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BOUNDARY VALUE PROBLEMS FOR ELLIPTIC COMPLEXES

D. FEDCHENKO AND N. TARKHANOV

Abstract. The aim of this paper is to bring together two areas which are of

great importance for the study of overdetermined boundary value problems.

The first area is homological algebra which is the main tool in constructing the

formal theory of overdetermined problems. And the second area is the global

calculus of pseudodifferential operators which allows one to develop explicit

analysis.
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1. Introduction

The unquenchable phantasy of a researcher might pose any question on com-
plexes of differential operators on a manifold with boundary. However, mathemat-
ics need not have any promising answers to those questions which are not well
motivated within the framework of the rigorous model.

As the second author presented his DSc thesis devoted to overdetermined systems
of differential equations in the Moscow state university in 1991, Y.S. Il’yashenko
asked him about remarkable complexes which are different from the classical de
Rham and Dolbeault complexes and their twisted versions. The author should
acknowledge that there had perhaps been not many of them, see however [Tar90],
[Kha14] and elsewhere.

Actually complexes of differential operators are naturally graded determined
systems of scalar differential operators. The fundamental problem related to any
system of partial differential equations is that on the solvability of the system.
A boundary value problem for the system is an efficient way to parametrise the
solutions through their boundary data. For complexes of differential operators a
relevant substitute for a solution is the cohomology of the complex. Therefore, for
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2 D. FEDCHENKO AND N. TARKHANOV

complexes those boundary value problems are of key interest which retain informa-
tion on the cohomology.

Such a construction can be adopted immediately from homological algebra where
it is called the cone of a cochain mapping, see [Spa66] and elsewhere. To the best
of our knowledge the construction was first used in [Dyn72] to introduce elliptic
boundary problems for complexes of pseudodifferential operators on a compact
manifold with boundary.

The idea of [Dyn72] was corroborated in the paper [DS96] which established that
under a nondegeneracy assumption any overdetermined boundary value problem
possesses a compatibility complex of boundary value problems which bears the
structure of the cone of a cochain mapping. Both [Dyn72] and [DS96] suffer from
incomplete proofs of existence theory. This gap was filled up within well elaborated
techniques in [KTT07].

In [KMST05] one applies the construction of the cone of a cochain mapping to
get Fredholm boundary value problems for the Dolbeault complex on a compact
complex manifold with boundary. As but one motivation of [KMST05] we men-
tion that the Dolbeault complex on a strongly pseudoconvex compact manifold is
subelliptic at positive steps. What has still been lacking in [KMST05] is the general
construction of elliptic boundary value problems within a so-called Boutet de Mon-
vel’s algebra with Toeplitz boundary conditions, see [SS15]. Such a construction for
complexes on compact manifolds with boundary elliptic with respect to the interior
symbol is elaborated in the recent paper [SS15]. It appeals to techniques developed
in [Tar07].

While the desire to describe a similar construction was the first aim of the present
paper, on reflecting upon the problem we found that the general construction yields
any surprising elliptic boundary value problems neither for the de Rham complex
nor for the Dolbeault complex on a compact manifold with boundary. It is nu-
merous applied problems that give an inexhaustible source of ample mathematical
phenomena.

The boundary value problems for complexes we consider in the present paper
are greatly motivated by [ST00]. When extremely simplified, they are traced back
to the following classical problem of algebraic topology. Let X and S be two C∞

compact closed manifolds and ι : S → X a differentiable mapping. The ‘pull-back’
ι∗ under ι gives us a cochain mapping of the de Rham complex on X into that on S,
namely, ι∗ : Ω·(X ) → Ω·(S). The cone C(ι∗) of this cochain mapping is said to be
the cone of ι. The complex C(ι∗) is easily seen to be Fredholm, i.e., it bears a finite-
dimensional cohomology Hi(C(ι∗)), for each i. Moreover, Hi(C(ι∗)) is naturally
isomorphic to the relative cohomology of the pair (M, ι(S)) with coefficients in C,
provided that ι is an embedding. We now assume that f is a smooth mapping of
the pair (X ,S), i.e., f = (fX , fS) where fX and fS are smooth mappings of X and
S, respectively. If the diagram

S ι−→ X⏐⏐�fS
⏐⏐�fX

S ι−→ X
commutes, then f has a natural lift to the complex C(ι∗) given by f∗

X ⊕ f∗
S . Denote

by L(f∗) the Lefschetz number of this endomorphism of C(ι∗). By the above, in
case ι is an embedding L(f∗) coincides with the Lefschetz number in the relative
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cohomology of (X , ι(S)) induced by fX . This latter is well-defined because ι(S)
is invariant under the mapping fX . For the de Rham complex, our result reads
L(f∗) = L(f∗

X ) − L(f∗
S) which does not explicitly involve ι. More generally, we

consider two elliptic complexes C∞(X , F ·) and C∞(S, E·) on X and S, respectively.
To each cochain mapping T : C∞(X , F ·) → C∞(S, E·) there corresponds a new
complex C(T ) called the cone of T , cf. ibid.. If T is of finite order relative to the
scales of Sobolev spaces on X and S, then C(T ) proves to be Fredholm. In parallel
to the relative de Rham cohomology, the corresponding theory in the case of general
elliptic complexes on X and S is referred to as the ‘relative elliptic theory’. Yet
another example of great importance in geometry is the cone of a holomorphic
mapping of two complex manifolds ι : S → X . In this latter case both C∞(X , F ·)
and C∞(S, E·) are the Dolbeault complexes on X and S, respectively. The paper
[ST00] contains a proof of the Lefschetz fixed point formula in the context of relative
elliptic theory.

2. Quotient complexes

Here we recall the well-known construction of a quotient complex from homo-
logical algebra (see [Spa66]).

Let V · be a (cochain) complex of topological vector spaces whose differential is
dV . Suppose that for every i ∈ Z some subspace U i of V i is distinguished. If the
differential dV preserves this sequence of subspaces, i.e. dV U

i ⊂ U i+1 for all i, then
the sequence U i is a complex of topological vector spaces itself, endowed with the
same differential dV . As usual, such a complex U · is referred to as a subcomplex
of V ·.

If U · is a subcomplex of V ·, we can construct a new complex of topological vector
spaces Q· in the following way. Set Qi = V i/U i for i ∈ Z. The differential dQ is
defined so as to make the next diagram, whose rows are exact, commutative

. . . . . . . . .⏐⏐�
⏐⏐�

⏐⏐�
0 −→ U0 i−→ V 0 p−→ Q0 −→ 0⏐⏐�dV

⏐⏐�dV
⏐⏐�dQ

0 −→ U1 i−→ V 1 p−→ Q1 −→ 0⏐⏐�dV
⏐⏐�dV

⏐⏐�dQ
0 −→ U2 i−→ V 2 p−→ Q2 −→ 0⏐⏐�dV

⏐⏐�dV
⏐⏐�dQ

. . . . . . . . .

(2.1)

Here the mappings labeled i represent inclusion and those labeled p represent
projection onto the quotient. It is easy to verify that dQ is continuous and d2Q = 0.
The complex Q· obtained this way is called the quotient complex of V · over U · and
it is denoted by V ·/U ·.

3. Cauchy data relative to pseudodifferential operators

Assume that X be a compact C∞ manifold with boundary containing in a larger
smooth manifold X ′. Let A be a pseudodifferential operator of order m ∈ Z acting
between sections of vector bundles E and F over X ′. If u ∈ C∞(X , E), then the
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extension e+u of u to all of X ′ by zero belongs to L2
comp(X ′, E), and hence the image

A(e+u) lies in H−m
loc (X ′, F ). By the pseudolocality property of pseudodifferential

operators the restriction r+A(e+u) of A(e+u) to the interior of X is C∞. The
operator A is said to possess the transmission property with respect to the surface
∂X if r+A(e+u) extends smoothly to the boundary of X whenever u ∈ C∞(X , E).
For the resulting operator one writes simply A : C∞(X , E) → C∞(X , F ). In
the sequel we restrict ourselves to pseudodifferential operators with transmission
property with respect to ∂X . As but one example we mention partial differential
operators on X .

Denote by A∗ the formal adjoint operator for A. This is a pseudodifferential
operator of the same order m from sections of F to sections of E on X ′, such
that (Au, g)X ′ = (u,A∗g)X ′ for all u ∈ C∞

comp(X ′, E) and g ∈ C∞
comp(X ′, F ). Here,

(·, ·)X ′ stands for the scalar product in L2(X , F ) or L2(X , E), respectively. The
formal adjoint operator bears the transmission property with respect to ∂X along
with A.

A section u ∈ C∞(X , E) is said to have zero Cauchy data on ∂X relative to A
if (Au, g)X = (u,A∗g)X for all u ∈ C∞(X , E) and g ∈ C∞(X , F ). In this case we
write cA(u) = 0.

Lemma 3.1. If m ≤ 0, then each section u ∈ C∞(X , E) has zero Cauchy data on
∂X relative to A.

Proof. Let g ∈ C∞(X , F ). Pick any sequence gj ∈ C∞(X ′, F ) with the property
that the support of each gj belongs to the interior of X and gj → g in the norm
of L2(X , F ). Since Au = r+A(e+u) belongs to L2(X , F ), we conclude by the
continuity that

(Au, g)X = lim
j→∞

(Au, gj)X

= lim
j→∞

(A(e+u), gj)X ′

= lim
j→∞

(e+u,A∗gj)X ′

= (u,A∗g)X ,

as desired. �
For partial differential operators A the following theorem is easily obtained by

partial integration.

Theorem 3.2. Suppose m > 0. If u ∈ C∞(X , E) vanishes up to order m − 1 on
∂X , then u has zero Cauchy data on ∂X .

Proof. Let u ∈ C∞(X , E) vanish up to the order m− 1 on the boundary of X , i.e.,
∂αu = 0 on ∂X for all multi-indices α satisfying |α| ≤ m−1. By the spectral synthe-
sis theorem, there is a sequence uj ∈ C∞(X , E), such that each uj is compactly sup-
ported in the interior of X and uj → u in the norm of Hm(X , E). If g ∈ C∞(X , F ),
then A∗(e+g) ∈ H−m

loc (X ′, E) which is the dual space of Hm
comp(X ′, E). Therefore,

we get

(Au, g)X = lim
j→∞

(Auj , g)X

= lim
j→∞

(uj , r
+A∗(e+g))X ′

= (u,A∗g)X ,
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as desired. �

Denote by C∞
cA(X , E) the subspace of C∞(X , E) consisting of those sections u

whose Cauchy data on the boundary relative to A vanish. Obviously, this subspace
is closed. On combining Lemma 3.1 and Theorem 3.2 we conclude that the quotient
space

Q =
C∞(X , E)

C∞
cA(X , E)

is zero, if m ≤ 0, and it is specified within C∞(∂X , Jm−1(E)), if m ≥ 1. Here,
Jm−1(E) stands for the bundle of (m− 1) -jets of smooth sections of the bundle E
over X ′.

The quotient space Q bears the Cauchy data of sections u ∈ C∞(X , E) on
the surface ∂X relative to A. This leads immediately to a Green formula for the
pseudodifferential operator A on the manifold with boundary X , cf. [See66]. The
main difficulty in carrying out this construction for pseudodifferential operators is
that the spaces of Cauchy data do not survive under the action of the differential of
a complex. Hence, the spaces of Cauchy data do not fit well into the constructions
of the cone of a cochain mapping of homological algebra, see [Spa66]. We restrict
ourselves to those complexes whose differentials are given by local (i.e., differential)
operators, in which case the methods of homological algebra yield useful calculating
tools.

4. The complex of Cauchy data

For i = 0, 1, . . . , N − 1, let Ai be a differential operator of order mi between
sections of vector bundles F i and F i+1 on X ′. Assume that the composition of
any two successive operators of the sequence is zero, and consider the complex of
Fréchet spaces

0 −→ C∞(X , F 0)
A−→ C∞(X , F 1)

A−→ . . .
A−→ C∞(X , FN ) −→ 0 (4.1)

whose differential A is given by Au = Aiu for u ∈ C∞(X , F i). It is convenient to
set A−1 = AN = 0.

Lemma 4.1. If u ∈ C∞(X , F i) has zero Cauchy data on ∂X relative to Ai, then
also cA(Au) = 0.

Proof. Suppose that u ∈ C∞(X , F i) satisfies cA(u) on ∂X . By definition, this
means that

(Au,A∗g)X = (u, (A∗)2g)X = (u, (A2)∗g)X = 0

for all g ∈ C∞(X , F i+2). On the other hand, we get (A(Au), g)X = 0, for A2 = 0.
This implies the desired assertion. �

The lemma shows that the differential A of the complex C∞(X , F ·) preserves the
spaces C∞

cA(X , F ·) of sections with zero Cauchy data. On using the construction of
Section 2 we get the quotient complex

Q· =
C∞(X , F ·)
C∞

cA(X , F ·)
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whose differential is defined so as to make the following diagram with exact rows
commutative

0 0 0⏐⏐�
⏐⏐�

⏐⏐�
0 −→ C∞

cA(X , F 0)
i−→ C∞(X , F 0)

p−→ Q0 −→ 0⏐⏐�A
⏐⏐�A

⏐⏐�dQ
0 −→ C∞

cA(X , F 1)
i−→ C∞(X , F 1)

p−→ Q1 −→ 0⏐⏐�A
⏐⏐�A

⏐⏐�dQ
0 −→ C∞

cA(X , F 2)
i−→ C∞(X , F 2)

p−→ Q2 −→ 0⏐⏐�A
⏐⏐�A

⏐⏐�dQ
. . . . . . . . .

(4.2)

Here the mappings labeled i represent inclusion and those labeled p represent pro-
jection onto the quotient.

Recall that the hypersurface ∂X is said to be noncharacteristic for complex (4.3)
at a point x ∈ ∂X if

0 −→ F 0
x

σ0(x)−→ F 1
x

σ1(x)−→ . . .
σN−1(x)−→ FN

x −→ 0 (4.3)

is an exact sequence of finite-dimensional vector spaces, where F i
x is the fibre of

F i over the point x and σi(x) = σmi(Ai)(x, d�(x)) is the principal symbol of Ai

evaluated at the cotangent vector d�(x). Here, � is a smooth real-valued function
on X ′, such that {� < 0} just amounts to the interior of X and �′ �= 0 on the
boundary of X .

It was proved in [AN80] that if the boundary of X is noncharacteristic for complex
(4.3) at each point, then the quotient complex Q∗ can be specified as a complex
of differential operators C∞(∂X , E·) on ∂X . This complex is often referred to as
the tangential complex for (4.3), its differential is denoted by Ab and the vector
bundles Ei by F i

t , cf. [Tar90, § 12]. The construction of the tangential complex
is traced back remarkably to classical complexes if C∞(X , F ·) is a complex of first
order differential operators, see [Tar90, 12.1]. We just mention that the tangential
complex for the de Rham complex on X reduces to the de Rham complex on the
closed manifold ∂X .

5. Cone of a cochain mapping

Let

0 −→ V 0 A−→ V 1 A−→ . . .
A−→ V N −→ 0,

0 −→ Q0 B−→ Q1 B−→ . . .
B−→ QN −→ 0

be two complexes of Banach spaces. By a cochain mapping of these complexes is
meant any sequence of mappings

Ci : V i → Qi
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such that the diagram

0 −→ V 0 A−→ V 1 A−→ . . .
A−→ V N −→ 0⏐⏐�C0

⏐⏐�C1

⏐⏐�CN

0 −→ Q0 B−→ Q1 B−→ . . .
B−→ QN −→ 0

(5.1)

commutes, i.e., CiA = BCi−1 for all i.
Given any cochain mapping C = {Ci}, one defines a new complex

0 −→
V 0

⊕
0

d0

−→
V 1

⊕
Q0

d1

−→ . . .
dN−1

−→
V N

⊕
QN−1

dN

−→
0
⊕
QN

−→ 0

(5.2)
where

di =

( −Ai 0
Ci Bi−1

)
.

It is called the cone of the cochain mapping C and denoted by C(C), cf. [Spa66]
and elsewhere.

By CiA = BCi−1 we see that Ai restricts to a mapping kerCi → kerCi+1, and
Bi lifts to a mapping cokerCi → cokerCi+1. We thus arrive at two associated
complexes

0 −→ kerC0 A−→ kerC1 A−→ . . .
A−→ kerCN −→ 0,

0 −→ cokerC0 B−→ cokerC1 B−→ . . .
B−→ cokerCN −→ 0

(5.3)

denoted by kerC and cokerC, respectively.

Lemma 5.1. Complex (5.2) is Fredholm if and only if so are both the complexes
(5.3). In this case

χ(C(C)) = χ(kerC)− χ(cokerC).

Given a (cochain) complex V ·, we write χ(V ·) for the Euler characteristic of V ·,
i.e, for the alternating sum of dimensions of the cohomology spaces of V ·, if defined.

Proof. A trivial verification shows that

H0(C(C)) = H0(kerC),

Hi(C(C)) = Hi(kerC)⊕Hi−1(cokerC),

HN+1(C(C)) = HN (cokerC),

and the lemma follows. �

In particular, complex (5.2) is exact if and only if so are both the complexes
(5.3).

We apply the construction of C(C) in the case when

Qi = V i/U i,

U i being closed subspaces of V i, such that A maps U i to U i+1 for each i. Then
A lifts in a natural way to a mapping Qi → Qi+1 which we denote by AQ. By
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the very definition it fulfills CiA = AQC
i−1 where Ci are the canonical mappings.

Hence we arrive at the complex

0 −→
V 0

⊕
0

d0

−→
V 1

⊕
V 0/U0

d1

−→ . . .
dN−1

−→
V N

⊕
V N−1/UN−1

dN

−→
0
⊕

V N/UN
−→ 0

(5.4)
with

di =

( −Ai 0

Ci Ai−1
Q

)
.

Theorem 5.2. For complex (5.4) to be Fredholm it is necessary and sufficient that
the complex

0 −→ U0 A−→ U1 A−→ . . .
A−→ UN −→ 0 (5.5)

would be Fredholm. In this case the Euler characteristic of (5.4) is equal to that of
the complex (5.5).

Proof. It suffices to combine Lemma 5.1 with the observation that in our case the
complex kerC reduces to (5.5), and the complex cokerC is zero. �

6. A noncharacteristic Cauchy problem

Suppose that the boundary of X is noncharacteristic for complex (4.3) at each
point x ∈ ∂X . Given f ∈ C∞(X , F i) and g ∈ C∞(∂X , F i−1

t ), we consider the
Cauchy problem of finding sections u ∈ C∞(X , F i−1) and v ∈ C∞(∂X , F i−2

t )
which satisfy { −Au = f in X ,

cA(u) +Abv = g on ∂X ,
(6.1)

cf. [Tar90, § 19].
For the existence of a solution to this problem it is necessary that −Af = 0

in X and cA(f) + Abg = 0 on ∂X . Hence, the study of problem (6.1) reduces to
evaluating the cohomology of the complex

C∞(X , F i−1)
⊕

C∞(∂X , F i−2
t )

di−1

−→
C∞(X , F i)

⊕
C∞(∂X , F i−1

t )

di

−→
C∞(X , F i+1)

⊕
C∞(∂X , F i

t )
(6.2)

at the middle step, where

di =

( −Ai 0

cA Ai−1
b

)
.

The following example has been mentioned in many researches. It goes back at
least as far as [Dyn72].

Example 6.1. Let C∞(X , F ∗) = Ω·(X ) be the de Rham complex on X . Then
(6.2) is the relative de Rham complex of the pair (X , ∂X ) at step i. Its cohomology
is isomorphic to the relative cohomology of the pair (X , ∂X ) with complex coeffi-
cients, i.e., Hi((X , ∂X ),C). Hence, the cone of the cochain mapping cd of Ω·(X ) is
Fredholm.
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For i = 0, 1, . . . , N , we denote by C∞
X (X ′, F i) the subspace of C∞(X ′, F i)

consisting of all sections with (compact) support in X . Obviously, the spaces
C∞

X (X ′, F i) survive under the differential A and so they constitute a subcomplex
of C∞(X , F ·).

Theorem 6.2. The cohomology of (6.2) at the middle step is isomorphic to that
of C∞

X (X ′, F ·) at step i, i.e.,

Hi(C(cA)) ≡ Hi(C∞
X (X ′, F ·)).

Proof. Since the boundary of X is noncharacteristic for complex (4.3) at each point,
Theorem 11.11 of [Tar90] shows that the cohomology of the complex C∞

X (X ′, F ·)
coincides with that of C∞

ca (X , F ·). Therefore, we shall have established the theorem
if we prove that

Hi(C(cA)) ≡ Hi(C∞
cA(X , F ·)).

Pick a cohomology class [f ⊕ g] in Hi(C(cA)), where sections f ∈ C∞(X , F i)
and g ∈ C∞(∂X , F i−1

t ) satisfy −Af = 0 in X and cA(f) + Abg = 0 on ∂X . There
is a section g̃ ∈ C∞(X , F i−1), such that cA(g̃) = g on the boundary. Hence it
follows that A(f + Ag̃) = 0 in X and cA(f + Ag̃) = 0 on ∂X . We introduce a
homomorphism

h : Hi(C(cA)) → Hi(C∞
cA(X , F ·))

by setting h[f ⊕ g] = [f +Ag̃], the cohomology class in Hi(C∞
cA(X , F ·)) containing

f +Ag̃.
We first show that this definition is correct, i.e., the class [f + Ag̃] does not

depend on the particular choice of the representative of the class [f ⊕ g]. To this
end, we assume that f ⊕ g represents the zero class in Hi(C(cA)). Then we get
f = −Au in X and g = cA(u)+Abv on ∂X for some sections u ∈ C∞(X , F i−1) and
v ∈ C∞(∂X , F i−2

t ). Choose a section ṽ ∈ C∞(X , F i−2), such that cA(ṽ) = v on
∂X . On setting g̃ = u+Aṽ we obtain cA(u+Aṽ) = g and [f +Ag̃] = [f +Au] = 0,
as desired.

The homomorphism h is injective. Let [f ⊕ g] be any class in Hi(C(cA)), such
that h[f ⊕ g] = 0. By the definition of h, there is a section u ∈ C∞(X , F i−1), such
that cA(u) = 0 and Au = f + Ag̃, where g̃ ∈ C∞(X , F i−1) satisfies cA(g̃) = g on
the boundary of X . Then the section −u + g̃ belongs to C∞(X , F i−1) and fulfills
−A(−u+ g̃) = f in X and cA(−u+ g̃)+Ab0 = g. Hence it follows that [f ⊕ g] = 0,
as desired.

It remains to show that the homomorphism h is surjective. For this purpose,
we fix a class [f ] in Hi(C∞

cA(X , F i)), where f ∈ C∞(X , F i) is a section with the
property that Af = 0 in X and cA(f) = 0 on ∂X . Then the pair f ⊕ 0 determines
obviously a cohomology class in Hi(C(cA)) and h[f⊕0] = [f+A0], which completes
the proof. �

Actually, the abstract contents of the proof of this theorem is a part of homo-
logical algebra sketched in the proof of Lemma 5.1, for the cochain mapping cA is
surjective.

Theorem 6.2 initiates many substantial problems of geometry and global analysis.
Assume, e.g., that (4.3) is an elliptic complex on the manifold X ′. Then it has
a parametrix P on X ′, i.e., there is a sequence of pseudodifferential operators
P i of order −mi−1 between sections of vector bundles F i and F i−1, such that
PAu + APu = u − Su for all u ∈ D′(X ′, F i) with compact support, where Si is
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a smoothing operator on sections of D′(X ′, F i). Let now u ∈ C∞
X (X ′, F 0) satisfy

Au = 0 in X ′. Then u = Su in X ′. A familiar argument shows readily that the
space of such u is of finite dimension, i.e., dimH0(C∞

X (X ′, F ·)) < ∞. On the
other hand, suppose that H1(C∞(X ′, F ·)) = 0 and the complement of X in X ′ is
connected. Let f ∈ C∞

X (X ′, F 1) satisfy Af = 0 in X ′. By assumption, there is
a u ∈ C∞(X ′, F 0), such that Au = f in X ′. In particular, we get Au = 0 away
from the compact set X in X ′. By the Hartogs theorem on removability of compact
singularities by solutions of overdetermined systems (see [Tar90, § 19]) we conclude
that there is a section ũ ∈ C∞(X ′, F 0) satisfying Aũ = 0 in X ′ and ũ = u in X ′ \X .
The difference u−ũ ∈ C∞(X ′, F 0) is supported in X and it satisfies A(u−ũ) = f in
X ′. Hence it follows immediately that the cohomology H1(C∞

X (X ′, F ·)) is trivial.
It is worth pointing out that the cohomology of complex C∞

X (X ′, F ·) at the last
step N need not be finite-dimensional in general. A calculus of pseudodifferential
operators relevant to the study of the cohomology of complex C∞

X (X ′, F ·) has been
developed in [VE65].

7. The Cauchy problem for the Dolbeault complex

Consider a compact domain X with Lipschitz boundary in an n -dimensional
Kähler manifold {X ′, ω}, ω being a Kähler metric on X ′. As usual, we write X ◦

for the interior of X . We assume that X ◦ satisfies some log δ -pseudoconvexity con-
dition, where δ stands for the boundary distance with respect to ω. By the log δ -
pseudoconvexity is meant roughly that − log δ extends to a strictly plurisubhar-
monic function on X ◦. Examples of domains satisfying the above log δ -pseudocon-
vexity condition are weakly pseudoconvex domains in Stein manifolds and weakly
pseudoconvex domains in Kähler manifolds with positive holomorphic bisectional
curvature.

Let f be a smooth (p, q) -form on X ′ satisfying ∂̄f = 0 on X ′ and supp f ⊂ X ,
i.e., f vanishes to infinite order at the boundary of X . The paper [Bri04] studies the
problem of finding a smooth (p, q − 1) -form u on X ′ with support in X satisfying
∂̄u = f in X ′.

The solvability of this ∂̄ -problem leads to extension results for ∂̄b -closed forms
on the boundary of X , whenever ∂X is smooth, and can thus be used to understand
the ∂̄b -cohomology of ∂X , see [HN06] and [BH08] for a recent account of the theory.
In [Bri04] it is proved that this ∂̄ -problem admits a solution for 1 ≤ q ≤ n − 1,
and the top degree ∂̄ -cohomology groups of smooth forms with support in X are
separated.

The case X ⊂ C
n with piecewise smooth boundary was settled in the paper

[MS99] using kernel methods. Note that a much more refined result based on
explicit integral representations had already been established by Sh. Dautov in
1979 (see § 25 in [AY79]).

Similarly to [AY79, § 25] the proof of [Bri04] exploits basic L2 estimates on X
with powers of the reciprocal of the boundary distance as weight function. Sobolev
estimates for elliptic operators whose symbol can be controlled by some power of the
boundary distance are deduced in order to prove regularity results for the minimal
L2 solutions of the ∂̄ -equation.
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Theorem 6.2 allows one to apply the results of [Bri04] to the cone of the cochain
mapping

0 −→ Ωp,0(X )
∂̄−→ Ωp,1(X )

∂̄−→ . . .
∂̄−→ Ωp,n(X ) −→ 0⏐⏐� t

⏐⏐� t

⏐⏐� t

0 −→ Ωp,0
t (∂X )

∂̄b−→ Ωp,1
t (∂X )

∂̄b−→ . . . −→ 0

of the Dolbeault complex Ωp,·(X ) on X into the induced complex Ωp,·
t (∂X ) on the

boundary, see [Tar90, § 11]. Here, for fixed p = 0, 1, . . . , n, by Ωp,q(X ) is meant
the space of all differential forms of bidegree (p, q) with C∞ “coefficients” on X .
Given any f ∈ Ωp,q(X ), we denote by t(f) the complex tangential part of f on
∂X . As mentioned, t(f) is identified as a C∞ section of a smooth vector bundle
over the boundary which is different from zero unless q = n. The space of all such
sections is denoted by Ωp,q

t (∂X ), for q = 0, 1, . . . , n− 1. These spaces are gathered
into the complex Ωp,·

t (∂X ) endowed with differential ∂̄b. By the very definition, we
get t(∂̄f) = ∂̄bt(f). The complex Ωp,·

t (∂X ) is usually referred to as the tangential
Cauchy-Riemann complex on ∂X , and ∂̄b is called the tangential Cauchy-Riemann
operator.

As defined above, the cone of the cochain mapping t : Ωp,·(X ) → Ωp,q
t (∂X ) looks

like

0 −→
Ωp,0(X )

⊕
0

d0

−→
Ωp,1(X )

⊕
Ωp,0

t (∂X )

d1

−→ . . .
dn−1

−→
Ωp,n(X )

⊕
Ωp,n−1

t (∂X )
−→ 0

(7.1)
where

di =

( −∂̄i 0

t ∂̄i−1
b

)
.

Corollary 7.1. Suppose that X is a compact domain with smooth boundary in a
Kähler manifold X ′ whose interior is log δ -pseudoconvex. Then the cohomology of
(7.1) at steps 0 ≤ q ≤ n − 1 is zero and the cohomology at the top step q = n is
separated.

Note that the latter assertion just amounts to saying that the range of the
operator dn−1 is closed in Ωp,n(X )⊕Ωp,n−1

t (∂X ).
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