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Summary

In this thesis we study reciprocal classes of Markov chains. Given a continu-
ous time Markov chain on a countable state space, acting as reference dy-
namics, the associated reciprocal class is the set of all probability measures
on path space that can be written as a mixture of its bridges. These pro-
cesses possess a conditional independence property that generalizes the
Markov property, and evolved from an idea of Schrödinger, who wanted
to obtain a probabilistic interpretation of quantum mechanics.

Associated to a reciprocal class is a set of reciprocal characteristics, which
are space-time functions that determine the reciprocal class. We compute
explicitly these characteristics, and divide them into two main families:
arc characteristics and cycle characteristics. As a byproduct, we obtain an
explicit criterion to check when two different Markov chains share their
bridges.

Starting from the characteristics we offer two different descriptions of
the reciprocal class, including its non-Markov probabilities.
The first one is based on a pathwise approach and the second one on short
time asymptotic. With the first approach one produces a family of func-
tional equations whose only solutions are precisely the elements of the
reciprocal class. These equations are integration by parts on path space as-
sociated with derivative operators which perturb the paths by mean of the
addition of random loops. Several geometrical tools are employed to con-
struct such formulas. The problem of obtaining sharp characterizations is
also considered, showing some interesting connections with discrete ge-
ometry. Examples of such formulas are given in the framework of count-
ing processes and random walks on Abelian groups, where the set of loops
has a group structure.
In addition to this global description, we propose a second approach by
looking at the short time behavior of a reciprocal process. In the same way
as the Markov property and short time expansions of transition probabili-
ties characterize Markov chains, we show that a reciprocal class is charac-
terized by imposing the reciprocal property and two families of short time
expansions for the bridges. Such local approach is suitable to study recip-
rocal processes on general countable graphs. As application of our charac-
terization, we considered several interesting graphs, such as lattices, pla-
nar graphs, the complete graph, and the hypercube.
Finally, we obtain some first results about concentration of measure im-
plied by lower bounds on the reciprocal characteristics.



ii

Zusammenfassung

Diese Dissertation behandelt die reziproke zufällige Prozesse mit Sprüngen.
Gegeben eine zeitkontinuierliche Markovkette als Referenzdynamik, ist
die assoziierte reziproke Klasse die Menge aller Wahrscheinlichkeiten auf
dem Pfadraum, die als eine Mischung ihrer Brücken geschrieben wer-
den kann. Reziproke Prozesse zeichnen sich durch eine Form der bed-
ingten Unabhängigkeit aus, die die Markoveigenschaft verallgemeinert.
Ursprünglich ist diese Idee auf Schrödinger zurückzuführen, der nach
einer probabilistischen Interpretation für die Quantenmechanik suchte.
Einer reziproken Klasse wird eine Familie reziproker Charakteristiken as-
soziiert. Dies sind Raum-Zeit Abbildungen, die die reziproke Klasse ein-
deutig definieren. Wir berechnen diese Charakteristiken explizit und un-
terteilen sie in zwei Typen: Bogen-Charakteristiken und Kreis-Charakteris-

tiken. Zusätzlich erhalten wir ein klares Kriterium zur Prüfung wann die
Brücken von zwei verschiedenen Markovketten übereinstimmen.
Wir beschreiben auf zwei verschiedene Arten reziproken Klasse und berück-
sichtigen auch ihre nicht-Markov Elemente. Die erste Charakterisierung
basiert auf einem pfadweisen Ansatz, während die zweite kurzzeit Asymp-
totik benutzt. Der erste Ansatz liefert eine Familie funktionaler Gleichun-
gen deren einzige Lösungen die Elemente der reziproken Klasse sind. Die
Gleichungen können als partielle Integration auf dem Pfadraum mit einem
Ableitungsoperator, der eine Störung der Pfade durch zusätzliche zufällige
Kreise hervorruft, interpretiert werden. Die Konstruktion dieser Gleichun-
gen benötigt eine geometrische Analyse des Problems. Wir behandeln
außerdem die Fragestellung einer scharfen Charakterisierung und zeigen
interessante Verbindungen zur diskreten Geometrie. Beispiele, für die wir
eine solche Formel finden konnten, sind für Zählprozesse und für Irrfahrte
auf abelschen Gruppen, in denen die Menge der Kreise eine Gruppen-
struktur erweist.
Zusätzlich zu diesem globalen Zugang, erforschen wir eine lokale Beschrei-
bung durch die Analyse des kurzfristigen Verhaltens eines reziproken
Prozesses. Analog zur Markoveigenschaft und kurzzeit Entwicklung ihrer
Übergangswahrscheinlichkeit Markovketten charakterisieren, zeigen wir,
dass eine reziproke Klasse charakterisiert werden kann indem wir ihre
reziproke Eigenschaft und zwei Familien von Kurzzeit Entwicklungen der
Brücken voraussetzen. Solche lokalen Ansatz ist geeignet , um Sprung-
prozesse auf allgemeine zählbaren Graphen zu studieren. Als Beispiele
unserer Charakterisierung, betrachten wir Gitter, planare Graphen, kom-
plette Graphen und die Hyperwürfel.



iii

Zusätzlich präsentieren wir erste Ergebnisse über Maßenkonzentration eines
reziproken Prozesses, als Konsequenz unterer Schranken seiner Charak-
teristiken.
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Riassunto

In questa tesi si studiano le classi reciproche delle catene di Markov.
Data una catena di Markov a tempo continuo su uno spazio numerabile,
che svolge il ruolo di dinamica di riferimento, la sua classe reciproca è
costituita da tutte le leggi sullo spazio dei cammini che si possono scri-
vere come un miscuglio dei ponti della legge di riferimento. Questi pro-
cessi stocastici godono di una proprietà di independenza condizionale
che generalizza la proprietà di Markov ed è ispirata ad un’idea avuta da
Schrödinger nel tentativo di derivare un’interpretazione stocastica della
meccanica quantistica.

A ciascuna classe reciproca è associato un insieme di caratteristiche re-
ciproche. Una caratteristica reciproca è una proprietà della dinamica di
riferimento che viene trasmessa a tutti gli elementi della classe, e viene
espressa matematicamente da un opportuna combinazione di funzionali
del generatore della catena di riferimento. Nella tesi, le caratteristiche
vengono calcolate esplicitamente e suddivise in due famiglie principali:
le caratteristiche di arco e le caratteristice di ciclo. Come sottoprodotto, ot-
teniamo un criterio esplicito per decidere quando due catene di Markov
hanno gli stessi ponti.
A partire dalle caratteristiche reciproche, vengono proposte due caratter-
izzazioni della classe reciproca, compresi i suoi elementi non Markoviani.
La prima è basata su un approccio traiettoriale, mentre la seconda si basa
sul comportamento asintotico locale dei processi reciproci. Utilizzando
il primo approccio, si ottiene una famiglia di equazioni funzionali che
ammette come soluzioni tutti e soli gli elementi della classe reciproca.
Queste equazioni sono integrazioni per parti sullo spazio dei cammini
associate ad operatori differenziali che perturbano le traiettorie del pro-
cesso canonico con l’aggiunta di loops casuali. Nella costruzione di queste
equazioni si impiegano tecniche di geometria discreta, stabilendo un in-
teressante collegamento con risultati recenti in questo campo. Le caratter-
izzazioni ottenute sono ottimali, in quanto impiegano un numero minimo
di equazioni per descrivere la classe. Con questo metodo vengono studi-
ate le classi reciproche di processi di conteggio, di camminate aleatorie su
gruppi Abeliani, dove l’insieme dei cicli gode anch’esso di una struttura di
gruppo. Il secondo approccio, di natura locale, si basa su stime asintotiche
in tempo corto. È ben noto come una catena di Markov sia caratteriz-
zata dal fatto di possedere la proprietà di Markov e dal comportamento
in tempo corto delle probabilità di transizione. In questa tesi mostriamo
che una classe reciproca è caratterizzata dalla proprietà reciproca, e da due
famiglie di stime asintotiche per i ponti del processo. Questo approccio lo-
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cale permette di analizzare le classi reciproche di passeggiate aleatorie su
grafi generali. Come applicazione dei risultati teorici, consideriamo i lat-
tici, i grafi planari, il grafo completo, e l’ipercubo discreto.
Infine, otteniamo delle stime di concentrazione della misura e sul com-
portamento globale dei ponti, sotto l’ipotesi di un limite inferiore per le
caratteristiche reciproche.
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Introduction

Reciprocal probabilities evolved from an idea of Schrödinger, who wanted
to derive a stochastic interpretation of quantum mechanics.

In two papers [73] and [74] entitled “Über die Umkehrung der Naturge-
setze” and “La théorie relativiste de l’électron et l’interprétation de la mécanique
quantique” he introduced what is nowadays known as the Schrödinger prob-
lem. He himself provides a neat statement of it. The following is taken
from [74]:

Imaginez que vous observez un système de particules en diffusion, qui soient en
équilibre thermodynamique. Admettons qu’ à un instant donné t0 vous les ayez
trouvées en répartition à peu près uniforme et qu’à t1 > t0 vous ayez trouvé un

écart spontané et considérable par rapport à cette uniformité. On vous
demande de quelle manière cet écart s’est produit. Quelle en est la manière la

plus probable ?

In mathematical terms the problem is formulated as a constrained entropy
minimization problem. The entropy is taken with respect to a path mea-
sure which models the motion in equilibrium of the particles, and is called
the reference measure. The constraint is that the marginal distributions at
times t0 and t1 are prescribed by empirical observations, and it shapes
what Schrödinger calls un écart considérable. One year after Schrödinger,
Bernstein made the observation that the Markov property may be replaced
by another dependence structure, in order to better describe the dynami-
cal properties of the solutions of the Schrödinger problem. His idea was
that a more time-symmetric notion should come into play. He writes in [3]
that:

“[...] si l’on veut reconstituer cette symmétrie entre le passé et le futur [...] il faut
renoncer à l’ emploi des chaı̂nes de type Markov et les remplacer par de schémas

d’une nature différente. ”

He then introduced in [3] the reciprocal property, as a weaker version of
the Markov property. It is a time Markov field property. At this point, it

1
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should be said that Bernstein was very likely not aware that the solutions
to the classical Schrödinger problem are indeed Markovian probabilities.
Therefore it was probably not necessary to generalize the Markov property
at that point. But the property he introduced is shaped to describe the
dynamics of the solutions of a slightly modified version of the Schrödinger
problem, which we discuss in some detail in Chapter 1, and leaded to
many further fruitful mathematical developments.

The one which is of primary interest for this thesis is the study of re-
ciprocal classes of Markov processes.

A mathematical rigorous study of reciprocal probabilities was initiated
by Jamison in the articles [38],[39], and [40]. He noticed that the recip-
rocal property is strictly weaker than the Markov one. This observation
leaded him to introduce reciprocal transition probabilities and to formu-
late a list of axioms that encode the reciprocal property: they are essen-
tially the reciprocal analogous of the Chapman-Kolmogorov consistency
equation. One of his results is that, given a reciprocal transition kernel
satisfying these axioms, there exists a unique reciprocal process associated
with it.

Furthermore, Jamison explicitly characterized the covariance structure
of reciprocal Gaussian processes through some differential equation. The
theory of reciprocal Gaussian processes was further developed by Chay
[12], Carmichael, Mass and Theodorescu in [11], and extended to the mul-
tivariate case by Levy [50].

The concept of reciprocal class is a bit more recent, even though it ap-
pears in an implicit form in [39]: it is the set of all path measures shar-
ing the bridges with a given reference probability, which is assumed to be
Markovian. Many authors focused on the case when the reference prob-
ability is a Brownian diffusion process: Krener started the search for re-
ciprocal characteristics (often called reciprocal invariants) in [41]. He con-
jectured, using short time expansion of conditional probabilities, that the
reciprocal class of a Brownian diffusion is described by some special func-
tionals of the drift of the reference process. Clark gave a positive answer
to this question in [17, Thm 1]. He provided what he calls a “local” char-
acterization of reciprocal diffusions. His result is a characterization of the
reciprocal class which tells what form the semimartingale characteristics of a
reciprocal process should take in order for it to be in the reciprocal class of
a Brownian diffusion. Such requirements are expressed in a list of equa-
tions, and each equation defines one of the reciprocal characteristics. In
the paper [42, Thm2.1], Krener gave a full probabilistic interpretation of
the characteristics. Each reciprocal diffusion in a reciprocal class is shown
to satisfy a family of short time expansions, using heat kernel asymp-
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totics, where the coefficients of the leading terms are expressed through
the characteristics. All these expansions are inspired by the goal of de-
veloping a ’second order differential calculus’ for diffusion processes. In
particular, the conditional mean acceleration of a Brownian diffusion con-
tains all information about the reciprocal class(see equation 2.18 in [42]).
In the same article, he also established that the most likely path (i.e. the
minimizer of the Onsager Machlup functional) of a Brownian diffusion sat-
isfies an ODE expressed in terms of the reciprocal characteristics. Some
years later, Roelly and Thieullen succeded in characterizing the whole re-
ciprocal class of a Brownian diffusion in [67] and [68] including the non
Markovian elements, using duality formulae related to Malliavin calcu-
lus. Both results are condensed in the short survey [66]. This approach is
based on earlier work of Roelly and Zessin [69] who characterized the law
Brownian diffusion through a duality formula, which relates the Malli-
avin derivative operator with a compensated stochastic integral operator.
In contrast with Clark’s characterization, this is a non-local characteriza-
tion. The derivatives which are computed there are not in short time, but
are Fréchet derivatives on path space. Therefore, it is a pathwise approach.
The key idea Roelly and Thieullen had was to look for probabilities satis-
fying the duality only within a well chosen set of directions of differenti-
ation, namely the loops. Indeed, imposing the duality with respect to all
directions of differentiation is too restrictive, since the reference diffusion
is then the only solution, up to its initial distribution. What we have de-
scribed so far are the main mathematical steps that motivated the work
of this thesis. They constitute the starting point of our investigations, to-
gether with Murr’s phd thesis [56], who started to study reciprocal count-
ing processes. However, many other fields of research have established a
fruitful interaction with the theory of reciprocal processes. Let us give a
very concise overview of what seem to be the most important ones.

Stochastic Mechanics The time symmetric features of the reciprocal prop-
erty inspired many authors, who continued Schrödinger’s original pro-
gram in several different directions. Stochastic mechanics, which is roughly
the program of explaining quantum mechanics by using the idea that par-
ticle trajectories are governed by diffusion processes, has a long history,
dating back at least to Nelson’s book [58]. However, Nelson’s notion of
stochastic acceleration of a diffusion as well as Cruzeiro-Zambrini one
([81, 24] in the context of Euclidean quantum mechanics) are not ”recip-
rocal invariants”. It is the theory developed by Krener and Thieullen (see
[41, 51, 77, 52]) that connects reciprocal processes and stochastic mechan-
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ics. Krener introduced a notion of acceleration for a diffusion process,
which is different from Nelson’s acceleration and is expressed in terms of
the reciprocal characteristics. Such an acceleration is one of the postulates
which define the notion of solution to a “ second order” stochastic differ-
ential equation : indeed the development of a second order calculus (see
[77, sec.4,5] and [42, sec3]), based on reciprocal characteristics, is one of
the most relevant contributions of these studies: to each reciprocal class
is shown to be associated an Euler-Lagrange equation [77, sec 6], and a
family of conservation laws for the mass and the momentum [42, sec 5].
Finally let us mention that similar ideas stand behind the Stochastic Cal-
culus of variations [78], where a stochastic version of Noether’s Theorem
is derived, and in [64].

Optimal transport Mikami established in [55] an interesting connection
between the Schrödinger problem and the Monge-Kantorovich problem.
He showed that one can construct a solution to the Monge-Kantorovich
problem with quadratic cost by considering the zero-noise limit of a se-
quence of static Schrödinger problems, where the reference dynamics is
a Brownian motion. Léonard in [46] extended this result to arbitrary cost
functions, showing that the Monge-Kantorovich problem associated with
a given cost function c is the Γ-limit of a sequence of Schrödinger problems
where the reference dynamics obeys a Large Deviation Principle with rate
function given by c. The fact that, in the small noise regimes, the trajec-
tories of a diffusion process stay close to geodesics with very high proba-
bility suggest that the limit of solutions to the Schrödinger problem con-
verges to the so called displacement interpolation in optimal transport, and
this is indeed proven in [46]. This justifies the fact that sometimes solu-
tions to the Schrödinger problem are called entropic interpolations.

There has been a very recent upsurge in the research around this con-
nection, mostly motivated by application in control engineering, due to
Chen, Pavon and Georgiu. In a series of papers, they look for imple-
mentable solution of the Schrödinger problem. They extended the Benamou-
Brenier fluid dynamical formulation of the optimal transport problem ([16],
[14] )to the Schrödinger problem, and perform explicit computations in the
Gaussian cases, including some degenerate situations when the diffusion
matrix of the reference process is singular.

Stochastic control Building on earlier works of Wakolbinger [79], and
Dai Pra and Pavon [27], Dai Pra formulated in [25] the Schrödinger prob-
lem as a stochastic control problem. The control is represented by a cor-
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rection term that can be added to the drift of the reference process, and it
is said to be admissible if it steers the diffusion to the desired final law at
time 1. The problem is to find the control such that the resulting diffusion
minimizes the relative entropy with respect to the reference diffusion. It is
tackled with PDE methods: the optimal control is shown to satisfy a sec-
ond order Hamilton-Jacobi-Bellmann-type equation. Renewed interest in
the direction of applications stems from [15], [14].

The contribution of this thesis

This thesis contains a systematic study of reciprocal classes of continu-
ous time Markov random walks on countable state spaces. We give here
an overview of the results. To fix ideas, we give some definitions, which
are maybe not entirely precise at this stage, but immediate to understand.
Precise statements are given in the main body of the thesis, which is inde-
pendent from this short overview.

We consider a countable directed graph (X ,→). An arc from z to z′

is denoted z → z′. The whole arc set is denoted A. The space of càdlàg
piecewise constant functions on X , whose jumps take place using only the
arcs in A is our path space, and we call it Ω. Probabilities on Ω are called
walks, even when they are not Markovian. A continuous time Markov
walk R on (X ,→) is specified uniquely through an intensity of jump j :
[0, 1] × A → R+ and an initial distribution µ. This process is the reference
walk. The xy bridge of R is denoted Rxy and the joint law at times 0 and
1 by R01. We study its reciprocal class R(R), that is, the set of random
bridges of R.

R(R) :=

{
P =

∫
supp(R01)

Rxy(·)π(dxdy);π ∈ P(X 2)

}
where P(X 2) is the space of probability measures on X 2

Reciprocal characteristics As we will see, a reciprocal class is constituted
by many Markov elements, such as R, all its bridges and all its Doob h-
transforms, but the most of the class is made of non-Markov probabilities.
The first step for understanding it is to give a criterion to decide when do
two Markov process belong to the same reciprocal class.

Roughly all Markovian walks can be characterized via their jump in-
tensity. That is, to each P ∈ P(Ω) is associated a function k(t, z → z′), such
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that
P (Xt + h = y|X[0,t]) ≈ h k(t, z → z′), as h ↓ 0

The above mentioned criterion, should be given in terms of the inten-
sities. We call the set of regular intensities K :

K := {k : [0, 1]×A → R+, k(·, z → z′) ∈ C1
b ([0, 1]) ∀z → z′ ∈ A}

It is natural to give the following informal definition:

Definition (Reciprocal characteristics). A functional χ : K → R is a re-
ciprocal characteristic if and only if for any pair of Markov walks R and P of
intensities j and k respectively:

P ∈ R(R)⇒ χ(j) = χ(k) (1)

It is one of the contribution of this thesis to show existence of the char-
acteristics and to compute them explicitly where the reference walk R is
a random walk on a countable graph. We refer to Definition 3.2.1, Defi-
nition 4.2.2, Definition 4.3.1, Corollary 5.3.1, and Definition 6.2.1, which is
the most general form. Definition 3.2.1 had already been given by R.Murr
in [56].

The characteristics are divided into two main categories: the arc char-
acteristics and the cycle characteristics, see the two figures below.

Definition (Arc and cycle characteristics: informal). (i) Let (z → z′) be
an arc of the (X ,→). Then

χa[P ](t, z → z′) = ∂t log k(t, z → z′) + k̄(t, z′)− k̄(t, z)

is the arc characteristic associated with z → z′. We denote by k̄(t, z) the
total intensity of jump: k̄(t, z) :=

∑
z′:z→z′ k(t, z → z′).

(ii) Let c := (x0 → x1 → ...→ x|c| = x0) be a cycle in the graph (X ,→). Then

χc[P ](t, c) :=
∏

(xi→xi+1)∈c

k(t, xi → xi+1)

is the cycle characteristic of P associated with c.
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x0 x1 x3

x2

j(x1 → x2)

j(x0 → x1)

j(x2 → x0)

χc[R](t, c) =j(x0 → x1)j(x1 → x2)j(x2 → x0)

Figure 1: A random walk on the bridges of Königsberg: the reciprocal
characteristic associated with the cycle c := (x0 → x1 → x2 → x0) is
χc[R](t, c). In this picture, we have chosen a time-homogeneous reference
intensity j.
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x0 x1 x3

x2

j(x1 → x2)

j(x1 → x0)

j(x1 → x3)

j(x2 → x0) j(x2 → x3)

χa[R](t, x1 → x2) =j(x2 → x3)+j(x2 → x0)−j(x1 → x2)−j(x1 → x3)−j(x1 → x0)

Figure 2: The reciprocal characteristic χa[R](t, x1 → x2) associated with
the arc x1 → x2, assuming a time homogeneous intensity j.

Once characteristics have been identified, the most natural question
is to find a minimal set of such χ that yields the reverse implication in
equation (1). We are asking the question if it is possible to find a “basis” of
the characteristics. Summarizing we look at the following:

Problem: Find a minimal X such that

χ(k) = χ(j) ∀ χ ∈X ⇒ P ∈ R(R)

In this thesis, we answer this question in several interesting cases, such
as Cayley graphs, lattices, the complete graph and planar graphs. The
answers are very sensitive to the structure of (X ,→), and often are con-
nected to its fine geometrical properties. For instance, in sections 4.4, and
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4.5 we make use of some recent findings in discrete geometry to answer
the above-mentioned problem.

Our results contain as a byproduct an efficient criterion for checking
when Markov processes have the same bridges especially because it is ex-
plicit in terms of the jump intensities. Other criteria have been proposed,
e.g. in [32], but they are implicit and not directly checkable. On the other
hand, regarding diffusion processes, a similar result was proven by Clark
[17], and in less generality by Benjamini and Lee [2].
Once one has understood the full picture concerning the Markov elements
of R(R), it is the time to look at the non Markov ones. The purpose is to
employ the characteristics to go beyond the Markovian framework. We
explored two ways of doing this: the duality formulae approach of Roelly
and Thieullen [67, 68] and the short-time expansion of conditional proba-
bilities.

Duality formulae: Chapters 3,4,5. With this approach one produces a
family of functional equations whose only solutions are precisely the ele-
ments of R(R). One of our contributions is a fairly robust scheme to con-
struct such equations, inspired by the seminal works [67, 68]. We are going
to describe it in the next lines. We use the word duality formula to equiv-
alently refer to an integration by parts on path space (IBPF) or to a change
of measure formula, and we shall see IBPFs as an infinitesimal version of
change of measure.

What we mean by change of measure formula is the following:

Definition (Change of measure formula). Let Ψ : Ω → Ω be a measurable
map. Assume that the image measure P ◦ Ψ−1 is absolutely continuous with
respect to P , and its density is GP

Ψ. Then the relation

P (F ◦Ψ) = P (FGP
Ψ) ∀F ∈ B+(Ω)

is called the change of measure formula associated with Ψ.

The best known example of a change of measure formula on a path
space is Girsanov’s Theorem. In that case Ω = C([0, 1];R), R is the Wiener
measure and for ψ regular enough, Ψ = θψ is the translation by ψ:

θψ : Ω −→ Ω, ω 7→ ω + ψ

We have that:

Gθψ := exp
(∫

ψ̇tdωt −
1

2

∫ 1

0

ψ̇2
t dt
)
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Assume now that for some Ψ you have the change of measure under the
reference walk R:

R(F ◦Ψ) = R(FGR
Ψ) ∀F ∈ B+(Ω). (2)

We use the idea that, if Ψ leaves invariant the vector (X0, X1), that is:

(X0, X1) ◦Ψ = X0, X1 (3)

then the validity of the formula (2) extends to the whole class R(R), keep-
ing the same expression for the density.

∀P ∈ R(R) P (F ◦Ψ) = P (FGR
Ψ) ∀F ∈ B+(Ω) (4)

The reason for this, at least heuristically, is simple, and it goes back
to the very general principle that conditioning a probability measure to a
subset preserves the ratios between the probabilities of the elements of that
subset. When considering bridgeRxy, we are conditioningR ∈ P(Ω) to be-
long to the subset {X0 = x,X1 = y}. Therefore one believes that, whatever
meaning the “probability of a path” R(ω) has, the following holds:

R(ω)

R(ω̃)
=
Rxy(ω)

Rxy(ω̃)
∀ ω, ω̃ s.t. ω0 = ω̃0 = x, ω1 = ω̃1 = y (5)

But then, since morally:

GR
Ψ(ω) =

R ◦Ψ−1(ω)

R(ω)
,

combining the invariance property (3) of Ψ and the observation (5):

GR
Ψ(ω) =

RX0,X1 ◦Ψ−1(ω)

RX0,X1(ω)

which indicates that GR
Ψ(ω̃) depends only on the bridges of R and there-

fore, if P ∈ R(R), GP
Ψ = GR

Ψ. This motivates (4), and also indicates that
the expression of GR

Ψ should be expressed by the reciprocal characteristics.
Imposing (4) for enough transformations Ψ, we arrive at the following
prototype of result:

Theorem. Let P ∈ P(Ω). Then P ∈ R(R) if and only if for enough transforma-
tions Ψ satisfying the invariance property (3):

P (F ◦Ψ) = P (FGR
Ψ) ∀F ∈ B+(Ω)
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The construction of the Ψ, the decomposition of the density in terms of
the reciprocal characteristics, and the fact that the formula is rich enough
to characterize R(R) are all graph-dependent problems, which have to be
solved ad hoc. While it is clear how to shift paths on the Wiener space,
this is far from obvious on path spaces built over graphs. Moreover, one
has to design the transformations in such a way to respect the initial and
final state. When (X ,→) has some translation invariant structure, as it
is the case for lattices or more general Cayley graphs, we found a natu-
ral way of doing this, and devised the geometrical objects which allow
to handle the algebraic expressions in a canonical way. We applied this
strategy in Theorem 3.2.2, Theorem 4.3.1, and Theorem 5.3.1. In Chapter
3 we look at counting processes, in Chapter 4 at lattices and in Chapter
5 at Abelian groups. In going from Chapter 4 to Chapter 5, we put a ge-
ometrical assumption that allows for a factorization of the cycle space of
the graph. This assumption is crucial to obtain true pathwise formulas
and is satisfied in most of the cases of interest. When this hypothesis fails,
several geometrical problem arise. They are discussed in sections 4.4 and
4.5. Therefore, the results of Chapter 5, which are obtained under this hy-
pothesis, when applicable to the lattice case ( recall that lattices are special
instances of Cayley graphs) not only cover the results of Chapter 4, but
improve them considerably. However, the results of Chapter 4, hold for
a more general class of graphs. The resulting change of measure formu-
lae are often new generalizations of other well known formulae, such as
Slivnjak-Mecke identities [75, 54] or Chen’s characterization of the Poisson
distribution [13].

Duality formulae correspond to a pathwise viewpoint on reciprocal
processes, in the sense that they tell by which amount the “probability
of a path” changes when the path is subject to a perturbation which leaves
invariant its endpoints.

In contrast with this global description, we have a corresponding lo-
cal picture, which we obtain by looking at the short time behavior of a
reciprocal process, and is illustrated in the next paragraph.

Short time expansions: Chapter 6 This approach leads to a characteri-
zation of the reciprocal class through the local (in time) behavior of its el-
ements. With respect to the previous one, it has the advantage to hold for
general graphs, even if they do not possess any symmetry. Take a graph
(X ,→). It is well known that, modulo technical conditions, the reference
Markov random walk R is characterized by the following two properties:
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(i) The Markov property: for any s < t ∈ [0, 1], A ⊆ X :

R(Xt ∈ A|X[0,s]) = R(Xt ∈ A|Xs) R− a.s.

(ii) The jump intensity: for any z → z′ ∈ A:

R(Xt+h = z′|Xt = z) = j(t, z → z′)h+ o(h), as h ↓ 0 (6)

Is there an analogous theorem for reciprocal processes? We answer
affirmatively, by substituting to the Markov property the reciprocal prop-
erty, which is a time Markov-field property, and to the expansion (6) some
other expansions based on the reciprocal characteristics. In the context of
diffusion processes, the characteristics were recovered in the short time
expansions used to compute stochastic acceleration terms, see [42]. This
result fits in the larger program to develop second order calculus for dif-
fusion processes. Without relying on any physical interpretation, we ob-
tained a very natural probabilistic interpretations of the reciprocal charac-
teristics, which is turned into a characterization of the reciprocal class. No
second order process is used, we simply compute the conditional proba-
bilities of some suitably chosen events. Indeed, if some cycles of (X ,→)
are longer than two, which is almost always the case, we need to expand
conditional probabilities at higher order, so Krener’s approach based on
second order expansion is not suitable for graphs. We report a simplified
form of Theorem 6.2.1, where we dropped most of the technical assump-
tions. There, we denote by Tj the j-th jump time of a walk, and by T tj the
j-th jump time after t.

Theorem (Short-time expansions characterize R(R)). P ∈ P(Ω) belongs to
R(R) if and only if the following assertions hold:

(i) P is reciprocal: for any times s ≤ u in [0, 1] and for any event, B ∈ X[s,u]:

P
(
B|X[0,s] ∨X[u,1]

)
= P

(
B|Xs, Xu

)
P − a.s.

(ii) For any t ∈ (0, 1), any (z → z′) ∈ A and any r ∈ [0, 1]:

P (T t1 = t+hdr | Xt = z,Xt+h = z′, T t2 > t+ h)

= dr + hχa[j](t, z → z′)(r − 1/2) dr + o(h) ash ↓ 0.

(iii) For any t ∈ (0, 1) and any cycle c = (x0 → x1...→ x|c| = x0):

P
(

(Xt → XT t1
→ · · · → XT t|c|

= Xt) = c, T t|c| < t+ h < T t|c|+1 | Xt = Xt+h = x0

)
= χc[j](t, c)

h|c|

|c|! + o(h|c|) ash ↓ 0.



CONTENTS 13

Let us comment on (ii) and (iii):

(ii) Assume that you observe a reciprocal walk of R(R) sitting in z at
time t and after a short time interval you see it in z′, where z → z′ is
an arc of (X ,→). Then this has essentially happened through a single
jump along z → z′. The arc characteristics χa[j](t, z → z′) accounts
for the distribution of the jump time. A positive arc characteristic
implies that this distribution is concentrated around the end of the
time interval, whereas a negative characteristic implies that the dis-
tribution is concentrated around the beginning of such interval.

(iii) Assume that you observe a reciprocal walk of R(R) sitting in a state
x0 at time t and you observe it there again after a short time interval
h. Given this, the probability that in the time-window [t, t + h] the
walk has traveled along the cycle c = (x0 → x1... → x|c|) is propor-
tional to the reciprocal characteristic χc[j](t, c) of c and to h|c|, where
|c| is the length of the cycle.

Quantitative estimates for bridges: Sections 3.3 and 4.7 A last contri-
bution of this thesis is to obtain, in some special models, quantitative esti-
mates on the behavior of the bridges of the reference walk. The main point
about these results is that they hold in non-asymptotic regimes, in contrast
with the short time estimates used to characterize the reciprocal class, and
that such estimates are expressed through the reciprocal characteristics,
which are the natural parameters for reciprocal classes. This is, to the best
of our knowledge, the first time when the role of reciprocal characteristics
is made explicit in global estimates concerning bridges.

Our first result concerns counting processes, that is random walks on
the graph (Z,→), where z → z′ ⇔ z′ = z + 1. In this type of graphs,
there are no cycles, and therefore only the arc characteristics matter. A
lower bound one the arc characteristics Ξj is shown to imply an estimate
on the last jump time of the bridges of the reference walk. In particular, a
positive bound implies that the bridge of the reference walk is slower than
the bridge of a Poisson process, in the sense that it tends to reach its final
state later than the Poisson bridge, and we have an accumulation of the
jump times around time one. The following statement formalize this. It is
Proposition 3.3.1.

Proposition. Let R0n be the bridge between 0 and n of R. Assume that

inf
t∈[0,1],0≤i≤n−1

Ξj(i, t) ≥ c ∈ R
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Then:

R0n(Tn ≤ t) ≤
(

exp(ct)− 1

exp(c)− 1

)n
Our second result is a concentration inequality for the number of jumps

of the bridge of a continuous time random walk on (Z,→), where the
only allowed jumps are either of size −1 or k, where k ∈ N. That is,
z → z′ ⇔ z − 1z′ = z + k. Under the reference walk the number of
jumps of height k simply follows a Poisson law. This is not true under
any bridge. We obtain in Chapter 4 (see Corollary 4.7.1) a characterization
of this conditional distribution with a change of measure formula, where
the role of the cycle characteristic Φj is highlighted. What we obtain is a
formula that generalizes Chen’s characterization of Poisson law, see [13].
Relying on a geometrical interpolation argument (Proposition 4.7.3) and
on refinements of previously established concentration of measure results
for the Poisson law (Proposition 4.7.1), we establish the following result.
Here, by o(R) we denote a function which grows sublinearly as R→ +∞.

Theorem ( Theorem 4.7.1:informal version). Let ρ ∈ P(N) be the distribution
of the number of jumps of size k under the 00 bridge of R, R00. Then there exist
C0 > 0 such that for all f which are 1-Lipschitz and for all R > C0:

ρ(f ≥ ρ(f) +R) ≤ exp(−(k + 1)R logR + (log(Φj) + C1)R + o(R))

The constant C1 does not depend on Φj . C0 might depend on it.

Let us comment very briefly on the form of the concentration rate: the
leading term is governed by the geometry of the jump set, since it only de-
pends on k whereas the reciprocal characteristic Φj drives the exponential
correction terms. Such concentration rates are not implied by any of the
well known functional inequalities, such as the family of Modified Loga-
rithmic Sobolev inequality studied, among the others, in[5],[26].

The reasoning we made to obtain Theorem 4.7.1 is likely to carry over
to the treatment of a more general class of models.

The concentration inequality derived here gains his interest also out-
side the study of bridges of continuous time random walks. Let us clarify
why: Chen’s characterization of Poisson random variable is the fact that
the Poisson law of mean λ is the only law satisfying

∀f λ ρ(f(n+ 1)) = ρ(f(n)n)

The measure ρ studied in Theorem 4.7.1 is shown to be the only solution
to the change of measure formula:

∀f Φj ρ(f(n+ 1)) = ρ(f(n)γ(n))
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where γ(n) is a polynomial of degree k + 1 (recall that k is the size of the
large jump). What is known is that to a linear coefficient on the right hand
side of the change of measure formula, as in Chen’s formula, corresponds
a concentration inequality with rate−R logR+(log(λ)+C)R+o(R), where
C is a numerical constant. Our result shows that to a polynomial coeffi-
cient on the right hand side of the change of measure formula corresponds
a concentration inequality with rate−(k+1)R logR+(log(Φj)+C)R+o(R),
whereC is a numerical constant. Therefore we establish a clear relation be-
tween the form of the density in change of measure formulae and the rate
of concentration.
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Chapter 1

The Schrödinger Problem

Outline of the chapter This short chapter is meant as an introduction
to the Schrödinger problem, which shall motivate the study of reciprocal
classes. We give some heuristics that explain its formulation, and prove
some structural results for its solution.

1.1 Statement of the problem

1.1.1 A small thought experiment

At time t = 0, we are given a large number Y 1
0 , .., Y

N
0 of independent in-

distinguishable particles. As N → +∞, their empirical distribution ap-
proaches a smooth profile µ0.

1

N

N∑
i=1

δY i0 → µ0, as N → +∞

We let each particle travel independently from all the others with a Brow-
nian motion for a unit of time. The law of large numbers tells that, as
N → +∞ the empirical measure at time 1, which we call µ1, approaches
µ̃1, defined by:

µ̃1(dy) :=

∫
R
r(y|x)µ0(dx),

where r is the Gaussian kernel. We are allowed to observe the empirical
measure µ1 at time 1. Schrödinger question is the following:

Given that N is very large and µ1 is significantly different from µ̃1, what is the
most likely behavior of the whole random system?

17
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We can sketch an heuristic based on the theory of large deviations
which explains the mathematical formulation of this question. Such ar-
gument was made rigorous by Föllmer in [34].

We call LN the empirical measure associated to the particle system.
Note that such a measure is defined over the space Ω of continuous trajec-
tories, rather than on R, as it was the case for µ0 and µ1.

LN :=
1

N

N∑
i=1

δ((Y it )t∈[0,1])

We denote by Prob the distribution of Ln . The law of large number tells
that LN converges to a Brownian motion started in µ0, whose law R is
called the reference dynamics. Our observations concerning the initial and
final configurations of the particles tell us that:

LN ∈ {P : P0 = µ0, P1 = µ1} (1.1)

Using informally Sanov’s Theorem (see [29, sec 6.2]) we have that,
when N is very large the distribution of LN is governed by the relative
entropy H(·|R):

Prob(LN ∈ A) ≈ exp(−N inf
P∈A

H(P |R)) ∀A ⊆ P(Ω)

In this interpretation, the “most likely” evolution is clearly given by the
minimizer of H(·|R) within the set of measures matching our observation,
described in (1.1). We arrive at :

H(P |R)→ min P ∈ P(Ω), P0 = µ0, P1 = µ1

This is the Schrödinger problem.

1.1.2 Statement of the entropy minimization problem

In this section we state rigorously the problem we have just discussed. Al-
thought in the presentation above particles were moving according to a
Brownian motion, the same questions can be asked in a much more gen-
eral setting, replacing the Brownian motion with another Markov process.
Indeed, in this thesis, we will be concerned with random walks on graphs.
We consider a Polish state space X . The càdlàg space over it is denoted
Ω, and the canonical process (Xt)t∈[0,1]. All the standard conventions for
sigma algebras and filtrations can be read in the table of notation.
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Definition 1.1.1. The dynamic Schrödinger problem associated with R ∈ P(Ω),
µ0, µ1 ∈ P(X ) is the following entropy minimization problem:

H(P |R)→ min P ∈ P(Ω), P0 = µ0, P1 = µ1 (1.2)

where µ0, µ1 ∈ P(X ) are the prescribed marginals.

Projecting this problem onto the marginals at times t = {0, 1} gives the,
apparently simpler, static Schrödinger problem. For π ∈ P(X 2), i ∈ {0, 1},
the image measure π ◦ (Xi)

−1 is denoted by πi.

Definition 1.1.2. The static Schrödinger problem associated withR ∈ P(Ω),µ0, µ1 ∈
P(X 2) is the following entropy minimization problem:

H(π|R01)→ min P ∈ P(X 2), π0 = µ0, π1 = µ1 (1.3)

As it is clear from the formulation, there is more than an analogy with
an optimal transport problem. Indeed it is shown in [55] and [46] that
the classical Monge-Kantorovich problem can be obtained as the limit in
a suitable sense of a sequence of (static) Schrödinger problems through a
”slowing down” procedure.

1.2 Representation of the solution

1.2.1 Decomposition of the entropy

The first result of this subsection is that is Proposition (1.2.1), which says
that the two problems are indeed equivalent. If one can solve the dynam-
ical problem the solution to the static problem is given by a simple projec-
tion. The converse is also true. Given a solution to the static problem one
obtains a solution to the dynamical problem by mixing bridges of the ref-
erence measure according to the solution of the static problem. This was
first proven by Föllmer [34], although in a less general setting.

Before presenting the result, we recall that under the current hypothe-
ses, both Ω and X 2 are Polish spaces, and the projection (X0, X1) : Ω→ X 2

is measurable. Therefore there exist a regular conditional probability asso-
ciated with it, that is, there exist a measurable map P xy : X 2 → P(Ω) such
that for all A ∈ F :

P (A) =

∫
X 2

P xy(A)P01(dxdy)

The P − a.s. well defined measure P xy is called the xy bridge.
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Under the current assumptions for any P ∈ P(Ω), π ∈ P(X 2), π � P01

the probability measure ∫
X 2

P xy(·)π(dxdy)

is well defined. Having said this, we can prove the equivalence between
the two problems, following [49].

Proposition 1.2.1. Let µ0, µ1 ∈ P(X ) be fixed. The dynamical and static Schrödinger
problems both admit at most one solution. If P̂ solves the dynamical problem then
π̂ := P̂01 solves the static problem associated with R. Conversely, if π̂ solves the
static problem, then

P̂ =

∫
X 2

Rxy(·)π̂(dxdy) (1.4)

solves the dynamical problem.

Proof. Since the admissible region for both problem is a convex subset of
either P(Ω) or P(X 2) and the relative entropy is a strictly convex function,
both problems admit at most one solution. Assume now that P̂ solves
(1.2). Using the well known disintegration formulas for the relative en-
tropy:

H(P̂ |R) =

∫
H(P̂ xy|Rxy)P̂01(dxdy) +H(P̂01|R01)

we deduce that P xy = Rxy P̂01 − a.s., for otherwise the probability

P̃ (·) =

∫
X 2

Rxy(·)P̂01(dxdy)

would be such that H(P̃ |R) < H(P̂ |R), which contradicts the optimality
of P̂ .

Consider now any other π in the admissible region of (1.3). Then the
measure

Qπ(·) =

∫
X 2

Rxy(·)π(dxdy)

is well defined.
Using again the disintegration formula for the relative entropy we have

that H(Qπ|R) = H(π|R01) and H(P̂ |R) = H(P01|R01). But since P̂ solves
the dynamic problem , then H(π|R01) > H(P̂01|R01). This proves that π̂
solves the static problem.

Conversely, let π̂ a solution of the static problem and consider P̂ as
in (1.4). The disintegration formula for the relative entropy tells us that
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H(P̂ |R) = H(π̂|R01). Let us remark that P̂ is well defined under the cur-
rent hypothesis. Consider now any Q in the admissible region of the dy-
namical problem. Then Q01 is clearly in the admissible region of (1.3).
Using the disintegration formula for the entropy we have:

H(Q|R) =

∫
H(Qxy|Rxy)Q01(dxdy) +H(Q01|R01)

As the relative entropy is always non negative, and by assumptionH(Q01|R01) ≥
H(π̂|R01) = H(P̂ |R) , we conclude that H(Q|R) ≥ H(P̂ |R) and the conclu-
sion follows.

The following proposition gives some information on the shape of the
minimizers. It tells that the density of the solution decouples in a product
of two functions f(X0)g(X1).

f, g can also be found as solutions to the so called Schrodinger system,
for which Fortet [35] and Beurling [4] proved the first existence results.
A more general statement can be found in Section 2 of [48], where fine
questions concerning the support of R01 are discussed. For the sake of
simplicity, we present a simpler version Theorem 2.8 of [48] under the
slightly more restrictive assumption as considered by Ruschendorff and
Thomsen [71, Thm 3].

Proposition 1.2.2. Assume that R01 � R0 ⊗ R1, and that for some π in the
admissible region, H(π|R01) < +∞. Then the static problem admits a unique
solution π̂ and there exist two measurable functions f, g : X → R+ such that

π̂ = f(X0)g(X1)R01 (1.5)

The functions f, g are R01 − a.s. solutions to the Schrödinger system:{
dµ0

dR0
(x) = f(x)R(g(X1)|X0 = x)

dµ1

dR1
(y) = g(y)R(f(X0)|X1 = y)

(1.6)

We do not give the proof of this theorem here, since the measure-theoretical
arguments needed to show existence part are quite technical, and not strictly
related to the content of this thesis. We shall rather give an intuition
on why convex optimization techniques can be used to prove the fac-
torization (1.5). The same ideas provide an informal derivation of the
Schrödinger system.
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Consider any π in the admissible region of the static problem. The
following representation of the relative entropy is well known:

H(π|R01) = sup
{∫
X 2

udπ : u ∈ Cb(X 2),

∫
X 2

exp(u)dR01 = 1
}

(1.7)

Consider now ϕ, ψ ∈ Cb(X ) and define ϕ⊕ ψ ∈ Cb(X 2) as follows:

ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y)

Choosing u = ϕ ⊕ ψ in (1.7), and using the fact that π0 = µ0, π1 = µ1 we
obtain:

H(π|R01) ≥
∫
X
ϕdµ0 +

∫
X
ψdµ1, ∀ϕ, ψ s.t.

∫
X 2

exp(ϕ⊕ ψ)dR01 = 1

Let us note that the right hand side of the last identity is independent from
the choice of π. Therefore,the optimal value of∫

X
ϕdµ0 +

∫
X
ψdµ1 → max, ϕ, ψ ∈ Cb(X ),

∫
X 2

exp(ϕ⊕ ψ)dR01 (1.8)

is a lower bound for the optimal value of the Schrödinger problem. In-
deed, (1.8) is the dual problem of (1.4). In [45] it is proven that the optimal
values of the two problems in most of the cases coincide, and are both at-
tained. Now, assume that we are in one of these cases. If π̂ is the solution
to the static Schrödinger problem and ϕ̂, ψ̂ is an optimal pair for the dual
problem (1.8) we have:

H(π̂|R01) =

∫
X
ϕ̂dµ0 +

∫
X
ψ̂dµ1 =

∫
X 2

ϕ̂⊕ ψ̂dπ̂

one gets that:
dπ̂

dR01

= exp(ϕ̂⊕ ψ̂)

which partially explains (1.5), with f = exp(ϕ̂), g = exp(φ̂). Considering
the marginals, we obtain:{

dπ̂0

dR0
(x) = f(x)R01(g(X1)|X0 = x)

dπ̂1

dR1
(y) = g(y)R01(f(X0)|X1 = y)

But,since π̂ is in the admissible region, π̂0 = µ0, π̂1 = µ1, and this gives
the system (1.6). For more details, we redirect the interested reader to the
proof of Theorem 2.8 in [46]. An interesting consequence Theorem 1.2.2
is that the solution of (1.2) inherits the Markov property from R. We only
sketch the proof, since it will follow as a special case of a more general
statement, which we prove in Proposition 2.2.3.
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Proposition 1.2.3. Assume that R01 � R0 ⊗ R1 and that R is a Markov mea-
sure. Then the solution to the dynamical problem exists and it is also a Markov
probability.

Proof. Thanks to Proposition 2.2.2 the static problem admits a solution π
which takes the form 1.5 . Applying Proposition 1.2.1 the dynamical prob-
lem also admits a solution, which is:

P =

∫
X 2

Rxyπ(dxdy) =

∫
X 2

Rxyf(x)g(y)R01(dxdy)

which is equivalent to say that

P � R, and
dP

dR
= f(X0)g(X1) R− a.s.

It will be proven in Proposition 2.2.3 that if R is Markov and P takes the
form above, then P is Markov as well.

It is curious that, at this stage, there doesn’t seem to be any need for a
generalization of the Markov property to study the solution Schrödinger
problem. Indeed Bernstein, in his 1932 paper was not aware that solutions
of the Schrödinger problems are Markov. It seems that this has been first
been pointed out by Jamison in [39]. However, the reciprocal property,
which Bernstein introduced in the same work, is shown to describe exactly
the dependence structure of solutions of a very natural generalization of
the problem discussed above. That is, we impose a constraint not only on
the endpoint marginals separately, but we also prescribe their dependence
structure.

The constraint then changes from

P0 = µ0, P1 = µ1

to

P01 = µ ∈ P(X 2)

1.2.2 A generalized Schrödinger problem

We now turn the attention to the generalized Schrödinger problem:

Definition 1.2.1. We define the following entropy minimization problem, asso-
ciated with R ∈ P(Ω), µ ∈ P(X 2):

H(P |R)→ min P ∈ P(Ω), P01 = µ
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Let us note that there is not a static problem associated to this prob-
lem, as P01 is fixed within the admissible region. As in Proposition 1.2.1
we have a nice constructive result for the solution to (1.2.1): It says that
the solution is a random bridge of R, where the mixing measure is given
precisely by µ, rather than the solution of the static problem (1.3). We skip
the proof, as it is completely analogous to that of Proposition 1.2.1.

Proposition 1.2.4. The problem (1.2.1) admits a solution if and only ifH(µ|R01) <
+∞ . In this case, the solution is:

P̂ =

∫
X 2

Rxyµ(dxdy) (1.9)

Solutions to this last problem are truly reciprocal probabilities. The
goal of the next section is to introduce the reciprocal property and give
some very general notion about reciprocal probabilities. As a by product,
we will obtain that P̂ defined in (1.9) is indeed reciprocal.



Chapter 2

Reciprocal processes and
continuous time Markov chains

Outline of the chapter The aim of this chapter is to lay the foundations
for the study of reciprocal probabilities on discrete structures. We review
some basic general results and introduce the concept of reciprocal class of a
Markov probability. It is shown to be the set of solution to the generalized
Schrödinger problem introduced in the first chapter. We define the main
object of study for this thesis: the reciprocal class of a Markov Chain. As
a technical tool, which will be used systematically later on, a Girsanov
Theorem for continuous time Markov chains is presented at the level of
generality needed in this thesis.

The recent survey [49] introduces a measure-theoretical viewpoint on
reciprocal processes, in contrast with Jamison reciprocal transition proba-
bilities, and collects many basic results. It serves as a guideline for the first
two sections of this chapter.

Organization of the chapter Section 2.1 is a self-contained introduction
to reciprocal probabilities. Reciprocal classes are studied in Section 2.2.
A first representation results for reciprocal classes is shown at Proposi-
tion 2.2.2. In Section 2.3 we specify our notations about continuous time
Markov chains, and the assumptions on the reference measure. As a useful
tool for the next chapters, a Girsanov theorem is proved.

25
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2.1 The reciprocal property

2.1.1 Definition

A simple description of the Markov property of a probability is that, given
the current state Xu, the sigma algebras X[0,u] and X[u,1] are independent.
That is, X[0,u] and X[u,1] are independent under P (·|Xu).

The reciprocal property is the fact that for any pair of times s < u, given
the position (Xs, Xu) of the process at these two times, the behavior of the
process in [s, u] is independent from the past up to s and the future from u
on. Speaking about sigma algebras, we ask that X[s,u] is independent from
σ(X[0,s] ∨X[u,1]) given (Xs, Xu). The property we have just stated coincide
with that of a Markov field, indexed by time, and reciprocal probabilities
can also be seen from this point of view.

Definition 2.1.1. A probability measure P on Ω is called reciprocal if for any
times s ≤ u in [0, 1] and for any event, B ∈ X[s,u]:

P
(
B|X[0,s] ∨X[u,1]

)
= P

(
B|σ(Xs, Xu)

)
P − a.s. (2.1)

Remark 2.1.1. For any sigma algebra G, P
(
B|G) is an equivalent notation for

the random variable P (1X∈B|G). We shall use both expressions, depending on the
context.

From the very definition of the reciprocal property, one immediately
sees a nice time-simmetry, where future and past are somehow exchange-
able: a probability is reciprocal if an only if the time-reversed probability
is so (see Theorem 2.2 of [49]). This is also true for Markov probabilities,
but maybe less transparent from the definition.

2.1.2 The relation with the Markov property

Here, we show some of the most interesting properties of reciprocal proba-
bilities. We follow the guidelines of [49], which relies on Jamison’s original
presentation.

At first, let us show that the reciprocal property is indeed a weakening
of the Markov property.

Proposition 2.1.1. Any Markov probability is reciprocal.
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Proof. We check directly Definition 2.1.1. The proof consists of two chains
of identities. These identities are obtained one from the other using either
the Markov property (in this case we mark the equality with (M)) or some
of the properties of conditional expectation, ( if so, we mark the equality
with (E)). First we show that for any A ∈ X[0,s], C ∈ X[u,1]:

P
(
1A 1C |Xs, Xu

)
= P

(
1A|Xs

)
P
(
1C |Xu

)
. (2.2)

For this purpose, let us pick any pair of measurable sets D,F ⊆ X . We
have

P (1A 1D(Xs)1F (Xu)1C))
(E)
= P (1A 1D(Xs)1F (Xu) P (1C |X[0,u]))

(M)
= P (1A 1D(Xs)1F (Xu) P (1C |Xu))
(E)
= P (P (1A|X[s,1]) 1D(Xs)1F (Xu) P (1C |Xu))

(M)
= P (P (1A|Xs) 1D(Xs)1F (Xu) P (1C |Xu)),

from which (2.2) follows by the very definition of conditional expecta-
tion.

Consider now any triplet of events A,B,C such that A ∈ X[0,s], B ∈
X[s,u], C ∈ X[u,1]. We have:

P (1A1B1C)
(E)
= P (1A 1B P (1C |X[0,u]))

(M)
= P (1A 1B P (1C |Xu))
(E)
= P (P (1A|X[s,1]) 1B P (1C |Xu))

(M)
= P (P (1A|Xs) 1B P (1C |Xu))
(E)
= P (P (1A|Xs)P (1B|Xs, Xu)P (1C |Xu))

(2.2)
= P (P (1A1C |Xs, Xu)P (1B|Xs, Xu))
(E)
= P (1A1CP (1B|Xs, Xu)).

Since A,C were arbitrarily chosen in X[0,s], X[u,1], we have shown that

∀B ∈ X[s,u], P (1B|X[0,s], X[u,1]) = P (1B|Xs, Xu) P − a.s.

This shows that P is reciprocal.

The reciprocal property is not equivalent to the Markov property. We
construct here a simple counterexample, based on the Poisson process.
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Example 2.1.1. Let X = N andR be the Poisson process with initial distribution
1
2
δ0+1

2
δ1, where δ denotes the Dirac measure. We consider P = 1

2
R01(·)+1

2
R12(·),

where R01 is the Poisson bridge from 0 to 1 and R12 is the Poisson bridge from 1
to 2. It is easy to see that one has:

P (X1 = 1|X 1
2

= 1) =
R01(X 1

2
= 1)

R01(X 1
2

= 1) +R12(X 1
2

= 1)
< 1

because R12(X 1
2

= 1) > 0.
However:

P (X1 = 1|X 1
2

= 1, X0 = 0) = 1

This shows that P is not a Markov probability. But, thanks to Proposition
2.2.2, which we will prove below, P is reciprocal. Indeed the density dP

dR
is mea-

surable with respect to the initial and final state. One can check that:

dP

dR
=

1

e
1{(0,1),(1,2)}(X0, X1)

The next result is a sufficient condition for a reciprocal probability to
be Markov.

Proposition 2.1.2. Let P ∈ P(Ω) be reciprocal. If either X0 or X1 is almost
surely constant, then P has the Markov property.

Proof. Assume, w.l.o.g. that X1 is a.s. constant and take any f ∈ B(X ).
Then we have that, for any s ≤ u:

P (f(Xu)|X[0,s]) = P (f(Xu)|X[0,s], X1).

Using the reciprocal property and the hypothesis:

P (f(Xu)|X[0,s], X1) = P (f(Xu)|Xs, X1) = P (f(Xu)|Xs),

which gives the conclusion.

2.2 The concept of reciprocal class

2.2.1 Probabilities with the same bridges

Given a reference Markov probabilty R, (which plays the role of the ref-
erence dynamics in the Schrödinger Problem), the associated reciprocal
class is the set of all bridge mixtures of R. In this sense, it can be seen as
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the set of ”random bridges” of R. Using Proposition 1.2.1, one sees that
as the constraint π varies, the set of solutions to the modified Schrödinger
problem (1.2.1) forms a reciprocal class.

In the rest of the thesis, we make the assumption that the state space
X is countable. When X is not countable, one has to make a distinction
between reciprocal family and reciprocal class because the bridges of the
reference process may not be everywhere well defined, but only R-almost
surely (see Section 2 of[49]). But since X is assumed to be countable the xy
bridge Rxy ∈ P(Ω) is everywhere well defined on the set support or R01,
and there is no need to distinguish here.

Definition 2.2.1. (Reciprocal Class) Let R be a Markov probability. We define
the following subset of probability measures:

R(R) :=

{
P =

∫
supp(R01)

Rxy(·)π(dxdy); π ∈ P(X 2), supp(π) ⊆ supp(R01)

}
as the reciprocal class of R.

The next proposition is a general recipe to construct reciprocal proba-
bilities as mixtures of the bridges of a reciprocal reference measure. Since
any Markov probability is also reciprocal, as a by product we obtain that
the elements of R(R) are indeed reciprocal probabilities in the sense of
Definition 2.1.1.

Proposition 2.2.1. Let R be a reciprocal probability. Then, for any π ∈ P(X 2)
such that suppπ ⊆ suppR01 the measure P defined by:

P (·) =

∫
X 2

Rxy(·)π(dxdy) (2.3)

is a reciprocal probability. Moreover, P also satisfies

i) For all (x, y) ∈ suppP01:

P xy = Rxy P01 − a.s. (2.4)

ii) For all s ≤ u

P (·|Xs, Xu) = R(·|Xs, Xu) P − a.s. (2.5)
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Proof. We check directly Definition 2.1.1. Consider s ≤ u andA ∈ X[0,s], B ∈
X[s,u], C ∈ X[u,1]. In the same spirit as the proof of Proposition 2.1.1, when-
ever an equality is obtained with an application of the reciprocal property
we mark it with (R). We have:

P (1A1B1C) =

∫
supp (π)

1

R01(x, y)
R(1A1B1C1{X0,X1=(x,y)})π(dxdy)

(R)
=

∫
supp (π)

1

R01(x, y)
R(1AR

(
1B|Xs, Xt)1C1{X0,X1=(x,y)}

)
π(dxdy)

= P (1AR(1B|Xs, Xt)1C)

By the very definition of conditional expectation, we conclude that

P (1B|X[0,s], X[u,1]) = R(1B|Xs, Xu) ∀B ∈ X[s,u].

But then:

P (1B|Xs, Xu) = P (P (1B|X[0,s], X[u,1])|Xs, Xu)

= P (R(1B|Xs, Xu)|Xs, Xu) = R(1B|Xs, Xu)

from which both the fact that P is reciprocal and ii) follow.
Claim i) on the equality of the bridges follows by ii) considering s =

0, u = 1.

Using this last proposition, we can see the announced fact that solu-
tions to the generalized Schrödinger problem are indeed reciprocal proba-
bilities. The last proposition has the following interesting corollary:

Corollary 2.2.1. If a solution to the entropy minimization problem (1.2.1) exists,
then it is a reciprocal probability.

Moreover, combinig Proposition 2.2.1 with 2.1.2 we get:

Corollary 2.2.2. Bridges of reciprocal probabilities are Markov probabilities.

2.2.2 A representation result

The next result, which will be very useful later on, says that a probabil-
ity belongs to the reciprocal class if and only if its density w.r.t. to the
reference measure R is of a particular form. It has to be compared with
Proposition 2.2.3.
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Proposition 2.2.2. Let P ∈ P(Ω). Then P ∈ R(R) if and only if P � R and
dP
dR

is (X0, X1)-measurable.

Remark 2.2.1. If the state space is not countable, one cannot expect that members
of the reciprocal class are dominated by the reference measure, because bridges are
not.

Proof. (⇒) Let P ∈ R(R). Then, since X is countable, then for any (x, y) ∈
suppR01, Rxy � Rx. By mixing we obtain that P � R. Let us denote its
density by M . We have, for all F ∈ B+(Ω), using repeteadly the properties
of conditional expectation and the definition of R(R):

R(R(M |X0, X1)F ) = R(R(M |X0, X1)R(F |X0, X1))

= R(MR(F |X0, X1))

=︸︷︷︸
P∈R(R)

R(MP (F |X0, X1))

= P (P (F |X0, X1))

= P (F )

= R(MF )

From this it follows that M = R(M |X0, X1), which gives the conclusion.
(⇐) Assume that P � R(R) and the density (which again we denote

by M ) is (X0, X1) measurable. Then M = R(M |X0, X1) R − a.s.. Let
F ∈ B+(Ω), and Z be (X0, X1)-measurable. We have, again by the very
definition of conditional expectation:

P (R(F |X0, X1)Z) = R(R(F |X0, X1)) MZ︸︷︷︸
(X0,X1)−measurable

)

= R(F MZ)

= P (F Z)

= P (P (F |X0, X1) Z)

From which it follows that R(F |X0, X1) = P (F |X0, X1) P − a.s., and
hence the conclusion.

2.2.3 Markov probabilities of a reciprocal class

By proving the next proposition we also complete the proof of Proposi-
tion 1.2.3 about the Markovianity of solutions to the Schrödinger Problem.
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We show that transforming a reference Markov probability R with a den-
sity enjoying the multiplicative decomposition (2.6) preserves Markovian-
ity. Such a measure transformation generalizes the Doob h-transform [30].
More precisely, it is a time symmetric version of it.

Proposition 2.2.3. Let R be Markov and P ∈ P(Ω). Assume that there exist
f, g : X → R+ such that:

P = f(X0)g(X1)R R− a.s. (2.6)

Then P is also Markov.

The proof is based on the following well known lemma.

Lemma 2.2.1. Let P � R and M = dP
dR

. Then, for every F ∈ B+(Ω):

P (F |Xt) =
R(MF |Xt)

R(M |Xt)
P − a.s. (2.7)

Proof. First note that no division by zero on the right hand side occurs
P − a.s.. We have, with the basic properties of conditional expectation:

P (F 1A(Xt)) = R(MF 1A(Xt))

= R
(
R(M |Xt)

MF 1A(Xt)

R(M |Xt)

)
= R

(
R(M |Xt)

R(MF |Xt)1A(Xt)

R(M |Xt)

)
= R

(
M
R(MF |Xt)1A(Xt)

R(M |Xt)

)
= P

(R(MF |Xt)

R(M |Xt)
1A(Xt)

)
The conclusion follows by the definition of conditional expectation.

Proof. We have to show that for any A ∈ X[0,t], any B ∈ X[t,1]:

P (1A1B|Xt) = P (1A|Xt)P (1B|Xt). (2.8)

Using Lemma 1 and the Markov property of R:

P
(
1A1B|Xt

)
=

R
(
f(X0)1A1Bg(X1)|Xt

)
R
(
f(X0)g(X1)|Xt)

)
=

R(f(X0)1A|Xt)

R(f(X0)|Xt)

R(1Bg(X1)|Xt)

R(g(X1)|Xt)
(2.9)
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Applying twice Lemma 2.2.1 and the Markov property we obtain that
P (1A|Xt)P (1B|Xt) coincides with the expression in (2.9). This concludes
the proof.

We refer to [44] for more details about the infinitesimal generator asso-
ciated with P defined as in (2.6). It is expressed in terms of the solution
of the Kolmogorov backward PDE associated with the generator of R and
the “carré du champ” operator.

2.3 Our framework

This section is devoted to a precise definition of our main object of study:
the reciprocal class R(R) of a continuous time Markov Chain R, which is
called the reference walk. Markov chains are essentially Markov processes
on countable state spaces, and are among the most studied class of pro-
cesses in Probability theory. Some very general references are the books
[60],[8]. In this thesis only continuous time Markov chains are considered.

Our main goals in the next chapters will be to compute the reciprocal
characteristics associated with a reciprocal class R(R), give their probabilis-
tic interpretation, and characterize R(R) by means of the characteristics.

Since the Markov chains we will consider in the next chapter are of
quite different nature, we need to establish a common framework and no-
tation to treat them: this is done in 2.3.1. Even more notation on graphs
will be required in Chapter 6, see section 6.1. In the first two subsections,
we specify the main assumptions on the reference walk, ensuring its ex-
istence, and define the reciprocal class associated with it. Section 2.3.3 is
used to discuss a Girsanov Theorem for Markov chains. It does not contain
new results, but it is a translation in our setting of known results.

2.3.1 Markov chains as walks on a graph

In this subsection, we introduce some general notation and state an exis-
tence result for the reference measure R. We will view Markov chains as
random walks on graphs. There is no loss of generality in this, it is simply
the language we believe to be the most appropriate to present our results,
and will cover all the processes studied in this thesis.

Therefore the words Markov chain, Markov walk, and Markov walk
on a graph are used as synonimous.

In absence of further specification, the term random walk is used for
general probabilities, which may also be non markovian.
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Probabilities enjoying the reciprocal property are called reciprocal walks.
Our state space is a countable set X of vertices. X is equipped with the

discrete topology, and the limits appearing in the next definitions are to
be understood with respect to this topology. Any subset A ⊆ X 2 defines a
directed graph onX through the relation→, which is defined for all z, z′ ∈ X
by

z → z′ if and only if z, z′ ∈ A.
We denote by (X ,→) this directed graph. We call a pair z, z′ such that
(z → z′) an arc of the graph (X ,→).

Cycles play a crucial role in the study of reciprocal classes. Let us give
some definitions.

Definition 2.3.1 (path and cycles). LetA ⊂ X 2 specify a directed graph (X ,→
) on X .

i) For any n ≥ 1 and x0, . . . , xn ∈ X such that x0 → x1, · · · , xn−1 → xn,
the ordered sequence of vertices w := (x0, x1, . . . , xn) is called an A-path,
or shortly a walk. We adopt the more appealing notation (x0 → x1 →
· · · → xn). The length n of w is denoted by |w|.

ii) When xn = x0, the walk (x0 → x1 → · · · → xn = x0) is a cycle.

iii) A cycle (x0 → x1 → · · · → xn = x0) is said to be simple if the cardinal of
the visited vertices {x0, x1, . . . , xn−1} is equal to the length n of the cycle.
This means that a simple cycle cannot be further decomposed in cycles.

Remark that in our definition, cycles come with an orientation: the
cycles (x0 → x1 → .. → xn−1 → xn = x0) is different from the cycle
(xn = x0 → xn−1 → .. → x1 → x0). Moreover, A-path are not trajectories:
they are simply path on the graph (X ,→).

For a given A ⊆ X 2, we will consider random walks on X where only
transition on the arcs of (X ,→) are allowed.

The left limit at t of a function ω ∈ X [0,1] is denoted by ωt− , and the
right limit by ωt+ .

The path space Ω ⊆ X [0,1] which describes the trajectories of the pro-
cesses is the set of all càdlàg piecewise constant paths ω = (ωt)t∈[0,1] on
X with finitely many jumps such that there are no jumps at time one, and
transitions between vertices can happen only along the arcs inA. Summa-
rizing:

Ω :=
{
ω : [0, 1]→ X , ] {t : ωt 6= ωt−} < +∞, ωt+ = ωt ∀t ∈ [0, 1],

ωt− 6= ωt ⇒ (ωt− → ωt), ω1− = ω1

}
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Ω is equipped with the canonical σ algebra generated by the canonical
process X = (Xt)t∈[0,1]. defined for each t ∈ [0, 1] and ω ∈ Ω by Xt(ω) = ωt.

We define recursively for any n ∈ N, the stopping time Tn, which is the
time when the nth jump happened.

T1 = inf{t ∈ [0, 1] s.t.Xt 6= Xt−}, Tn := inf{t > Tn−1 s.t.Xt 6= Xt−}
(2.10)

with the convention that inf ∅ = +∞. We adopt a measure theoretical
viewpoint. That is, we identify random processes with paths in Ω and
their laws on Ω. We call any P ∈ P(Ω) a random walk, or simply a walk,
regardless if it is Markov or not.

2.3.2 The reference Markov walk and its reciprocal class

Prior to our choice of a reference walk, we fix a set A ⊆ X 2 and consider
the directed graph (X ,→).

Our reference walk R is always Markov. It is specified through an in-
tensity of jump along the arcs j : [0, 1]×A → R≥0. We always reserve R for
the reference walk, and j for its intensity. No other probability or intensity
will be labeled in the same way.

When j is not time dependent the dynamics of R has the following
simple description: if the walker sits in z, it waits for a random time which
is exponentially distributed with parameter

∑
z′:z→z′ j(z → z′). Then it

chooses a neighbor z′ of z with probability proportional to j(z → z′) and
jumps there. All these events are mutually independent

Assumption 2.3.1 ((graph and reference intensity)). (X ,→) and j satisfy the
following assumptions:

i) (X ,→) has bounded degree:

∃C < +∞, ]{z′ ∈ X : z → z′} ≤ C ∀z ∈ X
.

ii) (X ,→) has no cycles of length one. That is, for all z ∈ X , (z, z) /∈ A
iii) The intensity j is uniformly bounded from above:

sup
t∈[0,1],z∈X

j̄(t, z) < +∞ (2.11)

where j̄ is the total intensity of jump in z,

j̄(t, z) :=
∑

z′∈X :z→z′
j(t, z → z′).
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iv) There is some subset A→(j) ⊆ A such that:

(z → z′) ∈ A→(j)⇒ j(t, z → z′) > 0 ∀t ∈ (0, 1),

and:
(z → z′) /∈ A→(j)⇒ j(t, z → z′) = 0 ∀t ∈ [0, 1].

We call A→(j) the active arcs of j. Furthermore, we assume that j has a
uniform positive lower bound on [0, 1]×A→(j).

v) The intensity j is continuously t-differentiable, i.e. for any z → z′ ∈
A→(j), t 7→ j(t, z → z′) is continuously differentiable.

Point iv) of Assumption 2.3.1 simply means that if an arc (z → z′) is a
possible choice for the walker at some time t ∈ [0, 1], then it can also be
chosen at any other time, provided that the walker sits in z. It ensures that
the support of Rt does not change with time.

Associated to any intensity k : [0, 1] × A → R≥0 and t > 0 there is a
formal generator Kt, which acts on functions u : X → R of finite support
as follows:

Ktu(z) =
∑

z′:z→z′
j(t, z → z′)(u(z′)− u(z)) (2.12)

The generator associated with the reference intensity is denoted Gt.
In the next definition the intensity k does not necessarily satisfy iii) and

iv) ofAssumption 2.3.1.

Definition 2.3.2. We say that a law P ∈ P(Ω) is a Markov walk of intensity
k : [0, 1]×A → R≥0 if for all u : X → R with finite support

u(Xt)−
∫ t

0

Ksu(Xs)ds (2.13)

is a local P -martingale. (Ks)s∈[0,1] is the generator of P

Adapting the much more general Theorem 3.6 in [36],(or Theorem 6.7
of [53], ) it follows that for any j satisfying Assumption 2.3.1, and x ∈ X ,
there exists a unique Markov walkRx of intensity j and initial distribution
δx.

Clearly Assumption 2.3.1 can be strongly relaxed to ensure the exis-
tence of the process. However, it will turn out to be very convenient in
view of the results of the next chapters.

In all what follows a graph (X ,→) is given. On it, an intensity j satis-
fying Assumption 2.3.1 is defined, and we consider a Markov walk R of
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intensity j with initial measure of full support. They are the data of the
problem, which is to study the reciprocal class R(R):

R(R) :=

{
P =

∫
supp(R01)

Rxy(·)π(dxdy); π ∈ P(X 2), supp(π) ⊆ supp(R01)

}
Since X is countable, the bridge Rxy is always well defined for x, y ∈
suppR01. The reciprocal class is well defined too.

2.3.3 Girsanov Theorem for random walks on a graph

The following Girsanov Theorem is a translation of the abstract results
of [36], which are written for multivariate Point processes. We are dealing
with random walks on graphs. But there is a natural way to see a walk
as a multivariate point process, by associating to each path the sequence
(Tn, An)(ω) where Tn is the nth jump time and An is the arc along which
the walk jumps at Tn. Conversely, a random walk is naturally associated
to a multivariate point processes, by inverting the above construction.

Girsanov Theorem is a standard result for SDEs driven by the Brown-
ian motion, but it is less studied for jump processes. Very general state-
ments are in [36],[37] but it is not straightforward to specify them to our
situation, which is much less general.

An exposition of Girsanov theory for jump processes in Rd under a
finite entropy condition can be found in [47], and the Lévy processes case
is treated in [72]. But for countable state spaces without a vector space
structure we found no reference, and therefore it is worth to spend some
words on this, since we will use these results at different times in this
thesis.

Theorem 2.3.1 ((Girsanov Theorem)). Let k : [0, 1]×A → R≥0 be such that

{(t, z → z′) s.t. k(t, z → z′) > 0} ⊆ [0, 1]×A→(j). (2.14)

We define:

τ := inf

{
t ∈ [0, 1] : k(t,Xt− → Xt) = 0 or

∫ t

0

k̄(s,Xs−)ds = +∞
}

with the convention inf ∅ = +∞. We define the random variable:

Z∞ := 1{τ=+∞} exp
(
−
∫ 1

0

(k̄− j̄)(s,Xs−)ds
) ∏
i:Ti<1

k

j
(Ti, XT−i

→ XTi) (2.15)
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If R(Z∞) = 1, then the measure P ∈ P(Ω) defined by

P = Z∞R (2.16)

is the Markov random walk on (X ,→) with intensity k and initial distribution
R0.

We have the following important corollary:

Corollary 2.3.1. Let k be a jump intensity satisfying Assumption 2.3.1 and
A→(k) ⊆ A→(j). If P is a Markov walk with intensity k such that P0 = R0,
then P � R and dP

dR
is given by (2.15).

Z∞ := 1{τ=+∞} exp
(
−
∫ 1

0

(k̄− j̄)(s,Xs−)ds
) ∏
i:Ti<1

k

j
(Ti, XT−i

→ XTi) (2.17)

Let us first prove Theorem 2.3.1.

Proof. Let the sequence of jump times {Tn}n≥1 be defined by (2.10). We
also define the sequence of the arcs along which the walk jumps at Tn:

An : Ω→ A, An = XT−n
→ XTn ∈ A

Then the sequence (Tn, An) is a multivariate point process in the sense
of paragraph 3, page 238 of [36]. We define the random measure µ ∈
M+([0, 1]×A) as follows:

µ(dt da) =
∑
n≥1

δ(Tn,An) (2.18)

where δt,a stands for the Dirac measure on [0, 1]×A. Using Proposition
3.1 of [36] we obtain, as a general fact, that Q ∈ P (Ω) is a Markov random
walk with intensity k : [0, 1] × A → R≥0 if and only if a version of the
predictable projection of µ in the sense of Theorem 2.1 in [36] is the following
(predictable) random measure µ′(dt da) ∈M+([0, 1]×A):

µ′(dt da) =
∑

z′:Xt−→z′
k(t,Xt− → z′)δ(Xt−→z′)(da) dt (2.19)

Now, let us consider our reference intensity j, and another intensity k :
[0, 1]×A → R≥0 satisfying (2.14). We define Y : [0, 1]×A → R≥0 by:

Y (t, z → z′) =
k

j
(t, z → z′) (2.20)
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Because of (2.14), Y is well defined: no division by zero occurs.
Then we can see that the random variable Z∞ defined at (2.15) coin-

cides with the random variable obtained by setting S = ∞ at equation
(14), p.247 of [36], when Y is given by (2.20).

Since R(Z∞) = 1, Theorem 4.5 of the same article applies: under the
measure P defined by (2.16) the random measure µ admits as predictable
projection the measure

µ′(dt da) =
∑

z′:Xt−→z′
Y (t,Xt− → z′)j(t,Xt− → z′)δ(Xt−→z′)(da) dt

=
∑

z′:Xt−→z′
k(t,Xt− → z′)δ(Xt−→z′)(da) dt

Therefore, from the discussion above, P is a Markov random walk of in-
tensity k.

We can get back to the proof of the corollary:

Proof. All what we need to show is that if Z∞ is given by (2.15), then
R(Z∞) = 1. The conclusion then follows by Theorem 2.3.1. Using Propo-
sition 4.3 in [36] we have that (Zt)t∈[0,1] defined by

Zt := 1{τ≥t} exp
(
−
∫ t

0

(k̄ − j̄)(s,Xs−)ds
) ∏
i:Ti<t

k

j
(Ti, XT−i

→ XTi)

is a local R-martingale. Therefore it is sufficient to prove that (Zt)t∈[0,1]

is a true martingale to prove the corollary. A known criterion for this to
happen is that:

R( sup
t∈[0,1]

Zt) < +∞

But if both j and k satisfy Assumption 3, and A→(k) ⊆ A→(j), then it is
easy to see that there exist constants a,b such that

sup
t∈[0,1]

Zt ≤ a exp(bN1) R− a.s.

where
N1 = ]{t ∈ [0, 1] : Xt 6= Xt−}

is the total number of jumps up to time 1. The assumptions that j is up-
per bounded and the graph is of bounded degree imply that N1 has all
exponential moments. This completes the proof.
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Chapter 3

Counting processes

Outline of the chapter This chapter is an exposition of the results con-
tained in the published paper [22], where a duality formula between a
derivative operator, based on time-changes, and a stochastic integral op-
erator is shown to characterize the reciprocal class of a counting process.
The duality formula is expressed in terms of the reciprocal characteris-
tic. Effects of lower bounds on the reciprocal characteristics are studied as
well.

Counting processes are jump processes on Z which can only make pos-
itive jumps of size one and are used to model a stream of random events.
They gain their interest even outside Markovian framework, as it is the
case for renewal processes. The range of application is very broad, cov-
ering survival analysis [33], statistics [1], control and engineering [7] and,
more recently, environmental sciences [65]. In our work we will profit
from the martingale approach to study their dynamics. This was first put
explored by Watanabe in [80], who proved a characterization of the Pois-
son process as the unique solution of a Martingale problem, in the spirit of
Lévy characterization of the Brownian motion. Brémaud extended in [6]
this approach to general counting processes. He proved that a counting
process is characterized by a predictable process called the compensator.
The compensator is defined as the unique process such that, when sub-
stracted to the canonical process, turns it into a martingale. Jacod [36]
extended this notion to a much larger class of jump processes.

Bridge mixtures of Markov counting processes provide the simplest
examples of reciprocal jump processes. As we shall see, this is because

41
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the underlying graph is acyclic and has a translation invariance property.
Moreover, it is natural to start a study of reciprocal processes over discrete
structures by considering the Poisson process, which is in many respects
the discrete-space analogous of the Brownian motion. The reciprocal charac-
teristic of a counting process is computed explicitly: it is a space time func-
tion associated with the intensity of the reference process which describes
the dynamics of a reciprocal class. This is made clear in our main result: an
integration by parts (duality) formula between a derivative operator and
a stochastic integral which characterizes reciprocal class. This is Theorem
3.2.2. Integration by parts formulae are at the core of the characterization
of the reciprocal class of a Brownian diffusion, see [67],[68], and our result
has to be interpreted in the same spirit. Quite remarkably, there already ex-
ist more than one type of integration by parts formula for the Poisson pro-
cess. They reflect two different approaches to stochastic calculus for jump
process, the one based on perturbation of jump times(differential calcu-
lus), and the one based on addition of jumps to the trajectories(difference
calculus). Only the first approach will turn out to be useful in the study of
reciprocal probabilities. This is in contrast with the diffusion case, where
essentially there exist only one duality formula which stands at the basis
of Malliavin calculus.
In section 3.3 we shall be concerned with lower bounds on the reciprocal
characteristic. A lower bound is shown to imply an estimate on the last
jump time of the bridges of the reference walk, see Proposition 3.3.1. In
particular, a positive bound implies that the bridge of the reference walk
is slower than the bridge of a Poisson process, in the sense that it tends to
reach its final state later than the Poisson bridge, and we have an accumu-
lation of the jump times around time one.

Studying the reciprocal class of a counting process has to be seen as a
preliminary step of a larger program. Indeed the simple graph structure
hides many difficulties, and, most importantly, does not allow to see the
role of cycles. This will emerge clearly from Chapter 4 on. However, the
reciprocal characteristic we compute here, serves as a prototype for the arc
characteristic in a general graph, which we compute in Chapter 6.

Organization of the chapter In section 3.1 we recall some basic facts
about counting process. Then we define all the objects which appear in
the duality formula and prove, as a new result, a duality formula for the
law of a nice Markov counting process at Proposition 3.1.5. Section 3.2 is
devoted to the study of reciprocal class of a counting process. It contains
two new results: In Theorem 3.2.1 we compute the reciprocal characteris-
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tic associated with a counting process and in Theorem 3.2.2 we show that
the duality formula proved in the former section is expressed in terms of
the reciprocal characteristic and indeed characterizes the reciprocal class.
Section 3.3 is devoted to study the quantitative effects on the dynamics of
a bridge of lower bounds for the reciprocal characteristic.

The first section of this chapter is based on Murr’s Phd thesis [56]. In
particular Proposition 3.2.1 is a rewriting of its Theorem 6.58. From section
3.2.2 on, the results contained are original. The following chart helps in
connecting the notation of this chapter with the general framework we set
up in Chapter 2.

General def Local def
State space X Z
Arcs A (z → z + 1), z ∈ Z
Active arcs A→(j) (z → z + 1), z ∈ Z
Reference intensity j(t, z → z + 1) j(t, z)

3.1 Duality formula for a counting process

3.1.1 Nice counting processes

Using the notation and language of Chapter 2, a counting process is a
continuous time markov chain on the graph specified X = Z and A =
{(z → z + 1), z ∈ Z}.

Then Ω consists of all cadlàg step functions, with finitely many jumps
of amplitude +1 and any initial value in Z.

Any path is described by the collection (x, t1, .., tn) of its initial position
x ∈ Z and its n = X1−X0 instants of jumps 0 < t1 < ..tn < 1. It is practical
to set ti = 1 for i > n. We denote Ti(ω) = ti the i− th instant of jump.

AnyQ ∈ P(Ω) admits an increasing predictable processA : [0, 1]×Ω :→
R≥0 such that Q(A(0) = 0) = 1 and

Xt −X0 − A(t)

is a local Q-martingale. A characterizes the dynamics of Q (see, for in-
stance Theorem 2.1 in Jacod [36] for a general result). A is called the com-
pensator and its time derivative j (if it exists) is the intensity of jump of the
process.

We translate our Assumption 2.3.1 in the present framework: since the
structure of the graph is very simple, there is no ambiguity in identifying
the arc (z → z + 1) with z. Our intensity is then a function j : [0, 1]× Z→
R+. Assumption 2.3.1 is seen to be equal to the following:
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Assumption 3.1.1. The reference process R and its jump intensity j satisfy:

1. j : [0, 1]×Z→ R+ is strictly positive and upper bounded, and for all z ∈ Z
the function t 7→ j(t, z) is of class C1

2. R0 has full support.

Definition 3.1.1 (Nice Markov counting processes). i) Any P ∈ P(Ω)
which is Markov and whose jump intensity exists and satisfies Hypothe-
sis (3.1.1) is called a nice Markov counting process, NMC for short.

ii) We call a Poisson process any NMC that satisfies j(t, z) ≡ 1, no matter
what it is the initial distribution. Similarly a Poisson process of parameter
λ is a NMC with j(t, z) ≡ λ.

Poisson processes play a distinguished role, and, when they do not
coincide with the reference measure R, they are denoted by P.

The Girsanov formula reads as follows:

Proposition 3.1.1. Let P ∈ P(Ω) be any nice counting process of intensity k
such that P0 = R0. Then P � R and

dP

dR
= exp

(
−
∫ 1

0

(k(s,Xs−)− j(s,Xs−))ds
) ∏
i:Ti<1

k(Ti, XT−i
)

j(Ti, XT−i
)

In particular, if P is a Poisson process and R a NMC with of intensity j, and
P0 = R0, then the density dR

dP
is denoted by Gj . We have :

Gj := exp
(∫ 1

0

1− j(s,Xs−)ds
) ∏
i:Ti<1

j(Ti, XT−i
) (3.1)

3.1.2 The derivative and divergence operators

We present an approach to Malliavin calculus on Ω first developed by
Carlen and Pardoux in [10]. It is the core of our characterization of R(R).
Despite other approaches ( see e.g. Chapter 7,8 of [63] ) where the deriva-
tive operator is actually a difference operator, this one has the advantage
that the operator introduced is a true derivative, in the sense that it enjoys
a product rule and a chain rule. These two properties will turn out to be
crucial in the characterization of the reciprocal class.

As for the classical Malliavin calculus we establish an integration by
parts formula which puts in duality a derivative operator with a so-called
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divergence operator. In the case of the Wiener measure, ( Lemma 1.2 of
[61]) it is the Malliavin derivative that is in duality with the Skorhorod
integral.

In that case, the derivative operator can be interpreted as a directional
derivative, where the paths are perturbed by a small shift.

Here, we consider a directional derivative on Ω by considering in-
finitesimal changes of the time parametrization (see also Elliott & Tsoi
[31]), and establish a duality with a stochastic integral operator.

We use the following scheme: at first we introduce a time-perturbation,
and then use it to define a derivative operator acting on a suitable space of
test functions. Eventually, we define our divergence operator and estab-
lish the duality formula.

Definition 3.1.2 (The set U of perturbation functions). The set U of perturba-
tion functions consists of all C1-functions u : [0, 1]→ R such that u(0) = u(1) =
0.

For any function u ∈ U and ε > 0 small enough, we define the change
of time θεu : [0, 1]→ [0, 1] by

θεu(t) = t+ ε u(t).

The boundedness of the derivative ∂tu of u and the property u(0) = u(1) =
0 ensure that for any ε small enough, θεu is indeed a change of time with
θεu(0) = 0 and θεu(1) = 1.

The perturbation is defined for any path ω ∈ Ω by:

Θε
u : Ω→ Ω, X(Θε

u(ω))t = X(ω)θεu(t) ∀t ∈ [0, 1] (3.2)

Note that the operator Θε
u keeps the initial and final values of the path

unchanged. It modifies the jump times according to the following rule:

Ti ◦Θε
u + εu(Ti ◦Θε

u) = Ti ∀i ∈ N (3.3)

We define a derivative in the direction of the elements of U ,

Definition 3.1.3 (The derivative DuΦ). Let Φ be a measurable real function on
Ω and u ∈ U a perturbation function. We define

DuΦ := lim
ε→0

1

ε
(Φ ◦Θε

u − Φ) , (3.4)

provided that this limit exists
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We do not ask the limit to exist in L2 but pointwise. Indeed, we have
not specified a reference measure at the moment. This is unusual for Malli-
avin calculus, but it turns out to be useful here. As a by-product of Defini-
tion (3.1.3) we deduce thatDu satisfies both the chain rule and the product
rule. We do not give the proof, because it uses the same arguments used
to prove the standard rules of calculus for real functions.

Proposition 3.1.2. For any differentiable pair of functions Φ,Ψ, u ∈ U we have:

Du(ΦΨ) = Φ DuΨ + ΨDuΦ (3.5)

If α : R→ R is C∞ function and Φ is differentiable then:

Du(α(Φ)) = α′(Φ)DuΦ (3.6)

Let us remark that we slightly changed the notations introduced by
Carlen and Pardoux in [10]. We write Du instead of Du̇. In the next propo-
sition we show that for a large class of functions, the derivative exists and
can be computed. They are smooth functionals of the jump times. On the
contrary, the derivative of a function Φ(Xt) of the position of the process is
zero except for those paths which have a jump exactly at t. Therefore this
class of functionals is not meaningful for the derivative operator we have
just defined.

Definition 3.1.4 (The set S of smooth functions). We say that Φ : Ω → R
belongs to the set S of smooth functions if there exists m ≥ 1 such that Φ =
ϕ
(
X0;T1, . . . , Tm

)
for some bounded ϕ : Z× [0, 1]m → R such that for all x ∈ Z,

the partial functions ϕ(x; ·) are C1-differentiable on the simplex (0 < t1 < ..tm <
1), and have a C1 extension to the closure. Finally, the partial derivatives are
bounded as well:

sup
i≤m, x∈Z

∂tiϕ(x, t1, .., tm) < +∞.

These functions are differentiable on the Poisson space in a natural
way, see also Thm. 1.3 in [10].

Proposition 3.1.3. Let Φ ∈ S be a simple function. It is differentiable in the
direction of any u ∈ U and one has:

DuΦ = Duϕ
(
X0;T1, . . . , Tm

)
= −

m∑
j=1

∂tjϕ(X0;T1, . . . , Tm)u(Tj)

= −
∫ 1

0

( m∑
j=1

∂tjϕ(X0;T1, . . . , Tm)1[0,Tj ](t)
)
u̇(t)dt. (3.7)



3.1. DUALITY FORMULA FOR A COUNTING PROCESS 47

Proof. Let C = supt∈[0,1] ∂tu(t) < +∞. From (3.3) we have that, for all i:

|Ti ◦Θε
u − Ti + εu(Ti)| = ε|u(Ti)− u(Ti ◦Θε

u)|
≤ Cε|Ti − Ti ◦Θε

u|
≤ Cε2|u(Ti ◦Θε

u)|
≤ C2ε2 (3.8)

To finish the proof, we just need to apply the definition of Du, the regular-
ity of ϕ, and the standard rules of calculus.

The last ingredient of the duality formula is the compensated stochastic
integral, playing the role of the divergence operator.

Definition 3.1.5. Let u ∈ U . We define δ(u) : Ω→ R as:

δ(u) :=

∫ 1

0

u̇(t)d(Xt − t)

As the space Ω is very simple, the stochastic integral is clearly well
defined for any ω ∈ Ω as:∫ 1

0

u̇(t)dXt :=
∑
i:Ti<1

u̇(T−i ) (3.9)

Moreover, let us not that since u(1) = u(0) = 0, δ(u) coincides with
(3.9).

3.1.3 Duality formula

As a first step, we prove a duality under the Poisson process.

Proposition 3.1.4. Let R be a Poisson process, and u ∈ U . Then for all Φ ∈ S:

R
(
DuΦ

)
= R

(
Φ δ(u)

)
(3.10)

Proof. Let Φ ∈ S. Then, by definition:

R
(
DuΦ

)
= R

(
lim
ε→0

Φ ◦Θε
u − Φ

ε
)
)

Because of the smoothness of Φ and the boundedness of DuΦ, (see (3.7))
we can exchange limit and expectation, so that:

R
(
DuΦ

)
= lim

ε→0

1

ε
R
(
Φ ◦Θε

u − Φ
)

(3.11)
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We prove that the measure Rε := R(Θε
u ∈ .) is a nice counting process

with intensity
kε(t, z) := 1 + εu̇(t)

This follows from the fact that clearly Rε is Markov, and

Rε(Xt −Xs|Xs) = R(Xt+εu(t) −Xs+εu(s)|Xs+εu(s)) = t− s+ ε

∫ t

s

u̇ldr

Therefore Xt −
∫ t

0
(1 + εu̇(s))ds is a Rε martingale. We have thus identified

the compensator of Rε. It follows that Rε is a nice counting process with
the desired intensity. An application of Girsanov Theorem at Proposition
3.1.1, combined with the assumption u(1) = u(0) = 0 tells that:

dRε

dR
=
∏
i:Ti<1

(1 + εu̇(T−i ))

and therefore, by (3.11):

R
(
Φ ◦Θε

u − Φ
)

= R
(

Φ(
∏
i:Ti<1

(1 + εu̇(T−i )− 1)
)

A simple second order expansion in ε, together with the boundedness of
u̇ yields the conclusion.

Having in mind the program to carry out a Malliavin calculus to study
the laws of Poisson driven equations, the validity of that formula extends
to a much larger class of test functions and directions of differentiation.
For our purposes Proposition 3.1.4 is general enough to provide a charac-
terization of the reciprocal class, and we will not extend this duality. How-
ever, let us just mention thatDu is an unbounded closable densely defined
operator from L2(Ω) into L2(Ω)(see Theorem 1.5 of [10]). This gives the
opportunity to define the derivative of functionals which are not in S, but
can be approximated in a suitable sense. As for the Malliavin calculus on
the Wiener space, this is crucial to study properties of the marginals of
stochastic differential equations. We rather move to our next goal: prove
a duality formula for the law of a NMC. Here, we exploit the fact that Du
is a true derivative:

Proposition 3.1.5 below states a duality relation between the derivative
operator D and some stochastic integral. R is no longer assumed to be a
Poisson process.
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Proposition 3.1.5. Let R be a nice counting process of intensity j. Then it satis-
fies the following duality formula. For all Φ ∈ S and u ∈ U :

R
(
DuΦ

)
= R

(
Φ

∫ 1

0

[
u̇(t)+(∂t log j(t,Xt−)+j(t,Xt−+1)−j(t,Xt−))u(t)

]
dXt

)
(3.12)

We do not make the initial distribution µ precise since it does not play
any role.

Proof. Let P be the Poisson process with P0 = R0. Recalling Girsanov’s
Theorem we see that R � P. We call Gj the density dR

dP
whose expression

is given at (3.1). The first part of the proof is to prove the differentiability
of the density and to compute the directional derivative of logGj . To this
aim, we define the event Ωm := {X1 − X0 = m}. We observe that Gj

coincides on the event Ωm with Gm
j , defined as follows:

Gm
j := exp

(
−

m+1∑
i=1

∫ Ti

Ti−1

(
j(s,X0 + (i− 1))− 1

)
ds
) m∏
i=1

j(Ti, X0 + i) (3.13)

where we adopted the convention Tm+1 = 1. and therefore we can reduce
ourselves to compute each of the Du logGm

j . The directional derivative of
logGj is then given by:

Du logGj =
+∞∑
m=1

Du logGm
j 1Ωm

But for any m, Gm
j ∈ S , thanks to Assumption 3.1.1. In Proposition 3.1.3

we computed the derivative of a smooth functional. Using that result we
obtain:

Du logGm
j = j(T1, X0)u(T1) +

m∑
i=2

[
j(Ti, XT−i

)u(Ti)− j(Ti−1, XT−i
)u(Ti−1)

]
− j(Tm, X1)u(Tm)−

m∑
i=1

∂t log j(Ti, XTi)u(Ti)

= −
m∑
i=1

u(Ti)
[
∂t log j(Ti, XT−i

) + j(Ti, XTi)− j(Ti, XT−i
)
]

= −
∫ 1

0

[∂t log j(t,Xt−) + j(t,Xt− + 1)− j(t,Xt−)] u(t)dXt
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This proves that logGj is defferentiable with derivative:

Du logGj = −
∫ 1

0

[∂t log j(t,Xt−) + j(t,Xt− + 1)− j(t,Xt−)] u(t)dXt. (3.14)

Applying Girsanov’s theorem, the product rule and the duality formula
under the Poisson process we obtain:

R(DuΦ) = P(GjDuΦ)

= P(Du(Gj Φ))−P(Φ DuGj)

= P(GjΦ δ(u))−P(Φ DuGj)

= R(Φ δ(u))−R(Φ Du logGj) (3.15)

where to obtain the last equality we applied the chain rule. Using the
expression derived in (3.14) for the logarithmic derivative of Gj , the con-
clusion follows.

3.2 The duality formula characterizes the recip-
rocal class

3.2.1 The reciprocal characteristic

We compute the reciprocal characteristic associated with a jump process.
As it is clear from the introduction, the reciprocal charateristic is the natu-
ral parameter to describe reciprocal classes, in the same way as the inten-
sity is the natural way to characterize a random walk.

Definition 3.2.1 (Reciprocal characteristic). Let j be the intensity of a nice
Markov counting process. We define the map Ξj : [0, 1]× Z→ R+

Ξj(t, z) := ∂t log j(t, z) + j(t, z + 1)− j(t, z) (3.16)

and call it the reciprocal characteristic associated with j.

We can see from the definition that the duality formula (3.12) can be
rewritten as follows:

R
(
DuΦ

)
= R

(
Φ

∫ 1

0

[u̇(t) + Ξj(t,Xt−)u(t)] dXt

)
(3.17)

As a first result, let us show the reciprocal characteristic identifies all
Markov processes having the same bridges:
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Theorem 3.2.1. Let R,P be two nice Markov counting process and j, k be their
intensities. Then P ∈ R(R) if and only if Ξj = Ξk

The proof of this theorem relies on the explicit computation of the in-
tensity of a Doob h-transform of a NMC.

Proposition 3.2.1 (h transform). Let R be the law of a NMC of intensity j. Let
h : Z → R+ be such that R(h(X1)) = 1. Then the process whose law P is given
by:

P = h(X1)R

is a Markov counting process and its intensity k : [0, 1]× Z→ R satisfies:

k(t,Xt−) =
h(t,Xt− + 1)

h(t,Xt−)
j(t,Xt−) (3.18)

where h(t, z) = R(h(X1)|Xt = z).

Proof. First note that h(t, z) is time-differentiable (a standard semigroup
argument) and space time harmonic, that is, a solution of the Kolmogorov
Backward PDE:

∂th(t, z) + j(t, z)[h(t, z + 1)− h(t, z)] = 0 Rt − a.s.∀t ∈ [0, 1]

Define ψ(t, z) := log h(t, z). It satisfies:

∂tψ(t, z) = j(t, z)
[
1− exp(ψ(t, z + 1)− ψ(t, z))

]
(3.19)

By Itô formula:

ψ(t,Xt−) =

∫ t

0

∂tψ(s,Xs−)ds+
∑
i:Ti≤t

ψ(Ti, XTi)− ψ(Ti, XT−i
)

=

∫ t

0

(1− h(s,Xs− + 1)

h(s,Xs−)
)j(s,Xs−)ds+

∑
i:Ti≤t

log(
h(Ti, XTi)

h(Ti, XT−i
)
)

Since h = exp(ψ), this implies that

h(X1) = exp(−
∫ 1

0

(
h(s,Xs− + 1)

h(s,Xs−)
− 1)j(s,Xs−)ds)

∏
i:Ti<1

h(Ti, XTi)

h(Ti, XT−i
)

and

h(X1)Gj = exp(−
∫ 1

0

j(s,Xs−)
h(s,Xs− + 1)

h(s,Xs−)
−1ds)

∏
i:Ti<1

j(Ti, XT−i
)
h(Ti, XTi)

h(Ti, XT−i
)

where we recall the definition of Gj at (3.1). With Girsanov’s Theorem we
see that P admits the intensity k defined in (3.18).
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We can get back to the proof of Theorem 3.2.1.

Proof. (⇒) Assume that P ∈ R(R). Then by Proposition 2.2.2, for any
x ∈ suppP0 there exists h : Z → R such that P x = h(X1)Rx. This implies,
by Theorem 3.2.2 that k and j are related through the relation (3.18):

k(t, z) = exp(ψ(t, z + 1)− ψ(t, z))j(t, z) (3.20)

where ψ solves the equation (3.19): This leads to:

∂t(log k(t, z)− log j(t, z)) = ∂t(ψ(t, z + 1)− ψ(t, z))
(3.19)
= j(t, z + 1)

[
1− exp(ψ(t, z + 2)− ψ(t, z + 1))

]
− j(t, z)

[
1− exp(ψ(t, z + 2)− ψ(t, z + 1))

]
(3.20)
= (j(t, z + 1)− j(t, z)) − (k(t, z + 1)− k(t, z))

which implies the equality of Ξk and Ξj .
(⇐) Assume that Ξk = Ξj , i.e.:

∂t log j(t, z) + j(t, z+ 1)− j(t, z) = ∂t log k(t, z) + k(t, z+ 1)− k(t, z) (3.21)

Integrating with respect to time (3.21), we obtain that there exists a space
dependent function c : Z→ R such that:

log(
k

j
(t, z)) = φ(t, z + 1)− φ(t, z) + c(z)

where

φ(t, z) =

∫ t

0

j(s, z)− k(s, z)ds

By applying Girsanov’s Theorem:

dP

dR
= exp

(∫ 1

0

(k(s,Xs−)− j(s,Xs−))ds
) ∏
i:Ti<1

k

j
(Ti, XT−i

)

We can rewrite the density using in terms of ψ, c:

dP

dR
= exp

( ∫ 1

0

k(s,Xs−)− j(s,Xs−)ds)
∏
i:Ti<1

k

j
(Ti, XT−i

)
= exp

( ∫ 1

0

∂tφ(t,Xs−)ds+
∑
i:Ti<1

(log k − log j)(Ti, XT−i
)
)

= exp(

∫ 1

0

∂tφ(t,Xs−)ds+
∑
i:Ti<1

φ(Ti, XTi)− φ(Ti, XT−i
) +

∑
i:Ti<1

c(XT−i
))

= exp(φ(1, X1)− φ(0, X0) +
∑
i:Ti<1

c(XT−i
))
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where to derive the last equality we applied the Itô formula. But
∑

i:Ti<1 c(XT−i
) =

c(X0 + 1) + ..+ c(X1− 1) depends only on the initial and final state X0 and
X1. Proposition 2.2.2 gives the conclusion.

Example 3.2.1. 1. A Poisson process of parameter λ always belongs to the
reciprocal class of a standard Poisson process (i.e. λ = 1): it is the well
known fact that Poisson processes with different intensities have the same
bridges.

2. A Poisson bridge Pxy belongs, by definition, to the reciprocal class R(P) of
a Poisson process. Theorem 3.2.1 gives another proof of this fact. Indeed, it
is well known that the intensity of Rxy is:

jxy(t, z → z + 1) =
y − z

(1− t)
Therefore the reciprocal characteristic Ξjxy(t, z) is:

∂t log

(
y − z

(1− t)

)
+
y − (z + 1)

(1− t) − y − z
(1− t) =

1

(1− t) −
1

(1− t) = 0

The same computation can be repeated for any reference intensity j, using
(3.16) and (3.21).

3. Let j(z) and k(z) be two time homogeneous intensities. Then Theorem 3.2.1
tells that the associated processes share their bridges if and only if there exist
a constant λ such that:

k(z) = j(z) + λ ∀z ∈ Z

This means that one process can be obtained from the other by superposition
with a Poisson process of intensity λ

4. Consider two intensities which are only time-dependent, say j(t) and k(t).
Then the associated walks share the same bridges if and only if there exist a
constant c such that

j(t) = c k(t) ∀t ∈ [0, 1].

This means that the associated counting processes can be obtained one from
the other by thinning.

Theorem 3.2.1 is useful to confront the reciprocal classes of two Markov
processes, and therefore it does not concern reciprocal probabilities in the
strict sense. But the Duality formula we have derived above does, applies
in this more general framework. We prove our main result of this section
in two steps. First, we work out the Poisson case and then consider general
intensities.
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3.2.2 The Poisson case

The first interesting result is that the duality formula characterizes the
Poisson bridge, under the obvious endpoint marginal constraints.

Proposition 3.2.2. Let P ∈ P(Ω) admit the endpoint marginal P01 = δ(x,y) with
x ≤ y ∈ Z. The process P is the Poisson bridge between x and y if and only if

P
(
DuΦ

)
= P

(
Φ

∫ 1

0

u̇(t) dXt

)
(3.22)

holds for any Φ ∈ S and any u ∈ U .

Proof. (⇒) Let P = Rxy be the Poisson bridge from x to y. Then it is easy
to see that Rxy � Rx and that a version of the density is given by

dRxy

dRx
=

1

Rx(X1 = y)
1{X1=y} := h(X1)

Since X1 ◦ Θε
u = X1 for all u ∈ U ,we have that Duh(X1) = 0 almost surely.

But then, using the duality formula of Proposition 3.1.4 for Rx:

Rxy(DuΦ) = Rx(h(X1)DuΦ)

= Rx(Du(h(X1)Φ))

= Rx(h(X1)Φδ(u))

= Rxy(Φδ(u))

which shows that Rxy satisfies (3.22).

(⇐) Let us prove the converse statement by computing the jump inten-
sity of Q by means of a Nelson stochastic derivative.
Fix t ∈ [0, 1). We are going to apply (3.10) with Φ an X[0,t)-measurable
function and u ∈ U such that u̇ = 1

ε
1[t,t+ε]− 1

1−(t+ε′)
1[t+ε′,1] where 0 < ε < ε′.

With these choices, we see that the left hand side of (3.22) is worth zero.
The right hand side is worth

1

ε
P
(

Φ

∫ t+ε

t

dXr

)
− 1

1− (t+ ε′)
P
(

Φ

∫ 1

t+ε′
dXr

)
By taking the conditional expectation, since Φ is an arbitrary X[0,t] measur-
able functional, we obtain:

1

ε
P
(∫ t+ε

t

dXr | X[0,t)

)
=

1

1− (t+ ε′)
P
(∫ 1

t+ε′
dXr | X[0,t)

)
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for every small enough ε′. Remark that both sides of the equality are con-
stant as functions of ε and ε′. In particular, for almost every t the stochastic
derivative

a(t) := lim
ε→0

1

ε
P
(∫ t+ε

t

dXr | X[0,t)

)
exists (and is equal to the right hand side). This shows that P admits the
dt P (dω)-almost everywhere defined process (t, ω) 7→ a(t, ω) as its inten-
sity. Letting ε′ tend to zero gives

a(t) = P
( 1

1− t(X1 −Xt) | F[0,t)

)
=
y −Xt

1− t .

We recognize the intensity of a Poisson bridge at time twith final condition
y.

By randomizing the endpoint marginal of P in (3.22), we obtain the
following characterization of the reciprocal class of a Poisson process:

Corollary 3.2.1. If for any Φ ∈ S and any u ∈ U the duality formula

P (DuΦ) = P
(

Φ

∫ 1

0

u̇(t) dXt

)
holds under P ∈ P(Ω) where P

(
X1 −X0

)
< +∞, then P belongs to the recip-

rocal class R(R) of the Poisson process.

Note that we added the requirement P (X1 − X0) < +∞ for the right
hand side of the equation to be well defined.

3.2.3 The general case

Next result emphasizes that the duality formula (3.12) characterizes the
reciprocal class of any NMC intensity j. A natural idea would be to follow
the guideline of the proof of Proposition 3.2.2. Unfortunately, this leads to
an implicit equation for the intensity, in contrast with the special Poisso-
nian case where the reciprocal invariant Ξj=1 vanishes and leads to (3.22).
However, a fruitful method consists in relying on the last corollary and
pathwise techniques.

Theorem 3.2.2. Let P ∈ P(Ω) be such that P
(
X1 −X0

)
< +∞. Then P is in

R(R) if and only if the duality formula

P (DuΦ) = P
(

Φ

∫ 1

0

[
u̇(t) + Ξj(t,Xt−)u(t)

]
dXt

)
(3.23)

holds for any Φ ∈ S and any u ∈ U .
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Note that each term in (3.23) is meaningful since Ξj is bounded and
X1 −X0 ∈ L1(P ).

Proof. The direct statement is analogous to the Poisson case. Assume that
P ∈ R(R). Then, by Proposition 2.2.2, P = h(X0, X1)R for some h. Since,
clearly, for all u ∈ U , Duh(X0, X1) = 0 we have:

P (DuΦ) = R(h(X0, X1)DuΦ)
Duh=0

= R(Du(h(X0, X1)Φ))

= R((h(X0, X1)Φ)

∫ 1

0

[u̇(t) + Ξj(t,Xt−)u(t)] dXt)

= P ((h(X0, X1)Φ)

∫ 1

0

[u̇(t) + Ξj(t,Xt−)u(t)] dXt)

The converse statement is based on the former Proposition 3.2.2. Let Ωm =
{X1 −X0 = m} and consider m such that P (Ωm) > 0. We note that (3.23)
is satisfied by the measure

Pm :=
1Ωm

P (Ωm)
P

as well . This can be shown by observing that the density of Pm w.r.t. to
P depends only on the vector (X0, X1) and using the same argument we
used to prove the direct statement.

Let Gj be as in equation (3.1). We define the probability measure P̃m as
follows:

dP̃m := c
1

Gj

dPm

where c is the normalizing constant. Since Gj is uniformly bounded from
above and below on Ωm, P̃m is well defined. With (3.14), the identity (3.23)
leads us to:

Pm
(
Du(G−1

j Φ)
)

= Pm
(
G−1
j Φ

∫ 1

0

[u̇t + Ξj(t,Xt−)ut] dXt

)
= Pm

(
G−1
j Φ

∫ 1

0

u̇t dXt

)
− Pm

(
G−1
j Du log(Gj)Φ

)
= Pm

(
G−1
j Φ

∫ 1

0

u̇t dXt

)
+ Pm

(
Du(G−1

j )Φ
)
. (3.24)
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Hence,

P̃m(DuΦ) = c Pm
(
G−1
j DuΦ

)
= −c Pm(Du(G−1

j )Φ) + c Pm
(
Du(G−1

j Φ)
)

(3.24)
= c Pm

(
G−1
j Φ

∫ 1

0

u̇(t)dXt

)
= P̃m

(
Φ

∫ 1

0

u̇(t)dXt

)
.

It follows from Corollary 3.2.1 that P̃m is in the reciprocal class of a
Poisson process, say P. By Theorem 2.2.2 there exists h such that dP̃m =
h(X0, X1)P. But this implies that

dPm = c−1Gj dP̃
m = c−1Gj h(X0, X1) dP = c−1 h(X0, X1) dR

and therefore Pm ∈ R(R). By integrating with respect to m, we obtain that
P ∈ R(R), which is the desired result.

Theorem 3.2.2 improves Theorem 3.2.1 significantly because (i) it is not
required a priori that the process which stands in the reciprocal class is
an NMC process and (ii) no explicit expression of its intensity of jump is
required. At this point the characterization of the reciprocal class of a nice
counting process is complete. However, one may still wonder about the
probabilistic meaning of the reciprocal characteristic. We will come back
to this question in a more general framework in Chapter 6.

3.3 Lower bounds on the reciprocal characteris-
tics

In this section we are going to investigate what are the consequences of
a lower bound on the reciprocal characteristics for the dynamics of the
bridge of a counting process . We show that this implies an estimate on
the distribution of the last jump time, which we can be viewed as a mea-
sure of the speed at which a bridge converges to its final state. The esti-
mate is sharp in the sense it is an exact computation when the reciprocal
characteristic is constant as a function of space and time. It establishes
an ordering between the reciprocal classes: the higher the lower bound,
the lazier the bridges. Intuitively, can say that zero characteristics imply
a uniform distribution of the jump times, which is the Poisson bridge, a
positive characteristics imply that the jump times are concentrated around
time one, while negative characteristics imply that they are concentrated
around zero. The figure below illustrates these two opposite behaviors.
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Proposition 3.3.1. Let R0n be the bridge between 0 and n of R. Assume that

inf
t∈[0,1],0≤i≤n−1

Ξj(i, t) ≥ c ∈ R (3.25)

Then:

R0n(Tn ≤ t) ≤
(

exp(ct)− 1

exp(c)− 1

)n
(3.26)

Remark 3.3.1. (i) If we have a positive lower bound on the characteristic, jumps
accumulates around time 1. In case of a negative upper bound, jump accu-
mulate around time 0.

(ii) In (3.26) only considered the last jump time. However, a more general result
might hold. That is, under the hypothesis (3.25) we can construct a coupling
between the 0n bridge of R and the 0n bridge of a counting process R̃ whose
characteristics is constantly c in such a way that, at any time, the bridge of
R is below that of R̃.

(iii) The estimate holds at equality if the reciprocal characteristic is constantly c

(iv) Yet another meaningful interpretation of (3.26) would be that it gives quan-
titative information on when did the last customer in a line arrived, knowing
that n customers arrived in a unit of time. This fact may be of interest in
queuing theory.

Before the proof Proposition (3.3.1) we introduce some notation we are
going to use and prove an auxiliary result. A typical element of [0, 1]n is
denoted s and its i-th coordinate si. For an element s ∈ [0, 1]n, and for
i ≤ n we adopt the conventions

[0, 1]n−1 ∈ si := (s1, .., si−1, si+1, .., sn), [0, 1]n 3 sit := (s1, ..si−1, t, si+1, .., sn)

We write · for the scalar product. In particular, we write 1 · s for
∑n

i=1 si.
We can state and prove the following auxiliary result.

Proposition 3.3.2. Let λ : [0, 1]n −→ R+ be continuous and almost everywhere
continuously differentiable. If

inf
s∈[0,1]n,1≤i≤n

∂siλ(s) ≥ c (3.27)

then the function ρ(t) defined by:

t 7→ ρ(t) := log
(∫

[0,t]n
exp(λ(s))ds

)
− log

(∫
[0,t]n

exp(c1 · s)ds
)

(3.28)

is non-decreasing.
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Figure 3.1: A fast and a lazy bridge. In the upper picture we simulated a
trajectory of the bridge from 0 to 20 of a counting process whose recipro-
cal characteristic is constantly equal to −3, whereas in the bottom picture
we simulated the trajectory of the same bridge for a random walk whose
reciprocal characteristic is constantly equal to 3. The simulation clearly
shows how the trajectory of the process with positive lower bound on the
reciprocal characteristics has a concave profile, while the other one has
a convex profile, reflecting the two different speeds at which they travel
towards their final state
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Proof. We can write ρ as

ρ(t) = log(f(t))− log(g(t))

with the obvious identifications given by (3.28):

f(t) :=

∫
[0,t]n

exp(λ(s))ds, g(t) :=

∫
[0,t]n

exp(c1 · s))ds

An application of the chain rule tells that ρ is non decreasing if and only if
(∂tf g − ∂tg f)(t) ≥ 0 for all t ∈ [0, 1]. We can compute explicitly ∂tf(t):

∂tf(t) =
n∑
i=1

∫
[0,t]n−1

exp(λ(sit))ds
i

and similarly:

∂tg(t) =
n∑
i=1

∫
[0,t]n−1

exp(c(1 · sit)dsi

Therefore the conclusion would follow if we could prove that for all t ∈
[0, 1], and for all i ≤ n:

g(t)

∫
[0,t]n−1

exp(−λ( sit))ds
i ≥ f(t)

∫
[0,t]n−1

exp(c(1 · sit))dsi (3.29)

Using the elementary fact that

g(t) =

∫
[0,t]n

exp(c1 · s)ds =

∫
[0,t]n−1

exp(c1 · si)dsi
∫ t

0

exp(csi)dsi

we can rewrite the left hand side of (3.29) as follows :

g(t)

∫
[0,t]n−1

exp(λ( sit))ds
i =

∫
[0,t]n

exp(c1 · s)ds
∫

[0,t]n−1

exp(λ( sit))ds
i

=

∫
[0,t]n−1

exp(c1 · si)dsi
∫

[0,t]n
exp(λ(sit)csi)ds

Using the hypothesis (3.27) we obtain for all s ∈ [0, t]n:

λ(sit) + csi − (λ(s)ct) = (

∫ t

si

∂si λ(s + (h− si)ei)︸ ︷︷ ︸
≥c

dh)− c(t− si) ≥ 0
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This implies that∫
[0,t]n−1

exp(c1 · si)dsi
∫

[0,t]n
exp(λ( sit)csj)ds

≥
∫

[0,t]n−1

exp(c1 · si)dsi
∫

[0,t]n
exp(λ(s)ct)ds

=

∫
[0,t]n−1

exp(c1 · sit)dsi
∫

[0,t]n
exp(λ(s))ds = ∂tg f(t)

from which (3.29) follows.

We can go back to the proof of Proposition 3.3.1.

Proof. We first identify the density G0n
j of R0n with respect to the bridge of

the standard Poisson process P0n. We have that

G0n
j =

1

Z
exp

(
n∑
i=1

ξi(Ti)

)
P0n − a.s. (3.30)

where ξi(·) is the primitive of Ξj(i − 1, ·) over [0, 1] and Z is a normaliza-
tion constant. The validity of this statement can be checked directly by
showing that R̃0n := G0n

j P0n satisfies the duality formula (3.23), using the
properties of the derivative operator Du and the duality under the Pois-
son process. The computations are analogous to the ones we did above.
Since under the Poisson bridge the vector (T1, ..., Tn) has the distribution
of n ordered points in [0, 1], we find that, if we define P([0, 1]n) 3 r :=
R0n ◦ (T1, .., Tn)−1, then :

r(ds) :=
1

Z
1s∈O exp

(
n∑
i=1

ξi(si)

)
ds

where dt stands for the Lebesgue measure [0, 1]n and

O := {s ∈ [0, 1]n : 0 < s1 < s2 < ... < sn < 1} (3.31)

Therefore, making explicit the normalization constant:

r(tn ≤ t) =

∫
[0,t]n∩O exp (−∑n

i=1 ξ
i(si)) ds∫

O
exp (−∑n

i=1 ξ
i(si)) ds

(3.32)

By symmetrizing the density we rewrite the latter as an integral on cubes,
in view of an application of Proposition 3.3.1. To this aim, we define for
every permutation σ ∈ Sn:

Oσ := {s ∈ [0, 1]n : 0 < sσ(1) < sσ(2) < ... < sσ(n) < 1}
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Note that O in (3.31) corresponds to Oid in this last definition, where id is
the identity of Sn. We shall also the function λ : [0, 1]n → R+:

λ(s) =
∑
σ∈Sn

1s∈Oσ exp

(
n∑
i=1

ξi(sσ(i))

)
∀s ∈ [0, 1]n

This allows us to rewrite (3.32) as:

r(Tn ≤ t) =

∫
[0,t]n

exp (λ(s)) ds∫
[0,1]n

exp (λ(s)) ds
(3.33)

Since almost everywhere (even though not everywhere, as at the bound-
aries between the Oσ λ is not differentiable ) we have:

∂siλ(s) =
∑
σ∈Sn

1s∈Oσ (∂sξ
σ−1(i)) (si) ≥ c

and it can be checked that λ is continuous we have that we can apply the
former Proposition 3.3.1. Namely, ρ(t) ≤ ρ(1) (see (3.28)) tells that:∫

[0,t]n
exp(λ(s))ds∫

[0,t]n
exp(c1 · s)ds ≤

∫
[0,1]n

exp(λ(s))ds∫
[0,1]n

exp(c1 · s)ds

which, by rearranging the terms to get the right hand side of 3.33, and
evaluating the other integrals to their exact value, yields the conclusion.



Chapter 4

Random walks on lattices

Outline of the chapter In this chapter we study the reciprocal class of a
random walk on a lattice. At each site of the lattice, the walker can choose
among a set A = {a1, .., aA} of possible jumps. As A may be a large num-
ber, the cycles of the underlying graph have a very rich structure. The
key tool to study them, is through the analysis of the geometrical prop-
erties of a specific sublattice of ZA, different from the one where the walk
takes place. This sublattice is proven to be helpful to identify reciprocal
characteristics and to construct a functional equation based on the charac-
teristics, which characterizes R(R). To achieve a sharp characterization we
use generating sets of lattices, a tool from discrete geometry. This chapter
is based on the submitted work [20], and on the forthcoming work [19].

Random walks on the square lattice or on the triangular lattice are
among the most basics examples of stochastic processes, and a continu-
ous source of interesting questions. Here we consider general lattices as
state space, and graph structures which are translation invariant, meaning
that there exist a universal set A = {a1, .., aA} such that at each site x the
neighbors are the points x+ a1, .., x+ aA. The jump set A shapes the struc-
ture of cycles of the graph. We see here for the first time how cycles play
a crucial role in the study of reciprocal classes. We compute their charac-
teristics: they are the product of the values of the reference intensity along
them, and we will show how they determine the distribution of the jump
types of the elements of R(R).

The reference Markov walk is a walk on the lattice whose jump inten-
sity is also translation invariant. This choice is motivated by the fact that

63
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we want to achieve a characterization of the class in the most canonical
way, as the set of probability measures satisfying a set of change of mea-
sure formulae. As we shall see, the formulae splits into two families. In
one case, they arise from time changes, following the ideas of Chapter 3.
The second family deals with the random vector N1 ∈ NA, which counts,
for 1 ≤ l ≤ A, how many times the walker moved along an arc of the form
z → z + al over the time interval [0, 1].

N1 = (N l
1)1≤l≤A, N l

1(ω) =
∑
s≤1

1{ωs−ωs−=al}.

Because the reference jump intensity is space homogeneous, under the ref-
erence walk R, N1 follows a multivariate Poisson law.

That is, for some (λ1, .., λA), the l-th coordinate is a Poisson random
variable of parameter λl and all coordinates are independent from each
other.

This fails to be true under any bridge. What we are going to see is
that some identities, which are valid under the multivariate Poisson dis-
tribution R(N1 ∈ ·) ∈ P(NA) are true under the law Rxy(N1 ∈ ·) as well.
Together with the obvious constraint

Rxy
( A∑
l=1

alNl
1 = y − x

)
= 1

they are shown to characterize it. The identities are derived from the study
of the law of the shifted vector N1 + v, for v ∈ ZA. In the one dimensional
case Chen’s characterization does this. It is known [13] that the Poisson
law on N of parameter λ, denoted by pλ, is characterized by:

pλ(f(n+ 1)) = λ−1pλ(f(n)n)

It is simple to extend this to the multivariate Poisson law R(N1 ∈ ·).
For any v ∈ ZA, one can compute an explicit function1 Gλ

v : NA → R≥0

such that:

R(f(N1 + v)) = R(f(N1)Gλ
v(N1)) ∀f ∈ B(NA)

The crucial observation is that, if v is chosen in a suitable set, then this
identity extends to any bridge. The right set to look at is the set of those
vectors c ∈ ZA with the property that:

1The superscript λ emphasizes the dependence on the parameters of the Poisson mul-
tivariate law
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A∑
l=1

alcl = 0 (4.1)

This is clearly a loop condition, reminescent of that of [67],[68] in the
diffusion case. The vectors fulfilling it define another sublattice of ZA, that
we call kerZ(A).

Summing up, we obtain that for any pair of initial and final states x, y:

Rxy
(
f(N1 + c)

)
= Rxy

(
f(N1)Gλ

c(N1)
)
∀f ∈ B(NA), c ∈ kerZ(A)

The interpretation of condition 4.1 is that kerZ(A) gives an efficient
way of looking at cycles. Indeed, if ω and ω̃ are two paths in Ω with the
same initial and final state, then it is natural to guess that be obtained
from the other by adding a sequence of cycles, properly embedded in the
time interval [0, 1]. This can be expressed by saying that N1(ω)−N1(ω̃) ∈
kerZ(A). The detailed expression of Gλ

c will also include the exact expres-
sion for the cycle characteristics associated with the random walk.

We have thus described the two main steps in the characterization of
R(R), which is given at Theorem 4.3.1.

We are also interested in achieving a sharp characterization, where the
number of equations used is the minimal one. What seems natural, since
lattices admit basis, is to work with a basis of kerZ(A) and the associated
shifts, rather than all vectors of kerZ(A). We show that this is not in gen-
eral possible. It is a quite technical problem, essentially due the fact that
kerZ(A) may not have a basis of non negative vectors. The search for a
sharp characterization leads to the study of generating sets, a useful gener-
alization of the concept of lattice basis.

In the delicate situation when kerZ(A) has no basis with non negative
vectors, we also need to be very careful in the parallelism between shifting
N1 by c ∈ kerZ(A), and the addition a cycle to the canonical process. As
we have said above, this certainly gives the right intuition. However, if
c ∈ kerZ(A) has a strictly negative coordinate, the output of the shift N1+c
cannot directly be interpreted as an element of Ω, since the resulting path
would have a negative number of jumps of some type. This is the reason
why we need to keep the two families of formulae we discussed above
distinct.

In Chapter 5 we present, under the assumption that kerZ(A) has a non
negative basis, a unique formula characterizing the reciprocal class, where
the shifts can effectively be seen as addition paths whose trace is a cycle
(which we will call loops) to the paths of the canonical process.
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In the last section 4.7 we prove a concentration of measure inequal-
ity for the distribution of the vector N1 under the bridge of the reference
walk in a specific class of models, see Theorem 4.7.1. The concentration
rates are determined by the reciprocal characteristic and the geometrical
properties of the underlying lattice. This preliminary result make use of
various observations, which are likely to be valid in more generality.

Organization of the chapter We provide the necessary setup in 4.1. Next,
we present the two families of identities which will be used in the charac-
terization of the reciprocal class we will give in Theorem 4.3.1. Section 4.4
is devoted to generating sets. In 4.5 we show how to use them to obtain
refined versions of the results of the former sections. The last section con-
tains a first result about the probabilistic interpretation of the reciprocal
characteristics. Section 4.7 is dedicated to establish concentration of mea-
sure inequalities. The following chart helps in connecting the notation of
this chapter with the general framework we set up in Chapter 2.

General def Local def
State space X Lattice spanned by

{a1, .., aA}
Arcs A (z → z + al), 1 ≤ l ≤ A
Active arcs A→(j) (z → z + al), 1 ≤ l ≤ A
Reference intensity j(t, z → z + al) jl(t)

4.1 The jump matrix and some other notation

Let us recall what a lattice of Rd is:

Definition 4.1.1 (Lattice). Let V be a d dimensional vector space on R.

1. A lattice in V is a subgroup of the form:

L = Zv1 + ...+ Zvm

where the v1, .., vm are linearly independent elements of V . The m-uple
(v1, .., vm) is called a basis of L .

2. Let A = {a1, .., aA} be finitely many vectors. Then the lattice generated by
A is the set:

L =

{
A∑
l=1

zla
l, zl ∈ Z ∀1 ≤ l ≤ A

}
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Note that A might not be a basis for the lattice it generates.

Definition 4.1.2 (graph and reference intensity). Let A := {a1, .., aA} be a
subset of Rd. We take X as the lattice generated by A:

X =

{
A∑
l=1

zl a
l, zl ∈ Z

}

The set of arcs is given by

A := {(x→ x+ al), x ∈ X , 1 ≤ l ≤ A}

We consider the reference intensity to be given by:

j(t, z → z + al) = jl(t), ∀z ∈ X , 1 ≤ l ≤ A (4.2)

for some strictly positive C1 function j : [0, 1]× {1, .., A} → R+.

With these choice, the reference walk R is well defined. Let us observe
that, when the walk starts at x ∈ X , then:

suppRx
t = x+ {

A∑
l=1

alnl, n
l ∈ N}

which may be strict subset of X . The graph (X ,→) is space homogeneous:
the neighborhood of any vertex always looks the same, this is the lattice
property. The intensity is space homogeneous as well. At any time t, the
walker moves along an arc parallel to al at rate jl(t), no matter what is his
current position.

As X ⊆ Rd the random variable Xt − Xt− is well defined for all t ∈
[0, 1] and takes values in {0} ∪ A. As a consequence of our choices for
the reference intensity, R has independent increments. The distribution of
Xt −Xs can be characterized through the Lévy Khintchine formula:

R
(

exp
(
iλ · (Xt −Xs)

))
= exp

( A∑
l=1

(
eiλ·a

l − 1
) ∫ t

s

jl(u)du
)
, λ ∈ Rd (4.3)

where we denoted by · the scalar product.
Paths can be described by the jump processes corresponding to each

element of A. It is therefore natural to introduce the following random
variables:
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Definition 4.1.3. Let define N = (Nt)0≤t≤1, where Nt := (N1
t , ..., N

A
t ) and, for

any j ∈ {1, ..., A}, N l
t counts how many times the jump al has occurred up to

time t:

N l
t(ω) =

∑
s≤t

1{ωs−ωs−=al}.

The total amount of jumps up to time t, |N |t, is given by the sum of the coordinates
of Nt, that is |N |t :=

∑A
l=1N

l
t .

The i-th jump time of type al is:

T li := inf
{
t ∈ [0, 1] : N l

t = i
}
∧ 1.

Finally, the ith jump time of the process is:

Ti := inf{t ∈ [0, 1] : |N |t = i} ∧ 1.

The jump matrix A will play a crucial role through the lattice kerZ(A),
which we introduce later on.

Definition 4.1.4 (Jump matrix). We define the matrix A associated to A by

A = (ali)1≤i≤d,1≤r≤A ∈ Rd×A

where ali is the i− th coordinate of al ∈ A.

We can express the canonical process in a compact form using the jump
matrix as

Xt = X0 +
∑
l

alN l
t = X0 + ANt.

The path space Ω, which we defined in Chapter 2, has the following simple
description :

Ω =
{
ω : |N |1(ω) < +∞ and Xt(ω) = X0(ω) + ANt(ω), 0 ≤ t ≤ 1, X0 ∈ X

}
⊆ D([0, 1],Rd).

where D([0, 1],Rd) is the usual càdlàg space over Rd.
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4.2 Time and space transformations

4.2.1 Time changes

We consider the set U of all regular diffeomorphisms of the time interval
[0, 1], parametrized by the set A:

U =
{
u ∈ C1({1, · · · , A} × [0, 1]; [0, 1]), u(·, 0) ≡ 0, u(·, 1) ≡ 1,

min
l≤A,t∈[0,1]

u̇(l, t) > 0
}
.

With the help of each u ∈ U we construct a transformation of the refer-
ence walk by time changes acting separately on each component process
N l, l = 1, ..., A. This is similar to what we did in Chapter 3. However,
we do not take derivatives here, and do not consider infinitesimal time
changes.

Definition 4.2.1. Let u ∈ U . We define the time-change transformation πu by:

πu : Ω −→ D([0, 1],Rd)

πu(ω)(t) := ω(0) +
A∑
l=1

alN l
u(l,t)(ω), 0 ≤ t ≤ 1.

Remark 4.2.1. We cannot a priori be sure that πu takes values in Ω since it
may happen that jumps synchronize, i.e. u−1(l, T li ) = u−1(l′, T l

′

i′ ) for some l, l′.
However it is easy to see that this happens with zero probability under R.

We now define a family of maps. They are the arc characteristics.

Definition 4.2.2. The arc characteristic associated to j is the function:

Ξj : {1, · · · , A} × [0, 1]2 → R+, Ξj(l, s, t) :=
jl(t)

jl(s)
(4.4)

Remark 4.2.2. In the time-homogeneous case Ξj ≡ 1.

Remark 4.2.3. Note that, for all z ∈ X , 1 ≤ l ≤ A,s, t ∈ [0, 1], we have that:

Ξj(l, s, t) =
j(t, z → z + al)

j(s, z → z + al)
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If we had directly generalized Definition 3.2.1, valid for counting processes (X =
Z,A = {1}) we would take the following expression as a definition for the arc
characteristic:

∂t log j(t, z → z + al) +
A∑
l′=1

j(t, z + al → z + al + al
′
)−

A∑
l′=1

j(t, z → z + al
′
)

= ∂t log jl(t)

We see the two definitions (3.16) and (4.4) are coherent, in the sense that one can
be obtained from the other by some standard algebraic manipulations, and thus
they depend on j through the same functionals. Indeed we have

∂t log j(t, z → z + al) = lim
ε↓0

Ξj(l, t, t+ ε)− 1

ε

On the contrary, by integrating, we recover Ξj(l, s, t) from the function u 7→
∂t log(j(u, z → z + al)).

In the next proposition we shall prove that the image of R under the
above time change πu is absolutely continuous with respect to R, and that
its density is indeed a function of the arc characteristic Ξj .

Proposition 4.2.1. The following functional equation holds under R: For all
u ∈ U and F ∈ B+(Ω) ,

R
(
F ◦ πu

)
= R

(
F exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
. (4.5)

Proof. We first observe that, for every fixed l ∈ {1, ..., A} the process

N l
t ◦ πu −

∫ t

0

jl(u(j, s))u̇(j, s)ds (4.6)

is a R-martingale w.r.t. to its natural filtration F̃ . Indeed, for any s ≤ t and
any F F̃s-measurable, by applying the basic properties of processes with
independent increments, we obtain:

R
(
F (N l

t −N l
s) ◦ πu

)
= R

(
F
) ∫ u(l,t)

u(l,s)

jl(τ)dτ

= R
(
F
) ∫ t

s

jl(u(l, τ))u̇(l, τ)dτ.
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Therefore N l
t ◦ πu is a Markov counting process with intensity (t, z) 7→

jl(u(l, t))u̇(l, t) Moreover, if l 6= l′, N l
· ◦ πu and N l′

· ◦ πu are independent
processes under R, because the processes N l and N l′ are independent and
πu acts separately on each component. This implies that the image of R
under πu, R ◦ π−1

u , is a random walk on X whose intensity k is:

k(t, z → z + al) = jl(u(l, t))u̇(l, t), ∀z ∈ X , t ∈ [0, 1], l ≤ A.

We can now apply the Girsanov theorem to get the density of the push-
forward measure R ◦ π−1

u w.r.t. R:

dR ◦ π−1
u

dR
= exp

[ A∑
l=1

(∫ 1

0

(
jl(u(l, t))u̇(l, t)− jl(t)

)
dt

+

∫ 1

0

log(Ξj(l, t, u(l, t))u̇(l, t)dN l
t

)]
.

With the change of variable t = u−1(t′) we have for any l:∫ 1

0

jl(u(r, t))u̇(l, t)dt =

∫ 1

0

jl(t′)dt′.

Therefore the first integral disappears and the conclusion follows.

4.2.2 Space transformations

The transformations πu introduced in the previous section, when acting on
a given path, change the jump times leaving unchanged the total number
of jumps of each type. We now introduce transformations that modify the
total number of jumps; these transformations act on the counting variable
N1 taking its values in NA, which we embed into ZA to take advantage of
the lattice structure. Here, we make a short deviation from the study of
reciprocal classes to study a different, but tightly related problem, which
is the problem of finding good characterizations of the conditional laws of
Poisson random vectors. This subject is interesting in its own right, and we
are going to prove generalizations of well known formulas and introduce
some new objects whose interest goes beyond this specific problem. We
make clear the connection between this problem and the characterization
of R(R) in Theorem 4.3.1.
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Shifting a Poisson random vector

We consider a multivariate Poisson distribution pλ ∈ P(NA) whereλ =
(λ1, ..., λA) ∈ RA

+:

∀n ∈ NA, pλ(n) = exp

(
−

A∑
l=1

λl

)
λn

n!
. (4.7)

where we use the notation:

λn :=
A∏
l=1

(λl)n
l

,n! =
A∏
l=1

nl!

We recall Chen’s characterization of the 1-dimensional Poisson random
variable of parameter λ:

pλ(f(n+ 1)) =
1

λ
pλ(f(n)n)

Chen introduced it to estimate the rate of convergence of sum of depen-
dent trials to the Poisson distribution. (see the original paper [13] and
Chapter 9 in [76] for a complete account of Chen’s method). Let us first
give a straightforward multidimensional version of it.

Proposition 4.2.2. Let λ ∈ (R+)A. Then ρ ∈ P(NA) is the multivariate Poisson
distribution pλ if and only if

∀el, l = 1, . . . A, ρ(f(n + el)) =
1

λl
ρ(f(n)nl), ∀f ∈ B(NA),

where el denote the l-th vector of the canonical basis of ZA.

One can interpret this characterization as the computation of the den-
sity of the image measure by any shift along the canonical basis of NA.

Now we consider as more general transformations multiple left- and
right-shifts, acting simultaneously on each coordinate, that is, we shift by
vectors v ∈ ZA.

Definition 4.2.3. Let v ∈ ZA. We define the v-shift by

θv : ZA −→ ZA

z 7→ θv(z) = z + v.
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Consider the image of pλ under θv. It is a probability measure whose
support is no more included in NA since there may be z ∈ NA such that
θv(z) 6∈ NA. Therefore we only compute the density of its absolutely con-
tinuous component, appearing in the Radon-Nykodim decomposition:

pλ ◦ θ−1
v = pv,acλ + pv,singλ . (4.8)

A version of the density of the absolutely continuous component is given
by

dpv,acλ

dpλ
(n) = λ−v

n!

(n− v)!
1{n−v∈NA}

In view of obtaining a change of measure formula as in Proposition 4.2.2
we define

Gv(n) :=
n!

(n− v)!
1{n−v∈NA} (4.9)

Let us now consider the space B](ZA) ⊆ B(ZA) consisting of test functions
with support in NA:

B](ZA) := {f ∈ B(ZA) : f(z) = 0 ∀z /∈ NA}.

Then, the considerations above can be summarized in the following for-
mula:

pλ(f ◦ θv) = λ−v pλ(f Gv), ∀f ∈ B](ZA). (4.10)

Note that the dependence on the parameters of the Poisson law is only on
λ−v and not on Gv.

Example 4.2.1. Let A = {−1, 1}. We call n− (rather than n1) and n+(rather
than n2) the counting variables for the jumps −1 and 1 respectively. The same
convention is adopted for the intensity vector λ = (λ−, λ+). Then, for v = (1, 1)
(resp. v = (1,−1) and for any f ∈ B](Z2),

pλ

(
f(n− + 1, n+ + 1)

)
=

1

λ−λ+
pλ

(
f(n−, n+)n−n+

)
,

pλ

(
f(n− + 1, n+ − 1)

)
=
λ+

λ−
pλ

(
f(n−, n+)

n−

n+ + 1

)
.

Lattices and conditional distributions

We now consider, associated to a measure µ ∈ P(NA), the following set of
probability measures on NA:

RA(µ) :=
{
ρ ∈ P(NA) : ρ(·) =

∫
µ(·|σ(A)) dρσ(A)

}
, (4.11)
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where the σ-algebra σ(A) is generated by the application z 7→ Az defined
on ZA, and the measure ρσ(A) is the projection of ρ on σ(A).
The set RA(µ) presents strong analogies with a reciprocal class. Indeed,
one can prove an analogous of Proposition 2.2.2, that is:

Proposition 4.2.3. ρ ∈ RA(µ) if and only if ρ� µ and dρ
dµ

is σ(A)-measurable

Proof. If ρ ∈ RA(µ) then we have that for all m′,m such that Am = Am′:

ρ(n = m|An = Am) = µ(n = m|An = Am)

and
ρ(n = m′|An = Am) = µ(n = m′|An = Am)

These two condition imply that

ρ(m)

µ(m)
=
ρ(m′)

µ(m′)
∀m,m′ s.t.Am = Am′

From this, it follows that the density of ρ w.r.t. to µ is σ(A)-measurable.
On the other hand, if the density is σ(A)-measurable, then there exist a
function h such that

ρ(m)

µ(m)
= h(Am) ∀m ∈ NA

But then, for all v ∈ Rd and m such that Am = v, using the equation
above:

ρ(n = m|An = v) =
h(v)µ(m)∑

m′:Am′=v h(v)µ(m′)
= µ(m′|Am′ = v)

Our first goal is to characterize RA(pλ) using the formula (4.10) com-
puted for a suitably chosen set of shift vectors v. The right set will be the
following sublattice of ZA2:

kerZ(A) := ker(A) ∩ ZA. (4.12)

To see that kerZ(A) is a lattice, it is enough to check that it is discrete and
closed under summation (see e.g.Proposition 4.2 [59]), which is certainly
the case here. The next statement clarifies the role of kerZ(A).

2As usual, kerA = {z ∈ RAs.t.Az = 0}
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Proposition 4.2.4. Let ρ ∈ P(NA). Then ρ ∈ RA(pλ) if and only if

∀c ∈ kerZ(A), ρ(f ◦ θc) =
1

λc
ρ(f Gc) ∀f ∈ B](ZA), (4.13)

where Gc is defined in (4.9).

Proof. (⇒) Let f ∈ B](ZA) and c ∈ kerZ(A). By definition of kerZ(A) and
RA(pλ) we can choose a version of the density h = dρ

dpλ
such that h ◦ θc = h.

Applying the formula (4.10) we obtain:

ρ(f ◦ θc) = pλ ((f ◦ θc)h) = ρ ((fh) ◦ θc)
= λ−cpλ (f Gch ) = λ−cρ (f Gc)

(⇐) Let n,m ∈ NA be such that An = Am. Set f := 1n, c := n −m ∈
kerZ(A). Then (4.13) gives:

ρ(m) = ρ(f ◦ θc) = λ−cGc(n)ρ(n).

Since, by (4.10), the same relation holds under pλ, we have

dρ

dpλ
(m) =

dρ

dpλ
(n),

which completes the proof.

Remark 4.2.4. We have denoted the elements of kerZ(A) by c. The same nota-
tion was used to denote the cycles of (X ,→). Even though the two concepts are
similar, they are not the same one, and we have to be careful in not identifying
cycles with elements of kerZ(A). For a given cycle, we can naturally associate an
element of kerZ(A) by counting how many times each type of arc occurred in the
cycle. This will be done in section 4.6 at equation (4.38).

Example 4.2.2. Resuming Example 4.2.1, we verify that, in this case, kerZ(A) =(
1
1

)
Z. Proposition 4.2.4 tells us that a probability distribution ρ on N2 satisfies

ρ(. |n+ − n− = x) = pλ(. |n+ − n− = x) ∀x ∈ Z

if and only if, for all k in N∗ and for all f ∈ B](Z2),

ρ
(
f(n− + k, n+ + k)

)
=

1

(λ+λ−)k
ρ
(
f(n−, n+)

k−1∏
i=0

(n− − i)(n+ − i)
)



76 CHAPTER 4. RANDOM WALKS ON LATTICES

and

ρ
(
f(n− − k, n+ − k)

)
= (λ+λ−)k ρ

(
f(n−, n+)

k∏
i=1

1

(n− + i)(n+ + i)

)
.

In particular, consider ρ, the distribution of a two-dimensional Poisson ran-
dom vector (n−, n+) conditioned by the event {n+ − n− = 0}. Plugging in the
above formula a functional of the form f(n−, n+) = exp(rn+), and using the fact
that n+ − n− = 0,one gets:

exp(r)ρ(exp(rn+)) =
1

λ−λ+
ρ(exp(rn+)(n+)2)

That is, the Laplace transform of ρ, φ(r) := ρ(exp(rn+)), satisfies the ODE:

exp(r)φ(r) =
1

λ−λ+
φ
′′
(r).

Such equation is promising in view of deriving concentration properties for the
conditional distribution, and generalizes the well known ODE satisfied by the
Laplace transform of a Poisson distribution of parameter λ:

exp(r)φ(r) =
1

λ
φ
′
(r).

Proposition 4.2.4 characterizeRA(pλ) in terms of countably many equa-
tions, those in (4.13). It is natural to ask whether one can reduce to finitely
many equations. In particular, since kerZ(A) is a sublattice of ZA, one
wants to understand if restricting to a basis suffices. In general this is false,
as we will see in Example 4.4.1 of Section 4.4. This problem is related to
rather deep geometrical properties of kerZ(A), and will be discussed in
Section 4.4.

4.3 Characterization of the reciprocal class

4.3.1 Main result

We present here one of the main results of this chapter: the reciprocal class
R(R) associated to random walk on a lattice is characterized as the set of
all probabilities for which a family of transformations induces the same
density, expressed in terms of the reciprocal characteristics. We have al-
ready introduced in the previous section the family of reciprocal arc char-
acteristics. Let us now introduce the family of cycle characteristics.
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Definition 4.3.1. Let j be a jump intensity as in (4.2). For any c ∈ kerZ(A) we
call cycle characteristic the positive number Φc

j :

Φc
j :=

A∏
l=1

(∫ 1

0

jl(t)dt

)−cl
.

Remark 4.3.1. In the time homogeneous case, jl(t) ≡ jl, Φc
j = 1/

∏A
l=1(jl)c

j .

We can now use the characteristics to characterize the reciprocal class.

Theorem 4.3.1. Let j be as in (4.2) and P ∈ P(Ω). Then P belongs to the
reciprocal class R(R) if and only if:

i) For all u ∈ U and all F ∈ B(Ω),

P
(
F ◦ πu

)
= P

(
F exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
. (4.14)

ii) For every c ∈ kerZ(A) and every f ∈ B](ZA), the following identity holds:

ρ
(
f ◦ θc

)
= Φc

j ρ
(
f Gc

)
, (4.15)

where ρ := P ◦N−1
1 ∈ P(NA) is the law of N1 under P .

Remark 4.3.2. Note that identities similar to (4.15) hold for any t ∈]0, 1], P ∈
R(R) satisfies (we assume a time homogeneous intensity, for simplicity):

P (f ◦ θc(Nt)) = Φc
j (1− t)−|c| P ((fGc)(Nt)) , ∀f ∈ B](ZA), 0 < t ≤ 1,

(4.16)
where |c| := ∑A

l=1 c
l. However, the identities (4.16) do not contain enough infor-

mation to characterize the reciprocal class as the arc characteristics do not appear.

Proof. (⇒) Let P ∈ R(R). An application of Proposition 2.2.2 tells that
P � R, and h := dP

dR
is σ(X0, X1)-measurable. Consider now u ∈ U . By

definition of u, for any l, N l
1 ◦πu = N l

1, so that (X0, X1)◦πu = (X0, X1), R−
a.s..

We then consider F ∈ B(Ω) and apply Proposition 4.2.1 under the mea-
sure R, which leads to:

P
(
F ◦ πu

)
= R

(
(F ◦ πu)h(X0, X1)

)
= R

(
(Fh(X0, X1)) ◦ πu

)
= R

(
Fh(X0, X1) exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
= P

(
F exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
.
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In a similar way, if c ∈ kerZ(A), we have that A(θcN1) = AN1. We observe
that R(N1 ∈ .|X0 = x) = pλ, where

λl :=

∫ 1

0

jl(t)dt. (4.17)

For f ∈ B](ZA) and c ∈ kerZ(A) we use Proposition 4.2.4, observing that
N1 has law pλ and is independent of X0, to obtain

ρ
(
f ◦ θc

)
= P

(
f ◦ θc(N1)

)
= R

(
h(X0, X1) f ◦ θc ◦N1

)
= R

(
h(X0, X0 + A(θcN1))f ◦ θc ◦N1

)
= R

(
RX0

(
h(X0, X0 + A(θcN1))f ◦ θc ◦N1

))
= Φc

j R
(
h(X0, X1)(fGc) ◦N1

)
= Φc

j ρ
(
f Gc

)
and ii) is now proven.

(⇐) We will show that P = h(X0, X1)R, which is equivalent to P ∈
R(R) by Proposition 2.2.2. We divide the proof in three steps. In a first
step, we prove the absolute continuity. In a second step we prove that
the density is σ(X0,N1)-measurable and in a third one we prove that this
density is indeed σ(X0, X1)-measurable.
Step 1: Absolute continuity
We first observe that it is sufficient to prove that

P (.|N1 = n)� R(.|N1 = n) for all n such that P (N1 = n) > 0.

To this aim, we use an approximation argument.
Let us fix n and construct a discrete (dyadic) approximation of the jump

times. Form ≥ maxl=1,...,A log2(nl)+1 := m̄ ,Dm is composed byA ordered
sequences of dyadic numbers, the l-th sequence having length nl:

Dm :=
{
k = (kli)l≤A,i≤nl : kli ∈ 2−mN, 0 < kli−1 < kli ≤ 1, ∀l ≤ A,∀i ≤ nl

}
For k ∈ Dm we define the subset of trajectories whose jump times are
localized around k:

Om
k = {N1 = n} ∩

⋂
l≤A
i≤nl

{
0 ≤ kli − T li < 2−m

}
(4.18)
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Moreover, as a final preparatory step, we observe for every m ≥ m̄, k,k′ ∈
Dm, one can easily construct u ∈ U such that:

u(l, t) = t+ k′li − kli, ∀l ≤ A, i ≤ nl and t s.t. 0 ≤ kli − t < 2−m. (4.19)

We can observe that (4.19) ensures u̇(l, T li ) = 1 over Om
k , and that Om

k′ =
π−1
u (Om

k ). We choose F = 1Om
k′
1{N1=n}/P (N1 = n) and u as in (4.19) and

apply (4.14) to obtain:

P
(
Om

k′ |N1 = n
)

= P
(
{ω : πu(ω) ∈ Om

k } |N1 = n
)

= P
(
1Omk exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

)∣∣∣N1 = n
)

≥ C P
(
Om

k |N1 = n
)
,

where

C :=
(

inf
s,t∈[0,1],l≤A

Ξj(l, s, t)
)∑

l nl
> 0 (4.20)

since j satisfies Assumption 2.3.1. With a simple covering argument we
obtain, for all m ≥ m̄ and k ∈ Dm,

]Dm min{1, 1

C
}P (Om

k |N1 = n)

≤ P (Om
k |N1 = n) +

∑
k′∈Dm
k′ 6=k

P (Om
k′ |N1 = n) ≤ 1.

It can be shown with a direct computation that 1
|Dm| ≤ C ′R(Om

k |N1 = n)

for some C ′ > 0 uniformly in m,k ∈ Dm (the proof is given separately in
Lemma 4.3.1). Therefore there exists a constant C ′′ > 0 such that:

P (Om
k |N1 = n) ≤ C

′′
R(Om

k |N1 = n), ∀m ≥ m̄,k ∈ Dm.

With a standard approximation argument we can extend the last bound to
any measurable set. This completes the proof of the absolute continuity.

Step 2: The density H := dP
dR

is invariant under time change.
We show that, for any u ∈ U , H is πu-invariant, i.e. H ◦ πu = H R − a.s..
By definition, πu is R− a.s. invertible. Applying the identity (4.4) under R
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and point i) of the hypothesis, we obtain, for any F ∈ B(Ω):

R (F H ◦ πu) = R
(
(F ◦ π−1

u H) ◦ πu
)

= R
(
F ◦ π−1

u H exp
( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
= P

(
F ◦ π−1

u exp
( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
= P (F ) = R (F H)

which gives us the desired invariance, since F is arbitrary.
We claim that this implies that H is σ(X0,N1)-measurable, i.e. that there
exists a function h : X × NA −→ R+ such that

H =
dP

dR
=
dP ◦ (X0,N1)−1

dR ◦ (X0,N1)−1
= h(X0,N1) R− a.s.

This is true since, given any two ω, ω′ ∈ Ω with the same initial state and
the same number of jumps of each type, one can construct u ∈ U such that
ω′ = πu(ω).
Step 3: The density H is invariant under shifts in kerZ(A).
Let us recall that R(N1 ∈ .|X0 = x) = pλ, where λ is given by (4.17). Under
our assumption we might apply Proposition 4.2.4 to pλ = R(N1 ∈ .|X0 =
x) and ρx = P (N1 ∈ .|X0 = x). We obtain that the conditional density dρx

dpλ
is AN1-measurable P0 −a.s. and, by mixing over the initial condition, that
dP◦(X0,N1)−1

dR◦(X0,N1)−1 = dP
dR

is σ(X0,AN1) = σ(X0, X1)-measurable.

Lemma 4.3.1. Let Dm and R as before. Then there exists a constant C ′ such that
for m large enough,

C
′
R(Om

k |N1 = n) ≥ 1

]Dm

Proof. We want to prove that, for n ∈ NA :

1

]Dm ≤ C ′R(Om
k |N1 = n), ∀m ≥ max

l≤A
log(nl) + 1, k ∈ Dm (4.21)

We can first compute explicitly ]Dm with a simple combinatorial argu-
ment: each k ∈ Dm is constructed by choosing nl dyadic intervals, l ≤ A,
and ordering them. Therefore

]Dm =
A∏
l=1

(
2m

nl

)
. (4.22)
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On the other hand, we observe that defining

j̃(t, z → z + al) = 1 ∀t ∈ [0, 1], z ∈ X , l ≤ A

then the corresponding random walk, R̃, is equivalent to R. Therefore, we
can prove (4.21) replacing R with R̃. To do this, for each k ∈ Dm we define
the function:

δ : {1, ..., 2m} × {1, ..., A} −→ {0, 1}

δ(i, l) :=

{
1, if i ∈ {2mkl1, ..., 2mklnl}
0, otherwise .

Then, using the explicit distribution of R̃,

R̃(Om
k |N1 = n)

= R̃
( ⋂

(i,r)∈{1,..,2m}×{1,..,A}

{N l
i+1
2m
−N l

i
2m

= δ(i, r)}|N1 = n
)

= exp(A) exp(−2−m)2mA(2−m)(
∑
l n
l)

A∏
l=1

nl! =
A∏
l=1

2−mn
l

nl!

It is now easy to see that there exists a constant C0 > 0 such that:(
2m

nl

)
≥ C0

2mn
l

nl!
, ∀ l ≤ A, m ≥ max

l≤A
log(nl) + 1, k ∈ Dm

from which the conclusion follows using (4.22).

4.3.2 Comparing random walks through characteristics

In what follows and in the next subsections, we consider jump rates as in
(4.2) which are time-homogeneous. In this case there is no ambiguity in
identifying j with the vector (j1(0), ..., jA(0)) ∈ RA

+.

Accordingly, for any j̃ ∈ RA
+ we denote by R̃ a Markov random walk

on (X ,→) whose intensity is given by:

j̃(t, z → z + al) = j̃l ∀z ∈ X , t ∈ [0, 1], r ≤ A

We do not specify the initial distribution of R̃, since it does not play any
role in what follows. We present in Theorem 4.3.2 a set of explicit neces-
sary and sufficient conditions for two random walks R and R̃ to have the
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same bridges, or equivalently, to belong to the same reciprocal class. In
Chapter 3, we proved that two counting processes have the same bridges
if and only if their reciprocal characteristic coincide. We offer here a sig-
nificant generalization of that result.

We denote by kerZ(A)⊥ the orthogonal complement of the affine hull
of kerZ(A), and the logarithm of the vector j ∈ RA

+, denoted by log(j), has
to be understood componentwise.

Theorem 4.3.2. Let j, j̃ ∈ RA
+ and ker∗Z(A) be a lattice basis of kerZ(A).We let

R̃ be the walk associated with j̃. The following assertions are equivalent:

i) R̃ ∈ R(R).

ii) For every c ∈ ker∗Z(A) the equality Φc
j = Φc

j̃
holds.

iii) There exists v ∈ kerZ(A)⊥ such that log(j̃) = log(j) + v.

Proof. i) ⇒ ii) By applying (4.15) and the trivial fact that R̃ ∈ R(R̃), we
have

Φc
j̃
R̃(fGv ◦N1) = R̃(f ◦ θc ◦N1) = Φc

j R̃(fGv ◦N1), ∀f ∈ B](ZA), (4.23)

and ii) follows.
ii) ⇒ i) Observe that since kerZ(A)∗ is a lattice basis, any c ∈ kerZ(A) can
be written as an integer combination of the elements of ker∗Z(A), i.e. c =∑

c∗∈ker∗Z(A) zc∗c
∗, zc∗ ∈ Z. Therefore all the cycle characteristics coincide

since:

Φc
j =

∏
c∗∈ker∗Z(A)

(Φc∗

j )zc∗ =
∏

c∗∈ker∗Z(A)

(Φc∗

j̃
)zc∗ = Φc

j̃
, ∀c ∈ kerZ(A). (4.24)

With a similar argument as above one proves that the identity (4.15) is
satisfied under R̃. The functional equation (4.14) is trivially satisfied by R̃
because Ξj ≡ Ξj̃ = 1. The conclusion follows by applying Theorem 4.3.1.
ii)⇔ iii) We just observe that the equality Φc

j = Φc
j̃

is equivalent to:

A∑
l=1

log(jl)cl =
A∑
l=1

log(j̃l)cl.

Since a lattice basis ker∗Z(A) of kerZ(A) is a linear basis of the affine hull
of kerZ(A) ii) is equivalent to the fact that log(ν) and log(ν̃) have the same
projection onto kerZ(A), which is equivalent to iii).
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Example 4.3.1. Continuing on Example 4.2.2, two time-homogeneous Markov
walks with jumps in A = {−1, 1} and rate j = (j−, j+) resp. j̃ = (j̃−, j̃+) have
the same bridges if and only if

j−j+ = j̃−j̃+.

Example 4.3.2. Let A = {−1, 3} and define two time-homogeneous Markov
walks with jumps in A and rate j = (j−, j+) resp. j̃ = (j̃−, j̃+). They have the
same bridges if and only if

(j−)3j+ = (j̃−)3j̃+.

Example 4.3.3. Let A = {a1, ..., a6} be the vertices of an hexagon, see the Figure
2:

ai =
(

cos(
2π

6
(i− 1)), sin(

2π

6
(i− 1))

)
∈ R2, i = 1, ..., 6. (4.25)

Then a basis of kerZ(A) is:

ker∗Z(A) = {e1 + e4, e2 + e5, e1 + e3 + e5, e2 + e4 + e6}. (4.26)

By Theorem 4.3.2, R̃ with jump rates (j̃1, ..., j̃6) belongs to R(R) if and only if
j1j4 = j̃1j̃4,

j2j5 = j̃2j̃5,

j1j3j5 = j̃1j̃3j̃5,

j2j4j6 = j̃2j̃4j̃6

a1

a2
a3

a4

a5
a6

a1

a4

a2

a5

a1

a3

a5

a2

a4

a6

Figure 4.1: A representation of the vectors of A and of the incidence vectors
of ker∗Z(A)
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4.4 Lattices and their generating sets

The aim of this section is to reformulate Proposition 4.2.4 and Theorem
4.3.1 in terms of finitely many conditions. We recall, for example, that in
Proposition 4.2.4, condition ρ ∈ RA(pλ) was shown to be equivalent to the
countably many equations in (4.13). The equations (4.13), for c ∈ kerZ(A),
essentially tell us that, if n ∈ NA is such that m := θ−cn is also an element
of NA, then ρ(m) = ρ(n)pλ(m)/pλ(n). We now show with a counterexam-
ple that the validity of this statement for c varying in a basis of kerZ(A) is
not enough to guarantee the validity in all kerZ(A). In the next paragraph,
we will indeed reformulate this problem as a connectivity problem for a
certain family of graphs, and propose a solution in this framework using
generating sets of lattices.

Counterexample 4.4.1. : Let A = {3, 4, 5}. Then

kerZ(A) =
{
c ∈ Z3 : 3c1 + 4c2 + 5c3 = 0

}
.

We define three vectors

f = (−3, 1, 1), g = (1,−2, 1), h = (2, 1,−2).

Note that {f, g, h} ⊆ kerZ(A). We also define

nf := (3, 0, 0), ng := (0, 2, 0), nh := (0, 0, 2).

Moreover, we observe that

if, for some c ∈ kerZ(A), θcnf ∈ N3 then c = f. (4.27)

This can be checked with a direct computation. The analogous statement also
holds for g and h, i.e.

θcng ∈ N3 ⇒ c = g, θcnh ∈ N3 ⇒ c = h.

Let us now consider any basis ker∗Z(A) of kerZ(A). Since kerZ(A) is two dimen-
sional, at least one vector, f or g or h, does not belong to ker∗Z(A). We assume
w.l.o.g that f /∈ ker∗Z(A). For any 0 < ε < 1, λ ∈ R3

+, we define the probability
measure ρ ∈ P(N3) as a mixture between the degenerate measure δnf and pλ as
follows:

ρ = εδnf + (1− ε)pλ. (4.28)
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Note that ρ /∈ RA(pλ). Indeed any version of the density must be such that:

dρ

dpλ
(nf ) =

ε

pλ(nf )
+ (1− ε), dρ

dpλ
(θcfnf ) = 1− ε.

But, on the other hand, identity (4.13) is satisfied for any c ∈ ker∗Z(A). Let us
pick any test function f = 1{z=n̄}, where n̄ ∈ N3 and c ∈ ker∗Z(A). There are
two possibilities:
- Either θ−cn̄ ∈ Z3 \ N3. In this case (4.13) is satisfied by ρ because both sides of
the equality are zero, the left side because θ−cn̄ /∈ NA, ρ(NA) = 1 and the right
side because Gc(n̄) = 0.
- Or θ−cn̄ ∈ NA. In this case, thanks to (4.27) and f /∈ ker∗Z(A) we have n̄ 6= nf
and θ−cn̄ 6= nf . Therefore, by (4.28),

ρ(1{θcz=n̄}) =
ρ(θ−cn̄)

ρ(n̄)
ρ(1{z=n̄}) =

pλ(θ−cn̄)

pλ(n̄)
ρ(1{z=n̄})

= λ−cρ(1{z=n̄}Gc(z))

which is equivalent to (4.13).
We thus obtain an example of a set A such that, for any λ ∈ R3

+ and any ba-
sis ker∗Z(A) of kerZ(A) we can construct a probability measure ρ which satisfies
(4.13) for c ∈ ker∗Z(A) and f ∈ B](ZA) but does not belong toRA(pλ).

4.4.1 Some heuristics

A generating set for a lattice is a set which has some special properties
which generalize those of a lattice basis. Indeed, one can prove that any
generating set contains at least a lattice basis. These geometrical objects
find their application in both the areas of discrete geometry and compu-
tational algebra, in connection with the study of Gröbner basis. We will
adopt the viewpoint of discrete geometry, which is closer to our objec-
tives. However, the problem of computing a generating set for a lattice
can be translated into the problem of computing a set of generators for a
lattice ideal, which is an ideal of polynomials associated with L . We shall
use this parallelism in some of the results we are going to prove. Leav-
ing all precise statements to the next section, let us make some heuristic
considerations to gain some intuition.

We start with a lattice L in ZA, a set V ⊆ ZA and S ⊆ L . The lattice L
induces naturally a foliation of V . A leaf can be defined as an equivalence
class by saying that m,m′ belong to the same leaf F if and only if m−m′ ∈
L . We can construct an undirected graph on each leaf F by drawing an
edge between m and m′ whenever m−m′ ∈ S. The edge set is deonoted
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by E . It is then an interesting problem to study the connectivity properties
of the graph (F ,E ), which depend from both S and V . We compare the
cases when V = ZA and when V = NA.
It is easy to see that if V = ZA, it suffices that S contains a lattice basis
B for (F ,E ) to be connected. To convince ourselves of this, let us just
take m,m′ in the same leaf F . Then, since S contains a basis, there exist
s1, .., sM in B such that

m = m′ + s1 + ..+ sM

Then the sequence
v0 = m′, vk+1 = vk + sk

clearly defines a path from m to m′ in (ZA,E ).
However, nothing ensures that this path touches only vertices of NA, so it
is not a priori clear that, if S contains a lattice basis, (NA,E ) is connected. It
can be that some leaves are connected, and some are not. Indeed, this fact
is what stands behind Counterexample 4.4.1. Let us revisit this counterex-
ample from a purely geometrical viewpoint: it is an example of lattice L
such that any lattice basis fails to be a generating set.

Example 4.4.1. Let L be the following lattice of Z3:

L =
{
n ∈ Z3 : 3n1 + 4n2 + 5n3 = 0

}
We consider the following three vectors in Z3:

f = (−3, 1, 1), g = (1,−2, 1) , h = (2, 1,−2)

and the following three vectors in N3:

nf = (3, 0, 0), ng = (0, 2, 0) ,nh = (0, 0, 2)

We take V = N3. We denote the leaf associated to f by Ff , and we adopt the
same convention for Fg,Fh. It is easy to see with a direct computation that
Ff = {nf ,nf + f}. In the same way, it is seen that Fg = {ng,ng + g} and
Fh = {nh,nh + h}. Therefore for any S ⊆ L , the graph (Ff ,E ) constructed as
above is connected if and only if S contains either f or −f . Repeating the same
argument, we have that (Fg,E ) is connected if and only if S contains either g or
−g, and (Fh,E ) is connected if and only if S contains either h or −h. We have
thus shown that to make each leaf connected we need to include in S at least three
vectors. Since the dimension of L is two, this means that no lattice basis suffices
to make all leaves connected graphs.
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Given V ⊆ ZA A generating set for L is a set S ⊆ L such that all graphs
associated to the leafs are connected. Unlike lattice basis, their cardinality
can grow exponentially with the dimension of the lattice. Actually, from
the viewpoint of complexity, it is a NP-hard problem to compute them.
The fastest algorithms available at the moment are illustrated in Section
11.4 of [28]. The most important theoretical result which we will need is
the fact that each lattice admits a finite generating set. The next subsection
is devoted to the proof of this. It is not an original result of this thesis. We
rather follow chapters 10 and 11 of the book [28], highlighting the main
ideas which are important for our purposes. The interested reader can
find there for additional material about generating sets.

4.4.2 Existence of a finite generating set

We formalize the heuristic considerations above. Since we will only be
concerned with the case V = NA, we will adapt all the definitions to this
situation.

We first define the foliation that the lattice L induces on NA:

Definition 4.4.1. Given n ∈ NA, the leaf Fn containing n is:

Fn := {n + L } ∩ NA. (4.29)

Fix now S ⊆ L . S induces a graph structure on each leaf (see e.g. [59]):

Definition 4.4.2. For S ⊆ L and n ∈ NA we define (Fn,En) as the undirected
graph whose vertex set is Fn and whose edge set is given by

En := {(m,m′) ∈ Fn ×Fn : ∃ s ∈ S with m−m′ = ±s)} .

We are now ready to introduce the notion of generating set for L .

Definition 4.4.3. The set S is a generating set for L if, for all n ∈ NA, (Fn,En)
is a connected graph.

The following theorem states that each lattice admits a finite generating
set.

Theorem 4.4.1. Let L ⊆ ZA. Then L admits a finite generating set.

The main idea of the proof is to study a certain ideal of polynomials,
which is the so-called lattice ideal associated with L . To do this, let us recall
some algebraic notions. For A fixed, we denote by K[x1, ..., xA] the ring of
polynomials in A indeterminates. If v ∈ NA we use the notation
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Figure 4.2: A = {3, 4, 5} and S = {(2,−4, 2) , (0,−5, 4)}. Left: Projection
on the x1x2 plane of G := (Fn,En) for n = (6, 1, 2). The red lines are
the edges of G, while the dashed lines represent edges that are not in G
because one endpoints does not belong to N3. The graph (Fn,En) has three
connected components. Right: Adding the vector (4,−3, 0) to S turns G
into a connected graph.

xv =
A∏
l=1

xv
l

l

If F ⊆ K[x1, ..., xA], we denote by 〈F 〉 ⊆ K[x1, ..., xA] the ideal generated
by F:

〈F 〉 :=
{
f =

k∑
i=1

hifi, hi ∈ K[x1, ..., xA], fi ∈ F, k ∈ N
}

Consider S ⊆ L ⊆ ZA. The lattice ideal associated with it is the follow-
ing:

I(S) = 〈{xu+ − xu− ,u ∈ S}〉
where, as usual, for u ∈ ZA, u+

l = max{ul, 0} and u−l = −min{ul, 0}. The
proof uses two main ingredients. The first is a nice connection between
generating sets and lattice ideals.A proof can be found in [28]. It is lemma
11.3.
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Lemma 4.4.1. Let L be a lattice of ZA. A set S ⊆ L is a generating set for L
in the sense of Definition 4.4.3 if and only if I(S) = I(L ).

The second ingredient is Hilbert’s basis theorem.(see e.g. Corollary
10.4.20 in [28]).

Theorem 4.4.2. Every ideal is finitely generated. If I is any ideal, then there
exist a finite set M such that I = 〈M〉

With these two tools at hand, the proof of Theorem 4.4.1 is relatively
simple.

Proof. Let L be a lattice and I(L ) be the associated lattice ideal. Then by
Theorem 4.4.2 I(L ) is finitely generated. We call M a finite set such that
〈M〉 = I(L ). Since I(L ) is generated by the set:

{xu+ − xu− , u ∈ L }

we can without loss of generality assume that M is contained in that set.
That is, there exist a finite set S such that

M = {xu+ − xu
−
, u ∈ S}

This implies that 〈M〉 = I(S) = I(L ). But then by Lemma 4.4.1 the con-
clusion follows.

Generating sets of lattices are hard to compute explicitly. However,
it may happen that a lattice basis is a generating set even though this is
false in general. Below we give some sufficient condition for this to hap-
pen. These conditions are fulfilled by many interesting examples.In that
case, the results of the section 4.5 take a very pleasant form, as they allow
to work with lattice basis rather than generating sets. To the best of our
knowledge, the next proposition is original.

Proposition 4.4.1. Let B be a basis of L . Suppose that one of the following
conditions holds:
i) The basis B contains an element c̄ such that each coordinate c̄l, l = 1, ..., A is
positive.
ii) Each vector of the basis B is has non negative coordinates.
Then, the basis B is a generating set.

Proof. i) Let n ∈ NA,m ∈ Fn. Since B is a lattice basis there exists
c1, ..., cK ⊆ (B ∪ −B)K such that, if we define recursively

w0 = n, wk = wk−1 + ck
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then we have that wK = m. Let us consider l large enough such that

l min
l=1,...,A

c̄l ≥ | min
l=1...,A

k=1,...,K

wlk|. (4.30)

We then consider the sequencew′k, k = 0, ..., K+2l defined as follows:

w′k =


w′k−1 + c̄, if 1 ≤ k ≤ l

w′k−1 + ck−l, if l + 1 ≤ k ≤ K + l

w′k−1 − c̄ if K + l + 1 ≤ k ≤ K + 2l.

It is now easy to check, thanks to condition (4.30), that

w′k ∈ Fn ∀ k ≤ K + 2l.

Since all the shifts involved in the definition of w′k are associated
to vectors in B ∪ −B we also have that (w′k−1, w

′
k) is an edge of

G(Fn,B), k ≤ K + 2l.
Moreover we can check that

w′K+2l = n + lc̄+
∑
k≤K

ck − lc̄ = m

Therefore n and m are connected in G(Fn,B) and the conclusion
follows since the choice of m is arbitrary in Fn and n any point in
NA.

ii) Let n ∈ NA,m ∈ F . Since B is a lattice basis there exists K <∞ and
c1, ..., cK ⊆ (B ∪ −B)K such that if we define recursively:

w0 = n, wk = wk−1 + ck (4.31)

then we have that wK = m
Observe that w.l.o.g there exists K+ s.t. ck ∈ B for all k ≤ K+ and

ck ∈ −B , k ∈ {K+ + 1, ..., K}. Applying the hypothesis one can check
directly that {wk}0≤k≤K is a path which connects n to m in G(Fn,B).

4.5 Sharp characterizations of conditional laws

In this section we are given a probability law µ supported on NA, not nec-
essarily a multivariate Poisson law.
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In parallel with section 4.2.2 we study the set of probability measures
which are equal to µ when conditioned to the sigma algebra σ(A) gener-
ated by the random variable An. It is the setRA(µ) defined at (4.11).

We recall that, associated to any v ∈ ZA there is a shift transformation:

θv : ZA → ZA, z 7→ z + v (4.32)

Consider now the image of µ under θv and its Radon Nykodim decom-
position w.r.t. to µ:

µ ◦ θ−1
v = µacv + µsingv

and define Gv as the density of the absolutely continuous part:

dµacv
µ

:= Gv(n)

Then a generating set for the lattice kerZ(A) offers a very efficient char-
acterization ofRA(µ).

Proposition 4.5.1. Let A ∈ Rd×A be any matrix and the lattice kerZ(A) be
defined as before by kerZ(A) := ker(A) ∩ ZA . Assume that S is a generating
set of kerZ(A) and let µ, ρ be two probability measures on NA. Suppose moreover
that suppµ(n) = NA. Then ρ ∈ RA(µ) if and only if:

∀v ∈ S, ρ(f ◦ θv) = ρ(f Gv) ∀f ∈ B](ZA), (4.33)

where Gv is defined by (4.9).

Proof. (⇒) goes along the same lines of Proposition 4.2.4, since S ⊆ kerZ(A).

(⇐) Let n,m ∈ NA be such that An = Am and assume that ρ(n) > 0.
Then m ∈ Fn (see (4.29)). Since S is a generating set for kerZ(A) there
exists a path from m to n included in G(F , S) i.e. there exists v1, ...,vK ∈ S
such that, if we define recursively:

w0 = m, wk = θvkwk−1,

then wk ∈ NA for all k and wK = n. We can choose fk = 1{z=wk} and apply
(4.33) for v = vk:

ρ(wk−1) =
µ(wk−1)

µ(wk)
ρ(wk)

which, since µ is a positive probability on NA, offers an inductive proof
that ρ(wk) > 0. Therefore one obtains

ρ(m)

ρ(n)
=

K∏
k=1

ρ(wk−1)

ρ(wk)
=

K∏
k=1

µ(wk−1)

µ(wk)
=
µ(m)

µ(n)
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which is equivalent to dρ/dµ (n) = dρ/dµ (m), which completes the proof,
as we have shown that we can choose an An measurable version of the
density.

4.5.1 Refining the main theorem

As consequence of Proposition 4.5.1,by choosing µ to be a Poisson multi-
variate law, we obtain the following Proposition, which improves Propo-
sition 4.2.4.

Proposition 4.5.2. Let ρ ∈ P(NA) and S be a generating set of kerZ(A) defined
by (4.12). Then ρ ∈ RA(pλ) if and only if

∀v ∈ S, ρ (f ◦ θv) =
1

λv
ρ (f Gv) , ∀f ∈ B](ZA), (4.34)

where Gv is defined in (4.9).

This brings immediately to a refinement of the main result.

Theorem 4.5.1. Let j be defined by (4.2). P ∈ P(Ω) belongs to the reciprocal
class R(R) if and only if

i) For all u ∈ U and all F ∈ B(Ω),

P
(
F ◦ πu

)
= P

(
F exp

( A∑
l=1

∫ 1

0

log Ξj(l, t, u(l, t)) u̇(l, t)dN l
t

))
. (4.35)

ii) There exists a generating set S ⊆ kerZ(A) such that for every c ∈ S and
every f ∈ B](ZA), the following identity holds:

ρ
(
f ◦ θc

)
= Φc

j ρ
(
f Gc

)
, (4.36)

where ρ := P ◦N−1
1 ∈ P(NA) is the law of N1 under P .

4.6 Short-time asymptotics of cycles

In this section we interpret the cycle characteristics via short time expan-
sions of the bridges of the reference walk. To keep the notation simple,
consider jump intensities j which are time-homogeneous. However, all
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the results carry over with minor changes to the time-inhomogeneous
case. We also assume condition ii) of Proposition 4.4.1 holds:

kerZ(A) admits a lattice basis ker∗Z(A) included in NA. (4.37)

A lattice basis satisfying (4.37) is a generating set for kerZ(A), thanks to
Proposition 4.4.1. Therefore it is sufficient to interpret the characteristics
Φc
j for c ∈ ker∗Z(A).

Assumption (4.37) is not only natural in view of the interpretation we will
give in Proposition 4.6.1 but it is satisfied in many interesting situations.
One can prove that this is the case when A ⊆ Z and A contains at least one
negative and one positive jump.

Assumption (4.37) also holds in several situations when d > 1, e.g. in
the setting of Example 4.3.3.

In the context of diffusions, various physical interpretation of the re-
ciprocal characteristics have been given, mainly based on analogies with
Stochastic Mechanics, see [24], [51], [77] and [78].

We propose here a different interpretation as infinitesimal characteris-
tics, based on the short-time expansions for the probability that the process
makes a cycle around its current state.

We recall that, as it was defined in Chapter 2, a cycle of (X ,→) is a
sequence (xk)

|γ|
k=0 := γ such that x0 → x1 → .. → x|γ| = x0. In this section

(and only here) we make the additional assumption that x0 = 0.
To any cycle γ we can associate an element N(γ) ∈ kerZ(A) ∩ NA by

counting how many times each jump occurred in it, thus neglecting their
ordering:

∀1 ≤ l ≤ A N(γ)l := ]{k ≤ |γ| : xk − xk−1 = al}. (4.38)

N may be seen as the skeleton of the cycle. We will develop this viewpoint
in Chapter 5. Note that, for a given c ∈ kerZ(A), we can construct a cycle
γ such that N(γ) = c if and only if c ∈ NA. Therefore, under assumption
(4.37), N−1(c) is non empty for any c ∈ ker∗Z(A).

Definition 4.6.1. We define the trace γε(ω) of a path ω ∈ Ω as the ordered
sequence formed by the displacements from the initial position up to time ε:

Υε(ω) = (0, XT1 −X0, ..., XT|N|ε
−X0).

The subset of paths whose trace coincides with a given cycle γ over a small time
interval [0, ε] is denoted by

Lγε := {ω : Υε(ω) = γ}.
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T1 T2
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t

Figure 4.3: HereA = {−1, 1} and kerZ(A) = (1, 1)Z. Left: A representation
of the cycle γ = {0, 1, 0} satisfying N(γ) = (1, 1). Right: A typical path
in Lγε . The probability of Lγε is equivalent to 1

2
(ν+ν−)ε2 over the whole

reciprocal class, as ε→ 0.

Finally, we introduce the usual time-shift operator on the canonical
space:

τt : D([0, 1],Rd) −→ D([0, 1− t],Rd), τt(ω)s = ωt+s,∀ 0 ≤ s ≤ 1− t.

The following short-time expansion holds under the reference walk.

Proposition 4.6.1. Let j be a time-homogeneous intensity, x, x0 ∈ X . Then for
any time t ≥ 0, c ∈ ker∗Z(A) and any cycle γ with N(γ) = c, we have:

Rx0(τt(X) ∈ Lγε |Xt = x) =
1

Φc
j |c|!

ε|c| + o(ε|c|) as ε→ 0

where |c| = ∑A
l=1 c

l(= |γ|).

Proof. First observe that w.l.o.g. we can assume t = 0, the general result
following from the Markov property of Rx0 . Recall that j̄ is the total jump
rate

∑A
l=1 j

l. Moreover, we denote by l(k) the unique element of {1, ..., A}
such that XTk −XTk−1

= al(k). This variable is used to identify the arc that
the walk uses to jump at Tk. With an elementary computation based on
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the explicit distribution of Rx0 :

Rx(Lγε ) = Rx
(
{|N |ε = |c|} ∩

|c|⋂
k=1

{XTk −XTk−1
= al(k)}

)
= exp(−εj̄)(εj̄)|c|

|c|!

|c|∏
k=1

jl(k)

j̄
= exp(−εj̄)ε|c|

A∏
l=1

(jl)]{k:l(k)=l}

= exp(−εj̄)ε
|c|

|c|!
A∏
l=1

(jl)n
l

= exp(−εj̄) 1

Φc
j |c|!

ε|c|

from which the conclusion follows.

Even more interesting, the same time-asymptotics holds under any P ∈
R(R) and in particular under any bridge Rxy.

Theorem 4.6.1. Let j be a time-homogeneous intensity and P ∈ R(R). Then for
any time t ≥ 0, c ∈ ker∗Z(A) and any cycle γ with N(γ) = c, we have:

P − a.s. P
(
τt(X) ∈ Lγε

∣∣∣Xt

)
=

1

Φc
j |c|!

ε|c| + o(ε|c|) as ε→ 0

That is, in a very short time interval, P goes around the cycle γ with the same
probability as R.

Proof. Assume that P ∈ R(R). Observe that w.l.o.g we can assume that
P0 = δx0 for some x0 ∈ Rd, the general result following by mixing over
the initial condition. Then by Proposition 2.2.2, dP/dRx0 = h(X1). We first
show the identity:

Rx0

(
1{τt(X)∈Lγε }h(X1)

∣∣∣Xt

)
= P

(
1{τt(X)∈Lγε }|Xt

)
RXt

(
h(X1−t)

)
. (4.39)

Indeed, let us take any test function of the form 1{Xt∈A}. We have:

Rx0

(
1{τt(X)∈Lγε } h(X1)1{Xt∈A}

)
= P

(
1{τt(X)∈Lγε } 1{Xt∈A}

)
= P ( P (1{τt(X)∈Lγε }|Xt) 1{Xt∈A})

= Rx0

(
P (1{τt(X)∈Lγε }|Xt) h(X1)1{Xt∈A}

)
= Rx0

(
P (1{τt(X)∈Lγε }|Xt) R

x0(h(X1)|Xt) 1{Xt∈A}

)
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from which (4.39) follows. Consider now the left hand side of (4.39).
We have, by applying the Markov property and the fact that γ is a cycle:

Rx0

(
h(X1) 1{τt(X)∈Lγε }|Xt

)
= Rx0

(
Rx0(h(X1)|F[t,t+ε])1{τt(X)∈Lγε }|Xt

)
= Rx0

(
RXt+ε(h(X1−(t+ε))) 1{τt(X)∈Lγε }|Xt

)
= Rx0

(
RXt( h(X1−(t+ε))) 1{τt(X)∈Lγε } |Xt

)
= Rx0

(
1{τt(X)∈Lγε }|Xt

)
RXt

(
h(X1−(t+ε))

)
.

Applying (4.39) and Proposition 4.6.1 and the continuity of

(ω, t, .) 7→ RXt(h(X1−.))

we obtain:

1

Φc
j |c|!

RXt(h(X1−t)) = lim
ε→0

ε−|c| P (1{τt∈Lγε }|Xt) R
Xt(h(X1−t)) (4.40)

We observe thatRXt(h(X1−t)) = dPt/d(Rx0)t and therefore it is strictly pos-
itive P − a.s. . This allows us to divide on both sides by RXt(h(X1−t)) and
the conclusion follows.

We have thus shown that each element of the reciprocal class has the
same probability to spin around its current state in a very short time inter-
val.

Remark 4.6.1. In the statement of Proposition 4.6.1 we could have replaced Xt

with X[0,t], i.e. the following asymptotics holds true:

P (τt(X) ∈ Lγε |X[0,t]) =
1

Φc
j |c|!

ε|c| + o(ε|c|) as ε→ 0.

Wrapping up the content of this last section, we have seen that the
cycle characteristic have a deep probabilistic interpretation. In Chapter 6
we largely extend the results of this section by showing that i) they hold on
a general graph ii) the arc characteristics also have a deep interpretation
and iii) they provide a characterization of R(R).
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4.7 Characteristics and concentration of measure

In this section we look at a very specific class of models and derive con-
centration of measure inequalities based on the reciprocal characteristics
for some quantities of interest. The results we obtain point towards a
more general relation between conditioning and concentration of measure
which would be interesting to study in more generality. Some natural pos-
sible generalizations are briefly discussed in the last chapter of the thesis.
The concentration rates we obtain are situated in between Poissonian and
Gaussian concentration and are sharp at the leading order, and show the
right dependence on the reciprocal characteristics in the exponential cor-
rection terms. At the moment of writing this thesis, it seems that there
is no functional inequality designed to produce systematically such rates,
and therefore we need to argue differently. In doing this, we show some
improvements on the concentration bounds of the Poisson distributions,
by carefully repeating Herbst’s argument on an inequality introduced by
Dai Pra Paganoni and Posta in [26].

4.7.1 A simple question

In this section we take A := {−1, k}, where k is a positive integer. The
lattice kerZ(A) is then spanned by the vector (k, 1).

We consider time homogeneous intensities for R:3:

j(t, z → z + k) = jk, j(t, z → z − 1) = j−1 ∀z ∈ Z, t ∈ [0, 1]

In words, we are looking at random walks on Z that can only jump 1 down
or k up at constant intensity. The associated reciprocal characteristic is
jk−1jk. For simplicity, we omit the superscript c and denote it simply Φj .

Let us consider the bridge between 0 and 0 of the reference walks, R00.
Then we ask a rather simple and natural question:

How many jumps of size k does the bridge R00 make?

Under the non-pinned reference walk R, the distribution of the jumps of
size k simply follows a Poisson distribution of mean jk. Under the bridge
R00 we have no longer a Poisson distribution. In particular, explicit com-
putations for the Laplace transform are not available anymore. However,
using the results of the previous sections we have the following character-
ization of this law.

3We label the intensities j−1 and jk to make our presentation more clear. In the nota-
tion of the former sections we should have used j1 for j−1 and j2 for jk
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Corollary 4.7.1. Let

ρ(n) := R00(]{t : Xt −Xt− = k}) (4.41)

Then ρ is characterized by the following equation:

Φj ρ (f(n+ 1)) = ρ

(
f(n)n

k−1∏
i=0

(n− i)
)
∀f ∈ B(N) (4.42)

Remark 4.7.1. Another definition of ρ is the following one:

ρ(n) =
1

Z
pΦj(kn, n) (4.43)

where pΦj is a two dimensional Poisson distribution whose components are inde-
pendent and have mean Φ

1/(k+1)
j andZ a normalization constant. This can be seen

by either checking directly that the right hand side of (4.43) satisfies the equation
(4.41) or using Theorem (4.5.1). Note that pΦj is not the joint law of the variables
that count the number of jumps of each size under the reference dynamics(such
variable is N1 in the notation above). Indeed, under R the number of jumps of
size k has a Poisson law with mean jk and under pΦj it has mean Φ

1/(k+1)
j . But

the reciprocal characteristics associated to these two different laws coincide, and
therefore we can use pΦj to describe the bridge R00.

Proof. With a slight abuse of notation(see footnote in the previous page)
we callN−1 the total number of jumps of size−1 over the time interval [0, 1]
and by Nk the total number of jumps of size k, denote by ρ̃ the distribution
R ◦ (N−1, Nk)

−1 ∈ P(N2). With an application of Theorem 4.5.1 we find
immediately that that ρ̃ satisfies:

Φj ρ̃(f̃(n−1 + k, nk + 1)) = ρ̃

(
f̃(n−1, nk)nk

k−1∏
i=0

(k n−1 − i)
)
∀f̃ ∈ B(N2)

(4.44)
But since we are under the law of the bridge:

ρ̃(knk − n−1 = 0) = 1

Substituting n−1 = knk in (4.50) and considering f̃ to depend only on nk
we get the conclusion.

Note that the formula (4.42) generalizes Chen’s characterization of Pois-
son distribution. We recover it as a special case when the term multiplying
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f on the right hand side of (4.42) is linear. But here, such term is a polyno-
mial that can be of arbitrary degree.

Concentration inequalities provide very strong information on the laws
of random variables. What is known is that to a linear coefficient cor-
responds a Poisson distribution, for which a concentration of measure
inequality is known. If any concentration of measure corresponds to a
non-linear coefficient, and the rate of concentration in terms of it, are the
object of study this section. Let us just mention few reason why this ques-
tion is interesting: one classical way of proving concentration of measure
inequalities is to pass through a logarithmic Sobolev inequality of some
kind. For discrete probabilities several inequalities exist, (see e.g. [5, 26]).
However, they are designed to recover Poissonian concentration, while
from solutions of (4.42) we expect a stronger concentration, due to the non-
linearity, which is not implied by those inequalities. This is a significant
difference with the Gaussian case. Pinning a two dimensional Gaussian
vector to a linear subspace gives back another Gaussian vector. Therefore
standard techniques to prove concentration of measure can be used. Here,
we are pinning a two dimensional Poisson vector to the linear subspace
{knk − n−1 = 0} and the situation looks rather different. Another interest-
ing aspect which explains why the standard techniques break down is the
following: while changing the constant in the classical logarithmic Sobolev
inequality on Rd influences the leading order terms of the associated Gaus-
sian concentration inequality, for both modified logarithmic Sobolev in-
equalities on a discrete space studied in [5, 26], changing the constant for
which the inequality hold only influences the exponential correction terms.
Therefore if one wants to get a stronger concentration at the leading order,
something different has to be found. In the rest of the section, a function g
is said to be o(R) if:

lim
R→+∞

g(R)/R = 0

We derived the following result:

Theorem 4.7.1. Let ρ be the unique solution of (4.50). Then there exist C0 > 0
such that for all f which are 1-Lipschitz and for all R > C0:

ρ(f ≥ ρ(f) +R) ≤ exp(−(k + 1)R logR + (log(Φj) + C1)R + o(R))

The constant C1 does not depend on Φj . C0 might depend on it.

Remark 4.7.2. (i) The size of the large jump drives the leading order in the
concentration rate, while the reciprocal characteristic is responsible for the
exponential correction term.
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(ii) The larger k, the more concentrated is the random varibale. This is because
to compensat a large jump a bridge has to make many small jumps, and this
reduces the probability of many large jumps.

(iii) It can be seen, that the leading order term is optimal and that the dependence
on the reciprocal characteristic in the exponential terms seems also to be
optimal. This is done in [19]

The proof of this theorem is contained in the next two subsections.

4.7.2 Poissonian concentration revisited

A concentration result is obtained by [5](and proved in [63] with a differ-
ent technique). They first prove a Modified Logarithmic Sobolev Inequal-
ity (MLSI for short) for the Poisson distribution and then use the Herbst’s
argument (outlined e.g. in chapter 5 of [43]). However, as pointed out by
the same authors, the inequality is not optimal in the sense that it predicts
heavier tails for the distribution of Lipschitz functionals than what is ex-
pected. Indeed, in their Proposition 10 they establish that if ρ is the Poisson
distribution of parameter j, and f : N→ R is a 1-Lipschitz function in the
sense that |f(n+ 1)− f(n)| ≤ 1, then

ρ (f ≥ ρ(f) +R) ≤ exp

(
−R

4
log

(
1 +

R

2λ

))
(4.45)

However, using the explicit form of the Laplace transform ρ(exp(τn)) one
can show that (see e.g. Example 7.3 in [70]):

ρ (n ≥ ρ(n) +R) ≤ exp

(
−R

(
log

(
1 +

R

λ

)
− 1

)
− λ log

(
1 +

R

λ

))
(4.46)

Note that the exponent on the right hand side of (4.45) can be written as
−R

4
logR+log(λ

2
)R+o(R), while the right hand side of (4.46) can be written

as −R logR + (log(λ) + 1)R + o(R). Hence,in this sense, (4.46) is sharper
than (4.45), but it holds only for a specific functional, which is the iden-
tity. A first result we obtain is a concentration of measure inequality of
the form (4.46) which holds uniformly on the 1-Lipschitz functions. We
apply the Herbst’s argument to another type of Modified Log Sobolev In-
equality , introduced by Dai Pra, Paganononi, and Posta in [26]. In their
Proposition 3.1 they show that the Poisson distribution of mean λ satisfies
the following inequality:

∀f > 0, ρ(f log f)− ρ(f) log(ρ(f)) ≤ λρ(∇f∇ log f) (4.47)
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where∇f(n) is the discrete gradient f(n+ 1)− f(n).

Proposition 4.7.1. Let ρ satisfy (6.40). Then for all f : N→ R 1-Lipschitz:

ρ(f ≥ ρ(f) ≥ R) ≤ exp

(
−(R + 2λ) log

(
1 +

R

2λ

)
+R

)
(4.48)

Remark 4.7.3. (i) Note that the right hand side of (4.48) is of the form exp(−R logR+
(log(λ)+1+log(2))R+o(R)). Therefore the concentration estimate is sharp
concerning the leading order term, it shows the right dependence on λ in the
exponential correction term. Concerning the constants appearing in the ex-
ponential terms, we have 1 + log(2). We do not know whether this is sharp
or not. However, nothing better than 1 is reasonable to expect because of
(4.46)

(ii) At the moment, we do not know whether repeating Herbst’s argument based
on the inequality in [5] could also yield better cocentration bounds than
those already contained in the paper. One reason to check this is in relation
with Ollivier’s theory of discrete Ricci curvature [62]. He shows that an
inequality similar to that one holds under a discrete Ricci curvature lower
bound condition. The concentration results he obtains out of it of the fol-
lowing type: for moderate values of R, i.e. when R is within the ”Gaussian
window”, he obtains Gaussian concentration and for large values of R he
obtains exponential concentration. But if one shows that the inequality in
[5] yields Poissonian concentration for all values R (i.e. −R logR), it is
another interesting notion to attach to a lower bound on the discrete Ricci
curvature.

Proof. Let f be 1-Lipschitz. Then we already know, using e.g. the estimate
4.45 that f has exponential moments of all order. As a consequence, all the
expectations we are going to consider in the next lines are finite. Let us
define:

ϕτ := ρ(exp(τf)), ψτ := log ρ(exp(τf))

We apply the inequality (4.47) to exp(τf). Note that the left hand side
reads as τ∂τϕτ − ϕτψτ . The right hand side can be written as

λτρ(exp(τf)[exp(τ∇f)− 1]∇f

which, since f is Lipschitz can be bounded by

λτ(exp(τ)− 1)ρ(exp(τf)) = λτ [exp(τ)− 1]ϕτ
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We thus get the following differential inequality:

τ∂τϕτ − ϕτψτ ≤ λτϕτ (exp(τ)− 1) (4.49)

Dividing on both sides by ϕτ , and using the chain rule, it can be rewritten
as a differential inequality for ψ:

τ∂τψτ − ψτ ≤ λτ(exp(τ)− 1), ∂τψ0 = ρ(f), ψ0 = 0 (4.50)

The ODE corresponding to this inequality is

τ∂τhτ − hτ = λτ(exp(τ)− 1), ∂τh0 = ρ(f), h0 = 0 (4.51)

Note that the condition h0 = 0 is implied by the form of the equation.
(4.51) admits a unique solution, given by:

hτ = τρ(f) + λτγ(τ) (4.52)

where

γ(τ) =
+∞∑
k=1

1

k

τ k

k!
(4.53)

The fact that (4.52) is the solution to (4.51) can be checked directly by dif-
ferentiating term by term the series defining γ in (4.53). We claim that

∀τ ≥ 0 ψτ ≤ hτ (4.54)

The proof of this claim, is given separately in Propositon 4.7.2
Given (4.54), a standard argument with Markov inequality yields:

ρ(f ≥ ρ(f) +R) ≤ exp

(
inf
τ≥0

ψτ − τρ(f)− τR
)

= exp
(

inf
τ>0

λτγ(τ)− τR
)

We can bound γ in an elementary way:

γ(τ) =
+∞∑
k=1

1

k

τ k

k!
≤ 2

τ

+∞∑
k=1

τ k+1

(k + 1)!
= 2

exp(τ)− τ − 1

τ

and therefore:

ρ(f ≥ ρ(f) +R) ≤ exp
(

inf
τ>0

2λ exp(τ)− (2λ+R)τ − 2λ
)

Solving the optimization problem yields the conclusion.
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Remark 4.7.4. We obtain a sligtly sharper result by keeping γ in its implicit
form:

ρ(f ≥ ρ(f) +R) ≤ exp(inf
τ>0

λτγ(τ)− τR)

Here, we prove (4.54).

Proposition 4.7.2. Let h be defined by (4.51) and ψ be as in (4.50) Then

∀τ > 0, ψτ ≤ hτ

Proof. Consider ε > 0 and define hετ as the unique solution of

τ∂τh
ε
τ − hετ = τ(exp(τ)− 1), ∂τh

ε
0 = ρ(f) + ε (4.55)

Then ηε0 := ψ0 − hε0 = 0 satisfies:

τηετ − ηετ ≤ 0, ∂τη
ε
0 = −ε

Since ηε is continuously differentiable, we have that T > 0, where T is
defined as

T := inf{τ > 0 : ∂τη
ε
τ = 0} (4.56)

Assume that T < +∞. Then, at T , we have:

T ∂τη
ε
T︸︷︷︸

=0

−ηεT ≤ 0⇒ ηεT ≥ 0 (4.57)

But this is impossible since ηε0 = 0, ηετ < 0 for all τ < T . Therefore ∂τηετ < 0
for all τ > 0. Since ηε0 = 0, we also have that ψετ < 0 for all τ > 0. therefore:

∀τ > 0, ψτ ≤ inf
ε>0

hετ = hτ

4.7.3 A useful staircase

The idea behind the proof of theorem 4.7.1 is to construct a measure π(see
Definition 4.7.1) which “interpolates” ρ and for which the Modified Log-
arithmic Sobolev Inequality (4.47) gives sharp concentration bounds. We
constructed ρ by pinning the two dimensional Poisson law pΦj to belong
to the line {knk = n−1}, see Remark 4.7.1. The interpolation is constructed
by interpolating the line with a “staircase” and pinning the Poisson vector
to belong to it. Intuitively, one should think it that the MLSI is sharp for
this staircase, because, unlike lines, one can travel along the staircase by
using the edges of the lattice Z2.
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Definition 4.7.1. Let (γ1, γ2) =: γ : N→ N2 be defined as follows:

γ(m) :=

{
( m
k+1

, k m
k+1

) if m ∈ (k + 1)N
(b m
k+1
c+ 1,m− b m

k+1
c − 1) otherwise

(4.58)

and π ∈ P(N) be defined as follows:

π(m) =
1

Z ′
pΦj(γ(m)) (4.59)

where pΦj is a two dimensional Poisson law with independent coordinates, each
one having mean Φ

1/k+1
j as in Remark 4.7.1, and Z ′ a normalization constant.
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ρ

π

Figure 4.4: An illustration in the case k = 1 of the interpolation argument
of Proposition 4.7.3. We want to study the measure ρ, obtained by pinning
a two dimensional Poisson vector to belong to the subspace n1 = n−1,
which is the red line in the picture. For such measure the MLSI does not
give a precise concentration bound. But if we consider π, obtained by
pinning the same two dimensional vector to belong to the blue ”staircase”
this bound becomes sharp. The set of blue arcs is precisely the image of
the curve γ from Definition 4.7.1

Another ingredient we shall use in the proof is the following criterion for
MLSI, due to Caputo and Posta. What we make here is a summary of some
of their results in Section 2 of the paper [9], adapted to our scopes. To keep
track of the constants, we also use Lemma 1.2 of [43] We do not reprove
these results here.



106 CHAPTER 4. RANDOM WALKS ON LATTICES

Lemma 4.7.1 (Caputo and Posta criterion for MLSI,[9]). Let π ∈ P(N) be
such that

c(m) :=
π(m− 1)

π(m)

has the property that for some v ∈ N,c > 0:

inf
m≥0

c(m+ v)− c(m) ≥ c > 0 (4.60)

and that supm≥0 c(m+ v)− c(m) < +∞. Then the function c̃ defined by

c̃(m) := c(m) +
1

v

v−1∑
i=0

v − i
v

[c(m+ i) + c(m− i)− 2c(m)] (4.61)

is uniformly increasing, that is

inf
m≥0

c̃(m+ 1)− c̃(m) ≥ δ (4.62)

for some δ > 0. Moreover, if we define π̃ ∈ P(N) by:

π̃(0) =
1

Z
, π̃(m) =

1

Z

m∏
i=1

1

c̃(i)
(4.63)

then π̃ is equivalent to π in the sense that there exist C̃ such that:

1/C̃ ≤ π(m)

π̃(m)
≤ C̃ (4.64)

Finally, π satisfies the MLSI (4.47) with δ−1 exp(4C̃) instead of λ.

Using this criterion, we derive MLSI for π.

Proposition 4.7.3. The measure π satisfies the modified logarithmic Sobolev in-
equality (4.47) with a constant of the form Φj

1/(k+1)C, where C is a constant
independent from Φj .

Proof. Using the elementary observation that (see Proposition 4.2.2 ):

pΦj(n1 − 1, n2)

pΦj(n1, n2)
= Φ

−1/(k+1)
j n1,

pΦj(n1, n2 − 1)

pΦj(n1, n2)
= Φ

−1/(k+1)
j n2

we have the following:

c(m) :=
π(m− 1)

π(m)
=

{
Φ
−1/(k+1)
j γ1(m), if m ∈ (k + 1)N + 1

Φ
−1/(k+1)
j γ2(m), otherwise

(4.65)
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Now consider any m. We have that:

c(m+ k + 1)− c(m) ≥ Φ
−1/(k+1)
j

By Lemma 4.7.1, π satisfies the (4.47) with a constant exp(4C̃)δ−1, where
C̃ is given by (4.64) and δ by (4.62). Using the explicit form of c̃ given in
(4.63), we see that c̃ is affine in Φ

−1/(k+1)
j , because so is c given by (4.65).

This implies that π(m)/π̃(m) does not depend on Φj , and therefore the
same holds for C̃. Moreover, because of the fact that c̃ is affine in Φ

−1/(k+1)
j ,

then δ is of the form Φ
−1/(k+1)
j δ̃ for some δ̃ independent from Φj . But then,

using exp(4C̃)δ−1 = exp(4C̃)δ̃−1Φ
1/(k+1)
j = CΦ

1/(k+1)
j for some C indepen-

dent from Φj .

We can finally prove Theorem 4.7.1.

Proof. We observe that that, by definition of ρ (see 4.7.1) and π(see Defini-
tion 4.7.1) we have that:

ρ(n) =
Z ′

Z
π((k + 1)n), ∀n ∈ N

where Z ′/Z := Z ′′ = pΦj(n ∈ {γ(m) : m ∈ N})/pΦj(kn−1 = nk) is a
numerical constant independent from n.

Consider now f : N → R which is 1-Lipschitz. Then define g : N → R
by putting:

g(m) := (1− m

k + 1
+ b m

k + 1
c)f(b m

k + 1
c) + (

m

k + 1
−b m

k + 1
c)f(b m

k + 1
c+ 1)

(4.66)
Then it is immediate to verify that g is 1/(k + 1)-Lipschitz.

Because of Proposition 4.7.3 there exists C independent from Φj such
that π satisfies MLSI (4.47) with constant CΦ

1/(k+1)
j . Using the concentra-

tion bound on from Proposition 4.7.1 on (k + 1)g we get that for some C1

independent from Φj , and for any R′ > 0:∑
m:g(m)≥π(g(m))+R′

π(m) ≤ exp(−(k + 1)R′ log(R′) + (log(Φj) + C2)R′ + o(R′))

Assume that one could prove that there exist a constant C0, which may
depend on Φj such that:

sup
f :f1−Lipschitz

π(g)− ρ(f) ≤ C0
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We shall prove the existance of C0 in Lemma 4.7.2 Then we have, for any
R′ > 0: ∑

m:g(m)≥π(g)+R′

π(m) ≥
∑

m:g(m)≥ρ(f)+C1+R′

π(m)

≥
∑

n:g((k+1)n)≥ρ(f)+C1+R′

π((k + 1)n)

=
1

Z ′′

∑
n:f(n)≥ρ(f)+C1+R′

ρ(n)

which gives for all R′ > 0, f 1-Lipschitz:

ρ(f ≥ ρ(f)+C1 +R′) ≤ Z ′′ exp(−(k+1)R′ logR′+(log(Φj)+C2)R′+o(R′))

Therefore for any R ≥ C0, after putting R′ := R − C0 and absorbing Z ′′ in
the o(R) term, we have that:

ρ(f ≥ ρ(f)+R) ≤ 1

C1

exp(−(k+1)(R−C0) log(R−C0)+(log(Φj)+log(C1))(R−C0)+o(R))

Using elementary calculus we can rewrite the right hand side of this last
inequality as

− (k + 1)R log(R) + (log(Φj) + log(C1))R + o(R) (4.67)

Indeed, the difference between (R − C0) log(R − C0) and R log(R) is of
order logR and therefore substituting R−C0 with R in (4.67) cannot affect
the exponential terms, but only lower order terms. This concludes the
proof.

Lemma 4.7.2. There exist C0 < +∞ such that

sup
f :f1Lip

π(g)− ρ(f) ≤ C0

where, for a given f , g is given by (4.66).

Proof. Since, by construction of g, we have that ρ(f+α)−π(g+α) = ρ(f)−
π(g), we can w.l.o.g assume that f(0) = 0, which also implies g(0) = 0. But
then, since π admits a first moment and by construction g is k+1 Lipschitz:

sup
f :f1Lip

π(g)− ρ(f) ≤ sup
g:g 1

(k+1)
−Lip,g(0)=0

π(g) + sup
f :f1Lip,f(0)=0

ρ(f) < +∞

which gives the conclusion.



Chapter 5

Random walks on Abelian groups

Outline of the chapter In this chapter, which is based on the submit-
ted work [23], we study the reciprocal class of a random walk on Abelian
group. Our main result is a duality formula characterizing R(R). The dif-
ference operator has the clear interpretation of the addition of a loop to the
paths of the canonical process. Several examples are discussed.

In this chapter we consider as a reference process a random walk on an
Abelian group. The graph where the walk takes place is then the Cayley
graph associated to the support of the jump intensity. This class of graphs
extends lattices, retaining a translation invariance property. Therefore they
are still suitable to derive a characterization of the reciprocal based on du-
ality formulae. The main result of this chapter is indeed a duality formula
characterizing R(R), where the derivative operator has the clear interpre-
tation of the addition of a random loop to the trajectory, and the stochastic
integral is a multiple stochastic integral, which takes into account the geo-
metrical complexity of loops. The meaning of the formula is very intuitive:
it simply says that the ratio between the ”probability” of two paths which differ
by a loop is proportional to the reciprocal characteristic associated with that loop.
This simple property characterizes R(R). It is important to highlight the
differences between cycles and loop. While a cycle is defined on the graph
(X ,→), a loop is a path in Ω whose trace is a cycle started in the identity
element of the group. Our main technical tool is an iterated version of
Mecke formula, which we establish as a new result, and is interesting in
its own right. Mecke-Slijvniak formula, which was originally developed
to study random measures [75, 54], is useful to characterize stochastic pro-

109
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cesses, as shown by Murr [57] and Privault [63]. It concerns the addition of
a jump to the paths of the canonical process. An iteration of this formula
concerns the addition of several jumps. When the jumps combine in such
a way that the resulting transformation is the addition of a loop, it is valid
over the whole R(R).

This formula allows to lift at the level of paths all the geometrical con-
siderations on the structure of cycles which we made in Chapter 4, and
merge in a single equation the two equations used in Theorem 4.3.1. The
fact that some of the shifts considered in Equation (4.15) are associated
with vectors having some negative coordinates prevents this unified ap-
proach from being possible in general, and required to use generating sets
of lattices to achieve a sharp characterization.

Here, we work under a geometrical assumption (see Assumption 5.3.1),
which allows to overcome these difficulties. In the language of the previ-
ous chapter, it amounts to say that we can find lattice basis which are also
generating sets. This assumption makes possible to have a rigorous ver-
sion of the intuitive statement that, by adding and subtracting a series of
well chosen loops, we can connect any two paths having the same initial
and final state. The sharpness of our characterization is given by the fact
that we work with lattice basis. The loops we add or we cancel always
have a very simple geometrical structure (which we will call ”skeleton”)
which is encoded in one of the elements of the basis. All other complex
geometrical structures are obtained by superposition of these simple ones.

Organization o the chapter In section 5.1 we present ta parallelism be-
tween random walks and random measures, which we are going to ex-
ploit in our main result. In section 5.2 we prove the Iterated Mecke for-
mula, while in section 5.3 we present our geometrical assumption and its
relevance to have a nice decomposition of the set of loops, and state our
main result which is proven, with the help of several lemmas in section
5.4. A gallery of examples in section 5.5 concludes the chapter The follow-
ing chart helps in connecting the notation of this chapter with the general
framework we set up in Chapter 2.

General def Local def
State space X Abelian group (G,+)
Arcs A G2

Active arcs A→(j) (g → g + g′), g ∈ G, g′ ∈ Gν

Reference intensity j(t, g → g + g′) νg′
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Figure 5.1: A Cayley graph over the symmetric group with 4 elements.
In this case the lattice L + (see 5.3.1) has dimension two: all blue cycles
correspond to one element of its basis, and the red cycles to the other one.
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5.1 Random walks and random measures

In this section, the state space is a countable Abelian group (G,+) with
identity element e. The arc set is the whole X 2. The reference walk has a
space time homogeneous intensity. This means that we fix a non negative
finite measure ν on G, and set:

j(t, g → g + g′) = νg′ ∀ g, g′ ∈ G, t ∈ [0, 1] (5.1)

In the rest of the chapter Gν ⊆ G denotes the support of ν.
For any other non negative measure ν̃ different from the reference mea-

sure, we call a ν̃-random walk any Markov walk whose intensity is defined
by (5.1), where ν̃ replaces ν.

The path space Ω introduced in section 2.3.1 is naturally embedded
D([0, 1], G) the space of càdlàg paths for the topology induced by the dis-
crete metric in G. More precisely, ω ∈ D([0, 1], G) belongs to Ω if and only
if ωt−ωt− ∈ Gν . Note that, because of the existence of left and right limits,
paths in D([0, 1], G) have finitely many jumps.

For a measurable space (Γ,BΓ) we denote SΓ the set of finite point
measures, that is:

SΓ :=
{ N∑

i=1

δxi : xi ∈ Γ, N ∈ N
}
. (5.2)

This space is also called the configuration space, (see Section 6.1 in [63])
The set of atoms of µ ∈ SΓ is denoted E(µ).

We will often choose, as Γ the following product space of time-space
elements:

Γ := [0, 1]×G 3 γ = (t, g).

We identify trajectories in D([0, 1], G) and point measures in SΓ via the
following canonical bijective map M :

X 7→MX :=
∑

0≤t≤1

∑
g∈G

δ(t,g)1{∆Xt=g} (5.3)

Mecke’s original idea was to characterize any Poisson random mea-
sure (see Proposition 6.1.3 of [63] for a definition) by mean of an integral
formula (see Satz 3.1 in [54]), via the change of measures which consists to
add one (random) atom to the initial point measure, as in the right-hand
side of equation (5.4).

Proposition 5.1.1. For P̃ ∈ P(SΓ) the following assertions are equivalent:
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i) P̃ is the Poisson random measure with intensity measure ρ = m⊗ ν on Γ.

ii) For all Φ ∈ B(M(Γ)× Γ),∫ ∫
Γ

Φ(µ, γ) µ(dγ)P̃ (dµ) =

∫ ∫
Γ

Φ(µ+ δγ, γ) ρ(dγ)P̃ (dµ). (5.4)

Proof. We first prove ii)⇒ i). Consider f ∈ B(Γ). We define

ψf (λ) := P̃
(

exp
(
− λ

∫
Γ

fdµ
))

Clearly,

∂λψ
f (λ) := P̃

(
−
∫

Γ

exp
(
− λ

∫
Γ

fdµ
)
f(γ)︸ ︷︷ ︸

Φ(µ,γ)

µ(dγ)
)

This expression is suitable to apply (5.4) to Φ(µ, γ) = exp
(
−λ
∫

Γ
fdµ

)
f(γ).

We obtain:

P̃
(
−
∫

Γ

exp
(
− λ

∫
Γ

fdµ
)
f(γ)µ(dγ)

)
= P̃

(
−
∫

Γ

exp
(
− λ

∫
Γ

fd(µ+ δγ)
)
f(γ)dρ(γ)

)
=

(
−
∫

Γ

exp
(
− λf

)
fdρ

)
ψf (λ)

We proved that ψf (λ) satisfies the ODE:

∂λψ
f (λ) =

(∫
Γ

exp
(
− λf

)
fdρ

)
ψf (λ), ψf (0) = 1 (5.5)

Solving it we obtain:

ψf (λ) = exp
(
−
∫

Γ

1− exp(−λf)dρ
)

Setting λ = 1:

P̃
(

exp
(
−
∫

Γ

fdµ
))

= exp
(
−
∫

Γ

1− exp(−f)dρ
)

(5.6)

Now, let f =
∑k

i=1 ηi1Ai , for some disjoint setsA1, .., Ak ⊆ BΓ , η1, .., ηk ≥
0. Moreover, let us denote by π ∈ P(NA) the image measure of the vector
(µ(A1), ..., µ(Ak)) under P̃ . With these choices, the equation (5.6) reads as:
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π
(

exp(−
k∑
i=1

ηini)
)

= exp
(
−

k∑
i=1

(1− exp(−ηi))ρ(Ai)
)

in which we recognize the form of the Laplace transform of a Poisson
random vector, that is the random variables µ(A1), .., µ(An) are indepen-
dent and µ(Ai) is distributed according to a Poisson distribution of pa-
rameter ρ(Ai). The conclusion then follows. Let us prove the converse
implication i) ⇒ ii). Take disjoint sets A1, .., Ak and consider the ran-
dom variables (µ(A1), .., µ(Ak)), and non negative measurable functions
f1, ..., fk. Since µ(Ai) is a Poisson random variable for all 1 ≤ i ≤ k we can
use Chen’s characterization (see Chen ??) to deduce that:

P̃
(
fi(µ(Ai)) µ(Ai)

)
= ρ(Ai) P̃

(
fi(µ(Ai) + 1)

)
By using independence and linearity of the expectation:

P̃
( k∏
i=1

fi(µ(Ai))
k∑
j=1

µ(Ai)
)

= P̃
( k∑
j=1

ρ(Aj)
k∏

i=1,i 6=j

fi(µ(Ai)
)

which is precisely Mecke formula (5.4) for:

Φ(µ, γ) =
k∏
i=1

fi(µ(Ai)) 1{γ∈⋃kj=1 Aj}

A standard approximation argument yields the conclusion.

Adapted to our context it reads as follows. Remark that the left-hand
side of (5.4) also reads

∫ ∑
γ∈µ Φ(µ, γ)P̃ (dµ) where the notation γ ∈ µ

means that the points γ ∈ Γ build the support of the point measure µ: one
integrates the function Φ under the Campbell measure associated with P̃ .
Thus (5.4) determines the Campbell measure of a Poisson random mea-
sure as the shifted product measure of itself with its intensity.
Let us adapt this tool to D([0, 1], G). First, for γ = (t, g) ∈ Γ, let us denote
by χγ the corresponding simple step function χγ := g 1[t,1] ∈ D([0, 1], G).
Then define the transformation Ψγ on the path space which consists in
adding one jump g at time t.

Definition 5.1.1. For γ = (t, g) ∈ Γ, ΨγX := X + χγ, X ∈ D([0, 1], G).

Notice that, under any probability P ∈ P(D([0, 1], G)) satisfying P (Xt =
Xt−) = 1 for all t ∈ [0, 1], one has:

MΨγX = MX + δγ P − a.s. . (5.7)

The following diagram summarizes these considerations:
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D([0, 1], G) D([0, 1], G)

SΓ SΓ

MX

Ψγ

+δγ

(MX)−1

Let us rewrite Proposition 5.1.1 in the language of random walks.

Proposition 5.1.2. For P ∈ P(D([0, 1], G)) the following assertions are equiva-
lent:

i) P is a ν-random walk on G.

ii) For all F ∈ B(D([0, 1], G)× Γ),

P
(∫

Γ

F (X, γ) MX(dγ)
)

= P
(∫

Γ

F (ΨγX, γ) ρ(dγ)
)
, (5.8)

Proof. i)⇒ ii).
SinceR is ν-random walk,MX is a Poisson random measure with intensity
dt⊗ν. Then Mecke’s formula holds for P̃ := P ◦M−1. SinceM is invertible
and its inverse is measurable we can plug into (5.4) test functions Φ of the
form F (X, γ) and the conclusion follows.

ii)⇒ i).
Let P ∈ P(D([0, 1], G)) satisfying (5.8). We define P̃ := P ◦M−1 ∈ P(SΓ).
Then, by considering test functions of the form Φ = F (MX , γ) and using
the fact that MΨγX = MX + δγ P ⊗ ρ − a.s., we deduce that P̃ is a Poisson
random measure with intensity ρ = dt⊗ ν by Proposition 5.1.1. Observing
that

Xt =
∑
g∈G

gMX([0, t]× {g}) (5.9)

the conclusion follows using (5.7).

5.2 An iterated formula

To prepare the characterization of bridges which we will present in the
next section, we now consider a generalization of the formula (5.8) ob-
tained by iteration. For this purpose, we define n-dimensional analogous
of the objects appearing in (5.8), n ≥ 1 fixed.

For γ̄ = (γ1, ..., γn) ∈ Γn,Ψγ̄ := Ψγn ◦ ... ◦Ψγ1 , χγ̄ =
n∑
i=1

χγi . (5.10)



116 CHAPTER 5. RANDOM WALKS ON ABELIAN GROUPS

Then Ψγ̄ is the transformation that adds toX the n-step function χγ̄ , which
corresponds in the framework of point measures to add n new atoms to
the original measure. It remains to specify the set over which we will
integrate the point measure µ⊗n. Indeed, we remove from Γn the set ∆n,
union of all diagonals:

∆n := {γ̄ ∈ Γn : ∃i 6= j, γi = γj}. (5.11)

With these definitions, we can state the iterated formula satisfied under
reference random walk R.

Proposition 5.2.1. For any test function F ∈ B(D([0, 1], G)× Γn),

R
(∫

Γn\∆n

F (X, γ̄)µ⊗n(dγ̄)
)

= R
(∫

Γn
F (Ψγ̄X, γ̄) ρ⊗n(dγ̄)

)
. (5.12)

Remark 5.2.1. In general it is not true that
∫

∆n
F (X, γ̄)M⊗n

X (dγ̄) = 0. Indeed,
if γ is an atom of µ then (γ, ..., γ)︸ ︷︷ ︸

n times

is an atom of M⊗n
X which belongs to ∆n.

Proof. We first prove a preliminary result.

Lemma 5.2.1. Define for γ ∈ Γ, Aγ := {γ̄ ∈ Γn : γi = γ for some 1 ≤ i ≤ n}.
Then

M⊗n
ΨγX

(·) = M⊗n
X (·) +M⊗n

ΨγX
(Aγ ∩ ·), R⊗ ρ a.e.. (5.13)

Proof. We denote by En(X) the set of atoms of M⊗n
X . Clearly En(X) =

(E(X))n ⊂ Γn. From (5.7),

E(ΨγX) = E(X) ∪ {γ} R⊗ ρ a.e. (5.14)

so that the atoms ofM⊗n
ΨγX

are En(ΨγX) =
(
E(X)∪{γ}

)n
R⊗ρ a.e.. In this

case En(ΨγX) \ En(X) = En(ΨγX)∩Aγ , which leads to the conclusion.

To prove the proposition by induction, we adopt the following nota-
tion: we decompose any element γ̄ = (γ1, ..., γn+1) of Γn+1 into (γ̃, γ) where
γ̃ is its projection on Γn, and γ = γn+1 is its last coordinate.
Proof of the statement for n = 1: It is exactly Proposition 5.1.2.
Let us now assume that the statement is true for n, that is (5.12) holds
true for all test functions f ∈ B(D([0, 1], G) × Γn). Let us now consider
v ∈ B(Γ) and prove that (5.12) holds for any function of the form F (X, γ̄) =
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f(X, γ̃)v(γ). The extension to a general F ∈ P(D([0, 1], G) × Γn+1) will be
then standard. We have:

R
(∫

Γn+1

F (Ψγ̄X, γ̄)ρ⊗n+1(dγ̄)
)

= R
(∫

Γ

∫
Γn
f(Ψγ(Ψγ̃X), γ̃)ρ⊗n(dγ̃)v(γ) ρ(dγ)

)
(5.15)

Exchanging the order of integration, and applying the inductive hypoth-
esis to f(ΨγX, γ̃) allows to rewrite the right hand side of the last identity
as: ∫

Γ

R
(∫

Γn\∆n

f(ΨγX, γ̃)M⊗n
X (dγ̃)

)
v(γ)ρ(dγ) (5.16)

We can apply Lemma 5.2.1 to rewrite the former integral as:∫
Γ

R
(∫

(Γn\∆n)\Aγ
f(ΨγX, γ̃) M⊗n

ΨγX
(dγ̃)

)
v(γ)ρ(dγ). (5.17)

We apply Proposition 5.1.2 to (X, γ) 7→
∫

(Γn\∆n)\Aγ f(X, γ̃)Mn
X(dγ̃) v(γ)

and we obtain

R
(∫

Γ

(∫
(Γn\∆n)\Aγ

f(X, γ̃)M⊗n
X (dγ̃)

)
v(γ)MX(dγ)

)
= R

(∫
{γ̄:γ∈Γ,γ̃∈(Γn\∆n)\Aγ}

F (X, γ̄)M⊗n+1
X (dγ̄)

)
It is easy to see that {γ̄ = (γ̃, γ) : γ ∈ Γ, γ̃ ∈ (Γn \∆n) \ Aγ} = Γn+1 \∆n+1

and the conclusion follows.

5.3 Loops and their skeletons

We call loop a path in D([0, 1], G) that starts and ends at the identity element
e. It shall not be confused with a cycle as defined in Definition 3.2.1. A
cycle is a sequence of vertices of X = G, while a loop is a path in Ω. If X is
a loop, and n is the total number of jumps of the loop, then the sequence
(X0, XT1 , .., XTn) is a cycle such that X0 = XTn = e. For each path X ∈ Ω
we define its skeleton as the application ϕX : Gν → N defined by:

ϕX(g) := µ([0, 1]× {g}). (5.18)

Thus ϕX(g) counts how many times the jump g occurrs along the path X.
If X is a loop, we observe that∑

g∈Gν

ϕX(g) g = e. (5.19)
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Therefore, as X varies in the set of all possible loops of Ω, ϕX varies in the
set

L + := {ϕ ∈ NGν :
∑
g∈Gν

ϕ(g) g = e, `(ϕ) < +∞} (5.20)

where `(ϕ) :=
∑

g∈Gν |ϕ(g)| is the length of ϕ. Enlarging this set to the maps
ϕ with negatives values by considering

L := {ϕ ∈ ZGν :
∑
g∈Gν

ϕ(g) g = e, `(ϕ) < +∞},

one recovers for L a lattice structure, which will be very useful. To any
ϕ∗ ∈ L we can associate the - non empty - set of loops whose skeleton is
ϕ∗:

Ωe,ϕ∗ := {X ∈ Ω : X0 = X1 = e and ϕX = ϕ∗}. (5.21)

These paths have exactly ϕ∗(g) jumps of type g, for all g ∈ Gν .

We make the following assumption on L :

Assumption 5.3.1. The lattice L is such that:

i) The skeleton of loops generate L :

Span(L +) = L (H1)

where Span(L +) is, as usual, the set of all integer combinations of elements
of L +.

ii) Each jump in Gν belongs to (at least) the skeleton of one loop, that is, the
following assumption holds:

∀g ∈ Gν there exists ϕ ∈ L such that ϕ(g) > 0. (H2)

Let us note that (H1) ensures that L admits a basis B ⊂ L +. From now
on, we fix such a basis B. W.l.o.g. we can assume that (H2) is satisfied
replacing L with B. As we shall see in Section 5.4, assumptions (H1)
and (H2) allow a fruitful decomposition of the path space Ω. Heuristically,
one can transform one path into any other one having the same initial and
final values, by subsequently adding and removing loops whose skeleton
belongs to B. However, let us first state our main result.
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5.3.1 Main result: an integral characterization of the recip-
rocal class

In the next theorem we state that the identity (5.12) appeared in Proposi-
tion 5.2.1 is not only valid over the whole reciprocal class R(R) but indeed
characterizes it, if one restricts the set of test functions F to some well cho-
sen subset.
For each skeleton ϕ∗ in the basis B, consider the following set of test func-
tions:

Hϕ∗ :=
{
F ∈ P(D([0, 1], G)× Γ`(ϕ

∗)) : F (X, γ̄) ≡ 1{χγ̄∈Ωe,ϕ∗}F (X, γ̄)
}
.

(5.22)
Therefore, we will restrict our attention to perturbations of the sample
paths consisting in adding a loop χγ whose skeleton is equal to ϕ∗. Now
we are ready for stating and proving the main result.

Theorem 5.3.1. The probability measure P ∈ P(Ω) belongs to the reciprocal
class R(R) if and only if for any skeleton ϕ∗ in the basis B and for all test func-
tions F ∈Hϕ∗ , we have:

P
(∫

Γn\∆n

F (X, γ̄)M⊗n
X (dγ̄)

)
= Φν

ϕ∗ P
(∫

Γn
F (Ψγ̄X, γ̄) (dt⊗ λ)⊗n(dγ̄)

)
,

(5.23)
where n = `(ϕ∗), λ :=

∑
g∈G δg is the counting measure on G and

Φν
ϕ∗ :=

∏
g∈Gν

ν(g)ϕ
∗(g) ∈ R+. (5.24)

In particular, if (5.23) holds true under P satisfying P (X0 = x,X1 = y) = 1 for
some (x, y), then P is nothing else but the bridge Rxy.

The positive number Φν
ϕ∗ is the reciprocal characteristics associated to

the jump measure ν and the skeleton ϕ∗.

Corollary 5.3.1. The reciprocal characteristics are invariants of the reciprocal
class in the following sense. Let ν and µ two non negative finite measures on G
with the same support. The reciprocal classes R(R) and Rec (R̃) coincide if and
only if their family of reciprocal characteristics coincide:

Φµ
ϕ∗ = Φν

ϕ∗ , ∀ϕ∗ ∈ B. (5.25)

In that case the bridges of both ν- and µ-random walk on G coincide too.

Remark 5.3.1. There is a remarkable probabilistic interpretation of the reciprocal
characteristics Φν

ϕ∗ as the leading factor, in the short-time expansion, of the prob-
ability that the ν-random walk follows a loop with skeleton ϕ∗. This result will be
proven in chapter 6.
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5.4 Proof of the main theorem

Proof. (⇒)
We use, as main argument, the specific form of the density with respect to
R of any probability measure in R(R) as it is given by Proposition 2.2.2:

P ∈ R(R)⇒ P � R, and
dP

dR
= h(X0, X1) for some h : G×G→ R+.

(5.26)
Take now any F ∈ Hϕ∗ . Then, using Identity (5.12), the definition of Hϕ∗

and the fact that (Ψγ̄X)0 = X0, (Ψγ̄X)1 = X1 + e = X1, one gets

P
(∫

Γn
F (Ψγ̄X, γ̄)(dt⊗ ν)⊗n(dγ̄)

)
= P

(∫
Γn
F (Ψγ̄X, γ̄)

∏
g∈Gν

ν(g)ϕχγ̄ (g)(dt⊗ λ)⊗n(dγ̄)
)

F∈Hϕ∗
= Φν

ϕ∗P
(∫

Γn
F (Ψγ̄X, γ̄)(dt⊗ λ)⊗n(dγ̄)

)
= Φν

ϕ∗R
(
h(X0, X1)

∫
Γn
F (Ψγ̄X, γ̄)(dt⊗ λ)⊗n(dγ̄)

)
= Φν

ϕ∗R
(∫

Γn
h((Ψγ̄X)0, (Ψγ̄X)1)F (Ψγ̄X, γ̄)(dt⊗ λ)⊗n(dγ̄)

)
= R

(∫
Γn\∆n

h(X0, X1)F (X, γ̄)M⊗n
X (dγ̄)

)
= P

(∫
Γn\∆n

F (X, γ̄)M⊗n
X (dγ̄)

)
which completes the proof of the first implication.

(⇐)
The converse implication is more sophisticated and needs several steps.
Let us introduce the set of paths which correspond to the support of ey-
bridges, y ∈ G:

Ωy := {X ∈ Ω : X0 = e,X1 = y}. (5.27)

Now we partition Ωy according to the skeleton of its elements:

Ωy =
⋃

ϕ∈L +
y

Ωy,ϕ, Ωy,ϕ := Ωy ∩ {X ∈ Ω : ϕX = ϕ} (5.28)

where L +
y = {ϕ ∈ NGν :

∑
g∈Gν

gϕ(g) = y, `(ϕ) < +∞}. (5.29)
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In order to discretize the time, we introduce a mesh h ∈ N∗ and parti-
tion Ωy,ϕ by specifying the number of different jumps occurred in each h-
dyadic interval. That is, we consider functions θ : {0, .., 2h− 1}×Gν −→ N
and we look for paths which have θ(k, g) jumps of type g during the time
interval Ihk := (2−hk, 2−h(k + 1)], for each k and each g ∈ Gν . For each
skeleton ϕ we define the set

Θh
ϕ :=

{
θ : {0, .., 2h − 1} ×Gν −→ N,

∑
0≤k≤2h−1

θ(k, g) = ϕ(g), ∀g ∈ Gν

}
(5.30)

of all possible h-dyadic time repartition of the jumps, compatible with the
skeleton ϕ. We thus obtain Ωy,ϕ =

⋃
θ∈Θhϕ

Ωh,θ
y,ϕ where

Ωh,θ
y,ϕ := {X ∈ Ωy : µ(Ihk × {g}) = θ(k, g), 0 ≤ k < 2h, g ∈ Gν}. (5.31)

Consider the set

V :=
{
v = (ϕ, θ) with ϕ ∈ L +

y , θ ∈ Θh
ϕ

}
(5.32)

of pairs of skeletons connecting e to y and h-dyadic time repartition of their
jumps. Elements of this set are discrete versions of paths of Ω: the spatial
structure of the path is given by the skeleton ϕ, and the time structure is
approximated by θ. One equips V with the following l1-metric:

d(v, ṽ) :=
∑

(k,g)∈{0,··· ,2h−1}×Gν

|θ − θ̃|(k, g) ∈ N, v = (ϕ, θ), ṽ = (ϕ̃, θ̃) ∈ V.

(5.33)
Take now two paths X,X ′ ∈ Ωy and their trace v, v′ on V. Our aim is to
find a way to transform X into X ′ (resp. v into v′) by adding or removing
a finite number of loops whose skeletons belong to the basis B. Let us
introduce the following relation:

v1 = (ϕ1, θ1) ↪→ v2 = (ϕ2, θ2) if ϕ2 ∈ ϕ1 + B and θ2 − θ1 ∈ Θh
ϕ2−ϕ1

. (5.34)

We shall now use assumptions (H1) and (H2).

Lemma 5.4.1. For each v and ṽ 6= v ∈ V on can construct a connecting finite
sequence v1, · · · , vN = ṽÑ , ṽÑ−1, · · · , ṽ1 in V such that

v ↪→ v1 ↪→ · · · ↪→ vN = ṽÑ ←↩ ṽÑ−1 · · · ←↩ ṽ1 ←↩ ṽ.

Proof. We distinguish two cases:
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Case i) The skeletons ϕ and ϕ̃ coincide.
In this case, it is sufficient to show that we can construct v1 and ṽ1

in V such that v ↪→ v1, ṽ ↪→ ṽ1, ϕ1 = ϕ̃1 and d(v1, ṽ1) ≤ d(v, ṽ) − 1.
The conclusion would then follow by iterating this procedure until
d(vK , ṽK) = 0, i.e. vK = ṽK . At this point, we have constructed a
chain from v to vK , and another one from ṽ to ṽK . Joining them, we
obtain a chain from v to ṽ and the conclusion follows.
Therefore, let us indicate how to construct v1 and ṽ1. Since θ 6= θ̃
but ϕ = ϕ̃ there exists a jump g ∈ Gν and two time intervals Ihk and
Ihl such that θ(k, g) ≥ θ̃(k, g) + 1 and θ(l, g) ≤ θ̃(l, g) − 1. Moreover,
thanks to (H2) there exists at least one skeleton ϕ∗ in the basis B
containing the jump g: ϕ∗(g) > 0. Consider now any time repartition
θ1 ∈ Θh

ϕ∗ such that θ1(l, g) ≥ 1. We then construct θ̃1 as follows:

θ̃1 = θ1 + 1{(k,g)} − 1{(l,g)}.

It is simple to check that v1 := (ϕ + ϕ∗, θ + θ1), ṽ1 := (ϕ + ϕ∗, θ̃ + θ̃1)
fulfill the desired requirements. By construction, v ↪→ v1, ṽ ↪→ ṽ1 and
v1, ṽ1 have the same skeleton. Moreover

|θ + θ1 − (θ̃ + θ̃1)| = |θ − θ̃| − 1{(k,g),(l,g)} (5.35)

so that d(v1, ṽ1) = d(v, ṽ)− 2.

Case ii) The skeletons ϕ and ϕ̃ differ.
We first observe that, if ϕ, ϕ̃ ∈ L +

y thus ϕ− ϕ̃ ∈ L . Since B is a basis
of the lattice L (see (H1)), there exist (ϕ∗j)

K
j=1, (ϕ̃

∗
i )
K̃
i=1 ⊆ B such that

ϕ+
K∑
j=1

ϕ∗j = ϕ̃+
K̃∑
i=1

ϕ̃∗i . (5.36)

Let us now choose for all j and i a time repartition θj ∈ Θh
ϕ̃∗j

and

θ̃i ∈ Θh
ϕ̃i

. It is straightforward to verify that, if we define

v0 = v, vj := (ϕ+

j∑
j′=1

ϕ∗j′ , θ+

j∑
j′=1

θj′), ṽ0 = ṽ, ṽi := (ϕ̃+
i∑

i′=1

ϕ̃∗i′ , θ̃
∗+

i∑
i′=1

θ̃i′)

(5.37)
then (vj)

K
j=0,(ṽi)K̃i=0 are two sequences connecting v to vK and ṽ to ṽK̃ .

By construction vK , ṽK̃ have the same skeleton and one can use case
i) again.
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Figure 5.2: In this picture we illustrate by an example the proof of Lemma
20. Take G = (Z,+), and Gν = {−1, 1, 2}, situation which is treated in
Section 3.1.1. B = {ϕ1, ϕ2}, where ϕ1 := 11 + 1−1 and ϕ2 := 12 + 21−1, is a
basis fulfilling H1) and H2). The picture shows how to transform the path
a) in the path f) by mean of addition and cancellation of loops whose skele-
ton belongs to B. All loops that are either added or removed are denoted
by red dashed lines, which correspond to their jumps. At first, following
case ii), we have to modify the loop a) to match its skeleton (2,2,0) with
that of f), (3,1,1). Therefore in b) we remove a loop with skeleton ϕ1, then
in c) add back a loop with skeleton ϕ2. The skeleton is now the desired
one. Now we follow case i): we shift one jump of height −1 and one of
height 1 further right. Since those two jumps form a loop with skeleton ϕ1

we simply delete them in d) and add a new loop with the same skeleton,
but now with the desired jump times in e).

In the next lemma we compare the probability of the paths in Ωh,θ
y,ϕ and

those obtained by adding a loop with skeleton ϕ∗ ∈ B, under P and under
R.

Lemma 5.4.2. Let y ∈ G, h ∈ N∗, ϕ ∈ L +
y , θ ∈ Θh

ϕ be fixed. Suppose (5.23)
holds under P . Then, for any ϕ∗ ∈ B and θ∗ ∈ Θh

ϕ∗ ,

P (Ωh,θ+θ∗

y,ϕ+ϕ∗)

R(Ωh,θ+θ∗

y,ϕ+ϕ∗)
=
P (Ωh,θ

y,ϕ)

R(Ωh,θ
y,ϕ)

. (5.38)
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Proof. Take an arbitrary ordering of the support of θ∗: (k1, g1), ..., (kN , gN).
To simplify the notation, we write θj (resp. θ∗j ) for θ(kj, gj) (resp θ∗(kj, gj)).
Consider the test function F (X, γ̄) = f(X) v(γ̄), where

f = 1
Ωh,θ+θ

∗
y,ϕ+ϕ∗

, and v(γ̄) = 1
Ωh,θ

∗
e,ϕ∗

(χγ̄). (5.39)

It is straightforward that

f ◦Ψγ̄(X) v(γ̄) = 1Ωh,θy,ϕ
(X) v(γ̄) P ⊗ ρn a.e.. (5.40)

Therefore, since F ∈Hϕ∗ , (5.23) holds and its right hand side rewrites as

Φν
ϕ∗

(∫
Γn
v(γ̄)(dt⊗ λ)⊗n(dγ̄)

)
P (Ωh,θ

y,ϕ). (5.41)

Concerning the left hand side, let us first rewrite it as

P
(
f(X)

∫
Γn\∆n

v(γ̄)M⊗n
X (dγ̄)

)
. (5.42)

Our aim is to show by a direct computation that the (discrete) stochastic
integral

∫
Γn\∆n

v(γ̄)dM⊗n
X (dγ̄) is actually constant for that choice of v ifX ∈

Ωh,θ+θ∗

y,ϕ+ϕ∗ .
First, we observe that an atom γ̄ ∈ Γn \ ∆n of M⊗n

X contributes (with the
value 1) to the integral if and only if χγ̄ ∈ Ωh,θ∗

e,ϕ∗ , that is if

]{i : γi ∈ Ihkj × {gj}} = θ∗j , 1 ≤ j ≤ N. (5.43)

We then need to count the atoms of M⊗n
X satisfying (5.43). This is equiva-

lent to count all ordered lists of n = `(ϕ∗) atoms of MX verifying that
1) the list contains no repetitions
2) for all 1 ≤ j ≤ N , the number of elements in the list which belong to
Ihkj × {gj} is θ∗j .
Therefore, for each j, we first choose a subset of cardinality θ∗j among θj+θ∗j
elements (recall thatX ∈ Ωh,θ+θ∗

y,ϕ+ϕ∗). To do that we have
(θj+θ∗j

θ∗j

)
choices. Then

we decide how to sort the list, and for this, there are n! possibilities.
Therefore

1
Ωh,θ+θ

∗
y,ϕ+ϕ∗

(X)

∫
Γn\∆n

v(γ̄)M⊗n
X (dγ̄) = 1

Ωh,θ+θ
∗

y,ϕ+ϕ∗
(X)n!

N∏
j=1

(
θj + θ∗j
θ∗j

)
(5.44)
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and (5.23) rewrites as

Φν
ϕ∗

∫
Γn
v(γ̄)(dt⊗ λ)⊗n(dγ̄) P (Ωy,ϕ) = n!

N∏
j=1

(
θj + θ∗j
θ∗j

)
P (Ωh,θ+θ∗

y,ϕ+ϕ∗). (5.45)

Since equation (5.23) holds underR, equation (5.45) holds underR as well.
SinceR gives positive probability to both events Ωy,ϕ and Ωh,θ+θ∗

y,ϕ+ϕ∗ , the iden-
tity (5.38) follows.

Remark that, with the notation of the above lemma, if we define v :=
(ϕ, θ) and w := (ϕ+ ϕ∗, θ + θ∗), then v ↪→ w.

Lemma 5.4.1 allows us to extend the conclusion of Lemma 5.4.2 to the
whole set of skeletons, as we will prove now.

Lemma 5.4.3. Let y ∈ G, h ∈ N∗, ϕ, ϕ̃ ∈ L +
y , θ ∈ Θh

ϕ, θ̃ ∈ Θh
ϕ̃ be fixed. Suppose

(5.23) holds under P . Then,

P (Ωh,θ̃
y,ϕ̃)

R(Ωh,θ̃
y,ϕ̃)

=
P (Ωh,θ

y,ϕ)

R(Ωh,θ
y,ϕ)

. (5.46)

Proof. We observe that v = (ϕ, θ) and ṽ = (ϕ̃, θ̃) are elements of V . As
proved above, there exists a connecting sequence (vi)

K
i=0 := (ϕi, θi)

K
i=0, with

v0 = v, vK = ṽ, linking v to ṽ, and such that either vi ←↩ vi+1 or vi ↪→ vi+1.
This entitles us to apply recursively Lemma 5.4.2 to any pair vi, vi+1 and
obtain

P (Ω
h,θi+1
y,ϕi+1)

R(Ω
h,θi+1
y,ϕi+1)

=
P (Ωh,θi

y,ϕi
)

R(Ωh,θi
y,ϕi)

= ... =
P (Ωh,θ

y,ϕ)

R(Ωh,θ
y,ϕ)

. (5.47)

The conclusion follows with i = N − 1.

We can now complete the proof of the converse implication of the main
theorem.
Fix x, y ∈ G with P (X0 = x,X1 = y) > 0. W.l.o.g. we assume that x =
e. Thanks to Lemma 5.4.3 we know that for any mesh h, there exists a
positive constant ch such that

P (Ωh,θ
y,ϕ) = chR(Ωh,θ

y,ϕ), ∀ϕ ∈ L +
y , θ ∈ Θh

ϕ. (5.48)

Now we show that the proportionality constant does not depend on the
scale of the time discretisation: ch = ch+1. To this aim, let us observe that

P (Ωy) =
∑

(ϕ,θ)∈V

P (Ωh,θ
y,ϕ) =

∑
(ϕ,θ)∈V

chR(Ωh,θ
y,ϕ) = chR(Ωy). (5.49)
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In the same way one gets P (Ωy) = ch+1R(Ωy) which implies that ch = ch+1.
Therefore, there exists a constant c > 0 such that

P (Ωh,θ
y,ϕ) = c R(Ωh,θ

y,ϕ), ∀h ∈ N∗, ϕ ∈ L +
y , θ ∈ Θh

ϕ. (5.50)

By standard approximation arguments this implies the equality between
P and c R on Ωy∩F which then implies P ey = Rey. The conclusion follows.

Remark 5.4.1. Consider the identities (5.23) for G = Rd and compute them
for particular test functions F which only depend on the skeleton of the paths.
These equations, indexed by the skeletons in B, then characterize the (marginal)
distribution of the random vector defined as the number of jumps of any type oc-
curred during the time interval [0, 1], as it was done in [20]. Note that for the
unconstrained random walk the distribution of this random vector is a multivari-
ate Poisson law, see e.g. [20] Section 2.2.1.

5.5 Examples

In this section, we present several examples of random walks defined on
finite or infinite Abelian groups G.
For each example, we verify if assumptions (H1) and (H2) are satisfied by
computing a basis B of skeleton of loops. We give explicitly the associated
reciprocal characteristics (5.24). In some cases, we also write down the in-
tegral formula (5.23), highlighting how it is influenced by the geometrical
properties of the underlying group G.
Finally, using Corollary 5.3.1 we answer the question of whether a µ-random
walk belongs or not to the reciprocal class of the reference walk R.(Recall
for definition of µ random walk as given by (5.1)). To denote a generic
µ-random walk we adopt the convenient notation Pµ. But this does not
apply to the reference walk, which is a ν-random walk, and we keep call-
ing it R rather than Pν . That is, we solve equation (5.25) and identify the
set of probability measures:

R(R) ∩ {Pµ : µ finite measure on Gν}. (5.51)

We will see that, in some cases, this set reduces to the singleton R and in
other cases, this set is non trivial.
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5.5.1 The group is infinite

The finite support Gν of the jump measure ν contains {−1, 1}.
For any z ∈ Gν \ {1}we define on Gν the non negative map ϕz as follows:

ϕz = 1z + |z|1−sgn(z).

It corresponds to the skeleton of paths with one jump of type z and |z|
jumps of type−sgn(z). As candidate for the lattice basis of L , we propose

B := {ϕz}z∈Gν\{1}. (5.52)

Assumption (H2) is trivially satisfied and it is clear that the elements of B
are linearly independent. Therefore we only need to check if B spans L ,
that is, if for each φ ∈ L , there exist integer coefficients αz ∈ Z such that

∀z̄ ∈ Gν , φ(z̄) =
∑
z∈Gν
z 6=1

αzϕz(z̄). (5.53)

We now verify that the following choice is the right one:

For z ∈ Gν \ {−1,+1}αz = φ(z) and α−1 = φ(−1)−
∑
z∈Gν
z>1

zφ(z). (5.54)

• z̄ /∈ {−1,+1}. Since ϕz̄ is the only element of B whose support con-
tains z̄, we have

φ(z̄) = αz̄ ϕz̄(z̄) =
∑
z∈Gν
z 6=1

αz ϕz(z̄) (5.55)

• z̄ = −1. Notice that −1 belongs to the support of any ϕz, as soon as
z > 1. Therefore

φ(−1) =
∑
z∈Gν
z>1

φ(z)z+α−1 =
∑
z∈Gν
z>1

αzϕz(−1)+α−1 ϕ−1(−1) =
( ∑
z∈Gν
z 6=1

αzϕz

)
(−1).

(5.56)

• z̄ = 1. Notice that +1 belongs to the support of any ϕz, as soon as
z ≤ −1. Recall that φ ∈ L . Therefore

φ(1) = −
∑
z∈Gν
z 6=1

φ(z)z =
∑
z∈Gν
z<1

−φ(z)z + φ(−1)

=
∑
z∈Gν
z≤−1

αz ϕz(1) =
( ∑
z∈Gν
z 6=1

αzϕz

)
(1).
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Let us now compute the reciprocal characteristics associated to each skele-
ton in B:

Φν
ϕz = ν(−sgn(z))|z| ν(z), z ∈ Gν \ {1}. (5.57)

Finally, thanks to Corollary 5.3.1, we obtain

Pµ ∈ R(R) ⇔ ∀z ∈ Gν \ {1}, µ(−sgn(z))|z| µ(z) = ν(−sgn(z))|z| ν(z)

⇔ ∃ α > 0 such that
dµ

dν
(z) = αz.

Example 5.5.1. Simple random walks: Gν = {−1, 1}.
Due to the above computations, the basis B of the lattice reduces to the singleton
{ϕ−1} and the unique reciprocal characteristics is given by

Φν
ϕ−1

= ν(−1)ν(1).

Therefore the only loops which appear in the integral characterization (5.23) have
length n = `(ϕ−1) = 2.
Test functions of the form

F (X, (γ1, γ2)) = f(X)1{g1=1,g2=−1}h(t1, t2) (5.58)

belong to Hϕ−1 . Such functions are supported by pairs (γ1, γ2) such that the
transformation Ψγ1,γ2 adds to any path a jump +1 at time t1 and a jump -1 at
time t2. The identity (5.23) now reads as:

P
(
f(X)

∑
(t1,t2):∆Xt1=1

∆Xt2=−1

h(t1, t2)
)

= ν(−1)ν(1)

∫
[0,1]2

P
(
f(Ψγ1,γ2X)

)
h(t1, t2) dt1dt2.

(5.59)
As in Remark 5.4.1, if we consider test functions f which only depend on the skele-
tons of the paths, f(X) = v(ϕX), we obtain that the distribution χ(dn−1, dn1) ∈
P(N2) of the number n−1 (resp. n1) of negative (resp. positive) jumps is charac-
terized by the system of equations: for all v ∈ P(N2),∫
v(n−1, n1) n−1 n1 χ(dn−1, dn1) = ν(−1)ν(1)

∫
v(n−1 + 1, n1 + 1)χ(dn−1, dn1),

χ(n1 = n−1) = 1.

This result coincides with [20], Example 2.18.
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Gν = {1, 2}.
In that case, since −1 does not belong to the support of the jump measure,
it leads to a case where (H2) is not satisfied. It is straightforward to prove
that the lattice L is one-dimensional and is equal to {zϕ∗, z ∈ Z}where

ϕ∗(1) = 2, ϕ∗(2) = −1. (5.60)

Clearly L does not admit a non negative basis.

5.5.2 G is the cyclic group Z/NZ
We now consider the finite cyclic groupG := Z/NZ =: {0,1,2, · · · ,N− 1}.

The support Gν of the jump measure reduces to {−1,1}.
This case corresponds to nearest neighbour random walks. The non nega-
tive basis B := {ϕN−1, ϕ

∗}where

ϕN−1 = 11 + 1N−1 = 11 + 1−1 and ϕ∗ = N11 (5.61)

is suitable. The associated reciprocal characteristics are

Φν
ϕN−1

= ν(1)ν(−1) and Φν
ϕ∗ = ν(1)N . (5.62)

The existence of the second invariant Φν
ϕ∗ corresponding to the loop around

the cycle {0,1,2, · · · ,N− 1} implies thatR is the unique nearest neighbor
random walk of the reciprocal class R(R). This differs from the nearest
neighbor random walk on Z, treated in Example 5.5.1. We proved there
that any random walk Pµ, with µ satisfying µ(−1)µ(1) = ν(−1)ν(1), in-
duces the same reciprocal class.

The distribution χ of the random vector (n−1, n1) under the 00-bridge
is given by the following system of integral equations, satisfied for any test
function v on N2:

∫
v(n−1, n1)n−1 n1 χ(dn−1, dn1)

= ν(−1)ν(1)
∫
v(n−1 + 1, n1 + 1)χ(dn−1, dn1),∫

v(n−1, n1)n1 · · · ( n1 − (N − 1))χ(dn−1, dn1)

= ν(1)N
∫
v(n−1, n1 +N)χ(dn−1, dn1),

χ(n1 − n−1 ∈ NZ) = 1.
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The support Gν of the jump measure covers Z/NZ \ {0}.
We now consider a random walk on Z/NZ which can jump anywhere:
Gν = Z/NZ \ {0}. Here, we focus for simplicity on the case N = 4, which
is the first non trivial example, and disintegrate the jump measure ν as
follows:

ν = ν(1) δ1 + ν(2) δ2 + ν(3) δ3, ν(1)ν(2)ν(3) > 0. (5.63)

It can be proven along the same lines as in the previous examples, that a
suitable non negative basis for the lattice L is given by B = {ϕ∗, η∗, ξ∗}
where

ϕ∗ = 11 + 13, η∗ = 411, ξ∗ = 211 + 12. (5.64)

Hence the associated reciprocal characteristics are:

Φν
ϕ∗ = ν(1)ν(3),Φη∗

ν = ν(1)4,Φν
ξ∗ = ν(1)2ν(2). (5.65)

We now turn our attention to the integral formula (5.23). Simple functions
F ∈Hξ∗ are of the form:

F (X, (γ1, γ2, γ3)) = f(X)1{g1=g2=1,g3=2}h(t1, t2, t3). (5.66)

(γ1, γ2, γ3) is in the support of F if two jumps of value 1 happen at times
t1, t2 and one jump of value 2 at time t3, leading to a global null displace-
ment since 4 = 0. The formula (5.23) reads:

P
(
f(X)

∑
(t1,t2,t3):t1 6=t2,
∆Xt1=∆Xt2=1

∆Xt3=2

h(t1, t2, t3)
)

= ν(1)2ν(2)P
(∫

[0,1]3
f
(
Ψγ1,γ2,γ3X

)
h(t1, t2, t3)

)
dt1dt2dt3.

(5.67)
The distribution of the random vector (n1, n2, n3) under the 00-bridge is
given by the following identities, valid for any v : N3 → R:∫

v(n1, n2, n3)n1n3 χ(dn1, dn2, dn3) = ν(1)ν(3)

∫ (
v(n1 + 1, n2, n3 + 1)χ(dn1, dn2, dn3)∫

v n1(n1 − 1)(n1 − 2)(n1 − 3)χ(dn1, dn2, dn3) = ν(1)4
∫
v(n1 + 4, n2, n3)χ(dn1, dn2, dn3)∫

v(n1, n2, n3)n1(n1 − 1)n2χ(dn1, dn2, dn3) = ν(1)2ν(2)

∫
v(n1 + 2, n2 + 1, n3)χ(dn1, dn2, dn3)

χ(n11+ n22+ n33 = 0) = 1.

In this situation, again R is the unique random walk of its reciprocal class.
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5.5.3 The state space is a product group

Consider the product of two groups, say G and G′, and two non negative
finite measures on them, say ν and ν ′, such that in both cases (H1) and (H2)
are satisfied. Then, the product group G × G′ equipped with the product
measure ν ⊗ ν ′ fulfills (H1) and (H2) too. The key idea is as follows: if B
and B′ are suitable basis of G and G′ then we can define for all η ∈ B,

ϕη : Gν ×Gν′ → N, ϕη(g, g
′) = η(g) (5.68)

and for all η′ ∈ B′,

ϕη′ : Gν ×Gν′ → N, ϕη′(g, g
′) = η′(g′). (5.69)

The set B⊗ = {ϕη}η∈B ∪ {ϕη′}η′∈B′ is an appropriate basis for the lattice of
skeletons defined on the product group.

Example 5.5.2. Random walk on the d-dimensional discrete hypercube
(Z/2Z)d.
The d-dimensional discrete hypercube is the d-product of the cyclic group with
two elements. We denote by (e1, · · · , ed) its canonical basis.
A random walk on the hypercube is defined uniquely through its jump measure
ν =

∑d
i=1 ν(i)δei . Since it can be realized as the product of d random walks on

Z/2Z, the basis B := {ϕ∗i }1≤i≤d , ϕ
∗
i = 21ei , is a suitable choice.

For the integral characterization it is enough to consider loops of length ` = 2.
However, we have here d different skeletons to consider. Test functions of the form

F (X, γ) = f(X)1{g1=g2=ei}h(t1, t2), 1 ≤ i ≤ d, (5.70)

belong to Hϕ∗i
. For any i ∈ {1, · · · , d} fixed, (5.23) reads as:

P
(
f(X)

∑
(t1,t2):t1 6=t2,

∆Xt1=∆Xt2=ei

h(t1, t2)
)

= ν(i)2

∫
[0,1]2

P
(
f
(
Ψγ1,γ2X

))
h(t1, t2)dt1dt2.

(5.71)
Concerning the distribution of the random vector (ne1 , · · · , ned), it has indepen-
dent marginals χi, 1 ≤ i ≤ d, which are characterized through the system of
equations: for all v ∈ P(N),∫

v(n) n(n− 1)χi(dn) = ν(i)2

∫
v(n+ 1)χi(dn),

χi(n ∈ 2N) = 1.
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Chapter 6

Random walks on a general graph

Outline of the chapter The reciprocal class of a Markov random walk
on a general graph is characterized. Duality formulae are no longer a use-
ful tool, because of the lack of symmetry in the graph. We propose two
other methods: we use short-time asymptotic probabilities and stochastic
calculus. Several examples are discussed. This chapter is based on the
submitted paper [21].

In this chapter we study the reciprocal class of a random walk on a
general graph. In this broad framework, there is no possibility to use
duality formulae as in the previous chapters. This is simply because the
graph does not possess the necessary translation-invariant structure, and
perturbations of the sample paths cannot be defined in a canonical way.
Therefore we rely mainly on Girsanov Theorem,h-transform techniques
and short time asymptotic to characterize the reciprocal class. The charac-
teristics are computed in full generality, recovering all the previous com-
putations as subcases. A complete probabilistic interpretation of them is
given. Recall that one of the many possible descriptions of a Markov ran-
dom walk with intensity j (see e.g. Th 3.2 in [60] ) and initial distribution
µ is by saying that it is the only Markov process whose law at time 0 is
given by µ and such that at any time t, if it sits in Xt, it will jump to z in a
small time interval of length h with probability j(Xt− → z)h+ o(h).

That is, we prescribe the initial distribution, Markov property and some
short time expansions along the arcs.

Here we generalize this to reciprocal walks. We prove that a recipro-
cal walk in R(R) is completely identified by the law of its endpoints, the

133
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reciprocal property and two families of short-time expansions: the first
family concerns the distribution of jump times and identifies the arc char-
acteristics. The second one concerns the probability of going around cycles
and identifies the cycle characteristics.

As a by product, we obtain an alternative dynamic characterization of
the bridge of the reference walk which, instead of looking at conditioning,
tells what properties of the reference walk are carried over to its bridges.

The results of this section, even when restricted to the graphs we al-
ready encountered in the previous chapters, bring new results: indeed we
do not assume that the reference intensity is space homogeneous. There-
fore we also revisit these situations. Concerning sharpness of the results,
an effort is also put in trying to optimize over the number of cycles which
we use in our characterization. This leads us to introduce what we call a
generating set for the set of cycles. In some interesting cases we can com-
pute such sets explicitly: for example, in the case of planar graphs, we
shall see that a generating set is given by the faces of the graph. They play
a role analogous to that of lattice basis which we discussed in Chapters
4 and 5. Another relevant example where such a generating set can be
computed is the discrete hypercube.

We are also interested in the form of the (predictable) intensity associ-
ated with a reciprocal process, and we prove some representation results,
which extend and clarify some results about h-transforms, which are bet-
ter known for diffusion processes.

A list of examples is discussed in quite some detail. We consider, in
particular: directed trees, birth and death processes, some planar graphs,
the hypercube, the complete graph and some Cayley graphs. We calculate
their reciprocal characteristics and sometimes solve the associated charac-
teristic equation.

Organization of the material

Next Section 6.1 is devoted to some preliminaries about directed graphs,
Markov walks and their intensities. Our main results are stated at Sec-
tion 6.2. They are Theorems 6.2.1 and 6.2.2, together with their Corollary
6.2.1. Their proofs are given in section 6.3. The key preliminary result is
Lemma 6.3.2. Some more results about the elements of the reciprocal class
are proved at Section 6.4. In particular, we give at Proposition 6.4.1 an-
other characterization of R(R) in terms of the shape of the jump intensity
of any element of the class. The characteristic equation (6.25) seen as an
equation of the unknown P x where j is given is also solved at Theorem
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6.4.1. Several examples are treated at Section 6.5.

6.1 Preliminaries

We are in the general setting described in section 2.3.1, (X ,→) is a directed
graph. On it is defined a jump intensity j : [0, 1] × A → R≥0. The graph
and the intensity together satisfy Assumption 2.3.1. A reference random
walk of intensity j and initial measure of full support is given. We want
to study its reciprocal class R(R). We now introduce some extra notation
which complements the one introduced in chapter 2.

Remark 6.1.1. Since any element of R(R) is absolutely continuous with respect
to R, by Girsanov’s theorem it admits a predictable intensity of jumps, see [36,
Thm. 5.1] and the discussion at Section 2.3.3. This will be used constantly in the
rest of the chapter.

6.1.1 Directed subgraphs associated with an intensity

Here we generalize in a coherent way the definition of A→(j) given at
point iv) of Assumption 2.3.1. There are two relevant graph structures
that are associated with the intensity k. The subgraph of k-active arcs at
time t is the subset

A→(t, k) := {(z → z′) ∈ A : k(t, z → z′) > 0}

and its symmetric extension is denoted by

A↔(t, k) := {(z → z′), (z′ → z); (z → z′) ∈ A→(t, k)} .

Only Markov intensities such that these structures do not depend on
time will be encountered, see (6.1) below.

Definition 6.1.1 (The directed subgraphs associated to k). In the situation
where A→(t, k) does not depend on t, i.e.

A→(t, k) = A→(k), ∀t ∈ [0, 1), (6.1)

A→(k) is called the subgraph of k-active arcs and A↔(k) denotes its symmetric
extension.

The symmetrized subgraph will be necessary for considering cycles.
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6.1.2 Directed subgraphs associated with a random walk

If P ∈ P(Ω) is a Markov random walk with an intensity k that satisfies
(6.1). Since (X ,→) of bounded degree, and P -almost every sample path
performs finitely many jumps, the assumption (6.1) implies that the sup-
port of Pt ∈ P(X ) remains constant for each time 0 < t < 1. We denote
this set by

X (P ) := supp(P1/2) ⊂ X .
It is the set of all vertices that are visited by the random walk P . Note

that the initial and final times t = 0 and t = 1 are excluded to allow for P
to be a bridge. We always have suppP0 ⊆ X (P ) and suppP1 ⊆ X (P ); these
inclusions may be strict.

The directed subgraph (X (P ),A→(P )) of all the P -active arcs is the
subgraph of (X ,A→(k)) which is defined by

A→(P ) := {(z → z′) ∈ A→(k) : z, z′ ∈ X (P )} .

Its symmetric extension is

A↔(P ) := {(z → z′), (z′ → z); (z → z′) ∈ A→(k), z, z′ ∈ X (P )} .

Let us provide some comment to make the relation between A→(k) and
A→(P ) clearer. If the initial marginal P0 is supported by a proper subset of
X , it might happen that A→(P ) is a proper subset of A→(k) and also that
A↔(P ) is a proper subset of A↔(k). For instance, let k be the intensity of
the Poisson process on X = Z given by k(t, n → n + 1) = λ > 0 for all
0 ≤ t ≤ 1 and n ∈ Z. Let P be the Poisson random walk with intensity λ
and initial state n0 ∈ Z. Then,A→(k) = {(n→ n+ 1);n ∈ Z} andA→(P ) =
{(n→ n+ 1);n ∈ Z, n ≥ n0} .
Definition 6.1.2 (About the j-active arcs from x to Y). Let x ∈ X be any
vertex and Y be any nonempty subset of suppRx

1 .

(i) We define the subgraph

AR→(x,Y) := ∪y∈YA→(Rxy)

of all the arcs that constitute the A→(j)-walks from x to Y .

(ii) We denote AR↔(x,Y) its symmetric extension.

(iii) We define the set
XR(x,Y) := projX AR→(x,Y)

of all vertices visited by the A→-walks starting at x and ending in Y .
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The AR→(x,Y) is constructed by considering all arcs of (X ,→) that can
be traversed by a bridge Rxy whose final state belongs to Y . XR(x,Y) is
then the set of all vertices touched by arcs in XR(x,Y).

Remark 6.1.2. Remark that {x} and Y may be proper subsets of XR(x,Y) as
the example of a bridge Rxy suggests in many situations. We also have for any
P ∈ P(Ω),

({x} ∪ suppP x
1 ) ⊂ X (P x) = projX A→(P x)

where the inclusion may be strict.

6.1.3 Gradients and generating sets of cycles

We provide some basics about gradients on graphs. Most of the notions
are close to what is known for gradients of functions in Rd.

Definition 6.1.3 (gradient, cycles of length two). (i) Let A↔ be a symmet-
ric set of arcs. The set of cycles of length two is denoted E

E = {(z → z′ → z); (z → z′) ∈ A↔} (6.2)

(ii) Let A ⊂ X specify a directed graph (X ,→) on X with. An arc function
` : A → R is the gradient of the vertex function ψ : X → R if

`(z → z′) = ψ(z′)− ψ(z), ∀(z → z′) ∈ A. (6.3)

(iii) For any arc function `, and any walk w = (x0 → .. → xn) we denote
`(w) := `(x0 → x1) + · · ·+ `(xn−1 → xn).

The following is a well known result.

Lemma 6.1.1. Let A↔ be a symmetric set of arcs. The function ` : A↔ → R is a
gradient if and only if `(c) = 0, for any closed A↔-walk c.

Proof. At first, let us observe that we can assume w.l.o.g. that (X,A) is
connected. Otherwise, we can simply repeat the proof for each connected
component. Since A↔ is a symmetric set, connected components are de-
fined in a natural way, and there is no ambiguity. If ` is the gradient of ψ,
then `(w) = ψ(xn) − ψ(x0), which vanishes when w = (x0 → · · · → xn) is
a cycle.
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Conversely, let ` be such that `(c) = 0, for all A↔-cycle c. As (z → z′ →
z) is a cycle, we have

`(z → z′) + `(z′ → z) = 0, ∀z ↔ z′ ∈ X . (6.4)

Choose a tagged vertex ∗ ∈ X , set ψ(∗) = 0 and for any x 6= ∗, define

ψ(x) := `(w), for any w ∈ {(∗ → x1 → · · · → xn = x), for some n ≥ 1} .

To see that this is a meaningful definition, take two paths w = (∗ →
x1 · · · → xn) and w′ = (∗ → y1 · · · → ym) such that xn = ym = x. As
(∗ → x1 · · · → xn = x = ym → ym−1 → · · · → ∗) is a cycle, we have
0 = `(∗ → x1 · · · → x) + `(x→ ym−1 → · · · → ∗) = `(w)− `(w′), where the
last equality is obtained with (6.4). Therefore, ψ is well defined. Finally, it
follows immediately from our definition of ψ that `(z → z′) = ψ(z′)−ψ(z),
for all (z → z′) ∈ A↔.

We introduce the notion of generating set of cycles which turns out to
be useful when deriving sharp characterizations of reciprocal classes. It
generalizes the notion of lattice set and generating set for a lattice, which
we widely use in Chapter 4 and 5.

Definition 6.1.4 (Generating set of C). We say that a subset Co of the set of
cycles C generates C if for any arc function ` : A↔ → R, we have:

`(c) = 0, ∀c ∈ Co ⇒ `(c) = 0, ∀c ∈ C.

Let us point out that we do not ask Co to be minimal with respect to the
inclusion. The whole set of cycles C is always a generating set. Of course,
the smaller Co is, the sharper is the characterization of the reciprocal class.
In this definition it is not assumed that A is symmetric.

6.2 Main results

Before stating the main results of the chapter, we still need to define the
reciprocal characteristics. The definition we are going to give in a few lines
generalizes all the previous ones.

6.2.1 Reciprocal characteristics

Definition 6.2.1 (Reciprocal characteristics of a Markov random walk). Let
P ∈ P(Ω) be a Markov random walk with its jump intensity k which is assumed
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to satisfy (6.1) and to be continuously t-differentiable, i.e. for any (z → z′) ∈
A→(P ) the function t 7→ k(t, z → z′) is continuously differentiable on the semi-
open time interval [0, 1).

(i) We define for all t ∈ [0, 1) and all (z → z′) ∈ A→(P ),

χa[P ](t, z → z′) := ∂t log k(t, z → z′) + k̄(t, z′)− k̄(t, z)

where k̄(t, z) is the total intensity of jump, see (2.11).

(ii) We define for all t ∈ [0, 1) and any cycle c = (x0 → · · · → x|c| = x0)
on the directed graph (X ,A↔(P )) associated with the symmetric extension
A↔(P ) of A→(P ),

χc[P ](t, c) :=
∏

(xi→xi+1)∈A→(P )

k(t, xi → xi+1)/
∏

(xi→xi+1)∈A0(P )

k(t, xi+1 → xi)

where

A0(P ) := A↔(P )\A→(P ) = {(z → z′) ∈ A↔(P ) : k(t, z → z′) = 0, ∀t ∈ [0, 1)}

is the set of all k-inactive arcs. No graph structure is associated to A0(P ).

(iii) We call χ[P ] = (χa[P ], χc[P ]) the reciprocal characteristic of P .
The term χa[P ] is the arc component and χc[P ] is the cycle component
of χ[P ].

(iv) We often write
χ[R] =: χ[j]

to emphasize the role of the reference intensity j.

(v) A cycle c as in item (b) above is shortly called a A↔(P )-cycle.

Note that no division by zero occurs and that under our regularity as-
sumption on k, ∂t acts on a differentiable function: χ[P ] is well defined.

Consistency with all the previous definitions We shall recover the def-
initions we gave in Chapter 3,4,5 as special cases of Definition 6.2.1. Con-
cerning Chapter 3, let us observe that the graph is (Z,→), with z → z′ ⇔
z′ = z+1. The cycle characteristics is trivially 1 on this graph, and since the
only arc outgoing from z goes towards z + 1 we have that j̄(t, z) = j(t, z)
for all t, z, where j(t, z) is the convention for the intensity we adopted in
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Chapter 3. Therefore the arc characteristic at point (i) of Definition (6.2.1)
coincides with that of Definition 3.2.1.

In chapter 4, (X ,→) was a lattice. The arc characteristic introduced in
Definition 4.2.2 along an arc of the type (x→ x+ al) is worth

jl(t)/jl(s).

Here, according to our definition, since in the hypothesis of Chapter 4 the
total intensity is constant among all vertices at any time, we have:

χa[R](t, x→ x+ al) = ∂t log j(t, x→ x+ al) = ∂t log jl(t)

This definition is not numerically equal to jl(t)/jl(s) but, reasoning as in
Remark 4.2.3 we get their equivalence, in the sense that they encode the
same information on j.

Concerning Definition 4.3.1, using the notation of Chapter 4, for any c
in the lattice kerZ(A), we can choose a function η : {1, .., |c|} → {1, .., A}
with the property that:

]{m : η(m) = l} = cl ∀1 ≤ l ≤ A

and define, for an arbitrary x0 ∈ X , the cycle c̃ of (X ,→)

c̃ := (x0 → x0 + aη1 → x0 + aη1 + aη2 → ..→ x0)

Then we have:
Φc
j = χc[R](t, c̃)

An argument completely identical to the last one yields that the defini-
tions of Chapter 5 can be inscribed in the current framework.

6.2.2 The main results

They are stated at Theorems 6.2.1, 6.2.2 and Corollary 6.2.1. Theorem 6.2.1
gives a characterization of the reciprocal class of j in terms of the recipro-
cal characteristics. Theorem 6.2.2 provides an interpretation of the recipro-
cal characteristics of a reciprocal walk by means of short-time asymptotic
expansions of some conditional probabilities. Putting together these the-
orems leads us to Corollary 6.2.1 which states a characterization of the
reciprocal class in terms of these short-time asymptotic expansions.

Theorem 6.2.1 (Characterization of R(R)). Let (X ,→) and j satisfy Assump-
tion 2.3.1.
A random walk P ∈ P(Ω) belongs to R(R) if and only if the following assertions
hold
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(i) It is a reciprocal walk and P � R

(ii) For all x ∈ suppP0 the conditioned random walk P x admits an intensity
kx(t, z → z′) which is t-differentiable on [0, 1).

(iii) The subgraph of all P x-active arcs doesn’t depend on t and is given by

X (P x) = XR(x, suppP x
1 ), A→(P x) = AR→(x, suppP x

1 ).

(iv) For any t ∈ [0, 1) and any (z → z′) ∈ AR→(x, suppP x
1 ), we have

χa[P
x](t, z → z′) = χa[j](t, z → z′). (6.5)

(v) For any t ∈ [0, 1) and any AR↔(x, suppP x
1 )-cycle c, we have

χc[P
x](t, c) = χc[j](t, c). (6.6)

Remark 6.2.1. In point (ii) we tacitly assumed that the intensity is of the form
kx(t, z → z′), i.e. it is the intensity of a Markov walk. This is not a contradiction.
Indeed we have shown at Proposition 2.1.2 that pinning a reciprocal probability
gives a Markov probability. Therefore, since P is reciprocal, P x is Markov.

In some cases where the graph enjoys regularity, the property (iv) above
can be weakened by only considering the identity (6.6) on a generating set
of the AR↔(x, suppP x

1 ). This is made precise below at Proposition 6.2.1.
The reciprocal characteristics come with a natural probabilistic inter-

pretation which is expressed in terms of short-time asymptotic of the dis-
tribution of bridges. We shall show that they can be recovered as quantities
related to Taylor expansions as h > 0 tends to zero of conditional proba-
bilities of the form P (X[t,t+h] ∈ · | Xt, Xt+h). This is the content of Theorem
6.2.2 below.

Let us introduce the notation needed for its statement. For any integer
k ≥ 1 and any 0 ≤ t < 1, we denote by T tk the k-th instant of jump after
time t. It is defined for k = 1 by T t1 := inf {s ∈ (t, 1] : Xs− 6= Xs} and for any
k ≥ 2 by T tk := inf

{
s ∈ (T tk−1, 1] : Xs− 6= Xs

}
with the convention inf ∅ =

+∞.

Theorem 6.2.2 (Interpretation of the characteristics). Let (X ,→) and j sat-
isfy Assumption 2.3.1. Let P be any random walk in R(R).



142 CHAPTER 6. RANDOM WALKS ON A GENERAL GRAPH

(a) For any t ∈ [0, 1), any (z → z′) ∈ A→(P x) and any measurable subset
I ⊂ [0, 1] , we have

P (T t1 ∈ t+ hI | Xt = z,Xt+h = z′, T t2 > t+ h)

=

∫
I

dr + hχa[j](t, z → z′)

∫
I

(r − 1/2) dr + oh→0+(h).

(6.7)

(b) For any t ∈ [0, 1) and any closed A→(P x)-walk c, we have

P
(

(Xt → XT t1
→ · · · → XT t|c|

= Xt) = c, T t|c| < t+ h < T t|c|+1 | Xt = Xt+h

)
= χc[j](t, c)h|c|/|c|! + oh→0+(h|c|).

(6.8)

Note that in statement (b), only cycles with respect to A→(P x) and not
its symmetrized version A↔(P x) must be taken into account.
This theorem extends by a large amount the early findings of section 4.6.

In the same spirit that a Markov walk is specified by the Markov prop-
erty and its jump intensity which can be obtained as the limit in small
time of a conditional expectation, we obtain the following characteriza-
tion of R(R). The same observations made in Remark 6.2.1 hold true for
the following results:

Corollary 6.2.1 (Short-time expansions characterize R(R)). Let (X ,→) and
j satisfy Assumption 2.3.1. In addition, we also assume that the directed graph is
symmetric, i.e.

A→(j) = A↔(j).

Then a random walk P ∈ P(Ω) belongs to R(R) if and only if the following
assertions hold.

(i) P is reciprocal and P � R.

(ii) For all x ∈ suppP0 the conditioned random walk P x admits an intensity kx

which is t-differentiable on [0, 1).

(iii) The subgraph of all P x-active arcs doesn’t depend on t and is given by

X (P x) = XR(x, supp(P x
1 )), A→(P x) = AR→(x, suppP x

1 ).

(iv) For any t ∈ (0, 1), any (z → z′) ∈ A→(P x) and any measurable subset
I ⊂ [0, 1] , the identity (6.7) is satisfied with P = P x.
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(v) For any t ∈ (0, 1) and any A↔(P x)-cycle c the identity (6.8) is satisfied
with P = P x.

The assumption A→(j) = A↔(j) is needed for Corollary 6.2.1 to hold.
Without any restriction on the structure of the graph, this result is false in
general. However, it is possible to relax this restriction in some specific
situations. For instance, it is the case of the non-oriented triangle at page
163.

It is possible to improve the statements of Theorem 6.2.1 and Corollary
6.2.1 as follows.

Proposition 6.2.1. The conclusions of Theorem 6.2.1 and Corollary 6.2.1 remain
unchanged when weakening the properties (iv) by only considering cycles c in
any generating subset of the closed A↔(P x)-walks, see Definition 6.1.4.

6.3 Proofs of the main results

Let P be any element of R(R), x ∈ suppP0. We know with Proposition
2.2.2 and 2.1.2 that P x � Rx and that P x is Markov. Therefore P admits
an intensity of the form k(t,Xt− → Xt) and the related Girsanov formula
(see section 2.3.3) is for each x ∈ suppP0,

dP x

dRx
= 1{τ=∞} exp

(
−
∫ 1

0

(k̄ − j̄)(t,Xt−) dt

+
∑

0<t≤1:Xt− 6=Xt

log
k

j
(t,Xt− → Xt)

)
(6.9)

where the stopping time τ is given by

τ := inf
{
t ∈ [0, 1); k(t,Xt− → Xt) = 0

or
∫ t

0

k̄(s,Xs) ds =∞
}
∈ [0, 1] ∪ {∞}

with the convention inf ∅ =∞.

Lemma 6.3.1 (HJB equation). For any x ∈ X and any nonnegative function
h1 : X → [0,∞) such that ERxh1(X1) = 1, the function ψx defined by{

ψx(t, z) := logERx [h1(X1)|Xt = z] ∈ R, t ∈ (0, 1), z ∈ XR(x, supph1)

ψx(0, x) := 0, t = 0, z = x,
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is a well-defined real function which satisfies the following regularity properties:

(i) for all z ∈ XR(x, supph1), t 7→ ψxt (z) is continuously differentiable on
(0, 1),

(ii) limt→0+ ψxt (x) =: ψx0 (x) = 0,

(iii) limt→1− ψ
x
t (z) =: ψx1 (z) ∈ R exists for all z ∈ supph1,

and for each 0 ≤ T ≤ 1, the Itô formula

ψxT (XT ) := log hT (XT ) =
∑

0<t≤T ;Xt− 6=Xt

[ψxt (Xt)− ψxt (Xt−)]

+

∫
[0,T ]

∂tψ
x
t (Xt) dt ∈ R, h1(X1)Rx − a.s.

(6.10)

is meaningful.
Furthermore, ψx is a classical solution of the Hamilton-Jacobi-Bellman equation

∂tψt(z) +
∑

z′:(z→z′)∈AR→(x,supph1) j(t, z → z′) [eψt(z
′)−ψt(z) − 1] = 0,

t ∈ (0, 1), z ∈ XR(x, supph1)

lims→1− ψs(y) = log h1(y), t = 1, y ∈ supph1.
(6.11)

Remark 6.3.1. (a) It is important to see that the identity (6.10) is only valid
almost surely with respect to 1supph1(X1)R, but not with respect to R.

(b) Note that if z → z′ ∈ AR→(x, supph1), then both z, z′ are in XR(x, supph1).
Therefore both ψxt (z) and ψxt (z′) are well defined, and then so is the sum
appearing in the HJB equation (6.11).

Proof. The function h(t, z) := ERx [h1(X1) | Xt = z], 0 < t ≤ 1, z ∈ X (Rx)
is space-time harmonic. We are going to show that it satisfies the Kol-
mogorov equation

(∂t + Gt)h(t, z) = 0, 0 < t < 1, z ∈ X (Rx).

in the classical sense. Gt is the generator of the reference walk R, see
Definition 2.3.2 Remark that it is needed that z ∈ suppRx

t for the condi-
tional expectation to be well defined. But the assumption 2.3.1 implies that
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suppRx
t = X (Rx) for all 0 < t ≤ 1. We obtain h(t, ·) = ←−exp(

∫ 1

t
Gs ds) (h1)

where the ordered exponential is defined by:

←−exp
( ∫ 1

t

Gs ds
)

:= Id +
∑
n≥1

∫
t≤s1≤···≤sn≤1

Gs1 · · ·Gsn ds1 · · · dsn.

The continuity of Gt (recall that j is t-continuous) ensures that its for-
mal left t-derivative is −Gt

←−exp
( ∫ 1

t
Gs ds

)
. Furthermore,←−exp

( ∫ 1

t
Gs ds

)
and

Gt
←−exp
( ∫ 1

t
Gs ds

)
are absolutely summable series. More precisely, for any

nonnegative h1 in L1(Rx
1), we know by a martingale argument that ht =

←−exp
( ∫ 1

t
Gs ds

)
h1 is in L1(Rx

t ). Hence, h(·, z) is continuous at t = 1 for all
z ∈ X (Rx) and h(·, x) is continuous at t = 0. In addition, with the as-
sumed uniform boundedness of Gt(see iii) of Assumption 2.3.1), we see
that Gt

←−exp
( ∫ 1

t
Gs ds

)
h1 = Gtht is also in L1(Rx

t ). Therefore, h is continu-
ously left t-differentiable on [0, 1). But the continuity of the left derivative
implies both the existence and the continuity of the derivative. Conse-
quently, the backward differential system{

(∂t + Gt)h(t, z) = 0, 0 < t < 1, z ∈ X (Rx),

lim
t→1−

h(t, y) =: h(1, y) = h1(y), t = 1, y ∈ X (Rx),
(6.12)

can be considered in the classical sense and

lim
t→0+

h(t, x) =: h(0, x) = 1

since h(0, x) = 1 is fixed by hypothesis.
On the other hand, point iv) of Assumption 2.3.1 implies that for all

0 < t < 1 and z ∈ XR(x, supph1) ⊂ X (Rx), h(t, z) is positive. It follows
that we are allowed to define ψxt (z) := log h(t, z) as a real number for any
0 < t < 1 and any z ∈ XR(x, supph1). Of course, for t = 0 one must only
consider z = x and limt→0+ ψxt (x) = ψx0 (x) = 0.
We have shown that the regularity properties (i,ii,iii) are satisfied.
The Itô formula

ψxT (XT ) = ψxS(XS) +
∑

S<t≤T ;Xt− 6=Xt

[ψxt (Xt)− ψxt (Xt−)]

+

∫
[S,T ]

∂tψ
x
t (Xt) dt ∈ (−∞,∞), h1(X1)Rx − a.s.

(6.13)

is meaningful for all 0 < S ≤ T < 1. Indeed, under Assumption 2.3.1 there
are finitely many jumps Rx − a.s. and we have already seen that ψxt (Xt)
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is finite for every 0 ≤ t < 1, h1(X1)Rx − a.s. Therefore, ψxT (XT ), ψxS(XS)
and

∑
S<t≤T ;Xt− 6=Xt

[ψxt (Xt)−ψxt (Xt−)] are finite. It follows that the integral∫
(S,T ]

∂tψ
x
t (Xt) dt is also well-defined h1(X1)Rx − a.s.

Letting S tend to 0 and T to 1 in (6.13), with the limits (ii) and (iii) we obtain
(6.10) where the integral

∫
[0,T )

∂tψ
x
t (Xt) dt is well defined h1(X1)Rx − a.s.

Finally, considering h = eψ
x in (6.12) gives the HJB equation (6.11) and

completes the proof of the lemma.

The following result is the key lemma of the proof of Theorem 6.2.1.

Lemma 6.3.2. If the random walk P ∈ P(Ω) belongs to R(R) then P � R and
the following assertions are satisfied.

(i) It is a reciprocal walk and P � R

(ii) For all x ∈ suppP0 the conditioned random walk P x admits an intensity
kx(t, z → z′) which is t-differentiable on [0, 1).

(iii) The subgraph of all P x-active arcs doesn’t depend on t and is given by

X (P x) = XR(x, suppP x
1 ), A→(P x) = AR→(x, suppP x

1 ).

(iv) The function ψx : (0, 1)×XR(x, suppP x
1 )→ R defined by :

ψx(t, z) := logERx(h(X1)|Xt = z), h(z) :=
dP x

1

dRx
1

(z)

is such that for all z ∈ XR(x, suppP x
1 ), t 7→ ψxt (z) is continuously differ-

entiable on (0, 1) and kx and ψx are linked by the relations

log
kx

j
(t, z → z′) = ψxt (z′)− ψxt (z), (6.14)

∂tψ
x
t (z) + (k̄x − j̄)(t, z) = 0, (6.15)

for all t ∈ (0, 1), z ∈ XR(x, suppP x
1 ) and (z → z′) ∈ AR→(x, suppP x

1 ).

In (6.15), the average frequency of jumps k̄x(t, z) :=
∑

z′:z→z′ k
x(t, z → z′)

is finite everywhere on [0, 1)×XR(x, suppP x
1 ).

Recall that P x � Rx implies that P x admits an intensity of jumps kx.
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Proof. Let us take some P ∈ R(R) and show that it satisfies the announced
properties. Point (i) is a direct consequence of the definition of reciprocal
class and Proposition 2.2.1. As suppP01 ⊂ suppR01, we can apply Propo-
sition 2.2.2 which states that P = h(X0, X1)R. This implies that for every
x ∈ suppP0, we have P x � Rx, and there exist hx : X → R≥0 such that

P x = hx(X1)Rx (6.16)

By taking conditional expectations we get hx = dP x
1 /dR

x
1R

x
1 − a.s.. Com-

paring this expression of the density with the one given by Girsanov the-
orem (6.9), we see that the events {τ = ∞} and {X1 ∈ supphx = suppP x

1 }
match, up to an Rx-negligible set. This proves that A→(t, P x) doesn’t de-
pend on t and that it is equal toAR→(x, suppP x

1 ), which is (iii). Let us define

ψxt (z) := logERx(h
x(X1) | Xt = z).

We know that ψx shares the regularity properties (i), (ii) & (iii) of Lemma
6.3.1. Applying (6.10) with T = 1 to P x = hx(X1)Rx leads us to rewrite
(6.16) in the following form:

dP x

dRx
= 1{X1∈suppPx1 } exp

( ∑
0<t≤1;Xt− 6=Xt

[ψxt (Xt)−ψxt (Xt−)]+

∫
(0,1]

∂tψ
x
t (Xt) dt

)
.

Comparing with (6.9), we obtain

∑
0<t≤1;Xt− 6=Xt

log
kx

j
(t,Xt− → Xt)−

∫
[0,1]

(k̄x − j̄)(t,Xt)dt

=
∑

0<t≤1;Xt− 6=Xt

[ψxt (Xt)− ψxt (Xt−)] +

∫
(0,1]

∂tψ
x
t (Xt) dt, 1{X1∈suppPx1 }R

x − a.s.

Identifying the jumps, we see that

1{Xt− 6=Xt} log
kx

j
(t,Xt− → Xt) = ψxt (Xt)−ψxt (Xt−), 1{X1∈suppPx1 }R

x−a.s.
(6.17)

More precisely, (6.17) gives us (6.14). By Lemma 6.3.1 we know that ψx

satisfies the HJB equation (6.11). Replacing the expression ψxt (z′) − ψxt (z)
in that equation with the one given by (6.14), we obtain (6.15).
Remark that (6.14) also implies that kx is t-continuously differentiable on
[0, 1), which is (ii). This completes the proof of the lemma.
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6.3.1 Proof of Theorem 6.2.1

In order to simplify notation, for a given x ∈ suppP0, we write Z→ =
AR→(x, suppP x

1 ) and Z↔ = AR↔(x, suppP x
1 ) during this proof.

• Proof of the necessary condition. Let us show that P ∈ R(R) satisfies
the announced properties. The first items (i) and (ii) are already proved at
Lemma 6.3.2.
Now, we rely on Lemma 6.3.2(iv). Differentiating (6.14) and plugging
(6.15) into the resulting identity gives us χa[kx] = χa[j] on Z→ which is
(iii).
Let us prove (iv). For any t ∈ (0, 1) and any (z → z′) ∈ Z→, we denote
`(t, z → z′) = log kx

j
(t, z → z′). If the reversed arc (z′ → z) is also in Z→,

we see with (6.14) that `(t, z′ → z) = −`(t, z → z′). Otherwise, we extend
`(t, ·) from Z→ to Z↔ by means of this identity. Therefore,

`(t, z → z′) = ψxt (z′)− ψxt (z), ∀(z → z′) ∈ Z↔
and we are allowed to apply Lemma 6.1.1 to obtain χc[kx](t, c) = χc[j](t, c)
for all the Z↔-cycles, which is the desired result.

• Proof of the sufficient condition. Take P ∈ P(Ω) such that for every
x ∈ suppP0, P x is Markov and its intensity kx satisfies the properties (i-iv)
of Theorem 6.2.1. Fix x ∈ suppP0.
We start exploiting the property (v). Because χc[kx](t, c) = χc[j](t, c) for
any t ∈ (0, 1) and any closed Z↔-walk c, by Lemma 6.1.1 there exists a
function ϕx which satisfies

ϕx(t, z′)− ϕx(t, z) = log
kx

j
(t, z → z′), ∀t ∈ (0, 1), (z → z′) ∈ Z→. (6.18)

On the other hand, the property (iv) implies that ∂tϕx(t, z)+(k̄x− j̄)(t, z) =
∂tϕ

x(t, z′) + (k̄x − j̄)(t, z′) for all t ∈ (0, 1) and (z → z′) ∈ Z→. Since ϕx

is defined up to some time-dependent additive function, we can w.l.o.g.
assume that: ∂tϕx(t, x) + (k̄x − j̄)(t, x) = 0, for all t ∈ (0, 1). Therefore, we
obtain with the property (iii) and our assumption (6.5) that

∂tϕ
x(t, z) + (k̄x − j̄)(t, z) = 0, ∀t ∈ (0, 1), z ∈ XR(x, suppP x

1 ). (6.19)

We know with the property (ii) that P x � Rx. Restricting the path mea-
sures to the sub-σ-field σ(X[0,t]) for any 0 ≤ t < 1, and plugging (6.18) and
(6.19) into Girsanov’s formula (6.9), we obtain

dP x
[0,t]

dRx
[0,t]

= 1{τt=∞} exp
( ∑

0<s≤t:Xs 6=Xs−

[ϕx(s,Xs)− ϕx(s,Xs−)] +

∫
(0,t)

∂sϕ
x(s,Xs) ds

)
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where

τt := inf
{
r ∈ [0, t); kx(r,Xr− → Xl) = 0 or

∫
(0,r]

∂sϕ
x(s,Xs) ds = −∞

}
∈ [0, t]∪{∞} .

Thanks to property (iii), kx never vanishes on [0, 1) × Z→. Hence, τt is
finite if and only if

∫
[0,r]

∂sϕ
x(s,Xs) ds = −∞ for some 0 < r ≤ t. But for

any 0 ≤ t < 1, we have∑
0<s≤t:Xs 6=Xs−

[ϕx(s,Xs)−ϕx(s,Xs−)]+

∫
(0,t]

∂sϕ
x(s,Xs) ds = ϕx(t,Xt)−ϕx(0, X0).

This implies that
∫

(0,t]
∂sϕ

x(s,Xs) ds is finite for every 0 ≤ t < 1 and it
follows that τt is infinite Rx − a.s. for all 0 ≤ t < 1. Consequently,

dP x
[0,t]

dRx
[0,t]

= exp(ϕx(t,Xt)− ϕx(0, x)) (6.20)

since the prefactor 1{τt=∞} does not vanish. Let us denote Z := dPx

dRx
and

Zt := ERx(Z | X[0,t]) =
dPx

[0,t]

dRx
[0,t]

for all 0 ≤ t < 1. We see with (6.20) that Zt
is Xt-measurable. This implies that Z is X[t,1]-measurable for all 0 ≤ t < 1
and consequently that Z is X1-measurable. Mixing over x ∈ suppP0 and
using Proposition 2.2.2 we conclude that P belongs to R(R). �

6.3.2 Proof of Theorem 6.2.2

Let us fix x ∈ suppP0 and t ∈ (0, 1). Note that for h > 0 such that t+ h < 1
and (z → z′) ∈ AR→(x, suppP x

1 ), the conditional distribution P (· | Xt =
z,Xt+h = z′) is well defined. Because of (??) and the reciprocal property of
P , we have

P (T t1 ∈ t+ hI | Xt = z,Xt+h = z′, T t2 > t+ h)

= R(T t1 ∈ t+ hI | Xt = z,Xt+h = z′, T t2 > t+ h).
(6.21)

Therefore it suffices to do the proof with R instead of P .

• Proof of (a). Recall that for a Poisson process with intensity λ(t) the
density of the law of the first instant of jump is t 7→ λ(t) exp(−

∫ t
0
λ(s) ds),

t ≥ 0. Therefore,

R(T t1 ∈ t+ hI,Xt+h = z′, T t2 > t+ h | Xt = z)

=

∫
hI

j̄(t+ r, z) exp
(
−
∫ r

0

j̄(t+ s, z) ds
)j(t+ r, z → z′)

j̄(t+ r, z)
exp

(
−
∫ h

r

j̄(t+ s, z′) ds
)
dr

= h

∫
I

exp
(
−
∫ hr

0

j̄(t+ s, z) ds
)
j(t+ hr, z → z′) exp

(
−
∫ h

hr

j̄(t+ s, z′) ds
)
dr.
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Using the following expansions as h tends to zero:

exp
(
−
∫ hr

0

j̄(t+ s, z) ds
)

= 1− j̄(t, z)hr + o(h),

exp
(
−
∫ h

hr

j̄(t+ s, z′) ds
)

= 1− j̄(t, z′)(1− r)h+ o(h),

j(t+ hr, z → z′) = j(t, z → z′) + ∂tj(t, z → z′)hr + o(h),

we obtain

R(T t1 ∈t+ hI,Xt+h = z′, T t2 > t+ h | Xt = z)

= hj(t, z → z′)

∫
I

(
1 + h

[
∂tj(t, z → z′)

j(t, z → z′)
r − j̄(t, z)r − j̄(t, z′)(1− r)

])
dr + o(h2)

= hj(t, z → z′)

∫
I

(
1 + h

{
χa[j](t, z → z′)r − j̄(t, z′)

})
dr + o(h2).

In particular, with I = [0, 1] this implies that

R(Xt+h = z′, T t2 > t+ h | Xt = z)

= hj(t, z → z′)
(
1 + h

{
χa[j](t, z → z′)/2− j̄(t, z′)

})
+ o(h2).

Taking the ratio of these probabilities leads us to

R(T t1 ∈ t+ hI | Xt = z,Xt+h = z′, T t2 > t+ h)

=

∫
I

1 + h
{
χa[j](t, z → z′)r − j̄(t, z′)

}
+ o(h)

1 + h
{
χa[j](t, z → z′)/2− j̄(t, z′)

}
+ o(h)

dr

=

∫
I

(
1 + h{χa[j](t, z → z′)(r − 1/2)}

)
dr + o(h).

With (6.21) this gives (6.7).

• Proof of (b). Since R(Xt = Xt+h = z) = R(Xt = z)(1 + o(1)) as h → 0+,
we can write the proof with R(· | Xt = z) instead of R(· | Xt = Xt+h = z).
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Therefore, if c = (z = x0 → x1 · · · → x|c| = z),

R
(

(Xt → XT t1
→ · · · → XT t|c|

) = c, T t|c| < t+ h < T t|c|+1 | Xt = z
)

=

∫
{t<t1<···<t|c|<t+h}

|c|∏
i=1

exp

[
−
∫ ti

ti−1

j̄(s, xi) ds

]
j(ti, xi → xi+1)

× exp

[
−
∫ t+h

t|c|

j̄(s, z) ds

]
dt1 · · · dt|c|

= χc[j](t, c)(1 + o(1))

∫
{t<t1<···<t|c|<t+h}

exp
[
−

c∑
i=1

∫ ti+1

ti

j̄(s, xi) ds

−
∫ t+h

t|c|

j̄(s, z) ds
]
dt1 · · · dt|c|

= χc[j](t, c)h|c|/|c|! + o(h|c|)

where we used the convention that t0 := t. This completes the proof of the
theorem. �

6.3.3 Proof of Corollary 6.2.1

Proof. The necessary condition is a direct consequence of Theorems 6.2.1
and 6.2.2. For the sufficient condition, all we have to show is that the
properties (a) and (b) of Theorem 6.2.2 respectively imply the properties
(iii) and (iv) of Theorem 6.2.1.
Based on identity (6.21), we see that the same calculations as in Theorem
6.2.2’s proof at page 149 shows that replacing Rx by P x and j by kx lead
to the same conclusions with kx instead of j. It remains to compare the
resulting expansions to conclude that (6.5) and (6.6) are satisfied.

6.3.4 Proof of Proposition 6.2.1

Proof. In the case of Theorem 6.2.1 observe that (iv) is equivalent by lemma
6.1.1 to the fact that for all t the function ` defined on A↔(j) by

`(z → z′) =

{
log(k

x

j
(t, z → z′)), if (z → z′) ∈ A→(j)

− log(k
x

j
(t, z′ → z)), otherwise

is such `(c) = 0 for any cycle. But, by definition, this is equivalent to
impose `(c) = 0 on a generating set of cycles. In the same way, repeating
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the proof of Corollary 6.2.1 we see that restricting (iv) to a generating set
of cycles implies that `(c) = 0 on that set, where ` has been defined just
above. But then, again by definition this implies `(c) = 0 for any cycle,
which is precisely point (iv) of Theorem 6.2.1. The same Theorem gives
the conclusion.

6.4 More results

We give some additional results on the characterization of the reciprocal
class R(R).

6.4.1 Jump intensity

Proposition 6.4.1 below expresses characterizations of the reciprocal class
in terms of the intensities of jumps by exploiting the fact that for any P ∈
R(R) and each x, P x is an h-transform of Rx.

Proposition 6.4.1 (Representation of the intensity of an element of R(R)).
Let P ∈ P(Ω) be a random walk. The following assertions are equivalent.

(a) P ∈ R(R).

(b) There exists h : X → [0,∞) such that

P x = h(x,X1)Rx

with
∑

y∈X R
x
1(y)h(x, y) = 1, for all x ∈ suppP0.

(c) There exists g : X → [0,∞) such that

(i) suppP0 = {x : g(x, yo) > 0 for some yo},
(ii) for all x ∈ suppP0,

∑
y∈X R

x
1(y)g(x, y) <∞ and

(iii) P is a random walk with intensity

k(t,X[0,t), Xt− → z) = 1{Xt−∈XR(x,suppg(x,·))}
gX0
t (z)

gX0
t (Xt−)

j(t,Xt− → z), R−a.s.
(6.22)

where for any 0 ≤ t ≤ 1 and z ∈ X (Rx),

gxt (z) := ER[g(x,X1) | Xt = z] =
∑
y∈X

r(t, z; 1, y)g(x, y),

with r(t, z; 1, y) := R(X1 = y | Xt = z).
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In addition, for each x ∈ suppP0, gx solves the heat equation{
(∂t + Gt)gx = 0, 0 ≤ t < 1,
gx1 = g(x, ·), t = 1.

(6.23)

where Gt is the generator of R.

Moreover, the link between h and g is h(x, y) = g(x, y)/gx0 (x) where gx0 (x) =∑
y∈X R

x
1(y)g(x, y) is finite.

Proof. The equivalence of (a) and (b) is proved at Proposition 2.2.2. Let us
prove the equivalence of (b) and (c).
Statement (b) tells us that P x is an h-transform of Rx. It is a general result
of [44] that the extended generator of this h-transform is given for any
function u with a finite support by

Axt u(Xt−) = Gtu(Xt−) + Γt(g
x
t , u)(Xt−)/gxt (Xt−), P x − a.s.

where Γt(gt, u)(z) :=
∑

z′:z→z′ j(t; z → z′)[gxt (z′)− gxt (z)][u(z′)− u(z)] is the
carré du champ operator. This identity characterizes the h-transformation.
Note that it is only valid P x-almost surely and not Rx-almost surely.
As for any t ∈ [0, 1) and z ∈ X (Rx), gxt (z) > 0⇔ z ∈ XR(x, suppg(x, ·)), we
see that Axt u(z) = 1{z∈XR(x,suppg(x,·)}

∑
z′:z→z′ j(t, z → z′)gxt (z′)/gxt (z)[u(z′) −

u(z)] which gives (6.22). This completes the proof of Proposition 6.4.1.
A direct proof of the equivalence of (b) and (c), which does not rely on

a general result about the extended generator of an h-transform, consists
of identifying dP x/dRx = h(x,X1) by means of Girsanov’s formula (6.9)
and to apply the representation result (6.23) under its HJB form (6.11), via
the transformation g = eψ, as in the proof of Lemma 6.3.2.

As a special case of Proposition 6.4.1, we recover the known fact that
for each (x, y) ∈ suppR01, the jump intensity kxy of the bridge Rxy is

kxy(t, z → z′) =
r(t, z′; 1, y)

r(t, z; 1, y)
j(t, z → z′), 0 ≤ t < 1, (z → z′) ∈ AR→(x, {y}).

(6.24)

6.4.2 Characteristic equation

We see with Theorem 6.2.1 that for any given Markov intensity j, the de-
scription of the reciprocal class R(R) is linked to the solution of some equa-
tion of the form {

A→(kx) = AR→(x,Yx),
χ[kx] = χ[j],

x ∈ S (6.25)
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where we use notation
χ[P x] =: χ[kx]

to emphasize the role of the intensity. In (6.25), the given subsets S ⊂ X
and

Yx ⊂ X (Rx), x ∈ S
are non-empty and the unknown is the collection of Markov intensities
(kx;x ∈ S). More precisely, (6.25) is a shorthand for the following list of
properties that must hold for all x ∈ S.

(i) The intensity kx is t-differentiable on [0, 1).

(ii) The subgraph of all kx-active arcs doesn’t depend on t and is

A→(kx) := {(z → z′) : kx(t, z → z′) > 0} = AR→(x,Yx).

(iii) For any t ∈ [0, 1) and any (z → z′) ∈ AR→(x,Yx), we have

χa[k
x](t, z → z′) = χa[j](t, z → z′).

(iv) For any t ∈ [0, 1) and any closed AR↔(x,Yx)-walk c, we have

χc[k
x](t, c) = χc[j](t, c).

Because of Theorem 6.2.1, we say that (6.25) is a characteristic equation.
It is natural to ask for the solutions (kx;x ∈ S) of (6.25) where j, S and
(Yx, x ∈ S) are given.

Theorem 6.4.1 (Solving the characteristic equation (6.25)).

(a) Take any nonnegative function g : X → [0,∞) such that suppg ⊂ suppR01

and
∑

y∈X R
x
1(y)g(x, y) <∞ for all x ∈ X .

Let us denote gxt (z) := ER[g(x,X1) | Xt = z] > 0, for any t ∈ [0, 1) and
z ∈ XR(x, suppg(x, ·)). Then,

kx(t, z → z′) :=
gxt (z′)

gxt (z)
j(t, z → z′), t ∈ [0, 1), (z → z′) ∈ AR→(x, suppg(x, ·)))

(6.26)
solves (6.25) with S := {x ∈ X ; g(x, y) > 0 for some y ∈ X} and Yx =
suppg(x, ·).
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(b) Conversely, any solution (kx;x ∈ S) of (6.25) which verifies the additional
requirement

∀x ∈ S,∀0 ≤ t < 1, sup
y∈Yx

∫ t

0

k̄x(s, y) ds <∞, (6.27)

has the above form (6.26) for some function g and for any x ∈ S,

P x :=
g(x,X1)

gx0 (x)
Rx ∈ P(Ω),

defines a Markov probability measure on Ω with intensity kx given by (6.26).

The main point about this result is that unlike Theorem 6.2.1 and Propo-
sition 6.4.1, it is not assumed that kx given at (6.26) is the intensity of a
random walk. It might happen a priori that such a random process “ex-
plodes” in finite time with a positive probability. The assumption (6.27)
rules this bad behavior out.

Proof. The proof mainly consists is essentially contained in that of Theo-
rem 6.2.1.
The first statement (a) follows from a straightforward computation. The
regularity issues are direct consequences of Lemma 6.3.1.
Statement (b) is proved by considering the proof of the sufficient condition
of Theorem 6.2.1 at page 148. Let kx be a solution of (6.25). Mimicking the
Girsanov formula (6.9), let us define

Qx := Zx
1 R

x

with

Zx
t := 1{τ>t} exp

( ∑
0<s<t:Xs− 6=Xs

log
kx

j
(s,Xs− → Xs)−

∫ t

0

(k̄x−j̄)(s,Xs; y) dt

)
, 0 ≤ t ≤ 1

and the stopping time τ defined by

τ := inf
{
s ≤ 1; kx(s,Xs− → Xs) = 0 or

∫ s

0

k̄x(r,Xr) dr =∞
}
∈ [0, 1] ∪ {∞} .

Let us show that under the assumption (6.27), Qx is a probability measure.
The process Zx is a nonnegative local Rx-martingale. As such it is also
an Rx-supermartingale. In particular, Qx(Ω) = ERxZ

x
1 ≤ 1, but it might

happen that Qx(Ω) < 1, in which case Qx is not a probability measure.
However, the property (ii) implies that kx(t,Xt− → Xt) > 0,∀0 ≤ t < 1,
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Rx − a.s. and the assumption (6.27) implies that for all 0 ≤ t < 1, τ >
t, Rx − a.s. and (Zx

s )0≤s≤t is an Rx-martingale. In particular, ERxZx
t = 1

and Qx
[0,t] is probability measure for all 0 ≤ t < 1, which in turns implies

that Qx is a probability measure, since without loss of generality, one can
modify the path space Ω by throwing away the R-negligible event of all
paths that jump at t = 1.

Following almost verbatim the proof of the sufficient condition of The-
orem 6.2.1, we show that there exists a function ϕx such that, as in (6.20),

Zx
t = exp(ϕx(t,Xt)− ϕx(0, x)), 0 ≤ t < 1.

It follows from the above modification of Ω at time 1 that t 7→ Zx
t admits a

version which is left-continuous at 1 and

Qx = exp(ϕx1(X1)− ϕx(0, x))Rx,

where the limit ϕx1(X1) := limt→1− ϕ
x(t,Xt) ∈ [−∞,∞) exists Rx-almost

surely. Now, we are back to Proposition 6.4.1 with the functions h(x, y) =
exp(ϕx1(y)−ϕx(0, x)) and g(x, y) = exp(ϕx1(y)) where as a convention exp(−∞) =
0.

6.4.3 Homogeneous walks

In this subsection only time homogeneous intensities are considered. We
have seen in the previous chapters that it is often the case that two random
walks of different intensities belong to the same reciprocal class, even if
we restrict to the time homogeneous case. This is done for instance in
Theorem 4.3.2 and Corollary 5.3.1. Here we show that this fact can only
happen if the state space is infinite.

Proposition 6.4.2. Let X be finite, and j be time homogeneous, positive on A,
and (X ,→) be a connected graph. Then, if P is a time homogeneous Markov walk
in R(R), then the intensity of P is j.

Proof. Assume that k is another intensity such that there exist a time ho-
mogeneous Markov walk P ∈ R(R) of intensity k. By condition (iii) and
the connectedness of (X ,→) it follows that k is also everywhere positive.
From point (v) and Lemma 6.1.1 we have that there exist a positve function
h : X → R+ s.t.

k(z → z′) =
h(z′)

h(z)
j(z → z′) ∀z → z′ ∈ A (6.28)
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Imposing the equality of the arc characteristics one finds that

j̄(z′)− j̄(z) = k̄(z′)− k̄(z), ∀z → z′ ∈ A (6.29)

Consider now an arbitrary pair of vertices z′′ ∈ X . Since (X ,→) is con-
nected there exist a path w := (z = x0 → x1... → x|w| = z′′). Summing
the relation (6.29) along the arcs of w, yields the same relation for z and z′′.
Therefore:

j̄(z′)− j̄(z) = k̄(z′)− k̄(z), ∀z, z′ ∈ X 2 (6.30)

This gives that there exist a constant α such that j̄(z) = α+ k̄(z) every-
where on X . By inverting the roles of k and j we can w.l.o.g. assume that
α ≤ 0. But then we have, using (6.28) and the non negativity of α:

1

j̄(z)

∑
z→z′∈A

j(z → z′)h(z′) ≥ h(z) ∀z ∈ X (6.31)

Consider now any z realizing max{h(z′), z′ ∈ X}. Since the weights j(z→z′)
j̄(z)

are positive and sum up to one, (6.31) tells that h(z′) is constantly equal to
h(z). But then by (6.28) k(z → z′) = j(z → z′) for all z → z′, from which
the conclusion follows.

Remark 6.4.1. On the other hand, if we allow for time dependent intensities, we
can always find one intensity with the property that the associated walks are in
R(R). It suffices to take the bridges, or any fg transform.

6.5 Examples

In this series of examples, we illustrate Theorem 6.2.1 improved by Propo-
sition 6.2.1. We compute the reciprocal characteristic χ[j] and sometimes
we consider the characteristic equation (6.25).

Directed tree

Let R be the simple random walk on a directed tree (X ,A→). By “directed
tree”, it is meant that (z → z′) ∈ A→(j) implies that (z′ → z) 6∈ A→(j),
while “simple” means that j(t, z → z′) = 1 for all (z → z′) ∈ A→(j),
0 ≤ t < 1. The cycles of the corresponding undirected tree A↔(j) are
clearly generated by the set E of all cycles of length two, see Definition 6.1.3
which matches with A↔(j). Therefore, the cycle characteristic is trivial:
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χc[k](t, z ↔ z′) = 1 for all 0 ≤ t < 1, (z ↔ z′) ∈ A↔ and any intensity k
such that A→(k) = A→. In this situation, only the arc component

χa[j](t, z → z′) = deg(z′)− deg(z), 0 ≤ t < 1, (z → z′) ∈ A→,
is relevant, where deg(z) := # {z′ ∈ X : (z → z′) ∈ A→} is the outer de-
gree, i.e. the number of offsprings of z. The characteristic equation is

∂t log kx(t, z → z′) + k̄x(t, z′)− k̄x(t, z) = deg(z′)− deg(z),

0 ≤ t < 1, (z → z′) ∈ AR→(x,Y),

for some Y ⊂ X (Rx).

Intensity of a bridge

In particular, the intensity jxy of any bridge Rxy satisfies A→[jxy] = wxy :
the only walk leading from x to y, and

∂t log jxy(t, z → z′)+1{z′ 6=y}j
xy(t, z′ → z′′)− jxy(t, z → z′)

= 1{z′ 6=y}deg(z′)− deg(z), 0 ≤ t < 1, (z → z′) ∈ wxy,

where z → z′ → z′′ are consecutive vertices.

Birth and death process

The vertex set is X = N with the usual graph structure. The reference
walk R is governed by the time-homogeneous Markov intensity j(z →
(z + 1)) = λ > 0, z ≥ 0 and j(z → (z − 1)) = µ > 0, z ≥ 1. Clearly, the of
edges E = {(z ↔ z + 1), z ∈ N} generates C and the characteristics of the
reference intensity are:

χa[j](z → z + 1) = χa[j](z + 1→ z) = 0, z ≥ 1,
χa[j](0→ 1) = −χa(1→ 0) = µ,
χc[j](z ↔ z + 1) = λµ, z ≥ 0.

Time-homogeneous Markov walks in R(R).

Let us search for such a random walk P ∈ P(Ω). We denote λ̃(z) the
intensity of (z → z + 1) and µ̃(z + 1) the intensity (z + 1 → z) of the
Markov walk P . By Theorem 6.2.1, P ∈ R[j] if and only if

λ̃(z + 1) + µ̃(z + 1)− λ̃(z)− µ̃(z) = 0, z ≥ 1

λ̃(1) + µ̃(1)− λ̃(0) = µ,

λ̃(z)µ̃(z + 1) = λµ, z ≥ 0.
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The solutions to the the above set of equations can be parametrized by
choosing λ̃(0) arbitrarily and finding λ̃(z+1), µ̃(z+1) recursively as follows{

µ̃(z + 1) = λ̃(z)−1λµ, z ≥ 0,

λ̃(z + 1) = µ+ λ̃(0)− µ̃(z + 1), z ≥ 1.

With some simple computations one can see that for any large enough
λ̃(0), the above system admits a unique positive and bounded solution.
Hence, the corresponding Markov walk has its sample paths in Ω and it is
in R(R).

Hypercube

Let X = {0, 1}d be the d-dimensional hypercube with its usual directed
graph structure and let {gi}di=1 be the canonical basis. For x ∈ X , we set
xi := x + gi and xik = x + gi + gk where we consider the addition modulo
2.

Proposition 6.5.1. Let

S :=
{

(x→ xi → xik → xk → x), x ∈ X , 1 ≤ i, k ≤ d
}

be the set of all directed squares. The subset

S ∪ E (6.32)

is a generating set for the cycles as in Definition 6.1.4.

Proof. Fix a function ` such that `(c) = 0 for all c ∈ S ∪ E . We first observe
that a walk w = (x0 → ..→ xn) is completely described by the pair (x0, I),
where I = (i1, ..., in) is defined through

gir = xr − xr−1, ∀ 1 ≤ r ≤ n

In the rest of the proof we will label walks equivalently by w or (x0, I). We
also define for all I :

Nd 3 N(I), N(I)j = ]{r : ir = j}, ∀1 ≤ j ≤ d

Note that w is a cycle if and only if N(I) ∈ (2N)d. We also define some
other notation. We denote by ⊕ the concatenation of two walks. If w =
(x0 → .. → xn = y0) and w′ = (y0 → .. → ym), w ⊕ w′ is (x0 → ..xn−1 →
y0 → .. → ym). If c = (x0, I) is a cycle, we define for every s the cycle
cs = (x0, I

s) as the one identified by Is = (i1, .., is+1, is, ..in). The proof can
be organized in three main steps:

Step 1 In this first step we show that for every x0 ∈ X , n ∈ (2N)d there
exist at least a cycle c = (x0, I) such that:
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(a) N(I) = n

(b) `(c) = 0

We construct c directly. According to our notation, the walk (x0, (i, i)) is
(x0 → xi0 → x0), and such a walk belong to E . If we take

c = ⊕di=1 (x0, (i, i))⊕ ...⊕ (x0, (i, i))︸ ︷︷ ︸
ni
2
times

(6.33)

we see immediatly that it satisfies (a). To see that it satisfies also (b) we use
the hypothesis on the cycles of length two. We have: `(c) =

∑
i ni`((x0, (i, i))) =

0, since (x0, (i, i)) ∈ E .
Step 2 In this step we show that if `(c) = 0, then `(cs) = 0 as well. Let

c = (x0 → .. → xn). Consider the cycles ca := (xs−1 → xs−1 + gis+1 →
xs−1),cb := (xs−1 + gis+1 → xs+1 → xs−1 + gis+1) ∈ E and the cycle cc =
(xs−1 → xs → xs+1 → xs+1 + gis → xs−1) ∈ S . it can be verified directly
that:

`(cs) = `(c)− `(cc) + `(ca) + `(cb)

Since by hypothesis, `(c) = 0, and by hypothesis `(cc) = `(ca) = `(cb) =
0, we obtain `(cs) = 0.
Step 3 In this step, we take an arbitrary cycle c′ = (x0, I

′) and consider
c = (x0, I) defined in (6.33) where n = N(I ′). It is easy to see that there
exist a sequence s1, ..., sK such that c′ = cs1,..,sk . Using iteratively Step 2 we
then get that `(c′) = 0. This concludes the proof.

Remark 6.5.1. One can produce a smaller generator for the cycles by imposing
i < k in the definition of S. However, no more than this can be done since E does
not generate C there are no cycles of length 3.

The bridge of a simple random walk on the discrete hypercube

Let j be the simple random walk on the hypercube. The intensity jxy(t, z →
z′) of the xy-bridge can be computed explicitly with (6.24) since the tran-
sition density of the random walk is known explicitly. We have

jxy(t, z → zi) =

{
cosh(1− t)/ sinh(1− t), if zi 6= yi,
sinh(1− t)/ cosh(1− t), if zi = yi,

(6.34)

where zi and yi ∈ {0, 1} are the i-th coordinates of z and y ∈ X .
We provide an alternate proof based on the characteristic equation (6.25).
First, it is immediate to see that under any bridge, all arcs of the hypercube
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are active at any time. From χc[j
xy] = χc[j], we deduce that the arc function

log(j/jxy)(t, ·) is the gradient of some potential ψt, see Lemma 6.1.1. The
equality of the arc characteristics implies that for all t ∈ (0, 1) and z ∈ X

∂tψ(t, z)+
d∑
i=1

[exp(ψt(z
i)−ψt(z))−1] = ∂tψ(t, x)+

d∑
i=1

[exp(ψt(x
i)−ψt(x))−1].

Since ψ is defined up the addition of a function of time, we can assume
without loss of generality that for all 0 < t < 1, ∂tψt(x)+

∑d
i=1[exp(ψt(x

i)−
ψt(x))− 1] = 0. Hence ψ solves the HJB equation:

∂tψ(t, z) +
d∑
i=1

[exp(ψt(z
i)− ψt(z))− 1] = 0, t ∈ [0, 1), z ∈ X . (6.35)

Going along the lines of the proof of Theorem 6.2.1, in particular equation
(6.20), allows to deduce that the boundary data for ψ are

lim
t→1

ψt(z) =

{
−∞, if z 6= y,

0, if z = y.
(6.36)

One can check with a direct computation that the solution (6.35) & (6.36)
is

ψ(t, z) =
d∑
i=1

log[1 + (−1)(zi−yi)e2(1−t)] (6.37)

where the subtraction is considered modulo two. By the definition of ψ,
we have

jxy(t, z → zi) = j(t, z → zi) exp(ψt(z
i)− ψt(z)) = exp(ψt(z

i)− ψt(z))

and (6.34) follows with a simple computation.

Two triangles

We look at two simple directed trees based on triangles.

Oriented triangle

Let X = {A,B,C} and A = {(A→ B), (B → C), (C → A)}. The reference
intensity is j∆ on each arc and we want to find the intensity of the AB-
bridge: jAB(t, ·), using the characteristic equation. Imposing the equality
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A

B

CbA

B

C

Figure 6.1: Left: an oriented triangle. Right: a non-oriented triangle

of the cycle characteristics implies that log(jAB/j)(t, ·) is the gradient of
some potential ψt : X → R. The equality of the arc characteristics implies
that ψ solves the HJB equation

∂tψt(A) + j∆[exp(ψt(B)− ψt(A))− 1] = 0,

∂tψt(B) + j∆[exp(ψt(C)− ψt(B))− 1] = 0,

∂tψt(C) + j∆[exp(ψt(A)− ψt(C))− 1] = 0,

limt→1 ψt(A) = limt→1 ψt(C) = −∞,
limt→1 ψt(B) = 0,

(6.38)

where the boundary conditions for ψ follow from (6.20). Since the HJB
equation is the logarithm of the Kolmogorov backward equation, we ob-
tain the following solutions


ψt(A) = log{1

3
+ 2

3
exp(−3

2
j∆(1− t)) sin[

√
3

2
j∆(1− t)− π

6
]},

ψt(B) = log{1
3

+ 2
3

exp(−3
2
j∆(1− t)) cos[

√
3

2
j∆(1− t)]},

ψt(C) = log{1
3
− 2

3
exp(−3

2
j∆(1− t)) sin[

√
3

2
j∆(1− t) + π

6
]}.

(6.39)

We deduce the following identities

jABT (t, A→ B) = j∆

exp
(

3
2
j∆(1− t)

)
+ 2 cos

(√
3

2
j∆(1− t)

)
exp

(
3
2
j∆(1− t)

)
+ 2 sin

(√
3

2
j∆(1− t)− π

6

) ,
jABT (t, B → C) = j∆

exp
(

3
2
j∆(1− t)

)
− 2 sin

(√
3

2
j∆(1− t) + π

6

)
exp

(
3
2
j∆(1− t)

)
+ 2 cos

(√
3

2
j∆(1− t)

) ,

jABT (t, C → A) = j∆

exp
(

3
2
j∆(1− t)

)
+ 2 sin

(√
3

2
j∆(1− t)− π

6

)
exp

(
3
2
j∆(1− t)

)
− 2 sin

(√
3

2
j∆(1− t) + π

6

) .
(6.40)
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Non-oriented triangle

The triangleX = {A,B,C} is now equipped with the directed graph struc-
ture A = {(A → B), (B → C), (A → C)} where we reverted the direction
of the arc on the edge AC, as shown at Figure 6.1. The characteristic asso-
ciated to the cycle (A→ B → C → A) is

j(A→ B)j(B → C)/j(C → A).

Since it is not a cycle of the graph (X ,A), the interpretation given at Theo-
rem 6.2.2 is not available for this characteristic. However, we can reason in
a similar way to obtain a probabilistic interpretation of this characteristic
as well.

Let RA be the reference walk conditioned to start from A. If the walk
reaches C at time h it is easy to see that as h → 0, this has happened
essentially only by using directly the arc (A→ C). Therefore, we obtain

RA(Xh = C) = j(A→ C)h+ o(h).

Similarly, the probability of going from A to C using the path (A → B →
C) is

RA
(

(X0 → XT1 → XT2) = (A→ B → C), T2 ≤ h, T3 > h
)

= j(A→ B)j(B → C)h2/2 + o(h2).

Consequently,

RA
(

(X0 → XT1 → XT2) = (A→ B → C), T2 ≤ h, T3 > h | Xh = C)

=
j(A→ B)j(B → C)

2j(A→ C)
h+ o(h).

We see that the characteristic is twice the driving factor of the expansion
of this probability as h tends to zero.

Note that while the characteristic in the oriented triangle is associated
to a probability of order h3, in the present case it is associated to a proba-
bility of order h.

Planar graphs

Let (X ,↔) be an undirected symmetric planar graph. We fix a planar rep-
resentation and consider the setF of all the counter-clockwise cycles along
the faces. We denote by E the set of all the edges seen as closed 2-walks.
Then,
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Proposition 6.5.2. The set
F ∪ E (6.41)

generates the cycles of the planar graph.

To keep the proof into a reasonable size, we will use some basic vocab-
ulary about planar graphs, which we do not define. We believe that this
will not generate any confusion. Figure 6.2 should be self explanatory, and
clarify any possible doubt.

Proof. Consider a function ` : A → R+ such that `(c) = 0 along any cycle
c ∈ F ∪ E . Consider any other simple cycle c, counterclockwise oriented.
Then we have that

`(c) =
∑

f∈F ,f internal to c

`(f)−
∑

z→z′ internal to c

`((z → z′ → z)) (6.42)

Since all the summands are zero by hypothesis, then `(c) = 0. Consider
now the cycle c, clockwise oriented. The same reasoning as above, using
the formula

`(c) = −
∑

f∈F ,f internal to c

`(f) +
∑

z→z′ internal to c

`((z → z′ → z))

+
∑

(z→z′)∈c

`((z → z′ → z)) (6.43)

completes the proof.

= −

Figure 6.2: An explanation of the formula in (6.42).On the left is depicted
a counterclockwise oriented cycle, in the middle its internal faces, and on
the right the cycles length two which are internal to the cycle.
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Triangular prism

The set X = {A0, B0, C0, A1, B1, C1} is endowed with the directed graph
structure as in Figure 6.3 where one should see the left triangle A0B0C0

on the picture as the bottom face of the prism and the horizontal arcs of
the picture as flowing along the three vertical edges of the prism. The
intensity j is time-homogeneous and j(z → z′) = j∆ if (z → z′) belongs to
a triangular face with one given orientation and j(z → z′) = jv if (z → z′)
connects the triangular faces. The cycle characteristics of the triangular

jΔ

jv

jΔ

jv

jΔ

jv

jv

jΔ

jv

jΔ

jv

jΔ

A0

B0

C0

A1

B1

C1

Figure 6.3: Triangular prism.

faces is χ∆ = j3
∆ and for the cycles of length two corresponding to the

vertical edges we have χv = j2
v .

We are going to derive an explicit expression of the jump intensity jA0B1

of the bridge from A0 to B1, see (6.44) below.
The nice feature of this example is that it is a non trivial planar graph
where the intensity of the bridge can be explicitly computed. This is achieved
by putting together some already done calculations about the hypercube
and the oriented triangle. Without getting into details, the fact that the
prism is the product of the oriented triangle treated at page 161 and the
complete graph with two vertices, which is the discrete hypercube of di-
mension 1, is the key of the following computation.

As in the previous example, imposing the characteristic equation leads
to the fact that jA0,B1(t, ·)/j(·) is the gradient of some potential ψ which
solves the following HJB equation:
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

∂tψt(A0) + j∆[exp(ψt(B0)− ψt(A0))− 1] + jv[exp(ψt(A1)− ψt(A0))− 1] = 0

∂tψt(B0) + j∆[exp(ψt(C0)− ψt(B0))− 1] + jv[exp(ψt(B1)− ψt(B0))− 1] = 0

∂tψt(C0) + j∆[exp(ψt(A0)− ψt(C0))− 1] + jv[exp(ψt(C1)− ψt(C0))− 1] = 0

∂tψt(A1) + j∆[exp(ψt(B1)− ψt(A1))− 1] + jv[exp(ψt(A0)− ψt(A1))− 1] = 0

∂tψt(B1) + j∆[exp(ψt(C1)− ψt(B1))− 1] + jv[exp(ψt(B0)− ψt(B1))− 1] = 0

∂tψt(C1) + j∆[exp(ψt(A1)− ψt(C1))− 1] + jv[exp(ψt(C0)− ψt(C1))− 1] = 0

with the boundary conditions{
limt→1 ψt(B1) = 0

limt→1 ψt(B0) = limt→1 ψt(Ai) = limt→1 ψt(Ci) = −∞, i ∈ {0, 1}
The symmetric structure of the graph allows to guess the solution. It can
be verified with a direct computation that

ψt(Ai) = ψTt (A) + ψHt (i)

where ψTt : (0, 1) × {A,B,C} → R is the solution of the HJB equation on
the triangle (6.38), which is solved at (6.39) and ψHt is the solution of the
following HJB equation on the complete graph with two vertices (which
is nothing but the discrete hypercube in dimension 1):

∂tψ
H
t (0) + jv[exp(ψHt (1)− ψHt (0))− 1] = 0

∂tψ
H
t (1) + jv[exp(ψHt (0)− ψHt (1))− 1] = 0

limt→1 ψ
H
t (1) = 0

limt→1 ψ
H
t (0) = −∞

which is solved in a more general form at (6.37). The same reasoning is
valid for the calculations of ψ(Bi) and ψ(Ci).Using these explicit formulas,
we obtain ψ and

jA0,B1(t, z → z′) = exp(ψt(z
′)− ψt(z))j(z → z′) (6.44)

is the explicit expression of the jump intensity jA0B1 of the bridge from A0

to B1. Therefore we have, for instance:

jA0,B1(t, A0 → B0) = exp(ψt(B0)− ψt(A0))j∆

= exp(ψTt (B)− ψTt (A) + ψHt (0)− ψHt (0))j∆

= exp(ψTt (B)− ψTt (A))j∆

= j∆

exp
(

3
2
j∆(1− t)

)
+ 2 cos

(√
3

2
j∆(1− t)

)
exp

(
3
2
j∆(1− t)

)
+ 2 sin

(√
3

2
j∆(1− t)− π

6

)
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Complete graph

The directed graph structure of the complete graph on a finite set X =
{1, ..., |X |} consists of all the couples of distinct vertices, the set of arcs is
A→ = X \ {(x, x);x ∈ X} . Pick an arbitrary vertex ∗ ∈ X and consider the
set

T∗ := {(∗ → z → z′ → ∗); z, z′, ∗ distinct}
of all directed triangles containing ∗.

Proposition 6.5.3. The set
E ∪ T∗

generates the set of cycles of the complete graph.

Proof. Let ` be a function such that `(c) = 0 on all cycles in E∪T∗. Consider
any symple cycle c = (x0 → ...→ xn = x0). Two cases are possible:

(a) ∗ is not touched by c. In this case for all 0 ≤ i ≤ n− 1 we consider the
triangle. ti = (∗ → xi → xi+1 → ∗). The formula

`(c) =
n−1∑
i=0

`(ti) (6.45)

whose validity can be checked with a direct computation, yields the
conclusion together with the assumption.

(b) If ∗ is touched by c, then w.l.o.g. we can assume that ∗ = x1. We define
the triangle t = (∗ → x2 → x0 → ∗), the cycle of length two e = (x0 →
x2 → x0) We observe that the cycle c′ = (x0 → x2 → ..xn = x0) does
not contain ∗ and therefore by point (a) `(c′) = 0. The formula

`(c) = `(c′) + `(t)− `(e)

gives the desired result.

Some sampler

Let us analyze in a bit more detail one example of a walk on the complete
graph. Take π ∈ P(X 2) a positive probability distribution on the finite set
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*

=

Figure 6.4: Decomposition of a cycle into 3-cycles and 2-cycles

X . The detailed balance conditions: π(z)j(z → z′) = π(z′)j(z′ → z),∀z, z′,
tell us that the intensity

j(z → z′) =

√
π(z′)

π(z)
z, z′ ∈ X

admits π as its reversing measure. The characteristics associated with j are

χa[j](t, (z → z′)) =
[∑
x∈X

π(x)1/2
]
(π(z′)−1/2 − π(z)−1/2)

χc[j](t, c) = 1

for any 0 ≤ t ≤ 1, any arc (z → z′) and any cycle c.

Cayley graphs: a second look

In this section we revisit some examples we have already made in Chapter
5, in view of our new results. Some new graphs are studied as well, and
the non Abelian case is treated.

Let (X , ∗) be a group and G = {gi; i ∈ I} be a finite subset generatingX .
The directed graph structure associated with G is defined for any z, z′ ∈ X
by z → z′ if z′ = zg for some g ∈ G. We introduce the time independent
reference intensity j given by

j(z → zgi) := ji, ∀z ∈ X , gi ∈ G,

where ji > 0 only depends of the direction gi. The dynamics of the random
walkR is Markov and both time-homogeneous and invariant with respect
to left translations, i.e. for all zo, z, z′ ∈ X , j(zoz → zoz

′) = j(z → z′). For
all arc (z → z′), we have

χa(z → z′) = 0

and the cycle characteristic χc is translation invariant.
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Proposition 6.5.4. Let j and k be two positive Markov intensities on this Cayley
graph which are time-homogeneous and invariant with respect to the left trans-
lations. Then, they share the same bridges if and only if for any n ≥ 1 and
(i1, . . . , in) ∈ In with gi1 · · · gin = e, we have ji1 · · · jin = ki1 · · · kin .

As usual, we have denoted e the neutral element.

Proof. We have already seen that χa[j] = χa[k] = 0. On the other hand,
the relation gi1 · · · gin = e means that c := (e → gi1 → gi1gi2 → · · · →
gi1gi2 · · · gin−1 → e) is a cycle and the identity ji1 · · · jin = ki1 · · · kin means
that χc[j](c) = χc[k](c). We conclude with Theorem 6.2.1, Proposition 6.2.1
and the invariance with respect to left translations.

Remark 6.5.2. If the groupX is Abelian, Proposition 6.5.4 is covered by corollary
5.3.1.

Triangular lattice

The triangular lattice is the Cayley graph generated by gi = (cos(2π
3

(i −
1), sin(2π

3
(i − 1)), i = 1, 2, 3, and we consider a time-homogeneous and

translation invariant Markov intensity j.

1

1

11

1

1 6

3

1/21/6

1/3

2

Figure 6.5: Two different space-time homogeneous random walks on the
triangular lattice which belong to the same reciprocal class

For any cycle (z ↔ z + gi) associated with an edge, we have

χc[j](t, z ↔ z + gi) = jij−i.
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Figure 6.6: The cycle characteristics coincide

If we take any counterclockwise oriented face, i.e. a cycle of the form ∆z :=
(z → z + g1 → z + g1 + g2 → z) for z ∈ X we have

χc[j](t,∆z) = j1j2j3.

We address the question of finding another space-time homogeneous as-
signment {k±i}1≤i≤3 such that the corresponding walk belongs to R(R).
Applying Theorem 6.2.1 and (6.41), or equivalently invoking Proposition
6.5.4, we can parametrize the solutions k as follows

k1 = αj1, k−1 = α−1j−1

k2 = βj2, k−2 = β−1j−2

k3 = (αβ)−1j3, k−3 = αβj−3

where α, β > 0. Corollary 6.2.1 gives some details about the dynamics of
the bridge Rxy as the unique Markov walk (modulo technical conditions)
that starts in x, ends in y and such that, if h > 0 is a very small duration:

1. At any time t and independently from the current state, it goes back
and forth along the direction i during [t, t+h] with probability jij−ih2/2+
o(h2).

2. At any time t and independently from the current state, it goes around
the perimeter of a triangular cell of the lattice in the counterclockwise
sense during [t, t+ h] with probability j1j2j3h

3/6 + o(h3).

3. If exactly one jump occurs during [t, t + h], then the density of the
instant of jump is constant up to a correction factor of order o(h).
This follows from χa[j](t, z → z′) = 0 for all t and (z → z′).
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Rooted regular directed tree

It is an infinite directed tree such that each vertex admits exactly m ≥ 1
offsprings. Except for the root, all the vertices have the same indexm+1. It
is the Cayley tree rooted at ∗ = e and generated by G = {g1, . . . , gm}where
these m branches are free from each other: they do not satisfy any relation
(of the type gi1 · · · gin = e). This freedom is equivalent to the nonexistence
of cycles which is the defining property of a tree.

As a direct consequence of Proposition 6.5.4 we obtain the following

Corollary 6.5.1. Two positive, time-homogeneous and translation invariant Markov
intensities j and k on a rooted regular directed tree generate the same bridges:
R(R) = R(k).

In particular, this implies that these bridges are insensitive to time scaling:
R(αj) = R(j), for all α > 0.

The lattice Zd

The usual directed graph structure on the vertex set X = Zd is the Cayley
graph structure generated by G = {gi, g−i; 1 ≤ i ≤ d}with gi = (0, . . . , 0, 1, 0, . . . , 0)
where 1 is the i-th entry and we denote g−i = −gi. As another consequence
of Proposition 6.5.4 we obtain the following

Corollary 6.5.2. Two time-homogeneous and translation invariant positive Markov
intensities j and k on Zd generate the same bridges if only if for all 1 ≤ i ≤ d,
they satisfy

jij−i = kik−i, ∀1 ≤ i ≤ d

where j−i and k−i are the intensities of jump in the direction g−i = −gi.
Proof. This set of equalities corresponds to the identification of the cycle
characteristic along the edges. It is then easy to verify, using Proposition
6.5.4 and Remark 6.5.2 that it suffices to check only the combinations of
the form gig−i, which gives the conclusion.

Hypercube, again

Let us visit once more the hypercube X = (Z/2Z)d which is seen now as
the Cayley graph generated by the canonical basis gi = (0, . . . , 0, 1, 0, . . . , 0),
1 ≤ i ≤ d, where 1 is the i-th entry. As another consequence of Proposition
6.5.4 we obtain the following

Corollary 6.5.3. Two time-homogeneous and translation invariant positive Markov
intensities on the hypercube generate the same bridges if only if they coincide.
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Proof. The proof is the same as Corollary 6.5.2’s one. But this time g−i = gi,
so that jij−i = kik−i is equivalent to j2

i = k2
i .



Chapter 7

Perspectives

We conclude by listing some problems that may be interesting to study,
and are related to the content of this thesis.

Quantitative estimates based on reciprocal characteristics In this thesis
we have studied reciprocal classes of random walks on a general graphs.
Several natural questions arise concerning the possibility of deriving quan-
titative estimates based on the reciprocal characteristics. This seems to be a
difficult task, and we partially addressed in the Sections 3.3. and 4.7. These
results are very likely to hold in a general framework, and we simply spot-
ted some particular cases. However, how reciprocal characteristics affect
the long time behavior of bridges, and a quantitative estimate in terms
of the characteristics on how fast the solution to the Schrödinger problem
converges to the target final distribution are not known. They are natural
questions. Curiously, even the simple question if there is a unique invari-
ant measure for a reciprocal class which describes the distribution at time
0 of a long bridge between [−t, t] has not been addressed so far. To men-
tion some of the possible difficulties that arise when dealing with these
problems let us just mention that we noticed how the problem of study-
ing the long time behavior of a bridge is somehow equivalent to study
the value of spin in 0 in a spin system with boundary conditions at −n, n,
and how this value is affected by them. As far as we know, there is not a
natural functional inequality attached to this problem, whereas this is the
case when studying convergence to equilibrium for a time homogeneous
Markov process. The use of entropic interpolations, based on solutions the
Schrödinger Problem, to derive functional inequalities, is a theory which
is being developed. At the moment, it is not based on the reciprocal char-
acteristics, even though we know that the entropic interpolation is in the
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reciprocal class of the reference dynamics. Understanding this connection,
will probably shed more light on all the above mentioned problems.

Lévy processes and Lévy driven diffusions Reciprocal characteristics
have not been computed for such processes. However, we did some pre-
liminary work and it seems very likely that the methods we employed
in this work, including duality formulae, carry over to these situations.
This would allow to study the reciprocal class of a Lèvy process or a Lévy
driven diffusion.

A general notion of conditional characteristic Reciprocal characteristics
express some quantities which are invariant over the set of probabilities
that, when conditioned to the initial and final endpoints, are equal to a
reference probability. The same can be done for a general conditioning,
different from the bridges, and not necessarily on a path space. One takes
a reference distribution, chooses an observation function, and a class of
models, classified through a set of parameters. Then one asks what mod-
els are conditionally equal to the reference distribution, and tries to answer
this question in terms of the parameter set. A characteristic should then
simply be a particular functional of the parameters that is equal over all
the conditionally equivalent models. As a first step, in [18] we have ob-
tained preliminary results on this, generalizing the Schrödinger problem
to the case when one is allowed to observe the full trajectory of the sample
paths of some coordinates of a multidimensional diffusion. We compute
the characteristics and show that the duality formulae approach can be
transferred to this case.
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The last question

Figure 7.1: A very nice planar graph: a mosaic from Parco Güell in
Barcelona, realized with a technique called Trencadis. What are its recip-
rocal characteristics?
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[8] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues, volume 31. Springer Science & Business Media, 2013.

[9] P. Caputo and G. Posta. Entropy dissipation estimates in a zero-range
dynamics. Probability theory and related fields, 139(1-2):65–87, 2007.

[10] E.A. Carlen and E. Pardoux. Differential calculus and integration by
parts on Poisson space. In S. Albeverio, Ph. Blanchard, and D. Tes-
tard, editors, Stochastics, Algebra and Analysis in Classical and Quantum

177



178 BIBLIOGRAPHY

Dynamics, volume 59 of Mathematics and Its Applications, pages 63–73.
Springer, 1990.

[11] J.P. Carmichael, J.C. Masse, and R. Theodorescu. Processus gaussiens
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[73] E. Schrödinger. Über die Umkehrung der Naturgesetze. Sitzungs-
berichte Preuss. Akad. Wiss. Berlin. Phys. Math., 144:144–153, 1931.
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