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Introduction

In Mathematics and its applications there exist operations that when inputting
some values no outputs exist. Those operations are called partial operations and
operations where the output exists for every input are called total operations. Let
O™(A) be the set of all n-ary total operations on the set A and let P"(A) be the set of
all n-ary partial operations on A. Let O(A) := Ej O™(A) and let P(A) := G P(A).
We have O(A) C P(A). A partial algebra A :n:(lA, (fM)icr) is a pair consni:tling of a
set A and a sequence of partial operations (f{);c; which assigns to every element
of the index set I an m;-ary partial operation f{! defined on A. To every i € I we
assign a natural number n; which we call arity of f. Let (n;)ic; be the sequence
of arities where f# is n-ary. The sequence T = (n;)ic; is called type of the partial
algebra A. Let Alg(7) be the set of all total algebras of type 7 and let PAlg(T) be
the set of all partial algebras of type 7. We have Alg(r) C PAlg(1).

The concepts of a strong identity and a strong regular identity were introduced
by B. Staruch and B. Staruch in [48]. An equation s & t of type 7 is called a strong
identity in the partial algebra A (in symbols A = s & t) if the right hand side is

defined whenever the left hand side is defined and conversely and both are equal.
An equation s ~ t of type 7 is called a strong reqular identity in the partial algebra
A (in symbols A | s & t) if the equation s ~ t is a strong identity in A and the
variables occurringsrin the term s are equal to the variables occurring in the term t.
Let K C PAlg(T) be a class of partial algebras of type 7 and let & C W, (X)? be
a set of equations. Consider the connection between PAlg(7) and W, (X)? given by

the following two operators:
Id*m : P(PAlg(t)) — P(W,(X)?) and

Mod*™ : P(W,(X)?) — P(PAlg(T)) with
I¢"K = {s~teW (X)?|VAeK (A E s~t)} and

ST

Mod*”y = {Ae PAlg(r)|Vs~teX (A E sxt)}.

Let V' C PAlg(T) be a class of partial algebras. The class V is called a strong
reqular variety of partial algebras if V' = Mod*"Id*"V .
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B. Staruch and B. Staruch proved in [48] that a class K is a strong regular variety
of partial algebras of type 7 iff K is closed under closed homomorphic images, initial
segments, closed subalgebras, direct products and the pin operator which describes
the one-point extension of partial to total algebras.

The concept of a strong regular equational theory was introduced by B. Staruch
and B. Staruch in [48]. A set of regular equations ¥ C W,(X)? is called a strong
reqular equational theory if there is a class of partial algebras K C PAlg(7) such
that ¥ = [d*" K.

A strong identity s ~ t in the partial algebra A of type 7 is called a strong
hyperidentity of A if, for every substitution of terms of appropriate arity for the
operation symbols in s & t, the resulting strong identity holds in A. This leads
to the definition of a map o : {fi|li € I} — W.(X) such that o(f;) is an n;-ary
term of type 7. Any such mapping o is called a hypersubstitution of type 7. This
concept was first introduced by K. Denecke, D. Lau, R. Poschel and D. Schweigert
n [30]. Any hypersubstitution ¢ uniquely determines a mapping, denoted by 7,
on the set of all terms of type 7. Using such induced maps the binary operation
o can be defined by (o o, o’)(f;) := a[o'(f;)] for all i € I. Let Hyp(T) be the
set of all hypersubstitutions of type 7. Indeed, (Hyp(7);op,0:4) forms a monoid
where ;4 maps f; to fi(z1,...,x,,). Regular hypersubstitutions were defined in [34]
as hypersubstitutions with the property that for every fundamental operation f;
of arity n;, all the variables x1,...,z,, occur in the term o(f;) for all i € I. Let
Hypgr(T) be the set of all regular hypersubstitutions of type 7. Then Hypgr(T) :=
(Hypgr(T);0p, 0iq) forms a monoid.

As D. Welke proved in [49] a necessary condition for o[s] ~ 7]t] to be a strong
regular identity in a partial algebra A whenever s ~ t is a strong regular identity in
A is that o is regular. So, to define strong regular hyperidentities we will consider
only regular hypersubstitutions.

Let M be a submonoid of Hypr(7) and let A be a partial algebra of type 7. Then
a strong regular identity s = t of A is called a strong reqular M -hyperidentity of A (in

symbols A | s = t) if for every regular hypersubstitution or € M the equation
srMh

orls| = og[t] is also a strong regular identity of A. In the case, it M = Hypgr(T),
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strong regular M-hyperidentities are called strong reqular hyperidentities.
Let K C PAlg(t) be a class of partial algebras of type 7 and let 3 C W, (X)?
be a set of equations. Consider the connection between PAlg(7) and W, (X)? given

by the following two operators:
HyId" : P(PAlg(T)) — P(W,(X)?)  and

HyMod* : P(W,(X)?) — P(PAlg(r))  with

Hyld"K = {s=teW (X)?|VAeK (A [ s=t)} and
srMh

HyMod™y = {Ae PAlg(t)|Vs~teX (A [ s=~t)}.
srMh

The concept of a strong regular M-hyperequational theory was introduced by D.
Welke in [49]. A set of regular equations ¥ C W,(X)? is called a strong regular
M -hyperequational theory if there is a class of partial algebras K C PAlg(7) such
that ¥ = Hy Id" K.

For M = Hypgr(T) we speak of strong regular hyperequational theories, HId*" K.

One of the most interesting concepts in this area is the concept of a solid strong
regular variety. Let A = (A;(f)ic;) be a partial algebra of type 7 and o €
Hypgr(1). We let

or(A) == (4 (0R<fi)A)i€I)a

which is called derived algebra of type 7.
Let M be a submonoid of Hypr(7). We introduce two operators x¥, and x4}
Let ¥ C W.(X) x W,.(X) be a set of regular equations, s ~ t € X, we let
X5 s ~ t] :== {ORr[s] = Gr[t] | op € M} and
= U xils =1
s~teEX
For any partial algebra A of type 7 and K C PAlg(7), we let
XarlAl == {or(A) | or € M} and
Xar[K] = U xiulAl
AeK

A strong regular variety V of type 7 is called M-solid if V = x4,[V] and if
M = Hypg(7), then V is called solid.
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One of the aims of this thesis is to study M-solid strong regular varieties of
partial algebras for different submonoids and subsemigroups M of Hypg(7).
Our work goes in two directions. At first we want to transfer definitions, concepts
and results of the theory of hyperidentities and solid varieties from the total to the
partial case.
1) The concept of an n-full term of type 7 was considered in [I§]. Using n-full terms
we define strong regular n-full identities in partial algebras of type 7. We use the
concept of strong regular n-full satisfaction to define the relation R,,; which is a
subrelation of the relation R, defined by strong satisfaction. As a subrelation of R,
the relation R, is Galois-closed (see e.g. [28]). All n-ary n-full terms of type 7
form with respect to superposition of terms an algebraic structure n — clone™ ()
which satisfies the axioms of a Menger algebra of rank n and the set of all strong
regular n-full identities of a strong regular variety forms a congruence relation on
n — clone™ (7). The concept of an n-full hypersubstitution of type 7 was considered
n [I8]. We give the definition of a regular n-full hypersubstitution of type 7 and
define the concept of a strong regular n-full hyperidentity for partial algebras. We
use the concept of a regular n-full hypersubstitution of type 7 to define the operators
Xanr and x5y, and prove that (xanr, Xhyp) forms a conjugate pair of additive
operators. These operators are in general not closure operators. Therefore the fixed
points under x4y are characterized only by three instead of four equivalent condi-
tions in the case of closure operators ([27]).
2) We consider strongly full varieties as a special case of strong regular n-full vari-
eties. Using strongly full terms we define the concept of a strongly full identity in
a partial algebra of type 7, = (n;);e; with n; = n for all i € I. All strongly full
terms of type 7, form with respect to superposition of terms an algebraic structure
cloneSF (1,,) which satisfies the axioms of a Menger algebra of rank n and the set of all
strongly full n-ary identities Id5"'V of a strongly full variety V forms a congruence
relation on clonet (1,,). We give the definition of a strongly full hyperidentity. This
concept is a special case of a strong regular n-full hyperidentity. Then we consider

the quotient algebra clone®*'V = clone®F(7,,)/Id5F'V and study the relationship

between strongly full hyperidentities in V' and identities in clone®FV. A strongly
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full variety V' of partial algebras of type 7, is called n — SF — solid if every identity
s~ t € Id5F'V is satisfied as a strongly full hyperidentity in V. In [19] the concept
of an (O-solid variety and of i-closedness for total algebras were defined. Now we
define an O°F-solid strongly full variety and of I°F-closedness for partial algebras.
3) The concepts of unsolid and fluid varieties were considered in [46], [20], [21], and
[22]. We will be interested in unsolid and fluid strong varieties of partial algebras. In
[40] an equivalence relation ~y on Hyp(T) with respect to a variety V' was defined
by o1 ~y o9 iff 01(f;) = o9(f;) € IdV for all operation symbols f;,i € I, and in [22]
an equivalence relation ~y _;5, on Hyp(7) with respect to a variety V' was defined by
01 ~yv_iso 02 It VA € V(01(A) = 03(A)). We will be also interested in equivalence
relations ~y and ~y_;,, on HypS(7) (the set of all regular C-hypersubstitutions of
type 7).

4) The concepts of M-solid quasivarieties and M-hyperquasi-equational theories
were considered in [14]. We will be interested in M-solid strong quasivarieties of
partial algebras and strong M-hyperquasi-equational theories for partial algebras.
The second direction of our work is to follow ideas which are typical for the partial
case.

1) The collection of all clones of partial operations defined on a fixed set A, |A| > 1,
forms a complete atomic and dually atomic lattice. The maximal elements of this
lattice were determined in [43] and [44]. The minimal clones are determined in [16],
[37], [38] and [45] modulo to the knowledge of minimal total clones. But, the de-
termination of all minimal total clones is yet open. Here we determine all minimal
partial clones with a special property which is called a strong solidifyability.

2) A hypersubstitution of type 7 is a total mapping o : {f;|i € I} — W,.(X). Then
we extend the concept of a hypersubstitution of type 7 to a partial hypersubstitution
of type 7 and we define the concept of a regular partial hypersubstitution of type 7.
On the basis of regular hypersubstitutions we develop the whole theory of conjugate

pairs of additive closure operators.
This work consists of nine chapters.

Chapter 1 presents some basic concepts on partial algebras and some basic con-

cepts from Universal Algebra which are needed.
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In Chapter 2, we give an example that the set W,.(X,)* (the set of all n-ary
term operations on the partial algebra A) is different from the set of all partial
operations generated by {f/|i € I} using superposition and we introduce another
kind of terms, so-called C-terms. In Section 2.2, the concept of a strong identity
(by usual terms) which was introduced in [48] is used to define model classes and
the corresponding Galois connection. In [5], it was proved that a class K is a strong
variety iff K = H.S. P K U {0} where @ is the empty algebra. The concept of a
strong identity (by C-terms) which was introduced in [2] is used to define model
classes and the corresponding Galois connection. In [2], it was proved that a class
K is a strong variety iff K = H.S P, K. In Section 2.3, the concept of a strong
regular identity (by usual terms) which was introduced in [48] is used to define
model classes and the corresponding Galois connection. We show that in the case of

C-terms strong identities can be replaced with strong regular identities.

In Chapter 3, the concept of a regular hypersubstitution which was introduced
in [49] is used to define strong regular M-hyperidentities and M-solid strong regular
varieties where M is a submonoid of the monoid of all regular hypersubstitutions.
In Section 3.2, the concept of a regular C-hypersubstitution which was introduced
in [49] is used to define strong M-hyperidentities and M-solid strong varieties where

M is a submonoid of regular C-hypersubstitutions.

In Chapter 4, we prove that the relation R,,; is a Galois-closed subrelation
of Ry and we show that the set of all strong regular n-full identities of a strong
regular variety is a congruence relation on the Menger algebra n — clone™ (1) of
rank n. Further, we define the operators yayp and x5y which are only monotone
and additive and we show that the set of all fixed points of these operators are
characterized only by three instead of four equivalent conditions for the case of

closure operators.

In Chapter 5, we prove that the algebra (P"(A); S™#4) is a Menger algebra of
rank n where S™4 is the superposition operation of partial operations and we show
that IdsF'V is a congruence relation on the Menger algebra clone®™(7,,) of rank n.
Using this result, we consider the quotient algebra clone*'V := clonet (1) /1d5F'V

and we prove that s ~ ¢ is a strongly full hyperidentity in V' iff s ~ ¢ is an identity in
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clone®T'V where V is a strongly full variety of partial algebras. We define the concept
of an n — SF — solid strongly full variety and we prove that V' is n — SF — solid
iff cloneST'V is free with respect to itself, freely generated by the independent set
{[fi(z1, ..., 2n)]1asryv | @ € T}. At the end of this chapter, we define the concepts
of ISF' — closedness and O%F — solid strongly full variety and we prove that V is

I5F — closed iff it is OSF — solid where V = ModF Id5FV.

In Chapter 6, we show that ~y and ~y_;,, are right congruences on Hyp%(7). We
use the concept of a V-proper hypersubstitution and of an inner hypersubstitution
to define the concepts of unsolid and fluid strong varieties and we prove that if V' is
a fluid strong variety and [0i4]~, = [0id)~y_,.,, then V' is unsolid. Furthermore, we
generalize unsolid and fluid strong varieties to n-fluid and n-unsolid strong varieties
and we show that if V' is n-fluid and ~y |p) =~v_is |p(v) then V is k-unsolid for
k > n where P(V) is the set of all V-proper hypersubstitutions of type 7. Finally,

we give an example of an n-unsolid strong variety of partial algebras.

In Chapter 7, we prove that an M-solid strong quasivariety satisfies four equiva-
lent conditions and we prove that a strong M-hyperquasi-equational theory satisfies

four equivalent conditions.

In Chapter 8, we prove that strong varieties of different types are equivalent
if and only if their clones of all term operations of different types are isomorphic.
We study minimal partial clones (see [3]) and we define the concept of a strongly
solidifyable partial clone. After this, we characterize minimal partial clones which

are strongly solidifyable.
Finally in Chapter 9 we prove that the set of all regular partial hypersubstitutions

forms a submonoid of the set of all partial hypersubstitutions. Next, we consider
only regular partial hypersubstitutions of type 7 = (n), n € N and we prove that
the extension of a partial hypersubstitution is injective if and only if the partial
hypersubstitution is a regular partial hypersubstitution of type 7 = (n) when n > 2.
At the end of this chapter, we define the concept of a PHypgr(7)-solid strong regular
variety of partial algebras and we prove that a P Hypg(7)-solid strong regular variety

satisfies four equivalent conditions.
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Chapter 1

Basic Concepts

In this chapter, certain basic notions and results are presented. In Section 1.1, we
recall the definition of partial algebras, homomorphisms, subalgebras and different
kinds of products. For more details we refer to [2], [4], [5]. In Section 1.2 and Section
1.3, we recall the definition of Galois connections, conjugate pairs of additive closure

operators and give a brief discussion about their properties (see [1], [24], [27], [28]).

1.1 Partial Algebras and Superposition of Partial
Operations

Let A be a non-empty set and n € N, where N = {0, 1,2,...} is the set of natural
numbers. We define A° = {0}, and A" = {(ay,...,a,) | ai,...,a, € A} if n € N*
(N* := N\ {0}). Let P*(A) := {f* : A" —o— A} be the set of all n-ary partial
operations defined on the set A. If n = 0, then we suppose that A # (). Let P(A) :=
Ejl Pm™(A) be the set of all partial operations on A.

B If f4 € P"(A) is a partial operation, then
domf .= {(ay,...,a,) | Ja € A (fYa,...,a,) = a)} C A",
Imfh:={aec A|3ay,...,a,) € domf* (a= fAar,...,a,))} C A
and

graphf® = {(a1,...,an,a) | (a1,...,a,) € domf* (fay,... a,) =a)} C A"

1



2 CHAPTER 1. BASIC CONCEPTS

Let O(A) € P(A) be the set of all total operations defined on A, i.e. O(A) :=
U O"(A) with O"(A) := {f4 € P*(A) | domf* = A"}.
n=1

If f: A—— Band g: B —o— (| then the composition go f of f and g is the

partial function:
gof:A—o—C
dom go f:={a€ A|aecdomf and f(a) € domg}.

Special n-ary (total) operations are the projections to the i-th argument, where

1< <ne
et AT A

e?’A(al, ) = ay.

Let D C A™ be an n-ary relation on A. Then for every positive integer n and

each 1 < i <n we denote by 62’1’34 the n-ary i-th partial projection defined by

n,A

eip(ay, ... a,) = a;

for all (ay,...,a,) € D.
Let Jy := {ezg1 1 <i<mnand D= A"} be the set of all total projections defined
on A and let J}} be the set of all total n-ary projections defined on A.

For n,m € N* we define the superposition operation
SmA L Pm(A) x (P(A)™ — P"(A)

SZ"A(fA,glA, o ,g;i)(al, Cey Q) = fA(gf(al, cey Q) ,g;?b(al, Cey ).

Here (ai,...,a,) € domS™A(fA, g,...,92) iff (ay,...,a,) € ﬁ alomg;4 and for
b; = giMay, ..., a,), we have (by,...,by) € domf?, ie. domS,TvA(J}i‘,gf‘, Y e
{(ar,...,a,) € A" | (a1,...,a,) € ﬁ domg:! and (by, ..., by) € domf*}.

A partial clone C' on A is a suljazrposition closed subset of P(A) containing J4.

A proper partial clone is a partial clone C' containing at least an n-ary operation f4

with dom f4 # A" If C C O(A) then C is called a total clone.
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Partial clones can be regarded as subalgebras of the heterogeneous algebra

((PH(A))HEN‘*‘; (S:zn’A)m,neN*'v (JZ)nEN+)

where N7 is the set of all positive integers.
This remark shows that the set of all partial clones on A, ordered by inclusion,
forms an algebraic lattice Lp(4) in which arbitrary infimum is the set-theoretical
intersection. For F' C P(A) by (F') we denote by the least partial clone containing
F.

Any mapping ¢ = (p™),en+ : C — €’ from a clone C C P(A) into C" C P(B)
is a clone homomorphism if
(i) arity (f)= arity o(f) for f € C,
(i) p(e) = &P (1< i <neNY),
(i) (St (f2 gt a2)) = SEP(e(fh), e(gl)), - - elgn)) for f4 € C™ and
gt gt e cm.
(Here o(f4) means o™ (f4) where f4 is n-ary).

Let (fi)ier be a sequence of operation symbols, where I is an index set. To each
fi; we assign an integer n; > 0 as its arity . A type 7 is the sequence of arities of f;
for all i € I. We always write 7 := (n;);er.

Let 7 = (n;):es be a type with the sequence of operation symbols (f;)ier. A partial
)ier), where A is a non-empty set

algebra of type T is an ordered pair A := (A; (f

and (f)er is a sequence of partial operations on A indexed by a non-empty index
set I such that to each n;—ary operation symbol f; there is a corresponding n;—ary
operation f* on A. (If n; > 0 for all i € I, we can also consider the empty algebra,
ie. A=10).

The set A is called the universe of A and the sequence (f{');c; is called the
sequence of fundamental operations of A. We sometimes write A := (A; (f)icr).
We denote by PAlg(7) the class of all partial algebras of type 7.

Let A = (A; (f#)icr) and B = (B; (fB)icr) be partial algebras and let B C A. A

partial algebra B is called a weak subalgebra of the partial algebra A, if
graphf” C graphf/.

A partial algebra B is called a relative subalgebra of the partial algebra A, if
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graphfZ = graphf# n B+l
A partial algebra B is called a closed subalgebra of the partial algebra A, if
graphfB = graphfA N (B™ x A).

A relative subalgebra B of a partial algebra A is an initial segment in A iff for
all i € I and for all (ay,...,a,,) € A" if fA(ay,...,a,,) € B then a; € B for all j
with 1 <7 <n;.

Let A = (4; (f1)ier) and B = (B; (fB)icr) be partial algebras. A function h :

A — B is called a homomorphism of A into B iff for all f;, « € I and for all
(a1,...,a,,) € A" and a € A the following holds:

if fA(a1,...,a,,) = a, then fB(h(a1),...,h(a,,)) = h(a).

A homomorphism h : A — B is called a full homomorphism of A into B iff for all
fi, i € I and for all (ay,...,a,,) € A™ and a € A the following holds:

if (h(a1),...,h(a,,)) € domfP and fB(h(a1),...,h(a,,)) = h(a), then there ex-
ists (aj,...,a, ) € A", such that (h(a)),...,h(a,,)) = (h(a1),...,"(a,,)) and
(a,...,al,) € domf;.

A homomorphism h : A — B is called a closed homomorphism of A into B iff for all

fi, i € I and for all (ay,...,a,,) € A™ the following holds:
if (h(ar),...,h(a,,)) € domfE, then (ai,...,a,,) € domf.

Let (A;)jes be a family of partial algebras of type 7, then the direct product
II Aj
[T A; is a partial algebra with [] A; as its universe and the operations f/”
jeg jeg
defined for every ¢ € I as follows
I Ay

£ (an)jess s (ang)jes) = (7 (@1, - nig))jes-
This means, the left hand side is defined iff for all j € J, we have (ay;,...,an,;) €
domfiAj.
Let (A;)jes be a family of partial algebras of type 7 where J = {1,...,n}.
A=TI| A is called filter product of (A;) ey if

JjeJIF

([ag)ops - - - [an)op) € domfiff (ay;,. .., an4) € domfiAj where {j € J} € F
and [ | A;:={[do, | a € [ A}

jeJ g jEJ
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1.2 Closure Operators and Galois Connections

Lattices form important examples of universal algebras (see [25]).

An ordered pair (L, <) is called a partially ordered set if L is a non-empty set
and < is a partial order on L, i.e. a relation < satisfying the reflexive law, the anti-
symmetric law and the transitive law. A partially ordered set (L, <) is called a lattice
if for every a,b € L both sup{a, b} (supremum of a and b) and inf{a, b} (infimum of
a and b) exist in L. Let M be a non-empty subset of L. Then M := (M, <) is called
sublattice of L := (L,<) if a,b € M implies sup{a,b} € M and inf{a,b} € M, a
partially ordered set (L, <) is called a complete lattice if for every nonempty subset
A of L both supA and infA exist in L.

Note that the lattice (L, <) can be considered as an algebra of type 7 = (2,2).
Indeed, we define two binary operations, denoted by V and A, the so-called join and
meet, respectively, by: a V b := sup{a,b} and a Ab :=inf{a,b} for all a,b € L. This
algebra satisfies a list of axioms containing the associative laws, the commutative
laws, the idempotent laws for both operations and the absorption laws, i.e. for all
a,b € L, we get aV (aANb) =a = aA (aVDb). Conversely every algebra of type
T = (2, 2) satisfying these axioms is a lattice in the first sense.

Let A be a non-empty set and P(A) be the power set of A. A mapping v :
P(A) — P(A) is called a closure operator on A if for any X, Y € P(A), the following

conditions hold:

(i) X C~y(X) (extensivity);
(ii) X CY = ~(X) Cy(Y) (monotonicity);
(i) y(v(X)) =v(X) (idempotency).

A subset X of A is called a closed set with respect to the closure operator ~y
if v(X) = X. Let H, denote the set of all closed sets with respect to the closure
operator 7y, the so-called closure system with respect to 7. In fact, H, forms a

complete lattice.

Proposition 1.2.1 ([6]) Let v : P(A) — P(A) be a closure operator on A. Then
H., is a complete lattice with respect to set inclusion. For any set {H; € H., | i € I},
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the meet and join operators are defined by
NH e H, liel} = (\H,

el

\{HieH, |icl} = ({HeH |H2JH}=~JH)

iel iel
The concept of a closure operator is closely connected to the next concept of a
Galois connection.
A Galois connection between sets A and B is a pair (u, ¢) of mappings p : P(A) —
P(B) and ¢ : P(B) — P(A) such that for any X, X’ € P(A) and Y)Y’ € P(B) the

following conditions are fulfilled:
i) XCX'=puX)DuX)andY CY' = (Y) DoY),
(i) X Couu(X) and Y C ue(Y).

Proposition 1.2.2 ([27]) Let (p,¢) with pn: P(A) — P(B) and v : P(B) — P(A)

be a Galois connection between sets A and B. Then
(i) pep = p and vpe = ¢;
(i) tp and pe are closure operators on A and B, respectively;

(iii) the closed sets under cu are exactly the sets of the form «(Y) for Y C B and
the closed sets under uv are exactly the sets of the form u(X) for X C A;
(iv) p(U Xi) = N w(X5), where X; C A for alli € I;
iel el

v) «(UY:) = N u(Y;), where Y; C B for alli e 1.

i€l iel
Note that any relation R C A x B between sets A and B induces a Galois
connection (g, tr) between A and B as follows:

We can define the mappings pg : P(A) — P(B) and g : P(B) — P(A) by
ur(X) = {ye€ B|Vee X((z,y) € R)},
tr(Y) = {xe€A|VyeY((z,y) € R)}.

Conversely, for any Galois connection (1, ¢) between sets A and B, we define a

relation R, , by
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Ryw = U{X x u(X) | X C A}.

In fact, there is a one-to-one correspondence between Galois connections and rela-
tions between sets A and B.

Now we want to describe a way starting from a relation R C A x B and the
induced Galois connection (u,¢) to obtain a certain subrelation of R which induces
a new Galois connection.

Let R and R’ be relations between sets A and B. Let (u,¢) and (¢/,¢') be the
Galois connections between A and B induced by R and R’, respectively. The relation

R’ is called a Galois-closed subrelation of R if,

(i) R C R and

(i) VT CANVSCB W) =S ANJ(S)=T)= (u(T)=S AN (S)=T).
The following are equivalent characterizations of Galois-closed subrelations.

Proposition 1.2.3 ([28]) Let R’ C R be relations between sets A and B. Then the

following are equivalent:

(i) R'is a Galois-closed subrelation of R;

(ii) For any T C A, if /u/(T) = T then p(T) = p/(T), and for any S C B, if
Wl (S) =S then o(S) =(9);

(iii) For all T C A and for all S C B the equations ' 1/ (T) = v/ (T) and p't'(S) =
ul'(S) are satisfied.

From this definition, we can prove the following characterization of complete sub-

lattices of a complete lattice.

Theorem 1.2.4 ([1]) Let R C A x B be a relation between sets A and B, with
the induced Galois connection (i, t). Let H,, be the corresponding lattice of closed

subsets of A .

(i) If R C A x B is a Galois-closed subrelation of R, then the class Ur = H,
is a complete sublattice of H,,, where (y', (") is the Galois connection induced

by the relation R'.
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(i) IfU is a complete sublattice of H,,, then the relation
Ry =T xu(T)|TelU}
15 a Galois-closed subrelation of R.

(iii) For any Galois-closed subrelation R’ of R and any complete sublattice U of
H. we have Ug, =U and Ry, = R'.

Let A be a non-empty set and P(A) be the power set of A. A mapping x :
P(A) — P(A) is called a kernel operator on A if for any M, N € P(A), the following

conditions hold:

(i) k(M) M (intensivity);
(i) M C N = k(M) C k(N) (monotonicity);
(ili) K(k(M)) = rK(M) (idempotency).

A kernel system on A is defined as a subset L C P(A) with the property that for
all B C K, the set (B is in K.

1.3 Conjugate Pairs of Additive Closure Opera-
tors

In this part we will define a particular pair v := (71, 72) of closure operators with
respect to a given relation R C A x B and after this we define a subrelation R, C R
of R via 7 and study the interconnections between Galois connections induced by
R, and by R.

A closure operator v : P(A) — P(A) on a set A is said to be additive if for all
subsets T of A

(here we write y(a) instead of v({a})).
Let v : P(A) — P(A), 72 : P(B) — P(B) be closure operators on a set A and
on a set B, respectively. Let R C A x B be a given relation between A and B. Then
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(71,72) is called a conjugate pair with respect to R if for any ¢ € A and for any
sebB

mn(t) x {s} C R {t} X 72(s) C k.
If (y1,72) is a conjugate pair of additive closure operators with respect to a relation

R C A x B then for any T C A and for any S C B we have

Let v := (71,72) be a conjugate pair of additive closure operators, with respect

to a relation R C A x B. Let R, be the following relation between A and B:
R, :={(t,s) e Ax B|n(t) x {s} C R}.

Theorem 1.3.1 ([24]) Let v := (y1,72) be a conjugate pair of additive closure
operators with respect to a given relation R C A x B. Let (p,t), (fty,ty) be the
Galois connections between A and B induced by R and by R, respectively.

Then for any T C A and for any S C B we have

(1) uy(T) = (1), (1) (9) = 1(9),
(2) u,(T) C w(T), (27) y(5) C u9),
(3) 7 (T) = p(T), () M (S) = ,(9),
4) n(T) = e (T), (&) rm(S) = pe,(S),
(5) wyty(S) = w(S), (5) L (T) = wn(T),
(6) pys(S) = py(S),  (6) tyuy(T) = vy (T).

Theorem 1.3.2 ([24]) Let v := (71,72) be a conjugate pair of additive closure op-
erators with respect to a giwen relation R C A x B, and let (p, ), (p,t) be the
Galois connections between A and B induced by R and by R, respectively. Then

L For any T C A with y(T) = T and for any S C B with u(S) = S the
following conditions (1)-(4) and (1')-(4"), respectively, are equivalent:

(1) T = 4y (T), (1) S = Hyty(5),
(2) n(T) = T, (2) (S = S,
B) wT = w(T), @) uS) = (),
(4) ) = ), 4) meS) = uS9).

II. For any T C A and for any S C B the following conditions are true:
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(1) m@ < () < ) = t,u,(T),
2) n(T) <€ w(l) <« wu(T) C uT),
(3) %(S) < w(S) & w(S) = pe(9),
(4) 7%(S) < w(S) & yum(S) < w(S).

Theorem 1.3.3 ([24]) Let v := (y1,72) be a conjugate pair of additive closure op-
erators with respect to a given relation R C A x B. Let (u, ), (fty,ty) be the Galois

connections between A and B induced by R and by R.,, respectively. Then H the

Myl s

class of all closed sets under the closure operator pii, is a complete sublattice of

H,u and 'H,. . is a complete sublattice of H,,.



Chapter 2

Strong Regular Varieties

In this chapter we study strong regular varieties of partial algebras. In Section 2.1
we define terms, the superposition of terms and term operations of partial algebras
(see [49], [2], [47]). Since the set of all term operations of a partial algebra induced
by usual terms is different from the set of all partial operations produced by the set
of all fundamental operations of the partial algebra, we introduce another kind of
terms, so-called C-terms which were first introduced by W. Craig ([15]) (see also [2],
[49]). Then we define different kinds of strong identities in partial algebras, study

the corresponding Galois connections and model classes.

2.1 Terms, Superposition of Terms and Term Op-
erations

First we recall the usual definition of terms. Let n € N and X,, = {z1,...,2,}
be an n—element set. The set X, is called an alphabet and its elements are called
variables. To every operation symbol f;, we assign a natural number n; > 1, the arity
of fi. Let 7 = (n;);er be a type such that the set of operation symbols {f; | i € I}

is disjoint with X,,. An n—ary term of type 7 is inductively defined as follows:
(i) every variable x; € X,, is an n—ary term of type 7;

(ii) if t4,...,t,, are n—ary terms of type 7 and f; is an n;—ary operation symbol,

then f;(t1,...,t,,) is an n—ary term of type 7.

11
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The set W,.(X,,) of all n-ary terms of type 7 is the smallest set containing z1, ..., z,
that is closed under finite application of (ii). The set of all terms of type T over the
alphabet X := {x1,z,...} is defined as disjoint union W,(X) := fj W.(X,).

By using step (ii) in the definition of terms of type 7, the tern? :allgebra

Fr(X) = (W(X), (fi)ier)

of type 7, the so-called absolutely free algebra, can be defined by

fi(tb ce atni) = fi(tla cee 7tm)

for each operation symbol f; and t1,...,t,, € W.(X).

As for partial operations we can also define a superposition of terms. Clones of
terms are subsets of W, (X) which are closed under the operation of superposition
of terms and contain all variables. For each pair of natural numbers m and n greater
than zero, the superposition operation 57!, maps one n-ary term and n m-ary terms
to an m-ary term, so that

gn

m

W (Xn) X (Wr(Xim))" — Wi (Xon).

The operation S7, is defined inductively, by setting
Sy (xj,ty,...,t,) =1, for any variable z; € X, and
ng(fr(sl, ey Snr);tla Ce 7tn> = fr(S%(Sl, tl, e 7tn)7 ey S%(Snr,tl, Ce ,tn))

Using these operations, we form the heterogeneous or multi-based algebra

clonet = (W (Xy))ns0; (Sp)nm>0, (Ti)i<nn>1)-

It is well-known and easy to check that this algebra satisfies the clone axioms

(C1) Sh(Z, 50 (Y, X1, ..., X), ..., 5P (Y,, Xy, .., X))
~ S (SH(Z,Yq, .. Y), X, Xy,
(C2) Sm(\, X1,..., X)) ~ X;, forl1<j<m,
(C3) S™(X;, M1, Am) ~ X;,  for 1< <m,
where SE, and Snare operation symbols corresponding to the operations S?,, S
of cloneT, M, ..., A are nullary operation symbols and Z, Y3, . .. ,}7;,, X1, X

are variables. The algebra clone 7 is also called a Menger system.
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Since the set W, (X,,) of all n-ary terms of type 7 is closed under the superposition
operation S™ := S}, there is a homogeneous analogue of this structure. The algebra
(W, (X,); S™, xq,...,x,) is an algebra of type 7 = (n+1,0,...,0), which still satisfies
the clone axioms above for the case that p = m = n. Such an algebra is called a
unitary Menger algebra of rank n. An algebra (W,(X,),S™) of type 7 = (n + 1) is
called a Menger algebra of rank n if it satisfies the axiom (C1).

Let t € W.(X,) for n € N*. To each partial algebra A = (A; (f)ics) of type

T we obtain a partial operation t, called the n-ary term operation induced by t as

follows:

(i) If t = z; € X, then tA = x}“ = e?’A, where e?’A is the n-ary total projection

on the j-th component.

(ii) Now assume that t = f;(t1,...,t,,) where f; is an n;-ary operation symbol,
tA

and assume also that t{!, ..., 7. are the term operations induced by the terms
t1,...,tn,, and that the t;‘(al, ..., ay) are defined, with values t;“(al, cey Q) =
b, for 1 < j < ny. If fA(by,...,b,,) is defined, then t4(ay, ..., a,) is defined

and t4(ay, ..., a,) = SEA(fA H ar, . an), -t (a, . an)).

Let W, (X,,)* be the set of all n-ary term operations of type 7.

Let A = (A;(f#)icr) be a partial algebra of a given type 7. To every partial
algebra A we assign the partial clone generated by {f | i € I}, denoted by T(A).
The set T'(A) is called clone of all term operations of the algebra A.

Example 2.1.1 Let A = ({0,1}; f4) be a partial algebra of type (1). Let f* be the
partial operation defined by

1 if =20
fA(I)_{ not defined if x = 1.

Let t* be the term operation induced by a termt € W1y (X). Then t* € J4U{f*, ¢k}
when the symbol c. is used to express that fA(x) is an unary constant nowhere

defined. But the operation
A 24, 24 2A ol A A 2A
g = S2 (61 €1 732 (f =) ))

is different from f4, ¢l and elements of J4. We have g* € T(A) but g* & Wy (X)A.

o
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Since the set W, (X,,)* is different from the set of all partial operations generated
by {ff*|i € I} we need a new definition of terms over partial algebras of type 7
which overcomes this problem.
Let X be an alphabet and let {f; | i« € I} be a set of operation symbols of type
7, where each f; has the arity n; and X N {f; | i € I} = 0. We need additional
symbols ¥ & X, for every k € N* := N\ {0} and 1 < j < k. Let X;, = {21,...,2,}
be an n-element alphabet. The set of n-ary C-terms of type 7 over X,, is defined

inductively as follows:
(i) Every z; € X,, is an n-ary C-term of type 7.

(i) If wy,...,w are n-ary C-terms of type 7, then 6?(11}1, ...,wy) is an n-ary

C-term of type 7 for all 1 < j < k and all kK € N*.

(iii) If wy,...,w,, are n-ary C-terms of type 7 and if f; is an n;-ary operation

symbol, then f;(wy,...,wy,,) is an n-ary C-term of type 7.

Let WY(X,,) be the set of all n-ary C-terms of type 7 defined in this way. Then
WE(X) = Ej WE(X,) denotes the set of all C-terms of this type. Note that here
the use of tﬁg superscript C' shall distinguish these sets from the analogous ones in
the total case; the letter C' was used since Craig in [15] suggested the addition of
the extra constant terms e¥.

Every n-ary C-term w € WY(X,,) induces an n-ary C-term operation w* of

any partial algebra A = (A;(f)ic;) of type 7. For ay,...,a, € A, the value

w?(ay,...,a,) is defined in the following inductive way:

A

(1) Ifw = Z; then w = :L“JA _ A

A .
= e;, where e?’ is as usual the nm-ary total

projection on the j-th component.

(ii) If w = e¥(wy,...,wy) and we assume that wy',... wy' are the C-term op-
erations induced by the terms wy,...,w; and that the wi(ai,...,a,) are
defined for 1 < i < k, then w?(ay,...,a,) is defined and wh(as,...,a,) =

wit(ay, ..., ap).
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(iii) Now assume that w = f;(wy,...,w,,) where f; is an n;-ary operation symbol,
and assume that the w?'(as, .. an) are defined, with values w(ay, ..., a,) =
b; for 1 < j < m;. If fA(by,...,by,) is defined, then w(ay,...,a,) is defined
ande(al,...,an):SZA( wit(ay an), - Wi (ar, ... ap)).

Let WC(X,,)* be the set of all n-ary term operations induced by the terms from
WE(X,) on the partial algebra A and let W (X)4 := Ej W (X,)A.

Note that for C-terms we have T'(A) = W (X)A (8251[2]).

Now we show that arbitrary term operations induced by C-terms satisfy the

same compatibility condition as fundamental operations of A.

Lemma 2.1.2 Let ¢ : T(A) — T(B) be a clone homomorphism defined by o(f{') =
fE foralli € I. Then p(t*) =15 for all t € WE(X).

The Lemma can be proved by induction on the complexity of the term ¢t € W (X)
(see [12]).

On the sets W(X,,) we may introduce the following superposition operations.
Let wq, ..., w,, be n-ary C-terms and let t be an m-ary C-term. Then we define an

n-ary C-term g;n(t, wy, . .., Wy,) inductively by the following steps:

(i) For t = z;, 1 < j <m (m-ary variable), we define

gnm(:cj,wl,...,wm) = Wj.
(ii) For t = e¥(s1,...,s1) we set
St wy, .. W) :55(?,7(31,11)1,...,wm),...,gzl(sk,wl,...,wm)),

where s1,...,s;, are m-ary, for all k € N* and 1 < j < k.

(iii) For t = fi(s1,...,5n,) We set
—m

St wy, . w) = Fi(S) (S1,W1, 0 W)y ey S (Sp W1, W),

where s1,...,s,, are m-ary.

This defines an operation
S WE(X) x (WE(X,))™ — WE(X,),

which describes the superposition of C-terms.
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The C-term clone of type 7 is the heterogeneous algebra
clonet == (WE(X0))n>0: (S Dm0, (T7)j<mm>1)-

Let T"(A) be the set of all n-ary term operations of a partial algebra A =
(A (fA)ier). Then T(A) = ((T"(A)uers: (S merrs (€0 e 12y s also a
partial clone, it is the partial clone generated by the fundamental operations of the
algebra A.

We define a family ¢ = (¢™),en+ of mappings, o™ : WC(X,) — T"(A), by
setting (™ (t) = t4, the n-ary term operation induced by ¢. It is easy to see that ¢
has the following properties ([49]):

(i) ¢ (z;) = €ep*, 1< j <n,neNT,
(i) (S0 (5,1, - ) = SAE™(), 60 (1), ..., o (t)) |p, for n € N,
where D is the intersection of the domains of all t;“, 1 < j < m, where s is m-ary,

and t4,...,t,, are n-ary.

2.2 Strong Varieties

Let 7 be a type. An ordered pair (t1,ty) € W,(X)? is called an equation of type 7;
we usually write t; ~ 5.
An equation t; &~ t, € W,(X)? is called a strong identity in a partial algebra A

(in symbols A | t; ~ to) iff t{* is defined whenever 3! is defined and conversely

and t{' = t3' on the common domain, i.e. the induced partial term operations t{ and
t3 are equal.

Let K C PAlg(t) be a class of partial algebras of type 7 and ¥ C W, (X)2.
Consider the connection between PAlg(T) and W,(X)? given by the following two

operators:
Id*: P(PAlg(7)) — P(W-(X)?)  and
Mod® : P(W,(X)?) — P(PAlg(r))  with
K = {s~teW, (X)?|VAeK (A & s~t)} and

S

Mod®*y := {Ae€ PAlg(t)|Vs=teX (A E s=xt)}.

S
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Clearly, the pair (Mod®, Id®) is a Galois connection between PAlg(7) and
W, (X)2.
As usual for a Galois connection, we have two closure operators Mod®Id® and

Id*Mod® and their sets of fixed points, i.e. the sets
{ZCW.(X)?|Id°Mod*~ =%}  and {K C PAlg(t) | Mod*Id*°K = K},

form two complete lattices (1), L5(T).

Let V' C PAlg(T) be a class of partial algebras. The class V' is called a strong
variety of partial algebras iff there is a set ¥ C W, (X)? of strong identities in V
such that V = Mod®}.

In [4] P. Burmeister introduced the concept of an EC E-equation. By [5], page 67,
EC E-equations and strong equations are equivalent if the empty algebra is excluded.

Therefore we have the following Birkhoff-type characterization of strong varieties.

Theorem 2.2.1 ([5], p. 199) Let K be a class of partial algebras of type 7. Then a
class K is a strong variety iff K = H.S. Py K U{0} where 0 is the empty algebra.
(i.e. K is closed under closed homomorphic images, closed subalgebras, and filtered

products of partial algebras from K U {0} ).

Now we consider equations consisting of C-terms. As for usual terms we define:
An equation t; ~ t, € WE(X)? is called a strong identity in a partial algebra A (in
symbols A | t; & ty) iff t{* is defined whenever #3' is defined and conversely and
t{* = 5! on the common domain, i.e. the induced partial term operations t;' and ¢3!
are equal.

Let K C PAlg(t) be a class of partial algebras of type 7 and ¥ C WY (X)2.
Consider the connection between PAlg(T) and W (X)? given by the following two

operators:
Id® : P(PAlg(r)) — P(WE(X)?) and
Mod® : P(WE(X)?) — P(PAlg(r)) with
IP*K = {s=teWYX)?|VAeK (A E s~t)} and

Mod®y := {Ae€ PAlg(t)|Vs~teX (A E s=t)}.
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Clearly, the pair (Mod®, Id®) is a Galois connection between PAlg(r) and
WE(X)2 We have two closure operators Mod*Id® and Id*Mod® and their sets of
fixed points.

Let V' C PAlg(T) be a class of partial algebras. The class V is called a strong
variety of partial algebras iff there is a set ¥ C W (X)? of strong identities in V
such that V = Mod*X.

Theorem 2.2.2 ([2]) Let K be a class of partial algebras of type 7. Then a class K
is a strong variety iff K = H.S. P K (i.e. K is closed under closed homomorphic
images, closed subalgebras, and filtered products of partial algebras from K ).

2.3 Strong Regular Varieties

For a term t € W,(X) we denote the set of all variables in ¢ by Var(t).

An equation p ~ ¢ € W,.(X)? of terms is called regular if in p and ¢ the same
variables occur i.e. if Var(p)=Var(q).

Let WT(X)? C W,.(X)? be the set of all regular equations of type 7.

An equation s ~ t € W, (X)? is called a strong regular identity in a partial

algebra A (in symbols A | s=t)iff A | s=t and Var(s)=Var(t).

Let K C PAlg(t) be a class of partial algebras of type 7 and ¥ C W,(X)%
Consider the connection between PAlg(7) and W, (X)? given by the following two

operators:
Id*" : P(PAlg(t)) — P(W,(X)?) and
Mod*" : P(W.(X)?) — P(PAlg(t))  with
I¢"K = {s=~teW (X)??|VAeK (A E s~t)} and
Mody, = {Ae€ PAlg(r) |Vs=teX (A E s=t)}.

Clearly, the pair (Mod®, 1d*") is a Galois connection between PAlg(7) and
W,(X)?2 Again we have two closure operators Mod*" [d*" and Id*" Mod*" and their

sets of fixed points, i.e. the sets

{(ZCW.(X)?|Id"Mod*"¥ =%}  and {K C PAlg(7) | Mod*" Id*"K = K},
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form two complete lattices £ (1), L (7).

Let V' C PAlg(T) be a class of partial algebras. The class V is called a strong
regular variety of partial algebras iff there is a set ¥ C W7 (X)? of strong regular
identities in V' such that V' = Mod* ..

To obtain a Birkhoff-type characterization for strong regular varieties we intro-
duce the following pin operator L.

For a partial algebra A = (4 : (f)icr), let ALY = (AU{L}; (f )ics) when L & A

2

and

A i A
At _ fz (alv"'aam‘) if (al""’ani) Gdomfi
[ (an, .. an,) = { i otherwise.

The operation fiAL is called one-point extension of fi.
Let K C PAlg(r) and K+ = {A*|A € K}. Moreover

Kto = K, K+trtt = (K+»)+ for all n € N,
Now we can define the pin operator on K.

1K = |J K+
n=0

Theorem 2.3.1 ([48]) Let K be a class of partial algebras of type 7. Then a class
K is a strong reqular variety iff K = H.InS.P1(K) (i.e. K is closed under closed
homomorphic images, initial segments, closed subalgebras, direct products and the

pin operator applied on partial algebras from K ).

Proposition 2.3.2 Lets,t € WY (X) and A € PAlg(r). If s =~ t € Id*A then there
exists', ' € WE(X) and s’ ~t' € Id*" A (i.e. Var(s') = Var(t') ands' =t € Id°A).

Proof. Let s ~ ¢ € Id®A. Since
el(s,t) s~ t~ej(s,t) € [d°A.

Let s = €2(s,t) and ¢ = £3(s,t). We have Var(s') = Var(t') and s’ ~ t' € Id°A.
Then s’ ~ t' € Id*" A. n

Because of Proposition 2.3.2 in the case of C-terms instead of strong identities

we can always consider strong regular identities.
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Chapter 3

Hyperidentities

This chapter shall motivate the study of hyperidentities. We first define the concepts
of hypersubstitutions, regular hypersubstitutions, strong regular M-hyperidentities
and M-solid strong regular varieties on the basis of terms from W.(X). Secondly,

we give the definition of M-solid strong varieties considering terms from W (X).

3.1 Hyperidentities and M-solid Strong Regular
Varieties

We consider mappings from the set of all operation symbols of type 7 into the set
of all terms of type 7. Such mappings are called hypersubstitutions of type 7 if they
preserve the arities. This means that to each n;-ary operation symbol of type 7,
we assign an n;-ary term from W.(X). Hypersubstitutions ¢ can be extended to
mappings o : W, (X) — W.(X) which are defined on the set W, (X) of all terms of
type 7 by the following inductive definition:

(i) o[z] := x for every variable z € X;

(i) alfi(tr,...,tn,)] == Sr(o(fy),clt1],...,0ts,]) for all terms ty,...,t,, €
W (X,).

As Welke proved in [49], a necessary condition for o[s] &~ &[t] to be a strong regular

identity in a partial algebra A whenever s & t is a strong regular identity in A is that

¢ maps terms of the form f;(xy, ..., z,,) to terms ¢t with Var(t) = {z1,...,x,,}. So to

define strong regular hyperidentities we will consider only such hypersubstitutions.

21
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Let o be a hypersubstitution. We say that the hypersubstitution o is a reqular
hypersubstitution if Var(o(f;)) = {z1,...,x,,} foralli € I.
Let Hypgr(7) denote the set of all regular hypersubstitutions of type 7 and let og
denote some member of Hypg(T).

On Hypgr(7) we define a binary operation by
OR, O h ORy = b\'Rl OO0R,-

From [49] follows that for any two regular hyperstitutions of type 7 we have (o, oy

ORr,) = OR, © Og, (this equation is valid for arbitrary hypersubstitutions).

Theorem 3.1.1 ([49]) The algebra Hypr(T) := (Hypr(T); on, 0ia) is a monoid with
oia(fi) = filx1,...,xy,) foralli € 1.

Let A = (A;(f#)icr) be a partial algebra of type 7 = (n;)ics, and let op €
Hypgr(7) be a regular hypersubstitution. We want to consider the derived algebra
or(A) = (A4;(or(fi)M)icr), where or(fi)* is the term operation induced by the
term og(f;) on the algebra A. For regular hypersubstitutions we have the following

important feature.

Lemma 3.1.2 ([49]) Let or be a regular hypersubstitution of type T and let A be
a partial algebra of type 7. For a term t € W, (X) we denote by t°*Y the term
operation induced byt in the algebra or(A), and by Gr[t]* the term operation induced

by og[t] in the algebra A. Then for every term t € W, (X) we have

Grlt)t = 7.

Let M be a submonoid of Hypr(7). We introduce two operators x%, and x4;. Let
Y CW.(X) x W, (X) be regular equations, s ~ t € 3, we let
XY s = t] .= {og|s] ~ Og[t] | or € M} and
xulE = U xils~ 1.
steEY
For any partial algebra A of type 7 and K C PAlg(T), we let
X [A] == {or(A) | or € M} and
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XKl = U xaulAl

AcK
Now we can define the concept of a strong regular M-hyperidentity of a partial
algebra of type 7.
Let M be a submonoid of Hypg(7) and let A be a partial algebra of type 7. Then
a strong regular identity s =~ t of A is called a strong regular M -hyperidentity of A
if for every regular hypersubstitution o € M the equation og[s] ~ Gglt] is also a
strong regular identity of 4. We write

A | s~t:eVope M(A | Gr[s] = aglt]).

srMh sr

A strong regular identity is called a strong reqular M -hyperidentity of a class K
of partial algebras of type 7 if it holds as strong regular M-hyperidentity in every
partial algebra in K. In the case, if M = Hypgr(T), strong regular M-hyperidentities
are called strong reqular hyperidentities.

The relation

= ={(As~t) € PAlg(T) x W,(X)?| Vor € M(A = Ggls| ~ ogt])}

srMh sT
induces the Galois connection (HpId®, HyMod®") defined on subclasses K of
PAlg(7) and regular equations ¥ of identities in W,(X)? as follows:

Hyld K = {s~teW,(X)?|VAe K(A E s=~t)};

srMh
HyMod™Y = {Ae€ PAlg(t)|Vs=teX(A E s=xt)}.
srMh
A set X of identities in W, (X)? is called a strong reqular M -hyperequational
theory if there is a class K of partial algebras of type 7 such that ¥ = Hy I[d" K.
A class K of partial algebras of type 7 is called a strong reqular M -hyperequational
class if there is a set of identities > such that K = Hy /Mod*" Y.

Corollary 3.1.3 ([49]) For every submonoid M C Hypgr(T) the operators x4, and

X% form a conjugate pair of additive closure operators with respect to the relation

=

ST
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Let V' C PAlg(7) be a strong regular variety of partial algebras, so that V' =
Mod°"% for some regular equation ¥ C W (X) x W,(X). Then V is said to be
M -solid if x3,[V]=V.

Theorem 3.1.4 ([49]) Let V C PAlg(7) be a strong regular variety of partial alge-

bras and let ¥ C W,.(X)? be a strong reqular equational theory. Then the following

propositions (1)-(iv) and (’)-(iv’) are equivalent:

(i) V is a strong regular M-hyperequational class, i.e. V.= HyMod*" Hy 1d°"V .

(ii) V is M-solid, i.e. x4,[V] = V.

(iii) Id*"V = HpId*"V, i.e. every strong regular identity of V' is a strong regular
M-hyperidentity of V.

(iv) X5 [LdV] = Id*"V .

And the following conditions are also equivalent

(i) ¥ = Hyld*"Hy Mod*™ 3.

(ii") x5 [X] = .

(iii") Mod*Y = Hy Mod™ ..

(iv") x4y [Mod*" Y] = Mod*"y.

Theorem 3.1.5 ([49]) For any K C PAlg(t) and for any set of reqular equations
¥ C W, (X)? the following conditions hold:

(i) Xﬁ[K] C Mod"Id*"K < Mod"Id*"K = HyMod " Hyld"K
and
(i) Xf/[ [X] C Id*"Mod"Y <& Id"ModY = HyIld" HyMod* Y.

3.2 Hyperidentities and M-solid Strong Varieties

In this section we recall some basis facts on regular hypersubstitutions, strong hy-
peridentities and solid strong varieties of partial algebras using C-terms. For more
details see [26], [27] and [49).

Let {fi | i € I} be a set of operation symbols of type 7 and W (X) be the set of
all C-terms of this type. A mapping o : {f; | i € [} — W (X) which maps each n;-
ary fundamental operation f; to a C-term of arity n; is called a C-hypersubstitution

of type 7.
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Any C-hypersubstitution o of type 7 can be extended to a map o : WY (X) —
WE(X) defined for all C-terms, in the following way:

(i) o[z;] = x; for every x; € X,

oy~ =k N A
(i) oleb(s1,.. . su)] = Sp(ef(wr, ..., x),0[s1),...,0[sk]), where s1,...,5, €

WE(Xn),
(iil) G[fi(t1,... . tn,)] = S (a(fi),0[t1], ..., 8[tn,]), where t1,...,t, € WE(X,,).

The C-hypersubstitution o is called regularif Var(o(f;)) = {z1,...,x,,}, for all
1€ 1.
Let Hyp$%(7) be the set of all regular C-hypersubstitutions of type 7 and let op

denote some member of Hyp% (7).

Lemma 3.2.1 ([49]) Let og,,0r, € Hyp%(7). Then (Gr,o0r,) = Op, 00g,, where

o is the usual composition of functions.

Now we define a product of C-hypersubstitutions in the usual way, by og, oy

OR, := OR, © Og, and obtain:

Theorem 3.2.2 ([49]) The algebra Hyp% () := (Hyp%(7); 0n, 0:a) with oi4(fi) =

fi(z1,...,x,,) is a monoid.

Let A = (A4;(fA)ier) be a partial algebra of type 7 = (n;)ics, and let op €

Hyp$ (7). We want to consider the derived algebra or(A) = (4; (or(fi)Y)ier), where
or(fi)* is the term operation induced by the term oz(f;) on the algebra A.

Lemma 3.2.3 ([49]) Let or be a regular C-hypersubstitution of type 7 and let
or(A) = (A; (or(f)Y)ier). For a term t € WE(X) we denote by t°#) the term
operation induced by ¢ on the algebra og(A), and by Gg[t]* the term operation
induced by Gx[t] on the algebra A. Then for every term t € W (X) we have

Grlt]t = 7.

Lemma 3.2.4 Let og,,0r, € Hyp%(t) and A € PAlg(t). Then og,(or,(A)) =
(URz Ch 031)(“4)'
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Proof. We have
or (R, (A) = (A (g, (fi)7"2W)icr)

A7 (0R2 [0R1 (fl)]A)zeI)

A; ((og, OhURB)( ) )ier)

ORy Oh OR,)(A

(
(
(
(

(Remark that for the fundamental operations of the derived algebra o(.A) we have
FY = o(fi)*. For o1(02(A)) this gives 7 = g1 (f))74 = Gy(o1(f:))* by
Lemma 3.2.3.)

Let M be a submonoid of Hyp% (7). We introduce two operators %, and x4,
For any equation s ~ ¢t € WC(X) x WC(X) and any set ¥ C W (X) x WE(X), we

let

x5 s = t] .= {OR[s| =~ Gr[t] | op € M} and
xulZ = U xils ~ 1.
sItEYD

For any partial algebra A of type 7 and K C PAlg(T), we let
XilA] == {or(A) | op € M} and

wlK] = U xalAl

AeK

Proposition 3.2.5 Let A € PAlg(t) and s =t € WE(X)2 Then

Prgof. We have
wlAl B st

SR R A
<
Q)
o]
m
=
S}
e
=
™~
Il
Q)
el
=
=



3.2. HYPERIDENTITIES AND M-SOLID STRONG VARIETIES 27

Now we can define the concept of a strong M-hyperidentity of a partial algebra of
type T.
Let M be a submonoid of Hyp%(7) and let A be a partial algebra of type 7. Then a
strong identity s =~ t of A is called a strong M -hyperidentity of A if for every regular
C-hypersubstitution or € M the equation og[s] & dg[t] is also a strong identity of
A. We write

A E sxt:eVore M(A E ogls] = oglt]).

sMh

A strong identity is called a strong M -hyperidentity of a class K of partial algebras

of type 7 if it holds as strong M-hyperidentity in every partial algebra in K. In the

case, if M = Hyp%(7), strong M-hyperidentities are called strong hyperidentities.
The relation

E = {(As ~ 1) € PAlg(r) < WE(X)| Yo € M(A | 83ls] ~ 5l1]))

induces the Galois connection (Hy/Id®, HyyMod®) defined on subclasses K of
PAlg(t) and for sets ¥ C W (X)? as follows:

Hyld°'K = {s~tcWYX)?|VAc KA E s=xt)};

sMh
HyMod®y = {Ae€ PAlg(T) |Vs~teX(A E s~t)}.
sMh
A set ¥ C WC(X)? is called a strong M -hyperequational theory if there is a class
K of partial algebras of type 7 such that ¥ = Hy Id°K.
A class K of partial algebras of type 7 is called a strong M -hyperequational class
if there is a set X such that KX = Hy;Mod®Y.

Corollary 3.2.6 ([49]) For every submonoid M C Hyp$(7) the operators x4, and

X5 form a conjugate pair of additive closure operators with respect to the relation

E

sMh

Let V' C PAlg(T) be a strong variety of partial algebras, so that V' = Mod*%
for some set ¥ C WC(X) x WE(X). Then V is said to be M-solid if x4,[V] = V. If
M = Hyp%(7), then V is called solid.
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Theorem 3.2.7 ([49]) Let V C PAlg(7) be a strong variety of partial algebras and

let ¥ C WE(X)? be a strong equational theory. Then the following propositions (i)-

(iv) and (i")-(iv’) are equivalent:

(i) V is a strong M-hyperequational class, i.e. V.= Hy Mod*Hy Id®V .

(ii) V is M-solid, i.e. x4,[V] = V.

(iii) Id*V = Hp1d°V, i.e. every strong identity of V' is a strong M-hyperidentity of
V.

(iv) x5 [[d*V] = Id°V .

And the following conditions are also equivalent

(i) ¥ = Hyld° Hy Mod®y.

(i) x 2] = 2.

(iii") Mod*Y = HyMod*¥..

(iv") x&[Mod®Y] = Mod®Y.

Theorem 3.2.8 ([49]) For any K C PAlg(t) and for any X C WE(X)? the fol-
lowing conditions hold:

i) K] C Mod'Id*K = Mod°Id’K = HyMod®Hyld®K

and

() XE[E] C IdMod’S = Id*Mod’S = HyId*HyMod*S.



Chapter 4

Strong Regular n-full Varieties

This chapter refers to [I8]. The chapter is divided into three sections. In Section 4.1
we define strong regular n-full identities in partial algebras of type 7 and study the
connections between the relations R, R, and R,,¢. In Section 4.2 and Section 4.3
we will characterize strong regular varieties of partial algebras where every strong

regular n-full identity is a strong regular n-full hyperidentity.

4.1 Regular n-full Identities in Partial Algebras

N-full terms were studied in [18] and are defined in the following way:
Let n € NT and let 7 = (n;);e; be a type with corresponding operation symbols

(fi)ier for some index set I. We define an n-full term as follows:

(i) fi(Taq),---Tam,)) is an n-full term of type 7 for every function o € Hy,

where H,,, is the set of all functions from the set {1,...,n;} into the set
{1,...,n}.

(i) If t4,...,t, are n-full terms of type 7, then fi(ta(1), - - -, tam,)) is an n-full term
of type 7 for every a € H,, .

Let WnF(X,,) be the set of all n-full terms of type 7.
For every partial algebra A of type 7 and every n-full term ¢t the n-full term
operation t4 on A is defined as follows:

i) If t = fi(ra@) - Tawy) for o € Hy, ,, then tA(ar,...,a,) =

(fNala, ... a,) = f{“(aa(l), co oy Qa(ny)) TOr (anqy, - - Gamy)) € dom f1.

29
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(i) If t = fi(taq)s---:tam,) and assume that tA ... tA are the term opera-
tions induced by the terms t;,...,¢, and that tf(al, ...,a,) are defined,
with values t(as, ..., a,) = b; for 1 < j < n. If fA(baq), - - -, ban,)) where
ba(1)s - - - ba(ny) € {b1,..., by} is defined, then tA(ay, ..., a,) is defined and

tA<a17 s 7an) = [fi(ta(1)7 s 7ta(ni)>]A(a17 cee 7an)
= sz(t:;l(l)(ah ey Q) ,tﬁ(ni)(al, ceap)).
The superposition of n-full terms is defined as follows:

For n € NT, we define an operation: S : W' (X,,)"! — W (X,,) as follows:
(1) S”(fi(xa(l), e ,:L‘a(ni)), tl, . ,tn) = fi(ta(1)7 e ,Zfa(m.)),
(11) Sn(fi(sa(l);---7Sa(ni));t17~--7tn) = fi(Sn(Sa(l),tl,...,tn),...,
Sn(sa(ni)a t1y. .. 7tn)>)
where sq,...,s, € Wr''(X,,) and a € H,, ..

Let n —clone™ (1) = (W™'(X,);S")
and clone™ (1) = (WM(X)ns0; (S™)n>0)-
Proposition 4.1.1 ([18]) The algebra n — clone™ (1) is a Menger algebra of rank

n.

Clearly, the operation S™ can also be defined on the set W, (X,,) of all n—ary terms.
This gives an algebra (W, (X,,); S™) which also satisfies (C1). In [I8] was proved that
n — clone™ (1) is a subalgebra of (W,.(X,,);S™).

Now we consider the following set of equations: W™'(X,)> N Wr(X,)? :=
WENE(X,)2.

An equation s &~ t € W,(X)? is called a reqular n-full identity in a partial algebra
A (insymbols A | s~t)iff A = sxtand s~te WNF(X,)%

rnf
Let K C PAlg(t) be a class of partial algebras of type 7 and ¥ C W,(X)%

Consider the connection between PAlg(T) and W,(X)? given by the following two

operators:
Id™ . P(PAlg(r)) — P(W.(X)?) and

Mod™ : P(W,(X)?) — P(PAlg(r)) with
IdK = {sx~teW. (X)?|VAeK (A | s~t)} and

TN,

{Ae PAlg(1) |[Vs=teX (A E s=t)}.

rnf

Mod™'y,
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Clearly, the pair (Mod™/ Id™/) is a Galois connection between PAlg(T)
and W,.(X)? As usual for a Galois connection, we have two closure operators

Mod™ Id™F and Id™ Mod™ and their sets of fixed points, i.e. the sets
{X C W (X)? | Id™ Mod™'Y = ¥} and {K C PAlg() | Mod™ Id"™ K = K},

form two complete lattices £/ (1), L™ (7).
Let V' C PAlg(T) be a class of partial algebras. The class V is called a strong

2 of regular

ragular n-full variety of partial algebras iff there is a set ¥ C W,(X)
n-full identities in V' such that V = Mod ™.
Let ¥ C W,(X,,)? and consider a mapping RNF¥ : P(W,(X,)?) — P(W.(X,)?)

defined by RNFE : ¥+ RNFE(X) := SN WENF(X, )2
Proposition 4.1.2 RNFFE has the properties of a kernel operator on W.(X,,)?2.

Proof. (i) We prove that the operator RN F¥ is intensive.

Since X N WENF(X, )2 C X then RNFF(X) C X,

(i) We prove that the operator RN F'¥ is monotone.

Let 31,5 C W,(X,)? and ¥; C Xp. Then ¥, 0 WANF(X,)2 C ¥, 0 WANF(X,,)?
and RNFP(,) C RNFP(5,).

(iii) We prove that the operator RN F'* is idempotent.

We have RNFE(RNFE(X)) = RNFE(S N WENE(X,)?) = (XN WENE(X, )3 N
WANF(X, )2 = £ N\ WENF(X,)2 = RNFE(X),

Let V C PAlg(r) and consider a mapping RN F4 : P(PAlg(t)) — P(PAlg(T))
defined by RNFA : V s RNFA(V) := Mod* (Id"V 0 WENF(X,,)?).

Proposition 4.1.3 RNF# has the properties of a closure operator on PAlg(T).

Proof. (i) We prove at first that the operator RN F4 is extensive.

Since Id*"V N WENF(X,)2 C Id*"V, then V. C Mod*" Id*"V C Mod* (Id*"V N
WENE(X,)2) = RNFA(V).

(ii) We prove that the operator RNF# is monotone. Let V; C V, then Id*"V, C
1dVy and IdVy 0 WENF(X,)2 C IdVi, 0 WENF(X,)2. So RNFA(V;) =
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Mod*"(Id*"V, N WENF(X,)?) C Mod*" (Id*" Vo N WENE (X )2) = RNFA(Vy).

(iii) We prove that the operator RN F4 is idempotent. From (i) and (ii), we have
RNFA(V)C RNFARNFA(V)). Since Id*" Mod®" is a closure operator, we have
Id"V N WENF(X, )2 C Id*" Mod*" (Id*"V N WENF(X,,)?)

= Id"V N WENF(X,)? C Id Mod* (Id*"V N WENF (X,)?) 0 WENF(X,)2

= Mod* (Id*" Mod*" (Id*"V N WENE(X,)?) n WENF(X %) C Mod™ (Id*"V N
WAVE(X,)?)

= RNFA(RNF4(V)) C RNFA(V). .

Now we want to study the connections between the relations

Ry :={(A,s~t)e PAlg(t) x W, (X)? | A E s=~t},
Ry :={(A,s~t) € PAlg(t) x W (X)* | A E s=~t} and

Ronp i ={(A,s=t) € PAlg(t) x W (X)*| A | s=t}.
rnf
We have:

Proposition 4.1.4 The relation R, is a Galois-closed subrelation of R,.

Proof.  Clearly, Ry, C R,. Let K C PAlg(t) and ¥ C W,(X)? such that [d*" K =
Y and Mod*y = K. We will show that Id°K = Y and Mod’Y¥ = K. From X =
Id°" K we have that all identities in X are regular and thus Mod®*> = Mod® .. Since
K = Mod* %, then K = Mod®%. From ¥ = Id*" K and Id*" K C Id®*K there follows
Y CIdPPK. K = Mod”"¥ means that A |= s~ tforall A e Kandforalls~te .

Then

s~teld°K
= s~teld°Mod”Y by K = Mod%
= Mod"Y | s~t

= AEsx~tforal Aec K

= s~teld"K
Since Id*" K = X, then s ~ t € ¥ and therefore Id°K C X. [ ]

Proposition 4.1.5 The relation R,,; is a Galois-closed subrelation of Rs.
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Proof. Clearly, R.,; C Rs. Let K C PAlg(r) and ¥ C W, (X)? such that
Id™ K =% and Mod™'Y = K. We will show that Id*K = ¥ and Mod*Y = K.
From ¥ = Id™/ K we have that all identities in ¥ are members of W/NF(X, )2
and Mod®*Y = {A € PAlg(t) |Vs~te X (A | s~t)}. So Mod*Y = Mod™'Y. =

S

{A € PAlg(r) | Vst e X (A E s~ts~te WIN(X,)?)} Since K =

Mod™Y, then K = Mod*Y. From ¥ = Id™ K and Id™ K C Id°K there follows
Y C Id°K. The equation K = Mod™/Y means that A = s ~t (ie. A | s~ t
rnf s
and s ~ t € WANF(X,)?) for all A € K and for all s ~ ¢ € . Then
s~teld’K
= s~teld*Mod™Y by K = Mod™'y.
Mod™Y | s~t

AE sxtforall A€ K =Mod™Y and s ~ t € WENF(X, )2

AE s~tforall Ae K
rnf
s~teldK.

Since Id™™ K = ¥, then s ~ t € ¥ and therefore Id°K C ¥. [ ]

=
=
=
=

If R’ is a Galois-closed subrelation of R, then the complete lattice obtained from
R’ is a complete sublattice of the complete lattice obtained from R and any complete

sublattices of the original lattice arise in this way (see e.g. [28]).

4.2 Clones of n-full Terms over a Strong Variety

Now we prove that Id"™/V is a congruence relation on the Menger algebra n —

clone™ (1) of rank n.

Theorem 4.2.1 Let V' be a strong reqular n-full variety of partial algebras of type T
and let Id™™'V be the set of all reqular n-full identities satisfied in V. Then Id™'V

is a congruence relation on n — clone™ (7).

Proof.  Clearly, Id"™/V is an equivalence relation on n — clone™ (7). At first we
prove by induction on the complexity of the n-full term ¢ that from ¢t; ~ s{,...,t, =

s, € Id™V follows S™(t,t1,...,t,) = S™(t,s1,...,8,) € Id™V.
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a) If t = fi(zaq),-- ., Ta(n,)) for some o € Hy,, ,, then
5"(f¢($a(1>7-~,xa<m>) t,.otn) = filta@), - tam))  and
Sn(fi(l‘a(l), e ,Ia(ni)), Sty ,Sn) = fi(sa(l), e ,Sa(ni)).

Since La(j) = Sa(j) € Idm™'v: j=1,...,n; then

fi(ta(l)’ ce ta(ni)) ~ f‘(Sa(l) R ,Sa(ni)) c Id’””fV and

S™M(t th, .. ) = S"(fil@aq), - - - Tam), tis - - -5 tn)

~ S™(f, (asa(l L)), Sty 5n) = S™(t,81,...,8,) € Iamiv.
b) If t = fi(lag la(ny)) where Iy, ..., 1, € WrF(X,), for some o € H,,,, and if
we assume that S”(la(j),tl, coostn) B S"(Lagys S1y - -+ Sp) € 1d™V for j = 1,. i

then

S™(fillays - - -+ lagn, )) t1y .y tn)
= fl(Sn( a(1)s 1yt ) .,Sn(la(ni),tl,...,tn))
= fi(Sn(al),Sl, Sn),...,Sn<la(ni),81,...,8n))
= S™(fillary, - - - la(nz)),sl,...,sn) € ldmv.
The next step consists in showing that for n-full terms sq, ..., s, we have

taseId™V = St s1,...,5,) = S"(s,51,...,8,) € Id™V.

Since t ~ s € [d™'V and s4,...,s, € W' (X,) we have (S™(t, s1,...,5,),S"(s, 51,
$,)) € WENE(X )2, Since t = s € Id™V and Id"™'V C Id*"V we have t ~

s € Id*"V and S™(t, s1,...,8,) = S"™(8, 81,...,8,) € [d*"V by [49]. Therefore we get

St 81, .., 8n) = S™(s,81,...,8,) € [d™V.

Assume now that t ~ s, = s1,...,t, ~ s, € Id"™V. Then S"(t,t1,...,t,) =

St 51, .., 8n) & S™(s,81,...,8,) & S™(s,t1,...,tn) € Id™V. Then Id™'V is a

congruence relation on n — clone™ (7). u

The quotient algebra n — clone™ 'V = n — clone™ (1) /Id™V is also a Menger

algebra of rank n.

In the next section we need an additional definition. For any n-full term ¢t &€
WnF(X,,) we denote by t, the term which is formed from ¢ by applying a mapping
a:{1,...,n} — {1,...,n} to the variables in ¢. This can be defined inductively by
the following two steps (see [18]):

(i) f t = fi(zsa),.-.,2pm,) and for some mapping 8 € H,,,, then t, =
filTa))s -+ > Ta(sni)) );
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(ii) If ¢ = fi(tsays---+tpmy) where ty,....t, € WrF(X,) and 3 € H,, ., then
lo = fi((tﬁ(l))ow SR (tﬁ(ni))a)'

Clearly, the term ¢, is an n-full term.

Lemma 4.2.2 ([18]) Let t,t1,...,t, € W'(X,) and let « : {1,...,n} —
{1,...,n}. Then

S™(t, ta(1)ys - s tam) = S™(tarty - s tn).

4.3 N-full Hypersubstitutions and Hyperidenti-
ties

Let n > 1 be a natural number. An NF-hypersubstitution of type 7 is a mapping
from the set {f; | i € I'} of n; — ary operation symbols of type 7 to the set W'(X,,)
of all n-full terms of type 7 with the additional condition that for n > n; the image
o(f;) has to be n-ary (and therefore also n-ary).

Any NF-hypersubstitution ¢ induces a mapping & on the set W"(X,,) of all
n; — ary terms of the type, as follows

Let o be an NF-hypersubstitution of type 7. Then o induces a mapping o :
Wt (X,) — WrF(X,), by setting (see[18]):

(i) ot] == (o(fi))a if t = fi(zaq),--.,Tam,)) Where o € H,, is defined by

o(j) = aj) if 1 < j < min(n,n;) and o/(j) = n, otherwise, for some
o€ Hy, p.
(i) o[t] = S™o(fi),oltar)s---s0ltwm]) if t = filtaq)--->tam,)) Where

t,...,t, € WM(X,) and for some o € H,, .

Let o be an NF-hypersubstitution. We say that the NF-hypersubstitution o is
an RNF-hypersubstitution if Var(G[fi(zaq), -, Zam))]) = {Zaq), - - - Tam,) } for all
¢ € I and for some o € H,,, .

Let Hyp®™V¥ () denote the set of all RNF-hypersubstitutions of type 7 and let

0y denote some member of Hyp™ (7).
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Proposition 4.3.1 Let o,,; be a RNF-hypersubstitution of type 7. Then
Var(G,ms[t]) = Var(t) for allt € W (X,,).

Proof.  We will give a proof by induction on the complexity of the term ¢.

(i) If t = fi(xaq),- - - Ta@m,)) for some a € Hy, ,, then
Var(t) = {Taq),- - Tam) } = Var(@mslt]).

(ii) If t = fi(tar), - - - ta@my)) where tq, ... t, € WI(X,,) for some o € H,, ,, and if
we assume that Var(t;) = Var(c..[t;]);7 =1,...,n, then

Var(t) = U Var(tor)) = U Var(Grmgltam]) = Var(@m[t]).

k=1

Lemma 4.3.2 The extension 0,,s of an RNF-hypersubstitution o, of type T is an

nF(

endomorphism of the algebra n — clone™ (7).

Proof.  Let t,ty,...,t, € Wr'(X,). We will show that

Ornf[S™(t b1, ... tn)] = S™(Ornslt], Orngltals - - s Orngltnl)-

(i) If t = fi(zaq),-- -, Ta(n,)) for some o € H,,, ,,, then
b\'rnf[sn(t,tl,...,tn)] = a\_rnf[sn(fi<$a(1)7---;xa(ni))>tl>---atn]
= Opnf [fl(ta(1)7/\ . 7ta(nz))] .
- Sn(arnf<fi)7 Urnf/\[ta’(l)]a cee >0lnf[to/(n)]>
= S((0rng(fi))arsTrnglta]s - Trnglta])
= Sn(grnf[fi(fa(l)v cee axagzli))]a Urnf[tl]a s 70rnf[tn]>
= Sn(o—rnf[tLarnf[tl]?'"70_7‘nf[tn])-
(i) If ¢ = fi(ua(1), - - - Ua(ny)) Where ug, ..., u, € W' (X,,) for some a € H,, , and if
we assume that G, [S™(Uag), b1, - - tn)] = S™(Ornf(ta], Trglti]s - - - Orngltn]) for
all j =1,...,n;, then
Ornf[S™(t b1, ... 1))
= Er\mf[S”(fi ua(l), Ce ,U,a(ni)), tl, e ,tn)]
ua(l),tl, Ce ,tn>, Cey S”(ua(ni),tl, e ,tn)]
78rnf[sn(ua/(1)atla s >tn)]a s 76rnf[Sn(uo/(n)7tl7 s atn)])

- Sn(grnf(fz ) Sn(arnf[ua’(l)]a arnf[tl]a cee 78rnf[tn])7 ceey Sn(a’/‘nf[ua’(n)]y arnf[tlL R
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Orng(tn]))
= S"(S™(Orns(fi); Trnpltar )]s - - - OrnfUarm)]), Trngltal, - - - Trngltn])
= §"(Omslfi(uaq), - - Uan)], Ornglta], - - - Orng[tn])
= S™(Ornf[t], Ornflta], - - - Orngltn])- [

On Hyp®NF (1) we define a binary operation by

Ornfy Oh Ornfy = /O-\Tnfl CO0rnfy-
From ([26]) follows that for any two hyperstitutions of type 7 we have (o7 0, 09)” =

(/7\1 O (/7\2.

Proposition 4.3.3 Forn; <n and let o,n5,(fi) = fix1,. .., Tp,). Then Gy, [t] =
t for allt € WrF(X,,).

Proof.  We will give a proof by induction on the complexity of the term ¢.

(i) If t = fi(zaq),-- -, Ta(n,) for some o € Hy,, ,,, then

b\-rnfid[t] = (O-Tnfm(fi»a’ - (fi(xl’ T "r”i))a’ = fi(*ra’(l)’ SR 7'1;0/(7%)) =t.

i) If t = filtaq)--->tam)) where ti,...,t, € WrF(X,) for some
a € H,, and if we assume that 0,,,[t;] = t;;7 = 1,...,n, then
Ornpalll = S"(Ormpia(fi)s Ornia [tﬂé(l)]v s Ornfig [t&(ni)])

= Sn(fi(«rly-‘wxni%toe(l)’-”;ta(ni))
= filtaq)s - - - tamy)
t.

Theorem 4.3.4 The algebra Hyp™ ¥ (1) := (Hyp®™N¥(1);04) is a semigroup.

Proof. @ We have to prove that the product of two RNF-hypersubstitutions of
type 7 belongs to the set of all RNF-hypersubstitutions of type 7. Let oy, Oy, €
Hyp®NT (7). Then

Var((omms, on orng,)” [[i(Ta@)s - - - Tama))])
= Var(@ms [0, [fi(xa(l)a e axa(m))]])
= Var(Omp[fi(Za), - - Tam)])
Va?“(fi(%u)? ce ,xa(ni)))
{Zaq), - -, Ta(m, } by Proposition 4.3.1.
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Remark 4.3.5 The semigroup Hyp"™¥¥'(7) in general has no identity element.

Consider the following case:
Let A € PAlg(t) and Hyp™F(r) be the subsemigroup of Hyp(r). Let
ti,ts € WrE(X,). Then t; ~ ty € Id" A is called a strong reqular n-full hy-

peridentity (SRNF-hyperidentity) in A (in symbols A | ¢ = {o) if for all
sRNFh

Oy € Hyp™F (1) we have G, ¢[t1] & Gpnslta] € 1d°TA.
Let K C PAlg() be a class of partial algebras of type 7 and ¥ C WrF(X,,)2.
Consider the connection between PAlg(t) and W'(X,,)? given by the following

two operators.
Hpnpld™ : P(PAlg(T)) — P(WM(X,)?) and

HrnpMod®™ : P(W'(X,)?) — P(PAlg(r))  with

Hpnpld™K = {s=~teWr(X,)?|VAeK (A E s=~t)} and
sRNFh
HRNFMOdSTZ = {AE PAZg(T) ’ Vsx~ted (./4 ): SR t)}
sRNFh

Let A = (A;(fA)ic;) be a partial algebra of type 7 and Hyp®F(r) be
the subsemigroup of Hyp(r), then we define the derived algebra o,,f(A) =
(4; (Urnf(fi) Jier) for onyp € Hyp"™F(r).

Lemma 4.3.6 Let t € W' (X,,), A€ PAlg(r) and o,y € Hyp" ¥ (7). Then
Gunsl)41D = 751D,
where D is the common domain of both sides.

Proof. = We will give a proof by induction on the complexity of the term t.
(i) If t = fi(zaq),-- -, Ta(n,)) for some o € H,,, ,,, then
Brns [t = (rns(f))ar)
= ((@ms (fi)M)e
= (f7 )y = Fil@aq1)s - - ) Tagm) T A,
(i) If t = fi(taq)s - - - tam,)) Where t1,... t, € Wrt(X,) for some o € H,, ,, and if

we assume that 7,,,¢[t;]4 |p= tU’"f A Ip for j =1,...,n and D = () domG,,;[t;]*,
j=1
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then

@rnst]) D = [S"/(‘amf(fi),a@ta/(l)],--f-l  Orng[tarm])]* !D
- SnA(Urnf(fz) ;Z'rnf[ta’(l)] Urnf[ ’(n] )LD
= "o (fi)* Urnf[ '(1)] ID,-- Umf[(A(n)] p)
= §remsA(( fi)ems O g7l | T )

n,o. o O'rn A Orn (A

= S s$Ornf A)(( Z) rnf A) t f)( )7.._’ta/(f( )) ’D
= [filta)s - tamn ))]”’“"f A) D
— to'rnf(A ‘D

Let A be a partial algebra of type 7 and Hyp® ¥ (7) be the subsemigroup of

Hyp(7). Then

Xinp : P(PAlg(r)) — P(PAlg(r)) and
Xane 1 PWI(X,)?) — P(WIF(X,)?)

by
X%NF [A] = {Zrnf (A) | ony € Hyp™ (7 )}RNF and
Xevels =t = {Gmyls] = Opmylt] [ oy € Hyp™ " (1)}
For K C PAlg(7) be a class of partial algebras of type 7 and ¥ C W (X,,)? we

define szNF[K] = U X}%NF[A] and X%NF[E] = U X%NF[S ~ t]~
AcK s~teEY

Proposition 4.3.7 For any K, K' C PAlg(t) and ¥,% C WrF(X,,)? the following

conditions hold:

(i) the operators Yanr and XEygp are additive operators on PAlg(t) and

WrF(X,,)? respectively,
(i) X C ¥ = X%NF[Z] - X%NF[E,L
(iii) X%NF[X%NF[EH - X}J%NF[ZL

(iv) K C K' = xanplK] C xane K],

(v) XéNF[XéNF[KH - XéNF[K]
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and (Xanp> Xeyp) forms a conjugate pair with respect to the relation

R:={(A s~t) e PAlg(t) x WM"'(X,)* | A E s~ t}

i.e. for all A € PAlg(t) and for all s =t € WF(X,,)?, we have xayplAl E st

ff A= XEnpls =t

Proof. (i) It is clear from the definition that both, xaxr and x5y, are additive
operators.

(ii) Suppose ¥ C ¥/ C WrF(X,,)?, then

Xf%NF U XRNF s ~ 1 U XRNF[S ~t] = XRNF[E/]

steEY stey)

RNF( )

(iii) Suppose Grnf,, Orng, € Hyp are two arbitrary RNF-hypersubstitutions

and assume that G, [0, [S]] & Trngy [Ornp[t]] is an identity from x5y rIxExr[2]]-

RNF(T)

Let 0.,y € Hyp be a RNF-hypersubstitution with o,,f = 0pmyp on Opng,-

RNF( ) RNF(T)

Since Hyp is a semigroup it follows that o,,; € Hyp . Then we have

Trnfs] = (Ornp 0nOrnps) " [8] = Ornpy [Ornp[8]] % Ornps [Ormps [H] = (Gvngy On Ovnp) 7 [H] =
Grngt], 1-e. Grngls] = Grng(t] € Xpanp[E]-
(iv) and (v) can be proved in a similar way.

Finally, we need to show that yayplAl E s~tif A = xEypls ~t]. Indeed, we

ST

have
XéNF[A] F os~t
& Vo € Hyp™ (1) (0, (A) E s t)

Urnf ’D — tarnf(A)|D)

(s
(@rng ] D = Grng [t} D)
here D is the common domain)
(A

= Grngls] ~ Grnslt])

& Vo, € Hyp™F(7)
& Vo € Hyp™ (1)

by Lemma 4.3.6 (w
& Vo € Hyp™F (1)

& AE Xivrls =t

Theorem 4.3.8 For all K C PAlg(t) and for all ¥ C W'(X,,)?, the following
properties hold:
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(1) Hrypld"K = Id* xayp K],
(i) xExplHryvrld K] C Hrnpld™ K,
(iii) xEyplHryrpld" K] C IdK,
(iv) xanp[Mod Hrnpld*" K| C HpypMod Hrnpld* K,
(v) Mod*" Id*" x4 np[K] € HrypMod" Hrnpld*" K, and dually,
(") HrnpMod®™S = Mod* x5\ r[2],
(i) xanplHrnepMod*™Y] C HpypMod®™y,
(iii") xanrlHrNpMod* %] C Mod®"y,
(iv") XEnplld"HrnpMod®™S] C Hpypld* HrnpMod®™s,

(V’) IderOdSTXgNF[E] g HRNFIdSTHRNFMOdSTE.

Proof.  We will prove only (i)-(v), the proofs of the other propositions being
dual.
(i) Hrypld K
={s~teWrf(X,)?|VAe K (A [ s~t)}
sRNFh
={s~teWr'r(X,)? |VA € K,Vo,,; € Hyp"™ (1) (A = Grnysls] = Grmylt])}
= {s~te Wrf(X,)? |VA € K,Vo,,; € Hyp™ (1) (0,ns(A) E s=~1t)}

= IdSTXQNF [K].

(i) Let s ~ t € xEyp|Hryvrpld K] then s ~ t € xEyplu =~ v] for some
urv € Hpypld* K. By (i) we have u = v € Ids”xéNF[K] (i.e. X}%NF[K] E umv)
but XII%NF[XéNF[KH - XéNF[K] and then XéNF[XgNF[KH Fu ~ v and
X‘}%NF[K] = XENF[UJ ~ v]. Since s & t € XgNF[u ~ v] we have XﬁNF[K] Esat

ST

and v ~ y € Id"xayplK]. By (i) we have s ~ t € Hpypld"K and
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XgNF[HRNF[CZSTK] g HRNFIdSTK.
(111) X%NF[HRNFICZSTK] Q Id*"K by (11) since HRNFICZSTK Q 1d" K.

(iv) From (ii) we obtain
XonplHrvpId K]
= MOdSTHRNFIdSTK
= XéNF[MOdSTHRNFIdSTK]
Further we get
XéNF [Mod*" Hrnpld*" K| C X}%NF [MOdsrngF [Hpypld K]
= XéNF[HRNFMOdSTHRNF]dSTK] - HRNFMOdSTHRNF]dSTK by (1’) and (117)

Hrnrpld™ K
Mod* x i p[Hrnrld K]
Xanr[Mod Xy p[Hrypld K]).

(M IMN 1N

(v) From (i) we obtain
[dsrX}%NF[K} = HRNFIdSTK
= Mod " Id Ay p[K] = Mod" Hpnpld K.
From (ii) we get
XENF[HRNFIdSTK] Q HRNFIdSTK
= MOdSTHRNF]dSTK - MOdsrngF[HRNFIdSTK].
Then Mod* 1d*"xanp|K]
MOdSTHRNF[dSTK
Mod xfyp[Hryrld K]
HRNFMOCZSTHRNFICZSTK by (17) .

in

Theorem 4.3.9 The operators X'axr, Xonp satisfy the conditions in Proposition
4.8.7. For any K C PAlg(t) with Mod*" Id*"K = K and for any ¥ C W (X,,)?
with 1d*" Mod*> = ¥ the following conditions (i)-(iii) and (i’)-(iii’), respectively,

are equivalent:
(i) Mod* " Hrypld* K = K,
(i) xanrplK] C K,

(i) Id*"K = Hpypld* K,
(i) Id*"HpnpMod®™ s =%,
(ii") xkEnvr[Z] € X

(iii") Mod*™S = HpypMod*"s.
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Proof. = We will only show the equivalence of (i),(ii) and (iii), the other equiva-

lences can be shown analogously.

(1)=(i) xavrlK]
C  Mod Id*"xanp|K]
= Mod*" Hgnpld*" K by Theorem 4.3.8(i)
= K by (i).
(ii)=-(iii) From (ii) we have Id*" K C Id*"x4yxp[K]. Then Id*" K C Id*" xanp[K] =

Hpnpld®™ K by Theorem 4.3.8(i). The converse inclusion is clear.

(iii)=>(i) From (iii) we have

Mod " Hrnpld®™ K C Mod’"[d°"K = K.

Theorem 4.3.10 The operators Xayp, Xonp satisfy the conditions in Propo-

sition 4.3.7. Then for all K C PAlg(t) and ¥ C Wr'(X,)?, we have:
(i) Xane K] € Mod " Id" K Mod*" Hgnpld*" K

C Mod" Id" K,
Mod" 14K = K,
Xane[K] € Mod* Id*" K,
XanplK] € Mod " Id* K,
IdSTHRNFMOdSTE

C [d" Mod*'y,
[d" Mod™™s = ¥,
Xanr[Z] € I Mod* %,
XExp[Z] C Id" Mod s,

(3

11) HRNFMOderRNF]dSTK =K

lll) HRNFMOdSTHRNFIdSTK Q Mod®" Id*" K
) XanplMod* Id" K| C Mod*" Id*" K

) xEyplS] C IdT Mods

T4y

117) HRNF]dSTHRNFMOdSTE =X
") HRNF[dSTHRNFMOdSTE g 1d*" Mod*"%3
V) XEyplIdT Mod™S] C Id*" Modss:

44

Proof. (i) Assume Y4yp[K] € Mod*"Id*" K, then Mod*" Id* yanp[K] C
Mod° " Id*" Mod*" Id"" K = Mod* Id*" K. From Theorem 4.3.8 (i), Hrypld" K =
Id" xanplK] we get Mod"Hpypld"K = Mod*"Id xanr[K]. Therefore
Mod* " Hrypld" K C Mod*"Id*" K. Conversely, assume Mod*"" Hrypld K C
Mod*Id*"K and since xanyp[K] € Mod Id*"x4yp[K] we get xayplK] C

Mods" Id*" xanplK] = Mod*” Hrnpld" K C Mod®" Id*" K by Theorem 4.3.8 (i).

(11) Assume HRNFMOdSTHRNFIdSTK = K, then K = HRNFMOdSTHRNFIdSTK
= Mod*" xEyp[HrnrpId*" K] O Mod*"Id*"K by Theorem 4.3.8 (i’) and (iii). But
K C Mod®*"1d°" K and then Mod*"Id*"K = K.
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(iii) Assume HrypMod” Hpnpld™ K - Mod*"Id*" K and since
XéNF[K] C MOdsr]dSTXéNF[K] we get XéNF[K] C MOdST]dSTXéNF[K] C
HRNFMOdSTHRNFIdSTK Q Mod*"Id*" K by Theorem 4.3.8 (V)

(iv) Assume x4y p[Mod*" Id*" K| C Mod*" Id*" K and since K C Mod*" Id*" K, we
get xayp K] C xaypMod*T1d" K| C Mod*"Id*" K. The proofs of (i’),(ii’),(iii’) and

(iv’) are similar to the proofs of (i),(ii),(iii) and (iv), respectively. |



Chapter 5

Strongly Full Varieties

In this chapter we consider a special case of strong regular n-full varieties. In Section
5.1 and Section 5.2, we define the concepts of strongly full terms and strongly full
varieties. In Section 5.3 we give the definition of clonef'V, of n—SF — solid varieties
and we show that V is n — SF — solid if and only if clone®F'V is free with respect
to itself. In Section 5.4 we examine the connection between a strongly full variety
V of partial algebras and the class {757 (A)|A € V} of n-ary strongly full term

operations of its algebras.

5.1 Strongly full Terms

In the sequel we will consider a so-called n-ary type 7, = (n,...,n,...) where all
operation symbols are n-ary forn > 1, n € NT,

Let (fi)ier be an indexed set of m-ary operation symbols and let X, =
{z1,...,2,} be a set of variables. Then n-ary strongly full terms of type 7, are

defined inductively by the following steps:
(i) fi(z1,...,x,) is a strongly full term of type 7,,

(ii) If ¢y,...,t, are strongly full terms of type 7,, then for every operation symbol

fi the term f;(ty,...,t,) is strongly full.

Let W2F(X,,) be the set of all strongly full n-ary terms of type 7,.
If we define f; : W2F(X,)" — WS (X,) by fi(t1,...,ts) := fi(ts,...,t,), then

T

we get an algebra F2F(X,) = (WEF(X,,); (fi)ier) of type 7.

45
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Another way to define operations on W;iF (X,) is to consider the so-called

superposition operation S™ on W2 (X,,) defined by
(1) S”(fi(xl,...,xn),tl,...,tn) = f’i(tla--'7tn)7
(11) Sn(fi(Sl,...,Sn),tl,...,tn> = fi(Sn(Sl,th...,tn),...,sn<8n,t1,...,tn)).

The operation S™ : WSF(X,,)" — W2F(X,,) has the arity n + 1. This gives
an algebra clone®’'r,, = (W5(X,,); S") of type 7 = (n + 1). (We should denote
cloneSF'r,, better by n — clone®'r,, but for abbreviation we write cloneF'r,).

Then we can prove:

Proposition 5.1.1 The algebra clone®F'r,, is a Menger algebra of rank n.

Fr. satisfies

It can be proved by induction on the complexity of the term that clone®
the axiom (C1) (see [§]).

Another way to obtain a Menger algebra is to consider the superposition of
partial operations. The operation S™4 is a total operation defined on sets of partial

operations. Then we prove:

Theorem 5.1.2 The algebra (P"(A); S™*) is a Menger algebra of rank n.

Proof. Let f4 ¢ ...,g2 ht,...,h? € P"(A). At first we will prove that
(ai,...,a,) € domS™A(S™A(fA g, ... g2), bt ... hA) iff

(ar,...,a,) € domS™A(fA, SvA(gt bty ... W), ..., S™ (g e, .. hY).
Indeed, we have
domS™A(S™A(f4, g1, - gi), b )

= {(a1,...,a,) | (a1,...,a,) € 'ﬂ1 domhf and if hf(al,...,an) = b;,
J:

then (by,...,b,) € domS™A(f4,¢,...,¢g2) and (by,...,b,) € ) domg;
k=1
and if gi}(by,...,by)= cx, then (ci,...,c,) € domf4}

= {(a1,...,a,) | (a1,...,a,) € ﬂldomhf and if h'(ay, ..., an) = b;,
‘]:

then (by,...,b,) € () domg; and if g(by, ..., b,) = cx,
k=1

then (c1,...,¢c,) € d_omfA}
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= {(a,...,a,) | (as,...,a,) € N domS”’A(gf,hf,...,hﬁ) and
k=1
if g (hi(ar,...,an),...,hi(as,...,a,)) = cx, then (ci,...,c,) € domf}

= domS™A(fA, SMA (gt bt R, SMA(gA R L RDY).

Now we prove that if both sides are defined, then they are equal.
SASMAFA gt g Rt ) ag, .. an)
=SmA(fA SMA(gh bt R, S A (A R ) (an, - an). n

Every n — ary strongly full term ¢t € W;?LF (X,) induces an n-ary term operation
t4 on any partial algebra A = (4; (f)icr) of type 7,, in the following inductive

way:
(1) Ift = fi(zy,...,2,) then t4 = [fi(zy,...,2,)]* = fA

(i) If t = fi(t1,...,t,) and assume that t{',...,# are the term operations in-

duced by the terms ti,...,t¢, and that t;“(al, ...,ay) are defined, with val-
ues t;“(al,...,an) = b, for 1 < j < n. If fA(by,...,b,) is defined, then

tA(ay,...,ay) is defined and
t'A(CLl,...,CLn) = [fz-(tl,...,tn)]A(al,...,an)
= SAFA Lt (a, . an)
= fAtMay, ... an), ..t a, . a,)).

Let WTiF (X,)* be the set of all n-ary term operations of the partial algebra A
induced by strongly full n-ary terms.

Theorem 5.1.3 The algebra (W5F(X,)4; S™4) is a Menger algebra of rank n.

The theorem can be proved by induction on the complexity of terms. We have to

prove that (W2 (X,,)4; S™4) satisfies the axiom (C1) (see [3]).

5.2 Strongly full Varieties of Partial Algebras

Let A = (A; (f)ic1) be a partial algebra of type 7, and let s &~ t be an equation of
strongly full n — ary terms s,t € W2F(X,,).
The equation s & t is called a strongly full identity satisfied in the partial algebra

A if sA4 = t4 for the term operations s* and t* induced by the terms s and ¢,
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respectively. In this case we write A = s &~ t. (This is, s & ¢ is a strongly full
sf
identity iff the right hand side is defined whenever the left hand side is defined and

both are equal).

By Id°F A we denote the set of all strongly full identities satisfied in A. For a class
K C PAlg(t,) of partial algebras of type 7, we write Id*F K. If ¥ C VVT‘iF(Xn)2 is
a set of strongly full equations, then we can ask for the class of all partial algebras
satisfying every s ~ t € ¥ as a strongly full identity and call this class Mod®"'3.
Let K C PAlg(r,) be a class of partial algebras of type 7,, and ¥ C WTiF(Xn)Q.
Consider the connection between PAlg(r,) and W2F(X,,)? given by the following

two operators.
I1dF P(PAlg(r,)) — P(W;iF(XnV) and
Mod®" : P(W2F(X,,)?) — P(PAlg(r,)) with

[d5T K = {(s,t) € WSF(X,,)? | VA €K (A s~ )} and

Mod®F'ss .= {Ae PAlg(r,) |V (s,t) € Z (A s~ t)}.

E
sf
5
Clearly, the pair (Mod®F 1d°F) is a Galois connection between PAlg(7,) and
WSF(X,)2

As usual for a Galois connection, we have two closure operators Mod®"Id°" and
Id%F ModSF and their sets of fixed points, i.e. the sets

{E C WIF(X,)? | IdF Mod®*'S = £} and {K C PAlg(r,) | Mod*IdF K = K},
form two complete lattices £5(7,), L5 (7,).

Let V' C PAlg(r,) be a class of partial algebras. The class V' is called a strongly
full variety of partial algebras if V = Mod " IdFV. Let ¥ C I/I/;_ilm()(n)2 be a set of
strongly full equations of type 7,. Then X is called a strongly full equational theory
if ¥ = Id°" Mod®"'S. (For more information on strong varieties of partial algebras
see e.g. [48]).

Then from the property of a Galois connection, we have

Proposition 5.2.1 V is a strongly full variety of partial algebras iff there exists a
set © C WSF(X,)? such that V = Mod"'S.
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We notice that strongly full terms, strongly full identities and strongly full vari-
eties can be considered for arbitrary types 7.

Let Id5" K be the intersection of Id°" K and W2 (X,,)2.

Lemma 5.2.2 Let K C PAlg(r,). Then Id5FK is a congruence relation on
FSF(X,).
Proof.  Clearly, Id3FK is an equivalence relation on F2¥(X,,). The next step is

to show that f; is compatible with IdS" K. Let s; ~ t1,...,5, ~t, € Id5" K. Then
syt ..., 8, = t, € IdSF Afor all A € K because of Id5FK = () Id5F A and

AeK
domst = domtst, 52| somst =t lgomea for all i =1,... n.
Let D = () dom s = () dom t* and
i=1 i=1
D' ={(ay,...,a,) € D and (s{(ay,...,an),...,sM(ay,...,a,)) € domf and
(tMay, ... an),. ...t ay, ..., a,)) € domf}.
We have
sz(8f|doms*1“a ce 73ﬁ|dom8ﬁ)|D’: fiA(tf|domtf7 s 7th4|domtﬁ>|D’
= fAsts - silp)lo = A b D)l
= fiA(Sf,...,S;;lHD/ = fiA(tf,...,tﬁ”D/
= [é(sl, RN Sn)]A|D/ = [£<t1’ ce ,tn)]A|D/
= _[fl'<81, ce Sn)]‘A|_D/ = [fz<t17 c. ,tn>]A’D/
then fi(s1,...,8,) ~ fi(t1,...,t,) € [d5F Aforall A€ K.
So  filsy,..y8n) = filty, .. tn) € TdSFK. "

Now we prove that Id>FV is also a congruence relation on the algebra clone®t'r,,.

Lemma 5.2.3 Let s,ty,...,t, € W2F(X,,) and A € PAlg(r,). Then

[S"(s,t1,. .., t)]A D = S™A(sA .t p where D = () dom t.
i=1

The Lemma can be proved by induction on the complexity of terms (see [§]).

Theorem 5.2.4 Let V' be a strongly full variety of partial algebras of type 7, and
let Id5FV be the set of all strongly full n-ary identities satisfied in V. Then Id5FV

is a congruence relation on clone®'r,.
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Proof. At first we prove by induction on the complexity of the term ¢ that from

t1 A 81, .ty & s, € IdSEFV follows S™(t,ty, ... t,) ~ S™(t,51,...,8,) € [dSFV.

(a) If t = fi(z1,...,x,) with S™(fi(x1,...,20),t1,.. ., tn) = fi(t1,...,t,) and
S"(fi(xl,...,xn),sl,...,sn) = fi(sl,...,sn), then fz(tl,,tn) ~ fi(Sl,...78n) -
IdSFV and S™(t,ty, ... t,) =~ S™(t,51,...,8,) € [dSFV.

(b) If t = fi(ly,...,1,) and if we assume that S™(I;,t1,...,t,) = S"(lj, 51,...,5,) €
Id5FV for j =1,...,n, then
SP(fi(le, .o b))yt tn) = Fi(S™ (It oty S™ (L ty, 1))

~ [i(S"(l1, 81,y 8n)s -y S"(Lny S1, -+, Sn))

= S"(filly, .. 1n), S1,...,8,) € IdSFV.

The next step consists in showing that for strongly full terms sq, ..., s, we have
txs € IdSFV = S™(t,s1,...,5,) ~ S"(s,81,...,8,) € IdSFV.

Fromt ~ s € IdSFV = () 1d5F A we get domt” = doms® and t4]gomia = 5| doms -
AeV

We will show that S™(¢, s1,...,8,) ~ S™(s,51,...,8,) € [dZFV.Let D = ( dom s

=1
Consider the following cases :

case 1. Let t = fi(x1,...,2,) and s = fj(21,...,2,). Then t4 = f and s = /.

Since t ~ s € Id3F A, we have fA|p = f]f4|D/ with

D' = {(ay,...,a,) € D and (si(a1,...,a,),...,sMa1,...,a,)) € dom f and
(sf'(a1,. .- an), ..., 0 (a1, .., ay)) € dom f*}. Then

[S"(t, s1,...,8)] D = S™A(fA st .. sDb

= S st s

= [S"(s,81,...,5.)]4D.
case 2. Let t = fi(x1,...,2,) and s = f;(l,...,l,) then t* = fA
and s =S"A(fAIA 1Y), Since ¢ ~ s € IdiFA, we have f}|p =
STA(FA I, 14| pr with
D' = {(a1,...,a,) € D and (s{(a1,...,a,),...,s:ay,...,a,)) € dom f{* and

(st'(a1, ... an), ... s (an, . .. ay)) € domS™A(fA I, 1Y}
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Then [S™(t,s1,...,8.)]"p = S™A(fA,s7,...,s)|p
= S”’A(S”’A(f]‘-“,lf,...,lf),sf,...,sqf)lp
= [Sn<8751,...,sn)]A‘D.
case 3. For t = fi(t1,...,t,) and s = fj(x1,...,x,) we can give a similar proof as in
case 2.

case 4. Let t = fi(t1,...,t,) and s = f;i(ly,...,1,) then tA = SWA(fA 4 ..t

and s* = S"’A(ff‘,lf, ...,IA). Since t &~ s is n — ary strongly full identity A, we
have S™A(fA 64, .. ) p = S )| o with
D' ={(ay,...,a,) € D and (si'(ay,...,a,),...,s8(as,...,a,)) € dom SVA(fA
st and (sf(ar, .. an), . st an, o a,)) € dom S™A(FAIE, LT Y
Then [S™(t,s1,...,s)]p = S™([filts,.. ., ta)]N 87, .. 8D
SrASUAFA L, Y, st s D
= S”’A(S”’A(ff, Y st s
— Sn’A([fj(ll,...,ln)]A,Sfl,...,Sﬁ) D
= [S"(s,s1,-- -5 80) "D
Therefore in all cases we get S™(t,81,...,8,) = S"(s,81,...,8,) € [d5F A for all

A € V. Assume now that t ~ s,t; &~ 81,...,t, = s, € [d5FV. Then
St b, ..y tn) &St 51, 8n) & S™(8, 81,5 8n) & S™(s, b, .., t,) € TASFV.

Clearly, IdSF'V is an equivalence relation on clone®Fr,. Then Id5FV is a congruence
SF -

relation on clone”* ,.
The quotient algebra clone™F'V := cloneF'r,, /Id3FV belongs also to the variety Vi,

of Menger algebras of rank n. (Again we write clone>*'V instead of n — clone*'V)

5.3 Hypersubstitutions and Clone Substitutions

Now we consider a mapping from the set of operation symbols {f; | i € I} to the
set of all strongly full terms of type 7,.

A strongly full hypersubstitution of type 7, is a mapping from the set {f; | i € I}
of n-ary operation symbols of type 7, to the set WTiF (X,,) of all n-ary terms of type

Tn-
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Any strongly full hypersubstitution o induces a mapping o on the set W2F(X,,)
of all n-ary terms of the type, as follows.

Let o be a strongly full hypersubstitution of type 7,. Then ¢ induces a mapping
o W (X,) — W5F(X,), by setting

(i) alfi(xr,...,zn)] = o(fi)
(i) a[fi(ts,...,tn)] := S™(o(f),alt1], ..., Tta]).

Let Hyp3''7, be the set of all strongly full hypersubstitutions of type 7,,.
Remark 5.3.1 Hyp“'r, C Hypr(7,).

Theorem 5.3.2 The extension o of a strongly full hypersubstitution o of type 7, is

an endomorphism of clone®Fr,.

The Theorem can be proved by induction on the complexity of the term (see [§]).

On Hyp°Fr1, we define a binary operation by oy o, 09 := &} 0 05 and let oy
be the strongly full hypersubstitution defined by o.4(f;) := fi(x1,...,z,). Clearly,
Galt] =t for all t € W2F(X,,). Tt is easy to see that the set Hyp**'7, together with
the binary operation o, and with ;4 forms a monoid (H yp° 7, o, 0:q). For more
background on hypersubstitutions see e.g. [20].

Now we consider mappings from the generating system F, := {fi(x1,...,z,) |
i € I} to WIF(X,,).

A substitution of (W2 (X,); S") is a mapping su : {fi(z1,...,3,) | i € I} —
W2F(X,,) and the extension of a substitution su is a mapping su : W2F(X,) —
W2F(X,) defined by su(fi(z1,...,z,)) = su(fi(z1,...,z,)) and

su(fi(ty, ..., tn)) = S™(Su(fi(zr, ..., xn)),5u(ty), ..., su(t,)).

Now we want to prove that every substitution su : F, — W2F(X,) can be
uniquely extended to an endomorphism.

Let Vi, be the variety of all Menger algebras of rank n. Let {X; | i € I} be a
new set of variables. This set is indexed with the index set I for the set of operation
symbols of type 7,. Let Fv,, ({X;|i € I}) be the free algebra with respect to the
variety Vi, , freely generated by {X; | i € I'}. Then we have:
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Theorem 5.3.3 The algebra clone®*'7,, is isomorphic to the free algebra Fy,, ({X; |
i € I}), freely generated by the set F, .

Proof.  We define a map ¢ : W2 (X,) — Fy,, ({X; | i € I}) inductively as
follows:

(1) o(fi(z,...,xn)) =Xy, 1 €1,

(2) @(filts, - 1)) = S™(Xi, p(tr), -, p(tn))-

We prove the homomorphism property ¢(S™(¢, s1,...,$,)) = S™(¢(t), o(s1),- - -,

©(s,)) by induction on the complexity of the term t.
(i) If t = fi(xy, ..., x,) then ©(S™(t,51,...,8)) = @(fi(s1,- -, 8n))
= S™(Xi,@(51), -, 9(50)) = S(p(t), o(51), - - - p(sn)).
(ii) If t = fi(ts,...,t,) and if we assume that
o(S™(tj,81,...,8,)) = S”( (t;),¢(s1),...,0(sy)) forall j =1,...,n,
then p(S™(t, $1,...,5n))
= o(fi(S™(t1, 81,y Sn)s- vy S™(tny S14- -y 5n)))
= (X, (St 515 50))s s (S (tny S15- -, 52)))
= 57X, 57(p(t), @(51), -, 9(sm), - 52 ((ta) (1), - 0(50)
=SS (X p(t), -, p(ta)), (1), - - p(sn)
= St o)), 251), - (50)

= 5(p(1), (1), -, lsm))-
Thus ¢ is a homomorphism. It maps the generating set F,, = {fi(z;,...,2,) | i € I}

of the algebra clone 7, onto the set {X; | i € I}, since o(f;(zs,...,1,)) = X; for
every ¢ € I. Furthermore, since {X; | i € I} is a free independent set ([36]), we have

Xi=X;=i=7= filve,....zn) = fi(z1,..., 7).

Thus ¢ is a bijection between the generating sets of clone®*'r,, and Fy,, ({X;|i €

I}). Altogether, ¢ is an isomorphism. ]

As a consequence we get:

Corollary 5.3.4 The extension of a substitution is an endomorphism of the algebra

clone®'r,,.
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For two substitutions suq,sus € Subst we define the product su; ® sus by
suy ® Sug = SUy © SUg, Where Suy is the extension of su.
Now we want to prove that the monoid of all strongly full hypersubstitutions of

SEz.). To do so we

type 7, is isomorphic to the endomorphism monoid End(clone
need the following equations for the identity hypersubstitution, for substitutions
su, suq, Sug and its extensions:

(i) su = (suoo0y)” and

(ii) (suy ® sug) o 04q = (Suy 0 giq)” o (Suz 0 Tiq).

Clearly, suoo;q is a hypersubstitution. If t = f;(z1,...,x,) then su(fi(z1,...,2,)) =
su(fi(xy, ..., x,)) = su(oa(fi)) = (suo i) (fi) = (suo o) (filxy,...,z5)).

If t = fi(ty,...,t,) and if we assume that 5u(t;) = (suooiq) (t;); j =1,...,n,

then
(500 0u) (filtrs . 1) =

(suo o) fi), (suooiy) (t1),...,(suoaoy) (t,))
(suo i) fi),su(ty),...,su(t,))
@(fz(ﬂ?l, )) m(h)a?ﬁ(tn))
(5"(fz(iﬂ1,-- Tn)ytis o tn))

= su(fi(ty,. .-, ))

For the second equation, con51der ((su; ® sug) o 0yq)(fi) = ((Suy 0 suz) o giq)( f)
= (Sur 0 suz)((0ia)(fi)) = (5u1 0 suz)(fi(w1, ..., mn)) = SUr(sua(fi(1,. .., 7))
= (suy 0 0yq) " (sua(fi(x1,...,2n))) = (sug 0 0iq) " (suz 0 03a(fi)) = ((suy 0 04q)~ ©

(suz © 03a) ) (f3)-
Let idr, be the identity mapping on F,, . Then we have

"(
5 (
S™(

Proposition 5.3.5 The monoids (Subst; ®,idp, ) and (Hyp® ' 1,;04,054) are iso-

morphic.

Proof.  We consider the mapping n : (Subst;®,idg, ) — (Hyp**'1,;0n,0:)
defined by n(su) = su o g;4. Clearly, n is well-defined and injective since from
suoo;y = su' ooy by multiplication with ai_dl from the right hand side there follows
su = su'. The mapping 7 is surjective since for ¢ € Hyp®F'r, and o o 0;11 € Subst,
we have (0 0 0;,') 0 0,4 = 0. Therefore, 7 is a bijection. Let su;, sus € Subst, then
(su; ® sug) 0 0yq = (suy 0 0yq) ~ 0 (sug 0 0yq) = n(suy) ~ o n(sug) = n(suy) op n(sus).

This shows that 7 is a homomorphism. ]
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Clearly, the monoids (Hyp®F',; 01, 054) and (End(clone®t'r,); O,idw%F(Xn)) are iso-
morphic.

Let V be a strongly full variety of partial algebras. Then t; ~ t, € Id°FV is
called a strongly full hyperidentity in V if for any o € Hyp®''r, we have o[t;] ~

Olta] € Id°T'V. Let HIdSF'V be the set of all strongly full hyperidentities in V.

Theorem 5.3.6 Let V' be a strongly full variety of partial algebras and let t; ~
ty € IdSF'V. Then t; =~ ty is an identity in clone®F'V iff t, ~ ty is a strongly full
hyperidentity in V.

Proof. Let t; ~ t; € Id3FV be an identity in clone®*'V. This means, for
every valuation mapping v : {fi(z1,...,z,) | i € I} — clone®TV, we have
o(t1) = v(t2). Let o be any strongly full hypersubstitution. We will show that
olti] ~ Glta] € Id5FV. We denote by nat : WIF(X,,) — W (X,,)/1d3FV the
natural mapping. Clearly, n := o o a;ll is a clone substitution, n € Subst, and
v = nat o7 is a valuation mapping which is uniquely determined and has the ex-

tension v = nat on. Then

= (nat om)(tq) (nat om)(ts)

= (natocoo)(t;) = (natoooay')(ts)
= (natoo)(t;) = (natoo)(tz)

= [0t )| asrv = [0(t2)]1asrv

= o(ty) =~ 0(ty) € IdSFV.

Conversely, let t; ~ t, be a strongly full hyperidentity in V. This means that
for every o € Hyp®F'r,, we have G[t|| ~ G[ts] € Id5FV. To show that t; =~ t,

is an identity in clone®f'V, we will show that ©(t;) = o(ty) for every valua-
tion mapping v : {fi(z1,...,zn) | i € I} — cloneSTV. Consider a mapping
n:{fi(z1,...,2n) | i € I} — cloneF'r, such that v = nat o n. That means, using
a choice function ¢ : clone®*'V — cloneSf'r, for every fi(xy,...,x,) we select from
the class [v(fi(z1,...,%,))]asrv & uniquely determined element from clone®F'r, as
image of f;(x1,...,2,) under . Then 7 is well-defined since from f;(xy,...,2,) =
fi(x1, ..., 2,) there follows [fi(x1,...,2n)|asrv = [fj(21,...,2n)]1asry and then

the choice function ¢ selects exactly one element n(f;(x1,...,x,)) from this class.
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Therefore n(fi(x1,...,2,)) = n(fj(x1,...,2,)). The extension v of v is uniquely de-

termined and we have ¥ = nat o 7. Then o := no ;g € Hyp®F'7,, and

(noai) [th] = (no o) [ta] € IdSFV
= n(t) =~ T7(ts) € Id5FV, by (i) before Proposition 5.3.5
= [t)|asrv = [[(t2)|asrv
= (natom)(t;) = (natoT)(ts)

Let V be a strongly full variety of partial algebras and let Id5F'V be the set of
all n — ary strongly full identities satisfied in V. If every identity s ~ t € Id3FV is
a strongly full hyperidentity in V', then V' is called n — SF — solid.

Proposition 5.3.7 Let V be a strongly full variety of partial algebras of type 7,.
Then V is n — SF — solid iff 1d5YV is a fully invariant congruence relation on

clone®t'r,,.

Proof. Let V ben — SF — solid, let t; ~ t, € Id5FV and let @ : clone’F'7, —
clone®f'7,, be an endomorphism of clone®'7,,, which extends ¢ : {fi(z1,...,2,) | i €

I} — clone®F'7,,. Then we have
B(t1) = (9o 0ia) " [t] = (o 0ia) "[to] = B(t2) € ATV

since ¢ o 04 is a strongly full hypersubstitution with = (¢ 0 0;4)” (see (i) before
Proposition 5.3.5). Therefore 1d5*'V is fully invariant.

If conversely Id5F'V is fully invariant, ¢, = t, € Id5FV and let 0 € HypS'r,,
then [t] ~ T[ts] € Id3FV since by Theorem 5.3.2 the extension of a strongly full
hypersubstitution is an endomorphism of clone®'r,. This shows that every identity
t1 =ty € Id5F'V is satisfied as a strongly full hyperidentity and then V is n — SF —

solid. ]

Theorem 5.3.8 Let V' be a strongly full variety of partial algebras. Then V is n —
SF — solid iff cloneSTV is free with respect to itself, freely generated by the in-
dependent set {[fi(x1,...,2n)]1qsrv | © € I}, meaning that every mapping u :
{[fi(z1,.. . zn)lpasry | @ € T} — clone®™V can be extended to an endomorphism

a : clone®FV — cloneSFV.
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Proof. Let clone®f'V be free with respect to itself. Using the equivalence from
Theorem 5.3.6, we will show that V' is n—SF—solid if every identity t, ~ to € IdST'V
is also an identity in clone®F'V . Let t; ~ to € Id5FV . To show that t; ~ t, is an iden-

tity in clone*'V, we will show that v(t;) = v(t,) for any mapping v : {f;(z1, ..., z,) |

i € I} — cloneFV. Given v, we define a mapping v, : {[f;(@1, ..., zn)|asrv | i €
I} — coneFV by oo ([fi(@1, ..., x0)]rasrv) = v(fi(z1, ..., 2,)) i.e. by a, 0 nat = v.
Since
[fi(zy, ... ;xn)]ldng = [fj(xb e 7$n)]1d,§FV

= i =

= fi(l’l,...,fbn) = fj([El,...,ZL‘n)

= U(fi(zla"'ymn)) = U(fj(zla"'y'xn))

= av([fi($1>-"axn)]ld£FV) = Oév([fj(ﬂha---,xn)}ldng),

the mapping «, is well-defined and because of the freeness of clone®fV it can be
uniquely extened to @, : clone®"'V — cloneFV with &, onat = v (Here we use that
{[fi(z1,...,2p)liasry | @ € I} is a free independent generating set of clone'V).

Since the set {fi(z1,...,7,) | i € I} generates the free algebra clone®f'r,, the map-

F

ping v can be uniquely extended to a homomorphism @ : clone®f'r,, — cloneS*'V .

Then we have
=ty € IV = [t]asry = [t asry
= Qy([t1]asrv) = @u([ta] rasry)
= (@, onat)(t1) = (&, o nat)(ts)
= 6<t1) - @(tg),
showing that t; ~ t, € Id5  clone®FV .

For the converse, we show that when V is n — SF — solid, any mapping « :

{[fi(x1, ..., xn)lasrv | @ € I} — clone®™V can be extended to an endomor-
phism of cloneF'V. We consider the mapping « o nat : {fi(x1,...,z,) | i €
I} — cloneST'V which is a valuation map. So we have (a o nat)(fi(xy,...,z,)) =

(a o nat)(fi(xy,...,7,)). We define the map @ : clone®*V — cloneST'V by
(a0 nat)(t) = a([t]agrv)-

We will prove that

(i) @ is well-defined. Let ¢, ¢, € WSF(X,,), it follows from [t1]74sry = [to]7asry that
t &ty € Id5FV. Since V is n — SF — solid and with a o nat = {(f;(z1,...,7,) |i €

I} — clone®FV, we have (a o nat)(t1) = (a o nat)(t2) = @([t1]1asrv) = @([ta]rasrv ).

This shows that @ is well-defined.
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(ii) @ is an endomorphism.

Consider a(S™([to]rasrv, - - -, [tnl1asFv))
= E[Sn(to, - ,tn)]jdng
= (o nat)(S"™(tg, ..., tn))
= ﬁ((a onat)(ty), ..., (aonat)(t,))
= W(a[to]myv, o At rasey).
(iii) @ extends «. Indeed, we have
a([fi(zy, .. mn)lragrv) = (2o nat)(fi(zy, ... zn))

= (aonat)(fi(x1,...,2,))
— @(nat(fi(xl, .. ,[L’n)))

a([fi(z1, ... zn)l1asrv)- =

Let TSF(A)::(WTiF(Xn)A; S™4) be the Menger algebra of all n-ary strongly full
term operations of the partial algebra A. Let A be a partial algebra and C be a
submonoid of (Subst; ®,idp, ). Then ¢; & t5 is called a C-identity in 757 (A) iff
n(t1) = 1(te) for every n € C.

Proposition 5.3.9 Let A be a partial algebra and let =1 (M) be the submonoid of
(Subst; ®,idp, ) corresponding to the submonoid M of Hyp°F'r,. Then t, =~ ty is a
strong M -hyperidentity in A iff t| = ty is an Y~ (M)-identity in T°F(A).

Proof.  Let t; = t5 be a atrong M-hyperidentity in A. This means that for every
o € M we have 6[t] ~ &[ty] € Id°F A. Let n € ¢»~1(M). By Proposition 5.3.5,
we have ¥)(n) = nooyy € M and 7] = (no oyy) . Then 7j(t1) = (n o 0y) " [t1] =
(n 0 0ia) " [ta] = Ti(t2) € 1d%" A and 7j(t:)* = 7(t2)*. So 7j(t1) = 7(tz) € Id T*F(A).
Conversely, let t; ~ t, be an 1 ~*(M)-identity in 75F(A). This means that for every
n € (M) we have 7(t1) ~ 7(ty) € Id T5F(A). Let o € M. By Proposition 5.3.5,
we have o o 0., € ~1(M) because of ¢(c00,,') = (0 00,;')00ig =0 € M and

ocoo, =6 Then 6[t] = (000, )(t1) = (0 00,,')(ta) = 6ta] € Id T5F(A) and

6[151] ~ 6[152] e Id TSF<A> = &[tl}A = &[tQ]A = 6[151] =~ &[tg] € [dSFA
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5.4 I°F — closed and V3 — closed Varieties

Let V be a strongly full variety of partial algebras of type 7,. Then V is called
ISF — closed if whenever A € V and T°F(A) =2 T5F(B), then also B € V.
We consider the following set of strongly full hypersubstitutions of type 7,:

O5F .= {o | o € Hyp®''r, and 7 is surjective }.

It is easy to see that O%F is a submonoid of HypS'r,.

Let A be a partial algebra of type 7,,. A congruence § € ConA is said to be
weakly invariant if for every p € ConA the following condition is satisfied : if there
exists a full homomorphism from A/6 onto A/p, then § C p. Let A be a partial
algebra, and let # and p be any congruences on A. From the second isomorphism
theorem (see [4]), it always follows from 6§ C p that there exists a surjective full
homomorphism .4/0 — A/p such that A/p is isomorphic to (A/0)/(p/6) (see [4]).

A set C of congruences of a partial algebra A of type 7, is said to be isomorphically

closed if whenever 6 € C and A/0 = A/p it follows that p € C.

Theorem 5.4.1 Let A be a partial algebra of type 7,,. Then we have:

(i) A congruence 6 on A is weakly invariant iff the principal filter [#) generated by
6 in ConA is isomorphically closed.

(ii) Every weakly invariant congruence on A is invariant under all surjective full

endomorphisms of A.

Proof. (i) First let 6 be weakly invariant. Let p and 3 be congruences on A such
that p € [#) and A/p = A/S. Since 6 C p, it follows from the second isomorphism
theorem that there is a surjective full homomorphism from .A/6 onto A/p. But then
by composition there is also a surjective full homomorphism from .A/6 onto A/f3,
and since 0 is weakly invariant, we have § C . Thus § € [#), showing that [) is
isomorphically closed.

Conversely, let [0) be isomorphically closed. To show that 6 is weakly invari-
ant, we consider p € ConA for which there is a surjective full homomorphism

¥ A/ — A/p. Using the natural surjective full homomorphism natf : A — A/6,
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we get a surjective full homomorphism v o natf : A — A/p and by the first homo-
morphism theorem A/p = A/ker(¢ o natf). Clearly 0 = kernatf C ker(y o natf)
and since [f) is isomorphically closed, we have p € [0) and § C p.
(ii) Let 6 be a weakly invariant congruence on A and let ¢ : A — A by any surjective
full endomorphism. Then natfo¢ : A — A/ is a surjective full homomorphism and
by the first homomorphism theorem A/6 = A/ker(natf o ¢). But [#) is isomorphi-
cally closed and by (i) we have ker(natf o ¢) € [#). So 8 C ker(natf o ¢) and from
this we get
(u,v) € 0 = (u,v) € ker(natf o ¢)

= (nath o ¢)(u) = (natf o ¢)(v) and u,v € dom(natb o )

= natf(¢(u)) = natd(d(v)) and ¢(u), p(v) € dom(nath)

= (¢(u), p(v)) € ker(natf) = 6.

Then 0 is invariant under all surjective full endomorphisms of A. [ |

Proposition 5.4.2 Let A be a partial algebra of type 7,. Then the set Id5F A

F

of its n — ary identities is a congruence on cloneSF'r,, and the quotient algebra

clone®Fr, [ 1d5F A is isomorphic to the term clone T5F(A).

Proof. By Theorem 5.2.4 the relation Id>F A is a congruence on clone®t'r,. We

define ¢ : clone®F'r, /1d3F A — T (A) by @([t]1asr.4) = t4. We get
[S]IdﬁFA = [t]ldsFA = s~te& [d,S;F.A
= 54 iomst = Y gomea and doms* = domtA
= A=A
= @([slrasra) = @([t]1as7 4)
and the mapping ¢ is well-defined.

Then we have

©([slrasra) = o([t] 1457 4) sA = A

=
= 54 gomet = 1 goma and doms* = domtA
= s~teldiFA

= [8]rasra = [t]1asFa
and the mapping ¢ is injective.
Clearly, ¢ is surjective.

We prove the homomorphism property o(S™([s]asr 4, [t1]rasFa, - - [ta]1asFa))|lp =
Sn’A(SO([S]IdﬁFA)vQp([tl]ldﬁpfl)a o 780([tn]1dgFA))|D ; D= domt}“.
j=1

Consider ¢ (S™([s]rasr ., [t1]rasras - -+ [t] rasr 4)) 0
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= ([S™(s,t1, ., ta)]1asFa)|D

= (S"(s,tl, e ,tn))A|D

= SmAsA Lt D

= 5" p([s]rasra), e([tr]rasra), - - -, ©([tn]rase 4)) | p-

Altogether, ¢ is an isomorphism. [ |

SF

For any congruence 6 on clone”"7,, we can define the usual quotient alge-

bra (W25 (X,)/0; (f})icr), whose operations f are defined by f7([t1]e, ..., [ta)o) =
[fi(t1, ..., tn)]e- In the unary case n = 1, the congruence Id5F A is called the Myhill-
congruence on A, and the corresponding quotient algebra is called the Myhill-algebra
([39]). We now generalize this to n — ary algebras.

For any congruence 6 on cloneSFr,, the quotient algebra M(#) :=
(WEF(X,)/0; (f})ier) is called the Myhill-algebra of §. For any partial algebra A of
type 7, the Myhill-algebra of Id5" A is denoted by M(A). For any n — ary strongly
full variety V, we set Id5FV = n{Id5¥ A | A € V}; this is also a congruence on

clone®F'r,, whose quotient algebra M (V) is called the Myhill-algebra of Id5FV .
Proposition 5.4.3 For every congruence 6 on clone®t'r, we have

T5F(M(9)) = cloneSF'7, /6.
In particular, T5F(M(A)) =2 T5F(A).

Proof. T5F(M(0)) is the clone generated by {f | i € I}. We define a map-
ping ©* : F, — {fr | i € I}, by o*(fi(x1,...,2,)) = fF for all i@ € I. Since
clone®f'r, is freely generated by the set F, , the mapping ¢* can be extended to

a homomorphism @*, which is surjective since @*({{fi(x1,...,2,) | © € I})) =

@ {filwr,-swa) | i€ 1)) = ({fi | i € I}) = T*F(M(0)) and by the first

~

homomorphism theorem, we have 75 (M (6)) clone®t'r, /kerg*. We consider

a mapping @ : W, (X,) — T™(M(6)) whose restriction to WSF(X,) is equal

‘SI ~G|

to @*, Le. Plwsrx,) = @~ Since cloneSf'r, is a subalgebra of n — cloner, =
(W, (X,); S™), we have TSF(M(0)) € T (M(#)) and then B*(fi(zy,...,2,)) =

Pleaonesrr, (fi(z1, ... xn)) = B(fi(z1, ... xn)) = [filxr, ..., z0)]e (%) by [19]. We will
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show that 0 = kerp*.
case 1. If (fi(x1,... @), fi(x1,. .., 2,)) € kerp*, then
Gl z)) = B 0))
& [filzr, s aa)lo = [fi(z, . 2n)]e by ()
& (filzr, .. @), fi(ze, ... x,)) € 0.
case 2. If (fi(xy1,..., ), fij(t1,...,tn)) € kerp* and we assume that P*(t;) =
[tk]o; kK =1,...,n, then
[fi(z1, . zn)lo =@ (filz1, .- 20))
Pt 1)
PS™(fi(xry .oy mp) by oy tn))
SP@ (fi(z1, . 0), B (), .
=57 ([f;(x1, - ), [ti]es - - -, [t]o)

=[S"(fi(x1, - xn), t1, -y ta)]o = [fi(t1, - s t)]o-
In the same way, we show
(filzr, ..o ), filte, ... 1)) € 0= (filzr, ..., zn), fi(t1, ..., tn)) € kerg™.
case 3. In a similar way, we show
(fi(s1,.. .y 80), fi(z1, ... 2p)) € kerp* & (fi(s1,...,80), fi(x1,...,2,)) €0
case 4. If (fi(s1,...,80), fi(t1,...,tn)) € kerg* and we assume that $*(sz) =
[sklo, @*(tx) = [trlo; K =1,...,n , then
@ (fils1, - 80)) =@ (fi(ta, .. 1n))
< P (S™"(filx1, .. x0), 81,5 Sn))

= (S"(fi(x1, .y xn)st1, ..y tn))
filwy, o x0)), @5 (s1), -, ©"(5m))
(

& S
= S (@ (fi(wr, - w), @ (1), - P ()
S ([filwr, - n)os [s1e, - - [5alo)
Z—k([fg(l’la-~-7$n)]ey [t1]os - -, [tn]o)
< [S™(filx1, - Tn) S15- -5 80)]e
= [S™(fi(z1,.. ., z0), tr, o t0)]o
< [fi(s1,---580)]0
= [fi(tr, -, t)le-
< (filst, ..oy sn), fi(ts, ... tn)) € 0.
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Then the isomorphic 75 (M (A)) = T5F(A) follows from our result. ]

Theorem 5.4.4 Let V be a strongly full variety of partial algebras of type 7,,. Then
V is I°F — closed iff V' satisfies the following two properties:
i) AeViff M(A) eV,

(ii) Id3FV is weakly invariant.

Proof.  Suppose first that V is I°F — closed. Property (i) follows from the
I5F — closedness and the result from Proposition 5.4.3 that for any A € V, we have
T5F(M(A)) =2 T5F(A). By Theorem 5.4.1, we can prove that (ii) holds by showing
that [Id5F'V) is isomorphically closed. For this, let o € [IdSF'V), then Id5FV C

a. Let 6 be a congruence on clone®f'r, such that clone’'r,/a = clone®F'r, /0.
Since Id3FV = ) Id5FA, we have Agsr(x,y/1asrv = ISV Id3F YV =
Aev " !

N I&FA/IASTYV = () (TdSFA/IdF V) and M (V) = F2F(X,,)/1d2FV is isomor-
Slel‘l/c to a subdirect prf)tfi‘l/lct of M(A) € V, and thus M (V) € V. From Id3FV C «
follows that we have a surjective homomorphism
M(V) = F2H(Xn)/1d7TV — (FRH(X) [ TdREV) [(a/Id3FV) = 2 (Xn) o =

M(a). But V' is a strongly full variety, so M(«) € V. Furthermore by Proposi-

tion 5.4.3, we have
T (M(a)) = clone®F'1,, /o = cloneSF 7, /0 = T5F(M(6)),

and since V is I’ — closed, this gives M () € V. This means that [d5FV C
IdSFM(0), and we can finish the proof by showing that Id5FM(6) = 6, so that
6 € [Id5F'V). The equality Id5F M () = 6 holds because of

st e IdSFM(0) & [s]o = [ty < (s,t) €0,

Conversely, we assume that the strongly full variety of partial algebras V' of type
7, satisfies (i) and (ii). From (i) we get M(A) € V for all A € V, since [d5FV =

N Id5FA. Then we have Agsr(x,/masry = [dSFV/IASEV = () TdSFA/TdSTV =
Aev " . Aev

N IdFA/1dSFV) and M (V) = F2F(X,,)/1d5FV is isomorphic to a subdirect
AeV

product of M(A) € V, and thus M(V) € V. To establish that V is I°F — closed,

let B and C be any two partial algebras, and suppose that 7°F(B) = 75F(C) and
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B € V. It follows from Proposition 5.4.2 that
clone®tr, [1d5F B =2 TS (B) =2 T5F(C) = clone®' 7,/ Id57C,

and since B € V we have Id5FV C [d5FB. By (ii) Id3FV is weakly in-
variant, so we get Id;*V C IdFC. But M(V) = F2H(X,)/1d5FV —
(FER(X,)/1d5EV) [(Id2FC/IdSF V) = FRF(X,,)/1d5FC = M(C) is a surjective ho-

momorphism. Since V' is a strongly full variety, then we have M(C) € V. By (i) we
get C € V, establishing that V is I°F — closed. [ ]

Theorem 5.4.5 Let V' be a strongly full variety of partial algebras of type 7,, which
is the model class of its n—ary strongly full identities, that is, let V = Mod ¥ Id5FV .
Then 'V is I°F — closed iff it is O°F — solid.

Proof.  First assume that V is O%F — solid, so that every s ~ t € Id5F'V is an
OS5 — hyperidentity in V (i.e. 6[s] =~ [t] € Id5FV for all 0 € OF). Let A €V
and let 75F(A) be isomorphic to 75 (B). Then

6[s] ~ 6[t] € Id5F A for all o € O5F

= s~ tisan O — hyperidentity in A

= satisan YO —identity in T (A) (by Proposition 5.3.9)

= satisan ¢ (O —identity in T5F(B)

= s~ tisan O — hyperidentity in B (by Proposition 5.3.9).

Then 6[s] = 6[t] € Id3FB for all 0 € O%F. So Id3FV C Id5F B and Be V.
Conversely, assume that V is I°F — closed. Then by Theorem 5.4.4 and Theorem
5.4.1, we know that Id5"V is both, weakly invariant and invariant under all sur-
jective endomorphisms of clone®T'r,,. Then for any identity s ~ t € IdSFV and any

Fr, — clone®f'r,, we have 1(s) ~ 7(t) € IdSF'V.

surjective endomorphism 7 : clone®
Given 0 € O%F | then o € Hyp®F'r,, and ¢ is surjective. But 77 = o o 02.711 = ¢. Then

6(s) ~ 6(t) € Id5FV for all o0 € O5F. This shows that V is OF — solid. n

A strongly full variety of partial algebras V' of type 7, is said to be S —closed if
for every partial algebra B of type 7,,, whenever A € V and 75 (B) is isomorphic to a
subalgebra of 75F(A), it follows that B € V. The class V is said to be V3 —closed if
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for every partial algebra B of type 7,,, whenever A € V and Id T°F(B) D Id T°F(A)
it follows that B € V.

Proposition 5.4.6 Let V be a strongly full variety of partial algebras of type 7,. If

V is VS — closed, then it is both, I°F — closed and S°F — closed.

Proof. Let V be V5 — closed, and let A € V and T5F(B) = T5F(A). Then
Id T5Y(B) = Id T"(A), and so B € V since V is V5 — closed. Similarly, if
T57(B) is isomorphic to a subalgebra of 75 (A), then Id T5"(B) 2 Id T5"(A)
and so B € V since V is V3 — closed. This shows that V is both, I°" — closed and

SSF _ closed. n

Theorem 5.4.7 Let V' be a strongly full variety of partial algebras of type 7, and
assume that V = Mod*TIdSTV . Then V is VST — closed iff it is O5F — solid.

Proof. Let V be O°F — solid, A € V and Id T5%(B) 2 Id T5"(A). From the
fact that V is O%F — solid for all o € O5F we obtain 6s| ~ 6[t] € Id5FV where
s~ t e Id3FV. Since IdSFV C Id3F A we have :

o[s] = o[t] € 1d5F A for all 0 € O5F

= s~ tis an O — hyperidentity in A

= s~ tisan ¢ (O —identity in T5F(A) by Proposition 5.3.9

= s~ tisan ¢ 1 (O) —identity in T5F(B) by Id T (B) 2 Id TS (A)

= s~ tis an O%F — hyperidentity in B by Proposition 5.3.9.

Then 6[s] = 6[t] € [d3FB for all 0 € O5F. So I[d3FV C Id5F B and Be V.
Assume conversely that V' is V5 — closed and let A = (A; (f)icr) be a partial
algebra in V. For any hypersubstitution o, we consider the derived algebra o(A) =
(A; (0(fi)?)icr). Since the operations o(f;)* are term operations of A, we have
T5%(0(A)) C T5F(A) and therefore Id T (0(A)) D Id TF(A). Since V is V5 —
closed, we have o(A) € V. This shows that any derived algebra, formed from an
algebra in V| belongs to V', which is known to be equivalent to the solidity of V. m
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Chapter 6

Unsolid and Fluid Strong Varieties

In this chapter, we generalize some results of the papers [20], [21], [22] and [46] to the
partial case. In Section 6.1, we define the concepts of V-proper hypersubstitutions
and inner hypersubstitutions. In Section 6.2, we use the concepts of V-proper hy-
persubstitutions and inner hypersubstitutions to define the concepts of unsolid and
fluid strong varieties. We generalize unsolid and fluid strong varieties to n-fluid and
n-unsolid strong varieties. Finally, we give an example of n-unsolid strong variety of

partial algebras.

6.1 V-proper Hypersubstitutions

Now we consider regular C-hypersubstitutions which preserve all strong identities
of a strong variety of partial algebras.

Let V' be a strong variety of partial algebras of type 7. A regular hypersubstitu-
tion or € Hyp%(7) is called a V-proper hypersubstitution if for every s ~ t € Id°V
we get og[s] ~ og[t] € Id°V.

We use P(V) for the set of all V-proper hypersubstitutions of type 7.

Proposition 6.1.1 The algebra (P(V);0p,0:4) is a submonoid of the algebra
(Hypf(7); on, 0ia).-

Proof.  Clearly, 0,y € P(V). If og,,0r, € P(V), then for every s ~ t € Id*V we
have Og,[s| = Og,[t] € [d°V and Og, [0R,[s|] = Or,[0r,[t]] € Id°V. This means that

(OR, ©0R,)[s] = (Or, 00r,)[t] € Id*V and we get that (og, opor,) [s] = (0, oK OR,)

67
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“[t] € 1d°V. Therefore og, o, or, € P(V), and we have that P(V') is a submonoid
of Hyp%H(T). u

Let V be a strong variety of partial algebras of type 7. Two regular C-
hypersubstitutions og,,0r, € Hyp%(7) are called V-equivalent iff op, (f;)) =~

or,(fi) € Id°V for all i € I. In this case we write g, ~y Og,.

Theorem 6.1.2 Let V be a strong variety of partial algebras of type T, and let

OR,,0r, € HypG(7). Then the following are equivalent:
(1) OR, ™~V OR,-
(i)  For allt € WE(X) the equation Gg,[t] = Or,[t] is an identity from Id°V .
(iii) For all A €V we have og,(A) = og,(A).

Proof. (i)= (ii). The implication can be proved by induction on the complexity
of the term ¢ (see [11]).

(ii)= (iii). We consider the term t = fi(xy,...,2z,,) for ¢ € I. Then
Op,[filx1, .. xn,)] = Oyl fi(z1,...,xp,)] € Id°A for all A € V by (ii) and we
get O, [fi(x1, ..., 20,)]* = Cr,[fil21,...,2,,)]* for all i € I and all A € V. Thus
or, (A) = or,(A).

(iii)=(i). Here we have Gg, [fi(21, ..., 2,,)]* = O, [fi(21, ..., 2p,)]* for all i € T and
all A € V. Therefore og, (f;) = or,(fi) € Id°A for all A€ V. So, o, ~v or,. ™

Proposition 6.1.3 Let V be a strong variety of partial algebras of type 7. Then the

relation ~v is a right congruence on Hyp% ().

Proof. Let op, ~v or, and ox € Hyp%(7). By Theorem 6.1.2 (ii) we have

(or, on or)(fi) = Tr,[0r(fi)] = Or,[or(fi)] = (R, on or)(fi) € Id°V.

S0, Or, O Og ~v OR, o 0r. This shows that ~y is a right congruence. [

In general, ~y is not a left congruence. But if V' is solid, then it is a congruence.
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Proposition 6.1.4 Let V be a strong variety of partial algebras of type 7. If or, ~v
Or, and Or,[s] = Og,[t] € Id°V, then Gg,[s] =~ Or,[t] € Id°V when og,,0r, €

Hyp$(r) and s,t € WE(X).

s| & ag, [t] € Id°V. By Theorem 6.1.2,
we have Og, [s| = Gg,[s] € [d°V and Og, [t] = Or,[t] € Id°V. Thus og,[s| = og,|t] €

Id°V. n

Proof.  Assume that og, ~y og, and o, |

As a corollary we get

Corollary 6.1.5 The set P(V') is a union of equivalence classes with respect to ~y .

(In this case one say that P(V') is saturated with respect to ~vy ).

Now we consider the equivalence class of the identity hypersubstitution.
A regular C-hypersubstitution or € Hyp$%(7) is called an inner hypersubstitution

of a strong variety V' of partial algebras of type 7 if for every ¢ € I,
6'\R[fi(l’1, R 7Inl)] ~ fi(l’l, . ,l’ni) e Id°V.

Let Py(V') be the set of all inner hypersubstitutions of V.

By definition, Py(V') is the equivalence class [0;q]~,, -

Proposition 6.1.6 If or € Py(V), then Gglt] ~t € Id°V fort € WE(X).

The Proposition can be proved by induction on the complexity of terms (see [11]).
Proposition 6.1.7 The algebra (Py(V);on, 0:q) is a submonoid of (P(V);op, 0iq).

Proof.  Clearly, 0,y € Py(V'). Assume that og,,or, € Py(V). Then

(Or, on oRy) [fil@1s - wn)] = Or[ORo[filz1, .. 20,)]]
~ opfi(x1, ... xn,)] by Proposition 6.1.6
~  filzr,..oo x,) by Proposition 6.1.6
e IdV.

Therefore og, o og, € Py(V). Thus Py(V) is a monoid. By Proposition 6.1.6,
we have Fy(V) C P(V). So, the algebra (Py(V);on,0,) is a submonoid of
(P(V);0n, 0ia). ]
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Now we show that the compatibility condition from the definition of a closed ho-
momorphism for partial algebras transfers from fundamental operations to arbitrary

term operations.

Lemma 6.1.8 Let A € PAlg(t) and t* be the n-ary term operation on A induced
by the n-ary term t € W (X). If B € PAlg(t) and if ¢ : A — B is a surjective

closed homomorphism, then for all aq, ..., a, € A,

p(tH(ar, ..., an)) = t(p(ar), ..., p(an)).
The Lemma can be proved by induction on the complexity of terms (see [11]).

Lemma 6.1.9 Let A, B € PAlg(t) and or € Hyp% (7). If h : A — B is a surjective

closed homomorphism, then h : or(A) — or(B) is a closed homomorphism.

Proof.  From Lemma 6.1.8, for the term og(f;) we have h(fiUR(A)(al, e ap)) =

h(or(fi)* (a1, an)) = or(f)(h(ar), ... h(an)) = f7" (h(ay), ... h(a,)). This

shows that h : og(A) — ogr(B) is a closed homomorphism. n

Lemma 6.1.10 Let A,B € PAlg(t) and or € HypS(r). If f :+ A — B is an

isomorphism, then f is also an isomorphism from og(A) to or(B).

Proof.  Since f : A — B is bijective, the mapping f : or(A) — ogr(B) is also
bijective because partial algebras and their derived algebras have the same universes

and by Lemma 6.1.9, we have og(A) = og(B). ]

Let V be a strong variety of partial algebras of type 7 and og,,or, € HypG(7).
Then we define
OR, ~V_iso Op, I  op,(A) =Zop,(A) forall AeV.

Clearly, ~yCry_iso. If V.= PAlg(7), then we use ~;g, instead of ~pig(r)—iso-

Proposition 6.1.11 Let V' be a strong variety of partial algebras of type 7. Then
(i) the relation ~y_;s, is a right congruence on Hyp%(7);

(ii) if V is a solid variety then ~v_i, is a congruence on Hyp%(T).
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Proof. (i) Let or, ~v_iso O, and og € Hyp%(7). Then og, (A) = op,(A) and
or(oR,(A)) = or(og,(A)) for all A € V by Lemma 6.1.10. We have

(0r, on 0r)(A) = or(oR,(A)) = or(0R,(A)) = (0, on o) (A).
S0, OR, Oh OR ~V—iso OR, On Or. This shows that ~y _;5, is a right congruence.

(ii) Assume that V is solid. Then og(A) € V for all o € Hyp%(7) for A € V. From
OR, ~V—iso OR, implies that og, (0r(A)) = og,(0r(A)) for all A € V. We have

(0r o 0r,)(A) = 0r,(0r(A)) = 0, (0r(A)) = (0r o1 Tr,)(A).

SO, OR O OR, ~V—iso OR On OR,. This shows that ~y_;, is a left congruence and (i)

shows that it is a congruence. [ |

Proposition 6.1.12 IfV = PAlg(t), then ~;, is a congruence on Hyp% (7).

Proof.  Since V = PAlg(7) is a solid variety, the claim follows from Proposition

6.1.11. |

Proposition 6.1.13 The equivalence class Py (V) = [0i4)~y_,., i5 a submonoid

of (HypG(7); on, 0ia)-

Proof.  Clearly, 0,4 € Py "*°(V). Next, we will show that Py "°(V) is closed
under the operation o,. Let og,,0r, € Py (V). Then or, ~v_isw 0y and
OR, ~V—iso Oiqg implies that og, (A) = A and og,(A) = Aforall Ae V.

We have (og, oy or,)(A) ORr,(0R,(A)) Dby Lemma 3.2.3
ORy (A) by og, € P(}/_l.so(v>
A by or, € Py (V).
Then (og, on ORr,) ~v_iso Tia- Therefore og, oy o, € Py (V). So, Py (V) is a

111

submonoid of Hyp% (7). |

Proposition 6.1.14 Let V' be a strong variety of partial algebras of type 7, s =~
t € Id°V for s,t € WCE(X,,) and let op,,0r, € HypS(7). If 0p, ~v_iso Or, and
(/J'\Rl [S] ~ 8R1 [t] € 1d°V, then (/J'\R2 [S} ~ (/J'\R2 [t] e l1d°V.
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~

Proof.  Assume that o, ~v_is Or, and Og, [s] & g, [t] € [d*V . Then og, (A)
oR,(A) for all A € V. We get that there is an isomorphism ¢ from og, (A) to og,(A).
Let by,...,b, € A. Then there are elements ay,...,a, € A such that ¢(a;) =
bi,...,o(an) = by.

We have

dom(op,[s]?) = {(b1,...,bn) | Or,ls ]A(bl, b,) exists }
= {(b1,-..,bn) | Tr, [s]" (p(a e s p(an) exists }
= {(b1,...,bn) | w(aRl[ [4(a, ..., a,)) exists }
since ¢ is an isomorphism from or,(A) to og,(A)
= {(b1,...,b,) | (@r,[](ay, ..., ay,)) exists }
since O, [s] R op|t ] eld’Aforall AecV
= {<b17 bn) ’§ [] ( (al)a'-wgp(an)) exists }
= {(by,... ,b)|a L[4 (b, . .., by) exists }
| = dom(Gg,[t]")
ERQ [S]A(bh cee 7bn) = /O-\Rz [S A(@(al)v I 90<an))
= (g, [s]May,. .., a,))
= 90(61%1 t]A(ala s >an))
= O[] (¢(ar), .. p(an))
= a\RQ [t]A(bb >bn)
Then og,[s| = Op,[t] € Id°A for all A € V. So, 0p,|[s] = og,[t] € [d°V n

As a corollary we get

Corollary 6.1.15 The set P(V') is a union of equivalence classes with respect to

~v_iso- (1.e. P(V) is saturated with respect to ~v_s,).

Remark 6.1.16 Py(V) C Py (V) C P(V).

6.2 Unsolid and Fluid Strong Varieties

For a solid strong variety every strong identity is closed under all regular hypersub-
stitutions. At the other extreme is the case where the strong identities are closed
only under the identity hypersubstitution.

A strong variety V' of partial algebras of type 7 is said to be unsolid if P(V') =
Py(V') and V is said to be completely unsolid it P(V') = Py(V') = {04}

A strong variety V of partial algebras of type 7 is said to be iso-unsolid if P(V') =
Py 7#°(V) and V is said to be completely iso-unsolid if P(V) = Py ™*°(V') = {o:4}.
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Proposition 6.2.1 Let V' be a strong variety of partial algebras of type 7. Then
(1) If V is unsolid, then V is iso-unsolid.
(i) V' is completely unsolid iff V' is completely iso-unsolid.

Proof. (i) The claim follows from the definitions and Remark 6.1.16.

(ii) If V is completely unsolid then V' is completely iso-unsolid by Remark 6.1.16.
Conversely, assume that V is completely iso-unsolid. Then P(V) = By ~*°(V) =
{0:a}. Since Py(V) C P(V) and P(V) # 0, we get Po(V') = {044}. So, V is completely

unsolid. -

A strong variety V' of partial algebras of type 7 is said to be fluid if, for every
partial algebra A € V and every regular C-hypersubstitution oz € Hyp%(7), there
holds

O'R(.A) S V:>UR(A) >~ A.

We denote by or(V) the class of all algebras or(A) with A4 € V. As an easy

consequence of the definition we have the following result:

Proposition 6.2.2 If a strong variety V' of partial algebras of type T is fluid then
for every reqular C-hypersubstitution or € Hyp% (1), there holds

or(V) CV = VA E V(og(A) = A).

Proposition 6.2.3 Let V' be a strong variety of partial algebras of type 7. Then for
all o € HypG(7), we have ar(V) CV iff og € P(V).

Proof.  Assume that og(V) C V. Let s =~ t € Id°*V. Then Id*V C Id°cr(V)
and we have s = t € Id°ocr(V). So, 0g[s] = og[t] € Id°V by Proposition 3.2.5.
Therefore o € P(V'). Conversely, we assume that o € P(V). Let A € ox(V) and
s~ t € Id°V. Then og[s] ~ og[t] € [d°V by or € P(V) and s = t € Id°og(V)
by Proposition 3.2.5. Since A € or(V) we have s ~ t € Id°A and A € V. So,
or(V)CV. ]
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This shows that if a strong variety V of partial algebras of type 7 is fluid, then
for every regular hypersubstitution op € Hyp%(7), there holds

or € P(V) = VA€ V(og(A) = A).

Proposition 6.2.4 Let V be a flurd strong variety of partial algebras of type 7.
Then P(V') = [04]

~V—iso”

Proof. Let og € P(V). Then og[s] = ag[t| € Id°V for all s ~t € [d°V implies
that og[s] =~ oglt] € Id°A for all A € V. By Proposition 3.2.5, we have s = t €
Id*or(A). So, or(A) € V for all A € V and for all o € Hyp% (7). Since V is fluid,
we have op(A) = A and this implies that og ~v_;s 04q. Therefore og € [0:4]

Thus P(V') C [044] but [oq]

~V—iso"®

~V —iso ~V —iso g P(V) SO7 P(V) = [O—id]NV—iso' u

Proposition 6.2.5 Let V' be solid variety of partial algebras of type 7. Then V is
fluid iff P(V') = [0id] ;.. -

Proof. By Proposition 6.2.4, we have that if V' is fluid then P(V') = [0i4]~, _,..-

Conversely, we assume that P(V) = [0y4] Let or € Hyp% (7). Since V is solid,

~Visor
we get or(A) € V for all A € V. Next, we will show that o € P(V'). Suppose that
or & P(V). Then there is an identity s ~ ¢t € Id*V such that og[s| ~ og[t]| & Id°V
and this implies that there exists A € V such that og[s] =~ og[t] € [d°A. By
Proposition 3.2.5, we get s = t ¢ Id°or(A) and op(A) ¢ V which is a contradiction.
So, og € P(V) = [0id)~y_,., and 0 ~y_iso 0iq. Therefore og(A) = Afor all A € V.

Then V is fluid. u

Let V be a fluid strong variety of partial algebras of type 7 and assume W is a
subvariety of V. Clearly, W is also fluid since, for all A € W C V and op € Hyp$(7),

we have

or(A) e W = og(A) = A.
Therefore, we have the following :

Proposition 6.2.6 FEvery subvariety of a fluid strong variety of partial algebras of
type T 1s fluid.
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Proposition 6.2.7 If V is a fluid strong variety of partial algebras of type T and

Cid)my = [Cid) ;.. then V is unsolid.

Proof.  Assume that V is fluid and [04]~, = [0id] . Let og € P(V). Since
V is fluid, we get op(A) = A for all A € V (i.e. op ~v_is0 0iq). Therefore o €
[Cid)my_ieo = [Tid)~y (€. 0p ~y 0i4) and we have or € By(V). So P(V) C Fy(V),

but since Py(V) C P(V) then P(V) = Fy(V). Therefore V' is unsolid. [

~V —iso

Proposition 6.2.8 Let V' be a strong variety of partial algebras of type 7. Then

~v |pwy is a congruence relation on the algebra (P(V');op, 0iq).

Proof.  Let og,,0p, € P(V) such that or, ~v |pv) or, and let o € P(V).
Then or(A) € V forall A€ V.

We show that ~y |p(y) is a right-congruence.

O, ~v |p(v) Or, implies that og, (A) = og,(A) for all A € V and we get that
or(ogr, (A)) = or(og,(A)) since og is a function. So, og, oy og ~y Og, o or but
OR, OhOR,OR,0n0g € P(V) because P(V') is a monoid. Therefore o, op0r ~v |prv)
OR, Oh OR-

We show that ~y | p(v) is a left-congruence.

or(A) € V and og, ~v |pwv) 0r, imply that og, (0r(A)) = og,(0r(A)). So, or oy
OR, ~Vv OR O Or, but op o, ogr,,0r o or, € P(V) because P(V) is a monoid.
Therefore o 0oy, or, ~v |p(v) OR ©K OR,.

So, ~v |p(vy is a congruence relation. u

Proposition 6.2.9 Let V' be a strong variety of partial algebras of type 7. Then

~v_iso |P(v) 15 @ congruence relation on the algebra (P(V');op, 04q).

Proof.  Let op,,0r, € P(V) such that og, ~v_is |p(v) Or, and let o € P(V).
Then or(A) € V forall A€ V.

We show that ~y s, | p(v) a right-congruence.

OR, ~V—iso |P(v) OR, implies that og, (A) = og,(A) for all A € V and by Lemma
6.1.10, we get that og(og,(A)) = or(or,(A)). So, Or, o1 OrR ~v_iso Or, On O but

OR, On OR,OR, o 0r € P(V) because P(V') is a monoid. Therefore og, oy og
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~V—iso \P(V) ORy; Oh OR-

We show that ~y 4, | p(v) is a left-congruence.

Since or(A) = or(A) and og(A) € V then og, (0r(A)) = or,(0r(A)). So, og oy
OR, ~V—iso OR Op OR, DUt og o, og,,0r oy 0r, € P(V) because P(V) is a monoid.
Therefore o 0, Or, ~v_iso |P(V) OR O OR,-

S0, ~v_iso | p(v) 1s a congruence relation. ]

6.3 n-fluid and n-unsolid Strong Varieties

The concepts of fluid and unsolid strong varieties of partial algebras can be gener-
alized in the following way:

Let 1 < n € N*t. A strong variety V of partial algebras of type 7 is called n-fluid,
if there are og,,...,0g, € P(V) with o, %v_isx og, forall 1 <i # j < n such that
for all A € V and for all og € Hyp% (1) the following implication holds:

(x) Ifor(A) €V, then thereis a k € {1,...,n} with og(A) = og, (A).

Proposition 6.3.1 Let V be an n-fluid strong variety of partial algebras of type 7.
Then |P(V)/NV7iSD|P(V)| 2> n.

Proof.  Since V is n-fluid, there are og,,...,0r, € P(V) with og, 7bv_is, og, for
all 1 <4 # j < n such that condition (x) is satisfied. Since [og,]y_,.,1p0, € P(V)
~V —isol P(V) U...u [O-RR]NV—iso|P(V) C P(V) and
|P(V)/NV—iSO|P<V>| Z n. u

for all i € {1,...,n} we have [og,]

A strong variety V' of partial algebras of type 7 is called n-unsolid iff

‘P(V)/NV|P(V)‘ =n.

By this definition, we have that if V' is n-unsolid, then P(V) = [og,] U

~vlpw)
U [0R, )~y pry - Where o, Ay op, for all 1 < i # j < n. But [ogr]vyp, C
C P(V) for all i € {1,...,n}. So P(V) = [0r,]ny_iulpy U - -+ U

We have that if V' is n-unsolid then P(V) = [og, ]y |py, U ... U

[URi]NV—iso|P(V)
I:O-Rn]NVfiSDIP(V)'
[URn]Nvlp(v) = [O-RI]NV—'LSO‘P(V) u...u [URn]NV—isolP(V)'

The following concept generalizes that of an n-fluid variety.
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Proposition 6.3.2 Let 1 <n € N and V' be a strong variety of partial algebras of
type T with ~v |p(vy =~v_iso |pv)- If V is n-fluid then V is k-unsolid for k > n.

Proof.  Assume that V is n-fluid. Then we have |P(V) | > n. Since

/Nv—iso\p(v)

~v ey =~veiso [pary we get [P(V) /oy oo | = [P(V)/avlpyy| = K, Le. Vs

k-unsolid.

6.4 Examples

Let B be the strong regular variety
B = Mod* {x(wy3) ~ (2122)T3, 27 ~ 11},

i.e., the class of all partial algebras of type (2) which satisfy the associative and the
idempotent law as strong identities. Both equations are regular (i.e. the both sides
of the equation have the same variables occurring). We denote by o; € Hyp%(2)
the regular C-hypersubstitution which maps the binary operation symbol f to
the term ¢ € W(%({ml, zo}). Instead of f(xy,z2) we write simply xjx9. The
set Hyp%(2)/~, consists precisely of the following classes of hypersubstitutions:
Oettorinns Ottormlns il [assops Oorsanlogs [Orsorsales. Wo will be
particularly interested in the following strong regular subvarieties of the strong reg-
ular variety B:

TR = Mod*"{€2(xy, ) ~ €3(11, 1)},

LZ = Mod*"{x xs =~ 2 (21, 32)},

RZ = Mod* {x zy ~ %( T2)},

SL = Mod*{xi(xy23) ~ (mlxg)mg, 112 N Ty, T1To N ToTy ),

RB = Mod*™{z)(xox3) ~ (1179)73 &~ £2(11, T9) T3, 1% ~ 11},

NB = Mod*{x1(1ax3) ~ (v122)T3, T1° X T1, T1T2T3T4 X T1T3ToT4},
RegB = Mod® {xy(xo13) = (x122)x3, T1> = Ty, T1ToT1T3T) N T1ToT3T1 ),
LN = Mod*™{x1(zo13) = (1129)x3, 112 & Ty, T1ToT3 R T 1T3T2},

RN = Mod*"{z(zow3) = (z172)x3, 1% & 1, T1ToT3 X ToT1T3},

LReg = Mod*"{z1(z2x3) = (1179)73, T1° & T1, T1T2 X T1ToT1},
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RReg = Mod* " {x1(xox3) = (122)x3, 21> = T1, T129 A ToT1Ts},
LQN = Mod*"{xi(xox3) ~ (v172)x3, T1% &~ X1, T1T2T3 = T1ToT1T3},
RQN = Mod* {xy(xox3) ~ (2122)T3, T1% ~ T1, T1T2T3 X T1T3ToT3}.
All these varieties are strong regular varieties of partial algebras.

These varieties are given in the following diagram:

This is not the lattice of all strong subvarieties of B since we consider strong regular
ones.

A strong regular variety V of partial algebras of type (2) is called dual solid if
from s &~ t € Id*"V there follows ..., [S] & pye, [t] € [V .

Then we have the following results:

Theorem 6.4.1 1. TR, LZ,RZ,SL are unsolid.
2. LN,RN, LReg, RReg are 2-unsolid.
3. B,RB,LQN, RQN are 4-unsolid.
4. NB and RegB are 6-unsolid.

5. All dual solid varieties different from TR, SL, NB, and RegB are 4-unsolid.
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6. Any strong reqular variety V- C B other than LZ, RZ, LN, RN, LReg, RReg,
LON, RQN which is not dual-solid is 3-unsolid.

Proof. 1. It is easy to see that TR, LZ, RZ are unsolid. Further, Hyp%(2) =
(02(21 ) st U [02(0y,20)|~sp Y [Oaiaalsy, where 04y, € P(SL). The application

2

of 02 to x1x9 = woxy € Id"SL provides 1 ~ x5 € Id*"SL and the appli-

x1,%2)

cation of 03 y t0 X129 & 9wy provides zo & 14 ¢ I1d°"SL. This shows that

1,22
0-8%($1,$2)70-€%(1‘1,1‘2) g P(SL) Consequently, |P(SL)| = |[U$1x2]NSL| = 17 ile. SLis
unsolid.

2. Tt is easy to see that Hyp%(2) = (02 ,20) |~ U (02 @r,00) iy U [02zs] gy U

[0 par ] op s Where o2 ) Ozy € P(LN). If we apply 6.2 t0 T 1Tow3 A T1T3To

k)
1 172) (17175172)

we obtain x3 ~ x5 which is not satisfied in LN and applying 6,,., to z12203 = 212375

gives x3T2x1 A Tox3xr; which is also not satisfied. Therefore P(LN)/NLN‘P(LM =

{[0e2(21.2)l~ins [Oarzal oy by 1€ LN is 2-unsolid. Similarly we can show that RN is
2-unsolid. For LReg and RReg we show in a similar way that these strong varieties
are 2-unsolid.

3. It is easy to check that Hyp%(2) = 02 (21 00) s U (0221 00) )~ U [Owian) g U
[Onir | U [Ouiane g U [Owszios]np, Where 0y 40y, 0200y 20)s Oarns Ouney € P(B).
The application of 0,,,,,, to the associative law provides xjzoxix3712271 ~
12923791 & 1d*" B and the application of 0,,,,., to the associative law provides
T3ToT1Tok3 A T3Toxzl1T3x2x3 ¢ Id* B. This shows that 04, ume,, Ougriz & P(B).
Consequently, [P(B),~y | = K102t~ 0200 s [eszalos [0} =
4, i.e. B is 4-unsolid. Further we have Hyp$(2) = (02 (21 ) s Y (0221 00)~ms U
[01z5]mns U [Owsai]mpss Where 022, 20): 020y )s Owrans Ousay € P(RB) and
IPRB)/ i) = {1023 ersem s 0300 ) s (O s s o} = 4
RB is 4-unsolid. In a similar one proves that LQN as well as RQN are 4-unsolid.
4. Tt is easy to check that Hyp%(2) = [0:2(41 00)~ows U (020 0)~ns U [Ta1ea]oys U
(O pas | ong U0z 2001 | on s U Ogzizs | ong - All these hypersubstitutions are N B-proper,
i.e. NB is solid. This gives |P(NB)/~yz| = 6, i.e., NB is 6-unsolid. In a similar
way one proves that RegB is 6-unsolid.

5. Let now V be a dual solid variety different from TR, SL, RB, NB and RegB.
Then we have Hyp§(2) = (0200 29)l~y U (0221 00) v U [Oz1a) oy U [Opi ]y U

€1
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(O a12921 ) oy U[Owpzy 2]~y - Since V' is dual solid, the hypersubstitutions o, ,, and 04,4,
are V-proper. As a consequence of V' # TR, SL and since V is dual solid we have
02 (21,22)1 O2(wr,20) € P(V). The application of 04,4, to the associative law provides
T1T2X3T2T1 R T1X2X1X321 X221 From this equation we derive x1xox311 =~ r122012371

in the following way

T1X92X3T1 < T1T2X3X3T2T3T1

Q

T1X2X3T1X3L1X2X3T1

Q

L1X2T3X1X3X1L2L1X3XL1

Q

L1X2L1X3X1X3L1X2X1X3T

Q

L1X2T1X3X1T2T1X3X1

Q

L1T2T1X3X1X1L2X1X3T1

Q

T1X2X1T3T1.

This shows V' C RegB. But TR, SL, RB, NB and RegB are the only dual solid sub-
varieties of RegB. Since V is different from these varieties we have 0,,4,., € P(V).
The same argument shows 0,,.,., € P(V). Since RB C V the set Id*"V of all
strong regular identities satisfied in V' consists only of outermost identities and this
ShoWS [P(V) /gy = {02200y [022en s [0 oy s [y 3 = 4, e
V' is 4-unsolid.

6. Finally if V' is not a dual solid variety different from LZ RZ LN, RN, LReg,

RReg, LQN,RQN, then Hypf(2) = [0 0n)ov U (03001 0m)oy U [00raa]ny U
(O g2y |y U Oy gy | oy U[Ougyag |y - We can prove that 0uyu s Ouywgry s Oxgayzs € P(V).

Then |P(V>/Nv|p(v)| |{[ e?(z1,22) ]NV?[Usg(xl,xg)]~v7[O-xlrz]NvH = 3, ie. Vis 3

unsolid. -



Chapter 7

M-solid Strong Quasivarieties

In this chapter we study strong quasivarieties of partial algebras. We first define the
concepts of strong quasi-identities and strong quasivarieties. Secondly, we develop
the theory of M-solid strong quasivarieties on the basis of two Galois-connections
and a pair of additive closure operators. Finally, we use a different definition of a

strong M-hyperquasi-identitiy to define weakly M-solid strong quasivarieties.

7.1 Introduction

A quasi-equation of type 7 is a first order formula of the form
e:Vry, ..., xs(s1 Rty ANsg Rl AN NSy Rty = uR0)

where s1,...,8n,t1,...,tp,u,v € W, (X) and where A,= are the binary proposi-
tional connectives conjunction and implication.

For abbreviation with €' : s; = t; Aso =ty A...ANs, =1, and €’ : u ~ v we write
e:Vry,...,xs(e = ¢€").

Then the quasi-equation e is satisfied in the partial algebra A as a strong quasi-
identity if from s7* = t{* A ... A st = tA it follows u? = vA (s* = t* means that
the induced partial term operation s is defined whenever the induced partial term

operation t* is defined and both are equal). In this case we write A = e.
sq

Using the relation = for every class K of partial algebras of type 7 and for
sq
every set Q% of quasi-equations (i.e. implications of the form ¢’ = ¢”) we form the

sets

81
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QIPK = {e€ QY |VAeK (A [ e} and
QMod*QY. = {Ae PAlg(t)|Vec Q; (A E e)}.
Let QV C PAlg(7) be a class of partial algebras. Tsile class QV is called a strong
quasivariety of partial algebras if QV = QMod*QId*QV .
In [5] Burmeister considered a different kind of quasi-identities based on QFE-
equations and its model theory. In the next section we study quasi-identities con-

sidering C-terms.

7.2 Strong Quasi-identities

In this section, we define strong quasi-identities using terms from W (X).

A quasi-equation of type 7 is a first order formula of the form
ce Vry, ..., x(s1 Rty ANsgRta Nl NSy Rty = uR )

where s1,...,80,t1,...,tn,u,v € WY (X) and where A, = are the binary proposi-
tional connectives conjunction and implication.

For abbreviation with ce’ : sy ® t; A sy Rty A ... ANs, ~t, and ce” : u ~ v we write
/ "
ce :Vay, ..., x5(ce’ = ce”).

Then the quasi-equation ce is satisfied in the partial algebra A as a strong quasi-

identity if from st = t{* A .. A s =t it follows u? = v In this case we write
A= ce
5q

Let CQYX. be a set of quasi-equations (i.e. implications of the form ce’ = ce”).
Let Q7 denote the set of all quasi-equations of type 7 and let K C PAlg(T) be a
class of partial algebras of type 7. Consider the connection between PAlg(7) and

Q7 given by the following two operators:
QId° : P(PAlg(T)) — P(QT) and

QMod® : P(Q1) — P(PAlg(r)) with
QIIK = {ceeCQY |VAeK (A | ce)} and

QMod*CQY. = {Ac PAlg(r) |V ce € C’Q; (A E ce)}.

5q
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Clearly, the pair (QMod*, QId®) is a Galois connection between PAlg(7) and

QT, i.e it satisfies the following properties:
K CKy=QITPK, CQIPK,;,CQY¥ CCRY, = QMod’CQYy C QMod’CQ3,

and

K C QMod*QId* K, CQY. C QId*QMod*CQY.

The products QMod*QId* and QId*QQMod® are closure operators and their fixed
points form complete lattices.

Let QV C PAlg(T) be a class of partial algebras. The class QV is called a strong
quasivariety of partial algebras if QV = QMod*QId*QV .

7.3 Strong Hyperquasi-identities

In [I4] hyperquasi-identities for total algebras were introduced. We want to gener-
alize this approach to partial algebras but instead of terms from W, (X) as in [14]
we will use terms from WS (X).

Let A be a partial algebra of type 7 and let M be a submonoid of the monoid
Hyp% (7). Then the quasi-equation

ce:= (s RUNAS, L, = uRv)

of type 7 in A is a strong M -hyperquasi-identity in A if for every regular C-
hypersubstitution o € M, the formulas

~

ER[ce] = (83[51] =~ 8R[t1] VANPYRAN b'\R[Sn] =~ (/J'\R{tn] = ER[u] ~ O'R[U])

are strong quasi-identities in A. For M = Hyp$(7), we speak simply of a strong
hyperquasi-identity in A.
A strong quasivariety V of type 7 is called M-solid if x4,[V] = V. If ce is a strong

M-hyperquasi-identity in A or in V, we will write A | ceor V. | ce,
sMhq sMhgq

respectively.

Example 7.3.1 Consider the strong reqular quasivariety V' of type T = (2) defined

by the following strong quasi-identities:
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(S1) z(yz) ~ (zy)z,

(S2) 2? =~ x,

(S3) wyx = ei(z,y),

(84) 2y = yz = &i(z,y) = £5(2,y).

Because of (S1), (52), (58) we have to consider exactly the following binary terms

over V:

t1($7y> = 6%(1’,3}),752(1‘,@/) = 5%(5757?/)’?53(95,9) = l’y,tzl(ﬂ?,y) =yr

and the reqular hypersubstitutions oy,,1 = 1,...,4 which map the binary operation
symbol f to the terms t;;1 = 1,...,4. It is easy to see that the application of each
of these regular hypersubstitutions to (S1), (S2), (S3), (S4) gives a strong identity
or a strong quasi-identity which is satisfied in V. This is enough to show that V is

a solid strong quasivariety.

As usual, the relation |  induces a Galois-connection. For any set CQY of
sMhq

quasi-equations of type 7 and for any class K of partial algebras of type 7 we define:

HyQMod?CQY = {Ae€ PAlg(r) |Vee € CQE(A [ ce)},
sMhq
HyQId*K = {ceeCRQY|VAc KA E ce)}.
sMhq

The products HyQMod* HyQId® and HyQId°HyQMod® are closure opera-
tors. The fixed points with respect to these closure operators form two complete
lattices. For a quasi-equation ce, we define x[ce] := {Gr|ce] | o € M}, and for a
set CQY of quasi-equations we set X]%E[C’QE] = U X%E [ce]. Then the following

ceeCQx
lemma is very easy to prove.

Lemma 7.3.2 Let M be a submonoid of Hyp% (7). Then the pair (Xﬁ,xff) is a

pair of additive closure operators having the property i, [A] = ce < A | x9F[ce]
sq sq

for any quasi-equation ce (a conjugate pair).



7.3. STRONG HYPERQUASI-IDENTITIES 85

Proof. By definition, x4, and X%E are additive closure operators. We will use
that for every term t € W (X), for every regular C-hypersubstitution o and for

every partial algebra A, we have t°*A) = Gp[t]A ([49]). Further we have
XulAl E ce
sq

SYHA E (it A Asy~t, = uv)
sq

eVope M (op(A) E (si=O A AS, T, = ur))
sq

S Vop € M (s78W = 478\ A gZRA) _yor(A) o yon(A) = or(A)
S YVore M (63[81]“4 = /O'\R[tl]A VANRIAVAN a'\R[Sn]A = ER[tn]A = ER[U]A = ER[U]'A)

S VYopre M (A E (6'\3[51] ~ b'\R[tl] AN b'\R[Sn] ~ (/)'\R[tn] = b\'R[u] ~ (/T\R[U]))

& Vop € M(A = oglce])

sq
o Al X9 n
sq

If CQX is a set of quasi-equations of type 7, then classes of the form
HyQMod*CQ are called strong M -hyperquasi-equational classes and the fixed
points under HyQId°HyQMod® are called strong M -hyperquasi-equational theo-
ries. Therefore we can characterize M-solid strong quasivarieties by the following

conditions:

Theorem 7.3.3 Let M be a submonoid of Hyp% (7). Then for every strong quasi-
variety QV C PAlg(T) the following conditions are equivalent:

(i) QV is a strong M -hyperquasi-equational class.
(i) QV is M-solid, i.e. x4 [QV] = QV.

(i) QId*QV = HyQId*QV, i.e. every strong quasi-identity in QV is a strong
M -hyperidentity in QV .

(iv) X]\Q/[E[Q]dSQV] = QId*QV, QId*QV is closed under the operator X?/[E.

Proof.  (i)= (ii): Since x4, is a closure operator, the inclusion QV C x4,[QV] is
clear and we have only to show the opposite inclusion. Assume that B € x4, [QV].

Then there is a regular C-hypersubstitution oz € M and a partial algebra A4 € QV
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such that B = ogr(A). Since QV is a strong M-hyperquasi-equational class, there
is a set CQX of quasi-equations such that QV = HyQMod*CQ% and A € QV
means that for all regular C-hypersubstitutions o € M and for all ce € CQY,

we have A |= Gg[ce]. By the conjugate property from Lemma 7.3.2 we have that
sq
or(A) | ce and therefore og(A) € QMod°CQRYE = QV since QV is a strong

59
quasivariety.

(ii)= (iii): From x%,[QV] = QV implies that QId*x%,[QV] = QId*QV . Because of

QI \Y[QV] = {ce|Vor € M,YA € QV(or(A) = ce)}
sq
= {ce|Vore M,YAc QV(A = 0glce])}
sq
— HyQIdQV

we have HyQId*QV = QId*QV .

(iii)= (iv): The inclusion QId*QV C x%F[QId*QV] follows from the property of
X%E. We only have to show the opposite inclusion. Let g € M and ce € QId°QV .
Then og[ce] € QId°QV since QId*QV = HyQId*QV .

(iv)= (i): From X?/[E[Qld‘SQV] = QId°QV by applying the operator (Q Mod® on both

sides we obtain the equation
QV = QMod*QId*QV = QMod*(x$F[QId*QV)).

Considering the right hand side, we get
QMod*(XSF[QId*QV))={A € PAlg(t) | Yee € QId*QV,Yor € M (A = Gglce])}

59

=HyQMod*QId*QV
and therefore with CQY = QId°QV we have shown that QV is a strong M-
hyperquasi-equational class. [ ]

The following theorem is a consequence of the general theory of conjugate pairs of

additive closure operators (see [34]).

Theorem 7.3.4 Let M be a submonoid of Hyp$G(7). Then for every strong quasi-

equational theory CQX, the following conditions are equivalent:

(i) CQX is a strong M-hyperquasi-equational theory, i.e. there is a class QV of
partial algebras of type T such that CQY = HyQId°QV .
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(i) X5’[CQX] = CQX.
(iil) QMod*CQY. = HpQMod*CQX.

(iv) x4 [Q@Mod*CQY] = QMod*CQY.

Proof.  The proof goes in a similar way as in ([14]). [

7.4 Weakly M-solid Strong Quasivarieties

Now we define a different concept of M-hypersatisfaction of a quasi-equation. This
leads us to weakly M-solid strong quasivarieties. We will use the operator x%; in-
troduced in Section 7.3.

Let A be a partial algebra of type 7, let M be a monoid of regular C-
hypersubstitutions, and let ce := (sy = t; A ... A's, = t, = u =~ v) be a quasi-
equation of type 7. Then ce is called a weakly strong M -hyperquasi-identity in A if

the implication:
Xl{st =t AL A s, =t} = i [u = ]

is satisfied in A. In this case we write A |  ce. If every partial algebra A of a
wsMhq

class QV has this property, we write QV | ce.
wsMhq

Proposition 7.4.1 If ce is a strong M -hyperquasi-identity in the class QV of par-
tial algebras of type T, then ce is a weakly strong M -hyperquasi-identity in QV but

not conversely.

Proof. If ce is a strong M-hyperquasi-identity in QV then for every og € M we
have og[ce] € QId*QV . Therefore we have

~

Yor € M((ER[Sl] ~ 3R[t1] VANPIIAN GR[sn] ~ ZT\R[tn] = O'R[u] ~ EJ'\R["U]) € Q]dSQV)(*)

Using the rules of the predicate calculus from (%) we get,

(Vor € M(cg[s1] = Og[ti] A ... ANGr[sa] = Trlts])
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= VYop € M(/U\R[u] ~ aR[U])) C Q[dSQV

and this means
(Xls1 A A sy & t,] = i lu ) C QI QV (%)

and therefore ce is satisfied as a weakly strong M-hyperquasi-identity in QV'.
The converse is not true since it could be possible to find a regular C-

hypersubstitution op, € M with
331 [Sl] ~ 8R1 [tl] VANIAN 8R1 [Sn] ~ 6'\31 [tn} = 8R1 [u] ~ 8R1 [’U] ¢ QIdSQV

even if (x%) is satisfied. u

Using this new concept we define:

A strong quasivariety QV of partial algebras of type 7 is weakly M -solid if every
ce € QId°QV is a weakly strong M-hyperquasi-identity in QV. Our next aim is to
characterize weakly M-solid strong quasivarieties.

In the usual way the relation |  induces a Galois connection if we define:

wsMhgq
WHyQMod*CQY = {Ae€ PAlg(r) |Vee e CQE(A = ce)},
wsMhq
WHyQIPK = {ceeQT|VAc KA E ce)l.

wsMhq
For sets CQY C Q1 of quasi-equations and classes QV C PAlg(r) of partial

algebras of type 7. Then the pair (W HyQMod®*, W Hy,Q1I1d®) is a Galois-connection
between the power sets P(PAlg(T)) and P(Q7) and the fixed points of the closure
operators W Hy,QMod*W HyQId® and W Hy Id*W HyQQMod® form two complete
lattices which are dually isomorphic.

We are going to show that strong quasivarieties which are fixed points with respect

to WHyQMod*W Hy,QId® are weakly M-solid.

Proposition 7.4.2 If QV is a strong quasivariety of partial algebras of type T and
W HyQMod*W HyQId*QV = QV then QV s weakly M -solid.

Proof.  From the definition we get
QV = WHyQMod*W HyQId*QV
={A € PAlg(7) | Vce € QIFQV(A [ ce)}

wsMhq
and this means that every strong quasi-identity in QV is weakly M-solid. [ ]
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If we compare M-solid and weakly M-solid strong quasivarieties, we obtain:

Proposition 7.4.3 FEvery M-solid strong quasivariety of type T is also weakly M -
solid.

Proof. If QV is M-solid, then by definition we have x4,[QV] = QV. The appli-
cation of Theorem 7.3.3 gives QId°QV = HyQId*QV C W H,QId*°QV by Propo-
sition 7.4.1. But this means by definition of weakly M-solid strong quasivarieties

that QV is weakly M-solid. [ |

The fixed points with respect to the closure operator W Hy,QMod*W H;QId?
form also a complete lattice and Proposition 7.4.3 shows that this complete lattice
contains the complete lattice of all M-solid strong quasivarieties of partial algebras
of type 7. This does not yet mean that the complete lattice of M-solid strong qua-
sivarieties is a complete sublattice of the complete lattice of weakly M-solid strong
quasivarieties. We want to show that the lattice of all weakly M-solid strong quasi-
varieties is a complete sublattice of the complete lattice of all strong quasivarieties.
A way to characterize complete sublattices of a complete lattice is via Galois-closed
subrelations.

We want to apply Theorem 1.2.4 and prove at first.

Lemma 7.4.4 = s a Galois closed subrelation of |= .
wsMhq sq

Proof. Let A be a partial algebra of type 7 and let ce be a quasi-equation of
type 7 such that (A,ce) € | . Then A |  ce and by definition of weakly
wsMhq wsMhq

strong M-hyperquasi-identity we have A |= ce. Therefore | C | .
sq wsMhq

Assume that K = WHyQMod°CQY. and CQY = WHyQId°K where K C

PAlg(t). f A€ K, then A | CQX, ie. for all ce € CQX we have A |
wsMhq wsMhq

ce. But then also A |: ce by definition of weakly strong M-hyperquasi-identity,

therefore A € QModSC'QZ and K C QMod*CQX.
Conversely, if A € QMod*CQY, then for every ce € CQX. we have A = ce and be-

5q

cause of CQY = WHyQId*K also A | ce for every ce € CQY and this means

wsMhq
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AeWHyQIIPK = K. Altogether we have K = QMod*CQX.
From ce € CQY = WHyQId°K it follows A = ce for all A € K. But then

wsMhq

by definition of a weakly strong M-hyperquasi-identity, A = ce and this means
sq

ce € QIA°K and thus CQY C QId°K. If ce € QId°K, then for all A € K =
W HyQMod*CQY. we have A = ce, therefore A = ceandce € WHy QI K =
5q

wsMhq

CQX. This shows that QId°K C CQY and altogether CQY. = QId°K. |

As a consequence we have

Corollary 7.4.5 For every monoid M of reqular hypersubstitutions the lattice of all
weakly M -solid strong quasivarieties is a complete sublattice of the complete lattice

of all strong quasivarieties of type T.

Proof. This follows with Lemma 7.4.4 from Theorem 1.2.4. ]

The next step is to define the following operator X?\}QE on sets of quasi-equations.

Let ce : ce’ = ce” be a quasi-equation. Then

X”X}QE [ce] := X%E [ce'] = X%E [ce”].

For sets CQY of quasi-equations we define: y“F2[CQE] = |  x¥2%ce).
cecCQRX

This operator has the following properties:

Proposition 7.4.6 The operator x'?¥ : P(Q1) — P(Q7) is monotone and idem-

potent, but in general not extensive.

Proof. By definition the operator XIA'}QE is additive and therefore monotone. We
show the idempotency. Let CQY C Q7 and ce € CQX. Then XWMQE[ce} = X%E [ce'] =

X2 [ce"] if ce is the implication ce’ = ce”. Then

wQFE wQFE E E E E
XEQER QP (ee]] = P [ee)] = xFE XN e
= X3 lce'] = X5 [ce”]
wQE
XM [ce]

for every ce € C'QQY since the operator X%E is idempotent. Since X}’\}QE is additive,

we obtain the idempotency. [ ]
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Finally we want to give an example showing that a strong quasivariety can satisfy
an implication as a weakly strong M-hyperquasi-identity, but not as a strong M-
hyperquasi-identity.
We consider the strong regular quasivariety V' of type 7 = (2) defined by

(1) z(y2) = (zy)2,
(i) 22 ~ x,
(iil) zyuv =~ ruyv,
(iv) 2y = yz = £i(z,y) = 5(z, y).

There are exactly the following binary terms over QV : &2(z,y), 3(z, y), vy, yz, vy,
yxy. We prove that (iv) is a weakly strong hyperquasi-identity in QV. That means,
for every partial algebra A € QV we have to prove

(A E zy=yz)= (A E ei(z,y) =&(r,y)).

shq shq

This becomes clear because of A | zy ~ yr < Vogr(A | orlry] =~ orlyz] <
shq 8q

A | el(zy) med(r,y)NA | &(ry) = (@, y)AA | ay = yanA | yo = ayn
sq sq sq 5q

A E zyzr =~ yryAA | yry ~ zyx). The implication vy ~ yr = &2(x,y) ~ 3(z,y)
sq sq

is satisfied as a weakly strong hyperquasi-identity also in the case if A | xy ~ yz is
shq

wrong, for instance, if A )f e2(x,y) ~ €3(z, y) is not satisfied and if A )T e2(x,y) ~
shq shq

e2(x,y) is satisfied. In this case A has more than one element and is commutative.
But then zy ~ yxr = &3(x,y) ~ £3(x,y) is not a strong quasi-identity in A and

Ty ~ yr = e3(x,y) ~ 3(x,y) is not satisfied as a strong hyperquasi-identity.
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Chapter 8

Solidifyable Minimal Partial
Clones

In this chapter, we generalize some results of the paper [23] to minimal partial clones.
The chapter is divided into three sections. In Section 8.1 we define the concept of
equivalence of strong varieties of different types and we show that strong varieties
of different types are equivalent if and only if their clones of all term operations
of different types are isomorphic. In Section 8.2 we study minimal partial clones in
([3]). In Section 8.3 we define the concept of a strongly solidifyable partial clone and

we want to find properties of minimal partial clones which are strongly solidifyable.

8.1 Equivalent Strong Varieties of Partial Alge-
bras

The concept of a hypersubstitution can be generalized to a mapping which assigns
operation symbols of one type to terms of a different type (see [49]).
Let 7 = (fi)ier, 7 = (gj)jes be arbitrary types. A mapping

Yo {filiel} > WI(X),

(with arity f;=arity o(f;)), which assigns to every n;-ary operation symbol f; of
type T an n;-ary term o(f;) € WG (X), is called a (7, 7)-hypersubstitution.

The (7, 7')-hypersubstitution 7' o is called regular if Var(Z o(f;)) = {x1,...,Tn, }
for all operation symbols f; of type 7.

93
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Let Hyp%(7,7') denote the set of all regular (7,7’)-hypersubstitutions and let
" or be some member of HypG (7, 7').

Any regular (7, 7')-hypersubstitution 7 o can be extended to a map
Gr: W (X) = Wi (X)
defined for all terms, in the following way:
(i) 7'Grlr;] =z, for ; € X;
(ii) TOrleb(tr, ..., th)] = e¥(TaR[t], ... .7 Trlty]);
(iil) TGr[filtr,.. . tn,)] = S (For(f).D Grlti],....I Grltn,])-

Lemma 8.1.1 ([49)) Let 7o € Hyp%(r,7'). Then

/ —~

/O-\R[gzl(tu tr,. .. 7tm>] = ?7:(:/61%[1;];/ /O-\R[tl]a s 7: UR[tm]>

Since the extension | 'Gr of the regular (7, 7")-hypersubstitution foR preserves

o« . . I~
arities, every extension 7 og defines a family of mappings

:,63 = (W(n) : WTC(XH) - WS(Xn))n€N+
Theorem 8.1.2 ([49]) The extension T Gg of a reqular (1, T')-hypersubstitution T o

defines a homomorphism (1) en+ : Clonet® — Clonet’® where

Cloner® := (WE(Xp)newt: (S Jmment, (€¥) ke 1<j<k) and

Cloner’ := ((WS(Xn))nEN+§ (yzl)m,neNﬂ (e;'k)keN+,1§j§k)'

Using our new concept of a hypersubstitution we can define a relation between strong
varieties of partial algebras of different types (see [49]).

Let V' C PAlg(r) and V' C PAlg(7’') be strong varieties of type 7 and 7/,
respectively. Then V and V' are called equivalent, V ~ V", if there exist a regular
(7,7")-hypersubstitution 7 o and a regular (7, 7)-hypersubstitution 7,0 such that
for all t,t1,ty, € WE(X) and ¢, #),t, € WS (X):

(a) V |: toaty = V! ): TGrlt] &7 TRlta];

(@) V' # ot =V >= " GRt)] AT, Frlth]:
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(b) V )j or[l Or[l]] & t;

W) V' & TalEall]) ~ b,

S

Lemma 8.1.3 Let Top, and T og, be reqular (7,7")-hypersubstitutions and A €

PAlg(T/> ]f :/0R1<fi)A :: URQ(fi)A fOT’ all i € I7 then :I/O-\R1[ﬂA ::l aRQ[t]A fO?”
te WE(X).

The Lemma can be proved by induction on the complexity of terms (see [12]).

Lemma 8.1.4 For every mapping h : {f; | i € I} — T(A), A € PAlg(r"), which
maps the n;-ary operation symbol f; of type T to an n;-ary term operation from T'(A),

there exists a regular (7,7')-hypersubstitution T op such that h(f;) =T or(fi)? for

alli e I.

Proof. Letamappingh: {fi|i €I} — T(A)ie. h(f;) =t whent, € WI(X,,)
be given. Then we can consider a regular (7, 7')-hypersubstitution Zop : {f; | i €
I} — WS(X) defined by 7' or(fi) = ti, for i € I and we get that h(f;) = t7 =T
or(fi)* fori € I. [

Lemma 8.1.5 If A € PAlg(r), B € PAlg(1'), then for every clone homomorphism
v : T(A) — T(B) there exists a regular (7,7')-hypersubstitution T or such that
(A =T GR[t]B for every t € WE(X).

T

Proof. Let A € PAlg(r), B € PAlg(7") and v : T(A) — T(B) be a clone
homomorphism. Since =y preserves the arity, we can consider a mapping h: {f; | i €

I} — T(B) with h(f;) = v(f#), for i € I which preserves the arity and by Lemma

/

8.1.4, we have a regular (7, 7')-hypersubstitution 7 o such that h(f;) =7 or(fi)?,

T
/

for i € I. Then we get that v(f) =7 or(f;)?, for i € I. We want to show that

v(tA) =T Gg[t]B for t € WC(X) which can be proved by induction on the complexity
of the term ¢ (see [12]). [

Proposition 8.1.6 Let A € PAlg(t), B € PAlg(7') be partial algebras and let
V = V(A) and V' := V(B) be the strong varieties generated by A and by B,
respectively. Then we have V-~ V' iff T(A) = T(B), i.e. if the clones T(A) and
T(B) are isomorphic.
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Proof. Let 7 = (fi)ier, 7 = (9j)jes. Let V. ~ V'. Then there are regular
hypersubstitutions ~'or, 7,0 satisfying properties (a) — (V') of the definition of

V ~ V'. Then v : T(A) — T(B) with t* 7 Gg[t]® is well-defined (because of
sA = tA =7 Gg[s]® =7 Gg[t]®) and by Lemma 8.1.1 we get that 7 is a clone

homomorphism. Moreover, « is injective by properties (a’) and (b) since

/

B

TGR[s]® =7 Grlt]® =7 Gl Grls]* =T Gal] TR = 5t = 4,

and + is surjective by property (') since

t% =7 Grlparlt)® = 1Rl

T

Conversely, let T(A) = T(B) and let v : T(A) — T(B) be a clone isomorphism.
Then there exist t; € WG (X,,,), s; € WC(X ) such that y(f') =7, v'(¢7) = s7.
We define the regular hypersubstitutions 7 ‘or [ — t, T0R : g; — s;. By Lemma
8.1.5 we have y(t4) = Gx[t]?, v 1 (¢'F) =7, Gx[t'A for t € WE(X) and ¢! € WS (X).

We are going to show that 7 o, 7,55 fulfil properties (a)— (b'), what implies V ~ V.
(@) V | smt=st=t" =7 Grls]® = q(s4) = y(t") = Grlt]® =V =

T

TGrls] =T Gglt].

1

Analogously we obtain for (a’) (using v~ instead of ):

/

B)LGR[L R = v (T Frt®) = v (v(t4)) = ¢4,

ie. V ): orlI Gr[t] ~ t.

In a s1m11ar way we conclude for (). u

8.2 Minimal Partial Clones

The next concept which we have to introduce is the concept of a totally symmetric
and totally reflexive relation: (see [3])
A relation R C A™ on the set A is called totally symmetric if for all permutations

son{l,...,n}

(al,...,an) €ER<s (as(l),...,as(n)) eR
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and totally reflexive if R D 1,, where ¢,, is defined by
by i={(a1,...,a,) € A" | a; =ajand 1 <i < j <n}.

R is called trivial if R = A™.
A binary totally reflexive and totally symmetric relation is reflexive and symmetric
in the usual sense.

Let A be a finite set. The lattice Lp(a) of all partial clones is atomic ([3]).
There are only finitely many minimal partial clones (atoms). In [3] all of them are
determined up to the knowledge of the minimal clones in the lattice Lp(4) of all
total clones. Unfortunately, in general the total minimal clones are unknown. Lots
of work has been done to determine all minimal clones of total operations defined

on a finite set ([16], [45]). We will use the following theorem:

Theorem 8.2.1 ([3]) The lattice Lpay of all partial clones on a finite set A is
atomic and contains a finite number of atoms. C € Lp(ay s a minimal partial clone
iff C'is a munimal total clone or C' is generated by a proper partial projection with

a nontrivial totally reflexive and totally symmetric domain.

Example 8.2.2 For a set F' of operations defined on the same set let (F) be
the clone generated by F. For the two-element set A = {0,1} the total mini-
mal clones are the following ones ([42]): (A), (V), (z + y + 2), (m), (c}), {(c1),
(N), where N\,V,N denote the conjunction, disjunction and negation. The sym-
bol + denotes the addition modulo 2 and ¢}, ci are the unary constant functions
with the value 0 and 1, respectively. We denote by m a ternary function defined by
m(z,y, z) = (xAy)V(yAz)V(zAz). Remark that we write (A\) instead of ({A}). Since
for n > 2 every totally symmetric and totally reflexive relation on {0, 1} is trivial,
we have exactly the following proper partial minimal clones on {0,1}: <6%,{(00),(11)}>;
(el () (€1 y)s (e1y)- Altogether we have 11 minimal partial clones of functions
defined on the set {0,1}.

In [16] all total minimal clones on a three-element set are determined.
There are 84 total minimal clones on {0,1,2}. Further we have ex-
actly the proper partial minimal clones generated by wunary partial pro-

jections with the domains {0},{1},{2},{0,1},{0,2},{1,2},0, and the proper
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partial minimal clones generated by binary projections with the domains
[(0,0),(1,1),(2,2)}, {(0,0), (1,1),(2,2), (0,1), (1,0)}, {(0,0),(1,1),(2.2),(0,2),
(2,0)}, {(0,0),(1,1),(2,2),(1,2),(2,1)}, {(0,0),(1,1),(2,2),(0,1),(1,0),(0,2),
2,00}, {(0,0),(1,1), (2.2), (0,1), (1,0), (1,2), 2. 1)}, {(0,1),(1,0),(0,2), (2,0)}.
Since for n > 3 every totally symmetric and totally reflexive relation on {0,1,2} is
trivial. We have to consider totally symmetric and totally reflexive at most ternary
relations. Since the relations have to be totally symmetric by identification of vari-
ables one obtains binary proper partial projections except in the case that the domain
is {(0,0,0),(1,1,1),(2,2,2)}. In this case by identification of variables one obtains
the proper partial binary projection with domain {(0,0), (1,1),(2,2)}. Altogether we
have 98 partial minimal clones on {0, 1,2}.

For |A| > 4 not all total minimal clones are known. By [45] each total minimal clone
can be generated by an operation f of one of the following types:

(1) f is unary and f*> = f or f? =id for some prime number p,

(2) f is binary and idempotent,

(3) f is a ternary majority function (f(x,z,y) = f(z,y,z) = f(y,z,z) = x),

(4) f is the ternary operation x + vy + z in a Boolean group,

(5) f is a semiprojection (i.e. ar f =n > 3 and there exists an elementi € {1,...,n}

such that f(ay,...,a,) = a; whenever ay,...,a, are not pairwise different).

8.3 Strongly Solidifyable Partial Clones

A partial algebra A is called strongly solid if every strong identity is a strong hyper-
identity of A.

Example 8.3.1 Consider the three-element partial algebra A = ({0,1,2}; f4) of
type (1) with domf* = {1,2} and f2(1) = 1, f4(2) = 0. Every strong identity of A
can be derived from the strong identity f*(z) ~ f3(x) (f*(z) = f(...(f(x))...).
The unary terms over A are e}(x), f(x) and f*(x). Each of them fulfils f*(x) =
f3(x). That means, f*(x) = f3(x) is a strong hyperidentity and since all strong
identities of A can be deried from f?(x) = f3(z) every strong identity is a strong

hyperidentity and A is strongly solid.
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Now we give some conditions under which A is not strongly solid.

Proposition 8.3.2 Let A = (A; (f1)ic1) be a partial algebra with |A| > 2. Then A

7

1s not strongly solid if it satisfies one of the following conditions:
(i) There is a binary commutative operation under the fundamental operations,
(i) there is a total constant operation under the fundamental operations,

(iii) there is a nowhere defined (discrete) operation under the fundamental opera-

tions,

(iv) A satisfies a strong identity s ~ t with Left(s) # Left(t) or Right(s) #
Right(t), where Left(s) and Right(s) denote the first and the last vaiable,

respectively occurring in the term s.

(v) A satisfies a strong identity of the form

f(xsl(l)a s 7xsl(n)) ~ f(xsz(l)v B 7x52(n))

with mappings s1,s2 : {1,...,n} — {1,...,n},n > 2, such that s,(i) # so(i)

forallt=1,... n.

Proof. = We show that A is not strongly solid indicating a strong identity which
is not a strong hyperidentity.

(i) Let f4 be a binary commutative fundamental operation of .A. Commutativity of
fA means: f(x,y) ~ f(y, ) is a strong identity. The strong identity f(z,y) ~ f(y, z)
is not a strong hyperidentity. This becomes clear if we substitute for the binary
operation symbol f in f(z,y), f(y,z) the term £%(z,y).

(ii),(iii) A total, constant or nowhere defined unary operation f* satisfies the strong
identity f(x) =~ f(y). The strong identity f(z) ~ f(y) is not a strong hyperidentity.
This is evident if we substitute for f in f(z) &~ f(y) the term e} (z). If f4 is an n-ary
total, constant or nowhere defined operation and n > 1, then f(xy,z9...,2,) =~
f(za, 21, ..., 2,) is a strong identity but not a strong hyperidentity. We see this if we
substitute for the n-ary operation symbol f in f(z1,29...,2,) = f(x9,21,...,2,)

the term e7(x1,...,2,).
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(iv) This becomes clear if we substitute for all n-ary operation symbols occurring in
terms s,t the term e} (z1,...,x,) (or the term €)(z1,...,x,) in the second case in
which Right(s) # Right(t)).

(v) In this case we get the proof substituting for all n-ary operation symbols (n > 1)

i f(@s1)s - Tsy(n) R f(Tay(1)s -+ Toy(my) the term €7 (24, ... 2,) for j=1,... 0.

A partial clone C' C P(A) is called strongly solidifyable if there exists a strongly
solid algebra A with C' = T'(A).
From Proposition 8.3.2, we get some criterions for partial clones to be not

strongly solidifyable.

Proposition 8.3.3 Let C' C P(A) be a partial clone, |A| > 2. If C satisfies one of
the following conditions (1)-(4), then C' is not strongly solidifyable.

(1) C contains a binary commutative operation,
(2) C contains a total constant operation,
(3) C contains a nowhere defined operation,

(4) there exists an fA4 € C™. n > 2, and mappings si,s, : {1,...,n} —
{1,...,n},n > 2, such that si1(i) # s9(i) for all i = 1,...,n and
F(@s(1)s -3 sy (m)) R [(Xsp(1)s -+ - Ty(n)) @5 @ Strong identity in A.

Proof. If A is a partial algebra such that T'(A) = C, and if C has one of the
properties (1) - (4), then T'(A) has the same property. We can assume that .4 has one
of the operations requested in conditions (1) - (4) under its fundamental operations.

By Proposition 8.3.2 the partial algebra A cannot be strongly solid. ]

Since clones of partial operations are total algebras, we can characterize solidi-

fyable clones in the same way as it was done in [23] for clones of total algebras.

Theorem 8.3.4 C is strongly solidifyable iff C' is a free algebra, freely generated by
{filiel}.
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Proof.  Assume that C' is strongly solidifyable. Then there exists a strongly solid
partial algebra A = (A4; (f*)ier) such that C' = T'(A). Let F™4 := {f*|j € I and
S} is n-ary }. Consider an arbitrary sequence ¢ := (™) ent of mappings with
o™ FA — T(A). For every n € NT and every n-ary fJA, there are n-ary C-term
operations t' € T"(A) with 0™ f) = t'. This allows us to define a regular C-
hypersubstitution o with og(f;) = t;, j € I. Then we have o™ (f2) = or(f;)*,
j € 1. Let ) (t4) = Gg[t]* for any t € WC(X,,). Then (™), cn+ is the extension
of (") pen+ since W(sz) = oglfi(z1,. .. 20,)]* = or(fi)* and 7 = (@)new is
an endomorphism because of
UI(SmAA . 1)

= (St t))
GrlS, (tth, . )2

= S (Gg[t],r[t], - .., 0r[ta])™ by Lemma 8.1.1
= SPAGR[A, ER[tl] e ,8R[tn]“4)
SnA (o (4 oM (t4), .. M (tA))  for every n > 1.

Therefore any mapping (@(”))new can be extended to an endomorphism of C'" and
C is a free algebra, freely generated by {f* |i € I}.

Conversely, let C' be a free algebra, freely generated by {f# | i € I} (i.e. for every
map ¢ : {f#* | i € I} — C there is a homomorphism (clone homomorphism)
P ({ffr|iel}) — C). Then we have that C = ({fA | i € I}) = T(A), where
A = (4;(f#)ic1) is a partial algebra. The next step is to show that A is strongly
solid. Let or : {f; | i € I} — WY (X) be a regular C-hypersubstitution. Consider
a mapping v : {f* | i € I} — C = T(A) with y(f') = og(f;)*. Then ~ can be
extended to a clone endomorphism 7 : ({f# | i € [}) — C and by Lemma 8.1.5 for

every term t € WY(X) we have
s~teldA = st=tA
= () =7t
= ogls|* = Gg[t]*
= (/J'\R[S] =~ 8R[t] c Id°A.
Therefore A is strongly solid. [

Proposition 8.3.5 Let C,C" C P(A) be clones of partial algebras. If C = C' and
C' is strongly solidifyable then C' is also strongly solidifyable.

Proof.  Since C is strongly solidifyable, there is a partial algebra A = (A; (f)icr)
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such that C' = T(A) = ({f#* | i € I}). Since C = ', there is an isomorphism
¢ : T(A) — C’ which maps the generating system of T'(A) to a generating system
of C'. Therefore C' = ({p(f) | i € I}) and we get that C" is a free algebra,
freely generated by {p(f#') | i € I}. By Theorem 8.3.4, we have that C’ is strongly
solidifyable. [ ]

From the definition of strongly solidifyable clones, from Proposition 8.1.6 and

Proposition 8.3.5, we have that
Corollary 8.3.6 If A is strongly solid and V(A) ~ V(B), then B is strongly solid.

Now we want to determine all strongly solidifyable partial clones generated by a
single unary operation f4. A partial algebra A = (4; f4), (JA| > 2), where f4 is a
unary operation on A is called mono-unary. Every strong identity of a mono-unary

partial algebra has the form

ffz) ~ fi(2) (k,1e{0,1,...})

or
ffa) = ffy)  (kef{l2,...}).

Obviously, identities of the second form cannot be strong hyperidentities because
when substituting for the unary operation symbol the term e}(x) we would get
ei(r) ~ el(y) (i.e. z = y) in contradiction to |A| > 1.

For a partial operation f4 : A —o— A let Imf4 = {f*(a) | a € domfA} be the
image of f# and let A(f*) denote the least non-negative m such that Im(f4)™ =
Im(fA)met.

Example 8.3.7 1. Consider the three-element partial algebra A = ({0,1,2}; f4)
of type (1) with domf4 = {1,2} and f4(1) =0, f4(2) = 1. Then we have
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and \(f4) = 3.

2. Consider the three-element partial algebra A = ({0,1,2}; f4) of type (1) with
domfA =1{0,2} and f4(0) =0, f4(2) = 0. Then we have

L
00 0
1] — =
210 0

and A(f*) = 1. Then [Im(f)U| = | Im(f4)}| = 1.

Corollary 8.3.8 The partial clone generated by the mono-unary partial operation

fA contains a constant iff |Im(fHMY] = 1.

Then we have:

Proposition 8.3.9 A mono-unary partial algebra A = (A; f4), (JA| > 2), is
strongly solid iff |[Im(f**™| > 1 (i.e. T(A) contains no constant and no nowhere

defined partial operation).

Proof.  Assume |[Im(f*)*U™)| > 1. Then the powers (f4)™ are not constant and
not nowhere defined operations. Every strong identity of A is of the form f*(x) ~
fY(z). The powers (f4)™ and the identity operation are the only unary operations

of T'(A) and satisfy this identity since

Thus every strong identity is a strong hyperidentity, i.e. A is strongly solid. If
[Im(fHM| < 1 then (fH*U™ is a nowhere defined operation or (f4)*/™) is
constant. In this case f*(z) ~ f*(y) is a strong identity in A but not a strong
hyperidentity in A. This becomes clear when substituting for the unary operation
symbols the term e} (z). Then we get £i(z) ~ £1(y) (i.e.  ~ y), a contradiction to

|A| > 1. ]
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If we want to determine all solidifyable minimal partial clones following Theorem
8.2.1 we have to investigate the proper partial minimal clones, i.e. the clones gen-
erated by a proper partial projection with a nontrivial totally reflexive and totally
symmetric domain. We can restrict our investigation to one projection e}, for every
totally reflexive and totally symmetric domain D and every n since €%, € (ej'p) and
ei'p € (€] p) for each 1 <i,j < n and thus (€] p) = (€] p).

We consider the following cases:

(i) 2 <n <A

Choose i = 1. Then &} (21,2, 3,24, ..., Tn) = €] p(T1, T3, T2, Ty, ..., 7,) Where
€l p 1s an operation symbol corresponding to the operation e} p, is a strong identity
of the algebra A = (A;e} p). Indeed, if (w1, 72,73, 74,...,2,) € dom e} (= D),
then (z1,x3,%2,24,...,2,) € D since D is totally symmetric and conversely.
Further, in the case that both sides are defined, the values agree. The equa-
tion f(xy,x9,x3,24,...,2,) ~ f(x1,23,22,24,...,2,) is not a strong hyperiden-
tity of A = (A; el ) since when substituting for the operation symbol f the term
en(xy, ..., xn) we would get el (ay,. .. an) # er*(ar, ..., a,) because of |A| > 2.
This means that A is not strongly solid. In a similar way for any other 1 < i < n
and any totally symmetric and totally reflexive D C A™ we get that (A;e} ) is not
strongly solid. Therefore, the clones (e} ) with n > 2 and 1 < i < n are not strongly
solidifyable.

(i) 2 =n < |A|.

Let D # 19, i.e. D is different from the diagonal 13 = {(a,a) | a € A}. Now we

consider the equation

éiD@la éip(ﬁla@)) ~ éip(ﬂcla é%,D(x% 1))

Assume that the left hand side is defined, i.e. (z1,22) € D. Then éiD(xl, To) A I
and (z1,z1) € D because of the reflexivity of D. Since D is symmetric we get
(z2,71) € D and therefore é7 (22, 21) & x5, From (x1,29) € D we get that the
right hand side is defined. In the same way we get that the left hand side is defined
whenever the right hand side is defined and both sides agree. On the other hand,
[y, f(21,22)) = f(x1, f(22,21)) is not a strong hyperidentity of A = (A;e] p)
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since when we substitute the operation symbol f by the term €2(z;,xs) we would
get €2 (a1, as) = € (ay, as) i.e. A would be a one-clement set. If D is the diagonal ¢
we have no contradiction. In this case e%’ p is commutative and by Proposition 8.3.2(i)
we conclude that A is not strongly solid. In a similar way we get also that (3 ;) is not
strongly solidifyable and therefore clones of the form (€7 ) when i € {1,2}, D = 1,
are not strongly solidifyable.

(iii) n = 1.

At first we consider the case that D # ). Then all strong identities of the algebra
(A;el,) can be derived from the strong identity €}, (z1) &~ [éh]*(x1). Clearly, the
equation f(x;) ~ f%(z;) is a strong hyperidentity of A = (A;el,). If D = ), then
e}, is the discrete unary function satisfying the strong identity e (z;) & ékh(xs) for
all 1,29 € A. The equation f(x1) ~ f(x2) is not a strong hyperidentity. This is
evident if we substitute for f in f(z;) ~ f(x9) the term & (x).

Together with Theorem 8.2.1 we get our result:

Theorem 8.3.10 A minimal partial clone C' of partial operations on A (A finite,
|A| > 2) is strongly solidifyable iff C' has one of the following forms

(1) C is generated by a unary operation f* different from the unary empty function
and satisfying (f4)? = f4 or (f4)P = id where p is a prime number, id the

identity operation on A and C' contains no constant operation.

(2) C is generated by a binary operation g* which fulfils the identities

9(331,351) ~ 1, 9(9(551,372),903) ~ 9(95179(352,353)) ~ 9(551,5133)-

Proof. = We consider two cases:

case 1. C'is generated by a proper partial projection with a nontrivial totally reflexive
and totally symmetric domain. Then by the remarks before Theorem 8.3.10, C
cannot be strongly solidifyable;

case 2. C'is a total minimal clone. Then C'is generated by an operation f of one of
the types (1) - (5):

(1) f isunary and f% = f or fP = id for some prime number p. Similar to Proposition
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8.3.9, we get that A is a solid algebra and C' is strongly solidifyable.

(2) The operation f is binary and idempotent. If the binary operation f satisfies
f(z1,21) = zy and f(xq, f(x2,23)) & f(x1,23), then (f) is the clone of a rectangular
band and since rectangular bands are solid, (f) is strongly solidifyable. Conversely,
assume that C' is minimal, strongly solidifyable and of type (2). Then there exists a
solid algebra A with C' = T'(A). We may assume that the type of A = (A; f4) is (n)
since C' is minimal and is generated by only one operation which is not a projection.
By identification of variables, we get a binary operation g(x1, z3) := f(x1, %2, ..., x2)
which belongs to C. Clearly, g cannot be a projection, otherwise A satisfies the
identity g(z1,x2) &~ x; or the identity g(x,22) &~ xo. This contradicts the solidity
of A. Therefore (g) = C and then (A; g*) is also solid. Let ¢ be an arbitrary binary
term over (A;g?) such that leftmost(t) = rightmost(t) = x;. Assume that t* is
not a projection, then t* generates C. This means, we can obtain ¢g* from t* by
superposition and then the term ¢ can be produced by ¢ and variables z, x5 and
this gives an equation of the form g(z1,zs) & t(x1, 22, ..., T2, x1). Since A is a solid
algebra, this cannot be an identity in A and thus ¢* is a projection and the term ¢
satisfies t(zq, 2, ..., %2, 1) ~ x1. Therefore g satisfies the identities g(z1, 1) ~ x;
and g(x1, g(2, 1)) & 1.

(3) f is a ternary majority function (f(z1,x1,22) = f(x1,22,21) & f(x9,21,21) &=
x1). Then the identity f(zs,71,7,) ~ x; is not a hyperidentity of A = (A; f4)
since when we substitute for the operation symbol the term &3(x1, z, 3), we get a
contradiction.

(4) f is the ternary operation x; + x9 + o3 in a Boolean group. Then we have that
r1+ 21 + 29 X T9 X To + 11 + 21 is an identity. The identity x1 + x1 + x5 = x5 is
not a hyperidentity. This becomes clear if we substitute for the operation symbol
the term €3 (zy, Tq, 73).

(5) f is a semiprojection (i.e. ar f = n > 3 and there exists an element i € {1,...,n}
such that f(zy,...,z,) = x; whenever z1,...,z, are not pairwise different). Then
we have that f(z1,x9,...,2,) = 2; = f(v2,21,...,2,) where i € {1,...,n}. So, the
identity f(z1,x2,...,2,) & f(x2,21,...,2,) is not a hyperidentity since when we

substitute for the operation symbol the term e} (z1,...,x,), we get 1 = x5 . ]
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In ([23]) was introduced the concept of the degree of representability degr(C') for
a clone of total functions. We generalize this concept to clones of partial operations.

Let C' C P(A) be a clone of partial operations. Then the degree of representabil-
ity degr(C') is the smallest cardinality |A’| such that there is a clone C" C P(A’)
with C = C".

Proposition 8.3.11 Let C be a strongly solidifyable minimal partial clone.
(1) If C = (f), f>*= f and dom f C A then degr(C) = 2.

(i) If C = {f), f> = f and dom f = A then degr(C) = 3.

(iii) If C = (f), f? = id then degr(C) = p, where p is a prime number.

(iv) If C = (f) and f is binary then degr(C) = 4.

Proof. (i) If f2 = f and dom f C A then C = T(A) where A = ({0,1}; fo) with
f0(0) =0 and dom fy = {0} since in each case the Cayley table of the clone has the
form
id f

id | id f

Fir f
and thus CM = TW(A). Since C' and T(A) are generated by its unary functions we
get

(C0) = C = T(A) = (TO(A).

(i), (iii) and (iv) were proved in ([23]). ]
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Chapter 9

Partial Hyperidentities

In this chapter, we extend the concept of a hypersubstitution to partial hypersubsti-
tutions. In Section 9.1, we define the concepts of partial hypersubstitutions, regular
partial hypersubstitutions and we show that set of all regular partial hypersubsti-
tutions forms a submonoid of the set of all partial hypersubstitutions. In Section
9.2, we consider only regular partial hypersubstitutions of type 7 = (n), n € N*,
and we show that the extension of a partial hypersubstitution is injective if and
only if the partial hypersubstitution is a regular partial hypersubstitutions of type
7 = (n) when n > 2. In Section 9.3 and Section 9.4, we define the concept of a

PHypgr(1)-solid strong regular variety of partial algebras.

9.1 The Monoid of Partial Hypersubstitutions

Studying partial algebras there is also some interest in partial mappings which are
compatible with the partial operations. Such partial homomorphisms were studied
for instance in ([7]). It is quite natural to extend the concept of a hypersubstitution
to partial ones.

Let {fi | ¢ € I} be a set of operation symbols, indexed by the set I and W, (X)
be the set of all terms of type 7. A partial hypersubstitution o on {f; | i € I} of type
T is a partial function

o:{fili€l} —o— W (X)

with the property : f; € domo = arity (f;) =arity (o(f;)) = n.
If domo = {f; | i € I}, then o is called a (total) hypersubstitution.

109
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If domo = ¢, then o is a called a discrete hypersubstitution.

Now we introduce a partial superposition operation SZJ{, so that

S W (X)) X Wi (X)) —o— Wi(X,n)

i

which is defined iff at all n; + 1 inputs of S,’fl we have terms of the corresponding
arities.
Every partial hypersubstitution o of type 7 induces a partial mapping o :

Wi (X) —o— W.(X) in the following canonical way:
(i) olz;] := z; for all x; € X.

(i) If ¢y,...,t,, € Wo(X,,) and tq,...,t,
Glfite, - )] i= 8™ (o (f), 0t - ., O[tn,]).

€ domo and if f; € domo, then

i

Let PHyp(7) be the set of all partial hypersubstitutions of type 7. On this set we
introduce a binary operation, denoted by o,, by 01 0, 05 := 77 0 0, where o is the
usual composition of functions and dom(oy o, 02) = {fi | i € I, fi € domoy and

oo(f;) € domay }.

Example 9.1.1 Let f, g be binary operation symbols and let t1,ty be the following
terms: t1 = f(x1,x9) and ty = g(x9,21). Let 0 € PHyp(2,2) be defined by o(f) =
flay, x5) and let o(g) be not defined. Then we have G[S2(xy,t1,15)] = O f (x1, 22)] =
[y, x5). But S2(6[x1],0[t1],0[ta]) is not defined and therefore G[S2(x1,t1,t5)] #
S3(5la1], 0[], o [ta)).

Lemma 9.1.2 Let 7 be the extension of the partial hypersubstitution o of type 7.
If S™i(5[t],5[t1], . .., Oltn,]) is defined, then

GISMi(t ty, ... ty)] = ST (], [t], . . ., Ttn,]).

Proof.  We will give a proof by induction on the complexity of the term ¢.
(i) If t = z; € X, then

S (G[t], 5[t), . . ., O[tn,]) exists by assumption
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= Sn(@la).Flt), .. Flt]) exists

= Olt] exists since olz;] = ;
= LSt b, t,)] exists since t = x;

= SP(t,t,. .. tn,) € domo

and G[ST(t,ty, ... 1)) = O[] = S™ (2], 0[ta], . . ., Fltn,]) = ST (G[t], 5ta], . - .,
[tn.]

(ii) If t = fi(s1,...,8,,) and if we assume that S (G[s;],3[t1],...,8[tn,]) is defined

and G[S™ (s;, 11, ..., tn,)] = SU(G[s;],G[t1], . .., Ftn,]) for 5 =1,... n;, then

QD

~—

Sni(G[t],5[t], . . ., Oltn,) exists by assumption
= S%(G[fi(s1,. .. 5n,)],00t], - .., Fltn,)) exists
= S"(Sm(a(f;),0]s1],- ... 0 sn]),Bltr], . .., Oltn,) exists
= Sni(o(fi), Spi(@ls1],0T0], - Tt ), - S (Glsn ] O], - ltn,]))  exists
= St(o (f) [S"’(sl, t1,... tm)] ey O[SM (St ey t)]) exists
= G (s1 by, tn,) s ST (St )] exists
= G[S™(fi(s1, .. sm) t1y .oy tn,)] exists
= St ty,. .., nz) € domo

and we can prove that [S™ (¢, t1,...,t,,)] = S™(G[t],5[t1],...,5[tn,]) in a similar

way as in the total case. [ |

Lemma 9.1.3 Let 01,00 € PHyp(T). Then (01 0, 02) [t] = (01 0 02)[t] for t €
W, (X).

Proof. @ We will give a proof by induction on the complexity of the term ¢.

(i) If t = z; € X and since (07 0, 03)" , 71, 02 are partial functions from W, (X) into
W, (X) which are defined on variables, we have z; € dom(oy o, 03] ,z; € domo,
and z; € doma,. Then x; € dom(oy 0, 02)" , x; € dom(Gy 0 G3) and (01 0 72)[z;] =
01[02]x;]] = 71]xj] = x5 = (01 0p 02) " [z;] for all z; € X.

(ii) If t = fi(ts, ..., tn,) and if we assume that t; € dom(oy0,02)" , t; € dom(oy009)
and (o1 0, 02)" [t;] = (01 0 02)[t;] for j =1,...,n;, then

t € dom(oy 0, 02)"

& fi € dom(oy 0, 09) and ty, ..., t,, € dom(oy 0, 02)

& fi € domoy and os(f;) € domo, and tq,. .., t,, € dom(c 0 0y)

& fi € domoy and oo(f;) € domoy and tq,. .., t,, € domoy and Oa[t1],. .., 0a[ts,] €
domo,

~ fi(tla - ,tm) S dom/a\g and Sﬁ; (UQ(fi), 82[151]7 . ,Eg[tm]) € dom?fl
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& filty, ..
< filty, ..
and (07 0 79)[t] = 71[02[t]]
= 51[S (0a(f:), Balta], -, Galtn,])]
= S1(51(02(f)), 31[B2[t]], - -, 51 [Galtn]])
= Sti((01 0 02) (i), (01 0p 02) " [ta], ., (01 0 02) [tn])
= (o1 0p09) [filtr, ... tn,)]

= (01 0y 0a) " [1]. u

S tn,) € domay and Go[fi(ty, ..., tn,)] € domoy
.t

ytn,) € dom(Ty 0 7y)

Lemma 9.1.4 Let 01,05,05 € PHyp(7). Then ((01 0, 02) 0, 03)(fi) = (01 0, (02 0,
03))(fi) for everyi € I.

Proof. At first we show that dom((oy o, 02) 0, 03) = dom(oy o), (02 0, 03)).

We have f; € dom((oy 0, 02) 0, 03)

& fi € domos and o3(f;) € dom(oy 0, 03) ™

& f; € domos and o3(f;) € dom(c; 0 75) by Lemma 9.1.3

& fi € domos and o3(f;) € domay and Gq[o3(fi)] € domo,y

& fi € dom(o 0, 03) and (03 0, 03)(f;) € doma

& f; € dom(oy o) (02 0, 03)).

The next step is to prove that ((oy o, 02) 0, 03)(fi) = (01 0, (02 0, 03))(f;). This can
be done in a similar way as in the total case when we assume that f; € dom((o; o,

02) 0, 03) and f; € dom(oy o, (02 0, 03)). n

Let 04 be the partial hypersubstitution defined by o;4(f;) := fi(x1,...,z,,) for
all € [I.

Lemma 9.1.5 Lett € W.(X). Then 7,4t] =t.
This is clear since ;4 by definition is the total identity hypersubstitution.

Lemma 9.1.6 Let 0 € PHyp(1). Then 0 0, 0;q = 0 = 0,90, 0.
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Proof. We will prove that ;g 0,0 = 0.
We have dom(c;q0,0) ={f; | i € I and (0,40, 0)(fi) exists}
={fi|i €I and 7,4[0(f;)] exists}
={fi|i €I and o(f;) exists}
= domo
and by Lemma 9.1.5, we have (0,4 0, 0)(f;) = o(f;) where f; € dom(c;q 0, o) and

fi € domo. The second equation can be proved similarly. |

Theorem 9.1.7 The algebra PHyp(7) := (PHyp(T);0p,0:4) is a monoid.

The partial hypersubstitution o € PHyp(7) is called regular if the following
implication is satisfied : if f; € domo, then Var(o(f)) = {z1,...,Tn, }

Let PHypgr(7) denote the set of all regular partial hypersubstitutions of type 7
and let o be some member of PHypg(T).

Proposition 9.1.8 Let or be a regular partial hypersubstitution of type 7. If t €
domog, then Var(oglt]) = Var(t).

Proof. We will give a proof by induction on the complexity of the term ¢ €
domopg.

(i) If t = z; € X, then Var(og[t]) = {z;} = Var(t).

(i) If t = fi(t1,...,ts,) and if we assume that Var(oglt;]) = Var(t;) for j =
1,....n;, then Var(Gg[t]) = Var(S™(or(f),rlti], .. Grltn,]))

= U Var(al)

J

= CJ Var(t;)

J=1

= Var(t). |

Theorem 9.1.9 The algebra PHypgr(7) := (PHypr(T); 0y, 0:4) is a submonoid of
(PHyp(); 0p, 0ia)-

Proof. @ We have to prove that the product of two regular partial hypersubstitu-
tions of type 7 belongs to the set of all regular partial hypersubstitutions of type 7.
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Let og,,0r, € PHypgr(T).
We have Var((og, op or,)(fi)) = Var(ar,[or,(fi)])
= Var(og,(fi))
={zy,...,2,}
and clearly, 0,4 is a regular partial hypersubstitution. Then (PHypr(7T);0p, 044) is a
submonoid of (PHyp(T); 0y, 0iq). n

9.2 Regular Partial Hypersubstitutions
Now we consider a type which has only one n-ary operation symbol for n > 1.

Lemma 9.2.1 If f € domo then t € domo for all t € W,y (X).

Proof.  We will give a proof by induction on the complexity of the term ¢.
(i) The proposition is clear if ¢ = z; since x; € domo.
(i) If t = f(t1,...,tn) and if we assume that ¢; € W, (X,,) and t; € domo for

~ ~

j=1,...,n, then t € dom& because 5[t] = S™ (a(f),5[t1],...,5[tn]) exists. n

If ¢ is not a variable, then the converse is also true.
Lemma 9.2.2 Ift € Wy, (X)\ X then f € domo iff t € domao.

Proof.  Assume that t € domo and t € W,)(X) \ X then t = f(t1,...,t,) €

dom@, i.e. 5[t] = S™(o(f),5[t1], . .., 5[tn]) exists. Therefore, f € domo. u

Lemma 9.2.3 If f € domo then f € domo' for all | € N*.

Proof.  We will give a proof by induction on [.

For [ = 1, everything is clear.

For | = k, we assume that f € domo*~! then o%(f) = T[o""1(f)] exists and
f € domo” by Lemma 9.2.1.

Therefore, we have f € domo' for all [ € NT. |
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Now we will prove that for a regular partial hypersubstitution or the mapping
or is injective. We need the concept of the depth of a term. The depth is defined
inductively by the following steps:

(i) depth(z;):=0,if z; € X,
(i) depth(fi(t1,...,tn,)) := max{depth(ty), ..., depth(t,,)} + 1.

Proposition 9.2.4 If o € PHypr(n), n > 2, and oglt] = Gg[t'] for t,t' €
W(n)(X), thent =1'.

Proof. Since n > 2, the regular partial hypersubstitution oz maps the n-ary
operation symbol f to a term which uses at least two variables and therefore
depth(or(f)) > 1. We will give a proof by induction on the complexity (depth)
of the term t¢.

i) f t = z; € X and f € domog, then t € domog and Gglt] = z; =
og[t']. Since for ¢! = f(t|,...,t,) we have 0 = depth(cg[t]) = depth(cgr[t']) =
depth(S™ (or(f),Fg[t)], ..., Fg[t.])) > 1, a contradiction. Therefore, ¢ is also a vari-
able and t' = z; ie. t =1,

(ii) Ift =2; € X and f ¢ domopg, thent € domog and og[t] = z; therefore gz[t'] ex-
ists because of G[t] = og[t'] and og[t'| = x;, thus t' = z; (since, if ¢’ = f(#},... 1))

then og[t'] does not exist) i.e. t =t'.

(iii) If t = f(t1,...,t,) and f € domog and if we assume that from or[t;] = oplt’]
follows t; = t/ for j = 1,....n, then Gglt] = S%(or(f).Grlti],...,Orlta]) =
Grlt] = S (or(f),Grlt,], ..., FR[t.]). Since or(f) uses all variables 1, ...z, this
is true only if og[t;] = og[t)] for j = 1,...,n and this means t = f(t1,...,t,) =

f, ... th)=1t.
(iv) If t = f(t1,...,t,) and f ¢ domog, then t ¢ domog and &[t] does not exist,

therefore og[t] # og[t'], thus og[t] = og[t'] implies t = ¢'. ]

Corollary 9.2.5 Let o be a partial hypersubstitution of type (n), n > 2. Then the

extension o is injective iff o € PHypg(n).
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Proof.  Let ¢ be injective. We will prove that 0 € PHypgr(n). We can consider
the following cases:

(i) Let f ¢ domo. Then the implication f € domo = Var(o(f)) = {x1,...,z,} is
satisfied and 0 € PHypgr(n) by the definition of regular partial hypersubstitutions.
(ii) Let f € domo (then t € domo for all t € W, (X)). Assume that o ¢
PHypgr(n). Then Var(o(f)) = {xky, -y xi,} C {z1, .., zn}. it = f(ty,... t0),
t = f(ty,...,t,) and tp, = t ..., t, = t,, but t; # t. for at least one
j e AL ...,n]\{k1,..., ki} then O[ty,] = o[ty ],...,0[tr] = a[t},], and G[t] =
S (o (f),0[t], ..., 0[ta]) = S™(a(f),[t)],...,[t.]) = &[t'], but t # ¢'. This shows
that o € PHypgr(n) must hold if & is injective. If conversely, o € PHypgr(n) and

o[t] = o[t'], then by Proposition 9.2.4 we have ¢t = ¢’ and hence & is injective. n

For a term ¢ € W,(X) we denote the first operation symbol (from the left)
occurring in ¢ by firstops(t). Now we ask for injective partial hypersubstitutions if
T is an arbitrary type 7 = (n;);e;. We consider the following subset of PHypg(7).

PHypreg(t) := PHypr(T)N{c € PHyp(7) | firstops(c(f;)) = fi for f; € domo
and for i € I}.

Lemma 9.2.6 If firstops(t) = f;, if o € PHypreg(t) and t € domo, then
firstops(a[t]) = firstops(t).

Proof.  Since firstops(t) = f;, we can assume that t = f;(t1,...,t,,) and o[t]
exists since t € domo. We have

f@'rstops(&\[t]):firstops(gﬁj (o(f:),alt1], ..., 0tn,]))

— firstops(F(Sm (51,1t - Fltn)s o S0 (50 BTt Bl )
where o(f;) = fi(s1,...,5n,)

=fi

= firstops(t). .

Proposition 9.2.7 (PHypreg(7);0p,0:4) is a submonoid of (PHyp(7);0p, 0ia)-

Proof.  Clearly, 0,4 € PHypreg(7). We have to prove that 010,00 € PHypreg(7)
for 01,00 € PHypreg(r). We get firstops((o1 o, 02)(fi)) = firstops(a1[oa(fi)]) =
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firstops(os(fi)) = fi by Lemma 9.2.6. Since PHypg(7) is a submonoid of PHyp(7)
we have that (PHypreg(T);o,,044) is a submonoid of (PHyp(T); op, 0id)- [

Proposition 9.2.8 Let 7 = (n;)ier, n; > 1, be an arbitrary type and assume that

o € PHypreg(r). If o[t] = o[t'], we have t =1'.

Proof.  We will give a proof by induction on the complexity of the term ¢.

(i) f t = z; € X and f; € domo, then o[t] = x; = o[t'] and Var(c[t']) = {x:}.
Therefore depth(c[t']) = 0 and ¢’ = x;.

(ii) If t = 2; € X and f; ¢ domo, then t € domo and o[t] = z; therefore ot'] exists

and o[t'] = x;, thus t' = x; (because if ¢ = fi(#},... 1) then o[t'] does not exist)
le. t=t.

(i) If t = fi(t1,...,t,) and t € domd , then G[t] = S™ (o (f;),0[t1],- .., 0[tn,]) =
ot'], therefore t' ¢ X. Let ¢' = f;(t},....t, ) then we have &[] =
Su(o(f),0lt), ..., 6lta)) = Sw(o(f).5[t),....5[,]) = &[] Since
firstops(c[t]) = firstops(a[t']) we get that f; = f; and then i = j. We as-
sume that from o[t;] = o[t}] follows t; = t,,i = 1,...,n;. Since o is a regular partial
hypersubstitution, from &[t] = &[t'] we obtain a[ti] =oltl] ,i=1,...,n; and can

apply the hypothesis. Altogether, t = t'.
(iv) Ift = fi(t1,...,tn,) and t ¢ doma , then o [t] does not exist therefore o[t] # o[t'],

thus the implication o[t] = o[t'] = t = t' is true. ]

Now we consider one more submonoid of PHypg(7).

Let PHypgpr(T) := PHypgr(t) N {oc € PHyp(r) | ops(a(f;)) = {fi} for f; €

domao}.
Lemma 9.2.9 Ifo € PHypgr(T) and t € doma, then ops(a|t]) = ops(t).
Proof.  We will give a proof by induction on the complexity of the term ¢.

(i) If t = z; € X, then ops(ct]) = ops(t) since 7[t] = t.
(ii) If t = fi(t1,...,tn,) and if we assume that ops(c[t;]) = ops(t;), j = 1,...,n,,



118 CHAPTER 9. PARTIAL HYPERIDENTITIES

then

ops(clt]) = ops(S',’,?(U(fi);f[tl], o O[tn])
= ops(a(f)) 91 ops(at;])
= {fi}u j@l ops(t;)
= ops(fi(ts,...,tn,))
= ops(t).

Proposition 9.2.10 (PHypgr(7);0p,0i4) is a submonoid of (PHyp(T);0p, 0ia).

Proof.  Clearly, 0,y € PHyppr(T). We have to prove that oy 0,09 € PHyppr(T)
for 01,00 € PHyppr(r). One has ops((o1 o, 02)(fi)) = ops(ailoa2(fi)]) =
ops(oa(fi)) = {fi} by Lemma 9.2.9. Therefore, (PHypggr(T); op, 0ia) is a submonoid
of (PHyp(T);0p,0i4). -

Example 9.2.11 Let f,g be binary operation symbols. We define hypersubstitu-
tions 01,00 by o1(f) = flg(xr,22),21), 02(f) = f(f(x1,22),21) and o1(g) =
g(f(x1,22),21) and 02(g) = g(g(z1,x2),21). We have o1,09 € PHypreg(2,2) but
o1 ¢ PHyppr(2,2). Therefore PHypgr(T) C PHypreg(T).

Then we have

Corollary 9.2.12 (PHypggr(7);0p, 0ia) is a proper submonoid of (PHypreg(7); op,

Uid)-

9.3 PHuypg(7)-solid Varieties

Let A = (A;(f")icr) be a partial algebra of type 7. If for an arbitrary partial
hypersubstitution or we have f; ¢ domog, i.e., if the term og(f;) is not defined,
then the induced term operation og(f;)* on the algebra A is a nowhere defined
operation. In the same way, if f; occurs in the term ¢, then oglt] is not defined and
or[t]* is the nowhere defined operation. If og(f;) is defined, then we define the term

operation og[t]* in the usual way.
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Let A = (4; (f#)ier) be a partial algebra of type 7 and o € PHypg(7), then
we define or(A) = (4; (0r(fi)Y)ier) where or(f;)* is an n;-ary partial operation
on A. If og(f;) is not defined then og(f;)* is the nowhere defined n;-ary operation
on A.

Lemma 9.3.1 Let t be a term from W.(X) and let A € PAlg(t) and or €
PHypgr(T). Then

Grlt]* [p= 17" |p

where D is the common domain of both sides.

Proof. = We will give a proof by induction on the complexity of the term t.

(i) If t = z; € X because of x; € domoy for all op € PHypgr(T), we have or[t]* =
]A _ A or(A) _ LOr(A) _ yop(A)

oplr;A = e;-”’A is defined and og[t]4 = Ggz;] = € = €] =
(i) If t = fi(t1,...,t,,) and if we assume that og[t]* is defined and Gg[t;]* |p=
t;’R(A) |p for j =1,...,n; where D = ﬂ domag[t;]4, then
7=1

GrllA o — ag[fxth...,w b

= [SQJ(UR(fi)ﬁR[tl]w--ﬁR[tmD]A D

= Sy (or(fi)*, Trlt] a-'wOR[tm]A) |

= S ( ( DA UR[tl] D, ORtn, ] D)

— g or(A ( oR A) tUR(A) b, tnR(-A) In)

S or(A ( O'R(-A) ' tO'R(-A)) b

fz(tb'"a nl) ‘D
— R |,

This shows also that the domain of g[t]4

(iii) Assume t = fi(t1,...,t,,) and that ogr(f;) is not defined. By definition,

is equal to the domain of t77().

or[t]* is nowhere defined and t7#A) = ST%’UR(A)( fiUR(A), t‘fR(A), . ,t%f(A))
S%’UR(A)(UR(fi)A,tTR(A), . ,t%f(A)) is nowhere defined because og(f;) is not de-
fined. Therefore Gg[t]A = t7r(Y), (]

Let A € PAlg(r) and let PHypr(7) be the submonoid of PHyp(7). Let t1,ts €
W.(X). Then t; =ty € Id*" A is called a PHypg(7)-hyperidentity in A (in symbols

A | ti=ty)if for all o € PHypr(T) we have oglt;| =~ og|ts] € 1d°" A.
srPh
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Let K C PAlg(t) be a class of partial algebras of type T and let 3 C W, (X)2.
Consider the connection between PAlg(T) and W,(X)? given by the following two

operators
Ids, - P(PAlg(t)) — P(W,(X)?) and
Modg, « P(W,(X)?) — P(PAlg(T)) with
Idp, K = {s=teW, (X)?*|VAeK (A [ s=t)} and
Mod$, > = {Ae PAlg(r) |Vs~teX (A SH}: s~ t)}.

srPh
Clearly, the pair (Mod$,, 1d3,) is a Galois connection between PAlg(T) and

W,(X)% Again we have two closure operators Modsy, [d5, and Id§y, Mods, and
their sets of fixed points.

Let A be a partial algebra of type 7 and let PHypg(7) be the monoid of all
regular hypersubstitutions. Then we consider the operators

Xpn t P(PAlg(1)) — P(PAlg(r)) and B, : P(W:(X)?) = P(Wr(X)?)
defined by

xpnlA] = {or(A) | or € PHypr(r)} and

Xenls = t] = {Grls] = Gr[t] | or € PHypr(7)}.

For K C PAlg(7) a class of partial algebras of type 7 and for ¥ C W, (X)? a set

of equations we define x4, [K] :== | x8,[A] and XE,[S] :== U xE,[s ~ .
AeK steEY

Proposition 9.3.2 For any K, K' C PAlg(t) and 3,%' C W,(X)? the following
conditions hold:
(i) the operators x4, and &, are additive operators on PAlg(T) and on W, (X)?

respectively, i.e. we have
(i) 2 € xpy[2],

i) ¥ C ¥ = XpulZ] € XE 2,
iv) xEuXBalZl] = xEa[Zl,

vi) K C K = Xl K] xpulK7],
vit) Xpalxpa KT = xpalK]
and (x5, X5&,) forms a conjugate pair with respect to the relation
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R:={(A,s~t)e PAlg(t) x W, (X)*| (A E s=~t)}ie. forall Ae PAlg(r)

and for all s &t € W,(X)?, we have xyp,[A] E s~tiff A E xE,[s~1].

Proof. (i) It is clear from the definition that both, x4, and x5, are additive
operators.
(i) Let s &~ t € X. Since s,t € domo;q by Lemma 9.1.5 we have 04[s] = 0,4[t] for

all s~ t €Y and we get ¥ C xE, [X].

(iii) Suppose ¥ C X' C W, (X)?, then

X2 = LtJEXJEDh[S ~ 1

sxte

= U {or[s]| = orlt] | or € PHypgr(T) (we have s,t € domog)}
sxteX

C U {ogrls|=ogl[t]| or € PHypr(T) (we have s,t € domog)}
satey!

= U xBls~t] = xB[¥]
sratedy’

(iv) Suppose og,,0r, € PHypg(T) are arbitrary two regular partial hyper-
substitutions and g, [0r,[s]] ~ Or,[0r,[t]]. Then s,t € dom(cg, o dg,)) is an
equation from Y&, [xE,[X]]. Let or € PHypg(t) be a regular partial hyper-
substitution with or := og, o, og,. Since PHypgr(7) is a monoid, it follows
that op € PHypgr(T) and PHypgr(r) is a submonoid of PHyp(r) we have
0r = (0R,0p0R,) = OR,00R,. Since s,t € dom(cg,00p,) we have s,t € domog. Then
we have Gg[s] = (0Rr,0,0R,) [S] = OR,[OR,[S]] = OR, [Or,[t]] = (0r,0p0R,) [t] = ORt]
i.e. or[s] ~ or[t] € x5,[X]. By (ii) and (iii), we have x5, [3] C x%&,[x%,[2]]. There-
fore, x5, [XBu[S]] = a5,

(v) Let A € K. Since f; € domoyq for all i € I then oiq(f;)* = fi(z1, ..., 20,) = f
is defined because fi! is a partial operation and o,4(A) = A. Therefore, we get

K C xplK].

(vi) Suppose K C K’ C PAlg(r), then

Xé’h K] = ALEJK X]é"h [A]

ALEJK{UR(A) | or € PHypgr(T)}

ALEJK{<A§ (or(fi)Y)icr) | or(fi)* is defined and or € PHypg(7)}

AUK/{(A; (or(f)Yier) | or(fi)™ is defined and o € PHypgr(T)}

N
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= AEJK/{JR(A) | or € PHypr(7)}

= AEJK/ Xéh [A] = Xéh [K7].

(vii) Suppose og,,0r, € PHypg(T) are two arbitrary regular partial hypersubstitu-
tions and o g, (0, (A)) € XA, [x8,[K]] for all A € K, then (or,0,0r, )(fi)* is defined.
Let og € PHypgr(7T) be a regular partial hypersubstitution with og := og, o, og,.
Since PHypr(7) is a monoid it follows that oz € PHypg(7). Then or(fi)*
defined and (og, 0p0r,)(fi)* = or(fi)*. Hence or, (or,(A)) € xA,[K] for all A € K
and X7, [xpy[K]] € xpulK]. By (v) and (vi), we have xp,[K] S xpp[xpi[K]].
Therefore, we have x 2, [x5,[K]] = x5, K]

Finally, we need to show that x4, [A] = s~tiff A = \E, [s~1].

Now we get
XpulAl E s~t & Vore PHypp(r), (0 ( ) E s~

)
& Vogp € PHypgr(7), (s°F \D_ oA | p)
& Vogr € PHypr(7), (Grls]” |p=0r[t]" D)
(w
)

by Lemma 9.3.1 (where D is the common domain)
& Yog € PHypgr(T)(A }: r[s] = oglt])

& AE B~

Now we have a Galois connection and a conjugate pair of additive closure oper-
ator and may apply the theory developed e.g. in ([34]). Without proofs we will give
the following results. (The proofs can be found in [34].)

Theorem 9.3.3 For all V C PAlg(7) and ¥ C W,(X)?, the following properties
hold:

(i) Id3,V = 1d" xp,[V];

(ii) Id3,V C Id™V;

(ii)) xpy[Id3,V] = 1d3,V;

(iv) xp,[Mod® " I1d, V] = Mod*" Id3, V;

(v) Idg, Modsy, > = Id*" Mod® x&, [3]; and dually,
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(i) Modg, X = Mod* X, [Z];

(it") Modss, S C Mod*S;

(iii’) xp,[Modsy, 3] = Mods, %,

(iv') v 5, [[d Mod3, 3] = Id Mods,
(v') Mods, Id3,V = Mod* Id*" xp,[V].

Let V be a strong regular variety of partial algebras of type 7. Then V is said
to be PHypgr(T)-solid if x4,[V] = V.

PHypgr(1)-solid varieties of partial algebras can be characterized as follows:

Theorem 9.3.4 Let V C PAlg(t) be a strong reqular variety of partial algebras
and let X C W.(X)? be a strong regular equational theory (i.e. V. = Mod*" I[d*"V
and ¥ = Id*"Mod*"Y). Then the following propositions (i)-(iv) and (i')-(iv’) are
equivalent:

(i) V = Mod, 1d3,V,

(i) B [V) = V:

(iii) [d*"V = 1d$, V;

(iv) xE,[[d"V] = Id*"V .

and the following are also equivalent

(") © = Id3, Mod3, S,

(ii") XPh[ | =3

(ili") Mod*" ¥ = Mod3,;

(iv") xB,[Mod*rY] = Mod*"Y..

9.4 Applications

As an example we want to determine all PHypgr(2)-solid varieties of semigroups.
Varieties of total semigroups can be characterized as V = Mod ¥ where X is a
set of equations containing the associative law and V' consists precisely of all semi-
groups satisfying all equations from ¥ as identities. As usual, we denote by IdV
the set of all identities satisfied in V. We need the following varieties of semigroups:
C:=Mod{(zy)z ~ x(yz), xy ~ yx}-the variety of commutative semigroups,
SL:=Mod{(zy)z =~ z(yz), 2* ~ x, xy ~ yz}-the variety of semilattices,
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Z:=Mod{xy =~ zt}-the variety of zero-semigroups (or of constant semigroups),
NB:=Mod{(zy)z ~ x(yz), =* ~ z, zyzt ~ x2yt}-the variety of normal bands,
RB:=Mod{(zy)z ~ x(yz), 2? ~ z, xyz ~ xz}-the variety of rectangular bands,
RegB:=Mod{(ry)z ~ x(yz), 2* ~ x, vyzx ~ ryxrzz}-the variety of regular bands,
Viree:=Mod{(zy)z =~ z(yz), 2*y*z =~ 2*yx’yz, vy*2? ~ ryzy2? yzyr ~ ryrzryz,
22~ 228, PR~ ay?),

Vec:=Mod{z(yz) ~ (zy)z, zy ~ yx, v*y ~ xy?}-the greatest regular-solid variety
of commutative semigroups ([34]),

Vrs:=Mod{(xy)z ~ z(yz), zyrzayr ~ xyzyz, (2%y)*z = 22y?z, 29?2 ~ x(y2?)?}

-the greatest regular-solid variety of semigroups ([34]).

Regular-solid varieties of semigroups were characterized in [34] by the following

theorem:

Theorem 9.4.1 ([34]) Let V' be a variety of semigroups. Then V' is reqular-solid iff

V' is self-dual and one of the following statements is true:
(1) ZV RBCV C Vi
(2) V C Vi and V & Mod{(zy)e = 2(y=), 2y =~ yu);
(3) V CVEree N Mod{(zy)z ~ z(yz), zy* = %y} and V € C;
(4) V C Vge;

(5) V€ {RB,NB, RegB}.

We have to check which of these varieties satisfy strong identities which are not
satisfied after applying the nowhere defined hypersubstitution. Since we have only
one operation symbol, this can only happen if there is an identity of the form ¢ ~ z
for a variable x and a term t different from x. Such identities are called non-normal
and a variety of semigroups is called normal if it satisfies only normal identities. For
more background on normal varieties see e.g. [29].

Therefore we have:
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Lemma 9.4.2 A variety of semigroups is PHypgr(2)-solid iff it is reqular-solid and

normal.
Using this lemma we obtain:

Theorem 9.4.3 A wvariety of semigroups is PHypr(2)-solid iff it is reqular-solid
and different from RB, NB, RegB, and SL.

Proof. Itiseasy tosee that the set IdZ of all identities satisfied in the variety Z of
all zero-semigroups is precisely the set of all normal equations of type 7 = (2). That
means, if V' is regular-solid and Z C V| then V' is PHypg(2)-solid. This happens in
the first case of Theorem 9.4.1. If in the cases (2) or (3) V is a non-trivial subvariety
of V& which does not contain the variety Z of all zero-semigroups, then there is an
identity ¢ ~ x in V. From this identity we can derive an identity 2* ~ z for k > 2.

"~ 2% and from this identity

From the identity z%y? ~ 3%z € IdV we can derive x
and from z* ~ = we get the idempotent identity. The identity 2%y® ~ y?z3 provides
the commutative law and then V' = SL. If in case (4) V is a non-trivial subvariety
of Vre which does not contain the variety Z of all zero-semigroups, then from the

F ~ x for k > 2. From 2%y ~ zy? we derive

identity t = x in V we derive again x
the 2* ~ 2% and from both we derive the idempotent law and then the commutative

law is also satisfied. This shows V' = SL in case (4). [



126 CHAPTER 9. PARTIAL HYPERIDENTITIES



Bibliography

1]

2]

S. Arworn, Groupoids of Hypersubstitutions and G-solid varieties, Shaker-

Verlag, Aachen, (2000).

F. Borner, Varieties of Partial Algebras, Beitrage zur Algebra und Geome-

trie, Vol. 37 (1996), No. 2, 259-287.
F. Borner, L. Haddad, R. Poschel, Minimal partial clones, Preprint, 1990.

P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras,
Akademie-Verlag, Berlin 1986.

P. Burmeister, Lecture Notes on Universal Algebra - Many-Sorted Partial

Algebras, 2002.

S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-

Verlag New York,1981.

P. Burmeister, B. Wojdylo, Properties of homomorphisms and quomor-
phisms between partial algebras, Contributions to General Algebra, Bd. 5,

Holder, Pichler, Tempsky, Wien, (1987) 71-90.

S. Busaman, K. Denecke, Generalized identities in strongly full varieties of

partial algebras, East-West Journal of Mathematics, accepted 2004.

S. Busaman, K. Denecke, Strong Regular n-full Varieties of Partial Algebras,
the conference volume of the Kunming conference 2003, special issue of

SEAM Bulletin, 29(2005) No. 2, 259-276.

127



128

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

S. Busaman, K. Denecke, Partial Hypersubstitutions and Hyperidentities in
Partial Algebras, Advances in Algebra and Analysis, Vol. 1, No 2 (2006),
81-101.

S. Busaman, K. Denecke, Unsolid and Fluid Strong Varieties of Partial
Algebras, Int. Journal of Mathematics and Mathematical Sciences, accepted

2006.

S. Busaman, K. Denecke, Solidifyable Minimal Clones of Partial Operations,
East-West Journal of Mathematics, accepted 2006.

S. Busaman, K. Denecke, M -solid Strong Quasivarieties of Partial algebras,

preprint 2006.

Ch. Chompoonut, K. Denecke, M-solid Quasivarieties, Fast-West J. of
Mathematics: Vol. 4, No 2 (2002).

W. Craig, Near equational and equational systems of logic for partial func-
tions I, The Journal of Symbolic Logic, 54 (1989), 795-827, Part 11 ibid.,
1188-1215.

B. Csakéany, All minimal clones on the three-element set, Acta Cybernetica

(Szeged), 6 (1983), 227-238.

K. Denecke, On the characterization of primal partial algebras by strong
reqular hyperidentities, Acta Math. Univ. Comenianae, Vol.LXIII, 1 (1994),
141-153.

K. Denecke, P. Jampachon, N-full Varieties and Clones of N-full terms,
Southeast Asian Bulletin of Mathematics (2005) 28 : 1 - 14.

K. Denecke, P. Jampachon, S. L. Wismath, Clones of n-ary Algebras, Jour-
nal of Applied Algebra and Discrete Structures, Vol.1, No.2, 2003, 144-158.

K. Denecke, J. Koppitz, Fluid, unsolid, and Completely Unsolid Varieties,
Algebra Colloquium 7:4(2000), 381-390.



BIBLIOGRAPHY 129

[21]

22]

23]

[24]

[25]

28]

[29]

[30]

[31]

K. Denecke, J. Koppitz, R. Srithus, The Degree of Proper Hypersubstitu-
tions, preprint 2005.

K. Denecke, J. Koppitz, R. Srithus, N-Fluid Varieties, preprint 2005.

K. Denecke, D. Lau, R. Poschel, D. Schweigert, Solidifyable clones, General
Algebra and Applications, Heldermann-Verlag, Berlin 1992.

K. Denecke, M. Reichel, Monoids of Hypersubstitutions and M-solid Vari-
eties, Contributions to General Algebra 9 (1995), 117 - 126.

K. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge
University Press., 1990.

K. Denecke, S. L. Wismath, Hyperidentities and Clones, Gordon and Breach
Science Publishers 2000.

K. Denecke, S. L. Wismath, Universal Algebra and Applications in Theoret-
ical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New
York, Washington, D.C., 2002.

K. Denecke, S. L. Wismath, Galois Connections and Complete Sublattices,
Galois Connections and Applications, Kluwer Academic Publishers, (2004),
211 - 230.

K. Denecke, S. L. Wismath, Normalizations of Clones, Contributions to
General Algebra 16, Proceedings of the Dresden Conference 2004 (AAAGS)
and the Summer School 2004, Verlag Johannes Hein, Klagenfurth 2005, pp.
63-73.

K. Denecke, D. Lau, R. Poschel, D. Schweigert, Hypersubstitutions hyper-
equational classes and clone congruences, Contributions to General Algebra

7(1991), 97-118.

E. Graczynska, D. Schweigert, Hyperidentities of given type Algebra Uni-
versalis, 27 (1990), 305-318.



130

[32]

[37]

[38]

[39]

[40]

BIBLIOGRAPHY

H.-J. Hoehnke, Superposition Partieller Funktionen, Studien zur Algebra
und ihre Anwendungen, Schriftenreihe des Zentralinst. f. Math. und Mech.,
Heft 16, Berlin 1972, pp. 7-26.

H. J. Hoehnke, J. Schreckenberger, Partial Algebras and their Theories,

Springer-Verlag, Series: Advances in Mathematic, to appear.

J. Koppitz, K. Denecke, M-solid Varieties of Algebras, Springer-Verlag, Se-
ries: Advances in Mathematic, Vol. 10, March 2006.

A.L. Mal’cev, Algorithms and Recursive Functions, Wolters Nordhoff Pub-
lishing, 1970.

E. Marczewski, Independence in Abstract Algebras, Results and Problems,

Colloquium Mathematicum XIV (1966), 169-188.

P.P Palfy, Minimal clones, Preprint 27/1984 Math. Inst. Hungarian Acad.
Sci., Budapest 1984.

P.P Pélfy, The arity of minimal clones, Acad. Sci. Math. (50), 1986, 331-
333.

T. Petkovi¢, M. Ciri¢ and St. Bogdanovi¢, Unary Algebras, Semigroups and

Congruences on Free Semigroups, preprint 2002.

J. Plonka, Proper and inner hypersubstitutions of varieties, in: Proceedings
of the International Conference Summer School on General Algebra and

Ordered Sets, Olomouc 1994, 106-116.

J. Plonka, On Hyperidentities of some Varieties, General Algebra and Dis-
crete Mathematics, Heldermann-Verlag, Berlin 1995, 199-214.

E.L. Post, The two-valued iterative systems of mathematica logic, Ann.

Math. Studies 5, Princeton Univ. Press (1941).

I.G. Rosenberg, La structure des fonctions de plusienrs variables sur un

ensemble fini, C.R. Acad. Sci. Paris Sér. A-B 260, 1965, 405-427.



BIBLIOGRAPHY 131

[44] 1.G. Rosenberg, Uber die funktionale Vollstindigkeit in dem mehrwertigen
Logiken, Rozpravy Cs. Akademie Véd. Ser. math. nat. Sci.(80), 1970, 3-93.

[45] I.G. Rosenberg, Minimal clones I: The five types, Lectures in Universal
Algebra, Colloqu. Math. Soc. J. Bolyai 43, 1983, 405-427.

[46] D. Schweigert, On Derived Varieties, Discuss. Math. Algebra Stochastic
Methods, 18(1998), no. 1,17-26.

[47] B. Schein, V. S. Trochimenko, Algebras of multiplace functions, Semigroup
Forum Vol. 17 (1979), 1-64.

[48] B. Staruch, B. Staruch, Strong Regular Varieties of Partial Algebras, Alge-
bra Universalis, 31 (1994), 157-176.

[49] D. Welke, Hyperidentititen Partieller Algebren, Ph.D.Thesis, Universitét
Potsdam, 1996.



	Titlepage
	Contents
	Introduction
	Basic Concepts
	Partial Algebras and Superposition of Partial Operations
	Closure Operators and Galois Connections
	Conjugate Pairs of Additive Closure Operators

	Strong Regular Varieties
	Terms, Superposition of Terms and Term Operations
	Strong Varieties
	Strong Regular Varieties

	Hyperidentities
	Hyperidentities and M-solid Strong Regular Varieties
	Hyperidentities and M-solid Strong Varieties

	Strong Regular n-full Varieties
	Regular n-full Identities in Partial Algebras
	Clones of n-full Terms over a Strong Variety
	N-full Hypersubstitutions and Hyperidentities

	Strongly Full Varieties
	Strongly full Terms
	Strongly full Varieties of Partial Algebras
	Hypersubstitutions and Clone Substitutions
	ISF-closed and VSF-closed Varieties

	Unsolid and Fluid Strong Varieties
	V-proper Hypersubstitutions
	Unsolid and Fluid Strong Varieties
	n-fluid and n-unsolid Strong Varieties
	Examples

	M-solid Strong Quasivarieties
	Introduction
	Strong Quasi-identities
	Strong Hyperquasi-identities
	Weakly M-solid Strong Quasivarieties

	Solidifyable Minimal Partial Clones
	Equivalent Strong Varieties of Partial Algebras
	Minimal Partial Clones
	Strongly Solidifyable Partial Clones

	Partial Hyperidentities
	The Monoid of Partial Hypersubstitutions
	Regular Partial Hypersubstitutions
	PHypR()-solid Varieties
	Applications

	Bibliography

