
Universitätsverlag Potsdam

Jan Gairing | Michael Högele | Tetiana Kosenkova

Transportation Distances and Noise 
Sensitivity of Multiplicative Lévy SDE 
with Applications

Preprints des Instituts für Mathematik der Universität Potsdam 
5 (2016) 2



 



Preprints des Instituts für Mathematik der Universität Potsdam 



 



Preprints des Instituts für Mathematik der Universität Potsdam 
5 (2016) 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jan Gairing | Michael Högele | Tetiana Kosenkova 
 
 

Transportation Distances and Noise Sensitivity  
of Multiplicative Lévy SDE with Applications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Universitätsverlag Potsdam 



Bibliografische Information der Deutschen Nationalbibliothek  
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der  
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind  
im Internet über http://dnb.dnb.de abrufbar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universitätsverlag Potsdam 2016 
http://verlag.ub.uni-potsdam.de/ 
 
Am Neuen Palais 10, 14469 Potsdam 
Tel.: +49 (0)331 977 2533 / Fax: 2292 
E-Mail: verlag@uni-potsdam.de 
 
Die Schriftenreihe Preprints des Instituts für Mathematik der Universität Potsdam wird 
herausgegeben vom Institut für Mathematik der Universität Potsdam. 
 
ISSN (online) 2193-6943 
 
Kontakt:  
Institut für Mathematik 
Karl-Liebknecht-Straße 24/25 
14476 Potsdam 
Tel.: +49 (0)331 977 1499 
WWW: http://www.math.uni-potsdam.de 
 
Titelabbildungen: 
1. Karla Fritze | Institutsgebäude auf dem Campus Neues Palais 
2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation 
Published at: http://arxiv.org/abs/1105.5089 
Das Manuskript ist urheberrechtlich geschützt.  
 
Online veröffentlicht auf dem Publikationsserver der Universität Potsdam 
URL https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/8669 
URN urn:nbn:de:kobv:517-opus4-86693 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86693 



Transportation distances and noise sensitivity

of multiplicative Lévy SDE with applications

Jan Gairing ∗ Michael Högele† Tetiana Kosenkova ‡

November 23, 2015

Abstract

This article assesses the distance between the laws of stochastic differential equations with
multiplicative Lévy noise on path space in terms of their characteristics. The notion of trans-
portation distance on the set of Lévy kernels introduced by Kosenkova and Kulik yields a natural
and statistically tractable upper bound on the noise sensitivity. This extends recent results for
the additive case in terms of coupling distances to the multiplicative case. The strength of this
notion is shown in a statistical implementation for simulations and the example of a benchmark
time series in paleoclimate.

MSC 2010: 60G51; 60G52; 60J75; 62M10; 62P12;
Keywords: stochastic differential equations; multiplicative Lévy noise; Lévy type processes;
heavy-tailed distributions; model selection; Wasserstein distance; time series;

1 Introduction

Many dynamical phenomena are subject to random forcing, often described by stochastic differential
equations of the following type

dX(t) = −∇U(X(t))dt+ dξ(t), X0 = x0, (1.1)

where −∇U encodes the deterministic dynamics given by a potential gradient and ξ a noise signal.
In general, for instance when ξ exhibits discontinuities, it is not straight-forward to describe the
law of the solution X on path space in terms of the parameters which determine the distribution
of ξ. Our approach allows to quantify the distance of such laws in terms of accessible quantities,
both analytically and statistically.

The case where ξ is given as a discontinuous Lévy process was studied in a previous publica-
tion [7]. The authors introduced the notion of a coupling distance between Lévy measures in order
to quantify the Wasserstein distance on path space. The coupling distances have been found to be
sufficiently strong (in a topological sense) to quantify the convergence in functional limit theorems,
yet being weak enough in order to be numerically and statistically tractable. See for instance the
calibration problem of a climate time series in [8]. In many situations, however, the noise process
ξ exhibits state dependence, for instance multiplicative noise. This generalization lifts Lévy diffu-
sions to Lévy-type diffusions. To treat this class of noise processes the authors introduced in [21]
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the notion of transportation distance extending the coupling distances with the help of a common
reference Lévy measure. The present article establishes analogous bounds on the distance between
the laws of Lévy-type diffusions on path space in terms of transportation distances.

We stress that our procedure is suitable for a large variety of phenomena modelled with jump
diffusions, such as in finance (e.g. [24]) or neurosciences [3, 13, 27]. The particular application
we have in mind in this article is the refinement of the analysis of the noise structure behind the
paleoclimate temperature evolution studied in [8]. The climate data apparently fluctuate around
two distinct metastable states with rapid transitions (see Fig. 2). Such phenomena are observed
in stochastic energy balance models [1, 2, 4, 14, 16, 17].

There is a list of publications associating this time series to an underlying jump diffusion (see
for instance [8, 6, 9, 11]). Using various techniques these articles aim to determine the (polynomial)
jump behavior of (1.1) for different classes of heavy-tailed Lévy processes ξ. The models so far
require the spacial homogeneity of the noise characteristics. The present article lifts this restriction.
We may now investigate the statical behavior in the different spatial regimes, prescribed by the
metastable states, and solve the corresponding model selection problem on the generic class of
heavy-tailed jump diffusions. Our results of the implementation of this program applied to the
mentioned climate times series are consistent with the findings in [8].

2 Preliminaries

Transportation functions and transportation distance: Consider a filtered probability
space (Ω,F ,P, (Ft)t�0) satisfying the usual conditions in the sense of Protter [23] carrying a scalar
Brownian motion (Bt)t∈[0,T ] and an independent Cauchy Poisson random measure ν0 on [0, T ]×R

with intensity measure dt⊗Π0 given by

Π0(dv) = 1{v∈R\{0}}
dv

v2
.

We define a Lévy measure to be a σ-finite Borel measure on R \ {0} satisfying∫
R

(|v|2 ∧ 1)Π(dv) < ∞. (2.1)

In contrast to the standard definition we do not exclude point-mass in 0 which may be taken to
be infinity. Nevertheless we will identify all such measures that coincide on the Borel σ-algebra
B(R \ {0}) and the standard Lévy measures (without mass in 0) are the canonical representatives
of those equivalence classes (for details see [21]). The key of our analysis is the observation that
all standard Lévy measures with infinite mass admit a representation as a measure transform of
a common reference Lévy measure. This reference measure will be chosen to be the standard
symmetric Cauchy measure. In order to treat finite Lévy measures we may artificially assign an
infinite point-mass to 0. The precise statement is given as follows.

Proposition 2.1. For any standard Lévy measure Π (that is Π({0}) = 0) there exists a unique
Lévy measure Π̃ in the sense of (2.1) defined as Π̃ = Π if Π(R) = ∞ and Π̃ = Π +∞δ0 else, and
a unique transportation function c : R → R satisfying

1. c is non-decreasing,

2. c((−∞, 0]) ⊂ (−∞, 0] and c([0,∞)) ⊂ [0,∞),

3. c is left continuous on (−∞, 0] and right continuous on [0,∞),
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such that Π̃ = Π0 ◦ c−1.

A proof is found in [21]. For the sake of readability and due to uniqueness we no longer distinguish
between Π̃ and Π.

Example 2.2. 1. For the one-sided Cauchy measure Π(dv) = 1{v>0} dvv2 we have the transportion
function c(v) = 1{v>0}v. Note that c maps the infinite mass of Π0 on (−∞, 0] to the point 0.

The image measure Π̃(dv) = 1{v>0} dvv2 +∞ · δ0 coincides with Π outside 0.

2. The next example will be exploited extensively in the applications of Section 4. For α, ε, λ > 0
consider the Pareto-type power tail Πα,ε,λ(dv) = 1{v>ε} λdv

vα+1 . It is easy to verify that in this
case the transportation function is of the form

c(v) = 1{v>αεα

λ }

(
λv

α

)1/α

.

Note that the positive span of the family {Πα,ε,λ : α, ε, λ ∈ Q+} is dense in the class of heavy
tailed Lévy measures on the positive half-line.

Example 2.3. Let (ξi)i∈N be a sequence of real valued random variables with values in [ε,∞) for

some ε > 0. The respective empirical measure is given by Πn([a, b]) =
#{ξi∈(a,b],i�n}

n on intervals
(a, b]. We denote the n-th order statistic by ε < ξ1:n � ξ2:n � · · · � ξn:n. In each interval
(ξi:n, ξi+1:n] we have exactly one data point with individual mass 1/n such that

Πn((ξi:n, ξi+1:n]) =
1

n
=

c−1(ξi+1:n)∫
c−1(ξi:n)

dv

v2
=

1

c−1(ξi:n)
− 1

c−1(ξi+1:n)
,

which yields

c−1(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 v ∈ [0, ε)

1 v ∈ [ε, ξ1:n)
n

(n−i+1) v ∈ [ξi−1:n, ξi:n) for all i ∈ {2, n}
∞ v � ξn:n .

Hence the inverse is given by

c(v) =

⎧⎪⎨
⎪⎩
0 v ∈ [0, 1)

ξi:n v ∈ [ n
(n−i+1) ,

n
(n−i)) for all i ∈ {1, n− 1}

ξn:n v � n.

We take advantage of the measure transform of Proposition 2.1 to compare two given Lévy measures
in terms of a truncated Lp(Π0) distance of the respective transportation functions.

Remark 2.4. We stress that Proposition 2.1 guarantees that the previously chosen probability
space (Ω,F ,P, (Ft)t�0) is rich enough to carry any Poisson random measures ν (in distribution)
with respect to the intensity measure dt⊗Π, where Π is a (standard) Lévy measure via

ν((s, t]×A) = ν0((s, t]× c−1(A)), A ∈ B(R \ {0}), 0 � s � t.
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Definition 2.5. Define the class

Lp
ρ := {Π (standard) Lévy measure |

∫
R

ρp(0, v)Π(dv) < ∞},

where p � 1 and ρ(x, y) := |x − y| ∧ 1 is the truncated Euclidean distance. For Lévy measures
Πi ∈ Lp

ρ, i = 1, 2 with respective representations Πi = Π0 ◦ c−1
i according to Proposition 2.1 we

define the transportation distance of order p by

Tp(Π1,Π2) :=

(∫
R

ρp
(
c1(u), c2(u)

)
Π0(dv)

)1/p

.

It has been established in [21] that the transportation distance metrizes the positive cone Lp
ρ.

Remark 2.6. In the case of proper Lévy-type mesures with state dependence Π(x, dv) Proposi-
tion 2.1 yields a family of transportation functions (c(x, ·))x∈R.

Stochastic differential equations: For any Poisson random measure ν on (Ω,F ,P, (Ft)t�0)
(cf. Remark 2.4) independent of W with intensity measure dt⊗Π, Π a Lévy measure, and a, b ∈ R

there is a Lévy process Z given in terms of its Lévy-Itô decomposition

Z(t) = at+ bW (t) +

∫∫
(0,t]×[−1,1]

vν̃(dv, dt) +

∫∫
(0,t]×R\[−1,1]

vν(dv, dt). (2.2)

As usual ν̃ = ν − dt ⊗ Π denotes the compensated Poisson random measure of ν on B(R \ {0}).
Recall that the law of Z is characterized by its Lévy triplet (a, b,Π). For further details we refer
to [26]. Consider now the following formal stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t))dW (t)

+

∫
|v|�1

v ν̃(X(t−), dt, dv) +

∫
|u|>1

v ν(X(t−), dt, dv). (2.3)

Here ν (resp. ν̃) is interpreted as a space dependent (compensated) Poisson random measure ex-
plained below. A solution X of such an equation is understood as the solution to the corresponding
martingale problem for the following integro-differential operator A acting on ϕ ∈ C2

c (R)

A[ϕ](x) = a(x)ϕ′(x) + b2(x)ϕ′′(x) +
∫

R\{0}

(
ϕ(x+ v)− ϕ(x)− ϕ′(x)v1{|v|�1}

)
Π(x, dv),

where a, b : R → R and x 
→ Π(x, ·) is a Lévy kernel, which associates to each x ∈ R the Lévy
measure Π(x, ·). We may rewrite A in terms of the Lipschitz continuous cutoff function τ(u) :=
sign(u)(|u| ∧ 1) and ā(x) = Π(x, {u ∈ R | |u| > 1}) as

A[ϕ](x) = (a(x) + ā(x))ϕ′(x) + b2(x)ϕ′′(x) +
∫

R\{0}

(
ϕ(x+ v)− ϕ(x)− ϕ′(x)τ(v)

)
Π(x, dv). (2.4)

Proposition 2.1 allows us to represent Π(x, ·) as Π0 ◦ c−1(x, ·) in terms of a family of tansport
functions (c(x, ·))x∈R with respect to the Cauchy reference measure Π0. For Lévy type processes
we refer to [10] and [5].

4



In [21] it is shown that under the following Lipschitz and boundedness conditions on the space-
dependent coefficients (a, b,Π) for any x, y ∈ R

|a(x)− a(y)| � La |x− y|, (2.5)

(b(x)− b(y))2 � Lb ρ
2(x, y), (2.6)

|ā(x)− ā(y)| � Lāρ(x, y), (2.7)

T 2
2 (Π(x, ·),Π(y, ·)) � LΠ ρ2(x, y), (2.8)

and initial value x0 ∈ R there exists a unique strong solution to the martingale problem associated
to (2.4). On the probability space (Ω,F ,P, (Ft)t�0) this is given as a strong solution of the following
SDE

dX(t) =
(
a(X(t)) + ā(X(t))

)
dt+ b(X(t))dW (t)

+

∫
R

c(X(t−), v)

[
ν0(dt, dv)−

τ(c(X(t−), v))

c(X(t−), v)
Π0(dv)dt

]
, (2.9)

X(0) = x0. (2.10)

Under these assumptions Remark 2.4 provides a strong solution of (2.3).
The main purpose of this construction is to compare the laws of two diffusions Xi, i = 1, 2 on

the same probability space (Ω,F ,P) given as strong solutions (2.9) with identical Brownian motion
W and Cauchy Poisson random measure ν0, whose respective coefficients (ai, bi,Πi), i = 1, 2 satisfy
(2.5), (2.6), (2.7) and (2.8). This is carried out in Theorem 3.5. In a simplified setting more suitable
for the applications we have in mind this is done in Theorem 3.6.

Remark 2.7. In the case of pure jump diffusions with finite intensity, that is Lévy-type diffusions
with triplet of characteristics (a, 0,Π), where Π is a finite measure, it is obvious that we only need
the Lipschitz continuity of a (2.5). In this case we consider equation

dX(t) = a(X(t))dt+

∫
R

c(X(t−), v)ν0(dt, dv), (2.11)

X(0) = x0. (2.12)

3 Main results

In this section we will first compare the laws of two diffusions in the sense of (2.9) in terms of T2. In
a second part this is carried out in terms of T1 motivated by applications elaborated in Section 4.

3.1 Noise sensitivity estimates in terms of T2

We are interested in the sensititivity of the laws of solutions of (2.9) with respect to their parameters.
The following theorem provides a quantitative estimate in terms of T2.
Theorem 3.1. Let Xi, i = 1, 2 on (Ω,F ,P) be strong solutions of (2.9) with respective initial
conditions xi ∈ R and triplets of characteristics (ai, bi,Πi) satisfying the Lipschitz conditions (2.5-
2.8) for common constants La, Lb, Lā, LΠ > 0 and ‖a1 − a2‖∞ < ∞. Then for any T > 0 there is
constant K > 0 such that for G(x) = max{√x, x}, x � 0 we have

E sup
t∈[0,T ]

ρ2(X1(t), X2(t)) � KG
(
Δ
)
, (3.1)
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where

Δ = ρ(x1, x2) + ‖a1 − a2‖2∞ + ‖ā1 − ā2‖2∞ + ‖b1 − b2‖2∞

+ sup
x∈R

T2(Π1(x, ·),Π2(x, ·)) + sup
x∈R

T 2
2

(
Π1(x, ·),Π2(x, ·)

)
.

The statement of the theorem also allows to compare laws of solutions of (2.3) which are not
necessarily defined on the same probability space. The natural choice of a metric between such
laws is the (truncated) Wasserstein distance on path space, for details see [7] and for general
reference [25].

Corollary 3.2. Under the assumptions of Theorem 3.1 the strong solutions Xi, i = 1, 2 to (2.9)
form a specific coupling of solutions to (2.3). Hence the bound (3.1) gives an upper bound of the
Wasserstein distance of order 2 on the path space of càdlàg paths endowed with the (truncated)
supremum norm. The Wasserstein distance is precisely defined as as the infimum of the left-hand
side of (3.1) where the pair (X1, X2) ranges over all couplings of X1 with X2.

The following example shows that the Lipschitz conditions (2.5-2.8) are not very restrictive in
the class of Lévy-type kernels with exponential moments.

Example 3.3. An important example is given by the Gamma-type process, that is a Lévy-type
process with triplet of characteristics (0, 0,Π) and initial value x0 = 0. The Lévy kernel is given
as Π(x, dv) = 1{v>0}λ(x)(e−γ(x)v/v)dv with bounded and Lipschitz continuous coefficients λ, γ :
[0,∞) → [0,∞) satisfying supx∈R λ(x) > 0 and supx∈R γ(x) > 0. Indeed, Proposition 3 in [21]
states the following. Let Πj , j = 1, 2 be two Gamma Lévy measures Πj(dv) = 1{v>0}(γje−λjv/v)dv,
j = 1, 2 with constants γj , λj > 0.

1. For two such Gamma measures Πj , j = 1, 2 with the same parameter λ and different param-
eters 0 < γ1 < γ2 there exists a constant D = D(λ) > 0 such that the following bound holds
true

T2(Π1,Π2) � D (γ2 − γ1) . (3.2)

2. For two such Gamma measures Πj , j = 1, 2 with the same parameter γ and different param-
eters 0 < λ1 < λ2 there exists a constant D̃ = D̃(γ, λ1, λ2) > 0 locally bounded in λ1 around
λ2 such that

T2(Π1,Π2) � D̃ (λ2 − λ1) . (3.3)

These results immediately yield that condition (2.8) is satisfied in either case.

3.2 Noise sensitivity estimates in terms of T1

In applications, however, the involved Lévy measures are heavy-tailed and do not satisfy (2.8).
In [8] for instance, it was obtained that the measures that are likely to describe the noise in the
paleoclimatic data are of the following shape

Π(dv) =
(
1{v<1}

λ−

|v|α−+1
+ 1{v>1}

λ+

vα++1

)
dv, α � 2. (3.4)
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Remark 3.4. Such Lévy measures do not satisfy (2.8) due to the following reasoning. Let λ+ = 1,
λ− = 0 and α2 > α1 > 1 with |α2 − α1| small. Then transportation distance satisfies inequalities
of the form

T 2
2 (Π1,Π2) =

∞∫
0

(
1{v>α

1/α1
1 }

( v

α1

)1/α1

− 1{v>α
1/α2
2 }

( v

α2

)1/α2
)2

∧ 1)Π0(dv)

�
α
1/α2
2∫

α
1/α1
1

( v

α1

)1/α1 1

v2
dv � Cα1 |α

1/α2

2 − α
1/α1

1 | � inf
|x|�|α2−α1|

g′(x) Cα1 |α1 − α2|,

where g(x) = x1/x. Since g′(α1) is locally bounded from below in a small neighborhood of α1, this
only implies Hölder continuity with respect to T2.

With this result in mind we switch to the setting of a pure jump diffusionsXj with the respective
triplet of characteristics (aj , 0,Πj) for finite Πj and initial conditions xj , satisfying (2.5). For two
solutions of such differential equations we can state the following result.

Theorem 3.5. Let Xi, i = 1, 2 on (Ω,F ,P) be strong solutions of (2.9) with respective initial
conditions xj ∈ R and triplet of characteristics (ai, 0,Πi) satisfying the Lipschitz conditions (2.5)
and

T1(Π(x, ·),Π(y, ·)) � LΠρ(x, y) for all x, y ∈ R. (3.5)

Then for any T > 0 there exists a constant K > 0 such that for G(x) = max{√x, x}, x � 0 we
have

E sup
t∈[0,T ]

ρ(X1(t), X2(t)) � KG
(
ρ(x1, x2) + sup

x∈R
T1
(
Π1(x, ·),Π2(x, ·)

))
. (3.6)

The following proposition establishes that for constants λ+ � 0 and λ− � 0 and a bounded and
globally Lipschitz continuous function α : R → [2,∞) the Lévy-type measure Π(x, dv)

Π(x, dv) =
(
1{v<1}

λ−

|v|α(x)+1
+ 1{v>1}

λ+

vα(x)+1

)
dv (3.7)

satisfies the T1-Lipschitz condition (3.5).

Proposition 3.6. For Lévy measures Πi, i = 1, 2 defined in (3.4) with λ+ = λ+
1 = λ+

2 and
λ− = λ−

1 = λ−
2 and 2 � α+

1 , α
+
2 , α

−
1 , α

−
2 there exists a constant D = D(λ+, λ−) > 0 such that

T1(Π1,Π2) � D
(
|α+

1 − α+
2 |+ |α−

1 − α−
2 |
)
. (3.8)

All proofs are found in Section 5.

4 Applications

In this section we demonstrate the benefit of the transportation distance in an empirical setting.
Assume we are given a data set ξ1, . . . ξn that we interpret as jumps of a Lévy process with Lévy
measure Π. In Example 2.3 we have calculated the transportation kernel cn of the empirical
Lévy measure Πn. We are particularly interested in modelling with power law tails where the
corresponding transportation kernels cα are given in Example 2.2. We are then in the position
to evaluate the transportation distance between the empirical Lévy measures Πn and such power
laws. This is done in example 4.1. In the sequel we analyze the behavior of the transportation
distance for simulated power law jumps. Ultimately we utilize this device to propose a simple but
state dependent jump diffusion model for a paleoclimatic bench mark time series.

7



4.1 Analytical considerations

Example 4.1. Let us consider the transportation distance between the empirical measure Πn((a, b])
of Example 2.3 and a power law Πα,ε(vu) = 1{v>ε} λdv

vα+1 (α = 1) of Example 2.2. Recall that cn is
piecewise constant. Observe that for 0 < a < b and a constant c > 0

b∫
a

|c− (λvα )1/α|v−2dv =

b∧α
λ
cα∫

a∧α
λ
cα

(c− (λvα )1/α)v−2dv +

b∨α
λ
cα∫

a∨α
λ
cα

((λvα )1/α − c)v−2dv

= qc(b ∨ α
λ c

α)− qc(b ∧ α
λ c

α) + qc(a ∧ α
λ c

α)− qc(a ∨ α
λ c

α), (4.1)

where

qc(x) = (λα)
1/α x1/α−1

1/α− 1
+ cx−1 .

For convenience we denote

κ̃−c := α
λ (c− 1)α � κ̃0c :=

α
λ (c)

α � κ̃+c := α
λ (c+ 1)α .

Let us restrict these quantities to the interval (a, b] by setting

κ�c := κ�c(a, b) := (a ∨ κ̃�c) ∧ b , � ∈ {−, 0,+} ,

which yields a � κ−c � κ0c � κ+c � b. Then formula (4.1) turns into

b∫
a

(|c− (λvα )1/α| ∧ 1)v−2dv

=

κ−
c∫

a

v−2dv +

κ0
c∫

κ−
c

(c− (λvα )1/α)v−2dv +

κ+
c∫

κ0
c

((λvα )1/α − c)v−2dv +

b∫
κ+
c

v−2dv

= qc
(
κ−c

)
+ qc

(
κ+c

)
− 2qc

(
κ0c

)
+

1

a
− 1

b
+

1

κ+c
− 1

κ−c
.

Hence we may evaluate

T1(Πn,Πα,ε) =

∞∫
0

(|cn(v)− cα(v)| ∧ 1)v−2dv

=

1∫
ε

((λvα )1/α ∧ 1)v−2du+
n∑

i=1

n
n−i∫
n

n−i+1

(|ξi:n − (λvα )1/α| ∧ 1)v−2dv

=
n∑

i=1

n
n−i∫
n

n−i+1

(|ξi:n − (λvα )1/α| ∧ 1)v−2dv

= 1 +
n∑

i=1

qξi:n
(
κ−(i)

)
+ qξi:n

(
κ+(i)

)
− 2qξi:n

(
κ0(i)

)
+

1

κ+(i)
− 1

κ−(i)
,

8



ε 0.5 0.6 0.7 0.8 0.9 1.0α

1 0.1901 0.2000 0.2191 0.2429 0.2766 0.3191
2 0.0877 0.0893 0.1039 0.1017 0.1181 0.1406
3 0.0522 0.0530 0.0579 0.0619 0.0690 0.0789
4 0.0364 0.0359 0.0373 0.0400 0.0479 0.0551
5 0.0286 0.0277 0.0272 0.0294 0.0335 0.0403
6 0.0232 0.0213 0.0216 0.0238 0.0276 0.0317
7 0.0194 0.0184 0.0170 0.0182 0.0210 0.0237
8 0.0169 0.0153 0.0149 0.0149 0.0172 0.0193
9 0.0149 0.0135 0.0126 0.0137 0.0148 0.0178
10 0.0132 0.0123 0.0116 0.0114 0.0137 0.0149

Table 1: The mean out of 100 simulations of T̃1(Πn,Πα,ε) for n = 100.

where we have abbreviated

κ�(i) := κ�ξi:n
(

n
n−i+1 ,

n
n−i

)
, i = 1, . . . , n, � ∈ {−, 0,+} .

Remark 4.2 (Normalization).

1. Note that the empirical measure Πn is a probability measure and has total mass one. It is
therefore reasonable to normalize Πα,ε choosing λ = εα

α .

2. In general the transportation distance is unbounded. In this example the support of the Lévy
measures it bounded away from zero by ε. Hence the transportation distance is bounded from
above by

∫∞
ε u−2du = ε−1. For the sake comparability we therefore normalize T1(Πn,Πα,ε)

and set
T̃1(Πn,Πα,ε) := ε · T1(Πn,Πα,ε) . (4.2)

4.2 Simulated data

Let us assess the statistical behavior of the transportation distance between power laws and em-
pirical counterparts in a simulation study. To be precise we consider a family of Lévy measures
(Πα,ε)α,ε defined in Example 2.2.2, where the intensity parameter λ = εα

α is chosen such that it is
a probability measure (Πα,ε(R+) = 1). For α, ε fixed, we generate an i.i.d. sample ξ1, . . . , ξn (for
n = 100) distributed according to Πα,ε, and evaluate the transportation distance T̃1 between its
empirical measure Πn and Πα,ε. This experiment is repeated 100 times and the mean value is given
in Table 1, the corresponding standard deviation in Table 2. It is apparent that the magnitude of
the renormalized distance T̃1(Πn,Πα,ε) changes considerably over the parameter range. However
the standard deviation is always smaller than mean value by an order of magnitude. Increasing α
from 1 to 10 results in a decrease of the mean distance by more than a digit. However increasing
ε tends to increase T1 grosso modo.

This behavior is explained by the Cauchy weighting with v−2. Increasing α shifts mass away
from zero to larger values which are damped stronger.

9



ε 0.5 0.6 0.7 0.8 0.9 1.0α

1 0.0322 0.0367 0.0425 0.0545 0.0743 0.0744
2 0.0147 0.0171 0.0327 0.0275 0.0402 0.0408
3 0.0075 0.0098 0.0189 0.0183 0.0231 0.0263
4 0.0041 0.0062 0.0094 0.0107 0.0174 0.0185
5 0.0031 0.0061 0.0064 0.0089 0.0126 0.0136
6 0.0030 0.0038 0.0057 0.0077 0.0099 0.0115
7 0.0020 0.0035 0.0036 0.0053 0.0070 0.0089
8 0.0016 0.0026 0.0037 0.0040 0.0058 0.0064
9 0.0016 0.0026 0.0040 0.0036 0.0052 0.0057
10 0.0012 0.0025 0.0025 0.0034 0.0041 0.0056

Table 2: The standard deviation out of 100 simulations of T̃1(Πn,Πα,ε) for n = 100.

4.3 Climatic time series

Let us turn to the model selection problem for the paleoclimatic time series. We may extend the
preceeding considerations to the dynamical set up of a jump diffusion model. Figure 3(a) shows
the histogram of the data and indicates the presence of two well defined regimes, separated by a
threshold s∗ ≈ −0.8 centered around the values 0.5, which corresponds to a warm regime, and
−2, a cold regime. It is therefore reasonable to discretize the state space into these two regimes,
separated by a threshold. We assume the characteristics of the noise to be constant in each of the
regimes. Figure 3(b) shows the histograms of the increments in each regime. In both regimes the
distributions seem nearly symmetric and may exhibit polynomial tails.
We will consider a finite intensity version of the model (2.3) given as (2.11). In particular we drop
the Gaussian component (b = 0). The random measure ν has a Lévy kernel Π(x, dv) given by a
space dependent version of Πα,ε of Example 2.2, namely

Π′(x, dv) = 1(v > ε+)Πα+(x),ε+(dv) + 1(v < −ε−)Πα−(x),ε−(dv) . (4.3)

The parameters α± are assumed to be constant in each (slightly reduced) regime, x > s∗ + δ, x <
s∗ − δ. The separation δ > 0 is introduced in view of Proposition 3.6 and Theorem 3.5 to allow for
a Lipschitz interpolation of the parameters α±,

α±(x) =

⎧⎪⎨
⎪⎩
α1,±, x > s∗ + δ,

α−1,±, x < s∗ − δ,

Lipschitz interpolation, otherwise.

(4.4)

The class of models is then given by solutions to the SDE

dX(t) = a(X(t))dt+

∫
R

c(X(t−), v)ν0(dt, dv) , (4.5)

where the Cauchy kernel c is constant in each of the regimes (4.4) and determined by Example
2.2.2. Between the regimes it inherits the continuous interpolation of the parameters α±. We will
now interpret big increments (larger than the threshols ε+ or smaller than −ε−) of the time series
as jumps distributed according to Π(x, ·). We extract from the series four sub-samples containing
big positive or negative increments in each of the two regimes. The remaining increments are

10



considered to be continuous and will be neglected. Theses four sub-samples are now processed
in the same way as our simulation study in the previous subsection. Their respective empirical
measures are compared to a family of Lévy measures Πα±,ε± as before.

The thresholds ε± are chosen in accordance to the polynomial decay of the empirical distribution
and taken from the preceding study [8] being ε+ = 0.36, ε− = 0.34 for comparability. The result is
presented in Fig. 1. As can be seen, in each of the cases there is a clear minimizing exponent for
the transportation distances varying in α. We find the minimizers

α1,+ = 2.8 , α1,− = 2.9 ,

α−1,+ = 3.6 , α−1,− = 4.3 .

We stress that the minimum distances we find are small and of order 0.05 (note that we consider the
normalized distance T̃1 with values in [0, 1]). These findings allow to select a simple jump diffusion
model of type (4.5) with Lévy kernel (4.3).

Theorem 3.5 allows to control the behavior of the law of this simple model (on path space). We
assume that the drift a in equation (4.5) is Lipschitz and recall that the interpolation in (4.4) is
Lipschitz, too. The Lipschitz condition (3.5) in Theorem 3.5 for Π′ follows from Proposition 3.6.
Theorem 3.5 guarantees that the laws of such jump diffusions on a reasonable time horizon are
controlled by the transportation distance of the Lévy measures. Hence the jump diffusions selected
by the values obtained by the minimization procedure provide a good estimate on the space of such
models.

It is possible to obtain the rate of convergence of the empirical Lévy measure Πn under the
transportation distance similarly to the case of coupling distances (c.f. [8]). In this study we content
ourselves to the convincing simulation results of Section 4.2. As already mentioned a similar fitting
approach for a family of polynomial Lévy measures to this time-series is adopted in [8]. The frame
work there is restricted to models with additive noise and does not allow for spacial dependence
of the jump kernel and cannot distinguish different regimes. However, the polynomial decay of the
left and right tail of the jump measure is studied. As a result the minimizing exponents for the
coupling-distance there are found to be α+ = 3.6 (positive jumps) and α− = 3.55 (negative jumps).

Our findings seem to be supportive with this result given that we consider different spacial
regimes. Combining the negative jumps in the different regimes should lead to an average of the
exponents α1,−, α−1,−. If we average the exponents weighted by the number of negative jumps in
the corresponding regime we obtain

2.9× 302 + 4.3× 228

302 + 228
= 3.5 ≈ 3.55 .

For the positive jumps averaging behaves slightly worse and we obtain roughly

2.8× 301 + 3.6× 593

301 + 593
= 3.33 ≈ 3.6 .

In any case this study confirms earlier findings in [8] of a robust polynomial tail behavior with
exponents α well beyond 2. Originally a jump diffusion model with α-stable noise component was
proposed in [6] which restricts α to values in (0, 2). A waiting time analysis of 42 transition between
warm and cold temperature regimes pointed to α ≈ 1.75. Later a similar model was investigated
by refined methods in [9] that supported an exponent of α ≈ 1.75 within the framework of α-stable
Lévy noise. We stress that the class we are considering here are generic in the class of heavy tailed
Lévy measures and approximate α-stable ones. The findings of α being close to 2 within the class of
α-stable distributions may also indicate a possible exponent beyond 2, since their methods perform
poorly for α approaching 2.
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(a) Positive jumps in the warm regime:
αmin = 2.8, T̃1(Πn,Παmin) = 0.048, n = 301

2 3 4 5 6

0.
05

0.
06

0.
07

0.
08

0.
09

alpha

T
1

(b) Negative jumps in the warm regime:
αmin = 2.9, T̃1(Πn,Παmin) = 0.050, n = 302
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(c) Posititve jumps in the cold regime:
αmin = 3.6, T̃1(Πn,Παmin) = 0.039, n = 593
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(d) Negative jumps in the cold regime:
αmin = 4.3, T̃1(Πn,Παmin) = 0.033, n = 228

Figure 1: Comparison of the empirical Lévy measure in the different regimes and different tails to
the family (Πα)α∈(2,6).
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5 Proofs

Proof. of Theorem 3.1:
The strategy of the proof is to bound first E

[
(X1(t)−X2(t))

2 ∧ 1
]
with the help of the cut-off

technique developed in [7]. Using the elementary inequality

y ∧ 1 � 4

π
arctan y, for y � 0 (5.1)

we obtain for F (y) = arctan(y2)

ρ2(x, y) � 4

π
F (|x− y|), ∀x, y ∈ R.

Applying Itô’s formula and Doob’s maximal inequality to F (|X1 − X2|) we establish Gronwall
estimates for the process F (|X1 −X2|). As a preparation for the two dimensional Itô formula for
F (|X1 −X2|) we rewrite the process Y (t) = X1(t)−X2(t) and a∗i (x) = ai(x) + āi(x) with common
Lipschitz constant La∗ = La + Lā as follows

d(X1 −X2)(t) =(a∗1(X1)− a∗2(X2))dt+ (b1(X1)− b2(X2))dW (t)

+

∫
|v|>1

(c1(X1(t−), v)− c2(X2(t−), v)ν0(dv, dt)

−
∫

|v|>1

(
τ(c1(X1(t−), v))− τ(c2(X2(t−), v))

)
Π0(dv)dt

−
∫

|v|�1

(
τ(c1(X1(t−), v))− c1(X1(t−), v)

)
Π0(dv)dt

+

∫
|v|�1

(
τ(c2(X2(t−), v))− c2(X2(t−), v)

)
Π0(dv)dt

−
∫

|v|�1

c1(X1(t−), v)ν̃0(dv, dt) +

∫
|v|�1

c2(X2(t−), v)ν̃0(dv, dt),

where
τ(v) = (|v| ∧ 1) sign (v), v ∈ R.

Applying Itô’s formula given for instance in Chapter 2 in [20] we get

dF (Y (t)) = F ′(Y (t−))(a∗1(X1)− a∗2(X2))dt+ F ′(Y (t))(b1(X1)− b2(X2))dW (t)

+
1

2
F ′′(Y (t))(b1(X1)− b2(X2))

2dt

−
∫

|v|�1

F ′(Y (t−))
(
τ(c1(X1(t−), v))− c1(X1(t−), v)

)
Π0(dv)dt

+

∫
|v|�1

F ′(Y (t−))
(
τ(c2(X2(t−), v))− c2(X2(t−), v)

)
Π0(dv)dt

−
∫

|v|>1

(
F ′(Y (t−))(τ(c1(X1(t−), v))− τ(c2(X2(t−), v)))

)
Π0(dv)dt
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+

∫
|v|>1

(
F (Y (t−) + (c1(X1(t), v)− c2(X2(t), v)))− F (Y (t−))

)
ν0(dv, dt)

+

∫
|v|�1

(
F (Y (t−) + (c1(X1(t), v)− c2(X2(t), v)))− F (Y (t−))

)
ν̃0(dv, dt)

+

∫
|v|�1

(
F (Y (t−) + (c1(X1(t), v)− c2(X2(t), v)))− F (Y (t−))

)

− F ′(Y (t−))(c1(X1(t), v)− c2(X2(t), v))Π0(dv)dt.

After rearrangements, we finally obtain the representation

F (Y (t)) = F (|x1 − x2|) +M(t) +

t∫
0

∫
R

g(Y (s), X1(s), X2(s))Π0(dv)ds, (5.2)

where

M(t) =

t∫
0

F ′(Y (s))(b1(X1(s))− b2(X2(s)))dW (s)

+

t∫
0

∫
R

(
F (Y (s−) + (c1(X1(s), v)− c2(X2(s), v)))− F (Y (s−))

)
[ν0(dv, ds)−Π0(dv)ds]

(5.3)
and

g(y, u1, u2) = F ′(y)(a∗1(u1)− a∗2(u2)) +
1

2
F ′′(y)(b1(u1)− b2(u2))

2

+

∫
R

[F (y + (c1(u1, v)− c2(u2, v)))− F (y)− F ′(y)(τ(c1(u1, v))− τ(c2(u2, v)))]Π0(dv)

=: g1(y, u1, u2) + g2(y, u1, u2) + g3(y, u1, u2), (y, u1, u2) ∈ R3, y = u1 − u2.
(5.4)

For the function F and its derivatives, we have the following bounds taken from [7]

F ′(y) =
2y

1 + y4
, implying |F ′(y)| � 33/4

2
for all y ∈ R, (5.5)

F ′(y)y =
2y2

1 + y4
� (2y2) ∧ 1 = 2(y2 ∧ 1

2
) � F (y)

arctan(1/2)
, (5.6)

F ′′(y) = 2
1− 3y4

(1 + y4)2
, implying |F ′′(y)| � 2, (5.7)

|F (y + δ)− F (y)− F ′(y)δ| � δ2

2
sup
v

|F ′′(v)| � δ2. (5.8)

Now we can bound each summand of (5.4). Using (2.5) and (5.6) we obtain

g1(y, u1, u2) �
La∗

arctan(1/2)
F (y) +

33/4

2
‖a∗1 − a∗2‖∞ ∀u1, u2, y = u1 − u2 ∈ R. (5.9)
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Then by (2.6) g2 is not greater than

g2(y, u1, u2) � (b1(u1)− b2(u2))
2 ∀u1, u2, y = u1 − u2 ∈ R. (5.10)

The estimate of g3 is slightly more involved and for convenience we introduce for fixed ui the
notation

ζi(v) := ci(ui, v), v ∈ R.

Let us first consider the integral g3 on the set {v ∈ R | |ζ1(v)− ζ2(v)| � 1} and apply

F (y + (z1 − z2))− F (y) � F ′(y)(z1 − z2) + (z1 − z2)
2

to the first summand of∫
{v∈R | |ζ1(v)−ζ2(v)|�1}

(
[F (y + (ζ1(v)− ζ2(v)))− F (y)]− F ′(y)[τ(ζ1(v))− τ(ζ2(v))]

)
Π0(dv)

�
∫

{v∈R | |ζ1(v)−ζ2(v)|�1}

(
F ′(y)

[
ζ1(v)− ζ2(v)− τ(ζ1(v)) + τ(ζ2(v))

]
+ (ζ1(v)− ζ2(v))

2
)
Π0(dv).

Observe that the term in square brackets vanishes if both, |ζi(v)| � 1 for i = 1, 2. Hence the first
integral reads∫

{v∈R | |ζ1(v)−ζ2(v)|�1}
F ′(y)

[
ζ1(v)− ζ2(v)− τ(ζ1(v)) + τ(ζ2(v))

]
Π0(dv)

=

∫
{v∈R | |ζ1(v)−ζ2(v)|�1
and |ζ1(v)|>1 or |ζ2(v)|>1}

F ′(y)
[
ζ1(v)− ζ2(v)− τ(ζ1(v)) + τ(ζ2(v))

]
Π0(dv)

� 2F ′(y)
∫

{v∈R | |ζ1(v)−ζ2(v)|�1
and |ζ1(v)|>1 or |ζ2(v)|>1}

[
|ζ1(v)− ζ2(v)| ∧ 1

]
Π0(dv)

� 2F ′(y)
(∫

R

[
|ζ1(v)− ζ2(v)| ∧ 1

]2
Π0(dv)

) 1
2
Π0

(
{v ∈ R | |ζ1(v)| > 1 or |ζ2(v)| > 1}

) 1
2

� 2F ′(y)T2(Π1(u1, ·),Π2(u2, ·))
(
Π0

(
{v ∈ R | |ζ1(v)| > 1}

)
+Π0

(
{v ∈ R | |ζ2(v)| > 1}

)) 1
2
,

where we have used that |ζ1(v)− ζ2(v)| � 1 implies

|ζ1(v)− ζ2(v)|+ |τ(ζ1(v))− τ(ζ2(v))| � 2(|ζ1(v)− ζ2(v)| ∧ 1).

We consider now the integral g3 on the remainder set {v ∈ R | |ζ1(v)−ζ2(v)| > 1}. By its definition

in (5.4) g3 is uniformly bounded by π + 3
3
4

2 due to the boundedness of F and (5.5). Therefore the
function g3 in (5.4) is bounded by the sum

g3(y, u1, u2) � 2F ′(y)T2(Π1(u1, ·),Π2(u2, ·))
(
Π0({v : |ζ1(v)| > 1}+Π0({v : |ζ2(v)| > 1})

) 1
2
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+ (π +
3

3
4

2
)

∫
R

((ζ1(v)− ζ2(v))
2 ∧ 1)Π0(dv)

� 2F ′(y)T2(Π1(u1, ·),Π2(u2, ·))
(
Π0({v : |ζ1(v)| > 1}+Π0({v : |ζ2(v)| > 1})

) 1
2

+ (π +
3

3
4

2
)T2(Π1(u1, ·),Π2(u2, ·))2. (5.11)

Summarising (5.9), (5.10) and (5.11) we get for the process F (Y (t)) the following estimate almost
surely

F (Y (t))

� π

2
ρ2(x1, x2) + T

33/4

2
‖a∗1 − a∗2‖∞ − La∗

arctan(1/2)

t∫
0

F (Y (s))ds+

t∫
0

(
(b1(X1(s))− b2(X2(s)))

2ds

+ 2

t∫
0

F ′(Y (s−))T2(Π1(x1, ·),Π2(x2, ·))
(
Π0({v : |ζ1(v)| > 1)

1
2 +Π0({v : |ζ2(v)| > 1}) 1

2

)
ds

+

t∫
0

(
π +

3
3
4

2
)T 2

2 (Π1(X1(s−), ·),Π2(X2(s−), ·)
)
ds+M(t).

In the sequel we apply the Lipschitz continuity of the coefficients bi, i = 1, 2 and the kernels
Πi, i = 1, 2, however taken at different points. By (2.6) and (2.8) we obtain ω-wise

T2(Π1(X1(s−), ·),Π2(X2(s−), ·)) � LΠ(|Y (s−)| ∧ 1) + sup
x∈R

T2(Π1(x, ·),Π2(x, ·))

and by (5.1)

T 2
2 (Π1(X1(s−), ·),Π2(X2(s−), ·)) � 8LΠ

π
F (Y (s−)) + 2 sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·)),

(b1(X1)− b2(X2))
2 � 8Lb

π
F (Y (s)) + 2 sup

x∈R
(b1(x)− b2(x))

2. (5.12)

Setting

K1 := sup
u1,u2∈R

(
Π0({v : |c1(u1, v)| > 1) + Π0({v : |c2(u2, v)| > 1})

) 1
2

and the help of (5.6) we obtain almost surely

F (Y (t)) � π

2
ρ2(x1, x2) + T

33/4

2
‖a∗1 − a∗2‖∞ +

La∗

arctan(1/2)

t∫
0

F (Y (s))ds+
8Lb

π

t∫
0

F (Y (s))ds

+ 2t sup
x∈R

(b1(x)− b2(x))
2

+M(t) + 2K1

t∫
0

|F ′(Y (s))||Y (s)|ds+ 4K1t sup
x∈R

T2(Π1(x, ·),Π2(x, ·))

+ (8 +
4 · 3 3

4

π
)LΠ

t∫
0

F (Y (s))ds+ (2π + 3
3
4 )t sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·))
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� π

2
ρ2(x1, x2) +

( La∗ + 2K1

arctan(1/2)
+

8Lb

π
+ (8 +

4 · 3 3
4

π
)LΠ

) t∫
0

F (Y (s))ds+M(t)

+ 2t sup
x∈R

(b1(x)− b2(x))
2 + 4tK1 sup

x∈R
T2(Π1(x, ·),Π2(x, ·))

+ T
33/4

2
‖a∗1 − a∗2‖∞ + t(2π + 3

3
4 ) sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·)). (5.13)

We define

Q :=
La∗ + 2K1

arctan(1/2)
+

8Lb

π
+ (8 +

4 · 3 3
4

π
)LΠ,

take the expectation and apply Gronwall’s lemma for t ∈ [0, T ]

E[F (Y (t))] �
(π
2
ρ2(x1, x2) + T

33/4

2
‖a∗1 − a∗2‖∞ + 2T sup

x∈R
(b1(x)− b2(x))

2 + 4TK1 sup
x∈R

T2(Π1(x, ·),Π2(x, ·))

+ T (2π + 3
3
4 ) sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·))

)
eQT .

(5.14)
Now establish the estimate for E[supt∈[0,T ] F (Y (t))]. For that purpose we take the supremum over
both sides of (5.13) and observe that

E[ sup
t∈[0,T ]

F (Y (t))] � π

2
ρ2(x1, x2) +Q

T∫
0

E[F (Y (s))]ds+ E[ sup
t∈[0,T ]

|M(t)|]+

T
(33/4

2
‖a∗1 − a∗2‖∞ + 2 sup

x∈R
(b1(x)− b2(x))

2 + 4K1 sup
x∈R

T2(Π1(x, ·),Π2(x, ·))

+ (2π + 3
3
4 ) sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·))

)
. (5.15)

For the integrand of the first integral we apply (5.14). In order to bound the martingal term we
use Doob’s maximum inequality

E[ sup
t∈[0,T ]

|M(t)|] � E[ sup
t∈[0,T ]

|M(t)|2] 12 � 4E[|M(T )|2] 12

and rewrite E[|M(T )|2] as follows

E[|M(T )|2] = E

[( T∫
0

∫
R

[
F
(
Y (t−) + (c1(X1(t), v)− c2(X2(t), v))

)
− F (Y (t−))

]
ν0(dv, dt)

−
T∫
0

∫
R

[F
(
Y (t−) + (c1(X1(t), v)− c2(X2(t), v))

)
− F (Y (t−))]Π0(dv)dt

))2]

+

T∫
0

E

[(
F ′(Y (t))

(
b1(X1(t))− b2(X2(t))

))2
]
dt

=

T∫
0

∫
R

E

[(
F
(
Y (t−) + (c1(X1(t), v)− c2(X2(t), v))

)
− F (Y (t−))

)2
]
Π0(dv)dt

18



+

T∫
0

E

[(
F ′(Y (t))

(
b1(X1(t))− b2(X2(t))

))2
]
dt.

The analogous separation argument as for the term g3 of the cases {v ∈ R | |c1(x, v)−c2(x, v)| � 1}
and its complement and using F (y + δ) − F (y) � 2δ for δ ∈ (0, 1) and y ∈ R we obtain with the
help of (2.6), (2.8) and (5.1) the estimate

E[|M(T )|2] � 2

T∫
0

∫
R

E

[
(c1(X1(t), v)− c2(X2(t), v))

2 ∧ 1
]
Π0(dv)dt

+ 2

T∫
0

E

[(
b1(X1(t))− b2(X2(t))

)2]
dt

= 2

T∫
0

E

[
T 2
2 (Π1(X1(t), ·),Π2(X2(t), ·)

]
dt+ 2

T∫
0

E

[(
b1(X1(t))− b2(X2(t))

)2]
dt

� 16LΠ

π

T∫
0

E

[
F (Y (t))

]
dt+ 4T sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·))

+
16Lb

π

T∫
0

E

[
F (Y (t))

]
dt+ 4T sup

x∈R
(b1(x)− b2(x))

2.

The last inequality comes from the triangle inequality (5.12). Finally inserting (5.14) we obtain

E

[
sup

t∈[0,T ]
F (Y (t))

]

� (T 2QeQT + T )

(
π

2
ρ2(x1, x2) +

33/4

2
‖a∗1 − a∗2‖∞ + 2 sup

x∈R
(b1(x)− b2(x))

2

+ 4K1 sup
x∈R

T2(Π1(x, ·),Π2(x, ·)) + (2π + 3
3
4 ) sup

x∈R
T 2
2 (Π1(x, ·),Π2(x, ·))

)
+

(
32(LΠ + Lb)ρ

2(x1, x2) +
64(LΠ + Lb)

2π
T‖a∗1 − a∗2‖2∞ +

(
32

π
(LΠ + Lb)T

2eQT + 4T

)
sup
x∈R

(b1(x)− b2(x))
2

+
64

π
(LΠ + Lb)K1e

QT sup
x∈R

T2(Π1(x, ·),Π2(x, ·))+

(16
π
(LΠ + Lb)(2π + 3

3
4 )T 2eQT + 4T

)
sup
x∈R

T 2
2 (Π1(x, ·),Π2(x, ·))

)1/2

.

Taking the maximum of all the constants which we denote by D = D(K1, La∗ , Lb, LΠ, T ), using
x +

√
x � 2G(x) for any x ∈ R, and rearranging the terms we obtain the desired estimate (3.1).

This finishes the proof.
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Proof. of the Theorem 3.5
In order to get estimate (3.6) we may use the same scheme as in the proof of the Theorem (3.1)
but for a C1-function Hδ : R → R+ instead of F satisfying

‖Hδ‖∞ � 2, ‖(Hδ)′‖∞ � 2, lim
δ→0+

‖Hδ(y)− (1 ∧ |y|)‖∞ = 0, (5.16)

since there is no Brownian part and the intensity of the jump part is finite. We take the process
Y (t) = X1(t) − X2(t), which is the difference of the processes defined in (2.11), and apply Itô’s
formula for Hδ(Y ). Analogously to (5.2) we obtain for Hδ(Y ) the simpler formula

Hδ(Y (t)) =

t∫
0

(
a1(X1(s))− a2(X2(s))

)
ds+M(t)

+

t∫
0

∫
R

[
Hδ(Y (s) + (c1(X1(s), v)− c2(X2(s), v)))−Hδ(Y (s))

]
Π0(dv)ds+Hδ(Y (0)),

(5.17)
where the martingale term M δ(t) is given as

M δ(t) =

t∫
0

∫
R

[
Hδ(Y (s−) + (c1(X1(s), v)− c2(X2(s), v)))−Hδ(Y (s−))

]
[ν0(dv, ds)−Π0(dv)ds].

We obtain the estimate for the inner integral in the second summand of (5.17) on two separate sets

{v : |c1(X1(s), v)− c2(X2(s), v)| � 1} and {v : |c1(X1(s), v)− c2(X2(s), v)| > 1} (5.18)

for fixed s ∈ [0, t]. Using the fact that |(Hδ)′(y)| � 2 and a Taylor expansion of Hδ in y yields on
the set {v ∈ R : |c1(X1(s), v)− c2(X2(s), v)| � 1} almost surely

|Hδ(y + (c1(x1, v)− c2(xv, v)))−Hδ(y)| � 2|c1(x1, v)− c2(x2, v))|. (5.19)

Hence we obtain the following ω-wise estimates

Hδ(Y (t)) � M δ(t) + 2La

t∫
0

(|Y (s)| ∧ 1)ds+ 2t‖a1 − a2‖∞ (5.20)

+ 2

t∫
0

∫
{v:|c1(X1(s),v)−c2(X2(s),v)|�1}

|c1(X1(s), v)− c2(X2(s), v))| Π0(dv)ds

+ 4

t∫
0

∫
{v:|c1(X1(s),v)−c2(X2(s),v)|>1}

Π0(dv)ds+Hδ(Y (0))

� M δ(t) + 2La

t∫
0

(|Y (s)| ∧ 1)ds+ 2t‖a1 − a2‖∞

+ 4

t∫
0

∫
R

(
|c1(X1(s), v)− c2(X2(s), v))| ∧ 1

)
Π0(dv)ds+Hδ(Y (0))
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= M δ(t) + 4La

t∫
0

(|Y (s)| ∧ 1)ds+ 2t‖a1 − a2‖∞

+ 4

t∫
0

T1(Π1(X1(s), ·),Π2(X2(s), ·))ds+Hδ(Y (0)), (5.21)

where we have used the boundedness of the function Hδ and the fact that 2|y| ∧ 4 � 4(|y| ∧ 1) for
y ∈ R. The inner integral in the last expression is by definition T1(Π1(X1(s), ·),Π2(X2(s), ·)). For
the second term on the right-hand side of (5.21) we apply the triangular inequality for T1 and the
Lipschitz condition (3.5). We take the expectation on (5.21), send δ → 0 and obtain

E
[
|Y (t)| ∧ 1

]
� (2La + 4LΠ)

t∫
0

E
[
|Y (s)| ∧ 1

]
ds+ 2t‖a1 − a2‖∞ + 4T sup

x∈R
T1(Π1(x, ·),Π2(x, ·))

+ ρ(x1, x2). (5.22)

Gronwall’s lemma for t ∈ [0, T ] and the monotonicity on the right-hand side imply

E [|Y (t)| ∧ 1] � e(2La+4LΠ)T
(
2T‖a1 − a2‖∞ + 4T sup

x∈R
T1(Π1(x, ·),Π2(x, ·)) + ρ(x1, x2)

)
. (5.23)

In what follows we denote Δ := 2T‖a1−a2‖∞+4T supx∈R T1(Π1(x, ·),Π2(x, ·))+ρ(x1, x2). Further,
taking the supremum in t ∈ [0, T ] on both sides of (5.21) we use the monotonicity on the right-hand
side and take the expectation

E
[

sup
t∈[0,T ]

Hδ(Y (s))
]
� E[ sup

t∈[0,T ]
|M δ

t |] + (2La + 4LΠ)

T∫
0

E
[
(|Y (s)| ∧ 1)

]
ds+Δ. (5.24)

For the martingale term in (5.24) we apply Doob’s maximal moment inequality with p = 2, which
yields

E sup
t∈[0,T ]

|M δ
t |2 � 4E|M δ

T |2

and hence

E sup
t∈[0,T ]

|M δ
t |2 � 4E

T∫
0

∫
R

[
Hδ(Y (s−) + (c1(X1(s), v)− c2(X2(s), v)))−Hδ(Y (s−))

]2
Π0(dv)ds.

(5.25)
Using the same separation argument for (5.18) as in the estimate (5.21) we obtain

E
[

sup
t∈[0,T ]

|M0
t |2

]
� 4E

T∫
0

∫
R

(
|c1(X1(s), v)− c2(X2(s), v)|2 ∧ 1

)
Π0(dv)ds. (5.26)

Using the fact that |z|2 ∧ 1 � |z| ∧ 1 for z ∈ R we get analogously to (5.22)

E[ sup
t∈[0,T ]

|M0
t |2] � 16LΠ

T∫
0

E[(|Y (s)| ∧ 1)]ds+ 4Δ. (5.27)
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Inserting (5.23) in (5.26) and finally both of them in (5.24) we conclude

E
[

sup
t∈[0,T ]

(|Y (s)| ∧ 1)
]

�
√

(16LΠTe(2La+4LΠ)T + 4)
(
2T‖a1 − a2‖∞ + 4T sup

x∈R
T1(Π1(x, ·),Π2(x, ·)) + 2ρ(x1, x2)

)
+ ((2La + 4LΠ)Te

(2La+4LΠ)T + 1)
(
2T‖a1 − a2‖∞ + 4T sup

x∈R
T1(Π1(x, ·),Π2(x, ·)) + 2ρ(x1, x2)

)
.

(5.28)
Taking K as the maximum of all appearing constants and x +

√
x � 2G(x) we have obtained the

required estimate. This finishes the proof.

Proof. of the Proposition 3.6: Analogously to (2.2) we get the functions ci

ci(y) = − (|y|λ−)1/α
−
i 1{y�− 1

λ− } + (yλ+)
1/α+

i 1{y� 1
λ+

}. (5.29)

Thus, the distance T1 is calculated as

T1(Π1,Π2) =

∞∫
0

(
1{y� 1

λ+
}
∣∣∣(yλ+)

1/α+
1 − (yλ+)

1/α+
2

∣∣∣ ∧ 1

)
dy

y2

+

0∫
−∞

(
1{y�− 1

λ− }
∣∣∣|yλ−|1/α

−
1 − |yλ−|1/α

−
2

∣∣∣ ∧ 1

)
dy

y2
.

(5.30)

The integrands are integrable with the absolute value since α±
i > 2. The first summand equals

∞∫
1

λ+

(∣∣∣(yλ+)
1/α1 − (yλ+)

1/α2

∣∣∣ ∧ 1
) dy

y2
= λ+

1∫
0

(
t−1/α1 − t−1/α2

)
dt

� α1

α1 − 1
− α2

α2 − 1
� α2 − α1,

(5.31)

with the help of the change of variables t = 1/(yλ+) and assuming that 2 < α1 < α2, where we have
dropped the + superscript for convenience. The analogous computation for the second integral in
(5.30) yields the estimate in Proposition (3.6).
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ries with coupling distances with an application in paleoclimate. Springer INdAM volume
“Mathematical Paradigms of Climate Sciences”, ISSN: 2281-518X

[9] J. Gairing, P. Imkeller. Stable CLTs and rates for power variation of α-stable Lévy processes.
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[25] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems. Vol.I: Theory, Vol.II.:
Applications. Probability and its Applications. Springer-Verlag, New York 1998.
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