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A NONSTANDARD CAUCHY PROBLEM FOR THE HEAT

EQUATION

K. O. MAKHMUDOV, O. I. MAKHMUDOV, AND N. TARKHANOV

Abstract. We consider a Cauchy problem for the heat equation in a cylinder
CT = X × (0, T ) over a domain X in Rn with data on a strip lying on the
lateral surface. The strip is of the form S × (0, T ), where S is an open subset

of the boundary of X . The problem is ill-posed. Under natural restrictions
on the configuration of S we derive an explicit formula for solutions of this
problem.
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1. Introduction

By an ill-posed problem is meant any problem where the inverse operator is
not continuous. If treated in Fréchet spaces, a problem is ill-posed if and only if
it fails to be solvable for all data. Ill-posed problems still remain a challenge for
researchers.

An advertising slogan related to the Cauchy problem for elliptic equations is
that, after J. Hadamard, the Cauchy problem for the Laplace equation is ill-posed.
Of course, the instability refers here to a standard setting, for in spaces with two-
norm convergence the Cauchy problem for elliptic equations proves to be stable,
see [AT90].

The character of instability, solvability criteria and regularisation methods of
the Cauchy problem for elliptic equations are studied in [Tar95]. For the complete
bibliography we refer the reader to this work. Much of the theory developed in
[Tar95] extends immediately to other ill-posed problems of complex analysis or
partial differential equations.
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This paper is motivated by a problem posed by M. M. Lavrent’ev in the early
1980s, see for instance [LRS80]. It was to find an explicit formula for the tempera-
ture inside a plane domain by using partial lateral and initial data. This problem
is solved in [Ike09].

The paper [PS12] gives a necessary and sufficient solvability condition for the
Cauchy problem for the heat equation with partial lateral and initial conditions.
However, it falls short of providing an explicit regularisation formula for the solu-
tion.

Our approach to the Cauchy problem for parabolic equations or systems in a
cylinder CT = X × (0, T ) over a domain X ⊂ R

n with partial lateral and initial
data originates from [AV64]. More precisely, if one applies the Fourier or Laplace
transform in the time variable t ≥ 0 to a parabolic equation, it transforms to
a family of elliptic equations with complex parameter τ in the domain X . On
transforming the data on the lateral boundary of CT in a similar way we arrive
at a family of Cauchy problems for an elliptic equation with parameter in X with
data on a nonempty open subset S of ∂X . To study this problem one can apply
immediately the constructive techniques elaborated in [Tar95]. It then remains to
apply the inverse Laplace transform.

The Fourier transform is an important method of studying several problems
of mathematical physics and differential equations. In the classical papers the
functions under transform were assumed to be integrable at infinity. In physics one
often applied the Fourier transform to slowly growing functions without sufficient
substantiation. A strong mathematical theory of the Fourier transform for slowly
growing functions was first elaborated in [Boc32]. No systematic study of the

Fourier transform of rapidly growing functions, such that ex, ex
2

, etc., had been
done until [GS53] elaborated the theory of Fourier transform for functions growing
arbitrarily rapidly. The generalisation of the Fourier transform to rapidly growing
functions is well motivated. As but one example we mention that for the heat
equation u′

t = u′′
xx the natural domain, in which the Cauchy problem is solvable

and has a unique solution, is constituted by all functions which grow more slowly

than ex
2

, as |x| → ∞, for each fixed t ≥ 0. Note that a characteristic feature of the
paper [GS53] is exit to a complex domain and considering functionals on classes of
(usually, entire) analytic functions.

We examine the approach for applicability in the Cauchy problem for the heat
equation in the cylinder over a cap type domain X in R

3. After making the Laplace
transformation, we get a Cauchy problem for the Helmholtz equation in X with data
away a boundary piece lying in the plane {x3 = 0}. The potential of the Helmholtz
equation just amounts to ıτ . An explicit Carleman function for this problem was
first described in [Yar77]. However, no unobjectionable proof had been done until
[Ike01] revised the formula of [Yar77] in the case of Laplace equation. It was
first [Yar04] where Sh. Yarmukhamedov completed his construction announced in
[Yar77]. The paper [YY03] contains a particular construction of Carleman function
for the Cauchy problem for the Helmholtz equation in a cap type domain in three
dimensions.

Note that our approach applies to the Cauchy problem for the time-dependent
system of couple-stress elasticity [MNT08] and Maxwell equations [MMT11] with
partial lateral and initial data.
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2. A Cauchy problem for parabolic equations

Let X be a bounded domain with smooth boundary in R
n and S a nonempty

open piece of the boundary surface ∂X . We consider the Cauchy problem for the
heat equation in the cylinder CT = X × (0, T ) with data on the strip S × (0, T ) of
the lateral surface of the cylinder, where T > 0 is a fixed number. More precisely,
given functions f on CT and u0, u1 on S × (0, T ), find a function u in CT which
satisfies

u′
t = Δu+ f in CT ,
u = u0 at S × (0, T ),
u′
ν = u1 at S × (0, T ),

(2.1)

where ν is the unit outward normal vector for ∂X , see Fig. 1.

Fig. 1. A Cauchy problem for a parabolic equation in a cylinder
with data on the lateral surface.

From results of [LO74] it follows that problem (2.1) has at most one smooth
solution u.

The lateral surface does not contain any characteristic point for the heat equa-
tion, and so the Cauchy-Kovalevskaya theorem applies to problem (2.1). Hence,
if moreover S is really analytic, then for all real analytic data f and u0, u1 this
problem has locally close to S × (0, T ) a real analytic solution u. By the above, it
is unique.

In order to construct an approximate solution of the Cauchy problem (2.1) we
continue the data f and u0, u1 to the whole semicylinder t > 0, i.e., T = ∞ in the
sequel. On applying the Laplace transform in t ∈ (0,∞) to all equations of problem
(2.1)

û(x, τ) := Lu (x, τ) =
∫ ∞

0

e−ıτtu(x, t) dt

we get the family of Cauchy problems

(Δ− ıτ)û(·, τ) = −u(·, 0)− f̂(·, τ) in X ,

û(·, τ) = û0(·, τ) at S,
û′
ν(·, τ) = û1(·, τ) at S

(2.2)

in the domain X , parametrised by the complex parameter τ running over a hori-
zontal line in the lower half-plane. For any fixed τ , one readily specifies (2.2) as the
Cauchy problem for the Helmholtz equation in X with data on a boundary piece S.
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This problem is well known to be unstable in the natural setting unless S coincides
with the whole boundary. This gives an evidence to the fact that problem (2.1) is
ill-posed, see [LRS80], [PS12].

Denote by Ĝ(x; τ) the fundamental solution of convolution type for the Helmholtz
operator Δ − ıτ in R

n. (This is actually the convolution kernel of the resolvent
(Δ − ıτ)−1.) The techniques developed in [Tar95] enable one to construct an
approximate solution of problem (2.2). To wit, one finds a sequence of kernels

ĈN (x, y; τ), for N = 1, 2, . . ., which differ from Ĝ(x − y; τ) by a smooth solution
of the Helmholtz equation in y ∈ X and whose Cauchy data in y tend to zero at
∂X \ S. Then, for fixed τ , an approximate solution of (2.2) is obtained from the
so-called Carleman formula

û(x, τ)= lim
N→∞

(
−
∫
S

(
ĈN (x, ·; τ)∂ν û− ∂νĈN (x, ·; τ)û

)
ds+

∫
X
ĈN (x, ·; τ)(Δ−ıτ)û dy

)

(2.3)
for all x ∈ X , where ds is the surface measure on ∂X .

Assume that the inverse Laplace transform is possible under the limit passage in
the last formula. By the familiar convolution theorem for the Laplace transform,
we get

L−1(ĈN (x, ·; τ)∂ν û) = L−1(L(L−1ĈN (x, ·; τ))L(∂νu))
= L−1ĈN (x, ·; τ) ∗ ∂νu

=

∫ t

0

(L−1ĈN )(x, ·; t− t′) ∂νu(·, t′) dt′.

Similarly,

L−1(∂νĈN (x, ·; τ)û) =
∫ t

0

∂ν(L−1ĈN )(x, ·; t− t′)u(·, t′) dt′

and

L−1(ĈN (x, ·; τ) (Δ− ıτ)û)

=

∫ t

0

(L−1ĈN )(x, ·; t− t′) (Δ− ∂t′)u(·, t′) dt′ − (L−1ĈN )(x, ·; t)u(·, 0).

Hence, applying the inverse Laplace transform to both sides of equality (2.3) we
arrive at the formula

u(x, t) = lim
N→∞

(
−
∫
X
(L−1ĈN )(x, ·; t)u(·, 0)dy

−
∫
S

∫ t

0

(
(L−1ĈN ) (x, ·; t−t′)∂νu− ∂ν(L−1ĈN )(x, ·; t−t′)u

)
dsdt′

+

∫
X

∫ t

0

(L−1ĈN )(x, ·; t−t′)(Δ− ∂t′)u dydt
′
)

(2.4)

whenever (x, t) ∈ CT .
Set

CN (x, y; t) = L−1ĈN (x, y; τ) =
1

2π

∫
�τ=γ

eıtτ ĈN (x, y; τ) dτ
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for (x, y) away from the diagonal in X × X and for t > 0, where γ is a sufficiently
small negative number. A direct calculation shows that

(Δy − ∂t)CN (x, y; t) =
1

2π

∫
�τ=γ

eıtτ (Δy − ıτ)ĈN (x, y; τ) dτ

= 0

for (x, y) and t in the domain of CN . Moreover, CN (x, y; t) tends to zero in certain
sense in y away from S on the boundary of X , as N → ∞. Hence, the sequence of
kernels CN (x, y; t) generalises to problem (2.1) the concept of Carleman function
in the Cauchy problem for elliptic equations developed in [Tar95]. If any Carleman
function CN is given explicitly, one easily obtains a formula for an approximate
solution of (2.1).

Lemma 2.1. If CN (x, y; t) is a Carleman function of problem (2.1), then the for-
mula

uN = Pi,N (u(·, 0)) + Ps,N (u1) + Pd,N (u0) + Pv,N (f)

gives an approximate solution of the problem in the cylinder CT , where

Pi,N (u(·, 0))=−
∫

X
CN (x, ·; t)u(·, 0)dy, Ps,N (u1)=−

∫

S

t∫

0

CN (x, ·; t−t′)u1dsdt
′,

Pd,N (u0)=

∫

S

t∫

0

∂νCN (x, ·; t−t′)u0dsdt
′, Pv,N (f)=−

∫

X

t∫

0

CN (x, ·; t−t′)fdydt′.

Note that the values u(x, 0) at the cylinder bottom are uniquely determined by
the values u(x, t) for small t > 0, provided that u bears some continuity up to t = 0.
Therefore, u(x, 0) are determined uniquely from the values of u and u′

ν on the strip
S × (0, T ). However, the Carleman formulas are most simple if they include the
initial values u(x, 0).

While the method of approximate solution of problem (2.1) described in this
section extends to more general parabolic equations, we treat it in detail for the
particular case n = 3.

3. The heat equation in dimension one

The case n = 1 is not emphatic to demonstrate the approach, for the initial value
problem is stable for ordinary differential equations. However, explicit formulas
available in this case provide an insight to elucidate the general ill-posed problem,
too.

Let X = (a, b) be a finite interval on the real axis. Choose S = {a} and consider
the Cauchy problem of finding a function u in the rectangle CT = X × (0, T )
satisfying

u′
t(x, t) = u′′

xx(x, t) + f(x, t) for (x, t) ∈ CT ,
u(a, t) = u0(t) for t ∈ (0, T ),

u′
x(a, t) = u1(t) for t ∈ (0, T ),

where f and u0, u1 are given functions on CT and (0, T ), respectively.
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On converting this problem by Laplace transform we obtain the family of initial
value problems

û′′
xx(x, τ)− ıτ û(x, τ) = −u(x, 0)− f̂(x, τ) for x ∈ X ,

û(a, τ) = û0(τ),
û′
x(a, τ) = û1(τ)

(3.1)

on the interval X , parametrised by a complex parameter τ running over a hori-
zontal line �τ = γ. Looking for a solution of the form û(x, τ) = c expλx to the
homogeneous equation we get the characteristic equation λ2 − ıτ = 0 for λ, whose
roots are

λ±(τ) = ±
√
|τ |eı arg τ

2
1 + ı√

2
.

An elementary verification now shows that the unique solution of initial value prob-
lem (3.1) is given by

û(x, τ) = ĉ+(x, τ) e
λ+(τ)x + ĉ−(x, τ) eλ−(τ)x,

where

ĉ±(x, τ) =
1

2

eλ∓(τ)a

λ∓(τ)
(λ∓(τ)û0(τ)− û1(τ)) +

∫ x

a

1

2

eλ∓(τ)y

λ∓(τ)
(u(y, 0) + f̂(y, τ))dy.

This can be rewritten in the form

û(x, τ) =
(
Ĉ(x, a; τ)û1 − ∂yĈ(x, a; τ)û0

)
+

∫
X
Ĉ(x, y; τ) (−u(y, 0)− f̂(y, τ))dy

(3.2)
with

Ĉ(x, y; τ) =

⎧⎨
⎩

sinhλ−(τ)(x− y)

λ−(τ)
, if x− y ≥ 0,

0, if x− y < 0.

Note that (3.2) substitutes precisely for Carleman formula (2.3), since ∂ν = −∂y,
as is easy to see.

It remains to apply the inverse Laplace transform to both sides of equality (3.2),
thus obtaining

u(x, t) =−
∫
X
(L−1Ĉ)(x, y; t)u(y, 0)dy

+

∫ t

0

(
(L−1Ĉ) (x, a; t−t′)u′

1(t
′)− ∂y(L−1Ĉ)(x, a; t−t′)u0(t

′)
)
dt′

−
∫
X

∫ t

0

(L−1Ĉ)(x, y; t−t′)f(y, t′)dydt′

(3.3)

for all (x, t) ∈ CT . We have used the convolution theorem for the Laplace transform,

as in the proof of (2.4). Obviously, the kernel (L−1Ĉ)(x, y; t) vanishes if x− y < 0
or t < 0. Since

L−1
(e−√

ıτ(x−y)

√
ıτ

)
=

1√
πt

e−
(x−y)2

4t ,

it follows that

(L−1Ĉ)(x, y; t) = − 1√
4πt

e−
(x−y)2

4t +
1

2
L−1

(e√ıτ(x−y)

√
ıτ

)
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for x − y ≥ 0 and t > 0, the inverse Laplace transform being interpreted in the
sense of [GS53]. The first summand on the right-hand side just amounts to the
fundamental solution of the operator ∂2

xx − ∂t.

4. An example of instability

The Cauchy problem (2.1) displays certain character of instability for all n ≥ 1.
We show an example following to [LRS80] and [PS12]. Let X be a bounded domain
with smooth boundary in the half-space {xn > 0} of Rn, whose boundary contains
a nonempty open piece S of the hyperplane {xn = 0}. Fix a natural number N
and consider the sequence of functions

uk(x, t) =
exp(k2(t− T ) + kxn)

kN

which are infinitely differentiable in the closure of the cylinder CT = X × (0, T ),
where T > 0.

A trivial verification shows that

(uk)
′
t = Δuk

in CT . Moreover,

uk(x, 0) =
exp(−k2T + kxn)

kN

and

uk(x, t) =
exp(k2(t− T ))

kN
,

(uk)
′
xn
(x, t) =

exp(k2(t− T ))

kN−1

at the lateral strip S × (0, T ). Hence it follows that

uk(x, 0) → 0

in the topology of C∞(X ) and

uk(x, t) → 0,

(uk)
′
xn
(x, t) → 0

in the norm of Cs(S × [0, T ]), provided that N > 2s+ 1.
However,

uk(x, T ) =
exp(kxn)

kN
→ ∞

as k → ∞, if xn > 0. Hence, the solution of problem (2.1) fails to depend continu-
ously on the data.

5. A fundamental lemma

Let σ be a positive number. Consider the entire function K(w) = exp(σw2) of
complex variable w ∈ C. The restriction of K to any vertical line w = u0 + ıv
just amounts to K(u+ ıv) = K(u) exp(2ıσuv− σv2), which is a rapidly decreasing
function of v.

Given two different points x = (x′, x3) and y = (y′, y3) in R
3, set r′ = |y′ − x′|

and introduce the integral

Φ(x, y) =
−1

2π2

1

K(x3)

∫ ∞

0

�
( K(w)

w − x3

) cosλϑ√
r′2 + ϑ2

dϑ, (5.1)
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where w = y3 + ı
√
r′2 + ϑ2 and λ is a complex parameter. On separating the

imaginary part we get

Φ(x, y) =

∫ ∞

0

k(x, y;ϑ) cosλϑ dϑ

with k(x, y;ϑ) given by

−1

2π2

eσ(y
2
3−x2

3)e−σ(r′2+ϑ2)

ϑ2 + r2

(
(y3 − x3)

sin 2σy3
√
r′2 + ϑ2

√
r′2 + ϑ2

− cos 2σy3
√
r′2 + ϑ2

)
.

The convergence of the improper integral on the right-hand side of (5.1) is thus

guaranteed by the factor e−σϑ2

.

Lemma 5.1. As defined by equality (5.1), the function Φ(x, y) is represented in
the form

Φ(x, y) =
−1

4π

e−λr

r
+R(x, y), (5.2)

where R(x, y) is a twice continuously differentiable function of the variable y ∈ R
3

including the point y = x.

Proof. Divide the interval of integration in (5.1) into two parts, namely [0, 1) and
[1,∞). Write I1(x, y) and I2(x, y) for the first and the second integral, respectively.

Since
√
r′2 + ϑ2 ≥ 1 for the second integral, I2(x, y) is a C∞ function of y ∈ R

n

including the point y = x.
The first integral is transformed as

I1(x, y) =
−1

2π2

1

K(x3)

∫ 1

0

�
(K(w)−K(x3)

w − x3

) cosλϑ√
r′2 + ϑ2

dϑ

+
−1

2π2

∫ 1

0

�
( 1

w − x3

) cosλϑ√
r′2 + ϑ2

dϑ,

(5.3)

where

�
( 1

w − x3

)
= −

√
r′2 + ϑ2

ϑ2 + r2
.

Since the entire function Q(w) =
K(w)−K(x3)

w − x3
is real for real w, it follows from

the expansion

�Q(y3 + ı
√
r′2 + ϑ2)√

r′2 + ϑ2
=

∞∑
j=0

(−1)j
Q(j)(y3)

(2j + 1)!
(r′2 + ϑ2)j

that the first term on the right-hand side of (5.3) is a C∞ function of x and y. The
second term reduces to∫ 1

0

cosλϑ

ϑ2 + r2
dϑ =

∞∑
j=0

(−1)j
λ2j

(2j)!

∫ 1

0

ϑ2j

ϑ2 + r2
dϑ

=

∫ 1

0

1

ϑ2 + r2
dϑ− λ2

2

∫ 1

0

ϑ2

ϑ2 + r2
dϑ+

∞∑
j=2

(−1)j
λ2j

(2j)!

∫ 1

0

ϑ2j

ϑ2 + r2
dϑ
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up to the factor 1/2π2. The first integral on the right-hand side is equal to

−π

2

1

r
−
∫ ∞

1

1

ϑ2 + r2
dϑ

and the second integral just amounts to

−λ2

2

(
1−

∫ 1

0

r2

ϑ2 + r2
dϑ

)
= −λ2

2
+

λ2r2

2

(
− π

2

1

r
−
∫ ∞

1

1

ϑ2 + r2
dϑ

)
.

Therefore, the second term on the right-hand side of (5.3) has the form

−π

2

1

r

(
1+

λ2r2

2

)
− λ2

2
−
(
1+

λ2r2

2

)∫ ∞

1

1

ϑ2 + r2
dϑ+

∞∑
j=2

(−1)j
λ2j

(2j)!

∫ 1

0

ϑ2j

ϑ2 + r2
dϑ

up to the factor 1/2π2. Since

1 +
λ2r2

2
= e−λr + λr −

∞∑
j=3

(−1)j
(λr)j

j!
,

we conclude readily that

I1(x, y) =
−1

4π

e−λr

r
+R1(x, y),

where R1(x, y) is a twice continuously differentiable function with respect to the
variable y including the point y = x. Setting R = I1 + R1, we arrive at formula
(5.2). �

Lemma 5.2. As defined in (5.1), the function Φ(x, y) satisfies the Helmholtz equa-
tion ΔΦ− λ2Φ = 0 in y ∈ R

3 \ {x}.
Proof. Denote

Q(w) =
−1

2π2

1

K(x3)

K(w)

w − x3
,

where w = y3 + ı
√
r′2 + ϑ2. Then

ΔyΦ(x, y) =

∫ ∞

0

Δy

( �Q(w)√
r′2 + ϑ2

)
cosλϑ dϑ

=
1

2ı

∫ ∞

0

Δy

(Q(w)−Q(w)√
r′2 + ϑ2

)
cosλϑ dϑ.

The function under the Laplace operator Δy is of the form f(Y, yn), where
Y = |y′ − x′|2. A simple verification shows that

Δyf(Y, yn) = 4Y f ′′
Y Y + 2(n− 1)f ′

Y + f ′′
ynyn

, (5.4)

the partial differential operator on the right-hand side of this equality will be de-
noted by ΔY,yn

. Therefore, we shall have established the lemma if we prove that∫ ∞

0

ΔY,y3

( Q(w)√
Y + ϑ2

)
cosλϑ dϑ = λ2

∫ ∞

0

Q(w)√
Y + ϑ2

cosλϑ dϑ,

∫ ∞

0

ΔY,y3

( Q(w)√
Y + ϑ2

)
cosλϑ dϑ = λ2

∫ ∞

0

Q(w)√
Y + ϑ2

cosλϑ dϑ

(5.5)

for y 
= x.
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We prove mainly the first equality of (5.5). To this end we denote the left-hand
side of this equality by I. Using (5.4) one obtains

I :=

∫ ∞

0

ΔY,y3

( Q(w)√
Y + ϑ2

)
cosλϑ dϑ

=

∫ ∞

0

(
4Y

( Q(w)√
Y + ϑ2

)′′

Y Y
+ 4

( Q(w)√
Y + ϑ2

)′

Y
+
( Q(w)√

Y + ϑ2

)′′

y3y3

)
cosλϑ dϑ

and a trivial calculation yields

4
( Q(w)√

Y + ϑ2

)′

Y
= 2

( ıQ′(w)
Y + ϑ2

− Q(w)

(Y + ϑ2)3/2

)
,

4Y
( Q(w)√

Y + ϑ2

)′′

Y Y
= Y

( −Q′′(w)
(Y + ϑ2)3/2

− 3ıQ′(w)
(Y + ϑ2)2

+
3Q

(Y + ϑ2)5/2

)
,

( Q(w)√
Y + ϑ2

)′′

y3y3

=
Q′′(w)√
Y + ϑ2

.

On grouping the multipliers of the same derivatives of Q we get I = I1 + I2 + I3,
where

I1 :=

∫ ∞

0

ϑ2

(Y + ϑ2)3/2
Q′′(w) cosλϑ dϑ,

I2 :=

∫ ∞

0

2ϑ2 − Y

(Y + ϑ2)2
ıQ′(w) cosλϑ dϑ,

I3 :=

∫ ∞

0

Y − 2ϑ2

(Y + ϑ2)5/2
Q(w) cosλϑ dϑ.

Since

dϑQ
′(w) = Q′′(w)

ıϑ√
Y + ϑ2

dϑ,

then, integrating the first integral by parts, we obtain

I1 =

∫ ∞

0

( Y − ϑ2

(Y + ϑ2)2
cosλϑ− λϑ

Y + ϑ2
sinλϑ

)
ıQ′(w) dϑ

whence

I1 + I2 =

∫ ∞

0

ϑ2

(Y + ϑ2)2
ıQ′(w) cosλϑ dϑ−

∫ ∞

0

λϑ

Y + ϑ2
ıQ′(w) sinλϑ dϑ.

In both integrals on the right-hand side here we integrate once again by parts using
the equality

dϑQ(w) = Q′(w)
ıϑ√

Y + ϑ2
dϑ.

Then, the first integral transforms to

−
∫ ∞

0

(( 1

(Y + ϑ2)3/2
− 3ϑ2

(Y + ϑ2)5/2

)
cosλϑ− λϑ

(Y + ϑ2)3/2
sinλϑ

)
Q(w)dϑ

and the second one to∫ ∞

0

(
− λϑ

(Y + ϑ2)3/2
sinλϑ+

λ2

√
Y + ϑ2

cosλϑ
)
Q(w)dϑ.

Thus,

I1 + I2 = −
∫ ∞

0

Y − 2ϑ2

(Y + ϑ2)5/2
Q(w) cosλϑ dϑ+ λ2

∫ ∞

0

Q(w)√
Y + ϑ2

cosλϑ dϑ.
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Since the first integral on the right-hand side just amounts to I3, it follows that

I = λ2

∫ ∞

0

Q(w)√
Y + ϑ2

cosλϑ dϑ,

as desired.
Finally, the function Q(w) is obtained from Q(w) by substituting −ı for ı. There-

fore, the calculations do not change and the second equality of (5.5) follows as
well. �

For λ = 0, the results of this section are still valid with K(w) = exp(σw), where
σ > 0, see [Ike01, Ike09].

6. Heat conductivity in a cap type domain

Assume that X is a bounded domain in the upper half-space {x3 > 0} of R3

whose boundary consists of a smooth surface S lying in the half-space {x3 > 0},
and a closed piece of the plane {x3 = 0}. Such domains are usually referred to as
cap type domains. Note that the unit outward normal vector on the piece ∂X \ S
just amounts to (0, 0,−1).

Following (5.1) we introduce

Ĉσ(x, y; τ) =
−1

2π2

1

K(x3)

∫ ∞

0

�
( K(w)

w − x3

)cos(√ıτϑ)√
r′2 + ϑ2

dϑ,

where w = y3 + ı
√
r′2 + ϑ2 and τ is a complex parameter. An easy calculation

shows that

Ĉσ(x, y; τ) =

∫ ∞

0

kσ(x, y;ϑ) cos(
√
ıτϑ) dϑ (6.1)

where kσ(x, y;ϑ) is given by

−1

2π2

eσ(y
2
3−x2

3)e−σ(r′2+ϑ2)

ϑ2 + r2

(
(y3 − x3)

sin 2σy3
√
r′2 + ϑ2

√
r′2 + ϑ2

− cos 2σy3
√
r′2 + ϑ2

)
.

Hence it follows that

kσ(x, y;ϑ) =
1

2π2

e−σx2
3e−σ(r′2+ϑ2)

ϑ2 + r2
,

∂y3
kσ(x, y;ϑ) =

1

π2

e−σx2
3e−σ(r′2+ϑ2)

(ϑ2 + r2)2
x3

(
1 + σ(ϑ2 + r2)

)

on the plane y3 = 0. On applying Lemma 5.2 we conclude that Ĉσ(x, y; τ) is
a Carleman function of Cauchy problem (2.2) in the domain X with data on S,
parametrised by τ .

Therefore, the theory of Section 2 applies to the Cauchy problem for the heat
equation in CT = X × (0, T ) with data on S × (0, T ). It remains to evaluate the
inverse Laplace transform

Cσ(x, y; t) = L−1Ĉσ(x, y; τ) =

∫ ∞

0

kσ(x, y;ϑ)L−1 cos(
√
ıτϑ) dϑ

of Ĉσ(x, y; τ), which reduces to evaluating the inverse Laplace transform of the
function cos(

√
ıτϑ), i.e.,

L−1 cos(
√
ıτϑ) =

1

2πı

∫
�p=−γ

etp cos(
√
pϑ) dp =

1

ϑ2

(L−1 cos
√
s
) ( t

ϑ2

)
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for ϑ > 0.
It would be desirable to explicitly evaluate the inverse Laplace transform of

cos
√
s but we have not been able to do this. The computer algebra system Maple

gives no answer to this question, for cos
√
s fails to be the Laplace transform of

a function on the nonnegative semiaxis satisfying |f(t)| ≤ C ekt for t ≥ 0. The
formal approach does not yield any substantial formula. On formally extending the
equality

L−1 exp(−a
√
s) =

a√
4πt3

exp
(
− a2

4t

)
,

which is valid for a > 0, analytically to a = ±ı and using the Euler formula we
obtain

L−1 cos
√
s =

1

2

( −ı√
4πt3

exp
1

4t
+

ı√
4πt3

exp
1

4t

)
= 0,

a nonsense. As is often the case, if the Laplace transform F = Lf expands as

F (s) = sp
∞∑

n=0

cns
rn,

where r > 0 is a rational number, then

f(t) =
1

tp+1

∞∑
n=0

cn
Γ (−p− rn)

t−rn

for t > 0. For the function F (s) = cos
√
s this formal argument leads immediately

to the formula

f(t) =
1

t

∞∑
n=0

cn
Γ (−n/2)

t−n/2,

where cn = (−1)n/2/n! for even n and cn = 0 for odd n. Since Γ (z) has poles at all
points z = 0,−1, . . ., we recover once again that f ≡ 0. We thus conclude that the
inverse Laplace transform of cos

√
s should be interpreted within the sophisticated

theory of [GS53].

Theorem 6.1. Let X be a cap type domain in R
3. Then, for any u ∈ H2,1(CT ), it

follows that

u(x, t) = lim
σ→∞

(
−

∫
X
Cσ(x, ·; t)u(·, 0)dy

−
∫
S

∫ t

0

(Cσ(x, ·; t−t′)∂νu− ∂νCσ(x, ·; t−t′)u) dsdt′

+

∫
X

∫ t

0

Cσ(x, ·; t−t′)(Δ− ∂t′)u dydt
′
)

whenever (x, t) ∈ CT .
Proof. This is a direct consequence of formula (6.1) and the approach developed in
Section 2. �
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7. Solvability criteria for the Cauchy problem

When regularising an ill-posed problem one usually assumes a priori that there
a solution to the problem with appropriate properties. It would be desirable that
the convergence of a numerical solution of the ill-posed problem with given data
be evidence of the existence of a solution while the divergence would testify to the
nonexistence. This is similar to the fact that an a priori proof of the stability of a
correct problem often implies an existence theorem. Perhaps one can think of the
limit of regularisations, if there is any, as a generalised solution of the problem, for
it is a tested substitute for the solution, if there is no real solution. We now clarify
this concept.

If u ∈ H2,1(CT ) is a solution of Cauchy problem (2.1) then Theorem 6.1 implies
that

u(x, t) = lim
σ→∞

(
−

∫
X
Cσ(x, ·; t)u(·, 0)dy

−
∫
S

∫ t

0

(Cσ(x, ·; t−t′)u1 − ∂νCσ(x, ·; t−t′)u0) dsdt
′

−
∫
X

∫ t

0

Cσ(x, ·; t−t′)f dydt′
)

(7.1)

for all (x, t) ∈ CT .
Conversely, assume that, given data f and u0, u1, the limit on the right-hand

side of (7.1) exists at each point (x, t) ∈ CT and thus defines a function u in the
cylinder CT . One may ask if u satisfies the Cauchy problem (2.1). The affirmative
answer would allow one to formulate a solvability criterion for problem (2.1), cf.
for instance [Yar04]. While being adequately motivated from the viewpoint of
mathematics, such a criterion is efficient by no means. Hence, the right-hand side
of (7.1) may be regarded as approximate solution of problem (2.1) in any case. The
mathematical problem consists most likely in specifying the sense in which this
formula is optimal.
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Switzerland, 1950.
[GS53] Gelfand, I. M., and Shilov, G. E., The Fourier transform of rapidly increasing functions

und uniqueness of the Cauchy problem, Uspekhi Mat. Nauk 8 (1953), Issue 6 (53), 3–54.
[Ike01] Ikehata, M., Inverse conductivity problem in the infinite slab, Inverse Problems 17

(2001), 437–454.
[Ike09] Ikehata, M., Two analytical formulae of the temperature inside a body by using partial

lateral and initial data, Inverse Problems 25 (2009), 035011 (21 pp).

[LO74] Landis, E. M., and Oleynik, O. A., Generalised analyticity and related properties of
solutions of elliptic and parabolic equations, Uspekhi Mat. Nauk 29 (1974), no. 2,
190–215.

[LRS80] Lavrent’ev, M. M., Romanov, V. G., and Shishatskii, S. P., Ill-Posed Problems of
Mathematical Physics and Analysis, Nauka, Moscow, 1980.

[MNT08] Makmudov, O., Niyozov, I., and Tarkhanov, N., The Cauchy problem of couple-stress
elasticity, In: Complex Analysis and Dynamical Systems III, Contemporary Mathe-
matics, vol. 455, Amer. Math. Soc., Providence, RI, 2008, pp. 297–310.

[MMT11] Makhmudov, K., Makhmudov, O., and Tarkhanov, N., Equations of Maxwell type, J.
Math. Anal. Appl. 378 (2011), Issue 1, 64–75.

[PS12] Puzyrev, R., and Shlapunov, A., On an ill-posed problem for the heat equation, J. of
Siberian Federal Univ., Math. a Phys. 5 (2012), no. 3, 337–348.

[Tar95] Tarkhanov, N., The Cauchy Problem for Solutions of Elliptic Equations, Akademie
Verlag, Berlin, 1995.

[Yar77] Yarmukhamedov, Sh., The Cauchy problem for the Laplace equation, Soviet Math.
Dokl. 18 (1977), no. 4, 939–942.

[Yar04] Yarmukhamedov, Sh., The Carleman function and the Cauchy problem for the Laplace
equation, Siberian Math. J. 45 (2004), no. 3, 580–595.

[YY03] Yarmukhamedov, Sh., and Yarmukhamedov, I., The Cauchy problem for the Helmholtz
equation, In: Ill-posed and non-classical problems of mathematical physics and analysis,
VSP, Utrecht, 2003, 143–172.

Department of Mechanics and Mathematics, University of Samarkand, University

Boulevard 15, 140104 Samarkand, Uzbekistan

E-mail address: komil.84@mail.ru

Department of Mechanics and Mathematics, University of Samarkand, University

Boulevard 15, 140104 Samarkand, Uzbekistan

E-mail address: olimjan@yahoo.com

Institute of Mathematics, University of Potsdam, Karl-Liebknecht Street 24/25,

14476 Potsdam (Golm), Germany

E-mail address: tarkhanov@math.uni-potsdam.de


	Title
	Imprint

	Abstract
	Contents
	1. Introduction
	2. A Cauchy problem for parabolic equations
	3. The heat equation in dimension one
	4. An example of instability
	5. A fundamental lemma
	6. Heat conductivity in a cap type domain
	7. Solvability criteria for the Cauchy problem
	References

