
Mathematisch-Naturwissenschaftliche Fakultät

Dennis Rätzel | Martin Wilkens | Ralf Menzel

Gravitational properties of light

The gravitational field of a laser pulse

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 222
ISSN 1866-8372
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90553

Suggested citation referring to the original publication:
New J. Phys. 18 (2016) 
DOI http://dx.doi.org/10.1088/1367-2630/18/2/023009



 



New J. Phys. 18 (2016) 023009 doi:10.1088/1367-2630/18/2/023009

PAPER

Gravitational properties of light—the gravitational field of a laser
pulse

Dennis Rätzel,MartinWilkens andRalfMenzel
University of Potsdam, Institute for Physics andAstronomyKarl-Liebknecht-Str. 24/25, D-14476 Potsdam,Germany

E-mail: raetzel@uni-potsdam.de

Keywords: gravity, general relativity, laser pulses, electromagnetic radiation, linearized gravity, pp-wave solutions

Abstract
The gravitational field of a laser pulse offinite lifetime, is investigated in the framework of linearized
gravity. Although the effects are very small, theymay be of fundamental physical interest. It is shown
that the gravitational field of a linearly polarized light pulse ismodulated as the normof the
corresponding electric field strength, while nomodulations arise for circular polarization. In general,
the gravitational field is independent of the polarization direction. It is shown that all physical effects
are confined to spherical shells expandingwith the speed of light, and that these shells are imprints of
the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest
are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and
they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are
given for the size of the attractive effect. It is recovered thatmassless test particles do not experience
any physical effect if they are co-propagatingwith the pulse, and that the acceleration ofmassless test
particles counter-propagatingwith respect to the pulse is four times stronger than formassive particles
at rest. The similarities between the gravitational effect of a laser pulse andNewtonian gravity in two
dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by
gravitational waves from astronomical sources.

1. Introduction

Apulse of light carries energy andmomentum, and it is deflected by the gravitational field of amassive body.
Then, according toNewton’s ‘actio equals reactio’, it is also a source of a gravitational field of its own. The
gravitational field of a laser pulsemay be hardly detectable under laboratory conditions, but it comeswith some
peculiar features which are of general physical interest. Utilizing linearized gravity, in [1] by Tolman et al it was
established that the gravitational field of a cylindrical pulse of unpolarized light, offinite lifetime, for which
diffraction can be neglected does not affect a parallel test beam if the test beam is co-propagating, but bends it, if
counter-propagating. Stated differently, a freely propagating light pulsewould not be affected by its own
gravitational field, which is in sharp contrast to a beamofmassive particles.

In a series of subsequent investigations, the gravitational field of light has been determinedwithin the
framework of the full set of the nonlinear Einstein equations inwhich light is represented as a null-fluid of
massless particles [2], from the Lorentz-boosted Schwarzschild-metric of a pointmass in the limit v c ,
m 0 [3], and even some exact planewave solutions of the coupledMaxwell–Einstein theory [4]. It is nowwell
established that the gravitational field of light is twice that of amaterial source of the same energy-mass density,
that a pulse of light on an infinite straight path is accompanied by a co-propagating plane fronted gravitational
wave, and that two such pulses would never interact if propagating on parallel tracks in the same direction1. In
[6] by Scully, it was shown that the interaction between pulses running slower than the speed of light—e.g. in a
wave guide—is non-zero, however. Aichelburg and Sexl [3] point to the inadequacy of the standardGreens
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functionmethod for the solution to linearized gravity with sources on strict null-paths, i.e for light pulses in
vacuumon infinite straight paths. Following early studies [7], the critical role of the spacetime events
representing the pulse emission for the gravitational effects of light was emphasized in [8] byVoronov and
Kobzarev. The recent publication [9] by Bonnor comes to the conclusion that evenwithin the full set of Einstein
equations, the gravitational field of a laser pulse on an infinite straight path cannot arise from the retarded
potential generated by the pulse, but should be ascribed to the spacetime events of its emission2.

In this paper, we derive the gravitational fieldwhich comeswith a laser pulse, using the framework of
linearized gravity. In accordance with the establishedmodel, the pulse is represented as a ‘needle of null stuff’, in
our case consisting of coherently polarized electromagnetic radiation.Ourmodel aims to catch the essential
ingredient of a laser pulse, which are (1) its localizability, (2) itsmasslessness, and (3) its polarization degrees of
freedom. The spacetime events representing the emission and absorption of the pulse are also included. This
accounts for the very nature of the electromagnetic field as themediator of the electromagnetic interaction
betweenmaterial bodies and at the same time avoids the abovementioned calamities which comewithmassless
excitations on unbound trajectories.

The paper is organized as follows. In section 2, we review linearized gravity and derive themetric
perturbationwhich is caused by a laser pulse. In sections 3 to 5, we investigate the gravitational effect of the pulse
on a test particlemoving along a geodesic in the gravitational field of the laser pulse. In section 6, we discuss the
gravitational effect of laser pulses in a broader context and showpossibilities for further investigations.

2. Laser pulsemetric perturbation

In this section, we derive the gravitational field of a pulse of laser light.We assume the power of the pulse to be
small such that themetric tensor gmn differs but slightly from theMinkowskimetric in free spacewhich takes

values diag 1, 1, 1, 1h = -mn ( ) for appropriately chosen coordinates ct x y z, , ,( ). Setting

g h , 1h= +mn mn mn ( )

where hmn is a small perturbation, h 1mn ∣ ∣ , and imposing the gauge condition
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whereTmn is the energy-momentum tensor of the pulse, including pulse emitter and absorber,G is Newton’s
gravitational constant, c is the speed of light andT T h=a

a
ab

ab.We assume energy-momentum conservation,

T 0, 4¶ =n
mn ( )

such that consistencywith the gauge-condition (2) is guaranteed.
The laser pulse ismodeled as a pulse of electromagnetic radiation, traveling from emitter to absorber over a

distanceD along the z-axis, withfinite extension (pulse length) L in the direction of propagation, but negligible
extension zD( ) in the transverse x/y-directions, z LD ( ) (see figure 1). Allmeasures refer to a laboratory
framewhere the emitting system is at rest before emission of the pulse. Introducing the formal decomposition

T T T T 5p e a= + +mn mn mn mn ( )

withT e
mn andT a

mn the energy-momentumof the physical systemswhich are involved in the emission and
absorption, respectively, and the pure pulse contributionT p

mn which is non-zero only during the pulse lifetime
which is of order c L D1 +- ( ).More important, for all times preceding the pulse emission, the energy-
momentum tensor support is confined to a regionwhich is spatiallyfinite, and thuswemay safely invoke the
standardGreen’s functionmethod to solve equation (3). Being primarily interested in themetric perturbations
which are causally connected to the source, the corresponding solution of (3) reads
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with tret the retarded time, t t x x y y z z cret
2 2 2= - - ¢ + - ¢ + - ¢( ) ( ) ( ) .

2
Azzurli and Lechner [10] draw similar conclusions for the electromagnetic field generated bymassless charged particles in the context of

classicalMaxwell theory.
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Our pulsemodel is further specified by ‘boxing’ the energy-momentum tensor of amonochromatic plane
wavewith an appropriate envelope function A z t x y,c d d( ) ( ) ( ), whereA is an effective area of the pulse
transverse extend, and z t,c ( ) a characteristic function (normalized 2c c= )which—for any given time t—
encodes themomentary extension and location of the laser pulse on the z-axis.With the emitter and absorber
placed at fixed positions z= 0 and z=D, respectively, and fixing the time coordinate such that the laser pulse
appears at z= 0 at time t= 0 and thus the back of our pulse—which in free flight is of length L—leaves the
emitter at z= 0 at a later timeT= L/c, the entire pulse defines aworld sheet, restricted to the t-z-plane—see
figure 2.

Recall that, for electromagnetic planewaves propagating in the z-direction, the corresponding energy-
momentum tensor depends only on the combination ct−z, and the only non-vanishing components are given

byT T T T uzz z z00 0 0= = - = - = , with u E B
2

2 1

2

20

0

= +e
m

 
the energy density of the electromagnetic field,

where the index 0 corresponds to ct. Accordingly, the only non-vanishing components of the pulse contribution
to themetric perturbation are

h h h h h , 7zz z z00
p p

0
p

0
p p= = - = - = ( )

where hp can be read off from (6)
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with x y2 2r = + the observer’s distance to the axis of pulse propagation, and

t z t z z cret
2 2r¢ = - + - ¢( ) ( ) .We see in equation (8) that the condition of hmn being small translates to the

power of the laser pulse being small.
The integral boundaries a b, are determined by the intersection of the pulseworld sheet boundaries with the

past light cone of the observation event x y z t, , , (see figure 3). They aremost conveniently described in terms of
the auxiliary space-time functions

Figure 1.The laser pulse ismodeled as a pulse of electromagnetic radiation of length L, traveling from emitter to absorber over a
distanceD along the z-axis. The extension of the pulse in the transverse x/y-directions is assumed to be negligible in comparison to its
length.

Figure 2.The pulse defines aworld sheet restricted to the t-z-plane. Theworld sheet is spanned between the points A, B, C andD
which correspond, respectively, to the start of the pulse emission, the end of the emission, the start of the absorption and the end of the
absorption. The future directed light cones of A, B, C,D define the spacetime regions I--Vwith qualitatively differentmetric
perturbations.
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which are the solutions of t z z L cret ¢ = ¢ +( ) ( ) and t z z cret ¢ = ¢( ) , respectively. Depending on the coordinates
of the observation event we then have a b, = Æ[ ] if both ā and b̄ are smaller 0 (Region I-) or both are largerD
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Themeaning of the various regions derives from the causal relationship of the observation event to the laser
pulse (see figure 2). Region I- and I+ are completely disconnected from the system. In space-time region II,
details of the pulse emission arewitnessed, while in region IV it is the pulse absorption and in regionV it is both,
emission and absorption. Region III is completely disconnected frompulse emission and absorption, but only
experiences the passage of the pulse. Note that in any case, due to the invariance under rotations around the z-
axis, themetric perturbation only depends on ρ, z and t, but not on the azimuthal anglej.

To further elucidate the coordinate dependence, we utilize a variable substitution z z¢ ,

z z z z z , 122 2z r¢ = ¢ - + + ¢ -( ) ( ) ( ) ( )

such that

h x y z t
GA

c

u z ct
, , ,

4
d . 13

a

b
p

4 ò
z

z
z=

- +
z

z
( ) ( ) ( )

( )

( )

Noteworthy, in region III, we have a a ct z Lz zº = - -( ) ( ¯) and b b ct zz zº = -( ) ( ¯) . Hence in this
region, where the observation event is causally disconnected fromboth the events of emission and absorption,
themetric perturbation depends exclusively on the light cone coordinate ct−z. This dependence, however, has
no physical effects, as demonstrated in the next section.

In the following, we shall frequently refer to two cases—circular polarization and linear polarization of the
laser pulse. In the case of circular polarization the energy density is constant, i.e u z ct u0- =( ) , but in case of
linear polarization the energy density is sinusoidallymodulated, u z ct u t z c2 sin0

2 w j- = - +( ) ( ( ) ).
Noteworthy, for both cases, linear polarization and circular polarization, the remaining integral (13) can be
performed in closed form. In case of circular polarization, for example, the contribution of the pulse to the
metric perturbation is given by the simple expression

h x y z t
b

a
, , , ln , 14p
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z
z

=( ) ( )
( )

( )

with constant GAu c4 0
4k = . In the case of linear polarization, the right hand side is replaced by linear

combinations of integral sine and cosine functions—see appendix B for details.
For an observer at fixed position x y z, ,( ), the temporal evolution of hp is displayed infigure 4. For early

times t t z
c1
1 2 2r< = + , themetric perturbation is zero. For times t t t t L c1 2 1< < = + , the observer

bears witness of the photon emission, and themetric perturbation rises from zero to itsmaximal value. In the

subsequent range t t t D c z D c2 3
2 2r< < = + + -( ) , themetric perturbation decays slowly

Figure 3.The integral boundaries a b, are determined by the intersection of the pulse world sheet boundaries with the past light cone
of the observation event x y z t, , , .
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h ln 1 L

ct z L
p k= +

- -( ). Beginningwith t3 and endingwith t t L c4 3= + , the observer experiences the

photon absorption, and themetric perturbation decays back to the zero value, which itmaintains for all
times t t4> .

Infigure 5, hp is plotted in the x-z-plane for different times after the events of the emission of the pulse. The
corresponding spatial sections of the regions I--V can be identified, and the influence of the spacetime events of
the pulse emission/absorption can be seen to propagate spherically with the speed of light from the
corresponding spatial points. For distances to the trajectory of the pulsemuch smaller than the distance from the
observer to the emitter, the gravitational field approaches the formof a plane fronted parallel propagatingwave
(pp-wave) [2].

It is also interesting to notice that after the absorption of the pulse, a non-zerometric perturbation remains
(see figure 5 (d)). However, wefind that the physical effect decays in the limit t  ¥ staying at afixed distance to
the z-axis since the fronts associatedwith the events of the pulse emission and absorption become planewave
fronts and coincide eventually in this limit.Wewill see later that the gravitational effect decays, basically, with
the inverse of the distance to the trajectory of the pulse.We conclude that for long times after the absorption no
gravitational effect remains.

Infigure 6, themetric perturbation is plotted for linearly and circularly polarized light and r 1r  . The
metric perturbation ismodulated as the normof the electric field strength ( E 2∣ ∣ ) for linearly polarized light. For
circularly polarized light nomodulation arises.

Yet, equations (7)–(13) only describe the contribution of the freely traveling pulse to themetric
perturbation. For a rigorous account of the gravitational effect, also the contribution of the emitter and absorber
must be taken into account. Indeed, by itself,T p

mn violates energymomentum conservation, T 0p¶ ¹n
mn locally

along theworld lines of the emitting and absorbing phase, and—concomitantly—the Lorentz gauge condition
(2) is violated.

Amassive object, upon emission of a laser pulse of energy E, suffers a loss of restmass

M M M E Mc1 2 2 ¢ = - ( ) , and at the same time acquires recoilmomentum p p p E c ¢ = - . The
reduction of restmass implies a reduction of the gravitational field of the emitter, and this change travels with the
same speed of light as does the emitted pulse. Yet in contrast to the gravitational field due to the pulse, which is
stronger the closer we are to the pulse (represented in its z− r-dependence (see equations (12) and (13) for a= 0
or b=D)) , the change of the emitter’s gravitational field falls off with the spatial distance to the emitter which is
approximately r if we assume Mc E2  . Hence, at points sufficiently close to the axis of the pulse propagation,
i.e. r 1r  , the passing gravitational field of the pulse outweighs the concomitant change in the emitters
gravitational potential, such that the latter effectmay safely be ignored. The same argument applies for the
absorption.

In the next sections, wewill investigate the behavior of particles in the gravitational field of the pulse.

3. Test particles in the gravitationalfield of the laser pulse

In this section, we investigate the behavior of freely falling test particles in the gravitational field of a laser pulse.
Recall that in general relativity, the space-time geometry is coded in the line element s g x xd d d2 = mn

m n , and the

world line g lm ( ) of free test particles is governed by the geodesic equations

Figure 4.The temporal evolution of hp for an observer atfixed position x y z, ,( ) passing consecutively through region I- (t t1< ),
region II (t t t1 2< < ), region III (t t t2 3< < ), region IV (t t t3 4< < ) and region I+ (t t4 < ).

5

New J. Phys. 18 (2016) 023009 DRätzel et al



¨ 15g g g= -Gm
rs
m r s˙ ˙ ( )

with g 1g g = -mn
m n˙ ˙ formassive test particles, and g 0g g =mn

m n˙ ˙ formassless test particles. Here, the dot
indicates the derivative with respect to the curve parameter, which is proper time τ for the time-like geodesics of
massive particles. For the null-geodesics ofmassless particles, wewill use coordinate time t. Finally, Grs

m are the

Christoffel symbols, g g g g1

2
G = ¶ + ¶ - ¶rs
m mn

r sn s nr n rs( ).
For themetric perturbation of our light pulse, the line element reads3

s h c t h z h c t z x yd 1 d 1 d 2 d d d d . 162 p 2 2 p 2 p 2 2= - - + + - + +( ) ( ) ( )

and the geodesic equations are given as
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Figure 5.The plots show themetric perturbation h h h h hzz z z
p

00
p p

0
p

0
p= = = - = - for a pulse of length L in the coordinates

ct x y z, , ,( ) in the (x, y)-plane for different times t. hp is normalized to units ofκ and then the logarithmof the logarithm is taken. In
(a), we see the effect of the pulse on themetric expanding from the point of the emission of the pulse at z= 0. In (b), thefield has
already expanded. In (c), the pulse has been annihilated at x=D and the sphere expands that contains the information about the
absorption. In (d), this sphere has further expanded and both fronts approach the formof a plane frontedwave.

3
In light-cone coordinates u ct z-≔ , v ct z+≔ the line element reads s u v h u x yd d d d d d2 p 2 2 2= - + + + .
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with subsidiary condition

h
1 for time like geodesics

0 for null geodesics
, 18u v u x yp 2 2 2

⎧⎨⎩g g g g g- + + + =
- -

-
˙ ˙ ( ˙ ) ( ˙ ) ( ˙ ) ( )

where u ct z= - , v ct z= + , u z0g g g= - and v z0g g g= + .
Irrespective of the concrete functional dependence of hp on the space-time coordinates, all accelerations are

zero if 0ug =˙ . Although 0ug =˙ cannot be realized for time-like geodesics, where by definition
h 1u v u x y2 2 2g g g g g- + + + = -˙ ˙ ( ˙ ) ( ˙ ) ( ˙ ) , it can be realized for null-geodesics, provided 0x yg g= =˙ ˙ . The

corresponding solution reads t ctz z
0g g= +( ) , tx x

0g g=( ) , ty y
0g g=( ) , which describes propagation on a

pulse track parallel, and since for this geodesic the speed zġ is always the speed of light, czg =˙ , amassless test
particle will never be influenced if co-propagating with the light pulse on a parallel track. For counter-
propagatingmassless test particles, againwith 0x yg g= =˙ ˙ , the second solution of the subsidiary condition

(18) resolves into the first order non-linear differential equation cz h

h

1

1

p

pg = - -
+

˙ . The second solution is,

however, only admissible in space time regionswhere h h 0x y
p p¶ = ¶ = , i.e. in regions I-, I+ and III. Themetric

perturbation is zero in regions I- and I+ and there is no deflection of themassless test particle. In region III, the
equation ofmotion can be solved as the curve L Lln ln const.v u u u u ug g k g g g g= - - - +( ) [ ( ) ( ) ( )] , where
the parameterization by ug is well defined because by definition 0ug ¹˙ for the second null-solution. In region
III, amassless test particle counter-propagating with respect to the pulse parallel to the z-axis seems to be
decelerated and later accelerated again in its propagation direction.

As this example of a seemingly varying speed of light shows, we have to be very careful with the interpretation
of the geodesic equations (15) and their solutions. ‘Rods and clocks’ used formeasurements in the laboratory
consist ofmatter with kinematics which are governed itself by themetric g hh= + . Hence, the coordinates
t x y z, , ,( ) that were connected tomeasurements of time and space in the unperturbed spacetime do not
representmeasurements in the perturbed spacetime.Only after taking the effect of themetric perturbation on
‘rods and clocks’ into account, the geodesic equations (15) can be interpreted. In the following section, wewill
show that there is actually no physical effect of themetric perturbation in region III.

4. Curvature and the physical content of themetric perturbation

Tofind out if locally (in a region) any physical effect can arise from ametric perturbation, we can use the
Riemann curvature tensor Rm

nrs. If the Riemann tensor vanishes in a region, the spacetime in this region is flat
(see section 13.9 in [11] and proposition 2.11 of [12]), i.e. a coordinate transformation can be found inwhich the
metric g looks like theMinkowskimetric diag 1, 1, 1, 1-( ). These coordinates representmeasurements with

Figure 6.These plots show the double logarithmof themetric perturbation h h h h hzz z z
p

00
p p

0
p

0
p= = = - = - for a linearly polarized

pulse of length L and central wavelength Lc2 2

3
l = =p

w
in the x-y-plane at t L c50000= , after its emission at z= 0. hp is normalized

to units of GAu c4 0
4k = and then the logarithmof the logarithm is taken. Themetric perturbation can be interpreted as the

potential to the gravitational field. The front stemming from the emission event of the pulse is seen between z L L6 499994= + and
z L L7 499994= + . It shows oscillationswithwavelength 2l and approaches the formof a plane frontedwave. The right plot shows
the same situation for circularly polarized light where nomodulations appear.
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‘rods and clocks’ in the perturbed spacetime and all test particlesmove on straight lines in these coordinates.
Hence, no physical effects can arise if the Riemann tensor vanishes.

The Riemann tensor Rm
rsa has a direct physical and geometrical interpretation as it appears naturally in the

geodesic deviation equation for the relative acceleration between two infinitesimally close geodesics g l( ) and
sg l g l l¢ = +( ) ( ) ( ) parameterized byλ (see figure 7):

a
D s

R x s
d

, 19
2

2l
g g= =m

m
m
rsa

r s a( ) ˙ ˙ ( )

where s is the separation vector between the geodesics and D dl g= m m˙ is the covariant derivative along the
geodesic g l( ). Equation (19) can be interpreted as the effect of tidal forces on neighboring test particle.

In the following, wewill only use the fully covariant version of the curvature tensor R Rhnrsa nm
m
rsa≔ . In

first order in themetric perturbation hmn , it takes the form

R h h h h
1

2
. 20= ¶ ¶ - ¶ ¶ - ¶ ¶ + ¶ ¶nrsa r s na n s ra r a ns a n rs( ) ( )

Rnrsa has only 20 independent components. This can be seen from its symmetries R R R= - = -nrsa rnsa nras
and R R=nrsa sanr and the Bianchi identity R R R 0+ + =nrsa nsar nars it fulfills. Due to its symmetries, the
Riemann tensor is invariant under linearized coordinate transformations x x x +m m m where xm is assumed to
be small, and it is only considered infirst order.

In the following, wewill give the components of the curvature tensor due to the light pulse, R p
nrsa, in terms of

derivatives of hp. Of the 20 independent components,most turn out to be zero.Wefind for the only non-zero
independent components

R h
1

2
21z z z0 0

p
0

2 p= - ¶ + ¶( ) ( )

R R h
1

2
22z i zzi i z0 0

p
0
p

0
p= - = - ¶ ¶ + ¶( ) ( )

R R R h
1

2
, 23i j zizj izj i j0 0

p p
0
p p= = - = - ¶ ¶ ( )

where the indices i and j can be x and y. See figure 8 for plots of the curvature component R x x
p

0 0 .
In region III, h h0z j0

p p¶ + ¶ = = ¶( ) and R p
nrsa vanishes. Hence, themetric perturbation can be removed

by a linearized coordinate transformation (see appendix B for an explicit example of such a transformation).
Thismeans, in particular, that themetric perturbation produces a physical effect only in region II, IV andV due
to the spacetime events representing emission, absorption and emission and absorption, respectively. The
localization of the gravitational field induced by the laser pulse is due to itsmotionwith the speed of light. If it
wouldmovewith v c< , its effect would be extended over thewhole region that is causally connected to the
point of its emission as can be seen in [6] by Scully. The same situation arises for the electromagnetic field
induced by amassless charged particle [10]. The localization of the gravitational field of a light pulse can be
shownundermuchmore general assumptions than thosewe use in our one-dimensionalmodel for the pulse,
e.g. for a non-diverging, luminal propagating three-dimensional pulsewith localized emission and absorption.

4.1. Curvature very close to the pulse trajectory and far from its emission
By direct calculation of the curvature components (see appendix C), wefind that, for r 0r  , the components
R z z0 0

p , R z i0 0
p and R zzi0

p decaywhile the components R i j0 0
p , Rzizj

p and R izj0
p go like1 2r . The latter propertymeans

also that the influence of the source of the pulse can be neglected in agreementwith the argument presented at
the end of section 2.Wefind that in region II

Figure 7.The distance between two geodesics changes due to curvature.
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R R R
GA

c
u z ct

x x4 1
2 , 24i j zizj izj ij

i j

0 0
p p

0
p

4 2 2

⎛
⎝⎜

⎞
⎠⎟r

d
r

= = - = - -( ) ( )

while R R R 0z z z i zzi0 0
p

0 0
p

0
p= = - = . The curvature in (24) corresponds to themetric perturbation

h h h h GA c u z ct8 lnzz z z00
p p

0
p

0
p 4= = - = - = - - r

a( )( ) withα a constant of the same dimension as ρ. This is

a special case of the general pp-wave solution of the full Einstein equations for amassless one-dimensional fluid
derived in [2].

With the only non-zero curvature components given in equation (24), the geodesic deviation equation (19)
can be rewritten as a vector equation for the vectors a a a a a, ,z x y0 +

 ≔ ( ), x y0, ,r r rˆ ≔ ( ),
y x0, ,J r r-ˆ ≔ ( ), , ,z x y0g g g g g- +


˙ ≔ ( ˙ ˙ ˙ ˙ ) and s s s s s, ,z x y0- +

 ≔ ( ):

a
GA

c

u z ct
s s

4
, 25

4 2r
r g r g J g J g=

-
´ ´ - ´ ´

      ( ) [(( ˆ ˙ ) · )( ˆ ˙ ) (( ˆ ˙ ) · )( ˆ ˙ )] ( )

while a a 0z0 - = .We see immediately that there are no tidal forces seen bymassless co-propagating particles
since then 0g =


˙ .

To get a feeling for themagnitude of the tidal forces due to a laser pulse, we can compare the curvature
component R x x0 0

p induced by a laser pulse of circular polarizationwith that of a gravitational quadrupole wave.
We can compare themdirectly because the components of the curvature tensor are invariant under linearized
coordinate transformations infirst order in themetric perturbation. In thewidely used transverse traceless

Figure 8.The plots show the curvature component R x x0 0
p for themetric perturbation hp

mn induced by a laser pulse in the coordinates
ct x y z, , ,( ) in the (x, z)-plane for different times t. The logarithmof value of R x x0 0

p is encoded in the opacity of the color. Red is a
negative value of R x x0 0

p and blue a positive value.White stands for zero.

9

New J. Phys. 18 (2016) 023009 DRätzel et al



gauge, the curvature component R x x0 0
qp of a gravitational quadrupole wave is given as the second time derivative

of the amplitude h+. For awave of angular frequencyωwehave R h cx x0 0
qp 2 2w= + . The curvature component

due to the laser pulse at a point in the x-z-plane is R x x0 0
p 2k r= . For a laser of pulse power P, we have

GP c4 5k = . Hence, at a distance of1cm to the pulse trajectory, a laser with 1015watt—like the one at the
National Ignition Facility—induces curvature of the same order as the curvature of a gravitational wave of
angular frequency 10 Hz3w = and amplitude h 10 22=+

- . This is of the same order as the strain induced by
gravitational waves in this frequency range expected from astronomical sources [13].

5.Deflection of test particles

In this section, wewant to investigate the effect of the gravitational field of a laser pulse on nearby test particles in
more detail keeping inmind the results of section 4.Note that due to the rotational symmetry of themetric
perturbation around the z-axis, there cannot be any non-zero deflection in the azimutal direction (see
equation (17), andwe can restrict all our considerations to the x-z-plane.Wewill only consider the deflection of
test particles initially at rest or running parallel to the z-axis.

Now,we have tofind a coordinate independentmeasure for the deflection of test particles that can be
evaluated in the laboratory. An operational prescription ofmeasuring spatial distances is given by sending light
back and forth between separatedmirrors. However, this radar distance can be only defined for distances that

Figure 9.The plots show the acceleration ¨ xg towards/away from the z-axis experienced by a test particle (with 0x yg g= = ) due the
laser pulse in the (x, z)-plane for different times t. The logarithmof hx

p¶∣ ∣which is proportional to the force (see equation (26)) is
encoded in the opacity of the color. Red corresponds to an attraction and blue to a repulsion.White stands for a vanishing
acceleration.
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can be traversed by light before the gravitational field changes significantly. For region II, IV andV, this implies a
maximal length scale for distancemeasurements at the order of L. Luckily, all test particles except the co-
propagating,massless one, traverse regions II, IV andV infinite time, andwe can evaluate their accumulated
deflection in the flat regions III and I+, respectively. For infinitesimally separated points, this radar distance
coincides with the proper distancewhich is defined as g s smn

m n for the separation vector s between the points.

Thenwehave tofind a connectionbetween thedeflection of test particlesmeasured in the coordinates
ct x y z, , ,( ) and the deflectionmeasured inproper distance. The latter turns out to bemostly towards or away from
the z-axis for r 1r  whichwe identified as a necessary condition for neglecting the contributions of emitter and
absorber in section 2. For r 1r  , the curvature components R i j0 0

p , Rzizj
p and R izj0

p becomedominant aswehave
shown in the course of deriving equation (24) (see also appendixC). This dominancemeans that the only
significant relative acceleration between twoneighboring geodesicswith 0x

0g l =˙ ( ) for some value of the curve
parameter 0l is ax

0l( ) as canbe verified directly from the geodesic deviation equation (19).
The relative acceleration provides information about the proper distance between two neighboring

geodesics. For parallel geodesics, the second derivative of the proper distance for the curve parameterλ is the
projection of the relative acceleration along s, i.e. g s s g a sd d2 2l =mn

m n
mn

m nˆ where s s g s s=n n
mn

m nˆ is the

normalized distance vector. In the case of neighboring geodesics with 0x
0g l =˙ ( ) for some value of the curve

parameter 0l , 0x
0g l >( ) and distance vector s 0l( ) in the x-direction, the acceleration of change in the proper

distance becomes s h s s a¨ d dx x
0

2 2 p
0 0l l h l l= + =mn

m n( ) ( ) ( ) ( ) since h 0x
p =n for all ν.

Hence, the absolute acceleration towards or away from the z-axis is well defined, andwe obtain it by
integrating s̈ x along the x-axis. It is ¨ xg for the trajectory of a test particle governed by the geodesic equation (15)

h¨
1

2
. 26x z

x
0 2 pg g g= - ¶( ˙ ˙ ) ( )

¨ xg and the change of timemeasurement due to themetric perturbation are both offirst order in themetric
perturbation hp.Hence, infirst order in hp, ¨ xg and xġ can be interpreted as the acceleration and the velocity of
the test particle in the x direction, respectively. For plots of ¨ xg see figure 9.

The factor hx
p¶ follows from equations (13) and (11) as

h t x y z
GA

c
ct r u r ct r z

ct r u r ct r z

, , ,
4

ln

ln 27

x L x

L D D x D

p
4

c

c

¶ = - - ¶ -

- - - ¶ -

( ) ( ( ) ( ) ( )

( ) ( ) ( )) ( )

where r x y z, ,=
 ( ), r r=

∣ ∣, r r D D0, 0,D = - +
∣ ( )∣ and Lc is the characteristic functionwhich is zero

outside the interval L0,[ ]andD is the distance between emitter and absorber.
Let us have a closer look at the two terms in equation (27). Thefirst term is zero outside of an expanding

spherical shell of width L centered at the origin. It only depends on the source at the retarded time ct− r at the
origin. So, it corresponds to the emission events. It gives an attraction towards the z-axis. The second term is zero
outside of an expanding spherical shell of width L centered at the point x y z D, , 0, 0,=( ) ( ). It only depends on
the source at the retarded time ct rD- at the point x y z D, , 0, 0,¢ ¢ ¢ =( ) ( ). Hence, it corresponds to the
absorption process. It gives a repulsion from the z-axis.

5.1. A test particle at rest
Let us have a look at the particular case of a test particle at rest in the laboratory frame, i.e. c0g =˙ and 0zg =˙ .
The equation (26) tells us that the acceleration is

c
h¨

2
. 28x

x

2
pg = ¶ ( )

For example, on the z-axis, i.e. at x y 0= = , this test particle would first experience an acceleration towards the
z-axis at t z

c

1= for a time span L
c

1 . At t z D D
c

1= - +(∣ ∣ ), the test particle would experience an acceleration
away from the z-axis for a time span of L

c

1 .

Infigure 10, there are plots of the acceleration in the x-direction experienced by test particle at rest at
different positions parallel to the z-axis at two different distances ρ from the z-axis for different times after the
emission of a circularly polarized laser pulse.

A test particle at z D< will alwaysfirst experience an attractive force and later amuchweaker repulsive
force. A test particle with z D> but a distance ρ from the z axis at least of the order of the length of the laser pulse
will experience first an attractive force and later aweaker repulsive force. In the latter case, the delay of the two
forces and their difference inmagnitude decrease for increasing z. The total deflection in the x-direction vanishes
for z  ¥.

In region II (the causal past of the emission events), for points in the x-z-plane, for circular polarization,
r 1r  and positive z, we get from equation (14) the result h x2x

p k¶ » - which leads to
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c
x

¨ . 292g
k

» -r ( )

The constant G E Ac2 0 0
2 4k e= - can be rewritten for a laser pulse of power P as

GP

c

4
30

5
k = ( )

The strongest laser pulses available today have a pulse power in the range of 10 W15 . At a distance of 2.5 mm, this
gives the acceleration

GP

c x
¨

4
10

m

s
. 31x

3
18

2
g » - » - - ( )

Wecan compare this acceleration to the acceleration experienced by a test particle in theNewtonian potential
induced by a small spherical, massive object. At a distance of r 2.5 mm= , amass of only M 10 kg13= - would
be necessary to provide the same acceleration as in equation (31)

GM

r
¨ 10

m

s
. 32r

2
18

2
g = - » - - ( )

We see again: the gravitational field of light is too small to be detected in the near future.

5.2. Amassless test particle
Now, let us have a look at two different cases for the deflection ofmassless test particles, e.g. photons. First, we
assume that themassless test particlemoves in the same direction as the laser pulse, the positive z-direction. This
means x c xz0 = =˙ ˙ and from equation (26) follows that the deflection is zero as we found in section 3. The
second case is that of amassless test particlemoving in the negative z-direction, i.e. it is counter-propagating.We
have x c xz0 = = -˙ ˙ , andwefind from equation (26)

Figure 10.Acceleration (red: attraction; blue: repulsion; logarithmic scale) experienced by a test particle at rest at different z-positions
for different times t after the emission of a circular polarized laser pulse of length L. The point of absorption is at z D L500= = . The
acceleration is given in units of c2

2

k . Upper: distance ρ of the test particle to the z-axis is L2.5 ; Lower: L0.5r = .
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c h¨ 2 . 33x
x

2 pg = ¶ ( )

Equation (33) results in a non-zero acceleration in the x-directionwhich corresponds to a nonzero gravitational
force acting on themassless test particle, andwe recover the result of [1]. The acceleration (33) is four times that
experienced by a test particle at rest (comparewith equation (28)). Since themassless test particlemoveswith c,
however, it will need a different time span to pass through the regions II, IV andV than the particle at rest. For

r 1r  it will only experience the acceleration (33) for L c2 while the particle at rest will be accelerated for L/c.
Hence, the total deflection of a counter-propagating,massless test particle will be only by about a factor 2 larger
than that of a particle at rest.

5.3. 2DNewtonian gravity
It is interesting to notice that the gravitational effect on test particles in region II resemblesNewtonian gravity in
two spatial dimensions. This similarity is easily seen for r 0r  when the curvature takes the form (24)which
corresponds to themetric perturbation h h h h h GA c u z ct8 lnzz z z

p
00
p p

0
p

0
p 4= = = - = - = - - r

a( )( ) withα

a constant of the same dimension as ρ. In particular, ln r is the solution of the Poisson equation in two
dimensionswith a point source at 0r = which corresponds to the generalization of theNewtonian potential of
a point particle at rest to two dimensions4. The derivative of hp for x gives

GA c u z ct
x

¨ 4
1

, 34x z4 0 2g g g= - - -( ˙ ˙ ) ( ) ( )

in the x-z-plane. The acceleration (34) points towards the pulse and is proportional the inverse distance to the
pulse likewewould expect from2DNewtonian gravity. Like inNewtonian gravity, the gravitational effect would
be interpreted as instantaneous if the pulse and not the spacetime events representing the emissionwould be
seen as the source of the gravitational field since all points of a given x-y-plane seem to be effected simultaneously
by the pulse when the x-y-plane passes region II.

6. Conclusions

We introduced amodel for a laser pulse offinite lifetime following the article byTolman et al [1] , and derived
the corresponding gravitational field as a retarded potential in the framework of linearized gravity.We argued
that the gravitational fields of emitter and absorber can be neglected for the distance ρ to the pulse small in
comparison to the distance r to emitter and absorber.

We found that the gravitational field shows oscillations of half thewavelength of the electromagnetic field
corresponding to the pulse if it is linearly polarized. These oscillations are not present for circular polarization.
In both cases, the gravitational field is independent of the orientation of the polarization.

We analysed the gravitational effect of the pulse on nearby test particles, andwe found that it is only due to
spacetime events representing the pulse emission and absorption as concluded in [9]. In [6], themetric
perturbation for a laser pulsemovingwith speed v c< is derived. In contrast to our case, test particles witness
gravitational effects in thewhole region causally connectedwith the timeline of the laser pulse propagatingwith
v c< . Hence, the localization of the gravitational effect is due to the luminalmotion of the laser pulse. A similar
situation arises in electrodynamics withmassless charges [10].

Thewidth of a realistic laser pulse will change during its propagation if it is not propagating in awaveguide.
However, if we assume the overall change of width to be small, the effect of the spreading should bemuch
smaller than the effect of the events representing emission and absorption. This questionmay be investigated
somewhere else.

We showed that for r 1r  the deflection of test particlesmoving parallel to the z-axis ismostly transversal
to the trajectory of the pulse. The emission event of the pulse induces an attractive effect while the absorption
event induces a repulsive effect. Hence, a test particle at rest will first be deflected towards the trajectory of the
pulse and later repelled.We recovered the result of [1] that amassless test particle is not effected by the pulse if it
is co-propagatingwith the pulse while a counter-propagatingmassless test particle experiences an acceleration
four times stronger than that experienced by a particle at rest.

For r 0r  , we found that the gravitational field converges to a plane fronted parallel propagating
gravitational wave (pp-wave) recovering themetric presented in [2].We calculated the resulting strain of
spacetime for a hypothetical peta-watt laser at a distance of 1mm to the beam line, andwe found that it is similar
to that induced by gravitational waves with frequency 1kHz from astronomical sources.

In the limit r 0r  , weworked out the similarity of the gravitational field of a laser pulse withNewtonian
gravity in two dimensions. The general case will be discussed somewhere else.

4
The case offinite lifetime corresponds toNewtonian gravity on a two dimensional spherewith a point source and an additional negative

surfacemass.
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7.Outlook

The experimental detection of the gravitational effect of a laser pulse is way out of reach as was argued in
section 3 and in [6] and [14]. It was pointed out in [6], however, thatmeasuring phase shifts is ‘thinkable’. It
would beworthwhile to evaluate phase shifts of a test laser induced by a strong laserfield for the case of a pulse
travelingwith the speed of light. The different gravitational effect on a co-propagating and a counter-
propagating test beam/pulse could be used in an interferometric detection scheme. Away to deal with the long
traveling distances necessary for tests using deflection or phaseshifts is to change the path. In particular ring
lasers could be an alternative [15]. In such geometries also frame dragging arises [16].

Another possibility is the detection of the spacetime strain (the tidal forces) induced by the laser.
Interferometric gravitational wave detectors are to large to be used for these kind of applications because the
detector has to be very close to the source.However, gravitational wave detectors on themicrometer scale like
the one proposed in [17] are small enough and, potentially, close to the necessary range of sensitivity.

It would be also interesting to look closer at the background dependence of the gravitational effect of light:
we assumed the background to beMinkowski space. For larger traveling distances, earthbound experiments are
performed in a Schwarzschild background, however. One first reference in this direction is [18] in which
expressions for the gravitational field of a point like light pulse were derived in a Schwarzschild background.

But, the background gravitational field can also significantly alter the behavior of laser pulses via the vacuum
polarization. In simple cases the speed of light stays the speed of light due to renormalization but already in the
Schwarzschild background the tidal forces lead to vacuumbirefringence whichmeans that the speed of light
depends on the polarization [19]. The kinematics of test particles under these conditions where derived in [20].
However, it stays unclear what thatmeans for the backreaction of particles on the gravitational field. A possible
way to the corresponding Einstein equations was presented in [21], however, only for very special cases solutions
where derived [22].

We found that the gravitational field of a laser pulse does not depend on its helicity. This is because the
gravitational field and the spin ofmatter—its intrinsic angularmomentum—are not coupled in general
relativity [23, 24]which is necessary to ensure the universality of free fall (theweak equivalence principle) [25].
There is, however, no obvious reason to distinguish between intrinsic angularmomentum and extrinsic angular
momentumofmatter. Evenmore, spin angularmomentum can be transformed to orbital angularmomentum
[26, 27]which couples to the gravitational field in general relativity (it generates frame dragging effects [28]).We
can also consider an atomabsorbing a photonwith circular polarization. During that process, the atomwill
change its total angularmomentumby a spin-flip or a change in the orbital angularmomentumof one of its
electrons. Dowe now treat the orbital angularmomentumof the electron as intrinsic or extrinsic? This
distinctionmakes even less sensewhen considering larger quantum systems. In contrast, the gravitational
interaction of particles depends on their spin or helicity in perturbative quantumgravity [29, 30]which can be
seen as an effective field theory for a theory of quantumgravity in the low energy limit [31]. Here, we have
obviously anothermismatch of predictions on the intersection of quantumphysics and general relativity.

It is possible to couple gravity to spin by removing the condition of zero torsion that is imposed in general
relativity. There are several approaches to dynamical spacetime theories with torsion among themEinstein–
Cartan-Theory and the Poincar–Gauge-Theory of gravity [24]. However, the electromagnetic field cannot be
coupledminimally (via the covariant derivative) to the gravitational fieldwithout loosing its gauge invariance
[32]. Hence, the only way to obtain a dependence of the gravitational field on the spin of the electromagnetic
field in these theories is the introduction of non-minimal coupling. The resultingmodification of the
constitutive tensor gives then rise to effects like vacuumbirefringence [32]. It should be interesting to study the
implications of thesemodifications in the vicinity of strong laser pulses.

In [33], the differential cross section for the scatteringof two light pulses is derived, and it is shown that, for small
angles, the result coincideswith thedifferential cross section for photon-photon scattering in the frameworkof
perturbative quantumgravity [29, 34]. This result becomesmeaningful in the frameworkof semi-classical gravity
where thewave packet of a single photon canbe associatedwith apulse of electromagnetic radiation.Then the
gravitationalfieldwederived couldbe interpreted as the gravitationalfieldof a single-photonpulse.

It would interesting if the localization of the gravitational effect of light still holds in some framework of
quantumgravity.
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AppendixA

For linear polarization, we obtain
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where Ci and Si are the integral-cosine and the integral-sine, respectively (see [35] p 231).

Appendix B

Themetric perturbation in region III can even be gauged away by a linearized coordinate transformation
x x x= +m m m˜ . For circular polarization, one option is

GA

c
p ct r ct z ct z ct z

ct L r ct L z ct L z ct L z

ct r ct L r r z r z r z

2
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ln . 37

4
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- Q - - Q - - - - - -

m mn
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( )(( ) ( ) ( ))
( ( ) ( ))(( ) ( ) ( ))] ( )

with p 1, 0, 0, 1= -m ( ).What remains is ametric perturbation h h x x= - ¶ - ¶mn mn m n n m
˜ that is zero in region

III. The coordinate transformation (37) induces a non-zerometric perturbation in regionV thatmust be
compensated by a similar linearized coordinate transformation. The appropriate coordinate transformation can
be obtained from (37) by shifting ct and z byD and reversing the overall sign.

AppendixC

The components of the fully covariant Riemann curvature tensor in region II are

R
GA

c
u r ct

r

GA

c r
u r ct

z

r
u r ct r z

2 1

2 1
38

z z z0 0
p

4 0

4 2

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

=- ¶ + ¶ -

= - + ¢ - -

( ) ˜( )

˜( ) ˜ ( )( ) ( )

R R
h

u r ct
r

GA

c r
x u r ct

r
u r ct

2

1

2 1 1
39

z i zzi i

i

0 0
p

0
p 0

4 2

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

= - =- ¶ -

= - - ¢ -

¯
˜( )

˜( ) ˜ ( ) ( )

R R R
GA

c
u r ct

x

r r z

GA

c r r z
u r ct

x x

r

r z

r z
u r ct

x x

r

2

2 1 2
, 40

i j zizj izj i

j

ij

i j i j

0 0
p p

0
p

4

4 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟d

= = - = ¶ -
-

=
-

- -
-
-

+ ¢ -

˜( )
( )

( )
˜( ) ˜ ( ) ( )

where u r ct r ct u r ctLc- = - -˜( ) ( ) ( ).
In the following, we call the first three independent components in equation (21) longitudinal curvature

components referring to themajority of their indices being 0 or zwhile the tangent vector to the trajectory of our
pulse has non-zero components 0 and z. In contrast, wewill call the last three components in equation (21)
transversal.

We compare the terms containing u and those containing u¢ separately.Wefind that, because of the different
factors containing r z-( ), r, x i and z in variousways, the transversal curvature components aremuch larger
than the longitudinal components if rr  , i.e. if the distance to the trajectory of the pulse ismuch smaller than
the distance to the spatial point associatedwith the event of emission. In particular, the former become
independent of r for rr  andwe can safely assume that the transversal components dominate the

15

New J. Phys. 18 (2016) 023009 DRätzel et al



corresponding components R i j0 0 ,Rzizj and R izj0 of the fullmetric perturbation that contain additionally the rest
of the effects of the emission events.

The evolution equation for the geodesic deviation for two test particles with the tangent vector ġ with initial
distance ds0, , 0, 0( ) in the x-direction derives from equation (19) as
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For all ġ , this is dominated by the transversal curvature components due to the pulse alone if rr  . For
infinitesimally neighbored geodesics with parallel tangent vector, we have infirst order in themetric
perturbation for s s0, d , 0, 0= ( )
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2
d 42

x
x x x

xx xx

2

2
e a

l
g g g g= + ¶ G = + ¶ ¶ +r m n

r mn
r m

r m˙ ˙ ˙ ˙ ( ) ( )

where, for rr  , the second term can be assumed to bemuch smaller than D s

d

x2

2l
since the latter is dominated by

the transversal curvature components that go like1 2r in that limit.
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