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ON THE CONVERGENCE OF
CONTINUOUS NEWTON METHOD

AVIV GIBALI, DAVID SHOIKHET, AND NIKOLAI TARKHANOV

Abstract. In this paper we study the convergence of continuous
Newton method for solving nonlinear equations with holomorphic
mappings in complex Banach spaces. Our contribution is based on
a recent progress in the geometric theory of spirallike functions.
We prove convergence theorems and illustrate them by numerical
simulations.
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1. Introduction

Consider the classical problem of finding an approximate solution to
a nonlinear equation

f(z) = 0

in a domain D in the complex plane C, where f : D → C is a holomor-
phic function in D. To this end one uses diverse modifications of the
recurrence formula

zn+1 = zn − λn
f(zn)

f ′(zn)
(1.1)

for n = 0, 1, . . ., where z0 is an initial approximation in D and λn > 0.
For a suitably chosen sequence {λn}, formula (1.1) is often called the

2010 Mathematics Subject Classification. Primary 49M15; Secondary 58C15.
Key words and phrases. Newton method, spirallike function.

1



2 A. GIBALI, D. SHOIKHET, AND N. TARKHANOV

damped Newton method while for λn ≡ 1 it is called the classical
Newton method, see [KA64].

We focus on the classical Newton method. The convergence of (1.1)
is widely explored and depends on the specific choice of the initial point
z0 ∈ D.

The recurrence formula (1.1) displays immediately the initial bound-
ary value problem ⎧⎨

⎩
ż = − f(z)

f ′(z)
, if t > 0,

z(0) = z0,
(1.2)

for a curve z = z(t) in D starting at z0 and leading to a solution a ∈ D
of f(z) = 0. In fact, if λ �= 0, then for f(a) to vanish it is necessary
and sufficient that

−λ
f(a)

f ′(a)
= 0,

which is equivalent to

a− λ
f(a)

f ′(a)
= a.

The standard successive approximations for solving this equation look
like

zn+1 = zn − λ
f(zn)

f ′(zn)
for n = 0, 1, . . .. On writing zn = z(n) and passing to a continuous
parameter t ∈ [0,∞) we get

z(t+Δt)− z(t)

Δt
= − f(z(t))

f ′(z(t))

with Δt = λ. Taking the limit as Δt → 0 yields (1.2), as desired.
The continuous version of the Newton method defined by (1.2) was

earlier studied in [Gav58, KA64, Air99].
It is worth pointing out that the vector field on the right-hand side

of (1.2) just amounts to (minus) the logarithmic derivative of f . The
first integral of (1.2) is

f(z(t)) = f(z0)e
−t

for t ≥ 0, as is easy to check. Hence it follows that f(z(t)) → 0,
when t → ∞. Notice that f(z(t)) describes the discrepancy of the
approximate solution z(t), provided that z(t) converges to a ∈ D as
t → ∞.

Summarising we conclude that the study of the continuous version
of the Newton method consists of two main steps. The first of the two
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is to describe those initial data z0 ∈ D for which the initial boundary
value problem (1.2) has a solution z(t) defined for all t ≥ 0. It is a
general observation that the solution is unique whenever it exists. And
the second step consists in studying the asymptotic behaviour of the
global solution z(t), as t → ∞. This is precisely what the present paper
is aimed at.

2. Spirallike mappings

Throughout this paper by D is meant a domain in a complex Banach
space X endowed with a norm ‖ · ‖. We denote by Hol(D,X) the
space of all holomorphic (i.e., Fréchet differentiable) mappings on D
with values in X. For f ∈ Hol(D,X) we denote by f ′(x) the Fréchet
derivative of f at a point x ∈ X. By definition, this is a bounded linear
operator in X.

As usual, X∗ stands for the dual space of X. By the Hahn-Banach
theorem, for each x ∈ X there is a functional lx ∈ X∗ with the property
that lx(x) = ‖lx‖ ‖x‖. On normalising lx one obtains a functional
whose norm is ‖x‖. Write x∗ for any functional l ∈ X∗ satisfying
	l(x) = ‖x‖2 = ‖l‖2, and ∗x for the set of all functionals l with this
property (cf. the Hodge star operator). Such a functional x∗ is in
general not unique. However, if X is a Hilbert space, then the element
x∗ is unique and it can be identified with x, which is due to the Riesz
representation theorem.

A mapping f ∈ Hol(D,X) is said to be locally biholomorphic if for
each x ∈ D there are neighborhoods U ⊂ D of x and V of f(x), such
that f |U is a bijective mapping of U onto V and its inverse is holo-
morphic. It is well known that f ∈ Hol(D,X) is locally biholomorphic
on D if and only if, for each x ∈ D, the Fréchet derivative f ′(x) is a
bijective mapping of X. By the inverse mapping theorem of Banach,
the bijectivity of f ′(x) implies readily the boundedness of its inverse.
For a finite dimensional space X, a mapping f ∈ Hol(D,X) is locally
biholomorphic if and only if it is locally one-to-one. However, this
fact no longer holds for general infinite dimensional spaces X (see for
instance [HS81]).

A bounded linear operator A in X is called strongly accretive if
there is a constant k > 0 with the property that 	 〈Ax, x∗〉 ≥ k ‖x‖2
for all x ∈ X and x∗ ∈ ∗x. The following assertion characterises those
bounded linear operators in X which have spectrum in the open right
half-plane 	λ > 0.

Lemma 2.1. Suppose A : X → X is a bounded linear operator. The
following are equivalent:
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1) The spectrum of the operator A lies in the open right half-plane
	λ > 0.
2) The linear semigroup exp(−tA) converges to 0 in the operator

norm, as t → ∞.
3) There is an equivalent norm on X, such that A is strongly accre-

tive with respect to the corresponding sesquilinear form.

Proof. The equivalence of 1) and 2) is actually a consequence of the
spectral mapping theorem. However, we will need some addition de-
tails.

Denote by χ(A) the lower exponential index of A, that is

0 < χ(A) := inf
λ∈spA

	λ = lim
t→∞

log ‖ exp(−tA)‖
−t

, (2.1)

where spA stands for the spectrum of A (see [DK70]). Then for any
λ ∈ (0, χ(A)) there is C > 0 such that

‖ exp(−tA)‖ ≤ C exp(−λ‖A‖)
for all t ≥ 0. On setting

‖x‖1 := sup
t≥0

‖ exp (−t(A− λI)) x‖

we conclude that ‖x‖ ≤ ‖x‖1 ≤ C ‖x‖ for all x ∈ X, which is due to
(2.1), and

‖ exp(−tA)x‖1 ≤ exp(−λ‖A‖) ‖x‖1 (2.2)

for t ≥ 0. Hence it follows that

	 〈Ax, x∗〉1 ≥ λ ‖x‖21
for all x ∈ X. Using the Hille-Yosida exponential formula (see [Yos80])
one proves that the last estimate implies (2.2) (and so 2)), which com-
pletes the proof. �

Definition 2.2. Let A be a bounded linear operator in X with spec-
trum in the open right half-plane and D a convex domain in X con-
taining the origin. A mapping f ∈ Hol(D,X) is called A -spirallike
with respect to the origin if exp(−tA)f(x) ∈ f(D) for all x ∈ D and
t ≥ 0.

For A = λI with 	λ > 0 we say for short that f is λ -spirallike. If
A = I in the above definition, then f is called starlike with respect to
the origin.
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3. General results for Banach spaces

Suppose f ∈ Hol(D,X) is a locally biholomorphic mapping of D,
such that the origin belongs to the closure of f(D). When looking
for an approximate solution of the nonlinear equation f(x) = 0 in D,
one can exploit similarly to (1.2) a continuous analogue of the classical
Newton method{

ẋ+ (f ′(x))−1f(x) = 0, if t > 0,
x(0) = x0,

(3.1)

where x0 ∈ D is an initial approximation. We slightly generalise it by
considering {

ẋ+ (f ′(x))−1Af(x) = 0, if t > 0,
x(0) = x0,

(3.2)

where A is a bounded linear operator in X.

Definition 3.1. The method (3.2) is called well defined on D if for any
data x0 ∈ D the initial value problem has a unique solution x = x(t),
such that x(t) ∈ D for all t > 0 and the discrepancy f(x(t)) tends to
zero as t → ∞.

The following theorem gives a criterion for the continuous version of
the Newton method to be well defined.

Theorem 3.2. Suppose that f is a biholomorphic mapping on a do-
main D ⊂ X and A satisfies one of the equivalent conditions of Lemma
2.1. Then method (3.2) is well defined if and only if f is A -spirallike
in X.

Proof. Let the method defined by (3.2) is well defined. Given any
x0 ∈ D, the initial value problem (3.2) has a unique solution x = x(t)
with values in D and f(x(t)) → 0 as t → ∞. Set y(t) = f(x(t)). From
the differential equation we get

ẏ = f ′(x) ẋ

= −f ′(x) (f ′(x)]−1
Af(x)

= −Ay

for all t > 0. On the other hand, under our assumptions on A, the
initial value problem{

ẏ + Ay = 0, if t > 0,
y(0) = y0
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has a unique solution y(t) = exp(−tA)y0 for each y0 ∈ f(D). Hence
it follows that exp(−tΓ)y0 = f(x(t)) ∈ f(D) for all t > 0. So, f is
A -spirallike.

Conversely, if f is A -spirallike, then, for each x0 ∈ D, the trajectory
x(t) = f−1(exp(−tA)f(x0)) with t ≥ 0 is well defined and does not go
beyond the domainD. A direct calculation shows that x = x(t) satisfies
the initial value problem (3.2). Moreover, f(x(t)) = exp(−tA)f(x0)
tends to zero uniformly with respect to x0 on each ball inside D, as
desired. �

One can show that, if f is a locally biholomorphic mapping vanishing
at a point a ∈ D and A a linear operator in X satisfying one of the
equivalent conditions of Lemma 2.1, then f is actually biholomorphic
provided the method given by (3.2) is well defined. In particular, f is
A -spirallike.

4. A Nevanlinna type condition

Denote by D = D the unit disk around the origin in C. In the one-
dimensional case X = C a criterion for a mapping f ∈ Hol(D,C) to be
starlike with respect to the origin is given by the familiar Nevanlinna
condition

	
(
z
f ′(z)
f(z)

)
> 0

for all z ∈ D. However, verifying such a condition might be hard
because of its computational complexity. The following sufficient con-
dition simplifies the use of Theorem 3.2.

Theorem 4.1. Let f be a holomorphic function in D vanishing at the
origin and satisfying

f ′(z) �= 0,

	f(z)f ′′(z)
(f ′(z))2

< 1
(4.1)

for all z ∈ D. Then f is starlike on D.

Proof. It suffices to show that (4.1) implies the Nevanlinna condition,
i.e.,

	g(z) > 0

for all z ∈ D, where

g(z) :=
1

z

f(z)

f ′(z)
.
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To do this we consider the function zg(z) and note that condition (4.1)
is equivalent to

	 (zg)′ (z) > 0

for all z ∈ D, for

(zg)′ (z) =
(f ′(z))2 − f(z)f ′′(z)

(f ′(z))2

and our claim is obvious.
Thus, we have to show that 	 (g(z) + zg′(z)) > 0 implies 	g(z) > 0.

Setting z = reıϕ with r ∈ [0, 1) and ϕ ∈ [0, 2π), we get

zg′(z) = r
∂

∂r
g

and so

	 (g(z) + zg′(z)) = 	g(reıϕ) + 	
(
r
∂

∂r
g
)
> 0. (4.2)

We first show that from (4.2) it follows that 	g(z) ≥ 0 for all z ∈ D.
Suppose, contrary to our claim, that there is z0 = r0e

ıϕ0 in D, such that
	g(z0) < 0. From (4.2) we get 	g(0) > 0. Hence, there is r1 ∈ (0, r0)
such that

	g(r1eıϕ0) = 0,
	g(r0eıϕ0) < 0,

and so one can find r2 ∈ (r1, r0) with the property that 	g(r2eıϕ0) < 0
and

	
( ∂

∂r
g
)
(r2e

ıϕ0) < 0

which contradicts (4.2). We thus conclude that 	g(z) ≥ 0 everywhere
in D.

If we assume that 	g(z0) = 0 for some z0 ∈ D, then it follows by
the maximum principle for holomorphic functions that g(z) = ıc for all
z ∈ D, where c is a real constant. Hence, 	 (g(z) + zg′(z)) = 0, which
is impossible. �
Example 4.2. Let f be a holomorphic function in D determined by
the equation

f(z) = −f ′(z) (z + 2 log(1− z)) .

In this case we have

	
(
z
f ′(z)
f(z)

)
= −	 z

z + 2 log(1− z)

and it is not clear how to see if the Nevanlinna condition holds. On
the other hand, since

	f(z)f ′′(z)
(f ′(z))2

= 	
(
1−

( f(z)

f ′(z)

)′)
,
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one easily verifies that

	f(z)f ′′(z)
(f ′(z))2

= 	
(
1− 1 + z

1− z

)
< 1,

and so the continuous Newton method is well defined.

5. A canonical reduction

To clarify the remark after Theorem 3.2 we first consider a more
general version of the continuous Newton method. Namely, let g be a
holomorphic mapping ofD toX (not necessarily locally biholomorphic)
and let h ∈ Hol(D,X) have invertible total derivative h′(x) at each
point x ∈ D.

We study the behaviour of the solution x = x(t) (if there is any) to
the initial value problem{

ẋ+ (h′(x))−1Ag(x) = 0, if t > 0,
x(0) = x0

(5.1)

for large t, where x0 ∈ D is an initial approximation. If g is locally
biholomorphic, one can choose h = g =: f , thus recovering the contin-
uous Newton method of (3.2). In a sense the converse assertion holds
also true.

Theorem 5.1. Let g and h be holomorphic mappings on D and h′(x)
be invertible at each point x ∈ D. Suppose (5.1 is well defined on D,
with g(a) = 0 and A = h′(a) (g′(a))−1 for some a ∈ D. Then there is
a biholomorphic mapping f on D, such that the method (3.1) is well
defined on D and the solutions of (5.1) and (3.1) are the same and
converge to a as t → ∞.

Proof. Given any x0 ∈ D, let x = x(t, x0) be the solution of (5.1). We
define the mapping f by

f(x0) = lim
t→∞

et (x(t, x0)− a) . (5.2)

First we show that this limit exists for each x0 ∈ D. For simplicity
we set a = 0. Consider the mapping Q ∈ Hol(D,X) given by the
formula Q(x) := (h′(x))−1Ag(x). Since Q(0) = 0 and Q′(0) = I, the
Taylor expansion of Q looks like

Q(x) = x+
∞∑

k=k0

Pk(x)

for x in a ball Br ⊂ D of radius r > 0 with centre at the origin, where
k0 ≥ 2 and Pk are homogenous polynomials of degree k on X. By the
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Schwarz lemma,

‖Q(x)− x‖ ≤ M

rk0
‖x‖k0 ,

where M = sup
x∈D

‖Q(x)− x‖ (see for instance [RS05]).

A simple calculation shows that 	 〈Q(x), x∗〉 > 0 for all x �= 0 satis-
fying

‖x‖ < min
{(M

rk0

) 1
k0−1

, r
}
= r1.

This means that the ball Br1 is invariant for the solution x(t, ·) of
(5.1), i.e., ‖x(t, x0)‖ < r1 for all t ≥ 0 and x0 ∈ Br1 . Without loss of
generality we can assume that r1 = 1. Then it follows from Corollary
9.1 of [RS05] that

‖x(t, x0)‖ ≤ e−t ‖x0‖
(1− ‖x0‖)2 ,

and so

‖et (Q(x(t, x0))− x(t, x0)) ‖ ≤ et
M

rk0
‖x(t, x0)‖k0

≤ e(1−k0)t
M

rk0
‖x0‖k0

(1− ‖x0‖)2k0
→ 0

since k0 ≥ 2. Setting now y(t, x0) = et x(t, x0), we get

ẏ(t, x0) = et (x(t, x0)−Q(x(t, x0))) → 0

as t → ∞ for each x0 ∈ B1. Thus the limit (5.2)

lim
t→∞

et x(t, x0) = lim
t→∞

y(t, x0) =: f(x0)

exists for all x0 ∈ B1.
The global convergence for all x0 ∈ D follows now from the fact

that one can find a sufficiently large T > 0 with the property that
x(T, x0) ∈ B1. Therefore, using the semigroup property one concludes
that

lim
t→∞

eT+t x(T + t, x0) = eT lim
t→∞

et x(t, x(T, x0))

= eT f(x(T, x0)).

We have actually proved that

e−sf(x0) = f(x(s, x0)) ∈ D

for any s ≥ 0, which means that f is a starlike mapping. Moreover, on
differentiating the latter equality in s ≥ 0 we see that x(s, x0) satisfies
(3.1), as desired. �
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6. A local continuous Newton method

In this section we study the following problem. Let f ∈ Hol(D,X) be
a locally biholomorphic mapping satisfying f(0) = 0. A general ques-
tion is whether there is a ball Br in D such that the continuous Newton
method is well defined on Br. For example, in the one-dimensional case
a well-known result due to Grunksy says that each univalent function
f on the unit disk D is starlike on Dr with 0 < r ≤ tanh(π/4), see
[Gol66]. However, this is not longer true in higher dimensions, and so
additional conditions are required. In [Suf73, Suf76] is was shown that
a holomorphic mapping on the open unit ball B := {x ∈ X : ‖x‖ < 1}
with f(0) = 0 is starlike if and only if 	 〈(f ′(x))−1f(x), x∗〉 ≥ 0 for all
x∗ ∈ ∗x.

We consider a weaker condition on f , namely

	 〈(f ′(x))−1f(x), x∗〉 ≥ −m ‖x‖2 (6.1)

for all x∗ ∈ ∗x, where m is a nonnegative constant. We show that the
answer to the above question is affirmative.

Other local problems are described as follows. Let λ be a complex
number satisfying 	λ > 0 and arg λ ∈ (0, π/2). Suppose f : B → X
is a locally biholomorphic mapping on B, such that f(0) = 0 and the
generalised continuous Newton method with A = λI is well defined.
We ask whether the continuous Newton method is well defined on a
possibly smaller ball. Conversely, if the continuous Newton method is
well defined, is there a number r ∈ (0, 1) depending on λ, such that
the generalised continuous Newton method is well defined on the ball
Br?
To answer these question, we replace (6.1) by a more general condi-

tion. More precisely,

	 〈eıϕ(f ′(x))−1f(x), x∗〉 ≥ −m ‖x‖2 (6.2)

for all x∗ ∈ ∗x.
Theorem 6.1. Let f be a locally biholomorphic mapping on B satisfy-
ing f(0) = 0. Suppose that condition (6.2) is fulfilled with some m ≥ 0
and −π/2 < ϕ < π/2. Then, for each 0 < r < r0, the continuous
Newton method given by (3.1) is well defined on Br and it converges
to the origin, where r0 = r0(ϕ) ≤ 1 is the unique root of the quadratic
equation

(1− r2)− 2r(1− r cosϕ)(m+ cosϕ) = 0 (6.3)

in (0, 1].
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Proof. Denote g(x) := (f ′(x))−1f(x). By assumption,

	 〈eıϕg(x), x∗〉 ≥ −m ‖x‖2
for all x∗ ∈ ∗x. Write x = zv where z ∈ C and ‖v‖ = ‖v∗‖ = 1.
Consider the function h(z) = 〈g(zv), v∗〉. We get

	 〈eıϕg(zv), (zv)∗〉 = 	 eıϕh(z)z ≥ −m |z|2.
From h(0) = 0 it follows that there is a holomorphic function Q on

the disk D, such that h(z) = zQ(z). Then h′(0) = Q(0) = 1 and, by
the above,

	(eıϕ |z|2Q(z)) ≥ −m |z|2
or 	(eıϕ Q(z)) ≥ −m whenever |z| < 1. On applying an inequality of
[KM07] we calculate

	 (Q(z)−Q(0)) = 	 (
e−ıϕ((eıϕQ)(z)− (eıϕQ)(0))

)
≥ 2r(1−r cosϕ)

1−r2

(
inf
|ζ|<1

	 (eıϕQ)(ζ)−	 (eıϕQ)(0)
)

≥ 2r(1−r cosϕ)

1−r2
(−m− cosϕ)

for all z ∈ Br and r ∈ (0, 1).
Since 	Q(0) = 1 we get

	Q(z) ≥ 1 +
2r(1−r cosϕ)

1−r2
(−m− cosϕ) ,

which can be equivalently rewritten as

F (r, ϕ) := (1− r2)− 2r(1− r cosϕ)(m+ cosϕ) ≥ 0.

By assumption, −π/2 < ϕ < π/2, and so F (0, ϕ) = 1 > 0 and
F (1, ϕ) = −2(1 − cosϕ)(m + cosϕ) ≤ 0. Therefore, the equation
F (r, ϕ) = 0 has a unique solution r0 = r0(ϕ) in the interval (0, 1]. It
follows that F (r, ϕ) ≥ 0 for all r ∈ (0, r0]. So, f is starlike on the ball
Br for each 0 < r ≤ r0, as desired. �

For ϕ = 0 the formulation of Theorem 6.1 is especially simple.

Corollary 6.2. Let f be a locally biholomorphic mapping on B vanish-
ing at the origin. Assume that condition (6.1) holds for some m ≥ 0.
Then, for each 0 < r < 1/(1 + 2m), the continuous Newton method is
well defined on Br and it converges to the origin.

Example 6.3. Let f(z) =
z

1− z − k
, where k ∈ [0, 1). In this case we

have

(f ′(z))−1f(z) =
1

1− k
z(1− z − k).
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Obviously,

	 〈(f ′(z))−1f(z), z〉 ≥ − k

1− k
|z|2

which means that m = k/(1− k) in (6.1). Thus, Theorem 6.1 applies,
showing that the continuous Newton method with given f is well de-
fined on Br provided r < r0 = (1− k)/(1 + k). Moreover, this method
converges to the origin and the estimate

‖x(t)‖
1− ‖x(t)‖2 ≤ e−t ‖x0‖

1− ‖x0‖2
holds for all initial data x0 ∈ Br0 .

A computer simulation shows that for x0 away from the ball Br0 the
trajectory fails to converge to the origin, see Fig. 1.

Fig. 1. The trajectory for two different x0.

Choosingm = 0 in Corollary 6.2 and solving equation (6.3) we obtain
in the same way

Corollary 6.4. Let f : B → X be a locally biholomorphic mapping
on B satisfying f(0) = 0. Suppose that the generalised continuous
Newton method corresponding to A = λI, where | arg λ| < π/2, is well
defined. Then the continuous Newton method is well defined on the ball
Br whenever

r ≤ (
√
2 cos(arg λ− π/4)−1 < 1.

Converse considerations lead us to the following result.

Theorem 6.5. Assume that f : B → X is a locally biholomorphic
mapping on the unit ball, such that f(0) = 0 and the continuous Newton
method is well defined. Then, for each ϕ ∈ (−π/2, π/2) and r satisfying
0 < r ≤ (1 − | sinϕ|)/ cosϕ < 1, the generalised continuous Newton
method with A = λI, where arg λ = ϕ, is well defined on the smaller
ball Br.
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7. An example

In this section we consider an example mentioned in [Sis98]. As
usual, D stands for the open unit disk in the complex plane. Consider
the function

f(z) =
z

1− z
,

then one verifies easily that

g(z) =
f(z)

f ′(z)
= z(1− z).

Since 	g(z)z ≥ 0 for all z ∈ D, the continuous Newton method is well
defined.

In Fig. 2 we present several trajectories of the analytic solution along
with approximation by the continuous Newton method. In addition
in Fig. 3 we present the difference in norm between two successive
iterations.

Fig. 2. Trajectories of the approximate solution (blue)
starting from different x0. In red are the exact solutions.

Fig. 3. Difference in norm between two successive iter-
ations of the continuous Newton method.

If now we choose the same g but with A = e−ı(π/4), we can see in Fig.
4 that the generalised continuous Newton method is not well defined.
For instance, on taking z0 = (1 + ı)/

√
2 we make certain that the

solution is no longer invariant with respect to the whole unit disk. On
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the other hand, in Fig. 5 we observe that the solution is invariant for
a small disc of radius r0 =

√
2− 1.

Fig. 4. The trajectory of the solution by the generalised
continuous Newton method with Ag(z) = e−ı(π/4)z(1−z).

Fig. 5. The solution is invariant only for a small disk of
radius r0 =

√
2− 1.

Acknowledgements The second author gratefully acknowledges
the support of the German Research Society (DFG), grant TA 289/12-
1, and wishes to thank the University of Potsdam for the invitation
and hospitality.



ON THE CONVERGENCE OF CONTINUOUS NEWTON METHOD 15

References

[Air99] Airapetyan, R. G., Continuous Newton method and its modification, Ap-
plicable Analysis 1 (1999), 463–484.

[ARS99] Airapetyan, R. G., Ramm, A. G., and Smirnova, A. B., Continuous
analog of the Gauss-Newton method, Mathematical Models and Methods
in Applied Sciences 9 (1999), 1–13.

[DK70] Daletskii, Yu. L., and Krein, M. G., Stability of Solutions of Differential
Equations in Banach Spaces, Nauka, Moscow, 1970.

[Gav58] Gavurin, M. K., Nonlinear functional equations and continuous ana-
logues of iterative methods, Izv. VUZ, Ser. Mat. 5 (1958), 18–31.

[Gol66] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable,
Nauka, Moscow, 1966.

[HS81] Heath, L. F., and Suffridge, T. J., Holomorphic retracts in complex n -
space, Illinois Journal of Mathematics 25 (1981), 125–135.

[KA64] Kantorovich, L., and Akilov, G., Functional Analysis in Normed Spaces,
Pergamon Press, Oxford, 1964.

[KM07] Kresin, G., and Maz’ya, V. G., Sharp Real-Part Theorems. A Unified
Approach, Lecture Notes in Mathematics, 1903, Springer, Berlin, 2007.

[Lut05] Lutsky, Ya., Continuous Newton method for star-like functions, Elec-
tronic Journal of Differential Equations 12 (2005), 79–85.

[Mil09] Milano, F., Continuous Newton’s method for power flow analysis, IEEE
Transactions on Power Systems 24 (2009), 50–57.

[Neu11] Neuberger, J. W., A Sequence of Problems on Semigroups, Springer,
New York et al., 2011.

[RS05] Reich, S., and Shoikhet, D., Nonlinear Semigroups, Fixed Points, and
Geometry of Domains in Banach Spaces, Imperial College Press, Lon-
don, 2005.

[Sis98] Siskakis, A. G., Semigroups of composition operators on spaces of ana-
lytic functions, A review, Contemporary Mathematics 213 (1998), 229–
252.

[Suf73] Suffridge, T. J., Starlike and convex maps in Banach spaces, Pacific
Journal of Mathematics 46 (1973), 575–589.

[Suf76] Suffridge, T. J., Starlikeness, convexity and other geometric properties of
holomorphic maps in higher dimensions, Lecture Notes in Mathematics
599, Springer-Verlag, New York, 1976, 146–159.

[Yos80] Yosida, K., Functional Analysis, Springer, Berlin et al., 1980.

Department of Mathematics, Ort Braude College, Karmiel 21982,
Israel

E-mail address: avivg@braude.ac.il

Department of Mathematics, Ort Braude College, Karmiel 21982,
Israel

E-mail address: davs@braude.ac.il

Institute of Mathematics, University of Potsdam, Am Neuen Palais
10, 14469 Potsdam, Germany

E-mail address: tarkhanov@math.uni-potsdam.de


	Title
	Imprint

	Abstract
	Contents
	1. Introduction
	2. Spirallike mappings
	3. General results for Banach spaces
	4. A Nevanlinna type condition
	5. A canonical reduction
	6. A local continuous Newton method
	7. An example
	References



