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Abstract
Different systems for habitual versus goal-directed control are thought to underlie human

decision-making. Working memory is known to shape these decision-making systems and

their interplay, and is known to support goal-directed decision making even under stress.

Here, we investigated if and how decision systems are differentially influenced by breaks

filled with diverse everyday life activities known to modulate working memory performance.

We used a within-subject design where young adults listened to music and played a video

game during breaks interleaved with trials of a sequential two-step Markov decision task,

designed to assess habitual as well as goal-directed decision making. Based on a neuro-

computational model of task performance, we observed that for individuals with a rather lim-

ited working memory capacity video gaming as compared to music reduced reliance on the

goal-directed decision-making system, while a rather large working memory capacity pre-

vented such a decline. Our findings suggest differential effects of everyday activities on key

decision-making processes.

Introduction
Decision making is an integral part of everyday life. People have to make choices within diverse
decision-making environments. It has been found that taking a break benefits cognitive perfor-
mance [1–5], possibly by providing a favorable condition for offline replay by minimizing the
incoming interference information [6]. However, the effects of taking a break during the deci-
sion-making process remain to date to be explored.

Decision making is influenced by two systems: the habitual and the goal-directed system.
These two systems can also be described computationally as model-free versus model-based, or
by the terms retrospective versus prospective [7]. We recently observed significant correlations
between goal-directed and model-based decision making, supporting the notion that these
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concepts address similar behavioral decision-making systems [8]. When we rely on the habit-
ual (model-free) system, we simply repeat the actions that lead to a gain in the past. When
using the goal-directed (model-based) system, choices are guided by the likelihood of affective
outcomes that are predicted by a model of the environment [7]. Computational models have
described habitual behavior as depending on model-free retrospective reinforcement, and goal-
directed behavior to rely on model-based prospective planning [9, 10]. Adaptive behavior
depends on the ability to flexibly regulate the respective contributions of the habitual and goal-
directed systems [10].

A number of factors have been discovered to interact with and shape these two systems,
with cognitive abilities such as working memory found to be one of the core factors [7, 9, 11–
13]. Indeed, dual-task conditions [14], electromagnetic stimulation (TMS) to the dorsolateral
prefrontal cortext (dlPFC) [15], as well as acute [14] or chronic [16] stress are thought to
impair executive resources underlying working memory and were found to impair goal-
directed decision-making, inducing a relative shift towards habitual behavioral control. Experi-
mental manipulations are often found to interact with baseline working memory capacity, such
that (a) goal-directed reasoning is particularly impaired in individuals with a rather limited
working memory capacity, and (b) individual differences in baseline working memory capacity
predict reliance on goal-directed decision-making under conditions where working memory is
impaired [14, 15].

Other cognitive abilities are also found to moderate the balance between goal-directed ver-
sus habitual choice systems. Importantly, goal-directed control increases with higher levels of
processing speed, particularly in individuals with a large working memory capacity [13]. More-
over, an inverted U-shaped curve was found for the effect of processing speed on habitual
choice, indicating that habitual choice is strongest at medium levels of processing speed [13].
Likewise, executive resources and verbal knowledge [17] seem to play important roles in
reward-based decision making.

We hypothesized that other potential factors, such as different activities during a break,
might shape the balance between habitual and goal-directed decision-making systems. We
chose two common break activities: listening to music and playing a video game. Music can act
as a catalyst for cognitive abilities: it has been demonstrated that musical education can
enhance working memory [18, 19]. Rauscher found that listening to a Mozart sonata increases
subsequent spatial reasoning ability [20]. However, the effect may rather depend upon mood,
arousal, or enjoyment [21] and little is known about the specific aspects of music that contrib-
ute to the transfer effects on learning.

Playing video games can result in a wide range of behavioral benefits, including enhance-
ment of task performance, spatial cognition, processing speed, task switching and level of rea-
soning in decision making [22]. At the same time, video games have been associated with a
variety of negative outcomes. For example, the sound of a video game could disturb the players’
concentration on learning [22, 23] and induce physiological stress while gaming [24]. So far,
research has rarely explored the effects of video games interleaved with different types of learn-
ing, though a few studies have already found an effect on memory performance [1, 25].
Recently, we [26] found that playing video games reduces subsequent working memory perfor-
mance over time, likely because gaming during breaks prevents recovery of depleted executive
resources, eliciting failures in sustained attention and increasing “mind wandering”.

To date, effects of different break activities on a decision-making task have not been investi-
gated. Given their known influence on working memory, we predicted that the type of activity
engaged in during breaks might significantly affect decision-making systems and shape subse-
quent performance. Specifically, we assumed that listening to music might enhance goal-
directed decision making. Based on our previous finding that video gaming impairs working
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memory [26], we expected gaming to reduce goal-directed decision making. Moreover, we
aimed to explore whether this effect is particularly prominent in individuals with a low working
memory capacity, suggesting an influence of baseline working memory capacity on individual
differences in goal-directed control. We used a within-subjects design to have subjects perform
a sequential two-step Markov decision task [10, 27], which involves decision preferences that
change on a trial-by-trial basis to access these two decision-making systems.

Methods

Subjects
Thirty three right-handed healthy native German subjects (17 female; age range: 19–32,
Mean = 24.6, SD = 3.5) were recruited in Berlin. Subjects were screened for major psychiatric
disorders (SCID-I screening questionnaire). Basic information was gathered: social and demo-
graphical data, music listening habits (time spent on listening to music per week in the past 12
months, types of music listened to) and video gaming experience (time spent on playing games
per week in the past 12 months, types of games played). Subjects were given detailed informa-
tion and provided fully informed written consent. The study was approved by the Ethics Com-
mittee of the Charité –Universitätsmedizin Berlin and was performed in accordance with the
ethical standards laid down in the 1964 Declaration of Helsinki. The target sample size was
estimated on the basis of our previous study on cognitive abilities in decision-making [13]. No
subjects’ data was excluded from analysis.

Neuropsychological battery
Subjects underwent neuropsychological testing including verbal knowledge [28], fluid intelli-
gence cognitive speed [29] and memory and executive functioning [29–32] (Table 1).

Table 1. Socio-demographic information and results from a neuropsychological battery for the 33
healthy subjects who participated in experiment.

N = 33

Age (years) 24.64 (0.61 a)

Education (years) 16.29 (0.44)

Fluid Intelligence Cognitive Speed (DSST, numbers) 86.67 (1.67)

Verbal Knowledge (MWT-B, numbers) 27.36 (0.63)

Verbal Memory (wordlist, numbers) 9.12 (0.19)

Verbal Working Memory (DS, numbers) 7.39 (0.31)

Semantic Verbal Fluency (SVF, numbers) 29.42 (1.04)

Executive Functioning (TMT-A, seconds) 27.61 (1.52)

Executive Functioning (TMT-B, seconds) 55.63 (3.15)

aStandard error of the mean (SEM).

Note: Cognitive Speed was assessed by the Digit Symbol Substitution Test (DSST) from the WAIS-R [29];

Verbal IQ was assessed by the German Vocabulary Test (Mehrfachwahl-Wortschatz-Intelligenztest,

MWT-B [28]); Verbal memory was assessed by Wordlist from the Consortium to Establish a Registry for

Alzheimer's Disease (CERAD [30]); Verbal Working Memory was assessed by the Digit Span (DS)

Backwards Test [29]; One-minute Semantic Verbal Fluency (SVF) was tested for the category “animals”

(Verbale Flüssigkeit Tiere [31]); Executive Functioning was assessed by the Trail Making Test (TMT) A and

B [32].

doi:10.1371/journal.pone.0150165.t001
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Break activity scenarios
To evaluate the effects of different break activities on the habitual and goal-directed decision-
making systems, subjects were instructed to engage three times (i.e. once before and twice dur-
ing the main task) in “listening to music” or “playing a video game”, for 8:30 min per break.
For the “listening to music” condition, subjects were instructed to listen to Mozarts “Sonata for
Two Pianos in D Major, KV. 448—Allegro con spirito” over headphones; for the “playing a
video game” condition, subjects were instructed to play the “Angry Birds” video game (www.
angrybirds.com) on a laptop computer. We chose Mozarts Sonata piece because it has been a
major musical piece in empirical investigations of the effects of music on cognitive functions
and has been used in a large range of studies [20, 21, 33]. We chose the popular mobile game
Angry Birds game because playing Angry Birds utilizes concepts of qualitative spatial represen-
tation, utility function and decision making under uncertainty [33, 34].

Procedure
The sequential two-step Markov decision task drew on onWunderlich, Smittenaar, & Dolan
[27] to assess the relative degree of habitual vs. goal-directed decision making when this deci-
sion making is preceded and interrupted by breaks of either listening to music or playing a
video game. The version of the task was identical to on Wunderlich, Smittenaar, & Dolan [27]
except for different stimulus images (see Fig 1). The task consisted of two subsequent steps,
each demanding a choice between two stimuli. During the first step (step 1), two stimuli were
presented and subjects were requested to choose one. This choice probabilistically determined
(i.e. a common (70%) or a rare (30%) transition) which pair of stimuli was presented at the sec-
ond step. During the second step (step 2), subjects were presented with another pair of stimuli
and again requested to choose one. This second choice was either rewarded with money (20
cents) or nothing. The reward signal during the task was the amount of 20 cents for each trial.
To enhance subjects’motivation, subjects were also advised that the top three performers
could also expect to be rewarded with an unspecified, but worthy and pleasant surprise at the
end of the experiment. The surprise was valuable gift boxes of chocolates.

Prior to the experiment, subjects were given very detailed information about the structure of
the task; they were informed that the reward probabilities in step 2 would change (and were
shown exemplary sample random walks), but those controlling the transitions from step 1 to
step 2 would remain fixed and be primarily associated with one or the other of the second-step
states.

Subjects underwent 50 practice trials with a separate set of stimuli before starting the main
task. Immediately after practice, subjects engaged in an 8:30 min break of either gaming or lis-
tening to music. Subsequently, they started the main task, which consisted of 201 trials with
two breaks (of listening to music or video gaming) after trial 67 and 134. A repeated measures
design with within-subjects factors of two break activities (music vs. gaming) and two versions
of two-step task was applied and the order was counterbalanced across subjects.

Immediately after every task performance, we asked subjects to rate the task difficulty and
their ability to concentrate on the task, as well as their enjoyment of the break activity and the
extent to which they thought about the task during the break by using visual analogue scales
(VAS) [35].

Analysis
We used the stats package for data analysis and ggplot2 package (Wickham, Springer New
York, USA) for graphics in the R system for statistical computing (version 3.1.0; www.r-project.
org).
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Statistical tests of the VAS questionnaires were performed using SPSS Statistics Version 18
(SPSS Inc., Chicago, IL, USA). Differences were considered significant at p< .05 and highly
significant at p< .001. We used paired t-test for pairwise comparisons of the respective game
and music conditions (two-tailed p values were assumed).

Computational modelling
We used the computational dual-control model by Daw and co-workers [10] (for a detailed
description of our implementation, see Schad and co-workers [13]) and adapted it to analyse
the observed data: following Otto and co-workers [14], we parameterized the model to assess
separate weights for the habitual versus the goal-directed system (instead of assessing their rela-
tive balance as in [10, 13]). The model suggests reward-based choice to originate from two dis-
tinct systems of model-free versus model-based reinforcement learning (RL), thought to reflect
habitual versus goal-directed learning. Model-free RL is implemented as SARSA (λ) temporal
difference learning [36] and model-based RL implements Bellman’s equation [37], assuming
that expected maximal outcomes at the second stage are rationally weighted by their (transition)

Fig 1. Two-step decision task. (A) Trial structure. Each trial consisted of choices at two steps. Step 1 involved the first choice between two abstract gray
stimuli (Chinese characters, not known to German subjects). The chosen stimulus was framed with red color in the center-top of the screen for 1.5s.
Subsequently, subjects were presented with another stimulus pair in step 2. The second choice was rewarded with money (20 cents) or nothing. (B) The
transitions from step 1 to step 2 remained fixed, with 70% and 30% of all trials as respectively common and rare transitions. The reward probabilities for each
stimulus in step 2 changed independently between 25% and 75%, based on Gaussian random walks with reflecting boundaries [10]. Win probabilities varied,
therefore, as a function of the trial number.

doi:10.1371/journal.pone.0150165.g001
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probabilities, which are taken to be known and fixed (cf. Daw and co-workers [10]). Throughout
the task, both algorithms thus learn expected (Q-) action values.

Both algorithms operate in a state space with a single starting state at first-stage. From this
first-stage state, two possible actions induce random transitions (with fixed probabilities .3/.7)
to one out of two second-stage states. Both second-stage states each allow two possible actions,
which deterministically lead to one of four distinct final states, where no further actions are
possible, but reward outcomes are delivered. Win-trials are coded via presentation of a reward
value of one, and in no-win trials a reward of zero is obtained. For choice, action (Q-) values
from both systems are combined according to each system’s estimated weight, and fed through
a softmax-function to obtain action probabilities. For details on the original model see Daw
and co-workers [10] and Schad and co-workers [13].

The model contains seven free parameters: (i+ii) α, learning rate for the first (α1) and the
second (α2) step; (iii) λ, the reinforcement eligibility parameter, determines the relative degree
of second-step reward prediction errors to update first-step model-free (habitual) values; (iv)
β2 the inverse temperature parameter controls how deterministic choices are at the second
step; (v+vi) separate weights for the model-free and the model-based system reflect contribu-
tions of habitual (βHB) versus goal-directed (βGD) decision-systems to choice; (vii) p, first-step
choice perseveration or stickiness.

In the present study, subjects performed the two-step task twice and breaks filled with either
music or gaming were interleaved with each task performance. In the computational modeling,
we estimated the parameter values of each subject for each of these two conditions separately.
For bounded parameter estimation and due to the normal distribution assumption in statistical
testing, we transformed bounded model parameters to an unbounded scale via a logistic trans-
formation [x’ = log(x/(1-x))] for parameters α and λ, and via an exponential transformation [x’
= exp(x)] for parameters β.

We estimated individual model parameters via a Bayesian fitting procedure. Based on a
rather uninformative broad prior distribution (uncorrelated normal distributions;M = 0;
SD = 100), we obtained maximum a posteriori (MAP) estimates for each individual subject and
each session of two-step performance, assuming the same prior for gaming and music. For esti-
mating individual MAP parameters, we performed unconstrained iterative optimization using
the fminunc function in Matlab. Repeated estimation runs with random starting values (nor-
mally distributed;M = 0; SD = 0.1) yielded similar group-level results, such that significant and
marginal results were either significant or marginal in each of six independent estimation runs.
In an additional confirmatory analysis, we estimated the (uncorrelated) prior distribution
using one step of Expectation Maximization (EM) [12, 13], treating two sessions of 2-step task
performance per subject as independent. Individual MAP estimates based on this prior yielded
a pattern of non-/significant results that was similar to the one reported below for the described
Bayesian analysis.

Statistical testing
We used linear mixed-effects models as implemented in the lme4 package [38] in the R system
for statistical computing (www.r-project.org) in order to regress individual MAP parameter
estimates on the fixed effects predictor break condition (music versus gaming) and on random
subject intercepts. We interpreted differences in model parameters between experimental con-
ditions as evidence that the experimental manipulation affected decision-making during task
performance in a way that can be understood as a change in this specific decision parameter
(for a similar approach see e.g., Otto and co-workers [14, 39]; Smittenaar and co-workers [15];
Schad and co-workers [13]). As an alternative possibility, experimental conditions may change
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the structure of the decision-process, that is, the computational model generating the data for
each subject [10, 40], which should be tested in future research.

In a second and more explorative analysis step we tested the hypothesis based on previous
research [14, 15, 26] that break effects may impair model-based control in individuals with a
low baseline working memory capacity, but that a high working memory capacity may protect
individuals from gaming-related decline [14]. To this end, we added the fixed-effect interaction
between break activity (music versus gaming) and Digit Span as a fixed-effect. Digit Span
scores were z-transformed prior to analysis to yield standardized regression coefficients. To
assess break-effects for individuals with a large versus small working memory capacity, we
used the standard regression technique [41] of re-centering the (z-standardized) Digit Span
score variable (as an indicator of working memory capacity) to values of one standard devia-
tion above or below its mean for this analysis. Moreover, as certain cognitive abilities are also
known to influence the goal-directed decision-system [13], we controlled for this influence by
adding measures for working memory (Digit Span), processing speed (DSST and TMT-A),
and verbal knowledge (MWT) as control variables to the fixed-effects predictors.

Subsequently, we performed exploratory tests for the corresponding interactions of break
effects with the other cognitive ability scores. Finally, we tested the effect of break activity
(music versus gaming) on the other model parameters, Bonferroni-correcting for the multiple
(i.e., six) explorative statistical tests.

Throughout the analyses, we investigated directed hypotheses using one-tailed testing.
Previous evidence suggests that factors like stress [14] or electromagnetic stimulation

(TMS) to the dlPFC [15] reduce goal-directed control only in individuals with low working
memory, and thus enhance an influence of individual differences in working memory on goal-
directed control. Accordingly, we here expected that playing computer games during breaks
(but not listening to music) may may impair goal-directed control only among individuals
with a low working memory capacity, such that individual differences in working memory
would influence the weight of the goal-directed decision-system after gaming.

Results
Social demographic information and a neuropsychological battery of the sample are presented
in Table 1. Our data on music listening habits and video gaming experience showed that sub-
jects spent on average 10.5 hours per week on listening to music, and 3.4 hours on gaming, t
(32) = -4.36, p< .001. There were four frequent gamers according to the definition by [42] and
no professional musicians among the subjects. There was no significant difference in the VAS
ratings of the difficulty of two task versions, t(32) = .46, p = .651, subjects’ ability to concentrate
on the task after gaming and listening to music, t(32) = .27, p = .793, and the extent to which
they thought about the task during the breaks, t(31) = -.56, p = .581. Subjects reported that on
average they enjoyed gaming 21% more than listening to music, t(31) = 3.89, p< .001.

We estimated individual maximum a posteriori (MAP) model parameters and computed
summary statistics for these estimates, which are presented in Table 2. The plot of estimated
differences in model parameter as a function of working memory capacity (Digit Span score)
between the break conditions gaming versus music are shown in Fig 2.

First, we tested whether gaming reduces the ω parameter overall, but found no significant
effect (p = .14). Next, we tested the hypothesis that gaming would impair goal-directed decision-
making in individuals with a small working memory, and that a large working memory would
prevent such decline decline [14, 26]. Consistent with this hypothesis, we found that gaming
compared to music reduced the βGD parameter in individuals with a small Digit Span score (b =
-0.41, SE = 0.22, df = 31, t = -1.87, p = .04), but did not affect goal-directed control in individuals
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with a large Digit Span score (p = .76; for the interaction: b = 0.24, SE = 0.16, df = 31, t = 1.53, p
= .07). Likewise, we investigated the hypothesis that a small working memory capacity would be
associated with reduced model-based control after gaming, but not after music [15, 26]. Consis-
tent with this expectation, we found that an increase of the model-based weight (βGD) with Digit
Span score was not significant overall (b = 0.23, p = 0.16) or after music (b = 0.11, p = .33), but
was marginally reliable after gaming (b = 0.35, SE = 0.24, df = 35, t = 1.45, p = .08).

Explorative analyses further suggested that the βGD-parameter was increased in individuals
with a high DSST score (b = 0.66, SE = 0.22, df = 28, t = 3.0, p = .003), replicating previous find-
ings that high processing speed enhances goal-directed decision-making [13]. The influence of
our second measure of processing speed (TMT-A: p = .18) and of verbal knowledge (MWT, p
= .26) were not significant in the present sample. We also explored whether the break effect
(difference between gaming and music) interacted with one of these other cognitive abilities,
but found no significant effect (p-values> .30).

Last, we explored whether break activities influenced one of the other six model parameters.
We found only one significant effect of break activity on the repetition parameter (b = -0.16,
SE = 0.07, df = 32, t = -2.3, p = .03), indicating that gaming reduced choice stickiness, but this
effect did not survive Bonferroni correction for multiple (i.e., six) comparisons (p = .16).

Discussion
We studied how habitual and goal-directed decision-making systems are affected by different
break activities (i.e., listening to music and playing a video game). We found that gaming

Table 2. Computational model parameters: maximum a posteriori (MAP) estimates (boundedmodel-scale).

α1 α2 βHB βGD λ β2 ρ

Mean 0.60 0.67 2.42 3.33 0.79 3.13 0.76

25% 0.31 0.58 0.91 0.84 0.56 1.48 0.36

75% 0.93 0.88 3.22 5.19 0.98 4.18 1.11

doi:10.1371/journal.pone.0150165.t002

Fig 2. Computational model parameter estimates. The model parameter βGD, estimating the weight of the
goal-directed systems to behavioral control, is displayed as a function of working memory capacity (Digit
Span score) for the break conditions gaming (green points and regression lines) versus music (red).

doi:10.1371/journal.pone.0150165.g002
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reduced reliance on the goal-directed system in individuals with a rather low working memory
capacity, while leaving the habitual system intact. These results were consistent with our expec-
tation that playing video games during break periods may impair working memory resources
and thus interfere with goal-directed planing.

Gaming reduced goal-directed decision making in low working memory
individuals
We recently observed [26] that video gaming compared to listening to music reduced working
memory performance in the n-back task over time. In line with these previous findings, we
have found that gaming reduces reliance on the goal-directed decision system in low working-
memory individuals, suggesting that gaming may interfer with working memory resources
needed for goal-directed planning. This finding is congruent with previous research showing
that taxing executive resources can impair goal-directed choice particularly in individuals with
low baseline working memory capacity, but often has little effect in high working-memory
individuals [14, 15]. Gaming may thus have rather subtle interfering effects on executive func-
tioning: during decision-making, individuals with high levels of executive resources appear to
be able to compensate for these effects and maintain high levels of goal-directed control. Indi-
viduals whose executive resources are limited, however, may not be able to guard against such
negative influences and impaired executive resources may induce a decline in goal-directed
planning.

A recent computational proposal [11] frames the arbitration between habitual vs. goal-
directed decision making as a tradeoff between time cost and behavioral flexibility, both of
which are high in goal-directed and low in habitual decision making. Gaming might create
internal time pressure and heavily tax attention which may lead low-working memory subjects
to reduce cognitive and time costs by immediately scaling down goal-directed choice and ele-
vating habitual choice at the initial step.

How may such an influence of gaming on working memory processes in goal-directed con-
trol be moderated by additional factors? Interestingly, in our previous study [26], the decre-
mental influence of gaming on working memory was associated with mind wandering and
impaired concentration, suggesting that these factors may contribute to the present findings.
As an additional possible explanation, gaming may induce stress [24], which could in turn
decrease cognitive performance [22]. The sound of a video game could disturb the players’ con-
centration on learning [22, 23] and induce physiological stress while gaming [24]. Such stress
may tax cognitive resources and consequently inhibit more sophisticated ways of goal-directed
decision making but spare more parsimonious habitual decision making [14, 43]. Thus subjects
might not integrate the information of each step into a cohesive model in order to optimize
choice selections. An interference of stress with prefrontal-dependent functions [44] may thus
contribute to the negative effects on goal-directed choice.

Recent work suggests that goal-directed processes impose considerable demands on central
executive resources [9, 11], which rely on the prefrontal cortex [45]. These central executive
resources including processing speed and working memory capacity may interact to moderate
the tradeoffs between habitual and goal-directed systems [13], and may thus provide particular
vulnerabilities to interference with executive functions.

Limitations
The above effects of breaks on the sequential two-step Markov decision task have been
observed in young, well-educated subjects. Other subject groups and other types of music or
games, e.g. self-selected [46], may result in different findings. Our sample did not allow for a
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valid comparison of gamers and non-gamers, musicians and non-musicians and the small sam-
ple size limits generalizability and requires independent replications. Our limitations of our
study are potential transfer effects, i.e. that listening to music or playing video games may affect
performance over a longer period of time. We did not measure physiology responses (e.g. heart
rate and skin conductance). This limits our ability to interpret findings that might have resulted
from subjects’ arousal level during breaks and decision making.

Conclusions
We examined whether typical everyday activities that people engage in during a break (i.e. lis-
tening to music and playing a video game) interact with decision making. We did not find sup-
port for our hypothesis that gaming reduces overall goal-directed decision-making. However,
we found that break effects depended on baseline working memory: in individuals with a rather
low working memory capacity video gaming induced a relative shift from goal-directed to
habitual decision making as compared to listening to (Mozart’s) music. A rather high working
memory capacity, on the other hand, prevented such a decline in goal-directed control, sug-
gesting that (as compared to music) gaming may prevent recovery of executive resources dur-
ing breaks, leading to a decline in resources available for goal-directed planning.
Understanding learning mechanisms during break activities may help to develop better proce-
dures for rest and recuperation and help guide further research into the effects of video gaming
on young adults, specifically breaks in between learning sessions. Also, our research can help to
develop recommendations for parents, who have to decide whether they should ban their kids
from playing video games during learning or whether they can tolerate or even encourage
them to play.
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