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Abstract: Recognizing and defining functionality is a key competence 
adopted in all kinds of programming projects. This study investigates 
how far students without specific informatics training are able to iden-
tify and verbalize functions and parameters. It presents observations 
from classroom activities on functional modeling in high school chemi-
stry lessons with altogether 154 students. Finally it discusses the poten-
tial of functional modelling to improve the comprehension of scientific 
content.
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1	 Recognizing Functionality

In mathematics a function is a mapping, a relation between a set A of inputs 
and a set B of outputs. Each input from set A is related to exactly one output 
from B.

Computer scientists consider functions as a programming construct that is 
used to cope with complexity. A complex operation serving a certain purpose is 
divided in less complex operations, which are easier to implement by program 
text. This is a method of structural decomposition and a fundamental idea of 
computer science (Schwill, 1994). 

All higher programming languages like Java or Python support defining 
functions. Technically a function definition consists of a function name, pa-
rameters and a block of instructions, defining in what way the parameters are 
processed in order to produce a result which (in many cases) is returned to the 
calling process in a special return statement. 
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There are functions that do not return any object explicitly (procedures) but 
change the state of a mutable object. For example a list may be extended by 
appending a new element. On a higher level of abstraction one might say that 
the old state of the mutable object is the input and the new state is the output. 
Functions may be stand-alone objects. In object-oriented programming they 
are connected to classes or instances of classes (class methods and methods). 
An object represents some holistic entity from real life or fantasy. The methods 
are related to the general meaning of the object. For example in Python the 
class list represents mutable sequences of items. The methods of list objects 
represent meaningful facets of the holistic concept of a list like inserting, re-
moving, changing or appending items.

Let me now shortly discuss four properties of functions that are relevant 
for learners.

1.1	 A function is different of structure 

According to Kroes (1997) all technical artifacts have a structure and a func-
tion, which “has a meaning only in the context of intentional human action” 
(p. 291). The function of a clock is to tell the time. We need this to manage our 
lives. Its structure is its physical implementation by electronic components, 
power supply etc. The dichotomy of structure and function is also adopted 
in biology to describe natural systems. In physiology the human body is seen 
as an aggregate of organs, which have certain functions in relation to other 
organs. For example the function of the heart is to pump blood. A function in 
a computer program is not a physical but a digital artefact. Its dual nature is 
given a) by its purpose (the desired effect) and b) by its implementation con-
sisting of a block of program statements. When a programmer decomposes a 
complex task into less complex subtasks by defining functions or a class struc-
ture, she or he focuses on functionality and ignores the implementation of the 
functions or classes. They are considered as black boxes.

1.2	 Functions are abstractions

One and the same function can be used to describe different activities. Lakoff 
and Nunez (1997) discuss conceptual metaphors for arithmetic operations that 
are used in math education. For example the addition 4 + 3 can be represented 
by putting together a collection of four beads and a collection of three beads 
(“arithmetics is collecting objects”). Another metaphor for the same operation 
is walking four steps and then walking another three steps in the same direction 
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(“arithmetics is walking along a line”). Creating a function is just the other way 
round. It is finding an abstraction of activities like putting together collections 
of beads and walking certain distances. (In this example it is inventing addi-
tion.) When a programmer creates a new function within a software project, 
she or he tries to create an abstraction that can be called several times. This 
strategy leads to an efficient development process.

Abstraction takes place when (existing) functions or operators are overloa-
ded. For example, one can apply the concept of “adding” to different domains

•	 Numbers: 2 + 2 == 4
•	 Sequences : [1, 2] + [ 2, 3] == [1, 2, 3, 4]
•	 Colors: red + green = yellow.

Addition is an arithmetic operation, but in the context of sequences (strings, 
lists etc.) adding means concatenation. In physics, “adding colors” refers to 
mixing light of different colors (additive colors).

Technically, overloading means to reuse an already existing operator 
(like +) or function name (like len) for a new activity. In Python the name 
__add__ corresponds to the operator +. When you want to define an addition 
for objects of class C you define a method named __add__ within the class 
definition of C. 

1.3	 Functions represent holistic concepts

To be of help in a modelling process a function must represent a single holistic 
idea of activity. Most functions are labelled by one verb: to add, to append, to 
destroy. It is good style in computer programming to use meaningful names 
for all kind of objects. It is recommended that a function name should be a 
verb. Regarding the mental representation of a function a meaningful name 
is more than good style but essential. According to Baddeley (2003) humans 
can only handle a few chunks of information in working memory at the same 
time. A function call can be regarded as such a chunk. If the idea of a function 
is not fully understood and clear it must be rehearsed first before it can be used 
for problem solving. It is for instance impossible to create or to understand an 
algorithm based on adding numbers and extending lists, when the meaning of 
these operations is not perfectly clear. A reason for overloading an operator 
like + is that it represents a gestalt-like concept that is already familiar. It is 
easier to extend this to a new domain than to create something new.
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1.4	 Functions may have parameters

There exist functions without any parameters. Each constant object can be 
considered as a zero-ary function. But these are special cases. There are two 
prominent intuitions visualizing the idea of a function: factory and tool (see 
Weigend, 2007). The factory-model is a black box with an entrance for input 
data and an exit through which produced output data leave. The tool model vi-
sualizes the function as a tool (e.g. a knife) that is able to modify a mutable ob-
ject (e.g. cut off something). However, the objects which are processed by the 
function are specified by parameters. A function call (like a metaphor) implies 
a transfer of knowledge from one domain to another. And parameters with 
meaningful names can support this cognitive operation. Parameters are used in 
a function call (as arguments) and represent objects from domain A, where the 
function is used. Corresponding parameters appear also in the definition of the 
function (formal parameters) and represent objects within the domain B of the 
function definition. Consider this simple function, which calculates the area of 
a rectangle (Python):

def area (length, width): 
return length*width

The parameters represent objects from the domain geometry. Imagine to use 
this function for calculating the area of a rectangular door, which is appropriate 
for humans. The function call (with position arguments) may look like this:

area(height + 10, armspan)

The parameters are related to the physical properties of a human. Thus they are 
from a different domain: biology. The transition from one domain to another 
can be made more explicit by using keyword arguments (Python):

area(length=height+10, width=armspan)

Each keyword argument key=value includes a mapping from an item of do-
main A to an item domain B. 

2	 Modeling with Functions as a Competence

The four properties of functions discussed in the previous section, correspond 
to cognitive operations that a programmer has to perform in some way, when 
she or he creates functions or classes of objects in order to model a scenario.
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•	 Abstraction. The programmer must find similar activities within the 
scenario, which can be modeled by the same function. This implies 
the ability to use only functional aspects (not structural) as criteria for 
classification.

•	 Conceptualizing. The programmer must find a concept that describes 
all activities of a category on a more abstract level. She or he has to 
find a meaningful name that labels the concept.

•	 Parameterization. The programmer needs to identify parameters, i.e. 
objects that are taken as input and processed by the function.

What kind of cognitive operations are performed, when a programmer uses 
functions that already exist in the repertoire of the programming language?

•	 Deductive reasoning. When a programmer browses through class li-
braries looking for an appropriate function or class she or he has to 
understand functionality described in the documentation and apply it 
to a new context. 

•	 Transfer of knowledge. In programming literature functions belong to 
a context like a class or a library. For example, in Python 3.3 instances 
of the built-in class list have 33 methods (22 of them are overloaded 
operators and functions). All these functions are related to the concept 
of a linear sequence of objects, which could be pictured by – say a 
row of ten boxes. Imagine Jenny using a list to model a collection of 
airports. When she uses the function len() to calculate the number of 
airports, she transfers the term length from the image of a sequence of 
objects in a row (which has a certain length) to a new domain. Airports 
are not boxes laying in a row. The term length is now metaphorical.

According to Schwill (1994), fundamental ideas (like decomposition) can be 
explained and understood on a low level without specific computer science 
(CS) knowledge. This is an implication of the “vertical criterion”. The major 
question this contribution is focused on is: How far are students without speci-
fic informatics training able to identify and verbalize functions and parameters 
related to objects in real life?

In the years 2013 and 2014 I have conducted a couple of classroom ac-
tivities in a high school that were related to functionality. The students had 
to associate things from everyday life to laboratory equipment with the same 
functionality (abstraction), verbalize this common function (conceptualizati-
on) and name parameters (parametrization). For example, a glass tube has the 
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same function as a trail, this function can be verbalized by the verb “to guide” 
and typical parameters are fluids in case of a tube and people in case of a trail.

Before I present more details of these classroom exercises let me briefly 
characterize the three facets of functional analysis from the perspective of 
Raymond Cattell’s theory of fluid and crystalline intelligence (Cattell, 1963). 
Abstraction by classifying activities or tools, is related to fluid intelligence, 
since it does not require language skills. It is rather a general ability to solve 
problems in a novel situation independent from specific knowledge or experi-
ence. For example when Jenny associates a glass tube to a trail, she compares 
typical processes related to tubes and trails and finds a common principle. On 
the other hand, verbalizing functions and parameters implies a lot of crystalli-
zed intelligence, which is the ability to use skills, knowledge and experience. 
It is language-related and culture-dependent.

3	 Activity 1: Functionality of Laboratory Equipment

The participants got a worksheet depicting items from a chemistry lab (glass 
tube, spoon, Erlenmeyer flask etc.) on the left hand. On the right hand side 
there were things from everyday life. Although the items were from different 
domains and had different structures, some of them had similar functions. For 
example, a rubber plug and a crown cap look different and are made of dif-
ferent materials but they are both used to close containers to keep the content 
safe. The students’ task was

1.	 to connect corresponding items by a line and
2.	 to name the function they have in common and write the words on the line.

The search for similar functionality corresponds to browsing through class lib-
raries looking for appropriate functions for a software project. 

75 high school students from grade 6 and 7 (age 11 to 14, average age 
11.8, including 42 girls and 31 boys) were asked to perform this task. Beside 
the given example (rubber plug and crown cap with the function: to close) 
there were seven intended relations. Three images were meant as distractors 
and were not expected to be associated to anything from the complementary 
domain: Erlenmeyer flask, pasta, glass slide. The students found additional un-
expected associations. For example, one person connected protective goggles 
with a knife and as a common function he called protection.

The students found an average of 6.5 pairs of corresponding objects and 
verbalized an average of 4.0 functions. Table 1 shows some results from the 
analysis of students’ work.
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Figure 1: Worksheet from activity 1 “What has the same function?”

Table 1: Some results from “What has the same function?” (n=75)

Laboratory 
device

expected 
association
(percent)

most 
selected
unexpected
(percent)

wording for 
expected 
functions
(examples)

verbalizing 
a function, 
including 
unexpected

referring to 
structure
(material, 
shape)

glass tube trail (29%) slide (25%),
macaroni 
(25%)

guide, transport 44% 23%

spoon patel excavator 
(65%)

knife (19%) dig, pick, 
excavate

65% 0%

mortar knife (69%) excavator 
(9%)

destroy, crush 67% 0%

protective 
goggles

umbrella 
(65%)

glass slide 
(16%)

protect 85% 0%

sieve barriers for 
cars (28%)

barriers at 
queue (28%)

sort out, prevent 
big things from 
entering

44% 5%

funnel barriers at 
queue (16%)

barriers for 
cars (28%)

let through only 
a little

33% 10%

One-hole 
rubber 
stopper 

door (22%) macaroni 
(25%)

close, shut, bar 37% 16%
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The second column (expected association) tells objects from everyday life that 
share a common function with a laboratory device from the first column and 
the percentages of students who have chosen this association. The third co-
lumn shows the most popular unexpected associations. The students used a 
variety of phrases to describe the functionality. Column 4 tells a few examples.

In some cases students did associate objects because common structural 
features (like shape and material) instead of common functionality. For ex-
ample some students connected a glass tube with macaroni and wrote “both 
have a hole in the middle”. The last column shows the percentage of such 
misunderstandings.

The findings from this activity demonstrate that students in grade 6 and 7 
are able to distinguish between structure and function, classify objects accor-
ding to functionality and verbalize a function. Some functions (like the com-
mon function of a spoon and an excavator) are easier to identify than others 
(like the common function of a glass tube and a trail). Why are some con-
nections easier to find than others? A possible reason could be the degree of 
abstraction involved. A simple approach to determine the level of abstraction 
would be to compare the parameters. The common function of a spoon and an 
excavator is to move portions of amorphous material (like sand or powder). 
The parameters are quite similar. The common function of a glass tube and a 
trail is to guide objects from one location to another. In this case the parameters 
are fluids resp. humans, which are very different. Torreano et al. (2005) define 
levels of abstraction for metaphors in a quite similar way by checking common 
elements in the metaphorical and the literal meaning of a phrase. 

4	 Activity 2: Functional Analysis of Electrolysis

57 students (31 boys, 23 girls, 3 did not tell the gender) from chemistry classes 
in grade 10 performed a functional analysis of an electrolysis apparatus 
consisting of a battery (power supply), ammeter, two electrodes in a U-tube 
with diaphragm, filled with a solution of copper chloride (see Fig. 2 in the 
middle).

The students were asked to
•	 connect as many parts as possible from the electrolysis apparatus in the 

middle of the worksheet to objects from everyday life around it, which 
have the same function,

•	 verbalize the common functions,
•	 name the parameters at both ends of the connecting lines,
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•	 draw an image of another object that shares a function with one of the 
part of the apparatus and connect it.

Before they started, the terms “function” and “parameter” were explained 
discussing the example given on the worksheet: Ammeter and ruler have the 
same function to measure. The parameter (the entity that is measured) is elec-
tric current in case of the ammeter and length in case of the ruler.

The worksheet suggested a functional decomposition of the electrolysis 
apparatus. A component may have several different functions. The negative 
electrode for example (1) attracts positive ions (like a magnet attracting iron) 
and (2) donates electrons to positive ions (like a person donating presents).

Figure 2: Worksheet “Functional Analysis of Electrolysis”

Beside the example (ruler connected to ammeter) there were nine more images 
from everyday life to work on. On average the students drew 6.0 connecting 
lines and verbalized 4.1 functions. Only verbal expressions indicating purpo-
seful activity (e.g. attraction, storage, to guide, to donate) were accepted as 
proper function names. Expressions referring to structural properties (e.g. to 
have a positive pole, to need electricity) were not. Whereas naming functions 
seems to be pretty much part of common knowledge at the age of 16, iden-
tifying parameters is not. The average number of parameter pairs was 0.8. Only 
33 % of the students were able to name parameters at all. Parameters seem to 



294

mark a barrier, a transition from “common sense” to computational thinking 
that requires a special education. 

13 students (23 %) created an additional image, 9 of them connected it to a 
part of the apparatus and 5 verbalized a function.

5	 Activity 3: Functional Analysis of a Spectrophotometer

22 students from a high school chemistry class in grade 13 (5 boys, 17 girls, 
age 18 to 20) who had studied the principle of operation of a spectrophotome-
ter were asked to perform a functional analysis of this device by connecting 
parts of the apparatus to objects from different domains with the same function 
(Fig. 3). Additionally they tried to verbalize the function and name parameters. 
At the beginning of this exercise the given example was explained: The com-
mon function of a tap and a light bulb is to emit. The parameters are water in 
case of the tap and light in case of the light bulb. The students discussed the 
matter in small groups and solved the task in a collaborative way.

There were seven parts and seven objects from everyday life to connect. 
Again, in some cases the students found not intended relations, which still 
might be considered to be reasonable.

However, the plausibility of the Table 3 shows some findings. Columns 2–4 
tell how far the students were able to find a connection and name a common 
function and parameters, disregarding the plausibility (or correctness) of their 
choice. The last column tells the percentage of students who have chosen the 
intended pair of objects.

Later the students (n=21) evaluated the activity by rating the degree of 
agreement with some statements. They reported, that they talked about the 
spectrometer (average degree of agreement, ADA: 95 %), discussed at least 
one issue controversially (ADA 86 %), got a better understanding of a spectro-
photometer (ADA 77 %) and had fun (ADA 76 %). Only a minority felt that it 
was not interesting (ADA 21 %) and took too much time (38 %).



295

Figure 3: Worksheet „Functional Analysis of a Spectrophotometer”.

Table 2: Some results from “Functional Analysis of a Spectrophotometer”.

6	 Benefits from Computational Thinking for 
Understanding Science

In the previous sections I have presented some empirical findings on students’ 
competence of functional modelling. This competence is usually one of the 
major goals of computer science education at high schools. The idea of pro-
gramming projects in the classroom is not to produce software specialist but to 

Part (corres-ponding 
object)

connection 
only

connection 
and function 

name

connection, 
name and 

parameters

having chosen 
the intended 

pair
Slit (funnel) 5% 14% 82% 59%
Prism (shower head) 0% 9% 91% 95%
Movable slit (person 
selecting fruits) 

0% 23% 77% 50%

Cuvette with colored 
liquid (barriers)

14% 5% 73% 50%

photocell (ear) 0% 18% 82% 50%
Amplifier (magnifying 
glass)

0% 23% 77% 100%

Display (puppet 
theatre)

0% 23% 77% 50%
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foster “computational thinking” (Wing) that is of use in wider areas of know-
ledge processing. 

The question is: Does the ability of functional modelling help learning and 
understanding sciences like chemistry and physics? Andrea di Sessa (2002) 
illustrates the advantages of algebra for understanding physics. He presents 
Galileo’s original proofs of simple propositions in kinetics, which were written 
without any equations, since Galileo did not know algebra. These proofs are 
very difficult to understand. But every ninth-grader can proof the same propo-
sitions just by transforming equations, and gets some understanding this way. 
Students do not learn the competence of handling equations in physics but 
(basically) in math lessons.

What about functional modelling? Let me mention four issues:

1.	 Functional modelling by defining functions with parameters is a pat-
tern that might help understanding structures. It is an approach to cope 
with complexity by decomposing that not limited to the design of soft-
ware systems.

2.	 Science students sometimes mix up structure and function. In chemi-
stry classes students sometimes say that a negative electrode attracts 
positive ions in a solution (like Cu2+) through “magnetic force”. In 
fact the physical cause for the movement of ions is “electric force”. 
But people have much more experience with magnets than with elec-
trically charged bodies. Thus “magnetic attraction” is often just meant 
(metaphorically) as a functional concept (to attract = being magnetic). 
This can be clarified by a defining functions and parameters in a qua-
si-programming style. The pattern “a function processes parameters” 
forces to explicate the difference between a magnet and a negative 
electrode. 

3.	 Misconceptions often remain in the dark, just because nobody talks 
about them. Collaborative functional modelling encourages discus-
sions and explication of ideas. Here is an opportunity to make useful 
mistakes. This way misconceptions can be “diagnosed” and “cured”. 
This is comparable to using mathematical techniques to check the 
plausibility of a scientific calculations and chains of evidence.

4.	 The technique of functional modelling is a facet of computational thin-
king. It cannot just be noted like a piece of information, but it must be 
practised (rehearsed) and reflected, to be understood and to be of use. 
It is a competence. To develop this competence is an object of compu-
ter science rather than natural science education.
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