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NAVIER-STOKES EQUATIONS FOR ELLIPTIC COMPLEXES

AZAL MERA, ALEXANDER SHLAPUNOV, AND NIKOLAI TARKHANOV

Abstract. We continue our study of invariant forms of the classical equations

of mathematical physics, such as the Maxwell equations or the Lamé system,

on manifold with boundary. To this end we interpret them in terms of the de

Rham complex at a certain step. On using the structure of the complex we

get an insight to predict a degeneracy deeply encoded in the equations. In the

present paper we develop an invariant approach to the classical Navier-Stokes

equations.
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2 A. MERA, A. SHLAPUNOV, AND N. TARKHANOV

Introduction

The problem of describing the dynamics of incompressible viscous fluid is of great
importance in applications. In 2006 the Clay Mathematics Institute announced it
as the sixth prize millennium problem, see [Fef00]. The dynamics is described by
the Navier-Stokes equations and the problem consists in finding a classical solution
to the equations. By classical we would mean here a solution of a class which is good
motivated by applications and for which a uniqueness theorem is available. Essen-
tial contributions are published in the research articles [Ler34a, Ler34b], [Kol42],
[Hop51], [LS60], [Sol03] as well as surveys and books [Lad70, Lad03]), [Lio61, Lio69],
[Tem79], [FV80], etc.

In physics by the Navier-Stokes equations is meant the impulse equation for the
flow. In the computational fluid dynamics the impulse equation is enlarged by the
continuity and energy equations.

The impulse equation of dynamics of (compressible) viscous fluid was formu-
lated in differential form independently by Claude Navier (1827) and George Stokes
(1845). This is

ρ(u′
t + u′

xu) = −μΔu+ (λ+ μ)∇ div u−∇p+ f, (0.1)

where u : X × (0, T ) → R
3 and p : X × (0, T ) → R are the search-for velocity vector

field and pressure of a particle in the flow, respectively, ρ is the mass density, λ
and μ are the first Lamé constant and the dynamical viscosity of the fluid under
consideration, respectively, by u′

x is meant the Jacobi matrix of u in the spatial
variables, Δu = −u′′

x1x1
− u′′

x2x2
− u′′

x3x3
is the nonnegative Laplace operator in

R
3, and f is the density vector of outer forces, such as gravitation and so on, see

[Tem79] and elsewhere.
Here, X stands for a bounded domain in R

3 whose boundary is assumed to be
smooth enough. Hence, to specify a particular solution of (0.1), we consider the
first mixed problem in the cylinder X × (0, T ) by posing the initial conditions on
the lower basis of the cylinder and a Dirichlet condition on the lateral surface. To
wit,

u(x, 0) = u0(x), for x ∈ X ,
u(x, t) = ul(x, t), for (x, t) ∈ ∂X × (0, T ).

(0.2)

It is worth pointing out that the pressure p is determined solely from the impulse
equation up to an additive constant. To fix this constant it suffices to put a moment
condition on p.

If the density ρ does not change along the trajectories of particles, the flow is said
to be incompressible. It is the assumption that is most often used in applications.
For incompressible fluid the continuity equation takes the especially simple form
div u = 0 in X×(O, T ), i.e., the vector field u should be divergence free (solenoidal).
In many practical problems the flow is not only incompressible but it has even a
constant density. In this case one can divide by ρ in (0.1) which reduces the impulse
equation to

u′
t + u′

xu = −νΔu−∇p+ f,
div u = 0

(0.3)

in X × (0, T ), where ν = μ/ρ is the so-called kinematic viscosity and we use the
same letters p and f to designate p/ρ and f/ρ. In this way we obtain what is
referred to as but the Navier-Stokes equations.
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Using manipulations of the nonlinear term u′
xu Hopf [Hop51] proved that equa-

tions (0.3) under homogeneous data (0.2) have a weak solution satisfying the esti-
mate

‖u(·, t)‖2L2(X ,R3)+

∫ t

0

‖u′(·, t′)‖2L2(X ,R3×3)dt
′ ≤ ‖u0‖2L2(X ,R3)+

∫ t

0

‖f(·, t′)‖2L2(X ,R3)dt
′

for all t < T .
However, in this full generality no uniqueness theorem for a weak solution has

been known. On the other hand, under stronger conditions on the solution, it
is unique, cf. [Lad70, Lad03]. In contrast to [Fef00], we believe that the main
problem concerning the Navier-Stokes equations consists in removal of this gap,
i.e., in specifying adequate function spaces in which both existence and uniqueness
theorems are valid. From the viewpoint of pure mathematics this would initiate
new problems similar to that the complex Neumann problem gave rise to the study
of subelliptic operators, and even greater ones, let alone phenomena evoked by
nonlinear perturbations.

This paper is aimed in elaborating another insight into the Navier-Stokes equa-
tions. It consists in specifying this problem within the framework of global analysis
of elliptic complexes on manifolds.

Part 1. Reformulation within elliptic complexes

1. Generalised Navier-Stokes equations

Let X be a compact differentiable manifold of dimension n with or without
boundary. Consider the de Rham complex

0 → Ω0(X )
d→ Ω1(X )

d→ . . .
d→ Ωn(X ) → 0

on X , where Ω i(X ) are the spaces of differential forms of degree i with C∞ co-
efficients on X . The impulse equation can be immediately rewritten in terms of
one-forms as

ρu′
t + μΔu+ (λ+ μ)dd∗u+ dp+ (u′)∗u = f

in X×(0, T ), where d∗ is the formal adjoint of d, Δ = d∗d+dd∗ the Laplace operator
of Hodge, and (u′)∗ the dual of the tangential mapping u′(x) : TxX → TxX . Every
term in the equation makes still sense for differential forms u of arbitrary degree
0 ≤ i ≤ n, except for the nonlinear perturbation (u′)∗u which is defined solely
for one-forms. On the other hand, the specific form (u′)∗u does not survive under
simple transforms like a shift u �→ u+ v which are needed to reduce nonzero initial
or boundary data to the zero ones. Hence, to specify the nonlinearity we write it
in a more abstract form N(u), where N i is an unbounded nonlinear operator in
the space of differential forms of degree i with square integrable coefficients on X
and, as usual, we set Nu = N iu for u ∈ Ω i(X ). Later on we impose an additional
condition on N i which implies an energy estimate.

Hence, the impulse equation generalises to arbitrary step i of the de Rham
complex in the form

ρu′
t + μΔu+ (λ+ μ)dd∗u+ dp+N(u) = f

while the continuity equation for incompressible fluid reads d∗u = 0.

One studies these evolution equations in the open cylinder CT :=
◦
X × (0, T )

whose base is the interior of X . Up to the pressure p the linear part of the impulse



4 A. MERA, A. SHLAPUNOV, AND N. TARKHANOV

equation looks like the generalised Lamé system, cf. [MT14]. The crucial difference
lies in the fact that the impulse equation of hydrodynamics is parabolic while the
Lamé system is of hyperbolic type. This is clarified within elasticity theory which
proceeds from the assumption that the displacement u befalls along the optical
fibres similarly to waves.

We now assume that

0 → C∞(X , F 0)
A→ C∞(X , F 1)

A→ . . .
A→ C∞(X , FN ) → 0 (1.1)

is an arbitrary elliptic complex of first order differential operators between sections
of vector bundles F i over X . The differential A of this complex is given by a
sequence Ai ∈ Diff1(X ;F i, F i+1) satisfying Ai+1Ai = 0, where Ai ≡ 0 unless
i = 0, 1, . . . , N − 1. We introduce the generalised Navier-Stokes equations by

u′
t + νΔu+Ap+N(u) = f,

A∗u = 0
(1.2)

for unknown sections u and p of the (induced) vector bundles F i and F i−1 over
CT , respectively, where Δ = A∗A + AA∗ is the Laplacian of complex (1.1) and
N a graded operator corresponding to a sequence {N i} of unbounded nonlinear
operators in the spaces L2(X , F i) of square integrable sections of the vector bundles
F i. By the above, we set ν = ν/ρ.

Example 1.1. For i = 0 equations (1.2) reduce obviously to

u′
t + νΔu+N(u) = f

in CT because A acts at step −1 as zero. This equation can be thought of as a far-
reaching generalisation of the well-known Burgers equation in one spatial variable,
see [Bur40], [Hop50].

When posing initial and boundary conditions for a solution (u, p) of (1.2), we
observe that the “pressure” p is no longer determined by u up to a finite-dimensional
subspace of L2(X , F i−1), for the null-space of Ai−1 need not be of finite dimension.
Hence, we have to subject p to certain boundary conditions. Since we are going to
project the first equation of (1.2) onto the space of solutions to A∗u = 0, we look
for a suitable boundary condition within the framework of the Neumann problem
after Spencer, see [Tar95]. Given any v ∈ L2(X , F i), it consists in finding a section
g ∈ L2(X , F i) satisfying Δg = v in X and n(g) = n(Ag) = 0 at ∂X in a weak
sense. Here, by n(g) is meant the so-called normal part of g at the boundary which
bears the Cauchy data of g with respect to A∗. As already mentioned, the study of
this problem stimulated to essential development of analysis and geometry in the
1960s.

Lemma 1.2. Suppose that the Neumann problem is solvable at step i for the com-
plex (1.1) and H and G are the corresponding harmonic projection and the Green
operator. Then the operator Pg := Hg + A∗AGg is an orthogonal projection in
L2(X , F i).

Proof. Under the assumption of the lemma, the space of all g ∈ L2(X , F i) satisfying
Δg = 0 in X and n(g) = n(Ag) = 0 at ∂X is finite dimensional. The elements
of this space are called harmonic sections and they actually satisfy Ag = A∗g = 0
in X . The harmonic sections prove to be C∞ sections of F i over X , and so the
orthogonal projection H onto the space is a smoothing operator. Moreover, there
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is a compact selfadjoint operator G in L2(X , F i), such that n(Gg) = n(AGg) = 0
at ∂X for all g ∈ L2(X , F i) and the identity operator in L2(X , F i) splits into
H + A∗AG + AA∗G. The Green operator G is of pseudodifferential nature. The
decomposition g = Hg + A∗AGg + AA∗Gg valid for all g ∈ L2(X , F i) is usually
referred to as the generalised Hodge decomposition. Since A2 = 0, the summands
are pairwise orthogonal, and so both A∗AG and AA∗G are orthogonal projections,
too. For a thorough discussion of the Neumann problem we refer the reader to
[Tar95, Ch. 4]. �

The projector P is an analogue of the Helmholtz projector onto vector fields
which are divergence free. A slightly different approach to this decomposition is
presented in [Lad70].

Lemma 1.3. In order that Pg = g be valid it is necessary and sufficient that
A∗g = 0 in X and n(g) = 0 at ∂X .

Proof. Suppose that Pg = g. Then A∗g = A∗(Hg + A∗AGg) vanishes in X and
n(g) = n(Hg + A∗AGg) vanishes at ∂X , for n(AGg) = 0 implies immediately
n(A∗ AGg) = 0, as is easy to check. On the other hand, if A∗g = 0 in X and
n(g) = 0 at ∂X , then an easy calculation shows that A∗(Gg) = 0 whence Pg = g,
as desired. �

From Lemma 1.3 it follows that P vanishes on sections of the form Ap with
p ∈ L2(X , F i−1) and Ap ∈ L2(X , F i). Indeed, to prove this it suffices to show that
Ap is orthogonal to all sections g satisfying A∗g = 0 in X and n(g) = 0 at the
boundary. For such a section g we get

(Ap, g)L2(X ,F i) = (p,A∗g)L2(X ,F i−1)

= 0,

as desired.
Since equations (1.2) do not contain any derivative of p in t, we formulate an

initial condition

u(x, 0) = u0(x), (1.3)

for each x ∈
◦
X , on the base of the cylinder CT , and a boundary condition

u(x, t) = ul(x, t) (1.4)

for all (x, t) ∈ ∂X × (0, T ) on the lateral surface of CT . If u is affixed to u0 at the
initial moment t = 0 strong enough, then u0 should inherit from u the condition
A∗u0 = 0 in some weak sense in X . Moreover, the normal component of the
“velocity” u at the lateral surface should vanish, hence n(ul) = 0 at ∂X × (0, T ).
We thus get

A∗u0 = 0 in X ,
n(ul) = 0 at ∂X × (0, T ),

(1.5)

a compatibility condition completing the physical interpretation of (1.2) as gener-
alised Navier-Stokes equations.

If the smoothness of u allows one to control the values of u at ∂X up to t = 0,
then (1.5) implies, in particular, that u0 is a solution of the Cauchy problem for
the formal adjoint of Ai−1 with zero data in X . For i = N the differential operator
Ai−1∗ is (possibly, overdetermined) elliptic, and so u0 is specified within a subspace
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of C∞(X , FN ) of finite dimension. Note that for i = 0 both equations of (1.5) are
empty.

Neither of equations (1.3) and (1.4) puts any restriction on the “pressure” p,
and so p remains still undetermined. If looking for a p ∈ L2(CT , F i−1) within
the framework of the Neumann problem, one can determine p uniquely from the
condition that p is orthogonal to the space of all solutions v ∈ L2(X , F i−1) of the
homogeneous equation Av = 0 in X . This solution is called canonical (it amounts
to A∗G(Ap)).

2. Energy estimates

As is known, one of the main relations for incompressible viscous fluid in a
bounded domain X ⊂ R

n with smooth boundary is the so-called energy balance
relation

1

2

∫
X
|u|2dx ∣∣t′′

t′ + ν

∫ t′′

t′

∫
X
|u′

x|2dxdt =
∫ t′′

t′

∫
X
(f, u) dxdt

for all t′, t′′ ∈ (0, T ). It is valid for all sufficiently smooth nonstationary vector
fields u(x, t) on the cylinder CT over X , satisfying (0.3) under the homogeneous
boundary condition u = 0 at ∂X . The proof is based on a lemma which provides
an insight into the nonlinearity.

Lemma 2.1. For each u ∈ C1(X ,Rn) it follows that∫
X
(u′

xu, u) dx = −
∫
X

1

2
|u|2 div u dx+

∫
∂X

1

2
|u|2 (u, ν) ds,

where ds is the area form of the hypersurface ∂X and ν(x) the outward unit normal
vector at a point x ∈ ∂X .

Proof. Using the Stokes formula, we get∫
X
(u′

xu, u) dx =

∫
X

n∑
j=1

n∑
k=1

(∂kuj)ukujdx

=

∫
X

n∑
k=1

∂k

(1
2

n∑
j=1

u2
j

)
uk dx

= −
∫
X

1

2
|u|2 div u dx+

∫
∂X

1

2
|u|2 (u, ν) ds,

as desired. �

To guarantee an energy estimate for generalised Navier-Stokes equations (1.2) we
impose a special restriction on the nonlinear term N(u). In the sequel we assume
that

(N(u), u)L2(X ,F i) = 0 (2.1)

for all u ∈ L2(X , F i) in the domain of N satisfying A∗u = 0 in X and n(u) = 0
at ∂X . Equality (2.1) is fulfilled, in particular, if (N(u), v)x = (u,AB(v, u))x
pointwise for all u, v ∈ C∞(X , F i) up to a term vanishing for u = v, where B is a
smooth sesquilinear form on F i × F i with values in F i−1. In the classical case we
have

B(u, v) =
1

2
(u, v)x.
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Theorem 2.2. Let u be a bounded section of Slobodetskii space H2,1(CT , F i) sat-
isfying equations (1.2) in CT and vanishing at the lateral surface of the cylinder.
Then,

1

2

∫
X
|u|2dx ∣∣t′′

t′ + ν

∫ t′′

t′

∫
X
|Au|2 dxdt = 


∫ t′′

t′

∫
X
(f, u) dxdt (2.2)

for all t′, t′′ ∈ (0, T ).

A complete theory of spaces H2s,s(CT , F i) were first elaborated in the basic
work [Slo58] including both embedding and trace theorems. It allows one to reduce
boundary value problems with inhomogeneous boundary conditions to those with
homogeneous boundary conditions. Yet another motivation consists in the study
of anisotropic elliptic problems, for example, parabolic problems which include the
first mixed problem for the heat equation in a cylinder CT . For a nonnegative integer
s, the norm of H2s,s(CT , F i) controls the derivatives ∂α

x ∂
j
t u with |α| + 2j ≤ 2s in

the L2 -norm on CT .

Proof. Since u is bounded, we can take the pointwise scalar product of both sides of
the impulse equation of (1.2) with u and integrate it over the cylinder X × (t′, t′′).
This gives

∫ t′′

t′

∫
X
(u′

t + νΔu+Ap+N(u), u)x dxdt =

∫ t′′

t′

∫
X
(f, u)x dxdt

for all t′, t′′ ∈ (0, T ).
It is easily seen that


 (u′
t, u)x =

1

2

∂

∂t
(u, u)x

whence



∫ t′′

t′

∫
X
(u′

t, u)xdxdt =
1

2

∫
X
|u|2dx ∣∣t′′

t′

by the Newton-Leibniz formula.
Furthermore, using the “continuity equation” A∗u = 0 in X and integration by

parts we obtain

∫
X
(Δu, u)x dx =

∫
X
|Au|2x dx+

∫
∂X

((σi)∗Au, u)x ds,

where σi is (
√−1 times) the principal symbol of the differential operator Ai eval-

uated at the point (x, ν) ∈ T ∗X . The integral over ∂X on the right-hand side
vanishes, for u has zero Cauchy data with respect to the differential operator Ai at
the boundary.

Since p ∈ L2(X , F i−1) and Ap ∈ L2(X , F i), it follows from what is said in
Section 1 that ∫

X
(Ap, u)x dx = 0

for all t ∈ (0, T ).
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Finally, we take into consideration the structure of nonlinearity N(u) described
in (2.1) to deduce that∫

X
(N(u), u)x dx =

∫
X
(u,AB(u, u))x dx

=

∫
X
(A∗u,B(u, u))x dx−

∫
∂X

((σi−1)∗u,B(u, u))x ds

= 0

in much the same way as in the proof of Lemma 2.1. Summarising we arrive at
equality (2.2), as desired. �

From Theorem 2.2 it follows readily that for solutions of the generalised Navier-
Stokes equations, which vanish at the lateral surface of CT , one can estimate the
energy norm

‖u‖EN := sup
0≤t≤T

‖u‖L2(X ,F i) + ‖Au‖L2(CT ,F i+1) (2.3)

only through the norms ‖f‖L2,1(CT ,F i) and ‖u0‖L2(X ,F i), where

‖f‖Lq,r(CT ,F i) :=
(∫ T

0

(∫
X
|f(x, t)|qdx

)r/q

dt
)1/r

,

cf. [Lad70].
The set of sections u(x, t) having finite energy norm (2.3) forms a Banach space.

Its elements need not be continuous in t in the L2(X , F i) -norm. By analogy with
other studied problems one might believe that this class is fairly natural for the
Navier-Stokes equations. Such a class was first introduced in [Hop51]. However,
the class has proved to be too large for the classical Navier-Stokes equations in
R

3, for the uniqueness theorem of the first mixed problem is violated in this class.
Under finite energy norm, the uniqueness property for the classical Navier-Stokes
equations takes place first in Lq,r(CT ,Rn) with n/2q + 1/r ≤ 1/2, see [Lad70] and
[Lad03].

It is worth pointing out that the structure of nonlinearity specified by (2.1) is
still too general to introduce weak solutions of class L2(CT , F i) to the generalised
Navier-Stokes equations.

3. First steps towards the solution

On applying the Helmholtz projector to the generalised impulse equation one
obtains

(Pu)′t + ν P (Δu) + P (Ap) + PN(u) = Pf

while the continuity equation means that Pu = u in CT . Since P (Ap) = 0, this
allows one to eliminate the “pressure” from the impulse equation, thus obtaining
an equivalent form

(Pu)′t + ν P (ΔPu) + P (Ap) + PN(Pu) = Pf,
((I−P )Pu)′t + ν (I−P )(ΔPu) + (I−P )Ap+ (I−P )N(Pu) = (I − P )f

of the Navier-Stokes equations, for (I−P )P = 0 and

(I − P )ΔP = (I −H −A∗AG)Δ (H +A∗AG)

= AA∗GA∗AΔG

= 0,
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the last equality being due to the fact that A∗GA∗ vanishes on sections of zero
Cauchy data with respect to A∗ at ∂X .

In other words, we separate the generalised Navier-Stokes equations into two
single problems

(Pu)′t + ν P (ΔPu) + P (Ap) + PN(Pu) = Pf

in CT under the initial and boundary conditions

Pu (x, 0) = u0(x), for x ∈ X ,
Pu (x, t) = ul(x, t), for (x, t) ∈ ∂X × (0, T ),

and

Ap = (I − P ) (f −N(Pu)) in CT ,
(p, v)L2(X ,F i−1) = 0 for v ∈ kerA.

(3.1)

As already mentioned in Section 1, if the Neumann problem of Spencer is solvable
at step i of elliptic complex (1.1), then the only solution of problem (3.1) is given
by

p = A∗G(I − P ) (f −N(Pu)).

The operator PΔ is sometimes called the Stokes operator. It is of pseudodiffer-
ential nature.

Lemma 3.1. Suppose that u ∈ H2,1(CT , F i) is a bounded solution to the first mixed
problem

u′
t + ν PΔu+ PN(u) = Pf in CT ,

u = u0 at
◦
X × {0},

u = ul at ∂X × (0, T )

(3.2)

in the cylinder. Then A∗u = 0 in CT .
Proof. Indeed, from the differential equation of (3.2) it follows that

∂

∂t
A∗u = 0

in CT . Since A∗u = A∗u0 = 0 for t = 0, we deduce readily that A∗u = 0 for all
t ∈ (0, T ), as desired. �

Summarising we choose the following way of solving the generalised Navier-
Stokes equations. We first construct a solution u of mixed problem (3.2). According
to Lemma 3.1, u satisfies A∗u = 0 in CT , and so Pu = u. Substitute this section into
equation (3.1) for p. From this equation the “pressure” p is determined uniquely
and bears the appropriate regularity of the canonical solution of the Neumann
problem for complex (1.1) at step i. Finally, on combining the equations (3.2) and
(3.1) we conclude that the pair (u, p) is a solution of (1.2) under conditions (1.3)
and (1.4).

In the sequel we focus on the study of operator equation (3.2) by Hilbert space
methods.
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4. A WKB solution

To handle the nonlinear term N(u) in the generalised Navier-Stokes equations
it might be useful to gain a small parameter ε multiplying N(u). To this end we
restrict our attention to those N which are of the form N(u) = N(u, u), where
N(u, v) is a first order bidifferential operator between sections of F i on X , as in
the classical case. Pick an arbitrary ε �= 0 and change the dependent variable by
u = εũ. Substituting u into (3.2) and using the specific form of nonlinearity to
divide both sides by ε, we get

ũ′
t + ν PΔũ+ ε PN(ũ) = P f̃ in CT ,

ũ = ũ0 at
◦
X × {0},

ũ = ũl at ∂X × (0, T ),

(4.1)

where f̃ = f/ε, ũ0 = u0/ε and ũl = ul/ε are as arbitrary as f , u0 and ul if the
domains for f , u0 and ul are invariant under stretching. We have thus arrived at
the same mixed problem for the Navier-Stokes equations in the cylinder CT but
the problem now contains a small parameter ε multiplying the nonlinear term. By
abuse of notation we omit the sign “tilde” and write u, f , u0 and ul for the new
variables.

By experience with other studied mixed problems for parabolic equations, the
problem (4.1) for ε = 0 has a unique solution in H2,1(CT , F i) which depends con-
tinuously on the data f , u0 and ul. Therefore, we may try to exploit a WKB
approximation

u(x, t) =

∞∑
k=1

ck(x, t) ε
k

to construct a solution for nonlinear problem (4.1), the series being asymptotic for
ε → 0. On substituting this expansion into (4.1) and equating the coefficients of
the same powers of ε we get a linear mixed problem for determining the initial
approximation c0

∂

∂t
c0 + ν PΔc0 = Pf in CT ,

c0 = u0 at
◦
X × {0},

c0 = ul at ∂X × (0, T )

(4.2)

and a system of recurrent equations

∂

∂t
ck + ν PΔck = −

∑
i+j=k−1

PN(ci, cj) in CT ,

ck = 0 at
◦
X × {0},

ck = 0 at ∂X × (0, T )

for k = 1, 2, . . ..
The recurrent equations display once again the main problem in solving the

Navier-Stokes equations. We start with data f ∈ L2(CT , F i) and u0, ul of rele-
vant regularity. The initial approximation c0 will belong to the Slobodetskii space
H2,1(CT , F i). The mixed problem for c1 has the right-hand side −N(c0, c0) and
zero initial and boundary data. To evaluate the right-hand side one uses the so-
called multiplicative inequalities, see for instance [Lad70]. However, one can see
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from the very beginning that N(c0, c0) fails to belong to L2(CT , F i) and so no iter-
ation is possible to determine c1, etc. within the L2 -approach. If c0 is additionally
bounded then N(c0, c0) ∈ L2(X , F i) and one can find c1 in H2,1(CT , F i), etc. How-
ever, H2,1(CT , F i) is embedded into L∞(CT , F i) only for n = 1 and n = 2 while
no other criteria for the existence of a bounded solution have been known. Thus,
the WKB approximation gives an evidence to the lack of smoothness controlled by
L2 -scales.

On the other hand, if we look for a solution u ∈ W (2,1),q(X , F i) of the Navier-
Stokes equations with q large enough, so that W (2,1),q(X , F i) is embedded con-
tinuously into C(X , F i), then the construction of a WKB solution goes through.
This motivates the study of the linearised Navier-Stokes equations in Banach spaces
W (2,1),q(X , F i), where q is sufficiently large. (By the Sobolev embedding theorem,
q > n is sufficient).

Part 2. Particular cases

5. Analysis in the case of closed manifolds

In this section we consider in detail the case where X is a smooth compact
closed manifold of dimension n. Recall that the classical Hodge theory extends to
elliptic complexes on compact closed manifolds without any essential changes, see
for instance [Tar95]. As but one byproduct of this theory we mention the fact that
the projector P is a classical pseudodifferential operator of order 0 between sections
of the vector bundle F i on X .

Given an arbitrary section f ∈ L2(CT , F i), consider the pseudodifferential equa-
tion

u′
t + ν PΔu+ ε PN(u) = Pf (5.1)

in CT for an unknown section u ∈ H2,1(CT , F i), where ε is a small parameter.
We tacitly assume that the term N(u)(·, t) belongs to L2(X , F i) for almost all
t ∈ (0, T ).

To treat (5.1) within the framework of ordinary differential equations with oper-
ator-valued coefficients, we should give the operators proper domains. The closure
of Δ in L2(X , F i) has domain H2(X , F i) and is nonnegative in this domain. The
projector P is obviously nonnegative, hence we make ν PΔ into a positive operator
by adding λI with any λ > 0. To this end change the dependent variable by
u = eλtũ. Substituting this into (5.1), dividing by eλt and writing ũ and f̃ = e−λtf
simply u and f we get

u′
t + Lu+ ε eλtPN(u) = Pf

where

Lu = P (νΔ+ λI)u.

It is precisely the abstract form in which we study the Navier-Stokes equations in
CT , cf. [Lad56, Lad58].
Remark 5.1. Combining Lemma 1.3 and Lemma 3.1 makes it reasonable to restrict
the domains of operators to the subspace of L2(X , F ∗) consisting of weak solutions
to A∗u = 0 in X .
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If ε = 0, then the unique solution to (5.1) under the initial condition u(·, 0) = u0

is

u(·, t) = e−tLu0 +

∫ t

0

e−(t−t′)L Pf(·, t′) dt′

for t ∈ (0, T ), which we denote by c0(·, t). On using this formula one reduces (5.1)
to a nonlinear integral equation of the Fredholm type u = c0 + εK(u) in (0, T ),
where

K(u)(·, t) = −
∫ t

0

e−(t−t′)L eλt
′
PN(u)(·, t′) dt′.

Since

K(u)(·, t)−K(v)(·, t) = −
∫ t

0

e−(t−t′)L eλt
′
P (N(u)(·, t′)−N(v)(·, t′)) dt′,

the small parameter multiplying K(u) may be useful only for Lipschitz nonlin-
earities N(u), which is not the case for N(u) on the whole space. This gives an
evidence to the fact that the contraction mapping principle does not apply on the
whole space.

Lemma 5.2. Suppose that K is a compact operator in a Hilbert space H. If all
solutions of the equation u = c0 + ε′K(u) with ε′ ∈ (0, ε] lie in a ball B(c0, R) of
finite radius, then the equation u = c0 + εK(u) has at least one solution in the
closure of the ball.

Proof. The lemma follows immediately from the mapping degree theory of Leray-
Schauder. Indeed, on increasing R, if necessary, one can assume that the mapping
family hϑ(u) = u − u0 − ϑεK(u) for ϑ ∈ [0, 1] does not vanish at the boundary of
B(c0, R). Hence, the mapping degree deg (hϑ, B(c0, R)) is independent of ϑ. For
ϑ = 0, the degree just amounts to 1 by the normalisation property. It follows that
deg (h1, B(c0, R)) = 1, and so h1(u) = 0 has at least one solution in B(c0, R), as
desired. �

In order to prove that all solutions of the equation u = c0+ε′K(u) with ε′ ∈ (0, ε]
lie in a ball B(c0, R) with a finite R, one uses the so-called a priori estimates for
the solutions.

For a study of the abstract initial value problem u = c0 + εK(u) within the
theory of operator semigroups we refer the reader to [FK64, Kat84], etc. It exploits
fractional powers of the positive selfadjoint operator L in L2(X , F i) and enables
one to prove existence and uniqueness theorems for small intervals (0, T ) or for
small initial data.

6. Potential equations

Assume that the right-hand side f ∈ L2(CT , F i) of the generalised impulse equa-
tion

u′
t + νΔu+Ap+N(u) = f

is potential, i.e., f = A
 for some section 
 ∈ L2(CT , F i−1). Then it is to be
expected that the equation possesses a potential solution u = A℘ in the cylinder
with ℘ ∈ L2(CT , F i−1). On substituting both f and u in the impulse equation we
get the equation

A℘′
t +AνΔ℘+Ap+N(A℘) = A
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for the unknown potential ℘. If this equation possesses a solution then N(A℘) is a
potential again.

Hence it follows that the structure condition NA = AN on the nonlinearity is
well motivated by applications in natural sciences. On the other hand, this condi-
tion is well understood within the framework of homological algebra, for it specifies
the so-called cochain mappings (endomorphisms) of complexes. This condition is
fulfilled for the classical Navier-Stokes equations if the nonlinear term at step i = 0
is defined by

N0(℘) :=
1

2

n∑
k=1

(∂k℘)
2
.

Lemma 6.1. For any vector field u of the form u = ℘′ in a domain X ⊂ R
n, where

℘ ∈ C2(X ), we have

u′
xu = (N0(℘))′x,

i.e., N1d = dN0.

Proof. Since

u =

⎛
⎝ ∂1℘

· · ·
∂n℘

⎞
⎠ ,

it follows that

u′
xu =

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑
k=1

(∂k∂1℘) ∂k℘

· · ·
n∑

k=1

(∂k∂n℘) ∂k℘

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂1

n∑
k=1

(∂k℘)
2

2

· · ·
∂n

n∑
k=1

(∂k℘)
2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(
N0(℘)

)′
x
,

as desired. �

Our viewpoint sheds some new light on the generalised Navier-Stokes equations
(1.2). More precisely, the structure of the classical Navier-Stokes equations actually
specifies the nonlinear term N(u) at each step i through the commutative relations
N id = dN i−1. Since the Neumann problem after Spencer is solvable for the de
Rham complex at each step i, the space L2(X ,ΛiT ∗X ) splits into the range of P
and the range of I−P . On the range of P the nonlinearity structure is specified by
(2.1). And on the range of I −P which coincides with the range of A the nonlinear
term N(u) is uniquely determined by the commutative relations N id = dN i−1 and
by the explicit formula for N1. For arbitrary elliptic complexes (1.1) we may argue
in much the same way if the Neumann problem after Spencer is solvable at each
step i > 0 for (1.1).

To wit, by a cochain mapping of the complex C∞(X , F ·) is meant any sequence
of (possibly, nonlinear) self-mappings N i of C∞(X , F i) with the property that the
diagram

0 → C∞(X , F 0)
A→ C∞(X , F 1)

A→ . . .
A→ C∞(X , FN ) → 0

↓ N ↓ N ↓ N

0 → C∞(X , F 0)
A→ C∞(X , F 1)

A→ . . .
A→ C∞(X , FN ) → 0
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commutes. Our standing assumption on the nonlinear terms N i of the generalised
Navier-Stokes equations will be that they constitute a cochain mapping N of com-
plex (1.1), i.e.,

N iAi−1 = Ai−1N i−1 (6.1)

for all i = 1, . . . , N .
The interest of the class of Navier-Stokes equations is that it is closed under

building potential equations. Namely, for each i = 1, . . . , N , the Navier-Stokes
equations at step i − 1 are potential equations for those at step i, as is easy to
check.

Example 6.2. By Lemma 6.1, the Navier-Stokes equations for the de Rham com-
plex at step i = 0 read

u′
t +

1

2
|u′

x|2 = νΔu+ f(x, t), (6.2)

u being an unknown function in the cylinder CT .
Equation (6.2) has been frequently studied as a nonlinear model for the motion

of an interface under deposition, when the forcing potential f is random, delta-
correlated in both space and time, see [KPZ86].

7. The homogeneous Burgers equation

The Cole-Hopf transformation was discovered independently by Hopf [Hop50]
and Cole [Col51] around 1950. It changes Burgers’ equation u′

t + uu′
x = u′′

xx into
the heat equation v′t = v′′xx. To derive the transform, we let u = ℘′

x. Then Burgers’
equation can be integrated yielding ℘′

t+(℘′
x)

2/2 = ℘′′
xx up to a function depending

on t only. Let ℘ = −2 log v. Thus, u = −2v′x/v. Applying some algebra to this we
get v′t = v′′xx.

More generally, the n -dimensional impulse equation u′
t + u′

xu = νΔu + f ′
x(x, t)

for a vector field u = ℘′
x, which describes the dynamics of a stirred, pressure-

less and vorticity-free fluid, has found interesting applications in a wide range of
non-equilibrium statistical physics problems, see [BK03]. The associated Hamilton-
Jacobi equation, satisfied by the velocity potential ℘, just amounts to equation (6.2)
of Example 6.2.

Starting with this example, we now consider a quasilinear partial differential
equation

℘′
t = Δ℘− a(℘) |℘′

x|2 (7.1)

in R
n+1, where a is a continuous real-valued function on the real axis. Choose a

strictly monotone decreasing C2 function v = H(℘) on R, such that

−a(℘) =
H′′(℘)
H′(℘)

for all ℘ ∈ R. The general solution of this ordinary differential equation satisfying
the initial condition H′(0) = H1 < 0 is

H′(℘) = exp
(
−

∫ ℘

0

a(ϑ)dϑ
)
H1,

which is a smooth function on R with positive values. The function v = H(℘) may
be found by integration. In this way we recover what is referred to as the Cole-Hopf
transformation.
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A simple computation shows that the change of variables v = H(℘) reduces (7.1)
to the heat equation

v′t = Δv (7.2)

for the new unknown function v. Hence, the general solution to (7.1) is ℘ = H−1(v),
with v satisfying (7.2).

Example 7.1. Let a be constant. Then

H(℘) = H0 +H1
1− exp(−a℘)

a
,

H−1(v) =
−1

a
log

(
1− a

v −H0

H1

)
.

Using the function H allows one to endow the set of solutions to equation (7.1)
with the symmetry ℘1 ◦ ℘2 := H−1(H(℘1) +H(℘2)).

In [Hop50], the transformation H is applied to study the Cauchy problem for
the homogeneous Burgers equation u′

t + νΔu + u′
xu = 0, cf. Example 1.1. In the

last decades, mathematicians become increasingly interested in problems related to
the behaviour of solutions to a partial differential equation in which the highest
order terms occur linearly with small coefficients. These problems originate from
physical applications, mainly from modern fluid dynamics (compressible fluids of
small kinematic viscosity ν > 0 and of small heat conductivity λ). Research in
these fields has led to some general mathematical observations, such as the fol-
lowing two. The solution of the initial value problem for equations of fluid flow
tends for “most” values to a limit function as both ν and λ tend to zero. The
limit function is, in general, discontinuous and is pieced together by solutions of
the equations in which those highest order coefficients vanish (ideal fluid with con-
tact and shock discontinuities). These observations are perhaps valid in a much
wider range of partial differential equations. The second observation is restricted
to nonlinear equations, but it seems to point out a typical occurrence in the gen-
eral case. Exact formulation and rigorous proof of these observations are still tasks
for the future. As is noted in [Hop50], a careful study of special problems is still
a commendable way towards greater insight into the matter. Among the partial
differential equations studied in this direction one meets rarely those in which the
totality of solutions is rigorously determined and in which the passage to the limit
can thus be studied in detail. On using the Cole-Hopf transformation one obtains
a complete solution for the Burgers equation. It was first introduced in [Bur40] as
a simple model for the differential equations of fluid flow. Although the Burgers
equation is a too simple model to fully illustrate the statistics of free turbulence,
a theory of this equation serves as an instructive introduction into some mathe-
matical problems involved. There is a close analogy between the Burgers equation
and the Navier-Stokes equations. However, no additional dependent variables such
as pressure, density or temperature appear in the Burgers equation. Nevertheless
[Bur40] observed certain analogy between some solutions of the Burgers equation
and one-dimensional flows of a compressible fluid. According to [Hop50], Burgers
had an intuitive picture of the limit case ν → 0 in the solutions and determined the
origin and the law of propagation of discontinuity. Like [Bur40] the paper [Hop50]
studies the boundary-free initial value problem, to wit, given u for all x and t = 0,
one wants u for all x and t > 0. The solution is achieved by an exact integration
of the Burgers equation. Both problems, the behaviour of the solution as t → ∞
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while ν is constant, and its behaviour as ν → 0 while the initial data are kept fixed,
are treated.

8. Linearised Navier-Stokes equations

The study of a nonlinear equation begins with the study of its linearisation. We
need only to consider the linearisation of the impulse equation. The nonlinear term
is N(u) := N(u, u), where N is a first order bidifferential operator of the type
F i × F i → F i on X . Hence it follows that the linearisation at a fixed section u0 of
F i is

N(u) = N(u0, u0) +N(u0, u− u0) +N(u− u0, u)

= −N(u0) +N(u0, u) +N(u, u0) + o(‖u− u0‖)
for u close to u0. The question still open is of how to choose a domain for the
solution.

Note that both partial differential operators N(u0, u) and N(u, u0) have dis-
continuous coefficients unless u0 bear excess smoothness. Therefore, the study of
relevant linearisations of the Navier-Stokes equations requires a fairly delicate anal-
ysis. The best general reference here is [Lad70]. Instead of this we consider the
linear mixed problem which underlies the construction of a WKB solution to the
Navier-Stokes equations, see Section 4. The mixed problem (4.2) is an evolution
equation for the Toeplitz operator PΔ, where P is the Helmholtz projector. To
provide an insight into the problem we neglect P and look for a solution of the
mixed problem

u′
t + νΔu = f in CT ,

u = u0 at
◦
X × {0},

u = ul at ∂X × (0, T ),

(8.1)

the right-hand side f being a given section of the bundle F i over the cylinder CT
and the initial data u0 and boundary data ul being prescribed sections of F i over
the lower basis X × {0} and the lateral boundary ∂X × (0, T ) of CT , respectively.
As is usual for evolution equations, no condition is posed on the upper basis of the
cylinder.

For a recent account of the theory of mixed problems we refer the reader to Chap-
ter 3 of [GV96]. The energy method for hyperbolic equations takes a considerable
part in [GV96]. This method automatically extends to 2b -parabolic differential
equations with variable coefficients. In this section we specify the general theory
for the parabolic equation u′

t − νΔu = f including the Laplacian Δ of elliptic
complex (1.1).

By a classical solution of problem (8.1) is meant any section u ∈ C2,1
loc (CT , F i)

which is continuous up to X × {0} and ∂X × (0, T ) and satisfies pointwise the
equations of (8.1).

Since the case of inhomogeneous boundary conditions reduces in a familiar man-
ner to the case of homogeneous boundary conditions, we will assume in the sequel
that ul = 0.

Lemma 8.1. Suppose f ∈ L2(CT , F i). If u ∈ C1,0(X × (0, T ), F i) is a classical
solution of problem (8.1), then u ∈ H1,0(CT , F i).
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Proof. We pick arbitrary ε, t′ ∈ (0, T ) satisfying ε < t′, multiply the differential
equation in (8.1) by u∗ and integrate the equality over the cylinder X × (ε, t′).
Since


 (u′
t, u)x =

1

2

∂

∂t
(u, u)x

for all t ∈ (0, T ), the Stokes formula implies

1

2

∫

X

(|u(·, t′)|2 − |u(·, ε)|2) dx+ ν

∫

X

t′∫
ε

(|Au|2 + |A∗u|2) dxdt = 

∫

X

t′∫
ε

(f, u)x dxdt.

Hence it follows that

1

2

∫
X
|u(·, t′)|2 dx+ ν

∫
X

∫ t′

ε

(|Au|2 + |A∗u|2) dxdt

≤ 1

2

∫
X
|u(·, ε)|2 dx+

∫
X

∫ t′

ε

|f | |u| dxdt

≤ 1

2

∫
X
|u(·, ε)|2 dx+ ‖f‖L2(CT ,F i) ‖u‖L2(X×(ε,t′),F i),

and so on passing in this inequality to the limit as ε → 0 we get

1

2

∫
X
|u(·, t′)|2 dx ≤ 1

2
‖u0‖2L2(X ,F i) + ‖f‖L2(CT ,F i) ‖u‖L2(Ct′ ,F i),

ν

∫
Ct′

(|Au|2 + |A∗u|2) dxdt ≤ 1

2
‖u0‖2L2(X ,F i) + ‖f‖L2(CT ,F i) ‖u‖L2(Ct′ ,F i).

(8.2)

Choose an arbitrary t ∈ (0, T ) and integrate the first inequality of (8.2) in
t′ ∈ (0, t). This yields∫ t

0

(∫
X
|u(·, t′)|2 dx

)
dt′ ≤ T ‖u0‖2L2(X ,F i) + 2T ‖f‖L2(CT ,F i) ‖u‖L2(Ct,F i)

≤ T ‖u0‖2L2(X ,F i) + 2T 2 ‖f‖2L2(CT ,F i) +
1

2
‖u‖2L2(Ct,F i)

whence

‖u‖2L2(Ct,F i) ≤ 2T ‖u0‖2L2(X ,F i) + 4T 2 ‖f‖2L2(CT ,F i) =: C

for all t ∈ (0, T ), with C a nonnegative constant independent of t. We have thus

proved that ‖u‖L2(CT ,F i) ≤
√
C, and so the second inequality of (8.2) shows readily

that

‖Au‖2L2(Ct′ ,F i+1) + ‖A∗u‖2L2(Ct′ ,F i−1) ≤
1

2ν
‖u0‖2L2(X ,F i) +

√
C

ν
‖f‖L2(CT ,F i)

for all t′ ∈ (0, T ). On using a familiar argument with the Dirichlet scalar product on
◦
H1(X , F i) we now conclude that |u′

x| is square integrable on CT , which establishes
the lemma. �

Remark 8.2. Combining the first inequality of (8.2) and ‖u‖L2(CT ,F i) ≤ √
C one

sees that the classical solution u ∈ C1,0(X × (0, T ), F i) of problem (8.1) satisfies
‖u(·, t′)‖L2(X ,F i) ≤ C ′ for all t′ ∈ (0, T ), where the constant C ′ depends only on T
and ‖u0‖L2(X ,F i), ‖f‖L2(CT ,F i).
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Let f ∈ L2(CT , F i) and let u ∈ C1,0(X × (0, T ), F i) be a classical solution of
mixed problem (8.1). We multiply the differential equation of (8.1) by v∗, where
v is a C1 section of F i over the closure of CT satisfying v(x, T ) = 0 for all x ∈ X
and v = 0 at ∂X × (0, T ), and integrate the resulting equality over the cylinder
X × (ε, t′), where 0 < ε < t′ < T . On applying the Stokes formula we arrive at the
equality

∫
X
(u(·, t′), v(·, t′))xdx+

∫
X

∫ t′

ε

(−(u, v′t)x + ν((Au,Av)x + (A∗u,A∗v)x)) dxdt

=

∫
X
(u(·, ε), v(·, ε))xdx+

∫
X

∫ t′

ε

(f, v)x dxdt.

By Lemma 8.1, u ∈ H1,0(CT , F i), and so the restriction of u to the lateral surface
belongs to L2(∂X × (0, T ), F i). Using Remark 8.2, we pass in the last equality to
the limit as ε → 0 and t′ → T , thus obtaining

∫

CT

(−(u, v′t)x + ν((Au,Av)x +(A∗u,A∗v)x))dxdt =
∫

X
(u0, v(·, 0))xdx+

∫

CT

(f, v)xdxdt

(8.3)
for all sections v ∈ C1(CT , F

i) vanishing both on X × {T} and ∂X × (0, T ). By
continuity, (8.3) still holds for all v ∈ H1(CT , F i) satisfying v = 0 at X × {T} and
∂X × (0, T ).

We use the identity (8.3) to introduce weak solutions to the mixed problem
(8.1). In the sequel we assume that f ∈ L2(CT , F i) and u0 ∈ L2(X , F i). A section
u ∈ H1,0(CT , F i) is said to be a weak solution of problem (8.1), if u = 0 on
∂X × (0, T ) and the identity (8.3) is fulfilled for all v ∈ H1(CT , F i) vanishing on the
cylinder top X × {T} and on the lateral surface ∂X × (0, T ). Along with classical
and weak solutions of the first mixed problem one can introduce the concept of
‘almost everywhere’ solution. A section u is said to be an ‘almost everywhere’
solution of the mixed problem if it belongs to the space H2,1(CT , F i) and satisfies
the differential equation of (8.1) for almost all (x, t) ∈ CT , the initial condition
for almost all x ∈ X and the trace of u on the lateral surface vanishes almost
everywhere.

Lemma 8.1 shows that any classical solution of problem (8.1) which belongs to
C1,0(∂X × (0, T ), F i) is also a weak solution of the first mixed problem. Similarly
one proves that any ‘almost everywhere’ solution of the first mixed problem is a
weak solution. It is easily seen that if a weak solution of problem (8.1) belongs to
H2,1(CT , F i) then it is an ‘almost everywhere’ solution. And if a weak solution of
the first mixed problem belongs to C2,1(CT , F i) and is continuous up to the lower
basis and the lateral surface of the cylinder CT , then it is a classical solution. For
proofs of the corresponding assertions for solutions of the first mixed problem for
the Lamé system we refer the reader to [MT14]. It is worth pointing out that any
of the classical, weak or ‘almost everywhere’ solutions bears the following property:
If u(x, t) is a solution of (8.1) in the cylinder CT , then it is a solution in any cylinder
Ct′ with 0 < t′ < T .
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Part 3. Linear Navier-Stokes equations

9. Uniqueness of a weak solution

Our next objective is to establish a uniqueness theorem for solutions of the first
mixed problem.

Theorem 9.1. As defined above, the first mixed problem (8.1) has at most one
weak solution.

Proof. The proof is analogous to that of Theorem 3.2 in [MT14]. Let u1(x, t) and
u2(x, t) be two weak solutions of (8.1). Then the difference u = u1 − u2 is a weak
solution of the corresponding homogeneous problem with f = 0 and u0 = 0. We
have to show that u = 0 in CT .

Let u ∈ H2,1(CT , F i) be a weak solution of the first mixed problem with f = 0
in CT and u0 = 0 in X . Consider the function

v(x, t) =

∫ T

t

u(x, θ)dθ

defined in CT . It is immediately verified that the function v has generalised deriva-
tives

v′xj (x, t) =

∫ T

t

u′
xj (x, θ)dθ,

for j = 1, . . . , n, and
v′t(x, t) = −u(x, t)

in CT . Since v and v′xj , v′t belong to L2(CT , F i), we deduce that v ∈ H1(CT , F i).
Moreover, this section vanishes at the lateral boundary and on the top of the
cylinder CT .

Substituting the function v into identity (8.3) yields∫
CT

(
|u|2 + ν(Au,

∫ T

t

Au(·, θ)dθ)x + ν(A∗u,
∫ T

t

A∗u(·, θ)dθ)x
)
dxdt = 0.

Since∫
CT

(Au(x, t),

∫ T

t

Au(x, θ)dθ)xdxdt =

∫
X

∫ T

0

(Au(x, t),

∫ T

t

Au(x, θ)dθ)xdxdt

=

∫
X

∫ T

0

(

∫ θ

0

Au(x, t)dt, Au(x, θ))xdxdθ

which transforms to∫
X
(

∫ T

0

Au(x, t)dt,

∫ T

0

Au(x, θ)dθ)xdx−
∫
X

∫ T

0

(

∫ T

θ

Au(x, t)dt, Au(x, θ))xdxdθ

=

∫
X
|
∫ T

0

Au(x, t)dt|2 dx−
∫
CT

(

∫ T

θ

Au(x, t)dt, Au(x, θ))xdxdθ,

we get



∫
CT

(Au(x, t),

∫ T

t

Au(x, θ)dθ)xdxdt =
1

2

∫
X
|
∫ T

0

Au(x, t)dt|2 dx.

Similarly we obtain



∫
CT

(A∗u(x, t),
∫ T

t

A∗u(x, θ)dθ)xdxdt =
1

2

∫
X
|
∫ T

0

A∗u(x, t)dt|2 dx
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whence

∫
CT

|u(x, t)|2dxdt+ ν

2

∫
X
|
∫ T

0

Au(x, t)dt|2 dx+
ν

2

∫
X
|
∫ T

0

A∗u(x, t)dt|2 dx = 0.

(9.1)
Since ν ≥ 0, we conclude from (9.1) that

∫
X
|u(x, t)|2dx = 0

for all t ∈ (0, T ), and so u = 0 in CT , as desired. �

Since an ‘almost everywhere’ solution of problem (8.1) is actually a weak solution
to this problem, Theorem 9.1 implies

Corollary 9.2. As defined above, problem (8.1) has at most one ‘almost every-
where’ solution.

On combining Theorem 9.1 and Lemma 8.1 we also deduce that the first mixed
problem has at most one classical solution belonging to C1,0(∂X × (0, T ), F i).

10. Existence of a weak solution

We now turn to the proof of the existence of solutions to problem (8.1). To this
end we use the Fourier method in the same way as for hyperbolic equations, see
[MT14].

Let v be a weak eigenfunction of the first boundary value problem for the −ν
multiple of the Laplace operator

−νΔv = κv in
◦
X ,

v = 0 at ∂X ,
(10.1)

where κ is the corresponding eigenvalue. Thus, v belongs to
◦
H1(X , F i) and satisfies

the integral identity

ν

∫
X
((Av,Ag)x + (A∗v,A∗g)x) dx+ κ

∫
X
(v, g)xdx = 0

for all g ∈
◦
H1(X , F i).

Consider the orthonormal system (vk)k=1,2,... in L2(X , F i) consisting of all weak

eigenfunction of problem (10.1). Let (κk)k=1,2,... be the sequence of corresponding
eigenvalues. As usual we think of this sequence as nonincreasing sequence with
κ1 ≤ 0 and each eigenvalue repeats itself in accord with its multiplicity. The system
(vk)k=1,2,... is known to be an orthonormal basis in L2(X , F i) and κk → −∞ when
k → ∞. Moreover, the first eigenvalue κ1 is obviously strongly negative, if ν > 0
holds.

Assume that f ∈ L2(CT , F i) and u0 ∈ L2(X , F i). By the Fubini theorem we
deduce that f(·, t) ∈ L2(X , F i) for almost all t ∈ (0, T ). We expand the sections
f(·, t) and u0 as Fourier series over the system of eigenfunctions (vk)k=1,2,... in X ,
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namely

f(x, t) =

∞∑
k=1

fk(t)vk(x),

u0(x) =
∞∑
k=1

u0,kvk(x),

where fk(t) = (f(·, t), vk)L2(X ,F i) and u0,k = (u0, vk)L2(X ,F i) for k = 1, 2, . . ., the

functions fk belonging to L2(0, T ). By the Parseval equality, we get

∞∑
k=1

|fk(t)|2 = ‖f(·, t)‖2L2(X ,F i),

∞∑
k=1

|u0,k|2 = ‖u0‖2L2(X ,F i),

(10.2)

where the first equality is valid for almost all t ∈ (0, T ). On integrating both sides
of the first equality of (10.2) in t ∈ (0, T ) and using the theorem of Beppo Levi we
see that

∞∑
k=1

∫ T

0

|fk(t)|2dt =
∫
CT

|f(x, t)|2dxdt. (10.3)

For any k = 1, 2, . . ., we introduce the function

wk(t) = u0,k exp(κkt) +

∫ t

0

fk(t
′) exp (κk(t− t′)) dt′,

which obviously belongs to H1(0, T ) and satisfies the initial value problem

w′
k − κkwk = fk a.e. on (0, T ),

wk(0) = u0,k,
(10.4)

the initial condition is well defined, for H1(0, T ) ↪→ C[0, T ] by the Sobolev embed-
ding theorem. In much the same way as in [MT14] one verifies that the section
uk(x, t) = wk(t)vk(x) is a weak solution of problem (8.1) with the right-hand side
f(x, t) = fk(t)vk(x) and initial data u0(x) = u0,kvk(x). Hence it follows by linearity
that the partial sums

sN (x, t) =
N∑

k=1

wk(t)vk(x)

are weak solutions of problem (8.1) whose right-hand side and initial data are given
by the corresponding partial sums of the Fourier series for f and u0, respectively.
To wit, ∫

CT

(−(sN , v′t)x + ν((AsN , Av)x + (A∗sN , A∗v)x)) dxdt

=

∫
X

N∑
k=1

u0,k (vk, v(·, 0))xdx+

∫
CT

N∑
k=1

fk(t) (vk, v(·, t))xdxdt

(10.5)

for all sections v ∈ H1(CT , F i) vanishing both on X × {T} and ∂X × (0, T ), cf.
(8.3).
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Our next objective is to show that the series

u(x, t) =

∞∑
k=1

wk(t)vk(x) (10.6)

converges in H1,0(CT , F i) and its sum gives a weak solution to the first mixed
problem (8.1).

Theorem 10.1. If f ∈ L2(CT , F i) and u0 ∈ L2(X , F i), then problem (8.1) has a
weak solution u. The solution is represented by series (10.6) which converges in
H1,0(CT , F i). Moreover, there is a constant C > 0 independent of f and u0, such
that

‖u‖H1,0(CT ,F i) ≤ C
(‖f‖L2(CT ,F i) + ‖u0‖L2(X ,F i)

)
. (10.7)

Proof. From the formula for wk(t) it follows readily by the Cauchy-Schwarz in-
equality that

|wk(t)| ≤ |u0,k| exp(κkt) +

∫ t

0

|fk(t′)| exp (κk(t− t′)) dt′

≤ |u0,k| exp(κkt) + ‖fk‖L2(0,T )
1√
2|κk|

whenever t ∈ [0, T ]. Therefore,

|wk(t)|2 ≤ 2 exp(2κkt) |u0,k|2 + 1

|κk| ‖fk‖
2
L2(0,T ) (10.8)

for all t ∈ [0, T ].
Consider a partial sum sN (x, t) of series (10.6). For any fixed t ∈ [0, T ] it belongs

to the space
◦
H1(X , F i).

It is convenient to endow this space with the so-called Dirichlet scalar product

D(v, g) =

∫
X
ν
(
(Av,Ag)x + (A∗v,A∗g)x

)
dx

and the Dirichlet norm D(v) :=
√

D(v, v). Since the system{ vk√−κk

}
k=1,2,...

is obviously orthonormal with respect to the scalar product D(v, g), we obtain by
(10.8)

‖sN (·, t)− sM (·, t)‖2H1(X ,F i) = ‖
N∑

k=M+1

wk(t)vk‖2H1(X ,F i)

≤ C
N∑

k=M+1

|wk(t)|2 |κk|

≤ C
N∑

k=M+1

(
2|κk| exp(2κkt) |u0,k|2 + ‖fk‖2L2(0,T )

)
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for all M and N satisfying 1 ≤ M < N , and all t ∈ [0, T ], with C a constant
independent of M , N and t. Along with this inequality we obtain in the same
manner

‖sN (·, t)‖2H1(X ,F i) ≤ C

N∑
k=1

(
2|κk| exp(2κkt) |u0,k|2 + ‖fk‖2L2(0,T )

)

for all N = 1, 2, . . . and t ∈ [0, T ]. On integrating the last two inequalities in
t ∈ [0, T ] we obtain

‖sN − sM‖2H1,0(CT ,F i) ≤ C ′
N∑

k=M+1

(
|u0,k|2 + ‖fk‖2L2(0,T )

)
,

‖sN‖2H1,0(CT ,F i) ≤ C ′
N∑

k=1

(
|u0,k|2 + ‖fk‖2L2(0,T )

)
,

(10.9)

where the constant C ′ is independent of N and M .
By (10.2) the series with general term |u0,k|2+‖fk‖2L2(0,T ) converges. Hence, from

the first estimate of (10.9) we deduce that series (10.6) converges in H1,0(CT , F i),
and so its sum u(x, t) belongs to H1,0(CT , F i) and satisfies u = 0 on the lateral
boundary ∂X × (0, T ) of the cylinder. Letting N → ∞ in identity (10.5) we see
that the section u is a weak solution of problem (8.1). Estimate (10.7) follows
immediately from the second inequality of (10.9), if we let N → ∞ in (10.9) and
use equalities (10.2). �

Note that similarly to the hyperbolic case [MT14] one can prove the existence
of a weak solutions to problem (8.1) by means of the Galerkin method.

11. Regularity of weak solutions

We now discuss briefly the regularity of weak solutions. Assume that the bound-
ary ∂X of X is of class C2s for some integer s ≥ 1. Then the eigenfunctions
(vk)k=1,2,... of problem (10.1) belong to H2s(X , F i) and satisfy the boundary con-
ditions

(−νΔ)ivk = 0 on ∂X (11.1)

for i = 0, 1, . . . , s− 1.
Let H2s

D (X , F i) stand for the subspace of H2s(X , F i) consisting of all functions
v satisfying (11.1). We put additional restrictions on the data of the problem to
attain to a classical solution. More precisely, we require that u0 ∈ H2s−1

D (X , F i)

and f belongs to the subspace of H2(s−1),s−1(CT , F i) that consists of all functions
satisfying

(−νΔ)if = 0 at ∂X × (0, T ) (11.2)

for i = 0, 1, . . . , s− 2.
For s = 1, the latter equations are empty and we arrive at f ∈ L2(X , F i), as

above.

Theorem 11.1. Under the above hypotheses, series (10.6) converges to the weak
solution u of problem (8.1) in H2s,s(CT , F i). Moreover, there is a constant C > 0
independent of f and u0, such that

‖u‖H2s,s(CT ,F i) ≤ C
(‖f‖H2(s−1),s−1(CT ,F i) + ‖u0‖H2s−1(X ,F i)

)
. (11.3)
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Proof. The proof of this theorem runs similarly to the proof of Theorem 4 of [Mik76,
p. 372], if one exploits the techniques developed above. �

Since a weak solution of problem (8.1) which belongs toH2,1(CT , F i) is an ‘almost
everywhere’ solution, Theorem 11.1 for s = 1 implies

Corollary 11.2. Suppose ∂X ∈ C2 and f ∈ L2(CT , F i), u0 ∈
◦
H1(X , F i). Then

series (10.6) converges in H2,1(CT , F i) and its sum is an ‘almost everywhere’ so-
lution of problem (8.1). Moreover, there is a constant C independent of f and u0,
such that

‖u‖H2,1(CT ,F i) ≤ C
(‖f‖L2(CT ,F i) + ‖u0‖H1(X ,F i)

)
.

If the boundary of X is of class C [n/2]+3, then the eigenfunctions vk(x) of problem
(10.1) belong to the space H [n/2]+3(X , F i), and so to the space C2(X , F i), which
is due to the Sobolev embedding theorem. Therefore, the partial sums sN of series
(10.6 are in C2,1(CT , F

i)

Corollary 11.3. Let ∂X ∈ C2s+1, where 2s+1 ≥ [n/2]+3, and f ∈ H2s,s
D (CT , F i),

u0 ∈ H2s+1
D (X , F i). Then series (10.6) converges in C2,1(CT , F

i) and its sum u is a
classical solution of problem (8.1). Moreover, there is a constant C > 0 independent
of f and u0, such that

‖u‖C(CT ,F i) ≤ C
(‖f‖H2(s−1),s−1(CT ,F i) + ‖u0‖H2s−1(X ,F i)

)
.

Proof. The proof of this corollary runs in much the same way as the proof of
Theorem 5 of [Mik76, p. 381]. �

12. Generalised Navier-Stokes equations revisited

The arguments of this chapter still apply if we replace the Laplacian Δ by the
composition PΔ, where P is the Helmholtz projector introduced in Lemma 1.2. The
only difference is in substituting Pf for f , i.e., in the choice of data f(t, ·) and u0

in the subspace of L2(X , F i) consisting of those sections which belong to the kernel
of the adjoint operator for Ai in the sense of Hilbert spaces. More precisely, assume
that the boundary of X is of class C2 and f ∈ L2(CT , F i), u0 ∈ H1(X , F i) satisfies
A∗u0 = 0 in X and u0 = 0 at ∂X . Then there is a unique section u ∈ H2,1(CT , F i)
such that

u′
t + ν PΔu = Pf in CT ,

u = u0 at X × {0},
u = 0 at ∂X × (0, T )

(12.1)

in a weak sense or, what is equivalent, almost everywhere on the corresponding
strata. Moreover,

‖u‖H2,1(CT ,F i) ≤ C
(‖Pf‖L2(CT ,F i) + ‖u0‖H1(X ,F i)

)
with C > 0 a constant independent of f and u0.

We complete the work by describing those nonlinear perturbations N(u) of the
equation u′

t+ νΔu = f which can be handled within the Leray-Schauder continua-
tion method. Without restriction of generality we can assume that the initial data
u0 is zero.

Denote by U the subspace of H2,1(CT , F i) consisting of those sections u which
satisfy Pu = u and vanish on the basis X×{0} and on the lateral surface ∂X×(0, T )
of CT . When endowed with the scalar product induced from H2,1(CT , F i), the space
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U is Hilbert. By the above, the mapping Lu = u′
t + ν PΔu is an isomorphism of U

onto the range of the projector P in L2(CT , F i). Let N be a compact continuous
mapping of H2,1(CT , F i) into L2(CT , F i). Given any f ∈ L2(CT , F i), we look for
u ∈ U satisfying

Lu+ PN(u) = Pf (12.2)

in CT .
On applying L−1 to both sides of this equation we transform it to the form

u = c0 +K(u), where c0 = L−1Pf and

K(u) := −L−1PN(u)

for u ∈ U . Since both L−1 and P are bounded linear operators, we conclude readily
that K is a compact continuous self-mapping of U . If u ∈ U is a solution of the
equation

u = c0 + ϑK(u),

for some ϑ ∈ [0, 1], then

‖u− c0‖U = ϑ‖K(u)‖U
≤ ‖L−1‖ ‖N(u)‖L2(CT ,F i)

for all u ∈ U .
Assume that

‖N(u)‖L2(CT ,F i) = o (‖u‖U ) (12.3)

for ‖u‖U → ∞. Then from the above inequality it follows that there is a number
R > 0 independent of u, such that ‖u− c0‖U < R. In other words, any solution to
the equation u = c0 + ϑK(u) with some ϑ ∈ [0, 1] belongs to the ball B(c0, R) in
U . On applying Lemma 5.2 we see that the equation u = c0 +K(u) possesses at
least one solution in U . We can now return to the perturbed equation (12.2) and
conclude that under condition (12.3) it has at least one solution u ∈ U for each
right-hand side f ∈ L2(CT , F i).

Condition (12.3) gives rise to a broad class of nonlinear parabolic equations for
which the first mixed problem is solvable in the space H2,1(CT , F i). Still, as is
mentioned in Section 5, the nonlinearity in the classical Navier-Stokes equations
does not satisfy (12.3).
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