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Abstract

It is "scientific folklore" coming from physical heuristics that solutions to the heat equa-
tion on a Riemannian manifold can be represented by a path integral. However, the
problem with such path integrals is that they are notoriously ill-defined. One way to
make them rigorous (which is often applied in physics) is finite-dimensional approxi-
mation, or time-slicing approximation: Given a fine partition of the time interval into
small subintervals, one restricts the integration domain to paths that are geodesic on
each subinterval of the partition. These finite-dimensional integrals are well-defined, and
the (infinite-dimensional) path integral then is defined as the limit of these (suitably
normalized) integrals, as the mesh of the partition tends to zero.
In this thesis, we show that indeed, solutions to the heat equation on a general compact
Riemannian manifold with boundary are given by such time-slicing path integrals. Here
we consider the heat equation for general Laplace type operators, acting on sections of a
vector bundle. We also obtain similar results for the heat kernel, although in this case,
one has to restrict to metrics satisfying a certain smoothness condition at the boundary.
One of the most important manipulations one would like to do with path integrals is
taking their asymptotic expansions; in the case of the heat kernel, this is the short time
asymptotic expansion. In order to use time-slicing approximation here, one needs the
approximation to be uniform in the time parameter. We show that this is possible by
giving strong error estimates.
Finally, we apply these results to obtain short time asymptotic expansions of the heat
kernel also in degenerate cases (i.e. at the cut locus). Furthermore, our results allow to
relate the asymptotic expansion of the heat kernel to a formal asymptotic expansion of
the infinite-dimensional path integral, which gives relations between geometric quantities
on the manifold and on the loop space. In particular, we show that the lowest order
term in the asymptotic expansion of the heat kernel is essentially given by the Fredholm
determinant of the Hessian of the energy functional. We also investigate how this relates
to the zeta-regularized determinant of the Jacobi operator along minimizing geodesics.

Es ist "wissenschaftliche Folklore", abgeleitet von der physikalischen Anschauung, dass
Lösungen der Wärmeleitungsgleichung auf einer riemannschen Mannigfaltigkeit als Pfad-
integrale dargestellt werden können. Das Problem mit Pfadintegralen ist allerdings, dass
schon deren Definition Mathematiker vor gewisse Probleme stellt. Eine Möglichkeit, Pfad-
integrale rigoros zu definieren ist endlich-dimensionale Approximation, oder time-slicing-
Approximation: Für eine gegebene Unterteilung des Zeitintervals in kleine Teilintervalle
schränkt man den Integrationsbereich auf diejenigen Pfade ein, die auf jedem Teilin-
tervall geodätisch sind. Diese endlichdimensionalen Integrale sind wohldefiniert, und
man definiert das (unendlichdimensionale) Pfadintegral als den Limes dieser (passend
normierten) Integrale, wenn die Feinheit der Unterteilung gegen Null geht.
In dieser Arbeit wird gezeigt, dass Lösungen der Wärmeleitungsgleichung auf einer allge-
meinen riemannschen Mannigfaltigkeit tatsächlich durch eine solche endlichdimensionale
Approximation gegeben sind. Hierbei betrachten wir die Wärmeleitungsgleichung für all-



gemeine Operatoren von Laplace-Typ, die auf Schnitten in Vektorbündeln wirken. Wir
zeigen auch ähnliche Resultate für den Wärmekern, wobei wir uns allerdings auf Metriken
einschränken müssen, die eine gewisse Glattheitsbedingung am Rand erfüllen.
Eine der wichtigsten Manipulationen, die man an Pfadintegralen vornehmen möchte, ist
das Bilden ihrer asymptotischen Entwicklungen; in Falle des Wärmekerns ist dies die
Kurzzeitasymptotik. Um die endlich-dimensionale Approximation hier nutzen zu können,
ist es nötig, dass die Approximation uniform im Zeitparameter ist. Dies kann in der Tat
erreicht werden; zu diesem Zweck geben wir starke Fehlerabschätzungen an.
Schließlich wenden wir diese Resultate an, um die Kurzzeitasymptotik des Wärmekerns
(auch im degenerierten Fall, d.h. am Schittort) herzuleiten. Unsere Resultate machen es
außerdem möglich, die asymptotische Entwicklung des Wärmekerns mit einer formalen
asymptotischen Entwicklung der unendlichdimensionalen Pfadintegrale in Verbindung zu
bringen. Auf diese Weise erhält man Beziehungen zwischen geometrischen Größen der zu-
grundeliegenden Mannigfaltigkeit und solchen des Pfadraumes. Insbesondere zeigen wir,
dass der Term niedrigster Ordnung in der asymptotischen Entwicklung des Wärmek-
erns im Wesentlichen durch die Fredholm-Determinante der Hesseschen des Energie-
Funktionals gegeben ist. Weiterhin untersuchen wir die Verbindung zur zeta-regularisierten
Determinante des Jakobi-Operators entlang von minimierenden Geodätischen.
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Introduction

Consider a small particle moving on a manifold M according to Brownian motion. For
example, this could be a pollen grain suspended in water, which undergoes random motion
resulting from collisions with water molecules. Such a particle movement is governed by
the heat equation [Ein05]: For example, the probability Px,A;t that the particle is in
some measurable set A ⊆ M after time t if it started at a point x ∈ M is given by
Px,A;t = (e−t∆χA)(x), where e−t∆ is the heat semigroup on M and χA is the indicator
function of the set A. On the other hand, physical heuristics state that the probability
should be given by the path integral

Px,A;t =
1

Z

ˆ
x→A

exp

(
−1

4

ˆ t

0

∣∣γ̇(s)
∣∣2ds

)
Dγ. (I)

The domain of integration is here some space of continuous paths that travel from x to A in
time t, Dγ is a Lebesgue type volume measure on this path space and Z is a normalization
constant (independent of A) that ensures Px,A;t = 1 in the case that A = M .
The reasoning behind this formula is that the particle has to take some path in order
to move from x to A, so the probability is obtained by averaging over all such paths,
weighted with their individual probability. To explain the integrand, notice that

E(γ) :=
1

2

ˆ t

0

|γ̇(s)|2ds

is just the energy of the path (or rather classical action), so that the formula states that
the particle is (exponentially) unlikely to take a path with large energy.
Of course, formula (I) does not make sense for a number of reasons: First it is un-
clear which space of paths to take (continuous paths? smooth paths? or something in
between?), as it is well known that sample paths of Brownian paths are nowhere differ-
entiable with probability one so that the energy is not defined. Either way, the space of
paths would be infinite-dimensional and there are several non-existence theorems regard-
ing Lebesgue type volume measures on infinite-dimensional spaces (see e.g. Thm. 17.2 in
[Yam85]).

Despite these problems, there are several ways to make sense of the path integral (I): It
is a classical observation that the expression

dW formally
=

1

Z
e−E(γ)/2Dγ

can be rigorously defined as a measure W on path space, the Wiener measure. This
connects path integration to the theory of stochastic processes. It allows to represent the

1



2 INTRODUCTION

solution to the heat equation with potential as a Wiener integral, which is the famous
Feynman-Kac formula [Kac79].

In this thesis, we discuss another approach, the concept of time-slicing approximation,
which was invented by Richard Feynman [Fey48] [FH65]. Here, the idea is to take a
partition τ = {0 = τ0 < τ1 < · · · < τN = t} of the time interval and replace the
infinite-dimensional space of paths by the space of paths which are a geodesic on each
subinterval [τj−1, τj]. These spaces are finite-dimensional so that evaluating the integrals is
unproblematic, and the value of the path integral is then defined as the limit of the values
of these finite-dimensional integrals (suitably normalized) when the mesh |τ | = max ∆jτ
goes to zero (here ∆jτ := τj − τj−1).
This approach to define path integrals is often used in physics because of its explicit,
hands down character and because it is easy to (at least formally) extend the formulas
to "imaginary time" (i.e. replacing t by it), which is relevant in quantum mechanics
(imaginary time was also used in Feynman’s original treatment). However, a mathematical
justification of this approach is not an easy matter in general: One first has to prove that
the limit exists and secondly that it coincides with the heat equation result. While
this is more or less trivial in Rn, these results where only recently rigorously proved for
Riemannian manifolds [AD99] [BP08].

In this thesis, we discuss two particular aspects of time-slicing approximation.

(1) We consider the case that the manifold M has a boundary. The observation is that
in the case with boundary, one has to replace the spaces of piece-wise geodesics by
spaces of piece-wise reflected geodesics, i.e. geodesics that reflect with the angle of
reflection equal to the angle of incidence, when hitting the boundary. For the heat
equation, we admit a certain class of boundary conditions (which we call involutive
boundary conditions) that is particularly well-suited for path integration and includes
standard Dirichlet and Neumann boundary conditions.

This is only part of the story, however. While reflecting path spaces are suitable
to approximate the heat operator, it turns out that there is an even better class of
paths: Every Riemannian manifold with boundary has a natural orbifold structure
(as we will explain), and it turns out that the right path spaces to integrate over are
spaces of orbifold maps from intervals to our manifold with boundary, considered as
an orbifold.

(2) Arguably one of the most important formal manipulations one would like to do with
path integrals is forming their asymptotic expansions. This is of particular interest
for the heat kernel: For the heat kernel p∆

t of the Laplace-Beltrami operator, one has
the path integral formula

p∆
t (x, y)

formally
= (4πt)−n/2

 
Hxy(M)

e−E(γ)/2t dH
1

γ,

where Hxy(M) is the Hilbert manifold of finite-energy paths travelling from x to y in
time one, equipped with its natural H1 metric. Taking this formula seriously for the
moment, one recognizes that the right hand side has the form of a Laplace integral: If
there exists a unique minimizing geodesic γxy connecting x to y (i.e. the points are not
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in each other’s cut locus), the function E has the unique non-degenerate minimum γxy
with E(γxy) = d(x, y)2/2 and the general theory of such integrals (see Chapter 3.1.1),
formally applied to this infinite-dimensional situation, tells us that the integral has
an asymptotic expansion of the form

(4πt)−n/2
 
Hxy(M)

e−E(γ)/2t dH
1

γ ∼ e−d(x,y)2/4t

(4πt)n/2

∞∑
j=0

tj
aj

det
(
∇2E|γxy

)1/2
, (II)

where ∇2E|γxy denotes the Hessian of the energy functional at the minimum, a0 = 1
and the coefficients aj, j ≥ 1, depend on the jets of E at γxy and the geometry of
Hxy(M).
Now it is well known that the heat kernel p∆

t (x, y) has an asymptotic expansion for
small t of exactly the same form,

p∆
t (x, y) ∼ e−d(x,y)2/4t

(4πt)n/2

∞∑
j=0

tj
Φj(x, y)

j!
.

Furthermore, it turns out that the Hessian of the energy indeed possesses a well-
defined infinite-dimensional determinant on the Hilbert spaces TγHxy(M). Therefore,
it is natural to ask whether the coefficients of the two asymptotic expansions in
question − the asymptotic expansion of the heat kernel and the formal asymptotic
expansion of the path integral − coincide, i.e. whether we have

aj

det
(
∇2E|γxy

)1/2
=

Φj(x, y)

j!
.

In this thesis, we prove that this is true at least for the lowest order term, using
time-slicing approximation of the heat kernel.

Of course, the theory of Brownian motion on manifolds is well understood and provides
powerful tools for differential geometry and global analysis, so one could ask why one is
interested in time-slicing approximation of path integrals in the first place. One answer
we can give at this point is that while the asymptotic expansion of Wiener integrals is
certainly well known (see e.g. [Aro88] or [Wat87]), it seems that the results obtained this
way are less geometric, due to the fact that the domain of integration is not Hxy(M) but
the space of all continuous paths connecting x and y, and that the energy functional is
"hidden inside the measure". Nevertheless, it would be interesting to see if asymptotic
expansions of Wiener functionals can be cast in more geometric terms, involving the
manifold Hxy(M) (which is something like the "Cameron-Martin manifold" corresponding
to the Wiener measure1).

1The Cameron-Martin space of a Gaussian measure on a Banach space E is a certain Hilbert space
H which is continuously embedded into H, see [Gro70] for the notion of an abstract Wiener space. This
notion, however, does not exist to the authors knowledge in the case that E is a manifold modelled on a
Banach space.



4 INTRODUCTION

Main Results

The following result was previously proved in [BP08]. Given a self-adjoint Laplace type
operator L = ∇∗∇ + V , acting on sections u of a vector bundle V over a closed n-
dimensional Riemannian manifold M (here, ∇ is a metric connection and V a symmetric
endomorphism field), one has the formula

(e−tLu)(x) = lim
|τ |→0

(4π)−n/2
 
Hx;τ (M)

e−E(γ)/2P(γ)−1u
(
γ(t)

)
dΣ-H1

γ, (III)

where Hx;τ (M) is the space of continuous paths γ starting at x such that γ|[τj−1,τj ] is a
geodesic for each j, the slash over the integral sign denotes division by (4π)− dim(Hx;τ (M))/2,
and P(γ) ∈ Hom(Vγ(0),Vγ(t)) is a so-called path-ordered exponential, which is the solution
of an ordinary differential equation along γ depending on the connection ∇ and the
endomorphism field V . Here, the manifold Hx;τ (M) carries a certain discretized H1

Sobolev metric and one integrates with respect to the Riemannian volume measure. In
particular, this generalizes formula (I) from above, which is the special case L = ∆ (so
that P(γ) ≡ 1), the Laplace-Beltrami operator, and u = χA.
Formula (III) can be extended to the case that M is a compact manifold with smooth
boundary, and L is endowed with what we call involutive boundary conditions in this thesis.
Involutive boundary conditions arise as follows: Given a symmetric parallel endomorphism
field B ∈ End(V|∂M) with B2 = id, this induces a splitting V|∂M = W+ ⊕W− into the
plus and minus one eigenspaces of B. We then require Neumann boundary conditions
on W+ and Dirichlet boundary conditions on W−. This includes the usual Dirichlet and
Neumann boundary conditions as well as standard boundary conditions on vector fields
and differential forms. One has the following result (see Thm. 1.3.14).

Theorem. Let L be a self-adjoint Laplace type operator endowed with involutive boundary
conditions B, acting on sections of a metric vector bundle V over a compact Riemannian
manifold with boundary M . Then we have the following path integral formula

(e−tLu)(x) = lim
|τ |→0

 
Hrefl
x;τ (M)

e−E(γ)/2PB(γ)−1u
(
γ(t)

)
dΣ-H1

γ

for the solution operator to the corresponding heat equation, where the limit goes over any
sequence of partitions, the mesh of which tends to zero. Here, u is in any of the spaces
C0(M,V) or Lp(M,V), 1 ≤ p < ∞ (with convergence in the respective space) and the
slash over the integral sign denotes divison by (4π)dim(Hrefl

x;τ (M))/2.

In the theorem, Hrefl
x;τ (M) denotes the space of reflected piecewise geodesics, i.e. the space

of continuous paths that are piecewise geodesics as long as they are in the interior of M
and reflect with the angle of reflection equal to the angle of incidence when hitting the
boundary. Furthermore, the path-ordered exponential P(γ) from (III) has to be replaced
by a certain B-path-ordered exponential PB(γ), which also depends on the boundary
operator B.
Similar to the formulas above, we show (Thm. 2.2.7) that for the heat kernel pLt of the
Laplace type operator L, one has

pLt (x, y) = lim
|τ |→0

(4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2P(γ)−1dΣ-H1

γ,
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pointwise for each x, y ∈M and t > 0, where Hxy;τ (M) is the space of piece-wise geodesics
connecting x to y in time t, which again carries a certain discretized version of the H1

volume measure. Similar to the above, the slash over the integral sign in the formula
denotes division by the number (4π)dim(Hxy;τ (M))/2.
In this approximation however, one has no control over the uniformity of the approxi-
mation, which is needed to connect the asymptotic expansion of the heat kernel to the
asymptotic expansion of the path integral. Therefore, we also prove the following result,
which involves a precise error estimate (see Thm. 2.2.11).

Theorem. Let L be a self-adjoint Laplace type operator, acting on sections of a metric
vector bundle V over a closed n-dimensional Riemannian manifold M . Then for any
T > 0 and any ν ∈ N0, there exist constants C, δ > 0 such that∣∣∣∣∣pLt (x, y)− (4πt)−n/2

 
Hxy;τ (M)

e−E(γ)/2tΥτ,ν(t, γ) dγ

∣∣∣∣∣ ≤ Ct1+ν |τ |νp∆
t (x, y)

for all x, y ∈ M , t ≤ T and partitions τ of the interval [0, 1] with |τ | ≤ δ. Here the slash
over the integral sign denotes divison by (4πt)dim(Hxy;τ (M))/2.

In the theorem, the Υτ,ν are certain functions which are smooth in γ and depend polyno-
mially on t. They depend on the geometry ofM and the Laplace type operator and should
be viewed to correct the error that one made by replacingHxy(M) by its finite-dimensional
approximations. Notice in particular that the heat kernel of the Laplace-Beltrami operator
p∆
t (x, y) is present on the right hand side. Since pLt (x, y) decays exponentially in t away

from the diagonal as t → 0, this is a strong result, which allows to obtain precise state-
ments on heat kernel asymptotics, even for distant points.

This allows to compare asymptotic expansions of the path integral with the asymptotic
expansion of the heat kernel. We already mentioned above, that if x and y are close
enough, then the path integral has a formal Laplace expansion of the form (II). More
generally, if x and y are in each other’s cut locus and the set Γmin

xy ⊂ Hxy(M) of minimal
geodesics connecting the two is a non-degenerate submanifold of dimension k, a generalized
Laplace method asserts that

(4πt)−n/2
 
Hxy(M)

e−E(γ)/2t dH
1

γ ∼ e−d(x,y)2/4t

(4πt)n/2+k/2

∞∑
j=0

tj
ˆ

Γmin
xy

aj(γ)

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ,

involving the determinant of the Hessian, restricted to the normal space of Γmin
xy . The

result is now that this indeed describes the asymptotic behavior of the heat kernel (see
Thm. 3.2.8).

Theorem (H1 picture). Let pLt be the heat kernel of a self-adjoint Laplace type oper-
ator L, acting on sections of a metric vector bundle V over a compact n-dimensional
Riemannian manifold M . For x, y ∈ M , suppose that the set Γmin

xy of minimal geodesics
is a k-dimensional non-degenerate submanifold of Hxy(M). Then we have

pLt (x, y) ∼ e−d(x,y)2/4t

(4πt)n/2+k/2

ˆ
Γmin
xy

[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ,
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where the determinant is an infinite-dimensional determinant on the Hilbert subspace
NγΓ

min
xy ⊆ TγHxy(M), [γ‖1

0] denotes the parallel transport along γ and Γmin
xy carries the

H1 metric (1.2.5). Here the asymptotic relation means that the quotient of the two terms
tends to one as t→ 0.

In physics, one often uses zeta determinants instead of Hilbert space determinants to
formally evaluate path integrals. This makes no reference to the H1 regularity of paths,
because the zeta determinant is defined for unbounded operators on L2. It turns out that
there is an L2 version of the theorem above, involving the zeta determinant of the Jacobi
operator (see Thm. 3.2.25).

Theorem (L2 picture). Let pLt be the heat kernel of a self-adjoint Laplace type operator
L, acting on sections of a metric vector bundle V over a compact n-dimensional Rieman-
nian manifold M . For x, y ∈ M , suppose that the set Γmin

xy of minimal geodesics is a
k-dimensional non-degenerate submanifold of Hxy(M). Then we have

pLt (x, y) ∼ e−d(x,y)2/4t

(4πt)n/2+k/2

ˆ
Γmin
xy

2n/2[γ‖1
0]−1

det′ζ
(
−∇2

s +Rγ

)1/2
dL

2

γ,

involving the zeta determinant of the Jacobi operator

−∇2
s +Rγ = −∇2

s +R(γ̇(s),−)γ̇(s).

Here Γmin
xy carries the L2 metric 1.2.11.

We see that there is an "H1 picture" on such path integrals, where one chooses the path
space such that the relevant determinant exists as an ordinary Hilbert space determinant
(the H1 space), and an "L2 picture", where one has to regularize.

The proof of the approximation theorem for the heat kernel relies heavily on the near-
diagonal short time asymptotics of the heat kernel. For manifolds with boundary, such
heat-kernel asymptotics are much more complicated (see e.g. [Mel93, Chapter 7]). There-
fore, we restrict to the following smoothness condition: Construct the double M of the
manifold M , by glueing two copies of M together at the common boundary (this is then
a closed manifold). The metric on M induces a natural Z2-invariant Riemannian metric
on M . The condition now is that this metric be smooth also at ∂M . In this case, the
earlier results can be applied to the closed manifold M .
In particular, we have M = M/Z2, which gives M an orbifold structure in a natural
way. We claim that the right thing to do is therefore to consider spaces of orbifold paths.
Particularly interesting here is the approximation result for the heat trace. In the closed
case, the heat trace can be formally expressed as an integral over the loop space of M ;
we show that in the boundary case, one has to integrate over the space of orbifold loops,
i.e. the orbifold of maps from S1 to the orbifold M = M/Z2. One obtains that the trace
Tr e−tL can be approximated (up to any fixed order in t) by path integrals over finite
dimensional approximations Lorb

τ (M) of the orbifold loop space (see Thm. 2.2.13).

Theorem. Let L be a self-adjoint Laplace type operator with involutive boundary con-
ditions B, acting on sections of a metric vector bundle V over a compact Riemannian
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manifold with boundary M . Let e−tL be the solution operator to the corresponding heat
equation. Suppose that the smoothness Assumption 2.3.7 is satisfied. Then

Tr e−tL = lim
|τ |→0

 
Lorb
τ (M)

e−E(γ)/2 trP−1
B (γ) dΣ-H1

γ.

for any t > 0, where the limit goes over any sequence of partitions, the mesh of which tends
to zero. In the formula, the slash over the integral sign denotes division by (4π)dim(Lτ (M))/2.

It turns out that the space of orbifold loops is not only the of loops in the manifold
M modulo the Z2 action, but also contains paths that run from a point x ∈ M to the
corresponding point −x in the other half. Therefore, the space Lorb

τ (M) decomposes
into two components: The orbifold Lτ (M)/Z2 of piecewise geodesic loops in M and the
orbifold of paths in M that travel from points x to points −x. The set of constant loops
Γc = E−1(0) therefore also consists of two components: one isomorphic to M and one
isomorphic to ∂M (as for a constant path γ with γ(0) = x and γ(1) = −x, one necessarily
has x ∈ ∂M , the fixed point set of the action). Since M is n-dimensional and ∂M
is (n − 1)-dimensional, we obtain from the Laplace method that the heat trace has an
asymptotic expansion of the form

Tr e−tL ∼ (4πt)−n/2
ˆ
M

aj(x) dx+ (4πt)−(n−1)/2

ˆ
∂M

bj(x) dx,

so one recovers the heat kernel asymptotics for a manifold with boundary in a natural
way. Moreover, the coefficients aj are given as the coefficients of a Laplace expansion
on the finite-dimensional approximations of the loop space. It is an interesting task to
express these as geometric quantities on the infinite-dimensional loop space.





Chapter 1

The Heat Operator as a Path Integral

In this chapter, we show how to approximate solutions of the heat equation corresponding
to a Laplace type operator L on a compact manifold with boundary by finite-dimensional
path integrals, i.e. we prove the formula

u(t, x) = lim
|τ |→0

 
Hrefl
x;τ (M)

e−E(γ)/2PB(γ)u0

(
γ(t)

)
dγ, (1.0.1)

for solutions u(t, x) to a vector-valued heat equation with initial condition u0, where
Hrefl
x;τ (M) are finite-dimensional path spaces of piece-wise reflecting geodesics (see Sec-

tion 1.2.1 and Section 1.3.1) and PB(γ) is the so-called path-ordered exponential deter-
mined by L and the boundary condition B (see Def. 1.3.10). Finally, the slash in the
integral sign denotes division by (4π)dim(Hrefl

x;τ (M))/2. Such a normalization constant will be
present in all path integral formulas and is necessary in order that the mesh-limit is finite.
The chapter is organized as follows. In Section 1.1, we review the theory of Laplace type
operators acting on sections of vector bundles over manifolds with boundary, and the
corresponding heat equation. In particular, we introduce the class of boundary conditions
we will consider. In Section 1.2, we first consider the case of a closed manifold, which
gives us the opportunity to review the time-slicing approximation results that have been
obtained so far. In Section 1.3, we then introduce the relevant path spaces and prove the
formula (1.0.1).

1.1 The Heat Equation

In this section, we introduce the class of boundary conditions we will allow in this thesis,
which we call involutive boundary conditions. To fix notation, we repeat standard material
concerning Laplace type operators and the heat equation. More detailed expositions of
these topics can be found in many places, e.g. [Gil95], [Roe98], [BGV04] or [Nik07].
In the next subsection, we introduce Brownian motion on closed Riemannian manifolds
to discuss first path integral formulas. The material there is also very well known and
may be found in [BP10], [Hsu02], [HT94], [Øks07], [Dri04], [Tay11] or [Eme89].

9
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1.1.1 Laplace Type Operators

Let M be a Riemannian manifold of dimension n, possibly with boundary, and let V be
a metric vector bundle over M , i.e. each fiber of V carries a positive definite symmetric
bilinear form (or a Hermitean form if V is a complex bundle) that varies smoothly between
the fibers. Smooth sections of V will be denoted by C∞(M,V), while sections of L2

regularity will be denoted by L2(M,V). The L2 scalar product is defined by(
u, v
)
L2 :=

ˆ
M

〈u(x), v(x)〉 dx,

where 〈−,−〉 denotes the fiber metric of V and we integrate with respect to the Riemannian
volume measure.

If W is another metric vector bundle, a (linear) differential operator of order k turning
sections of V into sections ofW is a linear operator P from C∞(M,V) to C∞(M,W) that
is given by

Pu(x) =
∑
|α|≤k

Pα(x)
∂|α|

∂xα
u(x)

in local charts, where Pα(x) ∈ Hom(Vx,Wx). Because the manifold is Riemannian and
the bundles carry a fiber metric, one can define the formal adjoint of such an operator P .
This is the differential operator P ∗ that turns sections of W into sections of V such that

(Pu, v)L2 = (u, P ∗v)L2

for all u ∈ C∞c (M \∂M,V) and v ∈ C∞c (M \∂M,W), i.e. all compactly supported sections
with support in the interior of M . One can show that this requirement indeed defines
a unique differential operator P ∗ (compare Def. 2.6 in [BGV04]). We call the operator
P formally self-adjoint if P = P ∗. In terminology from functional analysis, this means
in particular that P is symmetric as an unbounded operator on L2(M,V) with domain
C∞c (M \ ∂M,V) (although on this domain, it will never be self-adjoint).

Definition 1.1.1 (Laplace Type Operators). [BGV04, Def. 2.2] A second-order dif-
ferential operator L acting on sections of V is called Laplace type operator, if its principal
symbol is given by the metric, that is, L has the form

L = −gij(x)
∂2

∂xixj
+ lower order terms

in local coordinates, where gij is the inverse of the metric tensor in the coordinates.

Notice that we use the "geometric" convention for Laplace type operators that differs
from the analytic convention by a sign.

Lemma 1.1.2. [BGV04, Prop. 2.5] Let L be a formally self-adjoint Laplace type operator
acting on sections of a vector bundle V over M . Then there exists a unique metric
connection ∇ on V and a unique symmetric endomorphism field V of V such that

L = ∇∗∇+ V.

We say that ∇ and V are the connection and endomorphism field determined by L.
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Here, ∇∗ is the formal adjoint of the operator ∇ that turns sections of T ∗M ⊗ V into
sections of the bundle V (where T ∗M ⊗ V carries the tensor product metric).

Example 1.1.3. The following are standard examples for Laplace type operators.

(1) On functions (i.e. V = R, the trivial real line bundle), we have the Laplace-Beltrami
operator ∆ = δd = − div grad = −tr(∇2), where ∇ is the Levi-Civita connection.

(2) On the bundle of differential forms V = Λ•T ∗M , one has the Hodge-Laplacian L =
δd+ dδ. By the Weizenböck formula [BGV04, (3.16) on p. 130],

δd+ dδ = ∇∗∇+ R,

where ∇ is the Levi-Civita connection on forms and R is some endomorphism de-
pending linearly on the curvature. On one-forms, R = Ric∗, the dual of the Ricci
endomorphism on TM .

(3) If M is spin, one has the spinor bundle /SM , on which acts the Dirac operator, a
first-order operator /D with the property that /D

2 is a Laplace type operator. In this
case,

/D
2

= ∇∗∇+
1

4
scal,

by Lichnerowicz’ formula [BGV04, Thm. 3.52]

1.1.2 Involutive Boundary Conditions and the Heat Equation

Let L be a formally self-adjoint Laplace type operator, acting on sections of a metric
vector bundle V over a compact n-dimensional Riemannian manifold M , possibly with
boundary. In this thesis, we are interested in the heat equation

(∂t + L)u(t, x) = 0 (1.1.1)

for time-dependent sections of V . In case that M has a boundary, one has to require
boundary conditions to make the heat equation well-posed, where well-posed means that
we have to find a subspace dom(L) ⊂ L2(M,V) on which L generates a strongly continuous
heat semigroup e−tL. In particular, this will be the case if L is self-adjoint on dom(L) as an
unbounded operator on L2(M,V). From the wide class of possible boundary conditions,
we restrict ourselves to the class of boundary conditions, which behave particularly well
when considering path integrals.

Definition 1.1.4 (Involutive Boundary Conditions). Given a formally self-adjoint
Laplace type operator L, acting on sections of a metric vector bundle V over a Riemannian
manifold with boundary M , a symmetric endomorphism field B ∈ C∞(∂M,End(V|∂M))
is called an involutive boundary operator for L if B2 = id and if B is parallel with respect
to the connection determined by L = ∇∗∇ + V . To such a boundary operator B, there
corresponds a splitting

V|∂M =W+ ⊕W− (1.1.2)
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into the eigenspaces of the eigenvalues ±1 (notice that only these two eigenvalues are
possible since B2 = id). A section u ∈ C∞(M,V) satisfies the boundary condition defined
by B if

∇nu|∂M ∈ C∞(∂M,W−), u|∂M ∈ C∞(∂M,W+), (1.1.3)

where n ∈ C∞(∂M,N∂M) denotes the interior normal vector to the boundary.

Notation 1.1.5. For a boundary operator B, let C∞B (M,V) be the space of smooth
sections of V that satisfy the boundary condition and let H2

B(M,V) := C∞B (M,V) ⊆
H2(M,V) be its closure with respect to the H2 norm.

The class of involutive boundary conditions is closely related to the class ofmixed boundary
conditions, as defined e.g. in [Gil04, Section 1.5.3]. However, mixed boundary conditions
are slightly more general, therefore we stick to the term "involutive boundary condition"
in this thesis (see e.g. Chapter II of [Gre71], Section 1.11.2 in [Gil95] or Sections 1.4-1.6
in [Gil04] for a much more general discussion).
Involutive boundary conditions ensure that the operator L as an unbounded operator on
L2(M,V) is essentially self-adjoint on C∞B (M,V) and self-adjoint on H2

B(M,V). We say
that L is endowed with involutive boundary conditions if L has the latter domain and B
is an involutive boundary operator.
When L is endowed with an involutive boundary condition, it has discrete spectrum
λ1 ≤ λ2 ≤ · · · → ∞, where the eigenvalues have finite multiplicity, and the correspond-
ing eigenfunctions φj are contained in C∞B (M,V). In particular, L generates a strongly
continuous semigroup e−tL, defined by spectral calculus, with integral kernel

pLt (x, y) =
∞∑
j=1

e−tλjφj(x)⊗ φj(y)∗, (1.1.4)

which can be shown to be smooth (using that the eigenvalues increase suffiently fast by
Weyl’s law) and which satisfies the boundary condition in each variable. For any initial
condition u0 ∈ L2(M,V), the function

u(t, x) := (e−tLu0)(x)

satisfies the heat equation (1.1.1) with initial condition u(0, x) = u0(x).

We now give a couple of examples for involutive boundary conditions.

Example 1.1.6 (Dirichlet and Neumann). For any Laplace type operator, there are
the Dirichlet boundary conditions u|∂M = 0, associated to the boundary operator B =
−id, and the Neumann boundary conditions ∇nu|∂M = 0 associated to the boundary
operator B = id. Here id denotes the identity endomorphism field of V|∂M , which is
parallel with respect to any connection on V (or more precisely: with respect to any
connection on the bundle End(V) induced from a connection on V). Both are therefore
involutive boundary conditions.

Non-Example 1.1.7 (Robin Boundary Conditions). Given a metric connection ∇,
the generalized Neumann boundary conditions or Robin boundary conditions

∇nu|∂M + Au|∂M = 0. (1.1.5)
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for an endomorphism field A ∈ C∞(∂M,End(V)) are not involutive boundary conditions
for operators of the form L = ∇∗∇+ V , unless A ≡ 0.

Example 1.1.8 (Boundary Conditions on Differential Forms). Let V = ΛkT ∗M
be the bundle of k-forms. Any ω ∈ ΛkT ∗M can be decomposed at the boundary as

ω = ω0 + dr ∧ ω1, ω0 ∈ ΛkT ∗∂M, ω1 ∈ Λk−1T ∗∂M,

where dr := n[. Hence for the exterior products of the cotangent bundle, we have the
orthogonal splitting

ΛkT ∗M |∂M ∼= ΛkT ∗∂M ⊕ dr ∧ Λk−1T ∗∂M.

Defining B to be equal to 1 on one of these factors and equal to −1 on the other will
induce involutive boundary conditions for Laplace type operators L = ∇∗∇ + V on V ,
where ∇ is any metric connection on V . Specifically, setting

W+ := ΛkT ∗∂M, W− := dr ∧ Λk−1T ∗∂M (1.1.6)

gives the so-called absolute boundary conditions. Setting

W+ := dr ∧ Λk−1T ∗∂M, W− := ΛkT ∗∂M (1.1.7)

gives relative boundary conditions.

The examples show that the class of involutive boundary conditions includes most stan-
dard types of boundary conditions. Let us make a warning here that "involutive" is not
standard terminology, but such a class of boundary conditions doesn’t seem to have a
name in the literature yet.

1.1.3 Brownian Motion and the Wiener Measure

Let M be a closed Riemannian manifold or Rn.

Definition 1.1.9 (Stochastic Processes). An M -valued stochastic process is a family
Xs, s ∈ I of random variables with values in M , defined on a probability space (Ω,Σ, µ),
where I is some open or closed, finite or infinite subinterval of R.

Any M -valued stochastic process Xs, s ∈ I induces a Borel probability measure WX on
M I (carrying the product topology), namely

WX
(
A ∈ B(M I)

)
= µ

(
{γ ∈M I | X•(γ) ∈ A}

)
, (1.1.8)

where B(M I) denotes the Borel-sigma-algebra of M I . This measure is called the law of
the process Xs (Here, for a fixed γ ∈ Ω, one can consider the function s 7→ Xs(γ), which
is an element of M I . Hence it makes sense to ask whether it is also in A ⊂ M I). The
notion of the law of a process gives rise to a natural equivalence relation on the class of
M -valued stochastic processes:
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Definition 1.1.10 (Versions). Two stochastic processes Xs, Ys are said to be versions
of each other, if their laws coincide.

Conversely, given a Borel probability measure P onM I , one can define a stochastic process

Xs(γ) := γ(s) (1.1.9)

on the probability space (M I ,B(M I),P) (notice that the definition (1.1.9) is independent
of the choice of P). Clearly, the law of such a process Xs is just P again; furthermore, it
is obvious that if we start with any process Ys and then define Xs by (1.1.9), then Xs is
a version of Ys.

OnM , there is a canonical stochastic process, called the Brownian motion. The following
construction can be found in Section 11.1 of [Tay11]: Let p∆

t (x, y) be the heat kernel of the
Laplace-Beltrami operator, as in (1.1.4). Then for any point x ∈M , there is a stochastic
process (Xx

s ) on the interval I = [0,∞), the Brownian motion starting at x. It satisfies
(using the convention x0 := x)

E
[
f(Xx

τ1
, . . . , Xx

τM
)
]

=

ˆ

M

· · ·
ˆ

M

f(x1, . . . , xN)
N∏
j=1

p∆
τj−τj−1

(xj−1, xj) dx1 · · · dxN , (1.1.10)

for any partition τ = {0 = τ0 < τ1 < · · · < τN} and any measurable function f on
M × · · · × M , the N -fold product of M . In fact, it turns out that the process Xx

s is
uniquely determined by this property, in the sense that any other process Ys with the
same property is a version of Xx

s . To see that the law of Xx
s is uniquely determined by

the property (1.1.10), notice that the space M [0,∞) is compact by Tychonoff’s theorem,
and by the Stone-Weierstraß theorem, functions of the form

F (γ) := f
(
γ(τ1), . . . , γ(τN)

)
for partitions τ and functions f ∈ C(M × · · · ×M) are dense in C(M [0,∞)). Hence the
right-hand side of (1.1.10) defines a continuous functional on C(M [0,∞)), which is the
same as a measure on M [0,∞) by the Markhov-Kakutani-Riesz representation theorem.

Using Kolmogoroff-Chentsov continuity theorem (see e.g. [Kal02, Thm. 3.23] or Thm. 2.17
in [BP11]), one can show that there is a continuous version of Brownian motion, i.e. a
Brownian motion such that for each γ ∈ Ω, the map s 7→ Xx

s (γ) is a continuous path in
M (see e.g. [BP11, Thm. 2.5]). Therefore, we will henceforth only consider continuous
versions of Brownian motion. Given a continuous version of Brownian motion defined on
some probability space (Ω,Σ, µ), one can form the measure Xx

∗µ on the space

Cx(M) :=
{
γ ∈ C([0,∞),M) | γ(0) = x

}
.

This turns out to be a Borel measure, when the latter is endowed with the compact-open
topology, and any version produces the same measure.

Definition 1.1.11 (Wiener Measure). The law of Brownian m on Cx(M) will be called
the Wiener measure on M , denoted by Wx.

Remark 1.1.12. Note that the definition given here differs from the stochastic literature,
because there one usually uses the heat kernel of the operator 1

2
∆ instead of ∆.
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1.1.4 Path-ordered Exponentials and the Feynman-Kac formula

Using the Wiener measure, it is easy to arrive at our first path integral formula,

e−tLu(x) = E
[
u(Xx

t )
]

=

ˆ
Cx(M)

u
(
γ(t)

)
dWx(γ), (1.1.11)

where Xx
s is the Brownian motion with drift Z starting at x ∈M . Of course, this formula

is tautological, having defined the Wiener measure the way we did above. If one adds a
potential, however, one obtains a non-trivial result, namely the Feynman-Kac formula.
To formulate this in generality, we need the following definition.

Definition 1.1.13 (Path-ordered Exponential). Let V be a vector bundle with con-
nection ∇, and let V ∈ C∞(M,End(V)) be a smooth endomorphism field. For a piecewise
smooth path γ : [0, t] −→ M , let P (s) ∈ Hom(Vγ(0),Vγ(s)) be the unique solution to the
ordinary differential equation

∇sP (s) = V
(
γ(s)

)
P (s), P (0) = id. (1.1.12)

The path-ordered exponential P(γ) is defined by P(γ) := P (t) ∈ Hom(Vγ(0),Vγ(t)). If L
is a self-adjoint Laplace type operator having the unique splitting L = ∇∗∇ + V as in
Lemma 1.1.2, we call P(γ) = P∇,V (γ) the path-ordered exponential determined by L.

For example, if V ≡ 0 along γ, we have P(γ) = [γ‖t0], the parallel transport map along
γ with respect to the given connection ∇. In the scalar case, when ∇ = d + iω for some
one-form ω ∈ Ω1(M), the differential equation (1.1.12) can be solved explicitly,

P(γ) = exp

(
−i

ˆ t

0

ω · γ̇(s) ds+

ˆ t

0

V
(
γ(s)

)
ds

)
. (1.1.13)

In the general vector-valued case, however, there is usually no closed-form solution for
P(γ).

Remark 1.1.14 (Invertibility). P(γ) is always invertible, and P(γ)−1 = Q(t), where
Q(s) = P (s)−1 ∈ Hom(Vγ(s),Vγ(0)) satisfies the differential equation

∇sQ(s) = −Q(s)V
(
γ(s)

)
, Q(0) = id, (1.1.14)

as is easy to verify by differentiation the product id = P (s)−1P (s) and using uniqueness
of solutions.

Remark 1.1.15 (Multiplicitivity). P(γ) is multiplicative, in the sense that if γ1, γ2

are paths parametrized by [0, t1] and [0, t2] respectively, such that γ1(t) = γ2(0), then we
have P(γ2)P(γ1) = P(γ1 ∗ γ2), where

(γ1 ∗ γ2)(s) :=

{
γ1(s) if s ≤ t1

γ2(s− t1) if t1 ≤ s ≤ t1 + t2
(1.1.15)

denotes the concatenation. This follows because both P(γ2)P(γ1) and P(γ1 ∗ γ2) satisfy
the same ordinary differential equation with the same initial condition.
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In local coordinates, we have

∇sP (s) =
d

ds
P (s) +

n∑
i=1

γ̇i(s)
[
Γi
(
γ(s)

)
, P (s)

] !
= V

(
γ(s)

)
P (s) (1.1.16)

where Γi = (Γkij) denotes the Christoffel symbols of the connection, written into a matrix.
If the connection is flat, the Christoffel terms can be chosen to be zero using a suitable
trivialization and the ODE (1.1.12) takes the form

d

ds
P (s) = V

(
γ(s)

)
P (s),

which can be solved for any continuous path γ in M . If it is not flat, then one needs
to require that γ is at least absolutely continuous in order that the differential equation
(1.1.16) makes sense pointwise. In particular (since the set of absolutely continuous paths
is a zero set with respect to the Wiener measure), the path-ordered exponential cannot be
defined pointwise for the sample paths of Brownian motion. However, it is well known that
P(γ) has a stochastic extension to a well-defined Lp function on path space − which we
denote by P̃(γ) − that is the solution of a stochastic differential equation. For example,
it can be defined as the solution to the differential equation (1.1.12), when the latter
is interpreted as a Stratonovich stochastic differential equation (see e.g. [G1̈0b, 2.17] or
Chapter 8 in [Eme89]). This reduces to the usual parallel transport if the connection is
flat. In the scalar case, where ∇ = d + iω for a one-form ω ∈ Ω1(M) and V ∈ C∞(M),
the associated path-ordered integral is given by

P̃(γ) = exp

(
−i

ˆ t

0

ω
(
γ(s)

)
dγ(s) +

ˆ t

0

V
(
γ(s)

)
ds

)
,

where the first term in the exponent denotes a Stratonovich integral (see e.g. [Eme89],
Chapter VII for the definition of these).

Theorem 1.1.16 (Feynman-Kac). [BP11] Let L = ∇∗∇+V be a Laplace type operator
acting on sections of a vector bundle V over a closed Riemannian manifold M . Then

e−tLu(x) = E
[
P̃(Xx

• |[0,t])−1u(Xx
t )
]

=

ˆ
Cx(M)

P̃(γ|[0,t])−1u
(
γ(t)

)
dWx(γ)

for all u ∈ L2(M,V).

This result is proved e.g. in [BP11, Thm. 6.2], [Øks07, Thm. 8.2.1] or [Tay11, Chapter 11,
Prop. 2.1] in the scalar case and in [G1̈0b, Thm. 5.3], [G1̈0a] or [Hsu02, Thm. 7.2.1] in
the vector-valued case. See also the original treatment by Kac, [Kac79].

1.2 The Case without Boundary
In this section, we review previous results regarding path integration in the case that M
is closed. First we need to introduce the relevant path spaces.
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1.2.1 Based Path Spaces and their Approximations

During the course of this thesis the energy functional will play an important role. For a
path γ : [0, t] −→M (where M is a Riemannian manifold) it is defined by

E(γ) :=
1

2

ˆ t

0

|γ̇(s)|2ds. (1.2.1)

The paths for which E is finite are those that lie in the space H1([0, t],M), the space of
paths that have Sobolev regularity H1 in local coordinates. All elements of H1([0, t],M)
turn out to be absolutely continuous.

Remark 1.2.1. From a physicist’s point of view, the correct terminology would be that
E is not the energy functional but rather the action functional. However, the term "energy
functional" is traditional in differential geometry, in the context of studying geodesics.

Let M be a complete Riemannian manifold of dimension n. The space H1([0, t],M) has
naturally the structure of an infinite-dimensional manifold modelled on Hilbert spaces; a
natural model space is the Sobolev space H1([0, t],Rn). The tangent space to H1([0, t],M)
at a path γ can be canonically identified with the space of vector fields along γ, which
have regularity H1, that is, one has the natural isomorphism

TγH
1([0, t],M) ∼= H1([0, t], γ∗TM). (1.2.2)

For details, see Section 2.3 in [Kli95].

Notation 1.2.2 (Based Path Spaces). For a point x ∈M , we write

Hx;t(M) :=
{
γ ∈ H1([0, t],M) | γ(0) = x

}
for the path space based at x. In the case t = 1, we also write Hx(M) := Hx;1(M).

To see that Hx;t(M) is a submanifold of H1([0, t],M), we can argue as follows. The
manifold H1([0, t],M) comes with the endpoint evaluation map

ev0,t : H1([0, t],M) −→M ×M, γ 7−→
(
γ(0), γ(t)

)
. (1.2.3)

By Prop. 2.4.1 in [Kli95], this map is a submersion, hence pre-images of submanifolds
are again submanifolds (this is also easy to verify directly). Now we have Hx;t(M) =
ev−1

0,t ({x}×M), that is, Hx;t(M) is the pre-image of the submanifold {x}×M ⊂M ×M
under the evaluation map, and therefore is a submanifold itself.

Remark 1.2.3. One can show that the evaluation map ev0,t is in fact the projection
of a (locally trivial) fiber bundle. This can be checked by hand or by using a theorem
of Hermann [Her60], which states that a Riemannian submersion from a complete total
space is always a fiber bundle (that H1([0, t],M) is complete with a suitable Riemannian
metric is the statement of Thm. 2.4.7 in [Kli95]).
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The spaces Hx;t(M) have a natural global chart, the anti-development map

U : Hx;t(M) −→ H0;t(TxM), γ 7−→
[
s 7→

ˆ t

0

[γ‖s0]−1γ̇(s)ds
]
, (1.2.4)

where H0;t(TxM) is the space of H1 paths γ in TxM with γ(0) = 0. Its inverse, the rolling
map, rolls paths in TxM onto M . The concept apparently goes back to Elie Cartan; A
fun depiction of Cartan applying it to a manifold can be found in [Dri04, Figure 11].
We will not put a Riemannian metric on H1([0, t],M) itself; however, on Hx;t(M) we will
always consider the Riemannian metric

(X, Y )H1 :=

ˆ t

0

〈∇sX(s),∇sY (s)〉 ds, (1.2.5)

which turns out to be particularly well-suited for path space analysis. Any vector field X
along γ with vanishing derivative must be parallel, hence zero since X(0) = 0. Therefore,
this metric is non-degenerate on Hx;t(M).

The idea of time-slicing approximation of path integrals is to replace the infinite-dimen-
sional path spaces introduced above by finite-dimensional path spaces, which will be
defined now. These will be certain submanifolds of the infinite-dimensional versions.

Notation 1.2.4 (Partitions). We denote by τ = {0 = τ0 < τ1 < · · · < τN = t} a
partition of the interval [0, t]. By

∆jτ := τj − τj−1, and |τ | = max
j=1,...,N

∆jτ (1.2.6)

we denote the increment and the mesh, respectively. Throughout this thesis, we will
usually write N for the length of the partition, which may depend on the partition,
N = N(τ). We suppress this dependence for the sake of notational simplicity.

Notation 1.2.5 (Finite-dimensional Approximations). For a partition τ = {0 =
τ0 < τ1 < · · · < τN = t} of the interval [0, t], we write

Hx;τ (M) :=
{
γ ∈ Hx;t(M) | γ|[τj−1,τj ] is a geodesic for each j = 1, . . . , N

}
.

This is a finite-dimensional submanifold of Hx;t(M), because anti-development map de-
fined in (1.2.4) sends them to the subspace of polygon paths in TxM that start at zero.
To see this, notice that for s ∈ (τj−1, τj),

d2

ds2
U(γ)(s) =

d

ds
[γ‖s0]−1γ̇(s) = [γ‖s0]−1∇sγ̇(s) = 0,

because γ|(τj−1,τj) is a geodesic. Hence U(γ)(s) is a straight line in TxM on the interval
[τj−1, τj].
The tangent space at γ ∈ Hx;τ (M) is the space of piece-wise Jacobi fields along γ, i.e. the
space of continuous vector fields X such that

∇2
sX(t) = R

(
γ̇(s), X(s)

)
γ̇(s) (1.2.7)

holds on the intervals (τj−1, τj), R being the Riemannian curvature tensor ofM (see Prop.
4.4 in [AD99]).
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Remark 1.2.6 (Approximation Property). The finite-dimensional approximations
exhaust Hx;t(M) in the sense that the union of Hx;τ (M) over all partitions τ of [0, t] is
dense in Hx;t(M). This can be seen by showing that the spaces Hx;τ (TxM) are dense in
Hx;t(TxM) just as in Step 1 of the proof of Lemma 3.2.10 and then using the development
map U−1.

For any partition τ , the spaces Hx;τ (M) carry the induced submanifold metric (1.2.5).
However, it seems that the discretized H1 metric

(X, Y )Σ-H1 :=
N∑
j=1

〈
∇sX(τj−1+),∇sY (τj−1+)

〉
∆jτ (1.2.8)

is more natural to consider on the spaces Hx;τ (M), as it gives cleaner formulas for ap-
proximation. Here ∇sX(τj−1+) denotes the right-sided derivative of X.

1.2.2 Path Integral Formulas for the Heat Operator

In this section, we give an overview over previous results regarding the approximation
of heat operators e−tL by integrals over the finite-dimensional path spaces Hx,τ (M), for
partitions τ of the interval [0, t]. Here L is a self-adjoint Laplace type operator, acting
on sections of a metric vector bundle V over M , where we assume M to be a closed
Riemannian manifold of dimension n. The case thatM has a boundary will be considered
in the next section.
Such an approximation is usually called time-slicing approximation in the physics lit-
erature, because the time interval is sliced up into small bits by the partition. In the
mathematical literature, the term finite-dimensional approximation seems to be more com-
mon, which refers to the fact that the (non-existent) integral over the infinite-dimensional
Hilbert manifold Hx(M) is approximated by an integral over the finite-dimensional mani-
folds Hx;τ (M) (in fact, they have dimension nN).

The following theorem was proved by [BP10], and previously (in the case that L = ∆,
the Laplace-Beltrami operator) in [AD99].

Theorem 1.2.7 (The Heat Operator as a Path Integral). Let L be a self-adjoint
Laplace type operator, acting on sections of a metric vector bundle V over a compact
Riemannian manifold. Let P(γ) be the path-ordered exponential determined by L as in
Def. 1.1.13. Then for any u ∈ C0(M,V), we have

e−tLu(x) = lim
|τ |→0

 
Hx;τ (M)

e−E(γ)/2P(γ)−1u
(
γ(t)

)
dΣ-H1

γ,

uniformly in x, where the limit goes over any sequence of partitions the mesh of which
goes to zero. Here Hx;τ (M) carries the discrete H1 metric introduced in (1.2.8) and he
slash over the integral sign denotes divison by (4π)dim(Hx;τ (M))/2.

We will see later that this result is also true for u ∈ Lp(M,V), 1 ≤ p < ∞ (where the
convergence holds in the respective space).
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One can show (see [AD99, Thm. 4.8]) that the anti-development map U : Hx;τ (M) −→
H0;τ (TxM) is measure preserving if Hx;τ (M) carries the discrete H1 metric. Furthermore,
one has E(γ) = 1

2
‖U(γ)‖2

Σ-H1 so that for any integrable function F on Hx;τ (M),

(4π)−nN/2
ˆ
Hx;τ (M)

e−E(γ)/2F (γ)dΣ-H1

γ = (4π)−nN/2
ˆ
H0;τ (TxM)

e−‖X‖
2/4F

(
U−1(X)

)
dΣ-H1

X,

is a standard Gaussian integral over the vector space H0;τ (TxM). Note now that the
normalization constant was chosen such that the integral on the right hand side evaluates
to one in the case u ≡ 1.

Example 1.2.8 (Quantizing Hamiltonian Functions). In the classical mechanics of
point particles, one considers Hamiltonian functions on phase space, which are smooth
functions on the cotangent bundle of a Riemannian manifold M (we assume it to be
compact here). A typical electromagnetic Hamiltonian function is of the form

h(x, p) = |p− ω(x)|2 + V (x), x ∈M, p ∈ T ∗xM (1.2.9)

where ω ∈ Ω1(M) is a given one-form and V ∈ C∞(M) is a potential. The corresponding
quantum mechanical Hamiltonian is the Laplace type operator

H = ∇∗∇+ V

where ∇ = d+ iω is the connection determined by ω. The corresponding time evolution
operator is eitH , which we cannot deal with; however, the "Euclidean" solution operator
e−tH can be represented by a path integral as follows. It involves the Lagrange function `
associated to the Hamiltonian function h in a natural way. In our example, the Lagrangian
is the smooth function

`(x, v) =
1

4
|v|2 + ω(x) · v − V (x), x ∈M, v ∈ TxM

on the tangent bundle of M . Because the term P(γ)−1 can be computed explicitly for
our particular Laplace type operator, the Hamiltonian operator H, we have

e−E(γ)/2P(γ)−1 = exp

(ˆ t

0

(
−1

4

∣∣γ̇(s)
∣∣2 + iω

(
γ(s)

)
γ̇(s)− V

(
γ(s)

))
ds

)
,

see (1.1.13) and (1.2.1). We obtain the path integral formula

e−tLu(x) = lim
|τ |→0

 
Hx;τ (M)

exp

(ˆ t

0

`
(
γ(s), iγ̇(s)

)
ds

)
u
(
γ(t)

)
dΣ-H1

γ,

where we extended ` to a fiber-wise polynomial on TM ⊗ C. Notice the imaginary unit
in the Lagrangian; it is due to the fact that we substituted t 7→ −it in order to be able to
use our results.

Thm. 1.2.7 is not true as written if one uses the submanifold metric on Hx;τ (M) instead
of the discrete H1 metric. If one uses this metric instead, one needs a certain correction
term in the integrand, which depends on the curvature of the manifold in a complicated
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way, as proved in [Lim07] (curiously, in the reference, the restriction 0 ≤ K < 3/17n on
the sectional curvature K is made).
Also L2 metrics have been considered on the spaces Hx;τ (M). In this case, one obtains
the result

e−tLu(x) = lim
|τ |→0

1

Zτ

ˆ
Hx;τ (M)

e−E(γ)/2+α
´ t
0 scal(γ(s))dsP(γ)−1u

(
γ(t)

)
dγ,

where the constant Zτ is a different normalization constant (which in this case depends
on the partition itself, not only on the dimension of the path space) and α is a certain
number. We have α = 1/3 in the case that one takes the discrete L2 metric

(X, Y )Σ-L2 :=
N∑
j=1

〈X(τj),Y (τj)〉∆jτ (1.2.10)

(see [BP08] or [AD99]) and α = (2 +
√

3)/10
√

3 in the case that one takes the continuous
L2 metric

(X, Y )L2 :=

ˆ t

0

〈X(s), Y (s)〉 ds (1.2.11)

(see [Lae13]; in the latter reference, it is assumed that the sectional curvature is non-
negative).

Remark 1.2.9 (Discrete Brownian Motion). Consider a particle a starting at x with
a random initial impulse, which travels along a geodesic until it collides with another
particle. Suppose these collisions happen at positions xj ∈ M and times τj, and suppose
that they inflict a new impulse on a, which is determined by drawing a random vector
in TxjM according to the n-dimensional normal distribution with variance 2/∆jτ . This
means that the mean distance travelled by the particle a in the time interval [τj−1, τj]
is proportional to

√
∆jτ , which is plausible from physical arguments (compare [Ein05,

Section 4]). The space of possible paths for a, given fixed collision times τj, is then
the path space Hx;τ (M). The probability measure induced on Hx;τ (M) by the above
process is then exactly the measure (4π)−nN/2e−E(γ)/2dΣ-H1

γ, where dΣ-H1
γ denotes the

Riemannian volume on Hx;τ (M) induced by the discrete H1-metric. From this point of
view, the discrete H1 metric may indeed be the most natural metric to consider on the
finite-dimensional path spaces.

1.3 The Case with Boundary

If the manifold has a boundary, the key question to derive path integral formulas is to ask
what happens to paths when they hit the boundary of the manifold. The answer to this
is that they should reflect with the angle of reflection equal to the angle of incidence. We
will now consider the space of such paths and discuss how the boundary condition enters
the game. In Section 1.3.3, we will then state and prove a time-slicing approximation
result for solutions of the heat equation on manifolds with boundary, which generalizes
Thm. 1.2.7.
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1.3.1 Reflected Geodesics and the Broken Billiard Flow

Let M be a compact n-dimensional Riemannian manifold with boundary. Denote by
n ∈ C∞(∂M,N∂M) the interior unit normal field. We say that a vector v ∈ TM |∂M
points inward if 〈v,n〉 > 0 and we say that it points outward if 〈v,n〉 < 0. If v points
neither outward nor inward, then clearly v ∈ T∂M .

Notation 1.3.1 (Reflection at the Boundary). Set

Rv := v − 2 〈v,n〉n, v ∈ TM |∂M (1.3.1)

for the reflection at T∂M . We have R ∈ C∞(∂M,End(TM |∂M)).

Definition 1.3.2 (Reflected Geodesics). A reflected geodesic is a continuous map γ :
[a, b] −→M such that

(i) γ hits the boundary only at finitely many times a ≤ σ1 < σ2 < · · · < σk ≤ b, k ∈ N0;

(ii) on each of the intervals (a, σ1), (σ1, σ2), . . . , (σk−1, σk), (σk, b), γ is a geodesic;

(iii) γ̇(σj±) /∈ T∂M , where γ̇(σj±) denotes the right-/left-sided derivative, i.e. γ always
hits the boundary transversally;

(iv) we have γ̇(σj−) = Rγ̇(σj+) for each j = 1, . . . , k, that is, γ reflects with the angle
of reflection equal to the angle of incidence. (If σ1 = a or σk = b, this condition is
empty for j = 1 respectively j = k.)

The requirement (iii) excludes geodesics that "scratch along the boundary", the so-called
grazing rays, which can appear e.g. when M is the exterior of a ball in Rn.

Notation 1.3.3. For v ∈ TM , let T (v) be the supremum over all times t > 0 such that
a reflected geodesic γv : [0, t] −→M exists with γ̇v(0+) = v or, if v ∈ TM |∂M is pointing
outward, with γ̇v(0+) = Rv). Denote

Ωt :=
{
v | T (v) > t

}
for the set of vectors v such that there exists a reflected geodesic with initial condition v
(respectively Rv) up to a time larger than t.

Obviously, we have T (v) = −∞ for v ∈ T∂M and T (v) > 0 otherwise. Hence Ω0 =
TM \ T∂M . Since restrictions of reflected geodesics are reflected geodesics, we have
furthermore Ωt ⊇ Ωt′ for t ≤ t′.

Remark 1.3.4. We generally do not have the equality Ωt = TM \ T∂M here, as two
things could go wrong:

(a) We may have lims→t0 γ̇v(s) ∈ T∂M .

(b) There may be infinitely many reflections in finite time, i.e. reflection times σ1 < σ2 <
. . . converging to a time t0 <∞ as j →∞.
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In both cases, one cannot continue γv beyond the time t0 (at least not as a reflected
geodesic). In case (a), the "physically reasonable" outcome would be that γv "glides
along the boundary" for t > T , but this would mean that γv is a geodesic in ∂M , not in
M (∇sγ̇(s) would be proportional to −n).
If M is convex (i.e. the second fundamental form of the boundary points outward every-
where), then (a) cannot happen. Also (b) cannot happen in the case that ∂M is smooth
(which is always assumed here) and convex, at least if M is a subset of R2, but there is
an example of a convex M ⊂ R2 with only C2 boundary, where (b) can occur [Hal77].
However, to the author’s knowledge, there is no (non-convex) example of a manifold M
with smooth boundary in literature, where (b) happens. The author does not know if (b)
can happen at all.

Lemma 1.3.5. For each t ≥ 0, the set Ωt is an open set of full measure in TM and for
each x ∈M , the set Ωt,x := Ωt ∩ TxM is an open set of of full measure in TxM .

Proof. That the sets Ωt,x and Ωt have full measure is a result from the theory of dynamical
systems and ergodic theory, see for example Chapter 6 of [KFS82]. Furthermore, that the
sets Ωt,x and Ωt are open is due to the fact that solutions of ordinary differential equations
depend continuously on the initial data. More precisely, one can show by induction on
the number of reflections that for each v ∈ Ωt, there exists a small neighborhood of v
such that for each w in that neighborhood, there exists a reflected geodesic γw up to time
larger than t, and the value γ̇w(t) depends continuously on w in this neighborhood. �

Definition 1.3.6 (Broken Billiard Flow). The broken billiard flow is the measurable
map Θ : R× TM −→ TM defined as follows. Set Θ0(v) := v. For t > 0 and v ∈ Ωt, we
set

Θt(v) = γ̇v
(
t
)

where γv : [0, t] −→ M is the maximal reflected geodesic with γ̇v(0+) = v, respectively
γ̇v(0+) = Rv if v ∈ TM |∂M is outward directed. For v /∈ Ωt, set Θt(v) = v. For negative
times, t < 0, set Θt(v) := −Θ−t(−v).

Remark 1.3.7. If ∂M = ∅, this is just the usual geodesic flow on the tangent bundle.

Remark 1.3.8. The broken billiard flow is often considered on the unit sphere bundle
SM instead of on TM . Because we have

Θt(v) = |v|Θt|v|(v/|v|), (1.3.2)

both flows can be obtained from one another.

Because TM \ Ωt is a zero set, for each t ∈ R, the broken billiard map Θt is almost
invertible, in the sense that Θt ◦ Θ−t = id except for a zero set. Furthermore, it is well
known [KFS82, Lemma 4] that Θt preserves the volume of TM , just as the geodesic flow
does on a complete Riemannian manifold without boundary.
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1.3.2 Reflected Path Spaces

Notation 1.3.9. For a partition τ = {0 = τ0 < τ1 < · · · < τN = t} of the interval [0, t]
and x ∈M \ ∂M , write

Hrefl
x;τ (M) :=

{
γ ∈ C0([0, t],M | γ|[τj−1,τj ] is a reflected geodesic and γ(τj) /∈ ∂M for 1 ≤ j ≤ N − 1

}
,

for the space of piece-wise reflected geodesics. For x ∈ ∂M , set

Hrefl
x;τ (M) :=

{
γ ∈ C0([0, t],M | γ|[τj−1,τj ] is a reflected geodesic and γ(τj) /∈ ∂M for 1 ≤ j ≤ N − 1

}
× Z2,

We always use the multiplicative representation Z2 = {+1,−1}.

If x /∈ ∂M , then Hrefl
x;τ (M) is just the space of reflected geodesics. If x ∈ ∂M , the

elements of Hrefl
x;τ (M) carry the additional information of an element ε ∈ Z2. Heuristically,

this element encodes whether or not the path reflects at time zero, i.e. whether it starts
inward or it start outward and reflects immediately. This number ε will be called the sign
of the path.
We will often just write γ instead of (γ, ε) for elements of Hrefl

x;τ (M), x ∈ ∂M (especially
when integrating over this space) and consider γ as an ordinary path "with decoration".
However, the additional information on the sign has to be kept in mind.

Definition 1.3.10 (B-path-ordered Exponential). If L = ∇∗∇+ V is a self-adjoint
Laplace type operator with involutive boundary condition B, this determines a B-path-
ordered exponential PB(γ) along paths γ ∈ Hrefl

x;τ (M), for any partition τ of the interval
[0, t]. Let σ1 < · · · < σk be the times in (0, t) such that γ(σj) ∈ ∂M (i.e. γ(s) /∈ ∂M for
s 6= 0, s 6= σj, j = 1, . . . , k). Set

PB(γ) := P(γ|[σk,t])B P(γ|[σk−1,σk])B · · ·B P(γ|[σ1,σ2])B P(γ|[0,σ1])A, (1.3.3)

where A := id if x /∈ ∂M or if x ∈ ∂M and the sign of γ is +1, and A := B if x ∈ ∂M and
the sign of γ is −1. That is, we take the usual path-ordered exponential (see Def. 1.1.13),
but whenever the path γ hits the boundary, we use the boundary involution B before
continuing to solve the differential equation (1.1.12). In particular, if V = 0, we obtain
the B-parallel transport [γ‖t0]B.

Remark 1.3.11 (Multiplicativity). For paths γ1, γ2 with γ1(t1) = γ2(0), we have

PB(γ2)PB(γ1) = PB(γ1 ∗ γ2)

if γ1(t1) /∈ ∂M , similar to the multiplicative property for the usual path-ordered expo-
nential, see Remark 1.1.15.

The B-path-ordered exponential can be used to obtain a manifold structure on Hrefl
x;τ (M).

Notice that on the vector bundle V := TM , there is a natural boundary operator, namely
B := R, the reflection at T∂M . We define the reflected anti-development map

UR(γ)(s) :=

ˆ s

0

[γ‖u0 ]−1
R γ̇(u)du.
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Then UR maps Hrefl
x;τ (M) to H0;τ (TxM), the space of piece-wise polygon paths starting at

zero in TxM . To verify this, we need to show that UR(γ) is a straight line on each of the
intervals [τj−1, τj], j = 1, . . . , N . This is clear for all times s where γ(s) /∈ ∂M (by the
same argument as for U). If now γ(s) ∈ ∂M , then

d

ds
UR(γ)(s−) = [γ‖s−0 ]−1

R γ̇(s−) = (R[γ‖s+0 ]R)−1Rγ̇(s+) =
d

ds
UR(γ)(s+),

because the two reflections cancel each other. Hence γ does not have a kink at s and is
therefore a straight line near s. That UR is injective is clear for x /∈ ∂M . On the other
hand, if x ∈ ∂M , then each piece-wise reflected geodesic γ starting at x appears twice,
once with negative sign and one with positive sign. But by definition of the reflected anti-
development, we have UR(γ,+1)(s) = RUR(γ,−1)(s). This shows that UR is injective.
Because of Lemma 1.3.5, the image UR(Hrefl

x;τ (M)) ⊆ H0,τ (TxM) is an open and dense
set of full measure, so that one obtains a manifold structure on Hrefl

x;τ (M) by using UR as
global chart.

Remark 1.3.12. If ∂M = ∅, then Ωt = TM for all t, and we have Hrefl
x;τ (M) = Hx;τ (M).

Notice that for two partitions τ and τ ′ of intervals [0, t] and [0, t′], respectively, if γ ∈
Hrefl
x;τ (M) and γ′ ∈ Hrefl

γ(t);τ ′(M), then the concatenation γ ∗ γ′ (as defined in (1.1.15)) is
contained in Hrefl

x;τ∗τ ′(M). This fact is used in the following Lemma.

Lemma 1.3.13 (A Co-Area Formula). Let τ = {0 = τ0 < τ1 < · · · < τN = t} and
τ ′ = {0 = τ ′0 < τ ′1 < · · · < τ ′N ′ = t′} be partitions of the interval [0, t] and [0, t′]. Then for
any integrable function F on Hrefl

x;τ∗τ ′(M), we have the co-area formula
ˆ
Hrefl
x;τ∗τ ′ (M)

F (γ) dΣ-H1

γ =

ˆ
Hrefl
x;τ (M)

ˆ
Hrefl
γ(t);τ ′ (M)

F (γ ∗ γ′) dΣ-H1

γ′ dΣ-H1

γ,

where each of the spaces carries the discrete H1-metric.

Proof. Consider the restriction maps

res : Hrefl
x;τ∗τ ′(M) −→ Hrefl

x;τ (M), γ 7−→ γ|[0,t]

We show that res is a Riemannian submersion, i.e. that for any γ ∗ γ′ ∈ Hrefl
x;τ∗τ ′(M), the

linear map
dres|γ∗γ′ : Tγ∗γ′H

refl
x;τ∗τ ′(M) −→ TγH

refl
x;τ (M)

is an isometry when restricted to the orthogonal complement of its kernel. The kernel of
dres|γ∗γ′ is the set of Jacobi fields that are constant up to time t. Therefore, looking at
the formula (1.2.8) for the metric, the orthogonal complement of the kernel is the set of
Jacobi fields X such that

∇sX
(
(τ ∗ τ ′)j−1+

)
= 0, j = N + 1, . . . , N +N ′.

Therefore, if X is such a vector field in the orthogonal complement, then

‖X‖2
Σ-H1 =

N+N ′∑
j=1

∣∣∇sX
(
(τ ∗ τ ′)j−1+

)∣∣2∆jτ =
N∑
j=1

∣∣∇sX
(
τj−1+

)∣∣2∆jτ =
∥∥X|[0,t]∥∥2

Σ-H1



26 CHAPTER 1. THE HEAT OPERATOR AS A PATH INTEGRAL

so that because dresX = X|[0,t], dres is indeed an isometry when restricted to this sub-
space. From the co-area formula, we obtain

ˆ
Hrefl
x;τ∗τ ′ (M)

F (γ) dΣ-H1

γ =

ˆ
Hrefl
x;τ (M)

ˆ
res−1(γ)

F (η) dΣ-H1

η dΣ-H1

γ,

so the proof is finished if we show that the map

extγ : Hγ(t);τ ′(M) −→ res−1(γ), γ′ 7→ γ ∗ γ′

is an isometry. So let X ∈ Tγ′Hγ(t);τ ′(M). Then

(
dextγ|γ′X

)
(s) =

{
0 0 ≤ s ≤ t

X(s− t) t < s ≤ t+ t′

which implies ‖dextγ|γ′X‖Σ-H1 = ‖X‖Σ-H1 . Thus extγ is indeed an isometry for every γ
and the lemma follows. �

1.3.3 Reflecting Path Integrals

We can now give a path integral formula for the heat operator in the case that M is a
compact manifold with boundary.

Theorem 1.3.14 (The Heat Operator as a Reflecting Path Integral). Let L be a
self-adjoint Laplace type operator, acting on sections of a metric vector bundle V over a
compact Riemannian manifoldM with boundary, endowed with involutive boundary condi-
tions B. Let PB(γ) denote the B-path-ordered exponential, induced by L as in Def. 1.3.10.
For a partition τ = {0 = τ0 < τ1 < · · · < τN = t}, define

Pτu(x) :=

 
Hrefl
x;τ (M)

e−E(γ)/2PB(γ)−1u
(
γ(t)

)
dΣ-H1

γ, (1.3.4)

where the slash over the integral sign denotes divison by (4π)dim(Hx;τ (M))/2. Then

e−tLu = lim
|τ |→0

Pτu, (1.3.5)

where the limit goes over any sequence of partitions the mesh of which tends to zero and
the section u is in any of the spaces C0(M,V) or Lp(M,V), 1 ≤ p <∞ (with convergence
in the respective space).

Remark 1.3.15. Of course, the definition (1.3.4) makes sense pointwise only for u ∈
C0(M,V). However, we will show that each operator Pτ is a bounded operator on
Lp(M,V), 1 ≤ p <∞, which extends uniquely to a bounded operator on Lp(M,V) (also
denoted by Pτ ), because C0(M,V) is dense in Lp(M,V). For a general u ∈ Lp(M,V), Pτu
is defined by formula (1.3.4) almost everywhere.
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Example 1.3.16 (The Laplace-Beltrami Operator). If we have L = ∆, the Laplace-
Beltrami operator with Dirichlet boundary conditions (i.e. B ≡ −1), then we have
PB(γ) = (−1)refl(γ), where refl(γ) denotes the number of reflections, i.e. the number of
times 0 ≤ s ≤ t such that γ(s) ∈ ∂M . In this case, we therefore have

e−tLu(x) = lim
|τ |→0

 
Hrefl
x;τ (M)

e−E(γ)/2 u
(
γ(t)

)
(−1)refl(γ) dΣ-H1

γ.

If we consider, the Neumann boundary conditions, then B = 1 and PB(γ) ≡ 1, so the
factor (−1)refl(γ) has to be replaced by one.

The proof of Thm. 1.3.14 is based on the following result, which is due to Chernoff [Che86].
In the following form, the it can be found in [SvWW07, Prop. 1] and [BP08, Thm. 2.8],
where it was already used to approximate the heat semigroup on closed manifolds.

Proposition 1.3.17 (Chernoff). Let (Pt)t≥0 be a family of bounded linear operators on
a Banach space E and assume that Pt is a proper family, i.e.

(i) ‖Pt‖ = 1 +O(t) as t→ 0;

(ii) Pt is strongly continuous with P0 = id;

(iii) Pt has an infinitesimal generator, meaning that there exists a (possibly unbounded)
closed operator L on E with dense domain dom(L) that generates a strongly contin-
uous semigroup e−tL and such that

1

t

(
Ptu− u

)
−→ −Lu

as t→ 0 for all u ∈ E of the form u = e−εLv with ε > 0 and v ∈ dom(L).

Then we have
lim
|τ |→0

P∆1τ · · ·P∆N τu = e−tLu,

for any u ∈ E, where the limit goes over any sequence of partitions τ of the interval [0, t]
the mesh of which tends to zero.

We will subsequently prove the following result:

Proposition 1.3.18. Set for t > 0 and u ∈ C0(M,V)

Ptu := P{0<t}u,

where {0 < t} is the trivial partition of the interval [0, t] and the right hand side was defined
in (1.3.4). Furthermore, set P0u := u. Then Pt is a proper family on C0(M,V) with
infinitesimal generator L. Furthermore, Pt extends uniquely to a proper family Lp(M,V),
1 ≤ p <∞ with L as infinitesimal generator.

Using this proposition, we can prove the path integral formula above.
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Proof (of Thm. 1.3.14). By Prop. 1.3.17, we have

lim
|τ |→0

P∆1τ · · ·P∆N τu = e−tLu,

where Pt is the proper family from Prop. 1.3.18. We now show by induction on the length
N of the partition that

P∆1τ · · ·P∆N τu = Pτu (1.3.6)

for any partition τ and any u ∈ L1(M,V), where Pτ is defined as in (1.3.4). This is clear
for N = 1. Suppose that the result is also true for some N ≥ 1. If then τ = {0 = τ0 <
τ1 < · · · < τN = t} is some partition of length N and τ ′ = {0 = τ ′0 < τ ′1 < · · · < τ ′N ′} is a
partition of length N ′ ≤ N (e.g. N ′ = 1), then for x ∈M \ ∂M ,

PτPτ ′u(x) = (4π)−n(N+N ′)/2̂

Hx;τ (M)

ˆ
Hγ(t);τ ′ (M)

e−E(γ)/2−E(γ′)/2PB(γ)−1PB(γ′)−1u
(
γ′(t′)

)
dγ′dγ

= (4π)−n(N+N ′)/2̂

Hx;τ (M)

ˆ
Hγ(t);τ ′ (M)

e−E(γ∗γ′)/2PB(γ ∗ γ′)−1u
(
(γ ∗ γ′)(t+ t′)

)
dγ′dγ

=

 
Hx;τ∗τ ′ (M)

e−E(γ)/2PB(γ)−1u
(
γ(t+ t′)

)
dγ = Pτ∗τ ′u(x),

where we always integrate with the respect to the discrete H1 volume. Here we used the
multiplicativity of PB(γ) (see Remark 1.3.11) and additivity E(γ) +E(γ′) = E(γ ∗ γ′) of
the energy, as well as the co-area formula from Lemma 1.3.13. A similar calculation can
be made in the case x ∈ ∂M .
This shows that if (1.3.6) holds for partitions τ of lengthN , then it also holds for partitions
τ of length less or equal than 2N . In total, (1.3.6) holds for all partitions. �

The remainder of this section is dedicated to giving a proof of Prop. 1.3.18. This is split
up into several lemmas. We generally assume that we are in the setup of Thm. 1.3.14, i.e.
L is a self-adjoint Laplace type operator with involutive boundary conditions B, acting
on sections of a metric vector bundle V over a compact Riemannian manifold M with
boundary. By Lemma 1.1.2, we have L = ∇∗∇+ V for a unique metric connection ∇ on
V and a symmetric endomorphism field V ∈ C∞(M,End(V)).

Lemma 1.3.19. Let α be a bound on the pointwise operator norm of V . Then for the
path-ordered integral PB(γ) determined by L, we have

|PB(γ)−1| ≤ e(b−a)α

where γ : [a, b] −→ M is any absolutely continuous path and | − | denotes the pointwise
operator norm.

Proof. Suppose first that γ(s) ∈ M \ ∂M for s ∈ (0, t). Let Q(s) be the solution to the
ordinary differential equation (1.1.14). Then

2|Q(s)| d

ds
|Q(s)| = d

ds
|Q(s)|2 = 2 〈Q(s),∇sQ(s)〉 = −2

〈
Q(s), V

(
γ(s)

)
Q(s)

〉
≤ 2|Q(s)|

∣∣V (γ(s)
)
Q(s)

∣∣ ≤ 2α|Q(s)|2,
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hence
d

ds
|Q(s)| ≤ α|Q(s)|.

From Gronwall’s lemma [Die69, 10.5.1.3], we obtain therefore |PB(γ)−1| = |Q(t)| ≤ etα.
Now if σ1 < · · · < σk are the times in (a, b) that γ hits the boundary, we have

|PB(γ)−1| ≤
∣∣PB(γ|[a,σ1]

)−1∣∣∣∣PB(γ|[σ1,σ2]

)−1∣∣ · · · ∣∣PB(γ|[σk−1,σk]

)−1∣∣∣∣PB(γ|[σk,b])−1∣∣
≤ e(σ1−a)α+(σ2−σ1)α+···+(σk−σk−1)α+(b−σk)α = e(b−a)α,

where we used that B is a self-adjoint involution, hence an isometry. �

Throughout the proof, we use the following notation.

Notation 1.3.20. Let x ∈M , t > 0 and v ∈ Ωt,x ⊆ TxM .

(a) If x ∈ M \ ∂M , denote by γv ∈ Hrefl
x;{0<t}(M) the unique reflected geodesic with

γ̇v(0) = v of length t.

(b) If x ∈ ∂M , and v ∈ T>0
x M = {v | 〈v,n〉 > 0} is inward directed, denote by γv :=

(γv,+1) ∈ Hrefl
x;{0<t}(M) the unique reflected geodesic with γ̇v(0) = v and positive sign.

(c) If x ∈ ∂M , and v ∈ T<0
x M = {v | 〈v,n〉 < 0} is outward directed, denote by

γv := (γv,−1) ∈ Hrefl
x;{0<t}(M) the unique reflected geodesic with γ̇v(0) = Rv and

negative sign.

We defined the smooth structure on Hrefl
x;{0<t}(M) in such a way that the map

Φ : TxM ⊇ Ωt,x −→ Hrefl
x;{0<t}(M), v 7−→ γv

is a diffeomorphism for any x ∈ M . The differential dΦ|v assigns to a vector w ∈ TxM
the Jacobi field Xw along γv with Xw(0) = 0 and ∇sXw(0+) = w. Therefore(

dΦ|vw1, dΦ|vw2

)
Σ-H1 = 〈Xw1(0+), Xw2(0+)〉 t = t 〈w1, w2〉

so that Φ is a conformal mapping with∣∣det
(
dΦ|v

)∣∣ = t−n/2. (1.3.7)

Because |γ̇v(s)| ≡ |v| for all s as γv is a piecewise geodesic and R is an isometry, we obtain

E(γv) =
1

2

ˆ t

0

|γ̇v(s)|2ds =
t|v|2

2
.

Therefore, the transformation formula on the map Φ yields (using that Ωt,x has full
measure in TxM by Lemma 1.3.5) that

Ptu(x) =

ˆ
TxM

ϕt(v)P(γv)
−1u
(
γv(t)

)
dv (1.3.8)

where we set ϕt(v) := tn/2(4π)−n/2e−t|v|
2/4. The function ϕt is a simple Gaussian function,

where the pre-factor just ensures that it integrates to one over TxM .
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Lemma 1.3.21. Let α be a bound on the pointwise operator norm of V . Then for all
u ∈ C0(M,V) and for any 1 ≤ p ≤ ∞, t ≥ 0, we have

‖Ptu‖Lp ≤ eαt‖u‖Lp

where Pt is the family of Prop 1.3.18.

Because C0(M,V) is dense in Lp(M,V) if p <∞, Lemma 1.3.21 implies that Pt extends
uniquely to a family of bounded operators on Lp(M,V) satisfying the same norm bound
for such p. In particular, Pt satisfies property (i) of Prop. 1.3.17 on each of the spaces
Lp(M,V), 1 ≤ p <∞.
In the proof and later, we denote by

π : TM −→M

the canonical projection.

Proof. From (1.3.8) follows the estimate

‖Ptu‖∞ ≤ sup
x∈M

ˆ
TxM

ϕt(v)
∣∣PB(γv)

−1
∣∣∣∣u(γv(t))∣∣ dv ≤ etα‖u‖∞,

where we used that |PB(γv)
−1| ≤ etα for all v by Lemma 1.3.19, and the fact that the

function ϕt(v) integrates to one over TxM . Hence the operator family (Pt)t≥0 is uniformly
bounded near zero on C0(M,V).
For 1 ≤ p < ∞, we can use Jensen’s inequality on the probability measure ϕv(v) dv to
obtain

‖Ptu‖pLp ≤
ˆ
TM

ϕt(v)|PB(γv)
−1|p|u

(
γv(t)

)
|pdv ≤ etpα

ˆ
TM

ϕt(v)
∣∣π∗u(Θt(v)

)∣∣pdv
using the definition of the broken billiard flow. Now remember that the broken billiard
flow preserves the measure on TM , as well as the norm of vectors, |Θt(v)| = |v|, which
implies ϕt(v) = ϕt(Θs(v)) for all s. Hence transforming v 7→ Θ−t(v) gives
ˆ
TM

ϕt(v)
∣∣π∗u(Θt(v)

)∣∣pdv =

ˆ
TM

ϕt
(
Θ−t(v)

)∣∣π∗u(v)
∣∣pdv =

ˆ
TM

ϕt(v)
∣∣π∗u(v)

∣∣pdv
=

ˆ
M

∣∣u(x)
∣∣p ˆ

TxM

ϕt(v)dv dx = ‖u‖pLp .
(1.3.9)

This shows the norm bound in the case p <∞. �

Lemma 1.3.22. If u ∈ C0(M,V), then also Ptu ∈ C0(M,V), for all t ≥ 0.

Proof. Choose a local trivialization ψ : U × Rn −→ TM |U over an open set U ⊆ M that
is an isometry in each fiber. Then since ϕ(v) = ϕ(ψxv) for each v ∈ Rn and each x ∈ U ,

Ptu(x) =

ˆ
Rn
ϕt(v)PB(γψxv)

−1u
(
γψxv(t)

)
dv.
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If xj is a sequence in U converging to x ∈ U as j → ∞, then ψxjv converges to ψxv in
the topology of TM . Therefore, by the Lebesgue’s theorem of dominated convergence, it
suffices to show that the function

f(t, v) := PB(γv)
−1u
(
γv(t)

)
is uniformly bounded and continuous in v at almost all v ∈ TM . The function u(γv(t))
is continuous, since u is continuous and γv(t) depends continuously on v ∈ Ωt,x (because
the solutions of ordinary differential equations depend continuously on the initial data).
For the same reason, PB(γv) is continuous near all v ∈ Ωt,x such that either π(v) /∈ ∂M
or v ∈ T>0

x M = {v | 〈v,n〉 > 0} for x ∈ ∂M .
It remains to check the case that v ∈ T<0

x M = {v | 〈v,n〉 < 0} for x ∈ ∂M . To this
end, let v ∈ TM |∂M be outward directed and let vj ∈ TM be a sequence of vectors that
converges to v. Let 0 ≤ σ1,j < · · · < σk,j < t be the times when γvj hits the boundary
(the number k of hits stabilizes for j large enough). Then

PB(γvj)
−1
B = P(γvj |[0,σ1,j ])

−1BP(γvj |[σ1,j ,σ2,j ])
−1B · · ·

· · ·BP(γvj |[σk−1,j ,σk,j ])
−1BP(γvj |[σk,j ,t])

−1

and if 0 = σ1 < · · · < σk < t are the times when γv hits the boundary, we have

PB(γv)
−1
B = BP(γv|[σ1,σ2])

−1B · · ·BP(γv|[σk−1,σk])
−1BP(γv|[σk,t])

−1

Because σi,j → σi as j → ∞ (in particular σ1,j → 0), P(γvj |[0,σ1,j ])
−1 converges to the

identity in this limit and hence PB(γvj)
−1 converges to PB(γv)

−1. �

Lemma 1.3.22 together with Lemma 1.3.21 shows that Pt preserves the space C0(M,V)
and that the family (Pt)t≥0 satisfies property (i) of Prop. 1.3.17 on this space.

From now on, we assume that we have V = 0, that is L = ∇∗∇ in the decomposition
from Lemma 1.1.2. Then PB(γ) = [γ‖t0]B, the B-parallel transport, so that (1.3.8) reads

Ptu(x) =

ˆ
TxM

ϕt(v)[γv‖t0]−1
B π∗u

(
Θt(v)

)
dv, (1.3.10)

using the definition of the broken billiard flow. Now substituting v 7→ vt−1/2, we obtain

Ptu(x) =

ˆ
TxM

ϕ(v)[γv‖t
1/2

0 ]−1
B π∗u

(
Θt1/2(v)

)
dv,

where we set ϕ(v) := ϕ1(v) and used that Θt(sv) = sΘts(v) (which follows from (1.3.2))
and the fact that π∗u(t−1/2Θt1/2(v)) = π∗u(Θt1/2(v)). This suggests defining

Qtu(x) := Pt2u(x) =

ˆ
TxM

ϕ(v)[γv‖t0]−1
B π∗u

(
Θt(v)

)
dv (1.3.11)

for u ∈ C0(M,V). Because Qt is just a rescaling of Pt, Qt, t ≥ 0 extends to a uniformly
bounded family of operators just as Pt. Notice that Qt is actually well defined for all
t ∈ R with Q0 = id.
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Lemma 1.3.23. In the case V = 0, the operator family (Qt)t∈R (and hence also (Pt)t≥0),
is strongly continuous on Lp(M,V) for any 1 ≤ p <∞.

Proof. We first show that for each u ∈ C0(M,V) and any x ∈M , the function t 7→ Qtu(x)
is continuous. For u ∈ C0(M,V), consider the function

f(t, v) := [γv‖t0]−1
B π∗u

(
Θt(v)

)
= [γv‖t0]−1

B u
(
γv(t)

)
.

for t ∈ R, v ∈ TxM . If for a given t0 ∈ R, we have γv(t) /∈ ∂M (which is the case for
almost all v), then f(t, v) is clearly continuous in t. Therefore ϕ(v)f(t, v)→ ϕ(v)f(t0, v)
as t → t0 for almost all v ∈ TxM . Since ϕ(v)f(t, v) ≤ ‖u‖∞ϕ(v), we also found a
dominating integrable function, hence

Qtu(x) =

ˆ
TxM

ϕ(v)f(t, v)dv −→
ˆ
TxM

ϕ(v)f(t0, v)dv = Qt0u(x)

as t → t0, by the dominated convergence theorem. Furthermore, since u ∈ C0(M,V),
Qtu is uniformly bounded for t in compact subsets of R, by Lemma 1.3.21, and we have
Qtu→ Qt0u pointwise almost everywhere as t→ t0, hence also Qtu→ Qt0u in Lp, again
by the dominated convergence theorem.
For a general u ∈ Lp(M,V), choose a family of continuous sections uk ∈ C0(M,V) such
that uk → u in Lp. Then

‖Qtu−Qt0u‖Lp ≤ ‖Qt(u− uk)‖Lp + ‖Qt0(uk − u)‖Lp + ‖Qtuk −Qt0uk‖Lp .

By the uniform boundedness of the family (Qt)t∈R, one can now choose first k large enough
to make the first two terms as small as one likes and then t close enough to t0 to make
the third term arbitrarily small. This shows that Qtu → Qt0u as t → t0 in the general
case, hence (Qt)r∈R is strongly continuous on Lp(M,V), for all 1 ≤ p <∞. �

Lemma 1.3.24. In the case V = 0, the operator family (Qt)t∈R (and hence also (Pt)t≥0),
is strongly continuous on C0(M,V).

Proof. Fix t ∈ R. For any x ∈M , s ∈ R and u ∈ C0(M,V), we have∣∣Qtu(x)−Qsu(x)
∣∣ ≤ ˆ

TxM

ϕ(v)
∣∣[γv‖t0]−1

B u
(
γv(t)

)
− [γv‖s0]−1

B u
(
γv(s)

)∣∣dv.
Let ε > 0 and choose R > 0 so large that

2‖u‖∞
ˆ
BR(0)c

ϕ(v)dv ≤ ε

2
.

Now because u ∈ C0(M,V) and M is compact, u is uniformly continuous. Therefore,
there exists δ > 0 such that

∣∣[γv‖t0]−1
B u
(
γv(t)

)
− [γv‖s0]−1

B u
(
γv(s)

)∣∣ ≤ ε

2

(ˆ
BR(0)

ϕ(v)dv

)−1
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for all v ∈ TM with |v| ≤ R and all s with |t− s| ≤ δ. Because∣∣[γv‖t0]−1
B u
(
γv(t)

)
− [γv‖s0]−1

B u
(
γv(s)

)∣∣ ≤ 2‖u‖∞

as [γv‖t0]−1
B is a fiberwise isometry, we obtain in total that∣∣Qtu(x)−Qsu(x)

∣∣
≤
ˆ
BR(0)

ϕ(v)
∣∣[γv‖t0]−1

B u
(
γv(t)

)
− [γv‖s0]−1

B u
(
γv(s)

)∣∣dv + 2‖u‖∞
ˆ
BR(0)c

ϕ(v)

≤ ε

2
+
ε

2
≤ ε.

for all x ∈M , whenever |t− s| ≤ δ. The lemma follows. �

Lemma 1.3.25. Let u ∈ C2
B(M,V), meaning that u is a C2 section of V satisfying the

involutive boundary condition given by B. Then for each x ∈M , the function t 7→ Qtu(x)
is C2 and we have

Q′tu(x) =

ˆ
TxM

ϕ(v)[γv‖t0]−1
B ∇Θt(v)u

(
γv(t)

)
dv,

Q′′t u(x) =

ˆ
TxM

ϕ(v)[γv‖t0]−1
B ∇

2u|γv(t)

[
Θt(v),Θt(v)

]
dv.

Proof. Set as before
f(t, v) := [γv‖t0]−1

B π∗u
(
Θt(v)

)
.

We first show that given v ∈ TxM , f(t, v) is C1,1 on the interval [0, T (v)), where T (v) is the
maximal life-time of the reflected geodesic γv with γ̇v(0+) = v (respectively γ̇v(0+) = Rv
if v ∈ TM |∂M and v is outward directed). Let 0 ≤ σ1 < σ2 < · · · < T (v) be the times in
this interval where γv hits the boundary (these are finitely many if T (v) is finite, but may
be infinitely many otherwise). Then clearly, f(t, v) is C2 on [0, T (v)) \ {σ1, σ2, . . . } with

∂f

∂t
(t, v) = [γv‖t0]−1

B ∇Θt(v)u
(
γv(t)

)
,

∂2f

∂t2
(t, v) = [γv‖t0]−1

B ∇
2u|γv(t)

[
Θt(v),Θt(v)

]
.

Here we used that ∇tΘt(v) = 0, which follows from the fact that Θt(v) is the velocity
vector field of a geodesic. We need to check continuity of the derivatives at the times
σj. Decompose γ̇v(σj+) = w′ + w0n with w′ ∈ Tγ(σj)∂M and w0 ∈ R, so that γ̇v(σj−) =
w′−w0n. Then because u satisfies the boundary condition, we have u|∂M ∈ C∞(∂M,W+)
and ∇nu|∂M ∈ C∞(∂M,W−), hence

Bu
(
γv(σj)

)
= u

(
γv(σj)

)
, B∇nu

(
γv(σj)

)
= −∇nu

(
γv(σj)

)
,

and
B∇γ̇v(σj+)u

(
γv(σj)

)
= B∇w′u

(
γv(σj)

)
+ w0B∇nu

(
γv(σj)

)
= ∇w′u

(
γv(σj)

)
− w0∇nu

(
γv(σj)

)
= ∇γ̇v(σj−)u

(
γv(σj)

)
.

(1.3.12)
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For the second equality, notice that if η : (−ε, ε) −→ ∂M with η̇(0) = w′, then

∇w′u
(
γv(σj)

)
= ∇s

∣∣
s=0

{
u
(
η(s)

)}
∈ W+,

since u(η(s)) ∈ W+ for each s and the splitting is parallel by assumption. Hence indeed
B∇w′u

(
γv(σj)

)
= ∇w′u

(
γv(σj)

)
. Now by (1.3.12) and the definition of [γv‖

σj+
0 ]−1

B , we
have

∂f

∂t
(σj+, v) = [γv‖

σj+
0 ]−1

B ∇γ̇v(σj+)u
(
γv(σj)

)
= [γv‖

σj+
0 ]−1

B B∇γ̇v(σj−)u
(
γv(σj)

)
= [γv‖

σj−
0 ]−1

B ∇γ̇v(σj+)u
(
γv(σj)

)
=
∂f

∂t
(σj−, v)

so that the derivative is indeed continuous.
To check that the derivative of f is Lipschitz, notice that∣∣∣∣∂2f

∂t2
(t, v)

∣∣∣∣ ≤ ‖∇2u‖∞|v|2 =: `(v)

so that ∂f
∂t

(t, v) is uniformly Lipschitz with Lipschitz constant `(v). Now because the func-
tion ϕ(v)f(t, v) is C1 in t for almost all v, with integrable derivative, we may differentiate
under the integral sign to obtain

Q′u(x) =

ˆ
TxM

ϕ(v)
∂f

∂t
(t, v) dv =

ˆ
TxM

ϕ(v)[γv‖t0]−1
B ∇Θt(v)u

(
γv(t)

)
dv.

For the second derivative, note that we have

lim
ε→0

1

ε

(
∂f

∂t
(t+ ε, v)− ∂f

∂t
(t, v)

)
=
∂2f

∂t2
(t, v)

for almost all v (since for fixed t, γv(t) /∈ ∂M for almost all v) and∣∣∣∣1ε
(
∂f

∂t
(t+ ε, v)− ∂f

∂t
(t, v)

)∣∣∣∣ ≤ `(v)

by the considerations before. Hence ϕ(v)`(v) is an integrable dominating function for the
difference quotient, and

Q′′t u(x) = lim
ε→0

ˆ
TxM

ϕ(v)
1

ε

(
∂f

∂t
(t+ ε, v)− ∂f

∂t
(t, v)

)
dv

=

ˆ
TxM

ϕ(v) lim
ε→0

1

ε

(
∂f

∂t
(t+ ε, v)− ∂f

∂t
(t, v)

)
dv

=

ˆ
TxM

ϕ(v)
∂2f

∂t2
(t, v)dv,

where the exchange of integration and taking the limit is justified by the dominated
convergence theorem. Continuity of Q′′t u(x) in t can be shown just as in the proof of
Lemma 1.3.23. �
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Proof (of Prop. 1.3.18). The proof consists of two steps.
Step 1. Assume that V = 0 so that Pt = Qt1/2 , with Qt given by (1.3.11). In this case
we already know from the Lemmas 1.3.21 and 1.3.23, respectively Lemma 1.3.24 that Pt
satisfies properties (i)-(ii) of Prop. 1.3.17 on each of the spaces Lp(M,V) with 1 ≤ p <∞
and C0(M,V), so it remains to verify property (iii). To this end, for u ∈ C2

B(M,V), notice
that

Q′0u(x) =

ˆ
TxM

ϕ(v)∇vu(x)dv = 0,

since the integrand is an odd function. Therefore, pointwise Taylor expansion yields

Qtu(x) = u(x) +

ˆ t

0

(t− s)Q′′su(x)ds = u(x) + t2
ˆ 1

0

(1− s)Q′′tsu(x)ds. (1.3.13)

The Taylor expansion is justified since t 7→ Qtu(x) is C2 for all x ∈M , by Lemma 1.3.25.
Formula (1.3.13) implies that for each x ∈M , we have

1

t

(
Ptu(x)− u(x)

)
=

ˆ 1

0

(1− s)Q′′t1/2su(x)ds, (1.3.14)

so that limit evaluates to

lim
t→0

1

t

(
Ptu(x)− u(x)

)
=

ˆ 1

0

(1− s)Q′′0u(x)ds =
1

2
Q′′0u(x),

as t 7→ Q′′t u(x) is continuous. Here we have

Q′′0u(x) =

ˆ
TxM

ϕ(v)∇2u|x[v, v]dv = 2 tr∇2u|x = −2Lu(x),

where the second equality is an elementary result for Gaussian integrals. Hence for any
x ∈M .

lim
t→0

1

t

(
Ptu(x)− u(x)

)
= −Lu(x).

Furthermore, one shows similarly to the proof of Lemma 1.3.24 that the convergence
here is even uniformly in x, so that this convergence is true in the spaces C0(M,V)
and Lp(M,V). By parabolic regularity up to the boundary (which follows e.g. from
Thm. 2.1.1 (iii) below), we have e−tLv ∈ C∞B (M,V) for each v ∈ Lp(M,V), so it indeed
satisfies to check this limit for u ∈ C2

B(M,V). This proves property (iii) in the case that
V = 0.
Step 2. For the case that V 6= 0, we use the Taylor expansion

P(γ)−1
B = [γ‖t0]−1

B −
ˆ t

0

PB(γ|[0,s])−1V
(
γ(s)

)
[γ‖ts]−1

B ds.

Let Pt be defined as in the proposition for the operator L = ∇∗∇ + V and write P̃t for
the operator family corresponding to the operator L̃ := ∇∗∇. Then by (1.3.8), we have
for u ∈ C0(M,V)

Ptu(x) = P̃tu(x)−
ˆ t

0

ˆ
TxM

ϕt(v)PB
(
γv|[0,s]

)−1
V
(
γv(s)

)
[γv‖ts]−1

B u
(
γv(t)

)
dv ds.
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Setting α := ‖V ‖∞, Jensen’s inequality and Lemma 1.3.19 imply

‖Ptu− P̃tu‖pLp = tp
ˆ
M

∣∣∣∣1t
ˆ t

0

ˆ
TxM

ϕt(v)PB
(
γv|[0,s]

)−1
V
(
γv(s)

)
[γv‖ts]−1

B u
(
γv(t)

)
dv ds

∣∣∣∣p dx

≤ tp−1

ˆ t

0

αeαs
ˆ
TM

ϕt(v)
∣∣u(γv(t))∣∣pdv ds = ‖u‖pLpt

p−1(eαt − 1)

where in the last step, we used the calculation (1.3.9). This shows that Pt− P̃t converges
to zero in norm as t → 0, hence Pt is strongly continuous at zero on Lp (since P̃t is, by
Lemma 1.3.23). For the C0 case, we similarly find ‖Ptu− P̃tu‖C0 ≤ αteαt‖u‖C0 , so Pt is
also strongly continuous at zero on C0 (by virtue of Lemma 1.3.24). Strong continuity
near t0 6= 0 can be shown similar as before, by using the fact that the integrand

ˆ t

0

ϕt(v)PB
(
γv|[0,s]

)−1
V
(
γv(s)

)
[γv‖ts]−1

B u
(
γv(t)

)
dv

depends continuously on t near t0 6= 0 for almost all v ∈ TxM and has a dominating
integrable function.
It remains to check that Pt has the correct infinitesimal generator. From the Taylor
expansion above follows that

1

t

(
Ptu(x)− u(x)

)
=

1

t

(
P̃tu(x)− u(x)

)
− 1

t

ˆ t

0

ˆ
TxM

ϕt(v)PB
(
γv|[0,s]

)−1
V
(
γv(s)

)
[γv‖ts]−1

B u
(
γv(t)

)
dv ds

The first term converges to −L̃u(x) = −∇∗∇u(x) uniformly by Step 1, while the sec-
ond term converges uniformly to −V u(x), which can be shown similar to the proof of
Lemma 1.3.24. This finishes the proof in the general case. �



Chapter 2

The Heat Kernel as a Path Integral

This chapter is dedicated to representing the heat kernel of a Laplace type operator as
a path integral. In order to do this, we need to study of the heat kernel and its short
time asymptotics, which will be discussed in the first Section 2.1. In this section, we also
introduce convolution approximation of the heat kernel, which will be the key to derive
the path integral formulas from Section 2.2.
If M has a boundary, it is essential to find the right path spaces to obtain path integral
formulas. It turns out that the right step is to consider M as an orbifold. This will be
explained in Section 2.3.

2.1 The Heat Kernel and its Asymptotic Expansion
This section is the analytical core of the chapter. We first repeat some general facts
regarding the heat kernel and its short time asymptotic expansion (Subsections 2.1.1 and
2.1.2). Related to this, we introduce the Brownian bridge, a stochastic process associated
to the heat kernel just as the Brownian motion is associated to the heat operator. Finally
in Subsection 2.1.4, we show how to approximate the heat kernel by certain convolutions
of other kernels, which will be the main result enabling us to obtain path integral formulas.

2.1.1 The Heat Kernel of a Riemannian Manifold

Let M be a compact n-dimensional Riemannian manifold, possibly with boundary and
let L be a self-adjoint Laplace type operator with involutive boundary conditions, acting
on sections of a metric vector bundle V overM . As noted before, the heat semigroup e−tL
is smoothing for t > 0 and therefore given by a smooth integral kernel,

(e−tLu)(x) =

ˆ
M

pLt (x, y)u(y)dy.

This follows from a smooth version of the Schwartz kernel theorem (see Prop. 2.14 in
[BGV04]). pLt (x, y) is called the heat kernel. It is a time-dependent smooth section
of the bundle V � V∗ over M × M , the fiber of which at a point (x, y) ∈ M × M is
Vx ⊗ V∗y ∼= Hom(Vy,Vx). In terms of the spectral decomposition (λk, φk) of L, it is given
by the formula (1.1.4) above.

37
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There are a few cases where pLt (x, y) can be given explicitly. For example on Rn, the heat
kernel of the Laplace-Beltrami operator is given by

et(x, y) = (4πt)−n/2 exp

(
− 1

4t
d(x, y)2

)
, (2.1.1)

where d(x, y) = |x − y| is the Euclidean distance. There are also formulas for the heat
kernel on hyperbolic space [GN98] or spheres [FJW85], albeit the latter formula is already
much less explicit. Notice that the function (2.1.1) makes sense on any complete Rieman-
nian manifold M , if one takes for d(x, y) the Riemannian distance in M . et(x, y) is then
a smooth function on the set

M ./ M :=
{

(x, y) ∈M ×M | there exists a unique minimizing
geodesic connecting x and y

} (2.1.2)

of points that do not lie in the mutual cut locus. et(x, y) will be called the Euclidean
heat kernel and will play an important role when it comes to approximating general heat
kernels.
The heat kernel has the following properties (see e.g. [BGV04, Chapter 2]).

Theorem 2.1.1 (On the Heat Kernel). Let pLt (x, y) be the heat kernel of a self-adjoint
Laplace type operator L endowed with involutive boundary conditions, acting on sections
of a vector bundle V of a compact Riemannian manifold with boundary M . Then the
following is true.

(i) limt→0

ˆ
M

pLt (x, y)u(y)dy = u(x) uniformly in x for all u ∈ C0(M,V);

(ii) pLt (x, y) satisfies the heat equation in any of the two variables when the other is fixed;

(iii) pLt (x, y) satisfies the boundary condition with respect to both variables;

(iv) we have
ˆ
M

pLt (x, z)pLs (z, y)dz = pLt+s(x, y).

Furthermore, if qt(x, y) is any time-dependent section of V � V∗ which is C1 in the t
variable and C2 in the x and y variables and satisfies (i) − (iii) above, then qt(x, y) =
pLt (x, y).

2.1.2 Near-Diagonal Asymptotics of the Heat Kernel

LetM be a closed Riemannian manifold of dimension n and let L be a self-adjoint Laplace-
type operator, acting on sections of a metric vector bundle V over M . Let pLt (x, y) be
the corresponding heat kernel. It is a well-known fact that the heat kernel pLt (x, y) has a
short time asymptotic expansion of the form

pLt (x, y) ∼ et(x, y)
∞∑
j=0

tj
Φj(x, y)

j!
, (2.1.3)
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where et(x, y) is the Euclidean heat kernel introduced in (2.1.1). One way to make the
asymptotic relation (2.1.3) precise is as follows: There exist smooth sections Φj(x, y) of
the bundle V � V∗ defined on M ./ M such that for any ν > n/2, T > 0 and for any
compact subset K ⊂M ./ M , there exists C > 0 such that∣∣∣∣∣pLt (x, y)− et(x, y)

ν∑
j=0

tj
Φj(x, y)

j!

∣∣∣∣∣ ≤ Ctν+1−n/2 (2.1.4)

whenever (x, y) ∈ K and 0 < t ≤ T . This result is proved in [BGV04, Thm. 2.30],
[BGM71, III.E], [Ros97, Prop. 3.23], [Roe98, Thm. 7.15] and many more.
The coefficients Φj(x, y) are uniquely determined as solutions to the recursive transport
equations [BGV04, Thm. 2.26]

(∇R +G− n/2 + j)Φj = −jLΦj−1 (2.1.5)

with respect to the x variable, subject to the initial condition Φ0(x, x) = id. Here ∇ is
the connection determined by L as in Lemma 1.1.2 and

R(x, y) =
1

2
gradx d(x, y)2, G(x, y) = −∆xd(x, y)2

4
. (2.1.6)

One can show that these equations possess unique solutions Φj, given the initial condition.

Remark 2.1.2 (The Jacobian of the Exponential Map). An important object re-
lated to the heat kernel coefficients is the Jacobian of the exponential map

J(x, y) :=
∣∣det

(
d expx |γ̇xy(0)

)∣∣, (2.1.7)

where γxy is the unique minimizing geodesic travelling from x to y in time one. J is
well-defined and smooth on all of M ./ M . J(x, y) has the Taylor expansion

J(x, y) = 1− 1

6
ric
(
γ̇xy(0), γ̇xy(0)

)
+O

(
d(x, y)3

)
(2.1.8)

near the diagonal in M ×M , where γxy denotes the shortest geodesic connecting x to y
in time one (see the proof of Lemma 4.7 in [BP08]). This function will play an important
role in the course of this thesis; in particular, it will turn out that J has a representation in
terms of the energy functional on the space of paths between x and y (see Corollary 3.2.11).
On manifolds of constant sectional curvature κ (where ric = κ(n − 1)g), one has in the
case that κ > 0

J(x, y) =

(
sin
(√

κ d(x, y)
)

√
κ d(x, y)

)n−1

, (2.1.9)

see [Hsu02, Example 5.1.2]. In the case that κ < 0, sin has to be replaced by sinh.

Example 2.1.3 (The first two Coefficients). The first heat kernel coefficient can be
expressed in terms of the function J(x, y) by

Φ0(x, y) = J(x, y)−1/2[γxy‖1
0]−1, (2.1.10)
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where [γxy‖1
0] denotes the parallel transport along γxy. For the second coefficient, there

is no such expression off the diagonal, but it can be explicitly computed on the diagonal,
namely we have

Φ1(x, x) =

(
1

6
scal(x)− V (x)

)
[γxy‖t0]−1, (2.1.11)

where scal denotes the scalar curvature and V denotes the potential determined by the
Laplace type operator L in the respresentation L = ∇∗∇ + V from Lemma 1.1.2 (see
equation (16) in [BP08]).

Remark 2.1.4. There are several equivalent ways to write down the transport equations
(2.1.5), which result in slightly different coefficients. The coefficients Ψj from [BGV04,
Thm. 2.26] are related to ours by Φj(x, y) = j!J(x, y)−1/2Ψj(x, y), where J is the Jacobian
of the exponential map and the Ψj satisfy

(∇R + j)Ψj = −J1/2L
{
J−1/2Ψj−1

}
with the convention Ψ−1 = 0. In [Roe98, (7.17)] and [Cha84, p. 149], the equations are

(∇R +G− n/2 + j)Φ̃j = −LΦ̃j−1,

and the resulting coefficients Φ̃j compare to our coefficients by Φj(x, y) = j!Φ̃j(x, y).

The statement (2.1.4) is sufficient to show results related to the heat kernel along the
diagonal, such as Weyl asymptotics, the local Atiyah-Singer index theorem and many
more. For our purposes, this is not enough, however, because we need more information
about the off-diagonal behavior of the heat kernel. In fact, the following much stronger
result is true; a proof is given in Appendix A.

Theorem 2.1.5 (Strong Heat Kernel Asymptotics). Let pLt (x, y) by the heat kernel
of a Laplace type operator L, acting on sections of a metric vector bundle V over a closed
Riemannian manifold M . Let K be a compact subset of M ./ M and fix T > 0 and
ν,m, l ∈ N0. Then there exists a constant C > 0 such that∣∣∣∣∣∇l

x∇m
y

{pLt (x, y)

et(x, y)
−

ν∑
j=0

tj
Φj(x, y)

j!

}∣∣∣∣∣ ≤ Ctν+1 (2.1.12)

for all (x, y) ∈ K and 0 < t ≤ T .

This implies that for any ν, we have

lim
t→0

t−ν

(
pLt (x, y)

et(x, y)
−

ν∑
j=0

tj
Φj(x, y)

j!

)
= 0

in the topological vector space C∞(M ./ M,V � V∗) (with its Fréchet topology). Hence
we have the complete asymptotic expansion

pLt (x, y)

et(x, y)
∼

∞∑
j=0

tj
Φj(x, y)

j!
(2.1.13)
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in C∞(M ./ M,V � V∗).
Thm. 2.1.5 directly implies the result (2.1.4), by setting m = l = 0 and multiplying by
et(x, y); in fact, this way one obtains the following much stronger result.

Corollary 2.1.6. Under the assumptions of Thm. 2.1.5, for any T > 0, any ν,m, l ∈ N0

and any compact subset K of M ./ M , there exists a constant C > 0 such that∣∣∣∣∣∇l
x∇m

y

{
pLt (x, y)− et(x, y)

ν∑
j=0

tj
Φj(x, y)

j!

}∣∣∣∣∣ ≤ Cet(x, y) tν+1

(
d(x, y)

t

)l+m
,

whenever 0 < t ≤ T and (x, y) ∈ K.

Proof. This follows directly from Thm. 2.1.5 by pulling out the et(x, y) term and calcu-
lating its derivatives. �

Remark 2.1.7. The statement of Thm. 2.1.5 is indeed much stronger than (2.1.4). Di-
viding (2.1.4) by et(x, y), one can only conclude that the remainder is of the order
O(tN+1ed(x,y)2/4t), which increases exponentially away from the diagonal as t ↓ 0.

The strong heat kernel asymptotics seem to be somewhat folklore; similar results go back
to Molchanov [Mol75], Azencott [Aze84], Watanabe [Wat87] and Ben Arous [Aro88],
all relying on techniques from stochastic analysis. All these references, however, prove
results that are slightly weaker than Thm. 2.1.5. In Appendix A, we give a complete
proof, following a proof of Kannai [Kan77] for the scalar case, using purely analytical
methods.

We will also need the following Gaussian estimate from below on the heat kernel of the
Laplace-Beltrami operator p∆

t .

Theorem 2.1.8 (Gaussian lower Bound). For any T > 0, there exist a constant
γ1, γ2 > 0 such that

et(x, y) ≤ eγ1t+γ2d(x,y)2

p∆
t (x, y)

for all x, y ∈M , whenever 0 < t ≤ T . Here p∆
t is the heat kernel of the Laplace-Beltrami

operator.

Proof. For x, y ∈ M with d(x, y) < R (where R > 0 is any number smaller than the
injectivity radius), this follows from the heat kernel asymptotics, Corollary 2.1.6. Namely,
the zeroth heat kernel coefficient is given by Φ0(x, y) = J(x, y)−1/2 (see (2.1.10)), where
J(x, y) is the Jacobian of the exponential map. From its Taylor expansion (2.1.8), we can
conclude

J(x, y)−1/2 ≤ eγ2d(x,y)2

,

so that the result follows for near points x, y. For general points x, y, the result follows if
we can find a constant C > 0 such that

et(x, y) ≤ Cp∆
t (x, y)

for all x, y ∈ M . Such a constant is well known to exist (see e.g. Corollary 5.3.5 in
[Hsu02]). �
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2.1.3 Brownian Bridge

Just as the Brownian motion is naturally associated to the solution operator of the
Laplace-Beltrami operator, the stochastic process that belongs to the heat kernel p∆

t (x, y)
is the Brownian bridge, a process that travels from the point x to the y in a fixed time t.
For more details on the Brownian bridge, see e.g. [Hsu90] or [Hsu02, Section 5.4].
Again, let M be a closed Riemannian manifold or Rn. Given two points x, y ∈ M and a
time t > 0, we can consider the conditioned process Xxy;t

s defined on the interval I = [0, t].
It can be defined to be the unique process satisfying

E
[
f(Xxy;t

τ1
, . . . , Xxy;t

τN−1
)
]

=

ˆ

M

· · ·
ˆ

M

f(x1, . . . , xN−1)

∏N
j=1 p

∆
τj−τj−1

(xj−1, xj)

p∆
t (x, y)

dx1 · · · dxN−1

(2.1.14)
for all measurable functions f on M × · · · ×M (N − 1 factors) and partitions τ of the
interval [0, t] [Hsu02, Section 5.4] (in the above formula, we used the convention x0 = x,
xN = y). This implies that it has the inhomogeneous transition density

qs0,s1(z0, z1) :=
p∆
s1−s0(z0, z1)p∆

t−s1(z1, y)

p∆
t−s0(z0, y)

, 0 < s0 < s1 < t.

Indeed, if in formula (1.1.10), one replaces the kernels pτj−τj−1
(xj−1, xj) by qτj−1,τj(xj−1, xj),

one obtains (2.1.14). Similar to the above, its law then descends to a Borel measure Wxy;t

on the space
Cxy;t(M) :=

{
γ ∈ C([0, t],M) | γ(0) = x, γ(t) = y

}
.

Definition 2.1.9 (Brownian Bridge). The process Xxy;t
s is called Brownian Bridge.

The corresponding law Wxy;t, which is a probability measure on Cxy;t(M), is called Brow-
nian bridge measure or conditional Wiener measure.

Remark 2.1.10. In the construction of Brownian motion from Section 1.1.3, one can
replace the heat kernel p∆

t of the operator ∆ by the transition density of the operator
∆ + ∂Z , where Z is some (possibly time-dependent) vector field on M . Brownian bridge
can be understood in this manner. Namely, one can show (see Thm. 5.4.4 in [Hsu02])
that the Brownian bridge Xxy;t

s is in fact just a Brownian motion starting at x with
time-dependent drift

Z(s, z) := gradz log pt−s(z, y)

and that the kernel qs0,s1(z0, z1) is exactly the transition density corresponding to this
situation. As can be seen from Thm. 2.1.5, the drift becomes singular as s approaches t,
which explains the finite life-time of the process.

For the Brownian Bridge, the Feynman-Kac formula takes the form

pLt (x, y) = p∆
t (x, y)E

[
P̃(Xxy;t

• )−1
]

(2.1.15)

using the stochastic parallel transport (see Section 1.1.3). This result can be obtained
from the usual Feynman-Kac formula (Thm. 1.1.16) by the "co-area formula" for the
Wiener measure, see e.g. Lemma 2.24 in [BP11].
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2.1.4 Convolution Approximation of the Heat Kernel

This section is the analytical core of the thesis. We first prove a general result which
allows to compare certain integral kernels. Throughout this section, let M be a closed
Riemannian manifold of dimension n and let V be a metric vector bundle over M . We
define the convolution of integral kernels as follows.

Notation 2.1.11. Let k, ` ∈ L∞(M ×M,V � V∗) be two bounded kernels. We define
their convolution by

(k ∗ `)(x, y) :=

ˆ
M

k(x, z)`(z, y)dz

Then k ∗ ` ∈ L∞(M ×M,V � V∗) is again a kernel.

Using this, we can formulate the following theorem.

Theorem 2.1.12 (Convolution Approximation). Let kt, `t ∈ L∞(M ×M,V � V∗)
be two time-dependent kernels. Let T,R > 0 be constants. Suppose that for all 0 < t ≤ T
and all x, y ∈M , we have

|`t(x, y)|, |kt(x, y)| ≤ eγ1t+γ2d(x,y)2

p∆
t (x, y) (2.1.16)

for constants γ1, γ2 > 0 and suppose furthermore that for all 0 < t ≤ T and all x, y ∈ M
with d(x, y) < R, we have

|kt(x, y)− `t(x, y)| ≤ c
m∑
j=1

tαjd(x, y)βjp∆
t (x, y) (2.1.17)

for constants c, ν, α1, . . . , αm, β1, . . . , βm ≥ 0 such that αi + βi/2 ≥ 1 + ν for each i. Then
there exist constants C, δ > 0 such that for each partition τ = {0 = τ0 < τ1 < · · · < τN =
t} of intervals [0, t] with 0 < t ≤ T and |τ | ≤ δt, we have∣∣k∆1τ ∗ · · · ∗ k∆N τ − `∆1τ ∗ · · · ∗ `∆N τ

∣∣ ≤ Ct1−β/2 |τ |νp∆
t

uniformly on M × M . Here, β := max1≤i≤m βi and p∆
t denotes the heat kernel of the

Laplace-Beltrami operator on M .

Remark 2.1.13. In particular, if one of the kernels (say, `t) satisfies the Markhov prop-
erty `t ∗ `s = `t+s, then `∆1τ ∗ · · · ∗ `∆N τ = `t so that from Thm. 2.1.12 follows

lim
|τ |→0

k∆1τ ∗ · · · ∗ k∆N τ = `t, (2.1.18)

where the limit goes over any sequence of partitions such that |τ | → 0. However, the
statement of the theorem is much stronger in the sense that one simultaneously keeps
track of the error of this approximation.

Remark 2.1.14. Thm. 2.1.12 is related to a result by Bär (Prop. 1 in [Bär12]), where two
kernels kt and `t are called heat-related if they satisfy an estimate similar to (2.1.17). The
condition of Bär is weaker than the condition here (i.e. two kernels satisfying (2.1.17) are
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automatically heat-related, but not vice versa), and therefore, Bär’s result is applicable
to more general pairs of kernels. However, it turns out that all kernels relevant for our
purposes also satisfy the stronger assumptions of Thm. 2.1.12 above, which makes it
possible to obtain a stronger result as well (the statement of Prop. 1 in [Bär12] is that
the limit (2.1.18) holds, but does not contain an error estimate).

For the proof of Thm. 2.1.12, we need the following lemma, or rather a corollary of it,
which roughly says that it is exponentially unlikely for a Brownian Bridge path to move
far in short times.

Lemma 2.1.15. Set for R > 0 and 0 ≤ s0 ≤ s1 ≤ t

ARs0,s1;t :=
{
γ ∈ C([0, t],M) | d

(
γ(s0), γ(s1)

)
> R

}
. (2.1.19)

Then for any 0 < ε < 1 and T > 0, there exist constants C, δ > 0 such that for all
x, y ∈M , we have

Wxy;t
(
ARs0,s1;t

)
< Ce

−(1−ε) R2

4(s1−s0)

whenever 0 ≤ s0 < s1 ≤ t ≤ T and s1 − s0 ≤ tδ. Here, Wxy;t is the Wiener measure
associated to the Brownian bridge on M .

Proof. Set

χ(r) =

{
0 r < R

1 r ≥ R

and let p∆
t be the heat kernel of the Laplace-Beltrami operator. By Thm. 2.1.8 and

Corollary 15.15 in [Gri09], there exist constants C1, C2 > 0 such that for all 0 < t ≤ T
and all x, y ∈M , we have

C1t
−n/2e−

d(x,y)2

4t ≤ p∆
t (x, y) ≤ C2t

−ne−
d(x,y)2

4t . (2.1.20)

Using this, we obtain

Wxy;t(ARs0,s1;t) =
1

p∆
t (x, y)

ˆ
M

ˆ
M

p∆
s0

(x, z0)p∆
s1−s0(z0, z1)p∆

t−s1(z1, y)χ
(
d(z0, z1)

)
dz0dz1

≤ C2(s1 − s0)−n

p∆
t (x, y)

ˆ
M

ˆ
M

e
− d(z0,z1)2

4(s1−s0) p∆
s0

(x, z0)p∆
t−s1(z1, y)χ

(
d(z0, z1)

)
dz0dz1.

Now set for any ε′ with 0 < ε′ < ε

δ := ε′
R2

diam(M)2
. (2.1.21)

Then on the set where χ(d(z0, z1)) 6= 0, i.e. d(z0, z1) ≥ R, we have whenever s1 − s0 ≤ tδ
the estimate

d(z0, z1)2

4(s1 − s0)
− d(x,y)2

4t
≥ R2

4(s1 − s0)
− d(x, y)2δ

4(s1 − s0)
=

R2

4(s1 − s0)
− ε′ R2d(x, y)2

4(s1 − s0)diam(M)2

≥
(
1− ε′

) R2

4(s1 − s0)
.
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Hence under this restriction on s1− s0 and using that the function p∆
t (x,−) integrates to

one for each x ∈M , as well as (2.1.20), we have for each 0 < t ≤ T that

Wxy;t(ARs0,s1;t) ≤
C2(s1 − s0)−n

p∆
t (x, y)

e
−(1−ε′) R2

4(s1−s0)
− d(x,y)2

4t

ˆ
M

ˆ
M

p∆
s0

(x, z0)p∆
t−s1(z1, y)dz0dz1

≤ C2(s1 − s0)−ne
−(1−ε′) R2

4(s1−s0)T n/2
t−n/2e−

d(x,y)2

4t

p∆
t (x, y)

≤ C3(s1 − s0)−ne
−(1−ε′) R2

4(s1−s0) < C4e
−(1−ε) R2

4(s1−s0) ,

if the constants C3, C4 are chosen appropriately. �

The following result is a consequence of Lemma 2.1.15 and states that it is also expo-
nentially unlikely for a path to travel a large distance on some subinterval of a given
partition.

Corollary 2.1.16. Fix R > 0. Given t > 0 and a partition τ = {0 = τ0 < τ1 < · · · <
τN = t} of the interval [0, t], set

BR
τ =

{
γ ∈ Cxy;t(M) | ∀j = 1, . . . , N : d

(
γ(τj−1), γ(τj)

)
≤ R

}
.

Then for any T > 0 and any 0 < ε < 1, there exist constants C, δ > 0 such that

Wxy;t
(
{γ /∈ BR

τ }
)
< Ce−(1−ε) R

2

4|τ |

for all x, y ∈M and all partitions τ of intervals [0, t] with 0 < t ≤ T and |τ | ≤ tδ. Here,
Wxy;t denotes any Brownian bridge measure with drift on M .

Proof. From Lemma 2.1.15 above follows that there exist constants C1, δ, ε
′ > 0 such that

Wxy;t(ARs0,s1;t) < C1e
−(1−ε′) R2

4(s1−s0)

whenever 0 ≤ s0 < s1 ≤ t ≤ T and s1 − s0 ≤ tδ. Now notice that the complement of the
set BR

τ is exactly the union of the sets ARτj−1,τj ;t
, because if a path is not in BR

τ , it must
travel a distance greater than R in at least one of the subintervals [τj−1, τj]. Hence

Wxy;t
(
{γ /∈ Bδ,τ}

)
= Wxy;t

(
N⋃
j=1

ARτj−1,τj ;t

)
≤

N∑
j=1

Wxy;t
(
ARτj−1,τj ;t

)
<

N∑
j=1

C1e
−(1−ε′) R2

4∆jτ .

Now choose 0 < ε < ε′ and C2 so large that C1e
−(1−ε′)R2/4s < C2se

−(1−ε)R2/4s for all
0 < s ≤ δT . Then

N∑
j=1

C1e
−(1−ε) R2

4∆jτ ≤ C2

N∑
j=1

∆je
−(1−ε′) R2

4∆jτ ≤ C2Te
−(1−ε) R

2

4|τ | ,

whenever |τ | ≤ δt ≤ δT , where in the last step, we used Hölder’s inequality. �
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For the proof, we also need two other estimates, Lemma B.2.1 and Lemma B.2.6, which
were divested to the appendix. However, going through the proof of Thm. 2.1.12 shows
that these latter results are not needed in the particular case that γ2 = β1 = · · · = βm = 0.
This "baby version" of Thm. 2.1.12 is enough to prove most of the thesis; the full version
of Thm. 2.1.12 is needed only for Thm. 2.2.7. In particular, Chapter 3.1 is independent
from the results of Appendix B.

Proof (of Thm. 2.1.12). Throughout the proof, write ∆j := ∆jτ for abbreviation.
Step 1. We first show that we may assume without loss of generality that (2.1.17) holds
everywhere on M and not only on the set of those points x, y ∈ M with d(x, y) < R.
Namely, set

χ(x, y) :=

{
1 if d(x, y) < R

0 otherwise.

Then the kernels χkt and χ`t satisfy (2.1.16) and (2.1.17) for all x, y ∈M and we have∣∣k∆1τ ∗ · · · ∗ k∆N τ − `∆1τ ∗ · · · ∗ `∆N τ

∣∣ ≤∣∣k∆1τ ∗ · · · ∗ k∆N τ − χk∆1τ ∗ · · · ∗ χk∆N τ

∣∣
+
∣∣χk∆1τ ∗ · · · ∗ χk∆N τ − χ`∆1τ ∗ · · · ∗ χ`∆N τ

∣∣
+
∣∣χ`∆1τ ∗ · · · ∗ χ`∆N τ − `∆1τ ∗ · · · ∗ `∆N τ

∣∣.
Now for the first term on the right hand side, we have using (2.1.16)∣∣(k∆1τ ∗ · · · ∗ k∆N τ

)
(x, y)−

(
χk∆1τ ∗ · · · ∗ χk∆N τ

)
(x, y)

∣∣
≤
ˆ
M

· · ·
ˆ
M

(
1−

N∏
j=1

χ(xj−1, xj)

)
N∏
j=1

∣∣k∆j
(xj−1, xj)

∣∣ dx1 · · · dxN−1

≤
ˆ
M

· · ·
ˆ
M

(
1−

N∏
j=1

χ(xj−1, xj)

)
N∏
j=1

eγ1∆j+γ2d(xj−1,xj)
2

p∆
∆j

(xj−1, xj) dx1 · · · dxN−1.

Using the definition of the Brownian bridge, this equals

etγ1p∆
t (x, y)E

[(
1−

N∏
j=1

χ(Xxy;t
τj−1

, Xxy;t
τj

)

)
exp

(
γ2

N∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]

≤ C0p
∆
t (x, y)E

(1−
N∏
j=1

χ(Xxy;t
τj−1

, Xxy;t
τj

)

)2
1/2

E

[
exp

(
2γ2

N∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]1/2

,

where we used Hölder’s inequality and set C0 := eTγ1 . The second expectation value can
be estimated by a universal constant using Lemma B.2.6. Regarding the first expectation
value, notice that the product over the χ(Xxy;t

τj−1
, Xxy;t

τj
) is equal to one if d(Xxy;t

τj−1
, Xxy;t

τj
) < R

for all j and zero otherwise. Hence we have

E

(1−
N∏
j=1

χ(Xxy;t
τj−1

, Xxy;t
τj

)2

)2
 = Wxy;t

(
{γ /∈ BR

τ }
)
< C1e

−ε/|τ |
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for some C1 > 0 independent of x, y and t ≤ T , where BR
τ is defined in Corollary 2.1.16

and the estimate is precisely the statement of that corollary. In total,∣∣(k∆1τ ∗ · · · ∗ k∆N τ

)
(x, y)−

(
χk∆1τ ∗ · · · ∗ χk∆N τ

)
(x, y)

∣∣ ≤ C2e
−ε/|τ |p∆

t (x, y)

for some consant C2 > 0. The difference |χ`∆1τ ∗ · · · ∗ χ`∆N τ − `∆1τ ∗ · · · ∗ `∆N τ | can be
estimated exactly the same way. Finally, notice that for any ν ≥ 1, we have

e−ε/|τ | ≤ C3|τ |ν+1 ≤ C3t|τ |ν ≤ C3T
β/2t1−β/2|τ |ν

for some constant C3 > 0 whenever |τ | ≤ t ≤ T . This shows that the statement of the
theorem holds for kt and `t if it holds for χkt and χ`t; hence we may assume that (2.1.17)
holds for all (x, y) ∈M ×M .
Step 2. Following Step 1, assume without loss of generality that (2.1.17) holds for all
(x, y) ∈M ×M . With the telescoping sum identity

a1 · · · aN − b1 · · · bN =
N∑
j=1

a1 · · · aj−1(aj − bj)bj+1 · · · bN , (2.1.22)

we obtain

∣∣k∆1 ∗ · · · ∗ k∆N
− `∆1 ∗ · · · ∗ `∆N

∣∣ ≤ N∑
j=1

∣∣k∆1

∣∣ ∗ · · · ∗ ∣∣k∆j−1

∣∣ ∗ ∣∣k∆j − `∆j

∣∣ ∗ ∣∣`∆j+1

∣∣ ∗ · · · ∗ ∣∣`∆N

∣∣
≤

N∑
j=1

(eγ1∆1+γ2d2
p∆

∆1
) ∗ · · · ∗ (eγ1∆j−1+γ2d2

p∆
∆j−1

) ∗

(
c

m∑
i=1

∆αi
j d

βip∆
∆j

)
∗

∗ (eγ1∆j+1+γ2d2
p∆

∆j+1
) ∗ · · · ∗ (eγ1∆N+γNd

2
p∆

∆N
)

using (2.1.16) respectively (2.1.17) for each factor. The latter term may be expressed in
terms of the Brownian bridge; namely, at (x, y) ∈M ×M , it equals

ceγ1tp∆
t (x, y)

N∑
j=1

m∑
i=1

∆αi
j E

[
d(Xxy;t

τj−1
, Xxy;t

τj
)βi exp

(
γ2

∑
k 6=j

d(Xxy;t
τk−1

, Xxy;t
τk

)2

)]

≤ ceγ1tp∆
t (x, y)

N∑
j=1

m∑
i=1

∆αi
j E

[
d(Xxy;t

τj−1
, Xxy;t

τj
)2βi
]1/2

E

[
exp

(
2γ2

N∑
k=1

d(Xxy;t
τk−1

, Xxy;t
τk

)2

)]1/2

≤ C4e
γ1tp∆

t (x, y)
N∑
j=1

m∑
i=1

∆αi
j

(
∆j

t

)βi/2
using first the Cauchy-Schwarz inequality and then Lemma B.2.1 and Lemma B.2.6. In
total,

∣∣k∆1 ∗ · · · ∗ k∆N
− `∆1 ∗ · · · ∗ `∆N

∣∣ ≤ C4p
∆
t

m∑
i=1

t−βi/2
N∑
j=1

∆
αi+βi/2
j ≤ C5p

∆
t

m∑
i=1

t1−βi/2|τ |ν .
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Here in the last step, we used

N∑
j=1

∆
αi+βi/2
j =

N∑
j=1

∆j∆
αi+βi/2−1
j ≤ |τ |αi+βi/2−1

N∑
j=1

∆j = |τ |αi+βi/2−1t ≤ C6t|τ |ν

since ν ≤ αi + βi/2− 1. The theorem follows. �

If we set `t = pLt in Thm. 2.1.12, where pLt is the heat kernel of a self-adjoint Laplace type
operator, we can use the Markhov property to obtain

`∆1τ ∗ · · · ∗ `∆N τ = pL∆1τ
∗ · · · ∗ pL∆N τ

= pLt .

This way, one obtains an approximation of the heat kernel pLt by a convolution product
k∆1τ ∗ · · · ∗k∆N τ . For example, one can take for kt the approximate heat kernel eνt , defined
for ν ∈ N0 by

eνt (x, y) := χ
(
d(x, y)

)
et(x, y)

ν∑
j=0

tj
Φj(x, y)

j!
. (2.1.23)

Here, χ is a smooth cutoff function, satisfying χ(r) = 1 for r ≤ R/2 and χ(r) = 0 for
r ≥ R, where R satisfies 0 < R < inj(M). Then eνt is a smooth time-dependent kernel.
Using Thm. 2.1.12 for this kernel gives the following result.

Corollary 2.1.17 (Heat Kernel as a Convolution I). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle V over a closed Riemannian
manifold M and let pLt be the associated heat kernel. Then for each ν ∈ N0 and each
T > 0, there exist constants C, δ > 0 such that∣∣pLt − eν∆1τ

∗ · · · ∗ eν∆N τ

∣∣ ≤ C t |τ |νp∆
t

uniformly on M ×M for each partition τ of the interval [0, t] such that |τ | ≤ δt and each
0 < t ≤ T . Here, p∆

t is the heat kernel of the Laplace-Beltrami operator on M .

Proof. The estimate (2.1.16) for pLt is just the Hess-Schrader-Uhlenbrock estimate

|pLt (x, y)| ≤ etγp∆
t (x, y)

(see [HSU80]) and for eνt , the estimate |eνt | ≤ etγ1+d2γ2p∆
t is automatic using the Gaus-

sian lower bound in Thm. 2.1.8. To verify (2.1.17), notice that by Corollary 2.1.6 and
Thm. 2.1.8, we have∣∣pLt (x, y)− eνt (x, y)

∣∣ ≤ c1t
ν+1et(x, y) ≤ c2t

ν+1p∆
t (x, y), (2.1.24)

uniformly for (x, y) in compact subsets of M ./ M and 0 < t ≤ T . Hence we can apply
Thm. 2.1.12 with m = 1, α1 = ν + 1 and β1 = 0. �

Remark 2.1.18. In contrast to the near-diagonal short time estimates from Thm. 2.1.5,
Corollary 2.1.17 shows how one can approximate heat kernels pLt arbitrarily well uniformly
on all of M ×M , not only on M ./ M .
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Remark 2.1.19 (The geometric Meaning of δ). The proof of Lemma 2.1.15 shows
that in Corollary 2.1.17, one can take any δ satisfying

0 < δ <

(
inj(M)

diam(M)

)2

.

Then if τ is a partition of [0, t] satisfying |τ | ≤ δt, the approximation result of Corol-
lary 2.1.17 applies. In particular, the number N of subintervals that the interval [0, t] is
divided into by a sufficiently fine partition τ needs to satisfy N ≥ 1/δ. For example, for
M = Sn, where inj(M) = diam(M), it suffices to choose δ < 1, so that one can get away
with N = 2, i.e. it suffices to subdivide the time interval into two pieces.

Corollary 2.1.17 above shows how the heat kernel pLt can be approximated by the convo-
lution product eν∆1τ

∗ · · · ∗ eν∆N τ
of approximate heat kernels eνt . The approximate heat

kernels are built of the Euclidean heat kernel et(x, y) and the heat kernel coefficients
Φj(x, y) as correction terms, which are solutions to certain differential equations. While
one can theoretically compute these at the diagonal x = y (which gets immensely compli-
cated for large j), it is usually not possible to give explicit formulas for Φj away from the
diagonal, even for Φ1. Therefore, it may be desirable to obtain an approximation result
depending in an explicit way on quantities such as curvature as well as the connection and
the potential determined by the decomposition L = ∇∗∇ + V from Lemma 1.1.2. This
can be done, but one has to pay the price of loosing higher order uniformity in t, which
will be a problem when we are going to take asymptotic expansions in Chapter 3.1.

Corollary 2.1.20 (Heat Kernel as a Convolution II). Let M and let L be a self-
adjoint Laplace type operator, acting on sections of a metric vector bundle V over M . Let
pLt be the heat kernel of L and define the kernel eLt by

eLt (x, y) := et(x, y) exp

(
t

6
scal(x) +

1

12
ric
(
γ̇xy(0), γ̇xy(0)

))
P(γxy;t)

−1

for (x, y) ∈ M ./ M , where γxy;t is the unique minimizing geodesic connecting x to y
in time t, γxy := γxy;1 and P(γ) is the path-ordered exponential determined by L (see
Def. 1.1.13). Then for each T > 0, there exist constants C, δ > 0 such that∣∣pLt (x, y)−

(
eL∆1τ

∗ · · · ∗ eL∆N τ

)
(x, y)

∣∣ ≤ C

(
|τ |
t

)1/2

p∆
t (x, y)

for all x, y ∈ M , for each partition τ of the interval [0, t] such that |τ | ≤ δt and each
0 < t ≤ T .

Remark 2.1.21. The formula for eLt (x, y) is only defined for (x, y) ∈ M ./ M . Because
the complement M ×M \M ./ M is a set of measure zero, eLt extends to a well-defined
L∞ function on all of M ×M , which is not continuous in general.

Proof. Again, this is an application of Thm. 2.1.12. The estimates (2.1.16) can be shown
as in the proof above, so we only need to verify (2.1.17). By Corollary 2.1.6, for T > 0
and 0 < R < inj(M) given, we have

pLt (x, y) = et(x, y)
(

Φ0(x, y) + tΦ1(x, y) +O(t2)
)
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for all (x, y) ∈ M × M with d(x, y) ≤ R < inj(M) and t ≤ T , where the remainder
is uniform over this set of points. Here Φ0 and Φ1 are the zeroth and first heat kernel
coefficients of the heat kernel pLt . Using (2.1.10) and the Taylor expansion (2.1.8), we
obtain

Φ0(x, y) = 1 +
1

12
ric
(
γ̇xy(0), γ̇xy(0)

)
+O

(
d(x, y)3

)
while from (2.1.11), we have

Φ1(x, y) =

(
1

6
scal(x)− V (x)

)
[γxy‖1

0]−1.

Put together, we have

pLt (x, y)

et(x, y)
=

(
id +

t

6
scal(x) +

1

12
ric
(
γ̇xy(0), γ̇xy(0)

)
− t V (x)

)
[γxy‖1

0]−1

+O
(
d(x, y)3 + td(x, y) + t2

)
,

where the remainder is uniform over the set of points (x, y) ∈ M ×M with d(x, y) ≤ R.
Because

P(γxy;t)
−1 =

(
id− tV (x)

)
[γxy‖1

0]−1 +O(t2),

the function eLt (x, y)/et(x, y) has exactly the same expansion for small t and d(x, y). Hence∣∣pLt (x, y)− eLt (x, y)
∣∣ ≤ Cet(x, y)

(
d(x, y)3 + td(x, y) + t2

)
.

From Corollary 2.1.6 follows that we may replace et(x, y) by p∆
t (x, y), so (2.1.17) follows.

Setting
α1 = 0, α2 = 1, α3 = 2,

β1 = 3, β2 = 1, β3 = 0,
(2.1.25)

the result follows from Thm. 2.1.12 with m = 3, ν = 1/2. �

Remark 2.1.22. In a similar fashion, one can show that for any Λ ∈ R, the same result
holds when the kernel eLt (x, y) is replaced by the kernel

eL,Λt (x, y) := et(x, y) exp

(
t

6
scal(x) +

1− 2Λ

12
ric
(
γ̇xy(0), γ̇xy(0)

))
P(γxy;t)

−1J(x, y)−Λ,

where J(x, y) is the Jacobian of the exponential map (2.1.7). We will later use this result
with Λ = 1. Compare this to Remark 4.8 and Thm. 5.2 in [BP08].

The result of Corollary 2.1.20 is nice because it gives a heat kernel approximation involving
only quantities which are explicitly given in terms of curvature of the underlying manifold.
For example, on a manifold of constant sectional curvature κ, one has ric = κ(n − 1)g
and scal = n(n− 1)κ , hence for L = ∆, the Laplace-Beltrami operator on such a space,
we obtain

e∆
t (x, y) = (4πt)−n/2 exp

(
−d(x, y)2

4t
+
κn(n− 1)

6
t+

κ(n− 1)

12
d(x, y)2

)
so that the heat kernel can be approximated arbitrarily well using repeated convolutions
of this kernel.
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2.2 The Heat Kernel as a Path Integral

In this section, we give path integral formulas for the heat kernel. In Subsection 2.2.1,
we first introduce the relevant path spaces, which will be the path spaces with two fixed
endpoints. Afterwards, in Subsection 2.2.3, we show how to represent the heat kernel of
general self-adjoint Laplace type operators using time-slicing approximation of the heat
kernel. We also give a path integral formula for the trace of the heat operator, which will
be an integral over certain loop spaces.

2.2.1 Pinned Path Spaces and their Approximations

In this section, let M be an n-dimensional complete Riemannian manifold. To approx-
imate the heat kernel of M by a path integral, we need path spaces with two fixed
endpoints.

Notation 2.2.1 (Pinned Path Spaces). We write

Hxy;t(M) :=
{
γ ∈ H1([0, t],M) | γ(0) = x, γ(t) = y

}
for the pinned path space with endpoints x and y. In the case t = 1, we also write
Hxy(M) := Hxy;1(M).

Remember from Section 1.2.1 that the space H1([0, t],M) of finite energy paths comes
with an evaluation map

ev0,t : H1([0, t],M) −→M ×M, γ 7−→
(
γ(0), γ(t)

)
,

which is a submersion. This shows that the spaces Hxy;t(M) are submanifolds of the
manifold H1([0, t],M), because they can be written as the pre-image of the submanifolds
{(x, y)} ⊂M ×M under the evaluation map, Hxy;t(M) = ev−1

0,t ({(x, y)}).
Hxy;t(M) is also a submanifold of Hx;t(M) and as such inherits a Riemannian metric by
restricting to it the H1 metric (1.2.5).

Finite-dimensional approximation of the spaces Hxy;t(M) is not quite as straight forward
as in the case of one fixed endpoint. In particular, it is not clear if for a partition τ and
given points x, y ∈ M , the set of paths γ ∈ Hx;τ (M) with γ(t) = y is a submanifold
of Hxy;t(M), as it is not clear if the endpoint evaluation map is still a submersion when
restricted to the submanifold Hx;τ (M). Therefore, we make the following definition.

Notation 2.2.2 (Finite-dimensional Approximations). For a partition τ = {0 =
τ0 < τ1 < · · · < τN = t} of the interval [0, t], we set

Hxy;τ (M) := {γ ∈ Hxy;t(M) | γ|[τj−1,τj ] is unique minimizing for each j
}

by which we mean that for each γ ∈ Hxy;τ (M) and each j = 1, . . . , N , γ|[τj−1,τj ] is a
minimizing geodesic between its endpoints with (γ(τj−1), γ(τj)) ∈M ./ M .
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Hxy;τ (M) is a submanifold of Hxy;t(M), because near points γ ∈ Hxy;τ (M), it is the
transversal intersection of the submanifolds Hxy;t(M) and Hx;τ (M) of Hx;t(M): For a
given vector field X ∈ TγHx;t(M), let Y ∈ TγHx;τ (M) be a piece-wise Jacobi field with
Y (t) = X(t) (such a vector field Y exists because along unique minimizing geodesics,
boundary value problems for Jacobi fields have a solution). Now X − Y ∈ TγHxy;t(M)
and X = (X − Y ) + Y , hence the intersection is transversal.
Also notice that the τ -evaluation map

evτ : Hxy;τ (M) −→M × · · · ×M︸ ︷︷ ︸
N−1 times

, γ 7→
(
γ(τ1), . . . , γ(τN−1)

)
(2.2.1)

is a smooth embedding with image M ./ · · · ./ M , i.e. the set of tuples (x1, . . . , xN−1)
such that (xj−1, xj) ∈ M ./ M for each j = 1, . . . , N (where we set x0 := x, xN := y).
Therefore we have the diffeomorphism

Hxy;τ (M) ≈M ./ · · · ./ M.

Remark 2.2.3 (Approximation Property). It seems likely that if one takes the union
of the spaces Hxy;τ (M) over all partitions τ of [0, t], the result will be dense in Hxy;t(M),
but apparently, there is no easy argument for this (notice that the argument given in
Remark 1.2.6 for the spaces with one fixed endpoint does not work in this case). We will
not need such a result. However, later we will prove an "infinitesimal version" of this
statement, Lemma 3.2.10 below.

The tangent space of Hxy;τ (M) at a path γ is the space of piece-wise Jacobi fields X
with X(0) = X(t) = 0. Of course, Hxy;τ (M) inherits a Riemannian metric, namely the
submanifold metric, from Hxy;t(M). In the case of the spaces Hx;τ (M), it turned out
that the discretized metric (1.2.8) yielded the simplest path integral formulas and in that
sense that metric was more suitable for the finite-dimensional path spaces. The situation
is similar for the spaces Hxy;τ (M), but it is not completely straight forward what the
discrete analog of the metric (1.2.8) should be. Of course, one could just restrict the
discrete metric (1.2.8) to the subspace Hxy;τ (M), but this will not give good path integral
formulas formulas; also the metric obtained this way does not seem natural since it does
not respect the inherent symmetry (i.e. the flip map Hxy;τ (M) −→ Hyx;τ̃ (M) sending γ
to the path s 7→ γ(t− s) is not an isometry).
In fact, we will not define a discretized metric on Hxy;τ (M), but a good discretized volume
measure. To this end, consider the endpoint evaluation map

evt : Hx;t(M) −→M, γ 7−→ γ(t).

The fibers of this map are exactly the spaces Hxy;t(M), while at a path γ ∈ Hx;t(M) with
γ(t) = y the normal space to Hxy;t(M) is the space of affine-linear vector fields,

NγHxy;t(M) =
{
X ∈ TγHx;t(M) | X(s) = s[γ‖s0]X0, X0 ∈ TxM},

as is easy to verify. For X, Y ∈ NγHxy;t(M), we therefore have

〈devt|γX, devt|γY 〉 = 〈X(t), Y (t)〉 = t(X, Y )H1 , (2.2.2)
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so that evt is a Riemannian submersion up to a conformal factor. Formally using the
co-area formula, this would mean that integrals over Hx;t(M) can be written as a double
integral over M and Hxy;t(M) in a particularly simple form (which doesn’t make sense
because the integrands are infinite-dimensional). For the finite-dimensional path spaces
however, this can be turned into a sensible condition for a measure on Hxy;τ (M), namely
we require that

ˆ
Hx;τ (M)

f
(
γ(τ1), . . . , γ(τN)

)
dγ = t−n/2

ˆ
M

ˆ
Hxy;τ (M)

f
(
γ(τ1), . . . , γ(τN)

)
dγ dy (2.2.3)

for all f ∈ C0(MN+1) such that f(x1, . . . , xN) = 0 whenever (xj−1, xj) /∈M ./ M for some
j (where x0 = x). Here the additional factor of t−n/2 is motivated by the co-area formula:
It is the determinant of devt|γ, restricted to the orthonal complement of its kernel, the
normal space.
To make explicit what (2.2.3) means, we use the following Lemma.

Lemma 2.2.4. Denote by H̃x;τ (M) ⊆ Hx;τ (M) the open subset of paths γ where each
segment γ|[τj−1,τj ] is minimizing with (γ(τj−1), γ(τj)) ∈ M ./ M . Then for all integrable
functions f ∈ C0(MN+1), we have (setting x0 := x) that

ˆ
H̃x;τ (M)

f
(
γ(τ1), . . . , γ(τN)

)
dγ =

ˆ
MN

f(x1, . . . , xN)

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx,

where J is the Jacobian of the exponential map, see Remark 2.1.2.

Proof. We calculate the Jacobian determinant of the evaluation map

evτ : H̃x;τ (M) −→MN , γ 7−→
(
γ(τ1), . . . , γ(τN)

)
.

For any γ ∈ H̃x;τ (M), we have an isomorphism

φγ : TγH̃x;τ (M) −→
N⊕
j=1

Tγ(τj−1)M, X 7−→
(
∇sX(τ0+), . . . ,∇sX(τN−1+)

)
.

If e1(s), . . . , en(s) is a parallel orthonormal basis along γ, then the vectors ei(τj−1), i =
1, . . . , n, j = 1, . . . , N form an orthonormal basis of the latter space, while the piecewise
Jacobi fields Eij := φ−1

γ (0, . . . , 0, ei(τj−1), 0, . . . , 0) satisfy

∇sEij(τk−1+) =

{
ei(τj−1) if k = j

0 otherwise.

Hence, with a view on the definition of the discrete H1 metric, we find

(Eij, Ekl)Σ-H1 =
N∑
m=1

〈
∇sEij(τm−1+),∇sEkl(τm−1+)

〉
∆mτ = δikδjl∆jτ
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so that these vectors form an orthogonal basis (not normalized) of TγH̃x;τ (M) and

| det(φγ)| = det
(

(Eij, Ekl)Σ-H1

)−1/2

1≤i,k≤n
1≤j,l≤N−1

=
N∏
j=1

(∆jτ)−n/2. (2.2.4)

We obtain a linear map

devτ |γ ◦ φ−1
γ :

N⊕
j=1

Tγ(τj−1)M −→
N⊕
j=1

Tγ(τj)M,

which is given with respect to these direct sum decompositions by the lower triangular
matrix

devτ |γ ◦ φ−1
γ =


∆1τ d expx0

|v0 0 · · · 0

∗ . . . . . . ...
... . . . . . . 0
∗ . . . ∗ ∆Nτ d expxN−1

|vN−1

 ,

where we set xj = γ(τj), vj = γ̇(τj+). Therefore

det
(
devτ |γ) = det

(
devτ |γ ◦ φ−1

γ

)
det(φγ) =

N∏
j=1

J(xj−1, xj)(∆jτ)n/2.

The result follows from the transformation formula. �

This lemma motivates to define the discretized volume dΣ-H1
γ on Hxy;τ (M) by setting

ˆ
Hxy;τ (M)

f
(
γ(τ1), . . . , γ(τN−1)

)
dΣ-H1

γ

:= tn/2
ˆ
MN−1

f(x1, . . . , xN−1)

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx1 · · · dxN−1

(2.2.5)

for measurable functions f on MN−1 (where as usual we set x0 := x, xN := y). By
Lemma 2.2.4, this measure satisfies the co-area formula (2.2.3). We do not know if this
measure is the Riemannian volume measure to some natural Riemannian metric, nor if
one should expect it to be.

2.2.2 The Loop Space and its Approximations

As before, let M be an n-dimensional complete Riemannian manifold. The trace of the
heat operator can be represented by a path integral over the loop space.

Notation 2.2.5 (Loop Space). The infinite-dimensional H1 loop space of M is the
Hilbert manifold

Lt(M) := H1(S1
t ,M),

where S1
t := R/tZ is the circle of length t. We will write L(M) := L1(M).
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We will not put a Riemannian metric on Lt(M) as it is not clear which one could be the
most natural one; we just remark that the usual H1 metric (1.2.5) may be degenerate,
depending on the Riemannian metric on M .

Notation 2.2.6 (Finite-Dimensional Approximation). For a partition τ = {0 =
τ0 < τ1 < · · · < τN = t} of the interval [0, t], we write

Lτ (M) :=
{
γ ∈ Lt(M) | γ|[τj−1,τj ] is a unique minimizing geodesic

}
for the finite-dimensional approximation of the loop space.

Similar to before, one can show that this is a submanifold of Lt(M). On Lτ (M), we define
the discretized volume dΣ-H1

γ by
ˆ
Lτ (M)

f
(
γ(τ1), . . . , γ(τN)

)
dΣ-H1

γ

:=

ˆ
MN

f(x1, . . . , xN)

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx1 · · · dxN
(2.2.6)

using the convention x0 :≡ xN . Using this volume, we have the co-area formula
ˆ
Lτ (M)

F (γ) dΣ-H1

γ = t−n/2
ˆ
M

ˆ
Hxx;τ (M)

F (γ) dΣ-H1

γdx (2.2.7)

for measurable functions F on Lτ (M).

2.2.3 Path Integral Formulas for the Heat Kernel

We are ready to formulate the following result.

Theorem 2.2.7 (Heat Kernel as a Path Integral I). Let pLt be the heat kernel of a
self-adjoint Laplace type operator L, acting on sections of a metric vector bundle V over a
compact n-dimensional Riemannian manifoldM . Let P(γ) be the path-ordered exponential
determined by L as in Def. 1.1.13. Then for each x, y ∈M and any t > 0, we have

pLt (x, y) = lim
|τ |→0

(4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2P(γ)−1 dΣ-H1

γ,

where the limit goes over any sequence of partitions τ of the interval [0, t] the mesh of which
tend to zero. Here the slash in the integral sign denotes division by (4π)dim(Hxy;τ (M))/2.

Remark 2.2.8. One can also show that

pLt (x, y) = lim
|τ |→0

1

Zτ

ˆ
Hxy;τ (M)

e−E(γ)/2 exp

(
1

3

ˆ t

0

scal
(
γ(s)

)
ds

)
P(γ)−1 dΣ-L2

γ,

where the normalization constant is Zτ := (4π)nN/2(∆Nτ)−n/2
∏N

j=1(∆jτ)n and Hxy;τ (M)

carries the discrete L2 metric (1.2.10). This latter result is contained in [Bär12], Thm. 1.
Compare also [BP08, Thm. 6.1].
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Lemma 2.2.9. For any γ ∈ Hxy;τ (M), we have

E(γ) =
N∑
j=1

d
(
γ(τj−1), γ(τj)

)2

2∆jτ
, (2.2.8)

where E(γ) denotes the energy functional defined in (1.2.1).

Proof. By definition, each segment γ|[τj−1,τj ] is the unique shortest geodesic connecting
γ(τj−1) and γ(τj) in time ∆jτ . Therefore, its speed is equal to 1

∆jτ
d(γ(τj−1), γ(τj)). Hence

2E(γ) =
N∑
j=1

ˆ τj

τj−1

|γ̇(s)|2ds =
N∑
j=1

ˆ τj

τj−1

d
(
γ(τj−1), γ(τj)

)2

(∆jτ)2
ds =

N∑
j=1

d
(
γ(τj−1), γ(τj)

)2

∆jτ
. �

Proof (of Thm. 2.2.7). The proof will consist of two steps. In the first step, we write the
path integral over Hxy;τ (M) as an integral over MN−1 to connect it to the results from
Section 2.1.4. This is very elementary. The second step then relies on additional tools
from stochastic analysis that are contained in Appendix B.1.
Step 1. By Lemma 2.2.9 and by definition of the discrete volume onHxy;τ (M) (see (2.2.5)),
we haveˆ

Hxy;τ (M)

e−E(γ)/2P(γ)−1 dΣ-H1

γ

= tn/2
ˆ
MN−1

exp

(
−

N∑
j=1

d(xj−1, xj)
2

4∆jτ

)
P(γx)−1

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx,

where we set x0 := x, xN := y and for x = (x1, . . . , xN−1) ∈ MN−1 we wrote γx for the
path in Hxy;τ (M) with γx(τj) = xj. This is well-defined for all xM ./ · · · ./ M , which
is a set of full measure. If γi : [0, ti] → M , i = 1, 2 are paths with γ2(0) = γ1(t1), then
path ordered exponential satisfies P(γ1 ∗ γ2) = P(γ2)P(γ1), where γ1 ∗ γ2 denotes the
concatenation of the paths (see Remark 1.1.15). Therefore

P(γx)−1 =
N∏
j=1

P(γxj−1xj ;∆jτ )
−1 = P(γx0x1;∆1τ )

−1 · · · P(γxN−1xN ;∆N τ )
−1,

where γxj−1xj ;∆jτ denotes the unique geodesic connecting xj−1 to xj in time ∆jτ . We
hence find

(4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2P(γ)−1 dΣ-H1

γ =

ˆ
MN−1

N∏
j=1

ẽ∆jτ (xj−1, xj) dx,

where ẽt is the kernel
ẽt(x, y) = et(x, y)J(x, y)−1P(γxy;t)

−1

Comparing with the kernel eL,Λt (x, y) from Remark 2.1.22 for Λ = 1 , we have

ẽt(x, y) = eL,1t (x, y) exp

(
1

12
ric
(
γ̇xy(0), γ̇xy(0)

)
− t

6
scal(x)

)
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so that

(4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2P(γ)−1 dΣ-H1

γ

=

ˆ
MN−1

exp

(
N∑
j=1

(
1

12
ric
(
∆jγx,∆jγx

)
− 1

6
scal(xj−1)∆jτ

)) N∏
j=1

eL,1∆jτ
(xj−1, xj) dx,

where we set ∆jγx = γ̇x(τj−1+)∆jτ = γ̇xj−1,xj(0). By Thm. 2.1.20 (or rather by Re-
mark 2.1.22), the convolution product eL,1∆1τ

∗ · · · ∗ eL,1∆N τ
converges to pLt uniformly on M

as |τ | → 0. Therefore, it is left to show that we may replace the term

exp

(
N∑
j=1

(
1

12
ric
(
∆jγx,∆jγx

)
− 1

6
scal(xj−1)∆jτ

))
, (2.2.9)

by one in this limit. This is the content of the next step.
Step 2. For a partition τ of the interval [0, t] and γ ∈ Cxy;t(M), let γτ ∈ Hxy;τ (M)
be the best piecewise geodesic approximation of γ, i.e. the piecewise geodesic path with
γτ (τj) = γ(τj). This is well defined for Wxy;t-almost all paths γ, since the set of paths
such that (γ(τj−1), γ(τj)) /∈ M ./ M for some j is a zero set. Now for γ ∈ Cxy;t(M), we
have

Sτ (γ) := exp

(
1

6

N∑
j=1

scal
(
γ(τj−1)

)
∆jτ

)
−→ exp

(
1

6

ˆ t

0

scal
(
γ(s)

)
ds

)
:= S(γ)

in Lp(Wxy;t) for any 1 ≤ p < ∞ as |τ | → 0, by Lemma B.1.4. Now readers familiar
with stochastic analysis will notice that the function S is exactly the exponential of the
quadratic variation of the Brownian motion (see Def. B.1.1) and the Brownian bridge,
while the functions

Rτ (γ) := exp

(
1

12

N∑
j=1

ric
(
∆jγ

τ ,∆jγ
τ )

)
are exponentials of the approximations of the quadratic variation, which converge to the
quadratic variation in probability (see Prop. 3.23 and Prop. 5.18 in [Eme89]). This is the
short explanation why we indeed may replace the term RτS

−1
τ = (2.2.9) by 1. To make

this argument rigorous is a technical matter, which is the content of the remainder of the
proof.
By (2.1.15), we have the Feynman-Kac formula for the heat kernel

pLt (x, y) = p∆
t (x, y)

ˆ
Cxy;t(M)

P̃(γ)−1 dWxy;t(γ) (2.2.10)

where P̃(γ) is the stochastic parallel transport. The stochastic parallel transport P̃(γ)
can be approximated by the path-ordered exponentials P(γτ ),

lim
|τ |→0

P(γτ )−1 = P̃(γ)−1. (2.2.11)
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This result is the content of Prop. 8.15 in [Eme89], and the precise statement is that the
convergence (2.2.11) is in measure, with respect to the Brownian bridge measure Wxy;t.
(This may also serve as a definition of P̃(γ)−1 as a measurable function on Cxy;t(M).)
However, in our case, the convergence (2.2.11) is even better: Because the connection
∇ determined by the self-adjoint operator L is metric, the family P(γτ )−1 is pointwise
uniformly bounded, by Lemma 1.3.19. This implies that the limit (2.2.11) even holds in
Lp(Wxy;t) for any 1 ≤ p < ∞. In particular, the stochastic parallel transport is a well-
defined Lp-function. The convergence (2.2.11) can also be seen using the approximation
result Thm. 4.14 in [AD99] on (1.1.16) in local charts.
By Step 1, we want to estimate the difference∣∣∣∣∣pLt (x, y)− (4πt)−n/2

 
Hxy;τ (M)

e−E(γ)/2P(γ)−1dΣ-H1

γ

∣∣∣∣∣
=

∣∣∣∣∣p∆
t (x, y)E

[
P̃(Xxy;t

. )−1
]
−
ˆ
MN−1

(
N∏
j=1

eL,1∆jτ
(xj−1, xj)

)
Rτ (γx)Sτ (γx)−1dx

∣∣∣∣∣
≤ (1) + (2)

where

(1) = p∆
t (x, y)

∣∣∣E [P̃(Xxy;t
. )−1 − P

(
[Xxy;t

. ]τ
)−1

Rτ (X
xy;t
. )Sτ (X

xy;t
. )−1

]∣∣∣ .
and with a constant C0 > 0 such that P(γ) ≤ C1 for all γ ∈ Hxy;t(M) (which exists by
Lemma 1.3.19),

(2) =

ˆ
MN−1

∣∣∣∣∣P(γx)−1

N∏
j=1

p∆
∆jτ

(xj−1, xj)−
N∏
j=1

eL,1∆jτ
(xj−1, xj)

∣∣∣∣∣Rτ (γx)Sτ (γx)−1dx

≤ C0

ˆ
MN−1

∣∣∣∣∣
N∏
j=1

p∆
∆jτ

(xj−1, xj)−
N∏
j=1

e∆,1
∆jτ

(xj−1, xj)

∣∣∣∣∣Rτ (γx)Sτ (γx)−1dx,

In this estimate, e∆,Λ
t (x, y) = eL,Λt (x, y)P(γxy;t) is the kernel from Corollary 2.1.20 for the

Laplace-Beltrami operator ∆ on M and we inserted the term
ˆ
MN−1

P(γx)−1Rτ (γx)Sτ (γx)−1

N∏
j=1

p∆
∆jτ

(xj−1, xj)dx

= p∆
t (x, y)E

[
P
(
[Xxy;t

. ]τ
)−1

Rτ (X
xy;t
. )Sτ (X

xy;t
. )−1d

]
to use the triangle inequality. For the term (1), we have

(1) ≤ p∆
t (x, y)

∣∣∣E [P̃(Xxy;t
. )−1 − P

(
[Xxy;t

. ]τ
)−1
]∣∣∣

+ p∆
t (x, y)

∣∣∣E [P([Xxy;t
. ]τ

)−1
(

1−Rτ (X
xy;t
. )Sτ (X

xy;t
. )−1

)]∣∣∣ .
The first summand converges to zero as |τ | → 0 because of (2.2.11) and the second
summand converges to zero by Lemma B.1.3 and Lemma B.1.4, so it remains to show
that the term (2) converges to zero as well.
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After choosing some R > 0 with R < inj(M), a similar calculation as in the proof of
Thm. 2.1.12 shows that there exists a constant C1 > 0 independent of τ such that∣∣∣∣∣∣
N∏
j=1

e∆,1
∆jτ

(xj−1, xj)−
N∏
j=1

p∆
∆jτ (xj−1, xj)

∣∣∣∣∣∣ ≤ C1

 N∑
j=1

3∑
i=1

(∆jτ)αid(xj−1, xj)
βi

 N∏
j=1

p∆
∆jτ (xj−1, xj)

for all (x1, . . . , xN−1) ∈ MN−1 such that d(xj−1, xj) ≤ R for all j = 1, . . . , N , and where
ai, βi, i = 1, 2, 3 are as in (2.1.25) (i.e. αi + βi/2 ≥ 3/2). On the complement, i.e. on the
set of those tuples (x1, . . . , xN−1) ∈MN−1 where d(xj−1, xj) > R for some j, we have∣∣∣∣∣

N∏
j=1

e∆,1
∆jτ

(xj−1, xj)−
N∏
j=1

p∆
∆jτ

(xj−1, xj)

∣∣∣∣∣ ≤ 2eta1

N∏
j=1

ea2d(xj−1,xj)
2

p∆
∆jτ

(xj−1,xj),

employing Thm. 2.1.8. Let χτ be the indicator function of the set BR
τ ⊂ Cxy;t(M) ap-

pearing in Corollary 2.1.16, i.e. χτ (γ) = 1 if d(γ(τj−1), γ(τj)) ≤ R for all j = 1, . . . , N and
χτ (γ) = 0 otherwise. Furthermore, we have

Rτ (γ)Sτ (γ)−1 ≤ exp

(
a3t+ a4

N∑
k=1

d
(
γ(τk−1), γ(τk)

)2

)
,

where a3 is a bound on the scalar curvature and a4 a bound on the Ricci curvature.
Putting all these estimates together, we obtain (2) ≤ (2a) + (2b), where

(2a) = C2p
∆
t (x, y)

N∑
j=1

3∑
i=1

(∆iτ)αiE

[
χτ
(
Xxy;t
.

)
d
(
Xxy;t
τj−1

, Xxy;t
τj

)βi exp

(
a4

N∑
k=1

d(Xxy;t
τk−1

, Xxy;t
τk

)2

)]
,

and

(2b) = C3p
∆
t (x, y)E

[(
1− χτ (Xxy;t

. )
)

exp

(
(a2 + a4)

N∑
j=1

d(Xxy;t
τj−1

, Xxy;t
τj

)2

)]
.

All constants are independent of the partition τ . Using Lemma B.2.1 and Lemma B.2.6
together with the Hölder inequality, we obtain

(2a) ≤ C4p
∆
t (x, y)

N∑
k=1

3∑
i=1

t−βi/2(∆kτ)αi+βi/2 ≤ C5p
∆
t (x, y)

(
|τ |
t

)1/2

.

Similarly, Corollary 2.1.16 combined with Lemma B.2.6 and the Hölder inequality gives

(2b) ≤ C6p
∆
t (x, y)e−ε/|τ | (2.2.12)

for some ε > 0. This shows that (2)→ 0 as |τ | → 0 and finishes the proof. �

Already from Step 1 of the above proof, we obtain the following corollary.
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Corollary 2.2.10 (A uniform Approximation). Let pLt be the heat kernel of a self-
adjoint Laplace type operator L, acting on sections of a metric vector bundle V over a
compact n-dimensional Riemannian manifoldM . Let P(γ) be the path-ordered exponential
determined by L as in Def. 1.1.13. For a partition τ = {0 = τ0 < τ1 < · · · < τN = t} of
some interval [0, t], define the kernel EL

τ (x, y) equal to

(4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2 exp

 N∑
j=1

(
1

6
scal

(
γ(τj)

)
∆jτ −

1

12
ric
(
∆jγ,∆jγ

))P(γ)−1dΣ-H1
γ,

where ∆jγ := γ̇(τj−1+)∆jτ and the slash over the integral sign denotes division by
(4π)dim(Hxy;τ (M))/2. Then for any T > 0 there exist constants δ, C > 0 such that∣∣pLt (x, y)− EL

τ (x, y)
∣∣ ≤ C

(
|τ |
t

)1/2

p∆
t (x, y)

for all x, y ∈M and all partitions τ of intervals [0, t] with t ≤ T such that |τ | ≤ δt.

This result is stronger than Thm. 2.2.7 in the sense that one has a precise error estimate,
but weaker in the sense that the integrand is more complicated.

While the formula in Thm. 2.2.7 is quite simple and explicit, the drawback is that we
have no control over the uniformity of the approximation in t. This is problematic when
calculating asymptotic expansions of the path integrals in Chapter 3.1. Using the kernel
from Corollary 2.1.17, we will now derive time-slicing approximations of the heat kernel
which are uniformly in t, at the price of a more complicated integrand.

Since we will be taking asymptotic expansions, it will be convenient to have an integration
domain independent of t. Therefore, we will formulate the result involving only the path
spaces Hxy;τ (M) associated to partitions τ of the interval [0, 1]. This can be arranged
by substitution: Let τ be a partition of the interval [0, t] and let τ̃ be the corresponding
partition of the interval [0, 1] (meaning that τj = tτ̃j for every j). Similarly, if γ ∈
Hxy;τ (M), denote by γ̃ ∈ Hxy;τ̃ (M) the path defined by γ̃(s) := γ(st). Then we have

E(γ̃) =
1

2

ˆ 1

0

∣∣γ̇(st)
∣∣2ds =

t

2

ˆ t

0

∣∣γ̇(s)
∣∣2t2ds = tE(γ), (2.2.13)

so e−E(γ)/2 becomes e−E(γ̃)/2t in the path integral formulas. Similarly, the integrals now
have to be normalized through dividing by (4πt)dim(Hxy;τ (M))/2 instead of (4π)dim(Hxy;τ (M))/2

Theorem 2.2.11 (Heat Kernel as a Path Integral II). Let pLt be the heat kernel of
a self-adjoint Laplace type operator L, acting on sections of a metric vector bundle V
over a compact n-dimensional Riemannian manifold M . Then for each T > 0 and each
ν ∈ N0, there exist constants C, δ > 0 such that∣∣∣∣∣pLt (x, y)− (4πt)−n/2

 
Hxy;τ (M)

e−E(γ)/2t Υτ,ν(t, γ) dγ

∣∣∣∣∣ ≤ Ct1+ν |τ |νp∆
t (x, y)

for all x, y ∈M , 0 < t ≤ T and all partitions τ of the interval [0, 1] with |τ | ≤ δ. Here the
slash over the integral sign denotes divison by (4πt)dim(Hxy;τ (M))/2 and Υτ,ν(t, γ) are certain
Hom(Vy,Vx)-valued functions on Hxy;τ (M) which are smooth and compactly supported in
γ and depend polynomially on t.
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More specifically, the functions Υτ,ν from Thm. 2.2.11 are given by the complicated ex-
pression

Υτ,ν(t, γ) :=
∣∣det

(
devτ |γ

)∣∣ N∏
j=1

χ
(
d(γ(τj−1), γ(τj)

) ν∑
i=0

ti(∆jτ)i−n/2
Φi

(
γ(τj−1), γ(τj)

)
i!

(2.2.14)

involving the heat kernel coefficients Φj of pLt and a cutoff function χ with χ(r) = 1 if
r ≤ R/2 and χ(r) = 0 if r ≥ R, where 0 < R < inj(M). Furthermore, | det(devτ |γ)| is the
Jacobian determinant of τ -evaluation map

evτ : Hxy;τ (M) −→MN−1, γ 7−→
(
γ(τ1), . . . , γ(τN−1)

)
. (2.2.15)

The determinant depends on the chosen metric (or volume measure) on Hxy;τ (M), and
in fact, Thm. 2.2.11 holds for any volume on Hxy;τ (M); the difference then lies in this
determinant, which is explicitly computable only in special cases.

Example 2.2.12 (Jacobian of τ -evaluation Map). For some metrics or volumes on
Hxy;τ (M) (τ being a partition of the interval [0, 1]), the Jacobian determinant | det(devτ |γ)|
is computable explicitly. For a curve γ ∈ Hxy;τ (M), let e1(s), . . . , en(s), s ∈ [0, 1], be a
parallel orthonormal frame along γ. Then the vectors

(
0, . . . , ei(τj), . . . , 0

)
∈

N−1⊕
j=1

Tγ(τj)M, 1 ≤ i ≤ n, 1 ≤ j ≤ N − 1

form an orthonormal basis of Tevτ (γ)M
N−1. Let Eij ∈ TγHxy;τ (M) be the pre-images of

these vectors under the differential of the evaluation map.

1. With respect to the discrete L2 metric (1.2.10), we have(
Eij, Ekl

)
Σ-L2 = δikδjl∆jτ. (2.2.16)

Hence if Hxy;τ (M) carries the discrete L2 metric, the Jacobian determinant is con-
stant,∣∣det

(
devτ |γ

)∣∣ = det
((
Eki, Elj

)
Σ-L2

)−1/2

1≤k,l≤n
1≤i,j≤N−1

≡
∏N−1

j=1
(∆jτ)−n/2. (2.2.17)

Note the slight asymmetry here with respect to time inversion, which comes from
the same asymmetry of the discrete L2 metric.

2. Directly from the definition of the discrete H1 volume measure (2.2.5) on Hxy;τ (M),
one obtains that in this case,

∣∣det
(
devτ |γ

)∣∣ =
N∏
j=1

J
(
γ(τj−1), γ(τj)

)
(∆jτ)n/2,

where J(x, y) is the Jacobian of the exponential map, see (2.1.7).
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In Lemma 3.2.9, we calculate | det(devτ |γ)| with respect to the continuous H1 metric
(1.2.5); however, we only consider the case that γ is a minimal geodesic connecting x to
y, and furthermore calculate only the limit of the determinants as |τ | → 0. This already
turns out to be quite involved.

Proof (of Thm. 2.2.11). Let T > 0 and ν ∈ N0. For a partition τ of the interval [0, t], let
τ̃ = τ/t = {0 = τ̃0 < τ̃1 < · · · < τ̃N = 1} be the associated partition of the interval [0, 1],
i.e. τ̃j = τj/t. By Corollary 2.1.17, we have∣∣pt(x, y)− Eν

τ (x, y)
∣∣ ≤ Ct|τ |νp∆

t (x, y) = Ct1+ν |τ̃ |νp∆
t (x, y),

where Eν
τ (x, y) is the convolution product

Eν
τ (x, y) =

(
eν∆1τ

∗ · · · ∗ eν∆N τ

)
(x, y) =

(
eνt∆1τ̃

∗ · · · ∗ eνt∆N τ̃

)
(x, y)

involving the approximate heat kernel

eνt (x, y) = et(x, y)χ
(
d(x, y)

) ν∑
i=0

ti
Φi(x, y)

i!
=: et(x, y)Φ(t;x, y).

The convolution can be written as an integral overMN−1. The setM ./ · · · ./ M ⊂MN−1

of points (x1, . . . , xN−1) such that (xj−1, xj) ∈ M ./ M for each j = 1, . . . , N (where
x0 := x, xN := y) is an open set of full measure in MN−1. Hence we may restrict the
integration to this subset. Furthermore, the τ -evaluation map evτ is a diffeomorphism
between Hxy;τ (M) and M ./ · · · ./ M . Using the transformation formula on this diffeo-
morphism yields

Eν
τ (x, y) = (4π)−nN/2

ˆ
Hxy;τ (M)

e−E(γ)/2

(
N∏
j=1

Φ
(
∆jτ ; γ(τj−1), γ(τj)

)
(∆jτ)n/2

)∣∣det
(
devτ |γ

)∣∣dγ.
Now consider the rescaling map

St : Hxy;τ (M) −→ Hxy;τ̃ (M), γ 7−→ γ̃ =
[
s 7→ γ(st)

]
.

We have evτ = evτ̃ ◦ St, ∆jτ = t∆j τ̃ and

Φ
(
∆jτ ; γ(τj−1), γ(τj)

)
= Φ

(
t∆j τ̃ ; γ̃(τ̃j−1), γ̃(τ̃j)

)
(2.2.18)

for each j = 1, . . . , N so that, again with the transformation formula,

Eν
τ (x, y) = (4πt)−nN/2

ˆ
Hxy;τ̃ (M)

e−E(γ̃)/2t

(
N∏
j=1

Φ
(
t∆j τ̃ ; γ̃(τ̃j−1), γ̃(τ̃j)

)
(∆j τ̃)n/2

)∣∣det
(
devτ̃ |γ̃

)∣∣dγ̃,
where we used (2.2.13) above. This finishes the proof. �
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2.2.4 Path Integral Formulas for the Heat Trace

For the heat trace, Thm. 2.2.7 yields the following result.

Theorem 2.2.13 (Heat Trace as a Path Integral I). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle V over a closed Riemannian
manifold M . Let P(γ) be the path ordered exponential determined by L as in Def. 1.1.13.
Then for each t > 0, we have

Tr e−tL = lim
|τ |→0

 
Lτ (M)

e−E(γ)/2 trP(γ)−1 dΣ-H1

γ,

where the limit goes over any sequence of partitions τ of the interval [0, t] the mesh of
which tend to zero and the slash in the integral sign denotes division by (4π)dim(Lτ (M))/2.

Remark 2.2.14. In the case that L = ∇∗∇ for a metric connection ∇, i.e. V = 0, we
have trP(γ)−1 = tr[γ‖t0]−1 = tr hol(γ), the trace of the holonomy of the loop γ.

Proof. It is well known that the trace of a trace-class operator is given by integrating its
kernel over the diagonal in M ×M ,

Tr e−tL =

ˆ
M

tr pLt (x, x)dx. (2.2.19)

Let n be the dimension of M . Then the dimension of Hxx;τ (M) is n(N − 1). From
Thm. 2.2.7 and the co-area formula (2.2.7) for the discrete H1 volume, we therefore
obtain

Tr e−tL =

ˆ
M

lim
|τ |→0

(4πt)−n/2
 
Hxx;τ (M)

e−E(γ)/2 trP(γ)−1dγ dΣ-H1

x

= lim
|τ |→0

(4π)−nN/2t−n/2
ˆ
M

ˆ
Hxx;τ (M)

e−E(γ)/2 trP(γ)−1dγΣ-H1

dx

= lim
|τ |→0

(4π)−nN/2
ˆ
Lτ (M)

e−E(γ)/2 trP(γ)−1dγΣ-H1

dx

This finishes the proof (because dim(Lτ (M)) = nN/2), if we justify the exchange of
integration and taking the limit |τ | → 0. This follows if we show that the integrand

trEL
τ (x, x) =

ˆ
Hxx;τ (M)

e−E(γ)/2 trP(γ)−1dΣ-H1

γ.

is uniformly bounded. By the calculations from the proof of Thm. 2.2.7, we have

EL
τ (x, x) =

ˆ
MN−1

N∏
j=1

e∆jτ (xj−1, xj)P(γxj−1xj ;t)
−1J(xj−1, xj)

−1dx1 · · · dxN−1

≤
ˆ
MN−1

N∏
j=1

p∆
∆jτ

(xj−1, xj)e
a1∆jτ+a2d(xj−1,xj)

2 · · · dxN−1

= ea1tp∆
t (x, x)E

[
exp

(
a2

N∑
j=1

d
(
Xxx;t
τj−1

, Xxx;t
τj

)2

)]
≤ Cea1tt−n/2
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for some constants a1, a2, where we set x0 := xN := x and again used several estimates
that we applied earlier in this thesis already, namely Thm. 2.1.8 and the Taylor expansion
(2.1.8) in the first step, as well as the estimate on P(γ) (Lemma 1.3.19), Lemma. B.2.6
and Thm. 2.1.5 in the third step. This provides a uniform bound and the compactness of
the integration domain implies that we may exchange integration and taking the limit.�

Again, we cannot replace the limit t → 0 with the limit |τ | → 0, which is a consider-
able limitation when taking asymptotic expansions. The following result is the analog
of Thm. 2.2.11; again, we obtain a precise remainder estimate at the cost of a more
complicated integrand.

Theorem 2.2.15 (Heat Trace as a Path Integral II). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle V over a closed Riemannian
manifold M of dimension n. Then for each T > 0, ν ∈ N0, there exist constants C, δ > 0
such that ∣∣∣∣Tr e−tL −

 
Lτ (M)

e−E(γ)/2t tr Υ◦τ,ν(t, γ) dγ

∣∣∣∣ ≤ Ct1+ν−n/2|τ |ν

for all 0 < t ≤ T and all partitions τ of the interval [0, 1] with |τ | ≤ δ. Here the slash over
the integral sign denotes divison by (4πt)dim(Lτ (M))/2 and Υ◦τ,ν is given by the same formula
as Υτ,ν in Thm. 2.2.11 above, but taking the Jacobian determinant of the τ -evaluation map

ev◦τ : Lτ (M) −→MN , γ 7−→
(
γ(τ0),γ(τ1), . . . , γ(τN−1)

)
(2.2.20)

instead of | det d(evτ |γ)|.

Proof. Let n be the dimension of M so that dim(Hxy;τ (M)) = n(N − 1) for all x, y ∈M .
Let T > 0, ν ∈ N0 and let τ be a partition of the interval [0, 1]. Using (2.2.19) above, we
obtain from Thm. 2.2.11 that∣∣∣∣∣Tr e−tL − (4πt)−nN/2

ˆ
M

ˆ
Hxx;τ (M)

e−E(γ)/2t tr Υτ,ν(t, γ) dγdx

∣∣∣∣∣ ≤ C0t
1+ν |τ |ν

ˆ
M

p∆
t (x, x)dx,

The estimate p∆
t (x, x) ≤ C1t

−n/2, which follows from Thm. 2.1.5, then implies that the
right hand side can be estimated from above by C2t

1+ν−n/2|τ |ν for some constant C2.
Now by the co-area formula,

ˆ
M

ˆ
Hxx;τ (M)

e−E(γ)/2t tr Υτ,ν(t, γ) dγ dx

=

ˆ
Lτ (M)

e−E(γ)/2t tr Υτ,ν(t, γ)
∣∣det

(
dev0|NγHγ(0),γ(0);τ (M)

)∣∣ dγ,
where ev0 : Lτ (M) −→ M , γ 7→ γ(0) = γ(1) is the evaluation map. Hence it remains
to show that for each γ ∈ Hxx;τ (M), we have Υ◦τ,ν(γ) = Υτ,ν(γ)| det

(
dev0|NγHxx;τ (M)

)
|, or

equivalently ∣∣det
(
dev◦τ |γ

)∣∣ =
∣∣det

(
devt|NγHxx;τ (M)

)∣∣∣∣det
(
devτ |γ

)∣∣,
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where evτ : Hxx;τ (M) → MN−1 is the evaluation map defined in (2.2.15). However,
with respect to the orthogonal splittings TγLτ (M) = TγHxx;τ (M) ⊕ NγHxx;τ (M) and
Tev◦τ (γ)M

N = Tγ(0)M ⊕ Tevτ (γ)M
N−1, we have

dev◦τ |γ =

(
dev0|NγHxx;τ (M) 0

0 devτ |γ

)
,

whence the result follows. �

2.3 The Case of a Manifold with Boundary
When trying to define the infinite-dimensional versions of the spaces of reflected geodesics,
i.e. spaces of "reflecting paths of finite energy", one encounters considerable problems. To
illustrate these, consider the half space M := {(x, y) ∈ R2 | x ≥ 0} and let γ = (γ1, γ2) ∈
H1([0, t],R2). Setting

γ̃(s) :=

{(
γ1(s), γ2(s)

)
if γ1(s) ≥ 0(

−γ1(s), γ2(s)
)

if γ1(s) < 0,

we associate a path γ̃ in M to each path γ in R2. However, this mapping is not injective:
For example, the path

γ̃(s) =

{(
1− s, 0

)
if s ≤ 1(

s− 1, 0
)

if s ≥ 1.
(2.3.1)

defined on [0, 2] has the pre-images γ̃ and γ(s) := (1− s, 0). Heuristically, if one notices a
particle in M that moving along the trajactory γ̃ as in (2.3.1), one might ask whether the
particle reflects at the boundary at time 1, or if it changes direction for some other reason
(e.g. due to collisions with other molecules). Put differently: If the boundary wasn’t there,
would the particle have continued as a straight line or would it have taken the reverse
gear anyway?
This issue is not relevant for the path integrals over the finite-dimensional spaces Hrefl

x;τ (M)
because they can only change directions at the times τj, and the set of paths γ with
γ(τj) form a zero set. In the infinite-dimensional setup, however, there are no nodes,
so every instance that an absolutely continuous path γ hits the boundary is potentially
problematic. Of course, an "integral" over such a set of paths is not defined anyway, but
one also runs into trouble even defining a good manifold structure on this set of paths.

A solution to these problems is to consider the Riemannian manifold with boundary M
as an orbifold. Remember, one class of orbifolds M arises as the quotient of a manifold
M by the action of a finite group (called good orbifolds), and it is exactly this kind of
orbifolds that we need. Namely, given a Riemannian manifold M with boundary, we can
define the double of M as the topological space

M := M
∐

∂M
M,

that is, two copies ofM glued together at the boundary. M comes with a natural Z2-action
that exchanges the two halves, with the quotient M/Z2 homeomorphic to M , so that this
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construction gives M the structure of an orbifold in a natural way. This construction is
also intimately related to involutive boundary conditions, as we will explain in the next
section.
Now taking the view that a manifold with boundary is nothing but a certain kind of
orbifold, it seems natural that the appropriate path spaces should be spaces of orbifold
maps from the orbifold [0, t] (which is a manifold with boundary, hence an orbifold as
argued above − see also Example 2.3.4) into the orbifold M . Essentially, what orbifold
paths do is remembering the additional information discussed earlier, namely whether a
path hitting the boundary reflects there or not. The spaces of such maps carry again the
structure of an orbifold. These spaces indeed turn out to be a good notion of path spaces
for path integrals on manifolds with boundary.

To obtain path integral formulas for the heat kernel, we need a certain restriction on the
metric of the manifold M , namely that the Z2-invariant extension to the double M is
smooth (similar assumptions need to be made on the scalar product of the vector bundle
and the Laplacian L, for details see Assumption 2.3.7 below). In particular, this is fulfilled
if M has a metric collar decomposition near the boundary.

This section is organized as follows. First, in Subsection 2.3.1, we give a more detailed con-
struction of the orbifold structure on a Riemannian manifold with boundary and explain
the relation between equivariant vector bundles on the double and involutive boundary
conditions. Then, in Subsection 2.3.2, we introduce the relevant path spaces as well as
their finite-dimensional approximations. Finally, in Subsection 2.3.3, we give path inte-
gral formulas for the heat kernel and the heat trace on manifolds with boundary, using
the orbifold path spaces introduced before.

2.3.1 The Double of a Manifold with Boundary

We now give a more detailed construction of the double of a manifold with boundary.
During the course of this thesis, we always take the multiplicative representation Z2 :=
{+1,−1}. Elements of Z2 will usually be denoted by ε.

Construction 2.3.1 (The Double of a Manifold with Boundary). For a compact
M Riemannian manifold with boundary M , set

M = (M × Z2)/ ∼,

where (x, ε) ∼ (x′, ε′) if either (x, ε) = (x′, ε′) or if x = x′ and both lie in ∂M . The
equivalence classes of (x, ε) will be denoted by square brackets, [x, ε]. We identify M with
the points [x, 1] ∈ M . A Z2-action on M is defined by ε′ · [x, ε] := [x, ε′ε]. This action
fixes exactly the boundary ∂M ⊂M and we have

M ∪ (−M) = M and M ∩ (−M) = ∂M.

At first, M is only a topological space with a continuous Z2-action. However, there
is a natural smooth structure on M such that the Z2-action is smooth and isometric
(with respect to the − possibly non-smooth − induced Riemannian metric on M). It is
defined as follows: Near points x = [x, ε] ∈ M with x /∈ ∂M , the map [x, ε] 7→ x is a



2.3. THE CASE OF A MANIFOLD WITH BOUNDARY 67

homeomorphism, so near x, a smooth structure on M is induced by the one of M , by
requiring that this projection map be smooth. To define a smooth structure near points
[x, ε] with x ∈ ∂M , define the map

φM : ∂M × [0, R) −→M, (x, r) 7−→ expx(rn),

where n is the unit normal to ∂M pointing into M ⊂ M . φ is an open embedding for
R > 0 small enough. Now define

φM : ∂M × (−R,R) −→M, (x, r) 7→
[
φM(x, |r|), sign(r)

]
.

Then φM is a homeomorphism onto its image, which contains all points x ∈ ∂M ⊂ M .
This defines a smooth structure on a neighborhood of ∂M ⊂M , by requiring that φM be
a diffeomorphism. Hence M is a closed manifold.
Because the quotient M/Z2 is homeomorphic to M via the projection map, this induces
an orbifold structure on M .

Remark 2.3.2 (Functoriality). If f : M −→ N is a local isometry of compact mani-
folds with boundary (which by definition sends ∂M to ∂N), then

f : M −→ N, [x, ε] 7−→ [f(x), ε]

is clearly an equivariant map from M to N . It is smooth because for r small enough,

(φ
−1

N ◦ f ◦ φM)(x, r) = φ
−1

N

([
f
(
expMx (|r|n)

)
, sign(r)]

)
= φ

−1

N

([
expNf(x)

(
dfx(|r|n)

)
, sign(r)]

)
= φ

−1

N

([
expNf(x)(|r|n), sign(r)]

)
= (f(x), r),

where in the second step, we used that f is a local isometry. One can easily check that we
obtain a functor from the category of compact Riemannian manifolds with boundary (with
local isometries as morphisms) to the category of (closed) Z2-manifolds with equivariant
maps. From the latter category, there is a faithful (but not full) functor to the category
of orbifolds, so in total, one obtains a functor from the category of Riemannian manifolds
with boundary to the category of orbifolds.
Notice however the following subtlety in this construction: The above construction does
not give a functor from the category of manifolds with boundary (without Riemannian
metric, where the morphisms are local diffeomorphisms preserving the boundary) to the
category of Z2-manifolds, because there are issues with a smooth structure. For example,
the homeomorphism of M := [0,∞) × R sending (x, y) to (x, y + ax), a ∈ R is an
automorphism of manifolds with boundary, but for a 6= 0, there is no smooth extension
of it as an equivariant smooth automorphism of M , no matter how the smooth structure
is chosen on M .

Remark 2.3.3 (The Metric on the Double). A compact Riemannian manifold with
boundary M induces an equivariant metric g on the double M . However, this metric
need not be smooth: With respect to the chart φM described above, it has the Taylor
expansion near the boundary

g(x, r) = dr2 + g0(x) + |r|g1(x) +O(r2), x ∈ ∂M, r ∈ (−R,R),

where g0 and g1 are smooth metrics on ∂M . Hence g will generally be only Lipschitz
continuous.
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Example 2.3.4 (The Interval). The double of an interval [a, b] is equivariantly diffeo-
morphic to S1 ⊂ C, with the Z2-action coming from complex conjugation. In particular,
[a, b] carries the structure of an orbifold in a natural way.

Construction 2.3.5 (Equivariant Bundles on the Double). Let V be a vector bun-
dle over M , and let B ∈ C∞(∂M,End(V|∂M)) be a symmetric endomorphism field with
B2 = id. The pair (V , B) gives rise to an equivariant bundle V on the double M . It is
defined by setting

V := V × Z2/ ∼
for the total space, where (v, ε) ∼ (Bv,−ε) if v lies over a point in the boundary. That is,
one takes two copies of the total space V and glue them together at the boundary using
the involution B. The fibers of V at points εx ∈M with x ∈M are

Vεx := {[v, ε] | v ∈ Vx} ∼= Vx.

The bundle V has a Z2-equivariant structure, i.e. a group homomorphism

ρ : Z2 −→ Aut(V)

that projects down to the Z2-action on M . Namely, we can set for x ∈M

ρ(ε) : Vx −→ Vεx, [v, ε′] 7−→ [v, εε′].

Note that if x ∈ ∂M , then ρ(−1)[v, ε] = [v,−ε] = [Bv, ε], so ρ(−1)|∂M = B under the
identification V|M ∼= V .
Orbifold vector bundles over M are precisely given by equivariant vector bundles over M
[Rua00]. Hence a vector bundle V over M together with an endomorphism field B as
above defines an orbifold vector bundle over M considered as an orbifold.
If furthermore V is a metric vector bundle and L is a formally self-adjoint Laplace type
operator such that B is an involutive boundary condition for L, then by equivariant
extension, we obtain an equivariant Laplace type operator L acting on sections of V .

Conversely, if V is a Z2-equivariant metric vector bundle over M (i.e. an orbifold vector
bundle over the orbifold M), and L is a formally self-adjoint, equivariant Laplace type
operator acting on sections of V , then V := V|M is a metric vector bundle over M and
the operator L := L|M is a formally self-adjoint Laplace type operator. with involutive
boundary condition B := ρ(−1)|∂M ∈ C∞(∂M,V|∂M).

Example 2.3.6. We review the examples given in Section 1.1.2 in this setup.

(a) If V = R or C a trivial line bundle, there are basically two reasonable ways to turn
V into an equivariant bundle: We can set ρ(−1) = −1 or ρ(−1) = 1. The first
case induces Dirichlet boundary conditions, while the other choice induces Neumann
boundary conditions on functions on M .

(b) The bundle V = ΛkT ∗M can be turned into an equivariant bundle by setting ρ(−1) =
α∗, the pullback along the "flip map" α : M → M , x 7→ −x. Because this sends dr
to −dr, this induces absolute boundary conditions on sections of ΛkT ∗∂M over M .
Taking ρ(−1) = −α∗ instead induces relative boundary conditions.
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From now on, we make the following assumption, which allows us to obtain path integral
formulas for the heat kernel on compact manifolds with boundary.

Assumption 2.3.7 (Smoothness). The induced invariant metrics on M and V are
smooth, as well as the coefficients of the operator L.

Of course Assumption 2.3.7 is very strong. In particular, it implies that ∂M is a totally
geodesic submanifold of M , i.e. the second fundamental form of the boundary vanishes
identically. This follows from the fact that ∂M is the fixed point set of the flip map
α : M → M , x 7→ −x, which is an isometry (and smooth by our assumption). Assump-
tion 2.3.7 is satisfied for example if M is a metric collar near the boundary.
In particular, Assumption 2.3.7 implies that M is a closed Riemannian manifold with a
smooth Riemannian metric, so that all results from the closed case apply.

Example 2.3.8 (Hemisphere). An example for a manifold satisfying Assumption 2.3.7
is

M = {v = (v1, . . . , vn+1) ∈ Sn ⊂ Rn+1 | vn+1 ≥ 0},

the northern hemisphere of Sn, so that ∂M ≈ Sn−1 is the equator and M = Sn. Here the
Z2 action on M is given by ε · (v1, . . . , vn, vn+1) = (v1, . . . , vn, εvn+1) for ε = ±1 ∈ Z2.

2.3.2 Orbifold Path Spaces

Having noticed above that a Riemannian manifold M with boundary naturally carries an
orbifold structure, induced by the Z2-manifold M , the natural consequence is that the
space of paths inM should have the structure of an (infinite-dimensional) orbifold as well.
However, maps between orbifolds are a complicated matter and it took mathematicians
quite a while to realize what the correct notion of maps should be. Namely, it turns out
that given two orbifolds N = N/H and M = M/G, the set of (let’s say continuous)
orbifold maps should in general not be equal to the set of equivariant maps (f, ϕ) from
N to M , i.e. smooth maps f : N −→ M with f(h · x) = ϕ(h) · f(x). Although each
equivariant map induces an orbifold map, there may be more orbifold maps than those
that come from equivariant maps (see [Che06, p. 5f]). This effect does not occur when we
consider the maps from an interval [0, t] into an orbifoldM (this is related to the fact that
[0, t] is contractible), but it will occur when we consider maps from S1 into an orbifold,
i.e. when we consider the loop space of an orbifold (see Remarks (1) and (2) on p. 9 in
[Che06] and our definition of the space of orbifold loops below).
We will not further elaborate on the theory of orbifolds and their maps here, instead
we will make ad hoc definitions, which is enough for our purposes. For details, we refer
to the literature: A good introduction to orbifolds and maps between them is given in
[MP97] and [ALR07]. In [Che06], mapping spaces of orbifolds are constructed as infinite-
dimensional orbifolds. See also [CR02], [Rua00] or [Poh10].

Remark 2.3.9. As discussed in Example 2.3.4, closed intervals are manifolds with bound-
ary and therefore can be considered as orbifolds as in Section 2.3.1. Therefore, maps from
an interval into an orbifold can be treated without needing the concept of an orbifold with
boundary.
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To start with, let us define the orbifold path space H1,orb([0, t],M), which is the orbifold
quotient of the (infinite-dimensional) manifold

H1,orb([0, t],M) := H1([0, t],M),

by its Z2-action, which is given by post-composition. That is, we set

H1,orb([0, t],M) := H1,orb([0, t],M)/Z2

which then naturally carries the structure of an (infinite-dimensional) orbifold.
To find the appropriate notion of orbifold path spaces with one fixed endpoint, notice
that in the case that M is closed, the space Hx;t(M) can be defined as the pullback

Hxy;t(M) //

��

H1([0, t],M)

ev0,t

��
•

(x,y)
//M ×M

, (2.3.2)

where ev0,t is the evaluation sending γ to (γ(0), γ(t)), • denotes the one-point manifold
and (x, y) denotes the map that sends the one point to (x, y) ∈ M ×M . Mirroring this
construction, we define the space Horb

xy;t(M) as the pullback

Horb
xy;t(M) //

��

H1,orb([0, t],M)

ev0,t

��
•

(x,y)
//M ×M

(2.3.3)

in the category of orbifolds.
To explicitly calculate pullbacks of orbifolds, the easiest way it is probably to associate to
each orbifold a representing Lie groupoid (see Def. 1.47 in [ALR07]) and then calculate
the pullback of Lie groupoids (see e.g. Def. 1.41 in [ALR07]). This must be done as a
homotopy-pullback, i.e. a pullback in a 2-category (since Lie groupoids form a 2-category).
However, we do not need that the orbifold path spaces defined are actually given as
certain pullbacks, so we will not further delve into these details; instead we will present
the outcome and use the following ad hoc definition for the space Horb

xy;t(M) in this thesis.
We just claim that this is indeed a representative of the pullback in (2.3.3).

Notation 2.3.10 (Pinned Orbifold Paths). The pullback Horb
xy;t(M) can be explicitly

described as the quotient of the manifold

Horb
xy;t(M) :=

∐
ε1,ε2∈Z2

Hε1x,ε2y;t(M)× {(ε1, ε2)}

by the diagonal Z2-action, i.e.

Horb
xy;t(M) = Horb

xy;t(M)/Z2

with the induced orbifold structure.
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Notice that this action is free so that Horb
xy;t(M) is actually a manifold.

The elements of Horb
xy;t(M) are equivalence classes [γ, ε1, ε2] containing the to representa-

tives (γ, ε1, ε2) and (−γ,−ε1,−ε2). We will often abuse notation and write just γ instead
of [γ, ε1, ε2] for elements of Horb

xy;t(M) (in particular when integrating over these spaces,
where γ is used as an integration variable). Of course, when doing so, one has to keep this
inaccuracy in mind and remember that such an element γ also contains information on
the signs ε1 and ε2 (which can be recovered from the path though, if x respectively y is in
M \∂M), and that the path γ can also be replaced by −γ. However since the map x 7→ −x
is an isometry, the energy of such an element is well defined (because E(γ) = E(−γ)).

Moreover, we define the orbifold loop space Lorb
t (M) as the pullback

Lorb
t (M) //

��

H1,orb([0, t],M)

ev0,t

��
M

∆
//M ×M,

where ∆ : M −→ M ×M , x 7→ (x, x) is the inclusion as the diagonal (induced by the
diagonal map ∆ : M −→ M ×M). In this case, the pullback is not a manifold, but a
proper orbifold.

Notation 2.3.11 (The Orbifold Loop Space). The orbifold loop space Lorb
t (M) con-

sists of two components,

Lorb
t (M) = Lorb,+

t (M)
∐

Lorb,−
t (M),

which we call positive and negative component. The positive component is given as the
orbifold quotient of the manifold

Lorb,+
t (M) := Lt(M)× {+1} = H1(S1

t ,M)× {+1}

by the Z2-action given by ε · (γ, 1) = (ε ◦ γ, 1) (where S1
t = R/tZ is the circle of length

t). This is nothing but the Z2-manifold of equivariant maps from S1
t to M . The negative

component is the orbifold quotient of the manifold

Lorb,−
t (M) =

⋃
x∈M

Hx,−x;t(M)× {−1}

by the Z2-action given by ε · (γ,−1) = (ε ◦ γ,−1). Hence orbifold loops in M are not only
loops in M (i.e. paths with γ(t) = γ(0)), but also paths that return to minus the starting
point (i.e. γ(t) = −γ(0)).

Put together, Lorb
t (M) is the orbifold quotient of the manifold

Lorb
t (M) =

∐
ε∈Z2

⋃
x∈M

Hx,εx;t(M)× {ε}

by the Z2-action given by ε′ · (γ, ε) = (ε′γ, ε) (note that this is not the diagonal Z2-action).
Here the information about the ε ∈ Z2 indicates whether the path γ lies in the positive or
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negative component of M . This is clear for the path γ with γ(0) /∈ ∂M , but paths γ with
γ(0) ∈ ∂M appear twice in Lorb

t (M), because then both γ(0) = γ(t) and γ(0) = −γ(t).
These paths can only be distinguished by the element ε ∈ Z2.
Lorb
t (M) is not a manifold (unless ∂M = ∅), since any γ ∈ Lorb

t (M) that lies completely
in ∂M is a fixed point of the Z2 action.
To define the finite-dimensional approximations of the spaces defined above in (2) and (3),
we suppose that the smoothness Assumption 2.3.7 is satisfied. In this case, the definition
is straight forward:

Notation 2.3.12 (Finite-dimensional Approximations). For a partition τ = {0 =
τ0 < τ1 < · · · < τN = t} of an interval [0, t], we define Horb

xy;τ (M) by the orbifold quotient
of

Horb
xy;τ (M) :=

∐
ε1,ε2∈Z2

Hε1x,ε2y;τ (M)× {(ε1, ε2)}

by the diagonal Z2-action. We write Lorb
τ (M) be the orbifold quotient of

Lorb
τ (M) :=

∐
ε∈Z2

⋃
x∈M

Hx,εx;τ (M)× {ε}

by the post-composition Z2-action (which is not the diagonal Z2-action). Here the spaces
Hz0,z1;τ (M) are defined using the definition from Section 2.2.1 for the closed Riemannian
manifold M .

The orbifold path spaces Horb
xy;τ (M) can be endowed with the same Riemannian metrics

as before, in the obvious way, which turns them into Riemannian manifolds. The corre-
sponding integral is then defined byˆ

Horb
xy;τ (M)

F (γ) dγ =
1

2

∑
ε1,ε2∈Z2

ˆ
Hε1x,ε2x;τ (M)

F ([γ, ε1, ε2]) dγ, (2.3.4)

compare Remark 2.3.13 below. On Lorb
τ (M), one defines measures by defining invariant

measures on Lorb
τ (M) and pushing them down with the reflection map. For example the

discrete H1 volume will be defined analogously to (2.2.6) by the formulaˆ
Lorb
τ (M)

f
(
γ(τ1), . . . , γ(τN), ε

)
dΣ-H1

γ

=
1

2

∑
ε∈Z2

ˆ
M
N
f(x1, . . . , xN , ε)

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx1 · · · dxN
(2.3.5)

for integrable functions f on M
N × Z2, where we set x0 := εxN in the summand with

index ε.

Remark 2.3.13 (Integration over Orbifolds). In general, the integral over a Rie-
mannian orbifold Σ of the form Σ := Σ/G is defined asˆ

Σ

f(x) dx =
1

|G|

ˆ
Σ

f(x) dx.

In the case that Σ is a manifold (as above, when Σ = Horb
xy;τ (M) and G = Z2, |G| = 2),

this reduces to the usual integral over the Riemannian volume density.
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Notice that there is a well-defined map

α : Horb
xx;τ (M) −→ Lorb

τ (M), [γ, ε1, ε2] 7−→ [γ, ε1ε2]. (2.3.6)

This allows us to formulate a co-area formula. Namely, similar to before (see (2.2.7)), the
discrete H1 volume measures are manufactured in such a way that we have

ˆ
Lorb
τ (M)

F (γ) dΣ-H1

γ = t−n/2
ˆ
M

ˆ
Horb
xx;τ (M)

α∗F (γ) dΣ-H1

γ dx (2.3.7)

for integrable functions F on Lorb
τ (M). To verify (2.3.7), write F (γ) = F ([γ, ε]) =

f(γ(τ1), . . . , γ(τN), ε) for an integrable function f on MN × Z2 and calculate
ˆ
M

ˆ
Horb
xx;τ (M)

α∗F (γ) dΣ-H1

γ dx

=
1

2

∑
ε1,ε2∈Z2

ˆ
M

ˆ
Hε1x,ε2x;τ (M)

F
(
[γ, ε1ε2]

)
dΣ-H1

γ dx

=
1

2

∑
ε∈Z2

ˆ
M

ˆ
Hx,εx;τ (M)

F
(
[γ, ε]

)
dΣ-H1

γ dx

= tn/2
∑
ε∈Z2

ˆ
M
N
f(x1, . . . , xN , ε])

(
N∏
j=1

J(xj−1, xj)(∆jτ)n/2

)−1

dx1 · · · dxN

= tn/2
ˆ
Lorb
τ (M)

F (γ) dΣ-H1

γ,

using Remark 2.3.13, the definition (2.2.5) of the discrete H1 volume on Hxy;τ (M) as well
as (2.3.5).

2.3.3 Orbifold Path Integrals

Again, we are in the setting that L is a self-adjoint Laplace type operator with involutive
boundary condition B, that acts on sections of a metric vector bundle V over an n-
dimensional Riemannian manifold M . From the constructions in Section 2.3.1, we obtain
an equivariant metric vector bundle V on the double M , and an equivariant self-adjoint
Laplace type operator L. We always assume that Assumption 2.3.7 is satisfied, hence this
is a Laplace type operator with smooth coefficients on the compact manifold M .
For the spaces Horb

xy;τ (M) and Lorb
τ (M), there are B-path ordered exponentials as well.

Definition 2.3.14 (B-path-ordered exponential). On the orbifold path spaces, we
define the B-path-ordered exponential as follows.

(1) For γ = [γ, ε1, ε2] ∈ Horb
xy;t(M), define

PB(γ) := PB([γ, ε1, ε2]) = ρ(ε2)P(γ)ρ(ε1) ∈ Hom(Vx,Vy).



74 CHAPTER 2. THE HEAT KERNEL AS A PATH INTEGRAL

(2) For γ = [γ, ε] ∈ Lorb
t (M), set

PB(γ) := PB([γ, ε]) = ρ(ε′ε)P(γ)ρ(ε′) ∈ End(Vγ(0)),

where ε′ = 1 if γ(0) ∈M and ε′ = −1 otherwise.

In the above formulas, P(γ) is the path-ordered exponential along paths in M associated
to L and ρ : Z2 → Aut(V) is the representation that makes V an equivariant bundle.

Remark 2.3.15 (Well-Definedness). Let us make some explanations regarding the
definition of the B-path-ordered exponential above. We need to check that for γ ∈ Horb

xy;t,
PB(γ) is independent of the choice of representative (γ, ε1, ε2) or (−γ,−ε1,−ε2). Because
L and hence the connection ∇ and the potential V determined by L are equivariant, so
is the path-ordered exponential, i.e.

P(−γ) = ρ(−1)P(γ)ρ(−1).

Hence

ρ(−ε2)P(−γ)ρ(−ε1) = ρ(−ε2)ρ(−1)P(γ)ρ(−1)ρ(−ε1) = ρ(ε2)P(γ)ρ(ε1).

Therefore, PB(γ) does not depend on the representative and descends to a well-defined
function on Horb

xy;τ (M).
Similarly, one shows that for γ ∈ Lorb

τ (M), PB(γ) as defined in formula (2) is independent
of the representative.

Remark 2.3.16 (Compatibility). Notice that the definitions (1) and (2) behave well
together in the sense that for any element [γ, ε1, ε2] ∈ Horb

xx;t(M), we have

PHxx;t(M)
B ([γ, ε1,ε2]) = PLt(M)

B ([γ, ε1ε2]) = (α∗PLt(M)
B )([γ, ε1, ε2]),

where α is the map from Horb
xx;τ (M) to Lorb

τ (M) defined above in (2.3.6). Therefore, no
confusion can arise from denoting these different maps with the same letter.

With this definition, we have the following result.

Theorem 2.3.17 (The Heat Kernel as an Orbifold Path Integral I). Let L be a
self-adjoint Laplace type operator with involutive boundary condition B, acting on sections
of a metric vector bundle V over a compact n-dimensional Riemannian manifold with
boundary M . Suppose that the smoothness Assumption 2.3.7 is satisfied and let PB(γ) be
the B-path-ordered exponential determined by L as in Def. 2.3.14 (1). Then

pLt (x, y) = lim
|τ |→0

(4πt)−n/2
 
Horb
xy;τ (M)

e−E(γ)/2PB(γ)−1 dΣ-H1

γ

for any x, y ∈ M and t > 0. Here the slash in the integral sign denotes division by
(4π)dim(Horb

xy;τ (M))/2.

We need the following Lemma.
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Lemma 2.3.18. Under Assumption 2.3.7, the heat kernel pLt of L is given by

pLt (x, y) = pLt (x, y) + pLt (x,−y)ρ(−1) = pLt (x, y) + ρ(−1)pLt (−x, y), (2.3.8)

where pLt is the heat kernel of L.

Remark 2.3.19. Note that because L is equivariant, its heat kernel pL satisfies the
equivariance condition

pLt (x, y) = ρ(−1)pLt (−x,−y)ρ(−1). (2.3.9)

This shows that indeed the two terms on the right hand side of (2.3.8) agree.

Proof. For u ∈ L2(M,V), set

Ptu(x) :=

ˆ
M

(
pLt (x, y) + ρ(−1)pLt (−x, y)

)
u(y)dy, x ∈M.

Clearly, Pt is a bounded operator on L2(M,V). For u ∈ L2(M,V), denote by

u(x) :=

{
u(x) if x ∈M
ρ(−1)u(−x) if x /∈M.

the section in L2(M,V) obtained from u by equivariant extension. Then

Ptu(x) =

ˆ
M

(
pLt (x, y) + ρ(−1)pLt (−x, y)

)
u(y)dy

=

ˆ
M

pLt (x, y)u(y)dy +

ˆ
−M

ρ(−1)pLt (−x,−y)u(−y)dy

=

ˆ
M

pLt (x, y)u(y)dy +

ˆ
−M

ρ(−1)pLt (−x,−y)ρ(−1)︸ ︷︷ ︸
=pLt (x,y)

u(y)dy

=

ˆ
M

pLt (x, y)u(y)dy = e−tLu(x)

so that Ptu = (e−tLu)|M . Hence for any u ∈ L2(M,V), Ptu is smooth for t > 0 and
satisfies the heat equation,

(∂t + L)Ptu =
(
(∂t + L)e−tLu

)
|M = 0. (2.3.10)

(Notice here that L and L are local operators, which agree on smooth functions on M .)
Furthermore, this shows that

lim
t→0

Ptu = lim
t→0

(e−tLu)|M = u|M = u (2.3.11)

for all u ∈ L2(M,V).
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We show that Ptu also satisfies the boundary condition defined by B (see Def. 1.1.4) for
every u ∈ L2(M,V) and t > 0: For x ∈ ∂M , i.e. x = −x, we have

Ptu(x) =
(
1 + ρ(−1)

) ˆ
M

pLt (x, y)u(y)dy =
(
1 +B

) ˆ
M

pLt (x, y)u(y)dy,

which is inW+
x , the +1-eigenspace of Bx. Furthermore, if γ(s) = expx(sn) is the geodesic

starting at x normal to the boundary, we have −γ(s) = γ(−s), hence

∇nPtu(x) = ∇s|s=0

{ˆ
M

(
pLt
(
γ(s), y

)
+ ρ(−1)pLt

(
γ(−s), y

))
u(y)dy

}
=

ˆ
M

(
∇s|s=0p

L
t

(
γ(s), y

)
+ ρ(−1)∇s|s=0p

L
t

(
γ(−s), y

))
u(y)dy

}
= (id−B)

ˆ
M

∇np
L
t (x, y)u(y)dy,

which is an element of W−x , the −1-eigenspace of Bx. Hence Ptu satisfies the boundary
condition for any u ∈ L2(M,V).
Now for any u ∈ L2(M,V) and t > 0, we obtain

d

ds

{
e−(t−s)LPsu

}
= Le−(t−s)LPsu− e−(t−s)LLPsu = e−(t−s)L(LPsu− LPsu) = 0.

Here in the first step, we used (2.3.10) and the second step is justified because Psu is
in the domain of the operator L, since we verified above that Psu satisfies the boundary
condition (this uses the fact that Le−tLv = e−tLLv for sections v, provided that v is in
the domain of L). Hence the function e−(t−s)LPsu is constant in s on the interval (0, t).
Thus for any t > 0 and u ∈ L2(M,V),

Ptu = lim
s↗t

e−(t−s)LPsu = lim
s↘0

e−(t−s)LPsu = e−tLu,

where we used (2.3.11). This shows that the operator families Pt and e−tL coincide.
Therefore, their kernels do as well. �

Proof (of Thm. 2.3.17). Let P(γ) is the path-ordered exponential associated to the oper-
ator L on M . By Lemma 2.3.18 and Thm. 2.2.7, we have

pLt (x, y) =
∑
ε∈Z2

pLt (x, εy)ρ(ε) =
1

2

∑
ε1

∑
ε∈Z2

ρ(ε1)pLt (ε1x, ε1εy)ρ(ε)ρ(ε1)

=
1

2

∑
ε1,ε2∈Z2

ρ(ε1)pLt (ε1x, ε2y)ρ(ε2)

= lim
|τ |→0

(4πt)−n/2
1

2

∑
ε1,ε2∈Z2

 
Hε1x,ε2y;τ (M)

e−E(γ)/2ρ(ε1)P(γ)−1ρ(ε2)dΣ-H1

γ

= lim
|τ |→0

(4πt)−n/2
 
Horb
xy;τ (M)

e−E(γ)/2PB(γ)−1dΣ-H1

γ,

where we used the equivariance (2.3.9) of pLt and the definition (2.3.4) of the measure on
Horb
xy;τ (M), �
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The heat trace can be approximated by finite-dimensional integrals over the orbifold loop
spaces Lorb

τ (M).

Theorem 2.3.20 (The Heat Trace as an Orbifold Path Integral I). Let M be a
compact Riemannian manifold with boundary and let L be a self-adjoint Laplace type
operator with involutive boundary condition B, acting on sections of a metric vector bundle
V over M . Suppose that the smoothness Assumption 2.3.7 is satisfied and let PB(γ) be
the B-path-ordered integral determined by L as in Def. 2.3.14 (2). Then

Tr e−tL = lim
|τ |→0

 
Lorb
τ (M)

e−E(γ)/2 trPB(γ)−1 dΣ-H1

γ.

for any t > 0, where the limit goes over any sequence of partitions τ the mesh of which
tends to zero, and the slash over the integral sign denotes division by (4π)dim(Lorb

τ (M))/2.

Proof. If τ = {0 = τ0 < τ1 < · · · < τN = t} is a partition of the interval [0, t], notice
that the dimension of Lorb

τ (M) is nN , while the dimension of Horb
xy;τ (M) is n(N − 1). By

Lemma 2.3.18 and Thm. 2.3.17, we have

Tr e−tL =

ˆ
M

tr pLt (x, x)dx

=

ˆ
M

lim
|τ |→0

(4πt)−n/2(4π)−n(N−1)/2

ˆ
Horb
xx;τ (M)

e−E(γ)/2trPB(γ)−1 dΣ-H1

γdx

= lim
|τ |→0

(4π)−nN/2t−n/2
ˆ
M

ˆ
Horb
xx;τ (M)

e−E(γ)/2trPB(γ)−1 dΣ-H1

γdx

where the exchange of integration and the limit |τ | → 0 is justified by showing that the
integrand is uniformly bounded, just as in the proof of Thm. 2.2.13. The result now
follows from the co-area formula (2.3.7), using Remark 2.3.16. �

Just as before, the heat kernel can be approximated by finite-dimensional integrals over
orbifold path spaces uniformly in t, by taking a more complicated integrand.

Theorem 2.3.21 (Heat Kernel as an Orbifold Path Integral II). Let L be a self-
adjoint Laplace type operator with involutive boundary condition B, acting on sections
of a metric vector bundle V over a compact n-dimensional Riemannian manifold with
boundary M . Suppose that the smoothness Assumption 2.3.7 is satisfied. Then for any
ν ∈ N0 and T > 0, there exist constants C, δ > 0 such that∣∣∣∣∣pLt (x, y)− (4πt)−n/2

 
Horb
xy;τ (M)

e−E(γ)/2t Υorb
τ,ν (t, γ) dγ

∣∣∣∣∣ ≤ Ctν+1|τ |νp∆
t (x, y)

for all x, y ∈M , all 0 < t ≤ T and partitions τ of an interval [0, 1] with |τ | ≤ δ. Here, p∆
t

denotes the heat kernel of the Laplace-Beltrami operator on M with Neumann boundary
conditions and

Υorb
τ,ν (t, γ) = Υorb

τ,ν (t, [γ, ε1, ε2]) := ρ(ε1)Υτ,ν(t, γ)ρ(ε2), (2.3.12)

involves the integrand Υτ,ν(t, γ) from Thm. 2.2.11 for the operator L on M . The slash
over the integral sign denotes division by (4πt)dim(Hxy;τ (M))/2.



78 CHAPTER 2. THE HEAT KERNEL AS A PATH INTEGRAL

Remark 2.3.22 (Υorb
τ,ν is well defined). We need to check that the value of Υτ,ν(t, γ) ∈

Hom(Vy,Vx) does not depend on the choice of a representative of the element γ ∈
Horb
xy;τ (M). Because L is equivariant, so are the heat kernel pLt and its coefficients Φj,

meaning that
Φj(x, y) = ρ(−1)Φj(−x,−y)ρ(−1). (2.3.13)

Because Υτ,ν is built out of the heat kernel coefficients (see (2.2.14)), we similarly obtain

Υτ,ν(t,−γ) = ρ(−1)Υτ,ν(t, γ)ρ(−1). (2.3.14)

Hence if (−γ,−ε1,−ε2) is the other representative of γ, we get

ρ(−ε1)Υτ,ν(t,−γ)ρ(−ε2) = ρ(−ε1)ρ(−1)Υτ,ν(t, γ)ρ(−1)ρ(−ε2) = ρ(ε1)Υτ,ν(t, γ)ρ(ε2).

This shows that Υorb
τ,ν is a well-defined Hom(Vy,Vx)-valued function on R×Horb

xy;τ (M).

Proof. By Thm. 2.2.11, the heat kernel pLt (x, y) of the L on M can be approximated by
the finite-dimensional path integrals

Jτ,ν(x, y; t) := (4πt)−n/2
 
Hxy;τ (M)

e−E(γ)/2t Υτ,ν(t, γ) dγ (2.3.15)

in the sense that for all T > 0 and all x, y ∈M ,∣∣pLt (x, y)− Jτ,ν(x, y; t)
∣∣ ≤ Ctν+1|τ |νp∆

t (x, y)

whenever |τ | is small enough and 0 < t ≤ T . Set

Jτ,ν(x, y; t) :=
∑
ε∈Z2

ρ(ε)Jτ,ν(εx, y; t).

Then by Lemma 2.3.18, we have∣∣pLt (x, y)−Jτ,ν(x, y; t)
∣∣ ≤∑

ε∈Z2

∣∣ρ(ε)
(
pLt (εx, y)− Iτ,ν(εx, y; t)

)∣∣ ≤ Ctν+1|τ |ν
∑
ε∈Z2

p∆
t (εx, y)︸ ︷︷ ︸

=p∆
t (x,y)

.

Now∑
ε∈Z2

ρ(ε)Iτ,ν(εx, y; t) =
∑
ε∈Z2

(4πt)−n/2
 
Hεx,y;τ (M)

e−E(γ)/2t ρ(ε)Υτ,ν(t, γ) dγ

=
1

2
(4πt)−n/2

∑
ε1,ε2∈Z2

 
Hε1x,ε2y;τ (M)

e−E(γ)/2t ρ(ε1)Υτ,ν(t, γ)ρ(ε2) dγ

= (4πt)−n/2
 
Horb
xy;τ (M)

e−E(γ)/2t Υorb
τ,ν (t, γ) dγ,

which finishes the proof. Here we used the equivariance (2.3.14) of Υτ,ν and the definition
(2.3.4) of the measure on Horb

xy;τ (M). �
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Similarly, the heat trace can by approximated by finite-dimensional orbifold path integrals
uniformly in t.

Theorem 2.3.23 (The Heat Trace as an orbifold Path Integral II). Let L be a
self-adjoint Laplace type operator with involutive boundary condition B, acting on sections
of a metric vector bundle V over a compact manifold with boundary M . Suppose that the
smoothness Assumption 2.3.7 is satisfied. Then for each ν ∈ N0 and T > 0, there exist
constants C, δ > 0 such that∣∣∣Tr e−tL −

 
Lorb
τ (M)

e−E(γ)/2t tr Υ◦,orb
τ,ν (t, γ) dγ

∣∣∣ ≤ Ctν+1−n/2|τ |ν

for each 0 < t ≤ T and each partition τ of the interval [0, 1] with |τ | ≤ δ. Here we have

Υ◦,orb
τ,ν (t, γ) := Υ◦,orb

τ,ν (t, [γ, ε]) := Υ
◦
τ,ν(t, γ)ρ(ε),

involving the integrand Υ
◦
τ,ν which comes from applying Thm. 2.2.15 to M . The slash

over the integral sign denotes division by (4πt)dim(Lτ (M)).

Remark 2.3.24. Because the flip is an isometry and by the equivariance (2.3.13) of the
heat kernel coefficients, we have Υ

◦
τ,ν(t, γ) = Υ

◦
τ,ν(t,−γ). Therefore, Υ◦,orb

τ,ν (t, γ) is well-
defined.

Remark 2.3.25. The precise form of the integrand is irrelevant for our purposes; we
only take from it that it is a smooth, compactly supported function on Lorb

τ (M), which
depends polynomially on t.

Proof. From Lemma 2.3.18 and (2.2.19) follows (with a view on Remark 2.3.13) that

Tr e−tL =
1

2

ˆ
M

tr pLt (x, x)dx+
1

2

ˆ
M

tr
{
pLt (x,−x)ρ(−1)

}
dx

The first term is just one half of the trace of e−tL, which by Thm. 2.2.15 can be approxi-
mated by the finite-dimensional path integral

Iτ,ν(t) :=

 
Lτ (M)

e−E(γ)/2ttr Υ
◦
τ,ν(t, γ)dγ

that is, ∣∣e−tL − Iτ,ν(t)∣∣ ≤ C1t
ν+1−n/2|τ |ν (2.3.16)

for all partitions τ of [0, 1] fine enough and all 0 < t ≤ T . Write

Iorb,+
ν,τ (t) =

 
Lorb,+
τ (M)

e−E(γ)/2ttr Υ◦,orb
τ,ν (t, γ)dγ =

1

2
Iτ,ν(t)

By Thm. 2.2.11, the second part may be approximated by

Iorb,−
τ,ν (t) =

1

2

ˆ
M

tr
{
Jτ,ν(x,−x; t)ρ(−1)

}
dx =

1

2

 
Lorb,−
τ (M)

e−E(γ)/2t tr Υ◦,orb
τ,ν (γ)dγ,
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with Jτ,ν(x, y; t) as in (2.3.15) and where the second equality is justified by a similar
calculation as in the proof of Thm. 2.2.15. Now

Iorb,+
τ,ν (t) + Iorb,−

τ,ν (t) =

 
Lorb
τ (M)

e−E(γ)/2t tr Υ◦,orb
τ,ν (t, γ) dγ =: Iorb

τ,ν (t)

so that∣∣Tr e−tL − Iorb
τ,ν (t)

∣∣ ≤ 1

2

∣∣e−tL − Iτ,ν(t)∣∣+

∣∣∣∣12
ˆ
M

tr
{
pLt (x,−x)ρ(−1)

}
dx− I−τ,ν(t)

∣∣∣∣ .
The first term is estimated by (2.3.16) while for the second, we have∣∣∣∣12

ˆ
M

tr
{
pLt (x,−x)ρ(−1)

}
dx− I−τ,ν(t)

∣∣∣∣
≤
ˆ
M

∣∣∣tr{pLt (x,−x)ρ(−1)− Jτ,ν(x,−x; t)ρ(−1)
}∣∣∣ dx

≤ C2t
ν+1|τ |ν

ˆ
M

p∆
t (x,−x)dx ≤ C3t

ν+1−n/2|τ |ν

by Thm. 2.2.11 and Thm. 2.1.5. The result follows. �



Chapter 3

Asymptotic Expansions of Path
Integrals

This section is dedicated to investigating short time asymptotic expansions of the path
integral formulas for the heat kernel.
In Section 2.2, we learned that the heat kernel can be approximated by the integrals

Jτ,ν(x, y; t) := (4πt)−nN/2
ˆ
Hxy;τ (M)

e−E(γ)/2t Υτ,ν(t, γ) dγ

appearing in Thm. 2.2.11. These integrals have the form of a Laplace integral, and
Laplace’s method assigns to these integrals an asymptotic expansion (see Thm. 3.1.2
below). Using that the finite-dimensional path integrals from Thm. 2.2.11 approximate
the heat kernel pLt (x, y) up to any desired order in t (if ν is chosen large enough), we
can use Laplace’s method to obtain short time asymptotic expansions of the heat kernel
(Thm. 3.1.12).
Of course, if (x, y) ∈ M ./ M , then this just gives the result of Thm. 2.1.5. But we can
also obtain short time asymptotics in cases where x and y lie in each others cut locus.
This is the point of Section 3.1.
In Section 3.2, we give an explicit formula for the lowest order term of the heat kernel
expansion in terms of infinite-dimensional quantities on the H1 path spaces.

3.1 Laplace’s Method and Heat Asymptotics

We first give a review of Laplace’s method (Section 3.1.1). In Section 3.1.2, this will
be used to derive asymptotic expansions for the heat kernel pLt (x, y) that also work in
cases where x and y lie in each others cut locus. Finally (in Section 3.1.4), we will derive
asymptotic expansions of the heat trace.
Of course, we also discuss the situation that M is a manifold with boundary (under the
Assumption (2.3.7)), in which case we are dealing with orbifold path integrals.

81
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3.1.1 Laplace’s method

Laplace’s method is a way to calculate asymptotic expansions as t → 0 from above for
integrals of the form

I(t, a) := (4πt)− dim(Ω)/2

ˆ
Ω

e−φ(x)/2ta(t, x) dx. (3.1.1)

Here, t > 0, Ω is a Riemannian manifold, φ ∈ C∞(Ω) and a(t, x) is smooth and compactly
supported with respect to the x variable and depends smoothly on t.

Definition 3.1.1 (Non-degenerate Submanifolds). Suppose that φ(x) ≥ λ and that
the subset Γ := φ−1(λ) is a submanifold of Ω. We say that Γ is a non-degenerate sub-
manifold (with respect to φ), if for each x ∈ Γ, we have ∇2φ|NxΓ > 0, i.e. the restriction
of the Hessian of φ to the normal bundle of Γ is positive definite.

Later, we will have Ω = Hxy;τ (M) for a partition τ fine enough and φ(γ) = E(γ) −
d(x, y)2/2 so that we have Γ = φ−1(0) = Γmin

xy , the set of minimal geodesics connecting x
and y.

Theorem 3.1.2 (Laplace Expansion). Assume that φ is non-negative and that Γ :=
φ−1(0) is a k-dimensional non-degenerate submanifold of Ω. Then I(t, a) has a complete
asymptotic expansion as t goes to zero from above. More explicitly, there exists a second
order differential operator P such that we have

I(t, a) ∼ (4πt)−k/2
∞∑
j=0

tj
j∑
i=0

1

i!(j − i)!

ˆ
Γ

P j−ia(i)(0, x)

det
(
∇2φ|NxΓ

)1/2
dx (3.1.2)

where a(i)(0, x) denotes the i-th derivative of a with respect to t at t = 0. In particular, if
a does not depend on t, this simplifies to

I(t, a) ∼ (4πt)−k/2
∞∑
j=0

tj
ˆ

Γ

P ja(x)

j! det
(
∇2φ|NxΓ

)1/2
dx. (3.1.3)

Remark 3.1.3. The asymptotic relation in (3.1.3) means that for all ν ∈ N0 and all
T > 0, there exists a constant C > 0 such that∣∣∣∣∣I(t, a)− (4πt)−k/2

ν∑
j=0

tj
ˆ

Γ

P ja(x)

j! det
(
∇2φ|NxΓ

)1/2
dx

∣∣∣∣∣ ≤ Ctν+1−k/2

whenever 0 < t ≤ T , and analogous for (3.1.2).

Remark 3.1.4. The Laplace expansion of an integral of the form I(t, a) is closely related
to the method of stationary phase, which calculates asymptotic expansions of the integral
t 7→ I(it, a). Laplace’s method is easier in the sense that here, only critical points which
are minima contribute to the asymptotic expansion, while for integrals with imaginary
exponent, all critical points contribute. Compare e.g. [Arn73] or [Dui96, Section 1.2].
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In the remainder of this section, we give a proof of this result. While the method of
stationary phase is treated in various places in the literature, there seems to be no good
reference for the result of Thm. 3.1.2 available in quite the generality that we need.

Lemma 3.1.5. Under the assumptions of Thm. 3.1.2, suppose that a(t, x) = 0 for all x
in a neighborhood of Γ and all 0 ≤ t ≤ δ, for some δ > 0. Then there exist constants
T,C, ε > 0 such that for all t ≤ T , we have I(t, a) ≤ Ce−ε/t.

Proof. Let N := dim(Ω). Set

A := closure of
⋃

0≤t≤δ

supp a(t,−) (3.1.4)

(which is compact) and set
ε′ := min

x∈A
φ(x).

Notice that ε′ > 0 because A ∩ Γ = ∅. Therefore,

I(t, a) ≤ (4πt)−N/2e−ε
′/2t

ˆ
Ω

a(t, x)dx ≤ (4πt)−N/2e−ε
′/2t‖a(t,−)‖L1 ≤ Ce−ε/t,

if we choose 0 < ε < ε′ and C > 0 appropriately. �

Proof (of Thm. 3.1.2). Let N := dim(Ω) and let A as in (3.1.4). Since A is compact, we
may without loss of generality assume that also Ω and hence Γ is compact. Otherwise
embed some open neighborhood of A isometrically into a compact manifold Ω′, transplant
φ and a there and replace Ω by Ω′ in the definition of I(t, a). This does not alter the
value of I(t, a).
Let NΓ ⊆ TΩ be the normal bundle of Γ. Then there is an open neighborhood V of the
zero section in NΓ and an open neighborhood U of Γ in Ω together with a diffeomorphism
κ : V −→ U such that (

φ ◦ κ
)
(x, v) = ∇2φ|x[v, v], (x, v) ∈ V.

This can be proved using the implicit function theorem, compare e.g. Lemma 1.2.2 in
[Dui96]. Clearly, we have dκ|(x,0) = idx.
W.l.o.g., we assume that A ⊂ U . Namely otherwise, we can choose a cutoff function
χ ∈ C∞c (U) that is equal to one on a neighborhood of Γ and split I(t, a) = I(t, χa) +
I(t, (1−χ)a), where the second summand does not contribute to the asymptotic expansion
because of Lemma 3.1.5.
We now may use the transformation formula to obtain

I(t, a) = (4πt)−N/2
ˆ
U

e−φ(x)/2ta(t, x) dx

= (4πt)−N/2
ˆ

Γ

ˆ
Vx

e−〈v,Q(x)v〉/4ta
(
t, κ(x, v)

)∣∣det
(
dκ|(x,v)

)∣∣dvdx,
(3.1.5)

where we wrote Q(x) := ∇2φ|NxΓ and Vx := V ∩ NxΓ. It is well known that for any
(N − k)-dimensional Euclidean vector space W , any positive definite endomorphism Q of
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W and any continuous function f = f(t, x) on R×W which is bounded in the x variable
and depends smoothly on t, one has

lim
t→0

(4πt)−(N−k)/2

ˆ
W

e−〈v,Qv〉/4tf(t, v)dv = det(Q)−1/2f(0, 0).

Furthermore, for all t, we have∣∣∣∣(4πt)−(N−k)/2

ˆ
W

e−〈v,Qv〉/4tf(t, v)dv

∣∣∣∣ ≤ ‖f(t,−)‖∞.

Therefore since Γ is compact, we may exchange integration over Γ and the limit t→ 0 in
(3.1.5) to conclude

lim
t→0

(4πt)k/2I(t, a) =

ˆ
Γ

a
(
0, κ(x, 0)

)
det
(
Q(x)

)1/2

∣∣det
(
dκ|(x,0)

)∣∣dx =

ˆ
Γ

a(0, x)

det
(
∇2φ|NxΓ

)1/2
dx (3.1.6)

Now on the vector spaces NxΓ, define the Q-Laplacian ∆Q by the formula

∆Qf(v) = −
〈
Q(x)−1, D2f |v

〉
.

This patches together to a smooth differential operator on NΓ satisfying( ∂
∂t

+ ∆Q

){
(4πt)−(N−k)/2e−〈v,Q(x)v〉/4t} = 0.

Therefore, integrating by parts, we obtain

∂

∂t

{
(4πt)k/2I

(
t, a
)}
− (4πt)k/2I

(
t,
∂

∂t
a
)

= −(4πt)−(N−k)/2

ˆ
Γ

ˆ
Vx

e−〈v,Q(x)v〉/4t∆Q

{
a
(
t,κ(x, v)

)∣∣det
(
dκ|(x,v)

)∣∣}dvdx

= (4πt)−(N−k)/2

ˆ
U

e−φ(x)/2tPa(t, x)dx = (4πt)k/2I(t, Pa),

where for f ∈ C∞(U), we set

(Pf)(y) = −∆Q

{
f(v)

∣∣det
(
dκ|(x,v)

)∣∣}∣∣
(x,v)=κ−1(y)

∣∣det
(
dκ−1|y

)∣∣,
so that P is some second-order differential operator. Let J(t, a) := (4πt)k/2I(t, a). Then
by Taylor’s formula and the Leibnitz rule, for all ε > 0 and ν ∈ N,

J(t, a) =
ν∑
j=0

1

j!

∂j

∂εj
{
J(ε, a)

}
(t− ε)j +

ˆ t

ε

(t− s)ν

ν!

∂ν+1

∂sν+1

{
J(s, a)

}
ds

=
ν∑
j=0

1

j!

j∑
i=0

(
j

i

)
J
(
ε, P j−ia(i)

)
(t− ε)j +Rν(ε, t),
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where

Rν(ε, t) =
ν+1∑
i=0

(
ν + 1

i

) ˆ t

ε

(t− s)ν

ν!
J
(
s, P ν+1−ia(i)

)
ds. (3.1.7)

Because of (3.1.6), we may take the limit ε→ 0 to obtain

lim
ε→0

J(ε, P j−ia(i)) =

ˆ
Γ

P j−ia(i)(0, x)

det
(
∇2φ|NxΓ

)1/2
dx.

Therefore,

J(t, a) =
ν∑
j=0

tj
j∑
i=0

1

(j − i)!i!

ˆ
Γ

P j−ia(i)(0, x)

det
(
∇2φ|NxΓ

)1/2
dx+Rν(ε, t),

for any ν ∈ N0, where the remainder term is of order tν+1. Multiplying with (4πt)−k/2,
we obtain (3.1.3). �

Remark 3.1.6. Of course, if the zero set of φ is the disjoint union

φ−1(0) = Γ1

∐
· · ·
∐

Γm

of non-degenerate submanifolds Γi of Ω, possibly of different dimensions, then I(t, a) has
an asymptotic expansion consisting of the sum of individual asymptotic expansions, which
can be calculated just as in Thm. 3.1.2.

3.1.2 Heat Kernel Asymptotics

Let L be a self-adjoint Laplace type operator, acting on sections of a metric vector bun-
dle V over an n-dimensional compact Riemannian manifold M . In this section, we use
Laplace’s method on the path integral approximations of the heat kernel. As seen in
Thm. 2.2.11, we can approximate the heat kernel by the integrals

Jτ,ν(x, y; t) := (4πt)−nN/2
ˆ
Hxy;τ (M)

e−E(γ)/2t Υτ,ν(t, γ) dγ, (3.1.8)

where τ = {0 = τ0 < τ1 < · · · < τN = 1} is a partition of the interval [0, 1] and Υτ,ν(t, γ)
is given by the complicated expression (2.2.14). For the purposes of this section, the
particular formula for Υτ,ν is not relevant; we only need to know that Υτ,ν is a compactly
supported smooth function on Hxy;τ (M) which depends polynomially on the t variable
(that Υτ,ν is compactly supported comes from the cutoff function in the approximate heat
kernel).
The integral (3.1.8) is not yet in the form (3.1.1) that we can deal with using Thm. 3.1.2:
The pre-factor does not fit (since Hxy;τ (M) has dimension n(N −1)) and the minimum of
the energy on Hxy;τ (M) is not zero in general, so that the zero set would be empty. This
will be fixed now.

Notation 3.1.7. For x, y ∈ M , denote by Γmin
xy ⊂ Hxy(M) the set of minimal geodesics

connecting x and y in time one.
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Remark 3.1.8. The set Γmin
xy is always compact, by Prop. 2.4.11 in [Kli95].

Lemma 3.1.9 (The Hessian of the Energy). On every space Hxy;τ (M) with τ fine
enough as well as on Hxy(M), we have E(γ) ≥ d(x, y)2/2 and

Γmin
xy =

{
γ | E(γ) = d(x, y)2/2

}
. (3.1.9)

For any γ ∈ Γmin
xy , we have

∇2E|γ[X, Y ] =

ˆ 1

0

〈
∇sX(s),∇sY (s)

〉
ds+

ˆ 1

0

〈
R
(
γ̇(s), X(s)

)
γ̇(s), Y (s)

〉
ds, (3.1.10)

for all X, Y ∈ TγHxy(M).

Remark 3.1.10. The result does not depend on the metric and connection used on
Hxy;τ (M) or Hxy(M), because if γ ∈ Γmin

xy , it is necessarily a critical point, and at critical
points, the Hessian is independent of the metric used.

Proof. For any γ ∈ Hxy(M), we have by the Cauchy-Schwarz-Inequality

length(γ) =

ˆ 1

0

|γ̇(s)|ds ≤ 1 ·
(ˆ 1

0

|γ̇(s)|2ds

)1/2

≤
√

2E(γ),

with equality if and only if the function 1 and |γ̇(s)| are linearly dependent, i.e. |γ̇(s)| is
constant. Because d(x, y) is by definition the infimum of the length, we obtain E(γ) ≥
d(x, y)2/2, and if γ is minimizing geodesic, then |γ̇(s)| is constant, henceE(γ) = d(x, y)2/2.
Conversely, it is well-known that minimizer of the energy are exactly minimizing geodesics.
The statement about the Hessian is a standard result in Riemannian geometry, see e.g.
[Mil63, Section 13]. �

Therefore, we set for γ ∈ Hxy(M)

φ(γ) := E(γ)− d(x, y)2

2
.

This is then a non-negative function, which takes the value zero exactly on the set Γmin
xy

of minimal geodesics connecting x to y. Now

Jτ,ν(x, y; t)

et(x, y)
= (4πt)−n(N−1)/2

ˆ
Hxy;τ (M)

e−φ(γ)/2t Υτ,ν(t, γ) dγ

has the form of a Laplace integral, as considered in Subsection 3.1.1: The dimension of
Hxy;τ (M) is exactly n(N − 1).
Suppose that Γmin

xy is a k-dimensional non-degenerate submanifold of Hxy(M). Clearly,
Γmin
xy is then also a non-degenerate submanifold of Hxy;τ (M), provided the partition τ is so

fine that (γ(τj−1), γ(τj)) ∈ M ./ M for each j and each γ ∈ Γmin
xy (this is clearly satisfied
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if |τ | < inj(M)/diam(M)). Then from Thm. 3.1.2, we obtain that for such partitions, we
have a complete asymptotic expansion

Jτ,ν(t, x, y)

et(x, y)
∼ (4πt)−k/2

∞∑
j=0

tj
Φτ,ν,j(x, y)

j!
, (3.1.11)

where Φν,τ,j(x, y) is given by the integral

Φτ,ν,j(x, y) :=

j∑
i=0

(
j

i

)ˆ
Γmin
xy

P j−i
τ Υ

(i)
τ,ν(0, γ)

detτ
(
∇2E|NγΓmin

xy

)1/2
dγ (3.1.12)

over the set of minimal geodesics Γmin
xy (where we integrate with respect to the Riemannian

volume induced to it from Hxy;τ (M)). Here Pτ is a certain second order differential
operator defined on a neighborhood of Γmin

xy in Hxy;τ (M), Υ
(i)
τ,ν denotes the i-th time

derivative of Υν,τ and detτ (∇2E|NγΓmin
xy

) denotes the determinant of the Hessian of the
energy at γ restricted to the normal space NγΓ

min
xy of TγΓmin

xy in TγHxy;τ (M).

Remark 3.1.11. Notice that for each γ ∈ Hxy;τ (M), Υν,τ (t, γ) is an element of the fixed
finite-dimensional vector space Hom(Vy,Vx). Therefore Laplace’s method applies without
changes to this case (let’s say, by choosing a basis and applying Thm. 3.1.2 entrywise).

With these observations, we prove the following result.

Theorem 3.1.12 (The Heat Kernel Expansion). Let L be a self-adjoint Laplace type
operator, acting on sections of a metric vector bundle V over a closed Riemannian mani-
foldM of dimension n. For x, y ∈M , suppose that Γmin

xy is a non-degenerate k-dimensional
submanifold of Hxy(M) (with respect to the energy functional on Hxy(M). Then the heat
kernel has a complete asymptotic expansion of the form

pLt (x, y)

et(x, y)
∼ (4πt)−k/2

∞∑
j=0

tj
Φj(x, y)

j!
(3.1.13)

for homomorphisms Φj(x, y) ∈ Hom(Vy,Vx).

Remark 3.1.13. If Γmin
xy is the disjoint union of submanifolds Γi, i = 1, . . . ,m of dimen-

sions ki, then of course the theorem generalizes in the obvious way; one obtains in this
case, that the heat kernel has a complete asymptotic expansion of the form

pLt (x, y)

et(x, y)
∼

m∑
i=1

(4πt)−ki/2
∞∑
j=0

tj
Φi
j(x, y)

j!
,

where each Φi
j(x, y) is given by an integral over the set Γi.

Remark 3.1.14 (Degenerate Cases). In the case that Γmin
xy is a degenerate submani-

fold, one can also obtain an asymptotic expansion in good cases, which depends on the
type of degeneracy of the energy functional (the corresponding Laplace’s method is dis-
cussed in [Arn73]). This is discussed in Molchanov [Mol75]. See also [BBN12].
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Proof (of Thm. 3.1.12). By Thm. 2.2.11, for each T > 0 and each ν ∈ N0, there exist
constants C1, δ > 0 such that∣∣∣∣pLt (x, y)

et(x, y)
− Jτ,ν(x, y; t)

et(x, y)

∣∣∣∣ ≤ C1t
1+ν |τ |ν p

∆
t (x, y)

et(x, y)
, (3.1.14)

for any partition τ of the interval [0, 1] with |τ | ≤ δ. From the Gaussian estimate from
above (see (2.1.20)) follows p∆

t (x, y) ≤ C2t
−n/2et(x, y). Therefore (3.1.14) yields∣∣∣∣pLt (x, y)

et(x, y)
− Jτ,ν(x, y; t)

et(x, y)

∣∣∣∣ ≤ C3t
1+ν−n/2|τ |ν . (3.1.15)

Using (3.1.15) for the Laplace-Beltrami operator on M and some ν ≥ n/2− k/2− 1 and
|τ | ≤ δ, we get

p∆
t (x, y)

et(x, y)
≤

∣∣∣∣∣p∆
t (x, y)

et(x, y)
−
J∆
τ,ν(x, y; t)

et(x, y)

∣∣∣∣∣+

∣∣∣∣∣J∆
τ,ν(x, y; t)

et(x, y)

∣∣∣∣∣ ≤ C4t
1+ν−n/2|τ |ν + C5t

−k/2

≤ (C4δ
ν + C5)t−k/2 =: C6t

−k/2.

using (3.1.11). Therefore, (3.1.14) improves to∣∣∣∣pLt (x, y)

et(x, y)
− Jτ,ν(x, y; t)

et(x, y)

∣∣∣∣ ≤ C1t
1+ν |τ |ν p

∆
t (x, y)

et(x, y)
≤ C1C6t

1+ν−k/2.

From this follows that the heat kernel has an asymptotic expansion up to the order tν , the
coefficients of which must coincide with the asymptotic expansion (3.1.11) of Jτ,ν(x, y; t)
up to that order. Because asymptotic expansions are unique, this also shows that the
coefficients Φτ,ν,j(x, y) from (3.1.11) must stabilize for ν large enough and τ fine enough.
More precisely, if j ≤ ν, ν ′ and |τ |, |τ ′| ≤ δ, we have Φτ,ν,j(x, y) = Φτ ′,ν′,j(x, y). Therefore

Φj(x, y) := Φτ,ν,j(x, y) (3.1.16)

for any choice of ν ≥ j and |τ | ≤ δ is well defined.
Because ν was arbitrary, we obtain that pLt (x, y)/et(x, y) has a complete asymptotic ex-
pansion of the form (2.1.3), with the coefficients Φj(x, y) given by the formula (3.1.16)
for ν large enough and |τ | small enough. �

From the proof, we obtain the following corollary.

Corollary 3.1.15. Under the assumptions of Thm. 3.1.12, for ν large enough and |τ |
small enough, the coefficients Φν,τ,j(x, y) in (3.1.12) stabilize. More precisely, there exists
δ > 0 such that

Φν,τ,j(x, y) = Φj(x, y)

whenever |τ | ≤ δ and j ≤ ν. If (x, y) ∈ M ./ M , the Φj(x, y) are exactly the coefficients
appearing in Thm. 2.1.5.

Remark 3.1.16. Of course, if (x, y) ∈M ./ M , uniqueness of asymptotic expansions im-
plies that the Φj(x, y) given in the above theorem are precisely the heat kernel coefficients
from Thm. 2.1.5.
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3.1.3 Heat Kernel Asymptotics on a Manifold with Boundary

In the case that the smoothness Assumption 2.3.7 is satisfied, similar results hold if M
is a compact Riemannian manifold with boundary and the Laplace type operator L is
endowed with involutive boundary conditions. As before, let M be the double of M , and
we denote by overlines all objects associated to the manifold M .
Remember that by Thm. 2.3.21, the heat kernel pLt (x, y) can be approximated by the
finite-dimensional path integrals

Jorb
τ,ν (x, y; t) := (4πt)−nN/2

ˆ
Horb
xy;τ (M)

e−E(γ)/2t Υorb
τ,ν (t, γ) dγ.

Let Γmin,orb
xy ⊂ Horb

xy (M) denote the space of paths of minimal energy connecting x to y.
Assume again that Γmin,orb

xy is a k-dimensional non-degenerate submanifold of the manifold
Horb
xy (M). From Laplace’s method (Thm. 3.1.2) follows then that Jτ,ν(x, y; t) has an

asymptotic expansion of the form

Jorb
τ,ν (x, y; t)

et(x, y)
∼ (4πt)−k/2

∞∑
j=0

tj
Φτ,ν,j(x, y)

j!
, (3.1.17)

where

Φτ,ν,j(x, y) :=

j∑
i=0

(
j

i

) ˆ
Γmin,orb
xy

P j−i
τ Υorb

τ,ν
(i)

(0, γ)

detτ
(
∇2E|NγΓmin,orb

xy

)1/2
dγ (3.1.18)

with some second-order operator Pτ defined in the vicinity of Γmin,orb
xy inside Horb

xy;τ (M).
The following result on the asymptotic expansion of the heat kernel is proved just as
Thm. 3.1.12.

Theorem 3.1.17 (The Heat Kernel Expansion, Boundary Case). Let L be a self-
adjoint Laplace type operator with involutive boundary condition B, acting on sections
of a metric vector bundle V over a compact n-dimensional Riemannian manifold with
boundary M . Suppose that the smoothness Assumption 2.3.7 is satisfied. For x, y ∈ M ,
suppose furthermore that the set Γmin,orb

xy is a non-degenerate k-dimensional submanifold
of Horb

xy (M) (with respect to the energy functional). Then the heat kernel pLt of L has a
complete asymptotic expansion of the form

pLt (x, y)

et(x, y)
∼ (4πt)−k/2

∞∑
j=0

tj
Φj(x, y)

j!
,

for homomorphisms Φj(x, y) ∈ Hom(Vy,Vx).

Remark 3.1.18. Similar to before, the coefficients Φτ,ν,j(x, y) from (3.1.17) stabilize
for ν large enough and |τ | small enough and are equal to the coefficients Φj(x, y) from
Thm. 3.1.17; more precisely, there exists δ > 0 such that

Φj(x, y) = Φτ,ν,j(x, y)

for any |τ | ≤ δ and ν ≥ j.
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The goal of the rest of this subsection is to compare the coefficients Φj(x, y) associated
to the heat kernel of the operator L on the manifold with boundary M by Thm. 3.1.17
with the coefficients Φj(x, y) obtained by applying Thm. 3.1.12 to the heat kernel of the
operator L on the closed manifold M .
We need the following preliminary observations.

Lemma 3.1.19. Any element γ = [γ, ε1, ε2] ∈ Γmin,orb
xy has a representative (γ, ε1, ε2) such

that γ runs completely inside M , i.e. shortest geodesics do not cross the boundary.

Proof. Let [γ, ε1, ε2] ∈ Γmin,orb
xy by represented by the geodesic γ in M . Let γ̃ be the path

in M running from x to y obtained from γ by post-composing with the projection map
from M to M , i.e.

γ̃(s) :=

{
γ(s) if γ(s) ∈M
−γ(s) if γ(s) ∈ −M.

(3.1.19)

Then γ̃ ∈ Hxy(M) has the same energy as γ. Because by assumption, γ is energy-
minimizing among all paths in Horb

xy (M) (i.e. among all finite-energy paths in M that run
between ε1x and ε2y, ε1, ε2 ∈ Z2), so is γ̃. In particular, γ̃ is a minimum of the energy
functional on Hxy(M) and therefore a geodesic between x and y.
We now show that γ̃ does not hit the boundary at any s ∈ (0, t) unless both x, y ∈ ∂M .
To this end, suppose that γ̃(s) ∈ ∂M (hence also γ(s) ∈ ∂M). Then because γ̃ is the
reflection of the geodesic γ, we necessarily have ˙̃γ(s) ∈ Tγ̃(s)∂M , because otherwise γ̃
would have a kink at the time s, contradicting the fact that γ̃ is a geodesic.
Because ∂M is the fixed point set of the isometry x 7→ −x of M , it is a totally geodesic
submanifold. Hence because ˙̃γ(s) ∈ Tγ̃(s)∂M , γ̃ runs inside ∂M for all times. This implies
x, y ∈ ∂M .
We have shown that either at most one of x, y is in ∂M , in which case γ(s) ∈ M \ ∂M
for all s ∈ (0, 1); or both x, y ∈ ∂M , in which case γ runs completely in ∂M . �

Lemma 3.1.20. For x, y ∈ M , suppose that Γmin,orb
xy is a k-dimensional submanifold of

Horb
xy (M) and let Γ

min

xy the set of minimizing geodesics in M between x and y. If at least
one of x, y is contained in ∂M , set G := Z2. Otherwise, set G = {1}. Then the map

ϕ : Γmin,orb
xy −→ Γ

min

xy ×G, [γ, ε1, ε2] 7−→ (γ̃, ε1ε2)

is an isometry of Riemannian manifolds, if both are endowed with the H1 metric induced
from Hxy(M). Here for γ ∈ Hxy(M), γ̃ is defined as in (3.1.19)

Proof. We first check that ϕ is well defined. Any element in Horb
xy (M) has exactly two

representatives, (γ, ε1, ε2) and (−γ,−ε1,−ε2). Because of Lemma 3.1.19, γ must run either
completely inM or completely in −M , so either γ is a geodesic from x to y or from −x to
−y. Therefore, γ̃ ∈ Γ

min

xy . Furthermore, if neither x nor y lies in ∂M , then ε1, ε2 must have
the same sign because of Lemma 3.1.19, so that in this case indeed ε1ε2 = 1. Furthermore,(

−̃γ, (−ε1)(−ε2)
)

= (γ̃, ε1ε2),

which shows independence of the choice of representative.
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To see that ϕ is injective, suppose that ϕ([γ, ε1, ε2]) = ϕ([γ′, ε′1, ε2
′]). Then γ̃ = γ̃′ and

ε1ε2 = ε′1ε
′
2. By Lemma 3.1.19, we may assume that the representatives are chosen in such

a way that γ and γ′ run completely in M , so that γ̃ = γ̃′ implies γ = γ′. If x /∈ ∂M ,
then ε1 = ε′1 = 1, so ε1ε2 = ε′1ε

′
2 implies ε2 = ε′2. Similarly, if y /∈ ∂M , then ε2 = ε′2 = 1

and therefore ε1 = ε′1. Finally, if both x, y ∈ ∂M , then γ runs completely in ∂M (because
the boundary is totally geodesic), hence γ = −γ. Thus, ε1 · (γ, ε1, ε2) = (γ, 1, ε1ε2) is a
representative of [γ, ε1, ε2] and ε′1 · (γ′, ε′1, ε2′) = (γ′, 1, ε′1ε

′
2) is a representative of [γ′, ε′1, ε2

′].
On the other hand, we have (γ′, 1, ε′1ε

′
2) = (γ, 1, ε1ε2). We obtain [γ, ε1, ε2] = [γ′, ε′1, ε

′
2],

hence ϕ is injective.
To see that ϕ is surjective, let (γ, ε) ∈ Γ

min

xy × G. If x ∈ ∂M , then [γ, ε, 1] ∈ Γmin,orb
xy is a

pre-image of (γ, ε) under ϕ. If y ∈ ∂M , then [γ, 1, ε] is a pre-image of (γ, ε) under ϕ. If
neither x nor y is in ∂M , then necessarily ε = 1 and [γ, 1, 1] is a pre-image of (γ, ε) under
ϕ.
That ϕ is an isometry follows directly from the way the metrics are defined. �

This allows us to conclude the following result.

Proposition 3.1.21 (Heat Kernel Coefficients near the Boundary). For the coef-
ficients from Thm. 3.1.17 we have

Φj(x, y) =


Φj(x, y) x, y ∈M \ ∂M
(id +B)Φj(x, y) x ∈ ∂M
Φj(x, y)(id +B) y ∈ ∂M.

Here the Φj(x, y) are the heat kernel coefficients associated to the heat kernel of the op-
erator L on M by Thm. 3.1.12. In particular, for x, y in the interior, Φj(x, y) does not
depend on the boundary condition.

Remark 3.1.22 (Principle of not feeling the Boundary). In particular, in the in-
terior of M , the heat kernel coefficients of L are the same as the heat kernel coefficients
of L. This is related to the "principle of not feeling the boundary", compare [Hsu95].

Proof (of Prop. 3.1.21). Using Lemma 3.1.20, we may write Φj(x, y) from (3.1.18) as an
integral over Γ

min

xy , respectively Γ
min

xy ×Z2. If x, y ∈M \ ∂M , we obtain using (3.1.18), the
definition of Υorb

τ,ν (2.3.12)

Φj(x, y) =

j∑
i=0

(
j

i

)ˆ
Γ

min
xy

P j−i
τ Υ

(i)

τ,ν(0, γ)

detτ
(
∇2E|

NγΓ
min
xy

)1/2
dγ = Φj(x, y),

If x ∈ ∂M and y /∈ ∂M , we get

Φj(x, y) =
∑
ε∈Z2

j∑
i=0

(
j

i

) ˆ
Γ

min
xy

ρ(ε)P j−i
τ Υ

(i)

τ,ν(0, γ)

detτ
(
∇2E|

NγΓ
min
xy

)1/2
dγ

=
∑
ε∈Z2

ρ(ε)Φj(x, y) = (id +B)Φj(x, y)



92 CHAPTER 3. ASYMPTOTIC EXPANSIONS OF PATH INTEGRALS

and similarly, if y ∈ ∂M but x /∈ ∂M , we obtain Φj(x, y) = Φj(x, y)(id + B). Finally, if
both x, y ∈ ∂M , we obtain

Φj(x, y) =
1

2

∑
ε1,ε2∈Z2

j∑
i=0

(
j

i

) ˆ
Γ

min
xy

ρ(ε1)P j−i
τ Υ

(i)

τ,ν(0, γ)ρ(ε2)

detτ
(
∇2E|

NγΓ
min
xy

)1/2
dγ

=
1

2

∑
ε1,ε2∈Z2

ρ(ε1)Φj(x, y)ρ(ε2) = (id +B)Φj(x, y) = Φj(x, y)(id +B),

using the equivariance of Φj(x, y), see (2.3.13). �

Example 3.1.23 (The Laplace-Beltrami Operator). In particular, for the Laplace-
Beltrami operator, one has

Φj(x, y) =


Φj(x, y) x, y ∈M \ ∂M
2Φj(x, y) x or y ∈ ∂M, Neumann boundary conditions
0 x or y ∈ ∂M, Dirichlet boundary conditions,

because we have B ≡ ±1. Here Φj(x, y) are the heat kernel coefficients to the Laplace-
Beltrami operator of M .

Remember that we had to restrict to metrics on M such that the induced metric on the
double M is smooth. If one drops this assumption, matters get more complicated. Hsu
[Hsu89] proves that in the special case where M is the exterior of a convex body in Rn

and x, y ∈ ∂M are such that there is a unique shortest path γxy ∈ Hxy(M) along which x
and y are non-conjugate, the Neumann heat kernel of M satisfies the asymptotic relation

p∆
t (x, y) ∼ (4πt)−n/2

√
8π

(
N(0)N(1)

2t

)1/6

J(x, y)−1/2
∣∣φ1(0)

∣∣2
exp

(
− 1

4t
d(x, y)2 − µ1

d(x, y)2/3

t1/3

ˆ 1

0

N(s)2/3ds

)
,

(3.1.20)

where N(s) := II
(
γ̇xy(s), γ̇xy(s)

)
is the normal curvature along γxy (involving the second

fundamental form II of the boundary) and (φ1, µ1) is the first normalized eigenpair of the
eigenvalue problem

φ′′(x)− |x|φ(x) + µφ(x) = 0.

in L2(R). The asymptotic relation (3.1.20) is meant in the sense that the quotient of the
two sides tends to one as t → 0. It is not clear to the author how the t−1/3 term in the
exponent could be derived as a Laplace expansion on a path space.

3.1.4 Asymptotics of the Heat Trace

Let M be a closed Riemannian manifold of dimension n and let L be a self-adjoint
Laplace type operator, acting on sections of a metric vector bundle V over M . Consider
for partitions τ = {τ0 < τ1 < · · · < τN = 1} of the interval [0, 1] the integral

Iτ,ν(t) := (4πt)−nN/2
ˆ
Lτ (M)

e−E(γ)/2t trΥ◦τ,ν(t, γ) dγ
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discussed in Thm. 2.2.15. Remember from the mentioned theorem that Iτ,ν(t) approx-
imates the heat trace Tr e−tL. Again, for a qualitative investigation of the asymptotic
properties of the integral Iτ,ν(t), the specific formula for Υ◦τ,ν is not important; we only
need that it is a compactly supported smooth function on Lτ (M) which depends polyno-
mially on t.

Lemma 3.1.24. The set
Γc := E(0)−1 ⊂ L(M)

of constant loops is a non-degenerate submanifold of the loop space L(M) and as well of
Lτ (M) for any partition τ of the interval [0, 1]. It is diffeomorphic to M .

Proof. Clearly, a loop γ with zero energy must have vanishing derivative and hence be
constant. Therefore, the evaluation map is a diffeomorphism from Γc to M . By Lemma
3.1.9, the Hessian of the energy at a constant loop γ is given by

∇2E|γ[X, Y ] =

ˆ
S1

〈
∇sX(s),∇sY (s)

〉
ds.

The tangent space TγΓc is the space of parallel vector fields along γ. Now if for some
X ∈ TγL(M), we have ∇2E|γ[X, Y ] = 0 for each Y ∈ TγL(M), then X is a weak solution
of −∇2

sX = 0, hence smooth and (because of the boundary conditions) parallel. This
implies X ∈ TγΓc. Because ∇2E|γ is positive definite, the same result is true for the
subspace Lτ (M). �

Therefore, we can apply Thm. 3.1.2 on the integral Iτ,ν(t) which gives that it has an
asymptotic expansion

Iτ,ν(t) ∼ (4πt)−n/2
∞∑
j=0

tjaτ,ν,j, (3.1.21)

where

aτ,ν,j :=

j∑
i=0

1

i!(j − i)!

ˆ
Γc

P j−i
τ Υ◦ν,τ

(i)(0, γ)

detτ
(
∇2E|NγΓc

)1/2
dγ, (3.1.22)

with a certain second-order differential operator Pτ defined on a neighborhood of Γc in
Lτ (M), Υ◦τ,ν

(i) denotes the i-th derivative of Υ◦τ,ν with respect to t and detτ denotes the
determinant on the normal space of Γc in Lτ (M).

Theorem 3.1.25 (Asymptotics of the Heat Trace). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle over a closed n-dimensional
Riemannian manifold M . Then the heat trace has a complete asymptotic expansion,

Tr e−tL ∼ (4πt)−n/2
∞∑
j=0

tjaj,

for certain coefficients aj. Furthermore, there exists a constant δ > 0 such that these
coefficients aj are given by

aj := aτ,ν,j (3.1.23)

with aτ,ν,j as in (3.1.22), whenever ν and τ satisfy ν ≥ j and |τ | ≤ δ.
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Corollary 3.1.26. By uniqueness of asymptotic expansions, the coefficients aj,τ,ν stabi-
lize, i.e. we have aj,τ ′,ν′ = aj,τ,ν whenever j ≤ ν, ν ′ and |τ |, |τ ′| ≤ δ.

Proof. As seen before, the integrals Iτ,ν(t) have a complete asymptotic expansion, given
in (3.1.21). By Thm. 2.2.15, for any ν ∈ N0 and T > 0, there exists constants C, δ > 0
such that ∣∣Tr e−tL − Iτ,ν(t)

∣∣ ≤ Ct1+ν−n/2|τ |ν ,

whenever 0 < t ≤ T and |τ | ≤ δ. If we apply this |τ | ≤ δ and ν ∈ N0 fixed, this implies
that Tr e−tL must have an asymptotic expansion up to the order ν−n/2, the coefficients of
which coincide with those of the asymptotic expansion of Iτ,ν(t) up to this order. Because
ν is arbitrary, Tr e−tL must have a complete asymptotic expansion. By uniqueness of
asymptotic expansions, the coefficients coincide with aj,τ,ν as long as j ≤ ν and |τ | ≤ δ.�

Of course, it is a well-known result that the heat trace has an asymptotic expansion of the
form given above (see [BGM71], [Gil95], [BGV04], [Gre71] and many more). However, the
theorem above tells us more, namely that these coefficients are given as certain expressions
on the finite-dimensional approximations of the loop space.

Example 3.1.27. It is well known [Gil04, Thm. 3.41] that the first two terms in the
asymptotic expansion of Tr e−tL are

a0 = m vol(M), a1 =
1

6

ˆ
M

(
6 trV +m scal

)
, (3.1.24)

where m is the fiber-dimension of the bundle V and V is the potential determined by the
decomposition L = ∇∗∇+ V as in Lemma 1.1.2.

A particular case is when L = D2 for a Dirac operator D on a graded Clifford bundle.
In this case, it is well known that the supertrace Str e−tD

2 is in fact independent of t and
equal to the index of D (with respect to the grading). Therefore (if one replaces the trace
by a supertrace in the above arguments), the above considerations yield that the index
of D is zero in the case that n = dim(M) is odd and ind(D) = an/2, in the case that n is
even. Therefore we obtain the following corollary.

Corollary 3.1.28. Let D be a self-adjoint Dirac type operator on a graded Clifford bundle
V over a closed Riemannian manifold M . Suppose that the dimension n of M is even.
Then the graded index of D is given by

ind(D) =

n/2∑
i=0

1

i!(n/2− i)!

ˆ
Γc

trP
n/2−i
τ Υ◦τ,ν

(i)(0, γ)

detτ
(
∇2E|NγΓc

)1/2
dγ,

for any ν ≥ n/2 and any partition τ of the interval [0, 1] with |τ | small enough, where
Υ◦τ,ν is the loop space integrand associated to the associated Laplace type operator D2 by
Thm. 2.3.23.

It seems intriguing to compare this with results such as [BE15], where in a setting of super
geometry, the index is represented as an integral over a (super) space of constant loops.
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3.1.5 The Heat Trace on a Manifold with Boundary

Let now L be a self-adjoint Laplace type operator endowed with involutive boundary
conditions, acting on sections of a metric vector bundle V over a compact n-dimensional
Riemannian manifold with boundary M . Suppose that the smoothness Assumption 2.3.7
is satisfied. Then the trace of its solution operator e−tL can be approximated by the
integrals

Iorb
τ,ν (t) := (4πt)−nN/2

ˆ
Lorb
τ (M)

e−E(γ)/2t trΥ◦,orb
τ,ν (t, γ) dγ

over the finite-dimensional orbifold loop spaces Lorb
τ (M), see Thm. 2.3.23. Evaluating the

integral Iorb
τ,ν (t) with Laplace’s method is not completely straight forward as Lorb

τ (M) is
a proper orbifold. However, by definition of the integral over Riemannian orbifolds (see
Remark 2.3.13), we may replace the integral over Lorb

τ (M) by an integral over Lorb
τ (M),

which is a manifold. Remember furthermore that Lorb
τ (M) separates into two components:

A positive and a negative component, so that the path integral splits as

Iorb
τ,ν (t) = (4πt)−nN/2

1

2

∑
ε∈Z2

ˆ
Lorb,ε
τ (M)

e−E(γ)/2t tr
{

Υ
◦
τ,ν(t, γ)ρ(ε)

}
dγ,

using the definition of Υ◦,orb
τ,ν (t, γ) on Lorb

τ (M).

Of course, the energy is again non-negative. We need to understand the structure of the
set Γorb

c := E−1(0) ⊆ Lorb
τ (M). Similar to the proof of Lemma 3.1.24, one shows that this

is a non-degenerate submanifold of Lorb(M) and of Lorb
τ (M), for every partition τ of [0, 1].

Set
Γorb,±

c := E−1(0) ∩ Lorb,±
τ (M)

for the critical sets contained in the positive, respectively negative component of Lorb
τ (M).

The orbifold quotients Γorb,±
c are then suborbifolds of Lorb,±

τ (M). Clearly, we just have
Γorb,+

c = Γc, the set of constant loops in M (which is diffeomorphic to M), while Γc
orb,− is

diffeomorphic to ∂M : For a constant loop, γ ∈ Γc
orb,− means that γ = −γ, which means

that γ must lie in the boundary.

Remark 3.1.29. Of course, loops that lie in Γc
orb,− also have a copy lying in Γc

orb,+, but
they differ by a sign, so Γc

orb,− is not a subset of Γc
orb,+.

By the above considerations, the Laplace expansion of Iorb
τ,ν (t) is the sum of two asymptotic

expansions; one over the positive part and one over the negative part. Because the positive
part of the critical set has dimension n, we obtain from Thm. 3.1.2

(4πt)−nN/2
ˆ
Lorb,+
τ (M)

e−E(γ)/2t trΥ◦,orb
τ,ν (t, γ) dγ ∼ (4πt)−n/2

∞∑
j=0

tjaj

with

aj =
1

2

j∑
i=0

1

i!(j − i)!

ˆ
Γc

trP j−i
τ Υ

◦
τ,ν

(i)
(0, γ)

detτ
(
∇2E|NγΓc

)1/2
dγ =

1

2
aj, (3.1.25)
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where aj is the j-th coefficient in the asymptotic expansion of Tr e−tL. For the negative
part, notice that Γorb,−

c ≈ ∂M has dimension (n− 1) so that

(4πt)−nN/2
ˆ
Lorb,−
τ M)

e−E(γ)/2t trΥ◦,orb
τ,ν (t, γ) dγ ∼ (4πt)−(n−1)/2

∞∑
j=0

tjbj

with

bj =
1

2

j∑
i=0

(−1)j−i
(
j

i

) ˆ
Γorb,−

c

tr
{
P j−i
τ Υ

◦
τ,ν

(i)
(0, γ)ρ(−1)

}
detτ

(
∇2E|

NγΓorb,−
c

)1/2
dγ. (3.1.26)

We obtain the following result.

Theorem 3.1.30 (Asymptotics of the Heat Trace, Boundary Case). Let L be a
self-adjoint Laplace type operator endowed with involutive boundary conditions B, acting
on sections of a metric vector bundle V over a compact n-dimensional Riemannian mani-
fold with boundary. Suppose that the smoothness Assumption 2.3.7 is satisfied. Then
the trace of the solution operator e−tL to the heat equation has a complete asymptotic
expansion as t↘ 0, of the form

Tr e−tL ∼ (4πt)−n/2
∞∑
j=0

tjaj + (4πt)−(n−1)/2

∞∑
j=0

tjbj,

where the coefficients aj and bj are given above. Moreover, if we change the boundary
operator from B to −B, this amounts to replacing bj by −bj, while the coefficients aj
remain the same.

Proof. The proof that Tr e−tL has this asymptotic expansion is analogous to the proof of
Thm. 3.1.25. The addendum is proved by noticing that under the change of B into −B,
the equivariant structure ρ of the bundle V over M is changed, namely, ρ(−1) is replaced
by −ρ(−1). Therefore, the bj change into −bj, as seen from formula (3.1.26).
To see that the coefficients aj do not depend on B, notice that the map

ϕ : VB −→ V−B, [v, ε] 7−→ [εv, ε]

is a well-defined isometry of vector bundles, where VB denotes the vector bundle con-
structed with the help of the boundary condition B as in Construction 2.3.5 and V−B
denotes the bundle constructed this way using −B instead (don’t get confused, however:
the map ϕ above is just an isometry of vector bundles, not of equivariant vector bun-
dles). This induces an isometry of the spaces L2(M,VB) and L2(M,V−B) that takes the
respective heat operators to each other. Hence they have the same trace and the same
coefficients aj as in Thm. 3.1.25. The result follows now because by (3.1.25), the aj are
just one half of the coefficients aj. �

Remark 3.1.31. As seen by Example 1.1.6 respectively Example 1.1.8, the change of
B into −B could be the swap from Dirichlet to Neumann boundary conditions, or from
absolute to relative boundary conditions on forms.



3.2. THE LOWEST ORDER TERM 97

Of course, again, it is well known that the heat trace has an asymptotic expansion involv-
ing half integer powers of t, but the theorem above illustrates where these terms come
from: They are the contributions from the suborbifold Γorb,−

c ≈ ∂M of the energy, when
employing the Laplace method on the loop space.

Example 3.1.32. In the case of Neumann boundary conditions, i.e. B ≡ id, the first two
boundary coefficients in the asymptotic expansion of e−tL are given by [Gil04, Thm. 3.5.1]

b+
0 =

1

4
m vol(∂M), b+

1 =
1

384

ˆ
∂M

(
96 trV +m

(
16 scal− 8 tr 〈R(−,n)n,−〉

))
,

where m is the fiber-dimension of V and V is the potential determined by the decomposi-
tion L = ∇∗∇+ V from Lemma 1.1.2. The coefficients b−0 , b

−
1 corresponding to Dirichlet

boundary conditions are given by b−0 = −b+
0 , b

−
1 = −b+

1 , according to Thm. 3.1.30.
The term 〈R(−,n)n,−〉 is zero in the case thatM has a metric collar decomposition at the
boundary, but not for general metrics satisfying the Smoothness Assumption 2.3.7: For
example, ifM is a hemisphere of Sn as in Example 2.3.8, we have tr 〈R(−,n)n,−〉 = n−1.

If one drops the smoothness Assumption 2.3.7, then the heat trace asymptotics become
more complicated, and the symmetry of the boundary coefficients with respect to the
change of B into −B disappears. Let us write aj = ãj + aII

j and bj = b̃j + bII
j , where ãj

and b̃j are given by the same expressions as before (see Examples 3.1.27 and 3.1.32). One
always has ãII

0 = 0, b̃II
0 = 0. In the Neumann case, we furthermore have

aII,+
1 =

m

3

ˆ
∂M

tr II

bII,+
1 =

m

384

ˆ
∂M

(
13(tr II)2 + 2|II|2

)
,

wherem is the fiber dimension of V and II is the second fundamental form of the boundary
(see Thm. 3.5.1 in [Gil04]). In the Dirichlet case, one has aII,−

1 = aII,+
1 and

bII,−
1 =

m

384

ˆ
∂M

(
7(tr II)2 − 10|II|2

)
,

which illustrates that there is no symmetry in these contributions from the second fun-
damental form [Gil04, Thm. 3.4.1].

3.2 The lowest Order Term

This section is dedicated to giving a formula for the first order term in the asymptotic
heat kernel expansion Thm. 3.1.12 in terms of geometric quantities on the path spaces
Hxy(M).
To motivate this, let L be a self-adjoint Laplace type operator, acting on sections of a
metric vector bundle V over a closed Riemannian manifold M . For simplicity, assume for
the moment that L = ∇∗∇ for a metric connection ∇, i.e. the potential term from the
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decomposition of Lemma 1.1.2 is zero. Then for the heat kernel of L, we have the formal
path integral formula

pLt (x, y)
formally

= (4πt)−n/2
 
Hxy(M)

e−E(γ)/2t [γ‖1
0]−1 dH

1

γ, (3.2.1)

where the slash over the integral sign denotes the (formal) division by (4πt)dim(Hxy(M))/2.
This "formula" can be justified by looking at Thm. 2.2.7 or the Feynman-Kac formula
Thm. 1.1.16 (in either case, we rescaled the paths to be defined on the interval [0, 1]).
Pretending for the moment that the formal expression on the right hand side of (3.2.1)
makes sense, we see that after dividing by the Euclidean heat kernel et(x, y), it has the
form of a Laplace integral, as discussed in Section 3.1.1: The function φ(γ) := E(γ) −
d(x, y)2/2 is non-negative on Hxy(M) and takes the value zero exactly on the set Γmin

xy

of minimal geodesics connecting x and y (see Lemma 3.1.9). In the case that Γmin
xy is

a non-degenerate k-dimensional submanifold of Hxy(M), we can apply Thm. 3.1.2 (only
formally, of course, since the "integration domain" is infinite-dimensional) to obtain a
formal Laplace expansion of the path integral (3.2.1). The lowest order term of this
expansion is

φ0(x, y) =

ˆ
Γmin
xy

[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ

and it turns out that this is a well-defined quantity: The Hessian of the energy, as
given in Lemma 3.1.9, is determinant-class on each of the Hilbert spaces TγHxy(M) when
these carry the H1 metric (1.2.5), and therefore has a well-defined (non-zero) Fredholm-
determinant when restricted to the orthogonal complement of its kernel. We will discuss
this in Subsection 3.2.1.
The question now is whether the coefficient φ0(x, y) coming from the formal asymptotic
expansion of the right hand side of (3.2.1) coincides with the lowest order term Φ0(x, y)
coming from the honest asymptotic expansion of the heat kernel in Thm. 3.1.12. The
answer turns out to be "yes", and we will prove it in Subsection 3.2.2.
There is also another way to assign a determinant to an operator on an infinite-dimensional
space than the Fredholm determinant, namely the zeta determinant. In Subsection 3.2.3
below, we will connect the heat kernel asymptotics of pLt (x, y) with the zeta determinant
of the Jacobi operator along geodesics connecting x and y. This "L2 version" makes no
reference to the H1 metric. Alongside this, we will prove an interesting result regarding
zeta determinants, the Gelfand-Yaglom theorem.

3.2.1 Sobolev Spaces along Paths and the Hessian of the Energy

For a, b ∈ R, a < b, consider the closed interval I := [a, b]. Let M be a Riemannian mani-
fold of dimension n. For a smooth path γ in M parametrized by I, consider the operator
P := −∇2

s on L2(I, γ∗TM) with Dirichlet boundary conditions. By the considerations
from Section 1.1.2, it is essentially self-adjoint on the domain C∞0 (I, γ∗TM) (the space of
smooth sections u of γ∗TM with u(a) = u(b) = 0) and self-adjoint on the Sobolev space
H2

0 (I, γ∗TM). Its eigenvalues can be explicitly computed: For a parallel orthonormal
frame e1(s), . . . , en(s) of TM along γ, the sections Eik, i = 1, . . . , n, k = 1, 2, . . . , given
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by

Eik(a+ s) :=

√
2

b− a
sin

(
πks

b− a

)
ei(a+ s), 0 ≤ s ≤ b− a (3.2.2)

form an orthonormal basis of L2(I, γ∗TM) (the completeness can be easily checked us-
ing the Stone-Weierstraß theorem for locally compact spaces [dB59]). Obviously, the
corresponding eigenvalues to Eik are the numbers

λk :=
π2k2

(b− a)2
, (3.2.3)

each eigenvalue having multiplicity n.
Since the operator P is positive and self-adjoint, we can form the powers Pm for m ∈ R
and define the Sobolev spaces

Hm
0 (I, γ∗TM) := P−m/2L2(I, γ∗TM) ⊂ Hm(I, γ∗TM)

with the Sobolev norm
‖X‖Hm := ‖Pm/2X‖L2 , (3.2.4)

which is non-degenerate because P has a trivial kernel. By definition, this norm turns
the map Pm/2 : H l

0(I, γ∗TM) −→ H l−m
0 (I, γ∗TM) into an isometry, for any m, l ∈ R.

Notice that for smooth X ∈ H1
0 (I, γ∗TM), we have

(P 1/2X,P 1/2X)L2 = (PX,X)L2 = −(∇2
sX,X)L2 = (∇sX,∇sX)L2 = ‖X‖2

H1

so that form = 1, the norm defined in (3.2.4) coincides with theH1 norm defined before in
(1.2.5) and there is no ambiguity in the notation. In particular, in the case that I = [0, t],
we have

H1
0 (I, γ∗TM) = TγHxy;t(M),

similar to (1.2.2), where x := γ(0), y := γ(y). Of course, orthonormal bases on the spaces
Hm

0 (I, γ∗TM) can be obtained by rescaling the L2 orthonormal basis (3.2.2) appropriately.
In particular, the basis

Fik(a+ s) :=

√
2(b− a)

πk
sin

(
πks

b− a

)
ei(a+ s), 0 ≤ s ≤ b− a, (3.2.5)

i = 1, . . . , n, k = 1, 2, . . . , is an orthonormal basis of H1
0 (I, γ∗TM).

For later use, we need the following two lemmas.

Lemma 3.2.1. For any m ∈ R, the inclusion of Hm+1
0 (I, γ∗TM) into Hm

0 (I, γ∗TM) is a
Hilbert-Schmidt operator. Furthermore, the inclusion operator from Hm+2

0 (I, γ∗TM) into
Hm

0 (I, γ∗TM) is nuclear, and P−1 is trace-class when considered as a bounded operator
on Hm

0 (I, γ∗TM).

Proof. Denote the inclusion operator from Hm+1
0 into Hm

0 by Jm. In the case m = 1, we
have using the orthonormal basis (3.2.5) of H1

0 (I, γ∗TM) that

‖J0‖2
2 =

n∑
i=1

∞∑
k=1

‖J0Fik‖2
L2 =

n∑
i=1

∞∑
k=1

‖Fik‖2
L2 = n

∞∑
k=1

(b− a)2

π2k2
= (b− a)2n

6
,
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where we used that
∑∞

k=1 1/k2 = π2/6 [Eul40]. For m 6= 1, we have Jm = P−m/2J0P
m/2,

so that Jm is also Hilbert-Schmidt by the ideal property of Hilbert-Schmidt operators.
The inclusion of Hm+2

0 (I, γ∗TM) into Hm
0 (I, γ∗TM) is equal to JmJm+1 and the compo-

sition of two Hilbert-Schmidt operators is trace-class, so the second statement follows.
Finally, we can write[

P−1 : Hm
0 → Hm

0

]
= Jm Jm+1

[
P−1 : Hm

0 → Hm+2
0

]
,

which finishes the proof, because nuclear operators form an ideal. �

Lemma 3.2.2. For any l,m ∈ R with l ≤ m, we have

‖P (l−m)/2X‖Hm = ‖X‖Hl ≤
(
b− a
π

)m−l
‖X‖Hm .

Proof. Using the basis Eik from (3.2.2) to the eigenvalues λk, decompose a given vector
field X ∈ Hm

0 ([a, b], γ∗TM) as X =
∑n

i=1

∑∞
k=1 XikEik. Then for any l ≤ m, we have

‖X‖2
Hm =

n∑
i=1

∞∑
k=1

λmk |Xik|2 ≥ λm−l1

n∑
i=1

∞∑
k=1

λlk|Xik|2 =

(
π2

(b− a)2

)m−l
‖X‖2

Hl ,

using the explicit value for λ1 as in (3.2.3). This is the statement. �

Let us now discuss the determinant of the Hessian of the energy. If T is a bounded
linear operator on a separable Hilbert space H, then its determinant can be defined if
it has the form T = id + W with a trace-class operator W . We will call such operators
determinant-class and their (Fredholm) determinant can be defined by

det(T ) :=
∞∏
j=1

(1 + λj), (3.2.6)

where λj are the eigenvalues of W , repeated with algebraic multiplicity. Because as a
trace-class operator, W is compact, its non-zero spectrum consists only of eigenvalues of
finite algebraic multiplicity (see e.g. Thm. 7.1 in [Con94]) and the trace-class condition
means just that

∑∞
j=1 |λj| < ∞, which by definition means that the product converges

absolutely [FB05, Def. IV.1.4]. In particular, det(T ) = 0 if and only if λj = −1 for some
j. There are many other ways to define the determinant of T , see [Sim77]. For us, the
following equivalent way to calculate a determinant will be useful.

Proposition 3.2.3. Let H be a separable Hilbert space and let T := id +W be a bounded
operator on T with W trace-class. Let V1 ⊆ V2 ⊆ . . . be a nested sequence of finite-
dimensional subspaces such that their union is dense in H. Then we have

det(T ) = lim
k→∞

det
(
T |Vk

)
.
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Remark 3.2.4. In particular, if e1, e2, . . . is an orthonormal basis of H, then setting Vk
to be the span of e1, . . . , ek yields that

det(T ) = lim
k→∞

det
(
〈ei, T ej〉

)
1≤i,j≤k,

where the latter is an ordinary determinant of matrices.

Proof. Let πk be the orthogonal projection on Vk. Because id + πkWπk has the block
diagonal form

id + πkWπk =

(
T |Vk 0

0 id

)
with respect to the orthogonal splitting H = Vk ⊕ V ⊥k , we have

det
(
T |Vk

)
= det

(
id + πkWπk

)
,

where the right hand side denotes the Fredholm determinant on H. Let nk be the di-
mension of Vk and let e1, e2, . . . be an orthonormal basis of H such that e1, . . . , enk is an
orthonormal basis of Vk. Using this orthonormal basis, we have

trWk =
∞∑
j=1

〈ej, πkWπkej〉 =

nk∑
j=1

〈ej,Wej〉 −→
∞∑
j=1

〈ej,Wej〉 = trW. (3.2.7)

For the Hilbert-Schmidt norm, we find

‖Wk −W‖2
2 =

∞∑
ij=1

〈ei,(πkWπk −W )ej〉2 =
∑

{i,j | i>nk or j>nk}

〈ei,Wej〉2 ,

which converges to zero since W is Hilbert-Schmidt (this follows e.g. from the dominated
convergence theorem). Thus Wk → W in the Hilbert-Schmidt norm.
The 2-regularized determinant of a determinant-class operator id + V is defined by

det2(id + V ) = det(id + V )e−trV ,

see Section 6 in [Sim77]. Because det2 is continuous in the topology induced by Hilbert-
Schmidt norm (Thm. 6.5 in [Sim77]) and because of (3.2.7), we have

lim
k→∞

det(id +Wk) = lim
k→∞

det2(id +Wk)e
trWk = det2(id +W )etrW = det(id +W ).

This finishes the proof. �

For s ∈ I, define
Rγ(s)v := R

(
γ̇(s), v

)
γ̇(s), v ∈ Tγ(s)M, (3.2.8)

where R is the Riemann curvature tensor of M . Because of the symmetries of R, Rγ is
a symmetric endomorphism field of the bundle γ∗TM over I. Since Rγ is smooth and
uniformly bounded on I, we can form the operator P +Rγ, which is then self-adjoint on
the same domain as P , and possesses the same mapping properties as P .



102 CHAPTER 3. ASYMPTOTIC EXPANSIONS OF PATH INTEGRALS

From now on, suppose that γ is a geodesic. Then by Lemma 3.1.9, the Hessian ∇2E|γ is
given by

∇2E|γ[X, Y ] = (∇sX,∇sY )L2 + (RγX, Y )L2 =
(
(P +Rγ)X, Y

)
L2 (3.2.9)

for X, Y ∈ H1
0 (I, γ∗TM). Hence on H1

0 (I, γ∗TM) ⊂ L2(I, γ∗TM), the Hessian is given
by the operator P + Rγ. Of course, this is far from being determinant-class, since it is
even unbounded. But by (3.2.9), we also have

∇2E|γ[X, Y ] = (X, Y )H1 + (P−1RγX, Y )H1 =
(
X,P−1(P +Rγ)Y

)
H1 , (3.2.10)

so on the spaceH1
0 (I, γ∗TM), the bilinear form∇2E|γ is given by the operator id+P−1Rγ.

Now, indeed, P−1Rγ is trace-class on H1
0 (I, γ∗TM), by Lemma 3.2.1. In fact, we can even

calculate its value in terms of a curvature integral, as the following proposition shows.

Proposition 3.2.5 (The Hessian of the Energy). Let γ be a geodesic between points
x, y ∈M , parametrized [0, t] and consider ∇2E|γ as an operator on TγHxy;t(M), by dual-
izing with the H1 metric. Then ∇2E|γ − id is trace-class with

Tr
(
∇2E|γ − id

)
= −1

t

ˆ t

0

ric
(
γ̇(s), γ̇(s)

)
s(t− s) ds,

where ric denotes the Ricci tensor of M .

Remark 3.2.6. This implies that ∇2E|γ is determinant-class as a bilinear form on the
Hilbert space H1

0 ([0, t], γ∗TM). Furthermore, it is easy to see from the above considera-
tions, that ∇2E|γ is determinant-class on Hm

0 ([0, t], γ∗TM) if and only if m = 1.

Proof. By (3.2.10), we have using the orthonormal basis Fik from (3.2.5) that

Tr
(
∇2E|γ − id

)
=

n∑
i=1

∞∑
k=1

(
P−1RγFik, Fik

)
H1 =

n∑
i=1

∞∑
k=1

(
RγFik, Fik

)
L2

=

ˆ t

0

(
n∑
j=1

〈R(γ̇(s), ei(s))γ̇(s), ei(s)〉

)
︸ ︷︷ ︸

=−ric
(
γ̇(s),γ̇(s)

)
(
∞∑
k=1

2t

π2k2
sin

(
πsk

t

)2
)

ds.

Now because of 2 sin(z)2 = 1− cos(2z), we have

∞∑
k=1

2t

π2k2
sin

(
πsk

t

)2

=
t

π2

∞∑
k=1

1

k2
− t

∞∑
k=1

1

π2k2
cos

(
2πsk

t

)
=

1

t
s(t− s),

where we used the Fourier transform identity of the second Bernoulli polynomial [Sch13],

∞∑
k=1

1

π2k2
cos (2πkz) = z2 − z +

1

6
. �
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Example 3.2.7 (Constant Curvature Manifolds). Set [a, b] = [0, 1]. We calculate
det(∇2E|γ) in the case that γ is a unique minimizing geodesic between points x, y on a
Riemannian manifoldM of constant sectional curvature κ. In this special case, the Jacobi
eigenvalue equation along a geodesic γ is (see e.g. [Cha84, p. 63])(

P +Rγ(s)
)
X(s) = −∇2

sX(s)− κ|γ̇(s)|2X(s) + κ 〈X(s), γ̇(s)〉 γ̇(s) = λX(s).

Because γ is a geodesic, the eigenspaces separate into spaces of vector fields that are
either parallel to γ̇ or orthogonal to γ̇. Write r := |γ̇(s)| = d(x, y) (which is independent
of s because γ is a geodesic). Set e1(s) := γ̇(s)/r and let e2(s), . . . , en(s) be a parallel
orthonormal basis of the orthogonal complement of γ̇ along γ.
If we use the frame e1(s), . . . , en(s) to define the orthonormal basis Fik as in (3.2.5), then
this is an orthonormal basis of eigenvectors of P +Rγ on the space H1

0 ([0, 1], γ∗TM): The
F1k are eigenvectors to the eigenvalues λk = π2k2 (so these have multiplicity one each),
while the Fik, i = 2, . . . , n, are eigenvectors to the eigenvalues µk = π2k2 − κr2 (each of
these has multiplicity n− 1). The eigenvalues for the operator id + P−1Rγ are then

λ̃k =
λk
π2k2

= 1, µ̃k =
µk
π2k2

= 1− κr2

π2k2
. (3.2.11)

(If κ > 0, this reflects that in order to have no zero eigenvalues, we need to have r2κ < π2.)
We obtain by (3.2.6) and (3.2.10)

det
(
∇2E|γ

)
= det

(
id + P−1Rγ

)
=
∞∏
k=1

(
1− κr2

π2k2

)n−1

=

(
sin(
√
κr)√
κr

)n−1

by the product formula for the sine [FB05, p. 220] (if κ is negative, then sin becomes
sinh). Note that these results coincide with the explicit formulas for the Jacobian of the
exponential map J(x, y) on manifolds with constant curvature, compare Remark 2.1.2.
This is no coincidence, as we will see in Corollary 3.2.11 below.

3.2.2 The lowest Order Term as a Fredholm Determinant

We start with the main result of this section.

Theorem 3.2.8 (Lowest Order Term, H1 picture). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle V over a compact Riemannian
manifold M of dimension n. For x, y ∈M , suppose that the set Γmin

xy of minimal geodesics
connecting x and y is a k-dimensional non-degenerate submanifold of Hxy(M). Then for
the lowest order coefficient Φ0(x, y) from Thm. 3.1.12, we have

Φ0(x, y) = lim
t→0

(4πt)k/2
pLt (x, y)

et(x, y)
=

ˆ
Γmin
xy

[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ,

where [γ‖1
0] denotes the parallel transport along γ with respect to the connection determined

by the decomposition L = ∇∗∇+ V as in Lemma 1.1.2, and the determinant is the Fred-
holm determinant of the bilinear form ∇2E on the Hilbert subspace NγΓ

min
xy ⊆ TγHxy(M).

Here the Hilbert manifold Hxy(M) is endowed with the H1 metric (1.2.5) and Γmin
xy carries

the induced submanifold metric.
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For the proof, we need the following two lemmas, the (somewhat involved) proof of which
will be given at the end of this section.

Lemma 3.2.9. Let M be a compact Riemannian manifold and x, y ∈M . Then for every
C > 0, there exist constants α > 0 and N0 ∈ N such that the following holds: For any
geodesic γ ∈ Γmin

xy in M , we have

e−α|τ |
−3 ≤

∣∣det
(
devτ |γ

)∣∣ N∏
j=1

(∆jτ)−n/2 ≤ eα|τ |
−3

for any partition τ = {0 = τ0 < τ1 < · · · < τN = 1} of the interval [0, 1] with N ≥ N0 and
|τ | ≤ C/N .

Lemma 3.2.10. Let S be a set of partitions of the interval [0, 1] such that for any ε >
0, there exists τ ∈ S with |τ | < ε. Then for any γ ∈ Γmin

xy , the union of the spaces
TγHxy;τ (M), τ ∈ S is dense in TγHxy(M) = H1

0 ([0, 1], γ∗TM).

Proof (of Thm. 3.2.8). By Thm. 3.1.12, we have

lim
t→0

(4πt)k/2
pLt (x, y)

et(x, y)
= Φ0(x, y)

for the coefficient Φ0(x, y), which is given for arbitrary ν ≥ 0 and partitions τ fine enough
by the integral

Φ0(x, y) =

ˆ
Γmin
xy

Υτ,ν(0, γ)

detτ
(
∇2E|NγΓmin

xy

)1/2
dγ, (3.2.12)

compare (3.1.12). The result now follows by taking the limit over a suitable sequence of
partitions. By formula (2.2.14) for Υτ,ν , we have

Υτ,ν(0, γ) =

(∣∣det
(
devτ |γ

)∣∣ N∏
j=1

(∆jτ)−n/2

)(
N∏
j=1

Φ0

(
γ(τj−1), γ(τj)

))

independent of ν, provided the partition τ is so fine that χ(γ(τj−1), γ(τj)) = 1 for each
j, where χ is the cutoff function appearing in the formula. Remember from (2.1.10) that
for (z0, z1) ∈ M ./ M , the coefficient Φ0 is given by Φ0(z0, z1) = J(z0, z1)−1/2[γz0z1‖1

0]−1,
where J(z0, z1) is the Jacobian of the exponential map (see Remark 2.1.2) and γz0z1 is the
shortest geodesic connecting z0 to z1 in time one. From the Taylor expansion (2.1.8) of
the function J , we obtain that there exists a constant α > 0 such that

e−α|t−s|
2 ≤ J

(
γ(s), γ(t)

)−1/2 ≤ eα|t−s|
2

for all 0 ≤ s, t ≤ 1 and all γ ∈ Γmin
xy and consequently

e−α|τ | ≤ e−α
∑N
j=1(∆jτ)2 ≤

N∏
j=1

J
(
γ(τj−1), γ(τj)

)−1/2 ≤ eα
∑N
j=1(∆jτ)2 ≤ eα|τ |. (3.2.13)
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Hence by Lemma 3.2.9, we have for any γ that

lim
|τ |→0

Υτ,ν(0, γ) = [γ‖1
0]−1,

where for a fixed C > 0, the limit goes over any sequence of partitions τ = {0 = τ0 <
τ1 < · · · < τN = 1} with |τ | → 0, where each such τ additionally satisfies |τ | ≤ C/N .
By Lemma 3.2.10, if (τ k), k ∈ N is any sequence of partitions the mesh of which tends to
zero, then the union of the spaces TγHxy;τk(M), k ∈ N, is dense in TγHxy(M) for every
γ ∈ Γmin

xy . Furthermore, also the union of the spaces NγΓ
min
xy ∩ TγHxy;τk(M) is dense in

NγΓ
min
xy . For let X ∈ NγΓ

min
xy . Then there exists a sequence Xk ∈ TγHxy;τk(M) with

‖X −Xk‖H1 → 0 by Lemma 3.2.10. But if Yk ∈ TγΓmin
xy is the part of Xk tangent to Γmin

xy ,
we have

‖X −Xk‖2
H1 =

∥∥X − (Xk − Yk)
∥∥2

H1 + ‖Yk‖2
Hk ,

so that Xk − Yk is an approximating sequence of X in NγΓ
min
xy ∩ TγHxy;τk(M). By

Prop. 3.2.3, we therefore have

lim
|τ |→0

detτ
(
∇2E|NγΓmin

xy

)
= lim
|τ |→0

det
(
∇2E|NγΓmin

xy ∩TγHxy;τ (M)

)
= det

(
∇2E|NγΓmin

xy

)
if the limit goes over any nested sequence of partitions τ the mesh of which tends to zero
(since then the corresponding sequence of spaces NγΓ

min
xy ∩ TγHxy;τ (M) is nested, too).

We obtain that if for a fixed C > 0, we take the limit over some nested sequence of
partitions τ with |τ | → 0 that additionally satisfies |τ | ≤ C/N , then the integrand in
(3.2.12) converges to the integrand from the theorem pointwise.
To justify the exchange of integration and taking the limit, we give a uniform bound. The
term Υτ,ν(0, γ) is uniformly bounded by (3.2.13) and Lemma 3.2.9. Because of (3.2.10),
we have

detτ
(
∇2E|NγΓmin

xy

)
= det

(
∇2E|NγΓmin

xy ∩Hxy;τ (M)

)
= det

(
(id + πτP

−1Rγπτ )|NγΓmin
xy

)
,

where πτ is the orthogonal projection of Hxy(M) onto Hxy;τ (M). Because of the standard
determinant estimate for Fredholm determinants (see [Sim77, Thm. 3.2])

e−‖T‖1 ≤ det(id + T ) ≤ e‖T‖1 , (3.2.14)

which holds for all trace-class operators T , we have

detτ
(
∇2E|NγΓmin

xy

)−1/2 ≤ e‖πτP
−1Rγπτ‖1/2.

But
‖πτP−1Rγπτ‖1 ≤ ‖πτ‖‖P−1Rγ‖1‖πτ‖ ≤ ‖P−1‖1‖Rγ‖,

which is finite by Lemma 3.2.1 and bounded uniformly over γ ∈ Γmin
xy since Γmin

xy is compact.
The proof now follows from Lebesgue’s theorem of dominated convergence. �

Restricting to the case (x, y) ∈M ./ M gives the following corollary.
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Corollary 3.2.11 (The Jacobian of the Exponential Map). Let M be a complete
Riemannian manifold. Let (x, y) ∈M ./ M and let γxy be the unique minimizing geodesic
connecting x to y in time one. Then we have

det
(
∇2E|γxy

)
= J(x, y),

where J(x, y) is the Jacobian determinant of the exponential map, as in Remark 2.1.2.
Here, Hxy(M) carries the H1 metric (1.2.5).

Proof. Of course, this is a local result, so in the case that M is non-compact, we can take
some patch ofM containing γxy and embed it isometrically into some compact Riemannian
manifoldM ′ in such a way that γxy is still a minimizing geodesic, without changing J(x, y)
or the determinant of the Hessian of the energy. This shows that we may assume that M
is compact so that the above results apply.
Taking the heat kernel of the Laplace-Beltrami operator in Thm. 3.2.8 and restricting to
the case (x, y) ∈M ./ M (which implies Γmin

xy = {γxy} and k = dim(Γmin
xy ) = 0), we have

Φ0(x, y) = lim
t→0

p∆
t (x, y)

et(x, y)
= det

(
∇2E|γxy

)−1/2
.

By (2.1.10), we have Φ0(x, y) = J(x, y)−1/2 so the result follows. �

Another way to formulate Thm. 3.2.8 is that if Γmin
xy is a non-degenerate submanifold of

dimension k, we have

pLt (x, y) ∼ (4πt)−n/2−k/2
ˆ

Γmin
xy

e−E(γ)/2t [γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ, (3.2.15)

where the asymptotic relation means that the quotient of the two sides converges to one
as t→ 0. This involves the space of minimal geodesics parametrized by the interval [0, 1].
One can also formulate this result using the space Γmin

xy;t of minimal geodesics between x
and y parametrized by [0, t].

Corollary 3.2.12. Under the assumptions of Thm. 3.2.8, we have

pLt (x, y) ∼ (4πt)−n/2
ˆ

Γmin
xy;t

e−E(γ)/2 [γ‖t0]−1

det
(
∇2E|NγΓmin

xy;t

)1/2
dH̃

1

γ.

Here, Γmin
xy;t denotes the space of minimizing geodesics parametrized by [0, t] connecting x

to y, carrying the rescaled H1 metric

(X, Y )H̃1 :=
1

4π

ˆ t

0

〈∇sX(s),∇sY (s)〉 ds. (3.2.16)

The asymptotic relation above means that the quotient of the two sides converges to one
as t→ 0.
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Remark 3.2.13. Notice that the formula of Corollary 3.2.12 is independent of the di-
mension k. Therefore, the above formula is also true if Γmin

xy;t is a disjoint union of non-
degenerate submanifolds of various dimensions. However, only the component of Γmin

xy of
the highest dimension will contribute in the limit, because the integrals over the other
components are of lower order in t.

Proof. Consider the rescaling map

St : Hxy;t(M) −→ Hxy(M), γ 7−→ γ̃ :=
[
s 7→ γ(st)

]
. (3.2.17)

For X ∈ TγHxy;t(M), we have dSt|γX = X̃, where X̃(s) = X(st). Therefore,

(
dSt|γX, dSt|γY

)
H1 =

ˆ 1

0

〈
∇sX̃(s),∇sỸ (s)

〉
ds = t2

ˆ 1

0

〈∇sX(st),∇sY (st)〉 ds

= t

ˆ t

0

〈∇sX(s),∇sY (s)〉 ds = 4πt
(
X, Y

)
H̃1

so that St is a conformal mapping with conformal factor 4πt. St restricts to a map
St : Γmin

xy;t −→ Γmin
xy and by the above calculation, we find in the case that Γmin

xy is a
k-dimensional submanifold of Hxy(M) that

det(dSt) = det
(
(dSt)

∗dSt
)1/2 ≡ (4πt)k/2,

Hence

Φ0(x, y) =

ˆ
Γmin
xy

[γ̃‖1
0]−1

det
(
∇2E|Nγ̃Γmin

xy

)1/2
dγ̃ = (4πt)k/2

ˆ
Γmin
xy;t

[γ‖t0]−1

det
(
∇2E|Nγ̃Γmin

xy

)1/2
dγ. (3.2.18)

To see that the determinant is independent of t, i.e.

det(∇2E|Nγ̃Γmin
xy

) = det(∇2E|NγΓmin
xy;t

)

for any t > 0, note that if E1, E2, . . . is an orthonormal basis of NγΓ
min
xy;t, then the vector

fields Ẽj(s) :=
√
tEj(s/t) form an orthonormal basis of Nγ̃Γ

min
xy . Now

∇2E|γ[Ei, Ej] =

ˆ t

0

(
〈∇sEi(s),∇sEj(s)〉+

〈
R
(
γ̇(s), Ei(s)

)
γ̇(s), Ej(s)

〉)
ds

=
1

t

ˆ t

0

(〈
∇sẼi(s/t),∇sẼj(s/t)

〉
+
〈
R
(

˙̃γ(s/t), Ẽi(s/t)
)

˙̃γ(s/t), Ẽj(s/t)
〉)

ds

= ∇2E|γ̃
[
Ẽi, Ẽj

]
.

From this follows using Prop. 3.2.3 (or rather Remark 3.2.4) that

det
(
∇2E|Nγ̃Γmin

xy

)
= lim

N→∞
det
(
∇2E|γ̃

[
Ẽi, Ẽj

])
1≤i,j≤N

= lim
N→∞

det
(
∇2E|γ

[
Ei, Ej

])
1≤i,j≤N

= det
(
∇2E|NγΓmin

xy;t

)
whence the result. �
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Example 3.2.14 (The first Coefficient on Spheres). On an n-dimensional sphere of
radius R = 1/

√
κ, the determinant of the Hessian of the energy, respectively the Jacobian

of the exponential map, is given by (2.1.9) in the case that x and y are not antipodal
points, which gives an explicit formula for Φ0(x, y) because of (2.1.10). We now use Thm.
3.2.8 to calculate Φ0(x, y) for the Laplace-Beltrami operator on SnR in the case that x and
y are antipodal points.
Without loss of generality, we assume that x = (R, 0, . . . , 0) and y = (−R, 0, . . . , 0) are
the north and south pole. In this case, the set Γmin

xy is diffeomorphic to Sn−1
R , the n − 1-

dimensional sphere of radius R, via the diffeomorphism

ρ : Sn−1
R −→ Γmin

xy θ 7−→
[
s 7→

(
R cos(πs)
θ sin(πs)

)]
.

For v ∈ TθSn−1
R , we have

dρ|θv =: Xv =
[
s 7→

(
0

v sin(πs)

)]
.

Since v ∈ TθSn−1
R , we have 〈v, θ〉 = 0, hence

〈
Ẋv(s), ρ(θ)(s)

〉
= 0 so that

∇sXv(s) = Ẋv(s)− κ
〈
Ẋv(s), ρ(θ)(s)

〉
ρ(θ)(s) = −π

(
0

v sin(πs)

)
,

by the explicit formula for the Levi-Civita connection on the round sphere. Therefore, if
e1, . . . , en−1 is an orthonormal basis of TθSn−1

R , the Jacobian determinant of ρ is given by

∣∣det
(
dρ|θ

)∣∣ = det
((
Xei , Xej

)
H1

)1/2

1≤i,j≤n−1
= det

(
π2 〈ei, ej〉

ˆ 1

0

cos(πs)2ds

)1/2

1≤i,j≤n−1

= πn−12(1−n)/2,

which is constant. To calculate the determinant of the Hessian of the energy, remember
that the eigenvalues are given by (3.2.11). In our case, r = Rπ and κ = 1/R2 so µ̃1 = 0,
which has to be left out to calculate the Hessian on the normal space to Γmin

xy . We obtain

det
(
∇2E|NγΓmin

xy

)
=
∞∏
k=2

µ̃n−1
k =

∞∏
k=2

(
1− κr2

π2k2

)n−1

=
∞∏
k=2

(
1− 1

k2

)n−1

= 21−n,

because the product "telescopes", that is
∞∏
k=2

(
1− 1

k2

)
= lim

N→∞

(
N∏
k=2

k − 1

k

)(
N∏
k=2

k + 1

k

)
= lim

N→∞

1

N

N + 1

2
=

1

2
.

Therefore, by Thm. 3.2.8, we have

Φ0(x, y) =

ˆ
Γmin
xy

2(n−1)/2dH
1

γ = 2(n−1)/2

ˆ
Sn−1
R

det
(
dρ|θ

)
dθ

= πn−1Rn−1vol(Sn−1) = 2
π3n/2−1Rn−1

Γ (n/2)
.

This result can also be found in [Hsu02, Example 5.3.3].
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Remark 3.2.15. Using Prop. 3.1.21, these results can be extended to the case that M
has a boundary, in the case that the smoothness Assumption 2.3.7 is satisfied.

To finish the section, it is left to prove the Lemmas 3.2.9 and 3.2.10.

Proof (of Lemma 3.2.9). Identify the tangent spaces Tγ(s)M with Tγ(0)M using parallel
transport along γ. Let τ = {0 = τ0 < τ1 < · · · < τN = 1}, N ≥ 2, be a partition of the
interval [0, 1] and write for abbreviation ∆j := ∆jτ = τj − τj−1.
Step 1. Define the subspace Wτ ⊂ TγHxy(M) = H1

0 ([0, 1], γ∗TM) by

Wτ :=
{
X ∈ TγHxy(M) | X smooth on (τj−1, τj) with ∇2

sX(s) = 0
}
. (3.2.19)

This means that elements X ∈ Wτ are piecewise linear, i.e. they have the form

X(τj−1 + s) =

(
1− s

∆j

)
vj−1 +

s

∆j

vj, vj := X(τj), 0 ≤ s ≤ ∆j. (3.2.20)

Define

Ψτ :
N⊕
j=1

Tγ(τj)M −→ Wτ , (v1, . . . , vN−1) 7−→ Xv,

where Xv is the unique element in Wτ with Xv(τj) = vj (where we set v0 = vN = 0).
Then by the explicit form (3.2.20) of Xv = Ψτ (v1, . . . , vN−1), Xw = Ψτ (w1, . . . , wN−1), we
have (using the convention v0 = vN = w0 = wN = 0)

(
Xv, Xw

)
H1 =

N∑
j=1

ˆ τj

τj−1

〈
1

∆j

(vj − vj−1),
1

∆j

(wj − wj−1)

〉
ds

=
N∑
j=1

1

∆j

(
〈vj, wj〉+ 〈vj−1, wj−1〉 − 〈vj, wj−1〉 − 〈vj−1, wj〉

)

=

〈 v1
...

vN−1

 , Dτ

 w1
...

wN−1

〉

where Dτ is the n(N − 1)× n(N − 1) matrix

Dτ :=



(
1

∆1
+ 1

∆2

)
id − 1

∆2
id

− 1
∆2

id
(

1
∆2

+ 1
∆3

)
id

. . .
. . . . . . − 1

∆N−1
id

− 1
∆N−1

id
(

1
∆N−1

+ 1
∆N

)
id

 .

Per induction, one shows that det(Dτ ) =
∏N

j=1 ∆−nj . As a subspace of H1
0 ([0, 1], γ∗TM),

Wτ carries the induced H1 scalar product. With respect to this scalar product, we obtain
that

| det(Ψτ )| = det(Ψ∗τΨτ )
1/2 = det(Dτ )

1/2 =
N∏
j=1

∆
−n/2
j . (3.2.21)
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Step 2. Define the operator

Kτ : Wτ −→ TγHxy(M), X 7−→ KτX, (3.2.22)

where Y := KτX is the unique solution of{
−∇2

sY (s) +Rγ(s)Y (s) = −Rγ(s)X(s) for s 6= τj

Y (τj) = 0 for j = 1, . . . , N,

with Rγ the curvature endomorphism along γ considered in Section 3.2.1. This problem
indeed has a unique solution, because Y = KτX is just patched together from the unique
solutions of Dirichlet problems on each subinterval [τj−1, τj]. Namely, the self-adjoint
operator −∇2

s +Rγ with Dirichlet boundary conditions is invertible on each of the subin-
tervals [τj−1, τj], because it has trivial kernel: Elements in the kernel are Jacobi fields with
vanishing endpoints. A non-zero element in the kernel would therefore imply that γ(τj−1)
and γ(τj) are conjugate, which cannot happen for N ≥ 2 as γ is a minimizing geodesic.
Because the right hand side is smooth on these subintervals, Y is as well. For X ∈ Wτ ,
set X̃ := X +KτX := X + Y . Then X̃ ∈ TγHxy;τ (M), because for s 6= τj, we have

∇2
sX̃ = ∇2

sX(s)︸ ︷︷ ︸
=0

+∇2
sY (s) = Rγ(s)Y (s) +Rγ(s)X(s) = Rγ(s)X̃(s).

Thus X̃ is a piecewise Jacobi field, i.e. an element of TγHxy;τ (M). Notice that

id +Kτ : Wτ −→ TγHxy;τ (M)

is an isomorphism of vector spaces, because the dimensions coincide and it is injective: If
X = −KτX, for X ∈ Wτ , then in particular X(τj) = −(KτX)(τj) = 0 for all j, hence
X = 0. Furthermore, for vectors vj ∈ Tγ(τj)M , X := (id + Kτ )Ψτ (v1, . . . , vN−1) is the
piece-wise Jacobi field with X(τj) = vj. Therefore,(

devτ |γ
)−1

= (id +Kτ )Ψτ . (3.2.23)

Extend Kτ to a bounded linear operator on TγHxy(M) through extension by zero on the
orthogonal complement W⊥

τ . Denote by iτ , pτ and ιτ , πτ the inclusions and orthogonal
projections corresponding to the subspaces Wτ respectively TγHxy;τ (M) of TγHxy(M).
Using (3.2.23) and (3.2.21), we obtain

∣∣det
(
devτ |γ

)∣∣ N∏
j=1

∆
−n/2
j =

∣∣det
(
πτ (id +Kτ )iτ

)∣∣−1

∏N
j=1 ∆

−n/2
j∣∣det(Ψτ )
∣∣ =

∣∣det
(
πτ (id +Kτ )iτ

)∣∣−1

Furthermore, ∣∣det
(
πτ (id +Kτ )iτ

)∣∣ = det
(
pτ (id +Kτ )

∗ιτπτ (id +Kτ )iτ
)1/2

= det
(
pτ (id +Kτ )

∗(id +Kτ )iτ
)1/2

,
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where in the last step we used that the image of id + Kτ is contained in TγHxy;τ (M) so
that the projection and inclusion in the middle can be left out. For X1, X2 ∈ Wτ , let
Y1 := KτX1, Y2 := KτX2 and calculate

(X1, KτX2)H1 = (X1, Y2)H1 =
N∑
j=1

ˆ τj

τj−1

〈∇sX1(s),∇sY2(s)〉 ds = 0,

which follows from integration by parts since ∇2
sX1 = 0 for s ∈ [τj−1, τj] and Y2(τj) =

Y2(τj−1) = 0 for all j = 1, . . . , N . This shows KτX ⊂ W⊥
τ . Put together, we get for

X1, X2 ∈ Wτ that(
X1, (id+Kτ )

∗(id +Kτ )X2

)
H1

= (X1, X2)H1 + (X1, KτX2)H1︸ ︷︷ ︸
=0

+ (KτX1, X2)H1︸ ︷︷ ︸
=0

+(KτX1, KτX2)H1

=
(
X1, (id +K∗τKτ )X2

)
H1 ,

i.e. pτ (id +Kτ )
∗(id +Kτ )iτ = pτ (id +K∗τKτ )iτ , and

det
(
pτ (id+Kτ )

∗(id+Kτ )iτ
)1/2

= det
(
pτ (id+K∗τKτ )iτ

)1/2
= det

(
id+K∗τKτ

)1/2
, (3.2.24)

where the last determinant is a Fredholm determinant and the last step uses that id+K∗τKτ

has block diagonal form with respect to the decomposition TγHxy(M) = Wτ ⊕W⊥
τ .

Therefore, with a view on the standard determinant estimate (3.2.14), we are led to
estimate ‖K∗τKτ‖1 = tr(K∗τKτ ) = ‖Kτ‖2

2, the Hilbert-Schmidt norm of Kτ .
Step 3. We need some preliminary considerations. Let [a, b] be any subinterval of [0, 1]
and write P for the operator −∇2

s on L2([a, b], γ∗TM) with Dirichlet boundary conditions,
as in Section 3.2.1. Suppose that [a, b] ( [0, 1]. Then P + Rγ is an isomorphism from
Hm

0 ([a, b], γ∗TM) toHm−2
0 ([a, b], γ∗TM) for eachm ∈ R (remember that γ is a minimizing

geodesic, hence γ|[a,b] is unique minimizing, so there are no non-trivial Jacobi fields with
vanishing endpoints along γ|[a,b], i.e. the kernel of P +Rγ is trivial). We now show that∥∥(P +Rγ)

−1X
∥∥
H1 ≤

(b− a)2

π2 − ‖Rγ‖(b− a)2
‖X‖H1 , (3.2.25)

for each X ∈ H1([a, b], γ∗TM) and any γ ∈ Γmin
xy , where ‖Rγ‖ is the operator norm of the

operator X 7→ RγX on H1
0 ([0, 1], γ∗TM). First we have using Lemma 3.2.2 above that

‖P−1RγX‖H1 ≤ (b− a)2

π2
‖RγX‖H1 ≤ (b− a)2

π2
‖Rγ‖‖X‖H1 ,

since the operator norm of Rγ on [a, b] is less or equal to the operator norm of Rγ on the
interval [0, 1]. We find for all X ∈ H1

0 ([a, b], γ∗TM) that∥∥(id + P−1Rγ)X
∥∥
H1 ≥ ‖X‖H1 − ‖P−1RγX‖H1 ≥

(
1− ‖Rγ‖

(b− a)2

π2

)
‖X‖2

H1 .

Because id + P−1Rγ is self-adjoint on H1
0 ([a, b], γ∗TM) as is easy to verify, we obtain for

its smallest eigenvalue

µmin = inf
X 6=0

‖(id + P−1Rγ)X‖H1

‖X‖H1

≥
(

1− ‖Rγ‖
(b− a)2

π2

)
.
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The spectral radius of the inverse (id + P−1Rγ)
−1 is equal to 1/µmin. Since id + P−1Rγ

is self-adjoint on H1
0 ([a, b], γ∗TM) and so is its inverse, the spectral radius equals the

operator norm, whence

∥∥(id + P−1Rγ)
−1X

∥∥
H1 ≤

1

µmin

‖X‖L2 ≤ π2

π2 − ‖Rγ‖(b− a)2
‖X‖H1

Finally, using Lemma 3.2.2 again, we get∥∥(P +Rγ)
−1X

∥∥
H1 =

∥∥P−1(id + P−1Rγ)
−1X

∥∥
H1

≤ (b− a)2

π2

∥∥(id + P−1Rγ)
−1X

∥∥
H1

≤ (b− a)2

π2 − ‖Rγ‖(b− a)2
‖X‖H1 ,

which is the claim.
Step 4. We finally derive a bound on ‖Kτ‖2

2. For any vector X ∈ TγHxy;τ (M) and any
j = 1, . . . , N , we have KτX|[τj−1,τj ] = −(P +Rγ)

−1RγX|[τj−1,τj ], where (P +Rγ)
−1 is the

operator discussed in Step 3 on the interval [a, b] := [τj−1, τj].
Let E1, E2, . . . , En(N−1) be an orthonormal basis of Wτ . Using the estimate (3.2.25) from
Step 3 on the operator norm of (P +Rγ)

−1 on H1([τj−1, τj], γ
∗TM), we obtain

‖Kτ‖2
2 =

n(N−1)∑
i=1

‖KτEi‖2
H1 =

n(N−1)∑
i=1

N∑
j=1

∥∥KτEi|[τj−1,τj ]

∥∥2

H1

=

n(N−1)∑
i=1

N∑
j=1

∥∥−(P +Rγ)
−1RγEi|[τj−1,τj ]

∥∥2

H1

≤
n(N−1)∑
i=1

N∑
j=1

(
∆2
j

π2 − ‖Rγ‖∆2
j

)2 ∥∥RγEi|[τj−1,τj ]

∥∥2

H1

≤
n(N−1)∑
i=1

(
|τ |2

π2 − ‖Rγ‖|τ |2

)2 ∥∥RγEi
∥∥2

H1 ≤ n(N − 1)

(
‖Rγ‖|τ |2

π2 − ‖Rγ‖|τ |2

)2

We now suppose that |τ | ≤ C/N for some C > 0. Suppose additionally the partition τ be
so fine that |τ | ≤ π/

√
2‖Rγ‖, or equivalently π2 − ‖Rγ‖|τ |2 ≥ π2/2. By the assumption

|τ | ≤ C/N , this is the case in particular if N ≥ N0 := dC
√

2‖Rγ‖/πe. For such τ , we
have

‖Rγ‖|τ |2

π2 − ‖Rγ‖|τ |
≤ 2‖Rγ‖|τ |2

π2
≤ 2‖Rγ‖C2

π2N2
=
N2

0

N2

and

‖Kτ‖2
2 ≤ n(N − 1)

(
N2

0

N2

)2

≤ nN2
0

1

N3
.

With a view on (3.2.24), this concludes the proof using (3.2.14), because the operator
norm ‖Rγ‖ is uniformly bounded for γ ∈ Γmin

xy . �
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Remark 3.2.16. Notice that if M is flat, we have Wτ = Hxy;τ (M) and the operator Kτ

of the above proof is zero. Hence in the flat case, we have

∣∣det
(
devτ |γ

)∣∣ N∏
j=1

(∆jτ)−n/2 ≡ 1,

for each partition τ = {0 = τ0 < τ1 < · · · < τN = 1} of the interval [0, 1].

Proof (of Lemma 3.2.10). The proof is divided into two steps.
Step 1. We first show that the union of the spaces Wτ for τ ∈ S is dense in the space
H1

0 ([0, 1], γ∗TM), where Wτ is the space defined in (3.2.19). Namely, we claim that given
a partition τ = {0 = τ0 < τ1 < · · · < τN}, a vector field X ∈ H1

0 ([0, 1], γ∗TM) is in the
orthogonal complement of Wτ if only if X(τj) = 0 for all j = 1, . . . , N − 1. Indeed, for a
given v ∈ Tγ(τj)M , define Y ∈ Wτ by

Y (s) =

{
s(1− τj)v s ≤ τj

(1− s)τjv s ≥ τj,

where we identified the spaces Tγ(s)M by parallel transport along γ. Then integrating by
parts and using that ∇2

sX ≡ 0 on (τj−1, τj) yields

(X, Y )H1 =
N∑
j=1

ˆ τj

τj−1

〈∇sX(s),∇sY (s)〉 ds =
N−1∑
j=1

〈X(τj), Y (τj−)− Y (τj+)〉 = 〈X(τj), v〉 .

This proves the claim, since this scalar product is zero for all v chosen this way if and
only if X(τj) = 0 for all j.
Now suppose that X ∈ Hxy;τ (M) is in the orthogonal complement of Wτ for all τ ∈ S.
Then by the observation before, we obtain that necessarily X(s) = 0 for all s ∈ [0, 1] for
which there exists a partition τ ∈ S with s ∈ τ . Because of the condition on the set S,
the set of such s in dense in [0, 1], so from continuity follows X ≡ 0. Therefore the union
of all Wτ , τ ∈ S must be a dense subset.
Step 2. Suppose that Wτ 6= Hxy;τ (M), i.e. Rγ 6= 0 (otherwise, we are already done
with the proof). Let Y ∈ Wτ . Then if Kτ is the operator defined in (3.2.22), then
Y + KτY ∈ TγHxy;τ (M), as seen in Step 2 of the proof of Lemma 3.2.9 above. By
(3.2.25), we have

‖KτY ‖2
H1 =

N∑
j=1

∥∥−(P +Rγ)
−1RγY |τj−1,τj

∥∥2

H1 ≤
N∑
j=1

(
∆2
j

π2 − ‖Rγ‖∆2
j

)2

‖RγY |τj−1,τj‖2
H1

≤ |τ |4 4

π4
‖RγY ‖2

H1 ≤ |τ |4
4

π4
‖Rγ‖2‖Y ‖2

H1

whenever π2 − ‖Rγ‖|τ |2 ≤ π2/2, or equivalently |τ | ≤ π/
√

2‖Rγ‖ (here ‖Rγ‖ is the
operator norm of the operator X 7→ RγX on H1

0 ([0, 1], γ∗TM). We conclude that the
operator norm of the operators Kτ for |τ | small enough satisfies the bound ‖Kτ‖ ≤ C|τ |2
with a constant C > 0 independent of τ . Hence∥∥X − (Y +KτY )

∥∥
H1 ≤ ‖X − Y ‖H1 + ‖KτY ‖H1 ≤ ‖X − Y ‖H1 + ‖Kτ‖‖Y ‖H1

≤ ‖X − Y ‖H1 + C|τ |2
(
‖X − Y ‖H1 + ‖X‖H1

)
.
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Now given ε > 0, choose δ > 0 such that

δ2 < min

{
ε

C
(
ε+ 2‖X‖H1

) , π2

2‖Rγ‖

}

and let S ′ ⊂ S be the set containing all partitions τ ∈ S with |τ | ≤ δ. Then S ′ still has
the property from the lemma, so by Step 1, for some τ ∈ S ′, we find Y ∈ Wτ such that
‖X − Y ‖H1 < ε/2. Then by the choice of δ, if |τ | ≤ δ, we have ‖X − (Y +KτY )

∥∥
H1 ≤ ε.

Because ε was arbitrary and Y + KτY ∈ Hxy;τ (M), τ ∈ S, this shows that the union of
all Hxy;τ (M), τ ∈ S is dense in H1

0 ([0, 1], γ∗TM). �

3.2.3 Zeta Determinants and the Gelfand-Yaglom Theorem

In the section above, we saw that in the case that the set Γmin
xy of minimizing geodesics

between the points x, y is a non-degenerate submanifold of Hxy(M) (with respect to the
energy functional), we have

(4πt)−n/2
 
Hxy(M)

e−E(γ)/2t[γ‖1
0]−1dH

1

γ
formally∼ (4πt)−n/2−k/2

ˆ
Γmin
xy

e−E(γ)/2t[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ,

which is exactly the result expected when taking a formal Laplace expansion of the Laplace
integral, as in Thm. 3.1.2 (more precisely: we saw that the heat kernel, which is formally
represented by the path integral on the left hand side, actually behaves asymptotically as
shown on the right hand side).
The expression on the right hand side above depends on the choice of a Riemannian metric
on the manifold Hxy(M) in two ways: First, because we integrate over the submanifold
Γmin
xy using the Riemannian volume density of the induced metric. Secondly, because we

take the determinant of the bilinear form ∇2E|NγΓmin
xy

using the metric on NγΓ
min
xy (because

to calculate the determinant of a bilinear form, we need a metric). In both cases, the H1

metric (1.2.5) turned out to be the correct choice.

However, there is yet another possible choice for the determinant of an operator on an
infinite-dimensional space: the zeta determinant, which is defined for a certain class of
unbounded operators on a Hilbert space. This approach is often used in physics to assign
finite values to otherwise ill-defined path integrals, see e.g. [Haw77] or [Wit99]. Because we
have ∇2E|γ[X, Y ] = ((−∇2

s +Rγ)X, Y )L2 (see (3.2.9)), one could get the idea to replace
the determinant of ∇2E|γ by the zeta determinant of the Jacobi-operator −∇2

s +Rγ.
This determinant does not depend on the choice of a Sobolev metric on the path spaces.
Instead, it only depends on the eigenvalues of −∇2

s + Rγ, considered as an unbounded
operator on the Hilbert space L2([0, 1], γ∗TM). Since the H1 metric on Hxy(M) does no
longer play a role then, it seems that one should also equip Γmin

xy with another metric when
performing the integral. Here the L2 metric comes into play.

It is a "well-known fact" in physics that zeta determinants only give the value of path
integrals "up to an arbitrary multiplicative constant", by which is usually meant that
one can only calculate the quotient of two path integrals, which is then given by the
quotient of the respective zeta determinants. In this section, we will indeed see that in
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some sense, the quotient of the zeta-regularization of the path integral for the heat kernel
on a Riemannian manifold by the same path integral for flat space is indeed given by the
quotient of the respective zeta determinants.

For an elliptic positive self-adjoint pseudo-differential operator P of order d > 0, acting
on an m-dimensional compact manifold Σ, the zeta function ζP is defined by

ζP (z) :=
∑
λ 6=0

λ−z, (3.2.26)

where the sum runs over all non-zero eigenvalues λ of P . Here, Σ may have a boundary,
in which case we assume that P is endowed with appropriate boundary conditions. This
sum converges for Re(z) > m/d; however, one can check that ζP possesses a meromorphic
extension to all of C and that zero is not a pole [Gil95, Section 1.12]. Therefore, one can
define the zeta-regularized determinant

detζ(P ) := e−ζ
′
P (0).

If P actually has zero modes that were left of in the sum (3.2.26), it is conventional to
write det′ζ(P ) instead. The definition is motivated by the fact that if one (formally!) plugs
the series (3.2.26) into the right hand side of this definition (which is not possible since
one cannot evaluate it at zero), one obtains

e−ζ
′
P (0) formally

=
∏
λ 6=0

λ,

the product of the non-zero eigenvalues, which of course diverges; the zeta determinant
"magically" assigns a finite value to this product.

Example 3.2.17 (Dirichlet-Laplacian along a Geodesic). Let γ be a smooth path
in an n-dimensional Riemannian manifold M parametrized by [0, t]. Already in Sec-
tion 3.2.1, we found the eigenvalues of the operator P = −∇2

s with Dirichlet boundary
conditions on the space L2([0, t], γ∗TM) to be the numbers λk = π2k2/t2, each of multi-
plicity n. Hence for Re z > 1/2, we have

ζP (z) = n
∞∑
k=1

(
π2k2

t2

)−z
= n

t2z

π2z

∞∑
k=1

k−2z = n
t2z

π2z
ζ(2z),

where ζ without subscript denotes the usual Riemann zeta function. Therefore,

ζ ′P (0) = 2n
(
log(t)− log(π)

)
ζ(0) + 2nζ ′(0) = −n log(2t)

as it is well known that ζ(0) = −1/2 and ζ ′(0) = − log(2π)/2 [Son94]. We obtain

detζ(−∇2
s) = e−ζ

′
P (0) = (2t)n (3.2.27)

for the zeta determinant.
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More generally, the zeta determinant can be defined for a wide class of (necessarily un-
bounded) closed operators with discrete spectrum on an abstract Hilbert space H, called
zeta-admissible (for the definition, see [Sco02, Section 2]). That an operator is zeta-
admissible essentially means that it has a well-defined zeta function which does not have
a pole at zero. We will not need the exact definition here (which is somewhat involved);
we will only need that Laplace type operators P on intervals with Dirichlet boundary
conditions are zeta-admissible, as well as their positive powers. Such operators P are
well-known to be zeta-admissible; this can be shown e.g. using the heat trace expansion
Thm. 3.1.30 as in [Gil95, Section 10]. For the operators Pm, m > 0, one immediately sees
that ζP s(z) = ζP (mz), hence detζ(P

m) = detζ(P )m.
The following result then generates many more examples.

Proposition 3.2.18 (Multiplicativity). [Sco02, Thm. 2.18] Let H be a Hilbert space,
let P be a closed and invertible operator on H with positive spectrum and let T := id +W
with W trace-class on H. If P is zeta-admissible, then so are PT and TP and we have

detζ(PT ) = detζ(TP ) = detζ(P ) det(T ),

where det(T ) denotes the usual Fredholm determinant.

Remark 3.2.19. We generally have detζ(AB) 6= detζ(A) detζ(B). Instead, the above
product rule holds.

Corollary 3.2.20 (Zeta Relativity). Let P1, P2 be positive self-adjoint Laplace type op-
erators with Dirichlet boundary conditions on the interval [0, t], acting on the bundle
γ∗TM , where γ is a smooth path in some Riemannian manifold M . Suppose that the
difference P1 − P2 is of order zero and that P1 and P2 have trivial kernels. Then P−1

1 P2

is well defined and determinant-class on L2([0, t], γ∗TM) and we have

det(P−1
1 P2) =

detζ(P2)

detζ(P1)
,

where the left hand side is the usual Fredholm determinant.

Proof. Because P1 has trivial kernel, its inverse P−1
1 is well defined by spectral cal-

culus, and P−1
1 : L2([0, t], γ∗TM) −→ H2

0 ([0, t], γ∗TM) is a bounded operator. By
Lemma 3.2.1, the inclusion H2

0 ([0, t], γ∗TM) −→ L2([0, t], γ∗TM) is nuclear; hence the
operator P−1

1 : L2([0, t], γ∗TM) −→ L2([0, t], γ∗TM) is trace-class, because it can be
written as the composition of a bounded operator and a nuclear operator.
Write P2 = P1 + V for an endomorphism field V ∈ C∞([0, t], γ∗TM). Then

P−1
1 P2 = P−1

1 (P1 + V ) = id + P−1
1 V

is determinant-class, because P−1
1 V is trace-class. We can now apply Prop. 3.2.18 on

the Hilbert space L2([0, t],Rn) with P = P1 and T = P−1
1 P2 to obtain the required

determinant identity. �

Similarly, the following is true.
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Proposition 3.2.21. Let M be a Riemannian manifold and let (x, y) ∈ M ./ M . Then
we have

det
(
∇2E|γxy;t

)
=

detζ(−∇2
s +Rγxy;t)

detζ(−∇2
s)

,

where γxy;t is the unique minimizing geodesic travelling from x to y in time t and −∇2
s +

Rγxy;t is the Jacobi operator as in Section 3.2.1. Both operators on the right hand side
carry Dirichlet boundary conditions.

Combining this with Corollary 3.2.11 and Example 3.2.17, we may express the Jacobian
of the exponential map as the zeta determinant of the Jacobi operator.

Corollary 3.2.22. Let M be a Riemannian manifold and (x, y) ∈ M ./ M . Then for
any t > 0,

J(x, y) = (2t)−n detζ(−∇2
s +Rγxy;t),

where γxy;t is the shortest geodesic connecting x to y in time t and −∇2
s +Rγ is the Jacobi

operator with Dirichlet boundary conditions on L2([0, t], γ∗TM). Here J(x, y) denotes the
Jacobian of the exponential map, as in Remark 2.1.2.

Proof (of Prop. 3.2.21). Write P := −∇2
s and γ := γxy;t for abbreviation. By (3.2.10),

we have
∇2E|γ[X, Y ] =

(
X,P−1(P +Rγ)Y

)
H1 .

Set T := P−1(P + Rγ). Because P−1/2 : L2([0, t], γ∗TM) −→ H1
0 ([0, t], γ∗TM) is an

isometry, we have

det
(
∇2E|γ

)
= detH

1(
T
)

= detL
2(
P 1/2TP−1/2

)
= detL

2(
P−1/2(P +Rγ)P

−1/2
)
.

The operator P−1/2(P +Rγ)P
−1/2 is indeed determinant-class, since

P−1/2(P +Rγ)P
−1/2 = id + P−1/2RγP

−1/2 =: id + W̃ ,

where W̃ is the composition of two Hilbert-Schmidt operators and a bounded operator,
hence trace-class. Set W := P−1Rγ. Then by Prop. 3.2.18,

detL
2(

id + W̃
)

detζ
(
P 1/2

)
= detζ((id + W̃ )P 1/2

)
= detζ(P

1/2(id +W )
)

= detζ
(
P 1/2

)
detL

2(
id +W

)
,

since P 1/2 is zeta-admissible. This shows that the L2-determinant of id + W̃ is equal
to the L2-determinant of id + W = P−1(P + Rγ) (the latter now being an operator on
L2([0, t], γ∗TM)!). The result now follows from Corollary 3.2.20. �

The quotient of two zeta determinants of one-dimensional operators can be calculated
using the Gel’fand-Yaglom theorem below.
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Theorem 3.2.23 (Gel’fand-Yaglom). Let Vi ∈ C∞([0, t],Rn×n), i = 1, 2 be functions
with values in symmetric matrices and consider the differential operators

Pi := − d2

ds2
+ Vi.

Assume that all eigenvalues of P1 and P2 are positive. Then we have

detζ(P2)

detζ(P1)
=

det
(
J2(t)

)
det
(
J1(t)

) ,
where the Ji(s) are the unique matrix-valued solutions of

J ′′i (s) = Vi(s)Ji(s), Ji(0) = 0, J ′i(0) = id.

It seems that the name of the theorem stems from an older result by Gel’fand and Yaglom
[GY60], who express the expectation value of certain Wiener functionals as the solution to
an ordinary differential equation, but without mentioning zeta determinants. A rigorous
proof of Thm. 3.2.23 can be found in [Kir10] or [KM03] for the scalar case (i.e. m = 1),
using contour integrals. As demonstrated below, Thm. 3.2.23 combined with Prop. 3.2.21
enables a different proof of the identity

det
(
∇2E|γxy

)
= J(x, y)

that gets away without having to calculate the messy term Υτ,ν(0, γ). However, this works
only in the non-degenerate case. Furthermore, it turns out that the results obtained with
our methods (Corollary 3.2.11 and 3.2.21) suffice to prove Thm. 3.2.23.

Proof (of Corollary 3.2.11, using Thm. 3.2.23). The vector bundle γ∗xyTM over [0, 1] has
a canonical trivialization using parallel transport along γxy, so that Thm. 3.2.23 is appli-
cable. In this local trivialization, set V1(s) ≡ 0 and V2(s) = Rγxy(s), the Jacobi endomor-
phism (3.2.8) along γxy. Then use Thm. 3.2.23 with P1 = −∇2

s and P2 = −∇2
s +Rγxy , the

Jacobi operator. Clearly, P1 has only positive eigenvalues, and since (x, y) ∈M ./ M , P2

has only positive eigenvalues as well (compare Thm. 15.1 in [Mil63]).
Now J1(s) = s id so that det(J1(1)) = 1. On the other hand, in the trivialization, the
columns vi(s) of J2(s) are Jacobi fields along γxy with initial conditions vi(0) = 0, v′i(0) =
ei (with e1, . . . , en the standard basis in Rn). It is a well-known fact from Riemannian
geometry that

vi(s) = s d expx |sγ̇xy(0)ei, i = 1, . . . , n,

see Corollary 1.12.5 in [Kli95] or Thm. II.7.1 in [Cha06]. We obtain det(J2(1)) = J(x, y),
the Jacobian determinant of the exponential map. Therefore,

det
(
∇2E|γxy

)
=

detζ(−∇2
s +Rγxy)

detζ(−∇2
s)

=
det
(
J2(1)

)
det
(
J1(1)

) =
J(x, y)

1
,

where we first used Prop. 3.2.21 and then Thm. 3.2.23. �
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Proof (of Thm. 3.2.23). Since we only calculate the ratio, we may assume V1 ≡ 0. Now
given a smooth function V := V2 with values in symmetric (n × n)-matrices, define on
M = R × Rn (equipped with coordinates s, x1, . . . , xn) a Riemannian metric as follows.
Choose neighborhoods U and V of [0, t]× {0} in M such that U ⊂ V . On U set

gss(s, x) = 1 + Vij(s)x
ixj, gsj(s, x) = 0, gij(s, x) = δij,

where 1 ≤ i, j ≤ n and Vij(s) are the entries of V (s); on the complement on V , set gss = 1,
gsj = 0, gij = δij; on V \U , choose a smooth interpolation between the two metrics. One
can choose the open sets and the interpolation in such a way that the resulting metric is
non-degenerate; then M becomes a complete Riemannian manifold.
The curve γ(s) := (s, 0, . . . , 0) is a geodesic from x := (0, . . . , 0) to y := (t, 0, . . . , 0),
because all Christoffel symbols vanish at points in [0, t]×{0}, as is easy to calculate. It is
the unique shortest geodesic between x and y if and only if the Jacobi operator −∇2

s +Rγ

on [0, t] has only positive eigenvalues (see [Mil63, Thm 15.1]), which we assume from now
on. On the other hand, one can easily compute that the Jacobi endomorphism (3.2.8) is
explicitly given by

Rγ(s) =

(
1 0
0 V (s)

)
, (3.2.28)

so that the differential of the exponential map is given by

d expx |sγ̇(0) =
1

s

(
1 0
0 J2(s)

)
,

where J2(s) is the unique matrix solution of

J2
′′(s) = V (s)J2(s), J2(0) = 0, J ′2(0) = id.

The shortest geodesic travelling from x to y in time one, on the other hand, is given by
γxy(s) = γxy;t(st). Hence

J(x, y) = det
(
d expx |γ̇xy(0)

)
= det

(
d expx |t ˙γxy;t(0)

)
=

det
(
J2(t)

)
tn+1

=
det
(
J2(t)

)
det
(
J1(t)

) ,
where J1 = t id is the matrix solution of the equation J ′′1 (t) = 0 with initial conditions
J1(0) = 0, J ′1(0) = id. By Prop. 3.2.21 and Corollary 3.2.11, we therefore have

detζ(−∇2
s +Rγxy;t)

detζ(−∇2
s)

= det
(
∇2E|γxy;t

)
= det

(
∇2E|γxy

)
= J(x, y) =

det
(
J2(t)

)
det
(
J1(t)

) ,
where we also used that det(∇2E|γ) does not depend on t, as seen in the proof of Corol-
lary 3.2.12. Finally, because of (3.2.28), the bundle separates into the direction tangent
to γ̇xy;t and the orthogonal directions, so we obtain

det
(
J2(t)

)
det
(
J1(t)

) =
detζ(−∇2

s +Rγxy;t)

detζ(−∇2
s)

=
detζ(P2) detζ(−∂2

s )

detζ(P1) detζ(−∂2
s )

=
detζ(P2)

detζ(P1)
.

This finishes the proof of Thm. 3.2.23. �
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Remark 3.2.24. Of course, in the formulation of Thm. 3.2.23, one could use the Fred-
holm determinant of P−1

1 P2 instead of the quotient of the zeta determinants. This way,
one would get away without having to use Prop. 3.2.21. That is, Thm. 3.2.23 can also be
written as a theorem about usual Fredholm determinants.

Finally, we formulate the lowest order asymptotics of the heat kernel of a Laplace type
operator L using the zeta determinant of the Jacobi operator.

Theorem 3.2.25 (Lowest Order Term, L2 picture). Let L be a self-adjoint Laplace
type operator, acting on sections of a metric vector bundle V over a closed n-dimensional
Riemannian manifold M . For x, y ∈ M , suppose the set Γmin

xy is a k-dimensional non-
degenerate submanifold of Hxy(M) (with respect to the energy functional). Then the lowest
order term of the heat kernel expansion of Thm. 3.1.12 is given by

Φ0(x, y) = lim
t→0

(4πt)k/2
pLt (x, y)

et(x, y)
= 2n/2

ˆ
Γmin
xy

[γ‖1
0]−1

det′ζ(−∇2
s +Rγ)1/2

dL
2

γ,

where [γ‖1
0] denotes the parallel transport along γ with respect to the connection ∇ deter-

mined by L as in Lemma 1.1.2 and we integrate with respect to the Riemannian volume
measure corresponding to the L2 metric (1.2.11) on Γmin

xy .

Remark 3.2.26. Put into the form analogous to (3.2.15), Thm. 3.2.25 gives that

pLt (x, y) ∼ (4πt)−n/2−k/2
ˆ

Γmin
xy

e−E(γ)/2t 2n/2[γ‖1
0]−1

det′ζ(−∇2
s +Rγ)1/2

dL
2

γ, (3.2.29)

meaning that the quotient of the two sides converges to one as t→ 0.

Because 2n/2 = detζ(−∇2
s) by Example 3.2.17, we obtain in the particular case (x, y) ∈

M ./ M and L = ∆ that

p∆
t (x, y)

et(x, y)
∼

det′ζ(−∇2
s +Rγ)

−1/2

detζ(−∇2
s)
−1/2

.

Replacing the expressions on the left hand side formally by the corresponding path in-
tegrals, we obtain that in the small-time limit, the quotient of the curved path integral
and the "Euclidean" path integral is equal to the quotients of the corresponding zeta
determinants.

Proof. By Thm. ??, we have

lim
t→0

(4πt)k/2
pLt (x, y)

et(x, y)
=

ˆ
Γmin
xy

[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
dH

1

γ,

when Γmin
xy is endowed with the H1 metric (1.2.5). By the transformation formula, we

have

lim
t→0

(4πt)k/2
pLt (x, y)

et(x, y)
=

ˆ
Γmin
xy

[γ‖1
0]−1

det
(
∇2E|NγΓmin

xy

)1/2
det
(
did|γ

)dL
2

γ, (3.2.30)
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where det(did|γ) denotes the determinant of the identity map from Γmin
xy with the H1

metric to the same space with the L2 metric. Fix γ ∈ Γmin
xy and let f1, . . . , fk be an

H1-orthonormal basis of TγΓmin
xy
∼= ker(P +Rγ). Then

det
(
did|γ

)
= det

(
(fi, fj)L2

)1/2

1≤i,j≤k
. (3.2.31)

Notice that f1, . . . , fk are smooth by elliptic regularity. Let fk+1, fk+2, . . . be a smooth
H1-orthonormal basis of NγΓ

min
xy . By Thm. ?? (respectively Remark 3.2.4) and (3.2.9),

we have

det
(
∇2E|NγΓmin

xy

)
= lim

N→∞
det
((
fi, (P +Rγ)fj

)
L2

)
k+1≤i,j≤N

. (3.2.32)

Let Π be the H1-orthogonal projection in H1
0 ([0, 1], γ∗TM) onto ker(P +Rγ). Because Π

has finite rank, it is bounded with respect to the L2 norm and therefore extends uniquely to
a bounded operator on L2([0, 1], γ∗TM), which is still a projection onto ker(P+Rγ) (since
it is idempotent), but not necessary an orthogonal projection. Set Q := P+Rγ+Π. Then
Q is zeta-admissible by Prop. 3.2.18 because it can be written in the form Q = P (id+W )
withW = P−1(Rγ +Π), which is trace-class by Lemma 3.2.1. Hence Q is zeta-admissible.
With respect to the orthogonal basis f1, f2, . . . of the space H1

0 ([0, 1], γ∗TM) used above,
we have

(fi, Qfj)L2 =


(fi, fj)L2 if 1 ≤ i, j ≤ k(
fi, (P +Rγ)fj

)
L2 if i, j > k

0 if 1 ≤ i ≤ k and j > k.

To see that third case, if 1 ≤ i ≤ k and j > k, calculate

(fi, Qfj)L2 =
(
fi, (P +Rγ)fj

)
L2 + (fi,Πfj)L2 =

(
(P +Rγ)fi, fj

)
L2 = 0.

Hence the infinite matrix with entries (fi, Qfj)L2 is block triangular with respect to the
orthogonal splitting of H1

0 ([0, 1], γ∗TM) into ker(P +Rγ) and its orthogonal complement,
and we have

det
(

(fi, Qfj)L2

)
1≤i,j≤N

= det
(

(fi, fj)L2

)
1≤i,j≤k

det
((
fi, (P +Rγ)fj

)
L2

)
k+1≤i,j≤N

.

for all N > k. Plugging in (3.2.31) and (3.2.32), we then obtain

det
(
∇2E|NγΓmin

xy

)1/2
det
(
did|γ

)
= lim

N→∞
det
(

(fi, Qfj)L2

)1/2

1≤i,j≤N

= lim
N→∞

det
(

(fi, P
−1Qfj)H1

)1/2

1≤i,j≤N

= detH
1

(P−1Q)1/2.

Because P−1/2 : L2([0, 1], γ∗TM) −→ H1
0 ([0, 1], γ∗TM) is an isometry, we obtain

detH
1

(P−1Q) = detL
2

(P−1/2QP−1/2).
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Again, we have by Prop. 3.2.18,

detL
2

(P−1/2QP−1/2) detζ(P
1/2) = detζ(P

−1/2Q) = detζ(P
1/2) detL

2

(P−1Q)

so that detL
2

(P−1/2QP−1/2) = detL
2

(P−1Q).
Let now Π̃ be the L2-orthogonal projection in L2([0, t], γ∗TM) onto ker(P +Rγ) and set
Q̃ := P +Rγ + Π̃. We claim that detζ(Q̃) = detζ(Q). To see this, notice first that

P +Rγ + Π̃ = (P +Rγ + Π)(id +W ),

where W = (P + Rγ + Π)−1(Π̃ − Π), which is trace-class. Now with respect to the
orthogonal splitting of L2([0, 1], γ∗TM) into ker(P +Rγ) and its orthogonal complement,
the operators in question are given by

Π =̂

(
id ∗
0 0

)
Π̃ =̂

(
id 0
0 0

)
P +Rγ + Π =̂

(
id ∗
0 P +Rγ

)
.

Therefore W is upper triangular with respect to the splitting, hence quasi-nilpotent so
that det(id +W ) = 1. Thus by Prop. 3.2.18, we have

detζ(Q̃) = detζ(Q) det(id +W ) = detζ(Q).

Clearly, the spectrum of Q̃ is the same as the spectrum of P +Rγ except that the k-fold
eigenvalue zero is replaced by k times the eigenvalue one. Hence ζQ̃(z) = ζP+Rγ (z) + k

and detζ(Q̃) = det′ζ(P +Rγ). By Prop. 3.2.18 and Example 3.2.17, we therefore have

det
(
∇2E|NγΓmin

xy

)1/2
det(did) = detL

2(
P−1Q̃

)1/2
=

detζ(Q̃)1/2

detζ(P )1/2
=

det′ζ(−∇2
s +Rγ)

1/2

det′ζ(−∇2
s)

1/2
.

Plugging this into (3.2.30) gives the result. �



Appendix A

A Proof of the Strong Heat Kernel
Asymptotics

In this section, we give a proof of Thm. 2.1.5, following the method of Kannai [Kan77].
The proof is based on the fact that the solution operator e−tL of the heat equation is
related to the solution operator Wt := cos(t

√
L) of the wave equation by the so-called

transmutation formula

e−tLu(x) = (4πt)−1/2

ˆ ∞
−∞

e−s
2/4tWsu(x) ds (A.0.1)

so that the short time asymptotics of the heat kernel follow from the asymptotic expan-
sion of the wave kernel. A particularly interesting feature of this approach is that the
asymptotics

log p∆
t (x, y) ∼ − d(x, y)2

4t
,

for x, y close follow from (A.0.1) using the fact that the wave equation (as opposed to the
heat equation) has finite propagation speed.

A.1 The Wave Equation

Let M be a closed Riemannian manifold of dimension n and let L be a Laplace type
operator, acting on sections of a metric vector bundle V (here we do not need L to be self-
adjoint). For the proof of Thm. 2.1.5, we need some facts concerning the wave equation

(∂tt + L)ut = 0, (A.1.1)

which we collect now. It has the two independent solution operatorsWt andGt, which map
sections u ∈ C∞(M,V) to solutions ut of the wave equation, with the initial conditions

u0 = u, ∂tu0 = 0 and u0 = 0, ∂tu0 = u,

respectively. If L is self-adjoint, it is possible to define Wt := cos(t
√
L) and Gt :=

sin(t
√
L)/
√
L by usual functional calculus, but the above definition works in any case (for

123
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the solution theory to the Cauchy problem of the wave equation, see e.g. Section 3.2 of
[BGP07]). Gt is related to Wt by Wt = G′t and is given as the difference

Gt = G+
t −G−t ,

where G+
t and G−t are the advanced and retarded Green’s operators for the wave operator

� := ∂tt + L, (see Section 3.4 in [BGP07]).
To describe the asymptotic expansion of G(t, x, y), we introduce the Riesz distributions
R(α; t, x, y). For Re(α) > n+ 1, set

R(α; t, x, y) := C(α) sign(t)
(
t2 − d(x, y)2

)α−n−1
2

+
, C(α) :=

21−απ
1−n

2

Γ
(
α
2

)
Γ
(
α−n+1

2

) ,
where (t2− d(x, y)2)+ denotes the positive part, i.e. it is zero whenever |t| ≤ d(x, y) (The
constant C(α) here equals the constant C(α, n+ 1) in Def. 1.2.1 of [BGP07] because our
spacetime R×M is n+ 1-dimensional. The distributions R(α) discussed here are related
to the distributions R±(α) in Section 1.4 of [BGP07] by R(α) = R+(α) − R−(α)). For
Reα > n + 1, the R(α; t, x, y) are then continuous functions on R ×M ./ M and one
can show that they define a holomorphic family of distributions on {Re(α) > n + 1}
that has a holomorphic extension to all of C [BGP07, Lemma 1.2.2 (4)]. This defines
R(α; t, x, y) ∈ D ′(R×M ./ M) for all α ∈ C.
Now on M ./ M , the distribution G(t, x, y) has the asymptotic expansion [BGP07, Ch. 2]

G(t, x, y) ∼
∞∑
j=0

Φj(x, y)R(2 + 2j; t, x, y), (A.1.2)

where the Φj(x, y) ∈ C∞(M ./ M,V�V∗) are exactly the same coefficients that appear in
the asymptotic heat kernel expansion (It is easy to work out that in the present setting, the
coefficients Φj must be t-independent and that the transport equation (2.3) in [BGP07]
reduces to our equation (2.1.5)). The asymptotic expansion (A.1.2) is meant in the sense
that the difference

δν(t, x, y) := G(t, x, y)−
ν∑
j=0

Φj(x, y)R(2 + 2j; t, x, y) (A.1.3)

can be made arbitrarily smooth by increasing the number ν of correction terms; in fact,
δν ∈ Ck(R × M ./ M,V � V∗) whenever ν ≥ (n + 1)/2 + k [BGP07, Prop. 2.5.1].
Furthermore, the fact that the wave equation has finite propagation speed (i.e. G(t, x, y) ≡
0 on the region where |t| < d(x, y)) implies that when ν is so large that δν is Ck, one has
the estimate ∣∣∣∇l

x∇m
y δ

ν(t, x, y)
∣∣∣ ≤ C

(
t2 − d(x, y)2

)(k−l−m)/2

+
(A.1.4)

uniformly over compact subsets of M ./ M and t ≤ T , whenever k ≥ l + m (compare
[BGP07, Thm. 2.5.2]).
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A.2 The Proof
We first show that the transmutation formula given above is indeed valid.

Lemma A.2.1. Let L be a Laplace type operator, acting on sections of a vector bundle V
over a compact Riemannian manifold M . Then the solution operator to the heat equation
is related to the solution operator of the wave equation by formula (A.0.1).

Proof. By the energy estimate for the wave equation [BTW15, Thm. 8], for all m ∈ N,
there exists a constant α ∈ R such that

‖Wsu‖Hm ≤ ‖u‖Hmeα|s|, ‖Gsu‖Hm ≤ ‖u‖Hmeα|s| (A.2.1)

for all s ∈ R and u ∈ C∞(M,V). Therefore, for any u ∈ L2(M,V) and t > 0, the
Hilbert-space-valued integral

Ptu := (4πt)−1/2

ˆ ∞
−∞

e−s
2/4tWsu ds (A.2.2)

is absolutely convergent and defines a bounded operator Pt on L2(M,V) with

‖Ptu‖2
L2 ≤ (4πt)−1/2

ˆ ∞
−∞

e−s
2/4t ‖Wsu‖2

L2 ds ≤ ‖u‖2
L2(4πt)−1/2

ˆ ∞
−∞

e−s
2/4t+2α|s| ds

using Jensen’s inequality and (A.2.1). Hence Pt is uniformly bounded for t near zero. Set
furthermore P0u := u. We show that Pt is a strongly continuous semigroup of operators
on L2(M,V): The semigroup property PtPs = Pt+s follows from the standard convolution
identity for the one-dimensional Gauss kernel.
To show strong continuity at zero, suppose first that u ∈ C∞(M,V). It is well known
[BGP07, Prop. 3.2.5] that in this case, for any x ∈M , the map s 7→ Wsu(x) is a smooth Vx-
valued map. Using the Sobolev embedding theorem [Ada03, Thm. 4.12.I.A], one obtains
from (A.2.1) that there exist constants C1, C2, α > 0 such that∣∣Wsu(x)

∣∣ ≤ C1‖Wsu‖Hm ≤ C2‖u‖Hmeα|s|. (A.2.3)

whenever m > n/2. Therefore the integral (A.2.2) is pointwise absolutely convergent,
and one has pointwise Ptu(x) → W0u(x) = u(x) as t → 0, because the Gaussian
(4πt)−1/2e−s

2/4t converges to the delta distribution in this limit. We also obtain

|Ptu(x)| ≤ C2‖u‖Hm(4πt)−1/2

ˆ ∞
−∞

e−s
2/4t+α|s| ds,

which shows that for T > 0, there exists a constant C3 > 0 such that ‖Ptu‖∞ ≤ C3 for
all 0 ≤ t ≤ T . From the dominated convergence theorem, we obtain Ptu −→ u in L2 as
t→ 0, for all u ∈ C∞(M,V). By the uniform boundedness of the operator family Pt near
zero, this implies that also Ptu → u in L2 as t → 0 for arbitrary u ∈ L2(M,V) (by the
same argument as in the proof of Lemma 1.3.23).
It remains to show that the infinitesimal generator of Pt is the Laplace type operator L;
then Pt = e−tL, because any two operator families with the same infinitesimal generator
coincide.
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Because the Gaussian function appearing in (A.0.1) solves the one-dimensional heat equa-
tion,

∂

∂t

{
(4πt)−1/2e−s

2/4t
}

=
∂2

∂s2

{
(4πt)−1/2e−s

2/4t
}
,

one has in the case that u is smooth
∂

∂t
Ptu(x) = (4πt)−1/2

ˆ ∞
−∞

∂2

∂s2
e−s

2/4tWsu(x) ds = (4πt)−1/2

ˆ ∞
−∞

e−s
2/4t ∂

2

∂s2
Wsu(x) ds

= −(4πt)−1/2

ˆ ∞
−∞

e−s
2/4t LWsu(x) ds = −LPtu(x).

Here the integration by parts is justified by the pointwise energy estimate (A.2.3). This
shows that the infinitesimal generator of Pt is some closure of the operator L with domain
C∞(M,V). However, it is well known that L has a unique closure on this domain (see
e.g. Section 1.3 in [Gil95] or Section 10.4.1 in [Nik07]), namely the infinitesimal generator
of the semigroup e−tL. This shows Pt = e−tL. �

From (A.0.1) follows the identity

pLt (x, y) = (4πt)−1/2

ˆ ∞
−∞

e−s
2/4t ∂G

∂s
(s, x, y) ds

= (4πt)−1/2

ˆ ∞
−∞

e−s
2/4tG(s, x, y)

s

2t
ds

(A.2.4)

of kernels where G(t, x, y) ∈ D ′(R ×M ×M,V � V∗) denotes the Schwartz kernel of Gt

and the identity is to be interpreted in the distributional sense (for the second equality,
we integrated by parts, which is again justified by the energy estimate (A.2.1)).

Lemma A.2.2. For all j ∈ N0, t > 0 and all (x, y) ∈M ./ M , we have

1

2t(4πt)1/2

ˆ ∞
−∞

e−s
2/4tR(2 + 2j; s, x, y) s ds = et(x, y)

tj

j!
, (A.2.5)

where et(x, y) is the Euclidean heat kernel, defined in (2.1.1). In particular, the distribu-
tional integral on the left hand side actually yields a smooth function.

Proof. For Re(α) > n+ 1, consider the absolutely convergent integral

1

2t(4πt)1/2

ˆ ∞
−∞

e−s
2/4tR(α; s, x, y) s ds =

C(α)

2t(4πt)1/2

ˆ ∞
−∞

e−s
2/4t
(
s2 − d(x, y)2

)α−n−1
2

+
|s| ds

=
C(α)

t(4πt)1/2

ˆ ∞
0

e−s
2/4t
(
s2 − d(x, y)2

)α−n−1
2

+
s ds

=
C(α)

t(4πt)1/2

ˆ ∞
d(x,y)

e−s
2/4t
(
s2 − d(x, y)2

)α−n−1
2 s ds

Performing the substitution u2 = s2 − d(x, y)2 which transforms the interval (d(x, y),∞)
into the interval (0,∞), we have sds = udu. Therefore, we obtainˆ ∞

d(x,y)

e−s
2/4t
(
s2 − d(x, y)2

)α−n−1
2 s ds = e−

d(x,y)2

4t

ˆ ∞
0

e−u
2/4tuα−n du.
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Now, substituting u2/4t = r, the integral can be brought into the form of a gamma-
integral, giving

ˆ ∞
0

e−u
2/4tuα−n du = t1/2(4t)

α−n
2

ˆ ∞
0

e−rr
α−n−1

2 dr = t1/2(4t)
α−n

2 Γ

(
α− n+ 1

2

)
.

Put together, we arrive at

1

2t(4πt)1/2

ˆ ∞
−∞

e−s
2/4tR(α; s, x, y) s ds = e−

d(x,y)2

4t
C(α)

t
√

4πt
t1/2(4t)

α−n
2 Γ

(
α− n+ 1

2

)
= et(x, y)

t
α−2

2

Γ(α/2)
.

(A.2.6)
Until now, we have restricted ourselves to the case Reα > n+ 1. However, for both sides
of the last equation, if we pair them with a test function ϕ ∈ D(M ./ M), the result will
be an entire holomorphic function in α. Because they coincide for Reα > n + 1, they
must therefore coincide everywhere, by the identity theorem for holomorphic functions.
The statement of the Lemma is the particular result for α = 2 + 2j, j ∈ N0. �

Proof (of Thm. 2.1.5). By (A.2.4) and (A.1.3), we have for any ν ∈ N that

pLt (x, y) =
ν∑
j=0

Φj(x, y)

2t
√

4πt

ˆ ∞
−∞

e−
s2

4tR(2+2j; s, x, y) s ds+
1

2t
√

4πt

ˆ ∞
−∞

e−
s2

4t δν(s, x, y) s ds,

where δν(t, x, y) is in Ck whenever ν ≥ (n + 1)/2 + k. The first term evaluates using
Lemma A.2.2 to

ν∑
j=0

Φj(x, y)

2t
√

4πt

ˆ ∞
−∞

e−
s2

4tR(2 + 2j; s, x, y) s ds = et(x, y)
ν∑
j=0

tj
Φj(x, y)

j!
.

It remains to estimate the error term. Because Gt = −G−t and the Riesz distributions are
odd in t, the remainder term δν(t, x, y) is an odd function in the t variable. We conclude

rν(t, x, y) :=
1

2t
√

4πt

ˆ ∞
−∞

e−
s2

4t δν(s, x, y) s ds =
1

t
√

4πt

ˆ ∞
d(x,y)

e−
s2

4t δν(s, x, y) s ds,

as δν(s, x, y) = 0 if s < d(x, y), because of (A.1.4). Substituting s =
√
u2 + d(x, y)2 as

before, one obtains

rν(t, x, y) =
e−

d(x,y)2

4t

t(4πt)1/2

ˆ ∞
0

e−
u2

4t δν(
√
u2 + d(x, y)2, x, y)u du.

Set δ̃ν(u, x, y) := δν(
√
u2 + d(x, y)2, x, y). Then for any l,m ∈ N0, we obtain

∇l
x∇m

y

{rν(t, x, y)

et(x, y)

}
= (4πt)(n−1)/2 1

t

ˆ ∞
0

e−
u2

4t∇l
x∇m

y δ̃
ν(u, x, y)u du.
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If ν is so large that δν is Ck+l+m for k, l,m ∈ N0, then from (A.1.4) follows the estimate∣∣∣∇l
x∇m

y δ̃
ν(u, x, y)

∣∣∣ ≤ C|u|k−l−m, (A.2.7)

which is uniform over (x, y) in compact subsets of M ./ M and u ≤ T . In this case,∣∣∣∣∇l
x∇m

y

{rν(t, x, y)

et(x, y)

}∣∣∣∣ ≤ C(4πt)(n−1)/2 1

t

ˆ ∞
0

e−
u2

4t ukdu ≤ C2t
n/2+k/2−1

We obtain that for any ν ∈ N0, one can find ν̃ large enough so that∣∣∣∣∣∇l
x∇m

y

{pLt (x, y)

et(x, y)
−

ν̃∑
j=0

tj
Φj(x, y)

j!

}∣∣∣∣∣ ≤ C3t
ν+1,

where the estimate is uniform for (x, y) in a compact subset of M ./ M and t ≤ T .
However, the calculation∣∣∣∣∣∇l

x∇m
y

{pLt (x, y)

et(x, y)
−

ν∑
j=0

tj
Φj(x, y)

j!

}∣∣∣∣∣
≤

∣∣∣∣∣∇l
x∇m

y

{pLt (x, y)

et(x, y)
−

ν∑
j=0

tj
Φj(x, y)

j!

}∣∣∣∣∣+

∣∣∣∣∣
ν̃∑

j=ν+1

tj
∇l
x∇m

y Φj(x, y)

j!

∣∣∣∣∣ ≤ C4t
ν+1

shows that in fact ν̃ = ν suffices. �



Appendix B

Some Results from Stochastic Analysis

In this section, we prove some measure-theoretic preliminaries needed for the proof of
Thm. 2.1.12 and Thm. 2.2.7, which are related to the quadratic variation of the Brownian
bridge and the moments of the functions d(Xxy;t

s0
, Xxy;t

s1
), where Xxy;t

s is the Brownian
bridge.

B.1 Approximation of the Quadratic Variation
Throughout, let M be a compact Riemannian manifold or Rn.

Definition B.1.1 (Quadratic Variation). If β is a symmetric section of the bundle
T ∗M � T ∗M , i.e. we are given a symmetric bilinear form on each fiber, we can define the
β-quadratic variation of a continuous path γ : [a, b] −→M as the limit

[γ]β := lim
|τ |→0

N∑
j=1

β
(
∆jγ,∆jγ

)
,

if it exists, where the limit goes over any sequence of partitions τ = {a = τ0 < τ1 <
· · · < τN = b} of [a, b] the mesh of which tends to zero (we require that the limit exists
for any such sequence and all limits coincide). Here we wrote ∆jγ := exp−1

γ(τj−1)(γ(τj)) for
the shortest tangent vector in Tγ(τj−1)M that gets mapped to γ(τj) under the exponential
map (this is well defined for a generic partition).

Remark B.1.2. If γ ∈ Hxy;τ (M), we have

∆jγ = exp−1
γ(τj−1)(γ(τj)) = γ̇(τj−1+)∆jτ, (B.1.1)

which is the definition of ∆jγ from Corollary 2.2.10.

Notice that this limit is zero if the path γ is absolutely continuous. The paths of the
Brownian motion and the Brownian bridge, however, are very irregular: We have

lim
|τ |→0

N∑
j=1

β(∆jX,∆jX) = 2

ˆ t

0

tr β(Xs) ds, (B.1.2)

129
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where the limit is taken in probability, see Prop. 3.23 and Prop. 5.18 in [Eme89] (the dif-
ference of a factor 2 in comparison to the literature comes from our "analytic" convention
of Brownian motion, i.e. that we constructed it using the heat kernel of ∆ instead of 1

2
∆).

Here, Xs is either a Brownian motion or Brownian bridge; the quadratic variation is the
same because drift terms do not alter the quadratic variation (compare Remark 2.1.10).
In measure-theoretic terms, this means that we have

lim
|τ |→0

N∑
j=1

β
(
∆jγ,∆jγ

)
= 2

ˆ t

0

tr β
(
γ(s)

)
ds, (B.1.3)

where the limit is taken in measure on Cx(M) or Cxy;t(M) (with respect to the measure
Wx respectively Wxy;t).

Lemma B.1.3. Let β ∈ C∞(M,T ∗M � T ∗M). Then we have

lim
|τ |→0

exp

(
N∑
j=1

β
(
∆jγ,∆jγ

))
= exp

(
2

ˆ t

0

tr β
(
γ(s)

)
ds

)
in the weak topology of Lp(Cxy;t(M);Wxy;t), for any 1 < p <∞. Here the limit runs over
any sequence of partitions of the interval [0, t], the mesh of which tends to zero.

Proof. Set for γ ∈ Cxy;t(M)

Fτ (γ) :=
N∑
j=1

β
(
∆jγ,∆jγ

)
, F (γ) := 2

ˆ t

0

tr β
(
γ(s)

)
ds

Step 1. By (B.1.3), we have
lim
|τ |→0

Fτ = F

in measure with respect to Wxy;t. Remember that convergence in measure means that for
each ε > 0, we have

lim
|τ |→0

Wxy;t
({
γ
∣∣|Fτ (γ)− F (γ)| ≥ ε

})
= 0

so that be continuity of the exponential function, we directly obtain that also

lim
|τ |→0

eFτ = eF

in measure with respect to Wxy;t.
Step 2. Let a by a global bound on β so that

β(∆jγ,∆jγ) ≤ a|∆jγ|2 = a d
(
γ(τj−1), γ(τj)

)2
.

By Lemma B.2.6, for any 1 ≤ p <∞, there exists a constant C > 0 such that

∥∥eFτ∥∥
Lp
≤

(ˆ
Cxy;t(M)

exp

(
ap

N∑
j=1

d
(
γ(τj−1), γ(τj)

)2

)
dWxy;t(γ)

)1/p

≤ C (B.1.4)
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for all partitions τ = {0 = τ0 < τ1 < · · · < τN = t} of the interval [0, t]. In other
words, the family (eFτ ) is uniformly bounded in Lp. If 1 < p < ∞, since Lp is the dual
space of Lq, where q = p/(p − 1), we obtain from the Banach-Alaoglu theorem [Con94,
Thm. 3.1] that the family (eFτ ) is pre-compact with respect to the weak topology, i.e.
any subsequence of eFτ has a weakly convergent subsequence. Suppose that we know that
the only accumulation point of (eFτ ) is eF (this will be shown in Step 3), then we can
conclude that (eFτk ) converges to eF for any sequence of partitions (τ k)k∈N, the mesh of
which goes to zero. Namely, suppose the converse, i.e. there exists a function G ∈ Lq and
an ε > 0 such that ∣∣∣∣∣

ˆ
Cxy;t(M)

G
(
eFτk − eF

)∣∣∣∣∣ ≥ ε (B.1.5)

for infinitely many indices k1, k2, . . . This leads to a contradiction: The sequence (e
F
τ
kj )j∈N

must have a weakly convergent subsequence (by pre-compactness), the limit of which must
be eF , because eF was assumed to be the only accumulation point; hence we can have
(B.1.5) for only finitely many j.
Step 3. It remains to show that the family (eFτ ) has the unique accumulation point eF , i.e.
that whenever a subsequence (eFτk ) converges weakly to some G ∈ Lp, then G = eF . So
suppose that (eFτk ) converges to G in the weak topology for some sequence of partitions
(τ k)k∈N with |τ k| → 0 as k →∞. On the other hand, we know that eFτk → eF in measure,
and it is well known [Els11, VI 4.9 b)] that this implies the existence of a subsequence
(again denoted by (eFτk )) converging to eF almost everywhere. We now conclude eF = G
as follows.
Set Ω := Cxy;t(M). By Egoroff’s Theorem [Els11, VI 3.5], for any δ > 0, there exists a
set S ⊆ Ω with Wxy;t(S) ≤ δ such that eFτk converges to eF uniformly on Ω \ S. Now for
any H ∈ Lq, we have∣∣∣∣ˆ

Ω

H(eF −G)

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω

H(eF − eFτk )

∣∣∣∣+

∣∣∣∣ˆ
Ω

H(G− eFτk )

∣∣∣∣
and ∣∣∣∣ˆ

Ω

H(eF − eFτk )

∣∣∣∣ ≤ ∣∣∣∣ˆ
Ω\S

H(eF − eFτk )

∣∣∣∣+

∣∣∣∣ˆ
S

H(eF − eFτk )

∣∣∣∣
≤ ‖H‖L1

∥∥(eF − eFτk )|Ω\S
∥∥
∞ + ‖eF − eFτk‖Lp‖H|S‖Lq .

For a given ε > 0, using the uniform boundedness of the family (eFτk ) in Lp, we can
choose δ (hence S) so small that

‖eF − eFτk‖Lp
∥∥H|S∥∥Lq ≤ C

∥∥H|S∥∥Lq ≤ ε

3
,

and then n so large that

‖H‖L1

∥∥(eF − eFτk )|Ω\S
∥∥
∞ ≤

ε

3
and

∣∣∣∣ˆ
Ω

H(G− eFτk )

∣∣∣∣ ≤ ε

3
,
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where in the last step, we used that eFτk → G weakly. We have shown that for an H ∈ Lq
and any ε > 0, we have∣∣∣∣ˆ

Ω

H(eF −G)

∣∣∣∣ ≤ ‖H‖L1

∥∥(ef − eFτk )|Ω\S
∥∥
∞ + ‖eF − eFτk‖Lp‖H|S‖Lq +

∣∣∣∣ˆ
Ω

H(G− eFτk )

∣∣∣∣
≤ ε

3
+
ε

3
+
ε

3
≤ ε.

Therefore G = eF . This finishes the proof. �

Lemma B.1.4. Let f ∈ C∞(M). Define

Fτ (γ) := exp

(ˆ t

0

f
(
γτ (s)

)
ds

)
, F (γ) := exp

(ˆ t

0

f
(
γ(s)

)
ds

)
. (B.1.6)

Then we have Fτ −→ F in Lp(Cxy;t(M);Wxy;t) for any 1 ≤ p <∞. Here for a partition
τ of the interval [0, t] and γ ∈ Cxy;t(M), γτ ∈ Hxy;τ (M) denotes the "best polygon approx-
imation" of γ, i.e. the piecewise geodesic path with γτ (τj) = γ(τj). This is well defined
for Wxy;t-almost all paths γ, since the set of paths such that (γ(τj−1), γ(τj)) /∈ M ./ M
for some j is a zero set.

Proof. Clearly, the functions Fτ are uniformly bounded. To see that Fτ → F pointwise
Wxy;t-almost everywhere, notice that by the mean value theorem for integrals,

ˆ t

0

f
(
γ(s)

)
ds =

N∑
j=1

ˆ τj

τj−1

f
(
γ(s)

)
ds =

N∑
j=1

f
(
γ(sτj )

)
∆jτ

for numbers sτ1, . . . , sτN . Similarly,

ˆ t

0

f
(
γτ (s)

)
ds =

N∑
j=1

f
(
γτ (rτj )

)
∆jτ

for numbers rτ1 , . . . , rτN . Hence for all paths γ that are α-Hölder continuous for some
α > 0, we have∣∣∣∣ˆ t

0

f
(
γ(s)

)
ds−

ˆ t

0

f
(
γτ (s)

)
ds

∣∣∣∣ ≤ N∑
j=1

∣∣f(γ(sτj )
)
− f

(
γτ (rτj )

)∣∣∆jτ

≤
N∑
j=1

(∣∣f(γ(sτj )
)
− f

(
γ(τj)

)∣∣+
∣∣f(γτ (τj))− f(γτ (rτj )

)∣∣)∆jτ

≤ C1

N∑
j=1

(
d
(
γ(sτj ), γ(τj)

)
+ d
(
γτ (τj), γ

τ (rτj )
))

∆jτ

≤ C2

N∑
j=1

(
|sτj − τj|α + (∆jτ)α

)
∆jτ ≤ C3

N∑
j=1

(∆jτ)1+α ≤ C3|τ |α,
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since f is Lipschitz continuous, |sτj − τj| ≤ ∆jτ and

d
(
γτ (τj), γ

τ (rτj )
)

= d
(
γτ (τj−1), γτ (τj)

)
= d
(
γ(τj−1), γ(τj)

)
≤ C4(∆jτ)α,

where C4 is the Hölder constant of γ. Because the set of α-Hölder continuous paths with
0 < α < 1/2 is a set of full Wxy;t measure in Cxy;t(M) [BP11, Corollary 3.7], we indeed
obtain Fτ −→ F pointwise almost-everywhere and then also in Lp for 1 ≤ p < ∞. The
result now follows from Lebesgue’s theorem of dominated convergence. �

B.2 Moments of the Distance Function
Throughout, let M be a compact Riemannian manifold. This section is dedicated to the
proof of the following estimate on the expectation value of the moments of the Riemannian
distance travelled by the Brownian bridge in M , which will be needed in Section 2.1.4.
Another related result, Lemma B.2.6 below, will also be proved in a similar fashion.

Lemma B.2.1 (Moment Estimate). Let M be a compact Riemannian manifold. For
each T > 0, there exists a constant C > 0 such that for each k ∈ N, we have

E
[
d
(
Xxy;t
s0

, Xxy;t
s1

)k] ≤ CkΓ
(
n
2

+ k
2

)
Γ
(
n
2

) (
s1 − s0

t

)k/2
(B.2.1)

for all x, y ∈M ×M and 0 ≤ s0 ≤ s1 ≤ t ≤ T .

Similar results can be found in Hsu’s book [Hsu02, Section 5.4]. However, we need the
slightly stronger results above, which are not proved in the reference. We do not know
other references having the estimates needed for this presentation.

The proof of the results of this section relies on some techniques from the theory of
stochastic processes. For points x, y ∈M and t > 0, set ρ(z) := d(x, z) and let

rs = rxy;t
s := ρ(Xxy;t

s ), s ≤ t (B.2.2)

be the radial process of the Brownian bridge, which measures the distance from the
starting point. Let

Z(s, z) := gradz log pt−s(z, y)

be the time-dependent drift term of the Brownian bridge (see Remark 2.1.10). The process
rs then satisfies the equation

rs = Bs +

ˆ s

0

(
∆ρ(Xxy;t

u ) + dρ · Z(u,Xxy;t
u )

)
du− Ls, (B.2.3)

where Bs is a Brownian motion in R (with B0 = 0) and Ls is a non-decreasing process
which increases only when Xxy;t

s is in the cut locus of x. For times s before Xxy;t
s hits

the cut-locus, this follows directly from the Ito formula, using that Brownian bridge is a
Brownian motion with drift Z(s, x) (Remark 2.1.10). The general proof of (B.2.3) can
be found in [Hsu02], Thm. 3.5.1 or in [HT94], Satz 7.247 and 7.254 (the proof in the
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literature is for the Brownian motion only, but the Brownian bridge case can be proved
similarly. The difference of the factor 1/2 compared to formula (3.5.1) in [Hsu02] is due
to the different convention for Brownian motion).
Using comparison theorems for the Laplacian of the distance function (see e.g. Thm. 3.4.2
in [Hsu02] or Thm. 1 in [MMU14]), we can compare this to the similar result on a hyper-
bolic space, which can be explicitly computed. More precisely, fix a number κ ≥ 0 until
the end of this section such that the Ricci curvature of M is bounded below by −κ times
the metric. Then we have

∆ρ(y) ≤
√
κ(n− 1) coth

(√
κ ρ(y)

)
for any point y 6= x which is not in the cut locus of x. Hence by definition of rs, we have

∆ρ(Xxy;t
s ) ≤

√
κ(n− 1) coth

(√
κ rs
)
. (B.2.4)

Plugging this into (B.2.3) and then estimating the drift term with the Cauchy-Schwarz
inequality yields

rs ≤ Bs +
√
κ(n− 1)

ˆ s

0

coth
(√

κ ru
)

du+

ˆ s

0

‖Z(u,−)‖∞du, (B.2.5)

where ‖Z(u,−)‖∞ denotes the sup norm of the vector field Z(u,−). Here we used that
Ls is non-decreasing and |dρ| ≡ 1. Using the elementary inequality

coth(r) = 1 + 2
1

e2r − 1
≤ 1 +

1

r
,

valid for r > 0, we furthermore obtain from (B.2.5) that

rs ≤ Bs + (n− 1)

ˆ s

0

1

ru
du+

ˆ s

0

‖Z(u,−)‖∞du+
√
κ(n− 1)s. (B.2.6)

Remark B.2.2. The radial process rκs corresponding to Brownian motion in the n-
dimensional hyperbolic space of curvature −κ satisfies

rκs = Bs +
√
κ(n− 1)

ˆ s

0

coth
(√

κ rκu
)

du.

Hence (B.2.5) estimates the radial process in M from above by the radial process in a
hyperbolic space with a certain drift. Letting κ tend to zero, the above equation becomes
the first part of inequality (B.2.6). Hence the latter inequality is related to the radial
process in Rn, which we will use below.

The well-known gradient estimate on the heat kernel (see [Hsu99], [ST97] or Thm. 5.5.3
in [Hsu02]) ∣∣gradz log pt−s(z, y)

∣∣ ≤ C1

(
d(z, y)2

t− s
+

1√
t− s

)
valid for all z, y ∈M and all 0 ≤ s < t ≤ T shows that

ˆ s

0

‖Z(u,−)‖∞du ≤ C1diam(M)2
(
log(t)− log(t− s)

)
+ 2C1

(√
t−
√
t− s

)
.
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This explodes for s → t, but is bounded on the interval [0, t/2]: Looking at the Taylor
expansion of each individual term, we obtain that for any T > 0, there exists a constant
ζ = ζ(T ) > 0 such that whenever t ≤ T ,

ˆ s

0

‖Z(u,−)‖∞du+
√
κ(n− 1)s ≤ ζs

t
for all s ≤ t/2.

Let us emphasize that this constant depends on the manifold and the time bound T , but
neither on the times s and t nor the end points x and y in M of the Brownian bridge.
This implies that

rxy;t
s ≤ Bs + (n− 1)

ˆ s

0

1

rxy;t
u

du+
ζs

t
(B.2.7)

for all s with s ≤ t, if t ≤ T . Namely, for s ∈ [0, t/2], we can plug the above estimate into
(B.2.6), while for s ∈ [t/2, t], we can use that we always have rs ≤ diam(M) (so that we
possibly increase ζ to 2diam(M)). The following lemma relates the radial processes rxy;t

s

in M to the radial process in Rn.

Lemma B.2.3. For any T > 0, there exists a constant ζ ∈ R such that

rxy;t
s ≤ |Bn

s |+
ζs

t

for all x, y ∈ M , whenever 0 ≤ s ≤ t ≤ T . Here rxy;t
s is the radial process defined by

(B.2.3) and Bn
s is a standard Brownian motion in Rn.

Remark B.2.4. Notice that throughout this thesis, standard Brownian motions have
variance 2 instead of one, because we use ∆ instead of 1

2
∆ for their infinitesimal generator.

The proof of Lemma B.2.3 will use the following comparison result from stochastic anal-
ysis, which can be found e.g. in [DW98, Thm. 3.1] in a much more general form than
stated below.

Lemma B.2.5. Suppose that the real-valued stochastic processes rs and `s satisfy

rs ≤ Bs +

ˆ s

0

f(u, ru)du,

`s ≥ Bs +

ˆ s

0

f(u, `u)du

for all s ≤ t, where Bs is a one-dimensional Brownian motion f is a function on R+×R,
measurable with respect to the second variable. Then we have rs ≤ `s almost surely for all
0 ≤ s ≤ t.

Proof (of Lemma B.2.3). Consider the stochastic differential equation

βs = Bs + (n− 1)

ˆ s

0

1

βu
du.

This equation is well known (see e.g. Ex. 8.4.1 of [Øks07]). It has a unique positive
solution, the so-called Bessel process, which is exactly the radial process to Brownian
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motion starting at zero in Rn. If now Us is a Brownian motion on Sn−1 ⊂ Rn with U0

being the uniform distribution on Sn−1, then one can check that Bn
s := βsUs is a Brownian

motion in Rn with βs = |Bn
s |.

Now the process `s := βs + ζs/t satisfies

`s = Bs + (n− 1)

ˆ s

0

1

`u − ζu/t
du+

ζs

t
≥ Bs + (n− 1)

ˆ s

0

1

`u
du+

ζs

t

where the estimate is justified since `s − ζs/t = βs ≥ 0. This proves the lemma with a
view on (B.2.7) by setting rs = rxy;t

s in Lemma B.2.5. �

We are now in the position to prove Lemma B.2.1.

Proof (of Lemma B.2.1). We may assume s0 ≤ t/2 since otherwise, we can reverse the
time: The process Xyx;t

t−s coincides in law with Xxy;t
s , so that

E
[
d
(
Xxy;t
s0

, Xxy;t
s1

)k]
= E

[
d
(
Xyx;t
t−s1 , X

yx;t
t−s0
)k]

,

compare [Hsu02, Prop. 5.4.3]. Now after reversing time the new s0 equals t− s1, which is
smaller than t/2 if the previous s0 was larger than t/2.
We therefore assume that s0 ≤ t/2. By definition of the Brownian bridge (2.1.14), we
have

p∆
t (x, y)E

[
d
(
Xxy;t
s0

, Xxy;t
s1

)k]
=

ˆ
M

p∆
s0

(x, z)p∆
t−s0(z, y)E

[
d
(
z,Xzy;t−s0

s1−s0
)k]

dz. (B.2.8)

Because of Lemma B.2.3, we find

d(z,Xzy;s1−s0
s ) = rzy;t−s0

s1−s0 ≤ |B
n
s1−s0 |+

ζ(s1 − s0)

t− s0

≤ |Bn
s1−s0|+ 2

ζ(s1 − s0)

t

whenever s1 − s0 ≤ t− s0 ≤ T . Set α = 2ζ/t and s := s1 − s0. We compute

E
[(
|Bn

s |+ αs
)k]

=
k∑
j=0

(
k

j

)(
αs
)jE[|Bn

s |k−j
]

=
k∑
j=0

(
k

j

)(
αs
)j ˆ

Rn
es(0, x)|x|k−j dx

=
k∑
j=0

(
k

j

)(
αs
)j

(4πs)k/2−j/2
Γ
(
n
2

+ k
2
− j

2

)
Γ
(
n
2

)
≤

Γ
(
n
2

+ k
2

)
Γ
(
n
2

) k∑
j=0

(
k

j

)(
αs
)j

(4πs)k/2−j/2

=
Γ
(
n
2

+ k
2

)
Γ
(
n
2

) (√
4πs+ αs

)k
.
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Hence

E
[
d(z,Xzy;t−s0

s1−s0 )k
]
≤

Γ
(
n
2

+ k
2

)
Γ
(
n
2

) (√
4π(s1 − s0) + 2ζ

(s1 − s0)

t

)k
.

Finally, √
4π(s1 − s0) + 2ζ

(s1 − s0)

t
=

(
√

4πt+ 2ζ

√
s1 − s0

t

)√
s1 − s0

t
,

so we can set C :=
(√

4πT + 2ζ
)
. As this estimate does not depend on z, this shows the

proposition together with (B.2.8). �

The final result of this appendix will be the following estimate, which says that the approx-
imate quadratic variations of the Brownian Bridge are uniformly bounded in expectation
value.

Lemma B.2.6 (Exponential Estimate). Let T > 0 and γ ≥ 0. Then there exists a
constant C > 0 such that

E

[
exp

(
γ

N∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]
≤ C

for all x, y ∈M and for all partitions τ = {0 = τ0 < τ1 < · · · < τN = t} of intervals [0, t]
with t ≤ T .

Proof. The proof consists of three steps.
Step 1. We first show that there exist constants λ, ε > 0 (depending only on γ, T and the
manifold) such that

E
[
exp

(
γ d
(
z,Xzy;t

s

)2
)]
≤ eλs/t (B.2.9)

z, y ∈ M , all s ≤ ε and s ≤ t ≤ T . To this end, let again rzy;t
s := d

(
z,Xzy;t

s

)
. By Lemma

B.2.3, we have rzy;t
s ≤ |Bn

s |+ ζs/t for an n-dimensional Brownian motion starting at zero
in Rn, where ζ is independent of t, z and y. Abbreviate α := ζ/t. By the standard
inequality 2|Bn

s | ≤ 1 + |Bn
s |2, we have

(rzy;t
s )2 ≤

(
|Bn

s |+ αs
)2

= |Bn
s |2 + 2αs|Bn

s |+ α2s2 ≤ (1 + αs)|Bn
s |2 + αs+ α2s2.

Therefore

E
[
exp

(
γ d
(
z,Xzy;t

s

)2
)]
≤ E

[
exp

(
γ
(
|Bn

s |+ αs
)2
)]
≤ eγ(αs+α2s2)E

[
eγ(1+αs)|Bns |2

]
,

where the second factor evaluates explicitly to

E
[
eγ(1+αs)|Bns |2

]
= (4πs)−n/2

ˆ
Rn
e−|v|

2/4seγ(1+αs)|v|2dv =

(
1

1− 4sγ(1 + αs)

)n/2
whenever s ≤ 1/(4γ(1 + αs)) (otherwise, the integral diverges). Remembering that α =
ζ/t, calculate

1

4γ(1 + αs)
=

t

4γt+ ζs
≥ t

4γt+ ζt
=

1

4γ + ζ
=: 2ε. (B.2.10)
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Hence if s ≤ ε, we have

E
[
exp

(
γ d
(
z,Xzy;t

s

)2
)]
≤ eγ(αs+α2s2)

(
1

1− 4sγ(1 + αs)

)n/2
.

Furthermore, if s ≤ ε, then 4sγ(1+αs) ≤ 1/2 by (B.2.10), so that we can use the estimate
1

1−q ≤ 1 + 2q valid for all q ∈ [0, 1/2] to obtain

1

1− 4sγ(1 + αs)
≤ 1 + 8sγ(1 + αs) ≤ 1 + 8sγ(1 + ζ) ≤ 1 + 8Tγ(1 + ζ)

s

t
≤ e8Tγ(1+ζ)s/t

if also t ≤ T (which is always assumed). Therefore(
1

1− 4sγ(1 + αs)

)n/2
≤ e4nTγ(1+ζ)s/t.

Furthermore

αs+ α2s2 =
ζs

t
+
ζ2s2

t2
≤ (ζ + ζ2)

s

t
, hence eγ(αs+α2s2) ≤ eγ(ζ+ζ2)s/t,

so that (B.2.9) follows from the calculations above by setting λ := γ(ζ+ζ2)+4nTγ(1+ζ).
Step 2. Next we show that the lemma is true for all partitions |τ | such that |τ | ≤ ε, where
ε > 0 is the constant given in (B.2.10). Namely, setting x0 := x, xN := y, we have for
any 1 ≤ k ≤ N

p∆
t (x, y)E

[
exp

(
γ

k∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]

=

ˆ
M

· · ·
ˆ
M

(
k∏
j=1

p∆
∆jτ

(xj−1, xj) exp
(
γ d(xj−1, xj)

2
))

p∆
t−τk(xk, y) dx1 · · · dxk−1

=

ˆ
M

· · ·
ˆ
M

(
k−1∏
j=1

p∆
∆jτ

(xj−1, xj) exp
(
γ d(xj−1, xj)

2
))
·

· p∆
t−τk−1

(xk−1, y)E
[
exp

(
γ d
(
xk−1, X

xk−1y;t−τk−1

∆kτ

)2
)]

dx1 · · · dxk−1,

that is

E

[
exp

(
γ

k∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]

= E

[
exp

(
γ

k−1∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)
E
[
exp

(
γ d
(
Xxy;t
τk−1

, X
Xxy;t
τk−1

,y;t−τk−1

∆kτ

)2
)]]

.

Assume that k is so small that t − τk ≥ t/3. Then if we assume that ∆kτ ≤ ε, the last
expectation value can be estimated by (B.2.9). Namely

E
[
exp

(
γ d
(
z,X

zy;t−τk−1

∆kτ

)2
)]
≤ eλ∆kτ/(t−τk−1) ≤ e3λ∆kτ/t.
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for any z ∈M . Therefore, under the assumption |τ | ≤ ε, we have inductively

E

[
exp

(
γ

k∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]
≤ e3λ∆kτ/tE

[
exp

(
γ
k−1∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]
≤ · · · ≤ e3λ

∑k
j=1 ∆jτ/t = e3λτk/t.

Now choose 1 ≤ k ≤ N such that both τk ≥ t/3 and t − τk ≥ t/3, i.e. τk ∈ [t/3, 2t/3].
Then by the Cauchy-Schwarz inequality,

E

[
exp

(
γ

N∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]

≤ E

[
exp

(
2γ

k∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]1/2

E

[
exp

(
2γ

N∑
j=k+1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2

)]1/2

≤ e3λτk/2te3λ(t−τk)/2t = e3λ/2,

where to estimate the second factor, we reversed time and used the assumption τk ≥ t/3
(note that also, we used the constant λ from (B.2.9) corresponding to the exponent 2γ
instead of γ). This proves the lemma for all partitions τ of intervals [0, t] with t ≤ T such
that |τ | ≤ ε with ε given by (B.2.10).
Step 3. We now generalize to arbitrary partitions. For a given partition τ , let m(τ)
denote the number of indices j such that ∆jτ ≥ ε. We now use induction on m(τ). For
m(τ) = 0, the estimate was shown above with the constant C0 := e3λ/2. Suppose that
the estimate is true with a constant Ci for all partitions τ with m(τ) ≤ i, i ≥ 0. We now
show that in this case, the estimate is also true for all partitions τ with m(τ) ≤ i + 1,
with a constant Ci+1 ≥ Ci.
To this end, let τ be a partition with m(τ) = i + 1 and let k be the first index with
∆kτ ≥ ε. Write τ̃ := {0 = τ0 < τ1 < · · · < τk−1} and define the partition σ of the interval
[0, t− τk] by

σ := {σ0 := 0 < σ1 := τk+1 − τk < · · · < σN−k := τN − τk}
Then τ̃ is a partition of the interval [0, τk−1], σ is a partition of the interval [0, t− τk] and
we have m(τ̃) = 0, m(σ) = i. Therefore, if the estimate is true with a constant Ci > 0
for all partitions τ ′ with m(τ ′) ≤ i, then it is in particular true for τ̃ and σ. We get

p∆
t (x, y)E

exp

γ N∑
j=1

d
(
Xxy;t
τj−1

, Xxy;t
τj

)2 =

=

ˆ
M

ˆ
M

E

exp

γ k−1∑
j=1

d
(
Xxz0;t
τ̃j−1

, Xxz0;t
τ̃j

)2E

exp

γ N−k∑
j=1

d
(
Xz1y;t−τk
σj−1

, Xz1y;t−τk
σj

)2
· eγ d(z0,z1)2

p∆
τk−1

(x, z0)p∆
∆kτ

(z0, z1)p∆
t−τk(z1, y) dz0dz1

≤ C0Ci

ˆ
M

ˆ
M
eγ d(z0,z1)2

p∆
τk−1

(x, z0)p∆
∆kτ

(z0, z1)p∆
t−τk(z1, y) dz0dz1

≤ C0Ci e
γdiam(M)2

ˆ
M

ˆ
M
p∆
τk−1

(x, z0)p∆
∆kτ

(z0, z1)p∆
t−τk(z1, y) dz0dz1

= C0Ci e
γdiam(M)2

p∆
t (x, y)
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so that the lemma also holds for all partitions τ such that m(τ) ≤ i+1, with the constant
Ci+1 := C0Cie

γ diam(M)2 . Since for all partitions τ of intervals [0, t] with t ≤ T , we have
m(τ) ≤ bT/εc, the constant CbT/εc gives a bound for all such partitions, with no further
restrictions. �

Remark B.2.7. It is a fun fact, related to the above proof, that for a standard Brownian
motion Bn

s in Rn, the random variable e|Bs|2 is in L1 (or equivalently, has a finite expec-
tation value) if and only if s < 1/4. In particular, the lemma is true in Rn only if one
restricts to partitions τ with |τ | < 1/4. On a compact interval however, this expectation
value is always finite.
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