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Zusammenfassung

Gegenstand der vorgelegten Arbeit ist das ein-dimensionale Bose-Gas. Da durch Infrarot-
Fluktuationen langreichweitige Ordnung zerstört wird, kann sich in einer Dimension nur ein
Quasi-Kondensat ausbilden, welches sich durch unterdrückte Dichte-Fluktuationen auszeichnet,
dessen Phase jedoch stark fluktuiert. Es wird gezeigt, dass entsprechend angepasste Mean-
field-Theorien, ausgehend von einem symmetriebrechenden Ansatz, in der Lage sind, auch
Phasenkohärenzeigenschaften eines solchen Quasi-Kondensats richtig wiederzugeben. Eine
Beschreibung des Übergangs vom entarteten idealen Bose-Gas zum Quasi-Kondensat, welcher
kontinuierlich ist und damit keinen Phasenübergang sondern einen Cross-over darstellt, ist
jedoch nicht möglich. Grundlegende Vorraussetzungen für die Anwendung der Theorien sind in
diesem Regime nicht erfüllt, sodass falsche Aussagen wie die Existenz eines kritischen Punktes
getroffen werden.

Die Theorien werden anhand ihres Anregungsspektrums und ihrer Vorhersagen in Bezug auf
die Zustandsgleichung, Dichte-Fluktuationen und damit in Beziehung stehenden Korrelations-
funktionen verglichen. Für die dafür notwendige numerische Auswertung der selbstkonsistenten
Integralgleichungen werden Hochtemperaturentwicklungen der entsprechenden Integrale ana-
lytisch hergeleitet. Darüber hinaus wird die Stochastische Gross-Pitaevskii (SGP) Gleichung,
eine nicht-lineare Langevin-Gleichung, numerisch mittels Monte-Carlo Simulationen analysiert
und ihre Ergebnisse mit denen der Mean-field-Theorien verglichen. Dabei erfolgt eine intensive
Auseinandersetzung mit der adäquaten Wahl der Parameter. Die Simulationen beweisen, dass
die SGP Gleichung den Cross-over beschreiben kann, zeigen jedoch auch die Grenzen der oft
verwendeten lokalen Dichte-Näherung auf.

Abstract

The subject of the present thesis is the one-dimensional Bose gas. Since long-rang order is
destroyed by infra-red fluctuations in one dimension, only the formation of a quasi-condensate
is possible, which exhibits suppressed density fluctuations, but whose phase fluctuates strongly.
It is shown that modified mean-field theories based on a symmetry-breaking approach can
even characterise phase coherence properties of such a quasi-condensate properly. A correct
description of the transition from the degenerate ideal Bose gas to the quasi-condensate, which
is a smooth cross-over rather than a phase transition, is not possible though. Basic conditions
for the applicability of the theories are not fulfilled in this regime, such that the existence of a
critical point is predicted.

The theories are compared on the basis of their excitation sprectum, equation of state,
density fluctuations and related correlation functions. High-temperature expansions of the
corresponding integrals are derived analytically for the numerical evaluation of the self-
consistent integral equations. Apart from that, the Stochastic Gross-Pitaevskii equation
(SGPE), a non-linear Langevin equation, is analysed numerically by means of Monte-Carlo
simulations and the results are compared to those of the mean-field theories. In this context,
a lot of attention is payed to the appropriate choice of the parameters. The simulations prove
that the SGPE is capable of describing the cross-over properly, but highlight the limitations
of the widely used local density approximation as well.
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Chapter 1

Introduction

In his well-known papers, Einstein has already discussed a peculiar condensation
phenomenon of the ‘Bose-Einstein’ gas; but in the course of time the degeneracy
of the Bose-Einstein gas has rather got the reputation of having only a purely
imaginary existence.

Fritz London, 1938 [1]

Whether or not London anticipated the enormous obstacles that had to be overcome in the
experimental realisation of what has come to be known as a Bose-Einstein condensate, cannot
doubtlessly be clarified; it is, however, not deniable that Einstein’s 1925 prediction has not
found many supporters among the contemporary physics community. Above all, Uhlenbeck [2]
raised questions on the validity of Einstein’s argumentation. It was then London himself [1][3]
who related Bose-Einstein condensation (BEC) to the at the time well known lambda-transition
of liquid Helium, bringing it back to the agenda. In the same year, works of Allen and Jones
[4], Kapitza [5] and Tisza [6] led to a better understanding of superfluidity, that had already
been discovered in 1911 by Kamerlingh-Onnes, and other related transport phenomena like the
gigantic heat conductivity beyond this transition. Although it has been found later [7] that
the link between BEC and superfluidity should not be strained too far, this further established
the acceptance of the two concepts.

The basis of BEC is the spin-statistics-theorem, first proven by Fierz [8] and Pauli [9]. It states
that particles of integer spin behave according to Bose-Einstein statistics, which had been
introduced by Bose already in 1925, origin of the denomination of such particles as bosons.
He was able to naturally derive Planck’s law of radiation only by dividing the phase space of
the photons into boxes of size h3, without relying on only classically justifiable assumptions
that other derivations used. Einstein, who the manuscript was sent to, translated the article
and submitted it for Bose [10]. In the paper cited by London [11], he extended Bose’s method
to massive particles, establishing the quantum theory of the ideal (Bose) gas and predicting a
new state of matter, the Bose-Einstein condensate.
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2 CHAPTER 1. INTRODUCTION

Due to the symmetry of the wave function of Bosons under particle exchange, they can occupy
the same quantum state, making it possible that at low temperatures many particles drop
to the ground state of the system. This quantum degeneracy is expected to occur when the
thermal de-Broglie wavelength reaches the order of the average interparticle distance. At
this point the particles actually start to “feel” each other and their quantum nature becomes
apparent. If the ground state gets macroscopically occupied, a condensate is formed, which
has been attributed to the establishment of long-range order [12]. This order can only by
achieved by means of a phase transition, since a gas (or more generally fluid) is completely
disordered and thus exhibits a fundamentally different symmetry.

In the end, it took almost 70 years from the prediction until a pure Bose-Einstein condensate
could actually be produced in an experiment. The main reason for this is that at low
temperatures almost all substances are in the solid state in thermodynamic equilibrium,
making it impossible to observe a BEC for them. This can be achieved though by drastically
reducing the density of the gas, which on one side weakens the interaction, but on the other side
implies that ultra-cold temperatures below 10−6 K are necessary. Only the development of new
cooling techniques made this possible, until finally in 1995 two groups almost simultaneously
succeeded in producing a condensate. Cornell et al. at JILA were the first using rubidium
87Rb atoms [13], followed by Ketterle et al. at MIT with sodium 23Na [14] and a bit later by
Hulet et al. with lithium 7Li [15, 16]. Most of the experiments performed today still use these
alkali atoms, although BEC has been achieved for others as well over the years.

Another important step towards the realisation of BEC was the construction of appropriate
trapping devices. Highly confining trap geometries can be produced nowadays, which drew the
attention on lower-dimensional systems whose transverse degrees of freedom are “frozen out” by
the strong trapping in this directions. Dimensionality plays in fact a crucial role for coherence
properties of the gas; it has already been shown in 1966 by Mermin and Wagner [17] (applied
to Bose systems by Hohenberg in 1967 [18]) that there is no long-range order and thus BEC
possible in dimensions lower than d < 3 at finite temperatures T 6= 0 in the thermodynamic
limit. Nevertheless, the degenerate gas behaves differently than a thermal gas. There is in
fact a regime in which a so called quasi-condensate exists [19], which shows similar coherence
properties with respect to density fluctuations as a true condensate. Phase coherence, however,
is destroyed by enhanced long-wavelength quantum fluctuations which manifest in the theory
in infra-red (IR) divergent integrals. The first experimental observation of a quasi-condensate
has been made in a two-dimensional gas of spin-polarized atomic hydrogen [20]. The possibility
to easily tune parameters, even the coupling strength by making use of Feshbach resonances
[21], makes Bose-Einstein condensates an ideal testing playground, e.g. for non-linear dynamics
[22] or even cosmology [23].

The quasi-condensate is the object under investigation in the present thesis. Particular interest
is paid to its description in terms of mean-field theory, which has been quite successful in
characterising true condensates. Within this perturbative method, the condensate is separated
from thermal excitations and the field operator describing it is replaced by a complex function,
the mean-field. Bogoliubov introduced this idea in 1947 [24], giving the first microscopic
description of an interacting Bose gas. The fact that the phase coherence length is still larger
than the characteristic length scales of the quasi-condensate justifies the adoption of this
concept to quasi-condensates, although it implies the spontaneous breaking of the original
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U(1)-gauge symmetry. A lot of different mean-field theories based on this splitting of the field
operator have been put forward. In lower dimensions, they all share the necessity of coping
somehow with the mentioned IR-divergences that make a consistent description particularly
difficult. Especially the cross-over from the degenerate ideal Bose gas to the quasi-condensate
regime, which is not a phase transition but rather a smooth process, is a challenge for them.
A technique that is actually expected to work reliably in the cross-over region is based on the
so-called Stochastic Gross-Pitaevskii equation [25]. This is a non-linear Langevin equation for
a complex field that describes the quasi-condensate and low-lying excitations. It has become a
powerful tool for studying dynamics as well as equilibrium properties of weakly interacting
Bose gases.

Outline

We start in part I with a review of the ideal Bose gas and examine the impact of dimensionality
on its properties (chapter 2). A quick review of experimental techniques and the concept of
second quantization is given in the beginning of chapter 3. It is continued with the introduction
of correlation functions and their relation to coherence properties of the gas, followed by a
revision of regimes of the one-dimensional interacting Bose gas.

Part II is dedicated entirely to the mean-field approach and starts with Bogoliubov theory
(chapter 4), whose concepts have been adopted for finite temperatures in Hartree-Fock theory,
Modified Popov theory [26] and theories developed by Mora and Castin [27] and Walser [28].
Their derivation is sketched in chapter 5, which is followed by a qualitative comparison of all
theories in chapter 6 that is inspired by the studies of Hohenberg and Martin [29] and Griffin
[30]. Finally in chapter 7, the self-consistent integral equations appearing in the theories are
solved numerically and high-temperature expansions are given. The theories are compared on
the basis of their equation of state (relation between chemical potential and particle density),
density fluctuations and related correlation functions.

The stochastic method is treated in part III, that begins with a discussion of the zero-
temperature Gross-Pitaevskii equation in chapter 8. A code designed by Cockburn [31] is used
for numerical evaluation of the Stochastic Gross-Pitaevskii equation in chapter 9. Density
profiles of trapped gases, the extraction of the (quasi-)condensate fraction and the local
density approximation are discussed, before the results are compared to those of the mean-field
theories. This part of the thesis arose from a visit to the University of Newcastle upon Tyne
in February and March 2015 under the kind supervision of Nikolaos Proukakis.





Part I

Background and basic principles





Chapter 2

The ideal Bose gas

To get started, it is convenient to review the ideal Bose gas. Although there are of course some
aspects that get lost by neglecting interactions, it is a good way to illustrate what Bose-Einstein
condensation is all about. For matters of simplicity, we consider first the three-dimensional
case which is treated in introductory text books like [32][33], making it easy to point out the
important differences of the lower-dimensional cases later on.

Throughout this thesis, we adopt a description using the grand canonical ensemble. One
key element of the statistical calculus is the grand canonical partition function given by
(β = 1/(kBT ))

Z =
∑
(l)

exp (−β (El − µNl)) , (2.0.1)

where the sum runs over all possible micro-states l which are characterized by the set of
occupation numbers {Nλ} of the single particle states λ, µ is the chemical potential and
Nl =

∑
λNλ, El =

∑
λ ελNλ. Thus the summand of (2.0.1) factorizes and taking into account

the nature of bosons, the resulting sum is a geometric series giving

Z =
∏
(λ)

∞∑
Nλ=0

{exp (−β (ελ − µ))}Nλ =
∏
(λ)

1
1− exp (−β (ελ − µ)) . (2.0.2)

Fixing the chemical potential µ, the average total particle number 〈N〉 ≡ N can be calculated
using the relation

N = 1
β

∂

∂µ
lnZ =

∑
(λ)

1
exp (β (ελ − µ))− 1 =

∑
(λ)

NBE(ελ − µ) (2.0.3)

The energy is now used to characterize the single particle states and NBE is the Bose-Einstein
distribution. Since it gives an averaged occupation number, NBE ≥ 0 and thus restricts the

7



8 CHAPTER 2. THE IDEAL BOSE GAS

chemical potential to values µ ≤ ε0. Choosing the energy of the lowest one particle state to be
ε0 = 0, we see that for the ideal Bose gas the chemical potential cannot reach positive values.

For practical uses it is likely that the particle number is given instead. In this case the relation
(2.0.3) represents the normalization condition for the chemical potential and has to be used to
compute its value, which is necessary for the calculation of other thermodynamic quantities.

The sum in (2.0.3) can be converted into an integral using the density of states D(ε), given
that it varies slowly on the scale of consecutive energy levels such that the discrete spectrum
can be approximated by a continuous function. Hence for the level spacing ∆ε the condition

kBT � ∆ε (2.0.4)

must be satisfied1, which is true for a macroscopic system with N � 1. Nonetheless, if the
ground state gets highly populated, this conversion is not valid anymore which gets clear
by examining the occupation number of the ground state, written in terms of the fugacity
z = eβµ, N0 = (z−1 − 1)−1. For small z � 1, this term can be neglected, whereas it gets
dominant with increasing fugacity and diverges at its maximum value z = 1. In the integral,
this contribution is not accounted for since with D(0) = 0 (in three dimensions, see (2.2.1)) its
statistical weight is zero. Consequently, only the higher lying states are taken into the integral
while treating the macroscopically occupied ground state separately:

N =
∞∫
0

D(ε) dε
eβ(ε−µ) − 1

+ 1
e−βµ − 1︸ ︷︷ ︸
≡N0

. (2.0.5)

2.1 Free ideal Bose gas in three dimensions

As we are considering an ideal gas, there is no interaction and thus the free particle dispersion
relation

ε(k) = ~2k2

2m (2.1.1)

is being applied. In three dimensions, the density of states is

D(ε) = L3

2π2
gsm

3/2

~3

√
2 ε1/2 d = 3 (2.1.2)

1This is only required if we want the density of states to be continuous, otherwise the summation could be
written as an integral over a sum of delta distributions.



2.1. FREE IDEAL BOSE GAS IN THREE DIMENSIONS 9

and thus a converging integral is obtained from (2.0.5) (gs = 2s+ 1 is here the spin-degeneracy
and L the length of the system which is generally considered to be a cubic box). Substituting
x = βε, we get the following expression

N −N0 = gsV
(mkBT )3/2
√

2π2~3

∞∫
0

x1/2 dx
z−1ex − 1 = 2gsV√

π

1
λ3
dB

∞∫
0

x1/2 dx
z−1ex − 1 , (2.1.3)

where the thermal de-Broglie wavelength has been introduced:

λdB =
√

2π~2

mkBT
. (2.1.4)

We will encounter many times integrals of the type (2.1.3) in this thesis. Its general form is
called Bose-Einstein integral, which is defined by

gn(z) = 1
Γ(n)

∞∫
0

xn−1 dx
z−1ex − 1 . (2.1.5)

Since Γ(3/2) =
√
π/2, we have consequently

N −N0 = gsV

λ3
dB

g3/2(z). (2.1.6)

Figure 2.1.1: Numerically evaluated Bose-Einstein in-
tegral compared to its small α = − ln(z) expansion
(see appendices A.1 and C.3 for details)

The evaluation of the integral is not easy in gen-
eral, but it is possible to simplify the problem by
analysing the behaviour of the fugacity. As men-
tioned before, the chemical potential for the ideal
Bose gas cannot be greater than zero. At this
critical point, the fugacity reaches its maximum
z = 1, leading to a maximum of the Bose-Einstein
integral as well which is a monotonically increas-
ing function of z (see figure 2.1.1). Hence its value
is limited from above by g3/2(1), which can be cal-
culated easily and turns out to be the analytically
continued Riemann Zeta function (see appendix
A.1):

N −N0 ≤
gsV

λ3
dB

g3/2(1) = gsV

λ3
dB

ζ(3/2) ≈ gsV

λ3
dB

2.612. (2.1.7)

From that we can deduce that the number of particles not being in the ground state N ′ =
N −N0, i.e. the number of excited particles, is limited. If the total number of particles is
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bigger than this quantity, N > gsV
λ3
dB
ζ(3/2), the system has to macroscopically occupy the

ground state. This translates into a condition for the temperature or equivalently for the
particle density n = N/V :

T < Tc = 2π~2

mkB

(
n

gsζ(3/2)

)2/3
⇔ n > nc = gsζ(3/2)

(
mkBT

2π~2

)3/2
= gsζ(3/2)

λ3
dB

. (2.1.8)

Below the critical temperature (or above the critical density), the ground state occupation is
non-zero and grows with shrinking temperature (rising density), it can therefore be seen as the
onset of condensation. For a typical experiment with a dilute gas of 87Rb atoms (spin s = 3/2)
at a particle density of n = 1013cm3, equation (2.1.8) gives a critical temperature of about
34 nK (see section 2.2 for a comparison). At this point, the thermal de-Broglie wavelength,
which is a measure of the quantum mechanical uncertainty of the particle’s location and can
be viewed as its “expansion”, becomes of the same order as the average particle distance in
the gas, the latter being defined by the particle density via 〈d〉 = n−1/3. This provides an
intuitive picture of the condition for BEC: the particles or rather their wave functions start to
overlap and their quantum nature becomes apparent.

From (2.1.8) the following relation can be obtained, which will be useful hereafter:

gsV

Nλ3
dB

= 1
ζ(3/2)

(
T

Tc

)3/2
(2.1.9)

In the regime defined by (2.1.8), the system consists of two different phases: one containing
the condensed and one the excited particles. The relative amount of particles in the condensed
phase, the condensate fraction, is characteristic for the ordering of the system. It is given by
(using (2.1.9))

N0
N

= 1− N ′

N
=

1− (T/Tc)3/2 T ≤ Tc
0 T > Tc

(2.1.10)

and illustrated in figure 2.1.2. This splitting into two parts will also be an essential point of
the concepts in the following chapters on Bogoliubov theory (section 4).

Other thermodynamic quantities can be calculated in a similar way, as has been done for the
particle density. The mean energy is a sum over energies of the single particle states weighted
by their occupation number. Again the sum is converted into an integral which is identified
with another Bose-Einstein integral:

E =
∑
ε

ε

exp (β (ε− µ))− 1 = 2gsV√
π

kBT

λ3
dB

∞∫
0

x3/2 dx
z−1ex − 1 = 3

2gsV
kBT

λ3
dB

g5/2(z). (2.1.11)
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Figure 2.1.2: Condensate and excited particle fraction
in dependence of the temperature for the ideal Bose
gas

Figure 2.1.3: Pressure and specific heat of the ideal
Bose gas (solid) in comparison to the classical ideal
gas (dashed)

Since the ground state does not have any energy, this term can in fact be neglected here. Below
the critical temperature, the Bose-Einstein integral can be replaced by the Zeta function,
g5/2(0) = ζ(5/2), and the result may be simplified using (2.1.9). For T > Tc, the expression in
(2.1.11) is the one given in many textbooks, but is it not easy to evaluate. In principle, the
fugacity can be obtained from (2.1.6), although this requires values for both temperature and
particle density. Wang [34] showed a way of getting an expression with an explicit temperature
dependence similar to that for T < Tc. He uses an expansion of the Bose-Einstein integral
in powers of α = − ln z, according to the results from Robinson [35], just as we have done
for different mean-field theories for the weakly interacting Bose gas in order to get high
temperature approximations (see section 7.3). The details of the calculation are presented in
appendices A.1 and A.2. The final result is:

E =


3
2NkBT

ζ(5/2)
ζ(3/2)

(
T

Tc

)3/2
T ≤ Tc

3
2NkBT

{
a1 + a2

(
Tc
T

)3/2
+ a3

(
Tc
T

)3
}

T > Tc,

(2.1.12)

with the coefficients a1 ≈ 0.997, a2 ≈ −0.454 and a3 ≈ −0.030.

The pressure can be obtained from p = 2E
3V = gs

kBT
λ3
dB
g5/2(z), it is thus independent of the

volume for T < Tc which corresponds to an infinite compressibility. This unphysical feature
stems of course from the fact that there are no interactions between the particles in the ideal
Bose gas. Further calculation yields (details in appendix A.2):

p =


NkBT

V

ζ(5/2)
ζ(3/2)

(
T

Tc

)3/2
T ≤ Tc

NkBT

V

{
a1 + a2

(
Tc
T

)3/2
+ a3

(
Tc
T

)3
}

T > Tc.

(2.1.13)
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In figure 2.1.3, the pressure of the ideal Bose gas is compared to that of the classical ideal
gas. Remarkably, the pressure at the critical point is about one half of that of the latter and
approaches the same values for high temperatures. Finally we have a look at the heat capacity,
given by the derivative CV = ∂E

∂T

∣∣
V
:

CV =


NkB

15
4
ζ(5/2)
ζ(3/2)

(
T

Tc

)3/2
T ≤ Tc

NkB

{
3
2a1 −

3
4a2

(
Tc
T

)3/2
− 3 a3

(
Tc
T

)3
}

T > Tc.

(2.1.14)

We observe that for all three calculated quantities, the value below the critical temperature
is proportional to the number of excited particles N(T/Tc)3/2 only. The condensed particles
do not have any influence on the thermodynamic behaviour of the gas in this regime. It is
therefore not surprising that the heat capacity is lower than that of the classical ideal gas
close to T = 0, as can be seen in figure 2.1.3. It increases with higher temperature, exceeding
the classical value, having a maximum at the critical point and than falls off approaching the
classical value for high temperatures.

Figure 2.1.4: heat capacity of 4He at the lambda point mea-
sured in microgravity on the space shuttle (figure taken from
[36])

The characteristic cusp that it shows at the
critical point suggests that there is a phase
transition and has been associated to the
lambda transition of liquid helium 4He from
the normal to the superfluid phase (first
by London in [3][1]) because it resembles
the typical lambda-shaped curve (see figure
on the right or [37]). This seems natural
since 4He is a bosonic system in contrast to
3He which is fermionic and does not show
a lambda transition2. Moreover, the predic-
tion of the critical temperature for liquid
helium at atmospheric pressure Tc ≈ 3.14K
((2.1.8) with n = 2.18 · 1022cm−3) is in good
agreement with the transition temperature
of the lambda transition Tλ ≈ 2.18K [39].
The cusps of the heat capacity of these two phenomena are resembling as well, but for the ideal
Bose gas it is continuous at the critical point, since from (2.1.14) we get CV (T+

c )−CV (T−c ) = 0
(Wang gives mistakenly a finite value in [34]). A (finite) jump of the heat capacity is obtained
for the ideal Bose gas when put into a trap [40], but the divergence observed in measurements
of liquid helium cannot be described with that model. Furthermore, it has been shown [7] that
in the superfluid phase only about 8% of the helium atoms are actually Bose-condensed. This
shows that there is no direct relation between superfluidity and Bose-Einstein condensation,
but still there exist many features that they have in common.

2 3He does have a superfluid phase at much lower temperatures though, which is associated to the pairing of
two fermions forming a boson [38], similar to the pairing of electrons in superconductivity.
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2.2 Trapped and low-dimensional systems

As we have seen, the ideal gas description in three dimensions can provide a qualitative
understanding of Bose-Einstein condensation. Under certain conditions on the other hand,
the physics of the system in consideration may effectively be two- or even one-dimensional.
This happens if the system is in some sense limited in at least one direction of space, which is
normally related to a confinement of the gas by an external potential or some surface interaction
forces. In section 3.1, we will sketch how such situations may be realized experimentally.

The physics in lower dimensions can be very different from the three dimensional case. Since
in this thesis we want to focus on one-dimensional systems, we examine some aspects of the
ideal Bose gas if suspended in a trap and in lower dimensions. For this purpose, we go back
to the evaluation of the integral in (2.0.5). We need the density of states, which is given for
different dimensions d by

D(ε) =



L3

2π2
gsm

3/2

~3

√
2 ε1/2 d = 3

L2

2π
gsm

~2 d = 2

L

2π
gsm

1/2

~
1√
2
ε−1/2 d = 1.

(2.2.1)

Thus we see that D(ε) ∝ εd/2−1 if the gas is free (or trapped in a box). If it is trapped by a
harmonic potential, the excitation energies are those of the quantum harmonic oscillator,

ε(ni) =
d∑
i=1

(
ni + 1

2

)
~ωi, ni ∈ N0 (2.2.2)

and it can be shown [40] that the density of states is in this case (if the zero-point motion can
be neglected)

D(ε) = εd−1

(d− 1)!
∏d
i=1 ~ωi

. (2.2.3)

In order to simplify matters, the calculations that have been carried out for the three
dimensional case can be repeated for a general density of states D(ε) = Cαε

α−1. As before,
the condensate fraction and the critical temperature can be obtained [41]:

N0
N

= 1−
(
T

Tc

)α
, T < Tc = N1/α

kB [CαΓ(α)ζ(α)]1/α
. (2.2.4)
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In the case of a three dimensional harmonically trapped gas, α = 3 and we have thus

N0
N

= 1−
(
T

Tc

)3
, T < Tc = ~ω

kB

(
N

ζ(3)

)1/3
, (2.2.5)

where ω = (ωxωyωz)1/3 is the harmonic mean of the oscillator frequencies. These results show
a surprisingly good agreement with typical experimental data; for example, with parameters
taken from the first experiment with evidence of BEC by Cornell and Wiemann [13], (2.2.5)
gives a critical temperature of Tc ' 230 nK which is very close to the actual measured value
of 170 nK. In another pioneering experiment [42], equation (2.2.5) for the condensate fraction
has been proven to describe the experimental findings reasonably well. Other early theoretical
works [43] [44] showed as well that an interacting system can exhibit a transition similar to the
one of the ideal gas. Therefore it can be concluded that the interaction between the particles
affects the behaviour of the gas only slightly due to the diluteness of the gas. This already
indicates that the assumption of weak interaction, which will be a key element of the theories
analysed in this thesis, can be justified under certain conditions.

Thermodynamic quantities can be obtained as well as before, but we will not focus on them
here and get now to the influence of lower dimensionality. The calculation of the sum for
the number of particles in equation (2.0.3) is not straightforward anymore if the dimension
is lower than three. If we proceed as before, converting the sum into an integral, we end up
with infra-red divergences in the integrals. It will be necessary to examine the relevance of the
system size in more detail in order to understand this part properly.

Until now, we have been describing a system of infinite size since we have argued that the
lowest energy eigenvalue ε0 is assumed to be zero (and that the spectrum can be approximated
by a continuous function). Any physical system is finite though, implying constraints on the
possible energy values as we have seen already for the harmonically confined gas (2.2.2). A
simple model for a system of finite size is a free gas that is trapped in a box with impenetrable
walls or subject to periodic boundary conditions. This restricts the possible values of the wave
vectors to be

kn = 2π
L
n , n ∈ N (2.2.6)

for every dimension of space. For a macroscopic system the condition for the smoothness
of the density of states is therefore fulfilled and in the limit of L → ∞, the lowest energy
value ε(k) = ~2k2/2m is indeed zero. In this case we get into trouble when converting the
sum into an integral, which gets most obvious if we examine the low-energy behaviour (the
Bose-Einstein distribution cuts the high energy contribution independently of dimensionality).

Expanding the Bose-Einstein distribution for small arguments, the expression for the maximum
number of excited particles (N ′(µ = 0), see (2.1.7)) is
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N ′max ∝
∞∫
0

dε εd/2−2 =



2ε1/2
∣∣∣∞
0

d = 3

ln ε
∣∣∣∞
0

d = 2

−2ε−1/2
∣∣∣∞
0

d = 1.

(2.2.7)

For three dimensions, we already know that we get a convergent integral even in the thermody-
namic limit (N,L→∞ with N/Ld = const) and thus a finite number of excited particles if the
degeneracy is high enough nλ3

dB � 1. In two dimensions, the integral diverges logarithmically
and in one dimension even faster. This means that the number of excited particles is not
limited any more, hence the ground state is not getting macroscopically occupied and no BEC
can occur in the thermodynamic limit. But this does not hold for a finite system size, which
can be taken into account by introducing a finite infrared cut-off of the order of the energy of
the ground state which for the free gas is εmin = 2(πd~)2

mL2 (taking kmin = 2π/L from (2.2.6)).

For the evaluation of the integral with cut-off in one or two dimensions, it will be sufficient to
consider the low-energy contribution and to proceed as we have done in equation (2.2.7). The
contribution of high-energy modes to the integrals is not favoured by the density of states in
lower dimensions and therefore it can be neglected in a first approximation. Thus we can use
the low-energy approximation of the Bose-Einstein distribution, but then in 2d we have to be
careful with the upper bound that creates another divergence ( limε→∞ ln ε). This stems from
the approximation and has to be neglected since the original Bose-Einstein distribution falls
off exponentially for large arguments. Consequently, we get for two dimensions:

N ′max '
L2mkBT

2π~2

∫
εmin/kBT

dε ε−1 = L2

λ2
dB

ln kBTε−1
min = L2

λ2
dB

ln
(
mL2kBT

8π2~2

)
d = 2 (2.2.8)

This yields

N

N ′max
= nλ2

dB

ln L2

4πλ2
dB

, d = 2 (2.2.9)

and similarly we obtain for one dimension

N ′max '
Lm1/2kBT

23/2π~

∫
εmin

dε ε−3/2 = L2

πλ2
dB

, d = 1. (2.2.10)

A similar result can be obtained alternatively by evaluating the original sum [45],
N ′max '

∑
n6=0

kBT
~2k2

n/2m
= 4mkBT

~2 (2π
L )2∑∞

n=1
1
n2 = πL2

3λ2
dB

.
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It follows with (2.2.10)
N

N ′max
= π

nλ2
dB

L
, d = 1. (2.2.11)

The two equations (2.2.9) and (2.2.11) confirm again that in the thermodynamic limit, no
matter how high the degeneracy may be, there is no BEC possible, with one exception: in 2d,
we see that, since the dependence on the system size is only logarithmic, in the limit T → 0
we get N/N ′max → ∞ even in the thermodynamic limit L → ∞ with n = const. Quantum
degeneracy can still be achieved in lower dimensions even in the thermodynamic limit. This
means that low-momentum states up to certain cut-off are highly occupied, but there is no
macroscopically occupied state as in three dimensions. The temperature associated to that
can be defined in one dimension by setting nλdB = 1 as

Td = 2π ~
2n2

mkB
. (2.2.12)

2.3 Ideal degenerate Bose gas in one dimension

We will take a closer look on the one-dimensional case, as the main focus of this thesis
lies on these systems. For that we notice that all the above integrals can be rewritten in
momentum space using the free particle dispersion relation. In one dimension, we have
D(ε)dε = L

2πdk, such that the expression for the non-condensed particles (2.1.3) is just an
integration of the Bose-Einstein distribution over momentum space. In the degenerate regime
(see equation (2.2.12)), we have a high occupancy of the low-momentum modes and therefore
the Bose-Einstein distribution can be expanded as NBE(ε(k)− µ) ' (β(ε(k)− µ))−1 in a first
approximation. We have therefore

N = L

∞∫
−∞

dk
2π

kBT

~2k2/2m− µ = L

π

kBT

~

√
m

−2µ

∞∫
−∞

dx
x2 + 1 , (2.3.1)

which yields the so-called equation of state for the one-dimensional ideal degenerate Bose gas

n′(µ) ≡ n(µ) = 1
~β

√
m

−2µ. (2.3.2)

Just as we have seen before, it diverges for µ→ 0 and is only defined for negative chemical
potential. We want to consider now a more general case, namely the Fourier transform of the
momentum distribution, whose significance is going to be pointed out later (section 3.3). In
the degenerate regime, the resulting integral is similar to that in (2.3.1) and thus its integrand
is holomorphic except for two complex poles. It can therefore be solved by integration over
the complex plane
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g1(z) = 1
π~β

√
m

−2µ

∮
γ

dq eiqz′

(q + i)(q − i) , (2.3.3)

where z′ =
√
−2mµ
~ z. Since the numerator goes to zero for Im q → ±∞ if z′ ≷ 0, we have

to close the contour in the upper/lower half plane enclosing the pole q± = ±i for z′ ≷ 0,
respectively. The residue theorem yields therefore for the integral

I = ±2πi lim
q→q±

eiqz
′

q ± i
= πe∓z

′
, z′ ≷ 0. (2.3.4)

Hence we get

g1(z) = 1
~β

√
m

−2µe
−
√
−2mµ
~ |z| = ne−|z|/lϑ , (2.3.5)

where

lϑ =
√

~2

−2mµ = ~2n

mkBT
= 2πλ2

dBn (2.3.6)

is the phase coherence length of the ideal Bose gas. For z = 0 we recover the particle density
n, but g1(z) contains information on coherence properties of the gas as well. In section 3.3 we
will have a more detailed look on this.





Chapter 3

The interacting Bose gas

3.1 Interaction, trapping and cooling

In order to produce a Bose-Einstein condensate, the mentioned necessity of low densities
implies that the gas has to be cooled to ultra-cold temperatures. This was only possible due to
the development of new cooling techniques like laser cooling [46]. In the most common version
of this method, the atoms are cooled by a red-detuned laser beam. Due to the Doppler effect,
the absorption is enhanced for atoms moving towards the laser, such that their mean velocity
decreases. In this way temperatures of some hundred µK can be reached. The last step in the
cooling process is generally evaporative cooling [47]. The most energetic atoms of the cloud
are removed by inducing spin flips at the boundaries of the trap applying radio frequency
radiation. The remaining gas thermalises due to two-body interaction at a lower temperature.

The cooling is normally combined with a trapping mechanism of the atomic cloud in magneto-
optical traps [48], which have to be used for neutral atoms since Penning- and Paul-traps are
suited for charged particles only. In a magneto-optical trap, the splitting of the energy levels
due to the Zeeman effect is used in an inhomogeneous magnetic field which in combination
with the laser light creates a force directed to the minimum of the field.

Another consequence of the diluteness of the gas is the almost complete absence of three-body
interactions1. This is quite convenient, since the remaining two-body interaction is much
easier to model. This can be done by solving the Schrödinger equation in the centre of mass
frame. For neutral atoms the interaction is generally modelled by the Lennard-Jones potential.
Since this is of quite short range and the energy of cooled atoms is comparably low, the s-wave
scattering dominates. Thus the whole process can be characterised by the s-wave scattering
length as. The actual interaction potential is then replaced by a pseudo potential that has
the same scattering properties in the low-energy limit in order to be able to apply the Born
approximation [49]. The simplest pseudo potential is the contact potential described by a
delta function,

1In fact these interactions would be responsible for the forming of a solid [33], which has to be avoided.

19
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V (r, r′) = g δ(d)(r− r′), (3.1.1)

whose strength is determined such that its scattering amplitude is the same as that of the
original potential, which in three dimensions gives:

g3d = 4π~2as
m

. (3.1.2)

The scattering lengths can be determined in experiments; for alkali atoms they are typically
of the order of a hundred Bohr radius, for example for 87Rb, as ≈ 93 a0 [50].

The traps used in experiments are normally highly elongated (cigar shaped) and can be
assumed to be harmonic. If the transverse trapping frequency ω⊥ is large enough, it can be
achieved that the physics of the system is effectively one-dimensional, or quasi-one-dimensional,
where the transverse degrees of freedom are “frozen out”. For that, the energy associated to
the transverse trap ~ω⊥ must be much larger than the thermal energy kBT and the interaction
energy characterised by µ. This leads to an effective one-dimensional coupling strength that
involves the trapping frequency as well (assuming as � l⊥, [51]):

g1d = g3d
2πl2⊥

= 2~asω⊥, (3.1.3)

where l⊥ =
√
~/mω⊥ is the harmonic oscillator length. In recent years, atom chips have

become a convenient tool for producing low-dimensional Bose gases [52]. These micro-fabricated
structures are able to produce highly confining and easily controllable potentials close to their
surface. The first BEC on an atom chip has been realised in 2001 by two groups simultaneously
[53][54]. Still it has to be emphasized that in some experimental realisations the gas is not
well approximated by the quasi-one-dimensional approach, such that transverse excitations
have to be taken into account as well.

In a typical experiment on an atom chip [55], we find trapping frequencies of about ωz ≈
50Hz� ω⊥ ≈ 20 kHz, temperatures of about T ∼ 400nK and a particle number of some 104

atoms. This yields an approximate effective (quasi-) one-dimensional coupling constant of
g1d ∼ 10−37 Nm2(g1d/kB ∼ 10 nKµm) for 87Rb.

3.2 Second quantization

The general framework of quantum many-body physics which takes the indistinguishability
of the particles into account is the formalism of second quantization [56], that makes use
of creation and annihilation operators. Any many-particle state is represented in terms of
occupation number states. Each of these states corresponds to a fixed particle number and
together they form a basis of the many-particle Hilbert space, called Fock space [57]. Applying
the creation operator a†l to the many-body wave function adds a particle in the single-particle
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state |l〉, whereas the annihilation operators al destroys one. As we are considering bosons,
these operators obey the following commutation relations,

[
a†l , a

†
m

]
= [al, am] = 0 (3.2.1)[

al, a
†
m

]
= δlm. (3.2.2)

The total particle number is then given by the sum of all occupation numbers:

N =
∑
l

〈a†l al〉. (3.2.3)

With the single-particle wave functions ϕl forming a complete set of orthonormal functions of
Hilbert space H, that is

∑
l

|ϕl〉〈ϕl| = 1, (3.2.4)

we can define quantum field operator, which create and annihilate a particle at position r,
respectively:

Ψ(r) =
∑
l

ϕl(r) al (3.2.5)

Ψ†(r) =
∑
l

ϕ∗l (r) a
†
l . (3.2.6)

The field operators are linked to the density operator, whose expectation value is the particle
density

n(r) = 〈Ψ†(r)Ψ(r)〉. (3.2.7)

They also obey bosonic commutation relations:

[
Ψ†(r),Ψ†(r′)

]
=
[
Ψ(r),Ψ(r′)

]
= 0 (3.2.8)[

Ψ(r),Ψ†(r′)
]

= δ(r− r′). (3.2.9)

A general Hamiltonian with two-body interaction V (r) and external trapping potential U(r)
can be written in terms of these operators as
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H =
∫
V

dr Ψ†(r, t)
(
−~2∇2

2m + U(r)− µ
)

Ψ(r, t)+1
2

∫
V

drdr′ Ψ†(r′, t)Ψ†(r, t)V (r−r′)Ψ(r, t)Ψ(r′, t).

(3.2.10)

In the following we are going to use the Hamiltonian with contact potential (3.1.1):

H =
∫
V

dr Ψ†(r, t)
(
−~2∇2

2m + U(r)− µ
)

Ψ(r, t) + g

2

∫
V

dr Ψ†(r, t)Ψ†(r, t)Ψ(r, t)Ψ(r, t).

(3.2.11)

3.3 Correlation functions and long-range order

A lot of insight into the physics of many-particle systems can be gained from studying
correlations, quantified by correlation functions. The field operators provide a simple definition,
for example for the first order spatial correlation function

g1(r, r′) = 〈Ψ†(r)Ψ(r′)〉. (3.3.1)

g1(r, r′) is related to phase fluctuations, which becomes apparent by writing the field operator
as Ψ(r) = |Ψ(r)|eiϑ(r). We get

g1(r, r′) = 〈
√
n(r)n(r′)ei(ϑ(r′)−ϑ(r))〉 ' n(r)〈ei(ϑ(r′)−ϑ(r))〉, (3.3.2)

where the latter only holds if we assume small density fluctuations (see section 3.4). The
exponential can now be expanded in a Taylor series in powers of ϑ(r′)− ϑ(r). If we assume
Gaussian statistics for the phase operator, we can apply Wick’s theorem, which states on the
one hand that the expectation value of all odd numbers of operators vanish. Hence

g1(r, r′) = n(r)
{

1 +
∞∑
n=1

in

n!〈
[
ϑ(r′)− ϑ(r)

]n〉} = n(r)
{

1 +
∞∑
n=1

(−1)n

(2n)! 〈
[
ϑ(r′)− ϑ(r)

]2n〉} .
(3.3.3)

On the other hand, even powers of operators can be written as the sum over all possible
contractions. There are (2n− 1)!! possible ways of pairing 2n operators and therefore

〈
[
ϑ(r′)− ϑ(r)

]2n〉 = (2n− 1)!! 〈
[
ϑ(r′)− ϑ(r)

]2〉n (3.3.4)
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Using (2n−1)!!
(2n)! = 1

2nn! we have consequently

g1(r, r′) = n(r)
{

1 +
∞∑
n=1

1
n!

〈
− [ϑ(r′)− ϑ(r)]2

2

〉n}
= n(r)e−〈[ϑ(r′)−ϑ(r)]2〉/2. (3.3.5)

Higher order correlation functions can be defined in a similar way; particularly interesting is
the second-order correlation function2

g2(r, r′) = 〈Ψ†(r)Ψ(r)Ψ†(r′)Ψ(r′)〉 = 〈n(r)n(r′)〉. (3.3.6)

It is related to density fluctuations via

δn2(r) = g2(r, r)− n2(r). (3.3.7)

Long-range order, or coherence, that is correlation of different parts of the system over
long distances which is typical for solids but also Bose-Einstein condensates (both in three
dimensions!), is therefore provided if the corresponding correlation function is non-zero at
infinitely separated points in space. Equivalently, a system displays disorder if the correlation
function falls off exponentially and drops to zero3, like for normal liquids and gases. This
leads to a criterion for Bose-Einstein condensation that goes back to Landau [60][61]:

lim
r→∞

g1(r) 6= 0⇔ BEC

lim
r→∞

g1(r) = 0⇔ no BEC. (3.3.8)

It follows from equation (2.3.5) that there is no BEC for the one-dimensional ideal Bose gas
according to the Landau criterion. This reproduces the conclusion of the famous Mermin-
Wagner theorem [17][18]: there is no long-range order in one or two dimensions (in the
thermodynamic limit) at finite temperatures, if the ordering corresponds to the spontaneous
breaking of a continuous symmetry4. The reason for this is that in lower dimensions a
diverging number of low-momentum excitations associated to quantum fluctuations which
destroy the long-range order are produced. The typical IR-divergent integrals that appear
in the description of low-dimensional systems, as those of the ideal Bose gas that we have
already seen, are a manifestation of that.

g1(r, r′) is also called the one-particle density matrix, and the particle densities at different
points r are the diagonal elements of that matrix. With criterion (3.3.8), the existence of BEC

2sometimes the correlation functions are defined with a normalisation factor and/or normal ordered
3There are systems that display quasi-long-range order, an intermediate case for which the correlation goes

to zero at infinity like for disordered systems, but the decay is much slower following typically a power law. In
[58][59] such a behaviour has been found for the one-dimensional Bose gas at T = 0.

4BEC is in fact associated to the spontaneous breaking of the internal U(1) gauge symmetry (see section
6.3).
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is therefore related to a one-particle density matrix with non-vanishing off-diagonal elements.
That is why one often speaks of off-diagonal long-range order (ODLRO) [12].

The condition (3.3.8) is only applicable to homogeneous systems. Combining different analogies
between interacting and ideal gas [62], Penrose and Onsager [7] gave another criterion which
equally holds for inhomogeneous systems. Instead of demanding the ground state to be
macroscopically occupied, they identify Bose-Einstein condensation with the largest eigenvalue
λ1 of the single-particle density matrix being of the order of N , or as they put it5,

λ1/N = eO(1) ⇔ BEC
λ1/N = O(1) ⇔ no BEC. (3.3.9)

In section 9 we will make use of this in order to determine the condensate fraction of a
numerically obtained single-particle density matrix.

It turns out that although there is no true condensate in one dimension in the thermodynamic
limit, there is a regime in which the one-dimensional interacting Bose gas still shows a different
behaviour than a thermal gas and exhibits properties of a condensate. The fluctuations that
destroy long-range order are associated with the internal phase of the quantum field - otherwise
the U(1)-gauge symmetry of the Hamiltonian would be spontaneously broken. Thus there is
no coherence with respect to g1, but density fluctuations are suppressed and therefore there is
coherence with respect to g2. This regime has been named quasi-condensate [63].

3.4 Regimes of the one-dimensional Bose gas

The quasi-condensate is just one of the regimes of the one-dimensional homogeneous degenerate
Bose gas, which have been identified by Petrov et al. [64] and Kheruntsyan et. al. [65]. Their
results are based on the numerical evaluation of the Lieb Liniger - Yang Yang integral equations.

Lieb and Liniger found in 1963 [66, 67] the exact solution of the Schrödinger equation associated
with the (canonical) Hamiltonian of a gas of bosons interacting via a contact potential of the
form (3.1.1) in first quantized form:

H = −
N∑
i=1

~2

2m
∂2

∂z2
i

+ 2g
N∑
i<j

δ(zi − zj). (3.4.1)

Periodic boundary conditions are used to determine the coefficients of the solution which is
found by using the Bethe-Ansatz [68] to solve the equation on the strip defined by 0 ≤ x1 ≤
· · · ≤ xN ≤ L. The latter assumption is justified because a bosonic wave function has to be
symmetric under particle exchange. In this way they find explicit eigenfunctions and energies

5A quite long-winded definition of this notion is given in the article. A = eO(1) means that there exist upper
and lower bounds for A, A = O(1) means that A� 1.
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for the ground state and excitations. The only free parameter of the equations is in fact the
so called Lieb-Liniger parameter of the reduced coupling strength

γ = mg

~2n
= 1

2(nξ)2 . (3.4.2)

ξ = ~√
2mgn0

is a characteristic length scale of the quasi-condensate, called the healing length
(details in section 8.1). Equation (3.4.2) shows an interesting property of the one-dimensional
Bose gas: it actually becomes more strongly interacting if the density decreases. Lieb and
Liniger found that for small γ, Bogoliubov theory gives correct results for the energy of the
ground state, but fails for γ & 2. If the interactions become dominant, the system approaches
the Tonks-Girardeau gas regime [69, 70]. For this model of impenetrable bosons it can be
shown that the spectrum and the configurational probability distributions are the same as for
a gas of free fermions. The bosons act in some sense as if they were fermions, but do have a
different momentum distribution (due to the Pauli exclusion principle for the fermions).

C.N. Yang and C.P. Yang [71] generalised the Lieb-Liniger model in order to determine
thermodynamic properties for finite temperatures. They actually demonstrated the analyticity
of the thermodynamic functions at all temperatures and therefore the absence of phase
transitions. Their equations have been evaluated numerically in the mentioned paper [65] and
the second order correlation function is calculated. On the basis of their results, Kheruntsyan
et al. identify three limiting regimes (see figure 3.4.1) of the homogeneous one-dimensional
interacting Bose gas in the parameter space of the Lieb-Liniger parameter γ and the reduced
temperature (Td is the quantum degeneracy temperature (2.2.12))

τ = T

Td
= 1

2πnlϑ
. (3.4.3)

Figure 3.4.1: Regimes of the homogeneous (left) and the harmonically trapped (right) one-dimensional Bose gas (figures
inspired by [72] and adapted from[64], respectively)

The strongly interacting (or Tonks-Girardeau) regime of fermionisation mentioned before
exists for strong coupling γ & max(1,

√
τ) (see left of figure 3.4.1), for which g2(0)/n2 ' 0
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since the repulsion is that strong that the particles cannot approach each other. Then there is
the (nearly) ideal Bose gas or decoherent regime at high temperature γ . min(τ2,

√
τ), where

we have the typical bosonic bunching g2(0)/n2 ' 2. It is subdivided into the degenerate and
classical regime at the quantum degeneracy temperature corresponding to τ ' 1. The quasi-
condensate is an intermediate regime with the coherent result g2(0)/n2 ' 1 for τ2 . γ . 1.
The phase coherence length of the gas is in this regime larger than the typical length scale of
the quasi-condensate, the healing length ξ (see also section 7.1). There is thus some kind of
local phase coherence [65] which justifies the separation of the field operator into a contribution
from a macroscopic component, that is represented by a c-number, and a contribution from
excitations (see chapter 4 for details).

It has to be emphasised that these regimes are not separated by sharp boundaries. There are
no phase transitions passing from one to the other, but rather smooth cross-overs in accordance
with the Mermin-Wagner theorem and Yang and Yang’s results [71]. The cross-over from the
degenerate ideal Bose gas to the quasi-condensate regime is the main concern of this thesis.

However, a completely different situations arises if the gas is trapped by a potential. We
have already seen in chapter 2.2 on the ideal Bose gas that finite-size effects can change the
properties of the system drastically. We review the regimes of such systems because they are
closer to the experimental reality than a homogeneous gas. In part III of this thesis concerned
with the stochastic modelling of a Bose gas, we study some of their properties as well.

The density of states for a one-dimensional harmonically trapped Bose gas has in fact the
same structure of a free two-dimensional Bose gas (see (2.2.3)). At T = 0, we know that the
latter develops a true condensate [17][18], it is therefore expected to happen for the former as
well. Ketterle and van Druten proved this in [73] and demonstrated the importance of the
discrete energy levels of the potential for this phenomenon. They showed that below a critical
temperature

Tc = N

ln 2N
~ωz
kB

, (3.4.4)

the ground state population of the gas grows very quickly, such that there is sharp transition
to the BEC regime. Petrov et al. showed that very weak interaction is actually needed
for that [64]. This is achieved if the parameter α = mglz/~2 (lz is the harmonic oscillator
length) introduced by them is very small (compared to one). In the same paper, they identify
different regimes of the trapped gas and create a state diagram for large α (see right of figure
3.4.1). There is still the strongly-interacting Tonks-Girardeau regime, which is reached for
N � N∗ = α2 corresponding to γ � 1. For larger N > N∗, we have a quasi-condensate
with suppressed density fluctuations, which is reached as for the homogeneous case in smooth
cross-over from the ideal gas lowering the temperature under Tc. The ideal gas itself is
degenerate below the quantum degeneracy temperature associated to the trap:

Td = N~ωz
kB

= Tc ln 2N. (3.4.5)
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Finally, for really small temperatures below

Tϑ = Td~ωz
µ

= N(~ωz)2

µkB
(3.4.6)

we have a true condensate, for which the long-wavelength phase fluctuations are suppressed
due to the finite size of the system. With the same parameters from section 3.1, we have
Td ≈ 20µK > Tc ≈ 2µK > Tϑ ≈ 60 nK (with µ ∼ ~ω⊥).





Part II

Mean-field theories of the weakly
interacting Bose gas





Chapter 4

Bogoliubov theory

The ideal Bose gas description has proven to capture some important aspects of BEC, but it
exhibits unphysical features like the infinite compressibility below the critical temperature
(see equation (2.1.13)) and is only suited for µ < 0. One step further would be to include
weak interactions as a perturbation to the ideal gas, but this is not possible in an ordinary
way because the ground state energy of the ideal Bose gas is zero. A different technique that
copes with these difficulties was developed by Bogoliubov in 1947 [24], which has become a
standard tool for the analysis of Bose-Einstein condensates and has been applied to many
other topics as well, for example in the context of BCS theory of superconductivity [74].

One key element of the theory is the splitting of the field operator into a contribution from
the condensate φ̂(r, t) and one from the non-condensed particles δψ̂(r, t):

Ψ̂(r, t) = φ̂(r, t) + δψ̂(r, t). (4.0.1)

The latter part is considered small in comparison to the first. It is thus a perturbation of the
pure condensate and describes quantum fluctuations and particles excited to higher states due
to the interaction at zero temperature.

The splitting (4.0.1) is equivalent to the separation of the zero-momentum mode â0 from
those with higher momentum. Since the ground state is macroscopically occupied in a true
condensate, â†0â0 can be replaced by its expectation value N0 or, equivalently, â†0 and â0 by
the square root of the number of condensed particles

√
N0. Therefore φ̂ = â0ϕ0 ≡

√
N0/V is

not an operator any more (the zero-momentum single particle wave function is ϕ0 = V −1/2)
and can be replaced by a (more generally complex) classical field φ(r, t) = |φ|eiϑ. Its modulus
gives the particle density of the condensate n0 = |φ(r, t)|2. From now on we will drop the
hat of the operators, bearing in mind that δψ is still an operator obeying the commutation
relations (3.2.9).

The replacement of the field operator by a complex number amounts to the breaking of the
original U(1)-gauge symmetry since a concrete phase is attributed to the field. For a true
condensate, this is a natural thing to do since there is long-range order with respect to the

31
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phase as well, which does not hold for a quasi-condensate. Still this separation can be justified,
as we have argued already in section 3.4. Viewed on the scale of the healing length, there
is actually some kind of local phase coherence, making it possible to apply the symmetry
breaking approach as well to quasi-condensates. Differently from a true condensate, the order
parameter φ does not contain only the zero-momentum mode now, but small finite momentum
excitations (there is no macroscopically occupied ground state). It is not expected though, that
this description works on larger length scales. Phase fluctuations of the (quasi-)condensate
are actually eliminated in this approach, which is justified in three dimensions. In lower
dimensions, phase fluctuations play an enhanced role and therefore the symmetry breaking
approach will presumably fail in describing phase coherence properties of a quasi-condensate.

In the following derivations (chapters 4, 5 and 6), the term condensate is used without paying
much attention on the difference to the quasi-condensate, since formally they are treated in the
same way (with some exceptions). In the chapters after that, we try to rigorously distinguish
between both terms or use (quasi-)condensate, if this distinction is not crucial; condensate
refers to a quasi-condensate in the context of low-dimensional homogeneous systems, even
though it may not be denoted in this way in some cases.

4.1 Diagonalisation of the Hamiltonian

In the following, the Hamiltonian (3.2.10) with contact potential is expanded in powers of the
operator δψ, retaining terms up to second order:

H0 =
∫
V

dr
{(

h0 − µ+ g

2 |φ|
2
)
|φ|2

}
(4.1.1)

H1 =
∫
V

dr
{
δψ†

(
h0 − µ+ g |φ|2

)
φ+ h.c.

}
(4.1.2)

H2 =
∫
V

dr
{
δψ†

(
h0 − µ+ 2g |φ|2

)
δψ + g

2
(
φ2δψ†

2 + φ∗2δψ2
)}

, (4.1.3)

where h0 = −~2∇2

2m +U(r). Minimizing the ground state energy with respect to the condensate
density yields

(
h0 − µ+ g|φ|2

)
φ = 0. (4.1.4)

This is the stationary Gross-Pitaevskii equation, which describes the condensate in terms of a
classical field at zero temperature. It appears very often in the context of BEC and we are
going to analyse it in more detail in section 8. For now we content ourselves with noticing
that minimising the ground state energy cancels all linear contributions of δψ, that is H1 = 0.
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For a homogeneous system, U(r) = 0, φ(r, t) ≡ φ(t) and therefore h0φ = 0. Equation (4.1.4)
simplifies consequently to

µ = g|φ|2. (4.1.5)

This is the equation of state of a pure homogeneous condensate for which the chemical potential
is thus always positive for repulsive interaction (g > 0). The zero-th order Hamiltonian H0
yields the ground state energy in a first approximation,

E0 = −g2n
2
0V. (4.1.6)

The pressure can be calculated from the grand potential Ω via

p = −∂Ω
∂V

= − ∂

∂V
(E0 + µN0) = gN2

0
2V 2 , (4.1.7)

that now is dependent on the volume, which is physically reasonable. Consequently, the
compressibility is not infinite any more but attains the value κ = − 1

V
∂V
∂p = 1

gn2
0
, fixing the

ideal Bose gas’ deficiency.

We are left with the Hamiltonian H = E0 + H2, which is going to be diagonalised in the
following. For that we use the Fourier representation of the field operator

δψ(r) = V 1/2
∫ dk

(2π)d δψke
ik · r, (4.1.8)

which is equivalent to the expansion (3.2.6) with plane waves as the single particle wave
functions ϕl = eikl · r/

√
V for the homogeneous system and converting the sum into an integral

with the momentum density V/(2π)d. The plane wave approach is even valid for inhomogeneous
systems if the local density approximation is justified (see 9.4). Equation (3.2.9) yields the
commutation relation of the Fourier components:

[
ψk, ψ

†
q

]
= 1
V

∫
V

drdr′
[
ψ(r), ψ†(r′)

]
e−i(k · r−q · r′) = 1

V

∫
V

dr e−i(k−q) · r = (2π)d

V
δ(d)(k− q).

(4.1.9)

Using (4.1.5), the Hamiltonian takes the following form for one-dimensional homogeneous
systems:

H2
L

=
∞∫
−∞

dk
2π

{(
ε(k) + g |φ|2

)
δψ†kδψk + g

2
(
φ2δψ†kδψ

†
-k + φ∗2δψkδψ-k

)}
, (4.1.10)
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where ε(k) = ~2k2

2m . We perform a canonical transformation, known as Bogoliubov transforma-
tion:

δψk = ukbk + v∗-kb
†
-k, δψ†k = u∗kb

†
k + v-kb-k. (4.1.11)

The new operators b,b† are required to obey the same commutation relations as the original
operators (4.1.9), which leads to the following condition for the coefficients:

|uk|2 − |v-k|2 = 1. (4.1.12)

They can therefore be parametrised as follows:

uk = eiϕk cosh(θk/2), v−k = −e−iϕ-k sinh(θk/2). (4.1.13)

In order to make the Hamiltonian diagonal in the new operators, the parameters have to be
chosen such that all terms mixed in k and −k vanish. This leads to the condition:

−
(
ε(k) + g |φ|2

)
cosh(θk/2) sinh(θk/2) + g

2φ
∗2e2iϕk sinh2(θk/2) + g

2φ
2e−2iϕ-k cosh2(θk/2) = 0

(4.1.14)

This fixes the phases of the Bogoliubov coefficients

ϕ±k − ϑ = π

2n, n ∈ N0, (4.1.15)

where the condensate phase φ ∼ eiϑ has been introduced. We choose n = 0 for both
ϕk = ϕ-k = ϑ, yielding

φ∗2e2iϕ±k = φ2e−2iϕ±k = |φ|2, (4.1.16)

to finally obtain

−
(
ε(k) + g |φ|2

)
cosh(θk/2) sinh(θk/2) + g

2 |φ|
2
(
sinh2(θk/2) + cosh2(θk/2)

)
= 0. (4.1.17)

This can be re-written in the compact form

tanh(θk) = g|φ|2

ε(k) + g|φ|2
, (4.1.18)
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where ε(k) is the free particle dispersion relation. The Bogoliubov coefficients obey the
eigenvalue equation

(~2k2

2m + gn0 gn0

−gn0 −
(
~2k2

2m + gn0
))(uk

v-k

)
= E(k)

(
uk
v-k

)
, (4.1.19)

leading to the Bogoliubov dispersion relation

E(k) =
(
~2k2

2m

(
~2k2

2m + 2gn0

))1/2

= ~ck

√
1 + k2ξ2

2 , (4.1.20)

where we have introduced the speed of sound

c = 1
~
∂E

∂k
=
√
gn0
m

. (4.1.21)

Using (4.1.18) in (4.1.13) we obtain eventually

uk, v-k = ±e±iϑ
(
ε(k) + g|φ|2

2E(k) ± 1
2

)1/2

, (4.1.22)

which yields ukv-k = − g|φ|2
2E(k) as well. We need this in order to obtain the coefficients of the

diagonal terms in the Hamiltonian (4.1.10):

{(
ε(k) + g |φ|2

)
|uk|2 + g

2
(
φ∗2ukv

∗
k + c.c.

)}
b†kbk = 1

2
(
E(k) + ε(k) + g |φ|2

)
b†kbk

(4.1.23){(
ε(k) + g |φ|2

)
|v-k|2 + g

2
(
φ∗2u-kv

∗
-k + c.c.

)}
b-kb

†
-k = 1

2
(
E(k)− ε(k)− g |φ|2

)
b-kb

†
-k.

(4.1.24)

Since all terms are quadratic in k and we integrate from −∞ to ∞, we can substitute −k → k
and get the Hamiltonian which is finally diagonalised:

H2
L

=
∞∫
−∞

dk
2π

{
E(k)b†kbk + 1

2
(
E(k)− ε(k)− g |φ|2

) [
bk, b

†
k

]}
. (4.1.25)

We have commuted the operators in expression (4.1.24), yielding the zero-point energy (second
term in the Hamiltonian). The commutator appearing there may be evaluated by converting
the integral back into a sum where

[
bk, b

†
k

]
→ δkk ≡ 1.
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4.2 Ground state energy and elementary excitations

The complete diagonalised Hamiltonian is composed of the ground state energy and a contri-
bution corresponding to excitations:

H = E0 +
∞∫
−∞

dk
2π E(k)b†kbk. (4.2.1)

The ground state energy is the one from (4.1.6) with a small correction from the zero-point
energy of excitations. In three dimensions, this integral is actually UV-divergent and one has
to go further than the zero momentum approximation of the effective coupling strength to
get a convergent integral. It has been calculated for the first time in [75]. In one dimension,
the integral is convergent and can be calculated right away, as we have done in appendix B.1.
The ground state energy density can be written as:

E0
L

= −g2n
2
0 −

2
√
m

3π~ (gn0)3/2 = −g2n
2
0 −
√

2
3π

gn0
ξ
. (4.2.2)

Having diagonalised the Hamiltonian in the form of (4.2.1) shows that the behaviour of
the interacting particles can effectively be described by the superposition of non-interacting
quasi-particles, also called collective excitations, having a dispersion relation (4.1.20). For
high momenta, they behave like “real” free particles since in this limit, (4.1.20) approaches the
free particle dispersion relation. Likewise, we observe from (4.1.22) that uk ' 1 and v-k ' 0
and therefore δψk ∼ bk, which corresponds to a single particle of momentum ~k.

In the low-momentum limit, we have approximately E(k) ' ~kc. The dispersion relation is
therefore linear in this case like for phonons. Again we see from (4.1.22) that uk ' v-k � 1,
thus δψk ∼ uk(bk − b†-k). Therefore for low momentum, the excitations are phonon-like.
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4.3 Condensate depletion and thermodynamics

Now that we know the spectrum of the excitations, we want to examine their contribution to
total particle density,

n = n0 + n′ = |φ|2 + 〈δψ†(z)δψ(z)〉, (4.3.1)

called the depletion of the condensate n′. These excitations stem from quantum fluctuations1.
Their density can be obtained using the relations (4.1.8) and (4.1.11), which yields:

n′ =
〈
L

∞∫
−∞

dkdq
4π2 ψ

†
kψqe

i(k−q)z
〉

= L

∞∫
−∞

dkdq
4π2

{
u∗kuq〈b

†
kbq〉+ v∗-kv-q〈b-kb†-q〉

}
ei(k−q)z (4.3.2)

In thermodynamic equilibrium, we expect the occupation of the excited modes to obey the
Bose-Einstein distribution and the expectation value to be consequently

〈b†kbq〉 = 2π
L

δ(k − q)
eβE(k) − 1

, (4.3.3)

such that an excitation is weighted by its energy according to the Bogoliubov dispersion
relation (4.1.20). Changing the order in the second term in (4.3.2) using the commutator, this
leads to:

n′ =
∞∫
−∞

dk
2π

{
|uk|2 + |v-k|2

eβE(k) − 1
+ |v-k|2

}
=

∞∫
−∞

dk
2π

{
ε(k) + gn0
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

2

}
.

(4.3.4)

It is easy to see from the low-k asymptote of the integrand m
β~2

1
k2 +

√
gn0m
2~

1
k + const. (see

appendix C.1) that this integral is again IR-divergent even for zero temperature, which
reaffirms that there is no real Bose-Einstein condensation possible in one dimension. For a
finite system size, the integral can of course be calculated with an IR energy cut-off as we
have done for ideal Bose gas.

Another related quantity, which will be important in the course of this thesis, is the so-called
anomalous average. It is defined by m′ = 〈δψ(z)δψ(z)〉 and non-zero (that is why it is called
anomalous) because δψ(z) contains both creation and annihilation operators. Proceeding in a
similar way as for the depletion, one obtains

1We apply the term condensate depletion only in the original Bogoliubov theory; for the finite temperature
mean-field theories, n′ is called thermal density.
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m′ = L

∞∫
−∞

dkdq
4π2

{
ukv

∗
-q〈bkb†-q〉+ v∗-kuq〈b

†
-kbq〉

}
ei(k+q)z

=
∞∫
−∞

dk
2π {ukv

∗
k (NBE(E(k)) + 1) + v∗kukNBE(E(k))}

= −
∞∫
−∞

dk
2π

{
gn0
E(k)

( 1
eβE(k) − 1

+ 1
2

)}
e2iϑ, (4.3.5)

which is as well IR-divergent (the integrand has the same low-k asymptote as n′ without the
constant).

Since for Bogoliubov theory excitations are effectively free and don’t interact with each other,
the system can in principle be dealt with as if it was an ideal Bose gas with the Bogoliubov
dispersion relation (4.1.20). Thus it is possible to calculate all thermodynamic quantities in the
same way we have done for the ideal gas in section 2, for example the total energy contribution
of the excitations. Interestingly, even in one dimension we get a convergent integral, since the
additional factor ε eliminates the divergence, making the integral structurally equal to that
of the particle density in three dimensions. In the low-temperature limit it is easy to get an
approximation of the integral. This is the natural scope of the theory anyway, since for higher
temperatures interactions between the excitations become important and cannot be neglected
any more. Details of the calculation are presented in appendix (B.2), yielding:

E − E0
L

= (kBT )2

π~

√
m

gn0
= 23/2 kBT

λ2
dB/ξ

. (4.3.6)

The heat capacity per volume is therefore

CV
L

= 25/2 kB
λ2
dB/ξ

. (4.3.7)



Chapter 5

Finite temperature mean-field
theories

As mentioned before, within Bogoliubov theory excitations are effectively free and don’t
interact with each other. This a good approximation for temperatures very close to zero, but
gets more and more inaccurate for higher temperatures. There exist a couple of theories for
that regime which are all based on a mean-field description. Just as in the Gross-Pitaevskii
equation, interactions are described by an effective mean-field that is produced self-consistently
by all particles. The mean-field concept is widely used throughout physics and can help to
give an understanding of the collective behaviour of large quantities of interacting particles,
as we have seen for Bogoliubov theory. The analysis always involves an expansion of the
Hamiltonian in fluctuations around the mean-field, which are considered small compared to it.

The theories examined in this thesis differ in the way higher moments of the quantum field are
taken into account, which will become clear when we compare them in section 6. Here we will
give a short sketch of their derivation, the most simple and popular being Hartree-Fock theory.

5.1 Hartree-Fock theory

Hartree-Fock theory is known from atomic physics where it plays an important role in the
approximate calculation of molecular orbitals. There, the minimisation of the energy functional
with respect to the single particle wave functions, whose antisymmetric product is taken as
an ansatz for the wave function, gives rise to two terms in the energy, the Hartree and the
Fock-term. The first corresponds to the average Coulomb interaction of the electrons, the
second is due to the (anit-)symmetrisation of the wave function and therefore a quantum
effect. Qualitatively the same arises if the theory is applied to bosonic gases, which has been
done for the first time in [76].

For a system of interacting bosons, the interaction Hamiltonian (second part of (3.2.10)) is
decomposed in eigenfunctions ϕi of the free Hamiltonian (3.2.6):
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U = 1
2
∑
ijkl

∫
V

drdr′
{
ϕ∗i (r)ϕ∗j (r)V (r− r′)ϕk(r)ϕl(r)

}
a†ia
†
jakal = 1

2
∑
ijkl

〈ij|V (r−r′)|kl〉 a†ia
†
jakal

(5.1.1)

Following the reasoning of [40], we evaluate the expectation value of this expression. Since the
ϕi’s are orthogonal, the only terms that survive the summation are those for which either

• i = k ∧ j = l, then: 〈a†ia
†
jakal〉 = Ni(Nj − δij)

or

• i = l ∧ j = k, then: 〈a†ia
†
jakal〉 = NiNj , i 6= j (i = j already included above).

We have thus:

U = 1
2
∑
i

〈ii|V (r− r′)|ii〉Ni(Ni − 1) + 1
2
∑
i 6=j

(
〈ij|V (r− r′)|ij〉+ 〈ij|V (r− r′)|ji〉

)
NiNj .

(5.1.2)

For a contact potential V (r− r′) = g δ(r− r′), we see that the two terms in the second sum of
(5.1.2) equally give:

〈ij|V (r− r′)|ij〉 = 〈ij|V (r− r′)|ji〉 = g

∫
V

dr |ϕi(r)|2|ϕj(r)|2. (5.1.3)

Again we consider (normalized) plane waves as single particle wave functions for the homoge-
neous system, yielding:

〈ij|V (r− r′)|ij〉 = g

V
. (5.1.4)

The total energy including the kinetic term is therefore:

E =
∑
k

εkNk + g

2V
∑
k,k′

Nk(Nk′ − δkk′) + g

2V
∑
k 6=k′

NkNk′ . (5.1.5)

The sums may be written as
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∑
k,k′

Nk(Nk′ − δkk′) =
∑
k

N2
k −

∑
k

Nk +
∑
k 6=k′

NkNk′

=
(∑

k

Nk

)2

−
∑
k 6=k′

NkNk′ −
∑
k

Nk +
∑
k 6=k′

NkNk′

=N2 −N (5.1.6)

and

∑
k 6=k′

NkNk′ =
∑
k,k′

NkNk′ −
∑
k

N2
k = N2 −

∑
k

N2
k . (5.1.7)

Since we have a macroscopic system, we can neglect N against N2 � N in these expressions.
Hence (5.1.5) simplifies to

E =
∑
k

εkNk + g

V

(
N2 − 1

2
∑
k

N2
k

)
. (5.1.8)

The energy that is needed to add a particle to the system E(k) may now be obtained by
calculating the difference

E(k) = E(Nk + 1)− E(Nk) = εk + gN

V
+ g(N −Nk)

V
=

g(2n− n0) , k = 0

εk + g(2n− nk) , k 6= 0.
(5.1.9)

We observe the two different contributions to the energy: the Hartree or direct term which
describes the interaction of a particle with all other particles, and the Fock or exchange term
due to the indistinguishability of the particles and therefore to their quantum nature. The
corresponding term is consequently proportional to the number of particles in states different
from that of the particle in consideration.

If the ground state is macroscopically occupied (and the others are not), the chemical potential
has to be of the order of the energy of adding a particle to the ground state, thus

µ = g(2n− n0). (5.1.10)

On the other hand, we can than neglect nk against n� nk in the expression of the energy of
an excited particle ((5.1.9) for k 6= 0), such that the dispersion relation is
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E(k) = ε(k) + 2gn− µ. (5.1.11)

Assuming that the excitations are free (quasi)-particles with energy (5.1.11), this leads finally
to the following non-condensate or thermal density

n′ =
∞∫
−∞

dk
(2π)d

1
eβ(ε(k)+2gn−µ) − 1

=
∞∫
−∞

dk
(2π)d

1
eβ(ε(k)+gn0) − 1

. (5.1.12)

We observe that the excitations are actually free particles whose interaction with each other
is described by an effective mean-field potential V ' 2ng that is produced self-consistently
by themselves. The resulting integral is convergent because the excitation spectrum (5.1.11)
attains a finite value as k → 0. This property of the spectrum is referred to as conserving (we
will analyse this in more detail in section 6.2) and brings about a convergent integral, which
has to be evaluated self-consistently. In [76] similar expressions are used to calculate density
profiles for a trapped gas.

From (5.1.10) we can see that the chemical potential is always positive in Hartree-Fock theory,
just as for the Bogoliubov theory. We will refer to this regime as the dense side of the
cross-over. Hartree-Fock theory can be adapted in order to describe the opposite, the dilute
side as well. There, no condensate is expected to be present and we therefore neglect it in the
above expressions. This leads to an integral which still has to be solved self-consistently but
includes the chemical potential now as a free parameter which can be chosen negative as well:

n′ =
∞∫
−∞

dk
(2π)d

1
eβ(ε(k)+2gn′−µ) − 1

(dilute side). (5.1.13)

As we shall see, the integral is solvable for positive values of the chemical potential as well,
but physically this is of course not justified.

This result can be motivated as well if we assume that the particles produce a self-consistent
interaction potential V = g|δψ|4 (from the functional derivative of an energy functional of the
type (8.0.2)), with the field δψ obeying Gaussian statistics. On this condition we can apply
Wick’s theorem [77],

〈|δψ|4〉 = 2〈|δψ|2〉2 + |〈δψ2〉|2. (5.1.14)

The second term (which is actually m′2 of the type of (4.3.5)) is neglected in this context and
hence we have an effective interaction potential

V = 2gn′. (5.1.15)
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5.2 Modified Popov theory

Modified Popov theory is based on the Popov theory, which has originally been derived in [63]
using path integral methods. Unfortunately, the latter yields IR-divergent integrals for lower
dimensions; this problem is fixed within Modified Popov theory.

As we shall see later on, the results of Popov theory for a homogeneous system can easily
be derived within a general framework. In contrast to Hartree-Fock theory, it allows for the
mixing of particle- and hole-like excitations, and excitations are not “free” any more but
phonon-like. Still, we want to sketch the derivation that is used for Modified Popov theory,
which is similar to the original approach from Popov. It has been developed by Andersen et
al. in [78], whose steps we follow.

The partition function is calculated within the imaginary time formalism of the path integral
approach to statistical physics:

Z =
∫

Ψ(r,τ+~β)=Ψ(r,τ)

[dΨ∗] [dΨ] e−S[Ψ∗,Ψ]/~, (5.2.1)

where [dΨ] denotes the functional integration over the c-number field Ψ(r, τ) and the Euclidian
action can be written as

S[Ψ∗,Ψ] =
~β∫
0

dτ

~
∫
V

drΨ∗(r, τ) ∂
∂τ

Ψ(r, τ) +H(Ψ∗,Ψ)

 , (5.2.2)

with the Hamiltonian H from (3.2.10) (but Ψ, Ψ∗ are no operators here). For a homogeneous
system, the fields can be expanded in planes waves using bosonic Matsubara frequencies
ωn = 2πn

~β :

Ψ(r, τ) = 1√
~βV

∑
k,n

ak,ne
i(k · r−ωnτ). (5.2.3)

This leads to

S[a∗, a] =
∑
k,n

(−i~ωn + εk − µ)a∗k,nak,n + g

2~βωn

∑
k,k′,q
n,n′,m

a∗k+q,n+ma
∗
k′−q,n′−mak′,n′ak,n. (5.2.4)

If only the first part of the action is taken into account, the partition function can easily be
evaluated using standard techniques for calculating Gaussian functional integrals. This leads
directly to the partition function of the ideal Bose gas (2.0.2). Including the interaction term
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complicates the calculus a bit; consistent with the mean-field approach and the separation
of the field operator into a macroscopic component and fluctuations, the sum is split into
sums over low and high momenta k ≶ k0

1. In the following, the action is diagonalised by
a Bogoliubov transformation. Then the functional integration can be carried out and the
free energy is obtained via F = − 1

β lnZ + µN . Minimizing F with respect to the chemical
potential or the condensate density yields implicit expressions for the density and chemical
potential, respectively. Approximating those recursively gives rise to

n′ =
∞∫
−∞

dk
(2π)d

{
ε(k) + gn0
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

2

}
(5.2.5)

µ

g
=

∞∫
−∞

dk
(2π)d

{2ε(k) + gn0
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

}
+ n0. (5.2.6)

E(k) is the Bogoliubov dispersion relation, making (5.2.5) exactly equal to the standard
Bogoliubov result, including its divergences. This brings about the idea of Modified Popov
theory to solve this problem making use of certain subtractions and a renormalisation of the
coupling constant. In appendix C.1 it is shown in detail that it is actually the term involving
the coupling constant g which is responsible for IR-divergences in both expressions in lower
dimensions d ≤ 2 (except for T = 0 in 2d). In [78], this term is related to the quadratic
contribution of phase fluctuations, i.e.

∞∫
−∞

dk
(2π)d

gn0
E(k)

( 1
eβE(k) − 1

+ 1
2

)
≡ n0〈ϑ(r)ϑ(r)〉. (5.2.7)

Since higher-order terms of the quantum field Ψ are neglected in the Hamiltonian, higher
orders of the phase fluctuations are not taken into account either. All these terms summed up
would give no contribution at all to the density because

g1(r, r) ∼ n0〈e−iϑ(r)eiϑ(r)〉 = n0(1 + 〈ϑ(r)ϑ(r)〉+ ...) ≡ n0 (5.2.8)

Hence the term from (5.2.7) has to be removed in (5.2.5) and (5.2.6). As a matter of fact, the
resulting integrals,

1As usual, k0 → 0 in three dimensions since there is a macroscopically occupied ground state. In lower
dimensions there is no condensate and thus the sum diverges for k0 → 0.
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n′ =
∞∫
−∞

dk
(2π)d

{
ε(k)
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

2

}
(5.2.9)

µ

g
=

∞∫
−∞

dk
(2π)d

{2ε(k)
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

}
+ n0, (5.2.10)

are now UV-divergent in three dimensions (see appendix C.1). This can be solved by renor-
malising the coupling constant g, which consists effectively in replacing it by the two-body
T-matrix T (−2µ) evaluated at the energy −2µ and adding a term to the integral (see [79]),
leading to:

n′ =
∞∫
−∞

dk
(2π)d

{
ε(k)
E(k)

( 1
eβE(k) − 1

+ 1
2

)
+ T (−2µ)n0

2ε(k) + 2µ −
1
2

}
(5.2.11)

µ = (2n′ + n0)T (−2µ). (5.2.12)

Apart from using the T-matrix, this renormalisation amounts to replacing the IR-divergent
term (5.2.7) by its large-k limit in n′ and using the zero-temperature expression of the chemical
potential µ = gn0 in it. The resulting integral is convergent in all dimensions and has to be
evaluated self-consistently using (5.2.10). As a matter of fact, in lower dimensions the integrals
(5.2.9) and (5.2.10) are not UV-divergent and it is known that in one dimension the coupling
constant does not have to be renormalised (see [45] as well). For that reason we continue using
the bare coupling constant g in one dimension, but still consider the expressions (5.2.11) and
(5.2.12) that are valid in all dimensions. The term that has been added,

∞∫
−∞

dk
2π

gn0
2ε(k) + 2µ, (5.2.13)

is quite small in one dimension anyhow as we shall see later (see equation (C.6.2) and table
7.1 (green term)).

5.3 Mora-Castin theory

Mora and Castin present another theory for the quasi-condensate regime in [27] (a review can
be found in [45]). It is based on the assumption that density fluctuations are suppressed in
this regime. The Hamiltonian is therefore expanded in powers of a small parameter which is
related to the density fluctuations, rather than the density of excited particles as in standard
Bogoliubov theory. For that, the field operator is used in the density-phase representation,
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Ψ̂(r) = eiθ̂(r)
√
n̂(r), (5.3.1)

with the density n̂(r) = Ψ̂†(r)Ψ̂(r) and the phase operator θ̂(r), which are canonically conjugate
variables

[
n̂(r), θ̂(r′)

]
= iδ(d)(r− r′). (5.3.2)

The separation of the (quasi-)condensate and the remaining particles is only done for the
density, i.e.

n̂(r) = n0(r) + δn̂(r). (5.3.3)

However, this formalism involves some difficulties. There is no Hermitian phase operator that
strictly obeys the commutation relation (5.3.2) and the contact potential of the interaction
leads to UV-divergences in higher dimensions (details see [27]). The solution to these problems
for the authors is the discretisation of space into cells of length l, leading to the Modified
expressions for the interaction potential and the commutation relations:

V (r, r′) = g

ld
δrr′ ,

[
Ψ̂(r), Ψ̂†(r′)

]
= δrr′

ld
. (5.3.4)

A similar expression is obtained for the commutator (5.3.2), which now is approximately
satisfied under the assumption that the probability of finding no particle in a box of size l is
negligible2. The choice of the grid spacing has to be made by considering the energy cut-off
which is linked to it, εmax ' ~2/(ml2). In order to leave the physics of the problem unchanged,
it is required that this cut-off must be big enough to still include all characteristic energy
scales, that is

µ, kBT � εmax. (5.3.5)

The Hamiltonian looks as follows in this representation

H =
∑

r
ld

n̂
(
U(r)− µ+ g

2

(
n̂− 1

ld

))
− ~2

2ml2
d∑
j=1

(
n̂1/2ei(θ̂+j−θ̂)n̂

1/2
+j + h.c.− 2n̂

) ,
(5.3.6)

2In one dimension, the regime of weak interactions corresponds to high densities (see section 3.4.), which
together with the assumption of small density fluctuations assures that this condition is fulfilled.
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where the notation f±j ≡ f(r ± lej) is applied. The expansion of the Hamiltonian is done
in powers of the small parameters: one which is linked to density fluctuations as mentioned
before, and another which is related to the introduction of the grid,

ε1 = |δn|
n0

, ε2 = |l∇θ| � 1. (5.3.7)

As in Bogoliubov theory, the ground state energy is minimised leading to a vanishing first-order
Hamiltonian. In the following, the second-order Hamiltonian (including contributions from ε1
of order s and ε2 of order t with s+ t = 2) is used to get Heisenberg equations of motion for
the phase operator θ̂ and the density fluctuation operator δn̂. The transformation

B̂ = δn̂

2n1/2
0

+ in0θ̂ (5.3.8)

maps those onto equations of the form of the Gross-Pitaevskii equation for the new operators
B̂ and B̂†, for which a standard Bogoliubov transformation diagonalises the Hamiltonian [80].
Unfortunately, there is no correction to the zero-order result of the density for the quadratic
Hamiltonian, therefore the contribution from the cubic Hamiltonian has to be taken into
account. A rather tedious calculation including a whole series of transformations leads to the
final expression, which takes the following form for a homogeneous gas:

µ

g
= n0 +

∞∫
−∞

dk
(2π)d

{(
|uk|2 + |vk|2

)
NBE(E(k)) + vk (vk + uk)

}

= n0 +
∞∫
−∞

dk
(2π)d

{
ε(k)
E(k)

( 1
eβE(k) − 1

+ 1
2

)
− 1

2

}
, (5.3.9)

where the excitation spectrum and the Bogoliubov coefficients involve the chemical potential

uk, v-k = ε1/2(k)± (ε(k) + 2µ)1/2

2E1/2(k)
= ε(k)± E(k)

2 (ε(k)E(k))1/2 (5.3.10)

E(k) =
√

~2k2

2m

(~2k2

2m + 2µ
)
. (5.3.11)

The integral in (5.3.9) is convergent in one dimension and UV-divergent in higher dimensions,
making it necessary to renormalise the coupling constant in dimensions d ≥ 2 as in Modified
Popov theory. In fact without the renormalisation, the integral of the latter would be
structurally identical to that of Mora-Castin theory.
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5.4 Walser theory

Finally, the most complex of the mean-field theories we are considering was proposed by
Walser [28, 81]; it is in fact formally identical to [82]. We are going to mention only some key
points of the original derivation involving Green’s functions, since its results can be obtained
in an easier way if we are only interested in equilibrium properties of a homogeneous gas. As
we shall see in chapter 6.1, it is the most general form of an approach that emphasizes the
similarities and the differences of all the mentioned theories.

In Walser’s theory, the occupation numbers of the excitations (it is actually distinguished
between two types of excitations; we will get back to this in 6.2) are obtained from the
eigenvalues of the Hartree-Fock Bogoliubov self-energy

Σ =
(

ΣN ΣA
−Σ∗A Σ∗N

)
, (5.4.1)

where ΣN = h0 − µ + 2g(|φ|2 + n′) and ΣA = g(φ2 + m′) for the homogeneous case. An
eigenvalue equation can be established for this matrix, ΣWi = EiWi, whose eigenvectors Wi

are planes waves with some Bogoliubov-like amplitudes uk,vk, leading to

Σ
(
uk
vk

)
= Ek

(
uk
vk

)
, (5.4.2)

which directly yields the Bogoliubov-de Gennes equations that we derive and analyse more in
detail in 6.1. A generalised Gross-Pitaevskii equation provides an expression for the chemical
potential and the hydrodynamic fields n′, m′ (the anomalous average is called pairing field
in the articles mentioned above), which appear in elements of the correlation matrix G, are
calculated from the decomposition

G = W+P+W
†
+ +W−(1 + P+)W †− (5.4.3)

where W− = σ1W
∗
+ (with Pauli matrix σ1) is eigenvector to eigenvalue E− = −E+ and P+ is

the Bose-Einstein distribution with an excitation spectrum obtained from the Bogoliubov-de
Gennes equations. For a homogeneous gas in thermodynamic equilibrium, this procedure is
equivalent to that of the next section as mentioned before; expressions for the hydrodynamic
fields may therefore be taken from there (equations (6.1.14) and (6.1.15)).



Chapter 6

Qualitative comparison of the
theories

The resemblance of the resulting expressions already suggests that all the mentioned theories,
although derived in slightly different contexts with different formalisms, are actually quite
similar to each other. Key elements of all theories are the mean-field approach with small
fluctuations and a Bogoliubov transformation, making it possible to capture all theories within
a general framework. Adopting the approach of Griffin [30] will allow us to highlight similarities
and to show that the difference consists in the way higher moments of the quantum field (that
is the hydrodynamic fields n′,m′) are taken into account, which leads directly to a classification
of all theories. Furthermore, we will analyse the theories according to their excitation spectra
and categorize them in two groups, both fulfilling one kind of fundamental laws.

6.1 General derivation within Hartree-Fock Bogoliubov the-
ory

Hartree-Fock Bogoliubov theory (HFB) is based on Bogoliubov theory, but incorporates the
interaction between excitations by taking higher orders of the quantum field into account.
In the course of the derivation which follows the steps of [30], one way of proceeding is the
diagonalisation of the Hamiltonian, just as we have done for the standard Bogoliubov theory,
only that now third and fourth-order terms of the quantum field δψ are not neglected anymore
(see appendix C.2).

Equivalently to that, the Hamiltonian (3.2.10) can be used to obtain the Heisenberg equation
of motion for the quantum field operator Ψ(r, t):

i~
∂

∂t
Ψ(r, t) = [Ψ(r, t), H] =

(
−~2∇2

2m + U(r)− µ+ gΨ†(r, t)Ψ(r, t)
)

Ψ(r, t). (6.1.1)

49
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If we consider the zero-temperature case, the quantum field operator Ψ(r, t) may be substituted
by a classical field φ(r, t) which describes the condensate only. (6.1.1) is then converted into the
famous Gross-Pitaevskii equation, which has been successful in characterising both equilibrium
properties and dynamics of the ground state (see chapter 8).

For the finite-temperature case, Ψ(r, t) is split as before into a condensate part, the classical
field φ(r) (now stationary since we are interested in equilibrium properties), and a part
originating from the excitations, the operator δψ(r, t). As the latter describes fluctuations
around the mean-field, its average or expectation value is considered to vanish, 〈δψ〉 = 0.
Inserting this in (6.1.1) gives a term that is cubic in δψ(r, t). Consistent with a mean-field
approach, the “self-consistent quadratic approximation”, as it is called in [30], is applied:

δψ†δψδψ ≈ 2〈δψ†δψ〉δψ + 〈δψδψ〉δψ†. (6.1.2)

This is actually quite similar to assuming Gaussian statistics for δψ and applying Wick’s
theorem (in (C.2.4) this is even more evident). A pair of operators is approximated by its
mean value and then all possible combinations of the operators are summed up. We therefore
obtain for the interaction term of (6.1.1)

Ψ†ΨΨ ' |φ|2φ+ 2
(
|φ|2 + 〈δψ†δψ〉

)
δψ+ 2

(
φ2 + 〈δψδψ〉

)
δψ† + 2φδψ†δψ+ φ∗δψδψ, (6.1.3)

which after averaging becomes:

〈Ψ†ΨΨ〉 ' |φ|2φ+ 2φ〈δψ†δψ〉+ φ∗〈δψδψ〉. (6.1.4)

The average of (6.1.1) yields therefore an equation for the condensate field, which with the
identification n′ = 〈δψ†δψ〉 and m′ = 〈δψδψ〉 reads:

(
−~2∇2

2m + U(r)− µ
)
φ(r) + g

(
|φ|2 + 2〈δψ†δψ〉

)
φ(r) + g〈δψδψ〉φ∗(r) = 0. (6.1.5)

Neglecting fluctuations leads again to the (now stationary) Gross-Pitaevskii equation.

We assume the condensate to have the phase φ ∼ eiϑ as before; in order to get consistent
phases in equation (6.1.5), the anomalous average has to obey m′ ∼ e2iϑ. Kinetic energy of the
condensate and the external potential are zero for a homogeneous system. Hence, we obtain:

µ = g(n+ n′ +m′e−2iϑ). (6.1.6)

Taking equation (6.1.1) and subtracting its average yields for the excitations:
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i~
∂

∂t
δψ =

(
−~2∇2

2m − µ
)
δψ + 2g(n0 + n′︸ ︷︷ ︸

n

)δψ + g(φ2 +m′︸ ︷︷ ︸
m̃

)δψ†, (6.1.7)

where we introduce the notation m̃ = φ2 +m′. As before, we expand the field in plane waves
(see (4.1.8)) and carry out a Bogoliubov transformation (4.1.11), leading to:

i~
∂

∂t
(ukbk + v∗-kb

†
-k) = (ε(k)− µ+ 2gn) (ukbk + v∗-kb

†
-k) + gm̃(u∗kb

†
k + v-kb-k). (6.1.8)

If we assume an implicit time dependence of the Bogoliubov coefficients uk, v-k ∼ eiEkt/~,
equation (6.1.8) and its hermitian conjugate yield the Bogoliubov-de Gennes equations:

(
ε(k)− µ+ 2gn gm̃
−gm̃∗ − (ε(k)− µ+ 2gn)

)(
uk
v-k

)
= Ek

(
uk
v-k

)
. (6.1.9)

This equation, compared to (4.1.19), exposes the connection to standard Bogoliubov theory.
The excitation spectrum may be deduced from it as well:

E2(k) = (ε(k)− µ+ 2gn)2 − g2|m̃|2. (6.1.10)

Now we still need to determine the hydrodynamic fields; for that, we multiply the two
Bogoliubov-de Gennes equations (6.1.9) and obtain with LHF = ε(k)− µ+ 2gn:

(
E2
k − L2

HF + g2|m̃|2
)
ukv-k = 2L2

HFukv-k = −gLHF
(
m̃∗u2

k + m̃v2
-k

)
. (6.1.11)

Parametrizing the Bogoliubov coefficients according to (4.1.13), we see that their phases are as
well fixed by the condensate, ϕk = ϕ-k ≡ ϑ, and applying the same relations for the hyperbolic
functions, we get

tanh(θk) = g(n0 +m′e−2iϑ)
ε(k)− µ+ 2gn , (6.1.12)

which yields for the Bogoliubov coefficients:

uk, v-k = ±e±iϑ
(
ε(k)− µ+ 2gn

2E(k) ± 1
2

)1/2
. (6.1.13)

We set the condensate phase to ϑ = 0, and proceeding as we have done before (equations
(4.3.2) - (4.3.5)), we obtain the final results:
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n′ =
∞∫
−∞

dk

2π

{
ε(k) + g(n0 −m′)

E(k)

(
NBE(E(k)) + 1

2

)
− 1

2

}
(6.1.14)

m′ = −
∞∫
−∞

dk

2π
g(n0 +m′)
E(k)

(
NBE(E(k)) + 1

2

)
(6.1.15)

µ = g(n+ n′ +m′) (6.1.16)

E(k) =
√

(ε(k)− µ+ 2gn)2 − g2m̃2 (6.1.17)

As mentioned before, these results can be obtained as well by diagonalising the Hamiltonian.
Applying the self-consistent quadratic approximation to the higher-order terms, one realizes
that the resulting cubic Hamiltonian cancels the linear Hamiltonian. One is left with a
Hamiltonian that can be diagonalised in the same way as was done in Bogoliubov theory. In
appendix C.2 details of the calculation are presented, which recovers all results obtained in
this section yet and additionally yields the ground state energy (stemming from H0):

E0
L

= −gn0

(
n0
2 + 2n′ +m′

)
. (6.1.18)

It is now determined as well by the terms related to fluctuations and reduces to the Bogoliubov
result when those are set to zero.

6.2 Classification within the general approach

We will now take a closer look at equations (6.1.14) - (6.1.17) and compare them to the
corresponding expressions of the mean-field theories of chapter 5. All of them fit somehow
into the scheme of the last section 6.1, although for some it is much more obvious and clear
than for others. The main difference between them is the way higher moments of the quantum
field are taken into account:

1. Ideal Bose gas: g = 0 in (6.1.14) - (6.1.17)
Even the ideal Bose gas can be captured within this scheme, although here the classifi-
cation is of course not made on the basis of how the higher moments are treated, but
simply by setting the coupling constant to zero in all equations.

2. Bogoliubov theory: m′ = 0 in (6.1.14) - (6.1.17), n′ = 0 in (6.1.16) and (6.1.17)
Excitations are present in Bogoliubov theory, but they do not effect each other (since
temperatures close to zero are considered) which manifests through the exclusion of
the condensate depletion in the chemical potential. The integral for n′ is therefore not
implicit and does not have to be solved self-consistently.
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3. Hartree-Fock theory (dense, HF+): m′ = 0 in (6.1.14), (6.1.15) and (6.1.16); m̃ = 0 in
(6.1.17)
In the most simple of the finite temperature mean-field theories, the anomalous average
is neglected in the expressions for the chemical potential and the thermal density. In the
excitation spectrum, the entire m̃ = m′+n0 is neglected. The interactions are accounted
for via the Hartree (or direct) term and the Fock (or exchange) term.

4. Hartree-Fock theory (dilute, HF−): like HF+, but additionally n0 = 0
If we want to describe interactions in the absence of a condensate, we take the results
of Hartree-Fock theory and set additionally n0 to zero. This corresponds to a thermal,
interacting gas.

5. Popov theory: m′ = 0 in (6.1.14) - (6.1.17)
The difference of the Popov theory to Hartree-Fock theory is that in the former mixing
of particle- and hole-like excitation is allowed (off-diagonal elements of (6.1.9)) and thus
only m′ is neglected in (6.1.17), which leads to an IR-divergent integral. Applying some
modifications (see chapter 5.2), the integral is made convergent, establishing Modified
Popov theory.

6. Mora-Castin theory: m′ = 0 (6.1.14) - (6.1.17)
Mora and Castin’s theory cannot be fit into this scheme that easily, but effectively it
can be described by setting m′ to zero everywhere, only that (6.1.15) is incorporated
into the thermal density (6.1.14). If (6.1.14) and (6.1.15) are summed up setting m′ = 0
in the integrand, they combine to give a convergent integral. If we have a look at the
original expression (5.3.9) and compare it to (4.3.4) and (4.3.5), we see that (condensate
phase ϑ = 0)

n′ +m′
∣∣
HFB =

∞∫
−∞

dk
2π
{(
u2
k + v2

k

)
NBE(E(k)) + v2

k + ukvk (2NBE(E(k)) + 1)
}

=
∞∫
−∞

dk
2π
{

(uk + vk)2NBE(E(k)) + vk (uk + vk)
}

= n′
∣∣
Mora-Castin. (6.2.1)

One can thus adopt the following picture: the anomalous average gives a contribution to
the density through the incorporation in the thermal density, n = n0 +n′+m′ → n0 +n′.
This yields a convergent integral (it is actually similar to the Popov expression after
removing the IR-divergent term (5.2.7)) and makes the chemical potential equivalent to
that of Popov theory. The excitation spectrum is obtained by setting m′ = 0 in (6.1.17)
and replacing gn0 by its zero-temperature value µ.

7. Walser theory: n0, n
′,m′ 6= 0 everywhere

Taking the anomalous average, condensate and thermal density into account in all the
expressions yields the results of the theory proposed by Walser.

All results are summarized in table 6.1. Other structurally similar gapless theories have been
proposed by Proukakis et al. [83] and Yukalov and Kleinert [84] (see section 6.3).
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6.3 Gapless vs. conserving approximations

We have seen that all theories are related to each other in some sense, and we observe that they
may be divided in two groups according to their excitation spectra. For some theories, the
spectrum is gapless, meaning that excitations with zero momentum have a vanishing energy,
i.e. E(k = 0) = 0. The opposite is called a conserving spectrum. In order to understand this
and get an idea of its importance, we will first introduce some well established concepts and
theorems related to this topic:

Spontaneous symmetry breaking

Spontaneous symmetry breaking is a fundamental concept that is widely applied in theoretical
physics, its most popular example in recent times appearing probably in the Higgs mechanism
[85, 86] in the standard model of elementary particle physics1. It occurs if a solution of a
theory does not exhibit the same symmetries as the original theory. The system as a whole
and the Langrangian (or equivalently equations of motion) that describes it, show certain
internal symmetries, but the system will never be found in a state with the same symmetries,
but rather in a specific asymmetric state. The probability of all these specific solutions is
equal, reflecting the underlying symmetry of the system; therefore one also speaks of a hidden
symmetry.

One popular example of a system showing spontaneous symmetry breaking involves the
so-called Mexican hat potential. It really has the shape of that Latin American headdress (for
the right parameter choice, see figure 6.3.1) with a local maximum in the centre and may be
described by

V (φ) = −a|φ|2 + b|φ|4 (6.3.1)

for a complex φ = |φ|eiϑ, a, b ∈ R and b > 0. The corresponding Lagrangian exhibits U(1)
gauge symmetry, since it is invariant under a change of the phase ϑ.

Figure 6.3.1: Mexican hat potential from equation (6.3.1) for negative and positive a

1Here the main idea is of course the failure of the Goldstone theorem (see below), leading to massive
particles.
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The equilibrium solution of such a system, i.e. the φ for which the minimum of the potential
is attained, depends on the value of a: if it is negative, the minimum in the middle of the
potential is the only solution; if it is positive, this solution becomes a local maximum and two
(if we look at the vertical plane) minima of finite radius appear. The solution is therefore

φ =


0 a ≤ 0√
a

2be
iϑ a > 0.

(6.3.2)

Figure 6.3.2: Pitchfork bifurcation for the Mexican
hat potential; the two solution branches correspond to
ϑ = 0 and ϑ = π of equation (6.3.2)

Tuning the system by increasing a from negative
values, it actually shows a Pitchfork bifurcation
at a = 0 (see figure 6.3.2). The originally stable
solution in the centre becomes unstable and two
new stable solutions appear at a radius that scales
with the square root of the parameter a. The non-
zero branch of solutions for a > 0 corresponds
to an infinite number of realisations, since the
angle ϑ can attain any value from the interval
[0, 2π), or put another way for clarity, must attain
a specific value within this range. Consequently,
the original U(1)-gauge symmetry of the system is
not conserved for the solution, it is spontaneously
broken.

The above notation is not chosen by chance, but in order to highlight the connection to
Bose-Einstein condensates. As we shall see in section 8, the Gross-Pitaevskii equation for
the condensate order parameter φ can be derived alternatively by starting from an energy
functional containing a potential of the form (6.3.1). We identify for a homogeneous gas a = µ
and b = g/2, yielding the known solution for the condensate density |φ|2 = µ/g. We deduce
therefore that the U(1)-gauge symmetry is spontaneously broken for a bosonic system in the
presence of a Bose-Einstein condensate. This is implied in the mean-field theories by virtue of
the replacement of the field operator by a complex order parameter φ.

We have applied the same approach to the quasi-condensate, arguing that there exists local
phase coherence. This implies that in this model, the symmetry is also broken (although only
locally) and the following statements hold likewise for a quasi-condensate. A different class
of theories, the number conserving approaches (see for example [87]), deal with this issue by
conserving the operator character of the (quasi-)condensate.

Goldstone theorem

The Goldstone theorem [88] states that whenever a continuous symmetry is spontaneously
broken, i.e. a continuous symmetry group leaves the Lagrangian but not the vacuum solution
invariant [89], there must exist spinless particles (i.e. bosons) of mass zero that correspond
to collective mode excitations. They were first observed in the context of BCS theory of
superconductivity by Nambu [90]; that is why they are called Nambu-Goldstone bosons or
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modes.

The original theorem holds for relativistic theories only, but there is an analogue of it for the
non-relativistic case [91]. It is concluded there that if the interactions are of finite range, the
spontaneous symmetry breaking leads to excitations with zero energy in the long-wavelength
limit as the non-relativistic analogous of a vanishing mass. This means that the excitation
spectrum of a Bose-Einstein condensate must be gapless.

Hugenholtz-Pines theorem

In their paper [92], Hugenholtz and Pines use Green’s function techniques that were introduced
by Beliaev [93, 94] in order to establish an exact relation for the chemical potential for a
system of interacting bosons. Without going into much detail, we emphasize that this relation
leads to the verification of the Goldstone theorem, confirming that there is no energy gap in
the excitation spectrum for interacting bosons.

We have seen (table 6.1) that some of the theories we have analysed do have a gapless spectrum,
namely Bogoliubov theory, Popov and Modified Popov theory, Mora-Castin theory, and others
do not, like Hartree-Fock theory (both formulations) and Walser’s theory. The idea of dividing
these theories into two groups on the basis of their excitation spectrum was introduced by
Hohenberg and Martin in [29]. In [30], this concept was adopted and already applied to
some of the theories considered in this thesis. It is pointed out that it is actually a difficult
task to construct a consistent theory, because two somehow contrary constraints have to be
fulfilled: on the one hand, the excitation spectrum is expected to be gapless, on the other
hand conservation laws (like energy, momentum, particle conservation) must be satisfied.
Theories of the latter kind are called “φ-derivable” in [29] or “conserving”, since the mentioned
conservation laws are directly incorporated in their derivation. According to Griffin, the
problem of finding a theory that is both gapless and consistent with conservation laws can be
solved within the dielectric formalism [95]. Walser applies the same kind of argumentation
to his theory: he distinguishes between thermodynamic excitations that contribute to the
equilibrium, and elementary excitations resulting from the linear response to a perturbation.
Only the latter have to satisfy the condition of a gapless spectrum while the thermodynamic
excitations have to be consistent with conservation laws, which holds for Walser’s theory. In
other words, the elementary excitations are not considered to represent the Goldstone mode
associated to the spontaneous symmetry breaking.

There is a theory that we have not mentioned yet but which is structurally similar. It has been
proposed by Yukalov and Kleinert in [84] and has also been derived with the Hartree-Fock
Bogoliubov approximation, but making use of two Lagrange multipliers. The second Lagrange
multiplier is needed in order to ensure the normalisation condition n0 = |φ|2 for the broken
symmetry phase. The authors claim that in this way the theory is made self-consistent,
fulfilling conservation laws and having a gapless spectrum. The resulting expressions are quite
similar to those of Walser’s theory (compare table 6.1), but with some opposite signs where
the anomalous average m′ appears and, most importantly, with a Bogoliubov kind of (thus
gapless) spectrum involving also the anomalous average. Therefore it is as well IR-divergent
in lower dimensions, that is why we will not address details of this theory any further.





Chapter 7

Evaluation

Having analysed the origins and the differences of the mean-field theories, we come now to the
actual calculation of the integrals involved. Most of them have to be solved in a self-consistent
way since the integrand itself includes often the quantity that is being calculated. In order
to simplify the evaluation and interpretation, we give approximations of the integrals in the
high-temperature limit. We compare the theories on the basis of the equation of state (referring
to a relation of the type n = n(µ)), density fluctuations and related correlation functions.

7.1 Cross-over units

As mentioned before in section 3.4, the regime that we are aiming to describe is the cross-over
from a degenerate Bose gas to a quasi-condensate. We expect that the characteristic length
scales of both regimes become of the same order at this point, we set therefore the phase
coherence length of the one-dimensional ideal degenerate Bose gas lϑ (2.3.6) equal to the
healing length of the quasi-condensate ξ (see chapter 8 for details). That enables us to define
characteristic units:

ξ ' ~
√
mgn

= ~2n

mkBT
= lϑ ⇒ nx = 1

g

(
m1/2gkBT

~

)2/3

. (7.1.1)

From the zero-temperature relation we easily obtain the corresponding chemical potential:

µx = gnx =
(
m1/2gkBT

~

)2/3

. (7.1.2)

Finally, since for a degenerate Bose gas the degeneracy nλdB is large, we define a small
dimensionless temperature parameter by the squared inverse of it, i.e.

59
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βx = 2π
(nxλdB)2 =

(
g2m

~2kBT

)1/3

= µx
kBT

. (7.1.3)

A length scale can be defined as well as

lx = n−1
x . (7.1.4)

We will formulate all theories in terms of these units, yielding equations with βx as the only
free parameter. Their definition implies a cross-over temperature Tx that can be related to
the Lieb-Liniger parameter γ and the quantum degeneracy temperature in the following way:

Tx =
√
gn3~2

mk2
B

= 2√γ Td. (7.1.5)

The cross-over occurs therefore at a reduced temperature

τ = 2√γ, (7.1.6)

which is (apart from the factor 2) the result from [65] (see section 3.4). In the same way we
have

βx =
(
γ2

τ

)1/3

. (7.1.7)

7.2 Numerical evaluation of self-consistent integral equations

After scaling the integrals to cross-over units, we will mention some details of how they have
been evaluated numerically.

Hartree-Fock theory (dilute side)

Writing the densities and the chemical potential in terms of the units defined in (7.1.1) and
(7.1.2) respectively, the integral (5.1.13) takes the following form,

n′ = βx

∞∫
−∞

dk
2π

1
eβx(k2/2+2n′−µ) − 1

, (7.2.1)

where we have substituted ~2k2

mµx
→ k2 and made use of the relation

√
µx
nx

= ~√
m
βx.



7.2. NUMERICAL EVALUATION OF SELF-CONSISTENT INTEGRAL EQUATIONS61

Since the integrand is even in k, we can change the lower integration boundary to 0 adding
a factor 2. In order to treat the upper boundary numerically in a correct way, we split the
integral into two parts,

∫∞
0 (· · · ) =

∫ 1
0 (· · · ) +

∫∞
1 (· · · ). For the second part we apply the

substitution x = k−1, which after swapping integration boundaries yields

n′ = βx
π

1∫
0

dx
{

1
eβx(x2/2+2n′−µ) − 1

+ x−2

eβx(x−2/2+2n′−µ) − 1

}
. (7.2.2)

The integral is now calculated using the composite Simpson rule, a numerical approximation
scheme of fourth order, with step size h ≤ 5 · 10−4. It will be applied to all the other theories
in the same way; in appendix C.3 the scheme and certain numerical subtleties are presented.

In figure 7.2.1 the results of the numerically calculated integral (7.2.2) is plotted for different
values of the chemical potential against the thermal density, which is taken as the argument
for the integral since it contains n′ itself in the integrand. Because of that, it has to be solved
self-consistently for every value of µ. These self-consistent solutions correspond to the crossing
of the dashed line with the curves obtained from the integral in figure 7.2.1. Numerically, the
calculation of the crossing point could be done recursively, n′l+1 = f(n′l), but certain conditions
must be fulfilled for convergence. Because of that, we make use of the bisection method, which
is comparably slow but globally convergent (details as well in appendix C.3). The choice of
the starting interval has to be made in a proper way, because for n′ slightly below the crossing
the integral diverges (see figure 7.2.1) which causes numerical problems. If it is done correctly,
a graphical representation of the equation of state, which is shown in figure 7.2.2, can be
obtained. We see that on the dense side, the density approaches the asymptote µ = n/2 and
fails therefore to describe the quasi-condensate regime for which µ = n. This is not surprising,
since only a thermal gas without quasi-condensate is considered in this approach.

Figure 7.2.1: Numerically calculated integral (7.2.3)
(Hartree-Fock theory (dilute)) vs. thermal density n′
as its argument for βx = 10−2; the crossing with the
dashed line corresponds to the self-consistent solution

Figure 7.2.2: Numerically calculated self-consistent
thermal density (Hartree-Fock theory (dilute)) and its
asymptotes n′ = 1/

√
−2µ (dilute side) and n′ = µ/2

(dense side, failing to describe the quasi-condensate
regime) vs. chemical potential for βx = 10−2
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Hartree-Fock theory (dense side)

In cross-over units, the thermal density is

n′ = βx

∞∫
−∞

dk
2π

1
eβx(k2/2+n0) − 1

. (7.2.3)

We see that this integral does not need to be evaluated self-consistently. For a given value
of the quasi-condensate density n0, it can be calculated right away; the chemical potential is
given by (5.1.10) in cross-over units, i.e.

µ = n0 + 2n′. (7.2.4)

Figure 7.2.3: Both solution branches for βx = 10−2 (Hartree-
Fock theory (dense)); one branch is not physically reasonable
(red) since it is dominated by the thermal density

Surprisingly, for a chemical potential smaller
than a certain critical value µc, the equations
do not have a solution, whereas for larger
values there are even two solution branches.
This is of course not physically reasonable,
there has to be an unambiguous, thus bijec-
tive relation between the chemical potential
and its conjugated variable, the particle den-
sity. In order to examine which branch is
the right one, we consider the compressibil-
ity. We know that for any physical system
it must be positive, otherwise an increase in
pressure would increase the volume as well.
With some thermodynamic algebra that we
leave to the appendix C.4, the compressibil-
ity may be expressed via

κ = − 1
V

∂V

∂p

∣∣∣∣
T,N

= 1
n2
∂n

∂µ

∣∣∣∣
V,T

!
≥ 0. (7.2.5)

This relation has to be fulfilled for the whole system only, thus for the total density. We see
from figure 7.2.3 that this is true for both branches (red and blue), so we cannot use this
criterion here. But it has to be pointed out that the lower branch of the quasi-condensate
density in figure 7.2.3 (both in red) corresponds to the upper branch of the thermal density
and vice versa, such that one branch is dominated by the quasi-condensate and the other by
the thermal density. For large chemical potential we expect the quasi-condensate density to
be large and the thermal density to become very small, thus only the blue branch is physically
reasonable and the other one has to eliminated. This means we actually can make use of
the compressibility, since for the red branch of the quasi-condensate density the slope is
negative. We eliminate the part of the curves where this is the case, calculating the derivative
numerically with a simple finite differences scheme.
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Another comment is appropriate at this point: the resemblance of the two splitting branches
with the pitchfork bifurcation describing spontaneous symmetry breaking for a true condensate
in figure 6.3.2 may be apparent. But this is a different situation since for the example with
the Mexican hat potential, different solutions correspond to the same density. It is only the
internal, not directly observable phase variable that distinguishes one solution from the other.

Modified Popov theory

Realising that 1
ex−1 + 1

2 = 1
2 coth(x2 ), the thermal density for Modified Popov theory scaled to

cross-over units may be written as

n′ = β
√
n0

∞∫
−∞

dk
2π

 |k| coth
(

1
2βxn0|k|

(
k2/4 + 1

)1/2)
4 (k2/4 + 1)1/2 − 1

2 + 1
k2 + 2µ/n0

 , (7.2.6)

while the chemical potential is determined by (7.2.4). The are two parts of the integral that can
actually be solved exactly (see appendix 7.3), the rest is evaluated numerically (see appendix
C.3 for details). The easiest way of proceeding is to choose a value for the quasi-condensate
density n0 rather than the chemical potential µ and to solve (7.2.6) self-consistently replacing
the chemical potential by (7.2.4). In this way we avoid having to calculate two roots which can
get very complicated. Especially when both roots are close together, i.e. close to the critical
point, a proper choice of the starting interval is very tedious. For the method mentioned
above, this problem does not arise since for every n0 there is only one possible self-consistent
value for the thermal density.

Once the self-consistent value is obtained, we use again equation (7.2.4) to calculate the
chemical potential that describes a curve with a minimum (as a function of n0, see figure
7.2.4), resulting again in two solution branches of different densities for a given chemical
potential. One of them is removed as before reestablishing bijectivity, such that we get the
graphs presented in figure 7.2.5.

Figure 7.2.4: Chemical potential as function of the nu-
merically calculated quasi-condensate density (Modi-
fied Popov theory) for different temperatures exhibit-
ing a minimum which corresponds to the critical point

Figure 7.2.5: Numerically calculated self-consistent
densities (Modified Popov theory) vs. chemical po-
tential for βx = 10−2
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Mora-Castin theory

Since the thermal density for Mora-Castin theory (scaled to cross-over units),

n′ = β
√
µ

∞∫
−∞

dk
2π

 |k| coth
(

1
2βxµ|k|

(
k2/4 + 1

)1/2)
4 (k2/4 + 1)1/2 − 1

2

 , (7.2.7)

is equivalent to the first part of (7.2.6) (being a function of µ instead of n0), it can be evaluated
numerically in the same way. Like for Hartree-Fock theory (dense), the integral does not have
to be calculated self-consistently for a given value of µ though, and there is only one solution
branch (see figure 7.2.6). For small chemical potential however, the density gets negative
and diverges for µ → 0. On the other side, the thermal density attains negative values for
large chemical potentials (see right of figure 7.2.6). For Modified Popov theory, this does
not happen, which suggests that the term stemming from the regularization of the coupling
constant (5.2.13) prevents this. Mora-Castin theory exhibits thus two critical points (see as
well chapter 7.3).

Figure 7.2.6: Numerically calculated self-consistent densities (Mora-Castin theory) vs. chemical potential for βx = 10−2

(left) and βx = 10−1 (right); for larger βx, the second critical point at which the thermal density becomes negative is
reached for smaller chemical potential.

Walser theory

Finally, we give the expressions of the thermal density and the anomalous average of Walser
theory in cross-over units:
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n′ = βx
√
n0

∞∫
−∞

dk

2π


k2

4 + 1
2

(
1− m′

n0

)
[(

k2

4 + 1
) (

k2

4 −
m′

n0

)]1/2 coth

βxn0

[(
k2

4 + 1
)(

k2

4 −
m′

n0

)]1/2
− 1

2


(7.2.8)

m′ = −βx
√
n0

∞∫
−∞

dk

2π

1
2

(
1 + m′

n0

)
[(

k2

4 + 1
) (

k2

4 −
m′

n0

)]1/2 coth

βxn0

[(
k2

4 + 1
)(

k2

4 −
m′

n0

)]1/2

(7.2.9)

µ = n0 + 2n′ +m′. (7.2.10)

Choosing a value for the quasi-condensate density n0, m′ has to be calculated self-consistently
from (7.2.9). Again there exists a bijective relation between these two quantities (see figure
7.2.7), avoiding numerical complications. The thermal density n′ is obtained by calculating the
integral (7.2.8) numerically, and eventually the chemical potential µ from (7.2.10). Numerical
details are given in appendix C.3 and figure 7.2.8 shows the results. It is actually the only
theory for which thermal and quasi-condensate density are not equal at the critical point, but
for higher chemical potential, due to the non-vanishing anomalous average.

Figure 7.2.7: Numerically calculated integral (7.2.9)
(Walser theory) vs. anomalous average m′ as its argu-
ment for βx = 10−2; the crossing with the dashed line
corresponds to the self-consistent solution

Figure 7.2.8: Numerically calculated self-consistent
densities (Walser theory) vs. chemical potential for
βx = 10−2

7.3 High-temperature expansions and critical points

We have seen that it is possible to solve the self-consistent equations by calculating the integrals
numerically; this is quite costly in terms of computer performance. In order to reduce the
computational effort and also to get a clearer picture of the structure of the equations and
therefore the underlying physics, we provide simple approximations of the integrals. The
cross-over region being the regime that we want to focus on, we consider the temperature or,
more precisely, the degeneracy as explained in 7.1, to be relatively high βx � 1. This allows
us to get expansions in powers of βx.
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Figure 7.3.1: High-temperature approximation (7.3.2)
(Hartree-Fock theory (dilute)) evaluated numerically
with the bisection method (dashed) and exactly with
Cardan formulae (solid)

Figure 7.3.2: Numerically calculated density (solid)
of Hartree-Fock theory (dilute) compared to its high-
temperature approximation (dashed) with cross-over
points from table 7.2 and equation (7.3.4)

Having a close look at the integrals of both Hartree-Fock theories, we see that they are quite
similar to those appearing in section 2 of the ideal gas. As a matter of fact, we can use the
results already obtained by identifying (7.2.1) and (7.2.4) as Bose-Einstein integrals (apart
from prefactors), which gets clear if we apply the substitution βk2/2 = x,

n′ = 1
π

√
βx
2

∞∫
0

dx x−1/2

eαex − 1 =

√
βx
2π g1/2

(
e−α

)
, (7.3.1)

where αHF− = βx(2n′ − µ) or αHF+ = βxn0 for Hartree-Fock theory (dilute) and (dense),
respectively. Since βx is small and hence α as well (densities ∼ O(1) near cross-over), the
Bose function can be expanded with (A.1.4), yielding:

n′ =

√
βx
2π

(√
π

α
+ ζ(1/2)− ζ(−1/2)α+O(α2)

)
. (7.3.2)

These formulas can be evaluated in the same way as the integral equations before, i.e. with
the bisection method (not necessary for Hartree-Fock theory (dense) of course). Alternatively,
it is actually possible for Hartree-Fock theory (dilute) to get an exact analytic expression
(considering contributions up to O(

√
βx)) for the self-consistent solution. For that, (7.3.2)

is transformed into an equation cubic in n′, which can be solved with the Cardan formulae.
Although this is not really of practical use for the equation of state since it is not applicable for
the whole parameter range, it is a good way of validating our numerical methods (see figure
7.3.1). In appendix C.5 it is explained how the solution can be obtained. The high-temperature
expansions provide a very good approximation for small values of βx (see figure 7.3.2). For
larger βx ≥ 1, the approximation is not satisfying as expected.

For the other theories, the expansion is more involved. The hyperbolic cotangent coth(x)
appearing in the integrals cannot be expanded right away because there is a finite difference
between it and its small-βx approximation 1/x for large x, leading to an UV-convergence
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problem for the next order in the expansion. We will leave it to the appendix C.6 to show that
with some appropriate additions and subtractions the integrals can be split into convergent
parts in the high-temperature limit. The resulting expressions have a similar structure: an
expansion in βx with coefficients a1, a2 involving zeta-functions (see table 7.1). For Modified
Popov theory (equation (C.6.15)) and Walser theory (anomalous average, equation (C.6.36)),
the calculation of the correction of order O(β1/2

x ) is done numerically. In both cases, the result
is approximately a multiple of ζ(−1/2)/

√
2π and we replace therefore the coefficients by these

values (for the other theories, the coefficients have been calculated exactly), such that we have
for all theories

a1 = ζ(1/2)√
2π
≈ −0.58260, a2 = −ζ(−1/2)√

2π
+O(10−5) ≈ 0.08294. (7.3.3)

Theory thermal density n′

ideal Bose gas 1√
−2µ+a1β

1/2
x −2a2µβ

3/2
x

Hartree-Fock (dilute) 1√
2(2n′−µ)

+a1β
1/2
x +a2(2n′ − µ)β3/2

x

Hartree-Fock (dense) 1√
2n0

+a1β
1/2
x +a2n0β

3/2
x

Modified Popov 1
2√n0

+a1β
1/2
x +1

2
n0√
2µβx+a2n0β

3/2
x

Mora-Castin 1
2√µ+a1β

1/2
x +a2µβ

3/2
x

Walser
(
1 +

√
n0
−m′

)
1

4√n0
+a1β

1/2
x +a2(n0 +m′)β3/2

x

m′ =
(
1−

√
n0
−m′

)
1

4√n0
+2a2(n0 +m′)β3/2

x

Table 7.1: Small-βx expansion of the thermal density for different mean-field theories up to order O(β5/2
x ) (with colours

denoting different orders of βx)

The approximations all reproduce the results obtained by numerical integration with very good
accuracy; for example, for Hartree-Fock theory (dense), the numerically calculated accuracy
(relative deviation averaged over the region of the plots) is of order O(10−5) for βx = 10−3

and O(10−3) for βx = 10−1. As expected, for higher βx ≥ 1, the approximations get worse,
especially for smaller values of the chemical potential (see figures 7.3.2, 7.3.3, 7.3.4; for similar
figures of Mora-Castin theory and Hartree-Fock theory (dense) see appendix C.6). Since on the
dense side of the cross-over the curve approaches the quasi-condensate limit µ = n (cross-over
units) independently of the theory1 and the actual βx, the approximations are more accurate
in this regime.

The way we have treated the equations of Hartree-Fock theory can be applied to the ideal Bose
gas as well. Table 7.1 shows that the approximation that we have made before in section 2.3

1Apart from Hartree-Fock theory (dilute) of course.
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for the degenerate regime actually corresponds to the zero-th order of the high-temperature
expansion. For βx sufficiently small, it yields good results (see figure C.6.2 in appendix C.6).
The structural resemblance to the mean-field theories, especially with Mora-Castin theory,
becomes apparent.

Figure 7.3.3: High-temperature approximation
(dashed) with critical points (dots) compared to
numerically calculated integrals (Modified Popov
theory)

Figure 7.3.4: Numerically calculated density and
anomalous average (Walser theory) compared to its
high-temperature approximations (dashed) with criti-
cal points (dots)

We can make use of the above expansions in order to easily get approximations of characteristic
values for the corresponding theory. Above all, the points where some theories stop to work,
i.e. the critical points, are of interest. The slope of the density, that is the compressibility,
gets infinite at these points, which allows us to obtain their values (in practice we use the
quasi-condensate density or the anomalous average to calculate the slope, see appendix C.7).
For the ideal Bose gas, the critical point is actually µc = 0, since the density diverges there.
Mora-Castin theory works for all positive values µ > 0, but the density attains negative values
for small chemical potentials and therefore we consider the point where nc = 0 as the critical
point. As a matter of fact, Mora-Castin theory has a second critical point above which (in
terms of higher chemical potential) the thermal density becomes negative (see appendix C.7;
in table 7.2 both critical points - the lower and the upper one - are given). Hartree-Fock theory
(dilute) does not exhibit a critical point, but we can compute the cross-over density n(µ = 0)
instead (see appendix C.5 for details). All results are summarized in table 7.2 and we observe
from figures 7.3.3 and 7.3.4 that they yield good approximations for small βx ≤ 10−1.
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Theory critical points
chemical potential µc density nc

ideal Bose gas 0 ∞

Hartree-Fock ≈ 0

≈0.63︷ ︸︸ ︷
2−2/3 +2

3a1β
1/2
x

(dilute)

Hartree-Fock

≈2.38︷ ︸︸ ︷
3 · 2−1/3 +2a1β

1/2
x

≈1.59︷︸︸︷
22/3 +a1β

1/2
x

(dense)

Modified Popov

≈1.89︷ ︸︸ ︷
3 · 2−2/3 +2a1β

1/2
x +O(βx)

≈1.26︷︸︸︷
21/3 +a1β

1/2
x +O(βx)

Mora-Castin (lower) 2−2/3+a1β
1/2
x 0

(upper) (4a2
1βx)−1 (1 + a2/(4a2

1)
)−2 +O(βx) µc2

Walser ≈ 2.11+2a1β
1/2
x ≈ 1.45+a1β

1/2
x

Table 7.2: Critical points (cross-over point for Hartree-Fock (dilute)) of different mean-field theories up to order O(β3/2
x )

(with colours denoting different orders of βx; see appendix C.7 for details); for Mora-Castom theory, both upper and
lower critical values are given; for Walser theory, the critical anomalous average is m′c ≈ −0.21 +O(β3/2

x ).

As a matter of fact, we have defined the cross-over units in a way that the cross-over occurs
obviously at µco = nco = 1 (see section 7.1). In order to obtain the cross-over density of
Hartree-Fock theory, we should therefore rather take the density at µ = 1. This can be done
in very similar way as showed in appendix C.5 for µ = 0, yielding the approximate result

nco ≈ 0.85 + 2
3a1β

1/2
x . (7.3.4)

We have used expressions of the ideal Bose gas in order to define these units however. If we
want to estimate where the cross-over takes place by considering mean-field data only (thus
taking interactions into account), we may calculate the crossing of the asymptotes of the
curves that we consider correct for the corresponding regime, that is the quasi-condensate
limit on the dense side and Hartree-Fock theory (dilute) on the dilute side. We plug therefore
the quasi-condensate relation n = µ into n = 1/

√
2(2n− µ). This yields

nco = µco = 2−2/3 ≈ 0.63, (7.3.5)

which is lower than what the definition of the units implies. It is of the same order though,
affirming that we do describe the cross-over from a degenerate Bose gas to a quasi-condensate.

We want to refer quickly to the analogy with spontaneous symmetry breaking again in order to
shade some light on the nature of the critical points. For a true condensate, there exists a phase
transition at which the condensate density starts to grow (abruptly) from zero, corresponding
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to the bifurcation seen for spontaneous symmetry breaking. Similar to that, one could argue
that for the mean-field theories the quasi-condensate density just drops to zero at the critical
point. We know that in one dimension there is no phase transition though, and we observe
as well that the critical quasi-condensate density predicted by the mean-field theories is in
fact non-zero (except for Mora-Castin theory (by definition)). The critical points can still
be seen as a reasonable approximation for the point where the cross-over takes place, but
the quasi-condensate density should be continued smoothly for smaller chemical potential.
Formally, the reason for the critical points is that the chemical potential behaves close to this
point for all theories (exhibiting a critical point) like

µ ∼ a
√
n0

+ bn0, (7.3.6)

which obviously has a minimum n0 > 0 (with a, b > 0 some coefficients depending on the
theory).

7.4 Correlation functions

Correlation functions are key elements of understanding any complex system, quantifying the
relation between different parts or aspects of it. We have seen already in chapter 3 that they
are of great importance when it comes to deciding if BEC actually has occurred and in which
regime the system is in. The special case of z = z′ of the first order correlation function is
the density that we have analysed in the previous chapter, its analogue of the second order
correlation function are density fluctuations.

7.4.1 First order correlation function

The first order spatial correlation function may be written with the splitting (4.0.1) of the
field operator as

g1(z, z′) = 〈Ψ†(z)Ψ(z′)〉 = φ(z)φ(z′) + 〈δψ†(z)δψ(z′)〉. (7.4.1)

For a homogeneous system, only the difference of the two arguments is important. We can set
one of them to zero without loss of generality and write

g1(z) = n0 + 〈δψ†(0)δψ(z)〉︸ ︷︷ ︸
n′(z)

. (7.4.2)

The expectation value on the right hand side can be calculated in the same way as the thermal
density n′, only that the integral now includes an additional exponential eikz. Since the rest
of the integrand is even in k, only the (also even) real part of it survives the integration from
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−∞→∞. The distance z appearing in the correlation functions is scaled to cross-over units
using (7.1.4). We end up with integrals of the form (we give that of Walser theory)

n′(z) = βx
√
n0

∞∫
−∞

dk

2π


k2

4 + 1
2

(
1− m′

n0

)
[(

k2

4 + 1
) (

k2

4 −
m′

n0

)]1/2 coth (βxn0E(k))− 1
2

 cos (βx
√
n0kz) .

(7.4.3)

This procedure corresponds to the Hartree-Fock Bogoliubov and therefore the symmetry
breaking approach. Fixing the phase of the condensate eliminates its influence on the first
order correlation function, as can be seen from equation 7.4.2. In lower dimensions, phase
fluctuations play a crucial role though, it is therefore not expected that 7.4.2 can capture
the physics of a quasi-condensate. For Mora-Castin and Modified Popov theory, the authors
derive other expressions for g1(z), relating it directly to phase fluctuations. In [79], g1(z) is
associated to phase fluctuations of the quasi-condensate only; the relation that we have already
found in section 3.2 (equation (3.3.5)) therefore reads (for a homogeneous system in Modified
Popov theory) for large distances z

g1(z) = n0e
−〈[ϑ(0)−ϑ(z)]2〉/2. (7.4.4)

The exponent is evaluated using equation (5.2.7), which has to be renormalised in the same
way as done for the density and the chemical potential, yielding

〈[ϑ(0)− ϑ(z)]2〉 =
∞∫
−∞

dk
2π

{[
g

E(k) coth(βE(k)/2) + g

2ε(k) + 2µ

]
(1− cos(kz))

}
. (7.4.5)

The factor involving the cosine actually cancels the IR-divergence here. The whole correlation
function scaled to cross-over units eventually reads

g1(z) = n0 exp

− βx
2√n0

∞∫
−∞

dk
2π


coth

(
βxn0

√
k2(k2 + 1)

)
√
k2(k2 + 1)

− 1
k2 + µ

2n0

 (1− cos(2βx
√
n0kz))


 .

(7.4.6)

Mora and Castin derive a similar expression in [27], although their treatment is much more
involved. They leave the density inside the expectation value 〈Ψ†(0)Ψ(z)〉 and expand it up to
second order in the density fluctuations δn. The exponential involving the phase difference is
treated exactly, expanding it in an infinite series, taking the thermal expectation value of all
terms using Wick’s theorem and then summing up the resulting series exactly. Finally, they
include corrections stemming from the third order Hamiltonian H3, which amounts to replacing
the (quasi-)condensate density n0 by the complete density n. For large distances, they can
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reproduce previous findings [19] and their result can be related to standard Bogoliubov theory.
g1(z) therefore involves an integral similar to (4.3.4) whose IR-divergence is again cancelled
by a cosine factor; in cross-over units it reads

g1(z) = n exp

−βx√µ
n

∞∫
−∞

dk
2π

{
k2/2 + 1

2
√
k2(k2/4 + 1)

coth
(
βxµ

2

√
k2(k2/4 + 1)

)}
(1− cos(βx

√
µkz))

.
(7.4.7)

Figure 7.4.1: First order correlation function g1(z) of
Hartree-Fock theory (dilute) compared to the ideal
Bose gas at µ = −2µx and βx = 10−1

Figure 7.4.2: Normalised first order correlation func-
tion g1(z)/n for different mean-field theories at µ =
2.1µx and βx = 10−1; for z →∞ it approaches n0/n
for Hartree-Fock and Walser theory, whereas for Mora-
Castin and Modified Popov theory it approaches zero,
predicting respectively the presence or absence of a
true quasi-condensate

The numerical calculation is done for all theories using the self-consistent values of the densities
and chemical potential obtained earlier. It turns out that the correlation function (2.3.5) of
the degenerate ideal Bose gas is actually a good approximation of the ideal Bose gas’ result
obtained numerically (see lhs of figure 7.4.1). While it reproduces almost exactly the same
curve for large distances, it gives higher values near zero and a non-vanishing slope at the
origin. That is why the density of the degenerate gas is higher as we have seen already when
we examined the high-temperature expansions (see figure C.6.2).

The correlation length of the degenerate gas, which in cross-over units actually is
lϑ = 1/(

√
−2µβx) = n/βx, underestimates therefore the typical length scale of the decay (see

figure 7.4.3). For the mean-field theories using the HFB approach for the determination of
g1(z), this length is obtained by calculating numerically (bisection method) the drop off to 1/e
of (g1(z)− n0)/n′, whereas for Mora-Castin g1(z)/n and for Modified Popov theory g1(z)/n0
is taken. We observe that for Hartree-Fock theory (dilute) it scales like the degenerate Bose
gas with ∼ n/βx (see inlay of figure 7.4.3) and coincides with the ideal Bose gas result, with
an off-set being the only difference between these two and the degenerate gas.

The mean-field theories show two different types of behaviour with respect to the spatial
dependence of g1(z) for large distances. For the first group of theories (Hartree-Fock (dense)
and Walser), it approaches the value n0, whereas for the second group (Mora-Castin and
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Modified Popov) it vanishes in the limit z → ∞ (see figure 7.4.3). According to criterion
(3.3.8), the first group predicts therefore the presence of a true condensate, which we know
does not exist in one-dimensional homogeneous systems. The second group is capable of
describing this fact, only a quasi-condensate exists and hence there is no long-range order.
It must be emphasized though that the behaviour of the second group should not be put on
a equal footing with that of the ideal Bose gas (or Hartree-Fock theory (dilute)) for which
g1(z →∞) vanishes, too. This is of course due to the fact that there is only thermal density
for these theories and consequently n0 = 0.

As we have seen before, it is the different treatment of phase fluctuations that is responsible
for the different behaviour of g1(z). For the first group, phase fluctuations are excluded from
g1 by means of the symmetry breaking approach, whereas for the second group the phase is
incorporated in the exponential with some extra effort. The phase coherence is only local in
the quasi-condensate, which means that its coherence properties can only be captured on this
length scale by the symmetry breaking approach. The similar decay of g1 (of the two different
groups) near the origin (see figure 7.4.2) affirms this.

The density of Mora-Castin theory is negative for µ < µc and therefore the exponential in
equation (7.4.7) leads to an increasing correlation function (g1(z > 0)/|n| > 1). Because of
this, we plot only values beyond the critical point in figure 7.4.3. We observe that Mora-Castin
and Modified Popov theory are the only ones that can capture the fact that condensation
actually enhances coherence and thus the coherence length should increase with growing
quasi-condensate density. Contrary to that, the correlation length decreases for Hartree-Fock
and Walser theory (see rhs of figure 7.4.3, plotting against chemical potential or density is
almost equivalent here). For the latter, the approach of g1(z) to a non-zero plateau for large
distances corresponds to an infinite phase correlation length of the true condensate that is
predicted. The decay of g1(z) characterises therefore only the thermal part of the gas, which
manifests in linear scaling of the coherence length with the thermal density (not shown).

Completing this subsection, we may conclude that Mora-Castin and Modified Popov theory are
able to describe the phase coherence properties of an one-dimensional quasi-condensate. For
the latter, g1(0) does not yield the whole, but only the quasi-condensate density. The difference
between them is negligible for a “fully quasi-condensed” system though and originates, as seen
from Mora-Castin theory, from not taking higher orders of the Hamiltonian into account.

7.4.2 Equation of state

As we have seen before, the first order correlation function g1 at zero distance yields the
density as a function of the chemical potential, in this context called the equation of state.
We have already analysed it in detail for the different theories in section 7.2 and therefore we
focus on the comparison of the results here.

Hartree-Fock theory (dilute) is the only one that is actually capable of producing results for
the cross-over region (figure 7.4.5). For large negative chemical potential, it approaches the
ideal Bose gas solution and can therefore be considered reasonable in this regime because in a
very dilute system the particles hardly interact with each other. But since it does not take



74 CHAPTER 7. EVALUATION

Figure 7.4.3: Phase coherence length vs. chemical potential for βx = 10−1; on the dilute side (left), Hartree-Fock
theory (dilute) approaches the ideal Bose gas results, the degenerate gas is shifted by a constant to lower values; on the
dense side (right) the length decreases for growing chemical potential for Hartree-Fock (dense) and Walser theory, for
Mora-Castin and Modified Popov theory it increases

the particles in the quasi-condensate into account, it is in the strict sense applicable to the
dilute side only, which manifests in a wrong slope on the dense side. As a matter of fact, it is
the factor 2 that appears within the Hartree-Fock approximation that leads to the asymptote
µ ∼ n/2.

All mean-field theories that do not neglect the condensed particles exhibit a critical point
below which there is no density defined or, in case of Mora-Castin theory, the density attains
negative values (and finally diverges). We want to emphasize again that this critical point
has no physical origin since there is no phase transition in one-dimensional systems which is
confirmed by the exact solution of Yang Yang (see section 3.4). The reason for this is the
violation of the initial assumption that the field operator describing the quasi-condensate can
be replaced by a complex number. Approaching the cross-over in fact amounts to increasing
the healing length ξ and decreasing the phase coherence length lϑ, until lϑ � ξ is not satisfied
anymore. But this condition was the basis of the justification of the symmetry breaking
approach that has been applied. It is therefore natural that the mean-field theories are not
capable of quantifying the quasi-condensate density in this region.

Still all these theories work reasonably well in the quasi-condensate regime. The density
approaches the asymptote n = µ, the thermal fraction of the density goes to zero whereas
the quasi-condensate fraction reaches one in this limit (see figure 7.4.4). In order to get a full
description of the cross-over in the mean-field approach, it seems therefore natural to combine
different theories, namely Hartree-Fock theory (dilute) with another mean-field theory for the
dense side. The choice of the most appropriate theory may be made on the basis of how close
its results are to those of the exact theory of Yang Yang or, as we are going to do in part III,
those of the stochastic model. We might as well decide by examining how close the mean-field
theory in consideration comes to Hartree-Fock theory (dilute). For that, we calculate the jump
between the densities at the corresponding critical point using Cardan formulae. This yields
in lowest order
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Figure 7.4.4: Quasi-condensate fraction n0/n (solid) and thermal fraction n′/n (dashed) for different mean-field theories
for βx = 10−1

∆n(µc) ≈


0.256nx Hartree-Fock (dense)

0.122nx Modified Popov

0.230nx Walser.

(7.4.8)

In this way of thinking, the best theory would be of course that of Mora-Castin. There is no
jump in the density, the two curves cross each other more or less at the cross-over which is
another argument for its suitability. The actual crossing point can be calculated by equating
the two equations of state, but due to the self-consistence condition it is difficult to get a
reasonably good (universal) approximation of it. For the example that we have chosen for most
of the calculations, βx = 10−1, the crossing is approximately at µ ≈ 1.10µx and n ≈ 0.80nx.

7.4.3 Second order correlation function

The second order correlation function (3.3.6) is an important quantity that permits to identify
the regime of the Bose gas in consideration. Moreover, it is closely related to density fluctuations
and it is linked to the structure factor S(k), which is an important quantity that can be
measured in scattering experiments, via

S(k) =
∫
L

dz
(
g2(z)− n2

)
e−ikz. (7.4.9)

Its evaluation is carried out again by separating the field operator and assuming Gaussian
statistics for the thermal contribution. In this way moments of odd numbers of operators
vanish, leading for a homogeneous gas eventually to
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Figure 7.4.5: Equation of state for different mean-field theories and the ideal Bose gas for βx = 10−1

g2(z) = 〈Ψ†(0)Ψ(0)Ψ†(z)Ψ(z)〉 = n2 + 2n0 Re
( n′(z)︷ ︸︸ ︷
〈δψ†(0)δψ(z)〉+

m′(z)︷ ︸︸ ︷
〈δψ(0)δψ(z)〉

)
+ |〈δψ†(0)δψ(z)〉|2 + |〈δψ(0)δψ(z)〉|2. (7.4.10)

It contains terms that are similar to n′ with an additional space dependence (an additional
factor cos(kz)), just as we have seen it for the first order correlation function, and terms similar
to m′ as well (we use therefore the notation n′(z) and m′(z) in table 7.3). For the calculation
of g2(z) these higher moments are taken into account depending on the theory in a similar way
we have described before in 6.2. For Mora-Castin and Modified Popov theory, the treatment
differs again a bit from the Hartree-Fock Bogoliubov approach. The calculus in discrete space
of the former gives rise to a result in which n′2(z) is not present and n0 is replaced by n as
for g1(z) (if compared to the expression that would correspond to using equation (7.4.10)).
For Modified Popov theory, the anomalous average is taken into account (although for the
calculation of the density it is neglected, see 6.2) for the evaluation of g2(z) in [79], but it is
identified with the quadratic contribution of the phase fluctuations and therefore eliminated in
order to remove the IR-divergences. The result is therefore equal to that corresponding to the
HFB treatment of equation (7.4.10) with m′(z) = 0. In table 7.3 all results are summarised.
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Theory g2(z) g2(0)/n2 density fluctuations δ2n

ideal Bose gas n′2 + |n′(z)|2 2 n′2

Hartree-Fock n′2 + |n′(z)|2 2 n′2

(dilute)
Hartree-Fock n2 + 2n0 Ren′(z) + |n′(z)|2 2− n2

0
n2 2n0n

′ + n′2

(dense)
Modified Popov n2 + 2n0 Ren′(z) + |n′(z)|2 2− n2

0
n2 2n0n

′ + n′2

Mora-Castin n2 + 2nRen′(z) 2− n0−n′
n 2n0n

′ + 2n′2

Walser n2 + 2n0 Re (n′(z) +m′(z)) 2− n2
0−(2n0+m′)m′

n2 2n0(n′ +m′) + n′2 +m′2

+|n′(z)|2 + |m′(z)|2

Table 7.3: Second order correlation function and density fluctuations of different mean-field theories

Comparing (7.4.10) to the expression of g1(z) (7.4.2), we can establish a relation between the
two correlation functions:

g2(z) = n2 − n2
0 + g2

1(z) + 2n0 Rem′(z) + |m′(z)|2. (7.4.11)

For the degenerate ideal Bose gas we identify

g2(z) = n2 + g2
1(z) = n2

(
1 + e−2|z|/lϑ

)
, (7.4.12)

which is a reasonable approximation for the ideal Bose gas in this regime when it comes to the
examination of the length scale of density correlations (see figures 7.4.6 and 7.4.9), but the
deviation of absolute values of g2(z) is now bigger since densities are squared. Hartree-Fock
theory approaches the ideal Bose gas result in the dilute system once again. We see that the
density correlation length is of the same order as the phase correlation length for these theories,
a fact that may be observed already from equation (7.4.11). From there it is obvious that if
the terms involving m′(z) are neglected as is done for all theories except for that of Walser,
the only spatial dependence of g2(z) stems from g1(z) and therefore a similar behaviour,
above all a similar length scale of correlations, is expected in that case2. The correlation
length is obtained numerically by calculating - in a first attempt - the length of the decay of
(g2(z)− n2)/(g2(0)− n2) to 1/e.

The numerical evaluation for Mora-Castin and Walser theory has to be done carefully now
since the cosine causes strong oscillations in the limit x → 0 (where x is the integration
variable, see figure 7.4.7). They stem from the second part of the integral (in terms of the
splitting of the integration interval as in (7.2.2)) and thus from the UV-limit. For these two

2This holds of course not for Mora-Castin and Modified Popov theory, since g1(z) is evaluated in a different
way and therefore relation (7.4.11) is not correct
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Figure 7.4.6: Normalised second order correlation function g2(z) of different mean-field theories for βx = 10−1; for large
z it approaches a 1 for all theories, whereas at z = 0 different densities lead to values between 1 and 2 for the mean-field
theories (right, µ = 2.1µx), proving that this is the cross-over from the decoherent to the quasi-quasi-condensate regime;
ideal Bose gas and Hartree-Fock (dilute) describe the decoherent regime as expected (left, µ = −2µx)

theories, g2(z) at large distances z is not smaller than g2(0) for chemical potentials above a
certain value (µ & 6.31µx for Mora-Castin and µ & 7.34µx for Walser theory with βx = 10−1).
This can be observed from the integrands of the integrals involved (n′(z) for Mora-Castin and
n′(z) +m′(z) for Walser theory) in figure 7.4.7 for Mora-Castin theory (and in appendix C.9.1
for Walser theory) as well. The maximum of g2(z) is not at z = 0 any more and g2(0) < 1,
which means that the particles do not stick together as one would expect for bosons. This
behaviour is called anti-bunching and is normally related to fermions. Walser found a similar
behaviour [81] for a trapped gas: g2(0) < 1, but without a local maximum close to the origin
as we have observed (see figure C.9.1 in the appendix). According to the paper, this is a sign
of “sub-Poissonian statistics”.

We know that in the Tonks-Girardeau regime, the bosons effectively behave as if they were
fermions and thus an anti-bunching effect can be expected. For this γ ≥

√
τ is needed, which

translates with equation (7.1.7) into the condition βx ≥ 1. Having chosen βx = 0.1, we are
in fact not that far from the strongly-interacting regime and the observed effect may be
interpreted as a sign that we are getting close to it. Nevertheless, it is not expected that the
mean-field approach is capable of describing the physics of strong interaction. We attribute
the anti-bunching therefore to an inconsistency of the theories. This is especially obvious
for Mora-Castin theory, because the point where g2(∞) becomes bigger than g2(0) coincides
exactly with the critical point at which the thermal density becomes negative. Walser theory
does not exhibit a similar critical point, but here the negative anomalous average is responsible
for the anti-bunching. For smaller values of βx, this phenomenon is less influential and sets in
for much higher chemical potentials3, which suggest that the validity of the theories is beyond
βx < 10−1.

3For Mora-Castin theory, the deviation of the maximum’s location from z = 0 gradually increases with µ,
being present already for small values. On the other hand, g2(∞) > g2(0) holds only above the mentioned
critical value of µ.
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Figure 7.4.7: Integrand of n′(z) and second order correlation function for µ = 1.60µx (left) and µ = 6.48µx (right) for
Mora-Castin theory; g2(∞) > g2(0) above the critical value µc2 ≈ 6.31 (βx = 10−1)

Figure 7.4.8: Diverging correlation length for Mora-Castin
and Walser theory due to the anomalous behaviour of the
correlation function, making it necessary to modify the way
the length is determined (βx = 10−1)

Consequence of the anti-bunching effect - ap-
plying the criterion for the determination of
the length scale of the decay mentioned above
- is a diverging correlation length for large
chemical potential (see figure 7.4.8). Since we
have argued that this does not have a physical
reason, we modify the criterion in an appro-
priate way, namely by calculating the length
of the decay of (g2(z)− n2)/max(g2(z)− n2)
from its maximum’s location to 1/e. In this
way, the density correlation decreases for all
theories with growing density (or chemical
potential, see figure 7.4.9).

Finally we notice that for all theories,
g2(z)/n2 approaches one in the limit z →∞.
Mathematically, this is a consequence of the Riemann-Lebesque lemma [96], which states that
for a L1-integrable function f(k) the Fourier transform at infinity tends to zero, i.e.

lim
x→∞

b∫
a

dk f(k)eikx → 0 (7.4.13)

for arbitrary boundaries a and b. For the mean-field theories, the integrals n′(z) and m′(z)
are of this kind, such that at infinity it remains only g2(∞) = n2. Again the approach of a
non-zero plateau for large distances corresponds to an infinite density correlation length of the
quasi-condensate; in this case it is physically reasonable though, since density fluctuations are
suppressed. The length scale obtained from the decay to this plateau explained above rather
characterises the small scale correlation described by the healing length and as such, scales
approximately as ln ∼ n−1/2.
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Comparing the length scales of the two correlation functions (figures 7.4.3 and 7.4.9), we
observe that taking the asymptotes4 yields a rough estimate of lϑ ' ln ≈ 10n−1

x at the
cross-over (for βx = 10−1). This affirms the initial assumption that both characteristic length
scales are of the same order at the cross-over. In fact, this is the scale of the phase-coherence
length of the degenerate ideal Bose gas, lϑ = n/βx ≈ 10, n−1

x with n ≈ 1 at the cross-over.

Figure 7.4.9: Density correlation length vs. chemical potential (βx = 10−1); on the dilute side (left), Hartree-Fock
theory (dilute) approaches the ideal Bose gas results, the degenerate gas is shifted by a constant to lower values; on
the dense side (right), the length decreases for the all mean field theories with growing chemical potential (applying the
Modified criterion)

7.4.4 Density fluctuations

Density fluctuations can be extracted from the 2nd-order correlation function via

δn2 = 〈n2〉 − n2 = g2(0)− n2. (7.4.14)

Suppressed density fluctuations manifest therefore in a normalised 2nd-order correlation
function g2(0)/n2 tending to one or the “Mandel parameter”5 Q = δn2/n tending to zero
which is the case for all mean-field theories on the dense side of the cross-over (except for
Hartree-Fock theory (dilute), see figure 7.4.10). Hartree-Fock theory (dilute) and the ideal
Bose gas exhibit large density fluctuations and thus g2(0)/n2 is two as expected for the
decoherent regime where no (quasi)-condensate is present. In fact, the deviation of g2(0)
from 2 is a measure of the violation of Wick’s theorem and thus Gaussian statistics. We can
conclude therefore that in the quasi-condensate regime, all mean-field theories (except for
Hartree-Fock theory (dilute)) behave according to non-Gaussian statistics. Since we have
assumed Gaussian statistics for the thermal part of the gas, it is in fact the quasi-condensate
only that is non-Gaussian.

Comparing figure 7.4.10 (right) to figure 7.4.8, it gets clear that the density fluctuations
become negative for Mora-Castin and Walser theory at the same point where the second order

4Namely the low-µ asymptotes, but without the region very close to the cross-over since we know that the
slope there may not be correct (see slope of equation of state in figure 7.4.5 for example).

5In its original formulation [97], the Mandel parameter is defined for the particle number N and as such a
measure for the deviation from Poissonian statistics, for which δN2 = N .
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correlation length diverges. For Mora-Castin theory this point actually is the second critical
point where the thermal density becomes negative, whereas for Walser theory the (negative)
anomalous average is responsible for both phenomena.

Figure 7.4.10: Normalised second order correlation function g2(0)/n2 = δn2/n2 + 1 (left) and Mandel parameter
Q = δn2/n (right) for different mean-field theories and the ideal Bose gas for βx = 10−1

Another interesting feature is the almost exact match of the critical fluctuations, that is the
fluctuations at the critical point of the corresponding theory. If we consider the approximations
of the critical points from table 7.2, we obtain up to O(β3/2

x )

Theory critical density fluctuations δn2
c/n

2

ai βx = 10−1 ai βx = 10−2

Hartree-Fock 0.680 0.731
(dense)

Modified Popov 0.657 0.725

Walser 0.662 0.720

Although these critical points do not have a physical meaning, it may underline the importance
of density fluctuations to the failure of the theories. In fact for Mora-Castin theory, the
smallness of density fluctuations was a fundamental assumption in the derivation of the theory
which is obviously not fulfilled getting close to the cross-over (see figure 7.4.10).





Part III

Stochastic modelling





Chapter 8

The Gross-Pitaevskii equation

Since the Stochastic Gross-Pitaevskii equation (SGPE), that we want to analyse in chapter 9,
is in some sense a finite temperature generalisation of the Gross-Pitaevskii equation (GPE),
we dedicate this chapter to the properties of the latter. A Fortran code has been set up in
order to study it numerically and get used to the methods of the code used for the SGPE
(which was supplied by Cockburn [98]).

The Gross-Pitaevskii equation (GPE) [99, 100] is a non-linear Schrödinger equation
for a classical field φ(r, t) that has been widely used to describe the properties of a
pure (quasi-)condensate. It neglects thermal excitations and is therefore limited to the
zero (or low) temperature case. Particle interaction is taken into account in Hartree approxi-
mation through an effective potential created self-consistently by the particles, it is therefore
a mean-field theory for the ground state of a system of interacting bosons. Since all particles
are in the same quantum state in this case and considered to be independent of each other
(they are only coupled to the mean-field), they can be described by a single wave function
φ(r, t), which is linked to the single particle wave function ϕ0 = 1/V 1/2 through φ = N

1/2
0 ϕ0,

yielding the (quasi-)condensate density n0 = |φ|2.

In chapter 6.1 we have seen that it can be derived from the Heisenberg equation of motion
(6.1.1) for the field operator Ψ(r, t), replacing it by the classical field φ(r, t) and thus neglecting
contributions from excitations, i.e. thermal density and anomalous average in the context of
mean-field theory, completely. Preserving an external potential U(r) in the general case, it
reads

i~
∂

∂t
φ(r, t) =

(
−~2∇2

2m + U(r)− µ+ g |φ(r, t)|2
)
φ(r, t). (8.0.1)

The stationary equation may alternatively be obtained by minimising the energy functional
δE = 0,

85
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E [φ(r, t)] =
∫
V

dr
{

~2

2m |∇φ(r, t)|2 + U(r)|φ(r, t)|2 − µ|φ(r, t)|2 + g

2 |φ(r, t)|4
}
, (8.0.2)

underlining the relation of Bose-Einstein condensation to spontaneous symmetry breaking (see
section 6.3).

8.1 Analytical approaches

For a homogeneous system, an expansion in plane waves and a Bogoliubov transformation
yield the known quasi-particle solution that we have seen in chapter 6.1. That is plausible
because we know that the GPE arises in the context of Bogoliubov theory (see equation
(6.1.1)).

If the conditions of the local density approximation are fulfilled (see 9.4), these solutions are
valid for an inhomogeneous system with non-zero trapping potential as well. In the following,
it is considered to be harmonic, thus (we focus on the one-dimensional case from now on)

U(z) = m

2 ω
2
zz

2. (8.1.1)

If interactions between the particles are neglected, the trapped solutions are just those of the
quantum harmonic oscillator, that is a Gaussian for the ground state1. The density profile
will presumably be wider than that if the particles repel each other (g > 0). A first idea of
how a typical density profile of an interacting (quasi-)condensate in a trap looks like can be
obtained from the Thomas-Fermi approximation. If the interaction is considered to be strong,
the kinetic part can be neglected and we have the solution

n(z) = 1
g

(µ− U(z)) θ(RF − |z|), (8.1.2)

where θ(x) is the Heavyside step function and RF =
√

2µ
mω2

z
the Thomas-Fermi radius. The

density profile has therefore roughly the shape of the inverted trapping potential (see figure
8.2.1).

The solution (8.1.2) can be rewritten in terms of the Thomas-Fermi radius as

n = µ

g

(
1−

(
z

RF

)2
)
. (8.1.3)

1The ground state solution is strictly valid only for a chemical potential corresponding to the ground state
energy, i.e. µ = ~ωz/2. The characteristic length scale is the harmonic oscillator length for all solutions though.
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Since it has to be normalised to the particle number N , an explicit expression for the chemical
potential can be obtained:

µ = 3
2
gN

RF
⇒ µ =

3
2gN

√
mω2

z

2

2/3

(8.1.4)

Integrating over N yields the total energy of the gas, which shows that the chemical potential
is not exactly equal to the average energy per particle, i.e.

µ = 5
3
E

N
. (8.1.5)

The Thomas-Fermi approximation works very well, as we shall see comparing it to the
numerically obtained solution in the next section (see figure 8.2.1). At zero temperature, the
kinetic energy of the particles can in fact be neglected; the good agreement of the Thomas-
Fermi solution proves therefore that the conditions for the local density approximation (see
section 9.4) are satisfied at zero temperature, i.e., that the system behaves locally as if it was
homogeneous with the corresponding homogeneous equation of state. The small deviation
from the numerical result at the edges of the (quasi-)condensate is only due to the required
smoothness of the function.

We also want to define a characteristic length scale for the (quasi-)condensate. For that we
consider a stationary system subject to an infinitely high potential on one side and no potential
in the rest of the system ((quasi-)condensate “next to a wall”), i.e.

U(z) =
{
∞ z < 0
0 z ≥ 0.

(8.1.6)

For z → ∞ the system is thus homogeneous and we have µ = g|φ∞|2, where |φ∞|2 is the
density very far from the wall. Hence we have to solve the equation

~2

2m
d2φ

dz2 + g
(
|φ∞|2 − |φ|2

)
φ = 0, φ(0) = 0 ∧ φ(∞) = φ∞, (8.1.7)
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Figure 8.1.1: Healing of the (quasi-)condensate at a hard
wall with µ = 1~ωz and g = 0.1~ωzlz (lz - harmonic oscil-
lator length, see (8.2.1)); the numerical solution from imag-
inary time evolution matches almost exactly the theoretical
solution of equation (8.1.8).

which yields the solution (see figure 8.1.1)

φ(z) = φ∞ tanh
(

z√
2ξ

)
, z ≥ 0

(8.1.8)
proving that the typical length scale on which
the (quasi-)condensate attains its bulk value,
that is on which it restores its original den-
sity in the presence of a perturbation, is the
healing length

ξ = ~√
2mgn∞

. (8.1.9)

It is actually the length scale on which ki-
netic and interaction effects become of the
same order (setting ε(k) = gn yields the same
length scale) and therefore as well roughly the size of solitonic solutions of the GPE. For
repulsive interaction, thus g > 0 what we consider in this thesis, there exist dark solitons
only. These strongly localised and stable solutions are a “lack” of density propagating in
non-zero background (hence the denomination dark) that have the shape of the solution (8.1.9)
(continued symmetrically on the other side of the wall). Due to the balance of non-linear and
dispersive effects, they maintain their original shape during their propagation even when they
interact with other solitons. Various experiments have proven their existence in Bose-Einstein
condensates [101][102]. These solutions can be derived exactly using the integrability of
the equation by means of inverse scattering theory, which has been applied in [103] to the
non-linear Schrödinger equation. This is a GPE without trapping and chemical potential that
arises apart from Bose-Einstein condensation in the context of non-linear optics [104], water
waves and other fields.

The dark soliton solution of the homogeneous Gross-Pitaevskii equation looks as follows [105]:

φ(z, t) =
√
n


√

1−
(
v

c

)2
tanh

√1−
(
v

c

)2 z − vt√
2ξ

+ i
v

c

 . (8.1.10)

Since there is a phase shift across the soliton, it is actually a topological defect of the system.
The propagation speed v, the phase shift ∆ϕ and the shape of the soliton are highly dependent
on each other. The faster the soliton propagates, the shallower it is and the smaller is the
phase shift. At the maximum velocity c, the Bogoliubov speed of sound (4.1.21), its phase shift
and density dip are zero, making it indistinguishable. The other limiting case is a stationary
black soliton with phase shift of π and a density dip going down to zero.
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8.2 Numerical approaches

The numerical treatment of the of SGPE follows the same way as for the GPE, that is why we
mention the main aspects already here. First of all, the equation has to be made dimensionless
and as we consider generally inhomogeneous systems with an harmonic potential, it is natural
to formulate the theory in harmonic oscillator units. We therefore scale

z → z

lz
, φ→ φ l1/2z , t→ ωzt, g → g

~ωzlz
, µ→ µ

~ωz
(8.2.1)

with the harmonic oscillator length lz =
√

~
mωz

. In terms of these units, the GPE takes the
form

i
∂

∂t
φ(z, t) =

(
−∂

2
z

2 + z2

2 − µ+ g |φ(z, t)|2
)
φ(z, t). (8.2.2)

This equation is numerically integrated using the Crank-Nicholson scheme [106], a consistent
finite difference method of second order that is unconditionally stable in terms of Von-Neumann
stability [107]. Still it is required that the temporal and spatial step sizes fulfil the condition
∆t/∆x2 ≤ 1/2 for spurious oscillations not to occur. Since the method is implicit in time - in
fact the time average of the spatial derivative is taken - the matrix equation

Mφm+1 = Ω(φm) (8.2.3)

has to be inverted. It is derived from the discretised version of the GPE (details are presented
in appendix D.1)

[
1 + i∆t

2

(
δ2
z

2 + Vj − µ+ g|φm+1/2
j |2

)]
φm+1
j =

[
1− i∆t

2

(
δ2
z

2 + Vj − µ+ g|φm+1/2
j |2

)]
φmj ,

(8.2.4)

where j = 1, ..., Nx and m = 1, ..., Nt are spatial and temporal indices, respectively and δ2
z is

the finite difference scheme of the second derivative. The m + 1/2 in the interaction term
indicates a time average (it is the only time-dependent term that enters the matrices), which
is taken into account in practice by solving the matrix equation for φ′m+1 with φm in the
interaction term on both sides of equation (8.2.3) and taking the average of the obtained
solution and φm, i.e. (φm + φ′m+1)/2, to solve for the final φm+1.

We identify Ω(φm) = M∗φm, with the matrix generally taking the form
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M =



b1 c1 a1
a2 b2 c2

a3 b3 c3
. . . . . . . . .

aNx−1 bNx−1 cNx−1
cNx aNx bNx


(8.2.5)

where

aj =
{

0 i = 1
− i∆t

4∆z2 else
, cj =

{
0 i = Nx

− i∆t
4∆z2 else

, bj = 1+ i∆t
2

( 1
∆z2 + Vj − µ+ g|φm+1/2

j |2
)
.

(8.2.6)

The final form of the matrix M depends still on the boundary conditions. The code developed
by Cockburn [98] for the SGPE applies zero boundary conditions, whereas for the purpose
of the present thesis periodic boundary conditions had to be implemented. This is necessary
because with the mean-field approach we have analysed the thermodynamic limit, which with
a finite system size can only be modelled by a closed ring. For zero boundary conditions
φ(±L/2, t) ≡ 0 (where L is the length of the system), the matrix (8.2.5) is tridiagonal with
c1 = aNx = Ω1 = ΩNx = 0 set to zero. The standard tridiagonal matrix algorithm can be used,
making the calculation very fast since only O(Nx) operations are needed.

If we use periodic boundary conditions, the matrix is not completely tridiagonal any more
since we have M1Nx = a1 = MNx1 = cNx = − i∆t

4∆z2 . But it can be reduced to a tridiagonal
form, such that for the solution the tridiagonal matrix algorithm has to be applied twice (see
appendix D.1), which is still much faster than using Gaussian elimination (O(N3

x) operations).

Figure 8.2.1: Equilibrium solution of the GPE with harmonic potential and zero-boundary conditions for µ = 20~ωz and
g = 1~ωzlz , obtained by numerical integration in imaginary time; the density profile converges to its final solution (left,
time step δτ = 0.05ω−1

z between snapshots, linewidth increasing with time), which deviates from the Thomas Fermi
approximation only on the edges of the (quasi-)condensate (right).

In order to get equilibrium solutions of the differential equation numerically, we can make
use of imaginary time evolution. Substituting τ = it, we have −∂τφ = Hφ and for a linear
Hamiltonian
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φ(τ) = e−Hτφ(0). (8.2.7)

We expand the initial state φ(0) in eigenstates of the Hamiltonian φi ordered by their energy
Hφi = Eiφi. With τ tending to infinity, all exited states decay and one is left with the ground
state:

lim
τ→∞

φ(τ) = lim
τ→∞

∞∑
i=0

cie
−Eiτφi = lim

τ→∞
c0e
−E0τφ0. (8.2.8)

The convergence to the final solution can be observed for the density profile in figure 8.2.1(left),
while the evolution of the total energy and particle number are displayed in figure 8.2.2. In
imaginary time, the Hamiltonian acts as a source term that populates the system from any
non-zero initial condition. The final solution is very close to the Thomas-Fermi approximation,
as we have analysed already in the previous section.

Figure 8.2.2: Energy and particle number conservation
of the ground state of the GPE (same parameters as
in figure 8.2.1); the equilibrium solution is obtained in
imaginary time and after t = 2ω−1

z the evolution is
carried out in real time

Figure 8.2.3: Two solitons propagating at v = 0.75c
in a homogeneous (quasi-)condensate with periodic
boundary conditions (µ = 0.5~ωz , g = 0.1~ωzlz ,
Nx = 2000, δt = 5ω−1

z between snapshots)

The equilibrium states found by imaginary time propagation can be used as initial states for
dynamical simulations. For example we can put a soliton in a homogeneous system and see
how it behaves. For that we simply multiply the equilibrium solution with the rhs of equation
(8.1.10) (without the factor

√
n) for some velocity 0 ≤ v ≤ c. The main objective behind that

was the validation of the implementation of the periodic boundary conditions, making use of
the soliton’s stability. We analyse its behaviour when it passes from “one side to the other” -
there is of course no difference between the two “sides” since physically we model a closed
ring; therefore the soliton should not notice any change at the boundary of the numerical
system. Although it might be difficult to see from the figures (8.2.3), the soliton moves in the
trap from one side to the other without noticeable loss of amplitude. Additionally, we plot the
collision of two solitons in a homogeneous system, as it can be observed as well in figure 8.2.3,
in a 3d plot involving a time axis.
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Figure 8.2.4: 3d plot of two solitons colliding in a homogeneous (quasi-)condensate (left: seen from below, time runs
from front to back as in the right figure which shows the same seen from above; parameters as in figure 8.2.3) obtained
from numerical integration of the GPE; they emerge unchanged from the collision maintaining exactly their original
shape.



Chapter 9

The Stochastic Gross-Pitaevski
equation

The Gross-Pitaevskii equation has been very successful in describing both equilibrium and
dynamical properties of a Bose-Einstein (quasi-)condensate for very low temperatures. On
the other hand, it is a quite simple model and it seems therefore natural to generalise it in
order to incorporate finite temperature effects. There exists a wide range of theories that have
been set up for this purpose (a short overview can be found in [108], detailed comparison
in [109]). One type of approaches treats the (quasi-)condensate classically and separates it
from the thermal cloud, with both parts of the system interacting via mean-fields and particle
exchange. In the most popular version, which is named “ZNG” due to early works of Zaremba,
Nikuni and Griffin [110], the thermal cloud obeys a quantum Boltzmann equation [111]. Apart
from techniques related to the Truncated Wigner method [112][113], that we leave apart here
since it not able to fully describe thermal effects, there is the approach of the Stochastic
Gross-Pitaevskii equation (SGPE) which goes beyond the mean-field description. This is a
Langevin equation for a complex field that includes the (quasi-)condensate and the highly
occupied, low lying modes1. The dynamics of the coupling to the thermal cloud is considered
in a detailed way, following from the independent works of Stoof [114][115] on one side, and
Gardiner and Davis [116][117] on the other.

Although the ZNG equations already are quite suitable to reproduce a lot of experimental
findings, only the SGPE is capable of fully capturing the behaviour of systems with large phase
fluctuations (see for example [118][119]). We know that this is the case in low-dimensional
systems and because of that we choose this technique in order to provide a possibility of
validating the results obtained from the mean-field theories. For numerical evaluation of the
equation, we use the code developed by Cockburn [98].

1In one dimension, the complex field includes the quasi-condensate, whose definition is not completely clear
in this context. It could be assumed that the quasi-condensate actually contains the low-lying modes, but we
do not adopt this picture here.

93
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9.1 Derivation

We adopt the approach of Stoof and co-workers to the SGPE [25][120] and follow in the
derivation to a large extent the steps of [98]. This method describes the whole matter field
in terms of the Wigner (quasi-) probability distribution function P [Ψ∗,Ψ, t] (see appendix
D.2) for the order parameter Ψ that characterises the state of the complete system. A
Fokker-Planck equation is derived for Ψ within the Keldysh non-equilibrium formalism [121],
and in the following the probability distribution is split into a product of two distributions
P [Ψ∗,Ψ, t] = P0[Φ∗,Φ, t]P1[ψ∗, ψ, t]. Φ(r, t) contains not only the (quasi-)condensate, but
also low lying thermal modes which is one of the main differences to the ZNG formalism
as mentioned before; ψ(r, t) represents the thermal cloud. Integration over the contribution
of these modes in the Fokker-Planck equation leads to a quantum Boltzmann equation (see
appendix D.2)

∂f

∂t
+ (∇pε) · (∇f)− (∇ε) · (∇pf) = C12[f ] + C22[f ] (9.1.1)

for the Wigner distribution f of the thermal cloud, which can be used to get the expectation
value of the particle density of the thermal cloud (assuming that higher moments of ψ are not
relevant):

nt(r, t) =
∫ dp

(2π~)3 f(r,p, t). (9.1.2)

C12 and C22 in equation (9.1.1) are collision integrals that describe scattering processes between
low-lying modes and thermal cloud, and within the thermal cloud, respectively.

The dynamics of the low-lying modes are described by a Fokker-Planck equation, that is
obtained by integrating out the contribution of the thermal cloud from the original equation
for Ψ and reads

i~
∂

∂t
P0[Φ∗,Φ, t] =

∫
V

dr δ

δΦ∗
[

(HGP + iR(r, t)) Φ∗ P0[Φ∗,Φ, t]
]

−
∫
V

dr δ

δΦ

[(
HGP − iR(r, t)

)
ΦP0[Φ∗,Φ, t]

]

−
∫
V

dr ~2
δ2

δΦδΦ∗ΣK(r, t)P0[Φ∗,Φ, t], (9.1.3)

where HGP = −~2∇2

2m + U(r)− µ+ g |Φ(r, t)|2. Dissipation is described by the term involving
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R(r, t) = 4πg2
∫ ∏4

i=2 dpi
(2π~)6 δ(p2−p3−p4) δ(εc+ε2−ε3−ε4) [f2(f3 + 1)(f4 + 1)− (f2 + 1)f3f4] ,

(9.1.4)

where the fis are Wigner functions of the thermal cloud and εi = ε(ki) + U(r) + 2g|Φ|2 is
the Hartree-Fock energy. The counterpart of that, the fluctuations, are characterised by the
Keldysh self-energy:

ΣK(r, t) = −4πi
~
g2
∫ ∏4

i=2 dpi
(2π~)6 δ(p2−p3−p4) δ(εc+ε2−ε3−ε4) [f2(f3 + 1)(f4 + 1) + (f2 + 1)f3f4]

(9.1.5)

In order to solve this system of equations, it is necessary to make further simplifications
because the dependence of R and ΣK on Φ via εc = −~2∇2

2m +U(r) + g |Φ|2 yields multiplicative
noise. If the processes that lead to thermalisation in the thermal cloud take place on a much
faster timescale than the scattering between the two subsystems, it can be assumed that the
thermal cloud is in equilibrium. In this case, the quantum Boltzmann equation does not
have to be solved since the Wigner function may be replaced by Bose-Einstein distribution.
Furthermore, it is possible to apply the fluctuation-dissipation relation for the thermal cloud:

iR(r, t) = −1
2~ΣK(r, t) (1 + 2NBE(εc − µ))−1 ' −~

4ΣK(r, t)β (εc − µ) (9.1.6)

For the highly-occupied modes, it has been assumed that the Rayleigh-Jeans distribution is
a reasonable approximation, such that (1 + 2NBE(εc − µ))−1 ' 1/2β(εc − µ). In this way,
the Langevin equation that is obtained from the Fokker-Planck equation (9.1.3), takes the
following form with the damping term in the pre-factor:

i~
∂

∂t
Φ(r, t) = (1− iγ(r, t))

[
−~2∇2

2m + U(r)− µ+ g |Φ(r, t)|2
]

Φ(r, t) + η(r, t). (9.1.7)

The (dimensionless) damping term

γ(r, t) = i~
4 βΣK(r, t) (9.1.8)

is related to the amplitude of the fluctuations, which are modelled by Gaussian white noise,
via

〈η(r, t)η(r′, t′)〉 = 2kBTγ(r, t) δ(r− r′) δ(t− t′). (9.1.9)
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How both are incorporated into the numerical time stepping algorithm is explained in appendix
D.1. As for any stochastic simulation, the fluctuations are modelled by generating pseudo-
random numbers from a distribution obeying (9.1.9).

The results of a single run will exhibit a considerable amount of noise (see figure 9.2.1 for
an example with comparably little noise), depending on the parameter choice. The higher
the temperature, the stronger are the fluctuations (see equation (9.1.9)), requiring more
simulations to be run for the averaging. In general, we perform ensemble averages of about
103 to 104 single runs, which are very well suited for parallel computing. The high-throughput
computing facility CONDOR at Newcastle university, that comprises more than one thousand
distributed working stations, provided the perfect infrastructure for these simulations.

We finish this section concluding that the SGPE (9.1.7) is a generalised Gross-Pitaevskii
equation for the field Φ(r, t). It characterises not only the (quasi-)condensate, but not the
whole system either as mentioned before. Low-lying, highly occupied modes are included in it,
contrary to the clear separation of the (quasi-)condensate from the rest of the system applied
in the mean-field approach. The higher modes of the system that are considered to be in
equilibrium, act as a heat bath of a certain temperature that “feeds” particles into the system
(or absorbs them depending on the parameters and initial conditions). Since these modes
are sparsely occupied, the density that is not considered in Φ is small and may therefore be
neglected.

One of the tricky questions in this context is where to draw the line between system and
thermal cloud. For consistency, it has to be ensured that for all modes that are taken into
account for Φ, the classical approximation of (9.1.6) is approximately fulfilled. All other modes
have to be separated, which is done in practice by tuning the momentum cut-off inherent in
the space discretisation of the numerical implementation of the equation. How to choose this
cut-off will be examined in more detail in section 9.5.

9.2 Growth to equilibrium

The SGPE is capable of describing both equilibrium and dynamical properties of a weakly
interacting Bose gas. For comparison with mean-field results, we focus here mainly on the
static case, but we want to emphasize that the equation is not limited to that. One of
its strengths is actually the description of non-equilibrium processes like the growth of a
(quasi-)condensate from a thermal gas, which was the first application of the theory in [25].
Starting from an initial condition Φ, particles scatter from the thermal cloud into the system
until the equilibrium solution is reached (see figure 9.2.1). This works formally a bit like
imaginary time propagation that we have applied to the GPE (see (8.2.7)), it is based on
a completely different physical background though (or, more precisely, there is a physical
meaning of it, contrary to imaginary time evolution). It is the damping term in the prefactor
that is responsible for the growth, but fluctuations are vital for starting the process when still
no (quasi-)condensate (nor low-lying modes) are present [114].

The rate at which particles are fed into the system depends on the strength of the damping term,
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Figure 9.2.1: Growth from zero to the equilibrium solution of the SGPE (left) obtained numerically at T = 100nK,
ω⊥ = 754Hz, ωz = 220Hz and µ = 15 ~ωz by averaging over 104 single runs in order to reduce the noise (right).

that is on γ(x, t). In order to reproduce the exact dynamics, all details of its determination
have to be taken into account, including its spatial and temporal dependence. But since
only the equilibrium is of interest to us now, we may neglect this and simplify matters by
considering constant and uniform values of γ (this is of course trivially fulfilled for static
and homogeneous systems). We want to examine if we can even take higher values than
the “correct” one, accelerating our simulations in this way, without changing noticeably the
equilibrium properties of the obtained solution (as stated in [98]).

In [98], the value of γ obtained from spatial averaging is compared to an approximation
introduced in [122] in the context of vortex formation, given by

γbare = κ
4mkBT

π

(
as
~

)2
. (9.2.1)

κ = 3 is a factor that was matched to the experimental data originally, whereas in [98] it
turns out that equation (9.2.1) yields a good approximation to the exact expression (9.1.8)
for κ ≈ 1 for temperature T ≤ 400nK. We take it therefore as a reference for a simulation at
T = 20nK that is carried out for a wide range of γ, comparing the particle number to that
obtained with γbare (see figure 9.2.2). On one hand, we observe that a larger γ accelerates
the convergence to equilibrium drastically. On the other hand, it has in fact a small influence
on the equilibrium particle number, which grows with decreasing damping rate. For large γ,
this is almost not noticeable (see matching of the curves for 10−4 ≤ γ ≤ 10−1 in figure 9.2.2
(c)), whereas for smaller values close to γbare is gets quite obvious. Without focusing on the
reasons for that, we observe that the deviation from the equilibrium solution obtained with
γbare (independently of the choice of κ) still does not exceed 1.5% of the total value for any
γ examined here. In order to get feasible simulation times (for γbare about 108 time steps
are required for convergence for the chosen parameters), we neglect this difference and take
γ ∼ 10−3 . . . 10−1 for our simulations, bearing in mind that the obtained density is slightly
too low. A correction of this a posteriori would require a detailed analysis of the parameter
dependence of this effect, so we abstain from doing this.
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Figure 9.2.2: Growth of particle number to equilibrium for different values of the damping rate γ, obtained numerically
from the SGPE for a system with T = 20 nK, ω⊥ = 2π · 32Hz, ωz = 2π · 9Hz and µ = 22.1 ~ωz and γbare = κ · 0.91 · 10−5;
larger γ accelerate the convergence (a), the convergence time is in fact directly proportional to the inverse of the damping
rate (b); the equilibrium particle number is practically independent of γ for 10−4 ≤ γ ≤ 10−1, below that it attains
larger values (c) (time averaging over the last time steps (about 100) has been applied additionally here)

9.3 Density profiles and (quasi-)condensate fraction

A lot of effort has been made in the course of the development of the SGPE and related
approaches in order to incorporate finite temperature effects. We compare therefore the density
profiles obtained from the SGPE for different temperatures to those of the GPE in order to
see its effect. From figure 9.3.1 we observe that up to T/Tc = 0.003 there is practically no
difference to the zero-temperature solution. Only above that value, the temperature starts to
spread the wings of the profile, since this is where the thermal atoms reside mostly. This leads
as well to a reduction of the profile’s peak height.

In order to examine this in more detail, it is necessary to determine the fraction of the gas that
is actually (quasi-) condensed and which contributes to the thermal density. The solution of
the SGPE yields results for the below cut-off density Φ(z, t) of the gas, contrary to mean-field
theories, which directly give independent quantities for the condensate and the thermal part
of the gas. Further analysis of Φ(z, t) is therefore needed. One approach that is potentially
able of identifying the quasi-condensate density is inspired by the mean-field assumption that
the thermal part of the gas obeys Gaussian statistics. The (quasi-)condensate can therefore be
defined as the part of the gas that violates Wick’s theorem, which states for a Gaussian field

〈|ψ(z)|4〉 = 2〈|ψ(z)|2〉2 + |〈ψ2(z)〉|2. (9.3.1)

In the original formulation of the definition [123, 124], that has been applied for example in
[125], the anomalous average is neglected, identifying the quasi-condensate density as

nqc(z) =
√

2〈|ψ(z)|2〉2 − 〈|ψ(z)|4〉. (9.3.2)

The anomalous average is in fact very small (taking it into account yielded practically the



9.3. DENSITY PROFILES AND (QUASI-)CONDENSATE FRACTION 99

Figure 9.3.1: Broadening of the density profiles for finite temperatures (corresponding to T ≈ 0.002 . . . 0.43) compared
to the GPE result (parameters as in figure 9.2.1)

same quasi-condensate density for the simulations of figure 9.3.2).

Apart from that, in a trap there can even exist a true condensate, which additionally to being
density coherent as the quasi-condensate is phase coherent. It may be calculated making
use of the Penrose-Onsager criterion [7] for condensation that we mentioned in section 3.2.
In this approach, the condensate density npo is identified with the largest eigenvalue of the
single-particle density matrix [31], which is obtained by numerically diagonalising the matrix
〈Φ(zj , tm)Φ(zj′ , tm)〉 from the simulations. An approximate form of this has been introduced
in [31] as well, combining the Landau criterion of condensation (3.3.8), the definition of
g1(0, z) in Modified Popov theory for a homogeneous gas (7.4.4) and the expression for the
quasi-condensate density (9.3.2) in order to construct

ñpo = nqce
−〈[ϑ(0)−ϑ(z)]2〉/2 ≈

√
2n2(z)− g2(z) g1(0, z). (9.3.3)

It is expected to hold only for large distances z, which is affirmed by the simulations carried
out in [31] and in the frame of this thesis, as shown in figure 9.3.2. The higher the temperature,
the larger is the value of z from which upward the approximation yields good agreement
though. Closer to the trap centre, its gives larger values and reaches the quasi-condensate
level at the very centre.

Furthermore, the quasi-condensate density is always larger than the density of the Penrose-
Onsager mode, since not the whole gas is phase coherent for the given parameters. Both
do conserve the typical Thomas-Fermi like shape of the condensate, characteristic for the
GPE. Thermal densities may be calculated by determining the difference of the corresponding
condensate density to the total density n. Due to their kinetic energy, the “thermal particles”
tend to populate the wings of the trap and thus their density is higher there (just like the
excited states of the harmonic oscillator). In the middle of the trap however, the condensed
part of the gas dominates and therefore the thermal density is lower there (independently
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Figure 9.3.2: Densities of the Penrose-Onsager mode npo, its approximation ñpo from equation (9.3.3), the quasi-
condensate from (9.3.2) and the corresponding thermal densities (parameters as in figure 9.2.1 with T ≈ 0.43Tϑ ≈
0.31Tc)

of the definition of the condensate density). For the comparison with mean-field results, we
have to use the quasi-condensate density, since for the homogeneous system there is no phase
coherent part of the gas, as pointed out before.

9.4 Local density approximation

We have already mentioned the local density approximation (LDA) in the course of this thesis;
now we want to take a closer look at it since it will help us bridging the gap between the
equation of state, as a typical mean-field result, and the density profiles obtained from the
SGPE just as from experiments.

Essential for the approximation is the observation that the trapping potential U(z) enters in
the same way in a general Hamiltonian as the chemical potential. They both can therefore be
combined in one quantity, the so-called local chemical potential,

µloc = µ− U(z). (9.4.1)

The main assumption of the LDA is that the gas can locally be regarded as if it was homoge-
neous, but with a chemical potential following from (9.4.1). In this case, it can be treated
analytically in the same way - above all, the wave function can (locally) be expanded in
plane waves - and all results that we have obtained thus far for a homogeneous gas hold as
well. Thus a density profile can be translated into an equation of state, and vice versa. For
example, we can take the density profile obtained from the GPE from figure 8.2.1 and convert
it into the corresponding equation of state (see figure 9.4.1). Not surprisingly, we get the
quasi-condensate limit µ = gn on the dense side and no density on the dilute side, since there
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are no thermal excitations present.

Figure 9.4.1: Equivalence of the density profile (left) and the equation of state (right) in the local density approximation
for the numerical equilibrium solution of the GPE (parameters as in figure 8.2.1)

Thus the whole range of regimes that appear when the equation of state is passed from negative
to positive chemical potential, hence the cross-over from a thermal degenerate Bose gas to a
quasi-condensate, can be observed in the density profile starting from the wings approaching
the centre of the trap.

But is this approximation justified? In order to get an answer, we want to examine the
conditions which have to be fulfilled for the LDA. For the gas to be locally homogeneous, we
need that the typical length scale of the variation of the density profile is much larger than
the scale on which the gas reacts to perturbations, that is the healing length ξ. As we have
seen in the previous section, the Thomas-Fermi solution is a good approximation of a density
profile even for finite temperature. We take therefore the Thomas-Fermi radius as the length
scale of the density profile. This yields a condition for the axial trapping frequency2:

ωz �
1
~

√
2µ (µ− U(z)). (9.4.2)

At the same time we know that µ− U(z) is bounded,

µ− U(RF ) = 0 ≤ µ− U(z) ≤ µ = µ− U(0). (9.4.3)

Hence we expect the LDA to be generally fulfilled for small trapping potential, above all in the
quasi-condensate regime, where ωz � µ

~ is required (this is actually equivalent to RF � lz).
In [72] it is argued that this a reasonable assumption for typical experimental realisations of a
one-dimensional Bose gas. The further we get to the edge of the quasi-condensate though, the
smaller the local chemical potential gets, making it more and more difficult to fulfil condition
(9.4.2). Using the link to the equation of state, the LDA will therefore deviate most strongly
from the correct solution in the cross-over region. Further away from the trap centre, the
density profile varies quite slowly in space, such that the LDA can be justified again.

2This reasoning is not completely rigorous, since we do assume the validity of the LDA already implicitly
using the Thomas-Fermi approximation and the healing length ξ = ~/(

√
2mµloc)



102 CHAPTER 9. THE STOCHASTIC GROSS-PITAEVSKI EQUATION

Figure 9.4.2: Equation of state (βx = 10−1) obtained from a trapped gas in LDA (black) compared to its homogeneous
result (red) from the SGPE for increasing axial trapping frequency from left to right (ωz = 9.09, 36.4, 52.4Hz); very
good agreement is found in the quasi-condensate regime and the ideal gas limit, whereas the deviation gets bigger close
to the cross-over and for higher ωz .

Higher temperatures tend to broaden the density profile (see figure 9.3.1), decreasing its slope
in the cross-over region. Consequently, the LDA will work better in this case. This is affirmed
by the simulations that we have performed. For the same parameters we compare in figure
9.4.2 the equation of state obtained from a system confined by a harmonic potential applying
the LDA to that obtained from homogeneous systems with periodic boundary conditions. For
the latter we determine the density by spatial averaging of the ensemble averaged density
profile. In this way, we don’t need as many single runs (∼ 103) as for a trapped system (∼ 104).
As expected, the approximation yields good agreement in the quasi-condensate and the ideal
gas limit, but deviates close to the cross-over. The strength of the deviation depends above all
on the axial trapping frequency, as expected.

For the upcoming comparison of the results obtained with the SGPE to those of the mean-field
theories, we will therefore make use of the LDA as long as it is justified, since with one
simulation the whole equation of state can be calculated. In the cross-over region we have to
stick to the homogeneous systems, requiring one ensemble of single runs for every data point.

One last comment has to be made in this regard. Although we have seen that the LDA works
reasonably well, we have to be very careful with its usage. Above all, the correspondence
between homogeneous and trapped systems breaks down completely in the regime where for
the trapped system a true condensate with suppressed phase fluctuations exists, which is not
possible for a homogeneous system. The density (profile) is admittedly the same for a quasi-
and a true condensate, but the phase coherence properties are different [64].

9.5 Parameter choice and cut-off

The numerical implementation of the SGPE used in this thesis has been developed in a way
that makes it easy to choose all parameters such that they are physically reasonable and close
to experiments. That is why experimental parameters are entered in SI-units (except for the
chemical potential), whereas the calculation itself is carried out in harmonic oscillator units.
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The comparison with mean-field theories formulated in terms of cross-over units is therefore a
non-trivial task because various conditions have to be fulfilled (we label harmonic oscillator
and cross-over units by a ho and co subscript, respectively; no subscript means SI units).

On one hand, it has to be assured that the system in consideration is in fact (quasi-) one-
dimensional, i.e. that transverse modes of the system are not excited

kBT, µ� ~ω⊥. (9.5.1)

For the first condition, we introduce the factor f1 = ~ω⊥/(kBT ) � 1. With the definition
of the cross-over temperature parameter βx � 1 (7.1.3) and the effective one-dimensional
coupling constant

g = g3d
2πl2⊥

= 2~ω⊥as (9.5.2)

this leads to the condition

ω⊥ = β3
xωlim
f1

� β3
xωlim, (9.5.3)

where e.g. ωlim = ~
4a2
sm
≈ 365MHz for sodium (as = 2.75nm, m = 3.82 · 10−26 kg). For a

given value of βx we have therefore

T = ~ωlim
kB

β3
x

f2
1
. (9.5.4)

We have thus an inverted temperature dependence of βx due to the dependence of the coupling
strength on the transverse trapping frequency.

The second condition of (9.5.1) is then automatically fulfilled, since we have with µx = βxkBT

|µ|
~ω⊥

= |µco|
βxkBT

~ω⊥
= |µco|

βx
f1
� 1 (9.5.5)

and µco ≤ O(1) for our purposes.

On the other hand we have to make sure that the cut-off that comes along with the discretisation
of space is chosen in a way that all relevant processes are still taken into account. Thus the
grid spacing ∆z must be smaller than the characteristic length scales of the system, which are
the healing length and the thermal wavelength:

∆z < min(λdB, ξ). (9.5.6)
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Figure 9.5.1: Equation of state in cross-over units obtained from a trapped gas in LDA for different ratios f1 of transverse
trapping to thermal energy (“1d-ness”); parameter ranges T ≈ 700 . . . 2nK, ω⊥ ≈ 91385 . . . 4570Hz, ωz = 3640 . . . 9Hz

We observe that for our purposes, the healing length will generally be larger than the thermal
wavelength. Approximating gn ≤ |µ| in the healing length and proceeding as in equation
(9.5.5), we have

λdB
ξ
∼
√

gn

kBT
≤

√
|µ|
kBT

=
√
|µco|βx < 1. (9.5.7)

We can focus consequently on the thermal wavelength. For this purpose, we introduce another
factor f2 = λdB/∆z � 1. With ∆z in harmonic oscillator units (as it enters in the code), this
translates into the relation

ωz = kBT

2π~ ∆z2
ho f

2
2 . (9.5.8)

In order to fix all parameters, we still have to choose the two factors we have introduced.
For f1 this is rather straightforward; we need that condition (9.5.1) is fulfilled and that the
temperature attains values that are still close to experiments, which limits f1 from above. As
a matter of fact, we have found that the results obtained for f1 between 1 and 20 practically
do not differ on the dense side of the cross-over (see figure 9.5.1). However, on the dilute
side different densities are obtained, which we exploit to determine f2. In this limit, the
solution should approach the degenerate ideal Bose gas result; not the one we have seen for the
thermodynamic limit though, but for a finite system size. Hence the integral from equation
(2.3.1) has to be calculated with a cut-off determined by f2, yielding

n = 1
π~β

√
2m
−µ

arctan
(√

Ecut
−µ

)
. (9.5.9)
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For values f1 > 5 we get already a reasonable agreement, for f1 > 10 there is practically no
improvement any more (see figure 9.5.1). For the temperature not to get too low, we choose
therefore f1 = 10.

For f2 it is a bit more complicated, because determining its value amounts to the decision of
which modes are taken into the system (see end of section 9.1), since

f2 =
√
Ecut
kBT

, (9.5.10)

where Ecut = ~2/(2m∆z2) is the UV energy cut-off introduced by the grid. On one side, we
want to take as many modes as possible into account, otherwise the density of the thermal
cloud gets “lost”. This and the need to capture relevant length scales require a large cut-off. On
the other side, the assumption of the whole system being still describable classically requires a
low cut-off.

Figure 9.5.2: Cut-off determination by comparing BE to RJ distribution as explained in the text; ideal gas in the
canonical ensemble (left and dot in right figure), the grand canonical ensemble (right, dilute side) and Modified Popov
theory (right, dense side) yield the consistent result limµ→0 βEcut = 0.6

We have made attempts to actually determine the cut-off from qualitative arguments (rather
than just matching the result to other data). In the course of the derivation of the SGPE
(in the version we are using), the Bose-Einstein (BE) distribution is replaced by the classical
Rayleigh-Jeans (RJ) distribution. We know that the latter gives higher values in the high
momentum limit, it is therefore reasonable to calculate the cut-off such that the integrated RJ
distribution yields the same densities as the BE distribution integrated up to infinity.

In principle, we prefer a parameter independent cut-off for matters of simplicity (LDA would
not be possible otherwise). That is why we have performed such a calculation for the ideal gas
within the canonical ensemble. This is a bit tricky, because both integrals are - surprisingly -
IR divergent. This may be worked around by introducing a small IR cut-off k0, because the
RJ distribution is in fact the low momentum approximation of the BE distribution and thus
they give both the same result in this limit. The UV cut-off has to be determined consequently
such that
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Figure 9.5.3: Equation of state in cross-over units obtained numerically from a trapped gas in LDA for different cut-off
ratios f2 compared to the quasi-condensate limit; parameter ranges: T = 7 nK, ω⊥ = 9139Hz, ωz = 0.4 . . . 52Hz

1
x0
− 1√

βEcut
=
∞∫
x0

dx
ex2 − 1

, (9.5.11)

where x0 =
√
βε(k0). In order to get the exact result, we have to take the limit x0 → 0.

This is quite difficult numerically, it helps to convert the above integral into Bose-Einstein
integral form though (appendix A.1). Eventually, we obtain the result βEcut = 0.6 (see figure
9.5.2). For comparison, we repeat the calculation within the grand-canonical ensemble, which
is less involved since the chemical potential regularizes the integrals. We find a small linear
dependence of the cut-off from the chemical potential and in the limit µ→ 0 we recover 0.6.
Eventually, we use Modified Popov theory as an example of a mean-field theory in order to get
results for the dense side, recovering the same cut-off in the limit µ→ 0; hence the obtained
result seems to be somehow universal3. Unfortunately, it is not suited for our purposes, as f2
is required to be larger than one.

For that reason, we have to stick to analysing the results that different cut-offs yield. Contrary
to f1, we find that the density is practically independent from the cut-off choice in the ideal
gas limit, and differs in the quasi-condensate limit and the cross-over region. Small values of
f2 give densities n > µ already for small chemical potentials (see inlay of figure 9.5.3). We
choose therefore the smallest value of f2 that still gives an asymptote n ∼ µ in this limit.
From the same figure we estimate this value to be f2 = 5.

3This is underlined by the fact that the result, although in the grand canonical ensemble calculated for a
specific temperature, is temperature independent.
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Figure 9.6.1: Equation of state obtained from the SGPE (T = 7nK, ω⊥ = 9139Hz, ωz = 9Hz,µ = 150 ~ωz ≈ 15µx)
with the total density n, quasi-condensate density nqc and Penrose-Onsager mode npo and the corresponding thermal
densities n′

qc/po
= n− nqc/po (same quantities in the inset)

9.6 Equation of state and comparison to mean-field theories

We notice that for our choice for the factors f1 = 10 and f2 = 5, we can apply the LDA without
changing the result noticeably (see section 9.4). We will therefore calculate the equation of
state from the density profile of a trapped Bose gas with

T = 7nK, ω⊥ = 9139Hz, ωz = 9Hz, µ = 150 ~ωz ≈ 15µx. (9.6.1)

We have now prepared everything for a comparison of the results that we have obtained from
the different approaches. Prior to that, we present the equation of state of SGPE for the
chosen parameters along with Penrose-Onsager mode, quasi-condensate density (9.3.2) and the
corresponding thermal densities in figure 9.6.1. The quasi-condensate density behaves as we
would expect it: it grows from zero on the dilute side until reaching nqc ' n on the dense side.
The thermal density that is linked to it, remains almost constant up to cross-over from where
on it decreases until reaching zero for high chemical potentials. As we have argued before,
these two quantities are actually those that we can obtain from the homogeneous mean-field
theories (thus nqc ≡ n0 and n′qc ≡ n′). The Penrose-Onsager mode corresponds to a true,
phase coherent condensate, which cannot exist in an one-dimensional homogeneous Bose gas.
That is why this quantity is of no relevance for us here; nevertheless we observe a slightly
different behaviour especially around the cross-over region (compared to the quasi-condensate).

Finally, we compare the densities that we have obtained for the mean-field theories with
those of the SGPE. As expected, the SGPE density approaches the degenerate ideal Bose
gas limit, the influence of the cut-off seems to have a negligible influence (since the curve
of the degenerate gas plotted in figure 9.6.2 corresponds to the thermodynamic limit). The
only theory that is able to capture the physics of the (non-degenerate) ideal Bose gas is
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therefore Hartree-Fock theory (dilute), which fails on the dense side though. The SGPE is the
only one that actually can describe the cross-over and the quasi-condensate limit correctly.
Remarkably, for the region close to the cross-over, Hartree-Fock theory (dense), although
being the most simple of the theories, gives densities that are closer to the SGPE result
than all other mean-field theories. Having said that, it must be pointed out that this may
not be a good criterion, remembering that the SGPE result is dependent on the parameters,
above all the cut-off. At the end, we have just chosen values for the factors f1 and f2, and
with a different choice maybe another mean-field theory would give better matching than
Hartree-Fock. In section 7.4.2 we have argued that Mora-Castin theory is in that sense unique
that it has a crossing with Hartree-Fock theory (dilute). Here we realize that it yields quite
high (quasi-condensate) densities in the cross-over region, whereas the thermal density is very
low (see as well figure 9.6.3 around µ = 2µx).

Figure 9.6.2: Equation of state obtained for different mean-field theories, the SGPE and the ideal Bose gas for βx = 10−1

Figure 9.6.3: Quasi-condensate (solid) and thermal density (dashed) for different mean-field theories and the SGPE for
βx = 10−1
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For completeness, we finish this chapter applying the LDA the other way around, creating
density profiles from the equation of state of the mean-field theories (figure 9.6.4). This does
not provide really new insights, but shows that the mean-field theories are in principle capable
of describing a Bose gas in a trap, given that the conditions for the LDA are fulfilled.

Figure 9.6.4: Density profiles obtained in LDA from the mean-field theories, corresponding to the equation of state from
figure 9.6.2 (but with µ = 50~ωz instead; colours as in figure 9.6.2).

9.7 Correlation functions

Finally we have a quick look an the correlation functions. The first order correlation function
of a homogeneous gas obtained from the SGPE decays exponentially and reaches zero as
expected for a quasi-condensate. The decay is in fact a bit faster than for Mora-Castin and
Modified Popov theory (see figure 9.7.1).

Density fluctuations have as well been calculated with the SGPE for a trapped gas using the
LDA with the parameters from the previous section. On the dense side of the cross-over, or
equivalently in the trap centre, g2(0) reaches the coherent value of one. On the dilute side, or
in the wings of the trap, it approaches the decoherent value two. The cross-over from one
regime to the other can easily be identified (see figure 9.7.2). The SGPE seems to work as well
on the dilute side of the cross-over, although the impact of the fluctuations is much bigger,
resulting in a quite noisy curve.
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Figure 9.7.1: First order correlation function g1(z) ob-
tained from the SGPE for a homogeneous gas (param-
eters as in section 9.6) for µ = 2.1µx and βx = 10−1

compared to mean-field results

Figure 9.7.2: Second order correlation function g2(0)
obtained from the SGPE for a trapped gas using the
LDA (parameters as in section 9.6) compared to mean-
field results for βx = 10−1



Chapter 10

Summary and outlook

In this thesis the one-dimensional interacting Bose-Einstein quasi-condensate has been exam-
ined making use of various mean-field approaches on one side, and a stochastic model on the
other. Results obtained from both methods have been compared within their common scope
of validity.

The description of an interacting Bose gas with mean-field theory is a tricky task in lower
dimensions. Long-wavelength quantum fluctuations destroy long-range order and therefore
the formation of a proper condensate is impossible in the thermodynamic limit. The existence
of the latter is the basis of the mean-field treatment in the sense of Bogoliubov theory
though, since only a macroscopically occupied ground state justifies the replacement of the
corresponding field operator by a complex number. In this way the phase of the (quasi)-
condensate is fixed, the original U(1)-gauge symmetry spontaneously broken and by this means
phase fluctuations excluded from the description of the gas. In three dimension or generally
in the presence of a true condensate, this is no problem since there exists long-range order
with respect to the phase and thus phase fluctuations are not important in general. For the
quasi-condensate in lower dimensions, only density fluctuations are suppressed, but the phase
fluctuates. The application of the symmetry breaking approach is still justifiable though in
the quasi-condensate regime, which we have referred to as the dense side of the cross-over,
because the phase coherence length lϑ is much larger than the healing length ξ. Viewed on the
scale of the latter characteristic length, the gas exhibits some kind of local phase coherence
which makes the introduction of the order parameter characterising low-lying modes possible.

This approach has the following consequences:

• True condensate and quasi-condensate have the same properties with respect to the
density of the gas. For this reason, the equation of state, the second order correlation
function g2(z) and density fluctuations can be described properly with the mean-field
approach on the dense side of the cross-over. This includes an asymptote of n ∼ µ for
large µ, a density correlation length decreasing with density and suppressed density
fluctuations δn2 → 0 in the quasi-condensate limit. Approaching the cross-over from
this limit, the density fluctuations grow until reaching δn2 ≈ 0.7n2 at the critical
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points, coming close to the degenerate, completely Gaussian ideal Bose gas (or thermal
interacting gas described by Hartree-Fock theory (dilute)) limit of δn2 = n2.

• Phase coherence properties of a quasi-condensate can only be captured on the length scale
of the local phase coherence, if additional effort is made in order to incorporate phase
fluctuations in the first order correlation function as for Modified Popov and Mora-Castin
theory. Therefore the standard Hartree-Fock Bogoliubov approach mistakenly predicts
the presence of a true condensate even in one dimension.

• The theories leave their range of validity approaching the cross-over from the dense side.
The assumption of local phase coherence based on the condition lϑ � ξ gets violated
close to the cross-over, which we have seen from explicitly calculating correlation lengths
over a wide range of accessible values of the chemical potential. This violation manifests
in critical points beyond which the theories do not work, or in the case of Mora-Castin
theory, the density gets negative.

All mean-field theories (for the dense side of the cross-over) reviewed in this thesis except
for Mora-Castin theory (that is, Hartree-Fock (dense), Modified Popov and Walser theory)
make use of the condition (lϑ � ξ) in the course of their derivation. Mora-Castin theory,
however, is based on the assumption δn� n0, where δn are density fluctuations around the
mean-field. The failure of this theory close to the cross-over is therefore due to the violation
of this condition.

Characteristic quantities of these theories are given in terms of self-consistent integral equations.
In this work, these equations have been scaled to characteristic units of the cross-over, leaving
the dimensionless temperature-interaction strength parameter βx = µx/kBT as the only
free parameter. This parameter is typically small βx � 1, making it possible to give high-
temperature expansions of the integrals in powers of βx. This reduces the numerical effort of
solving the self-consistent equations drastically and gives an easy access to estimates of the
critical points. Correlation functions, the equation of state and density fluctuations have been
calculated for the dense side of the cross-over. Although a description beyond the mentioned
critical points, and therefore a description of the cross-over itself, is not possible, mean-field
theory can be used for the whole range of the cross-over by combining different theories.
Hartree-Fock theory in the formulation for the dilute side does not show a critical point,
but since it does not include a (quasi-)condensate, it gives an incorrect asymptote on the
dense side. Still it works fine on the dilute side, which makes it possible to combine it with
one of the other theories on the dense side in order to obtain a complete description of the
cross-over from the degenerate Bose gas to the quasi-condensate. For most of the theories, the
resulting curve is not continuous but exhibits a jump in the density at the critical point. In
the case of Mora-Castin theory however, there is a crossing and thus the resulting curve is,
although not smooth, continuous (which makes it the most obvious choice for this procedure).
Together with the high-temperature expansions, this provides a powerful tool for calculating
the equation of state or, equivalently, density profiles with the local density approximation, of
a finite temperature Bose gase in one dimension with little numerical effort.

For Mora-Castin and Walser theory, an “anti-bunching” behaviour in the density fluctuations
has been found. This effect is negligible for βx ≤ 10−2, but quite obvious for the the parameter
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value in consideration βx = 10−1. This is admittedly quite close to the strongly interacting
Tonks-Girardeau regime (for which βx ≥ 1), but a mean-field approach is not expected to be
capable of describing the physics of fermionisation. It rather suggests that these theories are
less suited in this parameter range. That is particularly clear for Mora-Castin theory, which
predicts negative thermal densities for chemical potentials larger than a (second) critical value
that scales with the inverse of βx (for βx = 10−1 it is thus quite small µc2 ≈ 6.31µx).

Furthermore, the theories have been compared qualitatively adopting a scheme introduced
by Griffin [30]. They all are structurally similar (which becomes most apparent in the high-
temperature expansions in table 7.1) and differ in the way higher moments of the quantum
field are taken into account. It has been found that considering more hydrodynamic fields
(higher moments of the quantum field) does not necessarily imply an improved description
of the gas. The simplest theory considered, Hartree-Fock theory (dense), yields in fact quite
similar results as Walser theory, which takes account of all second-order averages including the
anomalous average. Moreover, the latter is not able to capture the phase coherence properties
of a quasi-condensate either. Within the mentioned comparison, the theories have as well been
analysed according to their excitation spectra. The Goldstone (and Hugenoltz-Pines) theorem
requires a gapless spectrum for the excitations associated to the spontaneous symmetry
breaking, but on the other hand fundamental conservation laws have to be fulfilled. The two
theories mentioned above (Hartree-Fock (dense) and Walser) do not have a gapless spectrum
though; Walser justifies this by relating the Goldstone mode to a different kind of excitations.

In the second part of this thesis, we have evaluated the Stochastic Gross-Pitaevskii equation
in the version of Stoof et al. [25, 120] numerically using a code developed by Cockburn
[98]. The SGPE is a non-linear Langevin equation for a complex field that includes the
(quasi-)condensate and low-lying excitations up to a cut-off that is determined by the spacing
of the numerical grid. The field is coupled to a thermal cloud whose dynamics are described by
a quantum Boltzmann equation. For simplicity, thermal equilibrium within this cloud and high
occupation of the field modes is assumed in order to make use of the classical Rayleigh-Jeans
distribution. That is why the SGPE results approach the degenerate (classical) ideal Bose gas
on the dilute side of the cross-over.

We have analysed the influence of the strength of the coupling γ between the field and the
heat bath and found that the equilibrium properties are practically unaffected over many
orders of magnitude of γ. Density profiles of harmonically trapped gases have been calculated,
and the quasi-condensate, Penrose-Onsager mode and associated thermal densities have been
determined. The density profiles have been converted to the equation of state of a homogeneous
Bose gas making use of the local density approximation. We analysed the validity of the latter
by comparing the equations of state obtained in LDA from a trapped gas to those obtained
from a whole range of homogeneous systems with periodic boundary conditions. It has been
found that the approximation gives slightly wrong results in the cross-over region, depending
above all on the axial trapping frequency ωz.

For the comparison with mean-field results, it was a particularly difficult task to determine
the parameters used for the simulations. Especially the UV cut-off introduced by the grid was
not easy to determine and was chosen in the end such that expected results in the ideal Bose
gas and quasi-condensate limits are obtained. We found good agreement, in terms of equation
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of state, first order correlation function and density fluctuations, between the two approaches
beyond the critical points of the mean-field theories. The SGPE is capable of describing the
cross-over region and the dilute side as well, although fluctuations are very strong in this latter
regime. The numerical effort for these results is huge compared to the mean-field approach,
because ensemble averages of more than 1000 single runs have to be taken. On the other
hand, the SGPE is not limited to equilibrium properties, in fact its strength is the correct
description of dynamical processes in trapped Bose gases (see for example [25, 126]).

It turned out to be rather difficult to decide on the basis of results obtained in this thesis, which
of the mean-field theories is the most appropriate for the description of a quasi-condensate.
When it comes to phase coherence properties, it is clear that only Mora-Castin and Modified
Popov theory give correct results. But coherence properties with respect to density and the
equation of state itself is described by all mean-field theories (except for Hartree-Fock theory
(dilute)) qualitatively in the same way. On the far dense side of the cross-over, they all yield
very similar results. The comparison with the SGPE cannot really be taken as a benchmark
theory here, because its results depend on the parameter choice, especially the on cut-off
choice. In order to finally answer that question, a comparison with the exact solution of the
Yang-Yang equations would be necessary.

Further comparison could as well be undertaken with other non-perturbative theories, like
the thermal field theory (TFT) developed by Castin [45]. In the limit of high temperatures,
he derives a classical field theory, evaluating the corresponding classical path integrals by
means of an analogy with quantum mechanics in imaginary time. In the work of Polster [127],
the path integrals are associated to the solution of a Fokker-Planck equation. This method
allows the description of the full cross-over and gives easy access to statistical properties of
the gas. We have compared the equations of state obtained by Polster to our results in the
appendix D.3. We found good agreement with the SGPE data for βx = 10−1 (see left of
figure D.3.1). For the strict comparison with mean-field results we need smaller values of βx
though, because the classical approximation corresponds to the limit βx → 0. We observed
for βx = 10−3 that Hartree-Fock theory (dilute) approaches the TFT level on the dilute side,
while on the dense side all mean-field theories are in rather good agreement with the TFT.
Hartree-Fock theory (dense) seems to deviate more than the other theories though. A more
detailed analysis, including coherence properties, is necessary here.

Apart from that, the temperature dependence of characteristic quantities could be another
way of investigation for the mean-field theories. In this thesis we mainly restricted ourselves
to constant βx for our calculations. Superfluidity in a one-dimensional ring trap would be an
interesting field of research for the SGPE. A further comparison with mean-field theory (and
as well the TFT) is possible via the calculation of the superfluid fraction of the gas, which can
be obtained from equilibrium properties [128].
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Appendix A

Bose-Einstein integral

A.1 Expansion of the Bose-Einstein integral

We come across different forms of the Bose-Einstein integral gn(z), which is also known as
polylogarithm or Jonquière’s function Lin(z):

gn(z) = 1
Γ(n)

∞∫
0

xn−1 dx
z−1ex − 1 (A.1.1)

The integral can be treated in the following way:

∞∫
0

xn−1 dx
z−1ex − 1 =

∞∫
0

dx ze−x
(
1− ze−x

)−1
xn−1 =

∞∫
0

dx ze−x
∞∑
k=0

(
ze−x

)k
xn−1 (A.1.2)

Applying the substitution y := x(k + 1) makes the gamma function appear:

gn(z)Γ(n) =
∞∑
k=0

zk+1
∞∫
0

dx e−x(k+1)xn−1 =
∞∑
k=0

zk+1

(k + 1)n
∞∫
0

dy e−yyn−1

︸ ︷︷ ︸
Γ(n)

(A.1.3)

We thus have

gn(z) =
∞∑
k=1

zk

kn
, (A.1.4)
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which is a Dirichlet series. It converges absolutely for Ren > 1 if fk = zk is a bounded series
or in this case equivalently, if the sum

∑∞
k=1 fk is convergent. Since this is the geometric series,

we deduce that the sum (A.1.4) converges absolutely for z < 1 on the half plane Re(n) > 1.

In [35], the Mellin transform of this sum is taken. The inverse transformation is carried out
by integration over the complex plane using residue calculus, which yields with z = e−α:

gn(e−α) = Γ(1− n)
α1−n +

∞∑
k=0

(−1)n

n! ζ(n− k)αk (A.1.5)

This holds for all n ∈ R and is convergent for |α| ≤ 2π if n ≥ 1. If n < 1, it diverges for
α→ 0, but in this case we can use the original expression (A.1.4) which can be identified as
the Riemann Zeta function:

gn(1) =
∞∑
k=1

1
kn

= ζ(n). (A.1.6)

This sum is divergent for n ≤ 1. But the Riemann Zeta function can be analytically continued1
and given a value even in this case; this will be important in many calculations in this thesis.

The sum in (A.1.5) converges quite rapidly for α ≤ 1 and can thus be truncated after a
few terms in this case. Zeta and Gamma function have the following values for half-integer
arguments [129]:

n→ −3/2 −1/2 1/2 3/2 5/2

ζ(n) −0.02549 −0.20789 −1.46035 2.61238 1.34149
Γ(n) 4

3
√
π −2

√
π

√
π 1

2
√
π 3

4
√
π

A.2 Heat capacity of the ideal Bose gas above Tc

We follow the steps of [34] for the calculation of the heat capacity of the ideal Bose gas above
the condensation temperature. It yields an equation explicit in temperature and improves the
result given by London already in 1938 [3].

First of all, we use the expansion (A.1.5) in the expressions for the energy and the pressure
given in 2.1.12 and (2.1.13), respectively. As we are interested in an approximation around
the critical point, we expand the Bose-Einstein functions for |µ| � 1, thus for α = −βµ� 1:

g3/2(α) ' Γ(−1/2)α1/2 + ζ(3/2) (A.2.1)
g5/2(α) ' Γ(−3/2)α3/2 + ζ(5/2) + ζ(3/2)α ' ζ(5/2) + ζ(3/2)α. (A.2.2)

1More precisely, the Riemann Zeta function is defined by the Dirichlet series (A.1.6) only for n > 1.
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From (A.2.1), (2.1.6) with N −N0 ≡ N and (2.1.9) we obtain an expression for α:

α =
(
g3/2 − ζ(3/2)

Γ(−1/2)

)2

=

 Nλ3
dB

gsV
− ζ(3/2)

Γ(−1/2)

2

=
(
ζ(3/2)
2
√
π

[
1−

(
Tc
T

)3/2
])2

. (A.2.3)

The internal energy (2.1.11) can now be written as:

E = 3
2NkBT

g5/2(α)
g3/2(α) '

3
2NkBT

ζ(5/2) + ζ(3/2)α
ζ(3/2) + Γ(−1/2)α1/2 (A.2.4)

For small α this can be expanded and eliminating α with (A.2.3), we obtain:

E ' 3
2NkBT

{
a1 + a2

(
Tc
T

)3/2
+ a3

(
Tc
T

)3
}

T > Tc (A.2.5)

where the three coefficients are given by:

a1 = 3ζ(5/2)
ζ(3/2) −

ζ2(3/2)
4π ≈ 0.997 (A.2.6)

a2 = ζ2(3/2)
2π − 3ζ(5/2)

ζ(3/2) ≈ −0.454 (A.2.7)

a3 = ζ(5/2)
ζ(3/2) −

ζ2(3/2)
4π ≈ −0.030. (A.2.8)

From there it is easy to calculate the pressure and the heat capacity:

p = 2E
3V '

NkBT

V

{
a1 + a2

(
Tc
T

)3/2
+ a3

(
Tc
T

)3
}

T > Tc (A.2.9)

CV = ∂E

∂T

∣∣∣∣
V

' NkB

{
3
2a1 −

3
4a2

(
Tc
T

)3/2
− 3 a3

(
Tc
T

)3
}

T > Tc (A.2.10)





Appendix B

Bogoliubov theory

B.1 Zero-point energy in one dimension

The integral which has to be calculated is:

∆E0 = L

4π

∞∫
−∞

dk


(
~2k2

2m

(
~2k2

2m + 2g|φ|2
))1/2

− ~2k2

2m − g |φ|2
 . (B.1.1)

With the substitution x2 := ~2k2/(4mg|φ|2) this can be written as:

∆E0 = L

2π

√
2m
~

(
2g|φ|2

)3/2
∞∫
0

dx
{(
x2
(
x2 + 1

))1/2
− x2 − 1

2

}

= L

2π

√
2m
~

(
2g|φ|2

)3/2
((
x2 + 1

)3/2
3 − x3

3 −
x

2

) ∣∣∣∣∞
0

(B.1.2)

The value of the integral is −1/3 since in the large x-limit the leading term is 1
8x and thus the

contribution of the upper bound is zero. Hence we obtain the result for the correction of the
ground state energy density for the Bogoliubov theory in one dimension due to the zero-point
energy:

∆E0
L

= − 1
6π

√
2m
~

(
2g|φ|2

)3/2
. (B.1.3)
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B.2 Thermodynamics in one dimension

The energy contribution of the excitations in one dimension can be calculated with the
corresponding expression of the ideal Bose gas (2.1.11) using the Bogoliubov dispersion
relation instead of that for free particles. This is justified for low temperatures, for which the
Bose-Einstein distribution can be approximated by the Boltzmann distribution. We apply the
substitution x2 = ~2k2β2gn0/m:

E − E0
L

' 1
2π

∞∫
−∞

dk E(k)e−βE(k) =
√

2ξ
λ2
dBβ

2gn0

∞∫
0

dxx
(
x2 + 4(βgn0)2

)1/2
e
− x

(2βgn0) (x2+4(βgn0)2)1/2

(B.2.1)

For small temperatures and thus large β, we can neglect x2 � 4(βgn0)2, the integral is
dominated by the low-x contribution anyway due to the exponential. We therefore have:

E − E0
L

' 23/2ξ

λ2
dBβ

∞∫
0

dxxe−x = 23/2ξ

λ2
dBβ

. (B.2.2)



Appendix C

Finite temperature mean-field
theories

C.1 Divergences of Popov theory

The integral of the thermal density can be written as

n′ =
∞∫
−∞

dk
(2π)d

{
ε(k)− E(k)

2E(k) + ε(k)
E(k)NBE(E(k)) + gn0

E(k)

(
NBE(E(k)) + 1

2

)}
. (C.1.1)

Writing E(k) =
√
a2k4 + bk2 and ε(k) = ak2, we have in the IR-limit the expansions

E(K) ∼
√
bk + a2

2 k
3, NBE(E(K)) ∼ kBT√

bk + a2

2 k
)

(T 6= 0) (C.1.2)

This yields the following limits:

1. lim
k→0

ε(k)− E(k)
2E(k) kd−1 = lim

k→0

(
akd

2
√
b
− kd−1

2

)
=


0 d ≥ 2

−1/2 d = 1

2. lim
k→0

ε(k)
E(k)NBE k

d−1 = lim
k→0

akBT

2b kd−1 =


0 d ≥ 2
kBT

2gn0
d = 1
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3. lim
k→0

gn0
E(k)

(
NBE + 1

2

)
kd−1 = lim

k→0

(
gn0kBT

b
kd−3 + gn0

2
√
b
kd−2

)

= lim
k→0



m

~2kBT d = 3
m

~2
kBT

k
+
√
gn0m

2~ d = 2
m

~2
kBT

k2 +
√
gn0m

2~
1
k

d = 1.

We observe that the last term is IR-divergent for all temperatures in 1d and for all T 6= 0 in
2d (assuming that limk→0

0
k = 0). For the UV-limit we have

E(K) ∼ ak2 + b

2a, NBE(E(K)) ∼ e−β(ak2+b/2a) → 0 (C.1.3)

and therefore:

1. lim
k→∞

ε(k)− E(k)
2E(k) kd−1 = lim

k→∞
− b

4a2k
d−3 =


−gn0m

~2 d = 3

0 d ≤ 2

2. lim
k→∞

ε(k)
E(k)NBE k

d−1 = 0

3. lim
k→∞

gn0
E(k)

(
NBE + 1

2

)
kd−1 = lim

k→∞

gn0
2a k

d−3 =


gn0m

~2 d = 3

0 d ≤ 2

Since the first and the last term compensate, there is no UV-divergence in any dimension. If
the last term is subtracted though, as is done in the Modified Popov theory, the integral is
UV-divergent in three dimensions (compensated by renormalising the coupling constant in
Modified Popov theory).

C.2 Diagonalisation of Hartree-Fock Bogoliubov Hamiltonian

The diagonalisation of the full Hamiltonian is carried out in the same way as we have done for
the Bogoliubov theory in section 4.1, taking higher orders of the quantum field into account
though. Additionally to the Hamiltonian up to second order that has been considered before
((4.1.2) - (4.1.3)), the Hamiltonian of third and fourth order are incorporated:
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H3 = g

∫
V

dr
(
φ δψ†

2
δψ + h.c.

)
(C.2.1)

H4 = g

2

∫
V

dr δψ†2δψ2. (C.2.2)

We approximate these higher order terms by ordering the operators pairwise similar to Wick’s
theorem and approximate quadratic terms by their expectation value (see self-consistent
quadratic approximation in [30]):

δψ†
2
δψ ' 2n′δψ† +m′

∗
δψ (C.2.3)

δψ†
2
δψ2 ' m′δψ†2 +m′

∗
δψ2 + 4n′δψ†δψ. (C.2.4)

The third order Hamiltonian in this approximation reads therefore

H3 = g

∫
V

dr
{(

2n′φ+m′φ∗
)
δψ† + h.c.

}
. (C.2.5)

Taking a closer look at the first order Hamiltonian (4.1.2), we observe that the integrands of
H1 and H3 sum up to give the generalised Gross-Pitaevskii equations (6.1.5) and consequently
vanish, H1 +H3 = 0. Using again (6.1.5), the ground state energy is obtained:

E0 =
∫
V

dr
(
g

2n0 + 2g′n + gm′
)
n0 = −gn0V

(
n0
2 + 2n′ +m′

)
. (C.2.6)

We are left with the part of Hamiltonian that has to be diagonalised (n = n0 + n′ and
m = m′ + n0):

H2 +H4 =
∫
V

dr
{
δψ† (h0 − µ+ 2gn) δψ + g

2
(
mδψ†

2 +m∗δψ2
)}

. (C.2.7)

Comparing that to the original second order Hamiltonian (4.1.3), we see that we can use the
results obtained there if we promote

h0 + gn0 → h0 − µ+ 2gn, φ2 → m, (C.2.8)

recovering the findings of (6.1.12) - (6.1.17). Additionally, we can calculate the correction of
the ground state energy as we have done in B.1.
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∆E0
L

= 1
4π

∞∫
−∞

dk
{[(

ε(k)− 2m′
) (
ε(k) + 2g|φ|2

)]1/2
− ε(k)− g

(
n0 −m′

)}

= gn0ξ√
2π

∞∫
0

dx
{[(

x2 − m′

n0

)(
x2 + 1

)]1/2
− x2 − 1

2

(
1− m′

n0

)}
(C.2.9)

C.3 Numerical integration

All numerical calculations concerning the mean-field theories have been carried in Python.

Composite Simpson rule

For the numerical evaluation of all integrals considered in this thesis we use the composite
Simpson rule. The integration interval (a, b) is split into 2N steps of length h = (b− a)/2N ,
defining the grid points xn = a+ nh. The integral is then approximated by

b∫
a

dx f(x) = h

3

(
f(a) + f(b) + 2

N−1∑
n=1

f(x2n) + 4
N∑
n=1

f(x2n−1)
)

+O(h4). (C.3.1)

For all calculations we have N = 1000, (a, b) = (0, 1), therefore h = 5 · 10−4 and an accuracy
of O(10−7).

Small-x approximations

Due to limitations originating from the finite accuracy of any computational calculus, we get
some problems for small values of the integration variable x (generally we have expressions
of the kind 0 ·∞ causing overflows). This especially occurs for the gapless theories, but as
well for the part of the integrals that come from the transformation that maps the integration
interval (1,∞) to (0, 1). Consequently we have to make use of the approximations mentioned
in the following.

For both Hartree-Fock theories (dilute and dense side), the second part of the integrals (7.2.2)
and (7.2.3) has the limit

lim
x→0

x−2

eβx(x−2/2+const.) − 1
= lim

x→0

e−βx/(2x
2)

x2 = lim
x→∞

x2

eβxx2/2 → 0, (C.3.2)

but computationally this causes problems. Therefore it is approximated with 0 for small values
x ≤ 1 · 10−4.

For Modified Popov theory (and equivalently for Mora-Castin theory since they contain similar
expressions), we approximate for small x ≤ 5 · 10−4
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x coth
(

1
2βxn0k

(
x2/4 + 1

)1/2)
4 (x2/4 + 1)1/2 ' 1

2βxn0
+ βxn0

24 x2 (C.3.3)

and for arg [coth(· · · )] ≥ 700, coth(· · · ) ≈ 1 and with that

coth
(

1
2βxn0x

−1 (x−2/4 + 1
)1/2)

4x3 (x−2/4 + 1)1/2 ' 1
2x2 (1 + 2x2) . (C.3.4)

For Walser theory, it is sufficient to make the above approximation of the hyperbolic cotangent
in order to avoid numerical issues.

Bisection method

For the approximation of the self-consistent integral equations, they are brought to the form
x+ f(x) = g(x) = 0, where f(x) is the numerically evaluated integral (or its high-temperature
approximation). Thus we have to find the root(s) of the above equation which is done using
the slow but robust bisection method. Starting with an interval (x0, x1), where g(x0) and
g(x1) must be of opposite sign, the method continuously splits the interval in two parts at the
midpoint x∗ and compares g(x∗) to the values at the interval borders. That part of the split
interval in which the sign change occurs is chosen as the interval for the next iteration step.
This procedure is continued until the interval length is smaller than the desired accuracy (we
choose 10−3). Having opposite signs across the interval ensures that there is at least one root
inside; it can get tricky to choose the right starting interval if there is more than one root (as
for most of the mean-field theories). Since the interval gets halved at every iteration step, the
method converges linearly to the solution.

C.4 Compressibility

The compressibility is defined as κ = − 1
V
∂V
∂p

∣∣
T,N

. We can write

∂p

∂V

∣∣∣∣
T,N

= ∂p

∂µ

∣∣∣∣
T

∂µ

∂V

∣∣∣∣
T,N

. (C.4.1)

Using a Maxwell relation (derived from dF = −SdT − pdV + µdN) we have

∂µ

∂V

∣∣∣∣
T,N

= ∂2F

∂V ∂N

∣∣∣∣
T

= − ∂p

∂N

∣∣∣∣
T,V

= − ∂p
∂µ

∣∣∣∣
T,V

∂µ

∂N

∣∣∣∣
T,V

(C.4.2)

and thus
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∂p

∂V

∣∣∣∣
T,N

= −
(
∂p

∂µ

∣∣∣∣
T

)2
∂µ

∂N

∣∣∣∣
T,V

. (C.4.3)

Using Ω = −β−1 lnZ = −pV , equation (2.0.3) leads to

N = 1
β

∂

∂µ
lnZ

∣∣∣∣
T,V

= −∂Ω
∂µ

∣∣∣∣
T,V

= V
∂p

∂µ

∣∣∣∣
T

. (C.4.4)

This yields eventually

κ = 1
V

V 2

N2
∂N

∂µ

∣∣∣∣
T,V

= 1
n2
∂n

∂µ

∣∣∣∣
T,V

. (C.4.5)

C.5 Cardan formulae and applications

The Cardan formulae, derived by Gerolamo Cardano in 1545, provide a solution of cubic
equations of the form

z3 + pz + q = 0. (C.5.1)

Any cubic equation of the general shape y3 + ay2 + by + c = 0 can actually be brought to this
form with the linear transformation z = y + a/3, where p = b− a2

3 and q = 2
(
a
3
)3 − ab

3 .

Now the substitution z = u+ v is made, and from (C.5.1) we get the relations

z3 = u3 + v3 + 3uvz ⇒ p = −3uv, q = −(u3 + v3). (C.5.2)

We deduce that

u3 + v3 = −q, u3 · v3 = −
(
p

3

)3
, (C.5.3)

which means, remembering Vieta’s formula, that u3 and v3 are solution of the quadratic
equation x2 + qx−

(p
3
)3 = 0. Solving this equation, we get

x1,2 = −q2 ±

√(
q

2

)2
+
(
p

3

)3
→ u, v = 3

√
−q2 ±

√
∆ (C.5.4)
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where we have introduced the discriminant ∆ =
( q

2
)2 +

(p
3
)3. Substituting back we get the

solution

y = 3

√
−q2 +

√
∆ + 3

√
−q2 −

√
∆− a

3 . (C.5.5)

This solution is only valid for ∆ > 0, giving the (in this case) only real solution of the equation.

Applying the formula to the high-temperature approximation of the thermal density from
Hartree-Fock theory (dilute),

n′ =
√

1
2(2n′ − µ) + ζ(1/2)√

2π
√
βx +O(βx), (C.5.6)

which is transformed to

n′3 −
(
µ

2 + 2ζ(1/2)√
2π

√
βx

)
n′2 +

(
ζ2(1/2)

2π βx + ζ(1/2)√
2π

√
βxµ

)
n′ −

(
ζ2(1/2)

4π βxµ+ 1
4

)
= 0,

(C.5.7)

we identify

q =− 2
27

(
µ

2 + 2ζ(1/2)√
2π

√
βx

)3
+ 1

3

(
µ

2 + 2ζ(1/2)√
2π

√
βx

)(
ζ2(1/2)

2π βx + ζ(1/2)√
2π

√
βxµ

)

− ζ2(1/2)
4π βxµ−

1
4 (C.5.8)

p =ζ2(1/2)
2π βx + ζ(1/2)√

2π
√
βxµ−

1
3

(
µ

2 + 2ζ(1/2)√
2π

√
βx

)2
. (C.5.9)

Although this is of course not really handy, it gives correct values and we can use it to calculate
the cross-over thermal density, i.e. the value at zero chemical potential. In this case we have,

q0 = −1
4 +O(β3/2

x ) (C.5.10)

p0 = O(βx) (C.5.11)

∆0 = 1
64 +O(β3

x). (C.5.12)

Plugging this into equation (C.5.5), we obtain
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n′c = 2−2/3 + 2
3
ζ(1/2)√

2π
√
βx +O(β3/2

x ). (C.5.13)

C.6 High-temperature expansions

Modified Popov theory

We want to find the small-βx expansion of the integral (7.2.6), i.e.

I =
∞∫
0

dk
π

{
k2/2
E(k)

( 1
eβxn0E(k) − 1

+ 1
2

)
− 1

2 + 1
k2 + 2µ/n0

}
(C.6.1)

with E(k) = |k|
√
k2/4 + 1. The last term can be solved exactly:

I3 =
∞∫
0

dk
π

1
k2 + 2µ/n0

=
√
n0
2µ

∞∫
0

dx
π

1
1 + x2 =

√
n0
2µ

1
π

arctan(x)
∣∣∣∣∞
0

= 1
2

√
n0
2µ. (C.6.2)

The vacuum level and the −1/2 together give also a convergent integral that can be solved
exactly using the substitution k = 2 sinh(x):

I2 =
∞∫
0

dk
π

k2/2− E(k)
2E(k) =

∞∫
0

dx
π

2 cosh(x)
(

2 sinh(x)− 2
(
1 + sinh2(x)

)1/2
)

4
(
1 + sinh2(x)

)1/2

=
∞∫
0

dx
π
{sinh(x)− cosh(x)} = −

∞∫
0

dx
π
e−x = − 1

π
(C.6.3)

We add and subtract the large-k limit from the remaining integral,

I1 =
∞∫
0

dk
π

k2

2E(k)

( 1
βxn0E(k) + 1

eβxn0E(k) − 1
− 1
βxn0E(k)

)
, (C.6.4)

and solve the first term like (C.6.2), yielding:

I11 = 1
2πβxn0

∞∫
0

dk
(k2/4 + 1) = 1

πβxn0

∞∫
0

dx
x2 + 1 = 1

2βxn0
. (C.6.5)
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For the rest of I1 we add and subtract the large-k limit of the first factor,

I12 =
∞∫
0

dk
π

(
1 + k2

2E(k) − 1
)( 1

eβxn0E(k) − 1
− 1
βxn0E(k)

)
, (C.6.6)

and evaluate the first part of it:

I121 =
∞∫
0

dk
π

{ 1
eβxn0E(k) − 1

− 1
βxn0E(k)

}

= 1√
βxn0

∞∫
0

dy
π

{
1

ey2/2(1+4βxn0/y2)1/2 − 1
− 1
y2/2 (1 + 4βxn0/y2)1/2

}

βx�1= 1√
βxn0

∞∫
0

dy
π

{( 1
ey2/2+βxn0 − 1

− 1
y2/2 + βxn0

)
+O(β2

x)
}
. (C.6.7)

We have used the substitution y =
√
βxn0k and expanded for small βx � 1. The first term is

transformed into a Bose-Einstein integral with x = y2/2 and then expanded using (A.1.5):

I1211 = 1
π
√

2βxn0

∞∫
0

dxx−1/2

eβxn0ex − 1 +O(β3/2
x ) = 1

π
√

2βxn0
Γ(1/2) g1/2

(
eβxn0

)
+O(β3/2

x )

= 1√
2

1
βxn0

+ ζ(1/2)√
2π

1√
βxn0

− ζ(−1/2)√
2π

√
βxn0 +O(β3/2

x ) (C.6.8)

The term of order O(β−1
x ) is cancelled by the second part of the integral I121 (C.6.7), which

with x2 = y2/(2βxn0) can be calculated easily like (C.6.2):

I1212 = −
√

2
πβxn0

∞∫
0

dx
x2 + 1 +O(β3/2

x ) = − 1√
2

1
βxn0

+O(β3/2
x ). (C.6.9)

We have thus

I121 = ζ(1/2)√
2π

1√
βxn0

− ζ(−1/2)√
2π

√
βxn0 +O(β3/2

x ) (C.6.10)

We are left with the rest of integral I12. The expansion

1
ex − 1 −

1
x

=
−1

2 −
x
6

1 + x
2

+O(x2) = −1
2 + x

12 +O(x2) (C.6.11)
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for small x� 1 allows us to write

I122 =
∞∫
0

dk
π

k2/2− E(k)
E(k)

( 1
eβxn0E(k) − 1

− 1
βxn0E(k)

)

=
∞∫
0

dk
π

k2/2− E(k)
E(k)

(
−1

2 + βxn0E(k)
12

)
+O(β2

x) = 1
π

+O(βx), (C.6.12)

which in leading order cancels I2. To complete the expansion up to order O(β1/2), we need to
determine the difference of the approximation and the original expression in (C.6.6) (ignoring
thus terms of order O(βx) and higher). For that we proceed exactly as we have done in (C.6.7)
(y =

√
βxn0k), which leaves us after some algebra with the integral

I ′122 =
∞∫
0

dk
π

k2/2− E(k)
E(k)

( 1
eβxn0E(k) − 1

− 1
βxn0E(k) + 1

2

)

=
√
βxn0

∞∫
0

dy
π

(
4− y2)2 ey2 − 8ey2/2 + y2 + 4

y4 (ey2/2 − 1
)2 +O(β3/2

x ). (C.6.13)

We split the domain of integration into two parts and use the large-y approximation of the
integrand, − 1

y2 , for y ≥ 20

−
∞∫

20

dy
π

1
y2 = − 1

20π . (C.6.14)

The rest of the integral is calculated numerically, using the IR-limit of the integrand, − 1
12 , for

y ≤ 0.2 and obtain I ′122 = a3
√
βxn0 with a3 ≈ −0.16591. This adds to the term in (C.6.10),

yielding the final expression

I = 1
2βxn0

+ ζ(1/2)√
2π

1√
βxn0

+ 1
2

√
n0
2µ + a2

√
βxn0 +O(βx) (C.6.15)

where a2 = a3 − ζ(−1/2)√
2π ≈ −0.165912 + 0.082935 ≈ −0.082977

(
= ζ(−1/2)√

2π +O(10−5)
)
.

Mora-Castin theory

Fortunately, we can use the above results since the integral

I =
∞∫
0

dk
π

{
k2/2
E(k)

( 1
eβxµE(k) − 1

+ 1
2

)
− 1

2

}
(C.6.16)
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is equivalent to I1 + I2 ((C.6.4),(C.6.3)) if n0 is replaced by µ. We thus have

I = 1
2βxµ

+ ζ(1/2)√
2π

1√
βxµ

+ a2
√
βxµ+O(βx). (C.6.17)

In figure C.6.1 this high-temperature expansion is compared to the result obtained by numeri-
cally evaluating the integrals.

Figure C.6.1: Numerically calculated density of Mora-Castin theory (left) and Hartree-Fock theory (dense) (right)
compared to their high-temperature approximations (dashed) with critical points (dots)

Walser theory

Thermal density

The integral that has to be approximated is

I =
∞∫
0

dk
π

{
k2/4 + 1

2(1− η)
E(k)

( 1
e2βxn0E(k) − 1

+ 1
2

)
− 1

2

}
(C.6.18)

where E(k) =
[(
k2/4 + 1

) (
k2/4− η

)]1/2 and η = m′/n0 < 0.

This is split into

I1 =
∞∫
0

dk
π

k2/4 + 1
2(1− η)− E(k)
2E(k) (C.6.19)

and

I2 =
∞∫
0

dk
π

k2/4 + 1
2(1− η)

E(k)

( 1
2βxn0E(k) + 1

e2βxn0E(k) − 1
− 1

2βxn0E(k)

)
(C.6.20)
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where we have added and subtracted the large-k limit. The first part of I2 can be written as

I21 = 1
2βxn0

∞∫
0

dk
π

k2/4 + 1
2(1− η)

(k2/4 + 1) (k2/4− η) = 1
2βxn0

∞∫
0

dk
π

{ 1
(k2/4 + 1) + (1 + η)

2E2(k)

}
, (C.6.21)

whose first term yields as before (C.6.5) I211 = 1
2βxn0

. For the second integral we use the
partial fraction decomposition

1
(x2 + 1)(x2 − η) = − 1

1 + η

( 1
x2 + 1 −

1
x2 − η

)
(C.6.22)

and substitute x→ x
√
−η (η < 0) in the second term to obtain

I212 = (1 + η)
2πβxn0

∞∫
0

dx
(x2 + 1) (x2 − η) =

1√
−η − 1

2πβxn0

∞∫
0

dx
(x2 + 1) =

1√
−η − 1
4βxn0

. (C.6.23)

This combines to give

I21 = 1
4βxn0

(
1 + 1√

−η

)
. (C.6.24)

We continue with the second part of I2

I22 =
∞∫
0

dk
π

(
1 +

k2/4 + 1
2(1− η)

E(k) − 1
)( 1

e2βxn0E(k) − 1
− 1

2βxn0E(k)

)
, (C.6.25)

which is quite similar in structure to I2 of Modified Popov theory. We therefore expand in the
first part of the integral the dispersion relation for small βx (after substitution y =

√
βxn0k)

which becomes 2βxn0E(k) → y2/2 + βxn0(1 − η) + O(β2
x). Thus we can use the result of

(C.6.10) promoting n0 → n0(1− η) and obtain

I221 =
∞∫
0

dk
π

( 1
e2βxn0E(k) − 1

− 1
2βxn0E(k)

)
= ζ(1/2)√

2π
1√
βxn0

−ζ(−1/2)√
2π

(1−η)
√
βxn0+O(β3/2

x ).

(C.6.26)

The second part of I22 can as well be treated as the corresponding integral of Modified Popov
theory (C.6.12). Again it cancels I1 (C.6.19) in leading order:



C.6. HIGH-TEMPERATURE EXPANSIONS 135

I222 =
∞∫
0

dk
π

k2/4 + 1
2(1− η)− E(k)
E(k)

( 1
e2βxn0E(k) − 1

− 1
2βxn0E(k)

)

=
∞∫
0

dk
π

k2/2− E(k)
E(k)

(
−1

2 + βxn0E(k)
6

)
+O(β2

x) = −I1 +O(βx). (C.6.27)

Differently from Popov theory, the correction that arises from this approximation is zero in
order O(β1/2

x ). We do not take it into account since in order O(β3/2
x ) it is IR-divergent,

I ′222 =
∞∫
0

dk
π

k2/4 + 1
2(1− η)− E(k)
E(k)

( 1
e2βxn0E(k) − 1

− 1
2βxn0E(k) + 1

2

)

' η(βxn0)3/2
∞∫
0

dk
π

(
8− 2y2) ey2/2 − 2y2 − 8

y6 (ey2/2 − 1
) . (C.6.28)

We therefore have

I = 1
4

(
1 +

√
n0
−m′

) 1
βxn0

+ ζ(1/2)√
2π

1√
βxn0

− ζ(−1/2)√
2π

(
1 + m′

n0

)√
βxn0 +O(β3/2

x ). (C.6.29)

Anomalous average

We need to evaluate

I =
∞∫
0

dk
π

1
E(k)

( 1
e2βxn0E(k) − 1

+ 1
2

)
, (C.6.30)

that is split into

I1 =
∞∫
0

dk
π

1
2E(k) , (C.6.31)

which is convergent due to the energy gap of the spectrum, and

I2 =
∞∫
0

dk
π

1
E(k)

( 1
2βxn0E(k) + 1

e2βxn0E(k) − 1
− 1

2βxn0E(k)

)
. (C.6.32)
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The first part of the latter is similar to (C.6.23) and gives

I21 = 1
βxn0π

∞∫
0

dx
(x2 + 1)(x2 − η) =

1√
−η − 1

2(1 + η)
1

βxn0
. (C.6.33)

The second part can be evaluated again like (C.6.12), cancelling I1 in leading order:

I22 =
∞∫
0

dk
π

1
E(k)

( 1
e2βxn0E(k) − 1

− 1
2βxn0E(k)

)
= −I1 +O(βx). (C.6.34)

Finally, we calculate the correction

I ′22 =
∞∫
0

dk
π

1
E(k)

( 1
e2βxn0E(k) − 1

− 1
2βxn0E(k) + 1

2

)
= 4

√
βxn0

∞∫
0

dx
π

(
coth(x2/4)

x2 − 2
x4

)
+O(β3/2

x )

(C.6.35)

numerically, using the IR-approximation 1
24 −

x4

5760 of the integrand for small x ≤ 0.1. This
yields the final result

I =
1√
−η − 1

2(1 + η)
1

βxn0
+ a4

√
βxn0 +O(β3/2

x ), (C.6.36)

where a4 = 0.331728 = −4 ζ(−1/2)√
2π +O(10−5).

Ideal Bose gas

We apply the same techniques as for Hartree-Fock theory to the ideal Bose gas. Both high-
temperature expansion and degenerate Bose gas approximate the numerically calculated curve
the better the smaller βx, the former being much more accurate of course (see figure C.6.2).

C.7 Critical points

At the critical point, the slope of n = n(µ) becomes infinitely large, or equivalently, the slope
of µ = µ(n) becomes zero. This will allow us to get some approximations of the corresponding
values.

Hartee-Fock (dense)

From table 7.1 and µ = 2n′ + n0 we deduce
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Figure C.6.2: Numerically calculated thermal density of the ideal Bose gas compared to its high-temperature approxi-
mations and the degenerate gas for βx = 10−2 (left) and βx = 10−1 (right)

µ = n0 +
√

2
n0

+ 2a1β
1/2
x +O(β3/2

x ), (C.7.1)

that permits to calculate the derivative

∂µ

∂n0
= 1− 2−1/2n

−3/2
0 +O(β3/2

x ), (C.7.2)

which set to zero yields

n0,c = 2−1/3 +O(β3/2
x ). (C.7.3)

Plugging this back into (C.7.1) gives the critical value for the chemical potential, from where
those of the density and the thermal density follow:

µc = 3 · 2−1/3+2a1β
1/2
x +O(β3/2

x ), n′c = 2−1/3+a1β
1/2
x +O(β3/2

x ), nc = 22/3+a1β
1/2
x +O(β3/2

x ).
(C.7.4)

Modified Popov theory

Differentiating

µ = n0 + 1
√
n0

+ 2a1β
1/2
x +O(βx) (C.7.5)

yields here

n0,c = 2−2/3 +O(βx). (C.7.6)
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This gives

µc = 3 · 2−2/3+2a1β
1/2
x +O(βx), n′c = 2−2/3+a1β

1/2
x +O(βx), nc = 21/3+a1β

1/2
x +O(βx).

(C.7.7)

Mora-Castin theory

For the first critical point near the cross-over we have nc ≡ 0 = n0,c + n′c and therefore with
the high-temperature expansion of table 7.1

n′c = 1
2
√
n′c

+ a1β
1/2
x , (C.7.8)

which solved iteratively yields

n′c = −n0,c = µc = 2−2/3 + a1β
1/2
x . (C.7.9)

At the second critical point, the thermal density vanishes n′c2 = 0 and we have thus

µc2 = 1

4
(
a1β

1/2
x + a2µc2β

3/2
x +O(β5/2

x )
)2 , (C.7.10)

yielding in a first iteration µc2 = 1
4a2

1βx
+O(1). Plugging this back into equation (C.7.10) gives

µc2 = nc2 = 1
4a2

1βx
(
1 + a2/(4a2

1) +O(β2
x)
)2 = 1

4a2
1βx

(
1 + a2/(4a2

1)
)2

︸ ︷︷ ︸
≈1.126

+O(βx) (C.7.11)

Walser theory

We have

m′ = 1
4√n0

− 1
4
√
−m′

+O(β3/2
x ) ⇒ n0 =

(
4m′ + 1√

−m′

)−2
+O(β3/2

x ) (C.7.12)

and

n′ = m′ + 1
2
√
−m′

+ a1β
1/2
x +O(β3/2

x ), (C.7.13)
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thus we obtain

µ = n0 + 2n′ +m′ =
(

4m′ + 1√
−m′

)−2
+ 3m′ + 1√

−m′
+ 2a1β

1/2
x +O(β3/2

x ). (C.7.14)

The equation resulting from the differentiation,

∂µ

∂m′
= 0 ⇒ 384m′6 − 224(−m′)9/2 − 40m′3 + 8(−m′)3/2 − 1 = 0, (C.7.15)

has 5 solutions. We calculate the only real one numerically with the bisection method and
obtain the approximate value

m′c = −0.213528 +O(β3/2
x ). (C.7.16)

Equations (C.7.12), (C.7.13) and (C.7.14) evaluated at this point give respectively the critical
quasi-condensate density, thermal density and chemical potential, yielding as well the critical
density

nc =
(

4m′c + 1√
−m′c

)−2

+m′c + 1√
−4m′c︸ ︷︷ ︸

≈1.4512

+a1β
1/2
x +O(β3/2

x ) (C.7.17)

µc =
(

4m′c + 1√
−m′c

)−2

+ 3m′c + 1√
−m′c︸ ︷︷ ︸

≈2.1062

+2a1β
1/2
x +O(β3/2

x ). (C.7.18)

C.8 Density jumps

We calculate the density given by Hartree-Fock theory (dilute) at the critical chemical potential
of the corresponding theory. This yields in a first approximation

n(µc) = 1
2(2n(µc)− µc)

→ n3 − 1
2µcn

2 − 1
4 = 0. (C.8.1)

We calculate this using the Cardan formulae, yielding for example for the critical chemical
potential of Hartree-Fock theory (dense) µc ≈ 3 · 2−1/3,

n(µc) = 3

√
3 +
√

8
16 + 3

√
3−
√

8
16 + 2−4/3 + a1β

1/2
x . (C.8.2)
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and Modified Popov theory µc ≈ 21/3,

n(µc) = 3

√
2.5 +

√
6

16 + 3

√
2.5−

√
6

16 + 2−5/3 + a1β
1/2
x . (C.8.3)

Subtracting these values from the critical density of the corresponding theory leads to the
density jumps given in (7.4.8).

C.9 Second order correlation function

For Walser theory (as well as Mora-Castin theory), g2(z) does not reach its maximum at the
origin and g2(0) < 1 for chemical potentials µ & 7.74µx (“anti-bunching” effect):

Figure C.9.1: Integrand of n′(z) +m′(z) and second order correlation function for µ = 2.263µx (left) and µ = 9.344µx
(right) for Walser theory



Appendix D

(S)GPE

D.1 Numerics

All numerical calculations concerning part III have been carried out in Fortran.

Crank-Nicholson scheme

For the numerical computation we write the spatial derivative in the standard form using
finite differences, i.e. with φmj ≡ φ(z = j∆z, t = m∆t)

∂2
zφ(z, t) =

φmj−1 − 2φmj + φmj+1
∆z2︸ ︷︷ ︸
δ2
z

+O(∆z2). (D.1.1)

Within the Crank-Nicholson method, the time derivative is evaluated using the trapezoidal
rule, thus taking the time average of the rhs of our equation

∂tφ(z, t) = −iK(z, t)φ(z, t), (D.1.2)

where K = H −µ = −∂2
z/2 + z2/2−µ+ g|φmj |2. In order to solve this system, we approximate

|φmj |2φmj + |φm+1
j |2φm+1

j by 1/2(|φmj |2 + |φm+1
j |2)(φmj + φm+1

j ) yielding

φm+1
j − φmj

∆t = − i2

(
−δ

2
z

2 + z2

2 − µ+ g|φm+1/2
j |2

)(
φm+1
j + φmj

)
(D.1.3)

or

141
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[
1 + i∆t

2

(
δ2
z

2 + V m
j − µ+ g|φm+1/2

j |2
)]

φm+1
j =

[
1− i∆t

2

(
δ2
z

2 + V m
j − µ+ g|φm+1/2

j |2
)]

φmj .

(D.1.4)

This scheme is energy and particle number conserving. In order to see this, we write the solution
of the GPE (D.1.2) for infinitesimal small ∆t = tm+1 − tm (K(t+ ∆t) ≈ K(t) ≈ K(t+ ∆t/2))
as

φm+1
j = e−iK

m+1/2
j ∆tφmj . (D.1.5)

The Crank-Nicholson method corresponds to approximating the exponential in the unitarity
conserving form

e−iK
m+1/2
j ∆t =

1− iKm+1/2
j ∆t/2

1 + iK
m+1/2
j ∆t/2︸ ︷︷ ︸
T

+O(∆t2), T ∗ = T−1, (D.1.6)

which also proves that it is accurate up to second order in time (and space, see (D.1.1)).

Periodic boundary conditions

For periodic boundary conditions we have to solve the matrix equation


b1 c1 a1
a2 b2 c2

. . . . . . . . .
aNx−1 bNx−1 cNx−1

cNx aNx bNx




φ1
φ2
...

φNx−1
φNx

 =


Ω1
Ω2
...

ΩNx−1
ΩNx

 . (D.1.7)

where we have dropped the time indices of φm+1
j for matters of clarity. Eliminating the last

column and the last line from the matrix M , we get the tridiagonal matrix M ′ which obeys
the equation


b1 c1
a2 b2 c2

. . . . . . . . .
aNx−2 bNx−2 cNx−2

aNx−1 bNx−1




φ1
φ2
...

φNx−2
φNx−1

 =


Ω1
Ω2
...

ΩNx−2
ΩNx−1

−


a1
0
...
0

cNx−1

φNx . (D.1.8)

With φ = (φ′, φN )T (vectors in bold), equation (D.1.8) can be solved with the ansatz
φ′ = χ(1) + χ(2)φNx with
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M ′χ(1) = Ω′, M ′χ(2) =


−a1

0
...
0

−cNx−1

 . (D.1.9)

From equation (D.1.7) we have cNxφ1 + aNxφNx−1 + bNxφNx = ΩNx , which following equation
(D.1.8) gives

cNx(χ(1)
1 + χ

(2)
1 φNx) + bNxφNx + aNx(χ(1)

Nx−1 + χ
(2)
Nx−1φNx) = ΩNx (D.1.10)

and thus

φNx =
ΩNx − cNxχ

(1)
1 − aNxχ

(1)
Nx−1

bNx + cNxχ
(2)
1 + aNxχ

(2)
Nx−1

. (D.1.11)

The procedure amounts therefore to calculating to the two equations (D.1.9) with the tridiago-
nal matrix algorithm and φNx from (D.1.11) to obtain the solution φ = (χ(1) +χ(2)φNx , φNx)T.

SGPE

For the numerical integration of the SGPE the same scheme is applied. Additionally, the
gamma term has to be calculated in order to incorporate the damping and the noise. This
is done generally using the approximation (9.2.1) of the Keldysh self-energy. With that the
damping, which is just a prefactor, and the strength of the noise are determined. How the
latter may be included into the time stepping scheme can be deduced from the SGPE (9.1.7),
that has the form of a general Langevin equation

∂

∂t
Φ(z, t) = −A(z, t)Φ(z, t) + Γ(z, t), (D.1.12)

where Γ is the noise term. This equation has for small ∆t the formal solution (if A was not
time dependent, it holds even for large ∆t)

Φ(z, t+ ∆t) = Φ(z, t)e−A∆t + e−A(t+∆t)
t+∆t∫
t

dt′ Γ(z, t′)eAt′

= e−A∆t
(

Φ(z, t) + e−At
t+∆t∫
t

dt′ Γ(z, t′)eAt′

︸ ︷︷ ︸
=:−iξ(z,t+∆t)

)
. (D.1.13)

For small ∆t � 1, Γ(z, t) can assumed to be almost constant and we can approximate
(Γ(z, t) = −iη(z, t))
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ξ(z, t) ≈ ξ(z, t+ ∆t) = η(z, t)∆t+O(∆t2). (D.1.14)

Since equation (D.1.13) is of the same form as equation (D.1.5), it can be evaluated analogously,
i.e. with A = i(1− γ(z, t))HGP in harmonic oscillator units

[
1 + i∆t(1− γ(z, t))

2

(
δ2
z

2 + V m
j − µ+ g|φm+1/2

j |2
)]

Φm+1
j =[

1− i∆t(1− γ(z, t))
2

(
δ2
z

2 + V m
j − µ+ g|φm+1/2

j |2
)](

Φm
j − iξmj

)
. (D.1.15)

On a discrete grid, the delta functions have to be replaced by Kronecker deltas as usual
(δ(z − z′)→ 2π

∆z δzz′) and we have therefore

〈
ξmj ξ

m′
j′
〉

=
〈
ηmj η

m′
j′
〉

∆t2 = 2γ(r, t)
β

∆t
∆z δjj

′ δmm′ . (D.1.16)

We know for a Gaussian distribution that

σ2 ≡
〈
ξmj ξ

m
j

〉
= 2γ(r, t)

β

∆t
∆z . (D.1.17)

In order to produce Gaussian white noise on a grid obeying (D.1.16), we therefore have
to generate for every timestep and every node independently a (pseudo-) random number
from a Gaussian distribution with a variance (D.1.17). This is done with the Box-Muller
transformation [130], which consists in generating two uniformly distributed (pseudo-) random
numbers q and w ∈ (0, 1) and calculating

r = σ
√
−2 ln(1− q), φ = 2πw (D.1.18)

to obtain two independent, Gaussian distributed (pseudo-) random numbers with vanishing
mean from

x = r cosφ, y = r sinφ. (D.1.19)

D.2 Wigner function and quantum Boltzmann equation

The Wigner function f is the quantum generalisation of the classical phase space density %
and was introduced by Wigner in 1932 [131]. It can formally be defined as the Weyl-transform
[132] (denoted with a tilde) of the density matrix ρ via
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f(x, p) = ρ̃

~
= 1

~

∫
dy 〈x+ y/2|ρ|x− y/2〉eipy/~. (D.2.1)

Due to the quantum nature, f is not limited to positive values (in fact, f < 0 signalises
non-classical states) and is therefore only a quasi-probability distribution. It is still normalised
to unity and can be used to calculate expectation values of an operator A,

〈A〉 = tr(ρ̃Ã) =
∫

dxdp f(x, p)Ã, (D.2.2)

where the Weyl-transform Ã of the operator A is obtained in same way as ρ̃. On the other
hand, we know that in thermodynamic equilibrium the phase space density behaves like an
incompressible fluid and obeys the Louiville equation

∂ρ

∂t
+ ẋ∇%+ ṗ∇p% = 0. (D.2.3)

Collisions between particles can be incorporated via a collision integral, leading to the
Boltzmann equation. The Wigner function can consequently be described by a quantum
Boltzmann equation of the form (9.1.1).

D.3 Thermal field theory

Figure D.3.1: Equation of state of the Thermal field theory (data from [127], see as well for more details) compared to
SGPE results at βx = 10−1 (left) and mean-field theory results at βx = 10−3 (right)
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