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A HILBERT BOUNDARY VALUE PROBLEM FOR

GENERALISED CAUCHY-RIEMANN EQUATIONS

AMMAR ALSAEDY AND NIKOLAI TARKHANOV

Abstract. We elaborate a boundary Fourier method for studying an ana-

logue of the Hilbert problem for analytic functions within the framework of
generalised Cauchy-Riemann equations. The boundary value problem need

not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in

Sobolev spaces. We show a solvability condition of the Hilbert problem, which
looks like those for ill-posed problems, and construct an explicit formula for

approximate solutions.
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Introduction

In [AT13] we develop the method of Fischer-Riesz equations for the study of
boundary value problems for overdetermined elliptic systems of general type. For
an abstract framework of this method we refer the reader to [Tar95, Ch. 11]. A
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2 A. ALSAEDY AND N. TARKHANOV

leasing designation of the method is perhaps the boundary Fourier method. The
central point of this method is the construction of a system of solutions to the
formal adjoint system which is complete in the complementary space of Cauchy
data. An explicit construction is given within the framework of approximation
by solutions of underdetermined elliptic systems. However, a system obtained in
this way is complete if and only if the boundary value problem in question has at
most one solution. This is usually the case for the Cauchy problem with data on
a nonempty boundary piece but need not hold even for Fredholm boundary value
problems.

The purpose of the present paper is to elaborate the boundary Fourier method in
the case where the problem fails to have a unique solution. To show the efficiency of
the method we restrict our discussion to a very particular boundary value problem
for generalised Cauchy-Riemann equations, which is an analogue of the Hilbert
problem, see [Ste91] and elsewhere.

The classical Hilbert problem for holomorphic functions consists in the following,
see [Gak77, § 27]. Given any continuous real-valued function u0 on the boundary
of a bounded domain X ⊂ C, find a holomorphic function u = u1 + ıu2 in X
whose real and imaginary parts have limit values on the contour ∂X satisfying
b1u1 + b2u2 = u0. The coefficients b1, b2 of this linear combination are assumed to
be given real-valued functions on ∂X .

The comprehensive theory of the classical Riemann and Hilbert problems owes
much to the works of Muskhelishvili and his school, see [Mus46], [Vek62], etc. Nowa-
days there have been studied several nonlinear versions of the classical problems,
see [Shn72], [Weg92].

The concept of generalised Cauchy-Riemann equations is usually related to har-
monic analysis in the Euclidean space. To the best of our knowledge, an ana-
logue of the classical Cauchy-Riemann equations in the three-dimensional space
was first shown in [MT31]. The paper [Fue36] then initiated a systematic study
of functions of one quaternionic variable and thus their counterparts within the
more general framework of hypercomplex numbers, see [Fre56], [SW68], [BDS82],
[GM90], [OT08] and references given there. Boundary value problems for gener-
alised Cauchy-Riemann systems in the space and their lower order perturbations
were investigated in [Ste93a, Ste93b], [SV95], etc.

The generalised Cauchy-Riemann equations constitute a special subclass of the
so-called Dirac operators, by which are meant matrix factorisations of the Laplace-
Beltrami operator on a Riemannian manifold. The determined (i.e., given by square
matrices) Dirac operators are first-order elliptic partial differential operators, and
so there are rigid relations between the dimension n of the underlying manifold
and the number k of unknown real-valued functions, see [Bal02]. In particular,
the number k is always even, and so the Hilbert problem for a Dirac operator
A consists in finding a solution u to Au = f in a relatively compact domain X
satisfying Bu = u0 at the boundary of X , where B is a (k/2 × k) -matrix of real-
valued functions of maximal rank k/2.

Boundary value problems for Dirac operators are studied in [BW92], still, this
book focuses on spectral problems. The general theory of [Vol65] does not apply
to the Hilbert problem, for this latter need not satisfy the Shapiro-Lopatinskij con-
dition. On applying the boundary Fourier method we derive explicit solvability
conditions and a formula for an approximate solution of the Hilbert problem for
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generalised Cauchy-Riemann equations in the space. A criterion for the Fredholm
property of the Hilbert problem is established in [Ste91]. In [Ste93a] this crite-
rion is used to investigate the equation on existence and nonexistence of Fredholm
boundary value problems. The paper [Ste93b] studies the adjoint problem to es-
tablish conditions which imply the uniqueness of the solution and the solvability
for arbitrary data. Even in this case our approach has the advantage of providing
an approximate solution.

Part 1. Preliminary results

1. Generalised Cauchy-Riemann equations

Consider a system of first order partial differential equations with constant co-
efficients of the form

A1∂1u+ . . .+An∂nu = 0 (1.1)

in R
n, where A1, . . . , An are (k × k) -matrices of complex numbers, ∂j the partial

derivative in the j th coordinate xj , for j = 1, . . . , n, and u is an unknown function
with values in C

k. We will write A for the partial differential operator on the
left-hand side of (1.1).

After [SW68], the system (1.1) is called a generalised Cauchy-Riemann system
if each solution u to (1.1) has only harmonic components uj .

In particular, if there is a (k × k) -matrix B of first-order partial differential
operators on R

n satisfying BA = EkΔ, then A is a generalised Cauchy-Riemann
system.

Lemma 1.1. Every generalised Cauchy-Riemann system of the form (1.1) is ellip-
tic, i.e., its symbol

σ(A)(ξ) :=

n∑
j=1

Aj(ıξj)

is invertible for all ξ ∈ R
n \ {0}.

Proof. See Theorem 1.1 of [Ste91]. If the lemma were wrong, then there would be
ξ ∈ R

n \ {0} and v ∈ C
k \ {0}, such that (A1ξ1+ . . .+Anξn)v = 0. Hence it follows

by straightforward calculations that u = e〈ξ,x〉v satisfies Au = 0 while Δu = |ξ|2u
is different from zero. Therefore, (1.1) can not be a generalised Cauchy-Riemann
system. �

If A is elliptic, then every matrix Aj is invertible. On multiplying system (1.1) by

A−1
1 from the left we transform it to C1∂1u+ . . .+Cn∂nu = 0 where Cj = A−1

1 Aj ,
for j = 1, . . . , n. In particular, C1 = Ek is the unit (k × k) -matrix. In the sequel
we will consider only those generalised Cauchy-Riemann equations (1.1), whose
coefficient matrix A1 just amounts to Ek. By the above, this assumption does not
restrict generality.

Lemma 1.2. For system (1.1) with A1 = Ek to be a generalised Cauchy-Riemann
system it is necessary and sufficient that

AiAj +AjAi = −2δijEk (1.2)

for all i, j = 2, . . . , n.
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Proof. See Theorems 1.2 and 1.3 in [Ste91]. Suppose (1.1) is a generalised Cauchy-
Riemann system with A1 = Ek. Given any i, j = 1, . . . , n with i �= j, consider the
function

u(x) = 2xixjv − (
(xi)2A−1

i Aj + (xj)2A−1
j Ai

)
v,

where v is an arbitrary vector of Ck. Obviously,

Au = Ai∂iu+Aj∂ju

= Ai

(
2xj − 2xiA−1

i Aj

)
v +Aj

(
2xi − 2xjA−1

j Ai

)
v

= 0,

i.e., u satisfies (1.1). Furthermore, Δu = −2
(
A−1

i Aj+A−1
j Ai

)
v, as is easy to check.

Since (1.1) are generalised Cauchy-Riemann equations, we conclude that Δu = 0,
and so

A−1
i Aj +A−1

j Ai = 0, (1.3)

for v can be chosen arbitrarily. Putting i = 1 we obtain A−1
j = −Aj and A2

j = −Ek

for all j = 2, . . . , n. On substituting these equalities into (1.3) we derive readily
(1.2).

Conversely, if equalities (1.2) are fulfilled, then on setting

B = Ek∂1 −
n∑

j=2

Aj∂j

one verifies easily that BA = EkΔ. Hence, A is a generalised Cauchy-Riemann
system, as desired. �

The matrices A2, . . . , An of system (1.1) with A1 = Ek are immediately specified
as representations of generators of the Clifford algebra Cn−1 over the field C in
the algebra of all linear mappings of Ck, for they fulfil the relations (1.2). The
representation of Cn−1 in L(Ck) is said to be reducible, if there is an invariant
subspace of Ck, i.e., every vector of this subspace is mapped to a vector of the
same subspace by every linear transformation of the representation. Otherwise the
representation is called irreducible. A representation is called completely reducible
if it is irreducible or it splits up into several irreducible representations. The number
k is usually referred to as the representation degree. When representing the algebra
Cn−1, we have to distinguish two cases, whether n is odd or even. For n = 2m− 1,
every representation of the Clifford algebra Cn−1 is completely reducible. In this
case Cn−1 has precisely one irreducible representation and is isomorphic to the

complete algebra L(C2m−1

). Every representation is actually one-to-one and its
degree is a multiple of 2m−1. For n = 2m, each representation of the Clifford
algebra Cn−1 is completely reducible, too. There are two irreducible representations

of degree 2m−1, and Cn−1 is isomorphic to the direct sum of two algebras L(C2m−1

).
A representation is one-to-one if and only if both irreducible representations are
contained in it at least once. The degree of any representation is a multiple of
2m−1.

So we have specified all possible representation of Cn−1 and the way to their
identification. Hence we now know the shape of all generalised Cauchy-Riemann
equations explicitly, see [Ste91].

Another characteristic property of generalised Cauchy-Riemann equations is the
so-called rotational invariance. The classical Cauchy-Riemann system in the plane
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is invariant with respect to rotations of the coordinate system in the sense that
if O is an orthogonal (2 × 2) -matrix with real entries then u(Ox) is holomorphic
for any holomorphic function u. In [SW68] the property of rotational invariance
is taken as definition of generalised Cauchy-Riemann equations. In the case of
quadratic coefficient matrices the class introduced in [SW68] just amounts to the
class considered in this section. Namely, if O is an orthogonal (n × n) -matrix of
real numbers then Qu(Ox) satisfies (1.1) for each solution u of this system, where
Q is a certain nonsingular matrix depending on O. For a proof, we refer the reader
to [Ste91, 2.4].

From the rotational invariance of generalised Cauchy-Riemann equations it fol-
lows that one rewrite them, by rotating the coordinate system x if necessary, in an
equivalent form Au = 0 with A satisfying A∗A = −EkΔ, where A∗ is the formal
adjoint operator for A, see [Ste91, p. 176]. In this case, the coefficient matrices
A1, . . . , An are unitary. A direct argument can be obtained from the theory of
group representations, cf. [Boe55].

2. The Hilbert boundary value problem

Let X be a bounded domain with smooth boundary in R
n. Given a function u0

at ∂X with values in C
k/2, we look for a solution u to (1.1) in X which moreover

satisfies

Bu = u0 on ∂X , (2.1)

where B is a (k/2×k) -matrix of continuous functions on ∂X whose rank is maximal,
i.e., k/2. Problem (1.1), (2.1) is usually referred to as the Hilbert boundary value
problem.

Remark 2.1. Since each generalised Cauchy-Riemann operator A has a fundamen-
tal solution Φ of convolution type, the inhomogeneous system Au = f in X is
reduced to the homogeneous one by substituting u+Φ(χX f) for u, where χX is the
characteristic function of X .

The study of the Hilbert boundary value problem for general elliptic systems of
first order partial differential equations in a bounded domain X ⊂ R

n goes back at
least as far as [Ava82]. The problem was reduced to a system of singular integral
equations the boundary of X and both a condition for the Fredholm property
and an index theorem were given. For generalised Cauchy-Riemann systems this
result was refined in [Ste91, Ste93a, Ste93b], including explicit verification of the
Shapiro-Lopatinskij condition. In [MMT11] the Hilbert boundary value problem is
studied for generalised Maxwell equations. These equations have more complicated
structure than (1.1).

For the classical Cauchy-Riemann equations we get k = 1, and so k/2 fails to
be a whole number. To dispense with the assumption on the evenness of k one can
rewrite equations (1.1) in the obvious way over the field of real numbers. Then
condition (2.1) takes the form � (B′u) = u0 on ∂X , where B′ is a nonsingular
(k × k) -matrix of continuous functions on ∂X and u0 a function on the boundary
with values in R

k.
The rows of the matrix B(x) are linearly independent at each point x ∈ ∂X . On

applying the Gram-Schmidt orthogonalisation one can orthonormalise them in C
k.

The properties of continuity and smoothness of the matrix elements do not change.
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Hence, we can assume without restriction of generality that the rows of B(x) form
pointwise an orthonormal system.

The task is now to find those conditions on the boundary coefficients and ge-
ometry of the domain X under which the Hilbert boundary value problem has
the Fredholm property. When considered in the Sobolev spaces, a boundary value
problem for an elliptic system is Fredholm if and only if it satisfies the Shapiro-
Lopatinskij condition, see for instance [Vol65]. We quote the main result of [Ste91]
which gives an explicit equivalent reformulation of the Shapiro-Lopatinskij condi-
tion for the Hilbert problem.

Theorem 2.2. Assume that the boundary of X is of class Cs, with s ≥ 1, and the
entries of B of class Cs(∂X ). Given any u0 ∈ Hs−1/2(∂X ,Ck/2), one looks for a
solution u ∈ Hs(X ,Ck) to (1.1), (2.1). Then, the problem is Fredholm if and only
if

det
(
B (σ(A)(τ))

∗
(σ(A)(ν))B∗ − ıEk/2

)
�= 0 (2.2)

for all x ∈ ∂X , where ν is the unit outward normal vector of the boundary at x,
τ runs through all unit tangent vectors at x, and we identify vectors of Rn and its
dual space.

Proof. See Theorem 3.1 in [Ste91]. �

In [Ste93a] Theorem 2.2 is used to establish several existence and nonexistence
theorems of Fredholm boundary values problems for generalised Cauchy-Riemann
equations. They contain all previously known results for special systems. If the
space dimension is odd, i.e., n = 2m−1 with m ≥ 1, and the number of irreducible
components of the representation A2, . . . , An of the Clifford algebra Cn−1 is odd,
i.e., k = 2m−1
 with 
 being odd, then there does not exist any Fredholm boundary
value problem of Hilbert type for the system (1.1). In the Euclidean space R4 there
are no Fredholm boundary value problems of Hilbert type for those generalised
Cauchy-Riemann equations which contain only one of the two possible irreducible
representations. In particular, this is the case for the Fueter equations, see Section
3. If n is odd and the number of irreducible components is even or n is even
and both irreducible representations appear in the same number, then there exist
Fredholm boundary value problems of Hilbert type for generalised Cauchy-Riemann
equations in R

n.
The paper [Ste93b] studies in detail the adjoint boundary value problem to apply

the general theory of elliptic boundary value problems to the Hilbert problem in the
case, where the Shapiro-Lopatinskij condition is fulfilled, see [Vol65] and elsewhere.
This is precisely the border line over which elliptic theory no longer works, and
so the boundary Fourier method in the Hilbert boundary value problem is well
motivated.

3. A Hilbert problem for the Fueter equations

A natural counterpart of the classical Cauchy-Riemann system for functions of
one quaternionic variable is

∂1u
1 − ∂2u

2 − ∂3u
3 − ∂4u

4 = 0,
∂2u

1 + ∂1u
2 − ∂4u

3 + ∂3u
4 = 0,

∂3u
1 + ∂4u

2 + ∂1u
3 − ∂2u

4 = 0,
∂4u

1 − ∂3u
2 + ∂2u

3 + ∂1u
4 = 0,

(3.1)
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see [Fue36]. In this case we have A1 = E4 while the corresponding matrices A2, A3

and A4 give rise to a representation of the Clifford algebra C3 over C in the algebra
L(C4). Since the coefficients are real, one can restrict the study to functions u with
values in R

4.
By the above, there is no Fredholm boundary value problem of Hilbert type for

equations (3.1), see also [Vin85]. We explain the character of irregularity in terms
of an example.

Let X be a bounded domain in R
4 with smooth boundary and u1

0, u
3
0 given real-

valued functions on ∂X . We look for a function u in X with values in R
4 satisfying

(3.1) and

u1 = u1
0,

u3 = u3
0

(3.2)

on ∂X , which corresponds to the choice B =
(

1 0 0 0
0 0 1 0

)
.

Introduce the standard complex structure in R
4 by setting U j = uj + ıu2+j and

zj = xj + ıx2+j for j = 1, 2. Then boundary value problem (3.1), (3.2) takes the
form

∂z̄1U1 − ∂z2U2 = 0,
∂z̄2U1 + ∂z1U2 = 0

in X and U1 = U0 on the boundary, where U0 = u1
0 + ıu3

0. As usual, we define the
complex derivatives by

∂zj =
1

2
(∂j − ı∂2+j) ,

∂z̄j =
1

2
(∂j + ı∂2+j) ,

for j = 1, 2.
Since each solution u to (3.1) in X has harmonic components, we conclude that

the component U1 of any solution U = (U1, U2) in X is uniquely defined by its
restriction to the boundary. To wit, we get U1 = P (U0) in X , where P (U0) is the
Poisson integral of U0. Hence, the Hilbert boundary value problem reduces to the
inhomogeneous system

∂z1U2 = −∂z̄2U1,
∂z2U2 = ∂z̄1U1 (3.3)

for the second component U2 in X . If the domain X is pseudoconvex in R
4 ≡ C

2,
then for the solvability of (3.3) it is necessary and sufficient that the right hand
side would satisfy

∂z1∂z̄1U1 = −∂z2∂z̄2U1

which just amounts to saying that U1 is harmonic in X . Obviously, the solution U2

of (3.3) is not unique and is defined up to an antiholomorphic function of z = (z1, z2)
in X .

The main analytic difficulty in currying out this construction is that system
(3.3) does not bear elliptic regularity up to the boundary of X . More precisely,
the inhomogeneous Cauchy-Riemann equations in a strongly pseudoconvex domain
of Cn are subelliptic unless n = 1. Thus, given any u1

0, u
3
0 ∈ H1/2(∂X ) with real

values, we solve a Dirichlet problem to find a complex-valued harmonic function
U1 ∈ H1(X ) satisfying U1 = U0 on ∂X . Hence, the right-hand side of (3.3) will
belong to L2(X ,C2) and on applying the theory of the ∂̄ -Neumann problem we get
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a solution U2 ∈ H1/2(X ) to (3.3). The regularity of U2 can not be improved within
this approach.

4. Green formula

We consider a generalised Cauchy-Riemann operator A(∂) = A1∂1 + . . .+An∂n
satisfying A∗A = −EkΔ, where Δ is the Laplace operator in R

n. Let e(x) be the
standard fundamental solution of convolution type for Δ, i.e., e(x) = (2π)−1 log |x|,
if n = 2, and

e(x) =
1

σn

1

2− n

1

|x|n−2
,

if n ≥ 3, where σn is the surface area of the unit sphere in R
n.

Lemma 4.1. The matrix Φ = −A∗e is a (two-sided) fundamental solution of con-
volution type of the operator A, i.e., ΦA = AΦ = I on compactly supported distri-
butions in R

n with values in C
k.

Proof. This follows by a trivial verification. �

The boundary Fourier method is based on an integral identity specifying the
complementary part of Bu in the Cauchy data of u on the boundary of X relative
to the generalised Cauchy-Riemann operator A(∂) = A1∂1 + . . . + An∂n. By the
above, there is no loss of generality in assuming that the rows of the matrix B(x)
are pointwise orthonormal. Then there is a (k/2×k) -matrix C of smooth functions
on ∂X , such that the matrix

T (x) =
(
B(x)
C(x)

)
is unitary for all x ∈ ∂X .

Lemma 4.2. There are unique matrices Badj and Cadj of continuous functions on
∂X with the property that∫

∂X

(
(Bu,Cadjg)x − (Cu,Badjg)x

)
ds =

∫
X
((Au, g)x − (u,A∗g)x) dx (4.1)

for all u ∈ H1(X ,Ck) and g ∈ H1(X ,Ck), where ds is the surface measure on the
boundary.

Proof. Since T (x) is a unitary matrix for all x ∈ ∂X , we get T ∗T = Ek, which is
equivalent to B∗B + C∗C = Ek.

Given any u ∈ H1(X ,Ck) and g ∈ H1(X ,Ck), the Green formula of [Tar95,
9.2.2] shows that ∫

∂X
(σu, g)x ds =

∫
X
((Au, g)x − (u,A∗g)x) dx

where σ(x) := σ(A)(−ıν(x)) for x ∈ ∂X . On substituting u = (B∗B +C∗C)u into
this formula yields (4.1) with

Cadj = Bσ∗,
Badj = −Cσ∗, (4.2)

as desired. �
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From (4.2) it follows immediately that the ranks of both Cadj and Badj are equal
to k/2.

Formula (4.1) is said to be a Green formula related to the boundary value prob-
lem {A,B}. The formula is not uniquely determined by the pair {A,B}, for the
complementary part C of B in the Cauchy data {B,C} can be chosen in many
ways. On choosing C we fix a duality on the manifold with boundary X associated
with {A,B}. The problem{

A∗g = v in X ,
Badjg = g0 on ∂X (4.3)

is called adjoint to {A,B} with respect to the Green formula. Clearly, (4.3) is of
Hilbert type, too.

From the Green formula it follows that for the solvability of problem (1.1), (2.1)
it is necessary that ∫

∂X
(u0, C

adjg)x ds = 0 (4.4)

for all g ∈ H1(X ,Ck) which satisfy the homogeneous problem corresponding to
(4.3), i.e., A∗g = 0 in X and Badjg = 0 on ∂X . The moment conditions (4.4)
specify a closed space of boundary data u0 which contains the range of the Hilbert
boundary value problem. However, this space need not have finite codimension,
for the space of solutions of the homogeneous adjoint problem may be infinite
dimensional, cf. Section 3.

5. Hardy spaces

For a smooth function f in X , we set fε(y) := f(y − εν(y)), where ν(y) is the
unit outward normal to ∂X at y. So fε is a family of smooth functions on ∂X
parametrised by a small parameter ε > 0. We say that f admits a distribution
boundary value on ∂X , if

lim
ε→0+

∫
∂X

fεg ds =: 〈f0, g〉 (5.1)

exists for all g ∈ C∞
comp(∂X ). In this case the limit defines a distribution f0 on the

boundary and the convergence is not only in the weak sense but also in the strong
topology on D′(∂X ).

The local structure of harmonic functions admitting distribution boundary values
is well known.

Theorem 5.1. For a harmonic function f in X , the following properties are equiv-
alent:

1) f admits a distribution boundary value on ∂X .
2) f is in the Sobolev space H−s(X ), for some integer s.
3) There exist an integer N and C > 0, such that |f(x)| ≤ C/(dist(x, ∂X ))N for

all x ∈ X .
4) For any x0 ∈ ∂X there are a neighbourhood U in R

n and a function h har-
monic in U ∩X and continuous in U ∩X , such that f = 〈c, ∂〉Nh in U ∩X , where
c ∈ R

n is a constant vector and N an integer.

Proof. See [Str84, Theorem 1.1]. The proof actually shows that, for a harmonic
function f which admits a distribution boundary value on ∂X , this boundary value
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is the trace of f on ∂X in the sense of Sobolev spaces, i.e., f0 ∈ H−s−1/2(∂X )
provided f ∈ H−s(X ). �

From Theorem 5.1 it follows that if f is a harmonic function in X which admits
a distribution boundary value on ∂X then∑

|α|≤m

bα(x) ∂
αf

also admits a distribution boundary value on ∂X whenever the coefficients bα are
C∞ in the closure of X . It is worth pointing out that this function need not be
harmonic.

Just as in the case of more familiar harmonic Hardy spaces, the Poisson inte-
gral mediates between boundary values and the corresponding harmonic functions.
Given a distribution f0 on ∂X , we write P (f0) for the Poisson integral of f0. It is
defined by P (f0)(x) = 〈P (x, ·), f0〉 for x ∈ X , where P (x, y) is the Poisson kernel
for X , i.e., the normal derivative of the Green function G(x, y) at y ∈ ∂X . For each
integer s, the Poisson integral induces an isomorphism of H−s−1/2(∂X ) onto the
subspace of H−s(X ) consisting of harmonic functions in X . Its inverse is the map
assigning to each harmonic function f ∈ H−s(X ) its boundary value, see Corollary
1.7 in [Str84].

Yet another designation for functions in X , which are polynomially bounded in
1/dist(x, ∂X ), is functions of finite order of growth near the boundary, cf. Chapter 9
in [Tar95] and elsewhere. By the above, a harmonic function of finite order of growth
near the boundary in X is uniquely determined by its distribution boundary value
on ∂X . This allows one to identify harmonic functions of finite order of growth
in X with their boundary values on ∂X . In this way we obtain many interesting
Banach spaces of harmonic functions in the domain X . The most popular of them
is perhaps the Hardy space H2(X ). This space is defined to consist of all harmonic
functions in X of finite order of growth near the boundary, whose distribution
boundary values on ∂X belong to L2(∂X ). When endowed with L2(∂X ) -norm,
H2(X ) is a Hilbert space.

Let now u be a smooth function in X with values in C
k satisfying a generalised

Cauchy-Riemann system Au = 0 in X . If there exist an integer N and C > 0,
such that |u(x)| ≤ C/(dist(x, ∂X ))N for all x ∈ X , then the same is true for the
components of u. By Theorem 5.1, each component admits a distribution boundary
value on ∂X . Hence, u admits a boundary value on ∂X which is a continuous linear
functional on C∞

comp(∂X ,Ck). Moreover, both Bu and Cu admit boundary values

on ∂X which are distributions with values in C
k. This is precisely the sense in

which we interpret them in the following formula analogous to the Cauchy integral
formula.

Lemma 5.2. For each solution u to equations (1.1) in X of finite order of growth
near ∂X , it follows that

−
∫
∂X

(
(Bu,CadjΦ(x− ·)∗)y − (Cu,BadjΦ(x− ·)∗)y

)
ds =

{ u(x), if x ∈ X ,
0, if x ∈ R

n \ X .
(5.2)

Note that (Φ(x − y))∗ = (Ae)(x − y) for all x and y away from the diagonal of
R

n, as is easy to check.
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Proof. See Theorem 9.4.1 of [Tar95]. �

This reasoning, when looked at from a more general point of view, leads to new
investigations of Fredholm boundary value problems in Hardy spaces, see [Tar95,
11.2.2].

Part 2. Boundary Fourier method

6. Operator-theoretic foundations

The operator-theoretic foundations of the method of Fischer-Riesz equations
are elaborated in [Tar95, 11.1]. It goes back at least as far as [PF50]. Here we
adapt this method for studying the Hilbert boundary value problem for generalised
Cauchy-Riemann equations.

Any solution of generalised Cauchy-Riemann equations in X is a k -column of
harmonic functions in this domain. Therefore, the k -fold product of the Hardy
space

H2(X )k = H2(X )× . . .×H2(X )︸ ︷︷ ︸
k times

fits well to constitute the domain of problem (1.1), (2.1). More precisely, denote
by H1 the vector space of all u ∈ H2(X )k satisfying Au = 0 in X . When endowed
with the L2(∂X ,Ck) -norm, this space is complete, i.e., a Hilbert space. Besides,
set H2 = L2(∂X ,Ck/2) and

H = H2 × L2(∂X ,Ck/2).

Consider the mappingM : H1 → H given byMu = (Bu,Cu), which corresponds
to the Cauchy problem for solutions of Au = 0 in X with Cauchy data Bu = u0

and Cu = u1 on ∂X . By the above, M is continuous. In Section 7 we will prove
that M has closed range.

Denote by M∗ : H → H1 the operator that is adjoint to M : H1 → H in the
sense of Hilbert spaces.

Lemma 6.1. The null-space kerM∗ of the operator M∗ is separable in the topology
induced from H.

Proof. This is true by the school fact that any subspace of a separable metric space
is separable. �

Let SA∗(X ) stand for the space of all solutions to the formal adjoint system
A∗g = 0 on neighbourhoods of X . Since A∗ is elliptic, these are real analytic
functions with values in C

k.

Lemma 6.2. Assume that g ∈ SA∗(X ). Then the couple (Cadjg,−Badjg) belongs
to kerM∗.

Proof. One has to show that (Mu, (Cadjg,−Badjg))H = 0 for all u ∈ H1. By the
Green formula, we get

(Mu, (Cadjg,−Badjg))H =

∫
∂X

(
(Bu,Cadjg)x − (Cu,Badjg)x

)
ds

= 0,

as desired. �
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The subspace of kerM∗ consisting of all elements of the form (Cadjg,−Badjg),
where g ∈ SA∗(X ), is separable. Hence, there are many ways to choose a sequence
{gi}i=1,2,... in SA∗(X ), such that the system {(Cadjgi,−Badjgi)} is complete in this
subspace.

In Example 6.5 we will show some explicit sequences {gi} with this property.
For the moment we fix one of such sequences.

Lemma 6.3. As defined above, the system {(Cadjgi,−Badjgi)}i=1,2,... is complete
in kerM∗.

Proof. Let F be a continuous linear functional on kerM∗ vanishing on each element
of the system {(Cadjgi,−Badjgi)}. Since kerM∗ is a closed subspace of H, the Riesz
representation theorem implies the existence of an element (u0, u1) ∈ kerM∗, such
that the action of F on kerM∗ consists in scalar multiplication with the element
(u0, u1). In particular,

F(Cadjgi,−Badjgi) =

∫
∂X

(
(Cadjgi, u0)x − (Badjgi, u1)x

)
ds

= 0

for all i = 1, 2, . . .. Since the system {(Cadjgi,−Badjgi)}i=1,2,... is dense in the
subspace of kerM∗ consisting of all elements of the form (Cadjg,−Badjg), where
g ∈ SA∗(X ), we get ∫

∂X

(
(u0, C

adjg)x − (u1, B
adjg)x

)
ds = 0

for all g ∈ SA∗(X ). We now use Theorem 7.1 which says that there exists a function
u ∈ H2(X )k such that Au = 0 in X and Bu = u0, Cu = u1 at the boundary of
X . In other words, (u0, u1) = Mu. Hence it follows that F(h) = (h,Mu)H = 0
for all h ∈ kerM∗. Thus, F ≡ 0 and the standard application of the Hahn-Banach
theorem completes the proof. �

Write P for the orthogonal projection of H onto the first factor H2. The com-
position PM = B acting from H1 to H2 just amounts to the operator of bound-
ary value problem (1.1), (2.1) in the updated setting. More precisely, given any
u0 ∈ L2(∂X ,Ck/2), find u ∈ H2(X )k satisfying Au = 0 in X and Bu = u0 weakly
on the boundary of X . The following lemma expresses the most important property
of the system {gi}.
Lemma 6.4. The system {Badjgi}i=1,2,... is complete in L2(∂X ,Ck/2) if and only
if PM is injective.

Proof. By the Hahn-Banach theorem, {Badjgi} is complete in L2(∂X ,Ck/2) if and
only if any continuous linear functional F on L2(∂X ,Ck/2) vanishing on each ele-
ment of the system, is zero. Pick such a functional F . By the Riesz representation
theorem there is a function u1 ∈ L2(∂X ,Ck/2) such that F(h) = (h, u1) for all
h ∈ L2(∂X ,Ck/2). So we get

((0, u1), (C
adjgi,−Badjgi))H = −(Badjgi, u1)L2(∂X ,Ck/2)

= −F(Badjgi)

= 0
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for all i = 1, 2, . . .. Applying Lemma 6.3 we deduce that the element (0, u1) belongs
to the orthogonal complement of the subspace kerM∗ in H. Since the operator M
has closed range, the orthogonal complement of kerM∗ coincides with the range of
M . Hence, there is a function u ∈ H2(X )k satisfying Au = 0 in X and Bu = 0,
Cu = u1 on ∂X . If the operator PM is injective, then u = 0 whence u1 = 0
and F = 0. Conversely, if the functional F is different from zero, then u1 is not
zero and so the operator PM fails to be injective, which is precisely the desired
conclusion. �

After removing the elements which are linear combinations of the previous ones
from the system {Badjgi}i=1,2,..., we get a sequence {gin} in SA∗(X ), such that
the system {Badjgin} is linearly independent. Applying then the Gram-Schmidt
orthogonalisation to the system {Badjgin} in L2(∂X ,Ck/2), we obtain a new sys-
tem {en}n=1,2,... in SA∗(X ), such that {Badjen} is an orthonormal system in the

space L2(∂X ,Ck/2). Moreover, {Badjen} is an orthonormal basis in L2(∂X ,Ck/2),
provided that PM is injective. Note that the elements en of the new system have
explicit expressions through the elements {gi1 , . . . , gin} of the old system in the
form of Gram’s determinants.

Example 6.5. Since X is a bounded domain with smooth boundary, its comple-
ment has only finitely many connected components. Let {xi} be a finite set of
points in R

n \ X , such that each connected component of Rn \ X contains at least
one point xi. Then the columns of the matrix ∂αΦ(xi − ·)∗ belong to SA∗(X ) and
the system {Badj∂αΦ(xi − ·)∗} is complete in the subspace of L2(X ,Ck/2) formed
by elements of the type Badjg with g ∈ SA∗(X ).

The proof of this fact actually repeats the reasoning of Example 11.4.14 in
[Tar95]. Apparently the system of Example 6.5 is most convenient for numerical
simulations.

7. The Cauchy problem

For u ∈ H2(X )k, the Green formula (4.1) displays the Cauchy data of u on the
boundary of X with respect to the operator A. These are weak limit values of Bu
and Cu at ∂X . Hence we formulate the Cauchy problem as follows: Given any
u0 ∈ L2(∂X ,Ck/2) and u1 ∈ L2(∂X ,Ck/2), find a function u ∈ H2(X )k satisfying
Au = 0 in X and {

Bu = u0,
Cu = u1

(7.1)

on ∂X .
The Cauchy problem for solutions of systems with injective symbol and data on

the whole boundary was intensively studied in the 1960s. This study was motivated
to a certain extent by the paper [Cal63]. The study of the Cauchy problem in
Hardy spaces is motivated by the problem of analytic continuation, cf. Chapter 11
in [Tar95].

Theorem 7.1. Let u0, u1 ∈ L2(∂X ,Ck/2) be given functions. In order that there
might exist a solution u ∈ H2(X )k to Au = 0 in X subject to (7.1), it is necessary
and sufficient that ∫

∂X

(
(u0, C

adjg)x − (u1, B
adjg)x

)
ds = 0 (7.2)
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for all g ∈ SA∗(X ).

Proof. Necessity. If u ∈ H2(X )k is a solution of the Cauchy problem with data u0,
u1, then by the Green formula∫

∂X

(
(u0, C

adjg)x − (u1, B
adjg)x

)
ds =

∫
∂X

(
(Bu,Cadjg)x − (Cu,Badjg)x

)
ds

= 0

for all g ∈ SA∗(X ), as required.
Sufficiency. We introduce a function U in X \ ∂X with values in C

k by the
Green-type integral

U(x) = −
∫
∂X

(
(u0, C

adjΦ(x− ·)∗)y − (u1, B
adjΦ(x− ·)∗)y

)
ds, (7.3)

where x ∈ X \ ∂X . An easy calculation using (4.2) shows that

(u0, C
adjΦ(x− ·)∗)y − (u1, B

adjΦ(x− ·)∗)y = Φ(x− ·)(σub)

on ∂X , where

ub = B∗u0 + C∗u1.

Since (
B
C

)
(B∗, C∗) =

( BB∗ BC∗

CB∗ CC∗
)
= Ek,

we get Bub = u0 and Cub = u1, and so ub is of class L
2(∂X ,Ck) if and only if both

u0 and u1 belong to L2(∂X ,Ck/2). Thus, formula (7.3) reduces to

U = −Φ ∗ ([∂X ]σub)

in X \ ∂X .
For each fixed x ∈ X \X , the columns of the matrix Φ(x−·)∗ belong to SA∗(X ).

Hence, (7.2) implies that U vanishes in the complement of X .
Set u = U �X . We next prove that u is the desired solution of the Cauchy

problem. This is equivalent to saying that u ∈ H2(X )k and Au = 0 in X , u �∂X= ub

at ∂X .
From the structure of the fundamental matrix Φ it follows immediately that u

belongs to H2(X )k and satisfies Au = 0 in X . Since ub ∈ L2(∂X ,Ck), the jump of
the double layer potential Φ([∂X ]σub) under crossing the surface ∂X from X \X to
X just amounts to ub. This is true even for all distributions ub on ∂X taking their
values in C

k, see Theorem 10.1.5 in [Tar95]. For the square integrable densities ub

the jump is understood in an appropriate sense including the L2(∂X ,Ck) -norm.
Summarising we conclude that u �∂X= ub, for U vanishes in X \X . This completes
the proof. �

8. The Fischer-Riesz equations

Let {gi}i=1,2,... be an arbitrary sequence in SA∗(X ) with the property that the
system {(Cadjgi,−Badjgi)} is complete in kerM∗. Applying the Gram-Schmidt
orthogonalisation to the system {Badjgi} in L2(∂X ,Ck/2), we obtain a new system
{en}n=1,2,... in SA∗(X ), such that the system {Badjen} is orthonormal in the space

L2(∂X ,Ck/2).
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Given any u1 ∈ L2(∂X ,Ck/2), we denote by kn(u1) the Fourier coefficients of u1

with respect to the system {Badjen}, i.e.,

kn(u1) =

∫
∂X

(u1, B
adjen)y ds

for n = 1, 2, . . ..

Lemma 8.1. If u ∈ H2(∂X )k satisfies Au = 0 in X , then

kn(Cu) =

∫
∂X

(Bu,Cadjen)y ds,

where n = 1, 2, . . ..

Proof. Using Lemma 6.2 we obtain

kn(Cu) =

∫
∂X

(Cu,Badjen)y ds+ (Mu, (Cadjen,−Badjen))H

=

∫
∂X

(Bu,Cadjen)y ds,

as desired. �

Thus, in order to find the Fourier coefficients of the data Cu on the boundary
with respect to the system {Badjen} in L2(∂X ,Ck/2), it suffices to know only the
data Bu of problem (1.1), (2.1).

Theorem 8.2. Let u0 ∈ L2(∂X ,Ck/2). In order that there be a u ∈ H2(X )k such
that Au = 0 in X and Bu = u0 on ∂X , it is necessary and sufficient that

1)
∞∑

n=1

|cn|2 < ∞, where cn =

∫
∂X

(u0, C
adjen)y ds, and

2)

∫
∂X

(u0, C
adjg)y ds = 0 for all g ∈ SA∗(X ) satisfying Badjg = 0 on the bound-

ary.

Proof. Necessity. Suppose there is a function u ∈ H2(X )k satisfying Au = 0 in X
and Bu = u0 at ∂X . Then cn = kn(Cu) for all n = 1, 2, . . ., which is due to Lemma
8.1. Applying the Bessel inequality yields

∞∑
n=1

|cn|2 =
∞∑

n=1

|kn(Cu)|2 ≤
∫
∂X

|Cu|2 ds < ∞,

and 1) is proved. On the other hand, 2) follows immediately from the Green
formula, as desired.

Sufficiency. We now assume that 1) and 2) are satisfied. Condition 1) implies,
by the Fischer-Riesz theorem, that there exists a function u1 ∈ L2(∂X ,Ck/2), such
that {cn}n=1,2,... are the Fourier coefficients of u1 with respect to the orthonormal

system {Badjen} in L2(∂X ,Ck/2). In other words, we get cn = kn(u1) for all
n = 1, 2, . . .. On substituting formulas for cn from 1) into these equalities we arrive
at the orthogonality relations∫

∂X

(
(u0, C

adjen)y − (u1, B
adjen)y

)
ds = 0 (8.1)

for n = 1, 2, . . ., cf. (7.2).
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Our next goal is to prove that the element (u0, u1) ∈ H is actually orthogonal
to all elements of the system {(Cadjgi,−Badjgi)}i=1,2,... in H, this latter being
complete in kerM∗. To do this, let us recall how the system {en} has been obtained
from the system {gi}.

Even if the system {(Cadjgi,−Badjgi)} is linearly independent in H, the system
{Badjgi} may have elements which are linear combinations of the previous ones
in the space L2(∂X ,Ck/2). Such elements should be eliminated from the system
before applying the Gram-Schmidt orthogonalisation.

For example, suppose that, for some i, the equality

Badjgi =
i−1∑
j=1

ci,j B
adjgj

is fulfilled with suitable complex numbers ci,j . Consider the function

g′i = gi −
i−1∑
j=1

ci,j gj

which belongs to SA∗(X ). Obviously, (Cadjg′i,−Badjg′i) lies in kerM∗ and satisfies
Badjg′i = 0. It follows that

gi =

i−1∑
j=1

ci,j gj + g′i.

All the other elements (Cadjgi,−Badjgi), except for the eliminated ones, are ex-
pressed, by the contents of Gram-Schmidt orthogonalisation, as linear combina-
tions of the elements {(Cadjen,−Badjen)}n=1,...,i. Thus, any element of the system
{(Cadjgi,−Badjgi)} has a unique expression through the elements of the system
{(Cadjen,−Badjen)}n=1,2,... in the form

gi =
i∑

n=1

ci,n en + g′i, (8.2)

where g′i ∈ SA∗(X ) satisfies Badjg′i = 0 on the boundary ∂X .
From equalities (8.1) and (8.2) and condition 2) of the theorem it follows imme-

diately that

((u0, u1), (C
adjgi,−Badjgi))H

=

i∑
n=1

ci,n ((u0, u1), (C
adjen,−Badjen))H + ((u0, u1), (C

adjg′i,−Badjg′i))H

= 0

for all i = 1, 2, . . .. Since the system {(Cadjgi,−Badjgi)}i=1,2,... is complete in
kerM∗, the element (u0, u1) belongs to the orthogonal complement of this subspace
in H. Using the lemma of operator kernel annihilator, we deduce that there exists
a function u ∈ H1 satisfying Mu = (u0, u1). In particular, u ∈ H2(X )k satisfies
Au = 0 in X and Bu = u0 on ∂X , i.e., u is the desired solution of boundary value
problem (1.1), (2.1). �
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The convergence of the series in 1) guarantees the stability of boundary value
problem (1.1), (2.1). Under this condition, the range of the mapping PM is de-
scribed in terms of continuous linear functionals on the space H, cf. 2) , which is
impossible in the general case.

Corollary 8.3. Under the hypotheses of Theorem 8.2, if moreover the homogeneous
adjoint boundary value problem (4.3) has no smooth solutions in X different from
zero, then for problem (1.1), (2.1) to possess a solution u ∈ H2(X )k it is necessary
and sufficient that

∞∑
n=1

|cn|2 < ∞.

Proof. This follows immediately from Theorem 8.2 since condition 2) is automati-
cally fulfilled. �

9. Regularisation of solutions

Note that the proof of Theorem 8.2 works without the assumption that the oper-
ator PM in H is injective. Our next objective will be to construct an approximate
solution to boundary value problem (1.1), (2.1). To this end it is natural to as-
sume that the corresponding homogeneous boundary value problem has only zero
solution in the space H2(X )k, i.e., the mapping PM is injective. In this case the
orthonormal system {Badjen} is actually complete in the space L2(∂X ,Ck/2). The
orthonormal bases in L2(∂X ,Ck/2) of this form are said to be special, cf. [Tar95,
11.3].

For x ∈ X \ ∂X , we denote by kn(B
adjΦ(x − ·)∗) the k -row whose entries are

the Fourier coefficients of the columns of the ((k/2)×k) -matrix BadjΦ(x−·)∗ with
respect to the orthonormal basis {Badjen}n=1,2,... in L2(∂X ,Ck/2). More precisely,
we set

kn(B
adjΦ(x− ·)∗) =

∫
∂X

(BadjΦ(x− ·)∗, Badjen)y ds

for n = 1, 2, . . ..

Lemma 9.1. For n = 1, 2, . . ., the coefficients kn(B
adjΦ(x−·)∗) are analytic func-

tions in X \ ∂X with values in (Ck)∗.

Proof. The assertion is obvious, for the fundamental solution Φ(x − y) is analytic
away from the diagonal of X × X . �

Consider the following (Schwartz) kernels RN defined for x ∈ X \ ∂X and y in a
neighbourhood of X :

RN (x, y) = Φ(x− y)−
N∑

n=1

kn(B
adjΦ(x− ·)∗)∗ en(y)∗,

where N = 1, 2, . . ..

Lemma 9.2. As defined above, the kernels RN are analytic in x ∈ X \∂X and y in
a neighbourhood of X except for the diagonal {x = y}, and A∗(y,D)RN (·− y)∗ = 0
on this set.

Proof. This follows immediately from Lemma 9.1 and the fact that en ∈ SA∗(X ),
as desired. �
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The sequence {RN} provides a very special approximation of the fundamental
solution Φ.

Lemma 9.3. The sequence {BadjRN (x, ·)∗}N=1,2,... converges to zero in the norm

of L2(∂X ,C(k/2)×k) uniformly in x on compact subsets of X \ ∂X .

Proof. In fact, we get

BadjRN (x, ·)∗ = BadjΦ(x− ·)∗ −
N∑

n=1

Badjen kn(B
adjΦ(x− ·)∗)

=

∞∑
n=N+1

Badjen kn(B
adjΦ(x− ·)∗)

for each fixed x ∈ X \∂X . The right-hand side of this equality is a remainder of the
Fourier series of the element BadjRN (x, ·)∗ with respect to the orthonormal basis
{Badjen} in L2(∂X ,Ck/2). Hence, it tends to zero in the L2(∂X ,C(k/2)×k) -norm,
as N → ∞. This proves the first part of the lemma. The second part follows from
a general remark on Fourier series, for the mapping of X \ ∂X to L2(∂X ,C(k/2)×k)
given by

x �→ BadjΦ(x− ·)∗

is continuous. �

The convergence of the approximations allows one to reconstruct solutions u of
the class H2(X ,Ck) to Au = 0 in X through their data Bu.

Theorem 9.4. Every function u ∈ H2(X )k satisfying Au = 0 in X can be repre-
sented by the integral formula

u(x) = lim
N→∞

(
−
∫
∂X

(Bu,CadjRN (x, ·)∗)y ds
)

for all x ∈ X .

Proof. Fix a point x ∈ X . Since RN (x, ·)∗ and Φ(x−·)∗ differ by a k -row of smooth
solutions of the system A∗g = 0 in a neighbourhood of X , one can write by the
Green formula

u(x) = −
∫
∂X

(
(Bu,CadjRN (x, ·)∗)y − (Cu,BadjRN (x, ·)∗)y

)
ds (9.1)

for any N = 1, 2, . . .. From u ∈ H2(X )k we deduce that Cu ∈ L2(∂X ,Ck/2). Hence
it follows by Lemma 9.3 that

lim
N→∞

∫
∂X

(Cu,BadjRN (x, ·)∗)y ds = 0.

Thus, letting N → ∞ in (9.1) establishes the formula. �

As mentioned, for many problems of mathematical physics formulas for approx-
imate solution like that of Theorem 9.4 were earlier obtained by Kupradze and his
colleagues, see [Kup67].
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10. Solvability of elliptic boundary value problems

We can now return to the Sobolev space setting of boundary value problem (1.1),
(2.1) which isH1 = H1(X ,Ck). Given any u ∈ H1(X ,Ck), both Au and Bu are well
defined in L2(X ,Ck) and H1/2(∂X ,Ck/2), respectively. Hence, the analysis does
not require any function spaces of negative smoothness. More generally, let s be a
natural number. Given any u0 in Hs−1/2(∂X ,Ck/2), we look for a u ∈ Hs(X ,Ck)
satisfying (1.1), (2.1). Theorem 8.2 still applies to establish the existence of a weak
solution u ∈ H2(X )k, provided that the conditions 1) and 2) are fulfilled. To
infer the existence of a Sobolev space solution, one needs a regularity theorem for
weak solutions in H2(X )k saying that any weak solution belongs actually to the
Sobolev space Hs(X ,Ck). This is the case if (1.1), (2.1) is an elliptic boundary
value problem, i.e., the pair {A,B} satisfies the Shapiro-Lopatinskij condition at
the boundary of X .

Corollary 10.1. Suppose a regularity theorem holds for boundary value problem
(1.1), (2.1). Let u0 ∈ Hs−1/2(∂X ,Ck/2), where s = 1, 2, . . .. Then, in order that
there be a u ∈ Hs(X ,Ck) satisfying Au = 0 in X and Bu = u0 on ∂X it is necessary
and sufficient that

1)

∞∑
n=1

|cn|2 < ∞, where cn =

∫
∂X

(u0, C
adjen)y ds, and

2)

∫
∂X

(u0, C
adjg)y ds = 0 for all g ∈ SA∗(X ) satisfying Badjg = 0 at the bound-

ary.

Proof. It is sufficient to prove the sufficiency of conditions 1) and 2) . If the con-
ditions 1) and 2) are satisfied, then there exists a function u ∈ H2(X )k, such
that Au = 0 in X and Bu = u0 on ∂X . For solutions of Au = 0 in X the
condition u ∈ H2(X )k just amounts to saying that u ∈ H1/2(X ,Ck). Since
Au ∈ Hs−1(X ,Ck) and Bu ∈ Hs−1/2(∂X ,Ck/2), the regularity theorem implies
that u ∈ Hs(X ,Ck), as desired. �

If {A,B} is elliptic then so is the problem {A∗, Badj} adjoint to {A,B} with
respect to the Green formula. By the Fredholm property, the space of all g ∈
SA∗(X ) satisfying Badjg = 0 on ∂X , is finite dimensional. Moreover, the condition
2) alone is sufficient for the existence of a solution u ∈ Hs(X ,Ck) to problem (1.1),
(2.1). Hence it follows that for elliptic boundary value problems the condition 1)
is automatically fulfilled.

Thus, the regularity problem for weak solutions of (1.1), (2.1) is still of primary
character in the study of boundary value problems. On the other hand, our ap-
proach demonstrates rather strikingly that Theorem 9.4 is of great importance for
numerical simulation.
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