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Chapter 1

Introduction

In many statistical applications, the aim is to model the relationship between
covariates and some outcomes. A choice of the appropriate model depends on
the outcome and the research objectives, such as linear model for continuous
outcomes, logistic models for binary outcomes and the Cox model for time-
to-event data.
In epidemiological, medical, biological, societal and economic studies, the
logistic regression is widely used to describe the relationship between a
response variable as binary outcome and explanatory variables as a set of
covariates.
In particular, a binary response variable, such as �disease or non-disease�,
�success or failure�, �enrolled or not enrolled�, �presence or absence�, is mostly
considered. For example, Arnlöv et al. (2010) considered modelling the
presence or absence of metabolic syndrome using the impact of body mass
index (BMI) as a explanatory variable.
The e�ect of the covariate on the occurrence of the event of interest is
described by a model for the conditional probability of the outcome given
the covariates. That is, the response variable, say Y , is the indicator of the
event of interest and the task is to model the function

π(x) = P(Y = 1|X = x) = E(Y |X = x)

where X is a p-dimensional explanatory variable.
A widely used model is the logistic regression. De�ne the odds on covariates
x as

P(Y = 1|X = x)

P(Y = 0|X = x)
=

π(x)

1− π(x)
.

1
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In the logistic regression model the logarithm of the odds, so-called logit, is
modeled by a linear relation:

log
( π(x,β)

1− π(x,β)

)
= β0 +

p∑
j=1

βjxj = xTβ.

The coe�cients βj can be interpreted as follows:
The odds ratio of a variable Xj adjusted for the other variables Xk, j, k =
1, . . . , p, j ̸= k is given by

exp(β0 + β1x1 + . . .+ βj(xj + 1) + . . .+ βpxp)

exp(β0 + β1x1 + . . .+ βjxj + . . .+ βpxp)
= exp(βj). (1.1)

In other words, exp(βj) characterizes the factor by which the odds of the
event changes for each one unit increase of Xj (similar to the simple linear
regression).
The goal of logistic regression is to estimate the parameter β (like in ordinary
regression). The estimation in logistic regression makes use of the likelihood
function.
However, epidemiologic cohort studies are quite expensive to manage data
because we have to follow up a large number of individuals for a long time.
The case-cohort design is applied to reduce the cost and time for data
collection. The case-cohort sampling collects a small random sample from
the entire cohort, is called subcohort. The advantage of this design is that
the covariate and follow-up data are recorded only on the subcohort and all
cases.
The aim in the present thesis is to develop an estimation approach in the
logistic model to case-cohort design.

The �rst part of this thesis is presented as follows:

Chapter 2: Logistic Regression under Case-Cohort Design.
This chapter investigates the estimation in the logistic model for case-cohort
design. First a model with a binary response and a binary covariateX (which
is also called exposure variable) under case-cohort design is considered.
We describe the maximum likelihood estimator (MLE) and establish the
consistency and the asymptotic normality of this estimator.
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An estimator for the asymptotic variance of the estimator based on the
maximum likelihood approach is proposed; this estimator di�ers slightly from
the estimator introduced by Prentice (1986). Simulation results for several
proportions of the subcohort show that the proposed estimator gives lower
empirical bias and empirical variance than Prentice's estimator.
The MLE in the logistic regression with discrete covariate under case-cohort
design is studied. Here the approach of the binary covariate model is
extended. Proving asymptotic normality of estimators, standard errors for
the estimators can be derived.
The estimation procedure of the logistic regression model with a one-
dimensional discrete covariate is demonstrated by simulation. The results of
the simulation for several proportions of the subcohort and di�erent choices
of the underlying parameters illustrate that the estimate values are around
the true values.
Moreover, the comparison between theoretical values and simulation results
of the asymptotic variance of estimator is presented in the last part of this
chapter.

Epidemiology and medical studies are often interested in time to occurrence
of an event. Logistic regression is su�cient for the binary outcome refers to
be available for all subjects and for a �xed time interval.
In practice, the observations in clinical trials are frequently collected for
di�erent time periods and subjects may drop out or relapse from other causes
during follow-up. The survival analysis is necessary to solve these problems.
In survival analysis, the subjects are followed over time and the time to
event of interest T̃ is focused on these studies as response variable in binary
regression Y .
The characterization of the distribution of T̃ is given by the hazard function,
de�ned as

λ(t|x) = lim
△t↓0

1

△t
P(t ≤ T̃ < t+△t|T̃ ≥ t,X = x).

Cox (1972) proposed the model which is focused on the hazard function. The
Cox model is assumed to be

λ(t|x) = λ0(t) exp(β
Tx)
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where λ0(t) is an unspeci�ed baseline hazard at time t and X is covariates,
β is a p-dimensional vector of coe�cient.
The hazard ratio for any two sets of covariates x and x∗ is

λ(t|x)
λ(t|x∗)

=
λ0(t) exp(β

Tx)

λ0(t) exp(β
Tx∗)

= exp(βT (x− x∗)), for all t ≥ 0

which is a constant over time, i.e. the hazards are proportional to each other.
If Xj adjusted for the other covariates Xk, j, k = 1, . . . , p, j ̸= k, the hazard
ratio for each one unit increase of covariate is given by

λ(t|x1, . . . , (xj + 1), . . . , xp)

λ(t|x1, . . . , xj, . . . , xp)
= exp(βj), for all t ≥ 0.

it is similar to (1.1). Therefore, the coe�cient βj is the log hazard ratio
between two subject di�ering by one unit.
While the logistic regression estimates the odds ratio, Cox regression esti-
mates the hazard ratio.
However, the logistic regression is not appropriate for incomplete follow-up
data; for example, an individual drops out of the study before the end of
data collection or an individual has not occurred the event of interest in the
duration of the study. These observations are called censored observations.
The Cox models can e�ectively handle censored data. Moreover, the Cox
models can be used for discrete or continuous values of covariates. This
leads to the second part where the Cox model is developed as a problem of
experimental design in Chapter 4. The Cox models and their extensions are
�rst described in Chapter 3. Particularly, the extended Cox model with time-
dependent covariates and time-dependent coe�cients are introduced. And
then the statistical inference in Cox model with time-dependent coe�cients
are proposed in Chapter 5.
Three chapters in the second part are presented as follows:

Chapter 3: Cox Models and their extensions: Survey of approaches and
results.
This chapter gives a review of the literature which includes a description
of survival analysis framework that has been used to provide appropriate
modi�cations to statistical inference procedure used in Cox model.
We start by describing the basic notion of survival analysis and introducing
the Cox model. The maximum partial likelihood estimator (MPLE) and its
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consistency and asymptotic normality are investigated. Test statistics for
testing hypotheses about the true parameter value of β, say β0, in the Cox
model are also presented.
Furthermore, we introduce the extension of the Cox model in which the
covariates X are allowed to depend on time, such covariates are called time-
dependent covariates or time-varying covariates. Another popular extension
of the Cox model is so-called time-dependent coe�cients Cox model where the
coe�cients β are extended to vary with time. In general, these coe�cients
often depend on time and need to be tested. This leads to Chapter 5 where
the statistical inference in the Cox model is developed in order to account
for time-dependent coe�cients.
In this chapter, we also provide the counting process framework to establish
the asymptotic properties of the estimator of two di�erent extensions of Cox
model. The observed information matrix In(β) and asymptotic variance
matrix Σ−1 are also obtained.

Chapter 4: Estimability of the parameter in the Cox model and optimal
choice of the covariates.
In this chapter the estimability of the parameter β0 in the Cox model,
where β0 denotes the true value of β, and the choice of optimal covariates
are investigated. We give new representations of the observed information
matrix In(β) and extend results for the Cox model of Andersen and Gill
(1982). In this way, conditions for the estimability of β0 are formulated.
Here the results about the rank of In(β) are important, that is, if In(β)
has the full rank p, then the parameter β0 is estimable. Moreover, we say
that β0 is asymptotically estimable, if the limiting matrix of In(β), more
exactly Σ = plimn→∞ n−1In(β0), has the full rank p. With these results on
the estimability of β0 we �nd the connection to estimation problems in other
classical statistical models.
Under some regularity conditions Σ is the inverse of the asymptotic variance
matrix of the MPLE of β0 in the Cox model. This Σ is the basis for
other statistical analyses. In Theorem 4.4 a representation of Σ is found.
The explicit dependence of Σ on β0, λ0, G and Q is visible in which G is
the censoring distribution and Q is the distribution of the covariates. We
describe that for the Cox model the asymptotic estimability depends only
on the support points of the covariates X where ξ1, . . . , ξm are the di�erent
support points of the covariates. We show in Theorem 4.6 that the matrix
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Σ is non-singular if and only if such points ξ1, . . . , ξm in the support of Q
exist that {ξr − ξs, 1 ≤ s < r ≤ m} spans the Rp. Some representations
of Σ are proved under the assumption that the support of the covariates is
�nite, but we �nd also the representation of Σ for a general distribution Q.
Moreover, some properties of the asymptotic variance matrix of the MPLE
are highlighted.

The explicit dependence of Σ on the distribution Q derived as above is
necessary for �nding optimal covariates. Optimal covariates under a survival
framework were considered in López-Fidalgo et al. (2009), Garcet-Rodr� i
guez et al. (2008), Balakrishnan and Han (2007) and Schmidt and Schwabe
(2015). In these papers the authors used the maximum likelihood estimator
(MLE), but in the Cox model the MPLE should be the basis for statistical
analyses. Our received new representation of the asymptotic variance matrix
Σ−1 or of the Σ gives the possibility for characterizing optimal covariates.

In our approach for �nding optimal covariates for the MPLE, we have similar
problems as in the experimental design for least squares estimate in nonlinear
regression. We see that Σ and consequently the asymptotic variance matrix
depend on the unknown parameters of the model. Hence, local optimal
covariates are investigated and also calculated in examples. We remark that
the optimal covariates depend strongly on the parameter β0, but weakly on
the baseline hazard function λ0.

In a sensitivity analysis the e�ciency of given covariates is calculated. We
�nd for neighborhoods of the exponential models the e�ciencies and see that
for �xed parameters β0 the e�ciencies do not change very much for di�erent
baseline hazard functions.

In section 4.3 some proposals for applicable optimal covariates are discussed.
We consider two-stage optimal covariates where the sample is divided in
two parts. The second part is taken as optimal covariates if one uses the
estimator calculated with the observations from the �rst part. Furthermore,
we consider covariates where a grid in the parameter space is �xed and a
weighted sum of a function of the corresponding Σ-values is to be maximized.

Finally, a calculation procedure for �nding optimal covariates is discussed.
Generally, one obtains suboptimal covariates.

In this chapter, several results about optimal covariates are obtained. In
particular, the results about the In(β), Σ and the corresponding proved
properties extend the up to now known results in many ways.
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Chapter 5: Statistical inference in the Cox model with time-dependent
coe�cients.
In this chapter we focus on the Cox model with time-dependent coe�cients:

λ(t,x) = λ0(t) exp(β
T (t)x),

where β(·) is a p-dimensional vector of time-dependent coe�cients function.
The maximum local partial likelihood estimators for estimating the coe�-
cients function β(·) are described.
The maximum local likelihood method for the nonparametric estimation in
survival regression was introduced by Tibshirani and Hastie (1987). The
idea is to estimate the coe�cient function at a grid point t by maximizing
the log partial likelihood function locally in a window around t. The
local neighborhood is described by a kernel function, and the size of the
neighborhood is controlled by a smoothing parameter h.
First we give two examples for realization of such estimates. The results
show that the both estimates are quite close to the true functions for di�erent
choices of bandwidth and di�erent censoring patterns.
The main topic of this chapter is a new test procedure for testing whether
a one-dimensional coe�cient function β(·) has a prespeci�ed parametric
form, say β(·, ϑ). The test procedure is derived as follows: We consider
the score function derived from the local constant partial likelihood function
at d distinct grid points. It is shown that the distribution of the properly
standardized quadratic form of this d-dimensional vector at the hypothetical
β(·;ϑ0) tends in distribution to a Chi-squared distribution.
Moreover, replacing the unknown ϑ0 by the MPLE in the hypothetical model
the limit statement remains true, and an asymptotic α-test is given by the
quantiles or p-values of the limiting Chi-squared distribution.
It is known that the performance of an asymptotic α-test using estimates
based on smoothing depends not only on the sample size n but also on a
suitable choice of the smoothing parameter, here h.
So it seems to be useful to give also a bootstrap version of this test. To derive
such a bootstrap procedure, the resampling method developed by Davison
and Hinkley (1997) for bootstrapping survival data is applied. The bootstrap
test is only de�ned for the special case of testing whether the coe�cient
function is constant.
A simulation study which illustrates the behavior of the bootstrap test under
the null hypothesis and a special alternative gives good results for the chosen
underlying model.
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Chapter 2

Logistic Regression under

Case-Cohort Design

2.1 Introduction

Regression models describe the relationship between a response variable and
one or more explanatory variables. If the outcome is a binary variable, logistic
models are often used. These models belong to the generalized linear models
(GLM). By the logit function, the conditional expectation of Y is transformed
to a linear function, in other words we have for the conditional probability

π(x,β) = P(Y = 1|X = x) = E(Y |X = x)

log
π(x,β)

1− π(x,β)
= β0 +

p∑
j=1

βjxj = xTβ (2.1)

or equivalently

π(x,β) =
exp(xTβ)

1 + exp(xTβ)

with x = (1, x1, . . . , xp)
T .

Often X is a so-called exposure variable, and one de�nes the odds on
exposure x as

ψ(x) =
π(x,β)

1− π(x,β)

and
logψ(x) = xTβ

9
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2.2. Logistic regression with complete data:

A short summary

are the log odds. For x1 and x2 with x2j = x1j for j = 1, . . . , p, j ̸= k the
odds ratio and the log odds ratio is given by

ψ(x1)

ψ(x2)
= exp((x1k − x2k)βk) log

ψ(x1)

ψ(x2)
= (x1k − x2k)βk,

respectively. Thus, for x1k = 0 and x2k = 1 we get

βk = log
ψ(x1)

ψ(x2)
.

We will consider a case-cohort sampling scheme. In a case-cohort study one
selects at the beginning of the study a subcohort which is a simple sample
of the entire cohort. The covariates are measured only for this random
subcohort and for all cases�cases are all members of the cohort developing
the event of interest during the follow-up. This sampling design allows the
estimation of the odds and of the conditional probabilities π(x).
Notice that this sampling scheme di�ers from case-control studies. A
case-control study takes sampling separately from cases (individuals who
developed the disease) and controls (individuals without disease). The
previous exposure of both cases and controls are determined. Here odds
ratios can be estimated, however the probability π(x) cannot be estimated.

2.2 Logistic regression with complete data:

A short summary

2.2.1 Logistic regression model

Suppose that we observe i.i.d. random variables (Yi,X i), i = 1, . . . , n.
Usually in logistic models the distribution of the covariates is not speci�ed.
The likelihood approach is based on the conditional distribution of the
response, given X = x. Since Y |X = x is distributed according to Bernoulli
distribution with parameter π(x) the likelihood function has the following
form:

L(β) =
n∏

i=1

(
π(xi,β)

Yi (1− π(xi,β))
1−Yi

)
,
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and the log likelihood function by

ℓ(β) =
n∑

i=1

log
(
π(xi,β)

Yi (1− π(xi,β))
1−Yi

)
=

n∑
i=1

p∑
j=0

Yi xijβj −
n∑

i=1

log(1 + exp(

p∑
j=0

xijβj)).

The estimator β̂n is the solution of the score equations

uj(β) = 0 j = 0, . . . , p (2.2)

with

uj(β) =
∂ℓ(β)

∂βj
=

n∑
i=1

xij (Yi − π(xi,β)) .

Note that in general (2.2) has no explicit solution and a numeric procedure

is necessary to determine the value of β̂n.
The asymptotic properties of this estimator follow from the general theory
of asymptotic properties of maximum likelihood estimators in GLM. Under
weak regularity conditions β̂n is consistent and asymptotically normal. Based
on this result, the Wald test, the likelihood-ratio test and the score test for
testing hypotheses of the coe�cients βj can be derived. For later reference
we will give here the conditional Fisher information matrix. This matrix can
be used for the iterative computation of the estimator; moreover, replacing
the unknown β in In, estimates for the standard errors of the coe�cients are
derived by inverting the estimated Fisher information.

The elements of the conditional observed information matrix are equal to the
conditional information matrix; they are given by

In rs(β) = − ∂2ℓ(β)

∂βr ∂βs
r, s = 0, . . . , p

=
n∑

i=1

π(xi,β)(1− π(xi,β))xirxis.

Under the assumption that the matrix n−1In(β) converges in probability to
a positive de�nite matrix, say S(β), we have with Σ = S−1

√
n(β̂n − β)

D−→ N(0,Σ(β)).
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A short summary

2.2.2 Logistic regression and 2× 2 tables

Now, let us consider the following situation. The response Y describes the
occurrence of a disease; we are interested in the dependence of this occurrence
on the presence of a so-called exposure, which is characterized by a variable
X. That is, also the covariate is an indicator. Usually such a problem is
described by a 2× 2 table:

X = 1 X = 0
Y = 1 H11 H10 H1+

Y = 0 H01 H00 H0+

H+1 H+0 n

with
Hjk =

∑
i=1

1(Yi = j,Xi = k).

We introduce the following probabilities

p11 = P(Y = 1, X = 1), p10 = P(Y = 1, X = 0), p01 = P(Y = 0, X = 1)

and
p00 = P(Y = 0, X = 0) with p11 + p10 + p01 + p00 = 1.

The odds are

ψ0 =
P(Y = 1|X = 0)

P(Y = 0|X = 0)
=
p10
p00

ψ1 =
P(Y = 1|X = 1)

P(Y = 0|X = 1)
=
p11
p01

and the odds ratio and its logarithm are given by

λ =
ψ1

ψ0

=
p11p00
p10p01

and
β∗ = log λ = log p11 + log p00 − log p10 − log p01.

In other words, now also the distribution of the covariate is modeled. We
have a multinomial distribution (with three unknown parameters) and we
can derive the maximum likelihood estimators for the pjk's. The likelihood
function is given by

L(p) ∝ pH11
11 pH10

10 pH01
01 (1− p11 − p10 − p01)

H00 ,
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the log likelihood is

ℓ(p) = H11 log p11 +H10 log p10 +H01 log p01 +H00 log(1− p11 − p10 − p01).

It is easy to show that the maximum likelihood estimators (MLE) for the
probabilities are given by

p̂jk n =
Hjk

n

and consequently, λ and β∗ are estimated by

λ̂n =
H11H00

H10H01

β̂∗
n = log

H11H00

H10H01

,

respectively.
The asymptotic properties of λ̂n and β̂∗

n can be derived by using the Fisher
information in the multinomial model or directly by the delta method. We
obtain for the Fisher information included in one observation (Yi, Xi)

i(p) =

 p−1
11 + p−1

00 p−1
00 p−1

00

p−1
00 p−1

10 + p−1
00 p−1

00

p−1
00 p−1

00 p−1
01 + p−1

00

 . (2.3)

It follows that √
n(p̂n − p)

D−→ N3(0, A(p))

with

A(p) = i−1(p) =

 p11(1− p11) −p11p10 −p11p01
−p11p10 p10(1− p10) −p10p01
−p11p01 −p10p01 p01(1− p01)

 .

Let us apply the delta method: Set β∗ = g(p)

and let ∇g be the vector of the partial derivatives of g. By the formula
σ2(p) = ∇g(p)TA(p)∇g(p), one obtains

σ2(p) = p−1
11 + p−1

10 + p−1
01 + p−1

00 .

And by the central limit theorem it follows

√
n(β̂∗

n − β∗)
D−→ N(0, σ2(p)).
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A short summary

It is obvious that the asymptotic variance of β̂∗
n is estimated by its MLE

σ̂2
n/n = H−1

11 +H−1
10 +H−1

01 +H−1
00 . (2.4)

Now, let us consider the 2 × 2 table under the viewpoint of the logistic
regression: We have by (2.1)

π(0,β) =
exp(β0)

1 + exp(β0)
π(1,β) =

exp(β0 + β1)

1 + exp(β0 + β1)
.

The odds ratio has now the form

λ =
π(1,β)

1− π(1,β)

1− π(0,β)

π(0,β)
= exp(β1),

i.e. β∗ = β1.
The score equations for the derivation of the estimators β̂0n and β̂1n have the
form

(1)
∑
i=1
xi=1

(Yi − π(1,β)) +
∑
i=1
xi=0

(Yi − π(0,β))

= H11 −H+1π(1,β) +H10 −H+0π(0,β) = 0 (2.5)

(2)
∑
i=1
xi=1

(Yi − π(1,β)) = H11 −H+1π(1,β) = 0.

By straightforward computations, one can show that

β̂0n = log
H10

H00

and β̂1n = log
H11H00

H10H01

are solutions of (2.5).
Thus, both approaches lead to the same estimator for β∗ = β1. The
conditional observed information matrix is given by In with the elements

In 11(β) = H+0π(0,β)(1− π(0,β)) +H+1π(1,β)(1− π(1,β))

In 12(β) = H+1π(1,β)(1− π(1,β))

In 22(β) = H+1π(1,β)(1− π(1,β))
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and n−1In(β) converges with probability one to the positive de�nite matrix
S(β)

S11(β) = p+0π(0,β)(1− π(0,β)) + p+1π(1,β)(1− π(1,β))

S12(β) = p+1π(1,β)(1− π(1,β)) (2.6)

S22(β) = p+1π(1,β)(1− π(1,β)).

The inverse of S gives the asymptotic variance, and we obtain for the element
of interest

Σ22(β) = σ2(p).

2.3 Estimators in case-cohort models with dis-

crete covariates

Now we study the estimation in the case-cohort model. We begin with the
special case of a 2 × 2 table and translate these results into the notation of
the logistic regression. This we take as a starting point for the investigation
of the inference in logistic regression models with discrete covariates.
Let us describe the selection procedure: The subcohort is selected at random
from the entire cohort. Let us introduce the indicator V , i.e., Vi = 1 if the
individual i is an element of the subcohort, and Vi = 0 otherwise. We assume
that P(Vi = 1) = α. The random variables Vi, Yi and Xi are independent.
As described in the introduction, the covariate X is observed for all
individuals with Yi = 1 and for all individuals in the subcohort.

For example, Cologne et al. (2012) illustrated the initial design of the
immunogenome and cancer case-cohort study using simple random sampling.
Numbers of subjects in the immunogenome study cohort is 4682 and the
subcohort was collected using a sampling fraction of 0.5 to reduce genotyping
e�ort by about one-half while retaining most of the full-cohort power.

In Table 2.1, the number of lung cancer cases and subcohort sizes are
presented. The proportional of numbers of observations is displayed in Figure
2.1. The case-cohort set is the union of cases set and subcohort set, i.e. the
total number of case-cohort observations is 2187.
In this study, they collected covariates as follows: city of residence, gender,
year of birth, smoking frequency, whole-body radiation dose, an indicator of
EGFR gene CA repeat length < 38 and the product of radiation dose and
EGFR CA repeat length indicator (see Cologne et al. (2012)).
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Table 2.1: Numbers of individuals in the immunogenome study cohort and case-

cohort.

Subcohort Non-subcohort Total

Number of lung cancer cases 62 61 123

Number of non-lung cancer cases 2064 2495 4559

Total 2126 2556 4682

Figure 2.1: Conceptual illustration of the immunogenome and cancer case-cohort

design. The proportional of numbers of observations are represented by areas of

di�erent colors.

2.3.1 The maximum likelihood estimator in 2× 2-tables
and their properties

For the binary covariate model the case-cohort design leads to the following
frequency table
with

D1 =
n∑

i=1

YiXi D0 =
n∑

i=1

Yi(1−Xi)

R1 =
n∑

i=1

(1− Yi)XiVi R0 =
n∑

i=1

(1− Yi)(1−Xi)Vi
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Y = 1 Y = 0
X = 1 X = 0 X = 1 X = 0

V = 1 K1 K0 R1 R0 K +R = N0

V = 0 D1 −K1 D0 −K0 n−R−D n− (K +R)
D1 D0 n−D n

K1 =
n∑

i=1

YiXiVi K0 =
n∑

i=1

Yi(1−Xi)Vi

D = D0 +D1, R = R0 +R1, K = K0 +K1, N0 =
n∑

i=1

Vi.

Let us derive the MLE for the probabilities pjk and the parameter β: The
contribution to the likelihood of an individual inside the subcohort is given
by

pYiXiVi
11 p

Yi(1−Xi)Vi

10 p
(1−Yi)XiVi

01 (1− p11 − p10 − p01)
(1−Yi)(1−Xi)Vi

and of an individual not in subcohort

p
YiXi(1−Vi)
11 p

Yi(1−Xi)(1−Vi)
10 (1− p11 − p10)

(1−Yi)(1−Vi).

Thus the likelihood and the log likelihood have the form

L(p11, p10, p01) = pD1
11 p

D0
10 p

R1
01 (1− p11 − p10)

(n−D−R)(1− p11 − p10 − p01)
R0

ℓ(p11, p10, p01) = D1 log p11 + D0 log p10 + R1 log p01

+R0 log(1− p11 − p10 − p01)

+ (n−D −R) log(1− p11 − p10).

The score equalities are

D1

p11
− R0

1− p11 − p10 − p01
− n−D −R

1− p11 − p10
= 0

D0

p10
− R0

1− p11 − p10 − p01
− n−D −R

1− p11 − p10
= 0

R1

p01
− R0

1− p11 − p10 − p01
= 0.
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Notice, for Vi = 1 for all i, we have D1 = H11, D0 = H10, R1 = H01,
R0 = H00 and n = D + R, that is, the equations are the same as in the full
cohort model. Solving these equations leads to following MLE

p̂11n =
D1

n
, p̂10n =

D0

n
, p̂01n =

(n−D)R1

nR
.

and

p̂00n =
(n−D)R0

nR
,

and therefore

λ̂n =
D1R0

D0R1

and β̂∗
n = log λ̂n.

Using another approach, this estimator was proposed by Prentice (1986).

2.3.1.1 Properties of the estimators

Now, let us consider the asymptotic properties of the estimators p̂jkn: For
this aim we derive the Fisher information matrix for one observation triple
(Yi, Xi, Vi). Set p = P(Yi = 0) = 1− p11 − p10, and for simplicity of notation
we write p00 = 1− p11 − p10 − p01. Computing

−E
∂2ℓ(p)

∂p∂pT
/n

we obtain the Fisher information

i(p, α) = p−1
11 + αp−1

00 + (1− α)p−1 αp−1
00 + (1− α)p−1 αp−1

00

αp−1
00 + (1− α)p−1 p−1

10 + αp−1
00 + (1− α)p−1 αp−1

00

αp−1
00 αp−1

00 αp−1
01 + αp−1

00

 .

For α = 1 we obtain the matrix in (2.3).
Based on the information matrix we prove the following theorem on the
asymptotic normality of the estimators p̂n and β̂∗

n:

Theorem 2.1. Under the case-cohort design introduced above the estimators
p̂n and β̂∗

n are consistent and asymptotically normal with

√
n(p̂n − p)

D−→ N3(0, Ã(p, α))
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with

Ã(p, α) = i−1(p, α) = p11(1− p11) −p11p10 −p11p01
−p11p10 p10(1− p10) −p10p01
−p11p01 −p10p01 p−1p01(α

−1p00 + p01(1− p))


and √

n(β̂∗
n − β∗)

D−→ N(0, σ2(p, α))

where

σ2(p, α) =
1

p11
+

1

p10
+

1

α

(
1

p01
+

1

p00

)
.

Proof. Since n−1Dj and n
−1Rj, j = 0, 1 are sums of i.i.d. random variables

the consistency of the estimators follows from the law of large numbers and
the continuous mapping theorem.
The limit statement for the vector of the probabilities, i.e., the computation
of the variance of the limiting distribution, follows by computing the inverse
i−1(p, α). Finally, the application of the delta method gives the limit
distribution of the log odds ratio.

An estimator for the variance in the case-cohort design is given by replacing
σ2(p, α) the unknown probabilities by their MLE. This leads to the following
estimator

σ̂2
n(α)/n =

1

D1

+
1

D0

+
1

α

R2

(n−D)R1R0

. (2.7)

Note that in the case Vi = 1 for all i and α = 1 this estimator coincides with
estimator (2.4). Furthermore, this estimator is consistent.
Prentice (1986) proposed also an estimator for the asymptotic variance in
the 2× 2 table model. This estimator has the following form:

σ̂2
nprent/n =

1

D1

+
1

D0

+
1

R1

+
1

R0

.

Prentice does not give an expression for the asymptotic variance. It is not
di�cult to see that the Prentice estimator is also consistent, however it is
not the MLE.



20 2.3. Estimators in case-cohort models with discrete covariates

In Section (2.3.1.2) we compare both estimators by simulations.

We conclude this section with the investigation of the case-cohort design
under the logistic regression aspect. To handle the missing observations of
the covariates outside the subcohort for the response Yi = 0 we will make an
assumption about the distribution of the Xi. We assume

P(Xi = 1) = f1 := f P(Xi = 0) = f0 = 1− f.

The likelihood function is

L(β, f) =
n∏

i=1

π(Xi,β)
YifYi

Xi
(1− π(Xi,β))

(1−Yi)Vif
(1−Yi)Vi

Xi
p(β, f)(1−Yi)(1−Vi)

with

p(β, f) = P(Yi = 0) = f(1− π(1,β)) + (1− f)(1− π(0,β)).

and the log likelihood function

ℓ(β, f)

=
n∑

i=1

[
YiXi log π(1,β) + Yi(1−Xi) log π(0,β)

+ YiXi log f + Yi(1−Xi) log(1− f)

+ Vi(1− Yi)Xi log(1− π(1,β)) + Vi(1− Yi)(1−Xi) log(1− π(0,β))

+ Vi(1− Yi)Xi log f + Vi(1− Yi)(1−Xi) log(1− f)

+ (1− Yi)(1− Vi) log (f(1− π(1,β)) + (1− f)(1− π(0,β)))
]

=D1 log π(1,β) +D0 log π(0,β)

+D1 log f +D0 log(1− f)

+R1 log(1− π(1,β)) +R0 log(1− π(0,β))

+R1 log f +R0 log(1− f)

+ (n−D −R) log (f(1− π(1,β)) + (1− f)(1− π(0,β))) . (2.8)

The score equations are given by

uj(β, f) = 0 j = 1, 2, 3
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with

u1(β, f) =D1 − (D1 +R1)π(1,β) +D0 − (D0 +R0)π(0,β)

− (n−D−R)fπ(1,β)(1− π(1,β)) + (1− f)π(0,β)(1− π(0,β))

p(β, f)

u2(β, f) =D1 − (D1 +R1)π(1,β)− (n−D −R)
f(1− π(1,β))π(1,β)

p(β, f)

u3(β, f) =
D1 +R1

f
− D0 +R0

1− f
+ (n−D −R)

π(0,β)− π(1,β)

p(β, f)
.

Note, for Vi = 1 for all i, D1 = H11 D1 + R1 = H+1 and n − D − R = 0.
Thus, the �rst two equations are equations (2.5).
Solving the likelihood equation for β0, β

∗ and f leads via the estimators

π̂(1,β) =
D1R

D1R + (n−D)R1

and π̂(0,β) =
D0R

D0R + (n−D)R0

to

β̂∗
n = log

D1R0

D0R1

, β̂0n =
D0R

(n−D)R0

and

f̂n =
D1R + (n−D)R1

nR
.

By taking into account the distribution of the covariates in the likelihood,
we obtain the same results as in the binary model.

2.3.1.2 Simulations

We carry out simulation studies to assess the quality of the estimator
depending on the value α and to compare the proposed variance estimator of
the estimator β̂∗

n as (2.7) with the theoretic value and the Prentice estimator.
We �x the parameter p11 = 0.2, p10 = 0.4 and p01 = 0.2, that is we have the
true value

β∗ = log λ = log(
p11p00
p01p10

) = −0.6931472.

For each con�guration, we simulated 3000 full cohort samples with sample
size n = 500 objects corresponding to the parameters p11, p10 and p01, we have
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a multinomial model with 4 outcomes. It follows that the disease state were
generated corresponding to a binary covariate. Moreover, device whether an
individual is an element of the subcohort, we generate the indicator V based
on P (V = 1) = α.

In this section, we �rst compare the performance of estimators for several
di�erent values of α with real value β∗. Table 2.2 presents the simulated
estimates results of β∗ of subcohort for 4 di�erent values of α (α = 0.2, 0.5, 0.7
and 0.9). Furthermore, Figure 2.2 and 2.3 show the estimate of β∗ in full
cohort and subcohort based on α compare with the real parameter β∗(red
line), respectively. As shown in Table 2.2, Figure 2.2 and 2.3, the estimates
spread around the true value for several values of α. These results show that
the estimates of β∗ is reliable.

Table 2.2: Simulation summary statistics for estimation under case-cohort design

with di�erent values of α.

α Mean(β̂∗
n) SD(β̂∗

n)

0.2 -0.6959494 0.3475209

0.5 -0.6974123 0.2362503

0.7 -0.6906599 0.2139101

0.9 -0.6939503 0.1971865

Figure 2.2: Histogram of β∗ estimates in full cohort.
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Figure 2.3: Histogram of β∗ estimates under the case-cohort design.
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(b) α = 0.5
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(c) α = 0.7
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(d) α = 0.9

Next, we compare the performance of the proposed estimator and the
Prentice estimator. The performance of both variance estimators are assessed
via the mean square error (MSE),

MSE = Bias2 + Variance.

Under the case-cohort design, we have by Theorem 2.1 asymptotic variance
of β̂∗

n as

σ2(p, α)/n = (np11)
−1 + (np10)

−1 +
1

nα

p01 + p00
p01p00

.

The both estimator results are demonstrated in Table 2.3. The empirical bias
and the empirical variance of the variance estimates are shown for di�erent
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values of α. Table 2.3 shows, as expected, that the proposed estimator for
variance of the estimator based on the maximum likelihood estimator gives
lower empirical bias and empirical variance than the estimator based on the
Prentice's estimator.

Table 2.3: The variance estimator of case cohort based on α.

α σ2(p, α)/n Estimator Bias Variance MSE

0.2 0.115 Prentice 0.0049125590 0.00030782510 0.0003319583
MLE 0.0032557290 0.00005094680 0.0000061547

0.5 0.055 Prentice 0.0008067732 0.00001278035 0.0000134312
MLE 0.0006553818 0.00000380526 0.0000042348

0.7 0.044 Prentice 0.0004971469 0.00000356768 0.0000038148
MLE 0.0004130448 0.00000166494 0.0000018355

0.9 0.037 Prentice 0.0003356457 0.00000122481 0.0000013375
MLE 0.0003012373 0.00000093929 0.0000010300

2.3.2 The maximum likelihood estimator in logistic

regression with discrete covariates

Now we consider the logistic regression model with a one-dimensional discrete
covariate taking m values ξ1, . . . , ξm with

fj = P(Xi = ξj) j = 1, . . . ,m
m∑
j=1

fj = 1.

Since the fj's are unknown we have a model with 2 + m − 1 parameters.
Generalizing the approach from the previous section, we obtain as likelihood
function

L(β, f) =
n∏

i=1

Li(β,f ;Yi, Xi, Vi)

=
n∏

i=1

π(Xi,β)
YifYi

Xi
(1− π(Xi,β))

(1−Yi)Vif
(1−Yi)Vi

Xi
p(β,f)(1−Yi)(1−Vi)

with Xi taking values in {ξ1, . . . , ξm} and

p(β,f) =
m∑
j=1

(1− π(ξj,β))fj.
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The log likelihood function is

ℓ(β,f) =
m∑
j=1

{
Dj log π(ξj,β) +Rj log(1− π(ξj,β))

+(Dj +Rj) log fj + (n−D −R) log p(β,f)
}
.

with

Dj =
n∑

i=1

Yi1(Xi = ξj) and Rj =
n∑

i=1

(1− Yi)Vi1(Xi = ξj).

The elements of the score vectors are given by

u1(β,f) =
m∑
j=1

Dj −
m∑
j=1

(Dj +Rj)π(ξj,β) +
n−D −R

p(β,f)
pβ0(β,f)

u2(β,f) =
m∑
j=1

Djξj −
m∑
j=1

(Dj +Rj)π(ξj,β)ξj +
n−D −R

p(β,f)
pβ1(β,f)

uk(β,f) =
Dk−2 +Rk−2

fk−2

− Dm +Rm

1−
∑m−1

s=1 fs
+
n−D −R

p(β,f)
pfk−2

(β,f),

k = 3, . . . ,m+ 1

where

pβ0(β,f) =
∂p(β,f)

∂β0
= −

m∑
j=1

π(ξj,β)(1− π(ξj,β))fj

pβ1(β,f) =
∂p(β,f)

∂β1
= −

m∑
j=1

π(ξj,β)(1− π(ξj,β))ξjfj

pfk−2
(β,f) =

∂p(β,f)

∂fk−2

= π(ξm,β)− π(ξk−2,β).

The maximum likelihood estimators β̂n and f̂n are the solution of

us(β,f) = 0 s = 1, . . . ,m+ 1.

Example 1. Now, to demonstrate the estimation procedure, let us consider
the logistic regression model with a one-dimensional discrete covariate taking
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3 di�erent values of covariate ξ1, ξ2, ξ3. The log likelihood function can be
derived by

ℓ(β,f) =
3∑

j=1

{
Dj log π(ξj,β) +Rj log(1− π(ξj,β))

+(Dj +Rj) log fj + (n−D −R) log p(β,f)
}
.

The elements of the score vectors are given by

u1(β,f) =D1(1− π(ξ1,β)) +D2(1− π(ξ2,β)) +D3(1− π(ξ3,β))

−R1π(ξ1,β)−R2π(ξ2,β)−R3π(ξ3,β) +
n−D −R

p(β,f)
pβ0(β,f)

u2(β,f) =D1ξ1(1− π(ξ1,β)) +D2ξ2(1− π(ξ2,β)) +D3ξ3(1− π(ξ3,β))

−R1ξ1π(ξ1,β)−R2ξ2π(ξ2,β)−R3ξ3π(ξ3,β)+
n−D −R

p(β,f)
pβ1(β,f)

u3(β,f) =
D1 +R1

f1
− D3 +R3

f3
+
n−D −R

p(β,f)
(π(ξ3,β)− π(ξ1,β))

u4(β,f) =
D2 +R2

f2
− D3 +R3

f3
+
n−D −R

p(β,f)
(π(ξ3,β)− π(ξ2,β))

Figure 2.4 shows the function π(x) with several x under β0 = −3 and
β1 = 1.5.

For illustration, we consider 3 di�erent values of covariate (ξ1 = 2, ξ2 =
3, ξ3 = 4) and �x β0 = −3 and β1 = 1.5. We generate full cohort samples
with sample size n = 1000 objects corresponding to the parameters f1, f2
and f3, therefore we have a multinomial model with 3 outcomes. We further
generate the indicator V based on P (V = 1) = α for the individuals of
subcohort.
We calculate the average and standard deviation of estimates based on
500 repeated samples. Then, the maximum likelihood estimates results are
summarized in Table 2.4 under several fj = P(Xi = ξj), j = 1, . . . , 3. The
results show that the estimate values are around the true values for several
probabilities fj and di�erent values of α.
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Figure 2.4: The plot of function π(x) under β0 = −3 and β1 = 1.5 with several x.
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Table 2.4: The estimates results of logistic regression with 3 di�erent values of

covariate.

α f1, f2 Mean(β̂0)(SD) Mean(β̂1)(SD) Mean(f̂1)(SD) Mean(f̂2)(SD)
0.2 0.3333, 0.3333 -3.0617(0.6689) 1.5298(0.2759) 0.3340(0.0216) 0.3330(0.0191)

0.2, 0.4 -3.0561(0.7058) 1.5278(0.2693) 0.2017(0.0192) 0.3994(0.0181)
0.4, 0.2 -3.0876(0.6669) 1.5442(0.2911) 0.3993(0.0202) 0.2012(0.0144)
0.4, 0.4 -3.0848(0.6242) 1.5414(0.2644) 0.4019(0.0220) 0.3983(0.0196)
0.2, 0.3 -3.0688(0.6949) 1.5331(0.2643) 0.2018(0.0188) 0.2987(0.0163)
0.3, 0.2 -3.0781(0.6225) 1.5371(0.2557) 0.3011(0.0192) 0.1988(0.0142)
0.5, 0.3 -3.0386(0.6564) 1.5255(0.2911) 0.5009(0.0218) 0.2992(0.0184)
0.3, 0.5 -3.0859(0.7289) 1.5403(0.2957) 0.3017(0.0220) 0.4983(0.0211)
0.2, 0.5 -3.0403(0.7092) 1.5210(0.2690) 0.2015(0.0189) 0.4984(0.0190)
0.5, 0.2 -3.0968(0.6887) 1.5523(0.3085) 0.5020(0.0203) 0.1984(0.0150)

0.5 0.3333, 0.3333 -3.0185(0.4375) 1.5084(0.1750) 0.3334(0.0177) 0.3339(0.0173)
0.2, 0.4 -3.0198(0.4616) 1.5102(0.1715) 0.2008(0.0151) 0.4004(0.0168)
0.4, 0.2 -3.0433(0.4103) 1.5217(0.1699) 0.4009(0.0170) 0.1995(0.0132)
0.4, 0.4 -3.0130(0.4239) 1.5081(0.1727) 0.4005(0.0174) 0.3996(0.0167)
0.2, 0.3 -3.0228(0.4490) 1.5113(0.1650) 0.2009(0.0151) 0.2995(0.0155)
0.3, 0.2 -3.0331(0.4135) 1.5150(0.1617) 0.3006(0.0163) 0.1993(0.0130)
0.5, 0.3 -2.9919(0.4189) 1.5019(0.1795) 0.5007(0.0178) 0.2996(0.0158)
0.3, 0.5 -3.0414(0.4628) 1.5186(0.1813) 0.3008(0.0172) 0.4994(0.0176)
0.2, 0.5 -3.0091(0.4783) 1.5059(0.1788) 0.2006(0.0149) 0.4994(0.0170)
0.5, 0.2 -3.0076(0.4095) 1.5088(0.1755) 0.5011(0.0173) 0.1993(0.0138)

0.7 0.3333, 0.3333 -3.0380(0.3920) 1.5160(0.1557) 0.3338(0.0170) 0.3338(0.0169)
0.2, 0.4 -2.9850(0.4024) 1.4961(0.1447) 0.2004(0.0138) 0.4005(0.0163)
0.4, 0.2 -3.0118(0.3468) 1.5071(0.1383) 0.4003(0.0156) 0.2000(0.0130)
0.4, 0.4 -2.9977(0.3887) 1.5011(0.1552) 0.4002(0.0159) 0.3998(0.0157)
0.2, 0.3 -2.9879(0.3815) 1.4970(0.1355) 0.2004(0.0137) 0.2996(0.0148)
0.3, 0.2 -3.0216(0.3533) 1.5094(0.1337) 0.3004(0.0157) 0.1997(0.0129)
0.5, 0.3 -3.0169(0.3415) 1.5125(0.1443) 0.5016(0.0170) 0.2992(0.0149)
0.3, 0.5 -3.0166(0.3937) 1.5078(0.1499) 0.3002(0.0160) 0.4999(0.0164)
0.2, 0.5 -3.0068(0.4286) 1.5045(0.1576) 0.2004(0.0138) 0.4997(0.0165)
0.5, 0.2 -3.0049(0.3476) 1.5072(0.1474) 0.5013(0.0171) 0.1992(0.0136)
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Jn 11 =
m∑
j=1

(Dj +Rj)π(ξj,β)(1− π(ξj,β))

−n−D −R

p(β,f)

(
pβ0β0(β,f)−

p2β0
(β,f)

p(β,f)

)
Jn 12 =

m∑
j=1

(Dj +Rj)π(ξj,β)(1− π(ξj,β))ξj

−n−D −R

p(β,f)

(
pβ0β1(β,f)−

pβ0(β,f)pβ1(β,f)

p(β,f)

)
Jn 22 =

m∑
j=1

(Dj +Rj)π(ξj,β)(1− π(ξj,β))ξ
2
j

−n−D −R

p(β,f)

(
pβ1β1(β,f)−

p2β1
(β,f)

p(β,f)

)
Jn jk = −n−D −R

p(β,f)

(
pβj−1fk−2

(β,f)−
pβj−1

(β,f)pfk−2
(β,f)

p(β,f)

)
j = 1, 2 k = 3, . . . ,m+ 1

Jnkk =
Dk−2 +Rk−2

f 2
k−2

+
Dm +Rm

f 2
m

−n−D −R

p(β,f)

(
pfk−2fk−2

(β,f)−
p2fk−2

(β,f)

p(β,f)

)
k = 3, . . . ,m+ 1

Jnkl =
Dm +Rm

f 2
m

−n−D −R

p(β,f)

(
pfk−2fl−2

(β,f)−
pfk−2

(β,f)pfl−2
(β,f)

p(β,f)

)
k, l = 3, . . . ,m+ 1, l ̸= k.

The expectation of Jn(β,f) is the Fisher information In(β,f), the Fisher
information with respect to one observation is

i(β,f) = In(β,f)/n
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and has the elements

i11(β,f) =
m∑
j=1

π2(ξj,β)(1− π(ξj,β))fj + απ(ξj,β)(1− π(ξj,β))
2fj

−(1− α)

(
pβ0β0(β,f)−

p2β0
(β,f)

p(β,f)

)
i12(β,f) =

m∑
j=1

π2(ξj,β)(1− π(ξj,β))ξjfj + απ(ξj,β)(1− π(ξj,β))
2ξjfj

−(1− α)

(
pβ0β1(β,f)−

pβ0(β,f)pβ1(β,f)

p(β,f)

)
i22(β,f) =

m∑
j=1

π2(ξj,β)(1− π(ξj,β))ξ
2
j fj + απ(ξj,β)(1− π(ξj,β))

2ξ2j fj

−(1− α)

(
pβ1β1(β,f)−

p2β1
(β,f)

p(β,f)

)
ijk(β,f) = −(1− α)

(
pβj−1fk−2

(β,f)−
pβj−1

(β,f)pfk−2
(β,f)

p(β,f)

)
j = 1, 2 k = 3, . . . ,m+ 1

ikk(β,f) =
π(ξk−2,β) + α(1− π(ξk−2,β))

fk−2

+
π(ξm,β) + α(1− π(ξm,β))

fm

−(1− α)

(
pfk−2fk−2

(β,f)−
p2fk−2

(β,f)

p(β,f)

)
k = 3, . . . ,m+ 1

ikl(β,f) = +
π(ξm,β) + α(1− π(ξm,β))

fm

−(1− α)

(
pfk−2fl−2

(β,f)−
pfk−2

(β,f)pfl−2
(β,f)

p(β,f)

)
k, l = 3, . . . ,m+ 1, l ̸= k.

We assume:

A1) The matrices Jn(β,f) and i(β,f) are positive de�nite.

A2) The matrix n−1Jn(β,f) converges (in probability) to the Fisher infor-
mation matrix i(β,f).
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Theorem 2.2. For the MLE in the logistic regression under case-cohort
design we have

√
n

[(
β̂n

f̂n

)
−
(

β
f

)]
D−→ Nm+1(0, C(β,f))

where C(β,f) = [i(β,f)]−1.
Moreover, √

n(β̂n − β)
D−→ N2(0,Σ(β,f))

with Σjk = Cjk for j, k = 1, 2.

Proof. Using E(n−D −R) = nP(Y = 0)(1− α) and

EDj = nπ(ξj,β)fj and ERj = nα(1− π(ξj,β))fj

straightforward computations give

Euk(β,f) = 0.

The central limit theorem can be applied to sums of the form

m∑
j=1

Dj =
n∑

i=1

Yi

m∑
j=1

1(Xi = ξj),
m∑
j=1

Djξj =
n∑

i=1

Yi

m∑
j=1

1(Xi = ξj)ξj and

m∑
j=1

Rj =
n∑

i=1

(1− Yi)Vi

m∑
j=1

1(Xi = ξj).

It follows that the score vector is asymptotically normal. The elements of
the variance matrix are given by

1

n
Cov (uk(β,f), ur(β,f)) k, r = 1, . . . ,m+ 1.

Since the underlying distribution ful�lls the usual regularity conditions, these
elements are the elements of the Fisher matrix i(β,f). Thus, we have

n−1/2un(β,f)
D−→ Nm+1(0, i(β,f)).



Chapter 2. Logistic Regression under Case-Cohort Design 31

Here un denotes the score vector. As in the standard maximum likelihood
theory, the estimators behave asymptotically as In(β,f)

−1un(β,f).

√
n

[(
β̂n

f̂n

)
−
(

β
f

)]
≈

√
nIn(β,f)

−1un(β,f) (2.9)

= n−1/2(i(β,f)−1un(β,f))
D−→ Nm+1(0, i(β,f)

−1).

To justify (2.9) one has to show that the estimators are consistent. Consis-
tency is a consequence of the following: The assumptions A1 and A2 imply
that the log likelihood function has a unique maximum. The maximizer con-
verges almost surely to the unique maximizer of the limit ELi(β,f ;Vi, Xi, Vi),
where the expectation is taken under the true parameter.

Remark Let us consider the Fisher information matrix i(β,f) for the full
cohort, that is for the case α = 1:

i11(β,f) =

m∑
j=1

π(ξj ,β)(1− π(ξj ,β))fj , i12(β,f) =

m∑
j=1

π(ξj ,β)(1− π(ξj ,β))ξjfj ,

i22(β,f) =

m∑
j=1

π(ξj ,β)(1− π(ξj ,β))ξ
2
j fj , ijk(β,f) = 0 j = 1, 2 k = 3, . . . ,m+ 1,

ikk(β,f) =
1

fk−2
+

1

fm
k = 3, . . . ,m+ 1, ikl =

1

fm
k, l = 3, . . . ,m+ 1, l ̸= k.

We see that this matrix consists of two parts, the upper left 2× 2 matrix is
the generalization of the matrix (2.6). The lower (m− 1)× (m− 1) matrix
is an information matrix in a multinomial model as in (2.3).

Corollary 2.3. Because of continuity Jn(β,f)/n is a consistent estimator of
i(β,f), and its inverse for Σ(β,f). Replacing now the unknown parameters
by the MLE we obtain the following consistent estimator for the standard
errors of the estimator β̂n:

se2(β̂0n) = J11
n (β̂n, f̂n) se2(β̂1n) = J22

n (β̂n, f̂n).

Here J jk
n denotes the Element (j, k) of the inverse of the matrix Jn.
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Example 2. In this example, we further investigate the comparison between
theoretical values and simulation results for the asymptotic variance of
parameter estimates in the model with a one-dimensional discrete covariate
taking the same values as in Example 1.
By the underlying values, we �rst compute the Fisher information matrix
i(β,f) and the values of Σ(β,f) can be calculated simply by taking the
inverse of this matrix. Thus, we divide the matrix Σ(β,f) by n and take
square root of them.
Table 2.5 illustrates the theoretical values and the simulation values for 3
di�erent values of α with several probabilities f1 and f2. The simulation
values of the variance obtained by Example 1 are in good agreement with
the theoretical values. There are a slightly di�erence between the theoretical
values and simulation values in every cases.
Moreover, we can see that the variance will be smaller, for the larger α.
In other words, as the number of individual in subcohort grows larger, the
variance becomes smaller.

Table 2.5: The theoretical values and the simulation values of the asymptotic

variance with di�erent values of α, f1 and f2.

α = 0.2 α = 0.5 α = 0.7
f1 = 0.4, f2 = 0.4 f1 = 0.3333, f2 = 0.3333 f1 = 0.4, f2 = 0.2

Theoretical Simulation Theoretical Simulation Theoretical Simulation

β̂0 0.6017 0.6242 0.4092 0.4375 0.3379 0.3468

β̂1 0.2525 0.2644 0.1620 0.1750 0.1361 0.1383

f̂1 0.0202 0.0220 0.0162 0.0177 0.0161 0.0156

f̂2 0.0178 0.0196 0.0152 0.0173 0.0128 0.0130



Chapter 3

Cox Models and their extensions:

Survey of approaches and results

In survival analysis, we consider the time from an initiating event to an event
of interest. We denote this time by T̃ . Usually, it is called �survival time� or
�lifetime�. The big di�erence compared to other statistical investigations is
that one has to wait for the occurrence of events � so when the study ends
the event of interest has occurred for some individuals but possible not for
all. This situation is described by censoring.
As written in the introduction, we will investigate the e�ect of covariates X
on the survival time. One of the most popular model is the Cox model. The
�rst section of this chapter will summarize the notations and concepts of this
model.

3.1 Introduction

We denote the conditional survival function of the continuous random
variable T̃ given the covariate X takes the values x by

S(t|x) = P(T̃ > t|X = x).

The hazard rate is de�ned by

λ(t|x) = lim
△t↓0

1

△t
P(t ≤ T̃ < t+△t|T̃ ≥ t,X = x). (3.1)

33
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As mentioned above, right-censoring is inevitable in most survival studies.
In general, we observe instead of copies of the time T̃ i.i.d. Ti = min(T̃i, Ci)
and

∆i = 1(T̃i ≤ Ci) =

{
1, T̃i ≤ Ci

0, T̃i > Ci

where Ci are i.i.d. so-called censoring variables. We assume non-informative
censoring, i.e. the probability of individuals who drop out of the study should
be unrelated to the probability of having the event (conditional on values of
the covariates X). In other words, time to event and time to censoring are
statistically independent on the level of covariates.
We further observe the covariates X as random variables. Methods for
estimation and testing in models with �xed covariates are the same, however
for the study of their properties one has to take into account the di�erence
between �xed and random X.

In the Cox model, the data consists of independent and identically distributed
copies (Ti,∆i,X i), i = 1, . . . , n of (T,∆,X).

3.2 The Cox model (Proportional hazards

model)

The Cox proportional hazards model or Cox model was introduced by Cox
(1972), it is the most popular model for analyzing survival data. This model
relates an individual subject's hazard function where the e�ect of covariates
are modeled on multiplicative scale and the ratio of the hazards for di�erent
individuals is constant over the time.
The Cox model assumes the following form (Cox 1972):

λ(t|x) = λ0(t) exp(β
Tx) (3.2)

where exp(βTx) = exp(β1x1+ . . .+βpxp) is a hazard ratio, λ0 is an unknown
baseline hazard function (the hazard function for an individual with x = 0)
and β ∈ Rp is an unknown parameter to be estimated.
The Cox model (3.2) is often called a proportional hazards model (PH model)
because the ratio of hazard rate for any two sets of covariates x and x∗ is

λ(t|x)
λ(t|x∗)

=
λ0(t) exp(β

Tx)

λ0(t) exp(β
Tx∗)

= exp(βT (x− x∗)), for all t ≥ 0
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which is a constant over time (so the name of proportional hazards model)
and we call this ratio the risk ratio or relative risk.
In particular, if X1 is a treatment indicator (X1 = 1 if treatment and X1 = 0
if placebo) and all other covariates have to be �xed the same value, then
the relative risk (hazard ratio) is the ratio λ(t|x)/λ(t|x∗) = exp(β1) which
is the risk of getting the event for the individual have received the treatment
relative to the risk of getting the event for the individual who have received
the placebo.

With the hazard rate (3.1), we obtain the survival function S

S(t|x) = exp
(
−
∫ t

0

λ(u|x)du
)

= exp
(
−
∫ t

0

λ0(u) exp (β
Tx)du

)
= exp

(
− Λ0(t) exp (β

Tx)
)

(3.3)

= S0(t)
exp (βTx)

where S0 is the survival function corresponding to the baseline distribution
and Λ0(t) =

∫ t

0
λ0(s)ds is a cumulative hazard function.

If one chooses a parametric baseline distribution the model (3.2) is a
parametric model; the parameter can be estimated in the usual way by
the maximum likelihood (ML) method. If we do not specify the baseline
distribution, (3.2) describes a semiparametric model. For this situation, Cox
proposed the so-called partial likelihood. The term partial likelihood is used
because the likelihood formula considers probabilities only for those subjects
who fail and does not explicitly consider probabilities for those subjects
who are censored. Thus, the likelihood for Cox model does not consider
probability for all subjects, and so it is called a �partial likelihood�. This will
be introduced in Section 3.2.1, where we also outline the estimator and its
properties.

3.2.1 Partial likelihood estimator and its properties

Let us present the partial likelihood approach. The observed ordered
lifetimes are denoted by T(j), j = 1, . . . , d where d is the number of observed
(uncensored) lifetimes. We start with the presentation of the partial
likelihood method as it was introduced by D. R. Cox and we assume that
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all lifetimes are distinct, in other words there are no ties, and we have
T(1) < T(2) < . . . < T(d).

Remark 3.1. Many authors provided an alternate partial likelihoods for ties
between event times; see Breslow (1974), Efron (1977) and Cox (1972).

De�ne the risk set R(t) at time t as the set of subjects alive and under
observation at time t−, immediately prior to t:

R(t) = {i : Ti ≥ t}.

For the de�nition of the estimator we need only the risk set at the lifetimes
T(j), however it is de�ned for all t.
The partial likelihood, based on the hazard function (3.2) as de�ned by Cox,
is given by

Ln(β) =
d∏

j=1

exp(βTX(j))∑
i∈R(T(j))

exp(βTX i)
(3.4)

where X(j) denotes the covariate associated with the individual whose
lifetime is T(j).
Cox suggested treating the partial likelihood as a regular likelihood function
and making inference on β0 accordingly. The notation β0 denotes the true
value of β. We subsequently obtain the estimate of β0, often called maximum
partial likelihood estimate (MPLE) by maximizing the partial likelihood.
Let ℓn(β) = logLn(β). We obtain

ℓn(β) =
d∑

j=1

[
βTX(j) − log

{ ∑
i∈R(T(j))

exp(βTX i)
}]
.

The MPLE β̂n is the solution of the system of score equations

Unk(β) = 0, k = 1, ..., p (3.5)

where

Unk(β) =
∂ℓn(β)

∂βk
=

d∑
j=1

[
X(j)k −

∑
i∈R(T(j))

X ik exp(β
TX i)∑

i∈R(T(j))

exp(βTX i)

]
,
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i.e.

Un(β) =
d∑

j=1

[
X(j) −

∑
i∈R(T(j))

X i exp(β
TX i)∑

i∈R(T(j))

exp(βTX i)

]
. (3.6)

Although the estimator β̂n is not a maximum likelihood estimator methods

from the MLE-theory, can be used to show that β̂n is a consistent and
asymptotically normal estimator. Since these properties are a special case
of a more general statement proved by Andersen et al. (1993) the exact
formulation of the assumptions will be postponed to the next section where
the extension of the classical Cox model is considered.
To present the limit theorem, let us derive the observed Fisher information
as the negative of the second derivative of the log partial likelihood function.

It is denoted by In(β) and has the elements Ingk(β) = −∂
2ℓn(β)

∂βk∂βg
:

In(β) =
d∑

j=1

[ ∑
i∈R(T(j))

X⊗2
i exp(βTX i)∑

i∈R(T(j))

exp(βTX i)
−

{ ∑
i∈R(T(j))

X i exp(β
TX i)∑

i∈R(T(j))

exp(βTX i)

}⊗2]

with X⊗2 := XXT . The regularly conditions include the assumption that
n−1In(β) is non-singular and converges (in probability) to a positive de�nite
matrix Σ. The limit statements have then the following form: The estimator
is consistent

β̂n
P−→ β0, as n→ ∞

and score vector is asymptotically normal

n−1/2Un(β0)
D−→ N(0,Σ).

From Taylor expansion of the score function around β0, we get

0 = Un(β̂n) = Un(β0)− In(β
∗)(β̂n − β0)

where β∗ is on the line segment between β̂n and β0. Then, we obtain

n1/2(β̂n − β0) = (n−1In(β
∗))−1n−1/2Un(β0) ≈ Σ−1n−1/2Un(β0) (3.7)
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and it follows that

n1/2(β̂n − β0)
D−→ N(0,Σ−1) (3.8)

where Σ = plimn→∞ n−1In(β0).

Since β̂n is the consistent estimator and In is continuous, n−1In(β̂n) is a
consistent estimator of Σ.

There are three main procedures for testing hypotheses about the regression
parameter β0. The �rst test is the usual test based on the asymptotic
normality of MPLE, referred to as Wald's test.
A test statistic of the hypothesis H : β0 = βH is

χ2
W = (β̂n − βH)

T In(β̂n)(β̂n − βH)

which has a Chi-squared distribution with p degrees of freedom for large
samples sizes if H is true .
The likelihood ratio test uses

χ2
LR = 2[ℓ(β̂n)− ℓ(βH)]

which has a large-sample Chi-squared distribution with p degrees of freedom
under H.
The score test is based on the scores, Un(β) = (U1(β), ..., Up(β))

T ,

χ2
SC = UT

n (βH)I
−1
n (βH)Un(βH)

which is asymptotically Chi-squared distributed with p degrees of freedom
for large n under the null hypothesis.

3.3 The Cox model with time-dependent co-

variates

In the Cox model (3.2), the covariates are recorded at the beginning of a
study, i.e. values will be �xed throughout the course of the study. In many
survival studies, perhaps there are other important covariates whose values
change during the period of the study. The covariates which change over time
are called time-dependent covariates, e.g, smoking status, blood pressure,
cholesterol, size of the tumor.
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We denote a vector of such covariates, which for the ith individual in the
sample by X i(t) = (Xi1(t), . . . , Xip(t))

T , corresponding to the value of these
covariates at time t. For time-dependent covariates, we assume that their
value is predictable in the sense that the value of the covariate is known at
an instant just prior to time t.

The Cox model can be extended to include time-dependent covariates

λ(t;x) = λ0(t) exp(β
Tx(t)). (3.9)

Two types of time-dependent covariates are distinguished by Kalb�eisch and
Prentice (2002).

The �rst are �external� or �ancillary� time-dependent covariates whose change
in a known way. Non-time dependent covariates considered in the previous
section are also external; X(t) is generated externally if it is given at the
begin of the study, for example if it is of the form X(t) = X · g(t), where
g is a given function. Another type of external covariates are those which
are not in�uenced by the occurrence of the event under study, examples are
levels of air pollution, daily temperature as a predictor of survival from a
heart attack, etc.

The second type of time-dependent covariates are internal covariates. An
�internal� time-dependent covariate is that the change of the covariate over
time relates to the characteristics or the behavior of the individual. For
example, blood pressure, white blood cell count, cigarette smoking status,
disease complications, etc.

The most simple time-dependent covariate is a binary variable that is allowed
to change once during follow-up. For example, Andersen and Gill (1982)
studied the Cox model with the time-dependent covariate:

X(t) =


1 if women i has been resident in a psychiatric hospital

during the month [t− 30 days, t),
0 otherwise.

As another example, Kleinbaum and Klein (2005) considered heart transplant
status XHT at time t for an individual identi�ed to have a critical heart
condition.

XHT (t) =

{
1 if received transplant at some time t0 ≤ t,
0 if did not receive transplant by time t.
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For an individual receiving a transplant at some time t0, prior to time t,
the covariate XHT is 0 up to t0, and then remains at 1 thereafter. If the
individual has not yet received a transplant by time t, the value of XHT is
0 at time t. That is, the individual who never receives transplant has the
covariate XHT = 0 for all times during the period of the study.

In the model with time-dependent covariates we observe

(Ti, δi, {X i(t), t ∈ [0, Ti]}) i = 1, . . . , n.

{X i(t), t ∈ [0, Ti]} is the covariate path of individual i while it is in the study.

If we consider the ratio

λ(t;x1)

λ(t;x2)
=
λ0(t) exp(β

Tx1(t))

λ0(t) exp(β
Tx2(t))

= exp(βT (x1(t)− x2(t))), for all t ≥ 0

which is certainly not constant, so that the proportional hazard assumption
is not satis�ed for this model.
The survival function is given by

S(t;x) = exp
(
−
∫ t

0

λ0(u) exp (β
Tx(u))du

)
.

The partial likelihood function (3.4) has in the extended Cox model the form

Ln(β) =
d∏

j=1

exp(βTX(j)(T(j)))∑
i∈R(T(j))

exp(βTX i(T(j)))
(3.10)

As before the MPLE β̂n can be derived by maximizing the log partial
likelihood. However, the computations are more complicated than in the
classical model because at each death time we need to know the exact value of
the covariate at that death time for all individuals at risk. The management
collection and storage of such data are quite di�cult to create.
Moreover, the problem of missing observations arise. That means the
knowledge of

X i(T(1)), . . . ,X i(T(j)) for all i ∈ R(T(j)),
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i.e. of all X i(T(j)) with Ti ≥ T(j), is required.

Note that the interpretation of the results has to be done carefully. We have
no longer a conditional survival function.
The conditional probability

P(T ≥ t|X(t)) = 1,

if X(t) is known, the individual must be alive and at risk of failure.

For the application, the results and discussions of extended model and
computational issues are given by example in T. M. Therneau and P. M.
Grambsch (2000).

The key reference to investigate the asymptotic properties of the maximum
partial likelihood estimator in this extended Cox model is the paper of
Andersen and Gill (1982) who used the counting process framework and
the martingale approach. This approach will be introduced in the following
section.
Notice that the classical Cox model with covariates which do not depend on
time can be considered as a special case. The properties given in the Section
3.2.1 are a consequence of the results of Andersen and Gill (1982).

3.3.1 Counting process approach to the Cox model

The counting process approach is of great importance in developing the
theory of the extended Cox model. Andersen and Gill (1982) extended the
Cox model to the counting process framework and the asymptotic properties
of the associated estimators for the Cox model have been justi�ed elegantly
via martingale theory.
Let us introduce the following counting process notations. The n-dimensional
counting process is de�ned by

N(t) = (N1(t), . . . , Nn(t))
T

with

Ni(t) = 1(Ti ≤ t,∆i = 1)
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which is a counting process of the observed failures for the ith individual,
that is Ni(t) jumps only if the lifetime is observed.
Furthermore, we introduce the so-called risk indicator

Yi(t) = 1(Ti ≥ t),

Yi(t) indicates whether the subject is at risk (for observing the event of
interest). The processes Ni and Yi are observed in some time interval [0, τ ],
τ <∞.

The intensity process of N(t) is given by

α(t) = (α1(t), . . . , αn(t))
T

with

αi(t) = Yi(t)λi(t) = Yi(t)λ0(t) exp(β
TX i(t)).

The accumulated knowledge about what has happened to individuals up to
t is denoted by a history process Ft = σ(Ni(s), Yi(s+), Xi(t), i = 1, . . . , n,
0 ≤ s ≤ t).
We assume that the covariates are predictable. We denote the history at an
instant just prior to time t by Ft− and have

E(dNi(t)|Ft−) = Yi(t)λi(t)dt

= Yi(t)λ0(t) exp(β
TX i(t))dt

= αi(t)dt.

In the case of right-censored data, the history at time t, Ft, consists of
knowledge of pairs (Ti,∆i) provided Ti ≤ t and the knowledge Ti > t for
those individuals still under study at time t. We know (Ti,∆i) for those with
Ti < t and Ti ≥ t for those still under study.
We see that the intensity process α is predictable. The process

A(t) = (A1(t), . . . , An(t))
T ,

with

Ai(t) =

∫ t

0

αi(u)du =

∫ t

0

Yi(u)λi(u)du
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where λi(s) = λ0(s) exp(β
TX i(t)), is the compensator of the counting

process N.

The covariate values at any time di�erent from a death time are not used
in the partial likelihood function. Estimation and testing may proceed as
in the Cox model (3.2) with appropriate modi�cations of X to X(t). This
notation allows us to use time-independent covariates as well, for example,
if the jth covariate is time-independent, then Xj(t) is constant over time.

Using the counting process approach, the extending partial likelihood func-
tion (3.10) can be rewritten as

Ln(β) =
n∏

j=1

(
exp(βTXj(Tj))

n∑
i=1

Yi(Tj) exp(β
TX i(Tj))

)∆j

.

The log partial likelihood function based on observation over [0, τ ] is now
given by

ℓn(β) =
n∑

i=1

∫ τ

0

[
βTX i(u)− log

{ n∑
j=1

Yj(u) exp(β
TXj(u))

}]
dNi(u)

and the score function is

Un(β) =
n∑

i=1

∫ τ

0

[
X i(u)−

n∑
j=1

Yj(u)Xj(u) exp(β
TXj(u))

n∑
j=1

Yj(u) exp(β
TXj(u))

]
dNi(u).

For covariates which are not time-dependent this is just the score function
de�ned in (3.6).

Andersen and Gill (1982) proved the consistency and asymptotic normality

of the MPLE β̂n.

To present their conditions the following functions are de�ned.
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S0n(t,β) =
1

n

n∑
j=1

Yj(t) exp(β
TXj(t)), (3.11)

S1n(t,β) =
1

n

n∑
j=1

Yj(t) exp(β
TXj(t))Xj(t), (3.12)

S2n(t,β) =
1

n

n∑
j=1

Yj(t) exp(β
TXj(t))Xj(t)Xj(t)

T . (3.13)

Andersen and Gill (1982) assumed:

A 3.1. There exists a neighborhood B of β0 and scalar, p-vector and p × p
matrix functions s0, s1 and s2, respectively, such that

a) Sjn converge in probability (uniformly in β ∈ B and t) to sj, j = 0, 1, 2;

b) sj is a continuous function of β ∈ B uniformly in t and bounded;

c) s0 is bounded away from zero;

d) s1(t,β) =
∂s0(t,β)

∂β
and s2(t,β) =

∂s1(t,β)

∂β
; β ∈ B;

e) sj(t,β0) = ESjn(t,β0), j = 0, 1, 2.

If A 3.1 holds then we de�ne

Σ =

∫ τ

0

v(u,β0) s0(u,β0)λ0(u)du (3.14)

with

v(t,β0) =
s2(t,β0)

s0(t,β0)
− s1(t,β0)s1(t,β0)

T

s20(t,β0)
.

A 3.2. The matrix Σ is positive de�nite.

The next assumption is a Lindeberg-type condition about the covariates.

A 3.3. There exists a δ > 0 such that

n−1/2 sup
i,t

|X i(t)|Yi(t)1(βT
0X i(t) > −δ|X i(t)|) → 0

in probability for n→ ∞.
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A 3.4. For τ <∞, ∫ τ

0

λ0(t)dt <∞.

The observed information matrix has the form

In(β) =
n∑

i=1

∫ τ

0

[
S2n(u,β)

S0n(u,β)
− S1n(u,β)S1n(u,β)

T

S2
0n(u,β)

]
dNi(u) (3.15)

and can be written as

In(β) =
n∑

i=1

∫ τ

0

Vn(u,β)dNi(u) (3.16)

with the p× p matrix

Vn(t,β) =
S2n(t,β)

S0n(t,β)
− S1n(t,β)S1n(t,β)

T

S2
0n(t,β)

.

With assumptions A 3.1 and A 3.2 the consistency of β̂n was proved by
Andersen and Gill (1982), i.e. for n→ ∞

β̂n
P−→ β0.

Moreover, under assumptions above, they showed that the score vector is
asymptotically normal

n−1/2Un(β0)
D−→ N(0,Σ),

and they also proved the asymptotic normality of β̂n

n1/2(β̂n − β0)
D−→ N(0,Σ−1)

where Σ = plimn→∞ n−1In(β0).

It follows that n−1In(β̂n) is a consistent estimator of Σ because β̂n is the
consistent estimator.

For later reference it seem to be useful to formulate the basic steps of the
veri�cation of the asymptotic normality of Un(β0) and then the asymptotic

normality of β̂n.
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The martingale theory implies the decomposition of the counting process into

Ni(t) =Mi(t) + Ai(t)

where M(t) = (M1(t), ...,Mn(t))
T is a n-dimensional martingale.

The martingale decomposition of dNi(t) then reads

dNi(t) = dMi(t) + Yi(t)λ0(t) exp(β
T
0X i(t))dt

= dMi(t) + αi(t)dt.

We obtain for the score function

Un(β)

=
n∑

i=1

∫ τ

0

[
X i(u)−

S1n(u,β)

S0n(u,β)

]
dMi(u) +

n∑
i=1

∫ τ

0

[
X i(u)−

S1n(u,β)

S0n(u,β)

]
αi(u)du.

It is immediately seen that

n∑
i=1

∫ τ

0

[
X i(u)−

S1n(u,β0)

S0n(u,β0)

]
Yi(u) exp(β

T
0X i(u))λ0(u)du = 0.

It follows that the score function evaluated at the true point β0 is a (local
square integrable) martingale

Un(β0) =
n∑

i=1

∫ τ

0

[
X i(u)−

S1n(u,β0)

S0n(u,β0)

]
dMi(u)

where Mi is a zero-mean martingale.
The predictable variation process is denoted ⟨·⟩ and the predictable variation
process of n−1/2Un(β0) is given by

Vn(β0) = ⟨n−1/2Un(β0)⟩

= n−1

n∑
i=1

∫ τ

0

[
X i(u)−

S1n(u,β0)

S0n(u,β0)

]⊗2

Yi(u) exp(β
T
0X i(u))λ0(u)du

=

∫ τ

0

[
S2n(u,β0)−

S1n(u,β0)S1n(u,β0)
T

S0n(u,β0)

]
λ0(u)du

=

∫ τ

0

Vn(u,β0)S0n(u,β0)λ0(u)du.
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The assumption formulated by Andersen and Gill (1982) and given above
ensure that the Lindeberg-type condition of the martingale central limit
theorem is ful�lled so that the distribution of Un(β0) converges to a normal
distribution with expectation zero and variance matrix Σ.

Furthermore we have

n−1In(β0) = n−1

n∑
i=1

∫ τ

0

[
S2n(u,β0)

S0n(u,β0)
− S1n(u,β0)S1n(u,β0)

T

S2
0n(u,β0)

]
dNi(u)

= n−1

n∑
i=1

∫ τ

0

[
S2n(u,β0)

S0n(u,β0)
− S1n(u,β0)S1n(u,β0)

T

S2
0n(u,β0)

]
dMi(u)

+ n−1

n∑
i=1

∫ τ

0

[
S2n(u,β0)

S0n(u,β0)
− S1n(u,β0)S1n(u,β0)

T

S2
0n(u,β0)

]
αi(u)du

= n−1

n∑
i=1

∫ τ

0

[
S2n(u,β0)

S0n(u,β0)
− S1n(u,β0)S1n(u,β0)

T

S2
0n(u,β0)

]
dMi(u)

+ Vn(β0),

that means Vn(β0) is the compensator of n−1In(β0). It follows from
the martingale theory that the di�erence between Vn(β0) and n−1In(β0)
converges to zero in probability.

The asymptotic normally of β̂n follows as indicated in (3.7).

3.4 The Cox model with time-dependent coef-

�cients

In the Cox model (3.2) the coe�cients β0 are characterized as the risk
parameters. Sometimes it seem to be useful that these risk parameters are
allowed to change over time. For example, it can happen that the e�ect of a
treatment (not the treatment) vary with time.

This time-dependence is modelled by a further extension of the model.
We introduce time-dependent or time-varying coe�cients and de�ne the
following hazard rate as

λ(t,x) = λ0(t) exp(β
T (t)x(t)). (3.17)
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More general, one can consider the model

λ(t,x) = λ0(t) exp(β
T (t)x1(t) + γTx2(t))

where (x1(t),x2(t))
T is a (p + q)-vector of the time-dependent covariate,

β(·) is a p-dimensional time-dependent coe�cients function and γ is a
q-dimensional constant coe�cients. This model has been studied by Marti-
nussen and Scheike (2000), Scheike and Martinussen (2004) and Martinussen
and Scheike (2006).

In this thesis, we focus only on the model (3.17) and assume throughout the
thesis that the covariates X is time-independent covariates.

The function βj(·) is, as the baseline function λ0, not speci�ed. Thus, for
the estimation of βj(·), nonparametric estimation methods are applied. Let
us describe some of them.
Murphy and Sen (1991) proposed the histogram sieve method to estimate
the coe�cient function βj(·) by assuming that βj(·) is piecewise constant
and then obtained an estimator of the cumulative time dependent e�ects,
Bj(t) =

∫ t

0
βj(s)ds. The goodness-of-�t tests based on the sieve estimator

was proposed by Murphy (1993) and Marzec and Marzec (1997).
Zucker and Karr (1990) considered the model (3.17) in the case p = 1 and
assumed that the covariate X does not depend on time. They introduced a
penalty functional

[β, β] =

∫
β[m](s)β[m](s)ds, m ≥ s

which is the scalar product in the Sobolov space Hm[0, 1] of the piecewise
m-times di�erentiable functions β.
As estimator β̂n(·), referred as penalized partial likelihood estimator (MP-
PLE), they de�ned the maximizer of

ℓn(β)

= n−1

n∑
i=1

∫ τ

0

[
β(u)Xi − log

{ n∑
j=1

Yj(u) exp(β(u)Xj)
}]
dNi(u)−

1

2
αn[β, β].

Here {αn} is a sequence of positive numbers, the smoothing parameter, which
has to be chosen by the statistician.



Chapter 3. Cox Models and their extensions:
Survey of approaches and results 49

The authors showed that under appropriate conditions on β, i.e. β ∈
Hm[0, 1], on the convergence of αn and on the underlying distribution, the

MPPLE β̂n(t) is uniformly consistent with a certain rate of convergence and
that is asymptotically normal at an arbitrary �xed point t.

Hastie and Tibshirani (1993) established an algorithm using an iterative
strategy to solve the penalized partial likelihood problem.

The smoothing spline estimation in such models were considered by Gray
(1992).

Martinussen and Scheike (2000) proposed the cumulative regression coe�-

cients B̂jn(t) for estimating Bj(t) =
∫ t

0
βj(s)ds. Smoothing B̂jn(t) by a kernel

K and a suitable bandwidth they obtained the desired estimates for βj. On
the basis of these estimators they derived tests for testing the coe�cients,
these test are of Kolmogorov-Smirnov, Cramer-von Mises type.

Several authors have studied estimators based on local constant or local linear
partial likelihood estimators. We will discuss this type of estimators later in
Chapter 5.

Let us mention here the following: Local constant or local linear means that
locally a constant or a linear function for components βj(·) is �tted.
The parameters are estimated by partial likelihood, and �locally� is expressed
by a kernel function and a bandwidth which controls the size of the local
neighborhood.

By Taylor's expansion of βj(s) j = 1, . . . , p in a neighbourhood of t is given
by

βj(s) ≈ βj(t) + β′
j(t)(s− t) = b1j(t) + b2j(t)(s− t)

where β′
j denotes the �rst derivative of βj.

For �xed grid point t, let

b = (b11(t), . . . , b1p(t), b21(t), . . . , b2p(t))
T

and set

X̃ i(u, u− t) = X i(u)⊗ (1, u− t)T .
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Then the log local linear partial likelihood function is given by

ℓt(b) =
n∑

i=1

∫ τ

0

Khn(u− t)

[
bTX̃ i(u, u− t)

− log
{ n∑

j=1

Yj(u) exp(b
TX̃j(u, u− t))

}]
dNi(u) (3.18)

and the local linear partial likelihood estimator of β(·) at t is the �rst p-
dimensional component of

b̂(t) = argmax
b
ℓt(b).

Here Kh(·) = K(·/h)/h and K is a kernel function, roughly speaking a
density function, h = hn is the smoothing parameter tending to zero at
appropriate rate.

In Chapter 5 we will explain this approach in more detail. Cai and Sun
(2003) showed how this estimator can be computed and they established large
sample properties as weak pointwise consistency and asymptotic normality at
a �xed point t. In the limit theorem the trade-o� between bias and variance
a common property in nonparametric curve estimation was taken into
account. Furthermore the authors proposed a consistent estimator for the
asymptotic variance and the cumulative hazard function.
Tests are also considered by Kauermann and Berger (2003). They considered
local constant estimators for βj and as test statistic the partial likelihood ratio
is chosen.



Chapter 4

Estimability of the parameter in

the Cox model and optimal choice

of the covariates

In this chapter the problem of the existence and the uniqueness of the
maximum partial likelihood estimator (MPLE) are investigated in more
detail. That is, we derive conditions on the covariates which ensure that
the score equations (3.5) have a unique solution. As usual, in ML-theory the
non-singularity of the Hessian matrix of the partial likelihood function, or in
other words of the observed information matrix In(β), is essential. Therefore,
the non-singularity of the observed information matrix will be the basis of
the notation of estimability.
Furthermore, we will de�ne the asymptotic estimability. Here we consider
su�cient conditions for the non-singularity of the limit of In(β), i.e. Σ. Note
that the inverse Σ−1 is the variance matrix in the limit distribution of the
estimator β̂n.
The conditions for the asymptotic estimability include assumptions on the
underlying distribution of the T̃i's and Ci's and on the distribution of the
covariates. Also here, our main interest is to investigate the conditions on
the covariates.
The study of the in�uence of the covariates on the estimate can be considered
as a problem of experimental design. Experimental design is connected by
the derivation of criteria for the optimal choice of the covariates.
Optimal designs under a survival framework were considered in Balakrishnan
and Han (2007), Garcet-Rodr� i guez et al. (2008), López-Fidalgo et al.
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(2009), Schmidt and Schwabe (2015). In these papers the authors studied
the maximum likelihood estimate (MLE). In this thesis we make use of the
maximum partial likelihood estimate (MPLE). Consequently, the estimator
has di�erent properties and for the experimental design one has to minimize
a di�erent criterion. This will be represented in the next sections.

4.1 Estimability of the parameter β0

We consider the classical Cox model, which was introduced in Section 3.2.
The observations are realizations of i.i.d. (Ti,∆i,X i), i = 1, . . . , n. The true
parameter is denoted by β0. The parameter β0 is estimated by the maximum
partial likelihood estimates. Let us recall the partial log likelihood function
given at the observed (ti, δi,xi), i = 1, . . . , n which is denoted by

ℓ(β; t, δ,x) =
n∑

i=1

δi
(
βTxi − log nS0n(ti,β)

)
and the observed information matrix

In(β; t, δ,x) =
n∑

i=1

δiVn(ti,β)

where

Vn(t,β) =
S2n(t,β)

S0n(t,β)
− S1n(t,β)S1n(t,β)

T

S2
0n(t,β)

.

By applying the Cauchy-Schwarz inequality, we obtain that In(β; t, δ,x) is
non-negative de�nite for each parameter β and all observation t, δ and x.
Therefore, ℓ is concave. It is strictly concave and has a unique maximum if
In is positive de�nite. Sometimes we use the shorter notation In(β) instead
of In(β; t, δ,x). This leads to the following de�nition:

De�nition 4.1. The parameter β0 is called estimable by the maximum
partial likelihood estimator at the observed (t, δ,x), if the matrix In(β) is
non-singular for all β ∈ Rp.

Now, let us derive the su�cient conditions for the non-singularity of In(β).
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Lemma 4.1. We observe (ti, δi,xi), i = 1, . . . , n. Let ξ1, . . . , ξm be di�erent
support points of the covariates. Then, the observed information matrix can
be written as

In(β) =
1

2

m∑
r=1

m∑
s=1

κnrs(β)wrsw
T
rs (4.1)

with

wrs = ξr − ξs,

κnrs(β) =
n∑

i=1

δi
Rr(ti)Rs(ti) exp(β

T (ξr + ξs))

(
∑m

l=1Rl(ti) exp(β
Tξl))

2
(4.2)

Rl(t) =
n∑

i=1

1(ti ≥ t,xi = ξl).

Proof. Consider (3.16), for observations (t, δ,x), we have

In(β; t, δ,x) =
n∑

i=1

δiVn(ti,β).

The sums Sjn introduced in (3.11), (3.12) and (3.13) can be written as

S0n(t,β) =
1

n

n∑
i=1

1(ti ≥ t) exp(βTxi) =
1

n

m∑
l=1

Rl(t) exp(β
Tξl),

S1n(t,β) =
1

n

n∑
i=1

1(ti ≥ t) exp(βTxi)xi =
1

n

m∑
l=1

Rl(t) exp(β
Tξl)ξl,

S2n(t,β) =
1

n

n∑
i=1

1(ti ≥ t) exp(βTxi)xix
T
i =

1

n

m∑
l=1

Rl(t) exp(β
Tξl)ξlξ

T
l .
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Obviously, by a simple calculation we have

Vn(t,β) =
S2n(t,β)

S0n(t,β)
− S1n(t,β)S1n(t,β)

T

S2
0n(t,β)

=

m∑
r=1

m∑
s=1

Rr(t)Rs(t)ξ
⊗2
r exp(βT ξr + βT ξs)

(
∑m

l=1Rl(t) exp(β
T ξl))

2

−

m∑
r=1

m∑
s=1

Rr(t)Rs(t)ξrξ
T
s exp(βT ξr + βT ξs)

(
∑m

l=1Rl(t) exp(β
T ξl))

2

=

m∑
r=1

m∑
s=1

Rr(t)Rs(t)ξr(ξr − ξs)
T exp(βT (ξr + ξs))

(
∑m

l=1Rl(t) exp(β
T ξl))

2

=

m∑
r=1

m∑
s=1
s<r

Rr(t)Rs(t)(ξr − ξs)(ξr − ξs)
T exp(βT (ξr + ξs))

(
∑m

l=1Rl(t) exp(β
T ξl))

2
.

Thus, In(β) can be represented as

In(β) =
m∑
r=1

m∑
s=1
s<r

(ξr − ξs)(ξr − ξs)
T

×
n∑

i=1

δi
Rr(t)Rs(t) exp(β

T (ξr + ξs))

(
∑m

l=1Rl(t) exp(β
Tξl))

2

=
m∑
r=1

m∑
s=1
s<r

wrsw
T
rsκnrs(β), (4.3)

where wrs = ξr − ξs are p-dimensional vectors characterizing the support
points of X and the coe�cients

κnrs(β) =
n∑

i=1

δi
Rr(ti)Rs(ti) exp(β

T (ξr + ξs))

(
∑m

l=1Rl(ti) exp(β
Tξl))

2

depend on the observations and on the support points of X.
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Using relative frequencies instead of Rl(ti) we obtain

fil =
Rl(ti)∑m
j=1Rj(ti)

(4.4)

and

κnrs(β) =
n∑

i=1

δi
firfis exp(β

T (ξr + ξs))

(
∑m

l=1 fil exp(β
Tξl))

2
. (4.5)

Moreover, the coe�cients κnrs(β) are symmetric, i.e., κnrs(β) = κnsr(β) for
s, r = 1, . . . ,m. We remark that κnrs(β) depends on the ξ1, . . . , ξm, too.
Therefore, if necessary, we denote these κnrs(β) by κnrs(β, ξ1, . . . , ξm).
Notice that for the coe�cient (4.2) the following holds

m∑
r=1

m∑
s=1

κnrs(β) =
m∑
r=1

m∑
s=1

n∑
i=1

δi
Rr(ti)Rs(ti) exp(β

T (ξr + ξs))

(
∑m

l=1Rl(ti) exp(β
T ξl))

2

=

n∑
i=1

δi

(
∑m

l=1Rl(ti) exp(β
T ξl))

2

m∑
r=1

m∑
s=1

Rr(ti)Rs(ti) exp(β
T (ξr + ξs))

=

n∑
i=1

δi

(
∑m

l=1 Rl(ti) exp(β
T ξl))

2

m∑
r=1

Rr(ti) exp(β
T ξr)

m∑
s=1

Rs(ti) exp(β
T ξs)

=
n∑

i=1

δi. (4.6)

This means that
m∑
r=1

m∑
s=1

κnrs(β) = d with censoring, and
m∑
r=1

m∑
s=1

κnrs(β) = n

without censoring.

Example 3. Consider p = 1 and m = 2. For two points ξ1, ξ2 ∈ R in the
support of X ∈ R1, we get

In(β) =
n∑

i=1

δi

[ 2∑
l=1

Rl(ti) exp(βξl)ξ
2
l

2∑
l=1

Rl(ti) exp(βξl)

−

{ 2∑
l=1

Rl(ti) exp(βξl)ξl

2∑
l=1

Rl(ti) exp(βξl)

}2]
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In(β) =
n∑

i=1

δi

[
R1(ti) exp(βξ1)ξ

2
1 +R2(ti) exp(βξ2)ξ

2
2

R1(ti) exp(βξ1) +R2(ti) exp(βξ2)

−

{
R1(ti) exp(βξ1)ξ1 +R2(ti) exp(βξ2)ξ2
R1(ti) exp(βξ1) +R2(ti) exp(βξ2)

}2]

=
n∑

i=1

δi

[
fi1 exp(βξ1)ξ

2
1 + fi2 exp(βξ2)ξ

2
2

fi1 exp(βξ1) + fi2 exp(βξ2)

−

{
fi1 exp(βξ1)ξ1 + fi2 exp(βξ2)ξ2
fi1 exp(βξ1) + fi2 exp(βξ2)

}2]

=
n∑

i=1

δj

[{
fi1fi2 exp(βξ1 + βξ2)ξ

2
1 − 2fi1fj2 exp(βξ1 + βξ2)ξ1ξ2

+ fj1fj2 exp(βξ1 + βξ2)ξ
2
2

}
/
{
fi1 exp(βξ1) + fi2 exp(βξ2)

}2
]

=
n∑

i=1

δi

[
fi1fi2 exp (βξ1 + βξ2){

fi1 exp (βξ1) + fi2 exp (βξ2)
}2
]
(ξ1 − ξ2)

2.

We see that In(β) depends on w12 = ξ1 − ξ2 and the relative frequencies
fi1. For positive f11, f12 and δ1 = 1, we have In(β) > 0 if and only if
ξ1 ̸= ξ2. In other words, if we observe lifetimes for two di�erent values of the
covariates the observed information matrix is positive (in this case p = 1,
m = 2). Otherwise, if we observe only in one point of the support of X then
In(β) = 0.

It turns out that we need conditions on the vectorswrs and on the coe�cients
in order to ensure that the observed information matrix is positive de�nite.
The condition concerning the support points of X is that the vectors wrs

span the space Rp. However, this is not su�cient, only necessary.

Let L(S) be the linear space spanned by the elements of the set S. From the
representation (4.1) follows that In(β) is non-singular, if

L({κnrs(β)wrs, r = 1, . . . ,m; s = 1, . . . ,m; s < r}) = Rp (4.7)

We give now some su�cient conditions for (4.7).



Chapter 4. Estimability of the parameter in the Cox model and optimal
choice of the covariates 57

Theorem 4.2. Under the assumption of Lemma 4.1 we suppose that for

some i ∈ {1, . . . , n}, δi = 1 and
m∏
j=1

fij > 0. Let wst = ξs − ξt and

m̃ = dimL{wst|1 ≤ s < t ≤ m}.
Then

rank(In(β)) = min(p, m̃).

Proof. Recall the form of observed information matrix In(β):

In(β) =
1

2

m∑
r=1

m∑
s=1

κnrs(β)wrsw
T
rs,

where wrs = ξr − ξs are a p × 1 vectors, 1 ≤ r < s ≤ m and κnrs(β) as in
(4.5).
The rank of In(β) is the number of linearly independent vectors in
{κnrs(β)wrs, 1 ≤ r < s ≤ m}.
Because of fir > 0 for all r and δi = 1 we have κnrs(β) > 0 for all r, s, the
rank of In(β) is

rank(In(β)) = min(p, m̃).

The assumptions of Theorem 4.2 mean that we have at least in one time point
uncensored observations for all values ξ1, . . . , ξm. Under those assumptions,
β0 is estimable for m̃ ≥ p. The next theorem gives a slightly more general
result.

Theorem 4.3. If assumption of Lemma 4.1 is ful�lled and if for any r, s
with 1 ≤ r < s ≤ m there exists some i with δifirfis > 0, then

rank(In(β)) = min(p, m̃)

with wrs and m̃ as in Theorem 4.2.

Proof. Using the representation (4.5) for �xed r and s with the condition
δifirfis > 0 for some i ∈ {1, . . . ., n}, we get κnrs(β) > 0. With this condition
and (4.1), the desired statement follows.

A consequence of the Theorem 4.3 is that m ≥ p + 1 is necessary for the
estimability. For m ≤ p, the parameter β0 is not estimable.
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4.1.1 Examples

Case 1 : Assume p = 1, the hazard function is

λ(t|x) = λ0(t) exp(β0x).

If all n observations are taken at one covariate point ξ1, i.e. m = 1, we obtain
the log partial likelihood function

ℓn(β) =
n∑

i=1

δi

[
βξ1 − log

{ n∑
j=1

Yj(ti) exp(βξ1)
}]

= dβξ1 −
n∑

i=1

δi log
{
exp(βξ1)R1(ti)

}
where

∑n
i=1 δi = d is the number of uncensored lifetimes. Then, the observed

information In(β) is

In(β) = − ∂2

∂β2

[
dβξ1 −

n∑
i=1

δi log
{
exp(βξ1)R1(ti)

}]

= − ∂

∂β

[
dξ1 −

n∑
i=1

δi

{ξ1 exp(βξ1)R1(ti)

exp(βξ1)R1(ti)

}]
= 0.

Here, β0 is not estimable.

Case 2 : Consider p = 2 and the hazard function

λ(t|x) = λ0(t) exp(β
T
0 x).

Let m = 2, i.e. we choose two distinct points

ξ1 =

(
z11
z12

)
, ξ2 =

(
z21
z22

)
.

Then, the log partial likelihood function is given by

ℓn(β) =
∑

i:xi=ξ1

δi(β1z11 + β2z12) +
∑

i:xi=ξ2

δi(β1z21 + β2z22)

−
n∑

i=1

δi log
{
R1(ti) exp(β1z11 + β2z12) +R2(ti) exp(β1z21 + β2z22)

}
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and we can write the observed information matrix In(β) with relative
frequencies as

In(β) =
n∑

i=1

δi

[
fi1fi2 exp (β1z11 + β2z12 + β1z21 + β2z22){

fi1 exp (β1z11 + β2z12) + fi2 exp (β1z21 + β2z22)
}2
]
×

×
(
z11 − z21
z12 − z22

)⊗2

where fi1 and fi2 as in (4.4) with m = 2. Here, the rank In(β) = 1 if at least
for one index i we have δifi1fi2 > 0. Otherwise, we have rank In(β) = 0. In
any case, β0 is not estimable because rank In(β) < 2 = p.

Case 3 : We consider the same model as in Case 2, but we choose now three
distinct points m = 3:

ξ1 =

(
z11
z12

)
, ξ2 =

(
z21
z22

)
, ξ3 =

(
z31
z32

)
.

With the hazard function

λ(t|x) = λ0(t) exp(β
T
0 x).

the log partial likelihood function is given by

ℓn(β) =
∑

i:xi=ξ1

δi(β1z11 + β2z12) +
∑

i:xi=ξ2

δi(β1z21 + β2z22) +
∑

i:xi=ξ3

δi(β1z31 + β2z32)

−
n∑

i=1

δi log
{
R1(ti) exp(β1z11 + β2z12) +R2(ti) exp(β1z21 + β2z22)

+R3(ti) exp(β1z31 + β2z32)
}

and the observed information matrix In(β) with relative frequencies can be
written as
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In(β) =
n∑

i=1

δi

[ 3∑
l=1

fil(zl1, zl2)
T (zl1, zl2) exp (β1zl1 + β2zl2)

3∑
l=1

fil exp (β1zl1 + β2zl2)

−
{ 3∑

l=1

fil(zl1, zl2)
T exp (β1zl1 + β2zl2)

3∑
l=1

fil exp (β1zl1 + β2zl2)

}⊗2
]

=
n∑

i=1

δi

[
3∑

r=1

3∑
s=1
s<r

firfis exp (β1(zr1 + zs1) + β2(zr2 + zs2))

{
3∑

l=1

fil exp (β1zl1 + β2zl2)}2
×

×
(
zr1 − zs1
zr2 − zs2

)⊗2
]

where fil as in (4.4) with m = 3.

From Lemma 4.1 follows rank In(β) = 2, if ξ1, ξ2, ξ3 are linearly independent
and δifirfis > 0 for all r, s and at least one i. Thus, β0 is estimable.

Case 4 : Consider p = 2 and the hazard function

λ(t|x) = λ0(t) exp(β01x+ β02x
2).

With m = 2 we measure at two distinct points and denote

ξ1 =

(
z1
z21

)
, ξ2 =

(
z2
z22

)
.

So we have a polynomial covariate model.

The log partial likelihood function is given by

ℓn(β) =
∑

i:Xi=ξ1

δi(β1z1 + β2z
2
1) +

∑
i:Xi=ξ2

δi(β1z2 + β2z
2
2)

−
n∑

i=1

δi log
{
R1(ti) exp(β1z1 + β2z

2
1) +R2(ti) exp(β1z2 + β2z

2
2)
}
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and we get the observed information matrix In(β) with relative frequencies
as

In(β) =
n∑

i=1

δi

[fi1( z21 z31
z31 z41

)
exp(β1z1 + β2z

2
1)+fi2

(
z22 z32
z32 z42

)
exp(β1z2 + β2z

2
2)

fi1 exp(β1z1 + β2z21)+fi2 exp(β1z2 + β2z22)

−
{fi1(z1, z21)T exp(β1z1 + β2z

2
1)+fi2(z2, z

2
2)

T exp(β1z2 + β2z
2
2)

fi1 exp(β1z1 + β2z21)+fi2 exp(β1z2 + β2z22)

}⊗2
]

=
n∑

i=1

δi

[
fi1fi2 exp (β1z1 + β2z

2
1 + β1z2+β2z

2
2){

fi1 exp (β1z1 + β2z21)+fi2 exp (β1z2 + β2z22)
}2
](

z1 − z2
z21 − z22

)⊗2

where fi1 and fi2 as in (4.4). Here, the rank In(β) = 1, if not all δifi1fi2 = 0
for ξ1 ̸= ξ2. Otherwise, we have In(β) = 0. In this polynomial covariate
model β0 is not estimable.

In the last case, we formulated conditions for the coe�cients κnrs(β) in such
a way that we were able to calculate the rank of In(β). For full rank of the
observed information matrix parameter β0 is estimable.

4.1.2 Asymptotic estimability

In this section the non-singularity of the limiting matrix of In(β), i.e.
Σ = plimn→∞ n−1In(β0) is considered. We will characterize this by the
notation of asymptotic estimability.

De�nition 4.2. The parameter β0 is called asymptotically estimable by the
maximum partial likelihood estimator if the matrix Σ is non-singular for all
β0.

To compute the limit Σ, let us introduce the following (conditional) dis-
tribution functions: The conditional distribution function of lifetimes T ∗

i is
denoted by

F (t|x) = P(T̃ ≤ t|X = x)

the corresponding survival function is, as given in (3.3), S(t|x) = 1 −
F (t|x). The conditional distribution function of the censoring random
variable Ci is denoted by G and we assume that G does not depend on
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the covariates. Because of the independence assumption, we obtain the
conditional distribution of the observations T , which we denote by H:

1−H(t|x) = (1− F (t|x))(1−G(t)).

As usual, we write H = 1−H. By the survival function (3.3) in Cox model,
we have

H(t|x) = exp(−Λ0(t) exp(β
T
0 x))(1−G(t)). (4.8)

Let us assume that

A 4.1. P(X = ξj) = qj for j = 1, . . . ,m; qj > 0,
∑m

j=1 qj = 1.

Theorem 4.4. Suppose that A 3.1 and A 4.1 are satis�ed. Then the matrix
Σ, de�ned in (3.14) has the following form

Σ =
1

2

m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm)wrsw
T
rs (4.9)

with

νrs(β0, λ0, G,q, ξ1, . . . , ξm)

=

∫ Λ0(τ)

0

exp(−ueβT
0 ξr + βT

0 ξr) exp(−ueβ
T
0 ξs + βT

0 ξs)qrqs(1−G(Λ−1
0 (u)−))∑m

j=1 exp(−ueβ
T
0 ξj + βT

0 ξj)qj
du.

(4.10)

Proof. We have

Σ =

∫ τ

0

v(u,β0) s0(u,β0)λ0(u)du

with

v(t,β0) =
s2(t,β0)

s0(t,β0)
− s1(t,β0)s1(t,β0)

T

s20(t,β0)

and
sj(t,β0) = ESjn(t,β0), j = 0, 1, 2

where the expectation is taken with respect to the true underlying distribu-
tion.
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Let us consider these expectations in more detail. We compute an iterated
expectation, �rst the expectation given the covariates, then we take the
expectation with respect to the covariates. We obtain for the conditional
expectation

E(Yi(t)|X i) = (1−H(t−|X i))

and for the expectation

EYi(t) =
m∑
r=1

(1−H(t−|ξr))qr.

This implies for the functions s0 and sj:

s0(t,β0) =
m∑
l=1

(1−H(t−|ξl))ql exp(βT
0 ξl),

s1(t,β0) =
m∑
l=1

(1−H(t−|ξl))ql exp(βT
0 ξl)ξl,

s2(t,β0) =
m∑
l=1

(1−H(t−|ξl))ql exp(βT
0 ξl)ξlξ

T
l .

and consequently

v(t,β0) =

m∑
r=1

m∑
s=1
s<r

H(t−|ξr)H(t−|ξs)

(
m∑
j=1

H(t−|ξj)qj exp(βT
0 ξj))

2

qrqs exp(β
T
0 (ξr + ξs)) (ξr − ξs)(ξr − ξs)

T

with

H(t−|ξj) ̸= 0 for t ∈ [0, τ ]. (4.11)

Thus, Σ can be represented as

Σ =
m∑
r=1

m∑
s=1
s<r

(ξr − ξs)(ξr − ξs)
T qrqs exp(β

T
0 (ξr + ξs))×

×
∫ τ

0

H(u−|ξr)H(u−|ξs)∑m
j=1H(u−|ξj)qj exp(βT

0 ξj)
λ0(u)du

=
m∑
r=1

m∑
s=1
s<r

wrsw
T
rsνrs(β0, λ0,q, ξ1, . . . , ξm)
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where the (symmetric) coe�cients

νrs(β0, λ0, G,q, ξ1, . . . , ξm)

=qrqs exp(β
T
0 (ξr+ξs))

∫ τ

0

H(z−|ξr)H(z−|ξs)∑m
j=1H(z−|ξj)qj exp(βT

0 ξj)
λ0(z)dz

=

∫ Λ0(τ)

0

exp(−ueβT
0 ξr+βT

0 ξr) exp(−ueβ
T
0 ξs+βT

0 ξs)qrqs(1−G(Λ−1
0 (u)−))∑m

j=1 exp(−ueβ
T
0 ξj + βT

0 ξj)qj
du

depend on the underlying baseline distribution, the censoring distribution G,
β0 and the distribution of covariates.

There is a connection between the coe�cients νrs(β0, λ0, G,q, ξ1, . . . , ξm) and
the κnrs(β) in (4.5).

Lemma 4.5. Let the assumptions of Theorem 4.4 be ful�lled. We have

m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm) =

∫ τ

0

s0(β0, u)λ0(u)du.

Proof.

m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm) =

=

∫ τ

0

m∑
r=1

m∑
s=1

H(u−|ξr)H(u−|ξs)qrqs exp(βT
0 (ξr + ξs))∑m

j=1H(u−|ξj)qj exp(βT
0 ξj)

λ0(u)du

=

∫ τ

0

m∑
r=1

H(u−|ξr)qr exp(βT
0 ξr)

m∑
s=1

H(u−|ξs)qs exp(βT
0 ξs)∑m

j=1H(u−|ξj)qj exp(βT
0 ξj)

λ0(u)du

=

∫ τ

0
s0(β0, u)λ0(u)du.

We have the limit

Σ = plimn→∞ n−1In(β0)
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and with the representations (4.9) and (4.1) the limit

1

n
κnrs(β0, ξ1, . . . , ξm)

P−→ νrs(β0, λ0, G,q, ξ1, . . . , ξm)

follows. Moreover, we have

1

n
κnrs(β̂n, ξ1, . . . , ξm)

P−→ νrs(β0, λ0, G,q, ξ1, . . . , ξm)

and

1

n

m∑
r=1

m∑
s=1

κnrs(β0, ξ1, . . . , ξm)
P−→

m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm).

This means with (4.6) that E∆i is equal to
m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm).

There are some remarks on the conditions and assumptions:
In any case we have

0 ≤ H(t−|ξr) ≤ 1 for all r.

Therefore, we have with (4.10) that

νrs(β0, λ0, G,q, ξ1, . . . , ξm) ≥ 0.

In the proof, we assumed the condition (4.11), which is a condition on the
distributions F and G and exclude trivial cases, and this condition is ful�lled
in general.
Because of

0 <

∫ τ

0

λ0(u)du <∞

and (4.8), we obtain (4.11). Hence, (4.11) is a condition on the choice of τ
and the parameter space.
Furthermore, we will exclude that censoring arises only in intervals where no
observation is possible. Therefore, we assume∫ τ

0

(1−G(u−))λ0(u)du > 0. (4.12)

This condition ensures that νrs(β0, λ0, G,q, ξ1, . . . , ξm) > 0.
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Theorem 4.6. We consider the Cox model and suppose that the assumptions
of Theorem 4.4 are ful�lled. Then, Σ is positive de�nite if and only if

dimL({ξr − ξs, 1 ≤ s < r ≤ m}) = p. (4.13)

Proof. We have

1− F (t|ξl) = exp
(
−
∫ t

0

λ0(u)du exp(β
T
0 ξl)

)
and together with (4.12) νrs(β0, λ0, G,q, ξ1, . . . , ξm) > 0 for all 1 ≤ s < r ≤
m follows. Then, it is clear that rankΣ = dimL({wrs, 1 ≤ s < r ≤ m}).
Thus, β0 is asymptotically estimable if and only if (4.13) is ful�lled.

The importance of this result is that the asymptotic estimability depends
only on the support points of X. Here, we remark that (4.12) is a condition,
which is ful�lled in general, only in unimportant trivial cases (4.12) does not
hold.

4.1.3 Asymptotic variance for general covariates

In Theorem 4.4, a representation of the inverse of the asymptotic variance
is given under the assumption that the support of X is �nite. Now we will
�nd a representation of Σ for a general distribution of the covariates X.
Under A 4.1, the support points are ξ1, . . . , ξm and we have

P(X = ξj) = qj for j = 1, . . . ,m

in which qj > 0,
∑m

j=1 qj = 1 and the corresponding induced measure Q in
Rp is de�ned by

Q(ζ) =

{
qj, if ζ = ξj
0, otherwise .

The matrixΣ in 4.9 depends on β0, λ0, G,Q and therefore we use the notation
Σ = Σ(β0, λ0, G,Q).
We have the representations∫ τ

0

H(t−|ζ) exp(βT
0 ζ)dQ(ζ) =

m∑
j=1

H(t−|ξj)qj exp(βT
0 ξj),
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and

Σ(β0, λ0, G,Q) =
1

2

∫ ∫
h(ζ,ρ,β0, λ0, G,Q)(ζ − ρ)(ζ − ρ)TdQ(ζ)dQ(ρ)

(4.14)

with

h(ζ,ρ,β0, λ0, G,Q) =

∫ τ

0

H(u−|ζ) exp(βT
0 ζ)H(u−|ρ) exp(βT

0 ρ)∫
H(u−|η) exp(βT

0 η)dQ(η)
λ0(u)du.

(4.15)

and∫ ∫
h(ζ,ρ,β0, λ0, G,Q)dQ(ζ)dQ(ρ) =

m∑
r=1

m∑
s=1

qrqsh(ξr, ξs,β0, λ0, G,Q)

=
m∑
r=1

m∑
s=1

νrs(β0, λ0, G,q, ξ1, . . . , ξm).

Up to now Q is a measure with a �nite support. For �xed β0, λ0, Q, the
matrix Σ is a continuous functional on Q. Therefore, Σ(β0, λ0, G,Q) from
(4.14) is de�ned by continuous continuation for all probability measures,
which are limits of measures with a �nite support.

De�nition 4.3. Let X ⊆ Rp and let B(X ) be the Barel σ-algebra of X .
Assume that the assumptions A 3.1, A 3.2 and A 3.3 are satis�ed. For a
probability measure Q over (X ,B(X )) and with the representations (4.15)
and

Σ(β0, λ0, G,Q) =
1

2

∫ ∫
h(ζ,ρ,β0, λ0, G,Q)(ζ − ρ)(ζ − ρ)TdQ(ζ)dQ(ρ),

the matrix Σ−1(β0, λ0, G,Q) is called the asymptotic variance matrix of the
MPLE of β0 in the model (3.2) where the covariates X have the distribution
Q.

We mention some properties of Σ. At �rst the in�uence of the baseline
hazard rate is discussed and then we state the continuity of Σ.
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Theorem 4.7. Let Q be the induced measure of the covariates X. The
matrix Σ(β0, λ0, G,Q) depends on the baseline hazard rate only via the
cumulative baseline hazard rate Λ0.Then we have the representation (4.14)
with

h(ζ,ρ,β0, λ0, G,Q)

=

∫ Λ0(τ)

0

exp
(
− ueβ

T
0 ζ − ueβ

T
0 ρ + βT

0 (ζ + ρ)
)(

1−G(Λ−1
0 (u)−)

)
∫
exp

(
− ueβ

T
0 η + βT

0 η
)
dQ(η)

du.

(4.16)

Proof. We substitute (4.8) in (4.15) and obtain

h(ζ,ρ,β0, λ0, G,Q)

=

∫ τ

0

exp
(
− Λ0(z

−)eβ
T
0 ζ
)
eβ

T
0 ζ exp

(
− Λ0(z

−)eβ
T
0 ρ
)
eβ

T
0 ρ(1−G(z−))2∫

exp
(
− Λ0(z−)eβ

T
0 η
)
eβ

T
0 η(1−G(z−))dQ(η)

λ0(z)dz.

Hence we have

h(ζ,ρ,β0, λ0, G,Q)

=

∫ τ

0

exp
(
− Λ0(z

−)eβ
T
0 ζ + βT

0 ζ
)
exp

(
− Λ0(z

−)eβ
T
0 ρ + βT

0 ρ
)
(1−G(z−))∫

exp
(
− Λ0(z−)eβ

T
0 η + βT

0 η
)
dQ(η)

dΛ0(z)

and with an integral transformation we get

h(ζ,ρ,β0, λ0, G,Q)

=

∫ Λ0(τ)

0

exp
(
− ueβ

T
0 ζ + βT

0 ζ
)
exp

(
− ueβ

T
0 ρ + βT

0 ρ
)(

1−G(Λ−1
0 (u)−

)
∫
exp(−ueβT

0 η + βT
0 η)dQ(η)

du.

This is the desired representation.

With the asymptotic variance matrixΣ−1(β0, λ0, G,Q) we are able to charac-
terize the in�uence of a covariate X with the induced measure Q. Moreover,
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we can compare two measures Q1 and Q2 by comparing Σ−1(β0, λ0, G,Q1)
with Σ−1(β0, λ0, G,Q2). This is the basis for �nding optimal covariates. An
important property is the continuity of Σ−1(β0, λ0, G,Q) or of their inverse
Σ(β0, λ0, G,Q). For the parameters in Euclidean spaces the usual Euclidean
norms are taken. By assumption λ0 is continuous, i.e. λ0 ∈ C([0, τ ]) for the
space C([0, τ ]) of continuous functions over the interval [0, τ ] and the sup
norm

∥λ0∥ = sup
t∈[0,τ ]

|λ0(t)|

will be used. In the space of measures over (X ,B(X )) we use as the distance
the total variation distance

∥Q1 −Q2∥ = sup
B∈B(X )

|Q1(B)−Q2(B)|

for two measures Q1, Q2.

Lemma 4.8. Assume that β0 ∈ Rp and λ0 ∈ C([0, τ ]). Let G be a censoring
distribution and let Q be a measure over B(X ). Then, Σ(β0, λ0, G,Q) is a
continuous function in their arguments.

Proof. We start with the representation of h from (4.16), so we can see that
this h is a continuous function in all arguments. Using the representations
(4.14), it can be show that Σ is continuous in β0, λ0, G,Q.

4.2 Optimal covariates

Now, let us assume that the limitΣ of the observation matrix is non-singular.
As already shown, Σ depends on the underlying conditional distribution
F via the baseline hazard rate λ0 and the parameter β0, on the censoring
distribution G and on the distribution of the covariates. In this section,
we suppose that the underlying distribution F and the distribution G are
determined by the process under the study. However, we assume that we
have some freedom for choosing the covariates.
The aim is to choose the covariates in such a way that the asymptotic variance
of the MPLE β̂n is in some sense �small�. To do this, we consider the covariate
values x as before as the realizations of a random variable with a distribution
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Q. Choosing the covariates in an optimal way means to determine an optimal
distribution or optimal probability measure Q∗. Roughly speaking, this task
is a problem of experimental design. Classical experimental design is based on
the information matrix or variance matrix; one minimizes some functional
of these matrices to �nd an optimal design. These functionals are convex
functionals of Q.
For such situations, the optimal designs can be characterized by general
expressions. Results of Whittle (1973) solve the optimization problem.
Equivalence theorems and iteration procedures due to Kiefer (1961), Fe-
dorov (1972), Wynn (1972), Läuter and Läuter (1984) and López-Fidalgo
et al. (2009). Here we use similar principles. We know Σ and its depen-
dence on Q. Unfortunately, we could not prove the convexity of functionals.
However, based on the results of asymptotic estimability the calculation of
suboptimal covariates is considered. For special cases suboptimal covariates
are to be found.

4.2.1 Local optimal covariates

We will see that the optimal measure Q∗ depends on the underlying F , i.e.
on β0 and λ0, and on G. Therefore, we de�ne the notation of local D-
optimality. To emphasize the dependence of Σ on β0, λ0 and Q, let us write
Σ(β0, λ0, G,Q).

De�nition 4.4. Let D be a set of probability measures on Rp. The measure
Q∗ ∈ D is called D-optimal in D at �xed β0, λ0 and G if

detΣ(β0, λ0, G,Q
∗) = max

Q∈D
detΣ(β0, λ0, G,Q).

The random variable X∗, which has the induced measure Q∗, is called a
locally D-optimal covariate. We suppress in Q∗ the dependence on G.

The set D of measures includes the choice of the support of the covariates.
This choice depends strongly on the practical background of the model. We
will choose as a standard set for the possible support points the p-dimensional
unit cube [0, 1]p. The probability measure can be a discrete measure or any
other measure on [0, 1]p with the corresponding Borel-σ-algebra.

In the next example, the explicit representation of Σ(β0, λ0, G,Q) for two-
points covariates is calculated and the local optimal two-points covariates are
given.
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Example 4. Consider model (3.2) with p = 1 and x ∈ [0, 1]. It is known
that at least m = 2 di�erent values of covariates are necessary to estimate β0.
Let us determine a local D-optimal two-points covariate X. As a submodel
we choose an exponential model, i.e. the baseline hazard is constant,

λ(t|x) = λ0 exp(β0x), (4.17)

β0, x ∈ R1 and let be no censoring up to τ > 0. We put

G(t) = 1− δ[0,τ)(t) for t ≥ 0,

where δ[0,τ)(t) is the indicator function of [0, τ), i.e.

δ[0,τ)(t) =

{
1 if t ∈ [0, τ),
0 otherwise.

Let X be the two-points covariate with

P(X = ξj) = qj for j = 1, 2, ξ1, ξ2 ∈ [0, 1]

and q1 + q2 = 1.
The measure Q is de�ned by

Q(η) =

{
qj, if η = ξj j = 1, 2,
0, otherwise.

From (4.14), we get

Σ(β0, λ0, G,Q) =
1

2

∫ ∫
h(ζ, ρ, β0, λ0, G,Q)(ζ − ρ)2dQ(ζ)dQ(ρ)

with

h(ζ, ρ, β0, λ0, G,Q) =

∫ τ

0

H(u−|ζ) exp(β0ζ)H(u−|ρ) exp(β0ρ)∫
H(u−|η) exp(β0η)dQ(η)

λ0(u)du.

Under the above mentioned censoring distribution, we have

1−H(t|ξ) = exp(−λ0 exp(β0ξ)t) for t ∈ [0, τ) (4.18)

and 1−H(t|ξ) = 0 for t ≥ τ .
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Hence, we obtain with (4.18)∫
H(t−|η) exp(β0η)dQ(η)

= q1 exp(−λ0 exp(β0ξ1)t+ β0ξ1) + q2 exp(−λ0 exp(β0ξ2)t+ β0ξ2).

For the calculation of Σ(β0, λ0, G,Q), we need moreover the following
representations, so we put

gj(t, β0, λ0) := qj exp(−λ0 exp(β0ξj)t+ β0ξj), j = 1, 2.

To formulate Σ, we have∫∫
H(t−|ζ)e(β0ζ)H(t−|ρ)e(β0ρ)(ζ−ρ)2dQ(ζ)dQ(ρ)

=

∫∫
e(−λ0 exp(β0ζ)t+β0ζ)e(−λ0 exp(β0ρ)t+β0ρ)(ζ−ρ)2dQ(ζ)dQ(ρ)

=

∫ {
q1e

(−λ0 exp(β0ξ1)t+β0ξ1)(ξ1 − ρ)2 + q2e
(−λ0 exp(β0ξ2)t+β0ξ2)(ξ2 − ρ)2

}
×

×H(t−|ρ)e(β0ρ)dQ(ρ)

=

∫ {
g1(t, β0, λ0)(ξ1 − ρ)2 + g2(t, β0, λ0)(ξ2 − ρ)2

}
H(t−|ρ)e(β0ρ)dQ(ρ)

=g2(t, β0, λ0)(ξ2 − ξ1)
2g1(t, β0, λ0) + g1(t, β0, λ0)(ξ1 − ξ2)

2g2(t, β0, λ0)

=2g1(t, β0, λ0)g2(t, β0, λ0)(ξ2 − ξ1)
2.

The representation of Σ is given by

Σ(β0, λ0, G,Q)

= q1q2(ξ1 − ξ2)
2 exp(β0ξ1 + β0ξ2)λ0×

×
∫ τ

0

exp(−λ0 exp(β0ξ1)u− λ0 exp(β0ξ2)u)

q1 exp(−λ0 exp(β0ξ1)u+ β0ξ1) + q2 exp(−λ0 exp(β0ξ2)u+ β0ξ2)
du

= q1q2(ξ1 − ξ2)
2 exp(β0(ξ1 + ξ2))λ0×

×
∫ τ

0

1

q1 exp(λ0 exp(β0ξ2)u+ β0ξ1) + q2 exp(λ0 exp(β0ξ1)u+ β0ξ2)
du.

For obtaining local optimal two-points covariate we have to maximize
Σ(β0, λ0, G,Q) with respect to q1, ξ1, q2, ξ2 under the restrictions

q1, q2 ≥ 0, q1 + q2 = 1, ξ1, ξ2 ∈ [0, 1].
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This can be done numerically. Results of a computation for several values of
β0 and λ0 are given in Table 4.1.
Using equation (4.9) and (4.10) with m = 2, the scalar Σ is maximized w.r.t.
Q. Denote

max
Q

Σ(β0, λ0, G,Q) =: Σ∗(β0, λ0, G).

One sees that the local optimal covariates depend on the chosen parameters.
Especially, for λ0 = 1, one sees that for β0 = 1.0 the largest value of
Σ(1, 1, G,Q) is reached for ξ∗1 = 0, ξ∗2 = 1. For β0 = 6.0 we see that
Σ(6, 1, G,Q) is maximal for ξ∗1 = 0.4, ξ∗2 = 1. We �nd out that the end
points of the interval [0, 1] are not included necessarily in the local optimal
covariate. This depends on the value of β0. As visible in Figure A.1, for
small β0 we expect that the end points are local optimal covariate points, for
larger values (e.g. β0 = 6) this will not be the case.

Table 4.1: Local optimal two-points covariates of the exponential model (4.17) as

a submodel of (3.2).

λ0 = 1 λ0 = 3
β0 ξ∗1 ξ∗2 q∗1 Σ∗(β0, λ0, G) ξ∗1 ξ∗2 q∗1 Σ∗(β0, λ0, G)
1 0 1 0.52431 0.20525 0 1 0.52430 0.20525
1.5 0 1 0.55200 0.16915 0 1 0.55195 0.16915
2 0 1 0.58355 0.13400 0 1 0.58365 0.13400
2.5 0 1 0.61605 0.10285 0 1 0.61490 0.10280
3 0 1 0.64760 0.07680 0 1 0.65595 0.07700
4 0.1 0.9 0.65730 0.04350 0 0.8 0.66135 0.04415
5 0.2 0.9 0.66075 0.02825 0.3 1 0.6406 0.03675
6 0.4 1 0.67585 0.02500 0.3 0.8 0.63630 0.02435
7 0.4 0.9 0.57845 0.01840 0.2 0.7 0.66580 0.01845
8 0.3 0.8 0.59780 0.01355 0.2 0.6 0.65710 0.01390

In Figure A.2 the similar plots are represented with λ0 = 3 and the
dependence of Σ(β0, λ0, G,Q) and the ξ1, ξ2 is visible. Qualitatively, there is
no di�erence to the behavior under λ0 = 1. In Figure A.3 the dependence
between Σ(β0, λ0, G,Q) and the weight q1 is plotted. These plots give some
hints for the fact that local optimal covariates can correspond to a weight
q1 ̸= 0.5. In addition, we see that Σ(β0, λ0, G,Q) is a concave function of q1.
This appears in special cases the concavity of Σ as function of q1. In general
we cannot prove this concavity.
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For �nding local optimal covariates in classes of m-point measures Q with
the support points ξ1, . . . , ξm and

P(X = ξj) = qj, qj ≥ 0, for j = 1, . . . ,m (4.19)
m∑
j=1

qj = 1 (4.20)

one needs the form of Σ(β0, λ0, G,Q) too. In Lemma 4.9 the Σ(β0, λ0, G,Q)
is calculated for the special G(t) = 1− δ[0,τ)(t).

Lemma 4.9. Consider the Cox model

λ(t|x) = λ0(t) exp(β
T
0 x)

without censoring up to τ . We assume G as in Example 4. Let the support
of X be �nite with (4.19) and (4.20). We use Λ0 as the cumulative hazard
rate,

Λ0(t) =

∫ t

0

λ0(ζ)dζ.

Then we have

Σ(β0, λ0, G,Q) =
1

2

m∑
j=1

m∑
i=1

qiqj exp(β
T
0 ξi) exp(β

T
0 ξj)(ξi − ξj)(ξi − ξj)

T

×
∫ τ

0

exp(−Λ0(u) exp(β
T
0 ξi)− Λ0(u) exp(β

T
0 ξj))∑m

l=1 ql exp(β
T
0 ξl) exp(−Λ0(u) exp(β

T
0 ξl))

λ0(u)du.

(4.21)

Proof. To formulate representation Σ, we substitute

gi(t,β0, λ0) := qi exp(−Λ0(t) exp(β
T
0 ξi) + βT

0 ξi). (4.22)

Then we have

H(t−|x) exp(βT
0 x) = exp(−Λ0(t) exp(β

T
0 x) + βT

0 x).

With similar calculations as in Example 4 we obtain
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∫
H(t−|η) exp(βT

0 η)dQ(η) =
m∑
i=1

gi(t,β0, λ0),∫ ∫
H(t−|ζ) exp(βT

0 ζ)H(t−|ρ) exp(βT
0 ρ)λ0(t)×

×(ζ−ρ)(ζ−ρ)TdQ(ζ)dQ(ρ)=
m∑
j=1

m∑
i=1

gj(t,β0, λ0)gi(t,β0, λ0)(ξi−ξj)(ξi−ξj)
T .

Hence, the desired representation for Σ(β0, λ0, G,Q) follows.

The result of this Lemma 4.9 can be extended for general covariates with any
measure Q. It is easy to calculate with (4.14), that is

Σ(β0, λ0, G,Q) =
1

2

∫ ∫
h(ζ, ρ, β0, λ0, G,Q)(ζ − ρ)(ζ − ρ)TdQ(ζ)dQ(ρ)

with

h(ζ, ρ, β0, λ0, G,Q)

=

∫ τ

0

exp(−Λ0(u) exp(β
T
0 ζ) + βT

0 ζ) exp(−Λ0(u) exp(β
T
0 ρ) + βT

0 ρ)∫
exp(−Λ0(u) exp(β

T
0 η) + βT

0 η)dQ(η)
dΛ0(u)

=

∫ Λ0(τ)

0

exp(−u exp(βT
0 ζ) + βT

0 ζ) exp(−u exp(βT
0 ρ) + βT

0 ρ)∫
exp(−u exp(βT

0 η) + βT
0 η)dQ(η)

du.

In this representation, it is obvious that the baseline hazard rate has an
in�uence toΣ only via the �xed Λ0(τ) in the upper boundary in the integral of
h(ζ, ρ, β0, λ0, G,Q). That is, the reason why the value of Σ will not strongly
change for di�erent λ0.
Numerically, it is not a problem to calculate local optimal covariates for other
submodels. The next example considers a Weibull model.

Example 5. Consider model (3.2) with p = 1 and assume the baseline is a
Weibull distribution with parameters θ > 0 and µ > 0

λ0(t|x) = θµtµ−1 exp(β0x), (4.23)

β0, x ∈ R1. The censoring distribution G is the same as in Example 4.
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Then we have the cumulative hazard rate of a Weibull distribution as

Λ0(t) =

∫ t

0

θµζµ−1dζ = θtµ,

and

1−H(t|ξ) = 1− F (t|ξ)
= exp(−θ0tµ exp(β0ξ)) for t ∈ [0, τ) (4.24)

and 1 − H(t|ξ) = 0 for t ≥ τ . We de�ne X again to be the two-points
covariate with

P(X = ξj) = qj for j = 1, 2, ξ1, ξ2 ∈ [0, 1]

where q1 + q2 = 1 and assume that the measure Q is

Q(η) =

{
qj, if η = ξj j = 1, 2,
0, otherwise.

Hence, we obtain with (4.24) and Lemma 4.9

Σ(β0, θ0, µ,G,Q) = q1q2(ξ1 − ξ2)
2 exp(β0ξ1 + β0ξ2)θ0µ×

×
∫ τ

0

exp(−θ0uµ exp(β0ξ1)− θ0u
µ exp(β0ξ2))u

µ−1

q1 exp(−θ0uµ exp(β0ξ1) + β0ξ1) + q2 exp(−θ0uµ exp(β0ξ2) + β0ξ2)
du

= q1q2(ξ1 − ξ2)
2 exp(β0(ξ1 + ξ2))θ0µ×

×
∫ τ

0

uµ−1

q1 exp(θ0uµ exp(β0ξ2) + β0ξ1) + q2 exp(θ0uµ exp(β0ξ1) + β0ξ2)
du.

The value of Σ(β0, θ, µ,G,Q) is computed for several β0, θ, µ and the values
Σ∗(β0, θ, µ,G) are given in the Table 4.2.

In the Table 4.2, we �nd that the local optimal two-points covariates depend
on the parameters β0, θ0 and µ. The Figure A.4 a), b) and c) illustrate the
dependence between Σ(β0, θ0, µ,G,Q) and the ξ1, ξ2 for β0 = 1.0, 3.0, 6.0,
for �xed q1 = 0.5, θ0 = 1 and µ = 2. The perfectly symmetric plots are
shown in Figure A.4 a), b). For both plots, we also see that curves for ξ1 = 0
are strongly increased. In contrast, there are strongly decreasing curves for
ξ1 = 1. And we also �nd that Σ(1, 1, 2, G,Q) is maximal for ξ∗1 = 1, ξ∗2 = 0
or ξ∗1 = 0, ξ∗2 = 1.
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Table 4.2: Local optimal two-points covariates of the Weibull model (4.23) as a

submodel of (3.2).

µ = 2 µ = 5
θ β0 ξ∗1 ξ∗2 q∗1 Σ∗(β0, θ, µ,G) ξ∗1 ξ∗2 q∗1 Σ∗(β0, θ, µ,G)
1 1 0 1 0.52430 0.20527 0 1 0.52410 0.20521

2 0 1 0.58355 0.13400 0 1 0.58280 0.13321
3 0 1 0.64685 0.07686 0 1 0.61970 0.07774
4 0.1 0.9 0.66075 0.04357 0.2 1 0.64905 0.04640
5 0.3 0.9 0.64770 0.02801 0.1 0.8 0.67345 0.02946
6 0.4 1 0.64145 0.02080 0.4 0.9 0.64570 0.02135
7 0.3 0.8 0.70555 0.01450 0 1 0.64900 0.01614
8 0.5 1 0.62655 0.01398 0 1 0.67025 0.01314

3 1 0 1 0.52430 0.20527 0 1 0.52550 0.20464
2 0 1 0.58350 0.13400 0 1 0.57990 0.13204
3 0 1 0.65170 0.07629 0 1 0.61810 0.08168
4 0.1 0.9 0.64425 0.04425 0 0.8 0.6051 0.04497
5 0.3 1 0.61235 0.02951 0.2 0.9 0.64930 0.03162
6 0.2 0.8 0.66370 0.02081 0.5 1 0.66945 0.02248
7 0.5 1 0.54085 0.01763 0 1 0.65655 0.01777
8 0.4 0.8 0.67440 0.01388 0 1 0.60365 0.01357

On the other hand, we do not �nd the symmetric plots in Figure A.4 c) as
β0 = 6. The largest value of Σ(6, 1, 2, G,Q) is reached for ξ∗1 = 1, ξ∗2 = 0.5 or
ξ∗1 = 0.5, ξ∗2 = 1.
In Figure A.5, A.6 and A.7 the similar plots are represented with other
unknown parameters and the dependence of Σ(β0, θ0, µ,G,Q) and the ξ1, ξ2
is obvious. Qualitatively, we have the same behavior as in the exponential
models.

It should be remarked that the values Σ∗ do not depend very strongly from
λ0, i.e. here by θ, µ. This property is connected with the special choice of
the censoring distribution G.

4.2.2 Sensitivity analysis

The optimality criterion detΣ(β0, λ0, G,Q) depends on the unknown pa-
rameters β0 ∈ Rp, λ0 ∈ C([0, τ ]). The sensitivity analysis will express
the relative distinction between the values detΣ(β̃0, λ̃0, G,Q

∗(β0, λ0)) and
detΣ(β̃0, λ̃0, G,Q

∗(β̃0, λ̃0)) for (β̃0, λ̃0) in a neighborhood of (β0, λ0). In this
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way the loss of optimality will be measured, if one works with a covariate
Q∗(β0, λ0) instead of the optimal Q∗(β̃0, λ̃0). The value

eff β̃0,λ̃0
(Q∗(β0, λ0)) =

detΣ(β̃0, λ̃0, G,Q
∗(β0, λ0))

detΣ(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0))

(4.25)

is called the e�ciency of the local optimal covariate Q∗(β0, λ0) under the
parameters (β̃0, λ̃0) in the Cox model, i.e. under the distribution with the
hazard rate

λ(t|x) = λ̃0(t) exp(β̃
T

0 x).

This e�ciency has to be calculated. Here the special case p = 1 and the
exponential model is considered. The neighborhood of the exponential model
is described by baseline hazard rates in the form

λ̃0(t) = a+ b cos(ωt)

for constants a, b, ω. In the Tables A.1-A.6 the local optimal covariates
Q∗(β̃0, λ̃0) are given by the support points ξ∗i and the corresponding weights
q∗i . Moreover, the values

Σ∗(β̃0, λ̃0, G) = Σ(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0))

and the e�ciencies eff β̃0,λ̃0
(Q∗(1, 1)) are calculated. In Tables A.1-A.4 we

have chosen β̃0 = 1, in Table A.5 we put β̃0 = 2 and β̃0 = 3 is used in Table
A.6-A.9. In the Tables the values of e�ciencies are given for (β0, λ0) = (1, 1)
and λ̃0 with a = 1, 2, 5 and b = 0, 0.3, 0.6, 0.9 and ω = 1. Moreover, the
e�ciencies are calculated for λ̃0 with ω = 15, b = 0.75 and ω = 30, b = 0.9.

Remarkable is the fact that for �xed β̃0 the e�ciencies do not vary very
much for di�erent values of λ̃0.

The e�ciencies are de�ned for a given censoring distribution. We are
interested in the in�uence of G for these e�ciencies. The important
consideration is generating censoring time with some speci�c distribution.
Now, we choose four di�erent censoring distributions. The �rst censoring
distribution is a censoring where one censors at a �xed time τ . The second
distribution describes a G where one censors in an exponential way and
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here mainly at the beginning. The third distribution demonstrate that
censored observations occur most often at nearly time τ and the last censoring
distribution describes a constant censoring.

More precisely, we compare the values of Σ(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0)) for the

following censoring distributions,

1. G(t) = 1− δ[0,τ ](t)

2. G(t) = 1− exp(−t)

3. G(t) = (exp(ct)− 1)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ
log 2

4. G(t) = (ct)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ
.

From Tables A.1, A.5 and A.6, we note that for each �xed λ̃0 and
censoring distribution G(t) = 1 − δ[0,τ)(t), the asymptotic variances

Σ−1(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0)) will increase with increasing β̃0.

For each �xed λ̃0 and β̃0, the asymptotic variancesΣ−1(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0))

dictates that there is a big di�erence between the results under second
and third censoring distribution. The second censoring distribution G(t) =
1 − exp(−t) will lead to much censoring observations in the data set at
the beginning of the study, which will increase the loss of information
in the data. On the other hand, the third censoring pattern G(t) =

(exp(ct) − 1)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1

τ
log 2 indicates that there is not

much censoring in the beginning of the study, so that we have more enough
uncensored lifetimes to assess in this case.
Thus, from Table A.2 and A.3 we can see clearly that the values of
Σ−1(β̃0, λ̃0, G,Q

∗(β̃0, λ̃0)) under second censoring distribution is higher than
under third censoring distribution.

Moreover, for cases with the fourth censoring distribution G(t) =

(ct)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1

τ
, the di�erence of the values of

Σ−1(β̃0, λ̃0, G,Q
∗(β̃0, λ̃0)) corresponding to �xed β̃0 and λ̃0 are almost

the same as under the third censoring distribution. These results are shown
in Table A.4.
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4.3 Proposals for applicable optimal covariates

In the previous section, localD-optimal covariates were de�ned and they were
calculated in examples. Some procedures exist for getting optimal covariates
which do not depend explicitly on unknown parameters. In this section, we
consider two-stage optimal covariates, which are also called estimated optimal
covariates. Here the sample is divided into two parts. With the observations
from the �rst part the unknown parameters are estimated, these estimations
are substituted for the unknown parameter functional detΣ(β0, λ0, G,Q),

getting detΣ(β̂0, λ̂0, G,Q) and this estimated function will be maximized
with respect to Q.
A second kind of applicable D-optimal covariates bases on the continuity of
detΣ(β0, λ0, G,Q). We calculate optimal covariates (measure Q∗) for a �xed
(β0, λ0(·)) and then we know that Q∗ is nearly optimal for all (β̃0, λ̃0), which
are in a small neighborhood around (β0, λ0). A third kind of applicable D-
optimal covariates is connected with a grid {(β0i, λ0i), i = 1, . . . , r} in the
parameter space and a mixture of the detΣ(β0i, λ0i, G,Q) is to be maximized.

4.3.1 Two-stage choice of optimal covariates

We de�ned D-optimal covariates and we have realized that these local
optimal covariates depend on the β0 and on the baseline hazard rate and
on G. For getting realistic nearly optimal covariates we propose a two-stage
design to solve the estimation problem. We divide the observations in two
parts. The �rst part of observations, which is n1 = νn, 0 < ν < 1, are taken
from the model with covariates described by a measure Q is not optimal, so
that Q will be chosen as a reasonable measure, possibly practical experiences
are to be used. With these observations we estimate β0, λ0 and Λ0. The

estimator β̂0 will be the maximum partial likelihood estimate, Λ̂0 will be the
Breslow estimate.
Then the second part of observations, namely n2 = (1−ν)n observations are

observed according to a local optimal covariate, namely locally to (β̂0, λ̂0).

De�nition 4.5. We call a measure Q̂ estimated D-optimal in D if

detΣ(β̂0, λ̂0, G, Q̂) = max
Q∈D

detΣ(β̂0, λ̂0, G,Q).

The covariate X̂ with the induced measure Q̂ is called estimated D-optimal
covariate.
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The resulting measure

Q̃ = νQ+ (1− ν)Q̂

is called a two-stage D-optimal measure for choosing covariates or we say
that the variable X̃ with the induced measure Q̃ is two-stage D-optimal. By
changing the rate ν, we can change the relations of the sample sizes in the
two stages.

4.3.2 Nearly D-optimal covariates

Lemma 4.8 states the continuity of the matrix Σ. If Σ(β0, λ0, G,Q) is
continuous in all arguments and if for �xed (β0, λ0, G,Q) the maximizer
Q∗ with

Q∗ = argmax
Q

detΣ(β0, λ0, G,Q) = Q∗(β0, λ0)

is unique, then the continuity of Σ implies that for any ϵ > 0 there exists a
δ > 0 with

∥Q∗(β0, λ0)−Q∗(β̃0, λ̃0)∥ < ϵ,

|max
Q

detΣ(β0, λ0, G,Q)−max
Q

detΣ(β̃0, λ̃0, G,Q)| < ϵ,

if

|β0 − β̃0| < δ, ∥λ0(·)− λ̃0(·)∥ < δ.

This means for β̃0 in a neighborhood of β0 and λ̃0(·) in a tube around λ0(·)
the calculated Q∗(β0, λ0) is nearly D-optimal. The tube around λ0 is a
nonparametric set, the δ-neighborhood around β0 is a parametric set. The

MPLE β̂ which is a estimator of β0 can be used for all (β̃0, λ̃0) in the given
neighborhood. The covariates X∗ with the induced measure Q∗(β0, λ0) are
called nearly D-optimal covariates.
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4.3.3 Mixed optimal covariates

To propose a further methods for choosing covariates in a nearly optimal
way, let us introduce a grid in the set F ⊆ Rp ×C([0, τ ]). F denotes a set of
models, describes by (β0, λ0) ∈ Rp × C([0, τ ]). The grid is denoted by

(β0i, λ0i(·)), i = 1, . . . , r

and we de�ne as optimality criterion the mixed functional of the form

M(Q) =
r∑

i=1

pi detΣ(β0i, λ0i, G,Q) (4.26)

for positive constants p1, . . . , pr which express the importance of the grid
points

(β01, λ01), . . . , (β0r, λ0r).

The maximizer of the functional M , say Q∗, is called �mixed optimal
covariates�. This Q∗ is not local optimal for any point in F but quite well
for the most of the points.

4.4 Suboptimal covariates

In general, one is looking for optimal covariates but the determination or
calculation is impossible in many problems. Therefore, a weaker optimality
is discussed in classical experimental design problems . One determines such
designs, which are not improvable by changes in a given class. This restricted
optimality is called �suboptimality� and will be discussed here in the context
of the covariates.
In the former subsections several optimality criteria were introduced. For
the local optimal covariates the criterion

detΣ(β0, λ0, G,Q) (4.27)

was the basis for �nding an optimal design. The two-stage optimality
criterion was principally the same, here the β0, λ0 were substituted by
estimates. For the nearly optimal covariates this functional (4.27) was used
and for the mixed strategy we worked with (4.26). Now all these criteria are
denoted by M̃ = M̃(Q). Let Qx be the one-point measure with
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Qx(η) =

{
1, if η = x,
0, otherwise.

We are looking for D-optimal covariates X∗, i.e. we look for a measure Q∗

with

detΣ(β0, λ0, G,Q
∗) = max

Q
detΣ(β0, λ0, G,Q) (4.28)

and Q is any measure overX = [0, 1]p. For the described variations of criteria
we are looking for a Q∗ with

M̃(Q∗) = max
Q

M̃(Q).

This is the same as

M̃(Q∗) ≥ M̃((1− α)Q∗ + αQ) (4.29)

for all measures Q and for all α ∈ [0, 1]. Whittle (1973) proved for concave
functionals M̃ , i.e. for M̃ with

M̃((1− α)Q1 + αQ2) ≥ (1− α)M̃(Q1) + αM̃(Q2)

for any measures Q1, Q2 and for all α ∈ [0, 1], the condition (4.29) is
equivalent to

M̃(Q∗) ≥ M̃((1− α)Q∗ + αQx) (4.30)

for any one-point measure Qx, x ∈ X , α ∈ [0, 1]. Moreover, for concave
functionals M̃ this relation (4.30) is equivalent to

d

dα
M̃((1− α)Q∗ + αQx)|α=0 ≤ 0 (4.31)

for all x ∈ X . Hence, one has for concave functionals M̃ , the property that
Q∗ from (4.29) is determined by the condition (4.31). The importance of
condition (4.31) consists in a good possibility for numerical checking. In this
way we will de�ne suboptimal covariates.
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De�nition 4.6. Suppose that β0 is asymptotically estimable. The measure
Q∗ is called D-suboptimal if

d

dα
M̃((1− α)Q∗ + αQx)|α=0 ≤ 0 (4.32)

for all x ∈ X . M̃ stands here for any criterion mentioned above. The
corresponding covariate X∗ with the induced measure Q∗ is called D-
suboptimal covariate.

Hence, any D-optimal covariate is a D-suboptimal covariate. In classical
experimental design problems the suboptimal designs are optimal designs,
at least for concave criteria. Suboptimal covariates have the advantage
that there exist iterative procedures to calculate these covariates. Moreover,
suboptimality can be checked.

4.4.1 Iterative calculation of suboptimal covariates

The inequality (4.32) gives the idea for an iteration process. In experimental
design iteration processes for calculating D-optimal designs were proposed
by Kiefer (1961), Wynn (1972); therefore, we can use a similar procedure
here. The essential di�erence to the classical design problems consists in
the property of the asymptotic variance matrix. We cannot prove that
detΣ(β0, λ0, G,Q) is concave with respect to Q.
We denote with

Q̃ = (1− α)Q(0) + αQx, α ∈ [0, 1] (4.33)

where a starting measure Q(0) is chosen in such a way that β0 is asymptoti-
cally estimable.
From the function

∂

∂α
M̃(Q̃)|α=0 =: ϕ(Q(0),x),

the dependence on β0, λ0 will be suppressed in ϕ. X ∈ Rp denotes the set of
possible values of the covariates. Let us formulate the iteration procedure.

Step 1 Choose a measure Q(0) in such a way that β0 is asymptotically
estimable.
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Step 2 Choose such a point x0 ∈ X that

ϕ(Q(0),x0) = max
x∈X

ϕ(Q(0),x).

Step 3 Choose an α0 with 0 < α0 < 1 in such a way that

M̃((1− α0)Q(0) + α0Qx0) = max
α

M̃((1− α)Q(0) + αQx0).

We put Q(1) = (1− α0)Q(0) + α0Qx0 .
These steps will be repeated, now starting with Q(1), �nding x1 with

ϕ(Q(1),x1) = max
x∈X

ϕ(Q(1),x).

As in step 3 we determine an α1 ∈ (0, 1) in such a way that

M̃((1− α)Q(1) + αQx1)

is maximal. In this way we get a sequence of measures Q(0), Q(1), Q(2), . . .
with

M̃(Q(0)) ≤ M̃(Q(1)) ≤ M̃(Q(2)) ≤ . . . .

Then the measures Q(i) are improved stepwise. The criterion M̃ and the

functional ϕ can be calculated very easily. The iteration stops if M̃(Q(l))
is not improvable in this way or if the improvement is smaller than a given
bound.
In the criteria M̃ the term detΣ(β0, λ0, G,Q) is contained, either as a single
part or in a weighted sum. We recall the representation of Σ as in Theorem
4.7. For measures Q0, Q1, Q and µ ∈ R

A1(Q,µ) :=

∫
exp

(
− µ−eβ

T
0 η + βT

0 η
)
dQ(η)

A2(Q0, Q1, µ) :=

∫ ∫
exp

(
− µ−eβ

T
0 ζ + βT

0 ζ
)
exp

(
− µ−eβ

T
0 ρ + βT

0 ρ
)
×

× (ζ − ρ)(ζ − ρ)T
(
1−G(Λ−1

0 (µ−)
)
dQ0(ζ)dQ1(ρ).

Then we have for Q̃ = (1− α)Q(0) + αQ

Σ(β0, λ0, G, Q̃)

=

∫ Λ0(τ)

0

(1−α)2A2(Q(0), Q(0), u)+2α(1−α)A2(Q(0), Q, u)+α
2A2(Q,Q, u)

(1− α)A1(Q(0), u) + αA1(Q, u)
du.
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Therefore, we get

∂

∂α
Σ(β0, λ0, G, Q̃)|α=0

=

Λ0(τ)∫
0

1

[A1(Q(0), u)]2

{{
A1(Q(0), u)

{
− 2A2(Q(0), Q(0), u) + 2A2(Q(0), Q, u)

}}

−
{
A2(Q(0), Q(0), u)

{
− A1(Q(0), u) + A1(Q, u)

}}}
du

=−Σ(β0, λ0, G,Q(0))+2

Λ0(τ)∫
0

A2(Q(0), Q, u)

A1(Q(0), u)
du−

Λ0(τ)∫
0

A1(Q, u)A2(Q(0), Q(0), u)

[A1(Q(0), u)]2
du.

In the Example 6 these representations are calculated for anm-point measure
Q(0) and one-point measure Q = Qx

Example 6. We consider the Cox model with p = 1. Let Q(0) be de�ned
as an m-point measure as in Theorem 4.4. Let the censoring G be as in
Example 4. Then we have

Σ(β0, λ0, G,Q(0)) =
1

2

m∑
j=1

m∑
i=1

qiqje
β0(ξi+ξj)(ξi − ξj)

2

Λ0(τ)∫
0

e−u(eβ0ξi+eβ0ξj )

m∑
l=1

qleβ0ξle(−ueβ0ξl )

du.

(4.34)

With an additional one-point measure Qx the convex linear combination

Q̃ = (1− α)Q(0) + αQx.

will be considered. With

gi(u, β0, λ0) = qi exp(−ueβ0ξi + β0ξi)
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and with (4.10) we have

Σ(β0, λ0, G, Q̃) =
1

2
(1− α)2

m∑
j=1

m∑
i=1

qiqje
β0(ξi+ξj)(ξi − ξj)

2×

×
Λ0(τ)∫
0

exp(−u(eβ0ξi + eβ0ξj))

(1− α)
∑m

l=1 gl(u, β0, λ0) + α exp(−ueβ0x + β0x)
du

+ α(1− α)
m∑
j=1

qje
β0(ξj+x)(ξj − x)2×

×
Λ0(τ)∫
0

exp(−u(eβ0ξj + eβ0x))

(1− α)
∑m

l=1 gl(u, β0, λ0) + α exp(−ueβ0x + β0x)
)du.

Now we put p = 1 and because of Σ = detΣ the function ϕ(Q(0), x) has the
following form:

ϕ(Q(0), x) =
∂

∂α
Σ(β0, λ0, G, Q̃)|α=0

=−Σ(β0, λ0, G,Q(0))

+

Λ0(τ)∫
0

exp(−ueβ0x + β0x)
∑m

i=1 gi(u, β0, λ0)(ξi − x)2∑m
l=1 gl(u, β0, λ0)

du

− 1

2

Λ0(τ)∫
0

∑m
i=1

∑m
j=1 gi(u, β0, λ0)gj(u, β0, λ0)(ξi − ξj)

2(∑m
l=1 gl(u, β0, λ0)

)2 du.

These explicit representations of Σ(β0, λ0, G, Q̃) and ϕ(Q(0), x) are used for
the iterative calculation of suboptimal covariates. For calculating local D-
suboptimal covariates for exponential models as submodels of (3.2), we start
the iterative procedures with the optimal two-points covariates given in Table
4.1 or some other appropriate designs. We demonstrate this for λ0 = 1 and
choose the parameters β0 = 1, 1.5, 2, . . . , 6 step by step. For β0 = 1, we start
with Q(0) and

Q(0)(0) = 0.52431, Q(0)(1) = 0.47569.



88 4.4. Suboptimal covariates

Then we calculate ϕ(Q(0), x) and �nd that ϕ(Q(0), x) ≤ 0 for x ∈ [0, 1].
Consequently Q(0) is suboptimal if β0 = 1.
For β0 = 6 we start with Q(0) and

Q(0)(0.4) = 0.67585, Q(0)(1) = 0.32415.

Then we calculate ϕ(Q(0), x) and �nd that max
x∈[0,1]

ϕ(Q(0), x) is reached in x = 0,

the corresponding α0 from step 3 in the iteration procedure is α0 = 0.359.
We have Q(1) with

Q(1)(0.4) = 0.4332, Q(1)(0) = 0.359, Q(1)(1) = 0.2078.

After getting three values of Q(1), ϕ(Q(1), x) is calculated and the maximum
of ϕ(Q(1), x) is reached for x = 0.621. The value α1 equals to 0.09033. Thus,
we obtain the measure Q(2) with

Q(2)(0) = 0.32657, Q(2)(0.400) = 0.39407,

Q(2)(0.621) = 0.09033, Q(2)(1) = 0.18903.

This measure Q(2) is considered as the suboptimal covariates.
We notice that some rounding errors occurred in the numerical calculations
and for the most of the values x, the values ϕ(Q(2), x) are negative. Only for
some x̃ it can be happened that ϕ(Q(2), x̃) ≈ 0, but positive. Then one checks
that Σ(β0, λ0, G, (1− α)Q(2) + αQx̃) < Σ(β0, λ0, G,Q) and it is justi�ed to
consider Q(2) as suboptimal. Here we described the iteration for β0 = 1,
β0 = 6 as example.

Table 4.3: Local suboptimal covariates for the exponential model as a submodel of

(3.2)

β0 ξ∗1 ξ∗2 ξ∗3 ξ∗4 q∗1 q∗2 q∗3 q∗4 Σ∗(β0, λ0, G,Q)
1 0 1 0.52431 0.47569 0.20525
1.5 0 1 0.55200 0.44800 0.16915
2 0 1 0.58355 0.41645 0.13400
3 0 0.525 1 0.54485 0.15867 0.29648 0.08075
4 0.1 0.535 0.900 1 0.48093 0.17499 0.25075 0.09333 0.04845
5 0 0.200 0.565 0.900 0.28000 0.36616 0.16584 0.18800 0.03665
6 0 0.400 0.621 1 0.32657 0.39407 0.09033 0.18903 0.03205

In Table 4.3 local suboptimal covariates are given. It can be clearly seen that
the suboptimal covariates for β0 = 1, 1.5, 2 coincide with the local optimal
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two-points covariates in Table 4.1. For larger β0, we see by comparing the
Tables 4.1 and 4.3 that three- or four-point covariates lead to higher values
of Σ(β0, λ0, G,Q), i.e. if Qβ0,1 describes the measures from Table 4.1, and
Qβ0,2 describes the measures from Table 4.3, then we have

Σ(i, 1, G,Qi,1) < Σ(i, 1, G,Qi,2) i = 3, 4, 5, 6.

This means that for β0 = 1, 1.5, 2 two-points covariates are local suboptimal.
For β0 = 3, 4, 5, 6 the local optimal two-points covariates are not local
suboptimal in the set of all covariates because we found three- or four-point
covariates with a smaller asymptotic variance.
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Chapter 5

Statistical inference in the Cox

model with time-dependent

coe�cient

In this chapter we consider the extension of the Cox model where the
coe�cients are allowed to depend on time. Such models are useful to describe
situation where the e�ect of the covariate�not the covariate itself�varies with
the time.

As already mentioned in (3.17), the model is given by

λ(t,x) = λ0(t) exp(β
T (t)x(t)),

where β(·) is a p-dimensional vector of time-dependent coe�cients function.

Here we will concentrate on estimating and testing the coe�cient function
β, so that for simplicity of presentation we suppose that the covariate does
not depend on time, i.e. x(t) = x.

In the �rst section of this chapter the local partial partial likelihood
estimation method is described, here we follow namely the approach of Cai
and Sun (2003). The main topic of this chapter is a test for checking the
parametric form of the coe�cient function β. The test procedure of this
chapter, which is presented in Section 5.2 is based on the score function.

91
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5.1 The maximum local partial likelihood esti-

mation

The idea of the local partial likelihood estimation in the Cox model goes back
to the general method of smoothing by local polynomials. Using a Taylor
expansion the function of interest is approximated locally. The simplest
special case is a local approximation by a constant, the mostly applied
method is the local linear approximation. The local approximation is coupled
with the log partial likelihood function, the local neighborhood is described
by a kernel function and a bandwidth sequence.

The local partial likelihood method for the estimation in hazard regression
was considered by Hastie and Tibshirani (1993). They considered the
estimation of the function ψ(x) in the model λ(t|x) = λ0(t) exp (ψ(x)) and
proposed a nearest neighbor type estimator with uniform windows.

Fan et al. (1997) investigated a more general approach and compared local
likelihood and local partial likelihood estimators. Cai and Sun (2003) used
this local linear partial likelihood approach to estimate the time-dependent
coe�cient function β in model (3.17) and also established the asymptotic

consistency and normality of the estimators β̂n(t) at a �xed point t.

In this section we will explain this method and illustrate this by an example.
Further, since for the testing procedure proposed in the next section, we
need the method based on the local constant method, we will also present
this method.

We suppose the extended Cox model with the hazard rate

λ(t,x) = λ0(t) exp(β
T (t)x). (5.1)

The logarithm of the partial likelihood function depending on the function
β(·) is given by

ℓn(β) =
n∑

i=1

∫ τ

0

[
βT (u)X i − log

{ n∑
j=1

Yj(u) exp(β
T (u)Xj)

}]
dNi(u). (5.2)

Of course, this can not be the basis to determine an estimator of the function
β. The idea for the maximum local linear partial likelihood estimation is to
replace the function β in (5.2) locally by the �rst two terms of its Taylor
expansion.
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For s in a neighborhood of t we have for the component βj

βj(s) ≈ βj(t) + β′
j(t)(s− t).

where β′
j is the �rst derivative of βj.

Set b1j(t) = βj(t) and b2j(t) = β′
j(t), then a linear approximation at s is given

by

βj(s) ≈ b1j(t) + b2j(t)(s− t).

The local neighborhood of s is characterized by the kernel function K :
R → R and a bandwidth sequence h = hn, which controls the size of the
neighborhood.
Let X̃ i(s, s− t) be a 2p-dimensional vector with

X̃ i(u, u− t) = X i ⊗ (1, u− t)T ,

where ⊗ denotes the Kronecker product.
The log local linear partial likelihood function for estimating the true
parameter function β0 at the grid point t is given by

ℓt(b) =
n∑

i=1

∫ τ

0

Kh(u− t)

[
bTX̃ i(u, u− t)

− log
{ n∑

j=1

Yj(u) exp(b
TX̃j(u, u− t))

}]
dNi(u) (5.3)

where b = (b11(t), . . . , b1p(t), b21(t), . . . , b2p(t))
T , Kh(s − t) = 1

h
K
(
s−t
h

)
and

K is a kernel function satisfying some regularity conditions speci�ed later.
In other words, for each t one has to compute an estimate similarly as de�ned
in the model with time-dependent coe�cients; of course in addition we have
to take into account the kernel weights.

Let b̂ = (̂b11(t), . . . , b̂1p(t), b̂21(t), . . . , b̂2p(t))
T be the maximizer of local linear

partial likelihood function (5.3). Then, β̂n(t) = (̂b11(t), . . . , b̂1p(t))
T is a

maximum local linear partial likelihood estimator for the coe�cients function
β0(·) at point t.

For the derivation of the maximum we compute as usual the score function
and the Hessian matrix. Let us now describe the way of computing.
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We use a similar notation as in Chapter 3

S0n(u, b, t) =
1

n

n∑
i=1

Yi(u) exp(b
TX̃ i(u, u− t)),

S1n(u, b, t) =
1

n

n∑
i=1

Yi(u)X̃ i(u, u− t) exp(bTX̃ i(u, u− t)),

S2n(u, b, t) =
1

n

n∑
i=1

Yi(u)X̃ i(u, u− t)X̃ i(u, u− t)T exp(bTX̃ i(u, u− t)).

Then ℓt(b) can be written in the form

ℓt(b) =
n∑

i=1

∫ τ

0

Kh(u− t)

[
bTX̃ i(u, u− t)− log

{
nS0n(u, b, t)

}]
dNi(u)

and immediately we obtain the score function which is a 2p-dimensional
vector

Un(b) =
n∑

i=1

∫ τ

0

Kh(u− t)

[
X̃ i(u, u− t)− S1n(u, b, t)

S0n(u, b, t)

]
dNi(u). (5.4)

The Hessian matrix is given by

−
n∑

i=1

∫ τ

0

Kh(u− t)

[
S2n(u, b, t)

S0n(u, b, t)
−
{S1n(u, b, t)

S0n(u, b, t)

}⊗2
]
dNi(u).

Let us consider this in a more detail because the Hessian matrix yields also
the method for the computation of β̂n(t).

Si0n(u, b, t) = exp(bTX̃ i(u, u− t)).

Thus, the Hessian matrix has the form

ℓ′′t (b) =−
n∑

i=1

∫ τ

0

Kh(u− t)

S2
0n(u, b, t)

[∑
j<k

Yj(u)Yk(u)Sj0n(u, b, t)Sk0n(u, b, t)

× (Xj −Xk)
⊗2 ⊗

(
1 u− t

u− t (u− t)2

)]
dNi(u). (5.5)
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We can see that the right-hand side of this equation is negative de�nite as
n→ ∞. This implies that log local linear partial likelihood ℓt(b) is a strictly
concave function of b and has a unique maximum.
The computation of the value of the estimator can be obtained by using the
Newton-Raphson algorithm in practice.
The (j + 1)th Newton-Raphson iteration equation is

b̂
(j+1)

n = b̂
(j)

n −
{
l′′(b̂

(j)

n )
}−1

l′(b̂
(j)

n ) (5.6)

where b̂
(j)

n is jth iteration.

To derive the local constant estimator we include only the �rst term of the
Taylor expansion, i.e. βj(s) ≈ b1j(t) in the neighborhood of s consequently
the log local constant partial likelihood function to be maximized is

ℓt(b) =
n∑

i=1

∫ τ

0

Kh(u− t)

[
bTX i − log

{ n∑
j=1

Yj(u) exp(b
TXj)

}]
dNi(u).

(5.7)

The functions introduced for the computation of the estimator become
simpler

S0n(u, b) =
n∑

i=1

Yi(u) exp(b
TX i),

S1n(u, b) =
n∑

i=1

Yi(u)X i exp(b
TX i),

S2n(u, b) =
n∑

i=1

Yi(u)X iX
T
i exp(bTX i).

with b = (b11(t), . . . , b1p(t))
T .

5.1.1 Simulation Study

According to Cai and Sun (2003), their numerical studies were carried out
using Fortran77 and the exact details of the algorithm were not given. Thus
an own procedure for the realization of the maximum local partial likelihood
estimates were developed. The R-codes used to carry out the simulation
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and the basic idea is as follows: We start by generating data and write the
log local constant and local linear partial likelihood functions. The estimator
based on both functions were obtained using the default setting of the maxLik
function in the R software.
In this section we illustrate the estimates for two scenarios. The �rst
corresponds to the maximum local linear partial likelihood approach with
two covariates. The second considers especially the maximum local constant
partial likelihood approach with one covariate. The Epanechnikov kernel
K(u) = 0.75(1− u2)+ is used for both examples.

5.1.1.1 Model I

We suppose

λ(t, x1, x2) = exp(β1(t)x1 + β2(t)x2)

where λ0(t) = 1 and β1(t) = t and β2(t) = 1/2. The covariates are
uniformly and normally distributed, respectively, i.e. X1 ∼ U(−1, 1) and
X2 ∼ N(0, 1) with sample size n = 600. We consider the bandwidth
h = 0.6, 0.8 and censoring rate 30%. Plots of the estimation at 200 grid
points with t = 0.005k, k = 1, ..., 200 are shown in Figure 5.1 and 5.2.
The estimates of β1(t) = t and β2(t) = 1/2 are plotted in (a) and (b),
respectively. The red line is the true function. As can be seen in Figure 5.1
and 5.2, the estimates are close to the true functions and do not change very
much if we take di�erent bandwidth.
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Figure 5.1: Estimation of β1(t) = t and β2(t) = 1
2 for Model I with n = 600,

h = 0.6 and 30% censoring. The red lines are the true functions.
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Figure 5.2: Estimation of β1(t) = t and β2(t) = 1
2 for Model I with n = 600,

h = 0.8 and 30% censoring. The red lines are the true functions.

5.1.1.2 Model II

We consider

λ(t|x) = λ0(t) exp(β(t)x).

where λ0(t) = 1/2, β(t) = log(t) and covariate X is generated from uniform
distribution U(−1, 1).
For this simulation, we select sample sizes n = 800, band widths h = 0.75
and the two di�erent censoring patterns 0% and 30%. The simulation of 10
estimates based on 80 grid points are displayed by Figure 5.3. The blue line
is the true function. The results show that the estimates are quite good and
they are quite close to the true function of the parameter except for t > 3
because there are less observations�marked at the bottom of the graph. These
results on 0% censoring data are generally more reliable and stable than the
results on 30% censoring data.

5.2 Score test based on the local partial likeli-

hood approach

In this section the problem of testing whether the components of the
coe�cient function β0(·) have a prespeci�ed parametric form is considered.
Test procedures for such goodness-of-�t problem were studied by several
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Figure 5.3: Estimation of β(t) = log(t) for Model II with n = 800, h = 0.75 and

30% censoring. The blue lines are the true functions.

authors. Since these procedures are proposed for single component and not
for the p-dimensional vector β0, without loss of generality let us consider the
case p = 1. In Section (3.4) the results of Martinussen and Scheike (2000)
were already mentioned. They proposed Cramer-von Mises and Kolmogorov
type tests based on the nonparametric estimator for the cumulative coe�cient
B0(t) =

∫ t

0
β0(s)ds for testing whether β0 ≡ 0 or β0(t) ≡ β0 for a constant

β0.
Kauermann and Berger (2003) considered local constant estimators for β0(·)
and proposed the log partial likelihood ratio statistic to test whether β0(·)
is constant. They did not derive the (limit) distribution of the test statistic
under the null hypothesis but applied a bootstrap techniques in order to
obtain the reference distribution.
In the paper of Tian et al. (2005) con�dence bands for β0 based on the so-
called strong approximation method along with a resampling procedure over
a properly chosen time interval are derived. This interval can use to check
β0(·).

5.2.1 Distribution of the quadratic form of the score

vector

We consider the test problem

H : β0(·) ∈ Bpar = {β(·, ϑ), ϑ ∈ Θ ⊆ Rk} K : β0(·) /∈ Bpar.
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The most important special case of this null hypothesis is that β0(·) is
constant, that is, that the classical Cox proportional hazard model is true.
The test procedure will be based on the the local partial score function.
Considering this score function at a �nite number of di�erent points we will
show that the corresponding quadratic form converges in distribution to a
χ2-distribution. The advantage of this test procedure is that the computation
of estimator is not required.
We will use the counting process approach introduced in Section 3.3.1 to
show the results concerning inference procedures.
In Section 5.1 the log local constant partial likelihood function was de�ned
as in (5.7).
The nonparametric local constant estimator of β0(·) at the grid point t is the
maximum of (5.7), for p = 1 the formula simpli�es.

Skn(b, u) =
1

n

n∑
j=1

Yj(u) exp(bXj)X
k
j k = 0, 1, 2

and with

En(b, t) =
S1n(b, u)

S0n(b, u)

we can write the log local constant partial likelihood function (5.7)

ℓt(b) =
n∑

i=1

∫ τ

0

Kh(u− t)
[
bXi − log

{
nS0n(b, u)

}]
dNi(u),

and the score function (5.4) as:

Un(b, t) =
n∑

i=1

∫ τ

0

Kh(u− t)
[
Xi − En(b, u)

]
dNi(u).

In the short survey in Chapter 3 it is mentioned that Cai and Sun (2003)

proved the consistency of the local linear partial likelihood estimator β̂n and
its asymptotic normality at a �xed point. The proof of this limit statement
is based on the asymptotic normality of the score function. Here we consider
the vector of the score function at distinct grid point t1, . . . , td.
For t = (t1, . . . , td), we de�ne

Un(β, t) = (Un(β(t1), t1), Un(β(t2), t2), . . . , Un(β(td), td))
T .
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As an extension of the limit theorem for Un(β, t) at a �xed point t, we show
that the distribution of Un(β0, t) tends to a multivariate normal distribution
with zero expectation and a covariance matrix S(β0, t).
Then, using standard methods it follows that the corresponding quadratic
form Un

TS−1Un converges to a χ2-distribution. This limit statement is the
basis of the test procedure.
To formulate the multivariate limit theorem and the consequences for the test
procedure we make use of the following assumptions. These assumptions
include the assumptions formulated in the previous chapters, in addition
conditions on the smoothness of the coe�cient function, conditions on the
kernel and the bandwidth and on the convergence rate are supposed.

A1 The coe�cient function β0 is twice continuously di�erentiable on [0, τ ].

A2 The baseline function λ0 is twice continuously di�erentiable on [0, τ ].

B1 There exists a compact set B in R that includes a neighborhood of β0(t)
for t ∈ [0, τ ]. Further, sj(β, t) = ESjn(β, t) exist for j = 0, 1, 2 and

|Sjn(β, t)− sj(β, t)| = OP

(
n−1/2

)
uniformly in (β, t) ∈ B × [0, τ ]

B2 The functions sj, j = 0, 1, 2, and their partial derivatives with respect
to β are continuous in B × [0, τ ].

B3 The functions sj(β0(·), ·) and sj(β, ·) for j = 0, 1 are twice di�erentiable
with respect to t ∈ [0, τ ].

B4 The function s2 is bounded and s0 is bounded away from zero.

C1 The function K is a symmetric density with bounded support, say
[−1, 1].

C2 The bandwidth sequence satis�es h = hn

hn → 0 and nh1/5n → 0 and nh→ ∞.

The asymptotic variance of the vector is characterized by the function

v(β, t) =
s2(β, t)

s0(β, t)
− e(β, t)2 with e(β, t) =

s1(β, t)

s0(β, t)
.

Now, let us formulate the theorem stating the asymptotic normality.
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Theorem 5.1. Suppose that the assumptions A1,A2,B1− B4,C1,C2 are
satis�ed. If v(β0(tj), tj) > 0 for all j = 1, . . . , d. Then

n−1/2h1/2 Un(β0, t)
D−→ Nd(0,S(β0, t)),

where
S(β0, t) = diag(σ2(β0, t1), . . . , σ

2(β0, td))

and
σ2(β0, tj) = κ2 v(β0(tj), tj)s0(β0(tj), tj)λ0(tj)

with κ2 =
∫
K2(u)du.

Proof. The proof consists of three steps. In the �rst step we apply the
martingale decomposition; roughly speaking it is shown that under the
formulated smoothness conditions on β0 and under C2 it is enough to prove
the asymptotic normality for the stochastic part of the score function. Then
we follow the usual line�deriving the predictable variation process of the
approximation process we obtain as limit the variance of the limiting process.
Finally, the proof is completed by verifying the Lindeberg condition.

Each component of the standardized score vector n−1/2h1/2Un(β0, t) can be
decomposed as follows

n−1/2h1/2Un(β0(t), t)

= n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
Xi − En(β0(t), s)

]
dMi(s)

+ n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
Xi − En(β0(t), s)

]
Yi(s)λ(s,Xi)ds

= n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
Xi − En(β0(t), s)

]
dMi(s) (5.8)

+ n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
Xi − En(β0(s), s)

]
Yi(s)λ(s,Xi)ds (5.9)

+ n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
En(β0(s), s)− En(β0(t), s)

]
Yi(s)λ(s,Xi)ds.

(5.10)
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The term (5.9) is equal to zero. We will show that the third term (5.10) can
be neglected, so that it is enough to prove the asymptotic normality of the
vector with components (5.8).
Consider

Rn(t)

= n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− t)
[
En(β0(s), s)− En(β0(t), s)

]
Yi(s)λ(s,Xi)ds

= (nh)1/2
∫ τ

0

Kh(s− t)
[
En(β0(s), s)− En(β(t), s)

]
S0n(β0(s), s)λ0(s)ds.

By the consistency of the functions Sjn (uniformly with respect to β and
t) we can replace the term [En(β0(s), s) − En(β0(t), s)]S0n(β0(s), s) by their
limits [e(β0(s), s)− e(β0(t), s)]s0(β0(s), s). Furthermore, for

R(1)
n (t) = (nh)1/2

∫ τ

0

Kh(s− t)
[
e(β0(s), s)− e(β0(t), s)

]
s0(β0(s), s)λ0(s)ds

we have

sup
t

|Rn(t) − R(1)
n (t)| = OP

(
h1/2

)
.

Moreover, since the function β is twice continuously di�erentiable and K is
a symmetric kernel it follows by Taylor expansion∫ τ

0

Kh(s− t)
[
e(β0(s), s)− e(β0(t), s)

]
s0(β0(s), s)λ0(s)ds = OP

(
h2
)
,

therefore
R(1)

n (t) = OP

(√
nh5
)
.

Thus, with

U (1)
n (β0(t), t) =

n∑
i=1

∫ τ

0

Kh(s− t)
[
Xi − En(β0(t), s)

]
dMi(s)

we have by the condition on the bandwidth

n−1/2h1/2Un(β0(t), t) = n−1/2h1/2U (1)
n (β0(t), t) + oP(1). (5.11)
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By (5.11) it is enough to prove that the vector

n−1/2h1/2Un
(1)(β0, t)

= n−1/2h1/2(U (1)
n (β0(t1), t1), U

(1)
n (β0(t2), t2), . . . , U

(1)
n (β0(tk), tk))

T

is asymptotically normal. For this purpose we apply Rebolledo's Central
Limit Theorem for local square integrable martingales in the form given in
the Appendix of Andersen and Gill (1982):
For arbitrary j,m and s we consider the predictable variation process, which
is denoted by ⟨·⟩,

⟨n−1/2h1/2U (1)
n (β0(tj), tj), n

−1/2h1/2U (1)
n (β0(tm), tm)⟩(s)

= n−1h

∫ s

0

n∑
i=1

Kh(u− tj)Kh(u− tm) ×

×
[
Xi − En(β0(tj), u)

][
Xi − En(β0(tm), u)

]
αi(u)du.

Set Wni(t, u) = Xi − En(β0(t), u). Then we have for tj ̸= tm

⟨n−1/2h1/2U (1)
n (β0(tj), tj), n

−1/2h1/2U (1)
n (β0(tm), tm)⟩(s)

= n−1

n∑
i=1

∫ s

0

K(u)K

(
tj − tm
h

+ u

)
Wni(tj, tj + hu)Wni(tm, tj + hu)×

×Yi(tj + hu) exp(Xiβ0(tj + hu))λ0(tj + hu)du
P−→ 0 as h→ 0.

For tj = tm we obtain

⟨n−1/2h1/2U (1)
n (β0(tj), tj), n

−1/2h1/2U (1)
n (β0(tj), tj)⟩(s)

= n−1

n∑
i=1

∫ s

0

K2(u)W 2
ni(tj, tj + hu)Yi(tj + hu)×

× exp(Xiβ0(tj + hu))λ0(tj + hu)du

= κ2
(
S2n(β0(tj), tj)

S0n(β0(tj), tj)
− E2

n(β0(tj), tj)

)
S0n(β0(tj), tj)λ0(tj) + oP(1)

= κ2Vn(β0(tj), tj)S0n(β0(tj), tj)λ0(tj) + oP(1)

= κ2v(β0(tj), tj)s0(β0(tj), tj)λ0(tj) + oP(1)
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where

Vn(β0(tj), tj) =
S2n(β0(tj), tj)

S0n(β0(tj), tj)
−
(
S1n(β0(tj), tj)

S0n(β0(tj), tj)

)2

.

Now, it remains to check the Lindeberg condition: From the smoothness
conditions formulated above it follows that for all tj and all ε > 0

n−1h

n∑
i=1

∫ τ

0

K2
h(u− tj)W

2
ni(tj, u)1(

√
h/nKh(u− tj)|Wni(u)| > ε) αi(u)du

tends in probability to zero. The proof of the theorem is complete.

This is the illustration of the asymptotic normality of the score function.
Figure 5.4 shows the simulated realization of the score function at two
grid points together with the contour lines of the approximating normal
distribution.

Score function at two grid points
 200 Simulations

U(t1)

U
(t 2

)
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−
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2

0.
0
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4

Figure 5.4: The score function at 2 grid points, 200 simulations .

Consider the weighted quadratic form

Tn(β0) = Un(β0, t)
TS−1(β0, t) Un(β0, t) =

d∑
j=1

U2
n(β0(tj), tj)σ

−2(β0, tj).
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From the asymptotic normality of the vector Un(β0, t) we obtain the following
corollary:

Corollary 5.2. Under the assumptions of Theorem 5.1

n−1hTn(β0)
D−→ χ2

d.

Proof. The proof is straightforward. Since the vector n−1/2h1/2Un is asymp-
totically normal, and the limiting variance matrix S is positive de�nite
the quadratic form n−1h Un

TS−1Un converges in distribution to a χ2-
distribution with d degrees of freedom.

The variance matrix S is unknown. It depends on the unknown limits of the
sums Skn, on β0 and on λ0. A consistent estimator of S(β0, t) is given by

Ŝn(β̂n, t) = diag(σ̂2
n(β̂n, t1), . . . , σ̂

2
n(β̂n, td))

with

σ̂2
n(β, tj) = κ2

1

n

n∑
i=1

∫
Kh(u− tj)Vn(β, u)dNi(u)

where

Vn(β, t) =
S2n(β, t)

S0n(β, t)
−
(
S1n(β, t)

S0n(β, t)

)2

.

and β̂n(t) is the estimator of β0(t).
In the following corollary we show that the limit statement remain true if S
is replaced be the estimates Ŝn(β̂n, t).

Corollary 5.3. Under the assumptions of Theorem 5.1

n−1hT̃n(β0)
D−→ χ2

d

where
T̃n(β0) = Un(β0, t)

T Ŝ−1
n (β̂n, t)Un(β0, t).

Proof. To prove Corollary 5.3 it is enough to verify the consistency of the
variance estimator Ŝn. For this purpose consider for an arbitrary component
of the diagonal matrix the term

v(β0(t), t)s0(β0(t), t))λ0(t)
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and its estimator∫
Kh(u− t)Vn(β̂n(t), u)dNn(u) with Nn(u) =

1

n

n∑
i=1

Ni(u).

We have ∣∣∣ ∫ Kh(u− t)Vn(β̂n(t), u)dNn(u)− v(β0(t), t)s0(β0(t), t))λ0(t)
∣∣∣

≤
∣∣∣ ∫ Kh(u− t)(Vn(β̂n(t), u)− v(β̂n(t), u))dNn(u)

∣∣∣ (5.12)

+
∣∣∣ ∫ Kh(u− t)(v(β̂n(t), u)− v(β0(t), u))dNn(u)

∣∣∣ (5.13)

+
∣∣∣ ∫ Kh(u− t)v(β0(t), u)(dNn(u)− S0n(β0(t), u)λ0(u)du)

∣∣∣ (5.14)

+
∣∣∣ ∫ Kh(u− t)v(β0(t), u)(S0n(β0(t), u)− s0(β0(t), u))λ0(u)du)

∣∣∣
(5.15)

+
∣∣∣ ∫ Kh(u− t)v(β0(t), u)s0(β0(t), u)λ0(u)du

−v(β0(t), t)s0(β0(t), t))λ0(t)
∣∣∣. (5.16)

The uniform consistency of the functions Sjn and the boundedness of s0 imply
that the terms (5.12) and (5.15) tend to zero (in probability). For term (5.13)

the same statement follows from the consistency of β̂n, and (5.16) tends to
zero because of the smoothness of the functions sj. From the inequality of
Lenglart for local martingales it follows that the term (5.14) converges also
to zero.

5.2.2 Formulation of the test procedure

Consider now the hypothesis that the coe�cient function β0(·) has a
parametric form, say β0(·) = β(·;ϑ0) for some unknown parameter ϑ0. Thus,
the test problem is

H : β0(·) ∈ Bpar = {β(·, ϑ), ϑ ∈ Θ ⊆ Rk} K : β0(·) /∈ Bpar.

To estimate the parameter ϑ under H we use the partial likelihood method
in the hypothetical model Bpar

λi(t) = λ0(t) exp(β(t, ϑ)xi).
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The partial likelihood function of ϑ is denoted by ℓ̃

ℓ̃(ϑ) =
n∑

i=1

∫ τ

0

[
β(s, ϑ)Xi − log

{ n∑
j=1

Yj(s) exp(β(s, ϑ)Xj)
}]
dNi(s).

Let Cn be the corresponding score vector, i.e., its component Cnr r = 1, . . . , k
is

Cnr(ϑ) =
∂ℓ̃(ϑ)

∂ϑr

=
n∑

i=1

∫ τ

0

[
Xi − En(β(s, ϑ), s)

]
β̇r(s, ϑ)dNi(s)

where β̇r(t, ϑ) is the partial derivative of β(t, ϑ) with respect to ϑr. The

estimator ϑ̂n is the solution of the system of equations

Cnr(ϑ) = 0 r = 1, . . . , k. (5.17)

Suppose that the hypothesis H is true, i.e. there exist a ϑ0 such that
β0(·) = β(·, ϑ0).

If the estimator ϑ̂n is
√
n-consistent, we can apply ϑ̂n in the test procedure.

To verify
√
n-consistency we will show that ϑ̂ is asymptotically normal. The

proof is based on the following steps: If the partial likelihood function ℓ̃
is strictly concave, then the solution to (5.17) is unique. The consistency
follows by showing, that the partial likelihood function converges to a concave
function with a unique maximum at the underlying ϑ0. To obtain the rate
of convergence we consider the score function Cn as a local martingale and
prove that the matrix of the minus second derivatives converges to a positive
de�nite matrix.

Theorem 5.4. Suppose that the hypothetical functions in Bpar have contin-
uous partial derivatives of second order with respect to ϑ. Further assume
that the partial likelihood function is strictly concave. Let the assumptions
A2 and B1-B4 be satis�ed. Then

√
n(ϑ̂n − ϑ0) = Op(1). (5.18)
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Proof. De�ne

Qn = n−1(ℓ̃(ϑ)− ℓ̃(ϑ0))

=n−1

n∑
i=1

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
Xi − log

{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]
dNi(u)

=n−1

n∑
i=1

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
Xi − log

{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]
dMi(u)

+ n−1

n∑
i=1

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
Xi − log

{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]
dAi(u)

=Qn1 +Qn2.

The second summand is equal to

Qn2 =

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
S1n(β(u, ϑ0), u)

− log
{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}
S0n(β(u, ϑ0), u)

]
λ0(u)du.

Qn1 is a local square integrable martingale with the predictable variation
process

⟨Qn1(ϑ), Qn1(ϑ)⟩

=n−2

n∑
i=1

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
Xi − log

{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]2
dAi(u)

=n−1

∫ [{
β(u, ϑ)− β(u, ϑ0)

}2

S2n(β(u, ϑ0), u)

+
[
log
{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]2
S0n(β(u, ϑ0), u)

− 2
[
β(u, ϑ)− β(u, ϑ0)

][
log
{ S0n(β(u, ϑ), u)

S0n(β(u, ϑ0), u)

}]
S1n(β(u, ϑ0), u)

]
λ0(u)du.

By the conditions of the theorem it follows that ⟨Qn1(ϑ), Qn1(ϑ)⟩ = OP(n
−1),

thus Qn converges to the same limit as Qn2. The smoothness conditions on
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the sums Skn imply

Qn2(ϑ)
P−→

∫ τ

0

[{
β(u, ϑ)− β(u, ϑ0)

}
s1(β(u, ϑ0), u)

− log
{ s0(β(u, ϑ), u)
s0(β(u, ϑ0), u)

}
s0(β(u, ϑ0), u)

]
λ0(u)du

=: Q2(ϑ).

Let us compute the derivatives of the limit Q2. (Here we can change
integration and di�erentiation because of the boundedness of the integrand.)

∂Q2(ϑ)

∂ϑ
=

∫ τ

0

[
s1(β(u, ϑ0), u)− s1(β(u, ϑ), u)

s0(β(u, ϑ0), u)

s0(β(u, ϑ), u)

]
β̇(u, ϑ)λ0(u)du

=

∫ τ

0

(
e(β(u, ϑ0), u)− e(β(u, ϑ), u)

)
s0(β(u, ϑ0), u)β̇(u, ϑ)λ0(u)du.

The second derivative is

−
∫ τ

0

v(β(u, ϑ), u)β̇(u, ϑ)⊗2s0(β(u, ϑ0), u)λ0(u)du

+

∫ τ

0

(
e(β(u, ϑ0), u)− e(β(u, ϑ), u)

)
s0(β(u, ϑ), u)β̈(u, ϑ)λ0(u)du.

The �rst derivative is zero at ϑ = ϑ0, the second is minus a positive de�nite
matrix at ϑ = ϑ0. Thus, the limiting function of l̃n has a unique maximum
at ϑ = ϑ0. It follows that ϑ̂n, the unique maximizer of l̃n converges to ϑ0.

Based on Theorem 5.4, it follows that under H

n−1hT̂n
D−→ χ2

d (5.19)

where
T̂n = Ûn(βϑ̂n

, t)T Ŝ−1
n (βϑ̂n

, t) Ûn(βϑ̂n
, t) (5.20)

with

Ûn(βϑ̂n
, t) = (Un(β(t1, ϑ̂n), t1), Un(β(t2, ϑ̂n), t2), . . . , Un(β(td, ϑ̂n), td))

T .

Limit statement (5.19) implies the following asymptotic test procedure.
Reject H, i�

n−1hT̂n ≥ χ2
d;1−α. (5.21)
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5.3 Bootstrap version of the score test

In this section we consider the problem of testing whether the coe�cient
function is constant. As test statistic the score statistic is applied, however
to determine the critical value or the p-value, respectively, we make use of
bootstrapping.
The null hypothesis has the form

H : β0(·) ≡ ϑ for some constant ϑ. (5.22)

The test statistic is given by

T̂n = Ûn(ϑ̂n, t)
T Ŝ−1

n (ϑ̂n, t) Ûn(ϑ̂n, t)

where
Ûn(ϑ̂n, t) = (Un(ϑ̂n, t1), Un(ϑ̂n, t2), . . . , Un(ϑ̂n, td))

T

with

Un(ϑ̂n, tj) = n−1/2h1/2
n∑

i=1

∫ τ

0

Kh(s− tj)
[
Xi − En(ϑ̂n, s)

]
dNi(s); j = 1, . . . , d

where ϑ̂n is the maximum partial likelihood estimator in the hypothetical
model.

The bootstrap algorithm which is used based on the procedure censboot

function in the R software package suggested by Davison and Hinkley (1997).
Let us describe this idea of this resampling procedure.

The aim is to generate data (T ∗
i ,∆

∗
i ) with

T ∗
i = min(T̃ ∗

i , C
∗
i )

and the censoring indicator ∆∗
i = 1(T̃ ∗

i ≤ C∗
i ) where C

∗
i is the censoring time

and T̃ ∗
i describes the lifetime with the distribution under H, i.e. 1−H(·|Xi)

with 1 −H(·|Xi) = (1 − F (·|Xi))(1 − G(·)) and F (t|Xi) = 1 − S0(t)
exp (ϑXi)

where S0 is the baseline survival function.
To do this we estimate the conditional distribution of T̃i under H.
Estimating ϑ in the classical Cox model by MPLE we obtain ϑ̂n; applying
the Breslow estimator the cumulative hazard function Λ0 is estimated by

Λ̂0n(t) =
1

n

n∑
i=1

∫ τ

0

1

S0n(u, ϑ̂n)
dNi(u).
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Then the baseline survival function is estimated by

Ŝ0n(t) = exp(−Λ̂0(t))

and an estimator of F (·|x) is given by

F̂n(t|x) = 1− Ŝ0n(t)
exp (ϑ̂nx).

Figure 5.5 shows examples of these estimates.
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Figure 5.5: The estimated cumulative baseline hazard function and the estimated

baseline survival function under H.

The T̃ ∗
i are generated according to F̂n(t|Xi).

An estimator for the distribution function of the censoring variables can
be constructed by the Kaplan-Meier method, where instead of ∆i's the
observations 1−∆i are taken, then one de�nes

1− Ĝn(t) =
∏
i:Ti≤t

( n− i

n− i+ 1

)1−∆i

.

We will not generate C∗
i according to Ĝn, but we will apply the so-called

conditional resampling to generate C∗
i .

The idea of this method can be explained as follows. Consider the distribu-
tion of Ci given Ti and ∆i: The conditional distribution of Ci given Ti and
∆i = 0 is the one-point distribution at Ti. The conditional distribution of Ci

given Ti and ∆i = 1 is given by

P(Ci ≤ c|∆i = 1, Ti) =
G(c)−G(T−

i )

1−G(T−
i )

.
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Davison and Hinkley (1997) proposed to set C∗
i = Ti for ∆i = 0 and C∗

i is

generated according to the distribution
Ĝn(·)− Ĝn(Ti)

1− Ĝn(Ti)
for ∆i = 1.

Now let us formulate the bootstrap version of the score test for (5.22):

1. Construct the estimates ϑ̂n, Λ̂0n, Ĝn and F̂n(t|Xi) for i = 1, . . . , n;

2. Generate T̃ ∗
1 , . . . , T̃

∗
n according to the distribution F̂n(t|Xi);

3. For ∆i = 0, set C∗
i = Ti and for ∆i = 1, generate C∗

i from the

distribution
Ĝn(·)− Ĝn(Ti)

1− Ĝn(Ti)
;

4. De�ne T ∗
i by T ∗

i = min(T̃ ∗
i , C

∗
i ) and set ∆∗

i = 1(T̃ ∗
i ≤ C∗

i );

5. Calculate
T̂ ∗
n = Û∗

n(ϑ̂n, t)
T Ŝ∗−1

n (ϑ̂n, t) Û∗
n(ϑ̂n, t);

6. Repeat the steps 2 to 5 R times to obtain T̂ ∗
n(1), . . . , T̂ ∗

n(R).

The bootstrap p-value is given by

pboot =

∑R
r=1 1(T̂ ∗

n(r) > T̂n(0)) + 1

R + 1

where T̂n(0) is the value of test statistic with the original data.

5.3.1 Simulation Study

In this section, we investigate the behavior of the bootstrap score test under
the null hypothesis and a special alternative hypothesis.

In each simulation M = 250 times the bootstrap test was carried out,
R = 99 bootstrap replicates were computed. The sample size was n =
400. The bandwidth was taken to be 0.2 and the six grid points t =
0.3, 0.4, 0.6, 0.8, 1, 1.2 were used throughout.

In the �rst simulation study data according to β0(t) = 2, λ0(t) = 1/2,
Xi ∼ U(0, 1) and Ci ∼ Exp(a), where a was selected in such a way that
it occurs 30% censoring, were generated and the p-values were determined.
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Figure 5.6(a) shows the p-values distribution. This �gure shows that the
empirical distribution of the 250 p-values is similar to a uniform distribution.
This result corresponds to the fact that the p-values are uniformly distributed
under the null hypothesis. Taking the signi�cance level α = 0.05 we see that
4% of the simulations would reject the null hypothesis.

In the next example data according to an alternative model were generated.
The coe�cient function is taken by β0(t) = log(t), the underlying baseline
distribution, the censoring distribution and the covariate distribution is taken
as before, i.e. λ0(t) = 1/2, X ∼ U(0, 1) and Ci ∼ Exp(a), with 99 bootstrap
replicates. The empirical distribution of the 250 p-values is given in Figure
5.6(b). Here we see that taking α = 0.05 we have the estimated power (w.r.t.
this alternative) is 55.6%.

The simulation study is only a �rst step. To compare the power, several
di�erent alternative setting should be considered, such as β0(t) = t2, β0(t) =
1− t/50 etc.
Moreover, topics for further investigations is to study the in�uence of choice
of the bandwidth and the in�uence of the censoring on the performance on
the test.
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Figure 5.6: Empirical distribution of p-value for the score test in the �rst simulation,

i.e. β0 = 2 (left plot) and the second simulation, i.e. β0(t) = log(t) (right plot)

.
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(a) β0 = 1.0
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(b) β0 = 3.0
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(c) β0 = 6.0

Figure A.1: The inverse of the asymptotic variance for the exponential model in

dependence of the value of ξ2 for several ξ1. The values for λ0 = 1 and q1 = 0.5
are �xed, β0 takes three di�erent values.
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(a) β0 = 1.0
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(b) β0 = 3.0
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(c) β0 = 6.0

Figure A.2: The inverse of the asymptotic variance for the exponential model in

dependence of the value of ξ2 for several ξ1. The values for λ0 = 3 and q1 = 0.5
are �xed, β0 takes three di�erent values.
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(a) β0 = 1.0, ξ1 = 0.8
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(b) β0 = 6.0, ξ1 = 0.8
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(c) β0 = 1.0, ξ1 = 0.9
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(d) β0 = 6.0, ξ1 = 0.9
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(e) β0 = 1.0, ξ1 = 1.0
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(f) β0 = 6.0, ξ1 = 1.0

Figure A.3: The inverse of the asymptotic variance with β0 = 1.0 (the left hand

side) and β0 = 6.0 (the right hand side) for the exponential model, λ0 = 1, in pair

(ξ1, ξ2) where ξ1 = 0.8, 0.9, 1 and ξ2 = 0, 0.1, 0.2, 0.3, 0.4 with the di�erent q1.
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(a) β0 = 1.0
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(b) β0 = 3.0
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(c) β0 = 6.0

Figure A.4: The inverse of the asymptotic variance with β0 for the Weibull model,

θ0 = 1, µ = 2, q1 = 0.5 in every ξ1 with the di�erent ξ2
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(b) β0 = 3.0
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(c) β0 = 6.0

Figure A.5: The inverse of the asymptotic variance with β0 for the Weibull model,

θ0 = 1, µ = 5, q1 = 0.5 in every ξ1 with the di�erent ξ2
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(b) β0 = 3.0
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(c) β0 = 6.0

Figure A.6: The inverse of the asymptotic variance with β0 for the Weibull model,

θ0 = 3, µ = 2, q1 = 0.5, in every ξ1 with the di�erent ξ2.
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(c) β0 = 6.0

Figure A.7: The inverse of the asymptotic variance with β0 for the Weibull model,

θ0 = 3, µ = 5, q1 = 0.5, in every ξ1 with the di�erent ξ2.
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Table A.1: Local optimal covariates for β̃0 = 1 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = 1− δ[0,τ)(t) for t ≥ 0.

(a,b,ω) ξ∗1 ξ∗2 q∗1 q∗2 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 1 0.52431 0.47569 0.2052671 0.2052671 1
(1,0.3,1) 0 1 0.52431 0.47569 0.2052664 0.2052664 1
(1,0.6,1) 0 1 0.52431 0.47569 0.2052649 0.2052649 1
(1,0.9,1) 0 1 0.52431 0.47569 0.2052615 0.2052615 1

(1,0.75,15) 0 1 0.52431 0.47569 0.2048897 0.2048897 1
(1,0.9,30) 0 1 0.52431 0.47569 0.2081576 0.2081576 1

(2,0,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1
(2,0.3,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1
(2,0.6,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1
(2,0.9,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1

(2,0.75,15) 0 1 0.52431 0.47569 0.2052430 0.2052430 1
(2,0.9,30) 0 1 0.52431 0.47569 0.2052620 0.2052620 1

(5,0,1) 0 1 0.52431 0.47569 0.2052689 0.2052689 1
(5,0.3,1) 0 1 0.52431 0.47569 0.2052682 0.2052682 1
(5,0.6,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1
(5,0.9,1) 0 1 0.52431 0.47569 0.2052677 0.2052677 1

(5,0.75,15) 0 1 0.52431 0.47569 0.2052641 0.2052641 1
(5,0.9,30) 0 1 0.52431 0.47569 0.2056058 0.2056058 1
(10,0,1) 0 1 0.52431 0.47569 0.2052689 0.2052689 1

(10,0.3,1) 0 1 0.52431 0.47569 0.2052687 0.2052687 1
(10,0.6,1) 0 1 0.52431 0.47569 0.2052682 0.2052682 1
(10,0.9,1) 0 1 0.52431 0.47569 0.2052675 0.2052675 1

(10,0.75,15) 0 1 0.52431 0.47569 0.2052650 0.2052650 1
(10,0.9,30) 0 1 0.52431 0.47569 0.2052765 0.2052765 1

Table A.2: Local optimal covariates for β̃0 = 1 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = 1− exp(−t).

(a,b,ω) ξ∗1 ξ∗2 q∗1 q∗2 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 1 0.55290 0.44710 0.1372814 0.1372814 1
(1,0.3,1) 0 1 0.54850 0.45150 0.1481580 0.1481472 0.9999268
(1,0.6,1) 0 1 0.54500 0.45500 0.1567798 0.1562432 0.9997655
(1,0.9,1) 0 1 0.54225 0.45775 0.1624898 0.1624205 0.9995766

(1,0.75,15) 0 1 0.55345 0.44655 0.1382116 0.1382115 0.9999999
(1,0.9,30) 0 1 0.52431 0.47569 0.1375145 0.1375144 0.9999993

(2,0,1) 0 1 0.54080 0.45920 0.1648448 0.1647552 0.9994568
(2,0.3,1) 0 1 0.53905 0.46095 0.1691325 0.1690123 0.9992890
(2,0.6,1) 0 1 0.53760 0.46240 0.1726286 0.1724791 0.9991340
(2,0.9,1) 0 1 0.53640 0.46360 0.1755247 0.1753481 0.9989939

(2,0.75,15) 0 1 0.54125 0.45875 0.1659352 0.1658515 0.9994959
(2,0.9,30) 0 1 0.52431 0.47569 0.1656600 0.1655924 0.9995919

(5,0,1) 0 1 0.53155 0.46845 0.1870518 0.1867395 0.9983304
(5,0.3,1) 0 1 0.53120 0.46880 0.1879953 0.1876707 0.9982734
(5,0.6,1) 0 1 0.53085 0.46915 0.1888470 0.1885108 0.9982195
(5,0.9,1) 0 1 0.53055 0.46945 0.1896194 0.1892723 0.9981695

(5,0.75,15) 0 1 0.53165 0.46835 0.1879462 0.1876353 0.9983455
(5,0.9,30) 0 1 0.53180 0.46820 0.1876720 0.1873641 0.9983650
(10,0,1) 0 1 0.52805 0.47195 0.1957616 0.1953210 0.9977493

(10,0.3,1) 0 1 0.52795 0.47205 0.1960260 0.1955810 0.9977299
(10,0.6,1) 0 1 0.52785 0.47215 0.1962759 0.1958268 0.9977119
(10,0.9,1) 0 1 0.52775 0.47225 0.1965124 0.1960594 0.9976948

(10,0.75,15) 0 1 0.52795 0.47205 0.1962247 0.1957796 0.9977314
(10,0.9,30) 0 1 0.52810 0.47190 0.1960443 0.1956044 0.9977559
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Table A.3: Local optimal covariates for β̃0 = 1 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = (exp(ct)− 1)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ log 2.

(a,b,ω) ξ∗1 ξ∗2 q∗1 q∗2 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 1 0.53075 0.46925 0.1906158 0.1906158 1
(1,0.3,1) 0 1 0.52940 0.47060 0.1937973 0.1937961 0.9999935
(1,0.6,1) 0 1 0.52845 0.47155 0.1959693 0.1959655 0.9999806
(1,0.9,1) 0 1 0.52770 0.47230 0.1974966 0.1974900 0.9999668

(1,0.75,15) 0 1 0.53075 0.46925 0.1904166 0.1904166 1
(1,0.9,30) 0 1 0.52700 0.47300 0.1924993 0.1924897 0.9999501

(2,0,1) 0 1 0.52725 0.47275 0.1981654 0.1981566 0.9999556
(2,0.3,1) 0 1 0.52685 0.47315 0.1990860 0.1990751 0.9999455
(2,0.6,1) 0 1 0.52655 0.47345 0.1998051 0.1997924 0.9999364
(2,0.9,1) 0 1 0.52630 0.47370 0.2003791 0.2003649 0.9999289

(2,0.75,15) 0 1 0.52735 0.47265 0.1982990 0.1982906 0.9999579
(2,0.9,30) 0 1 0.52940 0.47060 0.1983117 0.1983104 0.9999934

(5,0,1) 0 1 0.52540 0.47460 0.2024793 0.2024584 0.9998970
(5,0.3,1) 0 1 0.52535 0.47465 0.2026372 0.2026158 0.9998944
(5,0.6,1) 0 1 0.52530 0.47470 0.2027787 0.2027570 0.9998930
(5,0.9,1) 0 1 0.52525 0.47475 0.2029061 0.2028840 0.9998911

(5,0.75,15) 0 1 0.52545 0.47455 0.2026084 0.2025879 0.9998988
(5,0.9,30) 0 1 0.52555 0.47445 0.2028546 0.2028347 0.9999021
(10,0,1) 0 1 0.51535 0.48465 0.2039253 0.2038568 0.9996643

(10,0.3,1) 0 1 0.52480 0.47520 0.2039228 0.2038970 0.9998735
(10,0.6,1) 0 1 0.52480 0.47520 0.2039606 0.2039346 0.9998728
(10,0.9,1) 0 1 0.52480 0.47520 0.2039960 0.2039699 0.9998721

(10,0.75,15) 0 1 0.52485 0.47515 0.2039483 0.2039225 0.9998735
(10,0.9,30) 0 1 0.52485 0.47515 0.2039294 0.2039037 0.9998737

Table A.4: Local optimal covariates for β̃0 = 1 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = (ct)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ .

(a,b,ω) ξ∗1 ξ∗2 q∗1 q∗2 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 1 0.53280 0.46720 0.1854358 0.1854358 1
(1,0.3,1) 0 1 0.53115 0.46885 0.1895744 0.1895726 0.9999902
(1,0.6,1) 0 1 0.52990 0.47010 0.1924365 0.1924306 0.9999693
(1,0.9,1) 0 1 0.52895 0.47105 0.1944748 0.1944644 0.9999465

(1,0.75,15) 0 1 0.53290 0.46710 0.1853178 0.1853178 0.9999997
(1,0.9,30) 0 1 0.52950 0.47050 0.1870388 0.1870315 0.9999607

(2,0,1) 0 1 0.52835 0.47165 0.1953390 0.1953251 0.9999288
(2,0.3,1) 0 1 0.52785 0.47215 0.1965930 0.1965756 0.9999117
(2,0.6,1) 0 1 0.52745 0.47255 0.1975783 0.1975578 0.9998962
(2,0.9,1) 0 1 0.52710 0.47290 0.1983689 0.1983458 0.9998833

(2,0.75,15) 0 1 0.52850 0.47150 0.1955420 0.1955289 0.9999328
(2,0.9,30) 0 1 0.53050 0.46950 0.1955446 0.1955408 0.9999806

(5,0,1) 0 1 0.52590 0.47410 0.2012943 0.2012595 0.9998271
(5,0.3,1) 0 1 0.52580 0.47420 0.2015171 0.2014812 0.9998221
(5,0.6,1) 0 1 0.52570 0.47430 0.2017168 0.2016803 0.9998191
(5,0.9,1) 0 1 0.52565 0.47435 0.2018967 0.2018594 0.9998153

(5,0.75,15) 0 1 0.52595 0.47405 0.2014811 0.2014468 0.9998295
(5,0.9,30) 0 1 0.52600 0.47400 0.2016868 0.2016533 0.9998339
(10,0,1) 0 1 0.52510 0.47490 0.2032811 0.2032374 0.9997850

(10,0.3,1) 0 1 0.52505 0.47495 0.2033387 0.2032947 0.9997836
(10,0.6,1) 0 1 0.52505 0.47495 0.2033928 0.2033485 0.9997822
(10,0.9,1) 0 1 0.52500 0.47500 0.2034436 0.2033990 0.9997808

(10,0.75,15) 0 1 0.52505 0.47495 0.2033769 0.2033330 0.9997839
(10,0.9,30) 0 1 0.52505 0.47495 0.2033453 0.2033015 0.9997844
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Table A.5: Local optimal covariates for β̃0 = 2 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = 1− δ[0,τ)(t) for t ≥ 0.

(a,b,ω) ξ∗1 ξ∗2 q∗1 q∗2 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 1 0.52431 0.47569 0.1325058 0.1325058 1
(1,0.3,1) 0 1 0.52431 0.47569 0.1325034 0.1325034 1
(1,0.6,1) 0 1 0.52431 0.47569 0.1325054 0.1325054 1
(1,0.9,1) 0 1 0.52431 0.47569 0.1325056 0.1325056 1

(1,0.75,15) 0 1 0.52431 0.47569 0.1325819 0.1325819 1
(1,0.9,30) 0 1 0.52431 0.47569 0.1352414 0.1352414 1

(2,0,1) 0 1 0.52431 0.47569 0.1325058 0.1325058 1
(2,0.3,1) 0 1 0.52431 0.47569 0.1325059 0.1325059 1
(2,0.6,1) 0 1 0.52431 0.47569 0.1325034 0.1325034 1
(2,0.9,1) 0 1 0.52431 0.47569 0.1325008 0.1325008 1

(2,0.75,15) 0 1 0.52431 0.47569 0.1324563 0.1324563 1
(2,0.9,30) 0 1 0.52431 0.47569 0.1339720 0.1339720 1

(5,0,1) 0 1 0.52431 0.47569 0.1324532 0.1324532 1
(5,0.3,1) 0 1 0.52431 0.47569 0.1323959 0.1323959 1
(5,0.6,1) 0 1 0.52431 0.47569 0.1334675 0.1334675 1
(5,0.9,1) 0 1 0.52431 0.47569 0.1323023 0.1323023 1

(5,0.75,15) 0 1 0.52431 0.47569 0.1323630 0.1323630 1
(5,0.9,30) 0 1 0.52431 0.47569 0.1324197 0.1324197 1
(10,0,1) 0 1 0.52431 0.47569 0.1337034 0.1337034 1

(10,0.3,1) 0 1 0.52431 0.47569 0.1337085 0.1337085 1
(10,0.6,1) 0 1 0.52431 0.47569 0.1336715 0.1336715 1
(10,0.9,1) 0 1 0.52431 0.47569 0.1335915 0.1335915 1

(10,0.75,15) 0 1 0.52431 0.47569 0.1335659 0.1335659 1
(10,0.9,30) 0 1 0.52431 0.47569 0.1332663 0.1332663 1

Table A.6: Local optimal covariates for β̃0 = 3 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = 1− δ[0,τ)(t) for t ≥ 0.

(a,b,ω) ξ∗1 ξ∗2 ξ∗3 q∗1 q∗2 q∗3 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 0.45 1 0.4178751 0.203 0.3791249 0.0795086 0.0734898 0.924299965
(1,0.3,1) 0 0.4 1 0.4183994 0.202 0.3796006 0.0794548 0.0734520 0.924450709
(1,0.6,1) 0 0.448 1 0.4178751 0.203 0.3791249 0.0795382 0.0735482 0.924690227
(1,0.9,1) 0 0.447 1 0.4299342 0.180 0.3900658 0.0794255 0.0736130 0.926818797

(1,0.75,15) 0 0.447 1 0.4173508 0.204 0.3786492 0.0794601 0.0734349 0.924172635
(1,0.9,30) 0 0.403 1 0.4220696 0.195 0.3829304 0.0837052 0.0782324 0.934618121

(2,0,1) 0 0.47 1 0.4199723 0.199 0.3810277 0.0792923 0.0735694 0.927825229
(2,0.3,1) 0 0.44 1 0.4241668 0.191 0.3848332 0.0794301 0.0732608 0.922330452
(2,0.6,1) 0 0.461 1 0.4163021 0.206 0.3776979 0.0793825 0.0729614 0.919111895
(2,0.9,1) 0 0.458 1 0.4168265 0.205 0.3781736 0.0795624 0.0729680 0.917116

(2,0.75,15) 0 0.456 1 0.4168265 0.205 0.3781736 0.0795447 0.0731696 0.919855075
(2,0.9,30) 0 0.463 1 0.4189237 0.201 0.3800763 0.0797236 0.0735094 0.922053772

(5,0,1) 0 0.423 1 0.4267883 0.186 0.3872117 0.0792677 0.0752376 0.949158326
(5,0.3,1) 0 0.439 1 0.4252154 0.189 0.3857846 0.0787294 0.0796202 0.947805996
(5,0.6,1) 0 0.463 1 0.4225939 0.194 0.3834061 0.0781631 0.0787703 0.943799568
(5,0.9,1) 0 0.49 1 0.4204966 0.198 0.3815034 0.0775997 0.0727626 0.937665996

(5,0.75,15) 0 0.475 1 0.4210209 0.197 0.3819791 0.0778905 0.0732300 0.94016536
(5,0.9,30) 0 0.482 1 0.4183994 0.202 0.3796006 0.0777377 0.0776719 0.934191476
(10,0,1) 0 0.482 1 0.3942811 0.248 0.3577189 0.0802415 0.0682332 0.850347919

(10,0.3,1) 0 0.473 1 0.3942811 0.248 0.3577189 0.0809344 0.0689444 0.85185533
(10,0.6,1) 0 0.465 1 0.3948054 0.247 0.3581946 0.0816313 0.0697399 0.854327846
(10,0.9,1) 0 0.456 1 0.3953297 0.246 0.3586703 0.0823594 0.0706053 0.857282229

(10,0.75,15) 0 0.460 1 0.3948054 0.247 0.3581946 0.0820100 0.0701889 0.855857213
(10,0.9,30) 0 0.456 1 0.3953297 0.246 0.3586703 0.0823888 0.0707084 0.858228217
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Table A.7: Local optimal covariates for β̃0 = 3 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = 1− exp(−t).

(a,b,ω) ξ∗1 ξ∗2 ξ∗3 q∗1 q∗2 q∗3 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 0.545 1 0.5964651 0.094 0.3095349 0.0717005 0.0705166 0.983488
(1,0.3,1) 0 0.542 1 0.5855980 0.108 0.3064020 0.0734779 0.0718965 0.978478
(1,0.6,1) 0 0.538 1 0.5777824 0.116 0.3062176 0.0746761 0.0728204 0.975151
(1,0.9,1) 0 0.564 1 0.5731880 0.120 0.3068120 0.0754256 0.0733336 0.972265

(1,0.75,15) 0 0.535 1 0.5999136 0.088 0.3120864 0.0731693 0.0721655 0.986280
(1,0.9,30) 0 0.498 1 0.6196014 0.059 0.3213986 0.0759979 0.0755740 0.994423

(2,0,1) 0 0.545 1 0.5433093 0.166 0.2906907 0.0754934 0.0734375 0.972768
(2,0.3,1) 0 0.553 1 0.5792150 0.129 0.2917850 0.0762074 0.0736908 0.966977
(2,0.6,1) 0 0.519 1 0.5692997 0.135 0.2957002 0.0768280 0.0740581 0.963947
(2,0.9,1) 0 0.520 1 0.5710837 0.134 0.2949163 0.0773388 0.0746159 0.964793

(2,0.75,15) 0 0.538 1 0.5767152 0.123 0.3002848 0.0766177 0.0743539 0.970453
(2,0.9,30) 0 0.683 1 0.5882798 0.102 0.3097202 0.0757854 0.0742788 0.980120

(5,0,1) 0 0.532 1 0.5347417 0.138 0.3272583 0.0780655 0.0753487 0.965198
(5,0.3,1) 0 0.557 1 0.5293076 0.144 0.3266924 0.0777050 0.0746038 0.960133
(5,0.6,1) 0 0.581 1 0.5270668 0.149 0.3239332 0.0773470 0.0737927 0.954048
(5,0.9,1) 0 0.588 1 0.5163796 0.157 0.3266204 0.0770111 0.0729853 0.947724

(5,0.75,15) 0 0.584 1 0.5210744 0.153 0.3259256 0.0771411 0.0733879 0.951346
(5,0.9,30) 0 0.590 1 0.5296522 0.156 0.3143478 0.0771083 0.0730618 0.947522
(10,0,1) 0 0.506 1 0.5944365 0.165 0.2405635 0.0810039 0.0753487 0.927722

(10,0.3,1) 0 0.496 1 0.5975760 0.160 0.2424240 0.0815929 0.0761100 0.932801
(10,0.6,1) 0 0.487 1 0.6003302 0.155 0.2446697 0.0822088 0.0771105 0.937983
(10,0.9,1) 0 0.477 1 0.6034866 0.149 0.2475133 0.0828482 0.0781392 0.943162

(10,0.75,15) 0 0.482 1 0.6018680 0.152 0.2461320 0.0825270 0.0776339 0.940709
(10,0.9,30) 0 0.478 1 0.6031037 0.149 0.2478963 0.0828508 0.0781870 0.943709

Table A.8: Local optimal covariates for β̃0 = 3 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = (exp(ct)− 1)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ log 2.

(a,b,ω) ξ∗1 ξ∗2 ξ∗3 q∗1 q∗2 q∗3 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 0.531 1 0.5537676 0.147 0.2992324 0.0791761 0.0758667 0.958202
(1,0.3,1) 0 0.527 1 0.5520325 0.150 0.2979675 0.0795445 0.0760935 0.956615
(1,0.6,1) 0 0.529 1 0.5500247 0.151 0.2989754 0.0797670 0.0762904 0.956416
(1,0.9,1) 0 0.517 1 0.5460390 0.155 0.2989610 0.0799154 0.0762917 0.954656

(1,0.75,15) 0 0.526 1 0.5538102 0.147 0.2991897 0.0793458 0.0760875 0.958936
(1,0.9,30) 0 0.494 1 0.5751173 0.115 0.3098828 0.0830659 0.0811518 0.976957

(2,0,1) 0 0.520 1 0.5455616 0.156 0.2984384 0.0802953 0.0762491 0.949609
(2,0.3,1) 0 0.561 1 0.5801950 0.153 0.2668050 0.0795960 0.0761200 0.956329
(2,0.6,1) 0 0.516 1 0.5517435 0.157 0.2912565 0.0801589 0.0761822 0.950390
(2,0.9,1) 0 0.517 1 0.5554413 0.154 0.2905587 0.0803399 0.0765158 0.952401

(2,0.75,15) 0 0.526 1 0.5532840 0.154 0.2927160 0.0801600 0.0764552 0.953782
(2,0.9,30) 0 0.534 1 0.5510158 0.153 0.2959842 0.0803716 0.0766009 0.953085

(5,0,1) 0 0.522 1 0.5247245 0.151 0.3242756 0.0798937 0.0767113 0.960167
(5,0.3,1) 0 0.545 1 0.5197352 0.156 0.3242648 0.0794380 0.0758870 0.955298
(5,0.6,1) 0 0.570 1 0.5179440 0.160 0.3220560 0.0789839 0.0749855 0.949377
(5,0.9,1) 0 0.580 1 0.5085882 0.167 0.3244119 0.0785614 0.0740799 0.942955

(5,0.75,15) 0 0.573 1 0.5125934 0.164 0.3234066 0.0787765 0.0745313 0.946111
(5,0.9,30) 0 0.569 1 0.5093295 0.170 0.3206705 0.0787150 0.0741557 0.942121
(10,0,1) 0 0.506 1 0.5891220 0.172 0.2388780 0.0869054 0.0752968 0.919314

(10,0.3,1) 0 0.497 1 0.5930574 0.166 0.2409426 0.0824615 0.0762405 0.924563
(10,0.6,1) 0 0.487 1 0.5958578 0.161 0.2431422 0.0830485 0.0772295 0.929932
(10,0.9,1) 0 0.478 1 0.5990205 0.155 0.2459795 0.0836597 0.0782512 0.935351

(10,0.75,15) 0 0.482 1 0.5973990 0.158 0.2446010 0.0833573 0.0777503 0.932735
(10,0.9,30) 0 0.478 1 0.5986402 0.155 0.2463597 0.0836794 0.0783055 0.935779
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Table A.9: Local optimal covariates for β̃0 = 3 and e�ciencies for di�erent λ̃0 with

censoring distribution G(t) = (ct)δ[0,τ)(t) + δ[τ,∞)(t) for c =
1
τ .

(a,b,ω) ξ∗1 ξ∗2 ξ∗3 q∗1 q∗2 q∗3 Σ∗(β̃0, λ̃0, G) Σ(β̃0, λ̃0, G,Q∗(β0, λ0)) effβ̃0,λ̃0
(Q∗(β0, λ0))

(1,0,1) 0 0.532 1 0.5569643 0.143 0.3000357 0.0765489 0.0754605 0.960682
(1,0.3,1) 0 0.529 1 0.5544073 0.147 0.2985926 0.0790483 0.0757796 0.958649
(1,0.6,1) 0 0.529 1 0.5516608 0.149 0.2993393 0.0793630 0.0760332 0.958044
(1,0.9,1) 0 0.518 1 0.5482744 0.152 0.2997256 0.0795682 0.0760738 0.956083

(1,0.75,15) 0 0.527 1 0.5569643 0.143 0.3000357 0.0788102 0.0757899 0.961676
(1,0.9,30) 0 0.495 1 0.5789005 0.110 0.3110995 0.0824698 0.0764303 0.926767

(2,0,1) 0 0.521 1 0.5478396 0.153 0.2991604 0.0799733 0.0760423 0.950847
(2,0.3,1) 0 0.560 1 0.5804188 0.151 0.2685811 0.0793411 0.0759421 0.957159
(2,0.6,1) 0 0.517 1 0.5526090 0.156 0.2913910 0.0799028 0.0760276 0.951500
(2,0.9,1) 0 0.517 1 0.5562672 0.153 0.2907327 0.0801120 0.0763783 0.953393

(2,0.75,15) 0 0.527 1 0.5555007 0.151 0.2934993 0.0798799 0.0763021 0.955210
(2,0.9,30) 0 0.535 1 0.5532225 0.150 0.2967775 0.0800695 0.0764303 0.954550

(5,0,1) 0 0.522 1 0.5254700 0.150 0.3245300 0.0797600 0.0766129 0.960543
(5,0.3,1) 0 0.546 1 0.5205200 0.155 0.3244800 0.0793089 0.0757941 0.955682
(5,0.6,1) 0 0.571 1 0.5187288 0.159 0.3222712 0.0788618 0.0748994 0.949755
(5,0.9,1) 0 0.581 1 0.5093238 0.166 0.3246762 0.0784442 0.0740009 0.943357

(5,0.75,15) 0 0.574 1 0.5133321 0.163 0.3236679 0.0786542 0.0744487 0.946532
(5,0.9,30) 0 0.570 1 0.5100678 0.169 0.3209322 0.0785855 0.0740768 0.942627
(10,0,1) 0 0.506 1 0.5898750 0.171 0.2391250 0.0818393 0.0752890 0.919961

(10,0.3,1) 0 0.497 1 0.5930574 0.166 0.2409426 0.0823986 0.0762342 0.925188
(10,0.6,1) 0 0.487 1 0.5965680 0.160 0.2434320 0.0829878 0.0772239 0.930546
(10,0.9,1) 0 0.478 1 0.5990205 0.155 0.2459795 0.0836011 0.0782463 0.935948

(10,0.75,15) 0 0.482 1 0.5973990 0.158 0.2446010 0.0832973 0.0777450 0.933344
(10,0.9,30) 0 0.478 1 0.5986402 0.155 0.2463597 0.0836195 0.0783000 0.936384
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