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Abstract

Scientific inquiry requires that we formulate not only what we know, but also what

we do not know and by how much. In climate data analysis, this involves an ac-

curate specification of measured quantities and a consequent analysis that con-

sciously propagates the measurement errors at each step. The dissertation presents

a thorough analytical method to quantify errors of measurement inherent in pale-

oclimate data. An additional focus are the uncertainties in assessing the coupling

between different factors that influence the global mean temperature (GMT).

Paleoclimate studies critically rely on ‘proxy variables’ that record climatic signals

in natural archives. However, such proxy records inherently involve uncertainties

in determining the age of the signal. We present a generic Bayesian approach to

analytically determine the proxy record along with its associated uncertainty, re-

sulting in a time-ordered sequence of correlated probability distributions rather

than a precise time series. We further develop a recurrence based method to detect

dynamical events from the proxy probability distributions. The methods are val-

idated with synthetic examples and demonstrated with real-world proxy records.

The proxy estimation step reveals the interrelations between proxy variability and

uncertainty. The recurrence analysis of the East Asian Summer Monsoon during

the last 9000 years confirms the well-known ‘dry’ events at 8200 and 4400 BP, plus

an additional significantly dry event at 6900 BP.

We also analyze the network of dependencies surrounding GMT. We find an intri-

cate, directed network with multiple links between the different factors at multi-

ple time delays. We further uncover a significant feedback from the GMT to the

El Nińo Southern Oscillation at quasi-biennial timescales. The analysis highlights

the need of a more nuanced formulation of influences between different climatic

factors, as well as the limitations in trying to estimate such dependencies.
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Zusammenfassung

Wissenschaftliche Untersuchungen setzen nicht nur eine Formulierung des ge-

genwärtigen Kenntnisstandes mitsamt ihrer Unsicherheiten voraus, sondern eben-

so eine Eingrenzung des Unbekannten. Bezogen auf die Analyse von Klimadaten

beinhaltet dies eine präzise Spezifikation gemessener Größen sowie eine durch-

gängige Berücksichtigung ihrer Messunsicherheiten in allen Schritten der Analyse.

Diese Dissertation präsentiert eine analytische Methode zur Quantifizierung der

in Paläoklimadaten inhärenten Messunsicherheiten. Ein weiterer Schwerpunkt liegt

auf der Untersuchung von Unsicherheiten in der Kopplungsstruktur zwischen Kli-

mafaktoren die bekanntermaßen die globale Durchschnittstemperatur (GMT glo-

bal mean temperature) beeinflussen.

Die Paläoklimaforschung beruht in kritischem Maße auf der Analyse von Proxyda-

ten welche die Klimaentwicklung dokumentieren. Allerdings sind Proxydaten mit

inhärenten Datierungsunsicherheiten behaftet. Basierend auf einem generischen

Bayes’schen Ansatz wird in dieser Dissertation eine analytische Methode vorge-

stellt um aus den zeitlich unsicheren Proxydaten zeitlich präzise Folgen korre-

lierter Wahrscheinlichkeitsverteilungen zu erhalten. Von diesen Verteilungen wer-

den Proxyzeitreihen zusammen mit ihren Unsicherheiten berechnet. Weiterhin

wird eine rekurrenzbasierte Methode zur Analyse von Proxydaten entwickelt wel-

che anhand dieser Wahrscheinlichkeitsverteilungen plötzliche Änderungen in der

Dynamik des Systems ermittelt. Beide Methoden werden mit Hilfe synthetischer

Beispieldaten validiert und mit realen Proxydaten demonstriert. Diese statistische

Analyse von Proxydaten deckt unteranderem die Beziehungen zwischen der Varia-

bilität der Daten und zugehöriger Unsicherheiten der Proxyzeitreihen auf. Die Re-

kurrenzanalyse des Ostasiatischen Sommermonsuns bestätigt die bekannten Tro-

ckenzeiten der letzten 9.000 Jahre um 8.200 bzw. 4.400 Jahre vor unserer Zeit und

deckt eine zusätzliche Trockenzeit um etwa 6.900 Jahre vor unserer Zeit auf.
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Die Kopplungsstruktur zwischen Klimafaktoren die bekanntermaßen die GMT be-

einflussen lässt sich als ein verworrenes, gerichtetes Netzwerk mit multiplen Links,

welche zu verschiedenen Zeitskalen gehören, darstellen. Speziell ergibt sich ei-

ne signifikante Wechselwirkung zwischen der GMT und dem ENSO-Phänomen

(El Niño-Southern Oscillation) auf einer quasi- zweijährigen Zeitskala. Einerseits

beleuchtet diese Analyse die Notwendigkeit Einflüsse verschiedener Klimafakto-

ren auf die GMT nuancierter zu formulieren, andererseits werden die Grenzen der

Quantifizierung dieser Einflüsse aufgezeigt.

vi



Acknowledgments

I am extremely grateful to my supervisor Prof. Jürgen Kurths for first of all helping

me to start my doctoral studies under his guidance. His invaluable support during

the last three years gave me the courage to constantly form new ideas and pursue

them to their conclusions to the best of my capabilities.

I am also deeply indebted to Norbert Marwan, who was always there as a friend,

guide, and inspiration, helping me out through confused times, showing which

threads are best left alone and which are the ones best picked up. I have to also

thank Jobst Heitzig—without whom nothing would have ever been possible, for I

would have messed up all the math. Jobst has inadvertently taught me lessons in

critical thinking, maths, probabilities, integrals, correlations, courage and honesty

that I will carry for the rest of my life. I also thank Kira Rehfeld, for being a friend

and colleague from the very start to the very end. I also thank Sebastian Breit-

enbach for being the lively person that he is, and the discussions I shared with

him helped me a great deal in understanding paleoclimate. I cannot thank Niklas

Boers and Aljoscha Rheinwalt enough ever, for they became close friends who just

happened to work together. Without these people, I cannot even begin to imagine

what my PhD and dissertation would have been like.

Furthermore, I have Paul Schultz to thank especially for the German version of

the abstract of this dissertation. I am also thankful to my colleagues both past

and present—in particular, Nishant, Jonathan, Reik, Peng, Veronika, Lyuba, Deniz,

Carsten, Nora, Marc, Kevin, Arghya, Sushma, Anoop, and Praveen. I also wish to

thank the Potsdam-Institut für Klimafolgenforschung (PIK) for its vibrant research

environment, for its beautiful campus, and for the numerous opportunities that

came my way during my studies here. And I also thank Heike, Till, Gabi and Anja

for always helping me out at PIK regarding anything even remotely procedural.

vii



I also wish to thank DFG research group HIMPAC (FOR 1380), and the graduate

school IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP, for providing

financial support.

Finally, I want to thank my parents who set me on this path.

In the end, I want to thank Debarchana Baruah, my friend and partner, for being

with me through it all.

viii



List of Publications

This dissertation is partially based on the following publications.

• B. Goswami, J. Heitzig, K. Rehfeld, N. Marwan, A. Anoop, S. Prasad, J. Kurths,

Estimation of sedimentary proxy records together with associated uncer-

tainty, Nonlinear Processes in Geophysics 21 (2014) 1091–1111

doi:10.5194/npg-21-1093-2014

• B. Goswami, N. Marwan, G. Feulner, J. Kurths, How do global temperature

drivers influence each other? A network perspective using recurrences, Eur.

Phys. J. Special Topics 222 (2013) 861–873

doi:10.1140/epjst/e2013-01889-8

• S. F. M. Breitenbach, K. Rehfeld, B. Goswami, J. U. L. Baldini, H. E. Ridley, D.

J. Kennett, K. M. Prufer, V. V. Aquino, Y. Asmerom, V. J. Polyak, H. Cheng, J.

Kurths, N. Marwan, COnstructing Proxy Records from Age models (COPRA),

Clim. Past 8 (2012) 1765–1779

doi:10.5194/cp-8-1765-2012

• B. Goswami, G. Ambika, N. Marwan, J. Kurths, On interrelations of recur-

rences and connectivity trends between stock indices, Physica A 391 (2012)

4364–4376

doi:10.1016/j.physa.2012.04.018

ix





List of Figures

2.1. Proxy construction paradigm. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Visualization of proxy uncertainties. . . . . . . . . . . . . . . . . . . . . 14

2.3. The COPRA representation. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Proxy data and age models for three records from Asia. . . . . . . . . . 18

2.5. Comparison of proxy representations for east Asian δ18O records. . . 20

3.1. Outline of posterior proxy probability derivation. . . . . . . . . . . . . 27

3.2. Depth-spanning weight functions (DWFs). . . . . . . . . . . . . . . . . 32

3.3. The age–depth sea cliff. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1. U/Th dated synthetic stalagmite. . . . . . . . . . . . . . . . . . . . . . . 41

4.2. 14C dated synthetic lake sediment. . . . . . . . . . . . . . . . . . . . . . 42

4.3. Holocene proxy records from central India. . . . . . . . . . . . . . . . . 43

4.4. Comparison of results with OxCal. . . . . . . . . . . . . . . . . . . . . . 45

4.5. Uncertainty of proxy estimations (schematic). . . . . . . . . . . . . . . 48

4.6. Interpreting the posterior proxy distributions. . . . . . . . . . . . . . . 50

4.7. Contribution of age uncertainty to proxy estimation uncertainty. . . . 53

5.1. Time-ordered sequence of probability densities. . . . . . . . . . . . . . 58

5.2. The importance of knowing the covariance. . . . . . . . . . . . . . . . 59

6.1. Recurrences of dynamical systems. . . . . . . . . . . . . . . . . . . . . 69

6.2. Validation of bounds on recurrence probabilities. . . . . . . . . . . . . 73

6.3. The probability of recurrence matrix P. . . . . . . . . . . . . . . . . . . 75

6.4. Local ε-degree density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5. Synthetic EASM example. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.6. Detection of events in the synthetic EASM dataset. . . . . . . . . . . . 83

6.7. The Dongge cave dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.8. Recurrence probabilities for Dongge Cave. . . . . . . . . . . . . . . . . 85

xi



List of Figures

6.9. Events in the EASM in the Holocene. . . . . . . . . . . . . . . . . . . . . 87

6.10.The three most strongest events in the Dongge dataset. . . . . . . . . 88

7.1. Global time series data for temperature and its climatic drivers. . . . 98

7.2. Lagged influences on GMT. . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3. Lagged dependencies among the forcing datasets. . . . . . . . . . . . 102

7.4. Lagged dependencies among the forcing datasets. . . . . . . . . . . . 103

7.5. Network of dependencies surrounding GMT. . . . . . . . . . . . . . . . 105

C.1. Al counts as a representative proxy for the Lonar lake . . . . . . . . . . 131

xii



List of Tables

5.1. The role of the joint distribution in system characteristics . . . . . . . 64

C.1. U/Th age measurements from Wanxiang cave . . . . . . . . . . . . . . 126

C.2. U/Th age measurements from Dayu cave . . . . . . . . . . . . . . . . . 127

C.3. U/Th age measurements from Wah Shikar cave . . . . . . . . . . . . . 128

C.4. 14C age measurements from Lonar Lake, central India . . . . . . . . . 129

xiii





Frequently used notations

P (a) Probability that a random variable A takes the value a,

i.e, it is equivalent to P (A = a)

P (a|b) Probability that the random variable A = a, given that

we know that the random variable B takes the value b.

P (a,b) Joint probability that A = a and B = b.

E [X ] Expectation of a random variable X with a probability

distribution given by P (x), i.e., it is equal to
∫

d x x P (x)

〈x(t )〉 Time average of x(t )

%X (τ) Autocorrelation of X at lag τ

%X ,Y (τ) Crosscorrelation between X and Y (τ) where Y is shifted

τ steps ahead of X .

A Adjacency matrix of a given network.

R Recurrence matrix of a given dynamical system.

xv





Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

List of Publications ix

List of Figures ix

List of Tables xii

Frequently used notations xv

1. Introduction 1

2. Sedimentary proxy records and COPRA 7

2.1. The paradigm of constructing proxy records . . . . . . . . . . . . . . . 8

2.2. Limitations of the existing paradigm . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Inadequate representation of uncertainty . . . . . . . . . . . . 12

2.2.2. Uncertain time axis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. The COPRA representation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. A Bayesian approach to proxy uncertainty 23

3.1. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1. Preliminary considerations . . . . . . . . . . . . . . . . . . . . . 25

3.1.2. Necessary assumptions . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Bayesian proxy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1. Depth-spanning weight functions . . . . . . . . . . . . . . . . . 29

3.2.2. Incorporating monotonic growth . . . . . . . . . . . . . . . . . 33

xvii



Contents

3.2.3. Estimating the proxy record and its associated uncertainty . . 36

3.3. Review of the steps involved . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Aspects of proxy record uncertainty 39

4.1. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1. Synthetic examples . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2. Holocene proxies from central India . . . . . . . . . . . . . . . . 42

4.2. Features of proxy uncertainty estimation . . . . . . . . . . . . . . . . . 44

4.2.1. Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2. Factors impacting the uncertainty . . . . . . . . . . . . . . . . . 46

4.2.3. Variability of the proxy record . . . . . . . . . . . . . . . . . . . . 48

4.2.4. Interpreting the posterior probabilities . . . . . . . . . . . . . . 49

4.2.5. Reduction of uncertainty . . . . . . . . . . . . . . . . . . . . . . 52

4.2.6. Precise, error-free timescale . . . . . . . . . . . . . . . . . . . . . 55

5. The limits of given information 57

5.1. Non-independence between proxy estimates at two time points . . . 57

5.2. The role of the joint distribution . . . . . . . . . . . . . . . . . . . . . . 60

5.3. Sources of covariance: Sediment growth and calibration . . . . . . . . 63

6. Recurrence networks of paleoclimate data 67

6.1. Recurrence networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2. Bounds on pairwise recurrence probabilities . . . . . . . . . . . . . . . 71

6.3. Recurrence networks from pairwise bounds . . . . . . . . . . . . . . . 73

6.4. Detecting paleoclimate transitions using modularity . . . . . . . . . . 77

6.5. Holocene events in the East Asian Monsoon . . . . . . . . . . . . . . . 83

7. Directed network of global temperature drivers 89

7.1. Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2. Lagged dependencies from recurrences . . . . . . . . . . . . . . . . . . 92

7.3. Testing for significance of observed values . . . . . . . . . . . . . . . . 96

7.4. Datasets: global temperature drivers . . . . . . . . . . . . . . . . . . . . 98

7.5. Details of the numerical analysis . . . . . . . . . . . . . . . . . . . . . . 99

7.6. Network of dependencies around global temperature . . . . . . . . . 100

Appendix A. Mathematical derivation of posterior proxy distributions 109

A.1. Basic terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xviii



Contents

A.2. Estimating Depth-spanning Weight Functions . . . . . . . . . . . . . . 110

A.3. Imposing monotonic growth using force-based relaxation dynamics 111

A.4. Posterior proxy distributions, their means and variances . . . . . . . . 113

Appendix B. Mathematical derivation of the role of joint distributions 117

B.1. Expectation value and variance over time . . . . . . . . . . . . . . . . . 117

B.2. Autocovariance and crosscovariance . . . . . . . . . . . . . . . . . . . 119

B.3. Posterior joint probability for proxy at two time points . . . . . . . . . 121

Appendix C. Data sets used 125

C.1. Data from Wanxiang, Dayu and Wah Shikar . . . . . . . . . . . . . . . 125

C.2. Data from Lonar lake, central India . . . . . . . . . . . . . . . . . . . . 127

C.3. Global time series datasets for the past 120 years . . . . . . . . . . . . 132

Appendix D. Mathematical models 133

Bibliography 137

xix





Chapter 1
Introduction

Uncertainty is fundamentally linked to scientific inquiry. What we know about a

system is inevitably connected to what we do not know about it, and by how much.

At the most basic level, uncertainty is involved by means of measurement, where

every measurement by its very nature implicates not only the measured quantity

but also the precision with which the measurement was made. Uncertainties also

come up in the estimation of derived quantities obtained from the measurements

themselves. Every estimate derived from measurements in principle has to reflect

the precision to which the estimate can be derived— which is based on one hand

on the derivation itself, and on the other, the precision of the measurements. Fur-

thermore, in an epistemological sense, there are far deeper uncertainties that in-

volve an inaccurate description of observations without the knowledges of hav-

ing done so, or those that involve qualitative variables such as belief, perception,

and choice that are not easy to describe quantitatively. In the study of climate

change and its impacts on human society, all of these levels of uncertainty play

their respective crucial roles. Thus, while it is true for scientific inquiry in general,

it is even more vital in the context of climate analyses that uncertainties should

be given due attention, and quantified, visualized and communicated accurately

(Spiegelhalter et al., 2011; Spiegelhalter, 2014).

In recent years, the quantification (Stainforth et al., 2005; Stott and Kettleborough,

2002) and communication (Katz et al., 2013; Giles, 2002; Maslin and Austin, 2012)

of uncertainty related to various aspects of global climate change have received

much attention because of its implication in mediating and responding to the im-

pacts of a changing climate. It is important to note that this focus on uncertainties

involved in climate studies is fueled not only by the need to highlight uncertainties,
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1. Introduction

but also by the fact that it is particularly challenging to quantify the uncertainties

involved in such research. While we know that in order to grasp the ongoing cli-

mate change of our planet and to anticipate the future, we need to have a clear

idea of the various mechanisms operating at the global level, along with the mech-

anisms involved in periods of climate change in our planet’s history, it is also true

that the Earth’s climate and its interactions are inherently complex, nonlinear, and

entail a multitude of factors that are difficult to describe precisely. In such stud-

ies, quantification and representation of the final results and their uncertainties

therefore have to be cautious and nuanced to avoid misleading interpretations.

Moreover, we should note that the term uncertainty itself has different meanings

in different disciplines of science and even within disciplines, its implications vary

from context to context. We can have the uncertainties involved in inter-model

comparison scenarios and we can have uncertainties in sampling the parameter

spaces of the models themselves. There are also crucial uncertainties that arise

from the spread of the global temperature values from different models and under

different forcings. A deeper uncertainty—one that is not easily quantifiable—is the

uncertainty involved in the selection of the model themselves. However, irrespec-

tive of the particular implication of the idea of uncertainty, it is evident that a clear

notion of the uncertainties involved in the analyses is critical to how we interpret

the results and how much of the results can help in evidence-based policy mak-

ing. This highlights the need to effectively quantify the uncertainties incumbent

in climate studies. As a simple example, consider the fact that, if the uncertainty

between two datasets is not quantified properly, an analysis of the correlation be-

tween the two datasets can lead to erroneous conclusions.

In contrast to the uncertainties of modeling studies that involve the spread of fu-

ture predictions of globally relevant climatic variables based on model output, the

focus of this dissertation is primarily on the uncertainties of derived quantities

based on measured climate data. Uncertainties in climate data analyses such as

those presented in this dissertation typically involve a knowledge of the uncertain-

ties of measurement whenever they are non-negligible, and a consequent estima-

tion procedure of various quantities of interest such as events, transitions, power

spectra, correlations, and couplings. The goal of such climate data analyses is to

finally provide a characterization of the climate system under study along with a

2



quantification of the uncertainty with which the characterization was made.

Specifically relevant to this dissertation are the uncertainties inherent in our knowl-

edge of the past climates of the earth. Empirical knowledge about the climate of

the past is primarily obtained using proxy records. Proxies are measurable quan-

tities that record climatic signals in natural archives such as lake sediments, sta-

lagmites, and peat. Some examples of paleoclimate proxies are isotopic fractions

such as δ18O and δ13C, pollen, and dust grain sizes which could represent various

climatic variables like precipitation, plant primary productivity, wind strengths,

monsoon intensity and so on. The fundamental paradigm of empirical paleocli-

mate studies involves the measurement of proxy signals along the depth of a sed-

iment core obtained from an archive and then dating the core at various depth

levels so that we can ascertain the age of the proxy signal. The final proxy-vs.-time

estimate obtained is commonly referred to as a proxy record. An analysis of the

proxy record can then help us in gaining insight into past climate conditions and

variability.

There are two aspects of uncertainty linked to such paleoclimate proxy records.

First is the level of uncertainty in determining the extent to which the specific

proxy record the climate signal under study. Second, there is an inherent uncer-

tainty in assigning the measured proxy value (along depth) to a specific time point

in the past. The second kind of uncertainty is a primary focus of this disserta-

tion. This uncertainty arises due to the fact that the proxy values measured along

the depth of an archive must themselves be dated with the use of different dat-

ing techniques, and these dating methods typically have non-negligible errors of

measurement. Thus, the proxy record itself is a derived estimate and not a direct

measurement. Moreover, due to the dating errors, the time axis of the proxy record

is not error-free, and this makes it particularly challenging to estimate the final

proxy record uncertainty as well as to make unambiguous comparisons between

different proxy records.

We present in this dissertation a new approach based fundamentally on Bayes’

theorem and conditional probabilities using which we estimate the final proxy

record along with its associated uncertainty from the two sets of age–depth and

proxy–depth measurements. The final proxy record uncertainties incorporate var-
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1. Introduction

ious sources of error involved in the measurement process. This analysis sheds

light on how the uncertainty of dating, the uncertainty of proxy measurements

(which are negligible at times), and finally the uncertainty of radiocarbon calibra-

tion impact the final proxy uncertainty. We thereafter represent the proxies on an

error-free timescale which effectively denotes the precise time at which the cli-

mate signal was recorded/deposited in the sediment. The result of our analysis is

a time-ordered sequence of probability distributions which tell us the probability

of various proxy values at any chosen time point of interest in the past.

It is crucial, however, to interpret the probability distributions obtained from our

analysis in a correct manner to avoid erroneous conclusions. The probability dis-

tributions are often correlated between any given pair of time points of the past

because of correlated uncertainties inherent in estimating a statistical relation be-

tween the ages and the depths of the archive. Because of this, interpretations re-

garding trends and periodicities in the proxy estimates finally obtained have to

be made with the utmost caution as, in principle, the probability distributions

on their own have no way of providing us the answers to these questions with-

out the precise knowledge of the correlations between them. We thus present a

detailed analysis highlighting the various quantities that can be estimated without

the knowledge of the correlations and also illustrate which factors in the estima-

tion process contribute to these correlations.

A resulting challenge is to analyze the obtained sequence of time-ordered corre-

lated probability distributions to infer interesting characteristics of the dynamics

represented by the proxy record. We adopt the framework of recurrence analy-

sis which exploits the patterns of recurrences of a dynamical system to previous

states to infer different dynamical characteristics. We provide a new way in which

bounds of the recurrence matrix are constructed from the probability distribution

sequence, and these bounds are then used to approximate the unknown recur-

rence patterns of the system underlying the proxy data. We use the framework of

recurrence networks in particular to identify sudden changes in dynamical behav-

ior in the proxy data with the help of recurrence network modularity. Besides being

a novel approach to study paleoclimate dynamics, this analysis also highlights the

possibility of analyzing paleoclimate data while keeping in sight the uncertainties

of the data along every step of the way.
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Finally, we present an analysis of historic climate datasets involving the global

mean temperature (GMT) and the climatic factors that impact its evolution. The

goal of this analysis is to challenge the implicit assumption of independence be-

tween the various factors as made in earlier studies. We present an extension of

a recurrence based measure of dependence which, when combined with a lagged

analysis and a suitable significance test, allows us to quantify the statistically sig-

nificant influences that various climatic factors exert on GMT and on each other.

This study brings to fore the need for a more wholesome understanding of global

climatic interactions involving the possibility of multiple interactions at different

time delays along with critical feedbacks between climatic systems.

The remainder of the dissertation is organized as follows: Chapter 2 presents an

introduction to sedimentary paleoclimate proxy records and the methods of age

modeling typically used for their reconstruction. It also presents as a compari-

son a heuristic, numerical approach to quantify the uncertainty of proxy records

which overcomes the limitations of the standard paradigm. Chapter 3 details the

Bayesian approach put forward to estimate proxy records along with their associ-

ated uncertainty. Chapter 4 presents applications of the method to two synthetic

examples as a proof of concept and thereafter uses it to estimate the uncertainty of

two Holocene proxies from Lonar lake in central India. It also presents a detailed

discussion on various aspects related to proxy uncertainty estimation. Chapter 5

deals with the limits and uses of the marginal probability distributions obtained

using the Bayesian approach. It discusses the various cases where these distri-

butions might be used in further analyses, and highlights the sources of correla-

tion between the proxy distributions at two different time points. Next, Chapter 6

presents a new method to estimate the recurrence characteristics of a sequence

of marginal probability densities. It uses recurrence network modularity to de-

termine three highly significant dry events in the East Asian Summer Monsoon

(EASM) that occurred within the last 9000 years. Finally, in Chapter 7, we estimate

the network of global temperature drivers. Our approach is based on recurrence

based similarity measures and we construct a weighted, directed network with

time delays based on empirical data from the last 120 years. This illustrates the

uncertainties in estimating connections among various climatic subsystems.
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Chapter 2
Sedimentary proxy records and COPRA

The bulk of our empirical knowledge about past environmental and climatic con-

ditions comes from the study and analysis of “paleoclimate proxies”. Proxy vari-

ables are those measurable quantities that correlate to unobservable climatic vari-

ables such as temperature and precipitation (Wefer et al., 1999). Examples of prox-

ies include grain sizes, pollen, elemental isotopic fractions (δ18O and δ13C), and

volcanic ash layers. These proxies can give us clues to various climatic and envi-

ronmental parameters of interest like wind speed, nutrient content, temperature,

precipitation, and carbon dioxide concentration.

Proxies are obtained from “natural paleoclimate archives” such as sediments from

lake and ocean floors, stalagmites in caves, peat and bogs, and trees. Amongst

these, archives formed by sediment deposition are known as sedimentary archives

and the proxies obtained from them are called sedimentary proxies.

The interpretation of proxy datasets is often not straightforward due to unknown

factors (e.g., anthropogenic impacts, internal dynamics, level of correlation with

the climatic variable – cf. Blaauw et al., 2007) that might have influenced the proxy.

The situation is further complicated by the fact that every proxy record has, within

it by construction, errors related to the dating of the archive from which it was

obtained. Clearly, proxies cannot be measured directly along time. They are mea-

sured along the depth of an archive, and the archive depths must then themselves

be dated in a separate set of observations. In this sense, the proxy record as a func-

tion of time is a derived estimate, and it is one in which the time axis is not error

free, because the radiometric ages of the archive depths have non-negligible errors

of measurement. As a consequence of the latter, it is challenging to estimate the
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2. Sedimentary proxy records and COPRA

uncertainty of proxies as well as to carry out proxy intercomparisons.

This chapter outlines the typical existing paradigm that is used to construct a proxy-

vs.-time curve from the age–depth and proxy–depth measurements. It then high-

lights the critical drawbacks that are inherent in this paradigm. Lastly, it presents

the COPRA (Constructing Proxy Records from Age models) methodology we have

put forward in Breitenbach et al. (2012) to overcome the limitations of existing age

modeling and proxy construction techniques.

Note that from here on forward, we shall use the term proxy record to denote ex-

clusively the set of proxy values (or their probabilities) over time, as opposed to the

set of proxy measurements made along the depth of a sediment core.

2.1. The paradigm of constructing proxy records

The construction of a proxy record from a natural archive begins with two sets of

measurements made on the paleoarchive. On one hand, the proxy signal itself is

measured at a large number of points along the depth of the archive. However,

this dataset can only tell us the climatic conditions that were prevalent at various

depths of the archive. Since the primary goal is to associate the climatic indicators

at different depths to different times in the past, we have to date the archive depths

as well. This leads to the second set of measurements which involves a set of ages

measured at several archive depths. However, due to various practical limitations

of time, money and effort, it is not possible to date every single depth at which

the proxy has been measured. Typically, only a handful of age measurements are

made from which the ages of the proxy measurements are to be inferred. The most

interesting part here is that the dates have non-negligible errors of measurement.

This is the reason behind the fundamental problem of paleoclimate proxy record

construction:

How can we reliably infer the dates of the proxy measurements with

the smaller number of age measurements from the same natural archive?

To put it more mathematically, consider a proxy signal x j , j = 1,2, . . . , N measured

in large number along the depths z j of a sedimentary archive. Next, consider a set

8



2.1. The paradigm of constructing proxy records

of radiometric age measurements ri , i = 1,2, . . . , M (which could be U/Th or 14C

ages) measured with errors of measurement δri at much fewer number of depths

zi such that M ¿ N . Thus, the initial set of measurements are the sets of ordered

pairs (x j , z j ) and (ri ±δri , zi ). If we denote the ‘calendar age’ as tk ,k = 1,2, . . . ,L,

then the fundamental problem of proxy record construction can be thought of as

the search for the best possible transformation/procedure F such that

F :
{
(x j , z j ), (ri ±δri , zi )

}−→ (xk , tk ). (2.1)

Note that the radiometric age ri is not necessarily equal to the ‘calendar’ age ti

because the age given by 14C for instance needs to be calibrated with an estab-

lished ‘calibration curve’ that accounts for changing levels of 14C in the atmo-

sphere which could offset the measured radiocarbon age from the true calendar

age (Reimer et al., 2009, 2013). However, the U/Th dating method does not require

such a calibration and are taken to represent the calendar age by themselves.

The existing paradigm for a solution to this problem involves various state-of-

the-art techniques that provide a distribution of age values for each depth of the

archive. This relation, statistical or otherwise, that relates each depth layer of an

archive to a set of ages based on the age–depth measurements is called an age

model of the archive. In other words, an age model takes as an input the set of

radiometric age measurements (ri ±δri , zi ) and returns at best a probability dis-

tribution Pz(r ) that tells us how likely it is to get a radiometric age of r when the

depth under consideration is z. That is, the age modeling step involves a mapping

A from the set of 2-tuples (ri ±δri , zi ) to a probability value between 0 and 1

A :
(
ri ±δri , zi

)−→ Pz(r ) ⊆ [0,1] (2.2)

From this distribution, the mean or median age estimate for the proxy depths is

inferred and associated with the proxy value at that depth. Thus, a proxy-vs.-time

dataset is created, and we refer to this typically as the proxy record. For the sake of
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2. Sedimentary proxy records and COPRA

simplicity, let us consider the case of U/Th dating, where we can identify the radio-

metric age r with the calendar age t such that the age modeling transformation A

actually gives us the probability Pz(t ) of which calendar ages are most likely given

a particular depth value z. Then, the final proxy record obtained by associating the

mean calendar age with the proxy measurement values can be written as

P :
(
x j , z j ,Pz(r )

)−→ (
x j ,EPz [t ]

)
(2.3)

where P is the final proxy construction transformation assigning the calendar

ages to the measured proxy values along depth on the basis of the age model A ,

and EPz [·] is the expectation value estimated with respect to the probability distri-

bution Pz . Taking in to account all three equations 2.1, 2.2, and 2.3, we find that

the overall transformation F is equivalent to a composition of the age modeling

step A and the proxy construction step P

F ≡P
(
A

( {
(x j , z j ), (ri ±δri , zi )

} ) )
. −→ (

x j ,EPz [t ]
)

(2.4)

The proxy construction paradigm is illustrated schematically in Fig. 2.1, which

shows a proxy signal measured along the depth of the sedimentary archive, which

is indicative of dry/wet paleoclimatic conditions in the region. Initially, we have a

large number of proxy measurements made along the depth of the archive but we

wish to transfer these proxy–depth measurements to a proxy–time record. For this,

six age measurements are made at various places along the archive’s depth and an

age model is estimated based on these dating points. The age model is now used to

infer the mean or median age of any depth layer of the archive, and this informa-

tion is used to create the proxy record over time as shown in the bottom of Fig.2.1.

However, to be conscious of the fact that the time axis of the final proxy record is

not error-free, we mark the dating points on the time axis in the final record along

with the error bars to give an indication of the levels of chronological uncertainty

involved in various parts of the record.
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Figure 2.1. Proxy construction paradigm. A large number of proxy mea-

surements (with tiny errors) are made along the depth of the sediment core

(blue curve, top–left). A small number of age measurements (with non–

negligible error) are made at several points on the archive’s depth (red cir-

cles with error bars, top–right). From the dating points, an age model is

constructed which gives a distribution of ages for each depth layer of the

sediment core (red curve with shaded area for uncertainty, top–right). This

is then combined with the proxy-depth data to obtain a final proxy record

over time (bottom row).

The schema outlined in Figure 2.1 is typical to most studies related to sedimen-

tary proxies. It would be slightly different in the case of proxies which take definite

binary values, such as the existence/absence of flood layers in the archive. How-

ever, the basic procedure in constructing the final proxy record does remain the

same. In the next section, we highlight the salient limitations of such proxy record

constructions.
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2. Sedimentary proxy records and COPRA

2.2. Limitations of the existing paradigm

There are two fundamental limitations in the method of proxy reconstruction as

described in the previous section. These are outlined below.

2.2.1. Inadequate representation of uncertainty

The proxy record shown in the bottom of Fig. 2.1 has one critical aspect missing

from it—the proxy uncertainty. In the current paradigm of proxy record construc-

tion, even though we know that the age measurements have non-negligible errors

of measurement, the uncertainty carries forward only up to the level of the age

model (Pz(t ) in equation 2.2) as shown in Fig. 2.1. The propagation of uncertainty

stops at this point. In associating the proxy measurement depths with the mean

age (EPz [t ] in equation 2.3) estimated from the age model, and thereby represent-

ing the proxy record as a single curve, we effectively present an inaccurate picture

which seeks to imply that the proxy uncertainty is negligible. Such a representa-

tion has the potential to lead to unreliable conclusions in further analyses carried

out on the proxy records.

Note that quantifying the uncertainty of the proxy at any particular time in the past

is of paramount importance. This is because even though the proxy record is a

derived measurement it is still, in its essence, a measurement; and the representa-

tion of any measured quantity without an uncertainty (error) of measurement can

give rise to to misleading conclusions. For instance, assessment of correlations be-

tween datasets can be dramatically influenced by how the uncertainty of the data

is represented (see Rehfeld and Kurths, 2014; Heitzig, 2013, Intro.). An additional

point is that henceforth in this dissertation we will consider only the uncertainty

associated with the estimation of the true value of the proxy. The estimation of

the climate state from this proxy, or an ensemble of proxies, is a separate problem

that follows after the proxy estimation step, and is beyond the scope of the analysis

undertaken here.
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2.3. The COPRA representation

2.2.2. Uncertain time axis

A second crucial limitation that comes out of the proxy representation in Fig 2.1

is that the time axis is not error-free. Here, the proxy record is not equivalent to

a typical time series in which time is a precisely known control variable without

errors. Since the age estimates from the age model themselves have distribution

Pz(t ) of possible values, each point on the time axis is primarily a central estimate

EPz [t ] of the age model. Typically, in order to deal with the time uncertainty, the

age measurements along with error bars are shown in the same plot as the proxy

record and all further inferences based on the proxy record thereafter are made

keeping in mind a qualitative understanding of the extent of uncertainty in vari-

ous portions of the record as denoted by the error bars of the age measurements

(Fig. 2.1, bottom).

The major fallout of this is that the comparison of proxies from various places and

from different archives becomes extremely non-trivial and cumbersome. Events

showing up in a proxy record from an Archive A might appear related to events

spotted in a record from another Archive B but their interrelation is not trivially

interpretable as we are unable to precisely fix the timing of the events in the first

place.

We present here an alternative representation in which the time axis is interpreted

as being free of uncertainty and in which the entire burden of uncertainty is trans-

ferred on the shoulders of the proxy. We contend that such a representation has

the advantage that it allows for clearer inter-record comparison.

2.3. The COPRA representation

Recent studies have raised the issues associated with conventional proxy record

representation along with the fact that—although there are various approaches to

estimate age–depth relationships for a given archive which help constrain their

uncertainties—relatively less focus has been directed towards the propagation of

the age uncertainties to the proxy record from the age model (Blaauw et al., 2007).

Notably, in Fig. 2 of Blaauw et al. (2007) (reproduced here as Fig. 2.2), we find one
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2. Sedimentary proxy records and COPRA

Figure 2.2. Visualization of proxy uncertainties (From Blaauw et al.

(2007)). This is one of the first representations of the spread of uncertainty

of the final proxy estimates by visualizing the posterior density (as a gray-

scale) of proxy records as obtained from a large number of possible age

models. COPRA extends this idea further to actually quantify the proxy

uncertainty using the variance of the proxy records over time.

of the first representations of the uncertainty of a proxy record (shown as a gray-

scale of possible proxy values) that quickly draws attention to the portions of the

record that are more reliable and those parts that are not. The authors state that

the

Bayesian methods developed . . . form an important step towards more sys-

tematic assessments of links, leads and lags . . . Inherent chronological uncer-

tainties need no longer be neglected in proxy-graphs nor in interpretations.

This idea was further extended and applied in later studies (Parnell et al., 2008;

Charman et al., 2009; Blaauw et al., 2010; Swindles et al., 2012). More recently,

Mudelsee et al. (2009, 2012) presents ideas on how to estimate the uncertainty of
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2.3. The COPRA representation

the proxy record with regard to trend and periodicity estimation of the proxy.

However, even while these studies chose to highlight the non-negligible proxy un-

certainties when duly represented, the focus was either on the visualization of the

proxy uncertainty or on estimating the proxy uncertainties with respect to specific

features such as simultaneity of events, or trend and periodicity estimation. In

our approach, reported in Breitenbach et al. (2012), we take this idea forward with

COPRA—an acronym for COnstructing Proxy Records from Age models—where

we present a heuristic methodology that seeks to quantify and estimate the proxy

uncertainty in a more general manner. COPRA is a numerical method that treats

age modeling as an intermediate step in the construction of the proxy record, and

thereafter represents the final proxy records along with their uncertainties of esti-

mation.

The first step in COPRA is similar to that of conventional age modeling where

Monte Carlo based numerics are used to estimate an ensemble of age models given

the set of U/Th age measurements (ti ±δti , zi ) against the depths zi of the sedi-

ment core. However, it differs drastically from the existing paradigm in the second

step that involves the construction of the proxy record from the age model ensem-

ble. If we consider the age model ensemble as representing a probability distribu-

tion Pz(t ) similar to what was described in Section 2.1, then the first step in proxy

record construction in COPRA involves a transformation Pens that generates an

ensemble of proxy records from each age model in the ensemble underlying Pz(t )

such that

Pens :
(
x j , z j ,Pz(t )

)−→ Pt (x) (2.5)

where Pt (x) is the probability of the proxy x at every time point t as estimated from

the proxy record ensemble.

Based on the proxy record probability distribution Pt (x) we now estimate the mean

proxy value µ(t ) = EPt [x] and the corresponding varianceσ2(t ) = EPt [(x−µ(t ))2] at

every time instant t . We thus have an estimate µ(t ) of the proxy value at every time

point along with a quantifiable uncertainty of estimation σ(t ). This can then be
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2. Sedimentary proxy records and COPRA

thought of as a final transformation Pest which gives us the final proxy record es-

timates and its associated uncertainties of estimation from the proxy record prob-

ability distributions Pt (x):

Pest : Pt (x) −→ (µ(t ),σ(t )). (2.6)

Thus, in the COPRA approach, the final transformation FCOPR A as introduced in

equation 2.1 is equivalent to a composition of three different transformations: the

age modeling step, the proxy ensemble step, and finally the proxy estimate step,

FCOPR A ≡Pest
(
Pens

(
A

( {
(x j , z j ), (ri ±δri , zi )

} ) ) )−→ (µ(t ),σ(t )). (2.7)

[Note that the final output of the transformations given in equations 2.1 and 2.7 are

also quite different, but they are similar in the sense that both attempt to construct

a proxy- vs.-time relationship starting from the two sets of given measurements.]

In the COPRA approach, the uncertainty is effectively transferred from the time

to the proxy axis, leaving the time axis error-free. We refer to this time axis as an

“absolute timescale” in Breitenbach et al. (2012), corresponding to the time of de-

position of the proxy material in the archive. However, in this dissertation, we will

refer to this as the “error-free timescale” henceforth.

Another point regarding the COPRA representation is that representing the uncer-

tainty on the proxy axis comes at price. The higher frequency variations of the

proxy are seemingly washed out in the COPRA representation. Therefore, it effec-

tively shows how much can be inferred from a given proxy record without going

astray. The essential differences between a typical proxy representation and the

COPRA representation is shown in Figure 2.3 as a schematic.

There are three practical points in which the two proxy record representations dif-

fer greatly. First is the uncertainty: in a typical proxy record the age model un-

certainty is not propagated to the proxy variable and thus it is the age axis which
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Figure 2.3. The COPRA representation. The essential differences be-

tween a typical proxy representation and the COPRA representation is high-

lighted in this schematic. On the left, we see that a typical representation

entails uncertainty on the time axis, shows high frequencies (although time

uncertain), but makes inter-record comparison harder. On the right, we find

that the COPRA representation puts the uncertainty on the proxy axis, with

the trade-off that inter-record comparisons become clearer at the cost that

high frequencies are smoothened out.

contains the uncertainty, whereas in COPRA all the uncertainty is transferred to

the proxy axis. The second aspect is a consequence of the transfer of uncertainty

to the proxy axis: in a typical proxy record, the high frequency proxy variations

are retained—in fact, the proxy record variance remains equal to the variance of

the proxy over depth—but in the COPRA representation, the high frequency proxy

variability is washed out, thereby indicating the extent of our precision in inter-

preting high frequency paleoclimate change. The third point in which the two

representations differ is the clarity of inter-record comparisons. In the COPRA

representation, because of the error-free timescale, it becomes relatively simpler

to compare features observable in two different records as there is no ambiguity as

to the timing of events.

Note: In Chapters 3 and 4, we present an analytical approach that achieves the

same kind of proxy representation as COPRA, and we discuss in further detail the
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Figure 2.4. Proxy data and age models for three records from Asia.

The three datasets from Wanxiang (Zhang et al., 2008) in A (green), Dayu

(Tan et al., 2009) in B (blue), and Wah Shikar (Sinha et al., 2011) in C (ma-

roon) are shown. The quality of the age measurements (circles with ±2σ

error bars) vary in all three cases, with Wanxiang being the most precise

followed by Dayu, and then Wah Shikar. As a result the age models are also

better constrained in that order. The age models are shows as shaded ar-

eas but these are barely visible in the case of Wanxiang and Dayu because

of the precision of the U/Th ages.

implications of having such a proxy record representation in Section 4.2.

2.4. An illustrative example

To further demonstrate the extent to which typical proxy record representations

can potentially lead to erroneous conclusions, we consider in this section three

δ18O isotopic proxy datasets from eastern Asia. These isotopic measurements are

made on stalagmite cores obtained from caves. The datasets are respectively from

Wanxiang (Zhang et al., 2008) and Dayu (Tan et al., 2009) caves in southeast China,

and a third record from the Wah Shikar (Sinha et al., 2011) cave in northeastern In-

dia. The age–depth and proxy–depth measurements for each of these datasets are
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2.4. An illustrative example

shown in Fig. 2.4. The figure also shows the COPRA age model as a median curve

± 1 standard deviation error as a shaded area overlaying the age–depth measure-

ments. At a first glance, it is clear that the magnitude of the age measurement

errors increase on average as we proceed from the Wanxiang data to Dayu to Wah

Shikar. Consequently, this order of precision shows up in the COPRA age model as

well, with Wah Shikar presenting the largest spread of ages (hence larger age un-

certainty) for any given depth layer in the sediment core. Note that the error bars

(and thus the age model spread) of the Wanxiang and Dayu ages are not even vis-

ible in the plots in Fig. 2.4 due to their extremely small magnitude relative to the

timespan of the dataset.

As discussed previously, in a typical proxy record representation this difference

the levels of chronological uncertainty between these three records would not be

apparent. On the other hand, the COPRA representation would effectively transfer

the age uncertainties on the proxy δ18O axis and reveal the reliability of the final

proxy record. This difference in the two representations is shown in Fig. 2.5. In

the left column of Fig. 2.5, we see the typical representation of the proxies and in

the right column we see the corresponding COPRA proxy records along with the

uncertainty estimates of the proxy at each time point.

As expected, the uncertainty in the final proxy estimates increase from Wanxiang

to Dayu to Wah Shikar (panels B, D, and F of Fig. 2.5). In such a COPRA representa-

tion the spread of the age models directly translates to a proportional spread of the

proxy records. This leads to a larger uncertainty estimate of the final proxy record,

as measured by a dispersion estimate such as the variance. A larger uncertainty

also concomitantly leads to a proxy estimate that has less variability on the time

axis. This is because, we need higher precision (i.e. lower uncertainty) to be able

to reliably extract the fast-varying components of the proxy record.

The final proxy uncertainty in the Wah Shikar record is much higher than that in

the other two. Most of the fast varying components are washed out in the Wah

Shikar record because of the high level of uncertainty, such that only the slowest

trends in precipitation (linked to the δ18O proxy) remain. However,the Wanxiang

record, being the best constrained of all the three, reveals high frequency variabil-

ity as well. In contrast, the typical proxy records in Fig. 2.5 (panels A, C, and E)
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Figure 2.5. Comparison of proxy representations for east Asian δ18O

records. Typical proxy record representations (left column, A, C, E) as

compared to the COPRA representation (right column, B, D, F) for the east

Asian proxy records from Wanxiang (A, B), Dayu (C, D) and Wah Shikar (E,

F) caves. It is clear that the proxy records on the left do not reflect the true

impact of the age measurement uncertainty nor the final proxy estimate.

On the other hand, the COPRA records on the right make it apparent which

parts of the record are better constrained and which parts are not. The

comparison is especially stark for the case of the Wah Shikar record.

have no way of communicating the way in which the age uncertainties impact the

variability of the final proxy estimate. Nor do they communicate the error in the

final proxy values at any given time point.

Moreover, a second crucial point to note is that, in Fig. 2.5, the time axis is error-
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free so that the interpretations of visible past climatic events do not have to be

made in the light of age uncertainties. Provided that the age measurements are

well constrained and thus the resulting proxy estimate has sufficient high frequency

variability, as is the case with the Wanxiang and Dayu caves, we hope that such

an error-free timescale would allow for easier and more transparent inter-record

comparisons.

A logical question that follows such an analysis is that: Is it possible to have a quan-

titative estimate of the relationship between the frequency of the final proxy esti-

mate in terms of the age uncertainties made on the archive? A rough rule of thumb

is highlighted in Section 4.2.3. However, a precise quantitave estimate of this re-

lationship is till yet unknown and is non-trivial. This remains a focus of future

study.
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Chapter 3
A Bayesian approach to proxy uncertainty

Even though the COPRA approach provided one of first comprehensive method-

ologies to quantify proxy uncertainties that propagate age measurement and proxy

measurement uncertainties into the final proxy record, it is not without its limita-

tions. COPRA is based on heuristic numerical methods that rely on Monte Carlo

procedures and thus the resulting ensemble of proxy records that it generates is al-

ways an approximation of the complete proxy record. Furthermore, COPRA in its

current form is applicable solely to U/Th-dated archives as it cannot account for

radiocarbon calibration and the uncertainties that are inherent in transforming

a measured radiocarbon age to a calendar age (Blackwell and Buck, 2008). This is

because radiocarbon age measurements need to be further “calibrated” in order to

get the calendar age from the radiocarbon age (the two are not the same because of

changing radiocarbon levels in the atmosphere). Blackwell and Buck (2008) con-

tains a detailed overview of how this is achieved. The current version of COPRA

does not have a routine that can estimate the calendar age distributions from the

measured radiocabon ages and thus, it is not applicable to proxy datasets which

have been dated with 14C-dating.

A general, non-numerical framework for estimating a proxy record and its associ-

ated uncertainties that is based on thorough estimation-theoretic principles and

that can account for radiocarbon calibration as well is still lacking. In this chap-

ter, we present such an approach that provides analytical expressions for the final

proxy record starting with the age–depth and proxy–depth measurements and that

considers radiocarbon calibration as well if the archive is dated using radiocarbon

dating methods. We have reported this approach in Goswami et al. (2014).
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3. A Bayesian approach to proxy uncertainty

Our approach is founded on Bayesian estimation principles that first derives a

probabilistic relation between the depth layers of the archive and its age which

tells us which depth layers are most likely given a particular calendar age and not,

as is typical in most age modeling studies till date, the other way round. In a spirit

similar to COPRA, we use conditional probabilities to finally represent the proxy

record on an error-free timescale which hopefully enables a much easier inter-

comparison of proxy records from different archives.

The method discussed in the following sections of this chapter is generic in the

sense that it can be applied to any archive provided that the age measurement

errors are properly described by a suitable probability distribution. It is not in the

least limited to U/Th-dated and 14C-dated archives. Also, in our treatment of the

growth of the sediment archive, we do not use an explicit growth model but rather

consider the age measurements to be the sole source of growth information of the

archive. Of course, when a more reasonable growth model is available, it can be

incorporated in our approach in the form of prior belief about the growth of the

sediment, as is already done in most age modeling approaches (Blaauw et al., 2007;

Bronk Ramsey, 2008; Parnell et al., 2011). Thus, our method can also be potentially

assimilated within existing age modeling frameworks such as COPRA (Breitenbach

et al., 2012), StalAge (Scholz and Hoffmann, 2011), clam (Blaauw, 2010), or OxCal

(Bronk Ramsey, 2008). Moreover, it could also be modified and extended to be

applicable to other dating methods such dendrochronlogy, luminescence dating

and tephrochronology.

Before we move ahead to a full description of the method, we wish to stress that

the primary result of our analysis is the proxy record as represented by a series of

probability distributions on an error-free timescale (a point that will be treated in

more detail later in Section 4.2.4, and Chapter 5). Still, while visualizing the proxy

distributions in a plot over time (and/or their mean/median), an observer might

‘see’ certain trends and variabilities in the record, and may be then tempted to

interpret these patterns as trends and variabilities of the actual paleoclimatic con-

ditions. We advise a word of caution in interpreting such trends from the plots be-

cause in principle, the posterior proxy distribution obtained at two different time

points tell us almost nothing about the trend of the proxy. To actually comment

on a particular relationship between the proxy at two different times, we need to,

24



3.1. Theoretical background

in principle, rigorously derive the posterior distribution for precisely that relation-

ship and for this, we would actually need to have the posterior joint distribution

of the proxy record at two time points—and we do not focus on this aspect in our

analysis present here. Note that a similar issue arises in the estimation of the radio-

carbon calibration curve and is discussed in detail in Blackwell and Buck (2008).

Any interpretation regarding the proxy record based on our current analysis that

involves the combined information of the final proxy distributions at two (or more)

different time points can at best be a qualitative one, and will be strictly restricted

by the uncertainty level of the final record. The greater the uncertainty, the less we

can infer.

3.1. Theoretical background

3.1.1. Preliminary considerations

We differentiate between two radiometric dating method types: (i) the ones that do

not require radiometric calibration, e.g., U/Th dating, and (ii) the ones that need

calibration, e.g., 14C dating. In the following, we restrict ourselves to the case of
14C dating, since U/Th dating can be considered formally as a special case of the

latter, i.e., with a trivial diagonal calibration curve without error.

The information given us is: (i) a set of radiometric ages for a few depth layers of an

archive, (ii) a much larger number of proxy measurements at numerous depths of

the same archive, and (iii) for the case of radiocarbon dated archives, a 14C calibra-

tion curve, such as IntCal13 (Reimer et al., 2013). All three datasets have errors of

measurement, although the errors in proxy measurements are negligible in several

cases.

On the basis of the above information, we wish to answer the key question: What

were the most likely climatic conditions at a given time point in the past? We then

rephrase this question to make it more relevant to the given datasets as: “At a cho-

sen time point, which proxy values were more likely than others?” We arrive at the

answer using a probabilistic framework, i.e., we wish to now derive probability dis-
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3. A Bayesian approach to proxy uncertainty

tributions for the proxy given a past time point. In particular, we adopt a Bayesian

framework, as it quite naturally lends itself to transforming one kind of (given)

information (such as the age–depth and proxy–depth measurements) into partial

knowledge about other types of (desired) information (such as the age–depth and

proxy–depth relationships). This is further exemplified by the historical prevalence

of Bayesian methods in several studies that deal with radiocarbon dating, radiocar-

bon calibration, and age modeling (Niklaus et al., 1994; Blackwell and Buck, 2008;

Bronk Ramsey, 2008; Niu et al., 2013).

Two fundamental concepts of probability are essential to our derivation.

• Conditional probability. Consider two random variables A and B that ran-

domly takes values from a given set of possible values. If we know that there

exists a relation between A and B , we can ask the question: knowing that B

has taken a particular value b from its possible range of values, what is the

probability that A takes a particular value a from its own range of values?

This is idea of conditional probability which allows us to express our beliefs

about how likely is it that a random variable A actually has the value a con-

ditioned on our knowledge of that a related random variable B is equal to

b. This is mathematically denoted as P (A = a|b = b) or simply as P (a|b) in

shorthand, which reads “probability that A = a, given that B = b”.

[Note that we use the convention of denoting the random variables with up-

percase letters A and B , whereas the actual values (which are real numbers)

that they can take up are denoted with lowercase letters a and b.]

• Bayes’ theorem. This allows us to combine two kinds of probabilistic infor-

mation in order to obtain a third. The first kind is the prior—which encodes

a priori knowledge or beliefs about a random variable A, denoted as P (a).

The second type is the conditional probability of an observation B = b given

a hypothesis A = a, P (b|a), also known as the likelihood of the hypothesis

A = a given the observation B = b. Paraphrasing this in words, Bayes’ theo-

rem essentially states that the posterior of a hypothesis is proportional to the

product of its prior and its likelihood:
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conditional independence

law of total probability

Riemann sum

law of total probability

conditional independence

Bayes' theorem

flat priors

RM age model

calibration curve

proxy-depth measurements

OUTLINE OF THE DERIVATION FOR POSTERIOR PROXY PROBABILITIES

Figure 3.1. Outline of posterior proxy probability derivation. The box

presents a rough sketch of the derivation of the posterior proxy probability

densities. We denote the proxy, depth, time and radiometric age with the

random variables X , Z , T , and R, respectively. The essential quantity of

interest to be estimated is the posterior conditional density P (x|t ), which

is finally expressed in terms of the measured/given quantities using the

above steps. For a detailed explanation, please refer to Section 3.2 and

Appendix A.

P (a|b) ∝ P (a)P (b|a) (3.1)

This is interpreted in the Bayesian framework as: given our prior assump-

tions/beliefs/knowledge about A, we use the observation B = b to obtain

the posterior P (a|b) and thus update our prior beliefs about the value of A.

In the language of the terminology outlined in this section, the goal of this analysis

is to arrive at the posterior distributions of the given proxy at all points in time. A
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3. A Bayesian approach to proxy uncertainty

gist of the derivation of the posterior proxy probability distributions is presented in

Fig. 3.1. A detailed explanation follows in the subsequent sections and also in the

Appendix. Readers may also refer to the introductory sections of Bronk Ramsey

(2008) and Parnell et al. (2011) for further explanatory notes on the use of Bayesian

statistics in age modeling approaches.

3.1.2. Necessary assumptions

At the outset, we wish to state the assumptions incumbent in our approach and

hold them up for review. We assume that:

• Each of the given 14C ages, as well as each of the proxy measurements, are

sufficiently well-described by a normal distribution with the mean at the

measured value and a standard deviation equal to measurement error. This

is motivated by the fact that, in most cases, observations (and associated

errors) are adequately described by the mean (and standard deviation) of

a Gaussian process (cf. Blaauw (2010); Hercman and Pawlak (2012); Scholz

and Hoffmann (2011); Bronk Ramsey (2008)). Still, in principle, our method

can be used for any general probability distribution.

• The errors in depth measurements are negligible. The precision of depth

measurements motivate this second assumption and it is made for the sake

of analytical simplicity. We note that most of the existing age modeling tech-

niques involve this assumption, and also that our approach would have to

be modified in cases where depth uncertainties cannot be neglected.

• All radiocarbon ages and depths are assumed to be equally likely a priori.

This prior belief is then updated within the analysis using the set of radio-

carbon age–depth measurements. Note that such a prior assumption can

easily be modified in other cases and integrated into our approach. We note

that, although a different prior can be assumed to incorporate more specific

beliefs about the sediment growth, it does not change the main inferences

that we wish to extract at the end of our analysis.
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3.2. Bayesian proxy estimation

• The radiocarbon dates provided do not contain outlying values caused, e.g.,

by contaminated material. Dealing with outliers is beyond the scope of this

analysis. If it is suspected that the dataset contains outliers, we suggest to

identify and remove them with specific outlier-detection techniques and then

use the remaining data as an input for our analysis.

• All obtainable growth related information about the archive is contained in

the given set of radiocarbon dates. We note that although there are cases

where additional sources of growth related information are available, we do

not consider such situations in this preliminary exposition.

• The radiocarbon age of a given position in the archive is an unknown, smooth,

continuous function of its depth. We denote this function as the Radiomet-

ric (RM) age model. The presence of a hiatus is a crucial issue regarding this.

We advise that if a hiatus is known to have occurred at a particular depth

(from sources other than the radiometric dates), the RM age model can be

split at the hiatus depth into two smaller, independent RM age models—an

approach used in Breitenbach et al. (2012).

3.2. Bayesian proxy estimation

3.2.1. Depth-spanning weight functions

In his discussion on deposition models for chronological records of paleoarchives,

Bronk Ramsey (2008) has aptly articulated the fundamental idea behind the con-

struction of age models as:

What we are aiming to do mathematically is [. . . ] to find a representative

set of possible ages for each depth point in a sedimentary sequence.

Mathematically speaking, the fundamental idea behind our approach is similar as

we too seek to establish a probabilistic relation between the depth and age as a

first step. However, our approach differs from the idea above in that we obtain this

relation in the opposite direction, i.e., we aim to find an ensemble of depths for each

calendar age.
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3. A Bayesian approach to proxy uncertainty

Let Z , R, and T be three variables that denote depth, radiocarbon age, and calen-

dar age, respectively. Also, let the unknown proxy variable be denoted by X . We

begin the task of finding such an ensemble of depths for each calendar age by ask-

ing: what is the probability that a depth Z = z corresponds to a given calendar age

T = t? By the law of total probability, this is proportional to the probability of find-

ing a radiocarbon age R = r at T = t multiplied by the probability that the depth z

corresponds to r , integrated over all possible values r of R. Formally,

P (z|t ) ∝
∫

dr P (r |t )P (z|r ). (3.2)

The expression on the right-hand side of equation 3.2 is similar to the calibration of

radiocarbon dates. The first (calibration) term P (r |t ) involves the knowledge that

not all radiocarbon ages are equally likely for a given calendar age and it thus filters

out the most probable radiocarbon ages for that specific t . The second term P (z|r )

then filters out the most likely depths that could correspond to a given radiocarbon

age r based on the estimated RM age model.

Now, using Bayes’ Theorem, we see that the second term on the right-hand side

of equation 3.2 is a form of a posterior distribution and is thus proportional to

the product of some prior probability P (z) and the likelihood P (r |z) (for a more

detailed discussion, see A). Assuming a priori that all depths are equally likely, we

use the “flat" prior P (z) ∝ const. Thus, if the proxy is measured at depths Z =
zx

j for j = 1,2, . . . , N , using the example of equation 3.2, we can define a depth-

spanning weight function (DWF) on all proxy measurement depths zx
j as:

wt (zx
j ) :=

∫
dr P (r |t )P (r |zx

j ). (3.3)

The term P (r |t ) is simply the radiocarbon calibration information which gives the

probabilities of possible radiocarbon ages r given a particular calendar age t . The

second term in equation 3.3, P (r |zx
j ), is the RM age model which gives the proba-

bility of the radiocarbon age r given a particular depth zx
j .
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3.2. Bayesian proxy estimation

In combining these two terms under the integral, the DWF wt (zx
j ) constructed

thus is proportional to the probability that a depth zx
j corresponds to a given cal-

endar age t in the archive. For each different value t of the calendar age T , a new

DWF has to be constructed over the depths zx
j . A schematic of two representative

DWFs for a simulated archive is shown in Fig. 3.2 along with the information used

in their construction. A couple of points to note from Fig. 3.2 are: (i) the shape of

the DWF can be quite different for different calendar ages, and (ii) the peak of the

DWF denotes the most probable value of Z for a given RM age model and a given

value of T . This approximately corresponds to the value of Z at which the expected

value of R equals the expected value of R for the given value of T . We illustrate this

point with the help of the dashed arrows in Fig. 3.2. Conventionally, the calibration

of a radiocarbon date involves estimating the probabilities of all possible calendar

ages for a given radiocarbon age along with its uncertainty of estimation. This is

analogous to proceeding in a counterclockwise direction in Fig. 3.2. In our analy-

sis, we avoid ‘calibration’ in this sense by choosing to estimate a relationship be-

tween calendar ages and corresponding depths in the other direction—as shown

by the clockwise sense of the arrows in Fig. 3.2.

Next we elaborate on the construction of the RM age model and its relevance in

our method.

The RM age model

The construction of the DWFs involves the term P (r |zx
j ) which has to be well-

defined at every depth where the proxy is measured. However, in practice, the

radiocarbon age measurements are limited to significantly fewer number of depth

points. Let us say that the number of radiocarbon age measurements is M , where

M ¿ N , and the corresponding depths are denoted by zr
k , k = 1,2, . . . , M . Then,

from this set of measurements, we get M conditional probability distributions

P (r |zr
k ) for k = 1,2, . . . , M . Since M is much less than N , we need to be able to

use the set of radiocarbon age–depth observations to construct a dataset that gives

us the N probability distributions P (r |zx
j ), j = 1,2, . . . , N . This is achieved by esti-

mating a radiocarbon (or more generally, a radiometric) age–depth relation, i.e.,

the radiometric (RM) age model. In principle, the role of the RM age model can
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3. A Bayesian approach to proxy uncertainty

Figure 3.2. Depth-spanning weight functions (DWFs). A. Radiocarbon

calibration curve representing the mean (red) and ±2 standard deviations

(blue) of the distribution P (r |t ). Inset : Calibration curve around 5.1 kBP

detailing non-monotonicities. B. (i) 14C measurements from a simulated

archive (circles with error bars representing the distribution P (r |zr
k )) and

the RM age model obtained from them: mean (red) and ±2 standard devia-

tions (blue) of the distribution P (r |zx
j ) that results from the used regression

method. (ii) DWFs for the calendar ages 2.2 kBP (purple) and 9.5 kBP (or-

ange). The corresponding colored dashed lines with arrows indicate how a

given calendar age is related to a distribution over probable depths via the

DWF. All uncertainty bounds correspond to ≈ 95% confidence.

be seen as a transformation of sediment growth information from the coarse age

measurement depth-scale to the much finer proxy measurement depth-scale:

P (r |zr
k ),k = 1, . . . , M

RM age model−−−−−−−−−→ P (r |zx
j ), j = 1, . . . , N , (3.4)

which resonates with the conventional framework of age modeling. However, at

this point, we use radiocarbon ages instead of calendar ages.

In our current analysis, we use a non-parametric Taylor-polynomial based regres-

sion method given by Heitzig (2013)—a data-driven approach that uses a com-

bination of Bayesian updating and Taylor expansion about a point of interest to

32



3.2. Bayesian proxy estimation

provide an estimate of the smooth curve from which the observations have been

sampled. However, any regression method that estimates a posterior probability

distribution could be used equally, as well as any Monte Carlo based method that

generates ensembles of interpolated RM age–depth relations from the set of obser-

vations to arrive at a mean/median estimate along with a standard deviation. Also

note that in the case of dating methods that do not require radiometric calibration

(e.g., U/Th dating), the first term of the right-hand side in equation 3.3 is equal to

1 if r = t and 0 otherwise. In such cases, the RM age model involved is, in fact, the

calendar age model—or what is simply known as the age model of the archive.

3.2.2. Incorporating monotonic growth

The DWFs constructed in Section 3.2.1 relate any given calendar age probabilis-

tically to different depths based on how likely they are to correspond to that age.

This relation does not, however, include one specific feature of sedimentary records:

the constraint of stratigraphically ordered growth. In other words, a stratigraphi-

cally deeper layer of the sediment core cannot be younger than any layer above

it. We thus need to incorporate this constraint into the initial DWFs derived in

Eq. (3.3), henceforth denoted as w i , and obtain a final set of DWFs (henceforth

w f ) that takes this factor into account.

The DWFs are essentially a set of probability density functions and to impose an

unambiguous monotonicity constraint on such a set is non-trivial. To overcome

this we consider the cumulative probabilities of each DWF. A Cumulative Depth-

spanning Weight Function (CDWF) is the probability that a given calendar age t

corresponds to any depth less than or equal to a depth zx
j . Formally, after ordering

depths such that zx
1 ≤ zx

2 ≤ ·· · ≤ zx
N , we put

W i
t (zx

j ) =
j∑

l=1
w i

t (zx
l ). (3.5)

The CDWF W i
t (zx

j ) by definition increases along the depth axis zx
j from 0 to 1.
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3. A Bayesian approach to proxy uncertainty

[Note that we denote the cumulative probability distribution with an uppercase

letter “W ” to distinguish it from the corresponding probability distribution “w”

denoted by the lowercase letter.]

Our task now is to ensure that the CDWF W i
t (zx

j ) is monotonically decreasing along

the age axis T . This means that if we take a depth zx
j and two ages t1 and t2 such

that t2 is greater (i.e., older) than t1, the total probability that t2 corresponds to

a depth ≤ zx
j cannot be more than the total probability that t1 corresponds to a

depth ≤ zx
j —which is the condition of monotonic growth. Formally: we would like

that Wt2 (zx
j ) ≤Wt1 (zx

j ).

The above condition for monotonic growth along the age axis is violated slightly

but noticeably on many occasions. This is shown in Fig. 3.3A, where the wiggles in

the white grid lines parallel to the calendar age axis illustrate the non-monotonicity.

Since it would be quite difficult to enforce the desired monotonicity already in

the step where P (r |zx
j ) is estimated from P (r |zr

k ), we instead fix the slight non-

monotonicities after having derived W i . This results in final CDWFs W f that can

then be transformed into the final DWFs w f via

w f
t (zx

j ) =W f
t (zx

j )−W f
t (zx

j−1). (3.6)

To estimate the final W f which adhere to monotonicity, we use the principles of

relaxation dynamics, and the details of this estimation process are discussed in

appendix A.3. In short, we start with a suitably chosen set of CDWFs which are

already monotonic in T and then iteratively drag (pull-and-push) this function in

order to minimize its distance from the initial CDWF, W i , as far as it is possible to

do so without violating its monotonic nature. The final equilibrium set of CDWFs

is that which cannot be moved any closer to W i by any form of dragging without

compromising its monotonicity. We denote this set as W f (shown in Fig. 3.3B).
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Figure 3.3. The age–depth sea cliff. A. The initial CDWF W i obtained

using equation 3.5, and B. the final CDWF W f obtained after imposing

monotonic growth, for the same example as used in Fig. 3.2. W = 0 is

shown in blue and W = 1 are shown in green. Intermediate values of W

are shown with increasing darkness from light brown to dark brown, as the

value increases from 0 to 1. The overlay of white lines over the CDWF

surface highlight the differences between the pre-monotonicity and post-

monotonicity scenarios. The purple and orange lines are the CDWFs for

the ages 2.2 kBP and 9.5 kBP as used in Fig. 3.2 respectively. The effects

of imposing the condition of monotonic growth on the CDWFs is seen more

prominently in the white grid lines within the marked yellow circles.
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3. A Bayesian approach to proxy uncertainty

The age–depth sea cliff

The visualization of the CDWFs in Fig. 3.3 is likened to a sea cliff where W = 0 is

shown as the blue sea, and W = 1 as the green highland. All intermediate values of

W are contained in the sudden rise of the brown cliffs.

As stated earlier, the fundamental idea behind age modeling is to arrive at a re-

lationship between the calendar ages and the depths of a paleo-archive. A set of

functions that perform this function can be thought of, in a broader sense, as an

‘age model’. The CDWFs visualized in Fig. 3.3 are thus analogous to an age model

in our analysis. However, we wish to emphasize that the construction of the CDWF

relations did not involve assumptions about the growth and/or sediment accumu-

lation of the archive and was entirely a data-driven estimation with the sole input

of the principle of monotonic growth of the core.

In this sense, the age–depth sea cliff is a formal age model which, in future studies,

could be developed further to incorporate specific growth conditions, leading to a

better estimation of the (calendar) age–depth relation of the archive.

3.2.3. Estimating the proxy record and its associated

uncertainty

Once we have estimated the set of monotonic w f functions, it is relatively straight-

forward to estimate the proxy and its uncertainty. For this, we need to consider the

probability encoded in w f
t (zx

j ), for each depth zx
j , as a weight for the correspond-

ing proxy measured at that depth. Since X denotes the unknown proxy at a given

calendar age t , we thus estimate the probability P (x|t ) as the Riemann sum frac-

tion,

P (x|t ) ≈
∑N

j=1 b j w f
t (zx

j )P (x|zx
j )∑N

j=1 b j w f
t (zx

j )
, , (3.7)

36



3.3. Review of the steps involved

where b j is the width of the depth interval represented by zx
j :

b j = 1

2


zx

2 − zx
1 j = 1

zx
j+1 − zx

j−1 1 < j < N

zx
N − zx

N−1 j = N .

(3.8)

[A detailed derivation of the estimation is outlined in appendix A.4.]

We now have a probability distribution P (x|t ) for the proxy values X = x at any

given time t and using this, we can estimate the mean/median, as well as uncer-

tainty bounds constructed using percentiles or variance. In this study we restrict

ourselves to median proxy values and represent the associated uncertainty of esti-

mation with (i) a 95% confidence band constructed from the region lying between

the 2.5th and 97.5th percentiles, and (ii) a 50% confidence band constructed from

the region lying between the 25th and 75th percentiles of the distribution P (x|t ).

Furthermore, in the following chapter, the mean/median curves are represented

as dotted lines rather than continuous curves to emphasize that they are derived

from the probability distribution at individual time points and do not have any

relation to values at other time points.

3.3. Review of the steps involved

Before we present the applications and results in the next chapter, it is helpful to

briefly summarize the salient steps involved in estimating the proxy records and

their associated uncertainty using our approach.

1. We construct the RM age model using an appropriate regression method

that provides the posterior distributions of radiometric ages at the proxy

measurement depths (Equation 3.4).

2. We estimate the weight function DWF that relates any given calendar age to

the proxy measurement depths in terms of the likelihood that they corre-

spond to the chosen calendar age (Equation 3.3).
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3. A Bayesian approach to proxy uncertainty

3. Next, we construct cumulative weight functions CDWFs from the initial set

of DWFs obtained in the previous step. The CDWFs are used to impose the

constraint of stratigraphically ordered growth of the archive (Equation 3.5).

4. We obtain a final set of CDWFs that are consistent with such monotonic

growth over time, and we derive a final set of DWFs from them (Equation 3.6).

5. For each chosen calendar age, we use the corresponding stratigraphically

ordered DWF to weight the proxy measurements over depth and thus obtain

a posterior proxy probability distribution (Equation 3.7).

6. We use the posterior proxy probability distribution at each calendar age to

estimate quantities of interest such as the mean or median proxy values for

that age. Furthermore, we also estimate uncertainty measures such as quan-

tile ranges or variance.
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Chapter 4
Aspects of proxy record uncertainty

In this chapter, we present the results of applying the Bayesian proxy estimation

approach described in Chapter 3. In order to illustrate the applicability of the

method, we first consider two synthetic examples where we simulate numerically

the growth of a stalagmite and a lake sediment which are then dated with U/Th

and 14C dating methods respectively. Both of these synthetic paleoarchives have a

sinusoidal proxy deposited in every depth layer, and using a set of given age–depth

and proxy–depth measurements from these archives, we estimate the posterior

proxy record distributions using our method. Besides telling us how the various

sources of error impact the uncertainty of the final records, these examples also

help clearly demonstrate the validity of our analysis.

In a next step, we consider groundwater inflow and surface erosion proxies from

Lonar lake in central India that were reported earlier in Anoop et al. (2013) and

Prasad et al. (2014). We then compare our results with the typical age modeling

approach based on OxCal (Bronk Ramsey, 2008) that was used in these studies.

The results help us understand the interplay between proxy variations and the fi-

nal proxy record uncertainty. Furthermore, based on a thought experiment where

we imagine the age–depth relation of the Lonar lake sediment to be known with

absolute precision, we are able to show that in the specific case of the Lonar lake

proxies, it is the proxy variations rather than the age measurements which impact

the final proxy uncertainty to a greater degree.

Section 4.1 presents the results of applying our method to the various scenarios

while Section 4.2 presents a comprehensive discussion of the various aspects in-

cumbent in estimating proxy records and the nuances therein.
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4.1. Applications

4.1.1. Synthetic examples

To illustrate our method as well as to test its efficacy, we consider two types of pale-

oarchives: (i) a stalagmite extending over 0–28 kBP dated with U/Th, and (ii) a lake

sediment core extending over 0–11 kBP dated with 14C. From our perspective, the

crucial difference between the two is that for the lake sediment, the radiocarbon

ages have to be calibrated using IntCal13, whereas this is not needed for the U/Th

ages. To simulate sediment growth, we follow Blaauw (2010) such that the sedi-

ment accumulates with an initial growth rate of 20 yr/cm. At subsequent depths, a

non-negative growth rate is chosen from a normal distribution that has the growth

rate of the previous year as its mean and a fixed standard deviation of 7 yr/cm. In

both cases, the proxy values are simulated as a sinusoidal signal consisting of two

components with different time periods. Also, the proxy datasets were generated

annually, i.e., with a proxy value for every year. We simulate a few noisy radiomet-

ric age measurements and a much higher number of almost perfect proxy mea-

surements (error∼ 0.001). These ‘observations’ are then used to estimate the proxy

record with our method. [Note: Detailed equations of the growth of the synthetic

archives are provided in appendix D.]

U/Th dated archives

The results for the synthetic stalagmite are shown in Fig. 4.1. In this case, the cali-

bration curve (as shown earlier in Fig. 3.2) is replaced by a straight line of slope one

without any error (Fig. 4.1A). This is possible because the U/Th radiometric ages

can be identified with the calendar ages. The observational noise for the U/Th

age measurements increases with the depth of the stalagmite to a maximum of

5% (Fig. 4.1B). The proxy signal has two components with time periods 2000 years

and 400 years (Fig. 4.1D). Note, from panels C and D of Fig. 4.1, that the proxy sig-

nal can be distorted in the depth domain—depending on the nature of the actual

age–depth relation.
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Z

Value

Figure 4.1. U/Th dated synthetic stalagmite. Legend as in Fig. 3.2. A.

The straight line of slope one used in place of a calibration curve. Inset : Un-

like a real calibration curve, this line has no error. B. U/Th measurements

from a synthetic stalagmite (circles with error bars) and the estimated RM

age model obtained using regression (red line with blue ≈ 95% confidence

band), along with true age model (black dashes). C. The proxy curve along

stalagmite depth obtained from noise-free measurements. D. The actual

proxy record (black), shown alongside the estimated median proxy record

(red, dotted) along with associated uncertainty of estimation (sky blue de-

notes the interquartile range, i.e., 50% confidence, whereas light blue de-

notes the region between the 97.5th and the 2.5th percentiles, i.e., 95%

confidence). The estimated record in D is demarcated into three distinct

regions in terms of the frequencies it resolves: (a) both frequencies of the

true sinusoidal proxy (green), (b) only the lower frequency (orange), and (c)

unable to resolve either of the two frequencies (purple).

14C dated archives

Figure 4.2 shows the results of our method as applied to the synthetic lake sed-

iment core. In panel A, we see the irregularities of the radiocarbon calibration

curve and its estimation uncertainty. The error in radiocarbon age measurements
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Z

Value

Figure 4.2. 14C dated synthetic lake sediment. Legend as in Fig. 4.1.

in Fig. 4.2B increases with depth as in the previous case. The proxy signal used in

this case has two time periods of 1000 years and 200 years. Here too, one can see

that the proxy signal is distorted in panel C, when compared to the one in panel

D; however, the distortion in this case is mediated not only by the irregular RM

age–depth relation but also by the calibration curve.

4.1.2. Holocene proxies from central India

As an application to a real-world scenario, we consider the set of age–depth 14C

measurements from the Lonar lake in central India (Anoop et al., 2013; Prasad

et al., 2014). The radiocarbon ages involved are tabulated in appendix C.2 and

labeled in Fig. 4.3B. This included two 14C ages after 1950, L21 and L20a, for which

we use the Northern Hemisphere 3 (NH3) “post-bomb” calibration curve (Hua

et al., 2013), and 17 pre-1950 ages, L19–L1, for which we use IntCal13 (Reimer et al.,

2013).

For the proxy records, we take the Ca-area proxy for groundwater inflow and the Al-
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Figure 4.3. Holocene proxy records from central India. A. The Int-

Cal09 calibration curve. Inset : The post-bomb calibration curve that was

used. B. The RM age model for the Lonar lake sediment core. For de-

tails of the radiocarbon age–depth measurements, c.f., appendix C.2. C,

E. The groundwater inflow (Ca area) and surface erosion (Al area) proxies

measured along the depth of the core. D, F. Corresponding proxy record

estimates as obtained using the Bayesian approach detailed in the text.

Legend in these panels is the same as that of Fig. 4.1 D; ‘kcps’ denotes

‘kilo counts per seconds’.

area proxy for surface erosion from the same archive at Lonar. The links of both the

Ca to groundwater inflow (evaporitic carbonate (CaCO3) formed during periods of

low lake levels) and that of the Al to surface erosion (lithogenics brought on by rain

events) have been validated in Basavaiah et al. (2014).

The proxies were obtained from a continuous down-core X-ray fluorescence (XRF)

(Avaatech XRF Core Scanner III) scanning of the Lonar lake sediment core surface.

The relative abundances of the elements (Ca, Al, Ti, Si, and K) were recorded ev-
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ery 5 mm with the X-PIPS SXP5C-200-1500 detector from Canberra, while the tube

voltage was kept at 10 kV (Prasad et al., 2014). The Al counts were found to be

strongly correlated with the Ti, Si and K counts obtained from the XRF scanning

(see appendix C.2). Due to this, and combined with the findings of Basavaiah et al.

(2014), where they show the relation of the Al abundance to catchment erosion

as well as the lithogenic contents, we choose this as a representative proxy for the

Lonar lake surface erosion. We note that due to the difficulties in representing er-

rors in XRF measurements, we consider the proxy observations along depth to be

error free. This, however, does not change the fundamental objective of our anal-

ysis, which is to estimate the final proxy uncertainties in an analytical fashion and

to investigate how they are impacted by proxy–depth variability. If the proxy mea-

surements were to have errors, these would simply be added to the final errors, as

is indicated by equation A.14.

The final proxy records estimated are shown in Fig. 4.3. We compare our results

with proxy records obtained from a typical mean age model of the archive. The age

model involved OxCal P-sequence modeling with three sedimentological bound-

aries imposed a priori. Figure 4.4A and B compares the final proxy estimates ob-

tained using the OxCal P-sequence age model with those that were obtained using

our approach—for both Ca area and Al area. These figures indicate that the results

of our approach and the concomitant uncertainties contain within them the esti-

mates obtained by using median age estiamtes from OxCal. This is, in a sense, a

corroboration of our approach in the sense that it manages to provide resonable

proxy and uncertainty estimates while at the same time being true to the inherent

age unceratinties involved in the analysis.

4.2. Features of proxy uncertainty estimation

4.2.1. Proof of concept

The synthetic examples shown in Sec. 4.1.1 illustrate the validity of our approach.

In panel D of Figs. 4.1 and 4.2, the first finding to note is that the 95% confidence

band consistently contains well over 95% of the black curve, and the 50% band

consistently contains about half of the black curve. In addition to this general fit
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Figure 4.4. Comparison of results with OxCal. The proxy records esti-

mated by the present approach (red, dotted) compared to proxy records

obtained by using an OxCal P-sequence age model (dark gray) for the

groundwater inflow (Ca area, A) and surface erosion (Al area, B) proxies

from Lonar lake. Legend for the confidence bounds to the Bayesian proxy

estimate is same as in Fig. 4.3, panels D and F.

between the true record and the estimated confidence bands, one can compare

the median estimate (red dotted curve) with the true record (black curve), and dis-

tinguish three broad regions: (a) the youngest portion of the proxy records (green

region), where the median estimates follow the true proxy series closely, and re-

produces even faster oscillations of 1/400 yr−1 (for the stalagmite) and 1/200 yr−1

(for the lake sediment core) accurately; (b) the intermediate portion of the proxy

records (orange region) where, for the most part, the median estimates show only

the slower sinusoidal component due to larger dating uncertainties but follow the

lower frequencies of the true proxy curves (1/2000 yr−1 for the stalagmite, and

1/1000 yr−1 for the lake sediment core) closely, and (c) the oldest portion of the

records (purple region), where the median estimates are almost flat curves due
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to the high uncertainties. The differences among these three regions are due to

the associated uncertainty of estimation of the proxy record which increases (as

seen from the confidence bands) progressively from the youngest to the oldest

portions of the record, becoming as large as the range of values in the end. The

proxy uncertainty depends strongly on the errors of the corresponding RM age

models (Figs. 4.1 and 4.2, panel B), which increases towards the oldest portion of

the cores as well, and the errors of the RM age models are themselves influenced

by the errors of the radiometric age measurements. We would like to emphasize

that the objective of our method is not to estimate frequencies or variability but to

represent the available knowledge about the proxy value itself at each given point in

time in the best possible way. The seeming inability of the proxy estimates to repro-

duce oscillations is a necessary consequence of the posed research question when

dating uncertainties are large. Still, in regions where the errors of measurement

are small, the estimates reproduce the oscillations at both frequencies.

This discussion highlights two crucial factors: (i) proxy estimation errors depend

on contingent errors of age measurements (and, to a large extent, the errors of

calibration and proxy measurements); and (ii) the interrelation between the esti-

mated proxy uncertainty and the variations that are resolved in the record. Both

these issues are discussed in the subsequent sections.

4.2.2. Factors impacting the uncertainty

Figs. 4.1–4.3, it is apparent that even though the proxies are measured to high pre-

cision along the depth of the respective archives, the uncertainty in the proxy value

for any given time point is not negligible. This is in agreement with the results of

earlier studies, e.g., Blaauw et al. (2007) and Breitenbach et al. (2012) and the illus-

trative example in Sec. 2.4. Also, the final uncertainty is not the same as the error

of the proxy-depth measurements. The confidence bands span the whole range

of values of the proxy for error levels of ≈ 5–10% of the radiometric age measure-

ments.

At a first glance at Figs. 4.1–4.3, it is obvious that the final proxy uncertainty is in-

fluenced by the calibration uncertainty, RM age model uncertainty, and the proxy
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measurement error (if any). However, a closer inspection of Fig. 4.3 D and F around

3–4.5 kBP reveals an additional factor. At around 3–4.5 kBP, we find that Al-area

has much higher uncertainty in comparison to Ca-area even though both have the

same calibration curve and age model. Moreover, even the proxy measurement er-

ror for both were considered negligible in the analysis. Then why is the uncertainty

much higher for Al-area?

To answer this, we proceed clockwise in Fig. 4.3 from the interval around 3–4.5

kBP to find that this range of calendar ages would roughly correspond to the depth

range of around 500–800 cm using the given calibration curve and RM age model.

The critical difference between the two proxies in this depth range is that the Al-

area has a much larger variance in comparison to the Ca-area. Thus, given the

same DWF, the Al-area proxy estimates would have a much larger spread relative

to the Ca-area.

To understand this in more detail, consider the schematic in Fig. 4.5. The proxy

curve shown in the figure has distinctively high fluctuations in the purple portion

of the curve and is then confined within a narrow band of values in the orange por-

tion. On the left side of the figure, we consider two points t1 and t2 on the calendar

age axis, such that the DWF w f
t1

(d x
j ) of t1 covers mainly the high variability region A

in Fig. 4.5 and similarly the DWF of t2 covers the low variability region B in Fig. 4.5.

Thus, we get a smaller uncertainty for the proxy at t2 than at t1 when we weight

the proxy values with the height of the respective DWFs. Hence, the variability of

the proxy measured along the depth also contributes to the final uncertainty of its

estimation.

The final uncertainty thus depends on four contingent factors:

• calibration uncertainty (if any),

• uncertainty of the RM age model,

• errors of measuring the proxy along depth, and

• variability of the proxy signal along the depth domain.
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Figure 4.5. Uncertainty of proxy estimations (schematic). The proxy

curve has high variations in the region A (purple) and low variations in re-

gion B (orange). Two time points t1 and t2 are chosen such that their cor-

responding DWFs cover most parts of regions A and B respectively. The

estimation uncertainty is far greater for the proxy estimate at t1 than for t2

because of the corresponding high variability of the proxy in region A. Note:

The final uncertainty of the proxy estimate is not equal to the correspond-

ing variability in the depth domain but is only proportional to it. Hence, we

denote the impact of proxy variability over depth (marked with the dashed

lines) on the final proxy uncertainty with an open-arc.

4.2.3. Variability of the proxy record

From Section 4.2.2, it is evident that the uncertainty of proxy estimation is influ-

enced by its own variability in the depth domain. However, the proxy uncertainty

is also closely related to the variability of the median proxy estimate as well. This

is seen in Figs. 4.1–4.3, where regions of high estimation uncertainty are associ-

ated with low variability of the median estimates along time, and less resolution of

higher frequencies, and vice versa. This does not mean that the proxy itself does

not have faster variations. It simply implies that, in regions with high proxy un-

certainty, we cannot reliably comment on the fast variations of the proxy. In order

to analytically quantify the various fast/slow varying components of the proxy and

their uncertainties in a thorough fashion we should in principle, as stated before,

proceed with a separate analysis. This is because the knowledge of the marginal
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proxy probability distributions are not sufficient to comment on the variations,

especially in the presence of non-negligible uncertainty of estimation.

The best one could say about the variability of the proxy-vs.-time in regions of

high dating uncertainty would be to estimate some aggregate measures of vari-

ability such as the slope or curvature of the proxy curve or the momentary am-

plitude of a certain sinusoidal component (at each calendar age). For example,

a simple way to obtain a “central" estimate of the slope dx/dt would be to use

MoTaBaR to find the mean estimates R = r (t ), D = d(r ), and X = x(d) that corre-

spond to given values T = t , R = r , or D = d , and then use the chain rule to cal-

culate dx/dt ≈ x ′(d(r (t )))d ′(r (t ))r ′(t ). Equivalently, in graphical terms, follow the

dashed lines from t via r and d to x and multiply the corresponding slopes of the

calibration curve r (t ), the RM age model d(r ), and the proxy-vs.-depth curve x(d)

that you encounter on the way (the calibration curve might have to be smoothened

for this). In a similar fashion, the second derivative can be estimated by applying

the product rule: d2x/dt 2 ≈ x ′′(d(r (t )))d ′(r (t ))2 r ′(t )2 + x ′(d(r (t )))d ′′(r (t ))r ′(t )2 +
x ′(d(r (t )))d ′(r (t ))r ′′(t ).

Finally, if the proxy-vs.-depth curve shows a sinusoidal component of amplitude

ξ and period length ∆d around depth D = d(r (t )) (as could be seen, e.g., from a

wavelet analysis), one can conclude that the true climate-vs.-time curve contains

a sinusoidal component around time T = t of the same amplitude ξ and a period

length that can be estimated as ∆t ≈∆d/d ′(r (t ))r ′(t ).

4.2.4. Interpreting the posterior probabilities

A critical point arising out of the discussions in the previous subsections is that the

final proxy estimate—such as the mean/median—when visualized over a contigu-

ous period of time, may not reveal short-time variations. For paleoclimatic studies

focussed on transitions taking place over short timescales this can be a major hur-

dle. Even in studies that wish to address climatic patterns operating in the higher

frequency region, a proxy estimate which does not resolve such frequencies is of

little practical utility.
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Figure 4.6. Interpreting the posterior proxy distributions. A, B. The

posterior distributions for Ca-area (in A) and Al-area (in B). For each cal-

endar age, we provide a probability distribution (indicated by the color-bar)

for the proxy along the horizontal proxy axis. C, D. Two randomly chosen

ensemble members (blue and green curves) for Ca-area (in C) and Al-area

(in D) out of all possible proxy records given the probability distributions in

A and B respectively. They retain the high frequencies, indicating that the

high frequency information is still contained in the posterior probabilities.
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We stress that it is misleading to conclude that the proxy record does not con-

tain high frequency components based on figures such as Figs. 4.1–4.3. As already

stated in the previous subsection, the fast varying components of the proxy are not

ruled out by the probability distributions. Rather, only in estimating the mean or

median, we might be unable to say anything about them with confidence.

To understand how this is possible, note that the primary and foremost result of

our approach is a marginal probability distribution of the proxy values at each

value of calendar age (shown in Fig. 4.6 A, B as a colormap). Such a visualization

is in principle similar to Figure 2 of Blaauw et al. (2007)—only that we obtain the

visualization from mathematical expressions, and not as a histogram of ensemble

members.

We now interpret the distributions as representing the probability densities of an

ensemble of possible proxy records. This means that each member of this ensem-

ble is a record that is a proxy for one of many possible past climatic histories that

fit the available set of measurements and data. This is shown in Fig. 4.6 C and D,

in which two such members of the ensemble are shown for each of the groundwa-

ter inflow and surface erosion proxies from Lonar lake. These records were con-

structed by drawing random numbers from each proxy probability distribution at

every calendar age under consideration. It is immediately clear that the individual

members of the ensemble retain the high frequency components as well. How-

ever, since we have no way of knowing which of the infinite possible ensemble

members actually constituted the actual climatic history, we have to estimate the

mean/median climatic history and estimate our confidence on this mean value.

The uncertainty bounds shown in this study represent the impossibility (given a

set of measurements) of determining precisely the mean proxy value and hence,

by extension, the mean paleoclimatic condition that it would represent.

In order to be able to have a narrow uncertainty range, efforts must be taken to

reduce the various sources of error that contribute to the final proxy error. We

discuss the possibilities and limitations of this in the next section.
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4.2.5. Reduction of uncertainty

Let us take the example of the Lonar lake observations and ask: how can we reduce

the final proxy uncertainty? For this, we have to look at the four factors that deter-

mine it. Among these, the calibration uncertainty cannot be reduced until a more

tightly constrained calibration curve is released, the proxy-depth variance is be-

yond our control, and the proxy measurement error is already set to zero. Thus, we

are left with the sole option of reducing the RM age model error (cf. Section 3.2.1).

This can be achieved in several ways, such as additional radiometric dating of the

archive, or by incorporating layer counted segments of the record that can provide

age–depth information with relatively less magnitudes of error. However, as we do

not consider layer counted data in our approach, we will consider below only the

effect of adding more radiocarbon dating points.

We might plan to make a few more measurements especially around those depths

where the RM age model is not very precise, e.g., at around 700 cm (Fig. 4.3B). Still,

the fact remains that a significant portion of the final uncertainty might also be

due to the intrinsic variance of the proxy along depth and we thus need to fully

understand exactly how much of the final uncertainty is contributed by the age

measurement errors. The highly non-trivial way in which the final uncertainty is

related to the RM age model uncertainty (via the DWFs) makes it almost impos-

sible to find a precise analytical answer to questions of the type: if we make two
14C age measurements at depths d1 and d2 with a maximum error of ε, what is the

fraction z by which the uncertainty at calendar age t is going to be reduced?

We can nevertheless get some insight into how much error is contributed by the

age uncertainty by considering a simple thought experiment. Let us assume that

we are able to reduce the RM age model uncertainty to zero by taking N error-free

radiocarbon age measurements at the precise depths of proxy measurements. In

this scenario, the variance of the DWF will solely depend on the calibration un-

certainty, and this, in conjunction with the proxy’s intrinsic variance, will deter-

mine the final proxy uncertainty. We can then compare the uncertainty levels of

the proxy before and after setting the age model error to zero. This is shown in

Fig. 4.7 for the Ca-area (panels A and B) and Al-area proxies (panels C and D). We
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Figure 4.7. Contribution of age uncertainty to proxy estimation uncer-

tainty. A, C. Proxy records for Ca-area (in A) and Al-area (in C) for the

original set of observations (red curves for the median, light blue area for

95% confidence bands) along with the proxy records after setting the RM

age model uncertainty to zero (dark gray curves for the median, orange

area for 95% confidence bands). B, D. Uncertainties for each time point

(95% confidence bands shown in A and C) and for the two cases: original

observations (light blue); and after removing RM age model error (orange).
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can see from the figure that the final uncertainty of the proxy is not reduced by a

great amount (panels B and D)—even when the uncertainty of the RM age model

had been set to zero. Among the two proxies, the reduction of uncertainty in the

Ca-area record is more than that of the Al-area record. This is because the Al-area

signal has relatively higher variability than the Ca-area signal (c.f., Fig. 4.3 C and

E), and so the relative contribution of the age uncertainties to the final proxy un-

certainty is less for the Al-area record than the Ca-area record. In both records,

we find that a reduction of age uncertainty helps to resolve some higher frequency

variations than before. However, this improvement is not a drastic one. Further,

even if age uncertainty is reduced to zero, the proxy records still differ a great deal

from the records constructed by using the OxCal P-sequence model as shown in

Fig. 4.4.

Coming back to the issue of improving the Lonar proxy records with the help of

additional measurements at around 700 cm, we first note that these depths would

roughly correspond to calendar ages of around 4–5 kBP (see Fig. 4.3B: starting at

around 700 cm, and going counter-clockwise from the depth axis to the RM age

model curve to the calibration curve to the calendar age axis). From Fig. 4.3 we

find that the region around 4–5 kBP show almost no improvement by setting the

age uncertainty to zero! This indicates that the Lonar lake radiocarbon age mea-

surements are not the primary source of the final proxy uncertainties. Rather, it is

more likely that the major part of the proxy uncertainties in the Lonar records are

due to the proxy fluctuations in the depth domain and the calibration uncertain-

ties.

The thought experiment illustrates several points:

• Even though the final uncertainty of proxy estimation is linked to the age un-

certainty in a complicated manner, it is possible to understand the relative

contributions of the age errors by setting them to zero.

• The final proxy uncertainty can, in some cases, be determined more by its

own variability in the depth domain, rather than the age uncertainty.

• Given a set of observations and a RM age model, it is possible to obtain a
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limit of the precision with which the proxy can be estimated.

• The variability of a proxy signal is inherently linked to the kind of paleocli-

mate variations that it will allow to be investigated, and also to the level of

precision with which such studies can be carried out.

A thought experiment such as this one can also be potentially used to devise an

optimal strategy for dating a newly discovered paleoarchive such that redundant

dates are not measured. This is the scope of further future work.

4.2.6. Precise, error-free timescale

One important consequence of having an age uncertain timescale for represent-

ing proxy records is that the inter-comparison of records from different archives

become difficult and ambiguous. In the approaches outlined in this dissertation,

we overcome this difficulty because of the use of conditional probabilities. The

use of conditional probability implies that every time we consider a particular cal-

endar age and then estimate the DWF for it, we ‘know’ the calendar age precisely

and then obtain the likelihoods of the proxy depths for that age. This means that

the final proxy estimate we obtain is represented on a timescale that is error-free,

i.e., it is without any uncertainty. Such a notion of a precise timescale has already

been introduced for speleothems in Breitenbach et al. (2012), where it is termed

as an “absolute” timescale which corresponds effectively to the time of deposition

of the proxy material on the the archive. They illustrate the utility of an error-free

timescale with the help of Monte Carlo age modeling approaches. In the present

paper, we generalize this idea for all radiometrically dated archives and also pro-

vide an analytical framework for it.

Typically, if we represent paleoclimate proxies on an age uncertain time scale, the

interpretations of paleoclimate events are constrained by not being able to know

when exactly an event took place in the past. This is overcome if the uncertainty is

transferred from the age axis to the proxy axis ensuring that the timescale of rep-

resentation is always error-free. An analogy to visualize this process is to think of

the uncertainty as a bag of error that can be carried either by the time axis or the
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proxy axis. In paleo-investigations till now, this bag of error had been left on the

shoulders of the time axis, but we choose to transfer it to the proxy instead. This

comes at a price—because in doing so, we are not certain any longer about the high

frequency variability of the proxy. Thus, it is not a question of whether this partic-

ular representation of proxies is more correct than the conventional age-uncertain

one—the choice of representation is context dependent and is determined by the

goals of the paleoclimatic investigation. One can conceive a study in which the in-

terest in the high frequency variability is outweighed by the problems of vagueness

induced by an age-uncertain time axis. In such a scenario, it is reasonable to use

an existing framework of age modeling that establishes a representative set of ages

for each depth level of the core, provided the approximations used for dealing with

the irregular calibrated age distributions are reasonable.

A methodological advantage of having an error-free time axis is that time series

analysis methods are more readily applicable to them because most time series

analysis techniques are conceived with precise time ordering of data sets in mind.

Although there has been recent work that are able to extract the climate spectrum

(Mudelsee et al., 2009) as well as timescale dependent trends with errors (Mudelsee

et al., 2012), interpretations of time series analyses such as the construction of pa-

leoclimate networks (Rehfeld et al., 2012) have to be cautious of the time uncer-

tainties that were inherent in original data and were left unresolved. Our approach

provides a clear platform to carry out such analyses and interpret the results.
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Chapter 5
The limits of given information

Up until now, we have dealt with various issues regarding the estimation of proxy

records and their associated uncertainties. In the process, we presented a se-

quence of time-ordered probability distributions from which the mean/median

proxy estimates and related measures of dispersion such as the variance or inter-

quartile ranges can be obtained. However, in order to learn more about the paleo-

climatic conditions and variability underlying the proxy records, we need to carry

out further analyses such as the estimation of autocovariance function, power

spectra, correlations between different proxy records, and so on. In order to do

this, we first need to understand the utility as well as the limitations of what these

proxy distributions represent and how they can be used. To some extent, we tried

to stress this point in Section 4.2.4. In this chapter, we reiterate this fact and try to

highlight the cases in which the proxy distributions are potentially useful. We also

discuss the additional information required to extend the horizon of utility of the

posterior distributions.

5.1. Non-independence between proxy estimates at

two time points

Figure 5.1 illustrates the structure of information that we have in our hands at

the end of applying our methods presented earlier to proxy observations obtained

from natural archives. Before we actually derive the mean/median estimates and

associated parameters of uncertainty, we fundamentally have a sequence of pos-

terior probability distributions. The first fact to note is that these are marginal dis-

tributions with respect to time in that they tell us only the probability of getting a
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5. The limits of given information

Signal
Tim

e

Figure 5.1. Time-ordered sequence of probability densities. This

schematic illustrates the information at hand after we apply the methods

described earlier. On the bottom plane, we have the time axis and the axis

denoting the values of the signal (i.e., the proxy). The colored curves repre-

sent the posterior marginal probability densities derived in Chapter 3. The

height of the curve at a given time denotes the probability of the value of

the signal/proxy at that time.

particular proxy value at a chosen point of time. They do not provide any informa-

tion about the joint probability of the proxy values at two different points of time.

This is because we have no knowledge of the (non-zero) covariance between the

marginal distributions at two time points. In special cases, it might turn out that

the derived marginals are, in fact, independent of each other (i.e. the covariance

between the proxy probabilities at two different time points is zero), however, it is

unjustified to assume that this is true in general. Second, it is necessary to under-

stand that we have no way of estimating the covariances between the given set of

time-ordered marginal densities from the densities themselves. This is because:
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Figure 5.2. The importance of knowing the covariance. Two marginal

distributions P (x1|t1) and P (x2|t2) are chosen for two given time points

T = t1 and T = t2 such that they are described by the normal distributions

N (5,2) and N (10,3.5) respectively. The marginal distributions are shown

as orange bars whereas the bivariate normal joint distribution is shown as

a scatter plot for correlation values 0.2 in A and 0.8 in B.

(a) we do not have observations, i.e. samples, recorded from these probability

densities that might reveal to us the underlying covariance structure among them,

and (b) it is not possible to uniquely determine the covariance structure (and by

extension, the joint distribution) for a given set of marginals from the marginals

themselves.

To further highlight why the knowledge of the covariance is crucial in carrying out

further analyses, let us consider the following example (as shown in Figure 5.2)

of just a pair of marginal densities corresponding to two different time points t1

and t2, where the indices 1 and 2 denote time instances. The corresponding proxy

values at t1 and t2 are then represented by the random variables X1 and X2 re-

spectively. According to our earlier analysis on proxy estimation we are given the

posterior marginal densities P (x1|t1) and P (x2|t2). Let us assume, for the sake of

illustration, that these two marginals are well-described by two normal distribu-

tions N (5,2) and N (10,3.5). Here N (µ,σ2) denotes a normal distribution with
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5. The limits of given information

mean µ and variance σ2). Given the correlation (which is proportional to the co-

variance) between the two marginals, we can sample the joint distribution numer-

ically using the bivariate normal form. Figure 5.2 shows the two marginals on the

two axis and a sample of 5000 points on the (X1, X2) planes for two different val-

ues of the correlation—0.2 and 0.8. We find that the resulting joint distribution, as

observed by the density of points on the (X1, X2) plane is very different in the two

cases. From this, we can infer that (a) the joint distribution is not unique for the

given pair of marginals, and (b) further analyses carried with an incorrect estimate

of the covariance might lead to drastically different conclusions.

At this point, a question that arises is: Can we generate ensemble members from

the given marginal distributions and numerically estimate all further time series

characteristics from the ensemble? The answer to this is that, without the covari-

ances, this too is not possible. This relates to the second point mentioned above—

because the joint distribution is not uniquely determined by just the marginals,

it is not possible to generate an ensemble based on the marginals alone as each

ensemble member is effectively the joint probability of the proxy value at all the

time points. If we were to generate an ensemble by choosing random numbers, at

each time point, that conform to the marginal distribution at that time point, this

would be equivalent to assuming that marginal densities are independent!

In the following section, we describe a few time series characteristics and the ways

in which the joint distribution (of the proxy at pairs of time points) plays a role in

determining these characteristics.

5.2. The role of the joint distribution

To illustrate the importance of the joint distribution of the proxy values at two time

points, we consider several time series characteristics and derive the mathematical

expressions for them based on the given sequence of posterior proxy densities.

One of the first characteristics that might be of interest is the expectation value

of the proxy with respect to time. Note that this expectation is different from the

expectation of the proxy at a given point of time (as shown in equation A.13). The

expectation value of a random variable depends on the probability density used to

estimate it and since we are now interested in obtaining the expectation value over
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5.2. The role of the joint distribution

time, we have to first derive the total probability of a proxy value over a period of

time. This is given as

P (x) =
∫

dt P (x|t )∫
dt

. (5.1)

Using the above probability density, it is possible to show that the expectation of

the proxy over a period of time is equal to the time average of the expectation val-

ues of the proxy at each time point (i.e. x̄(t ) from equation A.13).

µX = E [X ] =
∫

dx x P (x) (5.2)

=< x̄(t ) > . (5.3)

Similarly, we can derive the varianceσ2
X of the proxy over a period of time and with

respect to the expectation estimated above.

σ2
X =

∫
dx (x −µX )2 P (x) (5.4)

=<σ2(t )+ x̄(t )2 >−µ2
X . (5.5)

We thus find that the expectation value and the variance of the proxy over an ex-

tended period of time is uniquely determined from the expected values and vari-

ance of the proxy at individual time points.

Next we estimate the autocovariance function of the proxy over a period of time.

For this let us assume that X t and X t+τ are random variables denoting the proxy

value at a given time t and and at times t +τ respectively. In such a notation, the

autocovariance function %X (τ) is simply

%X (τ) =E [X t X t+τ]−E [X t ]E [X t+τ] (5.6)
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5. The limits of given information

The first term of equation 5.6 involves the joint distribution PX t X t+τ(xt , xt+τ) of the

proxy value at times t and t +τ which is unknown to us and thus, the autocovari-

ance function of the proxy cannot be estimated exactly, in principle. If, in special

cases, we can motivate that the proxy values at two distinct points are sufficiently

independent we can hope to factorize the joint distribution as PX t (xt )PX t+τ(xt+τ)

and thus estimate the above integral. A more detailed derivation of the autocovari-

ance relation is given in appendix B.2.

However, the case of the crosscovariance %X Y (τ) between two proxy records X and

Y is slightly different,

%X Y (τ) = E [X t Yt+τ]−E [X t ]E [Yt+τ] (5.7)

where the joint probability PX t Yt+τ(xt , yt+τ) can in fact be broken down to condi-

tionally independent factors PX t (xt )PYt+τ(yt+τ) such that the final expression for

the crosscovariance reduces to

%X Y (τ) = 〈x̄(t )ȳ(t +τ)〉−〈x̄(t )〉 〈ȳ(t +τ)〉. (5.8)

Next, to derive the power spectrum of the proxy, we can use the Wiener-Khinchin

Theorem to explicitly write the power spectral density SX (ω) in terms of the auto-

covariance function as,

SX (ω) =mod
[∫

dτ %X (τ)exp(−iωτ)
]2

. (5.9)

Equation 5.9 shows that, since the autocovariance function cannot be estimated

without the joint distribution or the assumption of independence between the

proxy probabilities at two time points, the power SX (ω) faces the same limitation

as well.
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5.3. Sources of covariance: Sediment growth and calibration

Another relevant characteristic that we wish to estimate is the recurrence plot of

the proxy dynamics. In principle, a recurrence plot constructed from an observed

time series tries to first encode the recurrence information of the dynamics in a

binary recurrence matrix Ri j with entries 1 or 0. Ri j = 1 implies a recurrence be-

tween the phase space trajectory of the system at times i and j respectively, and

Ri j = 0 implies the converse. To understand the recurrence properties of the proxy

given the set of posterior probabilities, we first need to estimate the recurrence

probabilities based on them. The probability that the proxy value Xi at time i re-

curs within an ε-neighborhood of the proxy value X j at time j is given by,

Pi j (ε) =
∫

dxi

∫
Nε(xi )

dx j PXi X j (Xi , X j ), (5.10)

where Nε(xi ) denotes the ε-neighborhood of xi . Here too, we see that the joint

distribution is the central quantity of interest required to estimate the recurrence

probabilities and, in the absence of which, we are either unable to estimate it pre-

cisely or are forced to assume independence.

The dynamical characteristics considered in this section and the role of the joint

distribution in their estimation are listed in Table 5.1. The table summarizes the

fact that, barring the time expectation, variance, and crosscovariance, the other

characteristics cannot be estimated without the knowledge of the joint probability

density of the proxy at a pair of time points.

5.3. Sources of covariance: Sediment growth and

calibration

At this point, it is essential that we understand as to why is it that we cannot justify

the assumption of independence between the posterior proxy densities. This is il-

lustrated by a derivation of the posterior joint probability density of the proxy for a

pair of time points, in which we try to express the joint probability in terms of the

measured information such as the age-depth measurements, the proxy measure-

ments, and the calibration curve.
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5. The limits of given information

Table 5.1. The role of the joint distribution in system characteristics

Name Symbol Mathematical expression Joint density

Time expectation µX < x̄(t ) > No

Time variance σ2
X <σ2(t )+ x̄(t )2 >−µ2

X No

Autocovariance %X (τ) E [X t X t+τ]− E [X t ]E [X t+τ] Yes

Crosscovariance %X Y (τ) 〈x̄(t )ȳ(t +τ)〉−〈x̄(t )〉 〈ȳ(t +τ)〉 No

Power spectrum SX (ω) mod
[∫

dτ %X (τ)exp(−iωτ)
]2

Yes

Recurrence probability Pi j (ε)
∫

dxi
∫
Nε(xi ) dx j PXi X j (Xi , X j ) Yes

For this, let Xi , i = 1,2, be the two random variables that describe the proxy values

at two time instants T = t1 and T = t2 respectively. Also, let Zi and Ri , i = 1,2, be

the random variables related to the depth and radiocarbon axes for the X1 and X2

respectively. Proceeding analogously to the single proxy case, we can determine

the joint posterior density of the proxy at the two time points as,

P (x1, x2|t1, t2) = Weighted mean of the product P (x1|zx1
1 )P (x2|zx2

2 ), (5.11)

where the weights are given by a DWF w f
t1t2

(zx1
i , zx2

j ) defined on both the depth

variables Z1 and Z2,

w f
t1t2

(zx1
j1

, zx2
j2

) :=
Ï

dr1dr2 P (r1,r2|zx1
j1

, zx2
j2

) P (r1,r2|t1, t2). (5.12)

[Note: A more detailed derivation of the above is provided in appendix B.]

We now have to consider the two terms on the right-hand side of Equation 5.12 as

the DWF defined here is crucial in estimating the posterior joint densities. In order

to understand how we could go about estimating these joint densities we have to
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5.3. Sources of covariance: Sediment growth and calibration

first attempt to understand the underlying random processes that give rise to such

joint probabilities.

Sediment growth

The first term on the right-hand side of Equation 5.12, i.e., P (r1,r2|zx1
j1

, zx2
j2

), de-

notes the joint probability of the radiocarbon ages given two distinct depth points

along the core. This is inherently related to the question: if we know that the ra-

diocarbon age at depth zx1
j1

is r1, what can we say about the radiocarbon age r2 at

a second depth zx2
j2

? Does this belief about the value of r2 change if we had not

known anything about r1? The answer to the second question is a ‘yes’ in most

situations, as the growth of a sediment core is not completely random and thus,

knowing the age at a particular depth influences our beliefs about the age at any

other given depth. This implies that the joint probability cannot be broken down

to the product of the marginal probabilities P (r1|zx1
j1

) and P (r2|zx2
j2

) because we

cannot assume independence in this context. Thus we have to either estimate

the joint probabilities from the measured age–depth radiocarbon measurements

themselves using regression (along with some a prior assumptions) or assume a

parametric growth model, such as a Markov Chain, and then use Bayesian para-

metric estimation methods to sample the joint probabilities. Out of these two op-

tions, to the best of our knowledge, almost all existing regression techniques are

inadequate to provide the joint probabilities, while on the other hand, parametric

growth models with Bayesian estimation methods are already quite popular in the

age-depth research community (such as, e.g., Heegaard et al. (2005)).

Radiometric calibration

The second term on the right-hand side of Equation 5.12, i.e., P (r1,r2|t1, t2), de-

notes the joint probability of the radiocarbon ages given two distinct time points,

i.e., calendar ages. This information is essentially related to the radiocarbon cal-

ibration method. Based on the model outlined in Heaton et al. (2009) it is clear

that the calibration curve is based on a Markov Chain model where the the be-

liefs about the radiocarbon age at one calendar age is critically dependent on our
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5. The limits of given information

knowledge of the radiocarbon age at any other calendar age. As in the previous

case, this would mean that the joint density in question cannot be factorized into

two independent components. However, the critical difference is that we are de-

pendent on the IntCal researchers to provide us with the necessary covariance in-

formation which can help to estimate/derive the joint probabilities. Heaton et al.

(2009) state in their introduction that “by generating plausible samples, given the

calibration data [. . . ] one is able to obtain posterior covariances between all points

on the curve together with any other summary statistic desired”. However, even

until the recent release of the IntCal calibration curve, viz. IntCal13, the covari-

ance information of the radiocarbon ages with respect to calendar ages has not

been made available.

From the above discussion, we can conclude that the covariance of the proxy prob-

abilities at two given calendar ages arise from two sources: (a) the sediment growth

and (b) the radiocarbon calibration. Out of the two, it is possible, with the help

of an appropriate growth model, to estimate the covariances that arise from the

growth processes of the core. However, the covariance information related to the

radiocarbon calibration has to be provided by the IntCal research group and it

is, in principle, possible to estimate this as well. Therefore, for archives that are

dated with U/Th dating and that require no calibration of the measured radio-

metric dates, the covariance of the proxy probabilities at two different times arise

entirely from the sediment growth and it is thus possible, in theory, to carry out

all the necessary data analysis methods mentioned in Section 5.2. For the case of

radiocarbon dating, we propose that the radiocarbon, and especially the IntCal,

communities acknowledge the importance and the necessity of the covariance in-

formation related to calibration in the analysis of proxy dynamics and uncertainty,

and thereby make this information available in a form that can be used by paleo-

climate researchers.

Notwithstanding these limitations, in the following chapter, we present some ideas

on how one can proceed to analyze the recurrence characteristics of the proxy

record without the knowledge of the joint distribution. We shall attempt to use

the recurrence analysis framework in order to infer dynamical characteristics from

paleoclimate proxy records as obtained by our approach.
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Chapter 6
Recurrence networks of paleoclimate data

The primary concern of this chapter is to analyze dynamical characteristics of pa-

leoclimate proxies keeping in mind the uncertainties that are inherent in it. We

present here a new approach to reconstruct the dynamical recurrences of a dataset

which is provided as a time-ordered sequence of correlated probability densities

rather than a precise time series. This is particularly challenging as the uncertain-

ties of the probability densities at different time points are correlated (cf. Chapter

5). Using bounds on the difference distributions of each pair of probability densi-

ties, we are able to approximate the qualitative features of the recurrence network

adjacency matrix A of the dynamical system assumed to be underlying the given

paleoclimatic dataset. In the following sections, we first provide a brief overview of

the bounds of the recurrence probabilities that are critical to the rest of the analy-

sis, and a consequent validation using the bivariate normal distribution. We then

demonstrate the ability of the method to reproduce qualitative features of the orig-

inal recurrences of the system (for low levels of uncertainty) using representative

exemplary systems.

In the context of sedimentary paleoclimate proxy records, our analysis is particu-

larly relevant and significant because now more than ever, increasing number of

paleoclimate records have enabled researchers to gain newer insights about past

climates. In particular, speleothem-based isotopic climate proxies from various

parts of the world have provided well-dated and progressively precise climatic

records at timescales ranging from a few decades to hundreds of thousands of

years (McDermott, 2004). It is necessary to develop theoretically sound and practi-

cally pertinent methods that are able to reveal depper insights from paleo-datasets

regarding paleoclimatic conditions and variability.
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6. Recurrence networks of paleoclimate data

Note that we use the framework of recurrence networks in the analysis presented

in this chapter. Recurrence networks allow the analysis of individual time series

with complex network tools and techniques (Marwan et al., 2009). By represent-

ing the recurrences of a given system as a complex network embedded in the phase

space, we can characterize dynamical features and transitions from a given dataset

(Donner et al., 2010). Recent development of its theoretical underpinnings have

furthered the understanding of the complex network measures derivable from a

given time series (Donges et al., 2012). Recurrence network analysis of paleocli-

mate data has also recently shed light on the impact of climatic-variability transi-

tions on human evolution over the last 5 million years (Donges et al., 2011).

We posit that communities in recurrence networks correspond to parts of the phase

space trajectory where the dynamics are locally similar. In the context of real-

world complex networks, communities typically denote parts of the network that

are more strongly connected within themselves than to the rest of the network

(Newman, 2004c, 2006). Although there are various ways of identifying communi-

ties in a given complex network, we use a modularity-based approach as proposed

by Newman (2004b). In particular, we identify the probability of recurrence matrix

as a weighted adjacency matrix and obtain the modularity with respect to a chosen

partition (Newman, 2004a).

6.1. Recurrence networks

Recurrence patterns of dynamical systems provide a useful tool for the character-

ization of dynamical behavior by observing time series generated from them. In

the past few decades, recurrence plots in particular have been used to analyze and

study a wide variety of complex systems. Essentially, a recurrence is said to occur

when the phase trajectory of the dynamical system gets close to a previously vis-

ited part of the phase space (shown in Fig. 6.1). By considering all sampled points

of the phase trajectory, and with a predefined recurrence threshold εwe can define

a recurrence matrix, each entry of which is either 1 whenever a given pair of time

points i and j fall within each other’s ε-neighborhoods, or 0 otherwise (cf. Marwan

et al. (2007) and Chapter 7 for a more detailed treatment of recurrence plots).

Analogously, recent studies have put forth the idea of equating the recurrence ma-
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ε

Figure 6.1. Recurrences of dynamical systems. An idealized schematic

of a phase space trajectory of a dynamical system is shown here in blue.

The black circles represent points sampled on the trajectory that give rise to

the observed trajectory. the light red shaded circle around the point marked

in red denotes its recurrence neighborhood of size ε. We can see that it

has three sampled points as its neighbors according to this definition.

trix with an adjacency matrix of a network whose nodes are the sampled phase tra-

jectory time points, and whose edges represent links between points in the phase

space that are within each other’s ε-neighborhoods (Marwan et al., 2009; Donner

et al., 2010). Thus the three black points that fall within the light red circle around

the red point in Fig. 6.1 would be joined to the red point with links in the network

corresponding to the depicted neighborhood size ε. Such a complex network is

referred to as a recurrence network, whose adjacency matrix A is given by,

A =
Θ(ε−‖~xi −~x j‖), i 6= j

0, otherwise
(6.1)

where i , j = 1,2, . . . , N represent time indices,Θ(·) the Heaviside function (i.e.,Θ(·) =
1 for non-negative values and 0 otherwise) and ‖ · ‖ denotes an appropriate dis-

tance metric defined for a point~xi in the phase space trajectory of the dynamical

system X . Note that Ai i = 0 by definition in order to avoid self-loops.
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6. Recurrence networks of paleoclimate data

A crucial advantage of representing a given time series (and by extension the cor-

responding phase space dynamics) as a network in phase space is that it allows us

to study the geometrical and topological properties of the dynamics with complex

networks tools and techniques (Donner et al., 2011). The analytical theory behind

recurrence networks were further elaborated in Donges et al. (2012), illustrating

the link between the discrete complex network based measures such as degree,

clustering and betweenness to their continuous equivalents in terms of invari-

ant measures of the phase space trajectory. The studies have collectively shown

that recurrence networks are useful in classifying different dynamical behavioral

regimes from observed time series (cf. e.g., Zou et al. (2010)).

Recurrence networks have also been applied to paleoclimate datasets and have

helped identify nonlinear shifts in paleoclimate variability from an analysis of dust

flux proxies going back around 5 Ma BP from marine sediment cores around north

and east Africa (Donges et al., 2011). This study reports three major epochs of cli-

matic regimes in the Middle Pliocene, Early Pleistocene and Late Pleistocene, the

onsets and ends of which were possible related to significant events in the history

of hominid evolution. Another recent study has used recurrence networks to sim-

ilarly identify nonlinear regime shifts in the Asian monsoon during the Holocene

from an analysis of 10 spatially separated records spread over the Asian monsoon

domain (Donges et al., 2014).

Similarly, in the following sections, we use recurrence networks to identify dynam-

ical transition events in paleoclimate datasets. However, we use the concept of

communities in networks in contrast to the earlier studies, which classified the

dynamics based on complex network measures such as clustering coefficient and

average path length. Note that the recurrences in our analysis are defined with

respect to an ε-ball whereas there are, in practice, many different approaches in

which we can potentially define the recurrence of a system (Marwan et al., 2007).

However, since we have the problem of dealing with a sequence of probability dis-

tributions instead of time series, we choose, as a first step, the simplest approach

of defining recurrences with an ε-ball.

70



6.2. Bounds on pairwise recurrence probabilities

6.2. Bounds on pairwise recurrence probabilities

To restate our problem of analyzing the probability distributions arising from the

method in Chapter 3: in lieu of a time series xt , t = 1,2, . . . , N , we are provided a se-

quence of (marginal) probability distributions Pt (xt ), t = 1,2, . . . , N , with the cor-

responding probability densities %t (xt ). The random variables X t at a given time

T = t are neither identical nor independently distributed. Neither do we have any

information regarding the joint distributions of the variables Xi and X j at times

t = i and t = j . The challenge is to analyze the recurrence properties of the given

data, particularly in the context of the framework of recurrence networks, with

proper estimations of the recurrence network measures along with uncertainties

of estimation. These uncertainties could arise both due to imprecise measurement

as well as due to incomplete specification of covariance relations.

The main idea behind our approach is: since the recurrence properties depend

primarily on the pairwise differences xi −x j we use established theorems from the

domain of copula theory to obtain the upper and lower bounds for the probability

distributions of these pairwise differences. These bounds depend solely on the

marginal distributions and they allow us to estimate bounds on the probability

that the difference xi −x j is less than a given threshold ε.

Consider the random variable Zi j = Xi−X j whose cumulative distribution PZi j (zi j )

denotes the total probability that xi − x j ≤ zi j . In this terminology, the probability

of recurrence within a neighborhood of size ε is given by:

Pi j (ε) = PZi j (ε)−PZi j (−ε). (6.2)

The best-possible upper and lower bounds mi j and Mi j for the distribution Zi j

are given in Williamson and Downs (1990):

mi j (zi j ) ≤ PZi j (zi j ) ≤ Mi j (zi j ), (6.3)
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6. Recurrence networks of paleoclimate data

where

mi j (z) = max{sup
u

fi j (u, zi j ), 0} (6.4)

Mi j (z) = min{inf
u

fi j (u, zi j ), 0}+1 (6.5)

fi j (u, zi j ) = Pi (u)−P j (u − zi j ). (6.6)

Using Eqs.6.2-6.6, we can construct the bounds on Pi j (ε)

P l
i j (ε) ≤ Pi j (ε) ≤ P u

i j (ε), (6.7)

where

P l
i j (ε) = max{mi j (ε)−Mi j (−ε),0} (6.8)

P u
i j (ε) = min{Mi j (ε)−mi j (−ε),1}. (6.9)

To illustrate the validity of the above bounds on the recurrence probabilities, we

consider two normal distributions with different means and standard deviations

equal to 1. We then vary the correlation between these two distributions from

-1 to 1 in steps of 0.1 and sample their joint distribution using a standard rou-

tine for the sampling a bivariate normal distribution available in Numeric Python

(NumPy). Following this, we estimate the mean probability of recurrence from

500 samples of size 1000. Also, for a given set of marginal distributions (specified

by the marginal means and standard deviations) we estimate the upper and lower

bounds from the marginals for different values of the neighborhood size ε using

Eqs. 6.7-6.9.

We observe from the results (Fig. 6.2) that the numerically obtained recurrence

rates (colored curves) are always within the analytically derived upper and lower
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Figure 6.2. Pairwise bounds on recurrence probabilities. The probabil-

ities of recurrences for different values of ε are shown for different values of

the correlation of the marginals (shown here as colored curves). The upper

and lower bounds for the probabilities of recurrence according to Eqs. 6.7-

6.9 are shown as black curves. The means of the marginal distributions are

µ1 =−4, µ2 = 2 for A and µ1 =µ2 = 0 for B.

bounds (black curves). However, the estimation of the bound for low values of

ε is extremely bad for the case when the means of the marginals are the same

(Fig. 6.2B). Another point to note from Fig. 6.2 is that the true recurrence rates do

not show any particular pattern of distribution between the two analytical bounds.

6.3. Recurrence networks from pairwise bounds

The pairwise bounds on the recurrence probabilities only give us an upper and

lower limit on the probability of recurrence of the system between a given pair of

time points. In other words, they give us limits to our confidence as to how likely

is it that a given pair of two points could have recurred, provided that we know,

with some uncertainty, how they are distributed at those times. By themselves,

these bounds do not tell us exactly how likely it it is that the two points could have

recurred given the uncertainties of the data.

What we essentially learn from Eq. 6.7 is that given the sequence of probability dis-

tributions Pt (xt ), we can confine the probability of recurrence Pi j (ε) only up to a
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6. Recurrence networks of paleoclimate data

finite interval [P l
i j (ε),P u

i j (ε)] ⊆ [0,1]. Note also that we have no way of knowing

how the actual probability of recurrence is distributed within the bounds P l
i j (ε)

and P u
i j (ε). Still, if we consider A to be the true adjacency matrix of the system un-

derlying the given data, we can compute the total marginal probability that Ai j = 1.

For this we need to take the marginal probability Pi j (pi j ) which is obtained by in-

tegrating out all the other remaining N 2 −1 combinations of i , j from the full joint

probability P (p11, p12, . . . , pi j , . . . , pN N ).

P (Ai j = 1) =
∫ P u

i j

P l
i j

d pi j P (Ai j = 1|pi j )Pi j (pi j ) (6.10)

=
∫ P u

i j

P l
i j

d pi j pi j Pi j (pi j ) (6.11)

= EPi j [pi j ] (6.12)

Thus, the total probability that Ai j (ε) equals one is simply the expectation value of

the random variable Pi j (ε) over the interval [P l
i j (ε),P u

i j (ε)]. Assuming that Pi j (ε)

is symmetrically distributed in this interval we find that

%(Ai j = 1) =
P l

i j +P u
i j

2
. (6.13)

We define a probability of recurrence matrix P whose elements Pi j equals the above

probability given in equation. 6.13. In this framework, we postulate that recur-

rence characteristics of the ‘true’ adjacency matrix of the recurrence network A is

qualitatively and accurately describable by P. For low to mid levels of noise, the

true adjacency matrix is described A as

Ai j =
1, with probability Pi j

0, with probability 1−Pi j .
(6.14)

Note that we keep Pi i = 0 by definition in order to avoid self-loops in the recur-

rence network.
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Figure 6.3. The probability of recurrence matrix P. We choose three

representative systems at low sampling noise levels—white noise (A, B),

x-component of the chaotic Rössler with a = b = 0.2, c = 5.7 (C, D), and

Brownian motion (E, F). The left column shows the 1-dimensional Euclidean

distance matrices (A, C, E), whereas the right column shows the derived

probability of recurrence matrices as given in Eq . 6.12 (B, D, F). Note the

reversed color bars between the two columns, to allow better visual com-

parison. Low distances correspond to high probabilities of recurrence.
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6. Recurrence networks of paleoclimate data

The entries of the probability of recurrence matrix Pi j represent our confidence as

to whether the time points t = i and t = j could have recurred or not. This ‘con-

fidence’ is always with respect to a given choice of the recurrence threshold ε and

the marginal distributions Pt (xt ) which encode the uncertainties of measurement.

Pi j = 1 implies that we are absolutely sure that i and j are recurring time points,

whereas Pi j = 0 implies that we are absolutely sure that i and j are non-recurring

time points.

P incorporates the qualitative features of the recurrences of the dynamical sys-

tem from which the initial marginal distributions are obtained (Fig . 6.3). We inter-

pret it as a weighted adjacency matrix representative of the recurrence network

fo the dynamical system, and whose entries represent the strength of the links

between two nodes in the recurrence network. In Fig. 6.3, we take three repre-

sentative datasets— white noise, the chaotic Rössler system (equation D.5), and

Brownian motion (equation D.6), and show the distance matrices along with the

derived probability of recurrence matrices P for low levels of noise. To simulate

correlated time-ordered probability distributions, we first generate a ‘true’ time se-

ries of the chosen system, and then derive a ‘sampled’ time series from a Gaussian

kernel filter of a fixed bandwidth over the ‘true’ time series. Using the mean and

standard deviations of the ‘sampled’ time series as the parameters for the initial

given marginals Pt (xt ), we obtain the probabilities of recurrence as discussed in

this chapter. Note that we do not embed the datasets to obtain the recurrences as

it is non- trivial to define embedding for a series of non-independent probability

densities, and is beyond the scope of this analysis. Apart from there being a gen-

eral visual correspondence between the left and right columns of Fig. 6.3, we find

that low distances in the true times series (left column) correspond to high prob-

abilities of recurrence as obtained using our method (right column). This shows

that our method has the ability to reconstruct the qualitative features of dynamical

recurrences even in the presence of correlated noisy measurements.

We further look at the local ε-degree density (as defined in Donges et al. (2012))

of the true recurrence network and the estimated probabilities of recurrence for

low, medium and high noise levels of sampling (Fig. 6.4) for these representative

systems. The local degree density is defined as the degree that can be attributed to

a point in the phase space—which is also a node in the recurrence network. Since
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6.4. Detecting paleoclimate transitions using modularity

we are interested in a qualitative comparison, we can get an idea of the local degree

density function by plotting the degree sequence kt against the corresponding val-

ues xt . For the case of the sampled datasets, we use the mean x̄t since the real xt

is then not a given quantity.

The results are shown in Fig. 6.4. For white noise, the estimated degrees do not

capture the qualitatively flat nature of the true degree density curve. This is most

likely due to suprious correlations induced by the Gaussian kernal sampling scheme

we use. On the other hand, for the chaotic Rössler and Brownian motion, and for

low levels of noise (blue dots), the qualitative features are well captured by the es-

timated weighted degree from P. Note the difference in scale between the true

degree and estimated degree. Another point to keep in mind is that the recurrence

threshold ε are different for the true recurrence network A and the probability of

recurrence matrix P. This is because the degrees of the true recurrence network are

the maximum attainable degrees from the estimated probability of recurrence ma-

trix, in the case where there is no uncertainty. Typically, however, the estimated de-

grees from P are lower than those obtained from A. For the comparison in Fig. 6.4,

we choose ε such that we get discernible recurrent features in both cases for low

sampling noise levels. For medium to high noise levels, the recurrence threshold

for P are kept at the same level as that for low noise level.

6.4. Detecting paleoclimate transitions using

modularity

In this section, we develop a new idea to detect paleoclimate transitions using re-

currence network modularity. In the analysis of complex networks, network mod-

ularity (Newman, 2004a,b) is widely used to detect communities in a given net-

work. A community is a part of the network in which the nodes have a stronger

density of edges between them as compared to the density of edges they share

with the rest of the network. Communities are an inherent feature of a wide range

of real-world complex networks. The edges of most real-world networks are in-

homogenously distributed, thereby making it possible to consider the network

as being composed of several sub-networks which are strongly connected within

themselves and have relatively fewer links among them. For instance, the global
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Figure 6.4. Local ε-degree density. Histogram of standard deviation of

sampling in the left column ( A, C, E) indicates sampling noise —low (blue),

medium(orange), and high(green). The right column (B, D, F) shows local

ε-degree density against system variable x. For low noise levels (blue dots),

the 2-peak nature of the true degree density (black dots) is preserved for

the Rössler (D) and Brownian (F) datasets, whereas for medium(orange

dots) to high (green dots) noise levels, this feature is not recovered. The

true degree density for white noise (B) is not recovered for all noise levels.
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airport network can be considered as being composed of communities of smaller

domestic airport networks with a much higher number of flights (network edges)

operating within each country as compared to the number of international flights

between countries.

According to Newman (2004a), the modularity QΠr of a given (weighted) undi-

rected network A with respect to a partitionΠr that divides A into r different com-

munities, can be formally defined as

QΠr =
1

2m

∑
i j

(
Ai j −

ki k j

2m

)
δ(ci ,c j ), (6.15)

where ki is the (weighted) degree of the ith vertex, and m = 1
2

∑
i j Ai j is the num-

ber of edges of the network. The community to which a vertex i is assigned to by

the partition Πr is denoted by the identification vector {ci }. The first term in Eq.

6.15 denotes the fraction of edges that fall within communities whereas the sec-

ond term denotes the same fraction as would be expected if we were to connect

the edges of A at random.

In the context of recurrence networks, communities have a different implication.

The edges of recurrence networks essentially link two points in the phase space

which are closer than a chosen distance threshold. Thus, recurrence network com-

munities refer to a sub-spaces of the phase space with higher densities of states

than the neighbouring regions of the phase space. This means that if we identify

communities in the recurrence network using a community detection algorithm,

and without caring for the order of the nodes, each identified community would

effectively represent the various basins visited by the phase space trajectory. How-

ever, we note that the nodes of our recurrence network are ordered in time. Thus, if

we use a two-partitionΠ2 that divides the recurrence network into two communi-

ties while, at the same time, preserving the time ordering of the nodes, we are able

to partition the phase space trajectory in two halves in each of which the system

trajectory was confined for some time and then jumped to the other one. Practi-

cally, this is achieved by placing aΠ2 partition at a given time point and estimating

QΠ2 and repeating this for all N time points. The maximum value of QΠ2 corre-
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6. Recurrence networks of paleoclimate data

sponds to the best possible division of the recurrence network in two halves.

Qmax
Π2

= max
{
QΠ2 (t )

}
. (6.16)

In this way, given a sequence of time-ordered probability distributions, we can

construct the probability of recurrence matrix P from the densities and then use

recurrence network modularity to estimate maximum possible modularity Qmax
Π2

where a dynamical transition might have occurred. By comparing the maximum

modularities of different parts of the trajectory we can thus find out those parts

of the trajectory where the maximum modularity achieves extreme values as com-

pared to the rest of the trajectory. These regions are then most likely the times

where a sudden change in dynamical behavior could have occurred.

To illustrate this approach, we create a synthetic paleoclimate East Asian Sum-

mer Monsoon (EASM) dataset which has an internal dynamics composed of an

AR1 component and a sinusoidal component (cf. appendix D for detailed set of

equations). This is then forced by a much slower varying sine forcing which can

be thought as being similar to the solar forcing component of the EASM in the

Holocene (Fig. 6.5A). Finally, the artificial EASM dataset is interrupted by three

events—two short 100 year duration events of lower intensity at 7500 and 5000 BP

respectively and one relatively stronger event of 500 years starting at 2750 BP and

ending at 2250 BP (Fig. 6.5A). The complete true monsoon signal is obtained by a

superposition of these component signals (Fig. 6.5 B). As with the earlier examples

of this chapter, we use a Gaussian kernel filter to simulate the measurement pro-

cess of the paleo-signal and to ensure that we get a sequence of correlated proba-

bility densities at each time point (Fig. 6.5C). The probability of recurrence matrix

P obtained from these probability densities is shown in Fig. 6.5D. A simple visual

inspection of P reveals certain ‘ruptures’ in the general recurrence patterns at the

times when the events took place. We show that the events are accurately quantifi-

able as dynamical events through our recurrence network modularity approach.

We choose a sliding window of size 250 years and move this window from the old-

est time point at around 10000 BP to the present with a step size of 10 years. In

each window, we estimate Qmax
Π2

, thus obtaining a time-dependent curve Qmax
Π2

(t )
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Figure 6.5. Synthetic EASM example. A. The components of the syn-

thetic East Asian Summer Monsoon (EASM)—the internal fast-varying sine

component (green), the AR1 component (blue), the slow varying solar forc-

ing component (red) and the event component (maroon). The three events

are centered at 7500, 5000, and 2500 BP, and last for 100, 100 and 500

years respectively. The event at 5000 BP has opposite sign than the other

two. B. The true monsoon signal as a superposition of all four components

shown in A. C. Probability densities obtained by sampling the signal in B

with a Gaussian kernel of 7 years width. D. The probability of recurrence

matrix P obtained by using the approach discussed in this chapter from the

sequence of densities shown in C.
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which shows the maximum modularity possible for each time window centered at

time t . Furthermore, to ensure that the modularity values obtained in the analysis

could not have arose by chance, we shuffle the time order of the probability den-

sities in each window and estimate the maximum modularity for each shuffling.

This is repeated for a 100 times in each time window. This leads to a null distri-

bution of modularity values obtainable for a random ordering of the probability

densities given in the dataset. The null distribution is obtained by considering the

randomly shuffled densities in each window as being from a single underlying dis-

tribution corresponding to the null hypothesis that there was no transition in any

chosen window of length 250 years. Then, at a 10% significance level, we check

for those modularity values in the curve Qmax
Π2

(t ) which are greater than the sig-

nificance threshold value of modularity. This means that these significance values

have only a 10% probability to have come up by random chance.

The curve Qmax
Π2

(t ) is shown in Fig. 6.6A. We clearly observe four significant peaks

at 7562, 4922, 2732, and 2242 BP respectively. These correspond to the events in

the original monsoon signal at 7500, 5000, and around 2500 BP. Note that we get

two peaks for the event occurring from 2750 BP to 2250 BP because the window

size of 250 years is small enough to record the start and the end of this event as two

separate transitions. For the other two older events centered at 7500 BP and 5000

BP, each lasting for a 100 years, the window size of 250 years fails to resolve the start

and the end of these short events and thus they show up as a single peak. Fig. 6.6B

shows the relative position of the significant modularity values in the null distribu-

tion of modularity values, highlighting the fact that the chances of obtaining these

values from the null distribution are very low.

Another point that we learn from this analysis is that our approach cannot distin-

guish between events of different direction. The event at 5000 BP was of a different

sign than the ones at 7500 and 2500 BP but in the final modularity curve, they all

show up simply as events, without any information as to the direction in which

the system was forced by the event. In the context of analyzing paleo-monsoon

dynamics, this means that we are unable to differentiate between “dry” and “wet”

events.
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Figure 6.6. Detection of events in the synthetic EASM dataset. A.

The curve for maximum modularity Qmax
Π2

(t ) for each window of 250 years

centered at time t . The four significant peaks (at 10% significance) at 7562,

4922, 2732, and 2242 BP are marked as red dots. B. The location of the

significant modularity values in the null distribution. The vertical red dotted

line in both A and B denotes the significance threshold modularity value at

10% significance level.

6.5. Holocene events in the East Asian Monsoon

The EASM is the eastern branch of the Asian Monsoon domain which roughly ap-

proaches towards the mainland via the South China Sea. It is a critical climatic

subsystem which is impacted by various other global climatic factors. While it is

highly essential to understand its dynamics and how they relate to climate forcing

such as solar variability, greenhouse gases, and stratospheric aerosols, there is still

much that is left to be understood. In the past decade, a surge of new paleoclimate

proxy records from the EASM domain have shed light on its behavior in the past,

and especially in the Holocene. However, there is much debate on the interpreta-

tion of these records and how the behavior shown by these isotopic proxies are to

be interpreted in the context of past climatic conditions (see, e.g., Maher (2008)).
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Figure 6.7. The Dongge cave dataset. A. The U/Th age vs. depth mea-

surements (red circles with error bars) and the δ18O proxy measurements

along depth (blue curve) from Dongge cave in south-eastern China. B. The

proxy record probabilities estimated according to the approach described in

Chapter 3. The resulting probability densities are represented on an error-

free time scale as all the uncertainties are shifted to the proxy axis.

In general, the EASM shows a long term trend towards a weaker monsoon inten-

sity over the past 10000 years after reaching what is called the ‘Holocene climate

optimum’ at around 8000 years before present (Wang et al., 2005a; Hu et al., 2008).

However, this trend is interrupted by several ‘dry’ monsoon events where, for du-

rations that range from one to five centuries, the monsoon drops down to almost

drought-like conditions. These ‘events’ have been further linked by Wang et al.

(2005a) to societal change, and even collapse in the case of the Chinese Neolithic

culture at around 4500 BP. Such a collapse has been also reported by other studies

such as that of Liu and Feng (2012).

Other aspects of the dynamics of the EASM, such as its teleconnections to other

global climatic systems (Johnson, 2011; Liu et al., 2013), its connection to solar

variability (Duan et al., 2014; Bard and Frank, 2006), and the connections between

rapid climate change (RCC) events in the EASM in the Holocene to other global
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Figure 6.8. Recurrence probabilities for Dongge Cave. A. The proba-

bility of recurrence matrix P estimated from the proxy densities shown in

Figure 6.7B according to Eq. 6.13. B. The histogram of the entries shown

in A. Most values are either close to zero or one.

RCCs (Wang et al., 2013; Overpeck and Webb, 2000), are still not well-understood.

Particularly relevant for our analysis are the RCCs reported by Bond et al. (2001), re-

ferred to commonly as Bond events, the signatures of which have since then been

reported in a wide range of records from across the globe. In their paper, Wang

et al. (2005a) too have reported the ‘synchronous’ timing of several dry monsoon

events in their dataset with the Bond events based on a visual inspection of their

EASM proxy record. In this study, we consider the Dongge cave record from the

same study by Wang et al. (2005a) from southeastern China which covers approx-

imately a little over the last 9000 years. This is a δ18O isotopic proxy record, ob-

tained from a stalagmite in the Dongge Cave, that is anti-correlated to the summer

precipitation in that region. It is an extremely well- dated EASM record with 45

U/Th dates used to establish the chronology of the archive, and 2124 δ18O mea-

surements along the depth of the stalagmite (Fig. 6.7A).

We apply the proxy estimation method discussed in Chapter 3 to reconstruct the

proxy record for the δ18O EASM proxy from Dongge cave and thus represent it on

an error-free time scale (Fig. 6.7B). We then use the method discussed in the pre-

85



6. Recurrence networks of paleoclimate data

vious sections of this chapter to estimate the dynamical recurrences of the dataset

with the probability of recurrence matrix P ( Fig. 6.8A). A histogram of the proba-

bility of recurrence values shows that most of the probabilities are either very close

to zero or one (Fig. 6.8B).

From the recurrence network represented by P, we then estimate the maximum

modularity for a 2-partition Qmax
Π2

(t ) for a sliding window of 250 years centered at

time t BP. The window is moved from the oldest time point in the record (≈ 8500

BP) to the present with a step size of 10 years. As with the illustrative example in

Section 6.4, we estimate the statistical significance of the obtained Qmax
Π2

(t ) values

using a null hypothesis that there was no event in the randomly chosen window

of 250 years width. Our approach presents a novel way of accurately determining

events in the paleoclimate record represented by the Dongge cave δ18O data.

We identify three highly significant events in the windows centered at 8224, 6874,

and 4364 BP (Fig. 6.9A). These events are significant according to our null hypoth-

esis at a significance level of 1% ( Fig. 6.9B). The uncertainty of the timing of these

events as obtained from our method is equal to the width of the window size con-

sidered for the analysis i.e., 250 years. In other words, we are able to narrow down

the timing of these events roughly to periods of 8349–8099 BP, 6999–6750 BP, and

4489–4239 BP. The 4.4 kBP and 8.2 kBP events have also been noted by Wang et al.

(2005a) in their study and have been connected to the collapse of the Chinese Ne-

olithic Culture and an ice rafting event of the Laurentide sheet respectively. These

are connected in turn to the Bond events numbered 3 and 5 respectively as given

in Bond et al. (2001). Both these events correspond to extremely weak monsoons

leading to drought-like conditions which lasted for a few centuries. Our method

is thus able to determine these widely known RCCs of the Holocene period from a

consideration of the recurrence characteristics of the dynamics of the dataset.

The event centered around 6.9 kBP has not yet been reported to the best of our

knowledge. However, this event is quite similar to the events at 8.2 kBP and 4.4 kBP

in the sense that it led to a sudden drop in the monsoon intensity over a short pe-

riod of time (Fig. 6.10). The δ18O value before the event was approximately −8.84

and this value increased to around −8.50 at the end of the event. This corresponds

to roughly a 3.8% change in the magnitude of the mean δ18O value. Note that
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Figure 6.9. Events in the EASM in the Holocene. A. Maximum modular-

ity Qmax
Π2

(t ) for each window of 250 years centered at time t for the Dongge

cave δ18O EASM proxy. The three significant peaks (at 1% significance) at

8224, 6874, and 4364 BP are marked as red circles. B. The location of the

significant modularity values in the null distribution. The vertical red dotted

line in both A and B denotes the significance threshold modularity value at

1% significance level.

the similar magnitudes of change in the mean δ18O values for the 4.4 kBP and 8.2

kBP events are 3.2% and 3.4% respectively. The fact that the 6.9 kBP event has

not been reported yet indicates the need for developing and applying quantita-

tive methods for analyzing occurrences of climate shifts to a much larger paleo-

climatic database. We intend to carry out a similar analysis of detecting events in

other monsoon records spread over the Asian monsoon domain in the hope that

the results thereafter will help shed light on the 6.9 kBP dry event that we find in

the Dongge cave record.

In general, the analysis presented in this chapter helps illustrate several key points:

• It is possible to analyze and study paleoclimatic proxy datasets keeping in
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Figure 6.10. The three most strongest events in the Dongge dataset.

The mean expected value of the Dongge cave δ18O values at each time

point (blue) along with ±1 standard deviation (gray) of the posterior proxy

probabilities at that time point (from Fig. 6.7B). The three most strongest

and statistically significant (at 1% significance level) events (from Fig. 6.9)

are shown as vertical orange bars of 250 years width centered at the time

points of the window.

mind their uncertainties of estimation and in spite of unknown correlations

between them.

• Such paleoclimate studies can reveal new features of the dynamics under-

lying the considered dataset, along with a suitable confidence in (or con-

versely, the uncertainty of) the deduced results.

• There is pressing need to apply mathematically rigorous methods to the ever

increasing corpus of paleoclimate proxy data so that we may understand and

infer paleoclimatic conditions more reliably.
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Chapter 7
Directed network of global temperature drivers

Till this point, we were primarily concerned with (a) paleoclimate datasets, and (b)

uncertainties that arise due to inherent measurement errors in such datasets. This

is but only one of the many possible sources of uncertainties that we encounter in

our efforts to understand the climatic systems and mechanisms. A crucial prob-

lem in the study of climate is the correct estimation of the interrelations that exist

between various climatic systems. While in principle it is possible to understand

climatic interrelations with a thorough treatment of the underlying physical mech-

anisms, for a complex system such as climate, it is highly non-trivial to do so in

practice. That is why we supplement physical modeling of the climate with empiri-

cal analyses that uncover its interrelation patterns. However, as with any empirical

analyses, we end up with the following uncertainties: the uncertainty of not know-

ing precisely the intensity with which various climatic subsystems impact each

other, and also the uncertainty if not knowing precisely how these interactions are

mediated (involving, e.g., the time delay of interactions).

In this chapter, we attempt to answer this question by focusing on the global mean

temperature (GMT). We consider a GMT dataset that goes back to around a 120

years from the present and try to understand the various other relevant climatic

subsystems that could influence the GMT. In the light of earlier studies like Lean

and Rind (2008), we consider four major factors that could potentially impact GMT,

viz., greenhouse gases, the El Niño Souther Oscillation (ENSO), volcanic activity

and solar irradiance. However, in addition to earlier work on this issue, we present

in Goswami et al. (2013) a new nonlinear measure of influence that, when com-

bined with a time-delayed analyses, allows us to infer directed influences between

the various datasets considered. Also, besides trying to estimate those influences
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7. Directed network of global temperature drivers

which could potentially impact GMT, we also estimate influences that the poten-

tial GMT drivers could have among themselves, with the understanding that the

results would present a more holistic view of the network of interrelations that

governed the dynamics of GMT over the past century.

In agreement with earlier studies, we find the major drivers for GMT to be ENSO,

greenhouse gases, solar irradiance and volcanic activity, on timescales that range

from a few months to decades. However, we are also able to uncover a critical feed-

back between the ENSO and GMT. Our results reiterate the pressing need to revise

our imagination of climatic interrelations to one that involves multiple, delayed

interactions within the drivers of global mean temperature.

7.1. Introduction and Background

Global mean temperature is perhaps the most critical measurable quantity that

serves as an indicator of our planet’s climate and modern climate change. It re-

mains till date the most crucial variable of interest in the research that is focused

on global climate change and variability. Particularly of interest— especially to the

media and the larger society outside the scientific community —has been the role

of anthropogenic forcing in the warming trend of GMT. The Fourth IPCC Assess-

ment report clarifies this matter to a large extent, especially in the context of the

time period of the last century (Hegerl et al., 2007). However, even while there is

a scientific consensus on how anthropogenic greenhouse gases dominate the ob-

served rise in GMT, there are persistent uncertainties in the answers to questions

such as: how much of the temperature change is induced by which factors, and

how do they change the temperature. These two questions combine two interwo-

ven threads of GMT studies till date: (i) the effort to estimate and understand GMT

variability of the past, and (ii) the the effort to predict how the climate (as mostly

represented by the GMT) is going to change in the future under different scenarios

of climate change.

Increasing number of observational records and ‘reanalysis’ studies for the last

century have enabled us to get more meaningful estimates of the GMT that better

represent the state of the Earth’s climate (cf. Section 3.2 of Trenberth et al. (2007),

and Hansen et al. (2010)). Such records have allowed us to narrow down the list of

90



7.1. Introduction and Background

potential drivers of GMT to primarily four important climatic factors: the ENSO,

greenhouse gases, volcanoes, and solar activity. Still, there is significant amount

of debate over the precise nature of the temperature response, exemplified by the

diverse explanations put forward to explain the ‘deceleration’ of global warming

in the first decade of the 21st century (Benestad, 2012). In this context, the stud-

ies by Lean and Rind (2008, 2009) and Foster and Rahmstorf (2011) play a critical

role in shedding light on how the various climatic factors contribute to GMT vari-

ability. Lean and Rind use multivariate regression models to estimate the fraction

of variability of the GMt that arises due to the variability of anthropogenic green-

house gases, ENSO, solar irradiance and volcanic aerosols. They further project

the GMT to the future based on their empirically derived model under various cli-

mate change scenarios. Complementary to this, Foster and Rahmstorf present a

detailed analyses that estimates the residual anthropogenic impact on the warm-

ing trend of the GMT in the period from 1979 to 2010. They achieve this by first re-

moving the variability that arises due to all other known natural forcing of GMT.

However, there are two fundamental assumptions underlying these studies: (i) in-

dependence between the factors that impact temperature, and (ii) a linear super-

position of their effects on temperature variations. Note that it might be the case

that both of the above assumptions hold true (to a reasonable degree of approx-

imation). Still, we feel that a proper assessment of their validity is necessary and

more so, such a verification is lacking in the existing body of literature to the best

of our knowledge.

The main focus of the following sections of this chapter is to assess the validity

of the first of the above two assumptions. In other words, we wish to study the

way in which the various drivers of GMT interact with each other and whether it

is reasonable to assume that these interactions could be negligible while trying

to study GMT variability. In order to do so, we use an empirical approach based

on the recurrences of dynamical systems. In particular, we use a recurrence-plot-

based similarity measure to analyze the level of non-independence among the con-

sidered climatic datasets. Recurrence plots are an empirical time series analysis

tool that find usage in studying a wide variety of studies, ranging from cardio-

gram data (Zbilut et al., 2002), stock markets (Bastos and Caiado, 2011; Goswami

et al., 2012), speech comprehension (Richardson and Dale, 2005), and even for
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cover song identification (Serrà et al., 2009). Marwan et al. (2007) provides a com-

prehensive overview of the theory, practice, and applications of recurrence plots,

while a history of the field of recurrence-plot-based time series analyses can be

found in Marwan (2008). In climate analyses, cross recurrence plots have helped

to uncover interrelations between the ENSO and northwest Argentinian precipi-

tation in both modern and paleoclimatic timescales (Marwan et al., 2003). More

recently, joint recurrence plots have been used to study how the links between

climatic variables (such as temperature and precipitation) and vegetation are geo-

graphically distributed over China (Li et al., 2011).

We propose in Goswami et al. (2013) an extension of the measure for lag and gen-

eralized synchronization as developed in Romano et al. (2005). Since our measure

is exclusively based on joint recurrence plots, it is suitable for studying the interac-

tions between structurally different systems as in our case. Moreover, we provide a

more general, lagged version of our similarity measure which helps reveal delayed

influences from one time series to the other, indicating the driver and the driven

systems as a result.

7.2. Lagged dependencies from recurrences

Recurrence plots were first introduced by Eckmann et al. (1987) with a one-line

abstract that said:

A new graphical tool for measuring the time constancy of dynamical systems

is presented and illustrated with typical examples.

Theoretically, a dynamical system recurs to an earlier state if it comes arbitrarily

close to it (up to a tiny deviation). However, in practice, recurrences are estimated

from a given time series when the system underlying the time series returns to an

earlier neighborhood in its phase space.

Consider a system X where X is the set of all possible trajectories. We can then

define a recurrence matrix RX for a given trajectory ~x = (~x1,~x2, . . . ,~xN ) ∈ X ⊆ Rm

as:
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RX
i j (ε) =Θ(ε− ∥~xi −~x j ∥), i , j = 1, . . . , N , (7.1)

where N is the trajectory length, ε the neighborhood size,Θ(·) the Heaviside func-

tion (i.e., Θ(·) = 1 for non-negative values and 0 otherwise) and ∥ · ∥ denotes an

appropriate distance metric defined for ~x ∈ X . A recurrence plot (RP) is a visual

representation of R typically constructed by putting a black dot for every 1 in R (cf.

Marwan et al. (2007) for an overview of recurrence plots).

Now consider an arbitrary trajectory ~x ∈ X . The probability P (~x ∼ xi ) that the

trajectory ~x visits the neighborhood of xi ∈ ~x is equal to the column-sum of the

recurrence matrix RX (from Eq.7.1),

P (~xi ) = 1

N

N∑
j=1

RX
i j . (7.2)

where P (~xi ) is used as shorthand for P (~x ∼~xi ). In this formulation, the mean prob-

ability that any trajectory of the system recurs to any given state (given the ob-

served time series) is the mean 〈P (~xi )〉 =∑N
i=1 P (~xi )/N , and is known as the (global)

recurrence rate (RR X ) of X .

In our analysis, we wish to compare the recurrence structures of two structurally

different systems such as the ENSO and solar irradiance which, in principle, exist

in completely different phases spaces. For situations such as this, we can use joint

recurrences which simply represents the co-occurrences of recurrences in both

systems. A joint recurrence matrix JRX Y
i j for a given pair of systems X and Y is

defined as

JRX Y
i j (εx ,εy ) =Θ(εx− ∥~xi −~x j ∥)Θ(εy− ∥~yi −~y j ∥) i , j = 1, . . . , N , (7.3)

where ~x and ~y are two given trajectories of systems X and Y respectively. A non-

zero value JRX Y
i j thus captures co- occurring recurrences of trajectories~x ∈X and
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~y ∈ Y in corresponding neighborhoods of systems X and Y respectively, i.e., ~xi ∼
~x j and ~yi ∼ ~y j at the same time instant i (or j ). Note that, due to the different

dynamical properties of systems X and Y , the neighborhood sizes εx and εy used

to define recurrences are not identical in general.

Based on the joint recurrence matrix JRX Y , we can now define the joint probability

that two arbitrary trajectories~x ∈X and~y ∈Y recur in the neighborhood of~xi and

~yi simultaneously,

P (~xi ,~yi ) = 1

N

N∑
j=1

JRX Y
i , j , (7.4)

where, similar to Equation 7.3, P (~xi ,~yi ) is used as shorthand to denote the joint

probability P (~x ∼~xi ,~y ∼~yi ).

Romano et al. (2005) put forth a way in which joint recurrences could be used to

estimate whether two systems where in generalized or lag synchronization from

their observed time series. Their idea was founded on two crucial results: (i) it is

possible to reconstruct the topology of the phase space from the recurrence plot

(Thiel et al., 2004), and (ii) if two systems are related by a functional relationship

(which is the case for general or lagged synchronization), then they will have sim-

ilar recurrence plots. Moreover, they argue that if two systems are specifically in

generalized synchrony, their respective global recurrence rates 〈P (~xi )〉 and 〈P (~yi )〉
are approximately equal to each other and are in turn also approximately equal to

the joint recurrence rate 〈P (~xi ,~yi )〉. Using the constant recurrence rate method for

constructing recurrence plots (cf. (Marwan et al., 2007)), they define a measure for

synchronization

JPR = max
τ

S(τ)−R0

1−R0
, (7.5)

where R0N = n0 = 〈P (~xi )〉 = 〈P (~yi )〉 by construction, and
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S(τ) = 〈P (~xi ,~yi (τ))〉
R0

. (7.6)

Here, 〈P (~xi ,~yi (τ))〉 represents the joint recurrence rate obtained when the time

series form system Y is shifted by τ time steps ahead of X .

We propose an extension of the above idea to the more general case where the

overall recurrence rates 〈P (~xi )〉 of X and 〈P (~yi )〉 of Y are not equal to each other.

Moreover, we also consider the situation that P (~xi ) 6= P (~yi ). In particular, we define

a recurrence-based measure of dependence RMD as

RMDi = P (~xi ,~yi )

P (~xi )P (~yi )
, (7.7)

which quantifies the level of ‘non-independence’ between the recurrence charac-

teristics of systems X and Y as quantifiable from the given observed pair of time

series. Note the probabilistic ratio term on the right-hand side of Equation 7.7 is

similar to the odd-to-expected ratio (Miettinen and Wang, 1981), a quantity used

in medical analyses to estimate the dependence between multiple measured vari-

ables. This point also highlights a subtle difference between RMDi in Equation 7.7

and the earlier synchronization estimator JPR in Equation 7.5. Although, RMDi

is motivated from a consideration of the dynamical recurrence characteristics, it is

more of a statistical measure of the dependence between the given pair of systems

under study.

An additional requirement of estimating global climatic interrelations as in our

case is to be able to account for delayed interactions, as climatic subsystems are

often coupled to each other with considerable lag. We argue that, similar to S(τ)

in Equation 7.6, it is natural to incorporate lagged probabilities in RMDi simply

by introducing a relevant lag in one of the systems. We thus define the log-mean

RMD(τ) at lag τ as:
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RMD(τ) = log2

( 1

N ′
N ′∑

i=1
RMDi (τ)

)
, (7.8)

where N ′ = N − τ, and RMDi (τ) = P (~xi ,~yi (τ))/(P (~xi )P (~yi (τ))), if we consider Y

to be shifted by τ units. For two independent systems X and Y (τ), P (~xi ,~yi (τ)) =
P (~xi )P (~yi (τ)), which implies that RMD(τ) = 0. For τ > 0, non-zero RMD implies

that Y is dependent on X and the converse is true for τ < 0. Note that RMD

can quantify both uni- and bi-directional dependencies as well as multiple lags

at which the systems might influence each other. Based on the lagged analysis

of RMD as given in Equation 7.8, we also get an indication of the direction of in-

fluence between the two systems. Note that in earlier studies, recurrence-based

measures such as the Mean Conditional Probability of Recurrence (MC R) (Romano

et al., 2007; Zou et al., 2011) were proposed to infer the coupling direction between

two systems, however the MC R measure was not defined for an explicitly lagged

analysis. In our approach, which is somewhat analogous to a lagged correlation

analysis, it is easy to infer at which time delays are the values of RMD the most

significant.

7.3. Testing for significance of observed values

In analyses of connectivity between pairs of experimental datasets, the measures

used to quantify dynamical similarity often yield values that are intermediate, and

we then cannot easily conclude whether the pair of time series are strongly or

weakly connected. Even if we choose to define our measure so that it always lies

within a finite interval – such as between 0 and 1 – experimental datasets can typ-

ically give ambiguous results of intermediate connectivity values such as 0.6. The

connectivity measures obtained from such passive experiments cannot thus pro-

vide an unambiguous interpretation due to the lack of a comparative ‘test case’.

This is in contrast to active experiments (made, e.g., from laboratory experiments

or numerical simulations of models) where the obtained values can be used for

a consistent interpretation by its comparison to the uncoupled case. In passive

experiments, the observed values of connectivity have to be statistically tested to

ensure that they could not have been obtained by random chance. The statistical
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test is carried out using surrogate datasets generated from the observed time series

in conjunction with an appropriate null hypothesis.

Surrogate time series are different from the original, observed ones, and yet pre-

serve essential dynamical properties. There are several ways of generating surro-

gates and each method has its respective null hypothesis. The test statistic (which

is RMD in our case) is calculated for a sufficiently high number of surrogate pairs

and the observed value is tested for statistical significance using the obtained dis-

tribution and the appropriate null hypothesis.

For our analysis, we use a recurrence-based approach to generate twin surrogates

(TS) from the observed time series (Thiel et al., 2006, 2008). Twins are two points

~xi and ~x j of X such that they share the same neighborhood up to the limit ε, i.e.,

for k = 1,2, . . . , N , RX
k,i = RX

k, j . The TS method requires that we first identify all

possible twins given an observed trajectory ~x. To generate the surrogate series

~s, we then choose an arbitrary random point ~xk ∈ ~x and set it as ~s1. Now, given

~si = ~xl , we append subsequent points to ~s iteratively according to the following

rule: when ~xl has no twins,~si+1 =~xl+1; on the other hand when ~xl ∈ T such that

T = {~xl }∪ {~xm : ~xm and~xl are twins} and the number of elements in T is n, then

~si+1 =~xk+1 where~xk ∈ T with probability 1/n.

The null hypothesis for TS is that each surrogate trajectory is an independent real-

ization of the system corresponding to a different initial condition. To test whether

the observed value of RMD(τ), between X and Y (τ), is a statistically significant

measure of X driving Y we do the following: (i) generate TS of Y , (ii) obtain a test

distribution of RMD(τ) using the observed time series of X and the surrogates of

Y , (iii) construct a 95% confidence band from the area between the 2.5th and 97.5th

percentiles. This interval represents the region where we fail to reject the null hy-

pothesis.

Observed values of RMD outside the confidence band imply a statistically signifi-

cant dependence between X and Y at delay τ.
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Figure 7.1. Global time series data for temperature and its climatic

drivers. From top to bottom: global surface temperature from the CRU at

East Anglia (HadCRUT3v, deep red); NASA GISS Land-Ocean Tempera-

ture Index (NASA GISS LOTI, light red); Wang et al.’s reconstruction of total

solar irradiance (TSI, deep yellow) with the Gaussian-kernel (bandwidth of

≈ 11 years) filtered curve (in blue); the Multivariate ENSO Index (MEI, light

blue); Sato et al.’s volcanic activity index based on Optical Aerosol Depth

(OAD, brown); monthly changes in the NASA GISS’s modelE global mean

forcing values for Well-Mixed GreenHouse Gases (WMGHG, teal).

7.4. Datasets: global temperature drivers

Following Lean & Rind Lean and Rind (2008), we consider four critical contenders

that have the potential to influence global mean temperature: (i) the ENSO, (ii) vol-
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canic activity, (iii) solar irradiance, and (iv) the concentration of well- mixed green-

house gases in the atmosphere. To characterize these phenomena, we choose: a

combination of the multivariate El Niño index (Wolter and Timlin, 1998) (which

extends from 1950 till present) and the index of Meyers et al. (Meyers et al., 1999)

(for data prior to 1950) for the ENSO; stratospheric aerosol optical thickness mea-

surements compiled by Sato et al. Sato and Hansen (1993) for volcanic activity;

Wang et al.’s (Wang et al., 2005b) reconstruction of total solar irradiance that ex-

tends to around 300 years back; annual global mean forcing values used for well-

mixed greenhouse gases as used in the NASA GISS modelE (Hansen et al., 2007)

which were then interpolated to a monthly resolution. For the global temperature

itself, we use two datasets: the NASA GISS Land-Ocean Temperature Index (LOTI)

Hansen et al. (2010), and the surface temperature record HadCRUT3v assimilated

by the Climate Research Unit (CRU) at East Anglia University (Brohan et al., 2006).

(The source of the datasets are listed in Appendix C.3). We consider the 120 year

period from January 1890 to December 2009 in which all the datasets are resolved

on a monthly basis for the purpose of this study. Moreover, for the TSI dataset, we

use a low pass filter using a Gaussian kernel of bandwidth ≈ 11 year, and we con-

sider the first derivative of WMGHG instead of the almost monotonically increas-

ing raw dataset (figure not shown). Note that, in contrast to Lean & Rind Lean and

Rind (2008), we do not use the full anthropogenic forcing but just the well-mixed

greenhouse gases. The final time series used in the analysis (normalized to mean

zero and variance one) are shown in Fig. 7.1. For brevity, we henceforth refer to

the datasets using the following labels: CRUTA for the HadCRUT3v data; GISS for

NASA GISS LOTI; TSI for total solar irradiance; VOLC for the optical aerosol depth

data; and WMGHG for the well-mixed greenhouse gas series.

7.5. Details of the numerical analysis

The analysis is divided into two parallel components corresponding to the CRUTA

and GISS temperature datasets. For each of these we consider delays of up to 150

months and estimate RMD , and test the observed values for significance. Simi-

larly, we analyze all possible combinations for the forcing datasets as well as be-

tween the forcing and the temperature datasets. All results are grouped according

to the ‘driven’ dataset.
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We do not embed the time series while constructing the recurrence matrices. Sev-

eral recurrence properties are invariant under embedding and it is not essential to

embed the time series. In particular, time delay embedding was not feasible for all

of the datasets considered in this study and was hence avoided. The recurrence

threshold was based on fixed amount of nearest neighbors, which was kept at 5%

for all datasets. The qualitative nature of our results are robust to the choice of this

threshold value because small changes in the threshold do not alter the qualitative

features of the recurrence plot (result not shown).

The significance tests were carried out using 500 TS of the ‘driven’ dataset. Signifi-

cant values were then considered to construct an approximate network visualiza-

tion of the dependencies involving the temperature dataset as well as the various

radiative forcings.

7.6. Network of dependencies around global

temperature

The results of the analysis for the temperature datasets are shown in Fig. 7.2, from

which several points are evident.

• TSI appears to impact the GISS dataset more than it does the CRUTA data.

In fact, even on short time scales of around a few months, the impact of TSI

on CRUTA is barely significant. In previous studies by Lean & Rind Lean and

Rind (2008); Lean (2009) (done with the CRU data), TSI is found to influence

variations in GMT on the scale of a month from their analysis based on mul-

tivariate regression.

• ENSO clearly has a sharp impact on the CRUTA series at a short delay of

around 5 months (similar to Lean & Rind.). However, we also find further

significant influences at delays of (approximately) 130 months for the CRU

data, and at 90 months and 125–130 months for the GISS LOTI data. ENSO,

however, does not have any impact on GISS temperatures at shorter time

scales.

• Even though volcanic aerosols impact both temperature series on short time
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Figure 7.2. Lagged influences on GMT. A. The results for the Had-

CRUT3v dataset. B. The results for the NASA GISS LOTI dataset. The

95 % confidence band obtained from the significance test using TS is in

light blue. The observed values of RMD(τ) is in dark orange. Regions

where the value of RMD(τ) falls outside the confidence band are shaded

in light orange. The datasets are labeled as mentioned in Sec. 7.4.

scales of around 1–10 months (Lean & Rind find 6 months), here too, there

are further delayed interactions significant in the 50-75 month period and

even as late as 140–150 months. This is discussed in more detail later.

• The influence of greenhouse gases on GMT is statistically significant for all

values of delay considered and this influence peaks at around a delay of 130

months (approximately 11 years). This value is close to the previously con-

sidered value of 120 months in the Lean & Rind study.
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Figure 7.3. Lagged dependencies among the forcing datasets. Results

for the other datasets A. Driving TSI. B. Driving ENSO. Legends and keys

to the figure are same as in Fig. 7.2. The gray bars highlight the values of

τ for which the observed values of RMD are statistically significant.

The results of our analysis for the rest of the data are given in Figs. 7.3 & 7.4, grouped

according to the ‘driven’ dataset. The following points are discernible from Figs. 7.3

& 7.4.

• None of the datasets show a significant result when being tested against the

hypothesis that they drive TSI (Fig. 7.3 A). This demonstrates that, provided

the datasets are accurate, our approach is able to rule out physically unrea-

sonable connections.

• Both the temperature datasets seem to drive the ENSO time series at sev-

eral values of τ (Fig. 7.3B). However, a noticeable dark band around the pe-
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Figure 7.4. Lagged dependencies among the forcing datasets. Results

for the other datasets C. Driving VOLC. D. Driving WMGHG. Legends and

keys to the figure are same as in Fig. 7.2. The gray bars highlight the values

of τ for which the observed values of RMD are statistically significant.

riod of 25–30 months for both CRUTA and GISS suggest a strong influence

of GMT on ENSO around the quasi-biennial oscillatory period. The reverse

connection from ENSO to temperature has been discussed in earlier studies

(cf. (Ghil and Vautard, 1991) and (Moron et al., 1998)). However, this feed-

back from the temperature to ENSO around the quasi-biennial period has

not been considered in much detail and thus needs more careful investiga-

tion. The greenhouse gases too seem to impact ENSO in around this period.

The greenhouse gas series also impacts ENSO around 55-60 month period

which might be linked to a quasi-quadrennial kind of phenomenon (Jiang

et al., 1995). Similar influence of greenhouse gas emissions on the ENSO

have been discussed elsewhere (Stevenson, 2012; Stevenson et al., 2012).
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7. Directed network of global temperature drivers

• Only TSI and ENSO seem to have an effect on the volcanic activity dataset

(Fig. 7.4C) with the former influencing VOLC at a short time scale of around

1-5 months and the latter influencing it rather strongly at around 30 months.

The idea that climatic phenomena could influence volcanic activity is con-

troversial and debatable (e.g., Rampino et al. (1979) postulates one possi-

ble mechanism based on lithospheric stress). However, Robock (2000) chal-

lenges the more popular idea that ENSO is influenced by volcanic eruptions

and suggests a converse dependency, with one possible physical mechanism

being the influence of oceanic angular momentum on the earth’s rotation

rate at subdecadal scales ( c.f. Marcus et al. Marcus et al. (1998)) which

in turn might influence seismic activity on the mantle. Alternatively, the

transport of volcanic aerosols in the atmosphere could be influenced as well

which might lead to the results observed here (also discussed below). Our

results indicate that it might be worthwhile to study this more closely in or-

der to gain a better understanding of globally relevant climatic phenomena

such as volcanoes and the ENSO.

• The greenhouse data is influenced by only the TSI and the VOLC datasets

(Fig. 7.4D) at similar values of τ around 50–55 months. The impact of VOLC

on the greenhouse gases most likely reflects the response of the Earth’s carbon-

cycle to volcanic eruptions (e.g., Jones and Cox (2001)). The observed influ-

ence of TSI on WMGHG could be an example of indirect influence of TSI on

the WMGHG data via the VOLC dataset as the TSI impacts VOLC at much

shorter time scales of a few months.

The above results are summarized as a network of dependencies in Fig. 7.5, where

two different directed networks are visualized: one each for the two temperature

datasets—CRUTA and GISS. Only statistically significant values are used to con-

struct these networks. However, from Figs. 7.2, 7.3 & 7.4, we see that, in many

cases, there are multiple values of τ at which estimated values of RMD are signifi-

cant for a given pair of datasets. In such cases, for the sake of visual clarity, a single

value of τ is chosen as representative of (nearly) continuous intervals of τ in which

RMD values are significant. In case the interval is too wide for a single value to be

representative, the interval itself is mentioned. Two notable exceptions to this are

the links between WMGHG and CRUTA/GISS, and TSI and GISS. In these cases,
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7.6. Network of dependencies around global temperature

A B

Figure 7.5. Network of dependencies surrounding GMT. A. For the Had-

CRUT3v temperature series. B. For the NASA GISS LOTI series. The ar-

rows correspond to a statistically significant influence. The numbers beside

the arrows denote the (interval of) delay(s) at which the statistically signifi-

cant link is found. In B, the t au values that differ from A are given in red.

The solid black arrows correspond to links that are known and/or are dis-

cussed to some extent in the literature. The gray dotted arrows correspond

to links that are not easily explained. The red dashed arrow is the feedback

from temperature to ENSO that is uncovered by our analysis. The datasets

are labeled as given in Sec. 7.4: CRUTA for the HadCRUT3v data; GISS

for NASA GISS LOTI; TSI for total solar irradiance; VOLC for the optical

aerosol depth data; and WMGHG for the well-mixed greenhouse gas se-

ries. Note: For the links between WMGHG and temperature, and TSI and

temperature, only a few of the statistically significant values are shown for

visual clarity.

RMD values are significant for almost all values of τ considered—and hence only

the presumably physically relevant values of τ are shown in Fig. 7.5 for clarity. We

choose here τ = 135 months for the links between WMGHG and CRUTA, and be-

tween WMGHG and GISS, as this is approximately the peak value of RMD(τ) for

these pairs and is also close to the earlier estimated value of τ = 120 months in

105



7. Directed network of global temperature drivers

Lean and Rind (2008). We note that the networks shown in Fig. 7.5 are not con-

structed on the basis of a mathematical procedure. They are, in fact, intended to

reveal the qualitative structure of the network of interactions among global tem-

perature drivers. We can infer the following from Fig. 7.5:

• The results for the CRUTA and GISS temperature datasets are reasonably

consistent for the links with ENSO, WMGHG and VOLC, but differ in the case

of their respective links with TSI.

• TSI seems to drive all the remaining four datasets. However, the delays at

which TSI impacts them are much larger than what is normally assumed in

studies involving TSI and GMT. Our results indicate that it might be possi-

ble that the longer time scale periodicities of solar irradiance might be an

important factor influencing global climatic phenomena.

• The GMT feeds back into only the ENSO series near the quasibiennial period

(the results are slightly different between CRUTA and GISS here). This might

be a crucial point to consider in both (semi-) empirical as well as theoretical

modeling of GMT in terms of natural forcings.

• Apart from having a distinctively significant impact on the GMT, greenhouse

gases influence the ENSO as well at multiple delays. Two distinctive periods

in which WMGHG drives the ENSO are around 1–2 years and 4–6 years.

• Volcanic aerosols seem to impact GMT not only at the evident short time

scales of a few months, but also at other time scales ranging from 45 months

to 145 months, which is relatively hard to justify considering that volcanic

aerosols do not last in the atmosphere up to 145 months. This example

demonstrates the limitations of our approach and is discussed below.

One obvious limitation of our approach is the uncertainty of the statistical test

itself. Thus, even when we find a link to be significant (with respect to the pre-

viously stated null hypothesis) at a 5% level of significance, we could be wrong 5

times out of 100. A second limitation, and one that might cause, e.g., the suspi-

cious result of VOLC impacting GMT at 145 months, is that the ‘volcanic activity’

is represented here by the optical depth of stratospheric aerosols. This quantity, in

106
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time periods located away from major volcanic eruptions, might be influenced by

the other climatic factors. However, a third, and more critical limitation is that our

approach cannot distinguish indirect/spurious links from direct ones. This means

that if we have: (i) X drives A and A drives Y , or (ii) A drives both X and Y , in

both cases our method would show a link between X and Y even though there is

no direct connection between them. The direction of this link might then be influ-

enced by random noise (if any) in the systems. We feel that the impact of volcanic

aerosols on the GMT at delays as large as 145 months might most likely be due to

spurious links that are not removed. There are other methods, e.g., multivariate

transfer entropy (Runge et al., 2012), which can detect and remove spurious links.

It is computationally intensive and difficult to incorporate such a principle into

the current recurrence-based approach and is thus intended as a goal of future

investigations.
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Appendix A
Mathematical derivation of posterior proxy

distributions

In the following sections, we outline the detailed derivations of the ideas described

in Chapter 2. After first detailing the basic terminology that we intend to use, we

state the given information in methematical terms, and then as a first step, we de-

rive the depth-spaccing weight functions described in Section 3.2.1. Thereafter,

we show how we impose the monotonicity condition of stratigraphically ordered

sediment growth on the set of obtained DWFs, which result in a stratigraphically

conforming post-DWFs. Using these we finally show how the posterior proxy dis-

tributions are obtained and can then be used to estimate posterior proxy means

and variances at any given time point in the past.

A.1. Basic terminology

Consider Z , R and T to be the variables denoting depth, radiocarbon age, and

calendar age respectively. The variable X is used to denote the unknown proxy.

The set of observations correspond to the radiocarbon age-depth measurements,

and the proxy-depth measurements. In other words, we have

• a time point of interest t which runs over a fine, regular grid. The latter is,

in fact, the precise calendar age interval for which we wish to estimate the

proxy probability distribution.

• a known calibration curve rt defined for all these values of t , where t de-

notes radiocarbon age, and the associated Gaussian error estimates σC
t (the
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A. Mathematical derivation of posterior proxy distributions

superscript “C” denotes “calibration”).

• a (typically small) number M of 14C dating points (zr
k ,rk ), along with esti-

mates σR
k of the standard deviation of the individual Gaussian 14C dating

errors.

• a (typically large) number N À M of proxy measurement points (zx
j , x j ) for

another (typically different) set of depths zx
j , where x j denotes proxy values,

along with estimatesσX
j of the standard deviation of the individual Gaussian

proxy measurements errors.

Thus, we have the following Gaussian conditional probability distributions:

• The calibration curve specifies the conditional density of r given t as P (r |t ) ∝
exp[−(r − rt )2/2(σC

t )2].

• The 14C age data specify the conditional density of r given Z =zr
k as P (r |zr

k ) ∝
exp[−(r − rk )2/2(σR

k )2].

• The proxy data specify the conditional density of x given Z =zx
j as P (x|zx

j ) ∝
exp[−(x −x j )2/2(σX

j )2].

We only state proportionalities (∝) here, taking care of proper normalization only

in the end.

A.2. Estimating Depth-spanning Weight Functions

To answer the question: which among the proxy measurement depths are more

likely than others to correspond to a given true age, we apply the law of total prob-

ability and Bayes’ Theorem to combine the calibration curve distribution P (r |t )

and the output of the RM age model (which gives P (r |zx
j ) from the measured data

P (r |zr
k )):
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A.3. Imposing monotonic growth using force-based relaxation dynamics

P (zx
j |t ) =

∫
dr P (zx

j |r )P (r |t )

=
∫

dr
P (zx

j )P (r |zx
j )

P (r )
P (r |t ) (A.1)

Assuming all ages and depths are equally likely a priori, we use the (flat) prior dis-

tributions P (r ) ∝ P (zx
j ) ∝ 1 and see that P (zx

j |t ) is proportional to the weight

P (zx
j |t ) ∝

∫
dr P (r |zx

j )P (r |t ) =: wt (zx
j ). (A.2)

where the weight wt (zx
j ) is the Depth-spanning Weight Function. Since the RM age

model returns the means r j and standard deviations σR
j of the radiocarbon age

R for the depths zx
j , we can substitute the relevant Gaussian functions in equa-

tion A.2 to get

wt (zx
j ) ∝

∫
dr exp

(
−(r − r j )2

2(σR
j )2

)
exp

(
−(r − rt )2

2(σC
t )2

)
. (A.3)

The first term in equation A.3 is the output of the RM age model while the second

term represents the calibration curve. Note: For the RM age model, we use the

MoTaBaR regression method from Heitzig (2013) with order parameter p = 2 and

a data-driven choice of prior distributions.

A.3. Imposing monotonic growth using force-based

relaxation dynamics

Since it is difficult to define unambiguously a monotonic condition relation in T

for the set of DWFs defined in equation A.3, we choose to work with the cumula-

tive distributions while imposing the constraint of monotonic growth of the paleo-

archive. The first step is to convert the initially estimated DWFs, w i
t (zx

j ) into cor-

responding cumulative distributions—
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A. Mathematical derivation of posterior proxy distributions

W i
t (zx

j ) =
j∑

l=1
w i

t (zx
l ). (A.4)

The initial cumulative distributions W i
t (zx

j ) are by construction weakly monotonic

(non-decreasing) over the depths zx
j . Our goal is to find the a final set of CDWFs,

W f
t (zx

j ), that are weakly monotonic (non-increasing) over t as well.

The final CDWFs are those that satisfy the above condition of monotonicity and are

at a minimal distance from the initially estimated W i
t (zx

j ). Ideally, we can estimate

W f
t (zx

j ) by minimizing the functional
∑

j
∑

t [W f
t (zx

j )−W i
t (zx

j )]2. However, this is

not straightforward and computationally expensive and we thus use a force-based

relaxation dynamics under reasonable assumptions to estimate W f
t (zx

j ).

We introduce an artificial ‘time’ variable τ (not related to the calendar age T ) such

that the cumulative distribution function that is given by W f
t (zx

j ,τ → ∞). We

choose the initial condition at the starting point of the artificial time τ= 0 as

W f
t (zx

j ,0) =1

2

[
min
t ′≤t

W i
t ′(zx

j )+max
t ′≥t

W i
t ′(zx

j )
]
. (A.5)

Such an initial condition ensures that W f
t (zx

j ,0) is monotonic from the start. The

next step is to ‘drag’ this function towards the non-monotonic W i
t ′(zx

j ) as far as

monotonicity permits. For this we first evaluate

δ(τ) =W i
t ′(zx

j )−W f
t (zx

j ,τ) (A.6)

which is the distance of the monotonic function from the original function after τ

time steps. The evolution of W f
t (zx

j ,τ) over τ is formulated as:
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A.4. Posterior proxy distributions, their means and variances

d

dτ
[W f

t (zx
j ,τ)] =

δ(τ)

δ(τ) > 0 & W f
t (zx

j ,τ) < min
(
W f

t (zx
j+1,τ),W f

t−1(zx
j ,τ)

)
δ(τ) < 0 & W f

t (zx
j ,τ) > max

(
W f

t (zx
j−1,τ),W f

t+1(zx
j ,τ)

)
0, otherwise.

(A.7)

Integrating over τ, we obtain the monotonic W f in the limit τ→∞. This partic-

ular approach of estimating the monotonic W f functions has the advantage that

even when the process is stopped before convergence due to a too slow rate of

convergence, the result is still monotonic and at least as close to W i
t ′(zx

j ) as the ini-

tial guess W f
t (zx

j ,0). Preliminary tests (results not shown) with example data sets

suggest that a step size of dτ = 10/s with s = 1000 steps might lead to sufficient

results.

A.4. Posterior proxy distributions, their means and

variances

After estimating W f
t (zx

j ), we obtain the corresponding w f
t (zx

j ) by the first-order

difference of W f
t (zx

j ) along the zx
j axis, (the reverse of equation A.4), i.e.,

w f
t (zx

j ) =W f
t (zx

j )−W f
t (zx

j−1), j = 2, . . . , N (A.8)

with the first value set as w f
t (zx

1 ) =W f
t (zx

1 ).

We now use these as weights to estimate the posterior proxy distributions P (x|t ).

For this, we again apply the law of total probability and approximate the integral

over depth by a Riemann sum using the proxy measurement depths:
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A. Mathematical derivation of posterior proxy distributions

P (x|t ) =
∫

dz P (x|z)P (z|t )

≈
N∑

j=1
b j P (x|zx

j )P (zx
j |t ), (A.9)

where b j is the width of the depth interval represented by zx
j :

b j = 1

2


zx

2 − zx
1 b j = 1

zx
j+1 − zx

j−1 1 < b j < N

zx
N − zx

N−1 b j = N .

(A.10)

Finally, we plug in the final DWFs, w f
t (zx

j ), taking care of a correct normalization,

and find that the proxy probability density at t is simply a weighted mean of the

densities corresponding to the individual proxy measurements, i.e., a Gaussian

mixture:

P (x|t ) ≈
∑N

j=1 b j w f
t (zx

j )P (x|zx
j )∑N

j=1 b j w f
t (zx

j )
, (A.11)

where P (x|zx
j ) is the Gaussian

P (x|zx
j ) =

exp[−(x −x j )2/2(σX
j )2]

p
2πσX

j

. (A.12)

Once the probability distribution of the proxy at a given t is known (as given by

equations A.11 and A.12) estimates of the mean and median, and respective es-

timates of uncertainty such as the variance and the inter-quartile range can be

calculated. E.g., the mean x̄(t ) of P (x|t ) is estimated as
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x̄(t ) =
∫

dx x P (x|t ) ≈
∑N

j=1 b j x j w f
t (zx

j )∑M
j=1 b j w f

t (zx
j )

, (A.13)

using which the variance σ2(t ) of P (x|t ) can be computed as:

σ2(t ) =
∫

dx (x − x̄(t ))2 P (x|t )

≈
∑N

j=1 b j w f
t (zx

j )
[
(x j − x̄(t ))2 + (σX

j )2
]

∑N
j=1 b j w f

t (zx
j )

(A.14)

Note however, that because P (x|t ) is not necessarily Gaussian, σ2(t ) might not

give reliable confidence bounds, which is why we use the exact quantiles of P (x|t )

instead to construct confidence bounds for X .
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Appendix B
Mathematical derivation of the role of joint

distributions

B.1. Expectation value and variance over time

In this part, we are concerned with estimating the expectation value of the proxy

over a period of time given the (marginal) posterior proxy densities P (x|t ) at each

time point t in the past. In order to estimate the expectation value E [X ] of the

proxy X over time, we have to first arrive at a sensible probability density that ex-

presses the total probability of having a proxy value X = x over the time period

under consideration. This turns out to be,

P (x) =
∫

dt P (x|t )∫
dt

. (B.1)

Once we have a well-defined probability distribution P (x) at hand, we can now

estimate the expectation value according to the definition,

µX = E [X ] =
∫

dx x P (x). (B.2)

Using the expression for the probability density from Equation B.1 and rearranging

the terms we find that the expectation value is expressible as the time average of

the expectation values of the proxy at each point of time x̄(t ). Formally
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E [X ] =
∫

dt
[∫

dx x P (x)
]∫

dt
(B.3)

=〈x̄(t )〉, (B.4)

where
∫

dx x P (x) = x̄(t ) from equation A.12 and 〈·〉 denotes the time average.

After estimating the expected value, we are now in a position to derive the expres-

sion for the variance of the proxy values over an extended period of time with re-

spect to the expectation µX derived above. To do this, we use the standard defini-

tion of the variance,

σ2
X =

∫
dx (x −µX )2 P (x), (B.5)

from which, by using the expression in Equation B.1 we get,

σ2
X =

∫
dx x2 P (x)−µ2

X (B.6)

=
∫

dt
[∫

dx x2P (x|t )
]∫

dt
−µ2

X . (B.7)

Now, from Appendix A.4, we find that
∫

dx x2P (x|t ) = σ2(t )+ x̄(t )2, which results

in the expression for the variance over time as,

σ2
X =<σ2(t )+ x̄(t )2 >− µ2

X . (B.8)

Equations B.4 & B.8 link the statistical quantities over a period of time to the cor-

responding statistical quantities at individual time points. Note that we had no

reason to assume that this should have been the case, and these results are, in fact,

representative of the fact that the instantaneous characteristics of the proxy distri-

butions are linked to its long-term characteristics.
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B.2. Autocovariance and crosscovariance

Other crucial quantities of interest in time series analyses are the autocorrelation,

crosscorrelation and the power spectrum of a given dataset. In our case, since we

have a series of probability densities rather than a time series on our hands, we

have to take care to derive from first principles these quantities in order to avoid

mathematical oversights.

Let us first consider the autocorrelation of the series of probability densities repre-

sented as P (x|t ). To avoid ambiguity and to adopt a shorthand notation for these

densities, let us denote the random variable X = x given T = t as X t and its corre-

sponding probability density P (x|t ) as Pt (xt ). Now, since it is not guaranteed that

the process X = (X t ) is not stationary, we define the two time-dependent means

for X t and X t+τ as the expectation values analogous to equation B.3

E [X t ] =
∫

dt
[∫

dxt xt Pt (xt )
]∫

dt
(B.9)

E [X t+τ] =
∫

dt
[∫

dxt+τ xt+τ Pt+τ(xt+τ)
]∫

dt
. (B.10)

Then, the autocovariance %X (τ) at lag τ is given by

%X (τ) = E [X t , X t+τ]−E [X t ]E [X t+τ], (B.11)

where the joint expectation value E [X t , X t+τ] involves the total joint probability

P (xt , xt+τ) which we can write down as

P (xt , xt+τ) =
∫

dt P (xt , xt+τ|t )∫
dt

. (B.12)

The term on the right-hand side of equation B.12 is unknown to us and thus the au-

tocovariance cannot be estimated without approximations and assumptions about

the data.
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B. Mathematical derivation of the role of joint distributions

The lagged crosscovariance %X Y (τ) between two different proxy records can also

be written down in terms of the expectation values as

%X Y (τ) = E [X t ,Yt+τ]−E [X t ]E [Yt+τ] (B.13)

=
Ï

dxt dyt+τ xt yt+τPX t ,Yt+τ(xt , yt+τ)−E [X t ]E [Yt+τ], (B.14)

which we find is critical dependent on the total joint probability term

PX t ,Yt+τ(xt , yt+τ) =
∫

dt
PX t ,Yt+τ(xt , yt+τ|t )∫

dt
. (B.15)

However, in contrast to the case of autocivariance, in this case, we can assume

conditional independence of the two proxies such that

PX t ,Yt+τ(xt , yt+τ|t ) = PX t (xt |t ) PYt+τ(yt+τ|t ). (B.16)

Now, combining the equations B.14, B.15 and B.16, we get the crosscovariance as

%X Y (τ) =
Ï

dxt dyt+τ xt yt+τ

∫
dtPX t (xt |t ) PYt+τ(yt+τ|t )∫

dt
−E [X t ]E [Yt+τ], (B.17)

which can be simply rearranged as

%X Y (τ) = 〈x̄(t )ȳ(t +τ)〉−〈x̄(t )〉〈ȳ(t +τ)〉. (B.18)
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B.3. Posterior joint probability for proxy at two time

points

This section focusses on the derivation of the posterior joint probability density

for the proxy values at two different time points under consideration. As with the

derivation of the posterior probability densities derived in Appendix A, we shall

consider the more general case of an archive dated with radiocarbon dating, and

which thus needs calibration, as this helps to illustrates all the sources of covari-

ance that are incumbent in the joint probability estimation. For this, let us assume

that Xi , i = 1,2, are the random variable representing the proxy values at the two

time points Ti . Next, let Zi and Ri represent the depth and radiocarbon axes re-

lated to the random variables Xi . Note that, for a single archive and a single proxy,

the depth and radiocarbon measurements are the same, but we still denote them

with two separate variables in the following derivation for the sake of clarity and

in the anticipation of necessary double integrals over the depth and radiocarbon

axes.

For the sake of clarity, the joint probability density function is for the proxy values

at T1 and T2 is represented as P (x1, x2|t1, t2). Using this nomenclature, we now

want to answer the question: what is the probability that the proxy X1 at T1 had

the value x1 and the proxy X2 at T2 had the value x2? Formally, this can be written

down as,

P (x1, x2|t1, t2) =
Ï

dz1dz2 P (x1, x2|z1, z2) P (z1, z2|t1, t2). (B.19)

Next, consider the first term on the right-hand side of Equation B.19, which effec-

tively requires us to provide the joint probability of making two proxy observations

x1 and x2 at two corresponding depths z1 and z2. Now, we assume the proxy mea-

surements along the depth of the archive are made with instruments with negli-

gible systematic errors, and thus, we can assume that each proxy measurement

at a given depth is independent of any other measurement at other depths, i.e.,

knowing the proxy measurement at particular depth does not change or effect our

beliefs about a subsequent proxy measurement at any other depth. In probabilistic
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terms, this implies that P (x1, x2|z1, z2) = P (x1|z1)P (x1|z1), i.e., the proxy measure-

ments along depth are conditionally independent. Now, considering z Xi
ji

, i = 1,2,

as the depths at which the proxy was was measured to get the proxy value Xi at the

times Ti , we can estimate the integral given by Equation B.19 using the Riemann

sum:

P (x1, x2|t1, t2) ≈
N∑

j1=1

N∑
j2=1

b j1 b j2 P (x1|zx1
j1

) P (x1|zx2
j2

) P (zx1
j1

, zx2
j2
|t1, t2), (B.20)

where, analogous to Equation A.10, b ji are the widths of the depth intervals repre-

sented by z Xi
ji

:

b ji =
1

2


zxi

2 − zxi
1 b ji = 1

zxi
ji+1 − zxi

ji−1 1 < b ji < N

zxi
N − zxi

N−1 b ji = N .

(B.21)

Now, let us focus on the second term P (zx1
j1

, zx2
j2
|t1, t2) on the right-hand side of

Equation B.20, which requires us to estimate the joint probability of the most likely

depths z1 and z2 given two calendar ages t1 and t2. We can express this probability

as a double integral over the radiocarbon measurement axes and then use Bayes’

Theorem to obtain a proportional relationship of this probability in terms of quan-

tities that are potentially accessible for us:

P (zx1
j1

, zx2
j2
|t1, t2) =

Ï
dr1dr2 P (zx1

j1
, zx2

j2
|r1,r2) P (r1,r2|t1, t2) (B.22)

=
Ï

dr1dr2

P (r1,r2|zx1
j1

, zx2
j2

) P (zx1
j1

, zx2
j2

)

P (r1,r2)
P (r1,r2|t1, t2). (B.23)

Now, assuming that all combinations of ages, and all combinations of depths are

equally likely a priori, we use (flat) prior distributions P (zx1
j1

, zx2
j2

) ∝ P (r1,r2) ∝ 1,
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we find, from the expression in Equation B.23, that P (zx1
j1

, zx2
j2
|t1, t2) is proportional

to the weight

P (zx1
j1

, zx2
j2
|t1, t2) ∝

Ï
dr1dr2 P (r1,r2|zx1

j1
, zx2

j2
) P (r1,r2|t1, t2) (B.24)

=:wt1t2 (zx1
j1

, zx2
j2

). (B.25)

Finally, plugging in the weight function obtained in equation B.25 into the Rie-

mann sum defined for the final proxy joint density in equation B.20, we get the

joint proxy probability at times t1 and t2 as the weighted mean of the conditionally

independent densitites corresponding to individual proxy measuements

P (x1, x2|t1, t2) ≈
∑N

j1=1

∑N
j2=1 b j1 b j2 wt1t2 (zx1

j1
, zx2

j2
) P (x1|zx1

j1
) P (x1|zx2

j2
)∑N

j1=1

∑N
j2=1 b j1 b j2 wt1t2 (zx1

j1
, zx2

j2
)

. (B.26)

Note that the primary source of covariance in the final joint proxy probability in

the above equation arises from the weigth function wt1t2 (zx1
j1

, zx2
j2

) which in turn

has two main components as can be seen from equation B.24. The first term

P (r1,r2|zx1
j1

, zx2
j2

) reflects the growth relation of the sediment core and thus implies

that the growth of the sediment core strongly correlates the uncertainties between

any given pair of depth layers. The second term P (r1,r2|t1, t2) is the calibration

term which implies that uncertainties in determining the precise calendar ages for

a given pair of radiocarbon ages are correlated.
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Appendix C
Data sets used

We tabulate here the datasets that were used in the dissertation. Although we

present here the age–depth measurements that were used, due to the long length

of the proxy–depth measurements (typically of around a 1000 points long), we do

not tabulate them here. However, for the Wanxiang and Dayu caves, they are avail-

able as supplementary information to their respective publications. They are also

available for download in ASCII format from:

http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/

speleothem .

The data for the Wah Shikar cave were obtained from the authors by request.

C.1. Data from Wanxiang, Dayu and Wah Shikar

Wanxiang cave

The Wanxiang cave is located in in Wudu County, Gansu Province, China between

the Qinghai-Tibetan Plateau and the Chinese Loess Plateau at 33o19′N, 105o00′E
and at an elevation of 1200 m. We use the 118 mm long WX42B stalagmite from

the Wanxiang cave reported in Zhang et al. (2008). The stalagmite grew roughly

from 190 to 2003 AD without any hiatus. In total there were a total of 703 δ18O

measurements made along its depth along with 19 U/Th age measurements. The

U/Th age measurements are reported in Table C.1.
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C. Data sets used

Table C.1. U/Th age measurements from Wanxiang cave

Sample Depth U/Th age Error

(mm) (yBP) (± yBP)

WX42B-2-2 1.0 13 0.5

WX42B-0 4.0 33 0.5

WX42B-2-2 8.1 60 0.5

WX42B-1 13.2 106 0.5

WX42B-2-3 16.0 135 0.5

WX42B-2 22.7 294 0.5

WX42B2-4 27.8 401 1.0

WX42B-3 35.5 579 0.5

WX42B2-5 39.3 670 1.0

WX42B-4 45.5 788 1.0

WX42B2-6 50.4 899 1.0

WX42B-5 57.0 1032 1.5

WX42B2-7 60.0 1106 1.5

WX42B-7 67.0 1251 1.0

WX42B-8 76.5 1432 1.5

WX42B-9 86.0 1514 2.5

WX42B2-9 92.0 1576 1.5

WX42B-10 99.0 1655 2.0

WX42B-11 115.5 1811 2.0

Dayu cave

The Dayu cave is located on the southern side of the Qinling mountains in cen-

tral China at 33o08′N, 106o18′E. The δ18O signal record in the stalagmite DY-1 as

reported in Tan et al. (2009) was used in our analysis. This stalgmite grew from

roughly from 1271 AD to 1969 AD without interruptions. The dating of DY-1 in-

volves a set of 8 U/Th ages with an approaximate mean error of 1.7 years. The set

of ages are tabulated in Table C.2.

126



C.2. Data from Lonar lake, central India

Table C.2. U/Th age measurements from Dayu cave

Depth U/Th age Error

(mm) (yBP) (± yBP)

2.50 -19 1.5

27.75 114 1.0

35.25 163 1.0

54.00 290 1.5

72.50 391 2.0

78.75 438 1.5

96.75 672 2.5

98.00 679 4.0

Wah Shikar cave

The Wah Shikar cave is located in northeastern India around 30 km from the town

of Shillong at 25o15′N, 91o52′E and at an elevation of 1290 m. We use the δ18O

signal recorded in the stalagmite WS-B as reported in Sinha et al. (2011). The sta-

lagmite itself is around 93 mm long and grew without any hiatuses from 1360 AD

to 1750 AD. The average error of the 12 U/Th ages measured along the depth of the

stalagmite is around 65 years. The set of U/Th age measurements are tabulated in

Table C.3.

C.2. Data from Lonar lake, central India

The Lonar lake is a circular crater located in central India at 19o58′N, 76o30′E. The

lake itself is annually fed by precipitation from the Indian summer monsoon and

the runoff from three major rivers in the region: Dhara, Sitanahani and Ramgaya.

The diamter of the crater is approxiamtely 1.8 km and it has an average depth

of around 135 m. In our analysis in Chapter 4, we use the final set of 14C age

measurements made along the composite core depth of 10.04 m combined from

two nearby sediments cores separated by 50 cm (Anoop et al., 2013; Prasad et al.,
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Table C.3. U/Th age measurements from Wah Shikar cave

Depth U/Th age Error

(mm) (yBP) (± yBP)

13 200 60

14 144 25

19 224 35

28 255 35

30 470 250

41 385 30

43 440 120

52 460 50

65 467 15

66 473 15

88 510 100

90 590 55

2014).

This consists of 17 pre-1950 ages, L19–L1, and two 14C ages after 1950, L21 and

L20a. The entire set of age measurements finally used for our analysis are given in

the following section.

14C measurements from Lonar

The 14C age depth measurements used in the analysis (as shown in Fig. 4.3) are

given in Table C.4. The data reported in Table C.4 lists only those measurement

samples from Anoop et al. (2013) which were finally used in their analysis.
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Table C.4. 14C age measurements from Lonar Lake, central India

Sample Depth (cm) 14C age (yBP) Error (± yBP)

L211 0 40 -

L20a2 20 -2902 0.01

L19 163.5 564 30

L17 266 1105 30

L15o 266.5 1075 30

L14 267.5 1100 30

L13 383.5 1840 35

L12 482 2315 35

L11 511.5 2680 35

L10 612 3470 35

L9 778 4185 35

L8 820 4600 60

L7 870 7420 40

L6 870.5 7460 90

L5 872 7410 100

L4 882.5 8880 60

L3 899 8990 80

L2 902 9740 50

L1 904 9570 100

1 Point at surface fixed at 2007 AD (≈ 40 14C yBP)
2 143.51 ± 0.0043 pMC

Note on Al area as a surface erosion proxy

Figure 4.3E reveals that the Al total counts are extremely low as compared to those

of Ca, for instance. It is advisable to treat such data with caution, as XRF measure-

ments give only a qualitative overview of the elemental abundances. However, as

shown in the earlier study by Prasad et al. (2014), the Al counts are strongly corre-

lated with the Si, Ti and K counts obtained from the same core (shown in Fig. C.1).

This determined our choice of taking Al as a representative proxy for the whole
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core. Even though the actual magnitude of the Al XRF estimates might be low, its

variations mimic the variations of the Si, Ti and K counts, which have relatively

higher magnitudes of XRF estimates. We note that this fact, combined with the

study of Basavaiah et al. (2014), validates the use of the Al counts as a proxy for the

surface erosion in the Lonar catchment area.
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Figure C.1. Al counts as a representative proxy for the Lonar lake.

Al counts (top panel, in blue) are highly correlated with the Ti (orange),

Si (green) and K (red) counts obtained from XRF scanning of the Lonar

lake sediment. This correlation with the other elements, combined with the

fact that the Al counts arise due to the catchment erosion, forms the basis

for choosing it as a representative proxy for this analysis. This choice also

helps us to illustrate the impacts of proxy–depth variability on the final proxy

estimate uncertainties.
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C.3. Global time series datasets for the past 120

years

The datasets used in this analysis are available (as of December 1, 2012) for down-

load at the web addresses listed below.

• Multivariate ENSO Index

– From 1950 to present

http://www.esrl.noaa.gov/psd/enso/mei/table.html

– Prior to 1950

ftp://www.coaps.fsu.edu/pub/JMA_SST_Index/

• Stratospheric optical aerosol depth

http://data.giss.nasa.gov/modelforce/strataer/tau_line.txt

• Total Solar Irradiance

http://lasp.colorado.edu/sorce/tsi_data/TSI_TIM_Reconstruction.

txt

• WMGHG forcing

http://data.giss.nasa.gov/modelforce/RadF.txt

• NASA GISS LOTI

http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt

• HadCRUT3v global mean temperature

http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3v.zip
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Appendix D
Mathematical models

Here we give the equations for mathematical models and synthetic examples used

in the dissertation.

• Growth of a synthetic archive with a sinusoidal proxy, as discussed in Sec. 4.1.1.

The calendar age ti of a the i th depth layer is

ti = ti−1 + ri−1zi−1, (D.1)

where the growth rate ri of the i th depth layer is chosen as ri ∼ N (ri−1,σr ).

In case a negative or zero ri is drawn, we repeat the draw until we get a non-

zero ri . We choose r0 = 20 yr/cm and σr = 7 yr/cm.The sinusoidal proxy xt

with two superimposing frequencies are given by

xt = sin(2πω1t )+ sin(2πω2t ), (D.2)

with (ω1,ω2) = (0.0005,0.0025) for the U/Th-dated archive (Sec. 4.1.1) and

(ω1,ω2) = (0.001,0.005) for the 14C-dated archive (Sec. 4.1.1).

• The chaotic Rössler system,
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ẋ =−y − z (D.3)

ẏ = x +ay (D.4)

ż = b + z(x − c). (D.5)

with the parameters (a, b, c) = (0.2, 0.2, 5.7) (Sec. 6.3).

• Brownian motion,

x(t +d t ) = x(t )+N (0,δ2d t ), (D.6)

where δ is the standard deviation of the normal distribution and d t is the

time step of estimation. We choose δ= 0.1, d t = 0.5, and x(0) = 0.5 (Sec. 6.3).

• Synthetic paleomonsoon with AR1 an sinusoidal components, as discussed

in Sec. 6.4. The paleomonsoon variable x(t ) is given by,

x(t −1) = xP (t )+αxA(t )+ sN (0,1)+ I (t )+F (t ), (D.7)

where the periodic sine component xP (t ), the solar forcing component F (t ),

and the event component I (t ) are,

xP (t ) = Ax sin

(
2π

Tx
t

)
(D.8)

F (t ) =−AF cos

(
2π

TF
t

)
(D.9)

I (t ) =


−3, 2250 ≤ t ≤ 2750

2, 4950 ≤ t ≤ 5050

−2, 7450 ≤ t ≤ 7550.

(D.10)
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Note in equation D.7, we proceed with time t = N , N − 1, . . . ,3,2,1,0 as the

time axis in this paleomonsoon example is years before present (BP), which

is simply the difference of the AD year from 1950, e.g., –2000 AD equals

3950 BP. Also, the set of parameter values used in the example are α = 0.2,

s = 0.5 for the AR1 component xA(t )+ sN (0,1); Ax = 0.5, Tx = 500 for the si-

nusoid component xP (t ); and AF = 5., TF = 20,000 for the solar forcing F (t ).
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