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Abstract: As a result of the Bologna reform of educational systems in 
Europe the outcome orientation of learning processes, competence-ori-
ented descriptions of the curricula and competence-oriented assess-
ment procedures became standard also in Computer Science Education 
(CSE). The following keynote addresses important issues of shaping 
a CSE competence model especially in the area of informatics system 
comprehension and object-oriented modelling. Objectives and research 
methodology of the project MoKoM (Modelling and Measurement 
of Competences in CSE) are explained. Firstly, the CSE competence 
model was derived based on theoretical concepts and then secondly the 
model was empirically examined and refined using expert interviews. 
Furthermore, the paper depicts the development and examination of 
a competence measurement instrument, which was derived from the 
competence model. Therefore, the instrument was applied to a large 
sample of students at the gymnasium’s upper class level. Subsequently, 
efforts to develop a competence level model, based on the retrieved em-
pirical results and on expert ratings are presented. Finally, further de-
mands on research on competence modelling in CSE will be outlined.

Keywords: Competence Modelling, Competence Measurement, Infor-
matics System Application, Informatics System Comprehension, Infor-
matics Modelling, Secondary Education
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1 Motivation

The paradigm-shift to a learnercentred and an outcome-oriented view on learn-
ing processes has been influenced by discussions and ongoing research in dif-
ferent areas of education. Besides results of research according to constructiv-
ist and cognitive learning theories, the discussion on learning taxonomies and 
competencies were crucial for the design and evaluation of learning processes. 
The shaping of domain-specific competence models with regard to their inter-
nal structure and different competence levels basically served two main goals: 
They are used to define educational standards and thereby contribute to the 
development of curricula and they enable the measurement of competences 
and learning outcomes in diverse educational settings.

Especially as a result of the Bologna Process and the OECD Program for 
International Student Assessment (PISA) the development and assessment of 
educational standards became a high level objective in the educational system 
(Adams, 2002). In Europe standards for the major school subjects, like math-
ematics, natural sciences, and the first language were developed for different 
levels of education. In Computer Science Education (CSE) the development of 
educational standards is not as advanced as in those main school subjects. On 
an international level there are some standard-oriented curricula of CSE like 
the Model Curriculum for K-12 Computer Science published by the IEEE-
CS and the ACM (Tucker et al., 2006) which has been revised later on by the 
Computer Science Teachers Association (CSTA, 2011) in 2011. In Germany 
the national CS-Society ‘Gesellschaft für Informatik’ (GI, 2008) published a 
proposal of informatics standards for lower secondary schools.

Nevertheless, these standards weren’t based on an empirically proofed 
competence model for CSE. Therefore, in 2004 the research community of Di-
dactics of Informatics in Germany started during the Dagstuhl-Seminar “Con-
cepts of Empirical Research and Standardisation of Measurement in the Area 
of Didactics of Informatics” (Magenheim, Schubert, 2004) a discussion about 
educational standards of CSE on a higher secondary school level. A result of 
this seminar was the comparison of the different approaches to educational 
standards in Mathematics and CSE. The results of the seminar revealed that 
further theoretical and empirical research was necessary to examine the oppor-
tunities of the measurement of educational standards of CSE and that respec-
tive research should be founded on a sound CSE competence model.

In an effort to develop such a competence model researchers in the fields 
of CSE and psychology started their research on this subject area. The project 
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MoKoM (Modelling and Measurement of Competences in CSE) funded by the 
German Research Foundation (DFG) from 2008 to 2014 developed a compe-
tence model and measured related competences of senior class students. The 
research project focused on two specific domains: informatics system compre-
hension and object oriented modelling. In the present paper we describe the 
objectives and research methodology of the project MoKoM on object-ori-
ented modelling and system comprehension (section 2) along with the actual 
research results: an empirically refined competence model (ECM) (section 3), 
a derived measurement instrument (section 4), results of an empirical survey 
which has been conducted in Germany by applying the MoKoM-instruments 
(section 5) and finally first steps towards a competence level model (section 6). 
In conclusion we give an outlook on the necessity of further research in this 
subject area (section 7).

2 Objectives and Research Methodology

In alignment with the discussion on CSE standards in secondary education and 
in order to develop a CSE competence model the project MoKoM investigated 
the following main research questions:

• Which competencies are necessary for informatics system application, 
informatics system comprehension and informatics system modelling 
in upper secondary education?

• How can these competencies be related to a theoretical derived com-
petence model (TCM)?

• How could the TCM be used to gain an empirically refined compe-
tence model (ECM)?

• Which test items are adequate to measure these competencies of the 
learners in CSE with a competence-based test-instrument?

• Is the test-instrument able to measure the described informatics com-
petences in a valid and reliable way when applied to a large sample of 
senior students? 

• Can such a test-instrument be used to distinguish between different 
competences of a group of students?

• Does the test instrument validate the assumed competence model resp. 
competence structure?

• How can this model be used for the grading of competencies and 
how can it be used to evaluate the learning outcomes of a specific 
CSE-learning setting?
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In a first phase of the project, competence definitions, expert papers and CSE 
curricula were analysed. Thus, all competence dimensions were theoretically 
derived from international syllabi and curricula, e.g., the “Computing Curricu-
lum 2001” of ACM and IEEE (Cross, Denning, 2001), the “Model Curriculum 
for K-12 Computer Science” of the ACM (CSTA, 2011) and a variety of other 
ACM, IEEE, IFIP, GI and CSTA (e.g. CS2013) publications. Additionally, ex-
pert papers like the Rational Unified Process for software development (IBM, 
1998) were used to identify important competence components for system 
modelling. Based on the analysis of these resources and applying Weinert’s 
definition of competence (Weinert, 2001), a first competence framework, con-
taining cognitive and non-cognitive competences was developed. 

But a restriction on exclusively theoretically derived competencies would 
risk that the reference of competencies to complex requirements in real situa-
tions is neglected or disregarded. Therefore, an additional step was necessary 
in order to determine competencies more reliably, that is, ensuring an empirical 
access to determinate the relevant competencies. Conducting expert interviews 
by applying the Critical Incident Technique represents an appropriate empiri-
cal approach to detect the relevant competencies in the subject domains ‘sys-
tem comprehension’ and ‘object-oriented modelling’. 

The interviews of the 30 experts (experts in the domain of didactics of 
informatics, computer scientists and expert informatics teachers) were based 
on a structured questionnaire manual and included twelve hypothetic scenarios 
(see figure 1) concerning application, testing, modifying and developing of 
informatics systems. The expert interviews were transcribed in full and ana-
lysed by means of qualitative content analysis according to Mayring (Mayring, 
2003). The requirements of intercoder reliability were also considered during 
this empirical phase of analysis and were sufficiently achieved.
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Figure 1: Interview scenario

The results of the qualitative content analysis have to be structured according 
to the dimensions of the competence model. Relations between the compe-
tence components and meaning units in the interview have to be found and 
described. An example shows the answer about social-communicative skills: 
“There is a serious contradiction between the competence of problem solving 
and the social-communicative competencies.” This means it is necessary to 
supervise the development of social-communicative competencies, since they 
are not fostered as a side effect of informatics problem solving. Another exam-
ple shows the answer about empathy, change of perspectives and roles: “When 
we test software of others, we have to learn to criticize in a fair and sensitive 
way.” The task of systematic testing gives the opportunity to gain non-cog-
nitive competencies on a higher level when the learner presents his results to 
other learners, e.g. the explanation of use cases, the presentation of test results 
including the visualization of large data collections.

3 Competence Model on Informatics System 
Comprehension and Object-Oriented Modeling

The described content analytic procedure led us to an empirically refined com-
petence model (see figure 2). But the described empirical procedure to comple-
ment the theoretical model is nevertheless restricted. One methodological re-
striction implies, that the relevant competence requirements are closely linked 

Scenario: “You are asked by a colleague to test his software, which was developed 
to solve configuration problems, e.g. to set up a new car or a new computer.” 

Question 1: “What is your strategy of testing to solve this problem? Which aspects 
do you have to bear in mind?”

Question 2: “Which cognitive skills are required for such a software exploration?”
Question 2.1: “Which informatics views are important for this task?”
Question 2.2: “Which complexity would you assign to this task?”
Question 3: “Are there any attitudes or social communicative and cooperative 

skills which are necessary to accomplish this?”
Question 4: “Which differences of competence levels would you expect between 

novices and experts?”
Question 5: “Could you imagine a potential pupil‘s procedure to solve this pro-

blem?”
Question 6: “Which obstacles would pupils have to cope with?”
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to the used scenarios. So it is important that the scenarios contain at least typ-
ical and representative tasks and problems to be solved. This was ensured by 
the representative ratings of the experts. Furthermore, the actions described 
by the informatics experts might not necessarily mirror their actual behaviour 
in those scenarios because they could describe idealized actions to solve the 
problems in the scenarios. On this issue, the different orientations of expertise 
of the interviewees serve as a corrective to some extent. The deployment of the 
qualitative content analysis took place adhering to comprehensible, methodi-
cal rules and principles. Nevertheless, qualitative analyses include inevitably 
interpretative processes, which might restrict the objectivity, reliability and 
validity of the described analyses.

As a result of these research efforts in the MoKoM-project a theoretically de-
rived and empirically refined competence model was developed. 

The empirical refined competence model contains four cognitive dimen-
sions K1 ‘System application’, K2 ‘System comprehension’, K3 ‘System de-
velopment’ and K4 ‘Dealing with system complexity’. Additionally a non-cog-
nitive dimension K5 covers ‘Non-cognitive skills’. 

A condensed version is depicted in figure 2. The extended version with all 
sub-categories was published in 2013 (Linck et. al., 2013).

While these categories of the competence model represent only the struc-
ture of the model in terms of components and hierarchy the derived items were 
contextualized and meet the requirements of competence definitions regarding 
a person´s ability to perform observable action. 



39

K1 System application

K1.1 Structuring of application field
K1.2 System exploration 
K1.3 System selection 
K1.4 Use of media to foster system application
K1.5 Transfer to new application fields

K2 System comprehension

K2.1 System requirements
K2.2 Systematic tests
K2.3 System exploration
K2.4 Evaluation of software quality
K2.5 Architecture & organization
K2.6 Algorithms & data structures
K2.7 Informatics’ Views 

K3 System development

K3.1 Software development process models
K3.2 Business Modeling
K3.3 Requirements
K3.4 Analysis
K3.5 Design
K3.6 Implementation
K3.7 Test
K3.8 Iterative development

K4 Dealing with system complexity
K4.1 Measures of complexity: Time & Space
K4.2 Number of components
K4.3 Level of networkedness
K4.4 Stand-alone vs. distributed systems
K4.5 Level of human-computer interaction 
K4.6 Combinatorial complexity

K5 Non-cognitive skills

K5.1 Attitudes
K5.2 Social-communicative skills
K5.3 Motivational and volitional skills

Figure 2: Competence Model
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4 Development of a Competence Measurement Instrument

During further methodical steps, as described in the following sections, test 
items and an empirical test instrument was developed on the basis of the 
refined competence model. The empirical test instrument was applied on a 
representative sample of students in secondary schools in Germany, mainly 
from Bavaria and North Rhine Westphalia. The results of this survey not only 
provides an insight into the competencies and abilities of students in CSE at 
secondary schools but enables us to development a competence level model 
for the needs of grading competences.

4.1 Principles of Competence Measurement

Based on the empirical competence model the test instrument was developed 
following the principles of Situational Judgment Tests (SJT; Weekly, Ployhart, 
2006). This means that we created knowledge application scenarios which spe-
cifically addressed the specific competence requirements of each model facet 
that had to be operationalized. We also took into consideration experiences of 
how to construct competence measurement items gained in large scale studies 
like TIMMS, PISA and DESI. 

Based on detailed competence descriptions, tasks for every single com-
petence item were created. After this, the answering format was created. In 
the majority, this included closed answering formats like multiple choice or 
classification items. But also tasks with open questions that required short sen-
tences or the statement of keywords as answers were used. The answering 
format was chosen and created in accordance with the cognitive requirements 
and levels (according to the cognitive dimension of the Anderson, Krathwohl, 
2001 taxonomy) that had to be addressed. We also used a complex item format 
which included multiple items resp. tasks that were integrated in one complex 
application scenario. So, we were able to address different competence facets 
in one task context and by this economize the measurement. To allow an ob-
jective and reliable appraisal of the answers (especially when evaluating open 
item format), a comprehensive grading manual was created alongside the test 
items. This contained different sample solutions as well as approaches to grade 
answers. 

The test instrument was examined and optimized by conducting a prelimi-
nary test with students from local secondary schools. In addition, student com-
puter science teachers from didactical courses at the universities of Paderborn 
and Siegen were asked to review the instrument. The main issues found during 



41

this pre-test were ambiguous wording and oversight mistakes on the one hand 
and diffi culties of applicability of the tasks on the other. Rewriting or extend-
ing the context of the tasks could easily fi x the latter.

4.2 Design of Test Items of CSE

The empirically refi ned competence model allows the defi ning of competence 
profi les, which are the basis for the model for the instruments of competence 
measurement (see fi gure 3).

Figure 3: Impact of competence profi les on learning

To illustrate the procedure of defi ning competence profi les on informatics sys-
tem comprehension, we will start with an example: (1) A competence com-
ponent of the empirically refi ned competence model is chosen, e.g. “Errors 
as Learning Opportunities”. (2) All main expert statements, which are relat-
ed with this competence component, are collected from the spreadsheets. (3) 
Step 3 is to select citations of the collection of expert statements, which have 
the most meaningful expressions. Such citations of expert statements will be 
called “anchored examples”. In this case two anchored examples are related to 
this component:

I. “Most important is the ability not to give up after the fi rst syntax er-
ror, but to learn from them, and to determine error messages. I want 
to deliver a completed product, which actually does, what it should 
do.”
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II. “You have to intervene in this case and reflect once again, and in the 
very moment, when it happens, say: This error, you will never do it 
again.”

(4) A first competence profile definition of “Errors as Learning Opportunities” 
is based on the content of both statements. (I) implies that students should 
require the competence to identify errors and (II) implies that learners should 
detect and avoid errors: 

“The learners are able to determine, to assess and to examine sys-
tem-based errors. This acquired knowledge will be applied to error 
avoidance and improvement of tests.” 

(5) Is to improve this definition. Therefore, keywords, referring to the cogni-
tive processes in (Anderson, Krathwohl, 2001), are used. These keywords are 
called operators. An operator is a work instruction, which refers to the content 
and to the methods to solve a given task. In the competence profiles the opera-
tor ensures that misinterpretations of the requirements towards the learners are 
reduced. In the competence profile definition above is “apply” an operator. In 
contrast, “determine, assess and examine” have to be discussed. The challenge 
is to find synonyms or similar expressions and express the meaning of the first 
competence profile definition. A refined definition of the competence profile 
follows: 

“The learners are able to identify, to differentiate, and to judge sys-
tem-based errors. This acquired knowledge is applied to error avoid-
ance and improvement of tests.”

Four operators “to identify, to differentiate, to judge, and to apply” are used in 
the definition of competence profiles. These operators support our aim, which 
is to assure the standardisation. After defining competence profiles for each 
component of the empirically refined competence model, test items can be 
developed. These test items measure the individual performance of a learner 
related to different components of the competence model in classroom prac-
tice. All cognitive and non-cognitive process dimensions, which are defined 
in a competence profile, have to be tested by such items. We developed and 
improved such test items with CSE teachers. This is an example of a successful 
test item: “You got the homework to write an algorithm, which sums up all 
numbers from 0 to n. Your friend already gave you his ideas noted in a pseudo 
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code (see figure 4). Decide which of the two algorithms is better regarding the 
running time.”

Figure 4: Algorithms in pseudo code

5 Applying the Measurement Instrument

5.1 The Population of the Test

Due to the large amount of items, the test instrument was not applicable in a 
classroom setting with timeslots of usually 90 minutes. Furthermore, students’ 
attention to the test instrument shouldn’t be required more than this time span. 
In order to adapt the instrument to a 90-minute timeslot, the items were divid-
ed into six blocks. Then six booklets were compiled from three item blocks 
each. Together with an additional questionnaire on attitudinal, motivational 
and volitional competences (representing facets of the dimension “non-cogni-
tive skills” resp. K5), the whole test can be accomplished within 90 minutes. 
The application of such an arrangement, called “matrix design”, is possible 
due to the application of the ‘Item Response Theory’ to analyse the test re-
sults. Though not all students answer every task due to not having them in 
their booklet and thus produce a lot of “missing values” in the final data, the 
IRT allows the calculated estimation of student abilities in combination with 
the overall item difficulty. This method provides coherent results even if the 
students worked on different subsets of items (Hartig, 2008), (Rost, 2004). 
The booklets were distributed to more than 800 computer science students in 
German upper secondary schools. The analysis of the returned data was done 
with ACER ConQuest, applying a 1PL partial credit model to estimate the item 
difficulties (Wu, Adams, Wilson, Haldane, 2007).

The booklets were originally distributed in 26 classes with 522 students in 
North Rhine Westphalia. Additionally 6 classes from Berlin, Hessen and Low-
er Saxony with a total of 82 students also participated. In Bavaria 244 students 
from 11 different classes (6 classes of grade 10 and 3 of grade 11) took part in 

Enter: n
Set sum = 0
Set i = 0
Repeat from 0 to n
 Set sum = sum + i
 Set i = i + 1
Return sum

Enter: n
Set sum = 0
If n odd-numbered, then
 Set sum = sum + n
 Set n = n - 1
Set sum = (n / 2) * (n + 1)
Return sum
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the test. According to the curriculum, the current learning content of most of 
the responding students was focused on object-orientation, the use of standards 
software like databases or spread-sheets and simplest concepts of program-
ming. The test was conducted as a pencil-and-paper-test. The print-versions 
of the booklets were sent to teachers who volunteered to deliver them to their 
classes. To prevent the students from cheating, each teacher received two to 
three different booklets to distribute them among the class. From more than 
800 tests we sent out we received back 583 completed and evaluable booklets. 
The investigated sample consists of 86 % male and 14 % female students with 
an average age of 17.5 years. 17 % of them had an immigrant background. 
Their self-assessed proficiency in computer science on a scale from 1 to 6 av-
eraged at 2.65 points. They had participated in computer science classes for a 
mean of 3.5 years. Only 3.3 % had dropped the subject in the interim.

5.2 Analysing the Test Data – Test of Model Fit

The gathered data were analysed according to the Multidimensional Item Re-
sponse Theory (MIRT). The main goal was to examine the dimensional valid-
ity resp. structure of the competence model and the reliability measurement 
instrument. To do so, several different IRT models were used to analyze the 
empirical data and the results were compared to assess the best fitting model. 

IRT models assume that personality traits cannot be measured directly and 
test results can only be interpreted as an indicator for the existence and intensi-
ty of such a trait. Therefore, IRT models differentiate between latent variables, 
that can’t be measured directly, but influence the response to a test item, and 
manifest responses that are assumed to be the observable manifestations of 
the latent traits. Thus, the ability of the test subject can be inferred from the 
responses. Furthermore, it is assumed that any subject has a certain probability 
to answer any item right or wrong. The difficulty of the item and the ability 
level of the subject determine this probability.

IRT has several advantages for the assessment of competences. For once, 
the estimation of the item difficulties and student abilities does not require for 
every participant to work on every task of the test instrument. This allows to 
use a matrix design with different booklets that only represent a part (about 
three-fourths) of the item resp. task pool of the competence test. Furthermore, 
the estimated parameters can be interpreted on the same scale and easily relat-
ed to each other.
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Since competence structures are complex constructs, they often result in 
multidimensional competence models. In our case this applies to the cognitive 
dimensions K1 to K4 with the additional non-cognitive dimension K5. The 
latter was excluded from the IRT analyses because the data for this dimension 
was raised by a questionnaire. To evaluate the dimensionality of the empirical 
data, multidimensional IRT models can be utilized, which assume that multiple 
latent variables (one per dimension) cause the responses to a test. Furthermore, 
MIRT allows for the comparison of different models, by analysing the con-
formity of the theorized model to the empirical data.

We also had to choose between a speed test and a power test variant to ana-
lyze the data (this has consequences concerning the handling of missing val-
ues). There are reasonable arguments for both variants. Therefore, we analyzed 
both. Since the results of both variants are very similar though, this article will 
concentrate on the results of the speed option. To calculate the MIRT analysis 
we used ACER ConQuest Version 2.

To evaluate the structure of the competence model, we analyzed four dif-
ferent IRT models with one to four assumed dimensions respectively. Since 
the test items were crafted with the intent to test for one specific competence, 
a between-item multidimensionality model was used in all cases. Because not 
all items could be coded as dichotomous responses, the partial credit model 
was applied to analyze dichotomous and polytomous data alike. Starting with 
the one-dimensional model, for which it was assumed that all items loaded on 
the same latent trait, every model added one additional dimension in accord-
ance with the assumptions concerning the structure resp. dimensionality of the 
competence model described above. The analyses results concerning the IRT 
models with different competence dimensions can be seen in table 1.

Table 1: Final deviance, estimated parameters and reliability for evaluated models

Model Final 
Deviance

Estimated 
Parameters

Reliability for dimension 1 to 4 
(if available)

1-Dim 87379.09538 316 0.872 (K1,K2,K3,K4)

2-Dim 86695.99173 319 0.831 (K1) / 0.831 (K3)
3-Dim 86403.83657 323 0.749 (K1) / 0.806 (K2,K4) / 

0.812 (K3)
4-Dim 85891.85717 328 0.779 (K1) / 0.763 (K2) / 0.861 (K3) / 

0.759 (K4)
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To compare the models, the final deviance – an indicator of how well the em-
pirical data fits the IRT model – and the number of estimated parameters re-
ported by Con-Quest can be used. Usually, both parameters should be as low 
as possible. If it is not possible to choose the better model by comparing the 
values alone (because one value is lower, while the other one is bigger than 
the parameters of the second model), a Chi-Square-Test can be calculated, us-
ing the difference in deviance and the difference in estimated parameters as 
the degrees-of-freedom. If the result is significant, the model with the smaller 
deviance parameter is selected. Otherwise the model with the lower amount of 
estimated parameters is deemed the better one. The parameters for each evalu-
ated model can be seen in table 1.

Table 2: Chi-Square statistics for model comparisons with difference in deviance and 
difference in estimated parameters as degrees of freedom

Since with increasing dimensions the deviance decreases and the number of 
parameters increases, a Chi-square-test was calculated for every combination 
of models (see table 2). In every case the result was statistically significant and 
since the models with a higher number of dimensions have a lower deviance, 
it can be assumed that they better match the empirical data than the models 
with fewer dimensions. Thus, the four-dimensional model has the best model 
fit overall.

5.3 Analyzing the Test Data – Item Fit and Reliability

ConQuest calculates the EAP/PV reliability for each dimension, which can be 
compared to Cronbach’s Alpha. Table 1 shows the reliability for all dimensions 
in each model. All values exceed 0.7 and can be considered acceptable.

To further evaluate the models, the item fit for individual items can be 
examined. The fit compares the predicted probabilities for each item within 
the model with the observed responses. To do this, ConQuest calculates the 
weighted mean squares (wMNSQ), which are expected to be 1 for perfectly 
fitting items. The wMNSQ for a good fitting item should fall between 0.8 and 
1.2, and the corresponding t-values should not be greater than 1.96. Further-

2-Dim 3-Dim 4-Dim
1-Dim χ(3)2=683.1, p<.001 χ(7)2=975.26, p<.001 χ(12)2=1487.24, p<.001

2-Dim χ(4)2=292.15, p<.001 χ(9)2=804.13, p<.001
3-Dim χ(5)2=511.98, p<.001
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more, the discrimination parameter shows how an item correlates to the overall 
test results. With the discrimination close to 0, an item may not be useful to 
differentiate between students with high levels of a trait and those with low 
levels. Values between 0.4 and 0.7 are considered good while values above 0.3 
can be considered as acceptable.

The data for all models (see table 3) showed a good item fit overall, but the 
percentage of unfit items increased for models with more dimensions, from 
below 1 % (2 items out of 292) for the one-dimensional to 4.7 % (14 items) for 
the four-dimensional model. In addition, the number of items that might have 
a bad fit according to the t-values increased from 27 to 37 items. Unfortunately 
the discrimination parameters are not very good for a large part of the items. 
Just 22.6 % (66 items) are above the 0.4 threshold and even if we adjust the 
point at which an item is considered to have a too small discrimination to 0.3, 
roughly 43.8 % (128 items) remain under that line. Only one item had a nega-
tive discrimination, which was close to 0. The high ratio of low discrimination 
items necessitates a throughout examination of the items and how they fit to 
their corresponding dimension in further steps. 

Table 3: Range of mean squares, t-values and discrimination values for all models 

5.4 Analyzing the Test Data – Difficulty Parameters and Latent 
Abilities

Main goal of IRT analysis is the estimation of two parameters: the item diffi-
culty, that denotes the probability of answering an item correct given a certain 
level of the measured construct, and person parameters, that assess the level 
of the latent trait for individual students. One advantage of IRT analysis is that 
both estimates can be arranged on the same scale and easily compared. The 
item-person-map for each model visualizes the item difficulties on the right, by 
ordering them from more difficult (top) to less difficult (bottom), and the latent 
trait levels on the left (grouping persons with the same values together). Ideal-
ly, the item difficulties should be well dispersed around the mean, having the 

Model wMNSO t Discrimination

1-Dim 0.86≤wMNSQ≤1.3 -2,9≤t≤4.4 -0.04≤Disc. ≤0.58

2-Dim 0.77≤wMNSQ≤1.42 -4.1≤t≤5.2 -0.04≤Disc. ≤0.58
3-Dim 0.76≤wMNSQ≤1.42 -4,2≤t≤5.2 -0.04≤Disc. ≤0.58
4-Dim 0.65≤wMNSQ≤1.42 -5.7≤t≤5.3 -0.04≤Disc. ≤0.58
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most items in the medium diffi culty range, but also providing items with high 
and low diffi culties. Additionally, the latent traits are separated by dimension. 
Figure 5 shows the maps for the one- and four-dimensional models. As can be 
seen, the item diffi culties are well distributed along the axis, though there are 
some aspects that have to be noticed and commented.

First, there are some outliers in the upper part of each map. This indicates, 
that some items are way to diffi cult for the targeted student groups, since no 
person was estimated to have a high enough profi ciency to solve these items 
with an adequate probability.

Second, the latent traits in the different dimensional solutions are somewhat 
uneven dispersed. While the one-dimensional model indicates, that the overall 
diffi culty of the test matches the ability of the population, the four-dimensional 
model reveals, that only the third dimension can be considered well matched. 
Dimension 1 and 4 lack items in the upper diffi culty range, while dimension 2 
necessitates less diffi cult items to adequately assess its competences.

Figure 5: Overview of the estimated item parameters for the one- and four-dimension-
al model
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6 Modelling of Competence Levels

In further evaluation steps of our test instrument we want to grade the measured 
competences of modelling and comprehending informatics systems which can 
be interpreted as competence levels of the developed model. To create a com-
petence level model you have to choose between different approaches (Hartig, 
2004). We decided to use an inductive approach which is based on systematic 
post hoc analyses of task contents and requirements. To apply this approach, 
different steps have to be conducted to identify and generate the desired com-
petence levels measured by a certain competence test:

First, you have to identify and define task features that determine the diffi-
culty when coping with the task requirements and contents. Secondly, you have 
to determine and describe the different grades or levels of difficulty concerning 
each difficulty feature. In a third step you have to determine how the different 
difficulty features and grades are represented in each test item. Therefore you 
have to conduct an expert rating at which the experts examine and rate each 
item if specific difficulty features and levels are given or required when coping 
with the item. In a fourth step the expert ratings of the difficulty features of 
each test item are related to the empirically determined difficulty parameters 
(when the test is applied to a large sample of students). This is conducted by re-
gression analyses to test if the assumed difficulty features and grades are really 
determining the empirically determined difficulty of the items. Only those dif-
ficulty features and grades that prove to be significant predictors of the empiri-
cal difficulty are kept in the further process of defining the competence levels. 
In a fifth step the items are ordered concerning their empirically determined 
difficulty and in an adjunct table for each item it is systematically determined 
and described if a difficulty feature is realized in the requirements and at which 
difficulty grade resp. level. This table is used in a sixth step to determine and 
define thresholds of competence levels. This is usually the case, when new 
difficulty features or grades appear at a certain type of items. After you have 
determined such thresholds and the number of different competence levels you 
have to describe each level in a seventh step. Therefore, you have to take ref-
erence to the requirements of the items that belong to a specific competence 
level. These requirements are especially derived from the difficulty features 
and grades, which characterize these group of items typically. In a last step 
you have to classify the persons of your sample according to the competence 
levels to determine how the sample is distributed over the competence levels.

In the following we describe the analyses we have conducted so far to gen-
erate a competence level on the basis of our test instrument and study sample.
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6.1 Identification and Description of Difficulty Relevant Features of the 
Competency Test Items

To identify and describe difficulty relevant features of the competency test we 
first defined difficulty relevant features of the competence test items. We de-
rived those features from the literature concerning difficulty relevant features 
of competence tests in general (e.g. Schaper et al., 2008). Furthermore we 
analysed the items concerning informatics specific difficulty facets and tried 
to define and grade them analogue to the more general features. On this basis 
altogether thirteen features were identified and defined: addressed knowledge 
taxonomy level (KTL), cognitive process dimensions (CP), cognitive combi-
nation- and differentiation capacities (CCD), cognitive strain (CS), scope of 
tasks (necessary materials, reading effort and understanding) (ST), inner- vs. 
outer computational task formulation, aspects of demands of computer science 
(IOC), number of components, level of connectedness (NC), stand-alone vs. 
distributed system (SDS), level of human-computer-interaction (HCI), (math-
ematical) combinatorial complexity (CC), level of the necessary understanding 
of systems of computer science (LUS), level of the necessary modelling com-
petence of computer science (LMC). Because of extent restrictions only two of 
these features are described in more detail.

6.2 Cognitive Process Dimensions

Concerning this difficulty determining feature we analysed the structure of the 
cognitive process dimensions of the revised taxonomy for learning, teaching, 
and assessing by Anderson and Krathwohl (Anderson, Krathwohl, 2001). We 
assumed that these addressed the following process categories: 1. Remember, 
2. Understand, 3. Apply, 4. Analyze, 5. Evaluate and 6. Create, which were 
also used to differentiate between different cognitive requirement levels of our 
test items. So we defined this difficulty-relevant feature with the following six 
feature levels:

• CP1: The successful solution of the task requires a memory perfor-
mance. The students recall relevant knowledge contents from their 
memory.

• CP2: The successful solution of the task requires a comprehension per-
formance. The students understand terms, concepts, and procedures 
of computer science and can explain, present and give examples for 
them.
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• CP3: The successful solution of the task requires an application perfor-
mance. The students are able to implement known contents, concepts 
and procedures within a familiar as well as an unfamiliar context. 

• CP4: The successful solution of the task requires an analysis. The stu-
dents are able to differentiate between relevant and irrelevant contents, 
concepts and procedures. They choose the suitable procedures from a 
pool of available procedures.

6.3 Cognitive Combination and Differentiation Capacities

We assumed that this feature addresses different forms of knowledge utili-
zation like Reproduction, Application, Networked application, and that these 
requirements differentiate between different levels of difficulty concerning our 
test items. So we derived the third difficulty-relevant feature with the follow-
ing three feature levels:

• CCD1: Reproduction of computer science knowledge and application 
of single, elementary terms, concepts and procedures of computer sci-
ence in close contexts (no cognitive combination capacities required).

• CCD2: Application of single terms, concepts and procedures of com-
puter science in bigger contexts, whereas an argumentative and/or in-
tellectual consideration between competitive terms, concepts and pro-
cedures (approaches) for example has to be made.

• CCD3: Networked Application of terms, concepts and procedures of 
computer science in different, especially bigger scenarios, whereas 
an argumentative and/or intellectual consideration between competi-
tive terms, concepts and procedures (approaches) for example has to 
be made (multiple challenging cognitive combination capacities re-
quired).

6.4 Expert Rating of the Difficulty Determining Task Resp. Item 
Features

In a second step we used the described features of task difficulty to rate the 
difficulties of the items of our competence test. Therefore experts in computer 
science education were asked to rate each item of the competence test with 
reference to the thirteen difficulty features. To conduct the expert rating a rat-
ing scheme and instructions were formulated. Furthermore, the measurement 
instrument was split into four parts of roughly equal size to keep the amount 
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of ratings at an acceptable extent. Each of the four instrument parts – including 
solutions for the items – was presented to two selected experts in the field of 
didactics of informatics, along with an explanation of each feature and its rat-
ing levels. The experts were asked to answer each item on their own, compare 
the solution with the given sample solution and then rate the item for each of 
the features. In addition, the experts had to give a subjective rating of the item 
difficulty on a scale from one to ten.

The resulting two ratings for each item were compared and treated in three 
ways: 1. exact matches between the two ratings of a certain feature per item 
were accepted and not further treated; 2. items with small rating differences 
(if the ratings only differ one point or grade from each other) were discussed 
within the project group to decide upon a final rating; 3. items with big rating 
differences (if the ratings deviate two points and more from each other); these 
cases were presented to two further experts that had to rate these features for 
a certain item again while considering the ratings of the two preliminary ex-
perts; again, resulting differences of these experts were discussed in the project 
group to decide upon a final rating. The expert group was composed of seven 
researchers with background in computer science, computer science education 
and psychology.

The rating process resulted in a classification of 74 items concerning each 
of the described difficulty determining features. The rating levels for each fea-
ture were coded as ordinal dimensions, e.g. coding KTL1 as 1 and KTL2 as 2. 
For every feature the “not relevant” rating was coded as 0. This way, we ended 
up with 13 nominal variables with n+1 categories for a feature with n levels. 
For almost all features it was reasonable to assume a ranking of the levels in 
the order they are described above. The assumption is that a higher level cor-
relates with a higher item difficulty. As this assumption does not necessarily 
have to be true, the order was examined by the analysis of the rating data. This 
was done using descriptive and explorative methods to determine the relevant 
features that influence the item difficulty.

In the following only some of the results of the expert rating are described 
and summarized: The number of ratings of features related to cognitive de-
mands like KTL, CP and CCD are mostly distributed at the medium rating 
levels. This makes sense and was intended when creating the tasks: The instru-
ment should provide mainly items with a medium difficulty, since it can be ex-
pected for most subjects that they are able to solve items of medium difficulty. 
Therefore, the test instrument has to differentiate the best at this difficulty resp. 
competence level. In the upper difficulty range fewer items are required, since 
this would be enough to show the expertise of the more competent students. 
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The expert ratings though, show a tendency to lower rating levels. For example 
the cognitive process dimension “remember” was assigned more times (8) than 
the dimensions “evaluate” and “create” which were combined at one grading 
level (4 times). The same can be observed for the two features CS and CCD. 
For the features CS and ST the predominance of the lower rating levels is a 
result of the test design. To create an applicable instrument, the tasks need to 
adhere to certain constrains and thus the most items require only few process-
ing steps and a minimal amount of additional materials. The overall difficulty 
of the test instrument was subjectively rated by the experts with a mean of 4.2 
on a ten-point scale.

6.5 Regression Analysis and Further Analysis Steps

To determine which features have the most influence on the item difficulty, 
the expert ratings were related to the empirical difficulty estimates that were 
calculated by means of the Item Response Theory (IRT) (Schaper et al., 2008). 
The relations between the difficulty determining features rated by experts and 
the empirically determined item difficulty are examined by regression analy-
ses. These analyses are not computed and evaluated at the moment though and 
therefore cannot be reported here at the moment. Also, to model the compe-
tence levels for our test instrument and model we still have to conduct the fur-
ther analyses steps described at the beginning of this section. This will there-
fore be reported at another place later on.

7 Conclusion and Further Work

In this article we outlined essential research questions and the corresponding 
research methodology of the project MoKoM concerning upper secondary stu-
dents’ competences. As a first main result we developed a theoretically ground-
ed and empirically refined competence structure model in the subject area of 
informatics system comprehension and object-oriented modelling. Based on 
this model an empirical test instrument was developed and an empirical survey 
conducted. By applying IRT evaluation methodology to construct the test-in-
strument and to assess the data, gained from the survey with 583 upper second-
ary students in Germany. We finally took first steps to develop a competence 
level model that also considers the results of an expert rating on the difficulty 
levels of the test-items. Thus, we answered several of the research questions, 
which have been raised at the beginning of this article.
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We also proved that our test instrument was able to identify competence 
profiles of learners and to indicate the difference of competences between 
members of a learning group (Neugebauer et al., 2014). We also conducted 
a survey in a joint project with the German University of Distance Learning 
(FernUniversität Hagen) on students in an introductory course of object-ori-
ented software engineering. We were able to show, that the instrument could 
even be applied at undergraduate university level. The students underwent the 
test at the beginning and the end of the CS-course and we were able to analyse 
the students’ increase in subject-related CS-competences during the course 
(Hering et al., 2014). Further research of the project will concentrate on the 
application of the MoKoM test-instruments to evaluate the learning outcomes 
of specific learning design settings in CSE. In general the MoKoM compe-
tence model and the related test instrument should be used to contribute to the 
theoretically founded and empirically based development of standards in CSE. 
Furthermore, the application of the test-instrument on an enhanced sample of 
students could provide an overview on students competences in CSE and re-
veal a possible gap between these competences students’ really own and the 
expected learning outcomes according to the curricula of CSE.
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