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Abstract

We study segregation of the subducted oceanic crust (OC) at the core mantle bound-
ary and its ability to accumulate and form large thermochemical piles (such as the seis-
mically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution
numerical simulations suggest that the longevity of LLSVPs for up to three billion
years, and possibly longer, can be ensured by a balance in the rate of segregation of
high-density OC-material to the CMB, and the rate of its entrainment away from the
CMB by mantle upwellings.
For a range of parameters tested in this study, a large-scale compositional anomaly
forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant ther-
mochemical piles formed by mechanical stirring - where thermally induced negative
density anomaly is balanced by the presence of a fraction of dense anomalous mate-
rial - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to
emerge and survive for at least 3Gyr in simulations with quite different parameters.
We conclude that for a plausible range of values of density anomaly of OC material in
the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed
with the ambient material, and forms neutrally buoyant large scale compositional
anomalies similar in shape to the LLSVPs.
We have developed an efficient FEM code with dynamically adaptive time and space
resolution, and marker-in-cell methodology. This enabled us to model thermochemi-
cal mantle convection at realistically high convective vigor, strong thermally induced
viscosity variations, and long term evolution of compositional fields.
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Abstract

Stabilität der basalen Melange im untersten Erdmantel: Numerische Modellierung
thermochemischer Mantelkonvektion
Es wird allgemein akzeptiert, dass Mantelkonvektion - das langsame Fließen der Man-
telgesteine, das mutmaßlich ein wichtiger Antrieb der Plattentektonik ist - von Dich-
teunterschieden verursacht wird, die thermischen aber auch chemischen Ursprungs
sind. Es fehlen aber Kenntnisse über die thermochemischen Prozesse im Erdinneren,
vor allem wegen Schwierigkeiten bei der Beobachtung. Eines der zuverlässigsten Re-
sultate von tomographischen Beobachtungen ist die Existenz von zwei Haufen einer
basalen Melange (BAM, LLSVP auf Englisch), die sich auf gegenüber liegenden Seiten
in 3000 km Tiefe am Boden des Mantels unter Afrika bzw dem Pazifik befinden. Die
niedrige Scherwellengeschwindigkeit in der BAM scheint eine thermischen (hei) sowie
einen chemischen (Material mit hoher Dichte) Ursprung zu haben. Aufgrund von
plattentektonischen Rekonstruktionen wird angenommen dass die BAM langlebig
und stabil sind, und dass sie von überwiegend von ihren Rändern hochquellenden
Manteldiapiren beprobt werden. Die Hauptfrage meiner Doktorarbeit ist, wie solche
groen chemischen Speicher wie die BAM sich bilden und über hunderte von Millionen
Jahren überleben knnen, ohne dass sie von der Mantelkonvektion zerstört werden.
Was sind die physikalischen Eigenschaften des BAM–Materials, z.B. Dichte, die dazu
beitragen?
Ich benutze numerische Modellierung um zu erforschen, wie sich eine dichte Boden-
schicht bildet und wie die Mantelkonvektion Material daraus mitnimmt. Mein Ziel
ist, die langfristige thermochemische Entwicklung des Erdmantels zu verstehen, ins-
besondere die Rolle der Dichteheterogeintäten Viskosität im untersten Mantel.
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Chapter 1

Introduction

In this chapter, we present an overview of the previously published observational and
modelling studies which contributed to the current understanding of the thermal and
chemical composition of the Earth’s mantle. In particular, we focus on the studies
which investigate the geometrical structure, material properties, and thermochemical
evolution scenarios of the observed large-scale compositional anomaly in the lower-
most mantle: the Large Low Shear Velocity Provinces. This overview points to some
of the remaining questions about lower mantle structure and evolution, and serves
as motivation for our numerical study, of which an outline is presented at the end of
this chapter.

1.1 Large Low Shear Velocity Provinces: Obser-

vations and Inferences

One of the most robust results from deep seismic tomography studies is the existence
of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base
of the mantle: one beneath Africa and the other beneath the Pacific Ocean (Garnero
and McNamara, 2008; Dziewonski et al., 2010; Ritsema et al., 2011). Reconstructions
of the eruption sites of large igneous provinces (LIPs), hotspot volcanoes, and kim-
berlites of the last 350 Ma have shown that these project radially downward to the
margins of the LLSVPs (Torsvik et al., 2006). This has led to inferences that plumes
of arguably deep origin are generated from the margins of the LLSVPs, and that the
LLSVPs are stable, long-lived and affect the geometry of flow in the deep mantle
and that of plate tectonics at the surface (Dziewonski et al., 2010). In the remainder
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12 CHAPTER 1. INTRODUCTION

of this section, we first present a brief overview of the main LLSVPs-characteristics,
mainly derived from observational studies, and then an overview of the proposed
models for the LLSVPs time and process of formation.
Seismic studies have shown that the boundaries between the LLSVPs and surround-
ing mantle are sharp, with an outward tilt (overhanging) of the edge observed for
the African anomaly (Ni et al., 2002). The peak height above CMB of the LLSVPs
is estimated to be about 1000 − 1800 km for the African anomaly and 500 − 1400
km for the Pacific anomaly (Burke et al., 2008; Garnero and McNamara, 2008). The
upper bounds are derived according to the definition of LLSVPs as regions bounded
by the −1% contour of the shear wave velocity anomaly (Burke et al., 2008). This
definition does not necessarily coincide with the one where LLSVPs are piles of com-
positionally distinct material, as will be discussed shortly. The two LLSVPs appear
to cover nearly 20% of the CMB (Burke et al., 2008). They get narrower with greater
distance above the CMB, with their uppermost parts shaped as narrow cones (> 2
cones topping off each of the LLSVPs). According to Burke et al. (2008)’s definition
of LLSVPs, they occupy ∼ 1.6 volume % of the mantle, of which the larger African
LLSVP accounts for ∼ 0.9 volume %. Similarly, Hernlund and Houser (2008) find
that the large scale robustly observed low shear waves velocity features in the lower
mantle occupy about 2.0± 0.4% of the total mantle volume.
The negative correlation between the bulk sound and shear velocity within the
LLSVPs suggests that these anomalies are of chemical origin (Masters et al., 2000;
Trampert et al., 2004; Steinberger and Holme, 2008). This hypothesis is supported
by the normal-mode data, which indicate an increased density in the locations of
LLSVPs (Ishii and Tromp, 1999). Further, seismic data in conjunction with avail-
able mineral physics data, which makes it possible to discern chemical and thermal
contributions to buoyancy - reveals the dominant role of chemically induced density
variations in the lowermost 1000 km of the mantle (Trampert et al., 2004; Mosca
et al., 2012). The sharp and steeply dipping edges of the African LLSVP are also
best explained as compositionally controlled (Ni et al., 2002). Finally, the long-term
stability of LLSVPs, as inferred from geological reconstructions of eruptions caused
by arrival of deep mantle plumes (Torsvik et al., 2006), is, from a geodynamic point
of view, more readily satisfied by their thermochemical, rather than purely thermal,
origin.
Although there is substantial evidence for the compositionally anomalous nature of
the LLSVPs, there is yet no consensus on the origin of their constituting dense ma-
terial. While the bottommost (up to 300 km above CMB) parts of LLSVPs may, at
least partially, be explained by the occurrence of phase transitions (e.g. the post-
perovskite (pPv) phase), their extent higher up above CMB (where pPv is no longer
stable) requires another explanation (Hernlund and Houser , 2008). Suggestions from
previous studies for the origin of the dense material constituting the LLSVPs gen-
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erally fall within three categories: (i) a primordial layer that formed early in the
Earth’s history (e.g. Labrosse et al., 2007; Lee et al., 2010), (ii) accumulation of a
dense eclogitic component from the subducted MORB that segregates at the CMB
(Hofmann and White, 1982; Christensen and Hofmann, 1994; Tackley , 2011), and
(iii) outer core material leaking into the lower mantle (Hayden and Watson, 2007).
In this study, we explore the feasibility, from a geodynamic point of view, of scenarios
(i) and (ii), which is thus the focus of following discussion.

1.2 Formation Scenario(i): Primordial Dense

Basal Layer

What is usually understood by a primitive material is a silicate material that formed
after the core-mantle differentiation, and that has never been to shallow depths,
where it could undergo mantle-crust differentiation. Consequently, this material is
relatively undegassed, and enriched in incompatible elements, compared to the man-
tle from which melt forming the oceanic crust has been extracted.
Models of mantle-composition that include existence of a primitive reservoir in the
deep mantle are mainly motivated by the observations from geochemical studies
(Zindler and Hart , 1986; Allègre et al., 1987; Jackson et al., 2010; Mukhopadhyay ,
2012; Pető et al., 2013). The elevated ratios of radiogenic to non-radiogenic isotopes
in noble gases (e.g. He, Ar, Xe) found in ocean island basalts (OIBs), compared to
those found in mid-ocean ridge basalts (MORB), suggest that the lavas of OIBs are
sourced by a less degassed mantle reservoir than the shallow upper mantle from which
MORBs are extracted (Allègre et al., 1987). If, indeed, the LLSVPs are composition-
ally anomalous features that formed early (> 3.5 Gyr ago) in the Earth’s history,
have had little material exchange with the ambient mantle, and have plumes forming
at their edges and sampling its material - they provide an elegant explanation for the
source of primitive signature in the OIBs.
Examples of scenarios for formation of a compositionally distinct layer with prim-
itive geochemical signature are presented in Labrosse et al. (e.g. 2007); Lee et al.
(e.g. 2010). Specifically, Lee et al. (2010) suggest that early in the Earth’s history
(> 3.5 Gyr ago) iron-rich melt was being produced within the transition zone and
lowermost upper mantle, and sinking into and accumulating in the lower mantle upon
crystallization. The iron-enrichment would then be responsible for the excess density
(by ∼ 4%) of the resulting basal layer, ensuring its gravitational stability. The layer
was estimated to be 120-240 km thick, and consistent with the volumes of the two
LLSVPs proposed in other studies (e.g. Garnero and McNamara, 2008). Lee et al.
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(2010) suggest that iron-enrichment is also responsible for the decrease of the seismic
shear velocity within the anomalous material.

1.3 Formation Scenario(ii): Accumulated MORB

at the CMB

Oceanic crust enters the lower mantle through deeply penetrating subducting slabs
(Van der Hilst et al., 1998) - a process that has been taking place for 3-4 billion years
(Nutman, 2006; Shirey and Richardson, 2011). The amount of oceanic crust that has
been produced over the period of time (which itself is uncertain by ∼ 1 Gyr) when
subduction was active shows that 7 − 53% of the mantle volume today may be oc-
cupied by MORB material (Xie and Tackley , 2004; Stixrude and Lithgow-Bertelloni ,
2012). Even the lower limit of this range is sufficient to make up the total volume
of the LLSVPs, recalling that they occupy about 2.0% of the total mantle volume
(Burke et al., 2008).
Intrinsic density of the subducted oceanic crust may be 0.5− 5.3% higher than that
of the ambient lower mantle (e.g. Hirose et al., 2005; Ricolleau et al., 2010). Given
that the density variations due to thermal anomalies, which drive the lower mantle
flow, are less than 1%, presence of material derived from the subducted slabs can
have significant effects on lower mantle dynamics. To what degree the anomalously
dense material perturbs the thermally driven mantle flow depends mainly on the size
of this chemical anomaly, as well as the viscosity and flow-velocity of the ambient
material.
The lower than average seismic shear velocities in LLSVPs can be, at least partially,
explained by their elevated temperatures, compared to the surrounding mantle. Evi-
dence for higher than average temperature in LLSVPs is supported by the correlation
of the LLSVP-locations with the restored eruption sites of hotspots and Large Igneous
Provinces (Torsvik et al., 2006), as well as the anti-correlation with regions of long
term subduction. There is a controversy about the effect that MORB component, ac-
cumulated from the subducted slabs, has on the shear wave seismic velocity anomaly
associated with the LLSVPs. Ab initio modelling calculations of Tsuchiya (2011) in-
fer a decrease in seismic shear wave velocity (by ∼ 2%) due to the presence of MORB.
The seismic sensitivity study of Deschamps et al. (2012) shows that the presence of
MORB, on the contrary, leads to an increase in shear wave velocity. Both studies
agree, however, that MORB alone cannot explain the compositionally induced excess
density of LLSVPs: in Tsuchiya (2011) the additional thermal anomaly in LLSVPs
would lead to much stronger decrease in shear wave velocity than what is observed,
while in Deschamps et al. (2012) LLSVPs would require an unrealistically high excess
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temperature in order to satisfy seismic constraints. Evidence that supports presence
of MORB component in LLSVPs is given in Ohta et al. (2008), who performed seis-
mological analysis of the shear wave velocity discontinuities in the LLSVP interior.
Authors argue that phase transitions that occur in MORB in the lowermost ∼ 400
km of the mantle can explain the negative and a subsequent (i.e. deeper) positive
jumps in the observed shear wave velocities. In particular, a 50/50 mix of MORB
and pyrolite is proposed as a plausible LLSVP-composition.
Besides the geodynamic motivation for the hypothesis of high density basaltic oceanic
crust component segregating and accumulating at the CMB, there is also geochemi-
cal evidence to support this notion. Hofmann and White (1982) proposed recycling
of previously subducted oceanic crust into plumes responsible for the formation of
OIBs as a mechanism to explain some of the observed difference in geochemical sig-
nature between OIBs and MORB. The former is enriched in incompatible elements,
compared to the latter, yet is not compatible with the composition expected for a
primitive mantle source.
Analysis of olivines from the Hawaiian lavas reveals contribution of the recycled
oceanic crust to the observed geochemical heterogeneity (Kobayashi et al., 2004;
Sobolev et al., 2005), and suggests that its content in Hawaiian plume (Sobolev et al.,
2005) and in many other plumes (Sobolev et al., 2007) may exceed 10%. Further,
recent estimates for the plume responsible for the formation of the Siberian Flood
Basalts give about 15% of entrained dense recycled oceanic crust (Sobolev et al.,
2011).
Strongly degassed oceanic crust which has segregated and pooled at the CMB is
typically invoked as the explanation for the HIMU isotopic end-member, i.e. one of
several mantle-sources that may contribute to OIBs (HIMU stands for high µ, which
in turn stands for high U to Pb ratio) (Hofmann and White, 1982; Zindler and Hart ,
1986; Hofmann, 1997). While oceanic crust recycling is a geochemically plausible
source (albeit not the only one) of compositional heterogeneity in the mantle (Coltice
and Ricard , 1999; van Keken et al., 2002; Davies , 2011), as implied by the diversity
of geochemical signatures found in OIBs (e.g. Zindler and Hart , 1986), it remains un-
clear how long the dense oceanic crust is stored in the mantle before resurfacing. A
recent analysis of sulfur isotopes from Mangaia lavas by Cabral et al. (2013) proposes
a lower limit of 2.45 Gyr for the formation of HIMU isotopic end-member. This can
be interpreted as a requirement for existence of oceanic crust material in the lower
mantle, which has been subducted and stored there for at least 2.45 Gyr.
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1.4 Previous Models

Some of the uncertainty associated with the origin of LLSVPs derives from the lack of
understanding of mantles evolution, which in turn stems from the uncertainty of its
constituting materials and their physical properties. Geodynamic studies of thermo-
chemical mantle convection typically attempt to find the range of material properties
that allows generation and/or sustainability of high-topography thermochemical piles
at the base of the mantle, which are laterally stable, manage to survive billions of
years of entrainment by ambient flow, and have hot thermal plumes generated pre-
dominantly at their edges (e.g. Tan et al., 2011; Bower et al., 2013; Li et al., 2014).
Numerous numerical and experimental studies have investigated the influence of phys-
ical parameters of a compositionally heterogeneous material, e.g. the degree of density
and viscosity variations, on its stability and survival time. In general, results of these
studies indicate that chemically distinct material with an intrinsic density elevated by
a few percent can form piles that can be maintained in the deeper mantle for billions
of years, with thermally or compositionally induced viscosity variations promoting
the long-term stability (e.g. Kellogg et al., 1999; Davaille, 1999; Davaille et al., 2002;
Tackley , 2002; Zhong and Hager , 2003). To examplify, the experimental studies of
thermochemical convection presented in Davaille (1999); Davaille et al. (2002), ac-
companied by a quantitative scaling law for the rate of entrainment of a dense basal
layer by hot upwellings, conclude that increase in compositionally induced density and
viscosity variations prolong the survival time of the dense layer. The authors suggest
that existence of long-lived geochemical reservoirs in the lower mantle is consistent
with several plausible regimes of mantle convection - both ‘stratified’ and ‘doming’
regimes. In particular, a 100 km thick dense basal layer (consistent with the combined
volumes of the two LLSVPs) was shown to be able to survive over the age of the Earth
if its density contrast exceeds 2%. Further supporting this argument, results from
geodynamic modelling demonstrate that a layer that is compositionally denser than
the ambient material by more than ∼ 2% (though this value is model-dependent, see
Tackley (e.g. 2012) for review) can withstand homogenizing with the ambient mantle
for over 4.5 Gyr (e.g. Kellogg et al., 1999; Tackley , 2002; Zhong and Hager , 2003) .
Results from geodynamic modelling suggest that in order to satisfy both long-term
survival and geometrical (e.g. topography) constraints of the LLSVPs, their thermal
and compositional buoyancies must be roughly balanced (Garnero and McNamara,
2008). If compositionally induced density elevation is too high, the structures flatten
out, while a too low value results in excessive entrainment into upwellings (Garnero
and McNamara, 2008). A high topography yet gravitationally stable thermochemical
pile was obtained in the numerical models of Tan and Gurnis (2005), using a model
where compositional density difference decreases with depth. The compositional den-
sity difference between the materials depends on their bulk moduli. The study of
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Tan and Gurnis (2005) reveals a specific range of values of bulk modulus and density
contrast for which a stable, high topography, neutrally buoyant pile is formed at the
base of the mantle. Values outside this range result in either too much entrainment,
or a layer at the base that is too heavy to be swept into a pile. Numerical study by
Bower et al. (2013), however, points out that such neutrally buoyant piles may get
destabilized by arrival of cold, dense and highly viscous slabs, which were not part of
the model in Tan and Gurnis (2005).
Three-dimensional numerical models of mantle convection where the shapes of ther-
mochemical piles resemble those of the LLSVPs are presented in McNamara and
Zhong (2005); Bower et al. (2013); Bull et al. (2014), where authors used velocities
inferred from subduction history models as surface boundary conditions. Geome-
try of the piles consistent with observations includes a sharp-edged linear, ridge-like
morphology for the African anomaly and a more rounded pile-shape for the Pacific
anomaly. Typical models incorporate an initial layer of dense material at the base of
the mantle, which is swept into piles in the course of a simulation. The thickness of
the layer determines the areal extent and the height of the resulting thermochemical
piles. The study of McNamara and Zhong (2005) emphasises the importance of a
depth- and temperature-dependent rheology of the mantle model together with a re-
alistic plate history as surface boundary conditions. Results of the simulations with
an isochemical model of the mantle are shown to be inconsistent with observational
constraints, such as seismic tomography images. Bower et al. (2013) demonstrate how
a high bulk modulus material at the base of the mantle can deform due to ambient
convective flow, and produce thermochemical piles highly resemblant in shape of the
two LLSVPs.
Perhaps the main limitation of the aforementioned numerical models is that they
can only go back in time as far as the reconstructed surface velocity models allow.
A three-dimensional model of thermochemical mantle convection which successfully
reproduces the high topography of thermochemical piles, their long-term survival for
several billion years, and plumes forming predominantly at the edges of the piles,
was presented in Tan et al. (2011). Extending on the model presented in Tan and
Gurnis (2005), Tan et al. (2011) use high bulk-modulus material for the anomalous
layer at the base of the mantle, which is modelled through the prescribed depth-
dependence of the compositional density anomaly. A balance between thermally and
compositionally induced density anomalies that is obtained at some height above the
CMB, is responsible for the high tomography and steep edges of the piles. Increase in
compositional density anomaly promotes a ridge-like, rather than a dome-like, shape
of the piles. Their most successful cases in terms of pile-shapes have compositional
density anomaly in the rage of ∼ 1.5− 2.0% of the ambient mantle density at CMB.
Authors report that the lateral stability of the piles is compromised by the down-
welling flow, which tends to push the piles around along the CMB. In more recent
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three-dimensional numerical study, Li et al. (2014) demonstrated at which conditions
high topography piles are likely to form at the CMB, survive for several billions of
years, and have plumes emanating predominantly from their edges. A moderate com-
positional density anomaly (∼ 1.6 − 2.9% of the ambient mantle density at CMB),
and a large thermally induced viscosity variations (> 104) appear to produce most
plausible results. This is in agreement with earlier three-dimensional studies of ther-
mochemical convection in Cartesian geometry (Deschamps and Tackley , 2008, 2009),
albeit the Cartesian models were less successful in having plumes rise from the edges
of the piles, rather than their interior.
Numerical studies featuring a dense basal layer as part of their initial conditions are
helpful in constraining the bulk material properties of LLSVPs (e.g. density and
viscosity), as well as the ambient mantle (e.g. temperature-dependence of viscos-
ity). Given that the volume of compositionally anomalous material is generally kept
constant in these models, their results are most relevant for an anomaly formed by
scenario (i) - a primitive layer formed early in the Earth’s history. We now turn to the
numerical studies that address formation of a large scale compositional heterogeneity
over time - by segregation and accumulation of oceanic crust at the CMB (scenario
(ii)).
Early numerical models of segregation of subducted oceanic crust, featuring 6-km
thick oceanic crust component and an isoviscous mantle, found that with a com-
positional density contrast below 5%, it is unlikely for significant segregation and
accumulation at the CMB to occur (Gurnis , 1986). However, Gurnis and Davies
(1986a) show that despite resistance to segregation, clumps of oceanic crust material
of different sizes can persist in the mantle for a few billion years, thanks to the in-
efficiency of stirring by large scale mantle flow. The convective mixing is even less
efficient when the depth-dependence of viscosity is introduced (Gurnis and Davies ,
1986b).
Using a more realistic model of the mantle, which incorporates both temperature-
and depth-dependence of viscosity, as well as depth-variation of compositional den-
sity anomaly and thermal expansivity, Christensen and Hofmann (1994) showed that
if the oceanic crust reaches the bottom thermal boundary layer, where the viscosity
is lowered due to high temperature, it may segregate from the rest of the lithosphere
and accumulate at the bottom. This result is in agreement with the more recent
three-dimensional modelling studies of segregating slabs (Tackley , 2011).
In general, results from numerical models suggest that segregation of oceanic crust
(and its persistence at the bottom - i.e. resistance to entrainment) is enhanced
for larger values of compositional density anomaly (Gurnis , 1986; Christensen
and Hofmann, 1994; Davies , 2002; Nakagawa and Tackley , 2005; Brandenburg and
Van Keken, 2007; Huang and Davies , 2007; Nakagawa et al., 2010; Li and McNamara,
2013; Nakagawa and Tackley , 2014). This is an intuitive result, and is in agreement
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with the observations that an already existing dense basal layer is more stable (against
overturn or stirring by ambient mantle flow) the higher is the layers intrinsic density
anomaly (e.g. Davaille, 1999; Tackley , 2012). Different, sometimes conflicting, conclu-
sions have been drawn from numerical studies regarding the effect of Rayleigh number
(Ra - a non-dimensional parameter describing vigor of convection) and temperature-
dependence of viscosity on the degree of accumulation of oceanic crust at the CMB.
Christensen and Hofmann (1994) find that increasing temperature-dependence of vis-
cosity significantly promotes segregation, while increasing Ra (from Ra = 2.5 · 105 to
1 · 106) moderately suppresses it. However, numerical results of Li and McNamara
(2013) show that increasing temperature-dependence of viscosity suppresses the for-
mation of dense piles at the CMB, and so does increasing Ra (from Ra = 1 · 107 to
5 · 107). It is worth noting that in no cases studied by Li and McNamara (2013) did
significant segregation of oceanic crust occur. The most recent numerical study by
Nakagawa and Tackley (2014) suggests that Ra (varied from Ra = 1 · 107 to 1 · 108)
plays, in fact, a more dominant role in accumulation of oceanic crust at CMB than
does the thermally induced viscosity variations. In contrast to Christensen and Hof-
mann (1994) and Li and McNamara (2013), Nakagawa and Tackley (2014) find that
increasing Rayleigh number enhances pile-formation by segregated oceanic crust.
Christensen and Hofmann (1994) also found that the amount of oceanic crust that
accumulates at the bottom boundary reaches an equilibrium after some simulation
time. This means that a balance is reached between the amount of new crust that
gets added to the piles at CMB, and the re-entrainment of the dense material by
upwelling flow. The slabs basaltic component (∼ 30 km thick in their model, and
2% denser than ambient mantle at the CMB) may not separate completely, such that
the accumulated dense piles are not made up of pure basalt, but a mixture with the
depleted material. The dense piles in the models of Christensen and Hofmann (1994)
have ridge-like topography, with plumes rising off the crests of the piles. In the mod-
els of Nakagawa and Tackley (2005); Nakagawa et al. (2009, 2010), the segregated
oceanic crust component forms large piles, which cover a significant fraction of the
CMB, extend high up into the mid-mantle, and have interior oceanic crust concentra-
tion falling gently with height above CMB. Some of the piles have steep edges, which
locations correlate with the upwelling flow.

1.5 This study

Comparing the features of thermochemical piles in models where they are generated
by deforming an initially flat dense basal layer, and those where they are generated
over time by segregation and accumulation of dense oceanic crust, it appears that the
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former are more successful at reproducing the shapes observed for LLSVPs. From a
modelling point of view, the bulk properties of a dense basal layer, which ultimately
defines the bulk properties and shapes of resulting piles, can be straightforwardly
prescribed as part of the initial conditions. This is not the case for models where
the dense material accumulates self-consistently over time, because it is difficult to
predict the bulk properties of the final mixture that makes up the piles. Both the
interior structure of the piles (in terms of distribution of temperature and dense ma-
terial in their interior), and their large-scale characteristics (shape, total volume, and
buoyancy with respect to ambient mantle) are determined by processes that may be
highly variable in time - rate of segregation of dense material at the CMB, rate of
its subsequent re-entrainment by plumes, and the amount of stirring taking place in
the interior of the piles. Seismic studies have yet to determine whether the upper
boundary (if there is such) of LLSVPs is sharp, like their edges, or more diffuse. It is
interesting to know, however, whether either case is geodynamically feasible with the
different mechanisms by which the piles may be produced (a preexisting dense layer
vs gradual accumulation). Current understanding appears to be that thermochem-
ical piles formed from a gradually accumulating dense material can only produce a
gradual upper boundary (Garnero and McNamara, 2008; Tackley , 2012).
Here, we present the results of thermochemical convection simulations that illustrate
the dynamics and thermal and compositional evolution of large-scale compositional
heterogeneities at the CMB, which develop self-consistently by segregation and ac-
cumulation of subducted oceanic crust. Guided by the results from previous studies,
we use a thin (6 km) oceanic crust, to conservatively estimate its perturbation to the
ambient flow and settling at the CMB, and a rheological model of the mantle that
leads to realistically large thermally induced viscosity-variations.
We systematically vary two physical parameters: intrinsic density anomaly of the
oceanic crust and viscosity. Dependence of viscosity on depth, temperature and com-
position have all been shown to play an important role in determining the rate of
entrainment upwards and segregation to the bottom of an intrinsically dense compo-
sitional anomaly (e.g. Gurnis , 1986; Gurnis and Davies , 1986b; Sleep, 1988; Soloma-
tov et al., 1993; Davaille, 1999; Zhong and Hager , 2003; Lin and van Keken, 2006;
Kumagai et al., 2007; Li and McNamara, 2013). Unfortunately, observational and
experimental data on viscosity variation and value in the deep lower mantle (within
and above the thermal boundary layer overlying CMB) is uncertain to ∼ 1 order of
magnitude (see Tackley (2012) for a recent overview). Temperature, composition (i.e.
presence of post-perovskite phase, or distribution of the two main phases - perovskite
and magnesiowustite), grain size, deformation history, and creep mechanism (possi-
ble occurence of dislocation creep in regions of high stress, rather than the commonly
assumed diffusion creep) in the lowermost mantle may all have a say on its effective
viscosity.
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In our models, viscosity is varied only in the lowermost 500 km of the mantle. We
don’t attribute its variation to any specific mechanism, like the ones mentioned above.
Rather, we treat it as a generalized uncertainty in the viscosity profile.
To perform this high-resolution numerical study, we developed an efficient FEM code,
building on efficient solvers MILAMIN (Dabrowski et al., 2008), together with pack-
ages MUTILS (Krotkiewski , 2013), and Triangle (Shewchuk , 1996). We employed dy-
namically adaptive time and space resolution, and marker-in-cell methodology. This
enabled us to model thermochemical mantle convection at realistically high convec-
tive vigor, strong thermally induced viscosity variations, and long term evolution of
compositional fields.
Previously published geodynamic studies, as well as our own experience, point to a
number of technical challeges associated with the numerical approaches to investigate
thermochemical mantle convection. Physical relevance of the obtained numerical re-
sults is largely dependent on the way these challenges are addressed. To provide an
accurate degree of confidence for the results presented in this study, we accompany
their physical interpretation and quantitative analysis with a critical layout of the
methods with which they were obtained.
This thesis is organised in the following way. In Chapter 2, we describe the physical
processes involved in the interaction of compositional anomalies with the thermally
induced ambient flow. The goal is to build a framework for the qualitative and quan-
titative discussion of the simulation results, as well as to identify the demands (in
terms of time- and space-resolution) for the numerical tools aimed at modelling these
processes. In Chapter 4, we give a brief introduction to the particle-in-cell method-
ology, with the focus on their success and limitations in thermochemical convection
simulations. The numerical method of our choice for this study is presented in this
section as well. Results from our numerical simulations are presented in Chapter 6,
with discussion and conclusions presented at the end of the chapter.
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Chapter 2

Physics of Downward Segregation
and Upward Entrainment

In this chapter, we describe the physical processes involved in the interaction of com-
positional anomalies with the thermally induced ambient flow. We limit the discussion
to two cases: (i) long-term survival of a dense compositionally heterogeneous mate-
rial in the lowermost mantle, and (ii) segregation of subducted oceanic crust to the
bottom of the mantle due to its compositionally induced excess density.

2.1 Governing Forces

Processes of long-term survival of a dense compositionally heterogeneous material in
the lowermost mantle, as well as segregation of subducted oceanic crust to the bottom
of the mantle due to its compositionally induced excess density, revolve around the in-
teraction, or competition, between compositionally and thermally induced buoyancy
(on large, gravity force dominated lengthscale), as well as the interaction between the
buoyancy and the drag (on small, shear force dominated lengthscale). The compo-
sitionally dense anomaly in a vigorously convecting system can thus be categorized
into two parts: a gravitationally stable large-scale anomaly, where buoyancy forces
dominate, and the thin entrained tendrils, produced on a lengthscale where viscous
drag dominates. The numerical code aimed at modeling the process of thermochem-
ical evolution must be able to capture both of these regimes.
In terms of the characteristic scales, we can express the governing forces as following:

Fbuoyancy = −gV∆ρ (2.1)

Fviscous drag = −L · µ v
L

= µv (2.2)
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where g is the gravitational acceleration, V is the volume of the material with the
anomalous density ∆ρ (induced by thermal or compositional variations, or a combi-
nation of both), µ is the viscosity, v velocity and L a characteristic length scale. The
quantity v/L is representative of the velocity gradient.

2.2 Large Scale: Topography of Dense Basal Piles

(Gravity Force Dominated Lengthscale)

A dense layer underlying a less dense material (think compositionally dense D” layer
underlying ambient mantle) is gravitationally stable, given that its compositionally
induced density anomaly is larger than the thermally induced one. Thermally induced
density variations drive the flow in the less dense ambient material (i.e. hot rising
plumes and cold downwelling slabs), and may deform the dense layer, such that the
latter obtains larger topography, or even forms disconnected piles.
A slab sinking into the lower mantle has to displace the material ahead of it in order
to proceed downwards. This induces a vertical flow which, upon reaching the imper-
meable bottom boundary (due to a large density contrast with the underlying outer
core) is forced to turn, and further induces flow parallell to the bottom boundary. The
dense layer below the region of subducting slab gets thinned, which is compensated
by it getting thickened in other regions, away from the slab.
Similarly, the vertical flow of a hot mantle upwelling, or plume, induces lateral flow
along the bottom boundary due to a dynamic low-pressure that is created at the
plumes base. Following a streamline from a region outside of the plume (within the
thermal boundary layer), where the flow is mainly parallell to the bottom boundary,
and upwards into the rising plume, where the flow is mainly vertical, the horizontal
component of velocity vanishes. Material subjected to such flow pattern shrinks in
the horizontal direction, and, by continuity, gets stretched in the vertical direction.
As the ambient material undergoes such deformation, it drags the underlying dense
material along with it. This causes the dense layer to thicken beneath the rising
plume, and its surface to tilt with respect to the horizontal boundary. The tilted sur-
face of the dense layer (edge of the pile) now experiences a pure shear type of squeeze
from the horizontal flow-component of the ambient material, as well as a simple shear
type of smearing from the vertical flow component of the ambient material. The dy-
namic pressure due to pure shear part of the flow supports the enlarged topography
of the dense layer. The smearing is responsible for the formation of thin tendrils, or
filaments of dense material, discussed in the next section.
For a given range of material parameters of the dense material (such as density, vis-
cosity, thermal expansivity, etc.), and its surrounding conditions (e.g. temperature
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at the CMB), thermal convection may develop within the dense layer. The dynamic
pressure of the interior flow may also affect the topography of the layer.
The topography of the dense layer plays an important role in its subsequent evolution,
due to both thermal and mechanical feedback between the layer and the ambient ma-
terial. The amount of basal heat that flows into the ambient material, and provides
the excess buoyancy to drive the convective flow, depends on the topography of the
dense basal layer. This is largely due to the thermally insulating effect of the latter.
As outlined above, the topography of the dense layer, in turn, depends on the flow
of the ambient material: the dense material is thickened beneath the upwelling flow,
and thinned, or absent, beneath the downwelling flow. The amount of thickening or
thinning of the dense basal material is proportional to the strength of the ambient
flow.

2.3 Small Scale: Segregation and Entrainment

of Thin Filaments (Shear Force Dominated

Lengthscale)

The smearing action of ambient flow on the surface of the dense layer may lead to for-
mation of thin tendrils, or filaments, made up of dense material, and their subsequent
entrainment into the rising plumes. This is commonly observed in both laboratory
(Solomatov et al., 1993; Kumagai et al., 2007; Davaille et al., 2002; Jellinek and
Manga, 2004), and numerical (Schott et al., 2002; Zhong and Hager , 2003; Lin and
van Keken, 2006; Huang , 2008) studies. The entrained tendrils undergo mechanical
mixing, or stirring, with the ambient material. The initially stratified layer may even-
tually become completely homogenized via this process. In order for the entrainment
of dense material to take place, the viscous drag (given by Equation 2.2) imposed
on the surface of the layer must exceed the stabilizing buoyancy force (which is pro-
portional to the size of the anomaly, as given by Equation 2.1). The thickness of an
entrained tendril reflects the lengthscale at which this condition is satisfied.
Strong variations in thermal field, both in time and in space, of a vigorously con-
vecting mantle, and the strong temperature-dependence of viscosity, lead to large
variations in shear stresses imposed on the surface of the dense basal layer by the
adjacent mantle. The shear stresses are affected by the spatial gradients of velocity
of the ambient flow, as can be seen from Equation 2.2. At high temperatures, the
ambient velocity may be large (both due to low viscosity and large thermally induced
buoyancy). However, high temperature also means low viscosity, which reduces the
shear stress imposed on the dense layer. Reversed argument holds for low temper-
atures. Such competition between the temperature-dependent buoyancy and drag
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forces complicates the assesment of whether higher or lower temperatures lead to
more or less efficient entrainment of the dense layer.
While hot rising plumes may act as a sink that entrains the dense material away
from the bottom, counteracting its accumulation into larger piles, the subducting
downwellings that bring compositionally dense material into the lowermost part of
the domain, may act as a source of the dense material (subducted slabs bringing the
dense oceanic crust into lowermost mantle). Settling velocity of an anomalously dense
body relative to the vertical component of velocity of the ambient flow determines
whether the body will settle at the bottom boundary, or continue circulating with the
ambient flow. It is crucial to remember that the vertical component of the ambient
flow velocity vanishes towards the impermeable bottom boundary. Thus, at a cer-
tain depth, the settling velocity of the anomalously dense body exceeds the vertical
component of velocity of the ambient flow. Followingly, in order for the settling of
anomalously dense material to take place, it needs to reach sufficient depth. If only
a part of the dense material reaches such depth, it will get streched, such that a part
of it may settle, while the other part gets entrained.

Summary

In summary, the relation between the rate of settling of dense material to the bottom
of the domain, and the rate at which it gets entrained away by the ambient flow,
determines for how long a preexisting compositional anomaly will survive, or whether
a new large scale anomaly will form. The ratio between these rates also determine
whether the compositional anomaly will grow in size, or reach some steady-state
extent. Correct estimation of these rates in a numerical model rests upon sufficient
resolution of the governing physical processes - buoyancy and drag, action of which
is outlined above.



Chapter 3

Mathematical Model

In this chapter, we present the mathematical model that describes thermochemical
flow, together with the approximations that we made to simplify the equations, based
on some characteristic properties of the mantle. The nondimensional parameters
which are commonly used for the description of the physical processes involved are
also introduced here.

3.1 Equations Describing Thermochemical Mantle

Flow

Equations that describe the thermochemical mantle flow are the conservation equa-
tions of momentum, mass, energy, and composition. Physical properties of the Earth
materials allow some simplification of these equations, such that only the terms de-
scribing the dominant effects are left standing. Due to the high viscosity, and thus
relatively low strain rates associated with the flow, the inertial forces can be ignored.
This leads to a steady state Stokes equation, which describes the balance between
dynamic pressure, viscous stresses, and buoyancy. Further, the Boussinesq approxi-
mation is often employed, which implies incompressibility, and thus constant density
everywhere except in the buoyancy-term of Stokes equation. In their dimensional
form (primes denote dimensional quantities), the resulting conservation equations
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Table 3.1: Physical and geometrical parameters representative of the Earth’s deep
mantle (e.g. Dziewonski and Anderson, 1981; Schubert et al., 2001; Steinberger and
Calderwood, 2006; Tackley, 2012), which we use for nondimensionalization. Prime
denotes dimensional quantity.

Quantity Symbol Values Representative
of Deep Mantle

Dimensions

Gravitational acceleration g′ 10 m s−2

Thermal expansivity α′ 1 · 10−5 K−1

Density ρ′ 5.5 · 103 kg m−3

Temperature drop across mantle-depth 4T ′ 3215 K
Depth of the mantle D′ 2.9 · 106 m
Thermal diffusivity κ′ 6 · 10−7 m2s−1

Dynamic viscosity µ′ 5 · 1021 Pa s

are:

− ∂p
′

∂x′i
+
∂τ ′ji
∂x′j

= ρ′g′i (3.1)

∂v′i
∂x′i

= 0 (3.2)

DT ′

Dt′
= κ′

∂

∂x′i

(∂T ′
∂x′i

)
(3.3)

DC

Dt′
= 0 (3.4)

where subscripts i and j denote the Cartesian components of vector and tensor quanti-
ties, x′i is the position vector, v′i the velocity vector, p′ dynamic pressure, τ ′ij deviatoric
stress tensor, ρ′ density, κ′ thermal diffusivity, g′i gravity acceleration vector (∼ 10
m/s2 for the radial direction and zero for the horizontal direction), T ′ temperature, t′

is time, and D
Dt

is the material derivative. C(~x) describes spatial distribution of differ-
ent materials (phases). In the presented work, we only consider immiscible fluids, and
disregard cases of chemical mixtures of different materials. Thus, C(~x) is a discrete
indicator function that can assume values 0 or 1 (since we only have two phases):
C(~x) = 1 if ~x is occupied by the compositionally dense material, and C(~x) = 0 oth-
erwise.
In Equation 3.3, the source-term is omitted (i.e. set to zero), since our models don’t
have any internal heating (see Section 6.4.4 for the effects of exluding internal heating
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on our results).
We model materials constituting the Earth’s mantle as fluids whose rate of deforma-
tion ε′ij and deviatoric stress τ ′ij are linearly dependent (Newtonian fluids). We also
assume them to be incompressible and isotropic. In this case, the deviatoric stress,
which appears in in Equation 3.1, can be expressed in terms of rate of deformation -
and thus velocity, using the following constitutive relation:

τ ′ij = 2µ′ε′ij = µ
( ∂v′i
∂x′j

+
∂v′j
∂x′i

)
(3.5)

Assuming incompressibilily of the mantle across its depth is not a fully justified ap-
proximation for mantle-like thickness and material-properties (e.g. Schubert et al.,
2001). Some of the consequences of adopting it in our model, most important of
which are the lack of depth-dependencies of various material-properties (e.g. density
and thermal expansivity), are outlined in Section 6.4.1.
Equations 3.1- 3.4 are nondimensionalised using the standard transformation of vari-
ables, e.g. as in Schubert et al. (2001), and the reference values of the physical
parameters as presented in Table 3.1. In their nondimensional form, the conservation
equations are:

− ∂p

∂xi
+
∂τji
∂xj

= Ra
(
T +BrC

)
gi (3.6)

∂vi
∂xi

= 0 (3.7)

DT

Dt
=

∂

∂xi

( ∂T
∂xi

)
(3.8)

DC

Dt
= 0 (3.9)

In Equation 3.6, Ra is the Rayleigh number, which describes the vigor of convection,
and is defined as the ratio between the buoyancy forces driving convection, and the
dissipative effects opposing convection:

Ra ≡ α′g′ρ′4T ′D′3

κ′µ′
≈ 1.5 · 107 (3.10)

where the Ra-value was obtained according to the values presented in Table 3.1
(primes denote dimensional quantities). Ra-number used in our study is comparable
to the ones used in similar, previously published studies: e.g. Ra = [2.5·105−1·106] in
Christensen (1984), Ra = [1·106−1·107] in Brandenburg and Van Keken (2007), Ra =
1 ·107 in Nakagawa and Tackley (2005); Nakagawa et al. (2010), Ra = [5 ·106−5 ·107]
in Li and McNamara (2013), Ra = [1 · 107− 1 · 108] in Nakagawa and Tackley (2014).
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Br is the buoyancy ratio, which describes the relative strength of the compositionally
and thermally induced density variations:

Br ≡ 4ρ′C
α′ρ′4T ′

(3.11)

where 4ρ′C stands for the compositionally induced density variations. In our simula-
tions, Br is systematically varied from ∼ 0.57 to ∼ 1.1 (corresponding to 1.8% and
3.6% compositional density anomaly, respectively).
The advective component of conservation Equations 3.8 and 3.9 - the left-hand side
- is expressed through the material derivative D

Dt
. This is a Lagrangian fomulation,

which implies a reference frame that moves with the material. Alternatively, the ad-
vective component can be expressed from the point of view of a fixed point in space
- or the Eulerian reference frame. The left-hand side of Equations 3.8 and 3.9 in
Eulerian formulation take the following form:

DT

Dt
=
∂T

∂t
+ vi

∂T

∂xi
(3.12)

DC

Dt
=
∂C

∂t
+ vi

∂C

∂xi
(3.13)

Note that in Equation 3.9 (and 3.4) the discrete indicator function C cannot assume
any intermediate values between 0 and 1. This is in contrast to other fields in our
model, such as temperature, which are represented by continuous functions, and in
(continuum) theory can assume an infinite number of values within a given range
(in nature constrained by quantum effects, and in modelling practice by numerical
precision). Consequently, a physical field represented by a continuous function, albeit
on a finite number of points, can be readily interpolated between the locations where
the function is known (e.g. computational nodes), to locations where it is unknown
(in-between the nodes). This can be done by computing some sort of weighted aver-
age (e.g. with respect to distances between the nodes and the point of interest) over
the known function-values. Such procedure cannot be applied to discrete indicator
functions, whose values are rather interpreted as logical statements (e.g. whether or
not the location is occupied by a given material), and averaged function-values have
little or no meaning.
The need for interpolation arises frequently during numerical solution of the PDEs
(which are derived under the assumtion of a continuous physical system). One exam-
ple is numerical evaluation of integrals (e.g. for the weak form of the equations in FE
or FV methods), where the function needs to be evaluated at the quadrature points,
which generally do not coincide with the computational nodes. Another example in-
cludes mapping a function that is evaluated in one set of nodes (e.g. a computational
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grid) onto another set of nodes (e.g. markers, or a new grid generated by remeshing
or refinement procedures). Yet another example is modelling of advection with an
Eulerian static grid method (i.e. field-method), where the field being advected needs
to be evaluated in points along its trajectory, which generally do not coincide with
the computational nodes.
Equation 3.6 falls within the class of elliptic equations. Such equations describe
boundary value problems, solutions to which are static, or time-independent. Time-
dependence of the system enters through the Equations 3.8 and 3.9 for conservation
of energy and composition, respectively. The former is a parabolic equation, while
the latter is a hyperbolic one, and both equations describe initial value problems.
Solutions to such problems describe time-evolution of the system, and are thus time-
dependent. Thus, to close the system of Equations 3.6-3.5, mechanical (velocity or
traction) and thermal (temperature or heat flux) boundary conditions must be pro-
vided, together with the initial conditions for temperature and composition.
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Chapter 4

Numerical Modelling of
Thermochemical Convection

In this chapter, we introduce the numerical methodology that we used to solve the
system of equations presented in Chapter 3, describing the thermochemical mantle
flow. A detailed outline of each step of the algorithm of the code that we developed
for this purpose is presented. We dedicate particular attention to the discussion of the
marker-in-cell methodology, which we used for the solution of advective components of
the conservation equations. Finally, a number of benchmarking results are presented
at the end of the chapter, to demonstrate the abillity of the new code to model
thermochemical mantle convection.

4.1 Outline of Numerical Methodology

We have developed an unstructured FEM code for geodynamic modelling of thermo-
chemical mantle convection, with particle-in-cell methodology, building on efficient
MATLAB routines from MILAMIN (Dabrowski et al., 2008), together with packages
MUTILS (Krotkiewski , 2013), and Triangle (Shewchuk , 1996). The velocity and pres-
sure fields, given by the coupled system of Equations 3.6, 3.7 and 3.5, are solved with
the finite element method solver MILAMIN (Dabrowski et al., 2008). Velocity is dis-
cretized with an unstructured triangular grid with second-order shape functions, using
seven-node triangular elements. Pressure field within each element is discretized with
linear shape function. The global pressure field is thus piecewise linear, discontinuous
across element-edges. For the numerical solution of the thermal advection-diffusion
Equation 3.8 we employ the fractional step method, or Godunov splitting (LeVeque,
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Large time-step
High-order ODE-solver
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Small time-step
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Are all ODE-substeps completed?
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Enter Time-Loop
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Lagrangian points to integration points of mechanical mesh
1

Initialization:
1)  Eulerian mesh for solution of Stokes equation (mechanical mesh)
2)  Eulerian mesh for solution of thermal diffusion equation (thermal mesh)
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Figure 4.1: Flow chart of the general algorithm for the solution of the thermome-
chanical equations with presence of compositional fields.
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2002), for time-discretization: pure advection is solved first, followed by the diffusion
step. The diffusion equation is solved on an unstructured triangular grid with first-
order (linear) shape functions. The thermal grid elements are generated by splitting
each mechanical element into six triangles.
At regular time-intervals throughout the simulation, we regenerate the static meshes,
on which mass and momentum conservation, as well as thermal diffusion equations
are solved. The mesh is refined in regions of large thermal gradients. This refinement
criteria improves the accuracy of the diffusion solver, and also that of the mechanical
solver. The latter is due to the exponential dependence of viscosity on temperature,
due to which regions of large thermal gradients correspond to regions of strongly
varying viscosity, which require higher resolution in order to sustain some lower limit
of accuracy (Moresi et al., 1996; Deubelbeiss and Kaus , 2008; Duretz et al., 2011).
The advective component of Equation 3.8, as well as Equation 3.9, are solved using
the characteristics based marker-in-cell method (Gerya and Yuen, 2003). Markers,
or tracers, are points in space in which the initial thermal and compositional field
values are prescribed. During the advection step, positions of markers are updated,
according to the computed velocity field, and using the second order Runge Kutta
method (mid-point rule) for computing the trajectories. The number of markers is
generally larger (by at least an order of magnitude) than the number of grid-nodes.
The code has been thoroughly tested for thermal and thermochemical convection,
against benchmarks commonly used in the geodynamic community (e.g. Van Keken
et al., 1997; Blankenbach et al., 1989).
The general methodology goes as following (see also Figure 4.1):

1. Initialization:

(a) Spatial Discretization: (i) generate Eulerian meshes (connected sets of
points, whose positions are fixed in time irrespective of the flow) for solu-
tion of the coupled system of momentum and mass equations (mechanical
mesh), and the diffusion component of the energy equation (thermal mesh);
(ii) construct Lagrangian points (connected (marker-chain) or not (marker-
in-cell), whose positions change in time according to flow-trajectories), for
discretization of fields that are to be advected (temperature, composition).

(b) Initial values : prescribe initial values for the thermal and compositional
fields in the Lagrangian points.

2. Time Loop:

(a) Collection of Information Necessary for the Solution of the Incompressible
Stokes Equation: transfer field-values of temperature and composition from
the Lagrangian points to the integration points of the mechanical grid.
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(b) Solution of Stokes-Equation: compute the velocity and pressure fields on
mechanical grid.

(c) Advection: interpolate velocity-values from the mechanical grid to the La-
grangian points (using shape-functions of mechanical elements), and up-
date the positions of the Lagrangian points.

(d) Collection of Information Necessary for the Solution of Thermal Diffusion
Equation: transfer thermal field-values from Lagrangian points, to the
thermal grid-nodes.

(e) Solution of Diffusion Equation: update the thermal field, by solving the
diffusion equation on thermal grid. Transfer the incremental change in
temperature, together with a correction to account for subgrid-scale diffu-
sion, from the thermal grid to the Lagrangian points.

(f) Repeat the steps of the time-loop until the total time of simula-
tion is reached.

The unknown fields ~v, T , and Ck from Equations 3.6 - 3.9 may have different
characteristic length-scales associated with them, and thus pose different resolution-
requirements to their spatial approximation (e.g. in terms of number of elements,
order of polynomials for shape-functions, or number of markers). This is part of the
motivation for using different spatial representations (mechanical grid, thermal grid
and markers) for different fields.
Steps 1 and 6: Using marker-in-cell method for modelling advection of composi-
tional and thermal fields requires an interpolation step (Steps 1 and 6 in Figure 4.1)
of properties carried by the markers to the static meshes on which conservation equa-
tions of momentum and mass, as well as the thermal diffusion equation, are solved.
Different methods for performing this step, and the potential caveats associated with
the interpolation errors in this part of the algorithm, are presented in Section 4.3. In
marker-chain method, material interfaces are discretized as a connected set of points
that lie on the boundary between different materials. Together with the boundary
of the domain (as well as boundaries around holes within the domain, if such are
present), the connected set of points (or multiple sets) constitute closed polygon-
boundaries which enclose the regions spanned by each material. Determining which
material is (or whether there is a hole) at an arbitrary point within the domain is
then simply a matter of determining which polygon the point falls into.
Steps 3-4: For computation of trajectories during the advection step (Steps 3-4 in
Figure 4.1), we use second order Runge Kutta method (mid-point rule). The advec-
tion step can either be performed over one full time-step (‘frozen velocity’), or - in
cases when the velocity field is reevaluated at each intermediate step of the ODE-
solver - over an increment of a time step. The former approach is first-order accurate
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in time, while the latter is second-order accurate in time. The former was used in
our simulations, since we used a relatively small time-step size due to other time-
resolution restrictions, discussed in Section 4.2.1.
Step 11: To generate an adapted mesh (Step 11 in Figure 4.1), we first generate an
approximately uniform unstructured triangular mesh, which we refer to as the aux-
iliary mesh. Mesh-generator ‘Triangle’ (Shewchuk , 1996) allows for different desired
element sizes to be prescribed in regions occupied by each element of the auxiliary
mesh, and use it as input for generating a new adapted mesh. In cases when the
refinement criterion is the magnitude of thermal gradients, thermal gradients are
computed on the preexisting mesh (i.e. on which thermal diffusion was solved in
previous timestep), and interpolated onto the auxiliary mesh. The desired element
size in regions occupied by each element of the auxiliary mesh is scaled such that
elements with highest gradients get prescribed the smallest element-areas, and vice
versa. In cases when the refinement criterion is presence of compositional interfaces
(i.e. it is desirable to have smaller elements in regions where material-properties
change abruptly, such as in the vicinity of material-interfaces), we identify the el-
ements of the auxiliary mesh which are crossed by the interface, and prescribe the
smallest element-areas to those elements. When using marker-in-cell method (de-
scribed in Section 4.2.4), elements containing the interface correspond to those that
contain at least two types of markers. When using marker-chain method (described
in Section 4.2.4), elements containing the interface correspond to those containing
the chain-markers. For marker-chain method, in addition to prescribing the desired
element-area in different regions of the domain, one can also generate elements whose
edges are aligned with the segments of the marker-chain.
Option to use compositional field as one of the refinement criteria is presented here
for the sake of generality. For the long-term thermochemical convection simulations,
such as the ones presented in Chapter 6, we use only the thermal gradients as crite-
rion for mesh-refinement. Also, the marker-chain method is discussed here (and in
Section 4.4.1 on benchmarking and Section 4.2.4) in order to provide a perspective
on the advantages and limitations of the marker-in-cell method, where only the latter
is used for the simulations presented in Chapter 6.
Note that ‘Triangle’ allows only for the maximum element-area to be prescribed,
but there is no way to constrain the smallest element-area. Thus, element-areas
are only bounded from above, and care must be taken to avoid producing tiny ele-
ments. The only times we ran into this problem was when using methods that force
element-boundaries to be aligned with the material-interface(s) (marker-chain with
conforming mesh). This is one of the main reasons why we chose not to use such
methods for modelling long-term thermochemical mantle convection, which involves
extensive deformation of material-interfaces. In models featuring modest deformation
of materials (e.g. isoviscous Rayleigh-Taylor instability benchmark presented in Sec-
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tion 4.4.1), however, such methods provide a valuable alternative for comparison with
methods where smearing of material-interfaces in element-interiors are inevitable.
Step 12: As materials get deformed throughout the simulation, and change their
associated characteristic length-scales, the need may arise to redistribute markers
used for their spatial discretization. To examplify, envision a single vortex flow in
a two-dimensional box filled with material A, in which a disc of material B is being
advected. For simplicity, we will assume that although materials A and B are differ-
ent, this does not influence the velocity field, and thus material B is being advected
passively. A velocity field representating a single vortex flow is relatively smooth and
can be adequately resolved with a few grid-nodes or elements. The disc-radius of
material B can be chosen such that its initial characteristic lengthscale is comparable
to that of the velocity field (note that the latter does not change with time). Further,
we can construct a grid of resolution hv, as well as a grid or a set of markers with
resolution hC , such that hv = hC . In other words, the value of the discretization
error for the velocity and the compositional fields are similar at the beginning of the
simulation. A structure advecting in a single vortex flow gets continuously stretched
and thinned. Thus, the discretization error associated with the compositional field
gradually increases, because its diminishing lengthscale cannot be resolved with the
initially constructed grid or set of markers of a coarser resolution hC . In order to
maintain the initially prescribed value of the discretization error associated with the
approximation of the compositional field, more nodes or markers must be introduced.
In marker-chain methods, this involves adding new markers along segments of the
chain that become longer than some prescribed threshold, and removing markers
along chain-segments that become too short.
In marker-in-cell method, we generally aim to keep markers-distribution within the
domain approximately uniform (although this is not necessary for tracer-ratio meth-
ods, and marker-adaptivity can be explored in the future, with higher marker-density
in regions where two types of markers meet). However, markers may become in-
homogeneously distributed throughout the simulation due to errors associated with
computing their trajectories, or solution of Stokes equation. It is possible to add and
remove markers in regions where they get diluted or clustered, respectively, where
the material and/or thermal properties of the newly added markers are prescribed by
interpolating from their neighboring markers. However, when running our models, we
chose not to tamper with marker-distribution throughout the simulation, except for
the very rare occasions when markers escape the bounds of the domain due to errors
associated with computing their trajectories. To detect whether any artificial cluster-
ing of markers occurs, we perform a test similar to the one described in Christensen
and Hofmann (1994): we divide the model domain into quadratic cells of the size
similar to the mean area of triangular elements. Statistics of the number of markers
that fall into each cell is compared to a Poisson’s distribution, which is indicative of
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random marker-distribution. If some artificial clustering is detected, we interpreted
it as an insufficient spatial and/or temporal resolution for the given simulation, and
increase the resolution until no more clustering is detected. Thus, for the simulations
presented in this work, Step 12 of the algorithm shown in Figure 4.1 refers only to
cases when we use marker-chain method for advection of compositional fields.
In marker-in-cell methods, especially when using adaptive meshes in which we cannot
control the size of the smallest elements, there is always a possility that an element
will have no markers falling into its interior. In such cases, to determine thermal
and/or compositional properties in the elements interior, we interpolate properties
from its neighboring elements, in which these properties are known.

4.2 Numerical Challenges

4.2.1 Time-Discretization

Full System of Equations

The four primary unknown variables in the system of Equations 3.6 - 3.9 are velocity,
pressure, temperature, and composition. Variations in temperature and composition
induce density variations, which enter the buoyancy term of Equation 3.6 for veloc-
ity. At the same time, velocity appears in the advective term of both temperature
and composition - Equations 3.8 - 3.9. This leads to a non-linear coupling between
Equations 3.8 - 3.9 (or, equivalently, Equations 3.12 - 3.13) and Equation 3.6.
We use fractional stepping for time-discretization of the non-linearly coupled time-
dependent conservation equations of energy and composition, and the instanteneous
incompressible Stokes equation. We alternate between solving the coupled system
of Equations 3.6 - 3.7, and the time-dependent Equations 3.8 and 3.9, to find the
approximate solution of the full problem given by Equations 3.6 - 3.9.
Velocity and pressure are solved for using the coupled system of Equations 3.6 and 3.7,
where Equation 3.7 acts as a constraint to Equation 3.6. The buoyancy term on the
right hand side of Equation 3.6 is computed using the temperature and composition
fields given for the particular point in time for which the Stokes solution is sought.
The obtained velocity-solution is used to solve the time-dependent Equations 3.8
and 3.9, the result of which are the updated fields of temperature and composition.
Note that the instanteneous velocity field used for solving Equations 3.8 and 3.9 is
given by Equations 3.6- 3.7 for a particular point in time (e.g. for the beginning of a
time-step), yet we use it as a constraint for the time-dependent Equations 3.8 and 3.9
throughout the entire time-step, or finite fractions of a time-step. Thus, solution of
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Figure 4.2: Graphic illustration of the operator splitting method. Diff and Adv
are diffusion- and advection-operators, respectively.

the non-linearly coupled system of Equations 3.6 - 3.9 with a fractional step method
introduces a splitting error, which size is dependent on the size of the time-step.

Advection-Diffusion Equation: Operator Splitting

Equation 3.8 describes time evolution of the thermal field, subject to advection and
diffusion processes. For its time-discretization, we employ the fractional step method,
or Godunov splitting (LeVeque, 2002): pure advection is solved first, followed by the
diffusion step. In general, we can express Equation 3.8 as an initial value problem of
the form:

∂T

∂t
= L(T ) (4.1)

where L is an operator. Operator L is generally nonlinear (e.g. due to thermally
induced density anomalies that determine velocity for advection). Nonetheless, we
can still write L as a sum of two pieces:

∂T

∂t
= L(T ) = Diff(T ) +Adv(T ) (4.2)

where Diff and Adv are diffusion- and advection-operators, respectively.
To solve the equation numerically, we must discretize it in space and time. We choose
to do the discretization in time first. Thus, the operator splitting will be applied
to Diff and Adv before their discretization in space. This allows us to discretize
different operators in space independently, using different methods.
We seek to find the numerical solution of time-discretized Equation 3.8:

(∂∗

∂t

)
T = Diff(T,∆t) +Adv(T,∆t) (4.3)
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where
(
∂∗

∂t

)
is a discrete time-derivative, and ∆t is the size of the timestep. If one of

the operators, say Diff, was the only one standing on the right hand side, then we
could express the update of T from timestep tn to the next timestep tn+1 as:(∂∗

∂t

)
T
∣∣∣
[tn,tn+1]

= Diff(T (tn),∆t) (4.4)

Analogous expression can be found if Adv was the only one standing on the right
hand side. The idea behind operator splitting method is that we update the variable
T from one timestep to the next by allowing only one of the operators to act at a
time, i.e. the operators are applied in an alternating manner. The total update of T
after one timestep ∆t can then be expressed as a sequence of updates:(∂∗

∂t

)
T |[tn,tn+1/2] = Diff(T (tn),∆t)(∂∗

∂t

)
T |[tn+1/2,tn+1] = Adv(T (tn+1/2),∆t) (4.5)

Notice how both operators act over a total timestep ∆t, and it may appear that after
performing the two steps, we find the solution at tn+2, instead of tn+1. This is not
the case, however, since only a part of the original PDE is used in each of the steps.
Equations 4.5 demonstrate how the general advection-diffusion problem stated in
Equation 3.8 was split into a homogeneous conservation equation (diffusion) and
a simple ODE (advection). Followingly, we can use numerical methods that are
best suited for these specific problems, i.e. a high-resolution explicit method for the
advection part and an implicit method for the diffusion part. In addition to the
numerical errors associated with the advection- and diffusion-solvers of our choice,
there arises an additional splitting error that depends on the timestep ∆t. Only in
some special problems, where the operators of the subproblems commute (meaning
that they can be applied in any order), the splitting error is zero. In our case, however,
the operators Diff and Adv are not commutative, and so the splitting error needs
to be taken into account, posing a contraint on the size of the timestep.

Thermal Diffusion Solver

We use a fully implicit scheme for time-discretization of the thermal diffusion equa-
tion, which is unconditionally stable (with respect to timestep size). This means that
for any arbitrarily large timestep, the errors introduced in each timestep do not grow
out of bounds in the course of a simulations. In other words, the value of the solution
remains within a given range and does not explode, or that any initial disturbance
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of the temperature field will disperse, and not become unphysically more and more
concentrated. At what cost do we get this convenient feature?
Let us, for simplicity, consider a one-dimensional diffusion equation:

∂T

∂t
=
∂2T

∂x2
(4.6)

In our algorithm, we use FEM for discretization in space. To simplify the discussion
in this section, we will consider discretization with FD in both space and time. The
FTCS (Forward-Time Central-Space) scheme for Equation 4.6 is as following:

T n+1
j − T nj

∆t
=
[T nj−1 − 2T nj + T nj+1

(∆x)2

]
(4.7)

This scheme is first order accurate in time and second order accurate in space. The
von Neumann stability analysis of this scheme grants an amplification factor ξ of the
form:

ξ = 1− 4∆t

(∆x)2
sin2

(kw∆x

2

)
(4.8)

where kw is a real spatial wave number (of the eigenmodes of the difference Equa-
tions 4.7). The stability criterion |ξ| ≤ 1 can thus be expressed as:

2∆t

(∆x)2
≤ 1 (4.9)

Thus, a stable choice of the timestep ∆t is dictated by the characteristic grid spacing
∆x. Another way to interpret Equation 4.9 is that the maximum allowed ∆t is given
by the diffusion time across a cell of width ∆x. This means that even if we were
only interested in the part of the solution that is of lengthscale λ � ∆x, we would
still have to model the uninteresting smaller scales ∆x. In general, this would require
λ2/∆x2 steps to get to the part of the solution we are interested in.
The fully implicit (or backward in time) scheme avoids this timestep restriction by
driving the disturbances that take place on the lengthscale below λ (but that are still
resolved by ∆x) to their equilibrium state. This means that temporal evolution of
the thermal field on lengthscales that are smaller than the lengthscales that can be
resolved with the given timestep, behave according to the time-independent diffusion
equation. Thus, this small-scale part of the solution is spuriously decaying, and does
not pollute the part of the solution that we are interested in. This is in contrast to
an unstable FTCS scheme, where the temporally under-resolved part of the solution
may spuriously grow and eventually overwhelm the interesting part of the solution.
In problems where the solution tends towards a steady state, the numerical solu-
tion obtained with any size of the timestep, using the fully implicit scheme, will
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eventually reach a steady state configuration, and the errors due to low temporal
resolution will eventually die out. However, this is generally not the case for models
of time-dependent mantle convection. A simple example to illustrate the significance
of potential errors associated with time-step size in mantle convection simulations is
as following. Envision an anomalously hot diapir (or plume) rising from the heated
bottom of the mantle. What is the temperature of this thermal structure once it
reaches the surface? The amount of its thermal anomaly determines two of the major
plume-observables at the surface: the heat-flux, and the associated lithospheric uplift
due to its thermally induced excess buoyancy. Accurate modelling of thermal diffu-
sion rate while the diapir rises through the mantle has a direct effect on the prediction
of its thermal anomaly at the surface. Although the Earths mantle is a high Rayleigh
number fluid, with diffusion timescales generally much larger than the convective
timescales, accurate modelling of thermal diffusion is crucial for the correct predic-
tion of the thermal boundary layers, which thickness determines the lengthscales of
all the other thermal structures, such as the plume-heads and -tails. The lengthscale
and magnitude of the thermal structures become even more important once we take
into consideration the strong, exponential temperature-dependence of viscosity. As
suggested by the analytical and experimental study of Jellinek and Manga (2004),
the existence and stability of the long-lived hotspots in the mantle is determined by
the thickness of the plume-tails, the magnitude of their thermal anomaly with respect
to the ambient mantle, and the temperature-dependence of viscosity. More specifi-
cally, these parameters determine the rate at which new hot material is supplied to
the plume tail, and the rate at which the material in the plume tail is cooling. If
the modelled cooling rate is artificially enhanced due to a too large timestep, the too
rapidly cooling plume-tail, as it also becomes more viscous, may prematurely choke
off.
Stability of a numerical scheme is an obvious constraint. While the fully implicit
scheme guarantees stability for any size of the timestep, its first-order accuracy poses
limits on the size of the timestep that can be chosen for a given simulation. Insuf-
ficient time-resolution in models where small scale structures tend to develop, such
as vigorous thermal convection simulations, can lead to erroneous damping of these
parts of the solution.

4.2.2 Incompressible Stokes Equation for Multicomponent
Flow

In the elements of the grid which are not cut by the material-interface - the material
properties are defined unambiguously. However, elements that are cut by the com-
positional interface can pose a challenge when it comes to computing the velocity -
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specifically in cases of materials with different viscosities. In isoviscous cases, viscous
coupling ensures that flow variations induced by a compositional density anomaly are
smooth. On the other hand, a viscosity jump across material interfaces produces a
jump in the velocity-gradient, which is known to reduce the quality of the numeri-
cal solution of flow (Equation 3.6) (Moresi et al., 1996; Deubelbeiss and Kaus , 2008;
Duretz et al., 2011). A jump cannot be represented with the smooth continuous shape
functions used for spatial discretization of the velocity field (exception is the special
case where element edges are aligned with the interface), and, at least in the vicinity
of the interface, a relatively high grid-resolution is required in order to obtain a ve-
locity solution with the desired level of accuracy.
Numerical simulations presented in this study do not feature jumps in viscosity, so we
do not expand on this discussion here. There are, however, strong variations in vis-
cosity present in our models, induced by its exponential dependence on temperature,
but these are relatively smooth, and their approximation is helped by the adaptivity
of the mesh to thermal gradients.

4.2.3 Thermal Advection Equation

Numerical modelling of advection of fields with large spatial gradients (e.g. Equa-
tion 3.8 at high convective vigor) is numerically challenging (Lenardic and Kaula,
1993). Typical errors include numerical diffusion, most prominent in low order or low
resolution schemes, and dispersion errors, which may occur in higher order schemes.
Different mathematical formulations of the left-hand side of Equation 3.8 - the advec-
tive component - lead to different numerical solution methods (Gerya, 2010). Eulerian
formulation - the right hand side of Equation 3.12 - leads to an approach which uti-
lizes a static grid for spatial discretization of the thermal field. A static grid is cheap
to use from the computational point of view, as it only needs to be computed once
for the entire simulation time, and ensures that the initial quality of the computa-
tional grid (e.g. shape of the elements in FE methods) is maintained throughout the
simulation. On the downside, Eulerian advection schemes (at least the more simple
ones) may suffer from numerical diffusion, which arises due to the repeated action
of the interpolation procedure, as the advected field needs to be evaluated in points
along its trajectory, which generally do not coincide with the computational nodes.
When applied to advection of thermal fields, this can lead to artificial dissipation of
sharp thermal gradients, and lead to an effectively lower convective vigor that is be-
ing modelled, compared to the one intended. In addition, Eulerian advection schemes
pose a bound on the maximum size of the time-step that can be used, dictated by
the CFL criterion.
Lagrangian formulation of the advective component of Equation 3.8 - the left hand
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side of Equation 3.12 - leads to an advection scheme which utilizes a moving grid or
markers (or both). The Lagrangian approaches are not (or less) prone to errors related
to numerical diffusion, compared to their Eulerian counterparts, which gained them
popularity in the geodynamic community. During the advection step of a Lagrangian
scheme, positions of nodes - where the values of the advecting field are prescribed
(e.g. markers or grid-nodes) - are updated, according to the computed velocity field.
The field-values prescribed in the advecting nodes remain unchanged, and this is why
Lagrangian methods can be considered a remedy against numerical diffusion. An ad-
ditional advantage of the Lagrangian advection methods is that their stability is not
limited by the size of the time-step (albeit their accuracy is). The Lagrangian meth-
ods of advection can be categorised into those where the computational mesh itself
is advected with the flow, and those where a separate set of points - markers - are
utilised for advection, while the grid is static. One of the difficulties associated with
the former type of methods, is that a moving grid can become strongly deformed, or
tangled, which deteriorates the quality of the PDE-solutions obtained on it. Remesh-
ing procedure can be computationally expensive, and also leads to some numerical
diffusion, as field-values must be interpolated from the old grid onto the new one.
In marker-methods, the grid is static, while markers, which carry properties of an
initially prescribed field (e.g. temperature), get advected. Velocity field, which is
computed on the static grid, is interpolated onto markers in order to compute their
trajectories. The advection step is followed by a communication step - where the up-
dated field values (carried by the markers) are communicated to the computational
grid (nodes and/or element-interiors). Thermal field is mapped from markers to the
grid in order to perform the thermal diffusion step (computed on the grid), and to
update the thermal contribution to the buoyancy term on the right-hand side of the
momentum conservation equation (also solved on the grid). Mapping of the thermal
field back and forth between the markers and the grid can give rise to some numerical
errors. First of all, it introduces some numerical diffusion, although it can be signifi-
cantly diminished if only the incremental temperature changes are mapped between
the different sets of points, rather than the full field-values (Gerya and Yuen, 2003).
Another problem is related to the different length-scales that can be resolved by the
markers and the grid (resolution of the former typically higher than that of the latter,
by at least an order of magnitude). In the course of simulation, as some regions of
the material get stretched and thinned, markers may form thermal structures that
are smaller than what can be resolved by the grid. Consequently, the subgrid-scale
thermal structures are not captured by the grid-controlled diffusion process, and thus
fail to dissipate away. They do, however, continue to contribute to the thermally
induced density anomaly on the right hand side of the momentum equation - which
collects information from all markers irrespective of the scale of the structures they
represent. The overall effect may be an overestimated vigor of convection, or, in the
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worst case - unstable growth of thermal anomalies. A remedy against this numerical
artifact, induced by the variable resolution of markers and the grid is presented in
(Gerya and Yuen, 2003). It involves a correction step that follows the thermal diffu-
sion operation. In the correction step, the subgrid-scale diffusion is accounted for in
the grid-nodes, prior to transferring the updated temperature values onto markers.

4.2.4 Compositional Advection Equation

Equation 3.9 describes advection of a discrete compositional field. Similar to the
thermal field discussed in previous section - the compositional field can be discretized
using a static or moving grid, or markers. The first representation is used if advection
is performed with a Eulerian approach, and the two latter ones for the Lagrangian
advection-schemes. For a compositional field, an interface separating two materials
represents a discontinuous jump, or an infinitely large compositional gradient. Thus,
advection of such field is an extreme case of advection of a function with sharp gra-
dients (infinite in this case).
Using Eulerian scheme for advection of a compositional field gives rise to similar types
of problems as were discussed in the previous section: numerical diffusion and disper-
sion (Lenardic and Kaula, 1993), but the numerical diffusion error manifests itself in
a different way. During Eulerian advection of a continuous function (e.g. tempera-
ture), the numerical errors associated with interpolation lead to artificial dissipation
of sharp gradients - numerical diffusion. Interpolation of a discrete function (e.g.
an indicator function used for compositional fields), on the other hand, boils down
to determining where in the intermediate node-positions one material ends, and the
other begins (the uncertain location of the interface ). The interpolation error thus
manifests itself as an erroneous location of the interface - or an erroneous distribu-
tion of the materials. In the course of a simulation, the volume-fraction of different
materials may artificially change due to the interpolation errors.
Errors due to the uncertainty of the location of the interface can be avoided when
using the interface tracking methods for advection. Marker-chain method is one
such approach, where rather than discretizing the volume of each material, only the
interface separating the materials is discretized by a connected set of markers. To-
gether with the boundary of the domain (as well as boundaries around holes within
the domain, if such are present), the marker-chain (or multiple chains) constitute
closed polygon-boundaries which enclose the regions spanned by each material. The
global positions of markers, as well as their respective positions in a chain (neighbor-
relations) constitute the discretized representation of the compositional field.
Advection of discrete fields happens via advection of the markers in a chain. Marker-
chain method does not require interpolation of the compositional field during the ad-
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vection step, eliminating the numerical diffusion and dispersion errors at this stage.
In order to compute the velocity field, the material properties need to be commu-
nicated to the grid (in FEM - to the locations of integration points) on which the
Stokes system of equations is solved. This is done by determining which polygon each
integration point falls into, optionally followed by some averaging procedure of the
values in integration-points (e.g. arithmetic, geometric or harmonic mean (Schmeling
et al., 2008), or a linear lest squares approximation (Thielmann et al., 2014)).
Throughout the simulation, interface separating the materials gets deformed. In cases
where the interface gets stretched and entangled, addition of new markers along the
chain may be required, in order to properly resolve the increasingly complicated ge-
ometry of the interface. Conversely, some markers may be removed from smooth
interface-regions or where neighboring markers get clustered.
Some of the difficulties associated with the marker-chain method involve develope-
ment of subgrid-scale material structures, which may not have any integration points
falling into them, thus being completely invisible to the grid. This may not pro-
duce a significant error in isoviscous materials with moderate compositionally in-
duced density variations, since velocity-variations induced by such (geometrically)
small anomalies are also small. However, a thin interconnected filament of a mate-
rial with anomalous viscosity may induce strong variations in the velocity field, and
ignorance of the grid to such structures may result in significant error.
Methods which utilise a moving grid Lagrangian approach for advection of a compo-
sitional field typically have the edges of grid-elements positioned along the interface.
One can think of this discretization as similar to the marker-chain method, but with
an additional feature that neighboring markers in the chain comprise some of the
element-edges. Thus, the location of the interface is known with certainty - requiring
no interpolation in the course of advection. Followingly, these methods do not suffer
from numerical diffusion. There are other technical difficulties associated with this
method, however. First of all, as was already mentioned in previous section, a moving
and deforming grid can become prohibitively entangled. While remeshing can some-
times provide a remedy to this issue, forcing the element-edges to be aligned with the
interface can produce a grid with a prohibitively large number of elements - and thus
degrees of freedom - rendering the method impractical.
Another problem associated with the moving grid Lagrangian advection schemes is
related to the representation of the interface with straight element-edges. In cases
where the geometry of the interface develops strong curvature, it may become in-
creasingly poorly approximated with the straight element-edges, which makes the
material appear effectively stiffer. An example of a numerical simulation where this
artifact influences the solution is presented in (Schmeling et al., 2008), where a cusp-
like geometry develops between a modelled slab subducting beneath an overriding
mantle. This problem can be circumvented by adapting the number of nodes - or
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Figure 4.3: Illustration of how mass-conservation can be violated in tracer-ratio
methods, due to statistical ‘noise’. The sketch shows evolution of compositional field
from time t1 to a later time t2. Tracers (filled circles) represent different materials,
which differ in their intrinsic density ρ. Gray tracers represent material with ρ = 0,
and pink tracers ρ = 1. The density-distribution as seen by the grid is computed by
averaging ρ-values of the markers within each grid-cell (outlined with black lines). The
mass of each cell is given by the product of averaged density with the cells area (∆x2).
Equations on the right show the total mass computed for the two density distributions
shown in the figures on the left.

element-edges - along the interface to its curvature.

Markers in Cell

Methods using markers in bulk for discretization of the compositional field can be
categorized into two groups: absolute tracer method and the tracer ratio method,
each with their own advantages and limitations. A detailed comparison of the two
methods in the light of thermochemical mantle convection simulations can be found
in (Tackley and King , 2003). A brief outline, largely based on (Tackley and King ,
2003) and (Gurnis , 1986), is given in the following.
In the absolute tracer method, the tracers represent only one of the materials (say
the anomalous one), and have a finite volume (and mass) associated with them. The
compositional field within grid-nodes or -cells is determined based on the local density
of the tracers. Grid cells that are devoid of tracers represent the ambient material.
Cells that contain the maximum number of tracers that can fit within a cell (according
to the volumes associated with a cell and a tracer) represent the compositionally
anomalous material. The fraction Ci of the anomalous material within a grid cell,
here denoted by subscript i, can thus be expressed as:

Ci =
Ni

Nmax

(4.10)
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where Ni and Nmax are the number of tracers in cell i and the maximum number
of tracers that fit in a cell, respectively. Note that tracers are viewed as material-
patches of finite extent during the transfer of chemical information from tracers to
grid cells (Equation 4.10). This is generally not the case during the advection step,
where tracers are treated as points (i.e. they are infinitesimal) in space that advect
with the velocity field interpolated onto them from the Eulerian grid. This can lead
to geometrical overlapping of the tracers when they are viewed as patches again,
allowing more than Nmax to enter one cell, and resulting in unphysical fraction-values
Ci > 1. The mass of the model, however, remains conserved, being a constant
property associated with each tracer.
In the tracer ratio method, tracers fill the entire domain. They have a discrete value
associated with them (like 0 or 1 in case of only two materials) that determines which
material they represent. The fraction of the materials within a grid cell is determined
from the ratio of each type of tracers within that cell, scaled by the total number of
tracers in that cell. The fraction of the anomalous material within a cell can thus be
expressed as:

Ci =
N1
i

N0
i +N1

i

(4.11)

where N1
i and N0

i are the number of anomalous-material and ambient-material tracers
within cell i, respectively. The ratio method guaranties Ci 6> 1. On the downside, as
tracers advect in the course of simulation, their distribution throughout the domain
may become inhomogeneous, which can for example lead to different cells having
different number of markers falling into them. The non-uniform marker-distribution
may lead to errors in the fraction of materials that is ‘seen’ by the grid, and thus
the total apparent mass of the materials present in the system. These errors mani-
fest as violation of mass-conservation, as is graphically illustrated in Figure 4.3. A
larger number of markers decreases their associated statistical ‘noise’ (e.g. variation
in marker-density per cell between 1 and 2 is much more significant (50%) than vari-
ation between 101 and 102 (∼ 1%)), and thus also the discrepancies in the apparent
material-distribution ‘seen’ by the grid.
In the numerical benchmarking study of (Van Keken et al., 1997), it was shown that
the discretization ‘noise’ can influence the solution, and is more pronouced for lower
number of markers. In their study, the absolute marker-method was used to perform
simulations of flow driven by compositional density anomaly. The authors showed
that lower number of markers results in more small-scale instabilities (secondary and
tertiary diapirs in Rayleigh-Taylor benchmark). Errors that arise due to marker-
discretization ‘noise’ may be strongly reduced by using the tracer-ratio method, as
was proposed by (Tackley and King , 2003). Nonetheless, (Tackley and King , 2003)
also showed that lower number of markers in the tracer-ratio method results in more
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small-scale instabilities.
In order to compute the velocity field, material properties must be interpolated from
the markers to the grid. This involves the same difficulty related to interpolation of
discrete fields as was discussed for the Eulerian advection methods. The material-
distribution, and thus material-properties like viscosity and density, seen by the grid
is polluted by the interpolation error, which enters the resulting solution of the mo-
mentum equation - the velocity and pressure fields. Thus, the velocity field with
which markers subsequently advect suffer from the interpolation error due to trans-
ferring material-properties from markers to the Eulerian grid.
Similar to the marker-chain method discussed above, subgrid-scale structures may
develop in the markers-in-bulk methods as well. In (Tackley and King , 2003), the
authors point out that although one may discretize subgrid-scale structures with
markers, it is still important for the grid-resolution to capture the active (in terms of
density) compositional length-scale. (Gurnis , 1986) modelled subduction and segre-
gation of a compositionally dense oceanic crust to the bottom of the lower mantle with
an absolute marker-method, where the oceanic crust material is discretized using one
marker along its width, rendering the length-scale of the prescribed compositional
anomaly smaller than the Eulerian grid scale. This is justified by considering the
settling (or Stokes) velocity of the modelled oceanic crust (given its size and compo-
sitional density anomaly) with respect to the characteristic convective velocity. The
former is much smaller than the latter, implying that as long as the large scale con-
vective flow is resolved (by the grid), the numerical solution captures the dominant
dynamical effects. If the ambient flow is such that it accumulates anomalous tracers
in some regions, such that they form larger structures, they may have a stronger in-
fluence on the ambient flow. Despite a relatively large discretization error associated
with one marker wide subgrid-scale structures of the compositional field, the quality
of the solution is still reasonable, as it is dominated by the dynamics of other fields,
such as temperature, which have larger length-scales and are sufficiently well resolved.
Modelling approach in (Gurnis , 1986) illustrates an important point when it comes
to dealing with discretization errors. The smaller the length-scale of a structure - the
larger is the discretization error associated with it (for a given number of points). At
the same time, for isoviscous simulations with density being the only compositionally
induced effect - as is the case in (Gurnis , 1986), the smaller the length-scale of a
structure - the smaller is its effect on the large-scale dynamics - and thus its contri-
bution to the error of the final solution. Note that this argumentation does not hold
if compositional variations also induce variations in viscosity, since variations in the
latter may induce highly localised variations in the velocity field.
The lack of connectivity between markers renders them robust and cheap for represen-
tation of material-structures, whose geometry may be too complex to be efficiently
represented by a grid with a similar number of nodes. However, representation of
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discrete fields with markers comes at a price that the location of the interface is
not well defined. One example that illustrates potential artifacts arising due to the
uncertainty of the interface-geometry in marker-methods goes as following. An in-
creasingly thinned and stretched compositional structure may eventually have only
one marker along its width. Further stretching simply creates larger distances be-
tween the markers aligned with what ideally should be a connected filament. When
the distance between neighboring markers becomes greater than one element, the grid
on which the velocity is solved no longer sees the structure as a connected filament,
but rather as isolated droplets. This is a problem, because the bulk properties of
materials with different viscosities is significantly different depending on whether the
anomalous phase is distributed as droplets, or as interconnected filaments (Karato,
2008). This artifact related to subgrid-scale resolution may occur in the limit of
low marker-density, but keeping in mind that compositional structures undergoing
viscous deformation have no limiting length-scale (we disregard effects of surface-
tension), this numerical artifact may pose a constraint on the total simulation time.
Similar to the moving grid and marker-chain advection-schemes, where an increas-
ingly deformed interface may require adding new interface-points for its sufficiently
accurate representation, addition of new markers may be required in marker-methods
to discretize compositional structures that get stretched and thinned.

4.3 Communication from Markers to Grids

Using Lagrangian points, such as markers, for modelling advection, together with a
Eulerian grid on which mass, momentum and diffusion equations are solved, neces-
sitates transferring of information from the Lagrangian points to the Eulerian grid
(grid-nodes or integration points in elements). To keep the discussion general, we
formulate this task as transferring information from points on which compositional
or thermal fields are defined, to an arbitrary location within the domain.

4.3.1 Voronoi Diagram and Delaunay Triangulation

Markers are points in space without any connectivity prescribed to them. They are
distributed approximately homogeneously throughout the entire domain and have
assigned a function-value that is to be found in their exact location. Transferring
information from markers to an arbitrary point within the domain is non-trivial, be-
cause markers have no interpolation rule, or connectivity, associated with them (in
contrast to a computational grid). Efficient algorithms for navigating within such
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Figure 4.4: Top left: Example of a random marker-distribution. Top right: Con-
vex hull of the marker-distribution. Bottom left: Voronoi diagram of the marker-
distribution. Bottom Right: Triangulation of the marker-distribution.

scattered sets of points (e.g. finding the closest neighbors, triangulating, etc.) are
known from the field of computational geometry. These concepts have been used
extensively in meshless methods for constructing various scattered data interpolants.
Details of these algorithms are beyond the scope of our study. We will, however,
discuss the use of some of the most fundamental geometrical constructs related to
irregular sets of nodes: the Voronoi diagram, and its dual Delaunay triangulation. In
addition, we will make use of background meshes, referred to as ghost meshes, similar
to the ones used in Element-Free Galerkin method of (Belytschko et al., 1994) for
their quadrature procedure. We emphasise that we use the aforementioned geometri-
cal constructs only for the purpose of interpolation, and, in constrast to the meshless
methods, not for the construction of discrete equations.
Figure 4.4 illustrates an example of a set of randomly distributed points (markers)
and its associated Voronoi diagram. For a given set of markers, the Voronoi diagram
is unique, and consists of cells, or Voronoi polygons, associated with each marker
(markers that constitute the convex hull of the set have unbounded polygons associ-
ated with them). A Voronoi polygon posesses the property that an arbitrary point
in its interior is closer to the marker associated with the polygon, than to any other
marker within the set. This property may be harvested to find the nearest marker of
an arbitrary point within the domain. Given an arbitrary point within the domain,
we can determine which marker is its closest neighbor by comparing (or sorting) its
distances to all other markers. Alternatively, we can do it with the help of a Voronoi
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Figure 4.5: Visualization of different methods for transferring information from
markers (black dots) to an arbitrary point of interest (red circle). Markers whose
values play a role in determining the value in the point of interest are colored blue. A
special case of the binning method ( top left) is the nearest neighbor method, in which
case the radius of the bin is equal to the distance between the sampling point and its
closest marker. In the bottom row, the black edges are the ghost mesh elemets.
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diagram, by checking which Voronoi polygon the point of interest falls into: the
marker associated with that polygon is thus the closest neighbor.
For illustration of the concept of interpolation from markers via a a Voronoi diagram,
we present examples in Figure 4.6. Cases of markers representing both discrete and
continuous functions are shown.
A connectivity between markers can be introduced via triangulation: construction
of triangular facets with markers at their vertices. A Delaunay triangulation con-
structed from a set of randomly distributed markers is shown in the bottom right of
Figure 4.4: markers constitute vertices, joined by non-intersecting straight-line seg-
ments. The resulting triangular unstructured mesh can be used for interpolation (like
in FE methods) from markers to anywhere in the interior of their associated convex
hull. The convex hull spanned by the markers is generally a subset of the total compu-
tational domain (because markers are located in the domain-interior). Therefore, to
construct a marker-triangulation that spans the entire domain, we must place some
auxiliary markers on the domain-boundary. The function-values prescribed in the
original markers must then be extrapolated to the boundary-markers. The procedure
for generating the auxiliary boundary-markers that is used in this study goes as fol-
lowing: the outermost markers (e.g. those falling within a given distance from the
domain boundary) are projected onto their nearest domain-boundary - the projections
become the locations of the auxiliary boundary markers, and the function-values of
the projected markers become the values of their respective boundary markers. Orig-
inal markers that get to be projected are chosen such that the distance between the
neighboring boundary-markers is close to a characteristic distance between the origi-
nal markers, and such that the outermost points of the domain boundary (e.g. corners
of a box) get a marker projected onto them. The resulting marker-mesh can be used
analogous to a finite element mesh, with linear shape functions for interpolation in
the regions between the markers.
Mesh generation routines normally insert points additional to the ones prescribed, in
order to satisfy mesh-quality constraints (such as maximum area or minimum angle
of the triangles). In the course of marker-triangulation, however, we don’t want any
new markers to be inserted. Banning additional points leads to a generally poor
quality of the marker mesh, which is partially why one wouldn’t attempt to solve
the differential equations on that mesh. The only place where we have to introduce
some additional markers is along the boundary of the computational domain, as was
already discussed.
For transferring information from the markers to an arbitrary point within the do-
main, we treat the marker mesh as linear finite elements. First, we find which marker-
element the point of interest falls into. Then, we use first-order shape-functions as-
sociated with marker elements to interpolate from the three markers at the corners
of the element to the point of interest.
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For illustration of the concept of interpolation from markers via a constrained Delau-
nay triangulation, we present examples in Figure 4.6. Cases of markers representing
both discrete and continuous functions are shown, together with the resulting values
in the boundary-markers.

Implementation and Computational Time

To construct marker-triangulation, as well as vertices constituting segments of the
Voronoi diagram, we use Triangle by Shewchuk (1996). Alternatively, the Voronoi
diagram can be generated using MATLAB-function ‘voronoin.m’. Computational
time required to generate a Voronoi diagram with ‘voronoin.m’, to generate a Voronoi
diagram and a marker-mesh with Triangle, and to generate the boundary-markers
needed for the latter, is shown in Figure 4.7 for a range of numbers of markers. The
computational time of ‘voronoin.m’ and Triangle both scale as O(N logN), where
N is the total number of markers, and is an optimal scaling for these procedures
(Shamos and Hoey , 1975). The generation of boundary-markers is computationally
least demanding of the three. Notably, computational time required to generate
a Voronoi diagram and a mesh from a scattered set of points (markers) becomes
prohibitively expensive (2 − 20 seconds for the more efficient Triangle) when the
number of points grows from 106 − 107. As will be shown in the benchmarking part
of this chapter, in Section 4.4, such high number of markers is necessary for accurate
simulation of global scale thermochemical mantle convection (even in 2D) with the
marker-in-cell methodology.

4.3.2 Binning

In the two interpolation-methods described above only one (for Voronoi diagram)
or three (for Delaunay triangulation) markers are used to evaluate a function in the
point of interest. In the binning method presented in this section, the number of
contributing markers is more flexible. A bin is a region - e.g. circle of a given
radius, or circle that includes a given number of markers - centered on the point
of interest. The function-value in the point of interest can be determined using
markers that fall into its respective bin. A constant bin size generally results in a
different number of markers being enclosed by each bin, including the possibility of
empty bins. An adaptive bin-size, on the other hand, ensures to include a constant
number of markers, but the length-scale of interpolation becomes less well-defined.
The minimum adaptive bin size is the distance to the closest marker, and leads to
the nearest neighbor approach.
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Figure 4.6: Triangulation and a Voronoi diagram constructed from markers. Con-
struction of a marker-triangulation that spans the entire domain necessitates placing
some auxiliary markers on the domain-boundary. The top right plot illustrates which
markers from the original set were used for generating boundary markers (magenta-
rims), and the locations of the resulting boundary markers (black rims). Center
row: marker-colors indicate values of continuous ( left) and discrete ( right) func-
tions. Auxiliary boundary-markers are encircled by black rims. Bottom row: Voronoi
polygons are colored according to the continuous ( left) and discrete ( right) function-
values in their respective markers.
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Figure 4.7: Computational time required to generate a constrained Delaunay trian-
gulation and a Voronoi diagram using Triangle (‘mtriangle’ in the legend), as well as
a Voronoi diagram using MATLAB-function ‘voronoin.m’ (‘voronoin’ in the legend)
from a scattered set of points (markers). Construction of a marker-triangulation that
spans the entire domain necessitates placing some auxiliary markers on the domain-
boundary. The procedure for generating boundary-markers is described in the text,
with an example presented in Figure 4.6, and its required computational time is pre-
sented in the figure here. Results for different numbers of markers are shown. A line
that illustrates scaling as O(N logN) is shown for reference, where N corresponds to
the values along the x-axis.
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Figure 4.8: Illustration of markers (small circles) whose host-elements (black edges)
share a node (central large red circle). Marker-colors indicate their weight on the
shared central node: blue means lowest weight, and red means highest weight. For each
marker, its weight on the central node is the value of the shape function associated
with that node, computed at the markers location. The value of the shape function
reflects the distance from the marker to the node: the smaller the distance - the larger
the value of the shape-function.

Depending on the size of the bins, it is possible that there are markers without a
parent-bin. Alternatively, a single marker can belong to several bins, in cases where
bins overlap. This limits the efficiency of algorithms for finding which markers belong
to each bin, so we found this method to be too costly to implement.
If, on the other hand, the bins are not allowed to overlap, each marker can only have
one bin that it falls into. Once that bin has been found, we never have to check
that marker again to find out whether it belongs to any other bin. Additionally, if
the cumulative area of the bins spans the entire domain, there will be no orphaned
markers who don’t get to contribute their information. The requirements of non-
overlapping bins that span the entire domain bring us to the ghost-mesh methods in
the following section.

4.3.3 Ghost Mesh Methods

In general, the spatial resolution associated with markers is the highest one in the
numerical model, compared to the resolutions of the computational grids on which
the conservation equations are solved. An interpolation scheme that transfers infor-
mation from markers to an arbitrary location within the domain with an accuracy
dictated by the marker-resolution (such as the case for Voronoi diagram and Delaunay
triangulation methods) may thus be unnecessarily expensive. Additionally, highly lo-
cal interpolation schemes result in only a fraction of markers contributing to the final
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result, with the information carried by the rest of the markers being completely ig-
nored. To reduce the computational effort associated with interpolating from markers
to the interior of the domain, we introduce the concept of a ghost mesh.
The ghost mesh serves as an auxiliary mesh, with a prescribed connectivity between
its nodes, and with the number of nodes less than the number of markers. We can
define interpolation functions associated with each node of the ghost mesh elements,
analogous to shape functions in the finite element method. The field carried by the
markers is mapped onto ghost mesh by collecting the contributions from all the mark-
ers into its nodes. The resulting field can be further interpolated from the ghost-mesh
to anywhere within the domain. The ghost mesh does not have to coincide with any
of the computational meshes on which the conservation equations are solved, but it
can naturally represent those meshes as well. In addition, the ghost-mesh can be
adapted to enhance the accuracy of interpolation is some regions (e.g. compositional
interfaces or strongly varying temperature).
Ghost mesh methods are similar to the binning method described above, only the
bins are the elements of the ghost mesh. The main difference is that we no longer
require for the bins to be centered on the points of interest, they are not allowed to
overlap, and their cumulative areas span the entire domain.
In the methods described hereafter, we use an unstructured ghost mesh with trian-
gular elements. It allows more flexibility with respect to the geometry of the domain
and mesh adaptivity, compared to structured meshes. We describe two approaches for
transferring information from markers to points of interest with the help of a ghost
mesh. Common for both methods, the shape functions associated with the ghost-
mesh elements are used to estimate distances from markers to ghost-mesh nodes, or
from ghost-mesh nodes to the points of interest. With linear triangular ghost-mesh
elements, values of three shape-functions are computed in the location of markers or
points of interest, and reflect the distance between the latter and each of the three
nodes of their hosting ghost-mesh element. Values of the shape-functions thus reflect
the relative weights that each marker has on the three nodes of its host-element, or
weights that each node of a ghost-mesh element has on the points of interest in its
interior.
Navigation and information-transfer between markers, ghost-nodes and sampling
points in ghost mesh method (1) includes the following two steps: first, evaluating the
function carried by the markers in all ghost-mesh nodes, and then interpolating these
values from ghost-mesh nodes onto the point of interest. To evaluate the function
carried by the markers in a given node - we collect the contributions from markers in
all the elements that share this node, as is graphically illustrated in Figure 4.5. The
contributions from markers are weighted by their distances to the node, obtained from
the values of the shape-functions in markers’ locations, as is graphically illustrated in
Figure 4.8. The obtained field-values are then transferred from ghost-mesh nodes to
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the point of interest.
Ghost mesh method (2) differs from ghost mesh method (1) in the choice of markers
that get to contribute to the nodes of the ghost-mesh, and thus also to the points
of interest. In ghost mesh method (2), we only collect contributions from the mark-
ers that are within the same element as the one hosting the point of interest, as is
graphically illustrated in Figure 4.5. Thus, in ghost mesh method (2), we do not
prescribe a unique function-value to each ghost-mesh node, in contrast to what is
done in ghost mesh method (1). In ghost mesh method (2), a node that is shared by
several elements gets assigned a different function-value, depending on what element
we are currently looking at (or what element the point of interest falls into). Thus,
the only markers contributing to the point of interest are those that are found within
the same element. Information-transfer from the ghost mesh nodes onto the point of
interest is the same as in ghost mesh method (1).

Ghost Mesh Methods: Implementation

We implemented the two ghost-mesh methods in the following way:

1. Create a ghost mesh using MUTILS-function ‘mtriangle.m’.

2. Determine the host-element of each marker (i.e. which ghost-element each
marker falls into), using MUTILS-function ‘tsearch2.m’.

3. Compute values of the shape-functions in marker-locations (e.g. using MUTILS-
function ‘einterp.m’ to find the barycentric marker-coordinates w.r.t. their host-
element). Values of the shape-functions in each marker-location act as relative
weights that each marker has on the three nodes of its host-element.

4. Determine which element the point of interest falls into, again using
‘tsearch2.m’.

5. Compute values of the shape-functions in the point of interest, again using
‘einterp.m’ and ‘shp deriv triangle.m’. Values of shape-functions reflect the
weight on the point of interest from each of the three nodes of its host-element.

6. Transfer function-values from markers to ghost-mesh nodes:

(a) Ghost mesh method (1): Each node collects contributions from all
the markers that fall within the elements that share this node. In-built
MATLAB-function ‘accumarray.m’ is used for this procedure, output of
which is a vector with one entry for each ghost-mesh node.
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Figure 4.9: Example of transferring function-values from markers (smallest circles)
to arbitrary points of interest (big and small concentric circles with black rims) via a
ghost mesh (triangular elements indicated by white edges). Results obtained with the
ghost-mesh method (1) (biggest circles with black rims) and ghost-mesh method (2)
(smaller circles with black rims) are shown. A: markers represent a smooth continous
function. B: markers represent a continous function with jumps. C: markers represent
a discrete function.
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(b) Ghost mesh method (2): Nodes of an element collect contributions
only from the markers that fall within that element. In-built MATLAB-
function ‘accumarray.m’ is used for this procedure, output of which is a
vector with three rows (three nodes per element), and as many columns as
there are elements in the ghost mesh.

In steps 6a and 6b, transfer of function-values from markers to nodes depends
on the type of function carried by the markers:

(a) If markers carry a continuous function: Value in a ghost-mesh node
is the distance-weighted average from its contributing markers.

(b) If markers carry a discrete function: Value in a ghost-mesh node is
the value of the marker with the biggest weight on that node.

7. Transfer function-values from the ghost-mesh nodes to the point of interest:

(a) If markers carry a continuous function: Interpolation analogous to
FE methods with triangular first-order elements, using MUTILS-function
‘einterp.m’.

(b) If markers carry a discrete function: Only the node with the biggest
weight contributes to the point of interest.

Figure 4.9 illustrates the different results obtained with the ghost-mesh methods
(1) and (2) for three different types of functions that can be carried by the markers:
continuous functions that are smooth or have jumps in them (both can be interpolated
or averaged), and discrete functions (which cannot be interpolated or averaged). The
results illustrate that when markers carry a smooth function, ghost-mesh methods
(1) and (2) yield similar results for the function-values obtained in the points of
interest. When markers carry a continous functions with jumps, ghost-mesh method
(2) produces less smearing than ghost-mesh method (1), as is most apparent in the
points of interest close to the function-jumps. When markers carry a discrete function,
the two ghost mesh methods produce different results in some of the points of interest
that are close to the interfaces. Also in this case, ghost-mesh method (2) appears to
capture the discontinuity in function-values better than ghost-mesh method (1).

Ghost Mesh Methods (1) and (2): Systematic Comparison

We compare the performance of the two ghost mesh methods for transferring both
discrete and continuous functions from markers to arbitrary positions in the interior
of the domain (referred to as points of interest, and which are generally more numer-
ous than markers). Figure 4.10 examplifies a discrete function that is used for the
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Figure 4.10: Example of a material distribution: colors (and letters A, B and C)
indicate regions occupied by different materials. Material distribution field is discrete,
meaning that its range of values constitutes a countable set. In this example, the field
can assume values A, B, or C, but no intermediate values, or values outside of this
set.

Figure 4.11: This figure illustrates markers colored according to the materials they
represent (original field in Figure 4.10). A ghost mesh is shown as triangular elements
with black edges, and is used for transferring information from markers to arbitrary
points within the domain. The three elements with edges colored red, green and blue
are those in which results are showed in detail in Figure 4.14. The results obtained
in the region enclosed by the yellow square for four different ghost-mesh resolutions
are shown in Figure 4.15.
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Figure 4.12: Markers colored according to their prescribed values of a continuous
function with jumps (e.g. red = 1, green = 0.5, and blue = 0). A ghost mesh is
shown as triangular elements with black edges, and is used for transferring informa-
tion from markers to arbitrary points within the domain. Ghost mesh methods are
described graphically in Figure 4.5. The results obtained in the region enclosed by the
orange square for four different ghost-mesh resolutions are shown in Figure 4.17.

comparison, while Figure 4.12 examplifies a continuous function with jumps. As a
reference, results obtained with the nearest neighbor approach (for the discrete func-
tion) and marker-triangulation approach (for the continuous function) are presented
in Figure 4.13 (only a fraction of the domain is shown to visualize the details).
For the discrete function, the result shown in Figure 4.13 demonstrates that the com-
positional field is correctly identified in most regions. However, in regions close to
the interface (by approximately a characteristic marker-distance), some discrepancy
may be observed. This is not a surprising result, and is a direct consequence of the
fact that in marker-discretization methods interfaces are not well-defined. Consider
a general case, with an interface passing somewhere between two markers of different
material-types. The interface can be arbitrarily close to one marker or the other.
An arbitrary point which lies between the two markers has no way of knowing which
side of the interface it is on, and simply assumes that the interface lies exactly in the
middle between the two markers, which can lead to errors.
In many cases where the exact description of the interface is not crucial to the sim-
ulation result, we can live with errors dictated by the characteristic marker-distance
(which is generally much smaller than the characteristic distance between the nodes
of the computational mesh). Typical examples of when it is important to accurately
compute interface-geometry, specifically its curvature, are applications where surface
tension plays a significant role. In most large-scale geodynamical applications, how-
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Figure 4.13: Discrete and continuous functions evaluated in the points of interest,
by transferring information from the markers. Left: The discrete field is transferred
from markers to points of interest with the nearest neighbor approach. Right: The
continuous field is transferred from markers to points of interest with the marker-
triangulation approach. Markers are the larger circles with black edges, while the
smaller dots are the arbitrarily spaced points of interest.
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Figure 4.14: Illustration of the field C obtained with the ghost mesh method (1).
Materials prescribed in the markers are shown as medium-sized circles with black
edges, materials as seen by the nodes of the ghost mesh are shown as large circles
with black edges at the vertices of the elements, and materials as seen by the arbitrary
points in the interior of the elements is shown as the smallest circles, or dots.

ever, effects of surface tension can be ignored.
For the continuous function, the result shown in Figure 4.13 demonstrates that the
field appears to be correctly identified almost everywhere, except for the regions within
a characteristic marker-distance away from the interfaces. Sampling points that fall
within marker elements containing a function-jump get an intermediate value of the
field, as a result of linear interpolation from the markers. This produces some smear-
ing of the jump due to interpolation-errors. The length-scale of this artificial smearing
decreases with increasing marker resolution.

Markers Carry a Discrete Function

Figure 4.14 illustrates the compositional field obtained with ghost method (1) in the
three elements that are highlighted in Figure 4.11. Prescribed field-values in the
markers, as well as the resulting values in the nodes of the ghost-mesh and homo-
geneously distributed sampling points are shown. One of the elements (leftmost in
Figure 4.14) contains markers of three different phases in its interior. However, the
nodes of the elements get to ‘see’ only one marker each - the ones that are closest
to them. Thus, the material represented by the markers closer to the center of the
element, and further from the corner nodes, is invisible to the ghost-element. As a
result, the sampling points overrepresent two of the materials found in this element,
and completely ignore the third material. The element in the center of Figure 4.14
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Figure 4.15: Materials as seen by the arbitrary points (colored dots), obtained with
the ghost mesh method (1) TOP and (2) BOTTOM. Marker-distribution (not shown
in these figures, but is the same as in Figure 4.13) is the same in all plots. Ghost-mesh
resolution increases towards the right.

Figure 4.16: Materials as seen by the arbitrary points (colored dots), obtained with
the ghost mesh methods (1) ( left) and (2) ( right), using a ghost mesh that is refined
in regions close to the interfaces.
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demonstrates how fraction of two different materials in one elements can be wrongly
estimated as a result of ‘miscommunication’ between the markers and the sampling
points. Similar numerical artifact can be observed in the rightmost element of Fig-
ure 4.14, where mis-representation of the interface (interface is not shown, by can
be assumed looking at the markers) is also evident. These three types of artifacts:
an invisible phase, wrong fraction of the materials, and inaccurate geometry of the
interface, are common in marker methods. It is the result of markers having a gen-
erally higher spatial resolution than what can be resolved by the grids (ghost and/or
computational).
The larger scale effects of the numerical artifacts associated with ghost-mesh methods
(1) and (2) can be seen in the plots of Figure 4.15, which shows the compositional
field obtained for four different ghost mesh resolutions. For lowest (left-most) and
highest (right-most) ghost-mesh resolutions, the two methods yield similar results. In
the right-most plots of Figure 4.15, where the ghost-mesh elements are smaller than
the thinnest material structure in the model, the result looks similar to that of the
nearest neighbor approach. Ghost mesh method (2) appears to be more successfull
at capturing all three materials for intermediate resolutions.
It is apparent from the results in Figure 4.15 that the resolution of the ghost-mesh
largely controls the quality of interpolation from markers to arbitrary points within
the domain. This property allows us to vary the accuracy of interpolation in different
regions of the domain, by adapting the size of the ghost-elements accordingly. It is,
for example, desirable to have small ghost-elements in regions where markers with
different properties are close together (i.e. material interfaces), and large elements in
regions occupied by the same type of markers. Figure 4.16 shows the compositional
fields obtained with ghost mesh methods (1) and (2), using an adaptively refined
ghost mesh.

Markers Represent a Continuous Function

Like for discrete methods, we present two ghost-mesh approaches for continuous func-
tions. The results are presented in Figure 4.17. At low resolutions, ghost-mesh meth-
ods (1) and (2) produce quite different results. Ghost-mesh method (1) results in
much smoother field than ghost-mesh method (2). The field-jumps obtained with
ghost-mesh method (2), however, are not aligned with the original interfaces, and
ghost-mesh method (2) is therefore not considered to be less numerically diffusive.
Both methods converge to the same result with increasing ghost-mesh resolution.
In summary, the length-scale of the interpolant effectively used by ghost-mesh method
(1) is greater than that of ghost-mesh method (2) when interpolating field-values car-
ried by the markers onto an arbitrary point within the domain. This results in greater
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Figure 4.17: Continuous field as seen by the arbitrary points (colored dots), obtained
with the ghost mesh method (1) TOP and (2) BOTTOM. Marker-distribution (not
shown in these figures, but is the same as in Figure 4.12) is the same in all plots.
Ghost-mesh resolution increases towards the right.
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smoothing of the interpolated field produced by ghost-mesh method (1) (especially
across element-edges), than the one produced by ghost-mesh method (2). For ghost
meshes whose element-edges are (even approximately) aligned with the jumps in
field-values carried by the markers - the ghost-mesh method (2) is clearly preferable
to ghost-mesh method (1). However, when the ghost mesh elements feature no such
adaptation, ghost-mesh method (2) produces spurious jumps across element-edges.
Influence of such ‘non-smooth’ interpolation error on the subsequent solution of the
fields thermal and mechanical evolution is more difficult to asses, compared to the
interpolation error produced by ghost-mesh methods (1), where it is not sensitive to
the geometry of the ghost-elements, other than their size.

4.3.4 Communication from Markers to Grids: Our Algo-
rithm

We chose to use the ghost-mesh method (1) for communication from markers to grids
in our algorithm, with the thermal mesh acting as the ghost mesh, as we found it to
be the most practical compromise between the required computational time and the
accuracy of information-transfer from markers to arbitrary points within the domain.
The thermal mesh elements are generated by splitting each mechanical element into
six triangles. Thus, Step 1 of the algorithm presented in Figure 4.1 involves transfer-
ring information from markers to the nodes of the thermal mesh, and subsequently
from the nodes of the thermal mesh to the integration points of the mechanical mesh.
Properties that get transferred from markers to the grid are temperature (a smooth
continuous function, examplified in Figure 4.9(A)), and compositionally induced vari-
ations in density (a continuous function with jumps, examplified in Figure 4.9(B)).

4.4 Benchmark-Results

Performance of our code in modelling the governing processes of thermochemical con-
vection, i.e. flow driven by compositionally and thermally induced density variations,
is analyzed using benchmarks that are common in the geodynamic community, results
of which are presented in this section.

4.4.1 Rayleigh-Taylor Benchmark

We solve the isoviscous Rayleigh-Taylor instability problem, where the fluid flow is
driven by the compositionally induced density variations, as described in Van Keken
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et al. (1997). The flow is described by Equations 3.6, 3.7 and 3.9. Two methods
for advection of the compositional field are compared: (i) tracer ratio method, and
(ii) marker chain method. In method (i), projection of the compositionally induced
density variations from markers to the integration points of the mechanical elements
is done using ghost-mesh method (1), described above.
In method (ii), composition in integration points of the mechanical grid is determined
by checking which polygon the given point falls into (two closed polygons made up by
the material interface and the boundary of the box enclose the two materials). Me-
chanical grid is generated after each time step, such that all segments of the material-
interface constitute element-edges (i.e. interface never crosses element-interior). At
each time step, we check the distance between the neighboring markers in the chain
and add new markers in order not to increase the initially prescribed distance. We
do not remove any nodes along the interface.
All simulations are performed using a small enough timestep (∆t = 10−2), such that
increasing the time resolution (i.e. decreasing the timestep) does not change the sim-
ulation result.
Quantities that are calculated for benchmarking are the following:

• (i) Root-mean-square velocity as a function of time:

vrms =

√
1

V

∫
V

‖v‖2dV (4.12)

where V is the area of the computational domain.

• (ii) Relative entrainment of the lower layer as a function of time:

e =
1

λdb

∫ 1

de

CdV (4.13)

where λ = 0.9142 is the aspect ratio of the box db = 0.2 is the thickness
of the lower and compositionally buoyant layer, de = db is the depth above
which entrainment is measured, and C describes spatial distribution of different
materials, with C(~x) = 1 if ~x is occupied by the buoyant material, and C(~x) = 0
otherwise.

• (iii) Maximum value of the root-mean-square velocity and time at which the
maximum value is reached.

In addition, we test the self-consistency of each method by comparing the total
amount of the buoyant material ‘seen’ by the mechanical grid at the beginning and
end of each simulation. This value should be approximately constant throughout the
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Figure 4.18: Comparison of the results for the Rayleigh-Taylor benchmark obtained
with the tracer-ratio methods at two different resolutions (first two figures), and those
obtained with the marker-chain method with a conforming grid, at time t = 1500. For
the latter, the mesh is shown with gray lines delineating element-edges. The red line
delineates the marker-chain, and is plotted for comparison in all three figures. Reso-
lutions are given in the titles of each figure, where ‘nel’ means number of mechanical
elements, ‘nmark’ number of markers in the tracer-ratio method, and ‘nchain’ number
of markers in the marker-chain method.
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Figure 4.19: Benchmark-quantities for the isoviscous Rayleigh-Taylor instabil-
ity set-up, obtained with the tracer-ratio method at different resolutions (according
to legend) and marker-chain method with a conforming grid. In the legend, ‘nel’
means number of mechanical elements, ‘nmark’ number of markers in the tracer-ratio
method, and ‘nchain’ number of markers in the marker-chain method. Black dashed
lines in plots showing values and points in time of the first vrms-peak (middle row)
indicate the range of values for the respective quantities presented in Van Keken et al.
(1997).
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simulation, and any trend in this value over time would indicate an error in mass-
conservation.

Figure 4.18 shows an example of the modelled compositional field at the end of the
simulations obtained with the tracer-ratio methods at two different resolutions, and
those obtained with the marker-chain method with a conforming grid. For the latter,
the mesh conforming to the material interface is also shown for illustration. The left-
most plot of Figure 4.18 shows an erroneous distribution of compositional field, which
evolves when the spatial resolution (both markers and mechanical grid) is too low.
At higher spatial resolutions - larger number of mechanical elements and markers -
the solution converges towards the same result as the one produced with the method
of marker-chain with conforming mechanical mesh.
Figure 4.19 shows time-evolution of the benchmark-quantities. Increasing divergence
with time of the results obtained with different methods and resolutions is appar-
ent both in the measured vrms and entrainment values. This was also observed in
the results published for this benchmark in Van Keken et al. (1997). The value and
time of the maximum root-mean-square velocity, also shown in Figure 4.19, suggests
that results obtained with increasing numbers of markers and elements in the tracer-
ratio method approach the results obtained with the marker-chain method with a
conforming grid. The error in the total amount of the buoyant material ‘seen’ by
the mechanical grid for the tracer-ratio method is within 0.25%, and decreases with
increasing resolution. For the marker-chain method, this error is below 0.01%.
Results of this benchmark demonstrate the importance of having a sufficient num-
ber of markers when modelling advection of compositional fields with tracer-ratio
method, in order for the statistical ‘noise’ associated with marker-discretization not
to dominate the solution. According to the results presented in Figure 4.19, up to
100 markers are needed for the isoviscous Rayleigh-Taylor instability set-up. For
comparison, Tackley and King (2003) find that for the isoviscous benchmarks, us-
ing 40 markers per cell gives results that are within the range of those published in
(Van Keken et al., 1997).

4.4.2 Thermal Convection Benchmark

We solve the problem of isoviscous thermal convection in a box at Rayleigh number
Ra = 106, as in case 1(C) in Blankenbach et al. (1989). This problem is described by
Equations 3.6 - 3.8. Quantities that are calculated for benchmarking (at a time after
the system has reached a dynamic steady state) are the following:

• Nusselt number:

Nu =

∫ l
0
∂zT (x, z = h)dx

−4T
h

(4.14)
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where l and h are the width and the height of the box, respectively.

• Root-mean-square velocity:

vrms =

√
1

V

∫
V

‖v‖2dV (4.15)

where V is the area of the computational domain.

Figure 4.20 shows an example of the modelled thermal field at dynamic steady-state.
We compute the benchmark case using both uniform meshes, and meshes that are
adapted to have smaller elements in regions of high thermal gradients. In both cases,
thermal mesh elements are generated by splitting each mechanical element into six
triangles. We vary the total number of elements, as well as the number of markers
that are used for temperature-advection. As initial conditions for temperature, we
use a precomputed result from a convection simulation. We run the simulation until
a dynamic steady state is reached, which is the point in time when the computed
benchmark-quantities may still be oscillating, but there is no trend in the value about
which these oscillations occur. All simulations are performed using a small enough
timestep (∆t = 10−6), such that increasing the time resolution (i.e. decreasing the
timestep) does not change the simulation result.

Results of the benchmark, presented in Figure 4.21, demonstrate the importance of
having a sufficient number of markers when modelling thermal convection with the
characteristics based marker-in-cell method. In the presented cases, at least 100 mark-
ers per element are needed. When the static grids are too coarse to resolve the active
length-scales of the model (in this case, thickness of the thermal boundary layers),
increasing the number of markers does not improve the result. The opposite is also
valid: when there aren’t enough markers to accurately represent and communicate
to the grid the evolution of thermal field due to advection - increasing the number
of elements does not improve the result. A small number of markers per element
leads to a larger amplitude of oscillation of benchmark-values around the mean. This
is a manifestation of statistical ‘noise’ associated with markers-discretization, which
increases with decreasing number of markers per element. This effect is especially
pronounced in the benchmark-results obtained with meshes that are adapted to have
smaller elements in regions of high thermal gradients. There is a large amplitude of os-
cillations around the mean Nusselt-value in cases where the lower part of the range for
number of markers per element is below 10. This is understandable, because Nusselt-
number is measured at the top boundary of the domain, where thermal gradients are
the largest, and thus where elements are the smallest: with approximately uniform
marker-distribution, regions with the smallest elements have the lowest number of
markers per element, and a significant associated statistical ‘noise’.
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Figure 4.20: Top left: Thermal field at dynamic steady-state for the isoviscous
convection benchmark case at Ra = 106 (case 1(C) in Blankenbach et al. (1989)).
Top center: Example of a uniform unstructured mesh. Edges of mechanical elements
are delineated with thicker black lines, while those of thermal mesh with thinner gray
lines. The thermal mesh elements are generated by splitting each mechanical element
into six triangles. Top right: Example of a mesh that is adapted to have smaller
elements in regions of high thermal gradients. Bottom: Element-size distribution for
the uniform and adapted meshes presented in the top row, as indicated by the legend.
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Figure 4.21: Results from the isoviscous convection benchmark case at Ra = 106

(case 1(C) in Blankenbach et al. (1989)) for uniform meshes (top row) and meshes
adapted to have smaller elements in regions of high thermal gradients (bottom row).
Results for varying number of elements (‘NEL’ on the x-axis and in the legend indi-
cates the number of mechanical elements) and markers are shown, as indicated in the
legends. The number of markers per element (indicated by ‘nmark/el’ in the legends)
is approximate, because the element-areas vary somewhat in the uniform unstructured
meshes, and vary by up to two orders of magnitude in the adaptive meshes. For the
adaptive meshes, the approximate range of the number of markers per element is given
in the respective legend. Circles indicate the mean value of the computed benchmark-
quantities after the system has reached dynamic steady state. Thick lines indicate the
range of oscillation around the mean-values. Dashed black lines are the benchmark
values from Blankenbach et al. (1989).
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4.4.3 Thermochemical Convection Benchmark

We simulate thermochemical convection of an isoviscous fluid, where the flow is driven
by the compositionally and thermally induced density variations. The set up of this
benchmark is described in Van Keken et al. (1997), and mathematically described
by Equations 3.6 - 3.9. Advection of thermal and compositional fields is performed
using markers-in-cell methodology. Projection of compositionally and thermally in-
duced density variations from markers to the integration points of the mechanical
elements, as well as to the nodes of the thermal elements, is done using ghost-mesh
method (1), described above. All simulations are performed using a small enough
timestep (∆t = 5 · 10−6), such that increasing the time resolution (i.e. decreasing the
timestep) does not change the simulation result.
Quantities that are calculated for benchmarking are the same as for the Rayleigh-
Taylor instability problem, described in Section 4.4.1. We compute the benchmark
case using both uniform meshes, and meshes that are adapted to have smaller ele-
ments in regions of high thermal gradients. In both cases, thermal mesh elements are
generated by splitting each mechanical element into six triangles. We vary the total
number of elements, as well as the number of markers.
For illustration, two snapshots of the thermal and compositional fields are shown in
Figure 4.22, together with an example of a mesh that is adapted to have smaller
elements in regions of high thermal gradients. Results of the time-evolution of the
benchmark-quantities are shown in Figure 4.23.

Results obtained at different resolutions exhibit an increasing divergence with time,
but generally agree with the published benchmark-values within the time-span
t ∼ [0, 0.025] (which is also the time-span of approximate agreement of the re-
sults published in Van Keken et al. (1997)). Increasing mesh- and marker-resolution
decreases the entrainment rate of high density material by thermal plumes. Sim-
ilarly, Van Keken et al. (1997) observed that the more accurate high-order finite
element method produced lower entrainment rate than the lower order finite differ-
ence method. Our results suggest that up to 100 markers per element are required
to model accurate entrainment rates in this set-up (at least within the time-span
t ∼ [0, 0.025]), with lower resolutions overestimating the rate of entrainment.
The divergence of results with time even in this relatively simple isoviscous benchmark
case, as well as the discrepancies in the modelled entrainment rate, have important
implications for the interpretation of results obtained with long-term thermochemical
convection simulations. In such simulations, processes taking place on small scales
(e.g. viscous entrainment of compositionally dense material by plumes, or segregation
of thin basaltic crust at the CMB) ultimately affect the emerging large-scale structures
(e.g. accumulation and/or destruction of thermochemical piles at the CMB), and the
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Figure 4.22: Snapshots of the thermal and compositional fields (dense material
indicated by black markers) in the thermochemical convection benchmark. Bottom
plot shows the mechanical mesh that is adapted to have smaller elements in regions
of high thermal gradients.
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Figure 4.23: Benchmark quantities for the thermochemical convection benchmark,
computed using the tracer-ratio method for advecting composition, and the character-
istics based marker-in-cell method for advecting temperature (thermal and composi-
tional fields are carried by the same markers). Results obtained with uniform meshes
(entries of the legend that have a single value for the number of markers per element
‘nmark/el’) and meshes adapted to have smaller elements in regions of high thermal
gradients (entries of the legend that have a range of values for the number of markers
per element ‘nmark/el’) are shown.
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global-scale model characteristics (e.g. heat-flow across the CMB or at the surface).
Resolution tests, in which results of the large scale model-characteristics obtained at
different mesh- and marker-resolutions are compared, help to gain confidence in the
results of the simulations.
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Chapter 5

Rheological Model

In this chapter, we present the rheological model of the mantle that was used in
our mantle convection simulations. Values of the physical parameters entering the
rheological model are presented, together with the approximations that were made
to simplify the rheological law. Implementation of the model in our code is presented
at the end of the chapter.

5.1 Factorization of Temperature- and Depth-

Dependence of Viscosity

The rheological model used in this study includes depth- and temperature-dependence
of viscosity, and largely follows the one derived in Steinberger and Calderwood (2006).
The rheological behavior of the mantle may generally be expressed as that of power-
law fluids:

ε̇ = A1σ
nexp

(
− H

RT

)
(5.1)

where ε̇ and σ are the square root of second invariants of strain rate and deviatoric
stress tensors, respectively, A1 is a constant, H is enthalpy, R is the gas constant, T
is temperature, and n the stress exponent that determines the stress and strain-rate
dependence. The apparent viscosity can followingly be defined as:

η ≡ σ

2ε̇

The rheological model of Steinberger and Calderwood (2006) does not explicitly in-
clude dependence on strain-rate. However, in regions of the mantle where it is im-
portant (i.e. in the upper mantle), non-Newtonian behavior can be accounted for by

83
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Figure 5.1: From left to right: depth-profiles of activation enthalpy (used to evaluate
viscosity in the upper mantle), melting temperature (used to evaluate viscosity in the
lower mantle), and adiabatic temperature.

Figure 5.2: Optimized radial viscosity profile, modified from Steinberger and Calder-
wood (2006) to exclude the effect of thermal boundary layers.
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taking advantage of the results presented in Christensen (1983). Christensen (1983)
found similarity between convective flow of power-law fluids and those of Newtonian
fluids, with a reduced activation enthalpy of the latter by a factor of 0.3−0.5. Observ-
ing that the lower limit of this reduction factor is close to the value of 1/n for n = 3
(which is the stress exponent appropriate for fluid deforming by dislocation creep
(e.g. Karato, 2008), as is expected for the upper mantle), Steinberger and Calderwood
(2006) adopt the following expression for the apparent viscosity:

η = A · exp
( H

nRT

)
(5.2)

where strain-rate is assumed to be be constant, and A is a constant. The values of n
are n = 3.5 above 660km depth (i.e. in the upper mantle), and n = 1 below 660km
depth (i.e. lower mantle).
The dependence on H in Equation 5.2 can be replaced by the dependence on melting
temperature, Tm. Experimental studies show a good correlation between activation
enthalpy and melting temperature (e.g. Weertman, 1970), expressed as:

H = BRTm (5.3)

where B is a dimensionless constant. This leads to an alternative expression of vis-
cosity:

η = A · exp
(BTm
nT

)
. (5.4)

Yamazaki and Karato (2001) estimate the value of B for the two main mantle ma-
terials, (Mg,Fe)SiO3 perovskite and (Mg,Fe)O magnesiowustite, to be ∼10 and ∼14,
respectively. Steinberger and Calderwood (2006) use an arithmetic mean of these two
values, namely B = 12, which we adopt as well. Depth-profiles of activation enthalpy
and melting temperature used in this study are presented in Figure 5.1.
Following Steinberger and Calderwood (2006), we use activation enthalpy profile,
based on Calderwood (1999), to determine the viscosity in the upper mantle (top
660 km), and melting temperature profile, based on the results of mineral physics
experiments (e.g. Wang , 1999; Zerr and Boehler , 1994) for the viscosity in the lower
mantle. The choice of whether to use enthalpy or melting temperature for the viscos-
ity profile is made based on the availability of the experimental data.
Temperature is decomposed into a reference state temperature, T̄ , which is the lateral
average of T and only depends on depth, and a departure from this reference state,
δT , such that:

1

T
=

1

T̄ + δT
=

1

T̄
− δT

T̄ (T̄ + δT )
(5.5)

Using the above decomposition of temperature, we can factorize dependence of vis-
cosity on temperature and depth in terms of its radial and lateral variations, which
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can be expressed as following:

η = ηi · VrT (z) · VlT (5.6)

where ηi are the ‘anchor viscosities’ that were determined in Steinberger and Calder-
wood (2006) for 3-4 depth-ranges of the mantle, by minimizing misfit between model
predictions and observations, VrT (z) is the radial viscosity variation due to radial
temperature and pressure variations, and VlT is the lateral viscosity variation due to
lateral temperature variations. Using the Equations 5.2, 5.4 and 5.5, we can express
viscosity as:

η = ηi · exp
[(

1− δT

T̄ + δT

) H

nRT̄

]
= ηi · exp

[(
1− δT

T̄ + δT

)BTm
nT̄

]
(5.7)

In order to use this model, we need to specify the reference temperature T̄ , the
detailed derivation of which is presented in Section 5.2,

5.2 Radial Temperature Profile

We distinguish between the reference temperature profile T̄ that is used for evaluating
viscosity according to Equation 5.7, and the one that is otherwise used in our model
of the mantle, i.e. Equations 3.6 and 3.8. The reference thermal profile used for con-
servation equations is simply a constant, since we use the Boussinesq approximation.
For Equation 5.7, we use a reference profile T̄ (z) that is adiabatic throughout the
entire mantle depth, which is a deviation from Steinberger and Calderwood (2006),
who include the thermal boundary layers into their reference profile. We exclude the
thermal boundary layers from T̄ (z), and instead treat them in the same manner as
the lateral temperature variations, as will be discussed later.
The adiabatic temperature gradient in the mantle is given by (e.g. Schubert et al.,
2001):

dT̄

dz
=
α(z)T̄ (z)γ(z)

Cp(z)
(5.8)

where α is thermal expansivity, γ is the gravitational acceleration, and Cp is spe-
cific heat capacity. The adiabatic temperature profile is obtained upon integration of
Equation 5.8. In order to do this, the radial profiles of α, γ and Cp must be deter-
mined.
To obtain a unique adiabatic profile, we need to prescribe a value at some given depth.
Surface value of Tadi,0 = 1613 K at z = 0 is used, which is an extrapolated value of
the mantle adiabat to the surface, based on decompression melt studies of MORBs.
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The gravity profile γ is determined from the radial profile of density, and is well con-
strained from previous studies. Schubert et al. (2001) demonstrate how the gravity
can be computed for a spherically averaged model of the Earth, using the results from
seismic studies.
A constant value for the specific heat capacity Cp ≈ 1250 J kg−1 K−1 is used.
Thermal expansivity α in the upper mantle is given by Schmeling et al. (2003):

α(p, T ) = α0(T )
(ρ(p, T )

ρ0(T )

)−δT
(5.9)

α0(T ) = 3.034 · 10−5K−1 + 7.422 · 10−9K−2 · T − 0.5381K · T−2

where subscript 0 denotes the value at zero-pressure, and δT = 5.5. In the lower
mantle, α is given by (Steinberger and Calderwood , 2006):

α(p, T ) = α0(T )exp
{
− δT0

b

[
1−

( ρ0(T )

ρ(p, T )

)b]}
(5.10)

α0(T ) =
(

2.9 +
0.9 · T
1000K

)
· 10−5K−1

where δT0 ≈ 5.5 and b ≈ 1.4. The density values that are present in the expression for
α can be obtained from e.g. PREM. The difference in expressions for α for upper and
lower mantle arises due to the relation between the thermal expansivity and density,
which is assumed constant in the upper mantle, but varies with depth in the lower
mantle.
To incorporate a realistic transition of the majorite phase between 660 and 730 km
depth into the thermal expansivity profile, the following expression for α is used in
this depth range:

α(z) = αlm(z) + 0.3 · (αum(z)− αlm(z)) · (z − 730km)/(660km− 730km) (5.11)

where subscripts um and lm stand for upper mantle and lower mantle, respectively,
and αum and αlm are determined using Equations 5.9 and 5.10, respectively.
The effect of the phase transitions at 400 and 660km depths on the reference temper-
ature profile is accounted for by using the following expression for the temperature
jumps across these phase boundaries:

4TL =
QL

Cp
=

Γ4ρTpb
ρ2
pbCp

(5.12)

where QL is the latent heat release per unit mass, Γ is the Clapeyron slope, 4ρ is the
density jump across the phase boundary, Tpb and ρpb is the average temperature and
density above and below the phase boundary, respectively. For the phase transition at
400km, Γ4ρ = 0.5·103 MPa K−1 kg m−3 is used, and for 660km Γ4ρ = −0.3·103 MPa
K−1 kg m−3. For references, see Steinberger and Calderwood (2006). The resulting
reference temperature profile T̄ is shown in Figure 5.1.
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5.3 Implementing Depth- and Temperature-

Dependence of Viscosity

The radial viscosity profile η(z) that was derived using the parameters described
above, and optimized such as to minimize the misfit between model predictions and
observations is presented in Figure 5.2. The difference between the profile presented
in Figure 5.2 and the ones published in Steinberger and Calderwood (2006) is that
the former does not include the effect of thermal boundary layers on the viscosity.
The radial viscosity profile presented in Figure 5.2 remains constant throughout the
numerical simulation. The viscosity variations due to lateral temperature variations
and thermal boundary layers are modeled as modifications of the radial viscosity
profile, and are computed in the course of the simulation.

η = η(z) · exp
(
− H

nRT̄

T − Toff
(T − Toff + T̄

Tscale
)

)
(5.13)

Tscale = TCMB − T0 −4T̄ ≈ 2348K

Toff =
T̄0 − T0

Tscale
≈ 0.5658

where η(z) is the reference viscosity profile at adiabatic temperature, H activation
enthalpy, n stress exponent (n = 3.5 above 660km depth, and n = 1 below 660km
depth), T̄ (z) adiabatic reference temperature profile (note that T̄ (z) is different from
the reference temperature profile used in the linearization of the conservation equa-
tions, with the latter simply being a constant due to the Boussinesq approximation),
T are the nondimensional temperature values computed in the course of the simu-
lation, TCMB = 3500K and T0 = 285K are the assumed temperature values at the
core-mantle boundary and at the surface, respectively, and 4T̄ ≈ 866 K is the adi-
abatic temperature increase across the depth of the mantle. The offset temperature
Toff and the scaling temperature Tscale are used in order to correct for the fact that
different reference temperature profiles are used in the general (Boussinesq) model,
according to which T is computed, and in the viscosity model, where T̄ and δT are
used. We use cut-off values 1019 and 1024 Pa s - to restrict viscosity variations to the
respective range.



Chapter 6

Replenishment and Destruction of
Compositional Anomaly In
Thermochemical Mantle
Convection: Simulation Results

In this chapter, we present the results of thermochemical convection simulations that
illustrate the dynamics and thermal and compositional evolution of large-scale com-
positional heterogeneities at the CMB, which develop self-consistently by segregation
and accumulation of subducted oceanic crust. This is followed by a discussion about
the main observations that were made from these results, and inferences that can be
made for the structures evolving in the Earth’s deep mantle. For a critical assessment
of the latter, we also discuss the limitations of our models. Finally, the conclusions
and outlook for the presented work conclude this chapter and thesis. Part of the work
presented in this chapter have been published in Mulyukova et al. (2015).

6.1 Model Description

Geometry of the domain used in the simulations is a two-dimensional hollow cylinder.
The nondimensional inner and outer radii are set to 1 and 2, respectively. It is
an intermediate scaling compared to the ones studied in van Keken (2001). See
Section 6.4.2 for the discussion on how this choice of geometry affects our results, and
how it compares to geometries used in other numerical studies. Mechanical boundary
conditions used in our models are free slip at the inner boundary of the cylinder,
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Figure 6.1: (A): Optimized radial viscosity profile, modified from Steinberger and
Calderwood (2006) to exclude the effect of thermal boundary layers. The colored lines
indicate the effect on viscosity of different values of γ - a variable that we use to
lower the viscosity in the bottommost 500 km of the domain, according to legend (see
Section 6.2 for details). (B): Snapshot from one of the simulations to explain the set-
up of numerical experiments. The gray-scale color-field represents the nondimensional
thermal field (colorbar on the left). Red-blue colorscale represents the fraction of OC
material (colorbar in the center). Regions where OC-fraction is less than 0.1 are
made transparent. The black and white lines are hot (T = 0.6) and cold (T = 0.3)
isotherms, respectively. The purple line on the exterior illustrates the direction of the
tangential component of the imposed surface-velocity V ′

s (negative means clockwise) -
black dashed line indicates the zero-value. V ′

s is a function of azimuthal position θ:
V ′
s = AVssin(2θ), where AVs = 1 cm/yr. (C): Same snapshot as in (B), but showing

base ten logarithm of nondimensional viscosity (colorbar on the right).
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and prescribed velocities at the outer boundary. The tangential component of the
prescribed surface velocity V ′s is a sinusoidal function of azimuthal position θ along the
outer boundary: V ′s = AVssin(2θ), with the amplitude AVs = 1 cm/yr. The schematic
of the prescribed velocity boundary condition is given in Figure 6.1. The prescribed
surface-velocity in our models is somewhat lower than what is representative for the
tectonic plate velocities. This is because the role of the prescribed surface velocity
in our model is mainly to organize the flow such as to form two downwelling regions.
As was shown in the analogue experiments of Gonnermann et al. (2004), increasing
the magnitude of the surface velocity suppresses the naturally developing convecting
pattern, which we try to avoid in our models. See Section 6.4.3 for the discussion
about the effects of prescribed velocity on our modelling results.
Thermal boundary conditions constitute prescribed temperatures at both inner (T =
1) and outer (T = 0) boundaries. For initial temperature conditions, we use results of
a convection model with the same geometry as in our tested models, but at a coarser
resolution, without any compositional heterogeneities, and which was simulated for
500 Myr (starting with T = 0 at the surface, T = 1 at the CMB, and T = 0.5
everywhere else). The initial temperature field used for the models is such that the
surface heat flow is larger than the bottom heat flow, and thus the system starts off
with mantle-cooling. Over the last Gyr of simulation time, our results show mantle
cooling at a rate of 10.5 − 14.5 TW for different tested cases, which is partially due
to their initial thermal conditions, and partially due to their developing dense basal
structures.
The compositional anomaly is continuously generated throughout the simulation:
material that enters the top 6 km of the domain gets converted to oceanic crust
material, which is intrinsically denser than the ambient material.
The rheological model used in the simulations was presented in Chapter 5, and the
numerical methodology in Chapter 4.

6.2 Results

We systematically vary two physical parameters that have been found to play a domi-
nant role in the evolution of compositional anomaly in a vigorously convecting mantle:
buoyancy ratio (Equation 3.11) and viscosity. In our models, viscosity is varied only
in the lowermost 500 km of the mantle. We don’t attribute its variation to any specific
mechanism. Rather, we treat it as an uncertainty in the lowermost part of the radial
viscosity profile, shown by the black line in Figure 6.1, which is varied for different
models to investigate the effect of this uncertainty.
We define a parameter γ = µred

µorig
, where µorig is the reference value of the radial vis-

cosity profile at CMB, shown by the black line in Figure 6.1, and µred is a reduced
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value of the radial viscosity profile at CMB, shown as colored lines in Figure 6.1.
Radial viscosity profile between the CMB and 500 km above it is modified to en-
sure a smooth viscosity reduction towards the bottom, as demonstrated by colored
lines in Figure 6.1. Radial viscosity profile above 500 km from the CMB is identical
for all models. The range of viscosity reductions tested in this study is given by
0.25 < γ < 1.0.
We use capital letters B-F to enumerate different Br-values (B, C, D, E, F correspond
to Br = 0.57, 0.71, 0.85, 0.99, 1.1, which scale to ∆ρ′C = 100, 125, 150, 175, 200 kg/m3,
or, equivalently, a density contrast of 1.8, 2.3, 2.7, 3.2, 3.6%). Different γ-values are
indicated by numbers from 1 to 4 (1, 2, 3, 4 correspond to γ = 1.0, 0.75, 0.50, 0.25).
For example, a model with Br = 0.57 and γ = 0.50 is entitled B3.
Figure 6.2 shows snapshots of the thermochemical evolution for four different cases:
C1, C3, F1, and F4. In all of these cases, large scale compositional anomaly is
formed at the CMB. A zoomed-in view on piles that have developed by the end of
each simulation (at 3 Gyr) are shown in Figures 6.3 and 6.4, for the piles on the left
and right sides of the domain, respectively. The shapes of large-scale anomalies in the
presented cases can be grouped into two categories: (i) large topography piles with
sharp edges, which are highly mobile both laterally and vertically, have a close to
homogeneous distribution of dense material in their interior, and have plumes rising
from their surface and edges, occasionally entraining large bulks of the pile-material;
(ii) high density basal layer covering nearly the entire CMB, overlain by high topog-
raphy piles with a much lower fraction of OC material, and plumes rising from their
interior and edges, entraining thin filaments of pile material. Scenario (i) is typical for
the cases with moderate buoyancy ratio (Br < 0.8), while scenario (ii) is typical for
the high buoyancy ratios (Br > 0.8). The effect of lowering viscosity in the bottom
500 km appears to be to reduce the concentration of dense material in the piles.

6.2.1 Global Scale Time Evolution

We first look at the thermal evolution of the different cases. Figure 6.5 shows time
evolution of heat flow, measured at upper and lower boundaries of the model, for six
different cases (B1, B4, D1, D4, F1, and F4). To arrive at dimensional heat flow
values indicated on the left axis of Figure 6.5, we first dimensionalised the values
of circumference-averaged conductive radial heat flux, measured at top and bottom
boundaries of our models, and integrated these over the Earth-like spherical surface-
and CMB-area, respectively. The right axis of Figure 6.5 shows the respective values
of the Nusselt number - the non-dimensional radial conductive heat flux at the surface
of the cylindrical (2D) model.
Using the results of Figure 6.5, we can see the effect of buoyancy ratio and viscosity
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Figure 6.2: Snapshots of the thermochemical evolution at three points in time (1,
2, and 3 Gyr) for four different cases (from top to bottom): C1 (Br = 0.71, γ =
1.0), C3 (Br = 0.71, γ = 0.50), F1 (Br = 1.1, γ = 1.0), and F4 (Br = 1.1,
γ = 0.25), as indicated on the left of the figure. The gray-scale reflects the thermal
field (bottom colorbar), and the red-blue scale reflects the concentration of oceanic
crust material (top colorbar). Concentrations of OC material lower than 0.1 are
made transparent. The black and white lines are hot (T ∗ = 0.6) and cold (T ∗ = 0.3)
isotherms, respectively (T ∗ is the nondimensional temperature).
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Figure 6.3: Snapshots at 3 Gyr for all studied cases, zoomed in on the thermo-
chemical pile that develops on the left side of the domain. The gray-scale reflects
the thermal field (bottom colorbar), and the red-blue scale reflects the concentration
of oceanic crust material (top colorbar). Concentrations of OC material lower than
0.1 are made transparent. The black and white lines are hot (T ∗ = 0.6) and cold
(T ∗ = 0.3) isotherms, respectively (T ∗ is the nondimensional temperature).
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Figure 6.4: Same as Figure 6.3, but zoomed in on the thermochemical pile that
develops on the right side of the domain.
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reduction in the bottom 500 km on our models thermal evolution. Nu in the begin-
ning of the simulations (up to 1 Gyr - before any substantial amount of dense material
has been accumulated at the bottom) is very similar for cases with the same values
of viscosity: lowering the viscosity in the bottom 500 km leads to higher heat flux
at the surface, consistent with the fact that a lower viscosity gives a higher effective
Rayleigh number - thus a higher vigor of convection and more efficient heat flux.
After approximately 1 Gyr, the effect of the accumulated dense material at the base
becomes evident: cases with the higher buoyancy ratio, and thus a larger volume of
dense material accumulating on top of the CMB (as will be discussed in Figure 6.6),
have a lower Nu, compared to cases with lower Br. Highest Nu (from ∼ 1.5 Gyr
until the end of the simulation) among the presented models is obtained for the case
with the lowest buoyancy ratio and lowered viscosity in the bottom 500 km (B4:
Br = 0.57, γ = 0.25), and the lowest Nu is obtained for the case with the highest
buoyancy ratio and original (i.e. not reduced in the bottom 500 km) viscosity profile
(F1: Br = 1.1, γ = 1).
While heat flow across the CMB appears to reach a steady state for all of the pre-
sented cases, according to Figure 6.5, there is a gentle decline in the heat flow at the
surface. This, and the observation that the heat flow at the surface is larger than
that at the CMB throughout the simulation, indicates that the system is still not in
statistical steady state. Over the last Gyr of simulation time, the mantle is cooling
at a rate of 10.5 − 14.5 TW for different models, which is partially due to their ini-
tial thermal conditions, and partially due to their developing dense basal structures,
which influences the heat flowing across the CMB.
Presence of a large scale compositionally dense anomaly at the CMB reduces the

amount of heat that is flowing into the system. Comparing the amount of dense ma-
terial (in terms of mean OC-concentration in the bottom 100 km) that accumulates
at the base for each of the six cases presented in Figure 6.6(A), and the amount by
which the mean temperature at mid-depth has lowered from its initial state, shows
that a larger amount of high density material at the CMB leads to a cooler system.
A cooler mid-mantle is also more viscous, due to the temperature-dependence of vis-
cosity. Thus, cases with more dense material at the base are more viscous and have a
lower effective Rayleigh number. Figure 6.6(A) also shows that more dense material
accumulates at the base for higher values of Br, meaning that increasing Br leads to
a cooler and more viscous mantle. Effect of decreasing viscosity in the bottom 500 km
on the amount of dense material that gets accumulated at the base is less pronounced.
It appears that for cases with Br < 0.8, decreasing γ reduces the amount of material
that gets accumulated, while for cases with Br > 0.8, decreasing γ slightly enhances
accumulation.
Figure 6.6(B) shows the volume fraction of the dense oceanic crust material present in
the system for the six cases over time. The downwelling flow in our models, and thus
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Figure 6.5: Time evolution of conductive radial heat flow across the surface (solid
lines) and the CMB (dashed lines). Dimensional values (in TW) are indicated on
the left axis, and were obtained by first dimensionalising the values of circumference-
averaged conductive radial heat flux, measured at top and bottom boundaries of the
models, and then integrating these values over the spherical surface-area of the Earth
and CMB, respectively. Right axis indicates the respective values of the Nusselt num-
ber (only shown for the surface heat flux).
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exposure of new surface area where oceanic crust can form, is largely determined by
the prescribed surface velocities, and is therefore similar for all of the models. Accord-
ing to the current rate of production of MORB, as well as that of the recent past, Xie
and Tackley (2004) estimate that the oceanic crust constitutes approximately 10% of
the mantle volume today. This is a double value of what is produced in our models
by the end of the simulations, meaning that our modeled rate of replenishment of the
high density OC material is lower compared to a more Earth-like system.

Non-uniform distribution of high-density material within the large-scale composi-
tional anomaly, seen in Figures 6.3 and 6.4, is indicative of small scale convection
taking place in the lowermost part of the domain, and/or within the thermochemical
piles or layers. Using Fourier transform of the radial velocity component, we can get
an idea of how the convective flow is partitioned between the small-scale flow, and the
larger scale flow, with the latter dominated by plumes and downwellings. Figure 6.7
presents the results of this analysis for six different cases (B1, B4, D1, D4, F1, and
F4), computed at two different depths: 250 km above the CMB, and at mid-depth
of the domain. Small-scale convection is reflected in the higher harmonic degrees.
Partitioning of the radial velocity component between different harmonic degrees for
the cases with lower Br values (B1 and B4) changes little between the two depths -
inferring a minor role of the small scale convection in these cases. On the contrary,
results for cases with high Br values (D1, D4, F1 and F4) demonstrate a notable
shift in the radial velocity partitioning between different harmonic degrees from the
lower to higher depths: at 250 km above the CMB the small scale convection con-
stitutes a much larger part of the flow, compared to mid-depth. Effect of lowered
viscosity in the bottom 500 km of the domain is reflected in a slight increase of power
stored in the high harmonic degrees. It is an expected result, given that lower viscos-
ity results in higher Rayleigh number, which further results in smaller characteristic
length-scales of convection (e.g. Schubert et al., 2001).
Upwelling flow of the rising hot plumes can entrain the high density OC material in

its vicinity, and gradually contribute to the destruction/erosion of the accumulated
dense anomaly at the CMB. This can happen solely by the action of viscous drag,
in which case only a thin filament of high density material is entrained. This is ob-
served in cases with Br > 0.8 (Figures 6.3 and 6.4). Entrainment can be assisted
by the action of mechanical mixing of high density and ambient materials prior to
rising in plumes: a sufficiently diluted mixture can be heated to the degree where
its effective compositionally induced positive density anomaly is less strong than the
thermally induced negative density anomaly, forming the so-called thermochemical
plumes. The latter is observed in cases with Br < 0.8 (Figures 6.3 and 6.4), and
is much more efficient at destroying the compositional anomaly at the base of the
mantle - i.e. it causes a higher flux of high density material from the bottom to the
surface of the mantle. Efficiency of these two entrainment-modes to transport high
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Figure 6.6: (A): Mean temperature at mid-depth versus mean concentration of OC
material in the bottom 100 km of the domain. Results for six cases are presented,
according to legend. Colored symbols indicate points in time at which the plotted
values were sampled: circles - 0.5 Gyr, triangles - 2 Gyr, squares - 3 Gyr. The
black filled circles are the values sampled after the first 10 Myr of the simulation.
(B): Volume-fraction of OC material present in the system over time. (C): Volume-
fraction occupied by thermochemical piles over time.



100 CHAPTER 6. SIMULATION RESULTS

Figure 6.7: Fourier transform of the radial velocity component, measured at two
different depths: 250km above CMB (left) and mid-depth of the domain (right), and
averaged over the last 500 Myr of simulation.

density material is demonstrated in Figure 6.8, where volume flux of OC material
across mid-depth is plotted over time for six different cases (negative flux means in
the direction upwards from the CMB). The plotted volume-flux of OC is normalized
by that associated with the two downwelling regions, which is governed by prescribed
surface velocities and is similar for all cases. The rise of well-stirred thermochemical
plumes, reflected in the large negative peaks of OC-flux in Figure 6.8, is observed for
cases with Br < 0.8. An example of one such event for case B1 is shown in the insert
in Figure 6.8. In some cases, thermochemical plume fails to rise all the way to the
surface, and a part of it drains back down. In one such example, shown for case B4
in the second insert of Figure 6.8, the hottest, least-viscous, and closest to center (i.e.
furthest from surrounding ambient mantle) part of the plume drains down, while the
rest of the plume continues to rise. Such rare events are reflected in the positive peaks
of OC-flux in Figure 6.8. For cases with Br > 0.8, entrainment of dense material by
plumes is very inefficient - the net OC flux across the mid-mantle exhibits very rare
(if any) and small in amplitude negative peaks.
To visualise the individual events associated with variations in entrainment and

heat flux, we present the volumetric flux of oceanic crust material and heat flux as
functions of time and azimuthal position in Figure 6.9, measured at mid-depth of the
domain for five different cases (B1, B4, C3, F1 and F4). Figure 6.9 illustrates the
episodic nature of plumes - the yellow-red dots in the heat-flux part of the figure.
It is interesting to see the locations of plumes with respect to the locations of the
thermochemical piles. For this purpose, we superpose the locations (black lines) of
the ‘north’ and ‘south’ boundaries for one of the piles in each simulation onto the
heat- and OC-flux color-plots in Figure 6.9.
We can identify three typical locations of plumes with respect to the piles: close to
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Figure 6.8: Top: Volume flux of OC material measured at mid-depth of the domain
for six cases (see legend), scaled by the volume flux of OC material transported by
subducting slabs. Negative flux means in the direction upwards from CMB. Events
associated with one of the negative peaks (orange box) in case B1, and one of the
positive peaks (green box) in case B4 are explained in the inserts 1(A-C) and 2(A-C),
respectively. 1(A) and 2(A) show temperature and composition fields for one of the
piles at the time of their respective peaks, with yellow square marking the region of
zoom-in in 1(B-C) and 2(B-C), respectively. 1(B) and 2(B): velocity and base
ten logarithm of viscosity fields at the time of the peak. 1(C) and 2(C): temperature
and composition fields some time after the observed peak in OC-flow.
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both edges of the pile, and the mean lateral position of the pile. The plumes occurring
close to the mean lateral position of the pile are cooler and more long-lived, compared
to the ones occurring at the edges. Cases with lower viscosities in the bottom 500 km
of the domain (B4 and F4) exhibit higher plume-frequency and hotter plumes, com-
pared to their more viscous counterparts (B1 and F1). Plume-formation is strongly
suppressed in cases with high buoyancy ratio (F1 and F4), where a high density layer
develops on top of the CMB.
The contours of the piles in Figure 6.9 illustrate the transient, or oscillating, nature
of the piles geometry: it shrinks and expands laterally over time, and also moves as
a whole laterally along the CMB.
Transport of OC material across mid-depth in cases with high Br (F1 and F4) is
mostly restricted to the narrow regions associated with the downwellings - downward
transport of the oceanic crust, as well as the highly localized regions where the OC
material is transported upwards. The latter is associated with the thin filaments of
high density material entrained by plumes. In contrast, in cases with a moderate
buoyancy ratio (B1, B4 and C3), a lot more OC material is traversing the mid-
depth of the domain - illuminating both the fact that plumes carry more of the dense
material as they rise, and that there is a larger fraction of dense material present
as a well-stirred component of the ambient material. In all cases, a christmas-tree
like structure can be seen in the plots of the OC material flux, which indicates that
plumes carrying high density material upwards tend to migrate towards the center of
the piles.
To gain some understanding of how long the anomalously dense material lingers in

the lower mantle, before it (in some cases) gets entrained and carried back up to the
surface, we show the distribution of the dense material by the end of the simulation,
colored according to the time at which it was first converted to oceanic crust (Fig-
ure 6.10). To generate this figure, we subdivided the domain into 8 × 8 km2 boxes,
and assigned the age to each box according to the ‘oldest’ marker found in its interior.
By ‘age’ here we mean the time at which it was first converted to oceanic crust.
Results for four selected cases are shown: B1, C3, D4 and F4. These results illus-
trate that the subducted oceanic crust material can reside in the deep mantle for at
least 3 Gyr. Once a large scale anomaly is formed, the newly arriving dense material
travels along its surface, and thus is more likely to get entrained into rising plumes.
This process helps to preserve the ancient material inside the piles, and creates a
wealth of different ages of the dense material that gets stirred and embedded within
the ambient mantle. In two cases with the highest Br-values (D4 and F4), the newly
arriving dense material can sometimes accumulate at the surface of a preexisting pile
(or layer), due to the inefficiency of entrainment by plumes, until it finally avalanches
into the preexisting large-scale structure.

Formation of large structures with accumulated dense material in our models, as
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Figure 6.9: Dimensionless heat flux (left) and volume flux of OC material (right),
both measured at mid-depth of the domain, as functions of time and azimuthal po-
sition for cases B1, B4, C3, F1 and F4. Heat flux colorbar [−2, 2] translates to
dimensional values of ∼ [−25, 25] kW/m. Flux of OC material is positive when it
is away from the CMB, and its colorbar [−1, 1] translates to dimensional values of
∼ [−18, 18] m2/yr. The black solid lines superposed on top of each figure indicate the
‘north’ and ‘south’ boundaries for one of the piles. Pile-boundaries are evaluated for
the part of the pile that is above its average height over CMB. The dashed black line
indicates the mean lateral position of the pile.
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Figure 6.10: Snapshots of cases B1, C3, D4 and F4 at 3 Gyr. Color indicates the
time at which material was first converted to oceanic crust. To generate this figure,
we subdivided the domain into 8 × 8 km2 boxes, and assigned the age to each box
according to the ‘oldest’ markers found in its interior. By age here we mean time
at which it was first converted to oceanic crust. Top row shows the entire domain,
with the zoom in on the left and right piles in the second and third rows of the figure,
respectively.
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shown in Figures 6.2 - 6.4, the observed compositional heterogeneity in the interior
of these structures, as well as the zonation of times when the dense material in dif-
ferent parts of these structures was formed (most notably the preservation of ancient
subducted material), as shown in Figure 6.10, point to the time- and space-variations
of mechanical mixing of different regions of the mantle. This is visualised in Fig-
ure 6.11, where for each point in space, and for a given point in time, the depth
at which material was ∼ 500 Myr ago is shown (indicated by color). Two ∼ 500
Myr-long time-intervals ([230 − 710] and [3100 − 3600] Myr) are analyzed for three
different cases: B1, D4 and F1. For all presented models, and for both time-intervals,
separation of the domain into four large-scale convecting regions is apparent. This
large-scale convective pattern is controlled by the prescribed surface velocity, which
is the same for all models.
We first look at the earlier of the two presented time-intervals ([230− 710] Myr). For
all of the presented models, material that is in the upper part of the domain at 230
Myr (blue in Figure 6.11) displaces all of the material at the bottom within 500 Myr:
i.e., there is no red color immediately at the CMB at 710 Myr. Some of the material
that was originally at the bottom (at 230 Myr) traverses approximately twice the
mantle-depth within 500 Myr, and is seen reentering the deeper mantle again at the
subducting regions at 710 Myr. In cases with γ = 1.0 (B1 and F1), the reentering
material doesn’t reach the CMB again, but circulates upwards as part of the return
flow surrounding the subducting regions. In contrast, in case with γ = 0.25 (D4),
some of the material that was displaced from the CMB ∼ 500 Myr ago is being re-
turned back to the CMB.
Flow of the material away from the CMB happens episodically, in form of hot rising
plumes with large heads and narrow conduits. Remnants of plumes which drained
the material that was originally at the CMB (at 230 Myr) are seen as streaks of red
conduits, often tilted. Some of the remnant tails are colored deep red, and indicate
the oldest plumes, consisting of material that was at the CMB at the very beginning
of the time-interval. There are also remnant tails consisting of material colored from
light-orange to light-blue. These are plumes that formed from a more recently formed
hot thermal boundary layer. Finally, plumes initiating at 710 Myr, whose heads can
be seen in the presented plots in Figure 6.11, consist partially of material that was in
the upper part of the mantle, and partially of that in the lower part of the mantle 500
Myr ago (at 230 Myr). Notably, the axis of symmetry in some of these plumes clearly
separates the materials that were initially at different depths, most easily seen in
the early stages of plume-head developement, and getting increasingly mechanically
mixed as the plume-head rises.
Some segregation and accumulation of oceanic crust material can be seen at 710 Myr,
as deep blue regions that are thickened beneath the upwelling flow.
The striking difference in flow-patterns over ∼ 500 Myr observed for the two presented
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time-intervals, is that in the later time-interval ([3100− 3600] Myr), a large fraction
of mantle-material at the bottom of the domain does not get displaced by the newly
arriving material. These gravitationally stable parts of the mantle are the dense ther-
mochemical piles, which have flow in their interior, but have little material-exchange
with the ambient mantle. The newly arriving material travels along the surface of the
piles, some of it getting entrained into the piles interior (seen as yellow-green patches
in the piles interior for cases B1 and D4), and some of it getting entrained upwards
into upwelling flow. This is consistent with the observations from Figure 6.10, where
the most recently formed oceanic crust tends to travel along the piles surface, with
some of its larger chunks occasionally avalanching into the piles interior.
Similarly to the observation from the earlier time-interval ([230− 710] Myr), plumes
that are rising at 3600 Myr consist partially of material that was in the upper part of
the mantle, and partially of that in the lower part of the mantle 500 Myr ago (at 3100
Myr). And, also similar to the ealier time-interval, the axis of symmetry in some of
the plumes developing in the later time-interval clearly separates the materials that
were initially at different depths.

6.2.2 Pile Scale Time Evolution

We now shift our focus from the global scale characteristics of the thermochemical
evolution presented in the previous section, to the evolution of the individual piles.
Figure 6.6(C) shows the pile-size evolution, in terms of the fraction of volume occu-
pied by both piles. Despite the low influx of high density material in the models,
compared to the more Earth-like values, we observe that by the end of the simula-
tions, the portion of the volume occupied by the thermochemical piles is comparable
with the values estimated for the seismically observed LLSVPs (∼ 2%). Growth-rate
of the piles in cases with lower Br values (B1, B4) appears to be declining with
time, while in the cases with high Br values (D1, D4, F1 and F4), the growth rate
appears to remain more or less constant.
For a more detailed analysis of the internal structure of the thermochemical piles, we
look at the time- and depth-dependence of the following three parameters measured in
their interior: concentration of the OC material, temperature, and the total buoyancy
anomaly. The latter is defined as the sum of thermally and compositionally induced
density variations inside the pile, with respect to the azimuthally averaged values of
temperature and composition in the ambient mantle. Results are presented for the
individual piles developing on the left and right sides of the domain in Figures 6.12
and 6.13, respectively.
OC-concentration: Piles presented in Figures 6.12 and 6.13 all exhibit some degree
of vertical stratification of OC-concentration, which generally decreases away from the
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Figure 6.11: Illustrating mantle flow over two ∼ 500 Myr-long time-intervals
([230 − 710] (top) and [3100 − 3600] (bottom) Myr) for cases B1, D4 and F1, as
indicated in the titles of the figures. Color indicates the radial coordinate at which
material was at the beginning of the time-interval, with its distribution by the end of
the time-interval shown in the figure. For example, dark blue color marks the material
that was at the surface of the domain ∼ 500 Myr ago. The black and white lines are
hot (T ∗ = 0.6) and cold (T ∗ = 0.3) isotherms, respectively (T ∗ is the nondimensional
temperature).
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CMB. Intermittantly appearing regions of extremely low OC-concentrations (< 20%)
at the surface of the piles, which gets rapidly removed upwards, indicate entrainment
by plumes.
In cases with Br < 0.8, OC-concentrations in piles interior is more homogeneous
(compared to those with Br > 0.8), at a value between ∼ 80 − 90% for cases with
γ = 1 (B1 and C1), and between ∼ 65−75% for cases with γ = 0.25% (B4 and C3).
Piles in cases with Br > 0.8 exhibit more vertical stratification of OC-concentration
in their interior. Two regions can be distinguished in these cases (least pronounced
for case D4 in Figure 6.12): a high concentration (∼ 90−100%) region at the bottom,
overlain by a low concentration (∼ 40 − 60%) region. In cases with γ = 1 (D1 and
F1), the high concentration regions are thicker and the low concentration regions are
thinner, compared to their counterpart-cases with γ = 0.25 (D4 and F4).
Temperature: Temperature distribution in the piles interior can also be grouped
between cases with Br < 0.8 and those with Br > 0.8: cases with Br < 0.8 exhibit
close to a homogeneous thermal structure (T ∼ 0.8 − 0.9, or T ′ ∼ 2850 − 3150K),
while cases with Br > 0.8 have a notable thermal gradient, with cooler pile-surfaces
(T ∼ 0.6−0.7 or T ′ ∼ 2200−2500K). Note that due to the temperature-dependence
of viscosity, a cooler pile-surface is also more viscous.
Net Buoyancy Anomaly: The net buoyancy of the piles with respect to the ambient
mantle, shown in Figures 6.12 and 6.13, illustrates that neutrally buoyant thermo-
chemical structures develop in all of the presented cases, and are persistent features
that, once developed, survive for several billion years. For cases with Br > 0.57 the
net buoyancy of the piles generally falls in the range between neutral and negative,
with a negatively buoyant bottommost part, and buoyancy increasing upwards until
it reaches the level of neutral buoyancy. The positively buoyant parts that intermit-
tently appear at the piles surfaces readily rise away due to their excess buoyancy.
In contrast, piles developing in cases with Br = 0.57 (B1 and B4) are positively
buoyant (albeit only slightly) in the largest fraction of their interior, except for the
negatively buoyant bottommost part, and a neutrally buoyant uppermost part. Such
buoyancy structure develops due to the variation of azimuthally averaged temperature
with depth. Starting from the CMB, the value of azimuthally averaged temperature
decreases upwards, until it reaches the depth of ∼ 2600 km, at which point it starts
rising again until it reaches its adiabatic value at ∼ 1500 km depth. Thus, as the
positively buoyant thermochemical pile rises through the mantle in the depth-range
∼ 2600 − 1500 km, it is surrounded by an increasingly hotter mantle, which lowers
the effective buoyancy of the pile until neutral (i.e. zero) buoyancy is reached. A pos-
itively buoyant lower part of a pile that underlies its neutrally buoyant part was also
observed in Tan and Gurnis (2005), who suggested such buoyancy structure to be a
plausible explanation for high topography yet gravitationally stable thermochemical
piles at the bottom of the mantle. The mechanism that generated such buoyancy
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structure in their case, however, was depth-dependence of the compositionally in-
duced density anomaly due to the different equations of state used for the ambient
and dense materials.
Piles in all of the presented cases exhibit oscillations in their topography over time.
The cases with lower Br values (B1 and B4) oscillate most frequently, with pile to-
pographies ranging from below 500 km to over 2000 km above CMB. Time-variations
of pile topography get more subtle for cases with increasing buoyancy ratio (C1, C3,
D1, D4, F1 and F4). In all cases, lowering the viscosity in the bottom 500 km of
the domain results in more frequent topography-oscillations.
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Figure 6.12: Time evolution of concentration of the oceanic crust material (left),
temperature (center), and total buoyancy anomaly (right) in the thermochemical piles,
as functions of time and depth. Results for the piles on the left side of the domain for
eight different cases are shown, as indicated on the left of each row: B1, B4, C1,
C3, D1, D4, F1, and F4.
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Figure 6.13: Same as Figure 6.12, but for the thermochemical piles on the right
side of the domain.
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Postprocessing: Distinguishing Thermochemical Piles from Ambient Man-
tle

In order to distinguish the piles in our numerical results from the rest of the domain,
we borrowed some techniques from the field of image analysis. A structured quadratic
mesh was superposed to cover the entire domain. The boxes of the structured mesh
played the role of pixels in an image. Concentrations of dense material in each box
of the structured mesh were treated as a one-dimensional brightness value (ranging
from 0 to 1). Brightness values were thresholded to produce a binary ‘image’: all
values below 0.1 were set to zero, and everything else set to 1. An inbuilt MATLAB
function was used to find the connected components of the image-matrix. The two
components that were found to occupy the largest number of ‘pixels’ were considered
as piles. The best thresholding value (0.1 in our case) for conversion to a binary ‘im-
age’ was found by visually assesing the results obtained with different thresholding
values. Using different thresholding values, we checked how well the result of our
algorithm (applied to simulation results from different cases and at different times)
agreed with the result we would obtain if we were to manually outline the shapes
of the piles. While acknowledging the qualitative and subjective nature of this ap-
proach, we found it to be robust for a large range of pile-geometries, and its results
largely consistent with what could be obtained with a highly impractical and time-
consuming manual approach. We would also like to point out that it is a non-trivial
task to make a computer ‘see’ complex, internally heterogeneous geometrical struc-
tures, bordering with the challenges of pattern-recognition algorithms in the field of
artificial intelligence.

6.2.3 Models Featuring Primitive Dense Basal Layer

We have illustrated that accumulation of large-scale compositional anomaly from
thin subducted oceanic crust that segregates to the CMB is geodynamically feasi-
ble. To assess whether the supply of newly generated dense material is necessary for
large thermochemical piles to survive for over 3 Gyr, we present simulation-results
of thermochemical convection excluding the production of oceanic crust. We used
model-parameters analogous to case B1 (Br = 0.57, γ = 1.0), but where density
anomaly refers to that of an initially prescribed (primordial) dense basal layer. We
tested two different thicknesses of the primordial layer: 50 and 100 km, corresponding
to ∼ 1.1 and ∼ 2.2% of mantle volume, respectively. Snapshots of the thermochemi-
cal evolution for these two cases are presented in Figures 6.14 (top two rows) and 6.15
(first two columns when the title of the plots is horizontal). For both cases, we ob-
serve blobs (characteristic length-scale of ∼ 10s−100s km) of dense material floating
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in the mid-mantle in regions above the thermochemical piles. These blobs point to
a step-wise destruction of the dense basal layer, with bigger blobs separating from
the layer first, and subsequently getting deformed and mechanically mixed with the
ambient flow.
Not surprisingly, the case with a thicker (100 km thick) primordial layer has larger
structures surviving until the end of the simulation (for 3.5 Gyr). Figure 6.16 shows
the volume fraction of the dense material present in the system (constant with time
for these two cases, with small deviation from the intial value due to numerical dis-
crepancies), and the pile-size evolution, in terms of the fraction of volume occupied
by both piles, for the two cases. The apparent initial increase in the pile-volume
fraction (first ∼ 100− 200 Myr) appears in this plot because of the way we measure
the size of the piles (described in detail in the end of Section 6.2.2). Material that can
potentially be considered as piles excludes the part of the mantle that is immediately
below the downwelling regions. Thus, the initial increase in the pile-volume fraction
in Figure 6.16 reflects the displacement of the dense basal layer from beneath the
downwelling region.
For both cases, approximately half of the layer gets entrained away, with the rate of
entrainment increasing with decreasing amount of material at the CMB (i.e., towards
the end of the simulation). For the case with initial layer-thickness of 100 km, dense
material that constitutes the remaining piles corresponds to ∼ 1% of mantle-volume,
while for the case with initial layer-thickness of 50 km, it is less than 0.5%. These
results suggest that it is also geodynamically feasible that the large-scale composi-
tional anomalies observed at the bottom of the mantle today are entirely made up of
primordial material, since the entrainment by plumes is not efficient enough to ho-
mogenize it completely with the ambient mantle. The required initial volume-fraction
of the primordial material depends on its material parameters, such as density, which
were not explored in the presented study, but that have been observed to play a role
for the rate of entrainment, and thus also for the survival time of the compositional
anomaly.
We have observed that supply of newly generated dense material is necessary to main-
tain a given pile-size for several billions of years. We have also seen that a preexisting
large-scale dense anomaly can survive in the deep mantle for billions of years, condi-
tional on its initial thickness and material properties, but it shrinks at an increasingly
higher rate over time due to entrainment. It is interesting to see the evolution of ther-
mochemical piles when both of these components are at play: continuously generating
dense oceanic crust and a preexisting dense basal layer. We present simulation re-
suts from two cases with such set-up, which are analogous to cases B1 (Br = 0.57,
γ = 1.0) and B3 (Br = 0.57, γ = 0.5), but where density anomaly applies to the
initially prescribed dense basal layer, as well as to the oceanic crust material (i.e.,
the prescribed density anomaly for primordial and OC-materials are the same, for
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simplicity). Initial thickness of the dense basal layer is 50 km for both cases.
Snapshots of the thermochemical evolution for the two cases are presented in Fig-
ures 6.14 (bottom two rows) and 6.15 (last two columns when the title of the plots
is horizontal). The two cases don’t exhibit any observable differences, also in their
evolution of the volume fraction of the dense material present in the system, and
the pile-size, shown in Figure 6.16. Thus, lowering the viscosity in the bottom 500
km of the domain for this set of parameters doesn’t have any significant influence on
the result. Similarly to what was observed for the two cases with primordial layer,
but which didn’t have OC-generation, there are blobs of dense material floating in
the mid-mantle in regions above the thermochemical piles, indicative of the step-wise
destruction of the piles: first a blob with a characteristic length-scale of ∼ 10s−100s
km gets separated from the piles, then it gets continuously deformed by ambient flow,
and eventually homogenizes with the ambient mantle.
The large-scale compositional structures produced in case B1 with a primordial layer
and OC-generation (and which are largely similar to the ones produced in case B3
with a primordial layer and OC-generation) can be compared to the structures evolv-
ing in case B1 where there is no primordial layer (shown in Figures 6.3- 6.4, with
their pile-size evolution shown in Figure 6.6(C)). Evolution of the size of the piles for
the two cases with primordial layer and OC-generation is shown in Figure 6.16. The
piles appear to be increasing in size at a rate that decreases with time, with their size
reaching an approximate steady-state after ∼ 3 Gyr, at volume-fraction of just over
3%. After ∼ 1.3 Gyr piles occupy just over 2% of the total mantle volume, which is
the approximate steady-state pile-size value for case B1 where there is no primordial
layer. Thus, it appears that the piles evolving in cases with a preexisting dense basal
layer tend towards a dynamic steady state with piles that are larger than those in
cases with no preexisting layer. Part of the explanation for this result is that the piles
evolving in cases with a preexisting dense basal layer have a higher concentration of
dense material in their interior, and are thus denser and more difficult to entrain,
compared to piles evolving solely from the segregated crust. This is because in the
latter case, viscous coupling opposes complete separation of oceanic crust from the
ambient material, thus the forming pile consists of the mixture of the two materials.
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Figure 6.14: Snapshots of the thermochemical evolution at three points in time (2,
3, and 3.5 Gyr) for four different cases featuring a primitive dense basal layer (from
top to bottom): B1 (Br = 0.57, γ = 1.0) with initial layer thickness d = 100km and
no OC-generation, B1 with initial layer thickness d = 50km and no OC-generation,
B1 with initial layer thickness d = 50km and with OC-generation, and B3 (Br = 0.57,
γ = 0.50) with initial layer thickness d = 50km and with OC-generation. The gray-
scale reflects the thermal field (bottom colorbar), and the red-blue scale reflects the
concentration of oceanic crust material (top colorbar). Concentrations of OC material
lower than 0.1 are made transparent. The black and white lines are hot (T ∗ = 0.6)
and cold (T ∗ = 0.3) isotherms, respectively (T ∗ is the nondimensional temperature).
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Figure 6.15: Snapshots at 3.5 Gyr for, zoomed in on the thermochemical piles that
develop on the left (top row) and right (bottom row) side of the domain. Results for
four different cases featuring a primitive dense basal layer are shown (from top to
bottom): B1 (Br = 0.57, γ = 1.0) with initial layer thickness d = 100km and no
OC-generation, B1 with initial layer thickness d = 50km and no OC-generation, B1
with initial layer thickness d = 50km and with OC-generation, and B3 (Br = 0.57,
γ = 0.50) with initial layer thickness d = 50km and with OC-generation. The gray-
scale reflects the thermal field (bottom colorbar), and the red-blue scale reflects the
concentration of oceanic crust material (top colorbar). Concentrations of OC material
lower than 0.1 are made transparent. The black and white lines are hot (T ∗ = 0.6)
and cold (T ∗ = 0.3) isotherms, respectively (T ∗ is the nondimensional temperature).
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Figure 6.16: Volume-fraction of OC material present in the system over time and
volume-fraction occupied by thermochemical piles over time for four different cases,
as indicated by the legend.

6.3 Discussion

For a range of parameters tested in this study, a large-scale compositional anomaly
forms at the CMB from the segregated oceanic crust, which is similar in shape and
size to the seismically observed LLSVPs - high topography of over 1000 km with
steep edges (Figures 6.3 - 6.4), and occupying a few % (∼ 2%) of the total 2D-volume
(Figure 6.6(C)).
Once formed, the large scale anomaly survives for several billion years. Formation
and long-term survival of the thermochemical piles occur in our models despite the
low influx-rate of oceanic crust material, which results from a low value of the tec-
tonic plates velocity prescribed at the surface. Low influx of OC material together
with excessively strong upwelling flow (due to absence of internal heating) consti-
tute unfavorable conditions for the formation of the piles. On the other hand, the
prescribed stable locations of the downwelling regions, where the dense OC mate-
rial gets transported into the mantle depth, facilitates the formation and survival of
thermochemical piles. Strong thermally induced viscosity variations present in our
models also favor segregation of OC material to the CMB, and subsequent formation
of thermochemical piles with highly heterogeneous internal structure.
In our simulations, neutrally buoyant thermochemical piles - those in which the ther-
mally induced negative density anomaly is balanced by the presence of a fraction
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of compositionally anomalous high density material - best resemble the geometry of
LLSVPs. Interestingly, such neutrally buoyant piles tend to emerge and survive for
a long time (several Gyr) in simulations that span a large range of parameters. In
cases with moderate values of Br = 0.57 and 0.71, the neutrally buoyant piles contain
∼ 80% of dense OC material, which scales to a net compositionally induced density
anomaly associated with the piles of ∼ 80 and 100 kg/m3, respectively. For high
values of Br = 0.85, 0.99 and 1.1, a dense layer (concentration of OC ∼ 100%) forms
at the base of the mantle, and a neutrally buoyant pile develops on top of it (con-
centration of OC ∼ 30%). This scales to a compositionally induced density anomaly
associated with the dense layer of ∼ 150, 175 and 200 kg/m3, respectively, and that
associated with the overlying neutrally buoyant piles of ∼ 45, 52 and 60 kg/m3, re-
spectively. The dense basal layer and the neutrally buoyant pile on top of it are
clearly separated by a jump in the concentration of the compositionally anomalous
material (Figures 6.12 and 6.13). In cases with both moderate and high Br-values,
the shapes of the neutrally buoyant piles vary through time between ridge-like and
dome-like.
The observed spatial distribution of the OC material within the large-scale anomalies
can be grouped into two categories: (i) large topography piles with sharp edges, which
are highly mobile both laterally and vertically, have a homogeneous distribution of
dense material in their interior, and have plumes rising from their surface and edges,
occasionally entraining large bulks of the pile-material; (ii) high density basal layer
covering nearly the entire CMB, overlain by high topography piles with a much lower
fraction of OC material, and plumes rising from their interior and edges, entraining
thin filaments of pile material. Scenario (i) is typical for the cases with moderate
buoyancy ratio (Br < 0.8), while scenario (ii) is typical for high buoyancy ratios
(Br > 0.8). The role of reduced viscosity in the bottom 500 km is to decrease the
concentration of the OC material in the pile, resulting in a more diluted - and thus
more positively buoyant - mixture (Figures 6.3 - 6.4, and 6.12 - 6.13).
Concentration and spatial distribution of dense material within the piles is strongly
influenced by the motion in the piles interior. It can be induced by small-scale con-
vective heat transport, due to heat flowing from the CMB, given that the piles Ra
number is above critical (e.g. that the pile is sufficiently thick). Motion within the
pile can also result from plumes rising in its vicinity - due to viscous coupling of
the two. Lowering viscosity in the lowermost mantle is expected to increase the in-
ternal motion of the pile - both due to the resulting increase in the piles local Ra
number, and due to higher velocity of the material rising in plumes in the vicinity
of the piles. The effect of the latter can be somewhat compensated by the decrease
in viscous drag, as drag itself is also proportional to viscosity. Looking at the results
presented in Figures 6.3 - 6.4, we observe that for a given intrinsic density anomaly
of OC-material, lowering the viscosity in the bottom 500 km of the mantle results in
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lower concentration of the dense material within the piles, consistent with the above
discussion.
Motion within the pile also affects the spatial distribution of dense and ambient
materials in its interior, with more vigorous motion resulting in more homogeneous
distribution. Distribution of the pile-materials towards a homogenized well-stirred
mixture is opposed by the effect of buoyancy, that arises due to the intrinsic density
difference between the materials. Buoyancy acts to create a higher concentration of
dense material closer to the CMB, and a lower concentration closer to the surface
of the pile. Increasing the buoyancy ratio is thus expected to result in more (ver-
tically) heterogeneous compositional structure. This is, indeed, what is observed in
Figures 6.3 - 6.4: for a given viscosity structure, increasing the density anomaly of
the OC-material leads to a more vertically stratified distribution of dense material in
the pile.
Analysis of spatial distribution of dense material within the thermochemical piles, to-
gether with the point in time when this material was converted from ambient to OC
material, reveals that a thermochemical pile is constituted by the representatives of
OC material of different ages. This further implies that when a mantle plume entrains
pile-material, i.e. the previously subducted OC material, and brings it back to the
Earths surface - the geochemical signature of this compositionally anomalous material
may vary from plume to plume, or even within the same plume. The property of a
thermochemical pile to contain oceanic crust material that was formed at different
points of Earths history, and possibly at different locations on the surface, provides a
plausible explanation for how one large scale reservoir of anomalous material (e.g. an
LLSVP) can provide a wide range of isotopic signals in mafic deposits at the surface.
To gain some physical intuition into the processes responsible for the observed be-
havior and evolution of thermochemical piles, it is helpful to think of the piles and
the rest of the mantle as two separate systems. A pile represents a reservoir linked
to the rest of the mantle through exchange of heat and material. Heat enters the
pile by diffusion from the hot CMB. Heat escapes the pile through diffusion across
the interface between the pile and the ambient material, as well as through (i) influx
of the newly arrived cold dense material, (ii) influx of the cold ambient material by
entrainment (due to the motion within the pile), and (iii) departure of the hot pile-
material that gets entrained into hot rising plumes. Processes (i)-(iii) also describe
the material exchange between the pile and the ambient mantle.
It is reasonable to assume that the rate at which dense OC material enters the pile
(process (i)) is more or less constant throughout the simulation-time. This is because
this process is governed by the rate of subduction, which brings the dense material to
CMB, and which is controlled by the prescribed surface velocities. The rate at which
ambient material enters the pile (process (ii)) is determined by the interior motion of
the pile and viscosity in the vicinity of the interface between the pile and the ambient
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material.
Formation of a dense basal layer takes place when process (i) - influx of the newly
arrived dense material - completely dominates over processes (ii) and (iii) - influx of
ambient mantle material into pile (or layer), and entrainment of pile-material into
plumes. As the basal layer continues to grow - the temperature at its surface sinks,
as it rises further away from the CMB. Lower temperature leads to higher viscosity at
the surface of the layer - and thus stronger drag imposed on the layer by the thermal
plumes rising off its surface. Increasingly strong viscous drag destabilizes the dense
material at the surface of the layer. Plumes may not always manage to carry a thin
filament of dense material all the way up to the surface, and the initially entrained
filament collapses back onto the surface of the layer. The filament does not collapse
alone, however, but with a fraction of ambient mantle material viscously coupled to
it. Repeated action of this process of entrainment and collapse is responsible for the
formation of a secondary thermochemical pile on top of the dense basal layer. Due to
the elevated viscosity within this low OC-concentration secondary pile (compared to
the low-viscosity and high temperature layer closer to the CMB), as well as the small
thickness of the destabilized filaments (due to high buoyancy ratio - viscous drag is
only capable of destabilizing very small volumes of dense material), the dense mate-
rial within the secondary pile is prevented from segregating back to rejoin the dense
basal layer. The observed stability of the neutrally buoyant low OC-concentration
pile on top of the dense basal layer points to the balance in the rate at which new
dense filaments are formed and start contributing to the pile, and the rate at which
plumes manage to carry the pile-material away - all the way up to the surface.
Our modeling results suggest that the domains in the diagram from Le Bars et al.
(2004, Figure 2), which classifies different patterns observed in thermochemical con-
vection at different buoyancy and viscosity ratios (albeit in their case - both due to
intrinsic material properties), are not model-specific. Rather, several domains can be
present within one system: a thin dense basal layer where conduction is the dominant
heat-transport mechanism, underlying a flat layer that is internally convecting, which
is overlain by a high topography layer with yet lower concentration of dense material,
and - the cherry on top - the neutrally buoyant oscillating dome topping off the large
scale compositional anomaly. Compositionally dense material that fails to become a
part of the aforementioned structures gets stirred and thinned by ambient flow, and
eventually becomes dynamically indistinguishable from the ambient mantle. If the
intrinsic density of compositionally anomalous material (OC in our case) is too low
to form any of the dense basal layers - only the neutrally buoyant high topography
pile is observed. For yet lower values of intrinsic density - no material manages to
segregate, and the two materials mix and eventually form a homogeneous mixture.
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6.4 Model Limitations

6.4.1 Boussinesq Approximation

Assuming incompressibilily of the mantle across its depth is not a fully justified ap-
proximation for mantle-like thickness and material-properties (e.g. Schubert et al.,
2001). While some purely thermal mantle convection studies have shown that com-
pressibility may not play a crucial role in determining its convective pattern (Bercovici
et al., 1992), other geodynamic studies demonstrated that including compressibil-
ity into mantle convection models, which introduces viscous heating and depth-
dependence of material properties such as density, expansivity, diffusivity and heat
capacity, tends to reduce the convective vigor of the system (Tackley , 1996). Of most
relevance to our study are the effects that compressibility introduces in thermochem-
ical convection, which are absent from our model. In particular, Hansen and Yuen
(2000) have shown that the depth-dependence of thermal expansivity, i.e. its decrease
with depth, facilitates the preservation of a compositionally dense basal heterogene-
ity. Additional effects of compressibility come from the notion that different materials
(e.g. subducted MORB and ambient mantle) may have different bulk moduli, and
consequently different adiabatic density profiles. This leads to depth-dependence of
density contrast between these materials, and gives rise to thermochemical structures
that can only be observed in compressible convection models, such as oscillating and
stagnating plumes (Samuel and Bercovici , 2006) and metastable superplumes (Tan
and Gurnis , 2005, 2007).

6.4.2 Cylindrical Geometry

Different ways of constructing two-dimensional models that can reflect physical pro-
cesses occurring in a more Earth-like three-dimensional sphere have been proposed
(e.g. van Keken, 2001; Hernlund and Tackley , 2008). The quantities often considered
are heat flux, usually in terms of the Nusselt number (Nu), the characteristic flow
velocity, usually in terms of the root-mean-square or surface velocity, and the char-
acteristic length-scales of thermal structures, such as distance between neighboring
upwellings or downwellings. For a two-dimensional hollow-cylinder geometry (such as
in our model), geometrical parameters that need to be prescribed are inner (Ri) and
outer (Ro) radii. Scaling Ri and Ro directly to the radii of the outer core (≈ 3486
km) and the surface of the Earth (≈ 6371 km), respectively, gives Ri = 1.2083 and
Ro = 2.2083, where the nondimensional depth of the mantle is chosen to be 1. van
Keken (2001) have shown that this choice of geometry results in an overestimation
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of heat flux and flow velocity, and that a scaling with Ri = 0.4292 and Ro = 1.4292
produces results that more closely resemble thermal convection in a sphere. The fact
that increasing the curvature of the cylinder (decreasing the ratio of inner to outer
radii) leads to a decrease in heat flux has been previously demonstrated in a sys-
tematic numerical study of Jarvis (1993). An analogous effect of curvature on heat
transport properties has also been demonstrated in models of mantle convection in
three-dimensional spherical geometry (Hosein Shahnas et al., 2008; Deschamps et al.,
2010). However, Hernlund and Tackley (2008) have pointed out that using such
small inner radius for cylindrical geometry as proposed by van Keken (2001) leads
to an artificial ‘crowding’ of thermal and compositional structures at the base of the
mantle. Further, as was pointed out by Hosein Shahnas et al. (2008), mechanical
boundary conditions (e.g. free slip or prescribed velocities) may also play a role in
the resulting heat flux of a model. Similar observation was made in van Keken and
Ballentine (1999), namely that one cannot independently adjust model-parameters
such as plate-velocities and heat-flow.
With these limitations in mind, we choose to set the nondimensional inner and outer
radii of our cylindrical domain equal to 1 and 2, respectively. It is an intermedi-
ate scaling compared to the ones studied in van Keken (2001). With this choice
of model-parameters, including the geometrical parameters, the previously described
mechanical boundary conditions (Section 6.1), and the viscosity model (Chapter 5),
we observed that Nu (here measured as the non-dimensional conductive surface heat
flux) in our models never exceeded the value of 16. This value is on the lower end of the
range suggested for the surface of the Earth (Nu between 14 and 23, as summarised
in van Keken and Ballentine (1999)). Just to get an idea of how the non-dimensional
heat flow values obtained in our models relate to Earth, we dimensionalised the values
of circumference-averaged conductive radial heat flux, measured at top and bottom
boundaries of our models, and integrated these over the spherical surface-area of the
Earth and CMB, respectively. Thus, in dimensional terms, the range of present-day
surface heat flow values obtained in our models is 18 − 25 TW, which is somewhat
smaller than the estimated mantle heat flow of 32 TW (Jaupart et al., 2007). For
further comparison, the present-day surface heat flow obtained in the ‘best fit’ ther-
mochemical convection model of Nakagawa and Tackley (2014), who used a spherical
annulus geometry as described in Hernlund and Tackley (2008), is about 30 TW. The
range of the present-day CMB heat flow values obtained in our models is 7− 13 TW,
which is larger than the theoretical estimates of ∼ 2.1−3.4 TW in Buffett (2002), but
within the range of the more recent estimates of ∼ 5− 15 TW, as summarised in Lay
et al. (2008). Conversely, the most successful thermochemical convection model of
Nakagawa and Tackley (2005), who used a scaled cylindrical geometry as described
in van Keken (2001), predicts a present-day CMB heat flow of 8.5 TW. The low
surface heat flow values obtained in our models are likely due to our chosen value
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for the prescribed surface velocity, which is lower than the typical tectonic velocities.
The high CMB heat flow in our models is partially due to the choice of geometry,
which overestimates the ‘surface’ of the hot CMB, and partially due to the absence
of internal heating.

6.4.3 Prescribed Surface Velocity

The constant in time prescribed surface velocity in our models is an oversimplification
of plate tectonics at the Earth’s surface, where plate boundaries migrate, new plate
boundaries get created, and old boundaries stop being active, or get extinguished
altogether. Rearrangement of plate boundaries with time leads to an unsteady man-
tle convection pattern, which, in turn, can lead to more chaotic mantle flow and
more efficient stirring of chemical heterogeneities (Gurnis and Davies , 1986a; Kellogg
and Turcotte, 1990; Christensen, 1989). Thus, our chosen constant in time surface
boundary conditions facilitate the segregation and preservation of dense material at
the base.

6.4.4 Internal Heating

For simplicity, we don’t include internal heating into our models. One of the conse-
quences of excluding the internal heating mode are excessively hot and buoyant ther-
mal plumes, compared to what is expected in a more Earth-like convection. While
excess buoyancy contributes to faster ascent of the plume, and thus promotes entrain-
ment and destruction of the compositionally dense anomaly, the hotter temperature
of the plume also makes it less viscous, and thus lowers its ability to entrain the dense
material. The net effect of excessively hot plumes on entrainment is thus difficult to
assess.
Further, radioactive elements are distributed heterogeneously throughout the Earth’s
mantle, giving rise to thermal variations that cannot be captured by our model. In
particular, because radioactive elements preferentially enter the basaltic component
upon mantle-melting at the surface, the oceanic crust has a higher concentration of
these heat-producing elements compared to ambient mantle. Thus, a large scale com-
positional anomaly made up by segregated oceanic crust, as featured in our models,
experiences more internal heating than the ambient mantle. The resulting excess
heat of the piles would make them less gravitationally stable, compared to the ones
produced in our models.
Further, lack of internally generated heat may lead to an excessively cool man-
tle. However, this effect may be somewhat compensated by our choice of the two-
dimensional cylindrical geometry, with the hot inner boundary that is relatively large
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compared to the cool outer boundary. On similar effects of model-geometry on the
heating mode in convection simulations, see O’Farrell and Lowman (2010).

6.4.5 Stress Exponent

When the diffusion creep is the dominant deformation mechanism, the material be-
haves like a Newtonian fluid, and the dependence of strain rate on stress is linear,
i.e. n = 1. When the fluid deforms predominantly by dislocation (or power-law)
creep, this dependence is normally approximated to be given by n = 3 (e.g. Karato,
2008). Which values of n are appropriate in different regions of the mantle is not well
constrained. Laboratory studies (e.g. Karato et al., 1995; Karato and Wu, 1993) and
inferences of mantle anisotropy structure from seismological studies (Becker , 2006;
Karato, 1998) favor the dominance of dislocation creep in the shallow upper mantle,
and possibly inside the D” layer, and dominance of diffusion creep in the lower man-
tle.
The effect of different mantle rheology models, linear or non-linear, on the mantle flow
has been studied in Christensen (1983, 1984). The general effect of non-linear rheol-
ogy has been found to reduce the viscosity variations associated with pressure- and
temperature-dependence, compared to the linear rheology case. In the same study
it has been demonstrated that the non-linear rheology can be closely imitated by a
Newtonian flow with a reduced value of activation enthalpy, by a factor of 0.3− 0.5.
The main difference between a power-law flow imitated by a Newtonian flow with a
reduced enthalpy, and an actual power-law, is the tendency of the latter to concen-
trate the deformation into certain regions. This effect is important for incorporat-
ing self-consistent plate-tectonics into mantle convection models, which may require
weakening of the lithosphere in the subduction zones due to stress concentrations.
However, our current model does not include this feature.

6.5 Conclusions and Outlook

We conclude from our numerical study that for a plausible range of values of density
anomaly of OC material in the lower mantle - it is likely that it segregates to the
CMB, gets mechanically mixed with the ambient material, and forms neutrally buoy-
ant large scale compositional anomalies similar in shape to the LLSVPs. Magnitude
of the compositionally induced density anomaly associated with the neutrally buoy-
ant parts of these structures ranges from 45− 100 kg/m3, depending on the intrinsic
density anomaly of OC material in the lower mantle, and distribution of OC material



6.5. CONCLUSIONS AND OUTLOOK 125

within the piles. Segregation and accumulation of subducted oceanic crust readily
takes place in our models, despite some properties of the models that are unfavorable
to these processes: such as absence of internal heating, and low prescribed surface
velocities.
Once segregated, the dense material undergoes mechanical stirring that acts to create
a large-scale compositional anomaly with a heterogeneous internal structure - both
in terms of concentration of dense material and temperature.
In cases with moderate buoyancy ratios, the neutrally buoyant piles develop directly
on top of the CMB. Their interior doesn’t exhibit any significant radial trends in OC-
concentration or temperature, but there exist, however, transient thermal and com-
positional heterogeneities. Further, in cases with moderate buoyancy ratios, neutrally
buoyant thermochemical plumes are observed, which are efficient at transporting high
density material upwards from the CMB, and thus at destroying the compositional
anomaly. Such events are relatively rare, and require a preliminary action of mechan-
ical stirring at the bottom of the mantle - to form a diluted mixture of ambient and
dense materials that constitutes the thermochemical plume.
In cases with high buoyancy ratios, the neutrally buoyant piles develop on top of a
high density (i.e. high OC-concentration) layer, which forms prior to pile-formation,
and covers large fraction of the CMB. Plumes that develop in these cases are signif-
icantly colder than the ones developing in moderate buoyancy ratio cases, and only
manage to entrain thin filaments of high density material as they rise.
In all of the studied cases we commonly observe plumes that consist of materials
which, at least 500 Myr prior to being incorporated into the plume, were occupying
two opposite sides of the domain: the surface and the bottom of the mantle. Strik-
ingly, the axis of symmetry of some of these plumes clearly separates the materials
that were initially at different depths. These results infer that plumes carrying ma-
terials with different geochemical signatures, and which remain unmixed throughout
the plumes ascent through the mantle, are a common feature in thermochemical man-
tle convection.
As a possible outlook, these results, in addition to illuminating some of the complex-
ity of deep Earth dynamics, can predict possible structures that may develop in the
interior of the large scale heterogeneities, such as the LLSVPs. These predictions
can then be tested against the results of seismological studies, and thus serve as an
additional constraint on models of the deep mantle. Further building on these re-
sults, it would be interesting to look at the effect that various possible structures of
LLSVPs have on the thermochemical plumes that rise in their vicinity: e.g. thermal
anomaly associated with the plumes, amount of OC material that they bring up to
the surface, and evolution of these plume-characteristics through time. Such quan-
tities predicted from numerical models can be tested against surface-observations of
basaltic volcanism that are thought to be manifestations of deep mantle plumes.
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