binding energy. After obtaining S}, and S, (for more details please refer to Chapter 3,
where the kinetics of this process will also be discussed in detail), P, can be expressed as:

1

T Ka@)
L+ 54

Py (1.2)

One can then show that the change in the dissociation constant as a function of ¢ is given
by: Kq4 = Kq0(1 — ¢)", where r is a factor that depends on the crowder size (5; 25).

The second principal effect that molecular crowding exerts on biochemical reaction dynam-
ics is the slowing down of diffusion. Different experiments at different volume occupation
fractions ¢ were found to be described by the phenomenological expression:

D(¢) = D(¢ =0)(1 - ¢)", (1.3)

where « is a free fitting parameter (14; 22). Diffusion experiments in the presence of crow-
ders for the protein carbon monoxide hemoglobin have shown that x = 0.36 (14; 22).
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Experimentally, the quantity typically measured is the association rate. It can be expressed
as: k;,' = k7' + kyf, where k, is the intrinsic association rate once the reactants are in
contact, and kq; is the rate at which the reactants get into close contact. Experimental results
have shown that in vivo diffusion constants can be slow (= 1 p?s~') (14; 32). Hence, the
reaction is diffusion limited and the association rate is given by the classical Smoluchowski
result kon (¢ = 0) = 4w Da, where a is the size of the target (36). Under crowding conditions,
diffusion is affected, leading to an association rate given by: kon(¢) = kon(¢ = 0)(1 — ¢)".

The two principal effects of molecular crowding on enzymatic reactions are thus opposite
and compete with each other: On the one hand, the shift of the binding equilibria towards the
bound state enhances the overall reaction rate. On the other hand, as the system’s excluded
volume increases, the association rate decreases. Hence, the time the reactants need to first
encounter becomes large and the overall reaction rate decreases. The latter effects lead to a
non-monotonous behavior in the overall reaction rate as a function of the volume occupation
fraction, and a maximum in the reaction rate is obtained, see Fig. 1.1B.

When performing experiments to study the effects of molecular crowding on enzymatic
reactions, the use of ‘good’ crowders that do not interact with the reaction of interest is es-
sential. Dextran and PEG have been shown to work as good crowding agents and as a matter
of completeness, we refer to some experimental results documented in (4):

» Addition of PEG 6K increases the enzymatic activity of the protein AspP of the E. coli
bacteria (37).

e Addition of dextran 10K enhances the formation of a defamer of bovine pancreatic
trypsin inhibitor (38).

o Addition of Ficoll 70K and PEG reduces the second-order rate constant for diffusion-
limited bimolecular association of beta-lactamase (TEM) and BLIP (39; 40; 41).

» Addition of BSA or ovalbumin increases the binding affinity of replication protein RepA
for specific DNA sequences (42).

» Addition of dextran 70K, Ficoll 70K, or PEG 6K increases enzyme activity of isochoris-
mate synthase (43).

1.1.2 Gene Expression

A key role in biology is the study of precesses associated with the so-called central dogma
of molecular biology (5; 44; 45), one of the most important classes of processes in cellular life.
These processes are responsible for the synthesis of polymer chains, such as nucleic acids and
proteins that are at the heart of cellular life.
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Figure 1.2 — A) Diagram of the central dogma of molecular biology. An RNA copy is generated from
a DNA sequence after the RNA polymerase has translated a gene. The ribosome translates the RNA
molecule and synthesizes proteins. B) Diagram of the facilitated diffusion process. A repressor follows
a series of non-specific binding events, in which it slides along the DNA, until it finds its promoter.
Figure taken from (70).

At the core of the central dogma is the DNA. This molecule encodes in nucleotide se-
quences, known as genes, all the RNA and protein products necessary for the cells. In its
simple form, the central dogma of molecular biology can be presented as follows (5; 44):
After the DNA has been replicated, a complex molecular machine known as the RNA poly-
merase (RNAP), transcribes the DNA genes and synthesizes an RNA molecule from it. More
specifically, the RNAP synthesizes copies of messenger RNA (mRNA). This process is called
transcription.

After an mRNA molecule has been synthesized, a second sophisticated molecular machine
known as the ribosome, translates the mRNA content into amino acid chains that result in
the central dogma’s final product, proteins, see Fig. 1.2A.

The expression of a gene is a significantly more complicated process than the simplified ver-
sion described above. Each gene is usually preceded by a regulatory sequence of nucleotides
called the promoter. Different molecules can bind to this promoter. On the one hand, the
RNAP can bind and start the transcription of the gene. On the other, regulatory proteins
known as transcription factors, TFs, can also bind to the promoter. Depending on the nature
of the TF, the outcome can differ drastically. If the transcription factor enhances the binding
of the RNAP to the promoter, this TF is know as an activator, and the synthesis of an RNA
molecule is enhanced. If, on the contrary, the TF hinders the rate at which the RNAP binds
to the promoter, this TF is known as a repressor, and the expression of the gene is negatively
affected (46). The interplay of different regulatory networks has been largely studied, and the
results can be surprising (46; 47; 48; 49; 50; 51; 52; 53).
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Interestingly, TFs exist in low numbers inside the cell (54). Different theoretical and ex-
perimental studies have shown that this issue has strong consequences on gene expression
and how genes are regulated (55; 56; 57; 58). For example, it has been shown that a gene
negatively regulated by a repressor reduces the variance of protein synthesis, even though
protein synthesis is hindered (55; 59). Another key feature of gene expression is the fact that
cells increase their volume during the cell cycle (60; 61; 62). Thus, TF concentration is not
constant, changing as the cell volume increases. Computational and theoretical studies have
shown that gene regulation can strongly differ from the classically considered constant vol-
ume scenario. For instance, the protein synthesis phase space of a positively regulated gene
that exhibits bistability between a high and low protein synthesis rate, is affected depending
on how large variations in volume increase are (51; 63; 64).

In addition to their low numbers, TFs’ dynamics towards their promoters is a rather com-
plicated process that can be sensitive to different conditions. In the following section, we
present the facilitated diffusion model that TFs follow in order to find their specific base pair
sequence on the DNA.

DBP-DNA binding and facilitated diffusion

Gene expression and regulation are mediated by transcription factors, or more generally,
DNA-binding proteins (DBPs), that specifically bind to DNA sequences (65). This specific
binding event can be a complex process, since the DBP needs to recognize a sequence that is
only ~ 10—30bp long (26; 66), from a genome that is, considering the bacteria Escherichia Coli,
~ 10° bp long (67). It is thus remarkable how quickly and precisely DBPs find their sequence
target. In a seminal work, Riggs et al. measured the in vitro rate at which the lac repressor
finds its promoter. They found that under certain conditions, the lac repressor binds to its tar-
get at faster rates than the simple three dimensional diffusion limit (68). As an explanation
of this issue, Berg, von Hippel and Winter proposed the so-called facilitated diffusion model
(69; 70). In this model, the DBP performs a series of three dimensional (3D) excursions in the
bulk solution, together with one dimensional random walk events along the DNA, see Fig.
1.2B. This model has been supported by experimental results and is considered to be general
to many DBPs (32; 71; 72; 73; 74).

In general, facilitated diffusion can be understood in the following way: Let D; and D3 be
the one-dimensional and three-dimensional diffusion constants, respectively. Experiments
have shown that D3 > D; (32; 71). Let ¢,5 be the non-specific DBP binding energy that
corresponds to the free-energy difference between the protein being in the free solution and
the protein being non-specifically bound to the DNA. Moreover, the DBP-DNA unbinding
rate can be defined as ko = Aexp (—ens/kpT), where A is a constant, kg the Boltzmann
constant and 7' the temperature (75). At every non-specific binding event, the DBP scans
on average A\ = (2D;/kog)"/? base pairs. Thus, the effective size of the target is on average
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A + a, where a is the size of the target. If the DNA molecule has a length L, the DBP need
on average N = L/) rounds of 1D sliding excursions and 3D free diffusion events in order
to find the target. Following scaling arguments, the time the DBP spends on the DNA can
be obtained as t;p ~ A\2/D1, whereas the time the DBP spends in the bulk solution is given
by tsp ~ V/LDs (28; 76). Thus, the average time the DBP needs to find its target can be
expressed as tr,; = N(tip + t3p):

L\ 14

tTOt - BE + CEA, (1.4)

where B and C are dimensionless quantities that depend on the geometry of the system. A
different argument will be presented in Chapter 4, where we study facilitated diffusion using
on-lattice simulations. Depending on how large ¢, is, the DBP experiences different dynam-
ics: For very large values of ¢, ko5 is very low and the DBP spends a long time on the DNA.
Here, the first term of Eq. 1.4 dominates, and the DBP scans large sections of DNA. However,
if the target is far from the DBP, it can spend too much time scanning regions where the target
is not, so the process is inefficient. As ¢,; decreases, the unbinding rate kg increases, and the
DBP performs many series of 3D excursions and 1D sliding events (larger N), until the target
is found. The latter makes the process more efficient and reduces the finding time. As e,
keeps increasing, the unbinding rate becomes so large that the DBP barely binds to the DNA.
In this scenario, the DBP effectively looks for its target as in the free 3D diffusion case, and the
finding time becomes large. Thus, the target finding time follows a non-monotonic behavior,
in which there is an optimal €5 or k.g at which the dynamics is optimal. The latter is one
of the hallmarks of facilitated diffusion, and has been experimentally and computationally
confirmed (28; 32; 75; 77). In these approaches, the typical way to change non-specific bind-
ing energy is to modify the salt concentration. In this manner, the electrostatic interactions
between the negatively charged DNA backbone and the positively charged receptor region of
the DBP is screened (33; 78). Hence, very high salt concentrations imply a large k. and vice
versa.

Effects of molecular crowding on gene expression

Despite the fact that much theoretical (75;76;79; 80; 81; 82), experimental (66; 83; 84; 85; 86)
and computational (28; 33; 75) effort has been spent in understanding the promoter finding
process, it is still not fully understood. A particularly puzzling issue is the fact that cells are
not empty. In fact, the cell interior is a crowded environment that can be occupied up to
40% by macromolecules (1; 87). In addition, many of these macromolecules bind to the DNA
to perform functions such as transcription, DNA repair and gene regulation (26; 29; 30; 31).
Consequently, the DNA is largely occupied ~ 30%, by DBPs that affect the facilitated diffusion
process.
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In particular, Brackley et al. have shown that as the volume occupation ¢ increases in the
bulk solution, DBP-DNA binding is enhanced and the protein remains bound for a longer
time (28). This effect is complemented by a reduction in the time the DBP spends in the bulk
solution. The latter effects modify the free facilitated diffusion case described by Marko et al.,
in which for a given ¢,,, the optimal dynamics takes place when the time the DBP is bound to
the DNA is equal to the time the DBP spends in the bulk solution (76). We note that the latter
effect can depend on the DBP’s initial conditions. Since diffusion is hindered by the presence
of crowders, as ¢ increases, the DBP needs more and more time to its first encounter with the
DNA. Thus, in the limit of very high excluded volume, the effect described by Brackley et al.
may not be valid.

Additionally, different studies have shown the effects that obstacles on the DNA have on
facilitated diffusion (28; 33; 88; 89; 90; 91). In general, they found obstacles on the DNA have
a negative effect on facilitated diffusion, leading to larger specific-sequence finding times. As
the DNA occupation fraction increases, the chances that the DBP will be enclosed between
two obstacles increases (88). Thus, the sliding length of every 1D sliding event is determined
by the average distance between the obstacles. The latter causes the DBP to spend more
time finding its target, and to make more 3D excursions on average in order to overcome the
presence of the obstacles (28; 88).

The DNA is a large sequence of base pairs that can have different configurations. It can be
stretched and long or compact and coiled. For example, the Escherichia coli genome is ~ 4.65
base pairs long. With the help of nucleoid-associated proteins, this very long genome can
be compacted into a small volume that occupies only about one-fourth of the intracellular
volume (92). Experimental and theoretical studies have shown that for the protein EcoRV,
a coiled DNA conformation enhances the specific sequence binding time (77; 93). Here, a
coiled DNA conformation increases the intersegmental DBP binding events. That is, the DBP
can jump from one region of the DNA to another, and keep scanning the DNA in 1D dimen-
sional sliding events without completely unbinding from the DNA and going back to the bulk
solution (77; 93).

1.1.3 Protein Folding

During translation, a polypeptide chain is synthesized as the ribosome decodes the infor-
mation stored in the messenger RNA. If the polypeptide chain has a number n of residues, it
can, in principle, fold into 8" different conformations (45). The eight comes from the fact that
only 8 bond angles are stereochemically allowed in the polypeptide backbone. Thus, taking
the bacteria Haemophilus influenzae, which synthesizes proteins that are on average ~ 250
amino acids long (94), as an example, the average number of conformations will be on the
order of ~ 82°0, This is a very large number. Nevertheless, in general, all proteins adopt a
single 3-dimensional (3D) conformation, which is, under physiological conditions, the most
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Figure 1.3 - Folding energy landscape. A) taken from (97) and B) taken from (101). The starting
linear polypeptide chain follows a rugged funnel-shaped energy landscape. The native structure of
the protein is located at the global minimum of the energy landscape.

stable of the possibilities. This folded structure is called the native state, and is required for
protein activity (45; 95; 96; 97; 98).

This remarkable feature of proteins reveals that they are not simply a random sequence of
polypeptides, but rather that they posses a defined compact active structure. But what guides
the protein to the folded state? How is it possible that a one-dimensional chain leads to the
folding of a particular protein? Much effort has been invested in answering these kinds of
questions. For example, Kauzmann et al. quickly realized the great importance of hydropho-
bic forces on protein folding (99). These findings led to the analysis and development of ran-
dom walks models, in which only two kinds of randomly distributed amino acids, hydrophobic
and hydrophilic, are used to describe the formation of secondary structures in proteins (5; 95).

In the late 80s, a breakthrough in the understanding of protein folding started to be devel-
oped. It stated that in order to understand protein folding, what is needed is a global overview
of the protein energy’s landscape (95; 96; 100). The main idea is that the folding energy land-
scape resembles a rugged funnel, in which the protein can transiently stay at each local min-
imum, but eventually falls into the global minimum, reaching the protein native structure
(95; 97), see Fig. 1.3.

The energy landscape model

A random heteropolymer chain folding in a lattice is one of the simplest models that can be
understood by studying the energetic properties of the possible structures. The simplest case
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1.1 Introduction

of this model, is the one in which there are only two kinds of randomly distributed residues:
hydrophobic and hydrophilic.

We start by defining the energy of a configuration « of the chain as: E, = 3=,y Ua, Where
(ab) means that the summation only goes on the non-polymeric nearest neighbor pairs, and
U.p, is the interaction energy of the pair a—b. Now we define the partition function of the sys-

tem as: > e Uo/kBT

, Where kg is the Boltzmann constant and T is the absolute temperature.
The summation goes over all possible chain conformations of the polymer .

If we take the limit of very large non-polymeric nearest neighbor pairs, in such a way that
we can define N as the total number of interactions, and consider the interaction between
pairs to be random variables, we see that the respective energies for polymer configurations

are also random variables taken from a Gaussian distribution. Thus, we define the following

relations:
B oo s 1 (B - Ne)’
(Eq) = Nep, (E5)=No® and p(E)= Worsnoe exp —oNaz | (1.5)

With the latter energy probability distribution, we can define the entropy S(E) of the sys-
tem: S(E) = kg In(Qop(F)). As the system cools down, the entropy decays until the system
runs out of entropy at a critical energy E¢. Thus, E¢ is obtained as:

(Ec — Ne)?
2No?
It is also possible to obtain the corresponding critical temperature TF, at which the system

S(Ec) = 0 = In(Qp) — = 0. (1.6)

loses all its entropy. It is given by:

dS(E)
dE

(Ec—Ne¢)  [2kpSo
= — = 1-7
Fo kB No2 <Eg> ) ( )

-1
T =

where we have used Eq. 1.6, and defined Sy = kg In(€)). For temperatures bellow 7, the
system freezes and behaves in a glassy-like manner (95). Although the state at the critical
temperature can be thought of as the native state of the heteropolymer, it is not quite right,
since at such T, the number of states are drastically decreased, and it is improbable that
the native state of the polymer is the same state at such low temperatures. Moreover, at
temperatures close to T¢, the polymer faces high energy barriers when trying to change its
conformation. Thus, the polymer dynamics slows down, contradicting the idea of proteins
folding quickly and easily (95; 101; 102; 103).

A more realistic approach is the one in which, with every native contact, local conforma-
tional energies stabilize the protein and the energy landscape follows a funnel-like shape with
the native state at its global minimum (95; 101; 102). One useful parameter to describe the
position of an ensemble of states in the funnel is the so-called @ value, which is the fraction
of native-like contacts. At temperatures close to the folding temperature Ty, @ is close to 1,

11



1 Introduction

and the protein can only take a few different conformational states, all of them similar to the
native state. As the temperature increases, () decreases and the ensemble of conformations
increases.

To obtain a complete statistical mechanical description of the folding process, all thermo-
dynamic variables that depend on the order parameter ) have to be determined. Using the
approximation of no correlations among different energy states (95), we see that the energy
of a random conformation is given by the contribution of many different random conforma-
tions, so the energy probability distribution is a Gaussian centered at the mean energy £(Q)
and with variance o = AE?(Q):

1 E — E(Q))?
p(E(Q)) = m exXp <_(2AE2((Q)))> . (1.8)

With the number of possible configurations with a similar @) value as the native state Qy(Q),
we define the entropy as:

(- B@Q)*

S(E(Q)) = kpIn(Qop(E(Q)) = ks In(Q0) — ks 2AE2(Q)

(1.9)

From the latter expression, the corresponding entropy for configurations similar to the na-
tive state can be defined as Sy(Q) = kg In(Q).

At thermal equilibrium, only a small energy region is occupied by configurations similar to
the native one. The most probable energy of this energy region can be found by maximizing
the probability of the system to be in the native state. This is given by:

o~ En/kpT
p(E(Q) = B

where Z is the partition function that normalizes the probability function. After maximiz-

(1.10)

ing the latter equation, the most probable energy is given by:

AFE?
kT’

Enp(Q) = B(Q) — (1.11)

From Eq. 1.9, we obtain the number of thermally occupied states, and the entropy of the
most probable energy:

2
Q(Emp(Q)) = exp (Solff) - 2(25;)2) : (1.12)
2
S(Emp(Q)) = kg In[Q(En p(Q))] = S0(@) _ AE (1.13)

kg 2kpT?’
With Egs. 1.11 and 1.13, the free energy as a function of ) is defined at a given temperature
T as: F(Q,T) = Enp(Q) — TS(Emp(Q)). If T is high, the free energy as a function of the

12



1.1 Introduction

Figure 1.4 — A) MD simulation system for the avian influenza virus H5N1, taken from (107). B) Full-
atom and coarse-grained representation of an example protein helix, taken from (109).

native-like contacts shows a minimum at low values of (). This corresponds to an unfolded
state. If T"is low, the free energy exhibits a minimum at large values of (). Thus representing a
folded state. For intermediate temperatures, the free energy has two minima, corresponding
to a folded and an unfolded state. At the folding temperature T, the probability of being in
the folded state is the same as the probability of being in the unfolded state. Moreover, Tr
defines a minimum () value at which the two minima are equal. Thus, at 7% the following
condition is fulfilled: F,, = F(Qmin, Tr). Taking as a first approximation that the entropy of
the native state is close to zero, such that the free energy is equal to the internal energy Fy,
the previous equality leads to an expression for the slope of the funnel:

AE‘Q(Cgmin)

5ES/TF - SO(Q) =+ QkBT}% ’

(1.14)

where 6E, = E(Quin) — Ex. Finally, we compare the previously obtained critical temperature
Tc¢, in which the glass transition takes place, to the folding temperature Fr. Analytical and
computational studies have shown that the ratio Fp/T¢ can distinguish between fast and
slow folding dynamics (95; 101). A schematic funnel for a realistic 60 amino acid long chain
is depicted in Fig. 1.3B (101).

Molecular dynamics simulations for proteins

Experimental methods like X-ray crystallography provide a detailed picture of proteins in
their native state. However, other experiments indicate that local motion inside the proteins
is important for their functionality (104; 105; 106). Thus, in order to have a better under-
standing of proteins, it is essential to have detailed information about their dynamics, either
during protein folding or protein activity. Molecular dynamics simulations provide the pos-
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1 Introduction

sibility to study relevant biochemical systems, that together with experimental results can
give a multiscale description of the dynamics of biomolecules under study.

In a simple form, molecular dynamics (MD) is a computer simulation method that inte-
grates the classical Newtonian equations of motion for a set of molecules, in order to obtain
the trajectory of the system for a period of time (107). In Fig. 1.4A, we show a simulation sys-
tem in which the enzyme neuraminidase from the avian influenza virus H5N1 is simulated
with explicit water (107). For the integration of the Newtonian equations, the form of the
potential energy U is of great importance. In MD, U is given as a force field, in which U has
many components that characterize the different interactions in the biochemical system of
interest. Moreover, in MD, different force fields with different sets of parameters are used
depending on a particular application and on the set of parameters that fits the experimental
data the best (108).

MD simulations in which all the atoms are explicitly simulated are known as all-atom sim-
ulations. If the simulated system is big, computational power becomes a constraint, and only
small periods of time can be simulated. Thus, relevant biochemical reactions can no longer
be observed, and the usefulness of MD becomes limited. To solve this issue, two different
approaches can be used to reduce the computational cost: One is to reduce the number of
simulated particles, and the other is to simplify the force field of the system. To reduce the
number of simulated particles, simulations can be run with a group of atoms represented in
a simplified model. This is the so-called coarse-grained implementation. Hence, a modified
potential together with a smaller number of simulated particles decreases the computational
cost, and longer simulation times can be obtained (109; 110). This leads to the acquisition of
longer trajectories and the observation of slow biochemical reactions. Typically, proteins are
simulated at the C,, level (110; 111; 112). That is, the amino acid residues are represented by
only one particle centered at the C,, atom, which is the first carbon atom that attaches to a
functional group, see Fig. 1.4B. Additionally, the complexity of the force field can be reduced
under the framework of the funnel-like energy landscape presented above. Here, the models
impose a native bias by explicitly including structural information in the force field. Thus, an
initially unfolded sequence of amino acids will be quickly directed towards the native state
of the system by attractive native interactions (95; 113). These kind of implementations are
known as structure-based models (SBM) (114; 115). In Chapter 5, we use a coarse-grained
SBM to study protein folding and protein stability within crowded environments.

Effects of molecular crowding on protein folding

Protein folding takes place inside cells, where many macromolecules occupy space. It is gen-
erally expected that interactions of excluded volume nature affect the folding and stability
of proteins. Specifically, effects of molecular crowding on the binding equilibria can have
profound effects on the protein folding energy landscape. Zhou showed that under moderate

14



1.2 Overview

crowding conditions, the native state is stabilized. Here, the energy barriers of the rugged
funnel are reduced and the protein folding energy landscape is shifted towards the native
state. Moreover, for high crowding conditions, the unfolded state is then stabilized (116).

In a computational study, Cheung et al. used a coarse-grained C,, model of the globular all-
B-sheet WW domain, to show that as the levels of volume occupation increase, the folding
temperature of the protein shifts towards higher temperatures (10). In other words, protein
stability is enhanced when increasing levels of ¢. They found that this effect can be explained
by the compaction suffered by the protein when excluded volume increases. As ¢ increases,
the protein is localized in smaller reaction volumes, thus, the protein compacts and its radius
of gyration decreases (10). If the protein is more compact at any volume occupation ¢ # 0,
then the change in entropy follows the relation AS = S, — Sy < 0, because some conforma-
tions are restricted.

Cheung et al. also found that the folding rate is enhanced at moderate levels of volume
occupation. However, at high levels of volume occupation, the folding rate was shown to
decrease. The latter effect is attributed to the restriction of conformational states necessary
for protein folding caused by crowding (10). The effects of molecular crowding on protein
folding can be hard to pin down, and a systematic study of the effect of different crowding
agents on protein folding is still lacking.

As a matter of completeness, we refer to experimental studies on protein funding under
crowding conditions reported in (4):

» Addition of dextran 30K stabilizes the molten globule conformation of apomyoglobin
at pH 2 with respect to heat- and cold-induced unfolding (117).

» Refolding rate of Rd-apocyt b562 increases by 30% at 30°C and by 80% at 20°C in the
presence of 85 g/L. PEG 20K (118).

» Addition of PEG 4K increases the temperature for thermal denaturation of DNase I by
more than 15°C (119).

1.2 Overview

The thesis is organized as a ‘cumulative thesis’ and consists of five chapters. Chapters 2-
4 consist of three manuscripts, out of which two have been published (Chapters 2 and 3),
and one is submitted (chapter 4). Chapter 5 contains additional unpublished results. A list
of published and submitted manuscripts is provided below. Chapter 2 focuses on biochemi-
cal reactions under crowded conditions. Chapter 3 studies the facilitated diffusion dynamics
with and without the presence of obstacles on the DNA. Chapter 4 presents the effects of the
presence of molecular crowding in the bulk solution on the facilitated diffusion dynamics. In
chapter 5, we explore the effects of molecular crowding on protein folding.
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1.3 List of Publications and author contribution

The results of this study are presented in four different chapters of this thesis. The manuscripts
that correspond to chapters 2, 3 and 4 of this thesis have been published or are currently under

review in international peer-reviewed journals. Chapter 5 is a manuscript in preparation.
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Chapter 2
Biochemical reactions in crowded
environments!

Abstract

Molecular crowding is ubiquitous within cells and affects many biological processes
including protein-protein binding, enzyme activities and gene regulation. Here we
revisit some generic effects of crowding using a combination of lattice simulations
and reaction-diffusion simulations with the program ReaDDy. Specifically, we imple-
ment three reactions, simple binding, a diffusion-limited reaction and a reaction with
Michaelis-Menten kinetics. Histograms of binding and unbinding times provide a de-
tailed picture how crowding affects these reactions and how the separate effects of
crowding on binding equilibrium and on diffusion act together. In addition, we discuss
how crowding affects processes related to gene expression such as RNA polymerase-
promoter binding and translation elongation.

2.1 Introduction

The interior of cells is a crowded environment, quite different from the dilute solutions usu-
ally studied in vitro (2; 6; 7). For example, in bacterial cells, macromolecules can occupy up to
40 % of the volume during phases of rapid growth (1), and the water content can drop far be-
low this level upon exposure to increased osmotic pressure (87). The importance of molecular
crowding for understanding processes in cells is increasingly appreciated. Its consequences
have been studied extensively in the context of protein-protein binding (7; 8), protein fold-
ing (9; 10; 11; 19), enzyme activity (4; 20; 21), and gene regulation (13; 14; 15; 16; 17). Be-
yond these fundamental aspects, crowding has direct consequences to understand drought-

IFull, published title of the paper: Biochemical reactions in crowded environments: Revisiting the effects of
volume exclusion with simulations
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2 Biochemical reactions in crowded environments

tolerance of plants (120; 121) and possibly neurodegenerative diseases in humans that are
based on protein aggregation (122; 123).

Molecular crowding is ubiquitous, and the complexity of its direct and indirect effects can
be bewildering. Some effects of crowding are generic (6; 7). For example, binding equilibria
are typically shifted towards the bound state (7; 8; 124) and diffusion is slowed down (22; 23;
24). In the case of enzymes, both effects apply to the binding of the substrate to the enzyme,
with opposite consequences. In addition, the reaction rate may be affected by specific changes
in the molecular configuration of the enzyme that are induced by crowding or, in the case of
multi-subunit enzymes, by increased binding between the subunits. As a result, different
enzymes can exhibit rather different behavior upon increased crowding, as illustrated by the
tabulated collection of experimental results in ref. (4).

In this article, we address the generic effects of crowding. We use a simple lattice model
to disentangle the different contributions to the effects of crowding due to binding equilibria
and diffusion as well as the dependence on the particle size. We specifically study molec-
ular binding and enzymatic reactions. As a complement, we perform simulations with the
reaction-diffusion simulation package ReaDDy (125). On the one hand, our approach is tu-
torial in nature and provides a simple rationalization and illustration of well-studied effects.
On the other hand, it also provides some new insight. For example, in the case of a receptor-
ligand pair, histograms of the binding times allow us to reconcile the reduced diffusion rate
with the surprisingly crowding-independent binding rate.

Even though the effects we consider are generic, our main interest here is in gene expres-
sion, in particular reaction involving the macromolecular machines that process the genetic
information, RNA polymerase and ribosomes. These machines are rather large molecular
complexes, and for molecules of such size diffusion is strongly reduced (126). As a conse-
quence, reactions are expected to be diffusion-limited or close to the diffusion limit. Specif-
ically for ribosomes, it was recently proposed that the slow diffusion of ternary complexes
(tRNAs charged with amino acids and GTP-activated elongation factor Tu) imposes a funda-
mental limitation on the speed of translation, which necessitates the large concentrations of
elongation factors in rapidly growing bacteria (127) (elongation factor Tu is the most abun-
dant protein in E. coli (128)). Such a limitation would be aggravated during growth under
increased osmotic pressure. Likewise, RNA polymerase is a big molecular machine that dif-
fuses slowly in the cell, such that binding to promoters, which usually determines the rate of
transcription, might become diffusion limited.

The paper is organized as follows: We start by introducing the computation methods we
use, the lattice model and ReaDDy. Then we study simple implementations of two elemen-
tary reactions, binding between two binding partners (which could represent two proteins or
molecular complexes or a protein and its binding site on DNA) in section 3.3 and a diffusion-
limited enzymatic reaction in section 3.4. Both cases are based on a ligand or substate that
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Figure 2.1 - Simulation methods used in this work: (A) Schematic view of the lattice implemen-
tation, in which L ligands (light blue) and C crowders (black) diffuse by hopping to one of the six
nearest neighbor lattice sites until a ligand finds a target (red). Molecules have square geometry and
diffusion is only allowed if the site of destination is unoccupied. Note that the simulations use a three-
dimensional lattice rather than the two-dimensional one depicted schematically here. (B) Snapshot
from the off-lattice simulation package ReaDDy. L ligands (dark blue), a single target (grey) and C
crowders (yellow) diffuse and react in a simulation box with volume V.

needs to find a target site (the binding partner or enzyme) by diffusion. In section 2.5, we
study the effects of the size of the crowders and in section 2.6 we combine everything to
address an enzymatic reaction with Michaelis-Menten kinetics. We close with an extended
discussion, where we apply the insight from these simulations to several processes relevant
to gene expression, in particular to the speed of translation and to promoter finding by RNA
polymerase.

2.2 Simulation methods

2.2.1 Lattice model

The effects of molecular crowding on biochemical reactions was studied using Monte Carlo
simulations of particles on a three-dimensional lattice with periodic boundary conditions.
The simulation box has the volume V = QI3, where [ is the lattice spacing and Q the to-
tal number of lattice sites, chosen as the linear extension of the smallest particle type. The
system contains three types of particles: Target particles (receptors or enzymes), particles
searching for the target (ligands or substrates, respectively) and crowders. Their numbers are
denoted as R, L and C, respectively. For now, all particles are taken to occupy exactly one
lattice site. We will consider particles of different sizes below, but throughout this study, all
molecules on our lattice simulations are taken to have a square geometry. We will consider a
single target particle (receptor or enzyme) and take this particle to be static in the center of
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2 Biochemical reactions in crowded environments

the simulation box. A ligand bound to the target particle is taken to occupy the same lattice
site as the target particle. The other particles are initially placed randomly on the lattice,
occupying the volume fraction ¢ ~ (R + L)/, see Fig. 2.1A.

At each simulation time step (of duration 7), the crowders and ligands move to each neigh-
bor site with probability 1/6. This move is accepted if the chosen neighboring lattice site is
free and rejected if it is occupied. Thus, steric effects or excluded volume are the only in-
teractions considered, and on a free lattice, these particles diffuse with diffusion constant
D = 1?/(67). These moves are performed in a random-sequential fashion: In every simu-
lation step, we randomly choose L times a ligand and C times a crowder and update their
position, thus that on average all particles are updated once per simulation step. If a ligand
finds the target and the target is free, the complex ligand-target is always formed. Thus, this
reaction is taken as diffusion-limited. Only when the target is already occupied by another
ligand, the move to form the complex is rejected. Once the complex has been formed, the
bound ligand can dissociate from the target with the unbinding rate k,,;. Below, we will con-
sider different scenarios of complex dissociation to describe receptor-ligand complexes and
enzyme-substrate reactions.

2.2.2 Off-lattice simulations (ReaDDy)

In addition to the lattice implementation, we run simulations with the off-lattice simula-
tion software ReaDDy (125), see Fig. 2.1B. This simulation package describes biochemical
reaction-diffusion processes via interacting spherical molecules. Their diffusion is described
by a memoryless Langevin equation, which is solved numerically with an Euler discretization
with a constant time step At,

x(t+ At) = x(t) — DAtV‘ZZT(t)) + V2D Atn,. (2.1)
Here, x(¢) is a three-dimensional vector indicating particle positions at time ¢, D is the re-
actant diffusion constant, V' (x(t)) is the particles’ interaction potential, kp is Boltzmann’s
constant, 7 is the temperature and 7 is a normally distributed random number with zero
mean and variance one.

The steric interactions implemented in ReaDDy are given by a harmonic potential, in which
the potential force constant k,, is optimized by finding the largest simulation time step At
for which there is no overlapping between particles (125). Throughout this study we use the
recommended potential force constant k,,: = 50 kjmol~! nm~! (125). In ReaDDy, reactions
are understood as uni- or bimolecular reaction events in which particles either are trans-
formed into other particles, or events that lead to molecule synthesis or degradation. Thus,
the concentration of molecules as a function of time can be described by the following set of
ordinary differential equations (129):
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2.3 Effects of crowding on molecular binding

del(t) . . den(t) 1
for the first order molecular reactions and
dCpy(t dCpy(t
eill) _ = ) _ e, (0w, ), 2.3)

for the second order molecular reactions. In the latter expressions, Cr, (t) and Cp, (¢) are the
concentration of the nth reactant and product species, and k' and k2 are the first and second
order reaction rates, respectively. We note that the macroscopic second order reaction rate

k? is the product of the probability for the reactants to be in close contact with the rate at
2

micro*

which the reactants in contact transform into the product, &
2

micro

Since diffusion is explicitly

simulated by ReaDDy, only & is set as an input in the simulations. For all simulations, we

2

micro

consider k = 10% sec~!. Computationally, a reaction takes place with a reaction probabil-
ity preq, Obtained from the Poisson probability of having at least one reaction event with rate

1,2
k:

maicro

within time interval At, e.g. prea = 1 — eFmiere®, We note that the molecular diffusion
constant D and the reaction rates k' and k? are set in ReaDDy assuming dilute conditions,
e.g. ¢ = 0. By increasing levels of molecular crowding the kinetics and thermodynamics of
the reactions are influenced.

To compare the results from both types of simulations, the length and time units of the
lattice simulations must be converted to nanometers and seconds. In ReaDDy, we run sim-
ulations with spherical particles of radius » = 3 nm that diffuse within a solid square lattice
of volume V = 49 x 49 x 49 nm?® = 1.13 x 10° nm?3. This volume is chosen in such a way
that the total volume is 1000 times the molecules’ volume, as in the lattice simulation. This
choice defines our lattice in the 10 x 10 x 10 lattice constant to correspond to ! = 4.9 nm.
The time scale 7 of the lattice simulations then corresponds to [?/(6D), which can be used
to convert the reaction rates. However, a small difference remains between the capture areas
from which binding occurs, so that the binding probabilities P, are not exactly the same in
both methods. To correct for that difference, we adjust the unbinding rate, such that in the
absence of crowding the binding probabilities agree between the two methods. This adjust-
ment corresponds to an approximately two-fold increase of the unbinding rate, which thus
corrects the corresponding two-fold increase of the binding rate due to different ‘target vol-
umes’. This adjustment procedure can be viewed as an instance of renormalizing the binding
binding/unbinding rate by including unbinding events that are too short for the particle to
diffuse away in the bound state (130).

2.3 Effects of crowding on molecular binding

We start by considering the simple case of binding between a receptor and a ligand in the
presence of crowders. We emphasize that we consider a rather generic scenario here, where
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Figure 2.2 - Effects of molecular crowding on binding equilibria. (A) Probability for the receptor to
be occupied, P,, as a function of the number of ligands for four different values of volume occupation,
¢ = 0,0.2,0.3 and 0.5. Crowding shifts the curves towards lower ligand concentrations. Simulation
data are in agreement with Eq. 2.6 (lines). (Inset) Representation of the unbinding reaction. The
ligand steps from the target to one of the six nearest neighbor sites with a rate k,;. (B) Dissociation
constant K4(¢) as a function of ¢. The data points are obtained from the simulations by interpolation
(see text) and the line is K;(¢) = Kq.0(1 — ¢). Simulation parameters: V = 10x10x10 (3, D = 1/6 27~}
and Kd’() = 1/60

the receptor and ligand do not necessarily describe the typical case of a protein receptor and a
small molecule ligand, but could, for example, also correspond to two proteins, to aregulatory
binding site on DNA and a transcription factor, or even to an enzyme and its substrate (pro-
vided the actual reaction is very slow, as we will discuss below). Effects of excluded volume
on such a reaction have been studied extensively in the past; in particular, it is well-known
that crowding shifts the binding equilibrium towards the bound state (6; 7; 8). The lattice
model allows us to provide a rather intuitive explanation of these effects. In addition, we use
our simulations to investigate the effects of crowding on the kinetics, which are more subtle.

2.3.1 Binding equilibrium

In the simulations of receptor-ligand binding, a ligand reaching the target particle (recep-
tor) forms the receptor-ligand complex unless the receptor is already occupied by another
ligand. Thus, the binding reaction is diffusion-limited (a reaction-limitation could be in-
troduced by accepting the binding move with a probability smaller than one but we do not
consider this case here). The complex can dissociate again with a rate k,;. Unbinding is im-
plemented by randomly choosing a neighbor site of the complex and moving the ligand there,
provided that site is free. At the same time, the receptor becomes free again and available for
another binding event. Thus, the binding reaction, L+ R = LR, is fully reversible and can be
characterized by the dissociation constant K, where the index zero indicates the absence
of crowder molecules.
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2.3 Effects of crowding on molecular binding

Fig. 2.2A shows results from simulations of a lattice with volume V = 10 x 10 x 10 3,
i.e. with Q = 1000 lattice sites, where crowders, ligands and the receptor all occupy one lat-
tice site each. In dilute conditions, the unbinding event is set to take place (unless otherwise
stated) at a rate k,,(0) = 1/60 7—!. To ensure equilibration, the simulations are run until
10000 binding events have taken place. Fig. 2.2A shows the probability P, that the receptor is
occupied, as a function of the number of ligands for different values of volume occupation ¢.
P, is determined as the ratio of the time the receptor was occupied and the total simulation
time. The symbols represent our simulation results for ¢ = 0,0.2,0.3 and 0.5, the lines indi-
cate the corresponding results from the binding equilibrium condition (no free parameters,
discussed below), P, = C/(C + K4(¢)), where the dissociation constant is expressed in units
of numbers of molecules in the simulation box. Although qualitatively the behavior is similar
for all values of ¢, increasing volume occupation increases the receptor occupancy by shifting
the curves to the left. Thus, as ¢ increases, less ligands are needed to saturate the receptor.
For large numbers of ligands, the effect of the crowders is negligible, because the receptor
is already saturated. In Fig. 2.2B we plot the dissociation constant K;(¢), which is obtained
by interpolation from the simulations as the ligand concentration for which P, = 0.5, as a
function of the volume occupation ¢. K;(¢) decreases linearly with the volume fraction, in-
dicating the shift of the equilibrium towards the bound state.

Since the effect of crowders and excluded volume on the dissociation constant is purely
thermodynamic rather than kinetic, it can be understood based on the statistics of states of
the lattice with the receptor free and occupied, see ref. (5). We include this argument here for
completeness. At equilibrium, the probability for the receptor to be occupied P,, is obtained
as the ratio of the number of possible states .Sy, in which a ligand is bound to the receptor and
the total number of states, i.e. S, plus the number of states when the receptor is free, S,;. We
note that the states with an occupied receptor are weighted with the Boltzmann factor due to
the binding energy FEj,

Sbe_Eb/kBT 1

P prn = .
b SbefEb/kBT_FSub 1+ %?eEb/kBT

(2.4)

The ratio S,;/S, is obtained by dividing all the possible ways in which C' crowders and L
ligands can be organized in a lattice with 2 lattice sites, over all the possible ways in which C
crowders and (L — 1) ligands can be distributed in (2 lattice sites. This ratio is thus given by

(2.5)

Sw _ 1) () Oy 0o

S (e L @ L/

with L/Q being the dimensionless ligand concentration. Introducing the latter expression
into Eq. 2.4 leads to
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2 Biochemical reactions in crowded environments

1

= [ R
1+ Ld/(Q

P, (2.6)

with the crowding-dependent dissociation constant Ky(¢) = e/#87(1 — ¢). The limiting
value for ¢ = 0 is the microscopic dissociation constant for the binding reaction without in-
terfering crowders, K;o = eEo/ksT  We note that this dissociation constant as well as the
ligand concentration L/ are dimensionless, but can be converted to per-volume units as
[L] = L/V =173 x L/ and likewise for the dissociation constants. The microscopic dissoci-
ation constant K4y can also be related to the kinetic parameters of the model via the detailed
balance condition, k,;/7~' = /8T The latter relation is used to determine the lines in
Fig. 2.2A and B.

Eq. 2.6 thus shows that, as ¢ increases, the dissociation constant is diminished and a lower
ligand concentration is needed to saturate the receptor as observed in the simulations. An
alternative interpretation of the result is that the volume is reduced by the excluded volume,
so that the available volume is (1—¢)3, which effectively increases the ligand concentration.
We note however that this interpretation is only valid in the simplest case that we consider
here, as it depends on the assumption that all particles have the same size. In that case, the
available volume is independent of the spatial arrangement of the particles, which is not the
case for particles of different sizes, as discussed below.

2.3.2 Kinetics of binding and unbinding

Next we consider the impact of the crowders on the kinetics of binding and unbinding. To
that end, we determine binding and unbinding rates from our simulations as the inverse of
the average time the receptor is free before a binding event and occupied before an unbinding
event. In Fig. 2.3A we plot the binding rate k, for three different ligand concentrations as a
function of the occupied volume fraction. The binding rate is given by 1 /3L ~!7—! and depends
on the ligand concentration, but not the level of crowding, suggesting that diffusion of the
ligand to the target is not affected by crowding. The observation of a constant binding rate
indicates that the effect of crowding on the dissociation constant discussed above is entirely
due to the decrease of the unbinding rate k,;(¢). In Fig. 2.3B we plot k,;(¢) as a function
of the excluded volume fraction ¢. As expected, k,;,(¢) decreases linearly as the level of ¢
increases, consistent with the expression k,, = K407 (1 — ¢). Such a linear decrease can
be understood as a simple exclusion rule for the complex dissociation step, where the ligand
moves from the receptor site to one of its neighbors. The rate for that step is simply reduced
by a factor corresponding to the probability that this site is free, (1 —¢). We can thus conclude
that for the simple case with crowders and ligands of the same size, the shift of the binding
equilibrium towards the bound state is caused by crowders blocking unbinding.
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Figure 2.3 - Kinetics of the simple binding reaction model. (A) Binding rate k; and (B) unbinding
rate k., as a function of the volume occupation fraction ¢. k; remains constant for all values of ¢.
Thus, diffusion of the ligand towards the target is not affected by crowding. k., decays as ¢ increases,
in agreement with the expression k,, = Kq07 (1 — ¢). (C) Histograms of the duration of 10000
unbinding events for the case of a single ligand for different values of ¢. The data follow a single
exponential. (D) Histograms of the duration of 10000 binding events for ¢ = 0,0.3,0.5 and a single
ligand. A double exponential decay is observed with a fast and slow component in the binding kinetics.
Inset: closeup of the histogram for short times with smaller bin size. (E) Fast rebinding is enhanced
when levels of molecular crowding increase. (F) Slow rebinding is negatively affected when ¢ increases,
since the diffusion of the ligand towards the target is hindered. Simulation parameters as in Fig. 2.2.
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2 Biochemical reactions in crowded environments

The rates presented so far are based on the mean values of times between binding and
unbinding events. To get a more detailed picture of the effects of crowders, we next consider
histograms of these times. Fig 2.3C shows the histograms of the durations of the bound state
before unbinding for the case of a single ligand and three different volume occupation values.
The simulation data follow a single exponential (correlation coefficient of fit R? = 0.984,0.995
and 0.998 for ¢ = 0,0.2 and 0.5, respectively), with a characteristic time scale that increases as
the volume occupation increases, in agreement with an unbinding rate reduced by crowding.
For the binding times, the picture is more complex: Fig 2.3D shows the histograms of the
durations of all binding events for the same three cases. In all cases, the simulation data
can be described by a double exponential (correlation coefficient of fit R? = 0.999 for the
three values of ¢ = 0,0.2 and 0.5), P(t) = Ny exp(—kit) + Naexp(—kat), which indicates the
existence of a fast and a slow component in the binding kinetics. The corresponding two rates
k1 and ko are plotted individually as functions of the volume fraction in Figs. 2.3E and 2.3F,
respectively. These plots show that they exhibit opposite dependencies on crowding. The rate
for rapid rebinding, k1, increases with increasing volume fraction ¢, while the rate of the slow
component decreases. This result can be interpreted in the following way: crowding enhances
rapid rebinding of a ligand still close to the receptor upon unbinding, as the crowders hinder
the diffusive motion of the ligand away from the receptor and thus keep it close for a longer
time. At the same time, the crowders hinder the diffusive motion to the receptor when the
ligand needs to diffuse there from further away. Thus, the constant binding rate, independent
of the presence and concentration of crowders conceals the more subtle balance between two
opposing effects, namely an increased rate for rapid rebinding and a reduced rate for binding
during longer periods of unoccupied receptor. Both effects are related to an effect of crowding
on diffusion, but in one case away from the target and in the other towards the target. One
could however, consider coarse-grained rates and consider the short-lived unbinding events
as part of the bound state (130). In that case, the binding rate would be reduced by crowding
and the unbinding rate would be reduced even more.

2.3.3 Binding in off-lattice simulations

In addition, we simulated the same receptor-ligand binding reaction using the off-lattice
reaction-diffusion dynamics software ReaDDy (125). These simulations allow us to cross-
check the results and to test for possible lattice artifacts. Fig. 2.4A shows the probability P,
that the target is occupied as a function of the number of ligands for different values of ¢.
Comparable quantitative results are found for both implementations of molecular crowding.
As in the lattice simulations, increasing volume occupation levels ¢ leads to a decrease in the
dissociation constant. In Fig. 2.4B and 2.4C we show the rates of binding and unbinding as
functions of the volume occupation. The binding rate is independent of the volume fraction,
while the unbinding rate decreases as the volume fraction of crowders increases. Just as in
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Figure 2.4 — Effects of molecular crowding on binding equilibria simulated with ReaDDy. (A) Proba-
bility for the target (receptor) to be occupied P, as a function of the number of ligands, for two levels
of volume occupation ¢ = 0 and 0.3. Crowding shifts the probabilities towards lower number ligands.
Similar behavior is observed for the lattice implementation and for ReaDDy. (B) Binding rate k; stays
constant as the levels of volume occupation increase. (C) Unbinding rate decays as ¢ increases, follow-
ing the relation k., = k. (0)(1 — ¢). (D) Histograms of 1700 binding events for two different values of
volume occupation ¢ = 0 and 0.3. A double exponential decay is observed, indicating the presence of a
slow and a fast component of the dynamics, as in the lattice implementation. Simulation parameters:
V = 49x49x49 nm?, k,;,(0) = 1.6x10° sec™!, r = 3 nm, D = 166.6 um? sec™! and 7' = 20°C. The data
from lattice simulations in (A) are the same as in Fig. 2.2A.
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2 Biochemical reactions in crowded environments

the lattice model, the unbinding rate follows k,;, = k,,(0)(1 — ¢). We can thus conclude that
the effects of crowding on P, are due to the slower dissociation rate. Next, in Fig. 2.4D we
plot the histograms of 1700 binding events for the cases ¢ = 0 and 0.1. As in the lattice
implementation, the histograms follow a double exponential distribution (R?> = 0.996 and
0.998 for ¢ = 0 and 0.1, respectively). Thus, simulations with ReaDDy also show a slow and
a fast component of the binding kinetics. We note that although for both implementations
the simulation time increases quadratically with particle number, the simulation times in
ReaDDy are about 2 orders of magnitude larger than in our implementation (data not shown).
This is primarily due to the computationally expensive evaluation of the steric potential in
ReaDDy.

2.4 Effect of crowding on diffusion-limited reactions

We have seen above that crowders do not affect the rate of formation of the receptor-ligand
complex, because they suppress binding events involving large-distance diffusion of the lig-
and to the receptor, but also enhance (re-)binding for ligands close to the receptor and the
two effect compensate each other. We now consider the reaction between an enzyme (replac-
ing the receptor) and its substrate (replacing the ligand). Specifically, we consider a reaction
that is diffusion-limited and very efficient, converting every incoming substrate into the cor-
responding product P, i.e. we consider the irreversible reaction L + R —+ LR — P + R. In
contrast to the receptor-ligand binding considered above, in this case, immediate rebinding
of the substrate is not possible, because the released molecule is the product rather than the
substrate. Thus, one can expect that the balance between the different effects of the crow-
der is perturbed and different behavior can be expected in this case. Clearly, the reaction we
consider here is a limiting case; a more general and more realistic scenario, namely Michaelis-
Menten kinetics, that allows both the unbinding of the substrate and release of the product
will be considered below.

2.4.1 Lattice simulations

We study the enzyme-substrate reaction under steady-state condition with constant sub-
strate and product concentrations. To implement this case, we use the same simulations as
above with only a difference in the unbinding process. Instead of unbinding of the ligand,
we now simulate a reaction that transforms the substrate into the product. In addition, we
need to implement an additional reaction that keeps the substrate and product concentra-
tions constant. In our lattice simulation, these two events are implemented in one single
step: When a substrate is bound to the enzyme (i.e., occupies the target site), the reaction
occurs with rate &, and simultaneously the product is released and removed from the simu-
lation and a new substrate molecule is introduced at a random position. Thus, we keep the
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Figure 2.5 — Effects of molecular crowding on a diffusion-limited reaction. (A) Probability P, for the
target (enzyme) to be occupied P, as a function of the number of substrates, for ¢ = 0,0.2,0.3 and
0.5. Molecular crowding shifts P, towards larger number of ligand. Thus, more ligands are needed
to saturate the receptor when ¢ increases. (Inset) Representation of the reaction model, in which a
product P is synthesized with a rate k,. (B) Dissociation constant Kj(¢) (obtained as the substrate
concentration for which P, = 0.5) as a function of ¢, which increases as a function of ¢. The line is
obtained from Eq. 2.7 with x = 0.5, as obtained from the fit in Fig. 2.6B. Simulation parameters as in
Fig. refBiRe2, and k, = 1/60 771.

product concentration zero and the substrate concentration at its initial value. Effectively,
the reaction is described as a unbinding process to a random position in space rather than a
neighbor site of the enzyme. Clearly, this dynamics does not satisfy detailed balance; energy
input is required to keep the concentrations and thus the chemical potential constant.

In Fig. 2.5A, we plot the probability that the target site, the enzyme, is occupied as a func-
tion of the number of substrates in the box. In contrast to the ligand-receptor binding reac-
tion considered above, increased crowder numbers now shift the function to the right, that is,
towards larger ligand numbers, so that the occupation of the enzyme (as well as the overall
reaction rate) is reduced by the crowders. We note that the effect is rather modest, but nev-
ertheless it is important that the effect is the opposite of what we observed above. Although
the process does not correspond to a binding equilibrium, the data are well-described by Eq.
2.6, with an effective dissociation constant Kj(¢) = k,/ky, where k, is the reaction rate and
ky, the diffusion-limited binding rate. The effective dissociation constant (determined as the
substrate concentration for which P, = 0.5) is plotted in Fig. 2.5B as a function of the volume
fraction of crowders. It increases with increasing volume fraction and can be described by

k, k,

Kg(¢) = T = W 2.7

with x ~ 0.5 (obtained from the fit to the binding rate below).
This functional form is not entirely surprising: Our reaction is diffusion-limited, thus the
binding rate is proportional to the diffusion coefficient (k, = 47o D, where o ~ [ is the reac-
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2 Biochemical reactions in crowded environments

tion radius of the interacting particles). Experiments for different concentrations and species
of crowding agents have shown that the change in the diffusion constant of different proteins
due to crowding can be described by the phenomenological expression D(¢)/D(¢ = 0) =
(1 — ¢)" (14; 22). In the presence of different crowding agents, diffusion measurements for
the protein carbon monoxide hemoglobin have been fitted with a value of x = 0.36 (14; 22).

That our result for the effective dissociation constant shows the same dependence as ex-
perimentally observed for diffusion indicates that, in contrast to the binding reaction studied
above, here the entire effect of crowding is via the (diffusion-limited) binding rate. This is in-
deed the case, as one can see in Fig. 2.6A and 2.6B, where we plot the reaction rate (which
serves as an effective unbinding rate) and the binding rate individually as functions of the vol-
ume fraction, respectively. The bare reaction rate is unaffected by crowding, while the binding
rate decreases with increasing volume fraction, with the same functional dependence as the
effective dissociation constant,

kp(¢) = Ky (1 — )"~ (2.8)

This dependence was used for the fit to determine x ~ 0.5 (with correlation coefficient
R? = 0.98 and 0.96 for 10 and 100 substrates, respectively). As a side remark, we note that
the results for the binding rate of this reaction can be used to determine the effect of crowding
on the diffusion coefficient, which would be more difficult to obtain from the mean square
displacement due to the effect of confinement in the finite simulation volume.

Next, we consider the histograms of the ligand binding times, which are shown in Fig.
2.6C. In contrast to the binding reaction considered above (Fig. 2.3D), the simulation data
for this reaction are well-described by a single exponential (correlation coefficient of fit R? =
0.998,0.995 and 0.998 for ¢ = 0, 0.3 and 0.5, respectively). When ¢ is increased, the character-
istic time increases, that is, the ligand-receptor encounter needs more time to take place. This
result corresponds to the slow component of the binding scenario discussed above. In fact the
two results show good quantitative agreement. We therefore conclude that our description of
a diffusion-limited reaction completely uncouples the effect of molecular crowding on diffu-
sion from the effect on binding equilibria.

2.4.2 Off-lattice simulations

Next, we implement this reaction in ReaDDy. We note that the reaction described on the
lattice is idealized in the sense that removal of the product and re-introduction of substrate
to keep the substrate concentration constant occur simultaneously at different positions on
the lattice. For the off-lattice case, this idealization is less straightforward and it is easier to
uncouple these processes. Thus, we include an additional reaction in these simulations: A
product can be converted back into a substrate with rate k.. Indeed such processes are real-
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Figure 2.6 — Kinetics of the diffusion-limited reaction. (A) Reaction rate k.. as a function of the number
of substrate molecules for different levels of volume occupation ¢. &, stays constant and has a value
of k., = 1/607~! for all substrate numbers and levels of ¢. (B) Binding rate k; decays as ¢ increases.
The simulation data is fitted with Eq. 2.8, resulting in x ~ 0.5 (lines). (C) Binding time histograms
fitted with a single-exponential. (Inset) The characteristic time increases as the levels of volume oc-
cupation increase. (D, E) Trajectories of the implementation of the diffusion-limited reaction with
ReaDDy. Number of particles (D) and mean square displacement (E) from the target as functions of
time for different charging rates. The solid lines represent the substrate particles (ligands) that can
bind and react, the dashed lines represent the product that needs to be recharged with rate k. before
it can bind again. (F) Comparison of the binding probability P, as a function of the number of lig-
ands at different crowding levels for ReaDDy simulations and the lattice model (data from Fig. 2.5A).

Simulation parameters (ReaDDy): V = 49x49x49 nm?, k,. = 1.6x10° sec™!, » = 3nm and T = 20°C.
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2 Biochemical reactions in crowded environments

ized for example in translation, where tRNAs leave the ribosome uncharged, i.e. not carrying
an amino acid and get recharged by tRNA synthetases. The product constitutes an additional
molecular species which we take to diffuse with the same diffusion coefficient as the sub-
strate, but not to bind to the enzyme/target.

To compare the ReaDDy simulations with our lattice model, two difficulties must be solved:
In the first place, we want to keep the substrate (charged ligand) concentration as unaffected
as possible. On the other hand, the product or uncharged ligand must diffuse far from the
receptor and be charged at a random position within the simulation box. These two require-
ments are antagonistic, meaning that on average, fast recharging implies short diffusion, and
long diffusion implies slow recharging. Thus, we run simulations for different values of the
recharging rate k. in order to obtain an adequate value to simulate our ideal reaction.

Fig. 2.6D shows simulation time courses for the number of molecules with 50 charged and
no uncharged ligands as initial condition. For a small recharging rate, k. = 0.01 usec™!, the
charged ligand number decreases to about 40 molecules. For a fast charging rate k. = 0.1
usec™!, the charged ligand number stays almost constant at 50 molecules with slight fluctua-
tions. However, the mean square displacement of the substrate and product particles from the
origin of the simulation box, which we use as a measure of the distance of the target, shows
that for the high recharging rate, the products (uncharged ligand) are on average closer to
the target than the substrate/charged ligand. Even for the low recharging rate, a small dif-
ference in mean square displacement can still be seen. To balance the two requirements, we
therefore used an intermediate charging rate of k. = 0.05 usec™!. For this value, the number
of charged ligands does not change drastically (Fig. 2.6D), and the uncharged ligand diffuses
far from the ligand before it gets recharged, see Fig. 2.6E.

Using this intermediate value of the recharging rate (and all other simulation parameters
as above), we determine the target occupation P, as a function of the number of ligands for
different levels of crowding (Fig. 2.6F). As the volume occupation increases, P, is shifted to
the right, towards larger ligand concentrations, in quantitative agreement with the lattice
simulations.

2.5 Effects of crowder size

So far, we have only considered crowders with the same size as the diffusing ligand or sub-
strate molecules. However, effects of molecular crowding on biochemical reactions are known
to be dependent on the reactants’ size and geometry (8). Specifically, large particles experi-
ence entropic attraction forces in the presence of smaller crowders. Such forces are known
as depletion forces and have been studied extensively, both theoretically and experimentally
(131; 132).
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Figure 2.7 - Effects of crowder size on the binding of a ligand to a receptor (A-C) and on the diffusion-
limited enzymatic reaction (D, E). In all panels, grey-filled symbols represent the implementation in
which multiple crowders can occupy the same lattice site (MC), half-filled symbols (green and pink)
represent the implementation of the small crowders (SC) and the red symbols show results from
ReaDDy. In general, good agreement between the methods is observed. (A) P, of the simple bind-
ing reaction as a function of the number of ligands for different crowder sizes and volume occupation
fractions ¢. The lines are from Eq. 2.9 with no free parameters. (B) Dissociation constant as a func-
tion of ¢ for two different crowder sizes. Smaller crowders have a stronger effect on the dissociation
constant than crowders with the same size as the ligands. (C) Unbinding rate as a function of crowder
volume fraction. (D) P, for a diffusion-limited reaction at different crowder volumes. (E) Correspond-
ing binding rate. The lines show fits with Eq. 2.8 (R? = 0.96, 0.995 and 0.994 in descending order). The
simulation parameters are as in Fig. 2.2 and Fig. 2.5.
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2 Biochemical reactions in crowded environments

Here we are interested in the case of crowders smaller than the ligand/substrate. In the
lattice simulations we thus consider ligands occupying more than one lattice site, specifically
cubic particles occupying 8 sites. We implemented this situation in two ways, explicitly with
crowders occupying a single site and ligands occupying n = 8 sites (small crowders model,
SC) and in an approximate way, where the different sizes are taken into account implicitly, by
allowing up to n = 8 crowders to occupy the same site, while the presence of a single crow-
der already excludes a ligand from that site (multiple crowders model, MC). In the latter, n is
the maximal number of crowders allowed to occupy the same lattice site (which can have any
integer value, while in the first model only sizes n = k3 with integer & are possible). We note
that in the first implementation, the lattice constant corresponds to the size of the crowder,
while in the second it corresponds to the size of the ligand. Thus, to compare the two imple-
mentations, one needs to account for the different unit lengths as well as the corresponding
different unit times, which are defined via the diffusion over the lattice spacing.

The effect of the crowders on the binding equilibrium can be calculated in the same way as
above, by counting the number of configurations S,;, and S}, by distributing L or L — 1 ligands
and C crowders on the lattice (5). This leads to the probability that the receptor is occupied
as given by

1 . n
by = ) with  Kq(¢) = Kgo(1 —¢)". (2.9)

[L]
Thus, small crowders have a stronger effect on binding than crowders of the same size as the
ligands. This results is confirmed by the simulations. Fig. 2.7A shows P, as a function of the
number of ligands for different levels of molecular crowding. Here, grey-filled symbols show
data from simulations where multiple crowders can occupy one lattice site, half-filled colored
symbols (pink and green) represent simulations with small crowder particles on the lattice
and the red-filled symbols show results from ReaDDy simulations. For the latter, crowders
have a radius » = 1.5 nm to obtain a volume 8 times smaller than the ligands. Symbols show
averages of our simulations after running over 3000 binding events. Half-saturation of the
receptor at ¢ = 0.2, is reached at ~ 3 ligands, whereas for the case where crowders and
ligands have the same size, i.e n = 1, half-saturation occurs at ~ 13 ligands. Lines represent
Eq. 2.9 and show good agreement with the simulations. The effective dissociation constant
is plotted, for the multiple crowder approximation, as a function of the volume fraction ¢ in
Fig. 2.7B. Comparison of the data for crowders with the same size as the ligand and with an
8-fold smaller volume, shows that for the same occupied volume fraction, the small crowders
shift the dissociation constant more strongly toward the bound state than the larger crowders.
Thus, only for crowders of the same size as the ligand, the effect of crowding can be identified
with a reduction of the available volume by the volume occupied by the crowders. For the
smaller crowders, the available volume is reduced by a larger amount. This observation can
be explained by the fact that the volume from which large particles are excluded is determined
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2.6 Enzymatic reaction

by the spatial arrangement of small particles. This additional volume exclusion effect can also
be interpreted as due to an additional attractive force between the large particles (here the
ligand and the target). The effect of crowder size is also known from scaled particle theory,
however in that theory non-linear ¢-dependencies are already present for crowders of the
same size as the ligands (8).

Next, we plot the unbinding rate as a function of the volume fraction for smaller crowders,
see Fig. 2.7C. Independent of the crowder size, the effect of crowding on the dissociation
constant is entirely mediated by the unbinding rate. Results are in good agreement with the
expression for the unbinding rate k,;, = K407 (1 — ¢)", with n = 1 and 8 for crowders with
the same size as the ligands, and crowders 8-fold smaller than the ligands, respectively. No
strong difference between the two different implementations is observed.

Next, we study the effect of small crowders on ligand diffusion using again the diffusion-
limited reaction in which the target converts a substrate (the ligand) into a product (which
is instantaneously replaced by a new substrate inserted into the simulation box at a random
position). As for the crowders with the same size as the ligand, binding to the target is weaker
in the presence of the crowders and the dissociation constant increases with increasing vol-
ume fraction due to a reduction of the binding rate (the effective unbinding rate, given by the
reaction rate, remains constant by construction of the reaction model). Fig. 2.7D shows P, as
a function of L for two different volume fractions of crowders, which are again 8-fold smaller
than ligands. In Fig. 2.7E, we plot the binding rate k; as a function of volume fraction for a
fixed number of ligands, L = 10, and three different crowder sizes (grey and green symbols).
When crowders and ligands have the same size n = 1, the decrease in the binding rate is
modest. Reducing the sizes of the crowders increases the effect of crowding. As above, the
dependence of the binding rate on the volume fraction can be described by k, = k)(1 — ¢)~,
with k ~ 0.5, 3.6 and 16 for crowders with the same size as the ligands, 8-fold smaller than
the ligands and 30-fold smaller than the ligands, respectively. For the case of crowders being
8-fold smaller than the ligands, where we tested both implementations of smaller crowders,
no strong difference is observed between the two different implementations.

2.6 Enzymatic reaction

Finally, to consider the combined effect of crowding on diffusion, binding and reactions,
we simulate an enzymatic reaction with Michaelis-Menten kinetics (133),i.e. L+ R < LR —
P + R. This reaction is implemented in our lattice model by combining the two reactions
studied above: The substrate binds to the target (the enzyme) as before, but then two events
may occur. The substrate may unbind from the target with rate k&, as in the binding reaction
studied in section III. Alternatively, the reaction can take place and a product is released with
rate k.. In this case, we again remove the product from the simulation box and re-insert a
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Figure 2.8 - Effects of molecular crowding on a reaction with Michaelis-Menten kinetics. (A) Overall
product synthesis rate in absence of crowding (¢ = 0) as a function of the number of substrates for
different set of parameters k,;, and &, (in units of the inverse simulation time steps 7!, all other pa-
rameters are as in Fig. 2.2). (B) Ratio between the overall synthesis rate in the presence of crowders
and the overall synthesis product rate without crowding as a function of crowder volume fraction ¢.
Non-monotonic behavior is obtained for all sets of parameters. For small values of ¢, binding equi-
librium effects are dominant, shifting the ratio to values > 1; for large values of ¢, the slow diffusion
dominates, as the reactions become diffusion-limited and the ratio decreases again. The maximal
reaction rate is found at an intermediate value of ¢. (C) The same as in (B), but for crowders 8-fold
smaller than substrates. The qualitative behavior is the same as in (B), but the presence of smaller
crowders shifts the maximums towards lower values of ¢. The dashed lines in (B, C) represent the
theoretical limits of k,; > k, (top) and k,;, < k, (bottom).

substrate molecule at a random position. In the absence of crowders, the synthesis of product
proceeds with a rate

dP  k.[R][L]

dt — Ky + (L]
with the Michaelis constant K, = (k, + kyp) /kp- In the two limiting cases where either &, or
k. = 0 are negligibly small, the reaction reduces to the two reactions considered above. In
the following, we will modulate these two parameters such that k,;, + k.. is kept constant (=
1/607~1). Thus, in the absence of crowding, the reactions have the same Michaelis constant,
but differ in their maximal reaction rate, see Fig. 2.8A. By contrast, when crowders interfere
in the reaction, the maximal reaction rate may be limited by different physical processes. If
unbinding is negligible, the reaction is diffusion-limited, and thus hindered by crowding. The
Michaelis constant is increased by crowders, K, ~ k,/k, x (1 — ¢)~". As we have seen, this
increase can be attributed to a reduced binding rate, and the value of « is strongly dependent
on crowder size. In the other limit, the reaction is limiting and the binding/unbinding process
has enough time to reach equilibrium before a reaction takes place. In that case, the Michaelis
constant is decreased by the crowders, K, ~ k,; % (1—¢)"™/k;, due to areduced unbinding rate.
For a given concentration of substrate, the rate of product formation is reduced in the first
case, but increased in the second. These opposing limiting behaviors are plotted as dashed
lines in Figs. 2.8B and 2.8C.

(2.10)
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The latter competitive effects lead to a non-monotonic behavior of the reaction rate for
parameters that lie between the limit cases, as shown by the symbols in Fig. 2.8B and 2.8C. In
these cases, the reaction rate is increased by crowding at low volume fractions of crowders,
but decreases for large volume fractions. This observation can be explained as a transition
between the reaction-limited and the diffusion-limited case, as increasing volume fractions
decrease the unbinding rate. Thus, the volume fraction for which the reaction rate is maximal
can be estimated by k., = ku,(1 — ¢)", which leads to a diffusion-limitation for ¢ > 1 —
(ky/ku) for n = 1. This estimate also indicates that for smaller crowders (larger n), the
maximal reaction rate occurs for smaller volume fractions. This expectation is confirmed by
simulations, shown in Fig. 2.8C. Here decreasing reaction rates are seen for volume fractions
below the typical intracellular crowding level of 0.3.

Experimentally, both increases and decreases of enzyme activity with increasing levels of
crowding have been seen (4). However, often these observations do not reflect simply the
shift in equilibrium binding, in particular, when substrates are small compare to the crowders.
Rather, crowding can also affect the activity of an enzyme by modulating its conformation or
by inducing oligomerization (20; 43). However, there is evidence for decreased activity due
to diffusion-limitation in several cases (20; 134).

2.7 Discussion: Crowding effects on gene expression

In the preceding sections we have discussed generic effects of molecular crowding on two ele-
mentary types of reactions, simple binding/unbinding and an enzymatic reaction converting
a substrate into a product. These two reaction paradigms can be used to describe many differ-
ent processes in cells, including some that are not enzymatic in a strict sense. An example for
the latter is binding of RNA polymerase to a promoter and initiation of transcription, which
can be described (within a minimal mathematical representation) by Michaelis-Menten ki-
netics with the promoter taking the role of the enzyme (135; 136). In the following, we will
thus discuss some applications of these two elementary reactions to processes in gene ex-
pression.

2.7.1 Transcription factors

Most efforts to study the impact of molecular crowding on gene expression have been devoted
to the binding of transcription factors to their binding sites on the chromosome (13; 14; 137).
For most transcription factors, this is a typical case of equilibrium binding and indeed most
models for gene regulation are based on the assumption of a binding equilibrium for tran-
scription factors (138; 139). As discussed above as well as in a large body of previous work,
one generically expects such binding to be strengthened by crowding. Interestingly, this holds
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both for specific binding to the functional binding sites and for (sequence-independent) non-
specific binding. Since the molecules involved are the same, the relative strength of specific
and non-specific binding should not be affected. Thus, the increase in binding is mainly at
the cost of the cytoplasmic fraction of the transcription factors, in agreement with the obser-
vation that transcription factors spends most of the time bound to DNA (32; 140).

The strengthening of non-specific binding by crowding should also have an interesting con-
sequence for the dynamics. Transcription factors diffuse in the cell by a combination of three-
dimensional cytoplasmic diffusion and one-dimensional diffusion (sliding) along DNA while
non-specifically bound (32). The one-dimensional diffusion coefficient is typically consid-
erably smaller than the diffusion coefficient for three-dimensional diffusion. Thus, unless
the transcription factor is bound to DNA in close proximity to a specific binding site, where
sliding plays an important role, non-specific binding to DNA can mostly be interpreted as in-
hibiting cytoplasmic diffusion. Thus the effective diffusion coefficient can be approximated
as Deg = D(1 — B, ns), Where D is the cytoplasmic diffusion coefficient. Assuming that the
crowders in the cell are mostly proteins and thus similar in size to the transcription factor
of interest, one should expect crowding to have a relatively mild effect on the transcription
factor’s diffusion in the cytoplasm with D(¢) ~ D(1 — ¢). However, since non-specific bind-
ing is strengthened by crowding, the inhibition of cytoplasmic diffusion is also enhanced and
cytoplasmic diffusion is interrupted by pauses on the DNA that get longer and longer with in-
creasing volume fraction of the crowders. Recent Brownian Dynamics simulations (28) indeed
showed an increase in the fraction of time spend bound to DNA, however the overall effect
on search times, the time required to find a binding site on the DNA, was found to be only
weakly affected by crowding, as the opposing effects of crowding seem to keep each other in
balance.

2.7.2 Transcription

As mentioned above, the initiation of transcription can be described by Michaelis-Menten
kinetics with RNA polymerase reversibly binding to the promoter and irreversibly starting
to elongate an RNA chain. Thus, the promoter formally takes the role of the enzyme and
converts free RNA polymerases into transcribing RNA polymerases. Contrary to many tran-
scription factors, RNA polymerase is a relatively big protein with a molecular weight of ~ 400
kDa (141). Thus, its size is larger than that of the typical crowder and crowding effects can
be expected to be more pronounced. However, to address the effect of crowding on the ini-
tiation of transcription, we first need to estimate whether this reaction is diffusion-limited.
For a large protein complex such as RNA polymerase, the cytoplasmic diffusion coefficient is
approximately 1 um?/s (126; 142), which is reduced due to non-specific binding to approxi-
mately 0.2 um?/s (142; 143). Thus, the diffusion-limited binding rate to a promoter can be
estimated to be about 0.1 uM~!s~!. This value could be increased due to sliding along the
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2.7 Discussion: Crowding effects on gene expression

DNA, which effectively increases the size of the target to be reached by cytoplasmic diffu-
sion. However, the importance of sliding is unclear, recent studies have questioned it plays
an important role at all and it will clearly be limited by the presence of other DNA-bound
proteins including the transcription factors bound near a promoter. Since typical transcrip-
tion rates are of the order of a few per minute, however, for most cases, with a concentration
of RNA polymerases of 5-10 uM, transcription should not be limited by diffusion. An excep-
tion might be the transcription of ribosomal RNA, which exhibits much larger transcription
rates, up to 80 per minute. Notably, the cellular RNA polymerase pool is quite large, exceed-
ing numbers needed for transcription. One can speculate that a smaller pool would make
transcription initiation diffusion-limited at least for highly transcribed genes such as those
encoding ribosomal RNA and thus not be sufficient for the high transcription rates required
on these genes.

However, for most genes, the initiation of transcription should not be limited by diffusion
of RNA polymerase and thus crowding can be expected to enhance polymerase binding to the
promoter and thus transcription.

2.7.3 Translation

Similar to the case of RNA polymerase, one can argue that the initiation of translation could
be limited by diffusion of the ribosome, which is an even bigger molecular machine than
RNA polymerase; however it does not exhibit non-specific binding to DNA. Contrary to RNA
polymerase however, the pool of free ribosomes appears to be rather small (144). To a first
approximation, ribosomes are translating all the time, an observation that can be interpreted
as efficient use to maximize the return of an expensive investment (145; 146). Thus, initia-
tion of translation on any specific mRNA could well be limited by the diffusion of ribosomes.
However, different mRNAs compete for ribosomes and such a limitation would not result in
inefficient use of ribosomes but rather in the translation of a different mRNA. Thus, the cell’s
objective here may not be affected by a diffusion limitation.

The elongation process is also quite different for translation compared to transcription.
Elongation of the growing polypeptide chain requires that the next amino acid is delivered
to the ribosome by a ternary complex containing a tRNA charged with the amino acid and a
GTP-activated elongation factor Tu. This complex is again a large molecular complex with a
small diffusion coefficient and a molecular size exceeding the size of typical crowders. As-
suming a concentration of a few uM for typical ternary complex species (147), binding to the
ribosome is expected to occur with rate ~ 10 s=! (127). Thus, peptide chain elongation may
proceed rather close to the diffusion limit and the large concentration of ternary complexes in
cells (EF-Tu is the most abundant protein in E. coli cells (128)) is likely required to avoid such
limitation to ensure efficient cellular use of ribosomes. Indeed, from a proteome partition-
ing point of view, the optimal solution would be to set the Michaelis constant of translation
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elongation as low as possible. Thus, the actual value must be set by some limitation such as
a diffusion limitation, which results in a lower limit for the Michaelis constant (127). Thus
any increase in the level of crowding should slow down translation and, via to the close link
between protein synthesis and cell growth, have a negative effect on cell growth. We note,
however, that such a limitation could be circumvented by local ternary complex pools. Indeed
it has been suggested that tRNAs are recharged while associated with the ribosome (148). The
dynamics is then similar to a high recharging rate in the recharging process in our ReADDy
simulations (Figure 2.6) and crowding would not have the expected negative effect. However,
definitive proof for such local recharging is still lacking.

2.8 Concluding remarks

In this paper, we used a simple computational approach to discuss the effects of molecu-
lar crowding on several simple enzymatic reactions, specifically for relatively big molecular
substrates. We used a combination of lattice and off-lattice simulations to revisit the two
elementary consequences of molecular crowding, namely enhanced binding and reduced dif-
fusion. The balance between these two effects can be subtle as indicated by the example of
the binding rate, which remains unaffected due to an increase in rapid rebinding events and,
at the same time, a decrease in binding event involving diffusive arrival of ligands. The lat-
tice model provides a rather intuitive picture of these situations (as well as a very efficient
computational implementation).

In addition, we have discussed applications of these effects to steps in gene expression,
such as transcription factor-DNA binding, promoter finding by RNA polymerase and trans-
lation elongation. Our estimates show that some of these processes may come close to the
diffusion limit and that such diffusion limitation may be physiologically important, specifi-
cally for translation elongation.

The methods we used here can be applied more generally and there are a number of possible
extensions to this work, such as addressing the effects of spatial clustering of targets (binding
sites/enzymes) and the built-up of local concentrations.
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Chapter 3
Facilitated diffusion in the presence
of obstacles on the DNA

Abstract

Biological functions of DNA depend on the sequence-specific binding of DNA-binding
proteins to their corresponding binding sites. Binding of these proteins to their bind-
ing sites occurs through a facilitated diffusion process that combines three-dimensional
diffusion in the cytoplasm with one-dimensional diffusion (sliding) along the DNA. In
this work, we use a lattice model of facilitated diffusion to study how the dynamics
of binding of a protein to a specific site (e.g., binding of an RNA polymerase to a pro-
moter or of a transcription factor to its operator site) is affected by the presence of
other proteins bound to DNA that act as ‘obstacles’ in the sliding process. Different
types of these obstacles with different dynamics are implemented. While all types im-
pair facilitated diffusion, the extent of the hindrance depends on the type of obstacle.
As a consequence of hindrance by obstacles, more excursions into the cytoplasm are
required for optimal target binding compared to the case without obstacles.

3.1 Introduction

Processing of the genetic information is to a very large extent dependent on the sequence-
specific binding of proteins to DNA. Examples include transcription factors binding to specific
operator sites and RNA polymerases binding to promoters (26). Sequence-specificity is typi-
cally not perfect, and binding motifs therefore are typically ‘fuzzy’, with a range of different
sequences displaying comparable affinities for the protein and an even large range showing
weak affinity (27). In addition, binding of DNA-binding proteins (DBP) to DNA usually has an
electrostatic component that is independent of sequence, i.e. non-specific. For that reason
both the equilibrium binding pattern and the binding kinetics of DBPs can be quite complex
(149). Nevertheless, DBPs find their functional binding sites (of size ~ 10 — 30 bp (26; 66))
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with remarkable efficiency despite the large number of non-specific binding sites (~ 10° in the
genome of E. coli) that compete for binding with the functional site. In a seminal work, Riggs
et al. measured the in vitro rate at which the lac repressor finds its promoter, and they found
that under certain conditions, the lac repressor binds to its target at faster rates than the sim-
ple three dimensional diffusion limit (68). To explain this phenomena, Berg, Winter and von
Hippel proposed the so called facilitated diffusion model (69; 70), in which such high binding
rates are achieved if the DBP undergoes a combination of three-dimensional (3D) excursions
in the bulk solution, together with one-dimensional (1D) sliding on the DNA. This theoreti-
cal model has been strongly supported by experimental techniques that directly showed the
number of basepairs scanned via 1D sliding (71; 72; 73), and the average fraction of time the
DBP remains bound to the DNA before unbinding (32; 74).

Since it was proposed, facilitated diffusion has been the subject of much theoretical (76;
79;80; 81; 82; 150), experimental (66; 83; 84; 85;86; 151; 152) and computational (28; 75; 78)
efforts. Interest in facilitated diffusion has been renewed by the direct observation of facili-
tated diffusion in bacterial cells using single-molecule techniques (32; 74). One key feature
that is different in cells compared to in vitro is that cytoplasm is not a dilute solution, but
a rather crowded environment that can be occupied up to 40% by macromolecules (1; 87).
The presence of these macromolecules (crowders) inside the cells has effects on diffusion
(22; 23; 24), enzymatic reactions (4; 20; 21; 25), protein folding (9; 10; 11; 19) and gene ex-
pression (13; 14; 15). In addition, the DNA itself is also covered with proteins that bind to
the DNA in order to perform functions such as transcription, DNA repair and gene regulation
(265 29; 30; 31). Moreover, the DNA itself is spatially organized and compacted by histones
in eukaryotes and nucloid-associated proteins in bacteria (153; 154). Thus, the DNA is also
highly occupied (~ 30%) by DBPs that affect the facilitated diffusion process. So far, only few
of the theoretical studies have included the impact of these macromolecules on the promoter
finding dynamics (33; 88; 89; 90; 91).

In this paper we address the effects of obstacles bound to the DNA on facilitated diffusion,
i.e. on the promoter search of RNA polymerase or the search of a transcription factor for
its functional binding site. We use a lattice model to study facilitated diffusion, first in the
free case without crowders and then in the presence of obstacles on the DNA. Specifically, we
consider three different types of obstacles characterized by different dynamics on the DNA.
We show that, for all types, facilitated diffusion is impaired when the DNA occupation frac-
tion increases, but the strength of the effect depends on the type of obstacles. The lattice
model we use aims to create a clear conceptual understanding of facilitated diffusion rather
than provide a detailed computational description of the process. The method is, however,
applicable more generally.
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Figure 3.1 - Lattice model for facilitated diffusion: (A) Schematic view of the model. DBP (light blue)
diffuses by hopping either to one of the six nearest neighbor lattice sites (3D) or to one of the two
neighbors lattice sites if it is sliding on the DNA (1D), which is represented by the green line of lattice
sites. O obstacles (black) are placed on the DNA. Their dynamics depend on the type of obstacle (see
text), but in all cases they are not allowed to perform excursions to the bulk solution. Molecules have
square geometry and diffusion is only allowed if the destination site is unoccupied. Note that the sim-
ulations use a three-dimensional lattice rather than the two-dimensional one depicted schematically
here. (B) Search time (normalized by the search time 7, in the absence on non-specific binding of the
DBP to the DNA) as a function of the sliding length A. Data points are simulation results, and the line
is the ratio between Eq. (3.5) and T, = V/4Da. (C) T//T; for different DNA concentrations, plotted as
a function of the unbinding rate k,¢. Different minimal search times and optimal unbinding rates are
observed for different DNA concentrations.
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3.2 Lattice model for simulating facilitated diffusion

Facilitated diffusion is studied using Monte Carlo simulations of particles on a 3D lattice with
periodic boundary conditions. The simulation box has a total volume V' = m, x m, x m,l?,
where [ is the lattice spacing, chosen as the linear extension of the smallest particle type. A
DNA molecule is implemented as a linear arrangement of lattice sites along the y axis with
x =z = (my/2)l = (m,/2)l. The system contains a target (e.g., a promoter or a regulatory
binding site) and two types of particles: One DBP searching for the target and obstacles on
the DNA, see Fig. 3.1A. All particles are taken to occupy exactly one lattice site. We take the
target to be static, and its position is randomly chosen among the DNA lattice sites. The DBP
is initially placed randomly in the bulk solution, whereas the obstacles are placed on DNA
lattice sites, occupying a fraction of DNA equal to O/L, where O is the number of obstacles
and £ = m,, the length of the DNA template. Here, obstacles are considered to be only on the
DNA and they are not allowed to unbind and diffuse in the bulk solution.

In our implementation, the DBP can either diffuse in the bulk solution or slide on the DNA.
If the DBP is in the bulk solution, at each simulation time step (of duration 7), it moves to
each neighbor site with probability 1/6. Thus, DBP diffuses in the bulk solution with diffusion
constant D3 = [?/(67). If one of the neighboring sites is part of the DNA and it is free, the
move is always accepted, and the DBP is placed onto the DNA. On the contrary, if the DNA site
is occupied by an obstacle, the move is rejected and the DBP stays in the bulk solution (since
obstacles are not allowed to unbind, moves within the bulk solution are always unhindered).
Thus, no interactions other than steric repulsion are considered between the DBP and the
obstacles.

If the DBP is bound to the DNA, it can either diffuse on the DNA or unbind from it with a
rate k.. If the DBP diffuses on the DNA, it performs a 1D random walk along the y axis with
diffusion constant D;. Unless stated otherwise, we choose D; = D3/10, as 1D diffusion is
typically slower than 3D diffusion (32; 71). Since we are interested in the effects that obstacles
on the DNA have on the facilitated diffusion process, we implement three types of obstacles
with different dynamics on the DNA: (i) static (immobile) obstacles, (ii) obstacles that diffuse
on the DNA with a diffusion constant D;, and (iii) obstacles that both diffuse and unbind
from the DNA. Facilitated diffusion is expected to be affected differently by these three types
of obstacles. 1D diffusion of both the DBP and the mobile obstacles is implemented as follows:
If the destination site of a move is already occupied by another molecule, the move is rejected
and the position is not updated. Position update of different molecules is performed in a
random-sequential fashion: In every simulation step, we update the DBP position together
with O randomly chosen obstacles, in such a way that on average all particles are updated
once per simulation step.

1D diffusion takes places until the DBP unbinds from the DNA with probability P,g. Thus,
P,g determines the rate at which the DBP unbinds from the DNA, k.g = P,g7!. We note that
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experimentally, the unbinding rate is typically varied via the salt concentration (151; 152),
because non-specific binding to DNA is typically of electrostatic nature and can be screened
by large salt concentrations, resulting in large values of P,g.

In our simulations, the DBP finds the target either by 3D diffusion, if hopping from the
bulk to one of the six neighbor lattice sites of destination happens to be the target, or by 1D
diffusion if one of the two neighbor lattice sites is the target. Once the target has been found,
we record the search time, and the DBP is randomly placed in the bulk solution.

3.3 Facilitated diffusion without obstacles

We start by considering the reference case of facilitated diffusion without obstacles on the
DNA. This has been extensively studied in the past, both theoretically and computationally
(28; 75; 78; 76; 79; 80; 81; 82; 150). In particular, it is well known that the efficiency of
facilitated diffusion strongly depends on DNA concentration, D; and salt concentration (k)
(33; 75; 155). The lattice model allows us to modulate these parameters and also provides a
rather intuitive interpretation of the facilitated diffusion mechanism.

To begin with, we simulate facilitated diffusion in lattices of different sizes, thus effectively
varying the DNA concentration. We keep the length of the simulation box (the direction par-
allel to the DNA) fixed at m, = 1000!, but vary the box width in the other two dimensions
(mz = m, = L = 10,20, 30 and 60!). Simulations are run until 2000 target finding events have
taken place. In order to quantify the efficiency of facilitated diffusion in comparison to the
free 3D diffusion case, we consider the ratio of the average search times 7'/7s. Here, T is the
average time for finding the target with facilitated diffusion, and T is the average time for
finding the target via free 3D diffusion in the absence of DNA. Thus, if this ratio is less than
one, facilitated diffusion is more efficient than the free diffusion case, whereas if the ratio
exceeds one, it would be better for the system to find the target by simple 3D diffusion.

The essence of facilitated diffusion can be understood based on the following simple ar-
gument: The rate for target finding is diffusion-limited and thus given by & = vDa, and the
corresponding search time 7' = (kc)~!, where D is the diffusion coefficient, a the size of the
target, and ¢ = 1/V the concentration of the DBP (in our scenario a single one). ~ is a numer-
ical prefactor, which is v = 4« in the classical Smoluchowski result (36), and v = 4 for our
lattice model, where the target is a site on the DNA. Thus, the average time for target finding
is obtained as T' = 1/k = V/(yDa). The presence of the DNA has two different effects on the
DBP dynamics, which can be both understood by introducing effective parameters: On one
hand, transient binding to the DNA effectively slows down diffusion. Since diffusion along
the DNA is typically slow, one can interpret binding to the DNA as pauses in 3D diffusion.
These pauses can be incorporated into an effective diffusion coefficient

Dot = D3(1 — P), (3.1
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where P, is the probability for the DBP to be bound to the DNA. For the lattice model, this
probability is given by

1

L2k
1+ 4D3 =

P, = (3.2)

On the other hand, sliding along the DNA effectively increases the size of the target. To
reach the target, the DBP does not need to bind to the target site directly, but may also bind
close to the target and slide there by 1D diffusion. The average distance, over which the DBP
slides along the DNA while bound is given by

- (2D1)1/2 (3.3)

koff

and is called the sliding length. Thus, the target size is effectively increased to a.g = .

Taken together, the two effects lead to

k' = ~yDegacy = vD3(1 — Py)A

1 /
[(L?

712”’”‘03

and a search time of v oL A
T = (ke) ! = 4 = 3.5
b =50 oD, )
In the last expression, we have used ¢ = 1/V and defined the contour length of the DNA
L. = V/(L* — I?) to bring it into the form derived by Halford and Marko (76), with which the

last expression agrees up to the numerical prefactor ~. It is important to notice that only the

latter of the two effects facilitates diffusion to the target, while the former slows it down, so
the name ‘facilitated diffusion’ is only appropriate in a limited range of the parameter space.
Since measured 1D diffusion coefficients are typically smaller than 3D diffusion coefficients
(32; 71), the slowing of diffusion is an important effect of non-specific binding to DNA and
may well be the dominant effect for many proteins. Fig. 3.1B shows the ratio 7'/T; as a func-
tion of \ for constant D;. As )\ increases, longer sliding events on the DNA take place when
the DBP binds non-specifically to the DNA. Thus, the effective target size increases and fa-
cilitated diffusion becomes optimal at A ~ 11/. For larger )\, the DBP spends more and more
time non-specifically bound to the DNA, thereby D.gs becomes smaller and facilitated dif-
fusion becomes inefficient. Good agreement between our simulation data (red squares), and
our analytical description (solid line) is observed. We note that the analytical argument given
above is only valid for sliding lengths that exceed one lattice site. To correct for this effect,
we have used an effective target size a.s = max{a, A} for the solid line.

46



3.3 Facilitated diffusion without obstacles
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Figure 3.2 - Facilitated diffusion without obstacles on the DNA. (A) Target finding rate as a function
of the two key parameters P, and \. Alternative axes show the microscopic parameters that are varied:
kot and Dj. kog is varied with Dy /k.g constant. Light blue data represent the set of parameters that
leads to finding rates faster than the free 3D diffusion process. (B) Promoter finding rate as a function
of ) for different values of k.¢. For sufficiently large )\, the finding rate is linear in A and facilitated
diffusion becomes more efficient than the free 3D diffusion process. Lines represent the limiting case
where D; = 0, e.g. the DBP does not perform 1D diffusion on the DNA. (C) Finding rate as a function
of the probability for the DBP to be unbound from the DNA (1 — P,) for different values of \. For low
values of (1 — P,), the finding rate increases linearly, in agreement with k;/[L] x Deg = D3(1 — P).
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3 Facilitated diffusion in the presence of obstacles on the DNA

An important feature of this result is that the search time is non-monotonic as a func-
tion of the DNA binding strength. This feature has been a hallmark of facilitated diffusion,
which has been at the center of many theoretical studies (69; 70; 76; 80; 82), and which was
confirmed experimentally by varying salt concentration (151; 152). Based on our simple ar-
gument above, it can be interpreted as arising from the opposite effects of increasing the
strength of non-specific binding on the effective diffusion coefficient and the effective target
size.

Fig. 3.1C shows T'/T; as a function of kg for four different DNA concentrations. In all
the cases, a non-monotonic behavior is observed as the value of k.4 is modulated. For low
values of kg, ratios larger than one are obtained, reflecting mostly the effective reduction
in the 3D diffusion constant. Thus, in this parameter range, 3D diffusion in the absence of
DNA is more effective that facilitated diffusion. For intermediate values of kg, a minimum
in the ratio 7'/T; is observed. In this case, sliding on the DNA indeed facilitates binding to
promoter, due to the effectively larger target size, i.e. A + 1. For high values of kg, the ratio
T /T gets close to one, as DNA binding is weak and only has a small effect.

For the case VV = 60 x 1000 x 60/3, the optimal value of kg is found to be 0.00027—'. Then,
the DBP diffuses on average over a sliding length of A ~ 11/. With the obtained optimal value
of k¢ we can obtain the probability that the DBP is bound to the DNA P, = 0.48, see Eq. (3.1).
Thus, on average, the DBP spends approximately the same time bound to the DNA as diffusing
freely in the bulk solution. This is in agreement with Marko’s model, which predicts that the
fraction of time the DBP spends on the DNA is the same fraction of time it spends in the
bulk solution (76). Notably, the latter prediction is not general and for cases with high DNA
concentration it is not longer valid. For example, when taking the case V' = 10 x 1000 x 1013,
we find that the optimal unbinding rate is kog = 0.17~'. When plugging the latter value of
kog into Eq. (3.2), we obtain that P, = 0.063. Here, the very frequent DBP-DNA non-specific
binding events drastically reduce D5 if the DBP spends relatively large times on the DNA.
Thus, the optimal DBP dynamics is the one in which, the DBP spends most of the time in the
bulk solution with very short sliding events on the DNA, see the pink data in Fig. 3.1B.

Though similar qualitative behavior in facilitated diffusion is observed for all DNA concen-
trations, large quantitative differences are obtained. As DNA concentration increases, the
minimum in the ratio 7'/T gets close to one, and the optimal k.g value shifts to the right.
This shows that for large DNA concentrations, it is more efficient for the system to tune the
ko parameter to large values, and thus, decrease P,.

Eq. (3.5) suggest that there are two relevant parameters of facilitated diffusion, the binding
probability P, and the sliding length A. Each of these parameters determines the strength
of one of the two effects of non-specific DNA binding. They are related to the microscopic
parameters kog and D;, but using these two parameters does not separate the two effects.
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3.4 Effect of obstacles on the DNA

Experimentally, a modulation of the parameters via salt concentration modulates k.g and
thereby acts via both effects.

As a check of the parameter dependencies indicated by Eq. (3.5), we systematically vary
P, and \. This is done microscopically by modulating k¢ with the ratio D, /k.g fixed and
D, for constant kg, respectively. The results are shown in Fig. 3.2. The color map in Fig.
3.2A shows the rate for target binding as a function of both parameters. Light blue color
indicates parameter combinations for which ‘facilitated diffusion’ is indeed optimal, i.e. the
combination of 3D and 1D diffusion is more efficient than free 3D diffusion (7'/7s < 1). It
is rather inefficient if the DBP remains bound to the DNA for long time without scanning
the DNA. The dependencies on the individual parameters are shown in Fig. 3.2B and 3.2C,
respectively. Fig. 3.2B shows the promoter finding rate as a function of the sliding length for
constant values of k.g and, thus, P,. The horizontal lines represent the limiting case where
the DBP binds to the DNA but does not diffuse along it (D; = 0). The star indicates the
finding rate in the absence of DNA. As expected from Eq. (3.5), the rate increases linearly
with increasing sliding length (except for sliding lengths A\ < [, where the effective target
sizes becomes ~ 1). The linear increase is seen for all values of k.. The plot also shows
that sufficiently large sliding lengths are needed in order for the binding rate to exceed the
free binding rate in the absence of DNA. The minimal required sliding length for facilitation
increases with increasing P, or decreasing k.

Fig. 3.2C shows the finding rate as a function of (1 — F,), the probability that the DBP is
free in solution, for constant sliding length. For low values of (1 — P,), the DBP frequently
binds non-specifically to the DNA. These events effectively reduce the 3D diffusion constant
to Deg = D3(1 — By). In agreement with this expectation, the finding rate increases linearly
with the probability to be unbound, 1 — P,.

3.4 Effect of obstacles on the DNA

Next, we consider the impact that obstacles on the DNA have on facilitated diffusion. To
that end, we implement three types of obstacles with different dynamics: Obstacles of the first
type diffuse on the DNA, but do not unbind. We set the crowders to diffuse on the DNA with
the same 1D diffusion constant D, as the DBP. The obstacles can transiently occupy the target
position, making it inaccessible for the DBP, independent of whether the DBP arrives via 3D
diffusion or 1D sliding. The second type of obstacles that we consider are static (D,=0), with
obstacles regularly spaced on the DNA. For this case, we make sure that the target is placed
on a free DNA lattice site between the obstacles. Obstacles of type three also diffuse on the
DNA, again with the same diffusion constant as the DBP, but, in addition, these obstacles can
dissociate from the DNA with a rate kQP*t. In these simulations, we do not track diffusion
of unbound obstacles in the bulk. Rather, when an obstacle dissociates from the DNA, we
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Figure 3.3 — Effects of obstacles on the DNA on facilitated diffusion. (A) Promoter finding rate as a
function of \ for different values of kg in the presence of obstacles on the DNA. In general, presence of
obstacles on the DNA hinders promoter finding. Depending on the type of obstacles, the binding rate
is affected in a stronger or more moderate way. Lines represent the limiting case D; = 0, where the
DBP does not diffuse on the DNA. (B) Dependance on obstacle coverage: Search time ratio 7'/T, as a
function of the occupation fraction for three types of obstacles. Mobile obstacles perform 1D diffusion
on the DNA, static obstacles are regularly distributed on the DNA and dissociating obstacles diffuse
on the DNA and dissociate from it with an unbinding rate ks = 0.00027~!. Static obstacles have
the strongest effects on facilitated diffusion, whereas obstacles that dissociate from the DNA have the

smallest.
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3.4 Effect of obstacles on the DNA

immediately place a new obstacle on a random position of the DNA in order to keep the DNA
occupation fraction constant, see representation of the obstacles in Fig. 3.3. The obstacle
that dissociates is removed from the simulation.

Based on the two effects of (non-specific) binding to DNA discussed above, one can argue
that obstacles on the DNA affect target finding only through the effective target size. By
contrast, obstacles or crowders in the solution, which we do not consider here, would mostly
affect it via the effective diffusion, although one can also expect an increase in the target size
(due to crowding-enhanced binding to the DNA, which increases the sliding length (28; 75)).
Obstacles on the DNA that act as barriers for sliding effectively reduce the sliding length and
thus the target size. Thus one can estimate an effective target size as the smaller one of the
two length scales of this system, the sliding length on one hand, and the average distance
between obstacles on the other.

However, Fig. 3.3A shows that the dynamics of the roadblock also matter for the results.
Here, we run simulations for two different values of kg, kog = 0.0057—! and 0.000017~1, at
10% DNA occupation. Shown data are for obstacle types one and two. The plot shows the
target finding rate as a function of A when modulating D;. Lines represent the limiting case
of D1 = 0. As D; increases, the finding rate becomes larger. For A ~ 3/ the promoter finding
rate starts to differ between the different types of obstacles. On one hand, at O/£ = 0.1
there is an obstacle every 10 lattice sites if they are static. Thus, as D; increases, the search
scenario becomes effectively one in which the DBP finds a target of size a.s = 10I, with an
effective three dimensional diffusion constant D.gz. On the other hand, if obstacles diffuse
on the DNA, a.¢ fluctuates and can transiently be reduced or increased. Thus, saturation
takes place at larger values of \. We note that this average size depends on the obstacles’
one-dimensional diffusion constant.

In Fig. 3.3B we plot the ratio 7'/T as a function of the fractional occupation of the DNA by
obstacles, for three different values of kg, kog = 0.005,0.0002 and 0.000017~!. These values
correspond to sliding lengths of A\ ~ 3i,11/ and 58I, respectively. We note that for all cases,
the presence of obstacles has a negative effect on facilitated diffusion, even for intermediate
values of kg at low occupation fractions.

In general, static obstacles have the largest impact on facilitated diffusion, because they
effectively trap the DBP once it has been bound non-specifically to the DNA. In this case
the only way that the DBP can overcome an obstacle is to unbind from the DNA. Thus, the
negative effect of static obstacles on the ratio 7'/T becomes larger as the unbinding rate kg
decreases. Type-1 obstacles have the second largest effect on facilitated diffusion. Here, even
though obstacles trap the DBP in regions where the target may not be present, this trapping
changes as the obstacles diffuse on the DNA, making the target accessible to the DBP, even if
it remains bound to the DNA for long time. However, 1D diffusion is effectively slowed down
by obstacles on the DNA. The effect of the obstacles decreases as the DBP unbinding rate
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Figure 3.4 - Facilitated diffusion in the presence of obstacles on the DNA. (A-D) Search time ratio
T/Ts as a function of kg for the three types of obstacles. As the DNA occupation fraction increases,
the minimum in 7'/7T, change, as well as the value of k. where it occurs. (E) Minimal search time
as a function of the DNA occupation fraction. As the number of obstacles increases, facilitated dif-
fusion becomes less efficient, with the static obstacles affecting facilitated diffusion the most. (F)
Corresponding optimal value of k. as a function of the DNA occupation fraction. In order to be as ef-
ficient as possible, the DBP must spend more time in the bulk solution, to avoid being trapped between

obstacles.

52

DNA occupation fraction

100

100

10

T/Ts

o Dissociating
N o Mobile

4 Static

50 Obstacles A

Free diffusion

AN
a ° J
= SR - R
a, At °
+] u}
wa b
1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10
-1
K, (T
& o Dissociating
o Mobile
© 4 Static
E 200 Obstacles
AN
0 . Free diffusion
] /
o AN
g 2
° e ®
1E-6 1E-5 1E-4 1E-3 0,01 0,1 1 10
-1
K, (e
+ o Dissociating a4
o Mobile
& Static hdl ]
o
A~4.71
L -
A~6.51
I
roA~I10 1
5o g
0,00 0,05 0,10 0,15 0,20

DNA occupation fraction



3.5 Concluding remarks

increases. Type-3 obstacles have the weakest effect on facilitated diffusion. In this case, the
DBP can access the target in the same way as for type one. Since the obstacles can unbind
from the DNA, the trapping effect is weaker and the DBP can scan larger sections of DNA.
Thus, the impact of this type of obstacles on facilitated diffusion is more modest.

Interestingly, for different types of obstacles and DBP unbinding rates, the ratios 7'/Ts can
get close and even cross (Fig. 3.3B). To take a better look into this issue, we reconstruct the
facilitated diffusion plot for different levels of fractional DNA occupation, and obtain the kg
at which facilitated diffusion is optimal, see Fig. 3.4A-D. As can be observed, the minimum
shifts towards higher values of k.g and higher values of 7'/Ts. Next, we plot in Fig. 3.4E
the optimal values of the ratio 7'/T; as a function of DNA occupation. Static obstacles have
the strongest effects on facilitated diffusion, and the dissociating obstacles the weakest. In
Fig. 3.4F, we plot the corresponding values of kg at which facilitated diffusion is the most
effective. Here, as the DNA occupation increases, the DBP needs to bind less tightly and scan
smaller sections of DNA at every 1D sliding excursion. This suggest that in order to be as
efficient as possible, the DBP has to spend more time in the bulk solution than on the DNA.
Specifically, we showed above that in the absence of obstacles on the DNA, the DBP spends on
average ~ 50% of the total search time bound to the DNA. In the presence of static obstacles
occupying 20% of the DNA, the average time the DBP spends bound to the DNA under optimal
conditions is decreased to only 9%.

3.5 Concluding remarks

In this paper, we used a simple computational approach to study the promoter finding pro-
cess via facilitated diffusion. We used lattice simulations to revisit how the promoter finding
process is affected when modulating different parameters in our simulations. Non-specific
binding to the DNA effectively reduces diffusion in the bulk and thereby the diffusion-limited
binding to the target. At the same time, sliding along the DNA effectively increases the size
of the target. The competition of these two effects leads to a characteristic maximum in the
binding rate. This maximum is very sensitive to the concentration of DNA, D1, k.g and .
The lattice model provides a rather intuitive picture of these situations as well as an efficient
computational implementation of facilitated diffusion.

In addition, we have studied the effects that different types of obstacles have on the facil-
itated diffusion process. In general, since the DBP is (at least transiently) trapped between
two obstacles, its sliding length is reduced, decreasing effectively the target size. Beyond
that, our results suggest that obstacles with different dynamics on the DNA have different
effects on facilitated diffusion, with static obstacles affecting the finding rate the most. In
order to be as efficient as possible, the DBP has to modulate its interaction with the DNA,
and spend more time in the bulk solution. The methods we used here can be applied more
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3 Facilitated diffusion in the presence of obstacles on the DNA

generally and there are a number of possible extensions to this work, such as addressing the
effects of crowders on the bulk solution on the facilitated diffusion process. Other aspects
of facilitated diffusion will require more detailed molecular approaches, for example the ef-
fect of DNA flexibility and supercoiling, which are difficult to implement in the lattice model.
The latter has been shown to have an effect on target search kinetics with more rapid tar-
get finding for coiled DNA conformation than for stretched DNA conformations (77; 93; 156).
Studying the interplay of DNA conformation and obstacles will be a task for future work.
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Chapter 4

Mechanism of facilitated diffusion
during DNA search in crowded
environments

Abstract

The key feature explaining the rapid recognition by a protein of its DNA target site lies
in the combination of one- and three-dimensional (1D and 3D) diffusion, which allows
efficient scanning of the many alternative sites. This facilitated diffusion mechanism
is expected to be affected by cellular conditions, particularly crowding, given that up
to 40% of the total cellular volume may by occupied by macromolecules. Using coarse-
grained molecular dynamics and Monte-Carlo simulations, we show that the crowding
particles can enhance facilitated diffusion and accelerate search kinetics. This effect
originates from a trade-off between 3D and 1D diffusion. The 3D diffusion coefficient
is lower under crowded conditions, but it has little influence because the excluded
volume effect of molecular crowding restricts its use. Largely prevented from using
3D diffusion, the searching protein dramatically increases its usage of the hopping
search mode which results in higher linear diffusion coefficient. The coefficient of lin-
ear diffusion also increases under crowded conditions as a result of increased collisions
between the crowding particles and the searching protein. Overall, less 3D diffusion
coupled with an increase in the usage of hopping and speed of 1D diffusion results
in faster search kinetics under crowded conditions. Our study shows that search ki-
netics and mechanism are modulated not only by crowding occupancy, but also by the
properties of the crowding particles and the salt concentration.
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Q

Figure 4.1 - Schematic of DNA search by a protein in the presence of crowding particles. The DNA-
binding protein and the spherical crowding particles are shown in red and grey, respectively. The
double-stranded DNA is shown in green and the target site in orange. The crowding condition is char-
acterized by the volume fraction of the crowding particle, , which is affected by the number of par-
ticles, N, and their radius, R. The mass of the particle, m, may also affect the overall crowding effect.
Crowding may affect the characteristic time to localize the target site, 72'¢t (dashed blue line) and
the time to reach the DNA when starting from a position in the bulk, 7Frcounter (dashed black line).
The crowding condition shown in the figure corresponds to a fractional volume of (©=50%.

4.1 Introduction

The phenomenon of specific molecular recognition between two biomolecules lies at the
heart of many biological processes. In the case of interactions between a DNA-binding pro-
tein (DBP) and its specific target DNA sequence, recognition requires that the DBP locates its
target site among many alternative sites that have a sequence similar to that of the specific
target site. Clearly, a failure to rapidly find the target site may result in cellular malfunction,
because these binding events are often part of a cascade of various essential events in which
timing is critical.

The experimentally observed speed of the DNA target search conducted by DBPs can only
be resolved by considering a search mechanism involving facilitated diffusion in which the
DBPs find their target sites on the DNA through a combination of one- and three- dimen-
sional (1D and 3D) diffusion (69; 82; 152; 155; 157). 1D diffusion includes relatively short
bi-directional random walks during which the DBP performs a coupled rotation-translation
motion as it moves along the linear contour of the DNA (‘sliding’) combined with short-range
jumps between neighboring DNA segments (‘hopping”). 3D diffusion events involve dissoci-
ation from the DNA to the bulk followed by reassociation, thus allowing the DBP to visit DNA
regions that are sequentially distant. The physics and biochemistry of the facilitated diffusion
mechanism have been investigated from both the theoretical and experimental perspectives,
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including through complex kinetic models, simulation tools (both at the coarse-grained and
atomistic levels) (155; 158; 159; 160; 161; 162), and in vitro biochemical measurements at
the bulk (163; 164; 165; 166; 167) and single molecule levels (32; 168). The in vivo cellu-
lar environment, which is influenced by DNA packing, the positions of nucleosomes, high
concentrations of metabolites and macromolecules, and the involvement of other proteins
in many regulatory processes, is complex and may directly and indirectly affect search ki-
netics and mechanisms. This cellular complexity may dynamically affect the biophysics of
facilitated diffusion in various ways. Although some aspects of DNA search in vivo have been
investigated experimentally (4) and some from the theoretical perspective (169; 170), much
remains to be understood, particularly in the context of the crowded cellular environment
(171).

The search dynamics, which is governed by nonspecific protein-DNA interactions, is dom-
inated by electrostatic forces and is therefore strongly dependent on the salt concentration,
as this influences partitioning between the 1D and 3D search modes of the facilitated diffu-
sion process. At alow ionic strength, the electrostatic interactions between the DBP and DNA
are stronger, and the protein mostly diffuses along the DNA major groove using a relatively
short bi-directional 1D random walk. As the salt concentration increases, the protein may
move away from the DNA and diffuse into the 3D bulk, or remain in the vicinity of the DNA
and undertake a linear search via hopping, which is accompanied by a higher diffusion coef-
ficient and enhanced DNA scanning (155). However, such a search mechanism takes place in
a crowded cellular environment in which additional macromolecules may be adsorbed onto
the DNA and impose a physical constraint on the search process (4; 6; 7; 10; 22; 124), as
shown in Fig. 4.1. Given that the macromolecules occupy 10-40% of the total cellular vol-
ume (which corresponds to a concentration of ~100-300 mg/mL (6; 123), they are expected
to have a non-negligible effect on search kinetics. The macromolecular density of the bac-
terium Escherichia coli, for example, slows down 3D diffusion by an order of magnitude, and
about 30% of its DNA is associated with proteins, which are mostly bound with no sequence
specificity. Macromolecular crowding can, in principle, affect the kinetics of DNA search in
various ways. For example, crowding involving large molecules can exclude some of the 3D
volume from the purview of the smaller searching protein in what is known as the ‘exclusion
effect’ (also called depletion forces). Macromolecular crowding can also act as obstacles and
block the 1D dynamics of the searching protein along the DNA and thereby truncating its slid-
ing track into short fragments (33). As many DBPs utilize a mixture of the 1D and 3D search
mechanisms to facilitate localization of their DNA target (69), it is interesting to explore the
effect of molecular crowding on the efficiency of the search and in particular how crowd-
ing interacts and potentially interferes with both the 1D and 3D components of DNA search.
The effect of molecular crowding on the kinetics of protein-DNA interactions has shown that
facilitated diffusion is affected by the cellular conditions (18; 172). In particular, a recent
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study suggested that a crowded cellular environment could enhance the mechanism of DNA
search. Apparently, by creating low-viscosity micro-environments around the enzyme and
DNA, crowding increases the likelihood that the enzyme will successfully translocate between
its respective target sites without dissociating into the bulk solution and also increases the
average translocation distance. Furthermore, the protein can traverse a larger linear distance
on the DNA chain in the presence of crowding (18). While the effect of crowding on protein-
DNA recognition cannot be generalized because of the scarcity of data, it should be mentioned
that crowding seems to have diverse effects on protein-protein recognition (173). Theoreti-
cal studies have suggested different arguments regarding the role of crowding in DNA search
kinetics and efficiency (28; 88; 137). The lack of consistency in these studies reflects that the
underlying physical principle governing the effect of crowding on protein-DNA interaction
is unclear. Thus, despite considerable theoretical (82; 150; 169; 174; 175; 176) and exper-
imental efforts (177), researchers still lack a detailed description and understanding of the
possible effects that macromolecular crowding of 1D and 3D movements exerts on the over-
all efficiency with which a protein searches DNA (88).

This study seeks to understand the consequences of cellular crowding on DBP search mech-
anisms and kinetics. Coarse-grained molecular dynamics (CGMD) simulations of non-specific
protein-DNA interactions have recently provided new mechanistic insights into the DNA
search performed by various proteins (155; 158; 178; 179; 180; 181; 182; 183) and have cap-
tured key aspects of the search features observed experimentally, such as the speed-stability
paradox (184; 185). Here, we utilized CGMD to elucidate the effect of crowding on DNA search
by DBPs with the aim of furthering understanding of the complexity of target site recognition
in the cell.

4.2 Results and Discussion

4.2.1 The mechanism of facilitation in DNA search: The effect of molecular crowding
on 1D and 3D diffusion

CGMD simulations can provide insights into the molecular mechanism underlying enhanced
DNA search by a DBP. In particular, the simulations may explain the complex effect of the
degree of crowding, salt concentration, and enhanced search kinetics. The effect of crowd-
ing on the search dynamics can be elucidated from the search modes (i.e., sliding, hopping,
and 3D diffusion) adopted under each condition. Previous studies showed that the search
efficiency of a DBP is largely dependent on salt concentration (155). In this study, we exam-
ined how crowding can further affect the search mechanism adopted by the DBP. To address
this, we simulated a DBP searching a ds-DNA molecule at salt concentrations ranging from
0.01-0.09 M in the presence of crowding macromolecules that had only an entropic effect
(i.e., their interactions with the protein or with the DNA were modeled solely by excluded
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Figure 4.2 - The effect of molecular crowding on the mechanism of DNA search by proteins. A) The
effect of crowding on the usage of the different types of 1D diffusion (i.e., sliding and hopping, as
identified by the dotted brackets and associated arrows). B) The linear diffusion coefficients (D) are
shown for different salt concentrations and fractional volumes () of crowding particles. The dotted
lines in A) and B) correspond to protein dynamics along flexible DNA with ¢=0 (dotted black) and
©=50% (dotted orange), whereas the sold lines in all four sub-figures represent protein dynamics along
fixed DNA. The inset in (B) shows the effect of the temperature (solid lines) and mass (dotted line) of
the crowder particles on the values of D, for different ¢ conditions. C) The propensity of the protein
to search using 3D diffusion under different salt concentrations and for different fractional volumes
and (inset) the number of dissociations from 1D to 3D. D) The D5 diffusion coefficient in the bulk for
different salt concentrations and factional volumes.
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volume). Crowding simulations were performed for various fractional volumes (), ranging
between 0-50%, where the value of ¢ is a function of the number of crowding particles, N and
their size, R. As control simulations, we studied and compared the search mechanism by the
protein in the absence of crowding macromolecules (i.e., ¢ =0%). Figure 4.2A illustrates that,
irrespective of the crowding conditions, the usage of the sliding search mode decreases with
increasing salt concentration, while (at low salt concentrations) that of hopping increases.
Interestingly, the utilization of both search modes is unaffected by crowding at relatively low
salt concentrations between 0.01-0.05 M NaCl even for a high volume fraction of 50%. At
higher salt concentrations ([NaCl]>0.05 M), the proportion of sliding adopted by the search-
ing protein is slightly affected by crowding, with more sliding observed at ©=50% compared
with ©o=0%. A more profound effect of crowding is observed at higher salt concentrations
with respect to the hopping search mode, with a considerably higher proportion of hopping
events occurring at ©=50% compared with ¢©=0%. The increase in sliding dynamics and es-
pecially in hopping dynamics associated with greater crowding occurs at the expense of 3D
diffusion, which decreases as crowding increases. For example, upon changing ¢ from 0%
to 50%, the propensity for 3D diffusion reduces from 93% to 52% (Fig. 4.2C). The sharp re-
duction in productive DBP-DNA dissociation can be attributed to the volume exclusion effect
of the crowder molecules, which restrict the ability of the DBP to escape from the DNA and
hinder the performance of a 3D excursion in the bulk. When such a 3D event occurs, it is
expected to be much shorter for higher  values because the high viscosity of the crowders
will prevent the protein from traversing in solution. Consequently, greater crowding results
in greater protein-DNA affinity (28).

An increase in the number of hopping events under conditions of greater crowding occurs
only at moderate and high salt concentrations (Fig. 4.2A), yet faster search kinetics as a con-
sequence of crowding is also observed at a lower salt concentration (Fig. 4.3A). The faster
search enabled by crowding at low salt concentrations stems from a different mechanism,
which is suggested because in this range of salt concentrations the relative usage of the three
search modes (i.e., sliding, hopping and 3D) is very similar. We therefore further analyzed
the physical characteristics of the linear diffusion component, which is the most dominant
search mode at this salt concentration. Figure 4.2B shows the 1D diffusion coefficient (D)
at various fractional volumes under salt concentrations less than 0.08 M (above such salt
concentrations, the protein performs mostly 3D diffusion in the bulk). As can be seen, in-
troducing molecular crowding results in an increase in the D diffusion coefficient at all salt
concentrations. Consistently with the pronounced increase in the proportion of hopping with
increased crowding (Fig. 4.2A), this increase becomes greater at higher salt concentrations.
Introducing flexibility to the DNA molecule (dotted lines in Figures 4.2A and 4.2B) reduced
the absolute sliding fraction compared with the values obtained using a rigid DNA molecule
and consequently affected the fraction of hopping too. However, DNA flexibility did not alter
the effect of crowding or markedly change the shapes of the curves.
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Figure 4.3 - The effect of molecular crowding (modeled as ¢, the fractional volume) on the kinetics
of DNA search. A) The mean time to approach the target site when starting from a selected position
on the DNA is indicated by rT2¢¢t (see Fig. 4.1) at different salt concentrations. The dotted lines cor-
respond to protein dynamics along flexible DNA, with =0 (dotted black) and ¢©=50% (dotted orange),
whereas the solid lines represent dynamics on fixed DNA. B) The mean time for the protein to en-
counter any nonspecific DNA site, 7Fneounter is measured by placing the protein far from the DNA at
different salt concentrations.

To understand the origin for the increase in D; at low salt concentrations in the presence
of crowding particles, we studied the effect of increasing the temperature or the mass of the
crowding molecules on the linear diffusion coefficient. The inset of Figure 4.2B shows that D;
increases with temperature irrespective of ¢, but at higher values of ¢, the increase in D; is
larger. Nonetheless, we point out that changing the temperature does not affect the fraction
of hopping. Increasing the mass of the crowders by a factor of 50 or 100 results in lower D;
values. The response of the D; of the DBP to the simulation temperature and to the mass of
the crowders suggests that the crowders affect D, regardless of a change in the population of
the hopping searching mode. Accordingly, at low salt concentrations, the dependence of D,
on temperature and mass suggests that the crowders constantly collide with the searching
protein and consequently D; increases. Increasing the temperature or reducing the mass of
the crowders increases the frequency of these collisions and further increases D;. The higher
D; in the presence of molecular crowding is reminiscent of the higher D; reported recently
in the context of collisions between a DBP and flexible DNA (159).

We then examined the effect of molecular crowding on 3D diffusion in the bulk (Ds). Figure
4.2D shows that Dj is independent of salt concentration for all values of ¢. D3 decreases as the
fractional volume of molecular crowding increases. This suggests that, for large values of ¢,
the DBP is more confined in 3D and that its 3D diffusion is slower in this viscous environment.
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4 Mechanism of facilitated diffusion during DNA search in crowded environments

Crowding causes Ds to decrease by up to 2% (Fig. 4.2D) while it causes D; to increase by up
to 15% (Fig. 4.2B).

4.2.2 Effects of crowding fractional volume on the kinetics of finding the DNA target
site

Molecular crowding may affect the kinetics of DNA search by affecting the nature of 1D and
3D diffusion. The size of the effect is expected to depend on the fractional volume of the
crowders (i.e., on ¢) and on their properties, such as their dimension, mass, or affinity to
DNA molecules or to proteins. The crowders are expected to affect both 1D and 3D diffusion.
We therefore designed simulations to quantify independently these two effects. To estimate
the effect of crowding on 1D diffusion, we measured 772'¢¢t, The effect of crowding on 3D
diffusion was estimated by rncounter The values of 7128t and rFneounter a5 3 function of salt
concentration and for different crowding conditions are shown in Figs. 4.3A and 4.3B, re-
spectively. The time needed for a DBP to find its target site regardless of crowding volume
fraction strongly depends on the salt concentration, with the fastest search (i.e., smallest
rTarget) achieved at a moderate salt concentration (~0.05 M, Fig. 4.3A). This salt concentra-
tion corresponds to the optimal condition for achieving the most efficient search in terms
of the balance between the 1D and 3D search modes. At lower salt concentrations, search-
ing is dominated by 1D diffusion along the DNA (because the relatively weak electrostatic
screening that occurs as low salt concentrations promotes tighter nonspecific protein-DNA
interactions), whereas at higher salt concentrations, 3D diffusion is much more common. Ac-
cordingly, at higher salt concentrations, a high search speed is achieved by a combination of
the 1D and 3D search modes. Figure 4.3A shows that searches proceed faster in more crowded
environments compared with less crowded ones under all salt conditions, although both the
absolute value of 7T2#¢* and the size of the difference between the 772t values for different
fractional crowder volumes depend on the salt concentration. For example, while crowding
at ¢=6.25-50%, enhances the search rate by about 30% at low salt concentrations, at high salt
concentrations the size of the effect depends on the exact volume fraction. For ¢=6.25%, a
mildly enhanced kinetic effect of about 8% is measured, whereas for ©x=50% the effect is of
45%. This suggests that crowding may exert different effects on 1D dynamics compared with
3D dynamics and that these opposite effects do not necessarily cancel out (28). Nonetheless,
we note that the dependency of 77278°t on salt becomes weaker with increasing ¢, as reflected
by the smaller gap between the search kinetics at salt condition extremes and salt condition
for optimal search efficiency. This is another manifestation of a more robust search due to
crowding (28).

We suggest that at moderate and high salt concentrations, the faster search kinetics ob-
served with a higher volume fraction of crowding (Fig. 4.3A) is due to 1D diffusion, specifi-
cally hopping, increasing to compensate for 3D dissociation failures. Figure 4.3B shows that,
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indeed, at high salt concentrations combined with close crowding, the low fraction of 3D is
characterized by many short events while, in the absence of crowding, 3D diffusion comprises
much fewer dissociation events that are very long. To highlight the influence that crowding
exerts on DBP search kinetics and mechanism, we present (Figure A.1) six trajectories of pro-
tein dynamics at two crowding volume fractions: ©=0% (right panels) and ©x=50% (left panels)
and under three representative salt concentrations. These six trajectories illustrate the faster
kinetics for binding the target site (lower values of 712t indicated by the horizontal red ar-
row) for ¢=50% compared with ¢©=0% and the stronger influence of crowding at higher salt
concentrations. The trajectories also illustrate the lower percentage of 3D diffusion at higher
crowder volume fractions. At both salt concentrations 0.06 M and 0.09 M, dissociation from
the DNA molecule is repressed by the crowding.

To investigate potential crosstalk between molecular crowding and the properties of the
DNA molecule, we also studied the effect of crowding on search kinetics using a model that
captures DNA flexibility. We found that, in the absence of crowding, 772" is shorter and
the search speed increases by about 30% when the DNA molecule is flexible rather than rigid,
although the overall nature of the search remains unchanged (Fig. 4.3A, dotted lines). The
small effect of DNA flexibility on partitioning between sliding/hopping/3D diffusion seen in
our study is in accordance with some earlier reports (158; 186). The effect of crowding on
the time required to locate the target site is similar for rigid and flexible DNA. Crowding also
strongly affects 7Fncounter In the absence of crowders, r#ncounter jncreases with increasing salt
concentration (Fig. 4.3B). The slowing of the time required to achieve DBP-DNA association
that occurs as salt concentration increases originates from weaker DBP-DNA attraction and
stronger screening. The effect of crowding on 7Frcounter jg simpler than its effect on 7Tarset,
Figure 4.3B shows that, regardless of salt concentration, the average time to achieve nonspe-
cific protein-DNA association increases as the volume fraction increases. r#neounter js partic-
ularly long for high values of ¢ due to the strong caging effect on the DBP, which restricts
its 3D diffusion. The longer rFncounter gt high volume fractions due to confinement by the
crowders is reflected in the lower D3 value as ¢ increases (Fig. 4.3D). Finally, we measured
rlarget after initially placing the DBP far from the DNA. The results (Figure A.2) show that the
time needed to find the target site can be governed by the effect of crowding on both 1D and
3D diffusion. Figure A.2 shows that the total time resembles that of 77*'#¢* when placing the
protein on the DNA, which suggests that DNA search under crowded conditions is dominated
by the timescale of linear diffusion rather than 3D diffusion.

4.2.3 The effect of the mass of the crowders on the kinetics of the facilitated diffusion

To understand better the effect of crowding, we investigated how the mass of the crowders
may influence their ability to modulate the kinetics of searching the DNA. Up to this point,
the presented results were obtained using crowder molecules with a constant small mass of
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Figure 4.4 — The effect of the mass and dimension of the crowding particle on DNA search. A) rTareet g5
a function of salt concentration at a crowder fractional volume () of 0% or 50% for crowding particles
of different masses (and R = 9A). B) The 7T2'2¢* adopted by a DBP at a ¢ of 12.5% at different salt
concentrations using crowding particles of R=0 A (no crowding particles), R=45 A or R=18 A (M = 1).
The snapshots illustrate the two conditions of different N and R to achieve the same fractional volume
of 12.5%. The DBP is shown in red, the crowder molecules as grey spheres, and the DNA molecule
appears in green. C) Effect of fractional volume on the proportion of hopping utilized by a DBP on
DNA for crowding particles with the various masses examined in A). D) The effect of particle size on
the usage of hopping as a DNA search mechanism for the same particle sizes as examined in B). The
inset shows the diffusion coefficient D, as a function of salt concentration during simulated protein
scanning of the DNA.

M=1. The mass of each amino acid bead of the DBP was also 1, such that the DBP was 93
times heavier than a crowding molecule. In order to examine mass effects, we repeated the
calculations for larger crowder particles with mass of either M=50 or M=100.

In Figure 4.4A, we present the effect of mass on 712&° by comparing the value of the latter
at ¢ =0% and at ¢ =50% for particles of mass M=1, 50, or 100 at various salt concentrations. As
was discussed above (Fig. 4.3A), the presence of crowding particles facilitates the kinetics of
the system by restricting the protein?s movement so that it remains closer to the DNA axis, so
enabling it to explore new sites. With increasing mass, 7'¢¢* values gradually increase, until
they approach the kinetics of the dynamics in the absence of crowding (p =0%). In addition,
Figure 4.4C shows the usage of the hopping search mode in the presence of different crowding
masses. Similarly to what was seen in Figure 4.4A, increasing the mass of the particles also
diminishes the strong effect of crowding on the proportion of hopping used. The effects of
an increase in mass mimic those due to crowding, as was seen in Figure 4.2A.

A possible explanation for these effects is that introducing slowly moving crowding par-
ticles increases the viscosity of the intracellular environment, and therefore particle-DBP
collisions become less frequent. Heavier crowding particles affect the linear dynamics of the
proteins along the DNA differently at different salt concentrations. At low salt concentra-
tions, fewer collisions between higher-mass particles and the DBP (blue line in Fig. 4.4A)
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results in a smaller linear diffusion coefficient and therefore a slower search (larger 7Tarset)
than that associated with lower-mass particles (green lines in Fig. 4.4A), yet it is faster than
in the case of no crowding (black line, Fig. 4.4A). The introduction of higher-mass particles
also results is an increase in 7Fcounter (Fig, A.3), further exemplifying the caging effect of the
crowders. At higher salt concentrations, the mass of the crowding particles affects the hop-
ping mode, with the presence of heavier crowding particles causing less hopping and thus
slower kinetics for the DBP to find its target site (Fig. 4.4C).

4.2.4 The effect of the size of the crowders on the kinetics of facilitated diffusion

In addition to the mass of the crowding particles, their dimension (i.e., their radius R) may
also affect their overall effect on diffusion along DNA. Indeed, the effects of molecular crowd-
ing on biochemical reactions are known to be dependent on the reactants? size and geom-
etry (8). Here, the crowding particles are assumed to be spherical and their dimension can
be tuned simply by changing their radii. Specifically, large particles experience entropic at-
traction forces in the presence of smaller particles (132), thus smaller particles are expected
to have a stronger effect on binding. We began by studying the kinetics effect as a function
of salt concentration by measuring 7 2&° with crowding particles that were either smaller or
larger (Fig. 4.4B) than the radius of the DBP. A stronger excluded volume effect and thus more
pronounced crowding effect is expected for larger particles, when keeping the concentration
of the crowding particles constant. To avoid this trivial scenario, we compared two systems
with different particle radii (R=45 A or R=18 A) but the same fractional volume, which we
achieved by changing the number of particles, N (Fig. 4.4B). We examined the effect of par-
ticle size for (p=12.5% and compared it to a system with no crowding particles, (¢ = 0%.
Decreasing the size of the crowding particles (while increasing the number of crowding par-
ticles in order to keep (yp constant) results in a larger effect in which 7128t js smaller than
for larger crowding particles. When the crowding particles are smaller, the DBP encountered
a larger number of particles, which results in a strong decrease in the values of 7728°* com-
pared with the values of the larger particle at all salt concentrations (Figure 4.4B). As can be
seen in Figure 4.4D, this increase in search efficiency in the presence of crowding particles
having smaller dimensions is also accompanied by greater utilization of hopping at higher
salt concentrations than is seen in the presence larger crowding particles, and increases in in
the values of the D; coefficient (see inset of Figure 4.4D).

4.2.5 Monte-Carlo simulations of DNA search in the presence of molecular crowding
We supplement the CGMD simulations with MC simulations, as the latter are valuable in

evaluating the effect of modifying some key parameters of the facilitated diffusion mecha-
nism on the kinetics. In the Monte-Carlo simulations, the protein and the crowding particles
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Figure 4.5 — On-Lattice MC model for target finding. A) Schematic view of the model. A DBP, in red,
diffuses by hopping either to one of the six nearest neighbor lattice sites, if it is in the bulk solution,
or to one of the two neighbor lattice sites, if it is sliding along the DNA, which is represented in green.
Crowders represented in gray diffuse only in the bulk solution and are not allowed to bind the DNA.
Molecules have square geometry, and diffusion is only allowed if the destination site is unoccupied.
Note that the simulations use a 3D lattice rather than the 2D one depicted schematically here. B) Av-
erage target finding time as a function of kg for different volume occupation fractions ¢, 1D diffusion
constants D; and crowder masses. C) Average finding time as a function of kg for different crowder
sizes. Inset) Sliding length distributions for different crowder sizes.
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move on a lattice and their dynamics is dictated by the D; and D3 parameters and the salt
effect is mimicked via the k.g parameter (see Fig. 4.5A). Figure 4.5B shows the average time
to find the target site as a function of the unbinding rate kg for different levels of molecular
crowding. When no crowders are present, the average finding time follows a non-monotonic
behavior with a minimum at an optimal value of kg, similarly to the CGMD results shown in
Fig. 4.3A. As molecular crowding increases, the sliding length increases because of less disso-
ciation from the DNA (Fig. A.4). This effect is mostly beneficial for large values of kg, but for
small values of kg (i.e., low salt concentration), the presence of crowders does not affect the
search kinetics. A fundamental difference between the CGMD and the MC approaches is that,
while in the former the D; increases with salt concentration, in the MC D; is constant and
is decoupled from k.g. To examine the effect of D; on the search kinetics, we simulated the
search under crowded conditions and utilizing higher values for D,. Figure 4.5B shows that
lower values of k.g paired with higher values of D; results in a shorter 712'¢°t however large
values of kg have no major effect on search kinetics. The faster search under conditions of
low ko and higher D, values is similar to the effect reported in Fig. 4.3A, in which crowding
produces a shorter 7128t at low salt concentrations.

To implement the different mass of the DBP and the crowding particles in the MC simu-
lations model, we modified the crowder’s diffusion constant D§™". Figure 4.5B shows the
average finding time as a function of k¢ for crowding particles that are heavier and diffuse
with D§™V=D3/10. Increasing the mass of the crowding particles affects the search kinetics
only at high values of k.g under which the kinetics is dominated by D3. When the DBP and
the crowders have the same diffusion constant, the excluded volume enhances target finding.
Nevertheless, when crowders diffuse more slowly than the DBP, their effect on target local-
ization is negative, suggesting that slow crowders affect the 3D diffusion of the DBP more
strongly than crowders with the same diffusivity. This behavior is similar to the results from
the CGMD simulations (Fig. 4.4A). We note that, at the limit of very slow crowders, percola-
tion effects can take place, with the result that the DBP would never find its target.

Next, we used the MC model to study crowders that are bigger than the DBP. Fig. 4.5C shows
the average finding time as a function of kg for two cases in which the volume fractions are
the same but the particles have different sizes: A larger number of smaller particles is seen
to result in faster kinetics. The origin of this enhanced kinetics is more effective excluded
volume effects, see inset Fig. 4.5C. We point out that a similar effect is reported for the CGMD
simulations (Fig. 4.4B), however the effect is not identical, most likely because the CGMD also
involves a change in the D; value that was not incorporated into the MC simulations, which
focused on the effect of the dimensions of the crowding particles. The MC simulations support
the CGMD observations that molecular crowding increases the linear diffusion coefficient Dy,
that the presence of lighter crowding particles can speed up the search (by increasing the D3
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value), and that smaller crowding particles may be more effective in enhancing facilitated
diffusion.

4.3 Conclusions

Recent studies contributed to understanding of various facets of the mechanism of DNA recog-
nition by proteins. In addition to the typical complexities of biomolecular recognition, which
demand structural and chemical complementarity, the interactions between protein and DNA
require an extensive search that is further complicated by conditions in the cellular milieu.
The in vivo aspects of protein-DNA recognition are just starting to be addressed, but some
studies have surprisingly suggested that the complexity may not significantly exceed the in
vitro scenario. Actually, it was indicated that the crowded cellular environment and particu-
larly obstacles on the DNA may not necessarily impede the search kinetics (28; 33).

In this paper, using CGMD and Monte-Carlo simulations, we demonstrated how molecular
crowding influences DBP dynamics as it searches DNA. We have shown that DBP search effi-
ciency in the presence of crowding may be improved as its dynamics becomes confined to the
DNA regions between the crowding particles. This finding may imply that the excluded vol-
ume effects of crowding particles can sequester sampling to within certain DNA regions while
reducing the possibility of the DBP escaping the DNA. The sequestration effect of crowding
may result in a faster search when the target site is located in the accessible region along
the DNA. We demonstrate how search efficiency is altered under varying volume occupancies
and show that this effect strongly depends on salt concentration. We suggest that, at increas-
ing occupancies, crowding has an influence on the partitioning between the searching modes
(sliding, hopping, and 3D diffusion) adopted by the DBP, in a similar manner to the effect of
decreasing salt conditions.

Although crowding particles may restrict the DNA region that is accessible for searching,
their increasing number could alter the nature of hopping events, and so influence the value
of the D, coefficient. This influence becomes considerable at higher salt concentrations, at
which the protein performs more hopping at the expense of 3D diffusion. This observation
serves as another example of the importance of hopping as a DNA search mode. The enhanced
hopping dynamics may also be viewed as an outcome of frequent collisions between the DBP
and crowding particles, which increase as the fractional volume of the latter increases. The
mass of the particles, their size, and the temperature of the system are also important param-
eters influencing the characteristics of linear diffusion, in addition to their entropic effect via
the excluded volume interactions. Decreasing the mass of the crowding particles, decreasing
the dimension of the crowding particles, decreasing their number, or using higher system
temperatures increases the number of particle-protein collisions. Consequently, the linear
diffusion of the DBP along the DNA is characterized by higher D; due to faster sliding or due
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to larger usage of the hopping searching mode. As a result, crowding effects become more lo-
calized and the protein may perform less efficient sampling of the linker region and increase
its search time. Thus, the synergism between crowding occupancy, the properties of crowding
particles, and the salt concentration may facilitate the search and contribute to the ability of
proteins to navigate through the complex DNA organization to find their regulatory binding
sites.

We thus provide evidence that D, can be affected not only by the salt concentration (which
changes the hopping propensity) but also by the volume fraction, because at low salt con-
centrations, collisions increase the D, of sliding whereas higher salt concentrations increase
the hopping propensity. Furthermore, D3 is also affected by increased crowding because of
the effect of confinement, which may restrict 3D diffusion as crowding increases. Thus, this
study suggests that crowding may affect search kinetics not only via excluded volume effects
but also by modifying both D; and D3. Thus, it is evident that the volume fraction, ¢, is not a
sufficient parameter to capture the effect of crowding on DNA search, but rather the molec-
ular properties of the crowding molecules (such as their mass and molecular dimension) may
control their overall effect. This is in agreement with a recent study (18) which suggested that
a crowded cellular environment could influence the mechanism of DNA damage recognition
by an enzyme to the same extent as any property of the enzyme itself or the DNA. We spec-
ulate that, in addition to the simple excluded volume effects of inert polymers, the presence
of crowding particles with an affinity to either proteins or to the DNA (18) may modify the
facilitated diffusion mechanism.

4.4 Materials and Methods

The effect of molecular crowding was studied using off-lattice CGMD and on-lattice Monte-
Carlo simulations.

4.4.1 Coarse-grained molecular dynamic simulation model

In CGMD simulations, the protein is represented by a single bead per residue placed at the C,
position and the protein dynamics is governed by its native-state topology (187). The DNA is
modeled by three beads per nucleotide (representing phosphate, sugar and base) that are po-
sitioned at the geometric center of the represented group. We modelled the double-stranded
DNA (ds-DNA) in two different ways. In the first model, given the high persistence length for
DNA of about 50 nm, it was represented as a rigid and static molecule. It was modeled in its
canonical B-form and was centered on and aligned with the Z-axis. To incorporate flexibility
into the DNA, the second model used a three sites per nucleotide (3SPN.1) approach, which
was shown to capture the thermodynamic properties of various DNA sequences under differ-
ent conditions (188). The crowding macromolecules were represented by uncharged spheres
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that were initially located at random positions and that occupied a total volume determined
by their number (N) and their radius (R). Their velocity depends on their mass (M) (see Fig.
4.1).

We performed CGMD simulations of a human DNA-binding protein Sap-1 (PDB code: 1bc8),
in the presence of 100 bp ds-DNA of poly GC. Sap-1, a 93 amino acid globular protein with
a3 total of 15 and 6 positively and negatively charged residues, respectively, uses a winged
helix DNA-binding domain to activate transcription. The protein was simulated by a native
topology-based model that excluded nonnative interactions and used the Lennard-Jones po-
tential to represent native contact interactions. Electrostatic interactions acting between all
the charged beads in the system were modeled by the Debye-Hiickel potential (155; 189).

The dynamics of the protein along the DNA was simulated using Langevin dynamics (155;
190). The simulations were performed at a constant temperature below the unfolding tem-
perature of Sap-1 (i.e., Tsimulation ~ T, Where T is the equilibrium protein folding/unfolding
temperature), and were analyzed in terms of sliding and hopping (together termed 1D diffu-
sion) and 3D diffusion. All runs were simulated for 1 x 10® time steps that allow extensive DNA
sampling by the protein and transitions between sliding, hopping, and 3D search modes. To
differentiate between protein sliding, hopping, and free 3D diffusion, we used the definitions
defined in ref. (155). 1D diffusion along the DNA was used to calculate the mean-square dis-
placement profiles along the Z-axis (155; 179). To address the efficiency of the DNA search,
we placed the protein on the ds-DNA at a fixed position near one of its edges at time zero,
and measured how much time elapsed until the DBP arrived at a target site located in the
middle of the 100 bp ds-DNA. The mean arrival time to this predefined target site over 100
simulations is indicated by 728t where arriving at the target site was defined as reaching a
distance threshold of 17 A between the recognition helix of the DBP and the phosphate beads
of the DNA target site. In a similar manner, we estimated the time required for a DBP that
had been placed in the bulk solution at time zero to encounter any nonspecific DNA site (i.e.,
rEncountery WWhile rT2rget estimates the effect of crowding on 1D diffusion, rFreounter measures
the effect of crowding on 3D diffusion.

4.5 On-lattice Monte-Carlo simulations

The crowding particles are modeled on a 3D lattice in a box with volume V' = m, xmy xm,I® =
Q12 (where [ is the lattice spacing and the total number of lattice sites), with periodic bound-
ary conditions (25). One DNA molecule is modeled as a linear arrangement of lattice sites
along the y-axis. The system contains a target site and two types of particles: a DBP search-
ing for its target site (placed in the center of the DNA) and C crowding particles that diffuse
freely in non-DNA sites and occupy a volume occupation fraction ¢ = C/< (see Fig. 4.5A).
Crowders are not allowed to bind the DNA at any time during simulations. The dynamics of
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the crowders and the DBP in the bulk solution is implemented as follows: At each simulation
time step (of duration 7), C randomly chosen crowders and the DBP move to one of their six
neighboring lattice sites with a probability of 1/6 (reduced in the case of crowders with larger
mass, see Supporting Information). Thus, crowders and the DBP diffuse with a 3D diffusion
constant D3 = [2/(67). If the chosen lattice site is free, the move is accepted, but if it is al-
ready occupied, the move is rejected. We thus consider excluded volume, or steric repulsion,
as the only interactions in our lattice implementation. If one of the chosen neighbor lattice
sites is part of the DNA, the move of the DBP onto the DNA is always accepted. Once the DBP
is non-specifically bound, one of two events can take place: It can unbind from the DNA with
arate kog = P,g7 !, where P.g is the DBP unbinding probability. Alternatively, the DBP can
diffuse along the DNA with a 1D diffusion constant D;. Here, unless otherwise stated, we
consider D; = D3/10, since it has been shown experimentally that, in general, D3 > D; (32).
High values of k. mimic screening at a high salt concentration. The DBP can find the target
site through 3D diffusion if it directly hops from the solution to the target or by sliding events
along the DNA. After the DBP has found the target, the simulation is stopped. Kinetic data
are shown for 2000 binding events.
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Chapter 5
Effects of non-spherical crowders on
protein folding

Abstract

The interior of a cell is a highly packed environment that can be occupied up to 40%
by different macromolecules. Such crowded media influences different biochemical
processes like protein folding, enzymatic activity and gene regulation. In this work,
we study protein stability under the presence of crowding agents that interact with the
protein by excluded volume interactions. In general, presence of crowding agents in
the solution enhances the stability of the protein native state. However, we find that
the effects of excluded volume not only depend on crowding occupancy, but also on
the crowder’s geometry and size. Specifically, we find that polymer-like crowders have
stronger influence than spherical crowders, and that this effect increases with polymer
length, while it decreases with increasing size of spherical crowders.

5.1 Introduction

Protein folding is at the heart of cell activity, since in order to be active and perform their
functions, proteins need a defined compact 3-dimensional configuration, the so called na-
tive structure (97; 98; 100). Thus, proteins are not random heteropolymers, but complex
molecules that organize themselves based on their amino acid sequence (99; 191). How pro-
teins fold into the native structure has been the center of many theoretical, computational
and experimental studies (10; 95; 96; 97; 98; 192; 193). The most accepted model for protein
folding describes the protein folding energy landscape as a rugged funnel, in which the na-
tive structure is at its global minimum (95; 194; 195). In this scheme, a coiled chain of amino
acids is directed towards the interior of the funnel as native contacts are formed. Since these
native contacts stabilize the protein, protein folding has a preferred direction of flow. It is
believed that such interactions were achieved through evolution by choosing the sequences
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that lead to those attractive native interactions. It is then said, that proteins follow the so
called principle on minimal frustration (95; 113).

Under physiological conditions, protein folding takes place in a crowded cytoplasm rather
than in a dilute solution. In particular, under fast growing conditions, the Escherichia coli
cytoplasm can be occupied up to 40% by macromolecules, such as the DNA, RNA molecules,
proteins and sugars (2; 6; 34; 87). Accordingly, it is expected that protein folding under in vivo
conditions differ from protein folding in dilute solutions.

Crowded conditions can not be avoided in vivo. Thus, a proper analysis of how proteins fold
under physiological conditions needs to consider the effects that excluded volume interac-
tions have on the folding process. In particular, these effects can be classified in two princi-
pal kinds: Effects on binding equilibria, and effects on diffusion and reaction rates (6; 7; 8).
Molecular crowding has a positive effect on the binding equilibrium and stabilizes the bound
state (7; 8; 25; 124). On the contrary, effects of crowding on diffusion are negative, as excluded
volume hinders molecular motion in the solution (22; 23; 24). Thus, effects of molecular
crowding on protein folding can be difficult to predict. These effects have been the focus of
experimental, computational and theoretical studies (4;7;9; 10; 11;16;17;19;117;118;119).
The results of these studies indicate that molecular crowding promotes stabilization of the
native state by increasing the free energy of the unfolded configurations (4; 10; 11). This
is because the cost of inserting a larger unfolded configuration into a hard-sphere fluid is
greater than inserting a smaller folded configuration (10; 11). It has also been shown that
crowder size influences the strength of the effects of excluded volume on protein stability.
Specifically, protein stabilization increases as the size of the crowders decreases (11).

In this study we address the effects of molecular crowding on protein folding by using a
structure-based model (SBM) of the protein HigA. SBM are based on two main theoretical
foundations. One is the principle of minimal frustration. The second one is the hallmark of
SBM, is the funnel-like folding energy landscape (113; 196). Thereby, SBM reduce drastically
the complexity of the protein folding force field, and time scales of folding can be achieved.
SBM have been developed for both full-atom (197), and coarse-grained representations (114;
115). Moreover, SBM have been successfully used in the modeling of protein folding (113),
RNA folding (198; 199) and multimeric folding and binding (200).

We provide new understanding of the effects that macromolecules with different shapes,
geometries and sizes, have on protein folding and protein stability. Specifically, we consider
the effects that spherical crowders with different sizes and two types of polymer-like crowders
with different lengths have on protein folding.
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5 Effects of non-spherical crowders on protein folding

5.2 Methods

5.2.1 Coarse-grained model

We implement a coarse-grained model in which the protein is represented by a single bead
per residue centered at the C,, position. We run simulations for the HigA protein (PDB code
2ICT), the bacterial antitoxin HigA from Escherichia coli. This is an 89-amino-acids-long non-
globular protein, that does not have any 3 structure (201), see Fig. 5.1. The protein was im-
plemented using the structure-based modeling software eSBMTools, which are python tools
that interface with GROMACS (115), see Fig. 5.1.

Simulations are run for a total time of 250 nsec. At every 5 pico sec, a snapshot of the
protein structure is taken in such a way that a total of 50,000 protein structures are obtained
at the end of each simulation. The statistics are done with these sets of data. We point out
that due to coarse-graining of the model, one cannot easily convert the time steps to real
time. However, our implementation accurately reproduces the unfolding-folding dynamics
of the protein.

We use periodic boundary conditions that take into account interactions between images
of the protein and the crowding agents with themselves. The dimension of the simulation
box is given by the implementation of the eSBMTools. Specifically, for all of our simulations,
the box size has a total volume V;o; = 14.78 x 12.17 x 13.75 nm3.

In the analysis of our simulations, we use the number of native contacts @ as the pro-
tein order parameter. Hence, large () values represent a protein close to its folded state,
whereas low (Q values represent a protein in an unfolded configuration. The native struc-
ture provides the maximum number of native contacts ). In particular, for the considered
HigA protein Qu.x = 139. For this frustrated energy landscape, energy input is required to
bring the protein out of the bottom of the funnel and change the protein conformation. Thus,
we change the conformations of the protein by modulating the temperature (in reduced GRO-
MACS units). For all considered cases, the minimum considered temperature is 7" = 50. Here,
the protein is folded and the average @ value is ~ Q.. We increase the temperature until
T = 200. At this high temperature, the energy input is high enough to take the protein out
of its native state. Thus, with this temperature, we ensure that the protein is present in an
unfolded state.

5.2.2 Crowding agents

The aim of our study is the characterization of the effects that molecular crowding has on pro-
tein folding and protein stability. We thus implement crowders that occupy a volume fraction
¢. A natural starting point is to implement crowders with spherical geometry and with the
same size of the C,, of the coarse-grained protein model. Crowders are manually created, and
they are set to interact with the protein only via steric interactions. The eSBMTools imple-
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mentation provides the potential parameters of the protein, including the C;» = 1.67 x 107
value of repulsion term of the Lennard-Jones potential, V ;(r) = Cio/r'2. However, the ra-
dius of the C,, is not provided. This potential does not directly define the radius of the C,
beads und hence the volume fraction occupied by crowders. Therefore, we determine the ra-
dial distribution function from simulations with 1000 crowders mplemented with the same
C12 value, and for three temperatures 7' = 50, 120 and 150. Next, we obtain the radial dis-
tribution function (RDF) of the system. For all three temperatures, the obtained C,, radius
is ~ 0.33nm. Thus, each C, has a volume V¢, = 0.15nm?, and occupies a volume fraction
b, = Vo, /Viet = 6.06 x 1076,

Crowders with larger volumes are implemented after proceeding in the same way as de-
scribed above. For a given value of the parameter C;5, the RDF is obtained together with
the radius of the crowding agents. Then, the volume of the spherical crowders is obtained,
and the box can be filled with a specific number of crowders that occupy the desired volume
fraction ¢.

We continue by implementing crowders that have different geometries. Here, we consider
polymer-like crowders that are implemented as linear arrangements of beads. Each bead is
set to have the same volume as the C,,. The polymer-like crowder does not have any backbone
interactions, except for a bond-like potential that keeps the polymer chain together. Differ-
ent polymer lengths are achieved by adding C,, beads, each with their corresponding bond
potential, to the chain.

5.3 Results

Throughout this study we use the small protein HigA as a model protein. This protein
is investigated with molecular dynamics simulations using a coarse grained structure based
model that describes the protein as a chain of beads that are located at the positions of the
C, atoms with nonlocal interactions defined by the native topology of the protein. In these
simulations, the HigA protein displays two well-separated states, folded and unfolded. The
histograms of the number of native contacts, @), is monomodal at high and low temperatures,
with typical Q values > 120 and < 40, respectively, but bimodal for temperatures around
T = 109 (Fig. 5.1). To quantify folding, we determine the following three parameters: the
average number of native contacts, (Q), the coefficient of variation CV = o4 /(Q), where
oq is the standard deviation of the () values, and the radius of gyration of the protein, Rg.
The three parameters are plotted as functions of the temperature in Fig. 5.2A-1. The average
number of native contacts decreases steeply in a narrow range of temperatures around the
folding temperature (Fig. 5.2A, D and G). In that temperature range, the fluctuations of Q are
increased, and the folding temperature can be precisely defined by the position of the max-
imum in the coefficient of variation, which is found here to be T' ~ 109 for the free scenario
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Count

B @ D % O % A & 4

Figure 5.1 - HigA protein and its coarse-grained representation given by eSBMTools. Histograms of
the number of native contacts Q. As the temperature increases, the protein is destabilized, and the
distributions shift towards low @ values. Snapshots of the system with spherical (top) and polymer-
like crowders (bottom) at ¢ = 0.1.
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Figure 5.2 — Effects of crowders on protein folding. A-D-G) (@) as a function of the temperature. Pres-
ence of crowders shift the data towards higher temperatures. Molecular crowding enhances protein
stability. Polymer-like crowders have the strongest effects among all considered crowders. B-E-H) CV
as a function of the temperature. The folding temperature, which is obtained as the maximum of C'V
is shifted to higher values. Among all considered crowders, polymer-like crowders have the strongest
influence on protein stability. The shift of the maximum in CV depends on the length of polymer
crowders. C-F-I) Radius of gyrations as a function of the temperature. Macromolecular crowding en-
hances compactness of the protein. The effect on T correlates with the influence of crowders on the
radius of gyration.
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(Fig. 5.1B black squares). The loss of the native structure as measured by Q is accompanied
by loss of the compactness of the structure, which is quantified by the radius of gyration (Fig.
5.2C, F and I).

To study the effect of crowders on the folding of our model protein, we include different
types of crowders in the simulations. All crowders are inert and interact with the protein
only through volume exclusion. Specifically, we consider spherical crowders of the same size
as the C, beads, larger spherical crowders and polymeric crowders consisting of chains of
beads with the same sizes as the C,, beads of the protein.

Fig. 5.2A-C shows the temperature dependence of the three parameters quantifying folding
for different volume fractions of the small spherical crowders. The presence of crowders shifts
the decrease in the average number of native contacts to higher temperatures, indicating that
crowders stabilize the folded state, in agreement with earlier experimental studies (117; 119;
202; 203). Consistent with that observation, the peak in the C'V and the steep increase in the
radius of gyration are also shifted to higher temperatures. The stabilization of the protein can
be quantified by the folding temperature, which increases with increasing volume fraction of
crowders (Fig. 5.3A).

Larger crowders have qualitatively the same effect, but the shift of the folding temperature
is smaller than for the small crowders as depicted in Fig. 5.2C-E. Indeed when keeping the
occupied volume fraction constant, the folding temperature is seen to decrease as a function
of the crowder volume, see Fig. 5.3B. That smaller crowders have a larger effect is consistent
with previous studies (11; 204; 205). One reason for this observation is that depletion forces
are stronger for smaller crowders (35; 206).

Polymeric crowders result in a pronounced shift of the folding temperature. At the same
volume fraction, their effect is considerably stronger than the effect of spherical crowders.
As for spherical crowders, the effect depends on the crowder size. Surprisingly, the size de-
pendence is not only more pronounced than for spherical crowders, but the shift of the fold-
ing temperature has the opposite direction: While the folding temperature decreases with
increasing size of spherical crowders, it increases with increasing length of the polymeric
crowders. Thus, the effect of molecular crowding on protein folding depends on the volume
fraction, the size and the geometry of the crowders.

Finally, we consider the HigA protein as a self-crowder by observing the folding of a ‘la-
beled’ protein in a dense solution of unlabeled proteins. In this case, the volume fraction
occupied by crowders is determined from the average radius of gyration of the protein at the
fording temperature Tx. As a consequence, fewer crowders are needed as the temperature
increases, because of the increase of the radius of gyration (Fig. 5.2C black squares). In that
case, the folding temperature decreases to 7 = 111.9.

We then ask weather the internal interactions that provide crowders with native structure
have an effect on the stability of the protein HigA. Therefore, we run simulations in which we
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Figure 5.3 — Effects on the stabilization of the HigA protein by crowding agents. A) TF as a function of
¢, for crowders with the same size as the C,, atom. T increases together with ¢. B) T as a function of
the spherical crowder’s volume for ¢ = 0.5. Stabilization of the protein diminishes for larger crowders.
To keep a constant volume occupation fraction, the number of crowders need to be adjusted. C) Tf as
a function of the polymer length. TF increases as the crowders become longer (red points). At ¢ = 0.5,
89-beads long polymers shift 7% in more than 6 temperature units. The blue triangle represents the
case in which the crowding agents are HigA proteins. Here, ¢ = 0.5 was calculated by taking the
average radius of gyration of the protein as the geometrical parameter. T goes down to Ty = 111.9.
Interestingly, after deletion of all backbone interactions of the HigA crowders (except bond ones), Tr
increases by a temperature unit (pink star).
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Figure 5.4 - Effects of polymer-like crowders with and without defined conformation on protein sta-
bility. A) At ¢ = 0.5, T is larger when polymer-like crowders without backbone interactions are
present in the simulation box. B) Radius of gyration of the two kinds of crowders. Crowders without a
native structure (top) are more extended in space than crowders with a native conformation (bottom).

keep the number of crowder beads, but remove all the internal interactions within the crow-
ders. It is, crowders are 89-long bead polymer chains with only bond interactions. Notably,
deletion of interactions within the polymer increase protein stability by about 1 unit of tem-
perature, see Fig. 5.3D. This suggest that long crowders without any specific structure stabi-
lize more the native state of the HigA protein. In this study, we only consider the unavoidable
steric effects of molecular crowding, which are of entropic nature (4; 8; 173; 207; 208). Since
polymeric crowders without internal interactions can acquire more configurations than pro-
tein crowders, the entropic contribution for the former scenario is larger than for the latter. In
Fig. 5.4A, we present the C'V for both types of crowders, in which the shift in the folding tem-
perature can be observed. In Fig. 5.4B, we show the average radius of gyration for both types
of crowders. We see that polymeric crowders (89 C, long) without a native structure are more
extended than protein crowders that are more compact because of backbone interactions.

5.4 Concluding remarks

In this paper we used a structure-based model implementation of the protein HigA to study
its stability and folding under molecular crowding conditions. We implemented spherical
crowders to revisit protein stability. As the volume occupation fraction increases, the folding
temperature of the protein increases and the native structure of the protein is preserved for
higher temperatures. This effect depends on the size of the crowders. At a given volume oc-
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cupation fraction, crowders with big radii exert weaker effects on the stability of the protein.
We showed that the folding temperature decays as a function of the crowder’s volume.

In addition, we implemented two types of polymer-like crowders, one type without and an-
other one with a defined native structure, i. e. a protein. We showed that protein stability and
the radius of gyration are more influenced by polymeric crowders (without backbone interac-
tions) than by spherical crowders. This effect becomes larger as the length of the polymeric
crowders increases. When comparing the effects of crowding on protein stability between
the two types of polymer-like crowders, we found that polymeric crowders without a native
structure promote protein stability more than protein crowders.

Effects of molecular crowding on protein folding can be difficult to predict, because of the
many variables that need to be taken into account. Here, we have shown that size, geom-
etry and local organization of crowding agents lead to different levels of protein stability.
Although experimental procedures can be challenging due the difficult task of finding ‘good’
crowding agents, it can very useful to perform detailed studies on the stability of proteins, in
which crowding agents with different geometries and size are used.

During this study, we have discussed the repulsive interactions of crowding agents. How-
ever, crowders can also interact with the protein via attractive interactions. It has been shown
that typically, attractive interactions lead to destabilization of protein complexes and protein
folding (173; 207; 209; 210). While the effect of repulsive interactions are entropic and de-
pend on the excluded volume, attractive interactions are enthalpic and depend on the con-
tact area between the protein and the crowder (173). These interactions will be considered
in future work, but we already anticipate that their influence on protein folding might also
depend on the geometry of the crowders. Specifically, long polymer crowders can have larger
contact areas than spherical crowders or crowders with a given structure. Thus, the positive
influence on the folding temperature presented in this work can be reduced or even become
become negative if the interaction energy is strong enough.
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Chapter 6

Summary and Outlook

6.1 Overview of the main results

The interior of a living cell is a highly crowded environment, with macromolecules occupying
up to 40% of the total cell volume (1; 2). Molecular crowding has thermodynamic effects on
binding equilibria, while also decreasing the encounter rate between reactants by affecting
diffusion constants (6; 8; 22; 23; 24). Therefore, biochemical reactions that occur in such
crowded environments differ from reactions that take place under test tube conditions. A
great effort has been made to characterize and understand the effects that molecular crowd-
ing has in the contexts of protein-protein binding, gene expression, enzymatic activity and
protein folding (4; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17; 18; 19; 20; 21)

In this work, we focused on the effects that molecular crowding and steric interactions exert
on three different biochemical reaction processes: First, we studied enzymatic reactions. Sec-
ond, we studied the consequences of molecular crowding in the context of gene expression,
and specifically, how a DNA binding protein (DBP) finds a specific DNA sequence. Finally, we
studied the protein folding process under crowding conditions with crowders of varying size
and shape.

6.1.1 Enzymatic reactions

Experimentally, it is often difficult to decouple the different effects of crowding on biochem-
ical reactions from one another, since changing crowding conditions affects both reaction
thermodynamics and kinetics. To systematically investigate these effects, we proposed and
analyzed two reactions that (at equilibrium) uncouple the effects of molecular crowding on
binding equilibria from the effects on diffusion. In order to do so, we ran Monte Carlo simu-
lations on a three-dimensional lattice with volume V', in which we placed ligands, crowders
and a receptor that interacted via steric interactions.

In the past, most studies have focused on the entropic effects molecular crowding exerts on
protein conformation and protein complexes. Several theoretical models based on excluded
volume have been proposed to account for these effects on protein association (4; 7; 8), and
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it has been shown experimentally that volume occupation leads to stabilization effects of the
native structure of proteins and multi-protein complexes (4; 7; 8; 9; 10; 11; 12; 37; 38; 42;
173). For protein-protein interactions, the effect is attributed to a decrease of the complex
dissociation constant as volume occupation increases (7; 8; 11; 12). In Chapter 2, we showed
for the first proposed reaction that, at equilibrium, this influence of crowding holds. We found
that as volume occupation increases, the average binding rate remains constant, whereas the
average unbinding rate decreases. We showed that this effect becomes stronger as the size
of the crowders decreases in agreement with scaled particle theory (SPT). SPT provides an
analytical expression for the work needed to place a spherical particle of radius R into a hard-
sphere fluid (8; 35), and give a description of the nature of depletion forces (35; 206). When
carefully looking at the kinetics of this reaction, we found that the average binding rate re-
mains constant due to the contribution of two opposite effects. On one hand, as crowding
increases, fast rebinding is enhanced due to the presence of crowding agents and the close
proximity of the ligand to the receptor. On the other hand, if the ligand escapes form the
vicinity of the receptor, the rebinding is hindered by the presence of crowding agents in the
bulk solution, see Fig. 2.3. The latter effect is studied by a second proposed reaction that mon-
itors the effects of crowders on diffusion. We showed that the presence of crowding agents
negatively influences diffusion, and thus, the time needed for binding.

Even using our coarse-grained lattice implementation, we were able to obtain valuable in-
formation on the kinetics of protein-protein interactions that had not been previously ob-
served. While the effects of molecular crowding on kinetics can be difficult to verify experi-
mentally, more detailed computational implementations such as the ones used by Mittal et
al. (11; 12) can help us gain a better understanding of the microscopic dynamics of protein-
protein interactions. This, in turn, will allow us to interpret data that is not only at or near
equilibrium.

6.1.2 Gene expression

All biological functions of DNA depend on the recognition of specific sequences by site-
specific DNA-binding proteins (DBPs) (65). The binding of these proteins to their binding
sites is remarkable, because proteins quickly and accurately locate small targets (~ 10 — 30
bp long), in a chromosome that is over 10° bp long (26; 66). Specific DBP-DNA binding takes
place through a facilitated diffusion process that combines 3D diffusion events in the bulk
solution with 1D diffusion excursions along the DNA (69; 70). Despite different studies on
this topic (32; 82; 150; 169; 174; 175; 176; 177; 170), researchers lack a detailed description
and understanding of how this process takes place under crowding conditions.

We have implemented a lattice model for facilitated diffusion, in which crowding agents ei-
ther in the bulk solution or bound to the DNA influence the finding of a specific DNA sequence
by a DBP. In Chapter 3, we found that as the DNA is occupied by obstacles, the efficiency of
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facilitated diffusion decreases in agreement with previous models (28; 88). We showed that
this negative effect depends on the dynamics of crowders on the DNA. Specifically, if obstacles
are tightly bound to the DNA and do not diffuse, the DBP 1D sliding lengths are truncated,
and more excursions to the bulk solution are needed to overcome the presence of obstacles.
We showed that for static crowders and physiological levels of DNA occupation ~ 20%, the
optimal average fraction of non-specific DNA binding time drops from 50% (in the absence
of obstacles), to ~ 9%. We found that for more dynamic obstacles, this effect is reduced in
agreement with (28; 33; 74). These results provide insights into the understanding of not only
steric effects on facilitated diffusion, but also the effects that different kinds of DBP have in
the specific-DNA sequence dynamics. In particular, our results are in agreement with the in
vivo experimental results obtained by EIf et al., in which they modified the operators in the
vicinity of the lac operator to investigate the effects of different obstacles on facilitated diffu-
sion. By changing the binding sites, they found that different obstacles differently influence
specific-sequence recognition (74).

We then investigated the effects that crowders in the bulk solution have on facilitated
diffusion. Using coarse-grained molecular dynamic (CGMD) and Monte Carlo (MC) simu-
lations, we showed that molecular crowding enhances non-specific DBP-DNA binding, con-
sistent with the general results from Chapter 2. Thus, larger 1D sliding events were found
when crowding agents were present. We found that at a certain set of parameters, molecu-
lar crowding enhanced specific-DNA finding, in agreement with (18). We showed that a big
contribution in reducing the average finding time is that as crowding increases, the fraction
of hopping events notably increases. Although this contribution could only be observed by
the use of the MC implementation, the observed effect in the hopping fraction is comparable
to the enhancement in the fast rebinding discussed above in the context of protein-protein
interactions.

Although our two implementations of molecular crowding provide new insights in under-
standing effects of molecular crowding on facilitated diffusion, a complete mapping from our
modeling to in vivo conditions is still lacking. For instance, it is not entirely clear from our
results which set of conditions make facilitated diffusion under the simultaneous contribu-
tions of crowders and obstacles more efficient than the free diffusion model. In particular,
our results cannot provide an explanation to the very long fractions of non-specific binding
time observed in experiments (~ 90% in contrast to the 50% and ~ 9% in the presence of ob-
stacles) (32; 74). As a further step in modeling facilitated diffusion, DNA supercoiling effects
have to be considered within crowded conditions, since their effects on facilitated diffusion
have already been studied in the free scenario (77; 93; 156).
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6.1.3 Protein Folding

In order to be active, proteins need to be in a 3D compact conformation known as the native
state (45; 95; 96; 97; 98). Proteins are not simple random chains of polypeptides, but are
complex molecules that organize themselves based on the sequences of amino acids they are
made of. The relatively short timescales in which folding takes place suggest that the non-
native configurations of the protein are energetically unstable and that the flow of folding
is towards the native state. The fact that the native structure is unique indicates that this
conformation corresponds to the global minimum of the rugged folding energy landscape
(95; 101; 102). Earlier computational experiments have shown that the folding energy land-
scape becomes less rugged when increasing crowded conditions, enhancing destabilization of
non-native configurations (10; 11). Cheung and Mittal et al. have shown that stabilization of
the native protein structure is achieved as the media is occupied by inert spherical crowders.
Thus, as volume occupation increases the folding temperatures are shifted to higher temper-
atures (4; 10; 11; 117). These computational predictions have been experimentally confirmed
by different studies (117; 118; 119).

In Chapter 5 we investigated the influence of crowder size and geometry on protein sta-
bility. We first considered the effects of spherical crowders with a given size, and found
that as volume occupation increases, so does the stability of the protein, in agreement with
(10; 11; 207). Then, we varied the size of spherical crowders and found that the effect of
volume occupation on protein stability is reduced as crowders increase in size. These ef-
fects of crowder size on protein stability have been previously reported in different studies
(11; 12; 173). Next, we considered polymer-like crowders with and without backbone interac-
tions. First, we showed that if we keep constant the level of volume occupation but increase
the length of the polymers, the folding temperature shifts to higher temperatures and protein
stability is enhanced. Thus, the size effect of polymeric crowders is opposite to the size effects
of spherical crowding agents. Then, we compared the effects of two kinds of polymeric crow-
ders with the same length: Protein-like crowders with a native state and polymer crowders
without native configuration. We showed that the influence of molecular crowding is larger
for crowders without backbone interactions than for crowders with a native structure. In this
study, we only considered steric effects of molecular crowding. Thus, the influence of volume
occupation is of entropic nature (4; 8; 173; 207; 208). Since polymeric crowders without in-
ternal interactions can visit many more configurations than a protein with a defined native
state, the entropic contribution is larger for former case than for the latter, and hence, the
observed effect on protein stability.

Here, we concentrated on the effects of crowding on protein folding at equilibrium. The
folding-unfolding kinetics and how the folding and unfolding rates are influenced by the
presence of different crowding agents will be the focus of our next study. Based on infor-
mation from a study conducted by Cheung et al., which showed that the folding rate non-
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monotonically depends on the volume occupation of spherical crowders (10), we think it
would be useful to consider the possible effects of polymeric crowders and their lengths on
folding rates. We have planned a future work dedicated to this issue.

6.2 Outlook

Throughout this work we have studied different biological processes within crowded envi-
ronments. Although we discussed a variety of biochemical reactions, the individual topics
considered here are very broad and can be studied in more detailed. We now provide possible
extension of the work we have presented in this thesis.

6.2.1 Protein synthesis as an enzymatic reaction

The methods and models we introduced in this work are quite general and can be applied to
other biological processes. For instance, in Chapter 2 we considered the general scenario of
an enzymatic reaction, in which a ligand reacts with its receptor in a crowded environment.
The same framework can be used to model other cell processes that are not enzymatic in a
strict sense. As an example, we can consider the translation of a messenger RNA (mRNA) by
ribosomes. In this context, the ribosome is the receptor of a ternary complex molecule (lig-
and) that carries an amino acid. At a first approximation, ribosomes are translating all the
time. To elongate a polypeptide chain, ribosomes read the mRNA codon by codon by seques-
tering the right ‘charged’ ternary complex. Each ternary complex is formed by the elongation
factor EF-Tu, which is the most abundant protein in E. Coli (128), and a transfer RNA (tRNA)
molecule charged with an amino acid. Since the delivery of the right charged ternary com-
plex is diffusion limited, molecular crowding sets a minimum in the translation rate, which
can negatively influence bacterial growth (127). Moreover, molecular crowding can also have
effects on the ‘recharging’ of the sequestered ternary complex with a new amino acid, and
generate depletion effects that can slow down translation. This limitation can be avoided by
the presence of local charged ternary complex pools in the proximity of the ribosome, as has
been suggested in (148).

6.2.2 DNA supercoiling and lattice limitations

In this work, we used lattice implementations to model different biochemical reactions. The
lattice models provide a clear and simple pictures of the modeled systems, with the advantage
of being computationally inexpensive and easy to implement. Along with the lattice models,
we also implemented off-lattice simulations (ReaDDy and CGMD) and obtained comparable
results. Nevertheless, when modeling complex biological processes, lattice models become
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inefficient and difficult to implement. For example, in Chapters 3 and 4 we studied the facili-
tated diffusion process under crowding conditions. There, we considered the DNA as a linear
template, which, in cells, is not necessarily true. It has been shown that the DNA in its super-
coiled structure has implications in target finding (77; 93; 156). Although during this study
other DNA geometries were implemented, we were not able to see any drastic change in facil-
itated diffusion. We note that complicated DNA geometries can be obtained, but they have to
be manually created, a task that can be tedious and computationally impractical. Addition-
ally, we saw in Chapter 4 that the coarse-grained molecular dynamics implementation was
able to recover information that we could not with the lattice. Specifically, we showed that
molecular crowding enhances hopping under certain conditions, leading to a faster finding
of the target.

6.2.3 Effects of molecular crowding on folding of intrinsically disordered proteins
(IDPs)

In this study, we saw that molecular crowding enhances the stability of proteins, and that this
effect depends on the geometry and size of the crowders. An extension to this study is the
characterization of the folding-unfolding rates of the protein. It has been previously shown
that molecular crowding affects these rates in a non-monotonic fashion (10). Moreover, the
effects of molecular crowding on protein folding were characterized for the protein HigA, a
protein that has a defined native structure. Nonetheless, it will be of great importance to
characterize the possible effects of crowding on the so-called intrinsically disordered pro-
teins. It has been shown that such proteins (many other IDBs likely have many other roles)
play an important role in the acclimatization of plants to cold weather (120; 121). Under these
cold conditions, cells dehydrate and the concentration of macromolecules increases, leading
to the enhancement of IDP folding.

6.2.4 Attractive effects of molecular crowding

Throughout this study, we only considered repulsive interactions that macromolecules exert
via excluded volume. These interactions are generic and do not depend on molecular details,
as opposed to attractive interactions of molecular crowding such as electrostatic, hydropho-
bic, hydrogen bonding, and van der Waals, which in fact, depend on molecular characteris-
tics. Moreover, contrary to the stabilizing effect of entropic-excluded volume interactions on
binding equilibria, attractive interactions destabilize binding due to the enthalpic penalty,
which is a result of breaking favorable protein-crowder contacts when forming multicompo-
nent complexes. Experimentally, the influence of attractive interactions has indeed shown
destabilizing effects on protein folding, RNA folding and protein complexes (173; 207; 208;
209; 210; 211). Despite the advances in understanding these effects, it is still challenging
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to describe the influence of attractive interactions on biochemical processes. While the en-
tropic effects can be theoretically described by scaled particle theory (SPT) (8; 35), the en-
thalpic contributions are described by a more complicated thermodynamic perturbation the-
ory approach (173; 208). Thermodynamic perturbation theory describes the effects attractive
interactions have on binding free energy, to be dependent on the contact area between the
protein and the crowders, as well as on the binding energy, and the geometry and size of the
reactants (173; 208).

Attractive interaction can easily be included in our lattice approach. Further studies in
which such interactions are implemented will be developed as a natural next step. For ex-
ample, using the lattice model of enzymatic reactions, a metropolis algorithm can be imple-
mented at every ligand-crowder encounter. This will lead to attractive interactions that can
modify the effects we described in Chapter 2. We anticipate that attractive interactions be-
tween crowders and ligands will affect both binding equilibria and diffusion. Thus, in the
Michaelis-Menten framework, the two negative contributions from attractive interactions
can exceed the positive influence of the entropic binding enhancement, and decrease the
overall synthesis rate or shift the optimal volume occupation fraction at which the reaction
is most optimal.

Another biochemical process in which attractive interactions can have a strong influence is
the folding of a protein. We have shown that entropic-excluded volume interactions stabilize
proteins, and that this effect is modulated by crowder size and geometry. Implementation of
attractive interactions, such as van der Waals interactions, between the protein and crowders
can modify this stabilization picture. In this scenario, size and geometry modify the influence
of the enthalpic effects, since the change in the binding free energy explicitly depends on the
contact area between the protein and the crowding agents. Specifically, it will be interest-
ing to evaluate the effects of polymer-like crowders with attractive interactions on protein
folding, because this might lessen the strong effect we obtained in Chapter 5. Additionally,
polymer-like crowders can explore many different configurations, so they can be in contact
with more protein surface area than spherical crowders. This can lead to strong destabiliza-
tion of the protein, favoring unfolded conformations. The latter effect can be modulated by
changing the length of polymeric crowders.

6.3 Concluding remarks

In this study, we used computational approaches to study the effects of molecular crowd-
ing on different biochemical reactions. We showed that although the effects of molecular
crowding are generic, they can be complex and difficult to predict. The extent of these effects
depends on the features of the specific biochemical pathway and the kind of crowders. Thus,
a general mapping of the effects of crowding to in vivo conditions might be difficult to achieve.
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Hence, for a complete understanding of specific biochemical processes, it is necessary to ac-
count for the effects molecular crowding exerts on specific processes. Nevertheless, with the
availability of new experimental techniques together with computational implementations,
researchers can disentangle the role of macromolecular crowding in in vivo systems. Specif-
ically, the advances in the understanding of the influence of molecular crowding presented
throughout this work can be extended and applied to other biochemical pathways in order to
deepen our understanding of the cell.
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Appendix A

Mechanism of facilitated diffusion
during DNA search in crowded
environments-SI

A.1 Sl Methods

A.1.1 Search efficiency

In the Monte Carlo simulations, we reconstruct the facilitated diffusion process under dif-
ferent levels of volume occupation. As molecular crowding increases, molecular crowding
prevents DBP unbinding and the sliding length increases (see Figure A.4A). This effect is
beneficial for large values of k.g, see main text, but hinders target finding when k.4 takes
intermediate values. For very small values of kg, the percentage of crowders do not affect
target finding, because the DBP remains mostly bound to the DNA. One difference between
the two used approaches (CGMD and the lattice model), is that in addition to kg, the 1D dif-
fusion constant is also modified as the salt concentration is modulated in CGMD. In the lattice
model, k. and D, are completely uncoupled. In Figure A.4B we plot the sliding length distri-
bution for different values of k., and D;. As D; increases, the distributions become narrower
due to the fast scanning of the DNA.

A.1.2 Mass effect

Cell cytoplasm contains a great variety of macromolecules with different geometry, size and
mass (ref (6), main text). A natural case to consider is the one in which the DBP and the crow-
ders have different mass. In the lattice model, this is implemented by changing the crowder’s
diffusion constant D$™". The average finding time follows a non-monotonic behavior, and
is qualitatively similar to the case with crowders having the mass as the DBP. Interestingly,
when crowders diffuse slower than the DBP, their effect on target finding is negative for large
kos, see Fig. 4.5B (main text). Even though slow crowders enhance DBP-DNA binding as
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Figure A.1 — Raw trajectories data of the displacement of the protein during 10° time steps along the
DNA axis under salt concentrations of 0.01M (upper panels), 0.06M (middle panels) and 0.09M (lower
panels) at ¢ = 0% (left panels, black lines) and ¢ = 50% (right panels, orange lines). At each trajectory,
protein displacement from DNA axis is shown as grey lines. At each trajectory red arrow represents
the value of 7T#'8t, Corresponding to Fig. 4.3A in the main text, 7128t decreases with increasing
fractional volume, ¢, for all three salt concentrations.

shown in Figure A.4C, diffusion of the DBP is highly hindered in the bulk and the finding
time increases.
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Figure A.2 — The effect of molecular crowding (modeled as ¢, the fractional volume) on 772"#°*, when
placing the protein far from the DNA, at different salt concentrations. Although this results in higher
values of 7T2rg¢t the overall shape resembles that of Fig. 4.3A in main text, with 7T2'¢t decreasing
with increasing fractional volume, ¢, for all salt concentrations.
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Figure A.3 - The effect of molecular crowding mass on 712t when placing the protein far from
the DNA at fractional volumes of ¢ = 12.5% (left panel), ¢ = 25% (middle panel) and ¢ = 50%
(right panel), as a function of salt concentrations. Corresponding to Fig. 4.4A in main text, the slow
movement of crowders induces the effect of confinement, resulting in the increase of TEncounter with
increasing fractional volume, ¢, for all salt concentrations.
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Figure A.4 - Sliding length distributions of the DBP along the DNA for various values of kg, D1 and
. A) As molecular crowding increases, DBP-DNA binding is enhanced and the sliding length distri-
butions shift towards larger values. B) As the 1D diffusion constant increases, the distributions get
narrow around a smaller value of sliding length, because scanning of lattice sites become faster. C) In
addition to the enhancement of DBP-DNA binding by crowding, heavy crowders increase the effect.
Sliding length distributions shift towards higher values. We note that despite the enhancement in

DBP-DNA binding, the strong effects that heavy crowders have on 3D diffusion make that the average
finding time drastically increases (Fig. 4.5B main text). All data shown here correspond to ¢ = 20%.
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