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Summary

CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study
the earth’s gravity field, magnetic field and upper atmosphere. Thanks to the good condition
of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite pro-
vides continuously a large quantity of measurement data for the purpose of Earth study. The
measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector
magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP.
In order to ensure the quality of the data during the whole mission, the calibration of the
magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as
the magnetic reference and its readings are compared with the readings of the vector magne-
tometer. The readings of the vector magnetometer are corrected by the parameters that are
derived from this comparison, which is called the scalar calibration. In the routine processing,
these calibration parameters are updated every 15 days by means of scalar calibration. There
are also magnetic effects coming from the satellite which disturb the measurements. Most
of them have been characterized during tests before launch. Among them are the remanent
magnetization of the spacecraft and fields generated by currents. They are all considered to
be constant over the mission life.

The 8 years of operation experience allow us to investigate the long-term behaviors of the
magnetometers and the satellite systems. According to the investigation, it was found that
for example the scale factors of the FGM show obvious long-term changes which can be de-
scribed by logarithmic functions. The other parameters (offsets and angles between the three
components) can be considered constant. If these continuous parameters are applied for the
FGM data processing, the disagreement between the OVM and the FGM readings is limited
to ±1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit
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a very good stability. However, the daily correction of the parameter Z component offset of
the FGM improves the agreement between the magnetometers markedly. The Z component
offset plays a very important role for the data quality. It exhibits a linear relationship with
the standard deviation of the disagreement between the OVM and the FGM readings. After
Z offset correction, the errors are limited to ±0.5nT (equivalent to a standard deviation of
0.2nT ).

We improved the corrections of the spacecraft field which are not taken into account
in the routine processing. Such disturbance field, e.g. from the power supply system of the
satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter
calibration, which brings false local time related variation of the calibration parameters.
These corrections are made by applying a mathematical model to the measured currents.
This non-linear model is derived from an inversion technique. If the disturbance field of the
satellite body are fully corrected, the standard deviation of scalar error 4B remains about
0.1nT .

Additionally, in order to keep the OVM readings a reliable standard, the imperfect coef-
ficients of the torquer current correction for the OVM are redetermined by solving a mini-
mization problem. The temporal variation of the spacecraft remanent field is investigated.
It was found that the average magnetic moment of the magneto-torquers reflects well the
moment of the satellite. This allows for a continuous correction of the spacecraft field. The
reasons for the possible unknown systemic error are discussed in this thesis. Particularly,
both temperature uncertainties and time errors have influence on the FGM data. Based on
the results of this thesis the data processing of future magnetic missions can be designed in
an improved way. In particular, the upcoming ESA mission Swarm can take advantage of
our findings and provide all the auxiliary measurements needed for a proper recovery of the
ambient magnetic field.
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Zusammenfassung

CHAMP(CHAllenging Minisatellite Payload) ist eine deutsche Kleinsatellitenmission für die
Forschung und Anwendung in Bereich der Geowissenschaften und Atmosphärenphysik. Das
Projekt wird vom GFZ geleitet. Mit seinen hochgenauen, multifunktionalen, sich ergänzen-
den Nutzlastelementen (Magnetometer, Akzelerometer, Sternsensor, GPS-Empfänger, Laser-
Retroreflektor, Ionendriftmeter) liefert CHAMP erstmalig gleichzeitig hochgenaue Schwere-
und Magnetfeldmessungen (seit Mitte 2000). Dank des bisherigen guten Zustandes des
Satelliten ist die auf 5 Jahre ausgelegte Mission bis 2009 verlängert geworden. An Board
befinden sich ein skalares Overhauser-Magnetometer(OVM) für Kalibrierungszwecke sowie
zwei Fluxgate-Magnetometer(FGM) zur Messung des magnetischen Feldvektors. Die Mes-
sungen vom FGM werden immer verglichen mit denen vom OVM und korregiert im Fall
von Widersprüche, das ist die sog. Skalar-Kalibrierung. Um eine zuverlässige Datenqualität
während der 8 jährigen Mission zu garantieren, ist die Nachkalibrierung implementiert. Im
Rahmen der standard mäßigen Datenverarbeitung werden die Instrumentenparameter des
FGM alle 15 Tage neu bestimmt. Das Ziel der vorliegenden Arbeit ist es, eine Verbesserung
der Vektormagnetfelddaten zu erzielen durch eine neue Methode der Kalibreirung, die die
Eigenschaften der Sensoren und Störung vom Raumfahrzeug mit berücksichtigt. Die Er-
fahrung aus den zurückliegenden Jahren hat gezeigt, dass sich die Skalenfaktoren des FGM
stark mit der Zeit ändern. Dieser Verlauf läßt sich gut durch eine Logarithmuskurve anpassen.
Andere Parameter wie die Winkel und die Offsets scheinen stabil zu sein. Eine Ausnahme
macht der Offset der Z-Komponent. Dieser bedarf einer regelmäßigen Korrektur. Während
die Standardverarbeitung eine undifferenzierte Bestimmung aller 9 FGM Parameter durch
nicht-lineare Inversion der skalar Daten vornimmt, beziehen wir jetzt die langzeitlichen Eigen-
schaften der Parameter in die Bestimmung mit ein. Eine weitere Verbesserung der CHAMP-
Magnetfelddaten konnte erreicht werden durch geeignte Berücksichtigung von Störung vom
Raumfahrzeug. Die verbleibenden Unsicherheiten konnten durch diese Massnahmen auf eine
Standardabweichung von 0.1nT reduziert werden.
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Chapter 1

Introduction

1.1 The Aim of the Thesis

CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study
the earth’s gravity field, magnetic field and upper atmosphere. The CHAMP satellite was
launched into space with a Russian COSMOS launch vehicle on July 15, 2000 at the altitude
of 454 km. This mission was scheduled to last for 5 years in order to provide a sufficiently
long observation time to resolve long-term temporal variations primarily in the magnetic
field, in the gravity field and within the atmosphere. Thanks to the good condition of the
satellite so far the mission is extended to 2009 after three successful altitude maneuvers. The
satellite as of Oct. 2008 flies at about 338 km altitude and still provides the scientists with
reliable measurement data. The long time continuous observations of CHAMP enable us to
learn more about the changes in the Earth system.

Launch Date July 2000

Mission Duration nominal 5 years (extended to 2010)

Altitude 470 km - 300 km

Inclination 87.3 deg

Eccentricity < 0.001

Spatial Coverage global

Temporal Coverage all local times

Satellite Mass 522 kg (at launch)

Satellite Dimensions 1621 mm in width and 8333 mm in length (including 4044 mm for the boom)
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In order to identify reliably long-term trends in the measured quantities the calibration
of the on-board instruments has to be maintained over the mission life time. This thesis
is focusing on the magnetometers. As part of the mission design a scalar magnetometer
was assigned as the magnetic reference. The readings of the vector magnetometer were
routinely compared with the data of the scalar instrument and corrected if inconsistencies
occurred. The purpose of this thesis is to revisit the in-flight calibration and look for possible
improvements of the magnetic field data.

The approach we are taking is considering also the characteristics of the sensors as revealed
from the 8 years of operation in space. This concerns in particular the dependence on
environmental conditions and temporal changes. Our aim is to reprocess all the magnetic
field data using a common algorithm. This promises to provide a more consistent image of
the geomagnetic field evolution.

1.2 Science instruments on the satellite CHAMP

The CHAMP mission focuses on geo-scientific research and applications. The effective pay-
load of the satellite, consequently, is employed for the purposes of

• Earth’s gravity field recovery

• Earth’s magnetic field recovery

• global Earth’s atmosphere sounding

• Earth’s ionosphere sounding

• Complimentary tracking system with onboard GPS for precise orbit determination and
gravity recovery

• Two-color laser ranging experiments

The following figure shows the science instruments carried by the CHAMP satellite and their
locations on it. We now introduce more details about the instruments used to observe the
Earth’s magnetic field.



3

1.2.1 Fluxgate Magnetometer(FGM)

For redundancy reasons the CHAMP satellite carries two Fluxgate Magnetometers on the
boom. Both are mounted together with the star cameras (ASC) on a common optical bench.
They were developed and manufactured under contract by the DTU (Technical University of
Denmark) Lyngby. The design is based on the CSC (Compact Spherical Coil) sensor which
was newly developed for the Ørsted mission and presently demonstrates its outstanding per-
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formance in orbit. Different to an absolute scalar magnetometer the FGM can provide us
with the vector measurements of the Earth’s magnetic field. This is very important for our
global magnetic field model study and helps us to learn more about the currents in the iono-
sphere. The table below gives us the technical characteristics of the FGM.

Bit number of ADC 24 bit

Range ±65 000 nT

Resolution 10 pT

Deviation from linearity ±100 pT

Noise level < 100 pT (rms)

Sample rate 50 Hz (nominal), 10 Hz, 1 Hz

-3 dB bandwidth 13 Hz

Offset drift < 0.5 nT

Sensor weight dimensions 350 g (each) Ø 82 mm

Electronics box(for both sensors) 3.5 kg

Power Consumption dimensions 2 W (each) 204x194x101 mm3

In the nominal operation mode the field vector is sampled by the FGM at a rate of 50Hz
providing a spatial resolution along the orbit of approximately 150m. There are other modes
which allow reducing the demands on data transmission. Both options, data compression
and reduced sampling rates can be freely combined.

1.2.2 Overhauser Magnetometer(OVM)

The Overhauser Magnetometer is a type of magnetometer whose operational principle is
based on measuring the frequency of the proton precession signals. The advantage of the
Overhauser magnetometer is that the sensor is omnidirectional and shows no dead zones, it
can provide precise absolute measurements of the ambient magnetic field strength without
drift and dependency on temperature. In order to keep the influence of the magnetic stray
field of the spacecraft as low as possible the OVM sensor is mounted at the tip of a 4 m long
deployable boom. The electronics box is placed inside the satellite body to provide more
comfortable environmental conditions. For these reasons the OVM is chosen to serve as the
magnetic field standard for the CHAMP mission. Through the whole mission the OVM data
are used to calibrate the readings of the FGM instrument.
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Range 18,000 - 65,000 nT

Resolution 10 pT

Noise level < 50 pT (rms)

-3 dB bandwidth 0.28 Hz

Sample rate 1 Hz

Absolute accuracy < 0.5 nT

deviation from omnidirectionality < 0.2 nT

Sensor weight 1 kg

Electronics weight 2 kg

Power consumption 4.5 W

Sensor dimensions Ø 90x180 mm

Electronics box dimensions 200x135x76 mm3

From this table we can obtain more details about the OVM on the CHAMP satellite.
There is only one operation mode: the ambient field strength is continuously sampled at a
rate of 1 Hz. With the help of the GPS clock the instrument regularly checks the frequency
of the internal crystal oscillator to ensure a precise measurement.

1.2.3 Advanced Stellar Compass(ASC)

Without the attitude information the vector measurements can provide the data only in the
local spacecraft coordinates. There are two Advanced Stellar Compass (ASC) assemblies on
the CHAMP satellite. The one on the boom provides the high precision attitude information
needed for the magnetic field vector measurements and the other on the spacecraft body
serves primarily the three component STAR accelerometer and the Digital Ion Drift Meter
(DIDM). The common Data Processing Unit (DPU) of the ASC compares the digital star
images acquired by the Camera Head Units (CHU) with an on-board stored star catalogue
to calculate the high precision attitude information. This information is used also by the
satellite attitude control system.
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Attitude determination precision 4 arcsec (3σ , BOL)

Field of view 18.4° x 13.4°

Sampling rates 1 Hz (nominal), 0.5, 2 Hz

Magn. moment CHU 10−5 Am

Power consumption 8 W

CHU weight 200 g (exclusive baffles)

DPU weight 800 g

CHU dimensions 50x50x45 mm3

DPU box dimensions 100x100x100 mm3

Based on the measurement of the ASC, the data processing group can provide the final
users with the magnetic field vector data in Earth-fixed coordinates.

1.3 The orbit of the CHAMP satellite
On 15th July 2000 the CHAMP satellite was launched with a Russian COSMOS launch ve-
hicle into an almost circular, near polar (i=87°) orbit with an initial altitude of 454km. The
orbit characteristics and the reason why we choose such an orbit can be summarized by these
tables.

Circular and near polar
Homogeneous and complete global coverage of the Earth’s sphere
Important to resolve gravitational and magnetic geo-potentials

Inclination of 87°
Local time variation of the satellite’s ground track (24 hours in 260.5 days)
Separate constituents of periodic phenomena like tides, day-night and seasonal variations

Initial altitude of 454 km
Guarantee a planned 5-year observation period above 300 km
Adequate to observe the Earth’s magnetic main field.
Compromise for both atmosphere/ionosphere study and the gravity field study

=

In one word, such an orbit ensures as much as possible a full spatial and temporal coverage
of the geo-scientific observations undertaken by the CHAMP satellite. Due to atmospheric
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drag and the solar activity the altitude of the satellite will decrease during the mission. After
2 orbit raise maneuvers in 2002 CHAMP was able to provide further highly valuable data.
On 27th March 2006(MJD=2277) another orbit raise maneuvreer was successfully performed.
The CHAMP mission is extend through 2009. Its lifetime is now much longer than it was
designed.
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Chapter 2

The Calibration of CHAMP
Magnetometers

The CHAMP satellite carries two Fluxgate Magnetometers (FGM), which measure the vector
components of the Earth’s magnetic field, and one Overhauser Magnetometer (OVM), which
provides highly accurate absolute measurements of the magnitude and serves also as a refer-
ence instrument to calibrate the FGM vector magnetic field data. It can be imagined that
no instrument is ideal, and although the structure of the satellite was very well designed,
the local magnetic field of the spacecraft is still not zero at the magnetometers position.
In this chapter we discuss all the sources that induce errors in the Earth’s magnetic field
measurements. The magnetic field at the FGM1 position is termed Bfgm, and at the OVM
position Bovm. The Earth’s magnetic field, which we are interested in, is Bem_fg at FGM1
and Bem_ov at OVM. Because the distance (1.75m) between FGM1 and OVM is very short
and the Earth’s magnetic field on such small scale is homogeneous, Bem_fg is the same as
Bem_ov.

Bfgm = Bem_fg +Bsc_fg

Bovm = Bem_ov +Bsc_ov
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where Bsc_fg and Bsc_ov are the spacecraft fields, respectively, at positions FGM1 and OVM.
Many sources on the spacecraft can produce the disturbing magnetic fields, for example, the
magneto-torquer currents. We will discuss more details later. If FGM and OVM are ideal
instruments, that means the magnetometer outputs Efgm = Bfgm and Eovm = |Bovm|, and if
we know exactly Bsc_fg and Bsc_ov, we can write,

Bem_fg = Efgm −Bsc_fg

|Bem_ov| = Eovm −
Bem_fg
|Bem_fg | •Bsc_ov

FGM1 OVM

Body

B
ovm

B
em_ov

B
sc_ov

B
fgm

B
em_fg

B
sc_fg

X

Z

Y

Figure 2.1

2.1 A linear vector magnetometer

However, no magnetometer is an ideal instrument. For the fluxgate magnetometers the pre-
flight test has shown that it is almost a linear instrument. We now discuss the mathematical
way to characterize the FGM.
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Figure 2.2

X’, Y’, Z’ are the three sensor axes of the fluxgate magnetometer. Ideally, they are per-
pendicular to each other. However, it can’t be technically realized, therefore the coordinate
system based on these slightly skewed mechanical axes is non-orthogonal. As we will see, we
can still build up a Cartesian reference frame from these non-orthogonal mechanical axes.
We define the first principal axis (Z) which is totally aligned with the Z’ mechanical axis.



12

The other component X is chosen to be perpendicular to the plane defined by the axes Z’
and Y’. Consequently, the axis Y is defined to be perpendicular to both axes Z and X. Fur-
thermore, it lies in the plane Z’Y’. There are unlimited options of definitions to build up an
orthonormal basis from the sensor axes. But this definition is the simplest one. We will see,
the transformation matrix involving three coefficients has a simple form. The relationship
between the orthonormal basis and non-orthonormal basis can be described angles as follows:


E
′
x

E
′
y

E
′
z

 = A


Bx

By

Bz

 (2.1)

Figure 2.2 illustrates the geometric relation between the two coordinate systems with mis-
alignment angles U1, U2, U3. So the transformation matrix A is expressed

A =


a1 a2 a3

0 a4 a5

0 0 1

 (2.2)

with a1 = 1
W

, a2 = tanU2
W

, a3 = tanU3
W

, a4 = cosU1 , a5 = sinU1 , W =
√

1 + (tanU2)2 + (tanU3)2.
The angles U1, U2, U3 are all close to zero. Notice that the FGM output of each component
is affected also by the intrinsic offset and scale factor of the sensor. Therefore, these should
be corrected first, 

Ex

Ey

Ez

 =


SxE

′
x

SyE
′
y

SzE
′
z

+


Ex0

Ey0

Ez0

 (2.3)

where Ex0, Ey0, Ez0 are offsets and Sx, Sy, Sz are scale factors of the components. If we have
the output readings of FGM, we can now calculate the observed magnetic field by FGM,
which is expressed as:

Ex

Ey

Ez

 =


Sxa1 Sxa2 Sxa3

0 Sya4 Sya5

0 0 Sz



Bx

By

Bz

+


Ex0

Ey0

Ez0

 (2.4)
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Knowing Sx, Sy, Sz, U1, U2, U3, Ex0, Ey0, Ez0 and the output of the FGM we can derive
the magnetic field. In this sense these nine parameters fully describe the character of the
tri-axial sensor Fluxgate Magnetometer.

As we know, Sx, Sy, Sz are very close to 1 and U1, U2, U3 are close to zero. Equation 2.4
can be written in this simplified inverse way,

Bx

By

Bz

 =


lx cos axy cos axz
0 ly cos ayz
0 0 lz




Ex

Ey

Ez

−

Ex0

Ey0

Ez0




where lx, ly, lz represent approximately the scale factors and axy, axz, ayz represent the angles
between any two axes of the three sensor elements. However, the FGM is only almost a linear
instrument. In ground tests it was found that it also shows some non-linearity. So we can
rewrite 2.4 as flow

 Bx

By

Bz

 =

 lx cos axy cos axz
0 ly cos ayz
0 0 lz

 Ex

Ey

Ez

−
 Ex0

Ey0

Ez0

+

 l2x(Ex − Ex0)2

l2y(Ey − Ey0)2

l2z(Ez − Ez0)2

+

 l3x(Ex − Ex0)3

l3y(Ey − Ey0)3

l3z(Ez − Ez0)3



where l2, l3 are the non-linearity factors. Because they are very small, the effect of misalign-
ment angles in the non-linearity parts can be neglected.

Experience and laboratory tests indicate that some of the parameters depend on time
or other environmental influences, for example, temperature. The laboratory measurements
have revealed the thermal drift of the scale factors of the three components. We can build a
model to describe the thermal drift.

lx,y,z = l0x,y,z − lT1x,y,z(Tcsc − T0)− lT2(Tcsc − T0)2

Using data from laboratory tests the temperature dependent scale factors lT1 are found to
be 29.6ppm/K for X, 30.37ppm/K for Y and 30.46ppm/K for the Z axis. lT2 are found to
be 4 × 10−8/K2 for all three components. T0 is the reference temperature. l0 is defined as
the scale factor at the reference temperature. Here Tcsc means the temperature at the CSC-
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feedback coil of the FGM sensor. However, the temperature distribution in the magnetometer
is not homogeneous. Due to this reason the temperature of the fluxgate sensor, CSC, and
the ADC voltage reference in the electronics box are recorded individually. But the actual
experience so far shows that for variations of the scale factors the temperature of the CSC
coil plays a more important role than others. That is why we only choose the temperature
of the CSC coil to modify the scale factors. Additionally, the temperature drift of the sensor
non-linearity l2, l3 can be neglected because it is too small to be distinguished from other
errors. Knowing the parameters (the angles axy, axz, ayz; the scale factors of the three axes
l0x, l0y, l0z, l2x, l2y, l2z, l3x, l3y, l3z and their temperature coefficients lT1x, lT1x, lT1z, lT2x, lT2y,
lT2z; the offsets of three axes Ex0, Ey0, Ez0) we can apply the output readings Ex, Ey, Ez of
the FGM to obtain the true value of the measured magnetic field.

2.2 Scalar calibration of vector magnetometers

As mentioned above, if we know all parameters, we can use them to obtain the ambient
magnetic field. These parameters of the vector magnetometers can be derived in laboratory
tests before the satellite is launched. However, some of the parameters vary with time or due
to other effects (e.g. vacuum or particle radiation). It is necessary to recalibrate the vector
magnetometer during the mission. Based on its measurement principle the Overhauser mag-
netometer has no dependency on field direction, on temperature and on time. It can provide
absolute readings of the magnetic field intensity. Furthermore, the Overhauser magnetome-
ter on CHAMP satellite was mounted at the tip of a 4 m long deployable boom. Therefore
the magnetic field of the spacecraft has less influence on the OVM than on the FGM. It
is possible and also reliable to use the Overhauser magnetometer for calibrating the vector
magnetometer. That is the so called scalar calibration. We now discuss the algorithms of
this calibration in detail. We repeat Eq.(2.4) in such form,


Bx

By

Bz

 =


k1 k2 k3

0 k4 k5

0 0 k6



Ex − Ex0

Ey − Ey0

Ez − Ez0

 (2.5)
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We only replace the parameter matrix K for reasons of convenience. We can calculate the
field intensity |Bfgm| from the vector magnetometer,

Bfgm =
√
B2
x + B2

y + B2
z

=
√

[k1(Ex − Ex0) + k2(Ey − Ey0) + k3(Ez − Ez0)]2 + [k4(Ey − Ey0) + k5(Ez − Ez0)]2 + [k6(Ez − Ez0)]2

and compare it with the scalar measurements from the OVM, Bovm, then we have

Bovm = |Bfgm| + e (2.6)

=
√

[k1(Ex − Ex0) + k2(Ey − Ey0) + k3(Ez − Ez0)]2 + [k4(Ey − Ey0) + k5(Ez − Ez0)]2 + [k6(Ez − Ez0)]2 + e

where e means the residual error. We can choose uniform distributed data samples and
using least-squares method to solve the function (2.6) for obtaining the nine parameters.
The assumption is that the nine parameters are invariant over time of the considered data
interval. Eq.(2.6) is a non-linear equation. In order to solve the function by iteration we may
linearize it.

|Bovm| =
√
B2
x +B2

y +B2
z

Efgmx,y,z = Bx,y,z +4Bx,y,z

because 4Bx,y,z are very small,

|Efgm| =
√

(Bx +4Bx)2 + (By +4By)2 + (Bz +4Bz)2 = |Bovm|+4B

where,

4B = |Efgm| − |Bovm| =
Ex
|Bovm|

4Bx + Ey
|Bovm|

4By + Ez
|Bovm|

4Bz

4Bx = Ex −Bx = Ex − k1(Ex − Ex0) + k2(Ey − Ey0) + k3(Ez − Ez0)

4By = Ey −By = Ey − k4(Ey − Ey0) + k5(Ez − Ez0)

4Bz = Ez −Bz = Ez − k6(Ez − Ez0)
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we rearrange the expression and find,

4B = |Efgm| − |Bovm| = P •M (2.7)

where

P =



1− k1

1− k4

1− k6

−k2

−k3

−k5

k1Ex0 + k2Ey0 + k3Ez0

k4Ey0 + k5Ez0

k6Ez0



′

≈



1− k1

1− k4

1− k6

−k2

−k3

−k5

Ex0

Ey0

Ez0



′

, M =



E2
x

|Bovm|
E2
y

|Bovm|
E2
z

|Bovm|
ExEy
|Bovm|
ExEz
|Bovm|
EyEz
|Bovm|
Ex
|Bovm|
Ey
|Bovm|
Ez
|Bovm|


Since the condition (Condition(I))

• k1, k4, k6 close to 1,

• k2, k3, k5 close to zero,

• Ex0, Ey0, Ez0 are small.

The parameters matrix P can be simplified as,

P ≈ (1− k1, 1− k4, 1− k6, −k2, −k3, −k5, Ex0, Ey0, Ez0)

Now we can use a linear least-squares procedure to estimate the nine parameters vector P
to minimize the difference between the OVM output and the magnitude derived from the
FGM components, i.e. P = 4B/M is the solution in the least squares sense. In practice
we use the FGM and OVM data of one day (sampling rate 1Hz, so we have 86400 equations
P = 4Bi/Mi) to solve the overdetermined problem for the optimal result.

Moreover, another way to linearize Eq.(2.6) can be chose.
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B2
ovm = B2

x +B2
y +B2

z

= [k1(Ex − Ex0) + k2(Ey − Ey0) + k3(Ez − Ez0)]2 + [k4(Ey − Ey0) + k5(Ez − Ez0)]2 + [k6(Ez − Ez0)]2

= P •M +Q

where

P =



k2
1

k2
4

k2
6

k1k2

k1k3

k4k5

k1E
′
x0

k4E
′
y0

k6E
′
z0



′

≈



k2
1

k2
4

k2
6

k2

k3

k5

E
′
x0

E
′
y0

E
′
z0



′

, M =



E2
x

E2
y

E2
z

2ExEy
2ExEz
2EyEz

2Ex
2Ey
2Ez



Q = (2k2k3EyEz +k2
2E

2
y +k2

3E
2
z +k2

5E
2
z ) + (2k2E

′
x0Ey + 2k3E

′
x0Ez + 2k5E

′
y0Ez) + (E′2x0 +E

′2
y0 +E

′2
z0)

We have used E ′x0 = −k1Ex0−k2Ey0−k3Ez0, E
′
y0 = −k4Ey0−k5Ez0, E

′
z0 = −k6Ez0 to reduce

the equation to a simple form. For the same reason, E ′x0 ≈ −Ex0, E
′
y0 ≈ −Ey0, E

′
z0 ≈ −Ez0,

P ≈ (k2
1, k

2
4, k

2
6, k2, k3, k5, −Ex0, −Ey0, −Ez0) and Q can be neglected compared with

B2
ovm. However, we can solve the function by iteration in the form of B2

ovm −Q = P •M , if
Condition(I) is not rigid. The solution of the parameter vector P is found to minimize the
B2
ovm− P •M using a least-square method. If P was found, we can determine the matrix K

and the offsets Ex0, Ey0, Ez0 which are applied to calibrate the FGM readings.

The experience of the CHAMP mission showed that the parameters are usually valid for
about a 15-day period. Consequently, the scalar calibration of vector magnetometer, as part
of the routine CHAMP data processing, is performed every 15 days in order to keep the
parameters updated.
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2.3 Torquer correction

As mentioned in the beginning of this chapter, the FGM measured, Bfgm, is not only the
Earth’s magnetic field, Bem_fg, but in addition the stray field of the spacecraft, Bsc_fg.
On the CHAMP satellite a set of three magneto-torquers, as a part of the satellite attitude
control unit, generate a magnetic moment which interacts with the ambient field in order
to keep the satellite at right attitude because most measurements of the CHAMP mission
require an exact attitude. So one of the main sources of Bsc_fg are the torquer coils. Their
influnce on the measurement of the Earth’s magnetic field has to be corrected. Fortunately,
the influence can be predicted exactly from the applied current on the basis of the Biot-Savart
Law. Suppose that the components of the generated magnetic field are proportional to the
strength of the current in the torquer coils, it can be formulated by the equation:

Btqr_fg = α • Itqr =


a11 a12 a13

a21 a22 a23

a31 a32 a33



Itqrx

Itqry

Itqrz


where Btqr_fg is the magnetic field vector which is generated by the torquer current at the
position of the FGM. Itqrx, Itqry, Itqrz denote the magnitude of the current throuth the three
sets of the coils. The coefficients of the matrix α were derived from laboratory tests and
confirmed in orbit.

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


15.000, −9.600, −13.400
0.000, −27.100, 0.100
−1.300, 1.000, −35.950

 , nT/A

These coefficients are considered to never change during the whole CHAMP mission.

2.4 Magnetic field vector data processing

Before we summarize the whole magnetic field vector data processing, yet two things should
be discussed. We compare the vector output with the output of the scalar magnetometer



19

to obtain the nine FGM calibration parameters. But we should know that a 100% time
synchronization of sampling between the scalar and vector magnetometers is not guaranteed.
A time-lag, for example, of 10ms delay between the measurements of two instruments will
cause a 0.5nT error at a background magnetic field gradient of 50nT/s in scalar calibration.
The sampling rate of FGM and OVM are, respectively, 50Hz and 1Hz, so it is believed that the
timing errors between them are not larger than 20ms. We compared the two magnetometer
data under the introduction of different time-lags. A 15ms shift was usually identified because
it showed the best result. Another time shift we have to pay attention to is related to the CSC
coil temperature correction. Inside the satellite there is vacuum. The thermal conduction
may not be homogeneous. That means, the recorded temperature by the CSC coil thermistor
is not the temperature that influences the scale factors, it may well reach the sensor coils a
little later (on average 100s). Practical experience showed that this effect cannot be neglected.
Furthermore, these time-lags seem not to be constant. They are determined every 15 days
as well as the nine internal vector magnetometer parameters.

Now we can summarize the whole magnetic field vector data processing in the sequential
course of events.

1 Time correction
2 Non-linearity correction.
3 CSC time shift of temperature correction.
4 Apply the nine intrinsic FGM sensor parameters:

3 scale factors, 3 misalignment angles, 3 offsets
5 Torquer correction.

We express the steps using the mathematical formulation in program syntax.

1. tgps_fg = tgps_fg + tshift_fg

2.


Bx

By

Bz

 =


lx(Ex − Ex0)
ly(Ey − Ey0)
lz(Ez − Ez0)

+


l2x(Ex − Ex0)2

l2y(Ey − Ey0)2

l2z(Ez − Ez0)2

+


l3x(Ex − Ex0)3

l3y(Ey − Ey0)3

l3z(Ez − Ez0)3


3. Tcsc = interpol(tgps_csc + tshift_csc, tgps_csc, Tcsc)
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4. (a)


lTx

lTy

lTz

 =


1− lT1x(Tcsc −T0)− lT2x(Tcsc −T0)2

1− lT1y(Tcsc −T0)− lT2y(Tcsc −T0)2

1− lT1z(Tcsc −T0)− lT2z(Tcsc −T0)2



(b)


Bx

By

Bz

 =


lTxBx

lTyBy

lTzBz



(c)


Bx

By

Bz

 =


Bx − Ex0

By − Ey0

Bz − Ez0



(d)


Bx

By

Bz

 =


1 cos axy cos axz

0 1 cos ayz

0 0 1



Bx

By

Bz



5.


Bx

By

Bz

 =


Bx

By

Bz

−


a11 a12 a13

a21 a22 a23

a31 a32 a33



Ix

Iy

Iz



The boldfaces indicate all the needed parameters for the corrections before we start the whole
processing. Except for the nine intrinsic FGM sensor parameters we think that the other
parameters are constant over the whole mission and they were already derived in the pre-
flight tests. As for these nine intrinsic parameters of the FGM, we have mentioned, during
the mission we perform a scalar calibration every 15 days to update them. That is the so
called in-flight scalar calibration. So we can use the following scheme to illustrate the FGM
data procedure.
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Figure 2.3

2.5 OVM data processing

Due to the advantage of the Overhauser Magnetometer, the data processing for its mea-
surements is relatively simpler than for the Fluxgate Magnetometers. The magnetic field at
the OVM position is Bovm. The Earth’s magnetic field, which we want to know, is Bem_ov.
Bd_ov is the disturbing field at OVM position. We have,

Bovm = Bem_ov +Bd_ov

If Bd_ov is very small on a background of strong ambient field strength Bem_ov, the correction
of the OVM readings can be described as:
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|Bem_ov| = Eovm −
Bfgm

Eovm
•Bd_ov

= Eovm −
BxfgmBxd_ov +ByfgmByd_ov +BzfgmBzd_ov

Eovm

However, for the correction we need vector data. So far the source of the Bd_ov can include
both additive portions and multiplicative portions:

• Additive(similar to offset)

– the sensor heading error

– the static magnetic field of the spacecraft

– the stray field from electric currents on the spacecraft(so far mostly, torquer coils)

• Multiplicative(similar to scale factor)

– cross-talk of the fluxgate magnetometer on the OVM

– static induced magnetic field due to the soft magnetic material of the spacecraft

So we have,

Bd_ov = Bh_ov +Bsc_ov +Btqr_ov +Bm1_ov +Bm2_ov

=

 Bxh_ov
Byh_ov
Bzh_ov

+

 Bxsc_ov
Bysc_ov
Bzsc_ov

+

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 Itqrx

Itqry

Itqrz

+

 qxm1Bxfgm

qym1Byfgm

qzm1Bzfgm

+

 qxm2Bxfgm

qxm2Byfgm

qxm2Bzfgm


where the parameters Bh_ov, Bsc_ov, qsci_ov, qsoc_ov, αtqr are determined in the laboratory
test before the launch. They are respectively.

Bxh_ov

Byh_ov

Bzh_ov

 =


−0.178
−0.138

0.035

nT,

Bxsc_ov

Bysc_ov

Bzsc_ov

 =


0.000
−0.300

0.000

nT
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
a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


7.40 −2.60 −2.40
0.00 −10.70 0.00
−0.40 0.30 −11.60

nT/A


qxm1

qym1

qzm1

 =


0.0000140
−0.0000060
−0.0000050

 ,

qxm2

qxm2

qxm2

 =


−0.00000884

0.00000544
0.00000590

 no unit

Although we think these parameters will not change over the whole mission, the experience
tells us that Bsc_ov and αtqr show a little change. We will discuss in more details about how
to correct them in the next chapter. In year 2004, we have even introduced furthermore a
time shift and a bias correction. That is,

|Bovm| = |Bovm|+ tshift_ov
4|Bovm|
4t

and
|Bovm| = Eovm +BIASovm

where tshift_ov is determined every 15 days during the mission and BIASovm is adopted
as −0.4nT . Before all these correction the OVM reading is rescaled based on the OVM
housekeeping data reading fovm(of the internal oscillator), where fref is the nominal frequency
of the oscillator.

Bovm = Bovm
fovm
fref
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Chapter 3

Using Continuous Parameters to
Improve the Processing
Our purpose of the calibration of the Fluxgate Magnetometer with respect to the Overhauser
magnetometer is to make the vector magnetic field measurements precise and reliable as far
as possible. However precision and reliability of the data are sometimes in conflict. As far
as our scalar calibration which is based on the least squares principle, that means, the more
parameters and the shorter sample data we introduce into the calibration, the better fit of
the data we can get but with lower reliability. We consider, that errors of each channel in
the FGM can be given by a function of measured signal,

4Ex′,y′,z′ = f(Bfgmx′,y′,z′)

as well as, the output readings of the FGM Ex′,y′,z′ are function of the measured signal,

Efgmx′,y′,z′ = Bfgmx′,y′,z′ +4Ex′,y′,z′ = F (Bfgmx′,y′,z′)

We use a polynomial approximation to expand the inverse function F−1(Efgmx′,y′,z′),

Bfgmx′,y′,z′ = F−1(Efgmx′,y′,z′)

= qx′0,y′0,z′0 + qx′1,y′1,z′1Efgmx′,y′,z′ + qx′2,y′2,z′2E
2
fgmx′,y′,z′ + qx′3,y′3,z′3E

3
fgmx′,y′,z′ + . . .

So we can see that q0 can be regarded as offsets, q1 are just scale factors and q2, q3 are
the parameters to correct the non-linearity of the FGM. q1 is also a function of the CSC
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temperature,
q1 = lT0 − lT1(Tcsc − T0)− lT2(Tcsc − T0)2

We revisit Eq.(2.7) in chapter 2,

4B = |Efgm| − |Bovm| = P •M

We consider the OVM measurements as a reference for the FGM measurements. Therefore,
the difference 4B = |Efgm| − |Bovm| is the only criterion to evaluate the quality of the
FGM measurements after the launch. If the calibration parameters we have found make the
4B smaller, then we think, they are better, and the calibrated measurements of the FGM
therefore are more precise. During the mission we have found that the 4B varies a lot with
time. This is the reason why we do the calibration every 15 days so that we can correct the
existing parameters. That means, some of the parameters are functions of time as well. We
certainly may think that all of them vary with time and we take all of them into account by
scalar calibration, so we have to extend the parameters matrix P and variables matrix M .
Although that brings less 4B, more terms of the variables lead to the problem of crosstalk
because of the nonuniform distribution of data.

However, we can analyze the statistic of the 4B to investigate which parameters play an
important role in the variation of 4B. We know that the typical statistical quantities are
median value and standard deviation. We have tried to use a group of FGM data and OVM
data in 2005 to show directly the relation between the statistical behavior of the 4B and
the FGM parameters.

The FGM data and OVM data were processed using a set of fixed parameters during the
first 175 days, and then another set of parameters for 44 days. At MJD 2083 and 2127 we
have changed the parameters. Figure 3.1 shows the result of the recalibration. The blue,
green curves indicate, respectively, the scale factors of the X, Z components based on the
result of the recalibration. The black and magenta curves indicate the median value and the
standard deviation of the 4B. We can see that the drift of 4B (median) shows a strong
correlation with the scale factors.

It appears, from all the parameters, the scale factors play a very important role. This
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Figure 3.1: Parameter variation during the year 2005. The blue and green curve in the top panel
show the X and Z scale factors, respectively. Below the median (black) and the standard deviation

(magenta) are plotted
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solid: applied scale factor (l0=la+lbln(MJD-MJD0))

dash: expected scale factor without OVM bias correction

magenta: modeling by a logarithm function

Figure 3.2: Temporal change of the FGM scale factors
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Figure 3.3: Temporal variations of the other 9 calibration parameters
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example indicates that the drift of the mean 4B comes mainly from the three scale factors.

4B = |Efgm| − |Bovm| = P •M

where

M = ( E2
x

|Bovm|
,

E2
y

|Bovm|
,

E2
z

|Bovm|
,
ExEy
|Bovm|

,
ExEz
|Bovm|

,
EyEz
|Bovm|

,
Ex
|Bovm|

,
Ey
|Bovm|

,
Ez
|Bovm|

)′

From the view of statistics, the median value of 4B is primarily determined by the three
scale factors(p1, p2, p3) because the first three terms E2

x, E2
y , E2

z are nonnegative and have
strong mean constituent. Compared with them, the other terms, ExEy, ExEz, EyEz, Ex, Ey,
Ez, are on average very close to zero due to their bipolar variations. The standard deviation
of the 4B mainly depends on the misalignment angles(p4, p5, p6), offsets(p7, p8, p9) and the
time shift.

In addition, the existing parameters which we have updated every 15 days during the
mission support the same conclusion. We can see no drift of the offsets and the misalignment
angles but the scale factors. Hence two conclusions can be drawn:

• the long term drift of the three scale factors bring the drift of 4B.

• the standard deviation as well as the offsets and misalignment angles show no long term
drift.

3.1 The disadvantage of the standard calibration

Different to the temperature correction and the torquer coil current correction the FGM cali-
bration uses an inversion method. Some calibration parameters are in a sense not determined
in a prelaunch test but by a least squares principle in the scalar calibration. In our standard
calibration twelve parameters are introduced. As we have mentioned, they are three scale
factors, three misalignment angles and three offsets, time shift of the CSC coil temperature,
time shift between FGM and OVM, OVM bias. These twelve parameters are renewed every
15 days to keep the 4B prolonged minimal. That is to say, if we have processed the FGM
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data within 3000 days, we have used 200*12=2400 parameters to do that. Another problem
is that using every 15 days a different parameter set causes discontinuities in the data, es-
pecially on the days when the parameters are renewed. This is because the parameters are
determined independently each time, as we can see in Figure 3.4. The blue curve indicates
4B on 28th May 2007 and the red one indicates 4B on 29th May 2007. A new parameter
set is applied on 29th. Therefore a jump in 4B appears between the two days. This kind
of jump occurs every 15 days when the new parameter sets are applied. Preferably, this
artificial discontinuity shouldn’t occur.

Figure 3.4: Variation of the difference between FGM and OVM measurements. At the time of FGM
parameter update ∆B changes discontinuously (switch from blue to red curve)
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3.2 The long time dependency of the scale factors

Based on the scale factors, we have updated every 15 days through the years, we can investi-
gate the long-term behaviors of the FGM. Rother et al.(2003) had used a linear function to
fit the drift of the scale factors. Olsen et al.(2001) had used a parabolic function to describe
the time dependence of the scale factors of the FGM on the Ørsted satellite.

l0 = la + lb(t− t01) + lc(t− t02)2

But their function is based on the variation of the scale factors only over several months.
The CHAMP data covering eight years show that the long-term dependence of scale factor
can be described much well by a logarithm function than by other functions (e.g. a parabolic
function). Figure 3.2 shows the variation of the scale factors of the FGM on CHAMP. We
have considered a function:

l0 = la + lb ln(t− t0)

where t is the time in Modified Julian Day(MJD, starting on 1.Jan 2000, 00:00UT). If we fit
the time dependence of scale factors over eight years using a natural logarithm function, we
can obtain a good result. The reason of the time dependence is probably related to aging of
the electronic devices, e.g. radiation effects. The natural logarithm trend indicates that the
long-term drift of the reference voltage in the Analog-to-Digital Conversion is possibly the
cause. These devices tend to exhibit logarithmic aging curves.

3.3 Continuous parameters for the FGM data process-
ing

So far from our analysis we can propose another way of processing the FGM data and OVM
data. Compared with the standard processing we may use a much smaller set of continuous
parameters but do not get a worse quality of the data. We have strong evidence that the
drift of the scale factors is due to the aging of the reference voltage source for the AD
convert of the fluxgate magnetometer. The temporal change can be described by a logarithm
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function. We use this function to calculate the scale factors for each day and apply fixed
misalignment angles and offsets value for all time. The parameters which were used in the
standard processing can be used to derive the type of logarithm functions for the scale factors.
And we take the average value of them as a good estimation of the fixed value.
l0 = la + lb ln(MJD −MJD0), MJD0 = 150∗

X Y Z
la 1.00025304∗ 1.00111601∗ 1.00102659∗

lb 0.00028960∗ 0.00029990∗ 0.00029850∗

Offsets 26.970 nT 19.843 nT 21.625 nT
Misalig angles 90.02613o 90.05986o 90.03873o

Time shift of Tcsc 100 s
tshift_ov/fg 15 ms
BIASovm 0 nT

∗The value can be revised according to any new request.

We consider that the remaining three parameters, the time shift of the correction for the CSC
coil temperature, the time shift between FGM and OVM, and the OVM bias are constant
as well. In order to get an overall better result we choose the time shift of the CSC coil
temperature correction as 100s and the time shift between FGM and OVM as 15ms. Since
we don’t have experimental evidence for the OVM bias, we take it as null. For each scale
factor of the X, Y, Z components we need two parameters to express the logarithm function.
For the new approach we use in total 14 predetermined parameters to process the whole
FGM data set over 8 years.

3.4 The correction of the disturbing magnetic fields
from the satellite body

We have mentioned in the beginning of the first chapter that if there are Bsc_fg and Bsc_ov

from the spacecraft itself, they will disturb the measurement of the space magnetic field.
Many sources on the spacecraft can produce the disturbing magnetic fields, for example, cur-
rents in the cables and magnetic materials. However, the scalar calibration can’t distinguish
them from the offsets of the FGM. The correction of them is regarded as a direct problem.
In other words, we use the available parameters to calculate the disturbing amplitude and
take them off the measurements. For instance, we have done this for the torquer correction



34

in the standard processing.
Some currents in cabling and science instruments play a part in variable spacecraft mag-

netic fields. Although the layout of those loops and electrical units were well designed and
their dynamic magnetic fields mostly compensate each other, we can still find some evidence
from the result of the FGM and OVM measurements which indicated that such influences
cannot be ignored. Nearly all the currents in the loops and instruments are recorded in
spacecraft housekeeping data. Based on them we can analyze how strong the influences are.

3.4.1 Influences of the solar current from the satellite body

The power system on the satellite includes the solar arrays and the batteries. The satellite
flies everyday alternatively in sunlight and in shadow. Hence the loops of power system carry
the currents ranging from 17Amp to a few Amp, especially in the noon local time. If the
battery is fully charged, the charge current will drop to zero in a very short time. However,
this character provides us a good opportunity to identify whether the currents have an effect
or not. We perform a superposed epoch analysis of the Bfgm −Bovm at the time around the
solar current rapid drop. Figure 3.5 shows a result of 30.04.2007. The orbit local time was
03:20. We can see the solar current droped from 10.5A to 3A in 15 seconds. A small step
(approximately 0.1 nT) in the difference Bfgm −Bovm can be clearly seen.

We have calculated all these small steps and found that they depend not only on the
magnitude of the solar current and the external magnetic fields but also on the local time.
That confirms our suspicion that one source of the dynamic magnetic field is the solar current
because at different local time the body of the satellite is exposed to a different incident angle
which leads to a different distribution of solar currents on the solar arrays.

The dynamic magnetic field at the FGM sensor location generated by the solar array
currents contaminates the ambient magnetic field observations. However the field cannot
be modeled directly using Biot-Savart’s calculation because the precise distribution of the
current loops is unknown. Moreover, the solar currents vary periodically along the orbit and
many other effects vary similarly. Therefore we cannot simply use e.g. least square estimation
to determine the coefficient due to the mismatch between the FGM and OVM.

Even though, the significant character of the solar currents changing allows us to dis-
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Figure 3.5: Jump in ∆B caused by the sudden drop of solar current strength
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tinguish their magnetic field from the ambient magnetic field. As we have discussed, the
charging current will drop to zero in a very short time when the battery is full. At this mo-
ment the change of the residuals between the FGM and the OVM are mainly from the rapid
change of the solar currents. Therefore we can build an approximate model to determine
the coefficients for the solar currents, which can be used to remove the disturbance field.
We think, the contamination field at the sensor location is proportional to the solar current
strength. So we have,

Bsolar_fg = Isolar


αfg

βfg

γfg

 = IsolarAfg

where Isolar is the measured solar currents and (αfg, βfg, γfg) are the coefficients we want
to determine for the solar current correction.

Bfgm = Bem +Bsc_fg +Bsolar_fg

Bovm = Bem +Bsc_ov +Bsolar_ov

To simplify the equation we consider in a first approximation that Bsolar_ov is very small
because the OVM is mounted at the end of the boom. The distance between the OVM and
the solar array is long enough.

Bsolar_ov = 0

4B = |Bfgm| − |Bovm|

= |Bem +Bsc_fg +Bsolar_fg| − |Bem +Bsc_ov|

= |Bem|+
Bfgm

|Bfgm|
•Bsc_fg + Bfgm

|Bfgm|
•Bsolar_fg − |Bem| −

Bfgm

|Bfgm|
•Bsc_ov

= Bfgm

|Bfgm|
•Bsolar_fg + Bfgm

|Bfgm|
• (Bsc_fg −Bsc_ov)

The problem is that we don’t know the term Bfgm
|Bfgm|

• (Bsc_fg−Bsc_ov) exactly. If we just use
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least square estimation to determin the coefficient, the mismatch between the first term and
the second term will surely come up. But at a certain moment the solar current suddenly
drops (within 10 sec), the two terms can be approximately separated from each other because
the Bsc_fg − Bsc_ov changes very slowly compared to the solar currents. We can therefore
assume that Bsc_fg −Bsc_ov do not change within this 10 sec.

4B(t1)−4B(t2) ≈ Bfgm(t1)
|Bfgm(t1)| •Bsolar_fg(t1) + Bfgm(t1)

|Bfgm(t1)| • (Bsc_fg(t1)−Bsc_ov(t1)) + e(t1)

−[ Bfgm(t2)
|Bfgm(t2)| •Bsolar_fg(t2) + Bfgm(t2)

|Bfgm(t2)| • (Bsc_fg(t2)−Bsc_ov(t2)) + e(t2)]

= [ Bfgm(t1)
|Bfgm(t1)| • [Isolar(t1)


αfg

βfg

γfg

]− Bfgm(t2)
|Bfgm(t2)| • [Isolar(t2)


αfg

βfg

γfg

]]

+[ Bfgm(t1)
|Bfgm(t1)| • (Bsc_fg(t1)−Bsc_ov(t1))− Bfgm(t2)

|Bfgm(t2)| • (Bsc_fg(t2)−Bsc_ov(t2))]

+[e(t1)− e(t2)]

where e here means the difference of the measurment noise between the FGM and OVM. t1,
t2 denote the times just before and after the solar current drop. Just as we have discussed,
Bfgm
|Bfgm|

and Bsc_fg−Bsc_ov are all slowly changing signals, in comparison with that, the solar
current Isolar is a momentarily changing signal. So we can introduce,

Bfgm(t1)
|Bfgm(t1)|

• (Bsc_fg(t1)−Bsc_ov(t1)) ≈
Bfgm(t2)
|Bfgm(t2)|

• (Bsc_fg(t2)−Bsc_ov(t2))

then we have,

4B(t1)−4B(t2) ≈
Bfgm(t1)
|Bfgm(t1)|

•[Isolar(t1)


αfg

βfg

γfg

]− Bfgm(t2)
|Bfgm(t2)|

•[Isolar(t2)


αfg

βfg

γfg

]+e(t1)−e(t2)

So using this equation we can derive the coefficients αfg, βfg, γfg. The principle to determine
the coefficients is based on the assumption that the time variations of other errors are much
slower at the moment when the solar current rapidly drops down. This special case allows
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us to isolate the solar current signal from other systematic errors.

Now we assume that e(t) is stationary Gaussian noise. In order to eliminate e(t), we
accumulate both sides of the equation for a period in the time domain.

t1+4t∑
t1−4t

4B(t)−
t2+4t∑
t2−4t

4B(t) =
t1+4t∑
t1−4t

Bfgm(t)
|Bfgm(t)| • [Isolar(t)


αfg

βfg

γfg

]

−
t2+4t∑
t2−4t

Bfgm(t)
|Bfgm(t)| • [Isolar(t)


αfg

βfg

γfg

] +
t1+4t∑
t1−4t

e(t)−
t2+4t∑
t2−4t

e(t)

The average of stationary Gaussian noise in time can be regarded not to change. So the
term ∑t1+4t

t1−4t e(t) −
∑t2+4t
t2−4t e(t) can be neglected. Using this equation we can estimate the

coefficients for the correction of solar current.

In a second step, we turn back to the equations,

Bfgm = Bem +Bsc_fg +Bsolar_fg

Bovm = Bem +Bsc_ov +Bsolar_ov

if we consider that Bsolar_ov is not zero, we have to find a way to estimate it.

4B = |Bfgm| − |Bovm|

= |Bem +Bsc_fg +Bsolar_fg| − |Bem +Bsc_ov +Bsolar_ov|

= Bfgm

|Bfgm|
• (Bsolar_fg −Bsolar_ov) + Bfgm

|Bfgm|
• (Bsc_fg −Bsc_ov)

we have,

Bsolar_ov = Isolar


αov

βov

γov

 = IsolarAov
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then,

4B = |Bfgm| − |Bovm|

= Bfgm

|Bfgm|
• (Bsolar_fg −Bsolar_ov) + Bfgm

|Bfgm|
• (Bsc_fg −Bsc_ov)

= = Bfgm

|Bfgm|
• [Isolar(Afg − Aov)] + Bfgm

|Bfgm|
• (Bsc_fg −Bsc_ov)

So we can still use the equations to derive the coefficients, but it is neither Afg nor Aov, but
Afg −Aov. However, we assume that this local magnetic field of the solar currents, Bsolar, at
distances >2-3 times the satellite dimensions, approaches a dipole field. With this assumption
and the known Afg − Aov, we can figure out the Bsolar_fg and the Bsolar_ov separately.

Bsolar_fg −Bsolar_ov = Isolar(Afg − Aov) (3.1)

Bsolar_fg = µ0

4πR3
fgm

[3(rfgm •M)rfgm −M ]

Bsolar_ov = µ0

4πR3
ovm

[3(rovm •M)rovm −M ]

The descriptions of Bsolar_fgand the Bsolar_ov is based on a single magnetic dipole equation.
M is the (vector) dipole moment. r is the unit vector parallel to the vector from the position
of the dipole to the position where the field is being measured. To simplify the equation we
assume that the center point of the dipole is located on the boom axis, that is to say,

M = [mx my mz], rfgm = rovm = [1 0 0]

And then,
Bsolar_fg = µ0

4πR3
fgm

[2mx −my −mz]

Bsolar_ov = µ0

4πR3
ovm

[2mx −my −mz]
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where Rfgm = 4.75m and Rovm = 6.5m, so

Bsolar_fg = [0.0014850µ0mx − 0.0007425µ0my − 0.0007425µ0mz]

Bsolar_ov = [0.0005796µ0mx − 0.0002898µ0my − 0.0002898µ0mz]

Substitute them in Eq.(3.1),

Bsolar_fg −Bsolar_ov = Isolar(Afg − Aov)
= Isolar[αfg − αov βfg − βov γfg − γov]

Now , Bsolar_fgand the Bsolar_ov can be calculated.

Bsolar_fg = Isolar[1.64(αfg − αov) 1.64(βfg − βov) 1.64(γfg − γov)]

Bsolar_ov = Isolar[0.64(αfg − αov) 0.64(βfg − βov) 0.64(γfg − γov)]

We have used the FGM, OVM and the solar current(PCD) data for years 2006 and 2007 to
calculate the Afg − Aov. Figure 3.6 shows the result.

From Figure 3.6 we can see that the coefficients α and γ show some time dependence on
the local time of the satellite. This is expected due to the different solar aspect angles. Let’s
think about our correction model,

Bsolar_fg = Isolar


αfg

βfg

γfg

 = IsolarAfg (3.2)

This model is based on Biot-Savart’s equation. If the structure of the current loops and
the postion of the FGM are never changed, the coefficients matrix Afg is also defined without
doubt. After all, how is this kind of time dependence produced, looking like Figure 3.6? The
period of the satellite local time variation gives us a hint. We know the electrical energy
source of the satellite are solar cells. The solar cells of CHAMP are located on the two
sides and on the top of the main body surface. We know at different local times, the three
panels of the solar cells are illuminated at different inclinations of sunlight, which causes the
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Figure 3.6: Local time dependence of the solar array magnetic disturbance in the X and Z compo-
nent. The vertical lines indicate 12:00 LT(magenta) and 24:00 LT(cyan)

different distribution of the generated currents in the power supply loops. But our correction
model applies only to the total solar current, Isolar, to describe the disturbance magnetic
field, which doesn’t represent this topological distribution of the currents in the loops caused
by the change of the inclination. That means our correction model in Eq.(3.2) is too simple.

θ

On the basis of the above analysis we try to separately de-
scribe the disturbance magnetic field of different solar cell pan-
els. Since the panel on the top side has a small area, we first
neglect it.

Is = QS sin(θ) (3.3)

This equation represents the magnitude of the current gener-
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ated in the solar cell, where Q is the product of sunlight intensity and the conversion coeffi-
cient, S means the dimension of the illuminated area, θ means the inclination of the sunlight.
So we have,

Bs1 = Is1A1 = Is1


α1

β1

γ1

 = QS1 sin(θ1)


α1

β1

γ1



Bs2 = Is2A2 = Is2


α2

β2

γ2

 = QS2 sin(θ2)


α2

β2

γ2



45o 45o

θ1
θ2

θ1+ θ2=90o d(θ)/d(MJD)=360o/260.5

where Bs1 and Bs2 is, respectively, the magnetic field which is caused by the solar current in
the left panel and right panel. We think the two panels have the same size, S = S1 = S2.

Isolar = Is1 + Is2 = QS sin(θ1) +QS sin(θ2) = QS(sin(θ1) + sin(θ2))

Bsolar_fg = Bs1 +Bs2
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= QS


α1 sin(θ1) + α2 sin(θ2)
β1 sin(θ1) + β2 sin(θ2)
γ1 sin(θ1) + γ2 sin(θ2)


Consequently, if we go back to Eq.(3.2), and if both panels are illuminated, the coefficients
Afg should be,

Afg =


αfg

βfg

γfg

 = Bsolar_fg/Isolar = 1
sin(θ1) + sin(θ2)


α1 sin(θ1) + α2 sin(θ2)
β1 sin(θ1) + β2 sin(θ2)
γ1 sin(θ1) + γ2 sin(θ2)

 (3.4)

And if only one panel S1 or S2 is illuminated, then Afg should be,

Afg =


α1

β1

γ1

 or Afg =


α2

β2

γ2

.

S
1

S
2
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Figure 3.7: Local time
dependence of the solar
array magnetic distur-
bance in the X and Z
component. The solid
lines are the result of

the model.

By summarizing the variation of Afg in the 4 phases of a whole period, we have,

Afg =




α2

β2

γ2


 phase1(0 6 p < 65)

9 : 00− 3 : 00 S1 in shadow



1
sin(θ1)+sin(θ2)


α1 sin(θ1) + α2 sin(θ2)
β1 sin(θ1) + β2 sin(θ2)
γ1 sin(θ1) + γ2 sin(θ2)



phase2(65 6 p < 130)
3 : 00− 0 : 00(24 : 00)− 21 : 00
θ1 = (p− 65)ω, θ2 = 90− (p− 65)ω, ω = 360

260.5



α1

β1

γ1


 phase3(130 6 p < 195)

21 : 00− 15 : 00 S2 in shadow



1
sin(θ1)+sin(θ2)


α1 sin(θ1) + α2 sin(θ2)
β1 sin(θ1) + β2 sin(θ2)
γ1 sin(θ1) + γ2 sin(θ2)



phase4(195 6 p < 260)
15 : 00− 9 : 00
θ1 = 90− (p− 195)ω, θ2 = (p− 195)ω, ω = 360

260.5


where p is the time difference between the actual MJD and the earlier MJD on which the
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local time was 9:00. We now see that variation of the matrix Afg is a function of the local
time and implicitly of the day of mission. From the result in Figure 3.6, we take,

A1 =


α1

β1

γ1

 =


0.00002
0.00001
−0.00001

nT/mA, A2 =


α2

β2

γ2

 =


−0.00001

0.00001
0.00002

nT/mA

and introduce them in to Eq.(3.4), Figure 3.7 shows the result of our simulation. After we
used these simulation parameters to remove the disturbance of the solar current, we found
better results in the phase 1 and 3 than in the phase 2 and 4. That means the situation
when only one panel was illuminated is closer to the ideal correction model. In the other
situation, for example, the top panel plays also a role and the recorded total current, Isolar,
cannot represent the distribution of the magnetic field from the three panels.

3.4.2 The influences of the ASC-boom camera current

The Advanced Stellar Compass (ASC) on the satellite provides the high precision attitude
needed for the magnetic field vector measurements. When the local time is around 21:00,
15:00, 09:00, 03:00, the sunlight will directly get into the ASC camera. The housekeeping
data show that this leads to an extra current. The blue line in Figure 3.9 indicates the
payload currents of the ASC on the boom. We can see a jerk of the current due to the
incident sunlight. Corresponding to that, the 4B = |Bfgm| − |Bovm| shows a jerk as well.

ASC

Boom

Figure 3.8:

Figure 3.8 shows how the relationship between the attitude
of the satellite and the incident angle of sunlight. The maximal
variation of this dynamic field is approximately 0.4nT and the
corresponding proportion is 0.001nT/mA.
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Figure 3.9: Influence of star tracker on the FGM readings
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3.4.3 Redetermine the coefficients of the torquer correction

In Section 2.3 we have discuss the magneto-torquer correction. The correction is based on
the coefficients which were determined in pre-flight test. The currents in the torquer coils
generate the dynamic magnetic field. We use the following equation and the coefficients to
remove it from the recorded magnetic field.

B = B −Btqr = B − αtqr • Itqr = B −


a11 a12 a13

a21 a22 a23

a31 a32 a33



Itqrx

Itqry

Itqrz



Figure 3.10: Example for the dynamic variations of the currents through the torquer coils

However, the in-flight measurements of the FGM and OVM show that the precision of the
coefficients can be further improved. In order to isolate the torquer signal from the others,
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the torquer currents are modulated by a 0.05Hz variation. From Figure 3.10 we can see the
20s periodical signal in the X and Z components of the torquer currents. Hence, we can
analyze the spectrum of the residuals 4B between Bovm and Bfgm so that we can determine
whether the torquer signal is completely removed.

Figure 3.11: Signal spectra of ∆B. The spectral peaks mear 0.05Hz indicate imperfect torquer
corrections

Figure 3.11 shows the FFT result of 4B from the data of 09.08.2007. We can see peaks
close to 0.05Hz. The peaks indicate that using the existing coefficients αtqr the torquer signals
are not completely removed from the FGM or OVM data.
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Figure 3.12: Individual signal spectra of the two magnetometers. Spectral peaks near 0.05Hz
indicate imperfect torquer corrections

But how can we find out in which data set the 0.05Hz signal exist, in OVM data or FGM
data? Because both Bfgm and Bovm have strong low frequency signal(orbital period and its
harmonic components) and the 0.05Hz torquer signal is very weak, it is difficult to distinguish
it from the observed spectrum. We first use a high-pass FIR(Di−Di−1) to filter, respectively,
the FGM and OVM data and then analyze their spectra. The 0.05Hz peak exists in both
FGM and OVM data. However, Bovm has a stronger 0.05Hz signal than Bfgm. Figure 3.12
shows the result. So it can be concluded that the coefficients matrix of torquer correction for
the OVM data requires more improvement.
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We now discuss the method for improving the coefficients of the torquer correction. Our
purpose is to find the new coefficients matrix αtqr.

αtqr = α′tqr +4αtqr =


a11 a12 a13

a21 a22 a23

a31 a32 a33

+


4a11 4a12 4a13

4a21 4a22 4a23

4a31 4a32 4a33


where α′tqr is the old coefficient matrix which is supposed to be amended. 4αtqr is the
difference between the new one and the old one and the elements should not be very large.

4B′ = |Bfgm| − |Bovm(α′tqr)|

where Bovm(α) doesn’t mean Bovmα but the OVM data corrected by the coefficients α, i.e
Bovm is function of the coefficients α. As mentioned above, due to the imperfection of the
coefficients we have found a 0.05Hz peak in the spectrum of the 4B′. Since the error of each
component is small, we can write,

|Bovm(αtqr)| = |Bovm(α′tqr +4αtqr)|
= |Bovm(α′tqr)|+ |Bovm(4αtqr)|

= |Bovm(α′tqr)|+
Bx

|Bovm|
4Bx + By

|Bovm|
4By + Bz

|Bovm|
4Bz

where 
4Bx

4By

4Bz

 =


4a11 4a12 4a13

4a21 4a22 4a23

4a31 4a32 4a33



Itqrx

Itqry

Itqrz


So we have,

4B = |Bfgm| − |Bovm(αtqr)|
= |Bfgm| − |Bovm(α′tqr +4αtqr)|
= |Bfgm| − |Bovm(α′tqr)| − |Bovm(4αtqr)|

= 4B′ − (4αtqr • Itqr) •
Bovm

|Bovm|
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If we can find the right 4αtqr, the 0.05Hz peak should disappear in the spectrum of 4B. In
order to find the 4αtqr, we construct the following function,

E(4αtqr) =
∫ f2

f1
|F (f)|df =

∫ f2

f1
F (f)F ∗(f)df (3.5)

where F (f) is the continuous Fourier transform of 4B,

F (f) =
∫
4Be−j2πftdt =

∫
(4B′ − (4αtqr • Itqr) •

Bovm

|Bovm|
)e−j2πftdt

4B is a function of the parameters 4αtqr. The 4f = f2−f1 may be chosen to cover a short
bandwidth range around the 0.05Hz. If we discretize the function, we have

E(4αtqr) =
f2∑
f1

F (fi)F ∗(fi) M f

whereF (fi) is in this case the discrete Fourier transform of 4B. However, function E finally
is a function of the parameters 4αtqr. So the problem is to find parameters 4αtqr which
make the function E minimal. In principle, this is a minimization problem.

min4αtqrE(4αtqr)

Because the coefficient array α′tqr is very close to the right one, αtqr, we can choose zero as
an initial estimate of 4αtqr to solve this minimax problem by using a sequential quadratic
programming method.

We have done the calculation based on the data of all the years. From them the result of
2007 is taken as an example. Even though 4αtqr are not the same from day to day and some
of the elements(e.g. 4α22) show large uncertainties, their median value can be considered as
a good estimation. The old coefficients are,

α′tqr =


7.40 −2.60 −2.40
0.00 −10.70 0.00
−0.40 0.30 −11.60

 nT/A
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and the 4αtqr we have obtained are

4αtqr =


0.385 0.134 0.162
−0.402 1.452 −0.199

0.237 −0.247 0.232

±


0.154 0.341 0.035
0.100 1.192 0.140
0.016 0.242 0.139

 nT/A

Thus we have the new coefficients for OVM torquer correction

αtqr = α′tqr +4αtqr =


7.785 −2.466 −2.238
−0.402 −9.248 −0.199
−0.163 0.053 −11.368

±


0.154 0.341 0.035
0.100 1.192 0.140
0.016 0.242 0.139

 nT/A

Applying these new coefficients we can repeat the spectrum analyses in order to see how
much better the torquer correction is.

Figure 3.13: Signal spectra of ∆B, (Blue) with old torquer correction, (Red) with new coefficients
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After comparing the two power spectra (the blue using the old coefficients and the red the
new ones) we can see that the 0.05Hz peaks are reduced. It should be pointed out that 4αtqr
has a very small value, the changes of OVM data incurred by the new coefficients are not
more than 0.1 nT.

3.4.4 The CHAMP remanent field correction of the OVM mea-
surements

As we know, if an object with magnetic moment moves in an ambient magnetic field, a
torque is exerted due to the interaction, and the attitude of the object will change. The same
situation is valid for the CHAMP satellite. The body of the satellite carries the sources, such
as the magnetic material and the fixed currents, which produced the magnetic moment. Hence
a set of three magneto-torquers is employed by the Attitude and Orbit Control Subsystem
(AOCS) in order to eliminate the effect of the satellite remanent field. Using the high precision
attitude information from the advanced stellar compass the AOCS commands the torquer
currents which produce the magnetic moment dynamically to compensate on average the
satellite remanent field. So we have,

Btqr_ov +Bsc_ov ≈ 0

However, this brings another problem. The magnetic field at the sensor OVM is,

Bovm = Bem_ov +Btqr_ov +Bsc_ov ≈ Bem_ov

where Bem_ov is the Earth’s magnetic field at the OVM which we are finally interested in.
But the torquer correction is also necessary. If we have only made a torquer correction, we
obtain,

B′em_ov = Bovm −Btqr_ov = Bem_ov +Bsc_ov

That means, the torquer correction and the remove of Bsc_ov should be jointly implemented.
However, Bsc_ov ≈ −Btqr_ov means, the magnetic field of the torquer currents are not
always equal to the satellite remanent magnetic field. It is only compensation on average.
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Nevertheless, we can still estimate the Bsc_ov according to the Btqr_ov. To remove the quick
variations and the effect depending on local time we calculate the 260 days average value of
the torquer currents to estimate the Bsc_ov because of the linear relation between Btqr_ov

and Itqr. Figure 3.14 shows our calculations.

Figure 3.14: Daily averages of the torquer currents of the three components and 260-day moving
averages of the currents

The crossed lines give the 260 days average torquer current values for each component. From
which ItqrX can be considered to be constant, ItqrX = 0. So we have,


Bsc_ovX

Bsc_ovY

Bsc_ovZ

 = η


0

ItqrY

ItqrZ


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where η is 0.0071nT/mA for the position of OVM, which was obtained in the pre-flight test,
ItqrY and ItqrZ are the average torquer currents of the Y and Z components.

3.5 The result of the new processing with continuous
parameters

Different to the standard processing, we have in the new approach continuously varying
parameters applied as well as improved corrections of the disturbing magnetic fields from the
satellite body. We show some result in this section to evaluate the new processing.

Figure 3.15: Temporal variation of several parameters after standard processing of 2007

As an indicator for the quality of the agreement between the data from the OVM and
the FGM, we use the difference in total fields, 4B. Two parameters for characterizing 4B
are the standard deviation(std) and the median, both applied to the data of one day. Figure
3.15 shows for the year 2007 the standard deviation and median of 4B in red and blue,
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respectively, of the data routinely processed. Quite evident is the 15-day periodicity in some
parts of the blue curve. This is the update rate of the FGM parameters. For test purposes
the scalar calibration has been repeated and the nine parameters are updated on a daily case.
After that the std of 4B is markedly reduced(cyan line) and the median of 4B is constantly
zero(magenta).

Alternatively, we applied the new processing to the data of 2007. Figure 3.16 shows the
results corresponding to those of Figure 3.15. Although we are using predetermined functions
or constant values for the FGM parameter, the size of the standard deviation and median
values of 4B are not significantly larger. The absence of any long-term trend confirms
the choice of functions for the parameters. Also in this case the magnetic field data were
subjected to another scalar calibration on a daily case. When all the 9 FGM parameters are
adjusted we obtain again a constantly small std of4B(cyan) and a zero median(magenta).

Figure 3.16: Temporal variation of several parameters after new processing of 2007
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Figure 3.17: Comparison of the ∆B standard deviation with the Zcomponent offset

Figure 3.18: Linear correlation between the variance of ∆B and the squared Z offset



59

Since we want to avoid the scalar calibration in the new processing approach, we try to
identify the reason for the temporal variations of the standard variation (red curve in Figure
3.16). In a previous section we had already presented some indications that the Z component
offset plays an important role for 4B. In Figure 3.17 we repeat the std of 4B as a red curve.
In green the Z component offset, as determined in the daily scalar calibration, is plotted. For a
better comparison the absolute value of the offset is drawn in blue. The synchronous variation
of the red and blue curves provides strong evidence for the close relationship between the Z
offset and the standard deviation.

For obtaining a more quantitative expression of the relation between the two quantities
we assumed the following linear function.

std2(4B) = aZ2
0 + noise2

For testing this assumption we made use of the daily results of these two quantities for
the years 2001 through 2008. Figure 3.18 shows a scatter plot of all the data points. As
expected, a nice linear relation emerges. From a linear regression we obtain the coefficients
and can write,

std2(4B) = 0.6655Z2
0 + 0.0390nT 2 (3.6)

For the physical interpretation of this result we make a short model calculation. The
Earth’s magnetic field can be approximated by a dipole with the components,

X = B0 sin θ, Y = 0, Z = 2B0 cos θ

where B0 is the field strength at the equator and θ the angle of colatitude(θ = 0oat North
pole). The effect of a small disturbance field, b, on the field magnitude can be expressed in
the form of a scalar product.

4B = b •B
|B|

= Z0(2B0 cos θ)
B0
√

1 + 3 cos2 θ
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For an average over an orbit of the squared function we obtain

〈
4B2

〉
=
〈

4Z2
0 cos2 θ

1 + 3 cos2 θ

〉
= 2

3Z
2
0

The obtained orbital average can be compared with the squared standard deviation of
4B in Eq.(3.6). It is interesting to note, that the proportionality factor of Z2

0 obtained in the
correlation analysis is very close to the one predicted from the simple dipole model(0.6655
vs 0.6667). This confirms the role of the Z offset for the std of 4B. The imperfection of
all the other 11 parameters contribute to the noise floor of 4B which amounts to

√
0.039 ≈

0.2nT (See also Figure 3.17). Based on the analysis above, if an daily Z offset correction is
necessary, we can use Eq.(3.6) to derive the Z offset from the std of 4B.

Regarding the remaining residuals, 4B, we can find a mathematical way to minimize the
values. We have,

4B = |Bfgm| − |Bovm|

The residual 4B can be distributed among the components of the FGM readings as follows,
B′x

B′y

B′z

 = |Bovm|
|Bfgm|


Bx

By

Bz

 = (1− 4B′

|Bfgm|
)


Bx

By

Bz

 (3.7)

The above equations forces that, |[B′x, B′y, B′z]|is equal to |Bovm|. Unfortunately, the obtained
correction is not unique. As can be seen, its value is weighted by the amplitude of the
component. Even though, we regard the correction as worth while, in order to make the
OVM and FGM data consistent, in particular for correcting the Bz offset deviations.

In practice we find a short-period scatter in the 4B = |Bfgm| − |Bovm| , which reflect
the measurement noise of the OVM data. This is typical considering the principle of the
Overhauser magnetometer. In order to avoid a contamination of the FGM vector data by
this short-period noise of the OVM measurements we applied a low-pass filter with a cut-off
period at 80 sec to the 4B before computing the Eq.(3.7).

4B′ = filter(4B) = filter(|Bfgm| − |Bovm|)
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As we can see, in Figure 3.19, the difference between the |[B′x B′y B′z]| and |Bovm| only
shows the measurements noise of the OVM, and the amplitude of the OVM measurement
noise is ±0.1nT . The peaks indicate a little stronger noise at locations where the intensity
of the magnetic field is weak (over the equator).

Figure 3.19: An example of one day. Difference between the magnitude of the field FGM data and
the OVM readings, only the OVM noise remains, no systematic variation
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Chapter 4

Time Variation of the FGM
Calibration Parameters and Problem
of Cross-talk

The 9-parameter scalar calibration has proved to be a very robust and practical solution in the
presence of measurement noise in many missions for magnetic field investigations. However,
its reliability depends on the degree of cross-talk between the involved error parameters and
functions.

At the beginning of Chapter 3 we have discussed the form of the error for each component.
We consider that the error of each component is a function of the measured signal(this means
we think the error are only from the instrument itself),

4Ex,y,z = fins(Bfgmx,y,z)

With the error propagation function which we have frequently used, the error of the scalar
value can be given,

4B = |Efgm| − |Bovm| =
Bx

|B|
4Ex + By

|B|
4Ey + Bz

|B|
4Ez

The idea of the 9-parameter scalar calibration is fundamentally a simplification of the error
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function fins(Bfgmx,y,z) and to give relevant parameters concrete physical significance. That
means, we consider an error function fins(Bfgmx,y,z) in the form(we take the X component
for example),

4Ex = finsx(Bfgmx,y,z) = Ox + SxBfgmx + cos(Axy)Bfgmy + cos(Axz)Bfgmz

and then we name O offset of the component, S scale factor or sensitivity of the component,
and A non-orthonormal angles between the components. Why do we take the fins(Bfgmx,y,z)
in such form? It is because of our knowledge about the error of a vector magnetometer, which
we have discussed in Chapter 2. Therefore we have this linear error model,

4B = |Efgm| − |Bovm| = P •M

We establish the right variable matrix M and solve for the right parameter vector P .

However, the actual errors of the magnetometers in the satellite are much more com-
plicated than this error model. For example, if we consider some non-linearity errors of
the X component or some error due to the temperature dependence of the scale factor, we
have to take the additional terms(B3

fgmx and (Tcsc − T0)B2
fgmx) in matrix M to extend the

model. Furthermore, if there are some disturbing magnetic fields from the satellite body, the
component error function will be

4Ex = finsx(Bfgmx,y,z) + fsatx(t, I, T, P...)

The fsatx(t, I, T...) is a function of the time t, current I, temperature T , position P and other
possible variables which indicate the source of error. More generally, both error functions
fins and fsat can be described by non-linear functions or non-parameter functions rather than
linear parameter functions. Therefore, we consider a generalized additive model for the scalar
error,

4B = |Efgm| − |Bovm|

= Bx

|B|
(finsx + fsatx) + By

|B|
(finsy + fsaty) + Bz

|B|
(finsz + fsatz) + fovm
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Where fovm is the error function of the OVM, if there is one.

Unfortunately, the information about these error functions is insufficient considering the
in-flight calibration. The 4B = |Efgm| − |Bovm| is only the criterion to estimate them.
Moreover, due to the orbit of the satellite the measurements of the instruments are very
nonuniform distributed. This leads to a problem of cross-talk or mis-coupling. This means,
if we take a wrong error function or an error function in a wrong form, we invert the wrong
error function or wrong parameter. For example, imagine that all the errors of 4B were
caused by the OVM, if we only consider the FGM and use the 9-parameter scalar calibration
to derive the parameters, then the result is totally wrong. There are two types of cross-talk
problem, one is that the error function in the model mismatches those that are not taken
into account, the other is that both error functions are taken into the model, but due to the
dependent or nonuniform distributed variables, they are not decoupled from each other.

The key issue is now to decide which error function in which form is the right. This we
want to achieve with the help of our apriori knowledge about the error or other restrictive
conditions. An important principle is that, if we want to calculate the main source of the
error, then we take the corresponding error function. For example, if we know finsx �
fsatx, then we can neglect fsatx and take only finsx. Another important idea is in case we
cannot directly determine which error function to choose, we can take a simple form of the
model, e.g. 9-parameter linear model, to estimate the parameters or functions. We analyze
these parameters and functions to judge whether they agree with our expectation about the
corresponding error or not. If they don’t agree, we believe the error is coming from another
source and consider the model corresponding to that form.

As a result, in Chapter 3 we have applied continuous descriptions of the parameters to
produce the FGM and OVM data. We think that the major part of the error fins is already
removed. However, if we do again the 9-parameter scalar calibration for every day, the derived
parameters may give us more details of their time variations or an indication of other error
sources. In this chapter we discuss the result of the calibration and the cross-talk problems
we have found. For some of the before unknown errors we give a mathematical solution and
corresponding physical explanation.
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4.1 The variation of the recalibration parameters

If we do again a daily 9-parameter scalar calibration for the data which have been processed
by the continuous parameters, namely logarithmically evolving scale factors, constant sensor
offsets and misalignment angles, the derived parameters are losing their original physical
significance. More probably they give information about their daily apparent variation.
Thereby we can study whether the variation is due to the variation of the environment of
the satellite in the space or due to some other reasons.

We know, the orbit(almost circular, near polar (i=87°)) of CHAMP leads to variation
of the environment of the satellite in the space. The satellite flies everyday alternatively
in sunlight and in shadow. How long in sunlight and how long in shadow depends on the
local time of the satellite orbit. The local time of the orbit varies from 00:00 bis 24:00 and
its repetition period is 260.5 days. So we can name 260.5 days one satellite year (SY). At
different local time the satellite is exposed to sunlight for a different period. We name one
orbital period (93min) of the satellite one satellite day (SD). Accordingly, SD has different
length of daytime and nighttime. For example, around local time 24:00 or 12:00 the daytime
of SD is about 45min and around 15:00 09:00 03:00 or 21:00 it is about 60min. Around 18:00
or 06:00 the satellite flies in the sunlight all the time, which is similar to polar summer in
the polar region on the ground. The different sunshine duration results in a variation of
the conditions onboard the satellite, especial the temperature. The maximum of the daily
average temperature is around local time 18:00 and 06:00 and the minimum is around 24:00
and 12:00. If we define the days with daily average temperature higher than 10oC hot satellite
season(SS) and under 10oC cold satellite season, then the pendulation of hot and cold SS has
a 130D period. Approximately, we think, the environmental conditions of the satellite during
the days in the same phase of SS are same. Figure 4.1 shows the relationship between these
concepts about satellite day(SD), satellite season(SS) and satellite year(SY). In this section
we discuss the variation of the recalibration parameters and the possible influence on them
due to the variation of the environmental conditions. By means of that we can find some
hints of other error sources, especially from the satellite body.
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Figure 4.1: The relationship
between local time, SD, SS
and SY. The magnetome-
ter coils temperature indi-
cates the hot and cold SS.
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rent indicates respectively
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SD
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4.1.1 The variation of the scale factors

The long-term time dependency of the scale factors is represented by a natural logarithm
function in the processing. So in recalibration we can see more details, how they vary due
to other effects. We can see that, as expected, the scale factor of the Y-axis shows larger
variations than the X and Z-axis since the Y(eastward) component of the Earth’s magnetic
field has the smallest intensity(±1 × 104nT ) compared to the other two components(X :
±3× 104nT ; Z : ±6× 104nT ). Therefore it is harder, to distinguish it from other effects or
from noise. Obviously, the variations of the scale factors have a strong relationship with the
local time of the CHAMP orbit. The signal of SS alternation emerges clearly in the scale
factor variations. Such synchronous variations indicate a correlation to temperature. The
most relevant temperature inside the satellite, which can affect the outputs of the FGM, is
the temperature of the CSC sensor coils.

Figure 4.2 shows the scale factors of the X and Z components and the temperature of
the CSC coils during 2006 and 2007. A strong correlation between temperature and scale
factors can be seen. Special attention is paid to the period when the temperature variation
curve of the CSC coils showed a unique double peaked structure. The variations of the scale
factors also exhibit such a structure. The figure below shows an example at the beginning
of the year 2006. We can clearly see that the variations of the scale factors exhibit a similar
pattern as the CSC temperature.

Why does the temperature effect still exist in the data even though they have been
corrected by the CSC temperature in data processing? There are maybe two possible reasons
for these result. One is that possibly the CSC temperature correction alone is not enough.
We know, not only the CSC temperature shows a double peaked variation, as well other
temperatures, for example, the ADC voltage reference temperature(see in Figure 4.4). The
influence of the temperature is, in most cases, so complicated that it is very hard to find a clear
correspondence between the scale factors and the temperatures of the different parts inside
the FGM instrument even in laboratory tests. The other possibility is that the correction of
the CSC coil temperature we have made is not so correct. For this case there are also two
possibilities. We can revisit our CSC coil temperature correction.
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Figure 4.2: Relation between the FGM sensor temperature and the scale factors X and Z components


lTx

lTy

lTz

 =


l0 − lT1x(Tcsc −T0)− lT2x(Tcsc −T0)2

l0 − lT1y(Tcsc −T0)− lT2y(Tcsc −T0)2

l0 − lT1z(Tcsc −T0)− lT2z(Tcsc −T0)2


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The equations show how the scale factors are corrected by the CSC temperature data. Here
are lT1x = 29.6ppm/K, lT1y = 30.37ppm/K, lT1z = 30.46ppm/K and the quadratic term is
lT2 = 4×10−8/K2 for all components. One possibility is that the parabolic correction model
may not be accurate to describe the influences of the temperature.

Figure 4.3: The temperature and scale factor plots show some thermal hysteresis.
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Figure 4.4: Blue: CSC feedback coil temperature; Red: ADC voltage reference temperature; Green:
Fluxgate sensor temperature; Magenta: Magnetometer ADC bank temperature

The thermal effects are usually complicated and sometimes show thermal hysteresis (see
in Figure 4.3). The other possibility is that the model itself is accurate enough, but the
coefficients may have changed due to the space conditions after the satellite was launched. If
this reason is supposed, we can do some small corrections on these three linear parameters
lT1x,y,z, to see whether the temperature effect reduces.

We made a test using slightly different coefficients lT1x,y,z, respectively, 28.5ppm/K,
29.2ppm/K, 29.3ppm/K(that means all coefficients are 1.1ppm/K smaller) to process the
FGM data. After that we obtain recalibrated results.

It can be seen in Figure 4.5 that for the new coefficients the scale factors of X and
Z components are becoming smoother at low temperature but on the hot days the scale
factor of the Z component has a negative correlation with the CSC temperature. This is not
significant for the X component. By comparison with the old coefficients, lT1x,y,z, the scale
factors of both X and Z components at low temperatures have stronger positive correlation
with the CSC temperature and also a little bit positive correlation at high CSC temperature.



72

This result points out that the thermal effects are really complicated and nonlinear and
show some thermal hysteresis. Both the correction model and the coefficients are not fully
accurate. But within the achievable range the new coefficients are more suitable than the old
ones. Note that a signal at 260.5D period comes out, and it should probably not be caused
by the temperature. We will come back to this point later.

Figure 4.5: Improvement of the scale factor
temperature dependence. The FGM sensor
temperature is shown as magenta curve; the
dashed and solid lines reflect the variation of
the scale factors after correction with inital and
new temperature coefficients, respectively.

To understand the medium-term (> 260.5D) behavior of the scale factors we can average
the scale factors after the recalibration over 260 days to eliminate the effects due to local
time. The logarithmic long-term time dependence was removed before the recalibration.
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Figure 4.6: Temporal evolution of the scale factors after removal of the logarithmic trend

We can see that at the beginning of the mission the scale factors deviate a little from
their logarithmic variation. This may be caused by the change of the environment conditions
inside the satellite, for example, humidity and barometric pressure. There is a clear deflection
between year 2004 and 2005. This probably illustrates that the applied logarithmic long-term
time dependency does not capture the detailed variations.

l0 = la + lb ln(MJD −MJD0)

lb may be influenced by some environmental factor. In addition, the Y and Z components
exhibit a small cycle per solar year variation, but the X component shows no such a phe-
nomenon. As far as X and Z components are concerned, it means a better temperature
correction of X component than Z component. We know that the Y component is less
precisely determined than the X and Z components. Our calibration model takes only 9
parameters into account. If there are any other unknown effects or inaccurate coefficients
or measurement noise, they will strongly influence the result of the calibration, especially of
the Y component. That means, there are some mixture of the error function fins and fsat or
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of the components. Due to this kind of cross-talk, the result of the recalibration may show
some dependence on the magnetic field strength itself.

4.1.2 The variation of the offsets

Based on our experience the offsets of the FGM show no strong long-term drift. So we choose
the long-term averages, Exo = 26.970nT , Eyo = 19.843nT , Ezo = 21.625nT as a standard for
correcting the FGM data. After we recalibrate the data, however, the derived offsets are not
only due to the FGM sensor but some mixture of the constant part of fins and fsat. Figure
4.7 shows the variation of the offsets during the years. The day to day variation of the offsets
looks more complicated. So we do some averaging and spectrum analysis. The offsets also
show a signal correlated with local time. The phase of it starts approximately at 18:00 LT,
as we can see from the Figure 4.9 where the data are smoothed by a 60-day moving box-car
filter.

Figure 4.7: Daily averages of the FGM offsets. Mean values are subtracted.

However, the local time has different influences on each component. From FFT analysis
we find that the X component opposed to the other two components shows no 130d spectral
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peak and all components exhibit large peaks at 260d. The 130d period is much related
to the period of the temperature variation. Furthermore, the Z component shows a signal
with 365d period. For this component we also perform an averaging over 260 days. The
period of one solar year can be seen well in the Z component. Peaks exist at the middle
of the years. Obviously different to the X and Y component, a −0.00024nT/d drift of the
Z component is found. In the mathematical model of calibration the offsets are interpreted
as a characteristic of the Fluxgate magnetometer. But practically, it can also be caused by
the spacecraft magnetic field at the location of the FGM. These spacecraft fields become
part of the offsets which are obtained in the scalar calibration. Therefore, there are three
possible reason for the periodical annual signal, the cross-talk caused by unknown effects or
the inaccurate instrument model, the variation of the FGM intrinsic offsets caused by the
external environment(e.g. excentricity of Earth’s orbit around the sun), or the magnetic
field variation of the spacecraft caused by the external environment. However, the X and
Y components show no such periodical signal, which indicates that, the first and the third
suggestions are more reasonable.

Figure 4.8: Spectra of the FGM offset variations
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Figure 4.9: Daily average of the FGM offsets, 60-day smoothed. Vertical lines mark certain local
times of the orbit plane

Figure 4.10: Long-term variation of the FGM offsets. Signals have been filtered by a 260d box-car.

Some evidence, we have found, suggests that the offsets are effected by the time standard
on CHAMP. We know that every Wednesday the FGM instrument is reset in order to syn-



77

chronize it with the GPS time standard. From Figure 4.11 we reveal, on some Wednesdays
the offsets of the X and Z components show a discontinuous variation. We looked into the
FGM and OVM data of the two days, for example, MJD2516 and MJD2517. Visibly, there
is a leap of the difference 4B between the days, and the amplitude of 4B on the two days
is clearly different (see Figure 4.12).

Figure 4.11: FGM offset shifts associated with the weekly reset of the instrument. Vertical magenta
lines mark some Wednesdays.
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Figure 4.12: Sudden change of the ∆B amplitude at the transition from Tuesday to Wednesday

We find also the effect that the offsets have some relation to the temperature. However,
we have found more CSC temperature related cases of Z component than X component.
More puzzling is that, the offset of Z component shows sometime positive and sometime neg-
ative correlation with the temperature. For values below 13 °C it is negative and for higher
temperatures we find positive correlations.
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Figure 4.13: Temperature dependent variation of the FGM offsets

Figure 4.14: Temperature dependent variation of the FGM offsets
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4.1.3 The variation of the misalignment angles

Similar to the offsets, the misalignment angles show no long-term drift. We choose for them
fixed values, xy: 90.02613, xz: 90.05986, yz: 90.03873, as determined in ground calibrations
before launch. After the recalibration we can also see clear signals with 260 days period.
The apparent variations of the three components have about the same phase and amplitude,
which indicates that the changes of the three angles are homogenous. The peaks appear
always at noon. This is possibly due to different orbit local times. The satellite is subject
to the different conditions of sunlight, which causes the different distribution of thermal
conduction inside the satellite. Consequently, the different thermal expansion may lead to
the variation of the sensor misalignment angles with the local time. However, if we explain
the variation of the misalignment in such way, the repetition period of this variation should
be 130D but not 260.5D, because it depends on the environment temperature. As we have
mentioned, the environmental conditions of the satellite in same phase of SS are the same.
Particularly, the misalignment angles are technically very stable and should not change so
much. Hereby, another possibility is that an orbit dependent change of the spacecraft field
is misinterpreted by the scalar calibration as a variation of misalignment angles. Namely, a
time signal of fsat is mismatched by the signal e.g. BxBz

|B| of fins. But what is this signal? The
question will be answered in the last part of the chapter.

Figure 4.15: Apparent variations of the FGM
sensor misalignment angles. The vertical
lines indicate an ascending orbit at 12:00 LT
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4.2 Cross-talk problem of calibration

In this section two cases of cross-talk that we have found in CHAMP data processing are
illustrated, which indicates that cross-talk cannot be avoided in the absence of additional
information about scalar error 4B = |Efgm| − |Bovm|.

4.2.1 Cross-talk between OVM bias and FGM scale factors cali-
bration

So far we believe that there is not any bias in the measurements of the OVM. In order to
minimize the residuals between OVM and FGM readings after scalar calibration, we had
induced a 0.4 nT bias to the OVM readings in the standard processing.

Bovm = B
′

ovm +4B, 4B = 0.4nT

As a consequence we found this causes a deviation of the three scale factors as the result of
the scalar calibration. We review our scalar calibration equation with respect to this effect.

B2
ovm = P •M +Q

P =
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From this equation we know that the steady component of B2

ovm is mostly compensated by
the terms E2

x, E2
y , E2

z which have a large constant parts. Now the equation is rewritten as,
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Figure 4.16: Influence of the introduced
OVM bias on the FGM scale factors: Solid
line (scale factors as derived from standard
processing), dashed line(scale factors after
removal of OVM bias). Thin magenta line
(logarithmic fit to the temporal change of
the scale factors). The inserts how the de-
tails around the introduction of the OVM

bias(at MJD1450) solid: applied scale factor (l0 =la+lbln(MJD-MJD0))
dash: expected scale factor without OVM bias correction
magenta: modeling by a logarithm function
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(Bovm +4B)2 ≈ B2
ovm + 24BBovm

≈ P •M +Q

This additional term on the left side, 24BBovm, which has a large constant parts too, will
be mainly compensated by a mismatch of the scale factors. In Figure 4.16 we see clearly
an abrupt change where we have began to induce 0.4 nT bias correction at MJD 1450. In
fact, the conclusion we have drawn in the Chapter 3, the drift of 4B(Bfgm −Bovm) shows a
strong correlation with the scale factors, has hinted at this cross-talk problem. This means,
the scalar calibration cannot distinguish a synchronous change of three scale factors from a
direct bias change of the OVM readings.

4.2.2 Cross-talk between FGM/OVM time lag and FGM misalign-
ment angles

Another strong cross-talk can occur in the calibration of misalignment angles. We see in Fig-
ure 4.17 that the variations of the product BxBz are very similar to the signal of 4Bovm/4t.
The correlation coefficients is approximately 0.8868. That means if they both have influences
on the measurement we cannot use the scalar calibration to isolate them uniquely.

(Bovm + ts
4Bovm

4t
)2 ≈ B2

ovm + 2ts
4Bovm

4t
Bovm

≈ P •M +Q

From this equation, we know that if an asynchronism between the FGM and OVM measure-
ments occurs, due to the similarity of the two terms, the time shift ts will be compensated
by the term ExEz via the parameter p5. We can calculate the cross-talk quantitatively,
4ts/4k3 ≈ (4Bovm4t Bovm)/ExEz ≈ 0.002, that means a 10ms time lag between the measure-
ments of FGM and OVM will be matched by an extra −4.1′′ misalignment angle change
between the X and Z axes of FGM.
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Figure 4.17: Equivalence of time shift between FGM and OVM with a misalignment angle between
the X and Z axes

Figure 4.18: Apparent variation of the FGM sensor misalignment angles. The obvious deflection of
the XZ angles (red curve) is a misinterpretation of a timing difference between FGM and OVM by

12 ms
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Figure 4.19: Response of the ∆B signal to a time lag of 12 ms between FGM and OVM measure-
ments. At the time of the green curve deflection (lower left frame) the time error occurs and ∆B

becomes larger. After reset of the FGM (lower right frame) the ∆B signal is restored.

An example from 2008 can disclosure the relationship between the misalignment angle
calibration and the time error of the instruments. Notice in Figure 4.18 that from MJD
3164 to MJD 3167 the XZ misalignment angle of the scalar calibration shows some kind
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of extraordinary values. If we look into the FGM and OVM data, we find that these are
not caused by a variation of the XZ misalignment angle but a certain time error in the
timing of the FGM. We can see in Figure 4.19 that on MJD3164 the pattern of 4B shows an
abrupt change when the GPS-controlled frequency of the OVM gives a error signal. Although
the error flag disappeared, the strange pattern continues to the MJD3168. MJD3168 is a
Wednesday. This means the disturbed GPS signal has also caused a timing error of FGM.
After the FGM was synchronized to the external GPS signal by an instrument reset the
pattern of 4B was restored. But this kind of time error will be misinterpreted as a XZ
misalignment angle by the scalar calibration.

4.3 Orbit synchronous disturbing magnetic fields from
satellite

So far we have analyzed the recalibrated parameters and the cross-talk problem. The results
show that the 9-parameter scalar calibration is somewhat unsuitable to model the errors of
the magnetometers. Especially, the variation of the misalignment angles implicate that there
must be some mixture of the error function fins and fsat in the calibrations. In order to find
fsat, we review our scalar error equation,

4B = |Efgm| − |Bovm|

= Bx

|B|
(finsx + fsatx) + By

|B|
(finsy + fsaty) + Bz

|B|
(finsz + fsatz) + fovm

Because the OVM shows technically little error, and the Y component is always much smaller
than the other two, we simplify the equation as follows,

4B = |Efgm| − |Bovm|

= Bx

|B|
(finsx + fsatx) + Bz

|B|
(finsz + fsatz) (4.1)
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Function fins gives the error of the FGM sensor itself and represents its characteristic. So
fins is a function of the measured signal and the characteristic parameters, p.

fins = fins(Bx, By, Bz, p)

Parameters p are constant or influenced by the environmental condition. Function fsat is
more probably a function of time t in orbit or SD and it represents the disturbance from the
satellite body.

fsat = fsat(t− t0)

However, our measurements of the magntometer (Bx, By, Bz) are not independent of the
time t in orbit. The measurements are taken along the orbit of the satellite. The weight of
the component Bx, Bz

|B| in Eq.(4.1) can be a function of (Bx, By, Bz) as well as of t in orbit.
However, if fsat is absent , the 4B is only a function of (Bx, By, Bz, p). We can take an
example to see whether there is fsat or not. We choose the data of MJD2852(LC, 10:54)
and MJD2979(LC, 23:10) which both are in the cold SS and have average CSC temperature
3.0oC, so p should be the same. However the misalignment angles of recalibration are totally
different (0.000534o for MJD2852 and -0.000649o for MJD2979) and located in the variation
curve at maximum section and minimum section, respectively.

Figure 4.20: Estimated function ∆B, Black cross indicate the locations of measurement points.
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We can see in Figure 4.20, the 4B of two days are very different. This means, we need an
extra fsat to compensate 4B. And this fsat(t− t0) is misinterpreted as misalignment angles
in the recalibration. Another hint is that, if we draw a plot of 4B versus Bz

|B| , we can see
clearly two straight lines. Here we have used the conclusion of chapter3, namely, the Z offset
plays important role in the disagreement between OVM and FGM, although it is not so rigid.

Figure 4.21: Dependence of ∆B on various parameters. upper left panel: the slope of red is -0.47nT
and of green is 0.18nT; lower left: At different t, fsat shows different values; upper right: the error

mostly occur where Bx < 0; lower right: where Bx < 0 is also in the daytime

It seems function fsat(t− t0) has a simple approximate form,

fsat(t− t0) =



Osat_d , t ∈ daytime of SD

Osat_n , t ∈ nighttime of SD
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Where Osat_d and Osat_n are constant. Therefore function fsat(τ), τ = t − t0 is an even
function and a quasi square wave signal due to the day-time and night-time alternation,
which duty cycle is,

D = τ

T

where
t is the duration of the daytime in SD;
T is the period of the satellite orbit(SD).

Figure 4.22: Black: Battery discharge current indicates the daytime and nighttime; Magenta: solu-
tion of fsatx; Cyan: solution of fsatz; Red on the left panel: the measured avg. scalar error; Green:
the simulated scalar error with the solution; right panel: error propagation term of the components
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If we simply use the group of cos functions to simulate fsat(t− t0) = a0 +∑N
k=1 ak cos[k 2π

T
(t−

t0)], we get result showed in the left panel of Figure 4.22. We can see that the solutions of fsatx,
fsatzshow the same variation due to the day-night alternation. Although we have neglected
the fsaty, we can imagine, it will show a similar variation. The right panel of Figure 4.22
shows the corresponding error propagation terms Bx

|B| ,
Bz
|B| . Here we take them as the function

of t. Intuitively, it explains why around local time 24:00 and 12:00 the misalignment angles
show respectively minima and maxima. In cold SS D = τ

T
≈ 0.4, the daytime is shortest.

The dynamic part of the disturbance signal fsat shows maximal similarity to the signal
Bx
|B| with positive and negative correlation. Accordingly, in the 9-parameter recalibration,
e.g. the error Bz

|B|fsatz is strongly compensated by the term BxBz
|B| with positive and negative

parameters which represents the error from misalignment angles. Obviously, when in hot SS,
D = τ

T
= 1, the disturbance signal fsatz is constant and compensated by BxBz

|B| least of all.
Such cross-talk causes the regular 260.5D periodical signal with maxima at 12:00 and 18:00
in the variation of misalignment angles and offsets, respectively, which are derived in the
9-parameter recalibration. Due to the same reason, e.g. Bx

|B|fsatx is prone to be compensated
by BxBx

|B| which represents an error in the scale factor of the X component. In section 4.1.1
we mentioned a 260.5D period of the scale factor. Here, we give the answer. However, both
error models cannot separate the constant parts of the fins and fsatz in the absence of extra
information. Actually, we can see the example in Figure 4.23, the offsets of the 9-parameter
recalibration makes an average estimate of fins+fsatz. Only the dynamic part of the solution
fsatz is certain in fsatz.

Figure 4.23: Diurnal variation of
∆B and disturbances from the X,
Z component. Magenta: solution of
fsatx; Cyan: solution of fsatz; Red:
measured avg. scalar error; Green:
the simulated scalar error with the
solution; the offset of the component
X and Z from the 9-parameter recal-
ibration is respectively 0.131nT and

0.477nT
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Figure 4.24: Two examples of ∆B, FGM data correted for the dynamic part of fsat

Physically and technically, this dynamic part of fsat is easy to explain. The daytime and
nighttime alternation results in the switch of the power supply system, from solar cell to
battery supply or from battery to solar cell supply, which leads to the different disturbance
magnetic field from the current circuits inside of the satellite in the daytime and nighttime.

If we reevaluate Eq.(3.6) in section 3.5 with this result,

std2(4B) = 0.6655Z2
0 + 0.0390nT 2

Here Z0 should be the constant parts of the fins and fsatz. As regard to the term 0.0390nT 2(std ≈
0.2nT ), the dynamic part of fsat contributes most of it. That means, if Z0 and fsat correction
are fully achieved, the standard deviation of scalar error 4B remains around 0.1nT
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Chapter 5

Conclusion

The questions raised about the calibration processing of CHAMP magnetometers at the
beginning of this work can be answered now. They are, for example: How is the standard
calibration processing performed, why do we need 15-day scalar calibration, why don’t we
exercise scalar calibration everyday to achieve better data, why do the calibration parameters
show some variation related to local time of the orbit, which calibration parameters play
important roles in the data quality and how to quantitatively describe this relationship,
finally how much is the remaining uncertain in FGM data?

We know that the OVM reading is our standard for calibration of the FGM reading. The
disagreement between the OVM and the FGM readings indicates how much uncertainty is in
the FGM readings. However, this disagreement shows a temporal variation, which discloses
that the calibration parameters have a time dependence. For this reason, the regular scalar
calibration is used to update the calibration parameters to remove this time dependence.
From all the calibration parameters, the long-term behavior of the scale factors of the FGM
plays a very important role. Consequently, we have found a right model (logarithmic evolution
for scale factors, constant for other parameters) to describe these long-term behaviors. As a
result, the disagreement between the OVM and the FGM readings during the whole mission
can be limited to ±1nT without scalar calibration. This demonstrates, our magnetometers
on CHAMP exhibit a very good stability.

The scalar calibration is based on an error model of a simple linear vector magnetometer.
Although, we can do daily scalar calibration, it only gives numerically the calibration param-
eters but doesn’t provide physical explanations for the variations. We even can extend this
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error model, as mentioned first in chapter 3, we take account of, for example, temperature,
non-linearity, timing error etc. On account of more frequent and extended scalar calibration
we can definitely get very small differences between the FGM and OVM data. The scalar
calibration is robust and rough, but fails if there are cross-talk problems or short periodic
(<1day) error. However, we extend the error model with the time-variation function and
fix the error source on the power supply system of the satellite. The daytime and nighttime
alternation results in the switch of the power supply system, from solar cell to battery or
from battery to solar cell, which leads to the different disturbance fields of the currents inside
of the satellite in the daytime and nighttime. Such disturbance fields are mismatched in the
9-parameter calibration, which brings the false local time related variation of the calibration
parameters.

As for the CHAMP case, we have found, the Z component offset of the FGM plays a very
important role in the data quality. Although many effects have influence on the Z offset and it
is difficult to get a forward model to derive the Z offset, the relationship between Z offset and
the standard deviation of the disagreement 4B is established in section 3.5. This confirms
that we can neglect the other effects or cross-talk problem to estimate the right daily Z offset
correction from the standard deviation of4B. If we have done a daily Z offset correction, the
4B is limited to ~±0.5nT (equivalent to std ~0.2nT for the CHAMP case). This expresses
that all the uncertainty or the errors of the FGM vector data are smaller than ~0.5nT after
our reliable calibration. Furthermore, if the disturbance fields of the satellite body are fully
corrected, the standard deviation of the scalar error, 4B, remains about 0.1nT .

Finally, some thesis-induced questions and some suggestions for further satellite magnetic
field observation projects are presented. The main error source of magnetic field measurement
on CHAMP are temperatures, GPS time errors and the disturbance field of the satellite body,
especially, the power supply system. Therefore, a more rational symmetric configuration
design is desired to keep the FGM from the disturbance field of the satellite body or to
decrease the disturbance field to a lower level. More stricter laboratory tests to evaluate the
disturbance field of a spacecraft and thermal calibration to examine the thermal coefficients
of the fluxgate sensors are worth the effort, as well for the project in the future. For the on
board scalar calibration, a highly precise (<1ms) time synchronization system is needed for
the combination of FGM and OVM measurement.
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