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Abstract

Synchronization of large ensembles of oscillators is an omnipresent phenomenon ob-
served in different fields of science like physics, engineering, life sciences, etc. The
most simple setup is that of globally coupled phase oscillators, where all the oscillators
contribute to a global field which acts on all oscillators. This formulation of the prob-
lem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the
analysis of these systems in terms of global variables. In this work we describe non-
trivial collective dynamics in oscillator populations coupled via mean fields in terms of
global variables. We consider problems which cannot be directly reduced to standard
Kuramoto and Winfree models.

In the first part of the thesis we adopt a method introduced by Watanabe and Stro-
gatz. The main idea is that the system of identical oscillators of particular type can
be described by a low-dimensional system of global equations. This approach enables
us to perform a complete analytical analysis for a special but vast set of initial condi-
tions. Furthermore, we show how the approach can be expanded for some nonidentical
systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions
and systems of identical phase oscillators with leader-type coupling.

In the next parts of the thesis we consider the self-consistent mean-field theory method
that can be applied to general nonidentical globally coupled systems of oscillators both
with or without noise. For considered systems a regime, where the global field rotates
uniformly, is the most important one. With the help of this approach such solutions of
the self-consistency equation for an arbitrary distribution of frequencies and coupling
parameters can be found analytically in the parametric form, both for noise-free and
noisy cases. We apply this method to deterministic Kuramoto-type model with generic
coupling and an ensemble of spatially distributed oscillators with leader-type coupling.
Furthermore, with the proposed self-consistent approach we fully characterize rotating
wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble
of noisy oscillators with bi-harmonic coupling.

Whenever possible, a complete analysis of global dynamics is performed and compared
with direct numerical simulations of large populations.



Allgemeinverständliche Zusammenfassung

Die Synchronisation einer großen Menge von Oszillatoren ist ein omnipräsentes
Phänomen, das in verschiedenen Forschungsgebieten wie Physik, Ingenieurwis-
senschaften, Medizin und Weiteren beobachtet wird. In der einfachsten Situation ist
von einer Menge Phasenoszillatoren jeder mit dem Anderen gekoppelt und trägt zu
einem gemeinsamen Feld (dem sogenannten mean field) bei, das auf alle Oszillatoren
wirkt. Dieser Formulierung wurde von Winfree und Kuramoto der Weg bereitet und
sie birgt die Möglichkeit einer Analyse des Systems mithilfe von globalen Variablen.
In dieser Arbeit beschreiben wir mithilfe globaler Variablen die nicht-triviale kollektive
Dynamik von Oszillatorpopulationen, welche mit einem mean field verbunden sind.
Wir beschäftigen uns mit Problemen die nicht direkt auf die Standardmodelle von
Kuramoto und Winfree reduziert werden können.

Im ersten Teil der Arbeit verwenden wir eine Methode die auf Watanabe und Stro-
gatz zurückgeht. Die Hauptidee ist, dass ein System von identischen Oszillatoren eines
bestimmten Typs durch ein niedrig-dimensionales System von globalen Gleichungen
beschrieben werden kann. Dieser Ansatz versetzt uns in die Lage eine vollständige
analytische Untersuchung für eine spezielle jedoch große Menge an Anfangsbedingun-
gen durchzuführen. Wir zeigen des Weiteren wie der Ansatz auf nicht-identische Sys-
teme erweitert werden kann. Wir wenden die Methode von Watanabe und Strogatz
auf Reihen von Josephson-Kontakten und auf identische Phasenoszillatoren mit einer
Anführer-Kopplung an.

Im nächsten Teil der Arbeit betrachten wir eine selbst-konsistente mean-field-Methode,
die auf allgemeine nicht-identische global gekoppelte Phasenoszillatoren mit oder ohne
Rauschen angewendet werden kann. Für die betrachteten Systeme gibt es ein Regime,
in dem die globalen Felder gleichförmig rotieren. Dieses ist das wichtigste Regime. Es
kann mithilfe unseres Ansatzes als Lösung einer Selbstkonsistenzgleichung für beliebige
Verteilungen der Frequenzen oder Kopplungsstärken gefunden werden. Die Lösung liegt
in einer analytischen, parametrischen Form sowohl für den Fall mit Rauschen, als auch
für den Fall ohne Rauschen, vor. Die Methode wird auf ein deterministisches Sys-
tem der Kuramoto-Art mit generischer Kopplung und auf ein Ensemble von räumlich
verteilten Oszillatoren mit Anführer-Kopplung angewendet. Zuletzt sind wir in der
Lage, die Rotierende-Wellen-Lösungen der Kuramoto-artigen Modelle mit generischer
Kopplung, sowie ein Ensemble von verrauschten Oszillatoren mit bi-harmonischer Kop-
plung, mithilfe des von uns vorgeschlagenen selbst-konsistenten Ansatzes vollständig
zu charakterisieren.

Wann immer es möglich war, wurde eine vollständige Untersuchung der globalen Dy-
namik durchgeführt und mit numerischen Ergebnissen von großen Populationen ver-
glichen.
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1. Introduction

Synchronization in networks of a large number of coupled limit-cycle oscillators is a well-
known phenomenon observed in many different systems of any nature, from biology
to social sciences [1]. When such networks can be approximately considered fully
connected, what means that each unit is connected to each other, it is possible to treat
such a system as a set of oscillators coupled through a common global field (this case will
be treated further in this work). Another frequently used assumption is that a coupling
is weak, what implies that the amplitudes of the oscillators are relatively constant
and the interaction takes place through the phases of the oscillators [2]. Therefore
an approximate phase model can be formulated that represents the dynamics of the
original system near a limit cycle. These approximate phase models are usually used
to explain synchronization phenomena and collective behavior that appears in natural
systems. A concrete form of a coupling function depends on the original model and
should be obtained in the process of the phase reduction. There are two main directions
on how to proceed with theoretical analysis. The first one is to take a “real” system and
to perform a phase reduction process thus obtain a specific coupling function and to
analyze results associated with this particular system. The second direction is to take
an abstract system with “general” coupling function consistent of a limited amount of
harmonics and to try to build some “general” theory of synchronization that afterwards
can be applied to particular systems. We follow here the second approach.

Probably the most popular phase model was introduced by Kuromoto [2] and later ex-
tended by Sakaguchi and Kuramoto [3]. The model consists of globally coupled phase
oscillators with one-harmonic (sine) coupling function of phase difference. For noniden-
tical elements the transition to synchrony appears at a critical value of the coupling
strength depending on the width of the distribution of natural frequencies [4]. Nowa-
days more complex systems of coupled phase oscillators are considered. Distributions
of coupling coefficients and phase shifts are added (particularly this case is treated
below) or different coupling functions are considered. Even for the simplest Kuramoto
model it is difficult to obtain analytical results. Depending on the particular type of
the system (different dynamics of each oscillator and/or different coupling functions)
different approaches should be applied. As it has been already mentioned, in this work,
we will focus on the description of globally-coupled networks. Global coupling in some
cases gives a possibility to derive the equations (or at least solutions) for the param-
eters of a global field. We call these parameters global variables. We will concentrate
on presenting methods to derive the expressions for these global variables, applied to
different systems.
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We will start with a special case when the dynamics of global variables can be described
by a low-dimensional system of equations. This approach is based on the seminal
papers by Watanabe and Strogatz (WS) [5, 6] where a special variable transformation
was suggested. With this variable transformation the dynamics of a system of identical
oscillators of a particular type and of any size is fully described by a low-dimensional
system of equations for global variables. In the second chapter we will present the
application of the WS approach on two examples: arrays of Josephson junctions and
systems of identical phase oscillators with leader-type coupling. Also we will show a
setup of nonidentical oscillators where this approach can be applied. This is the case
when the system splits into the groups of identical elements (the units inside each group
are identical but differ from the elements of the other group). Similar setup is used
to link [7] the WS theory and the Ott-Antonsen (OA) approach, where the ensemble
with a distribution of natural frequencies can be analyzed. In this work we will show
another system of nonidentical elements, which can be described by integro-differential
equation. Yet, this approach cannot be applied to general nonidentical systems or
systems with more complex types of phase equations.

In general, in order to find solutions in terms of global variables for the system of
nonidentical oscillators, one should exploit another approach (similar to that of the
original Kuramoto work) for derivation of the global equation and its solution. It is
essentially the well-known self-consistent mean-field theory method that is used for
the analysis of a large number of interacting units. The effect of all units acting on a
particular unit can be represented by a single averaged field. This is exactly the case of
globally coupled oscillators, when the coupling is explicitly represented through some
global field. Then in the thermodynamic limit an equation for a distribution function
of the phases should be solved. The solution usually can be only found self-consistently
in an implicit form. Also, in most cases it is difficult to analyze the global dynamics
as well as stability of the obtained solutions. This approach can be applied both
for purely deterministic systems and for noise-driven oscillators. These cases will be
treated separately. In the third chapter the application of the self-consistent approach
to a noise-free case will be explained on two examples: Kuramoto-type model with
generic coupling and an ensemble of spatially distributed oscillators with leader-type
coupling. In the forth chapter we will show how the self-consistent method can be
applied to noisy systems based on noisy Kuramoto-type model with generic coupling
and an ensemble of noisy oscillators with bi-harmonic coupling.

The applicability of the methods described above strictly depends on the particular
system. For some systems the methods can be extended so they become applicable
for more complicated setups, for example the WS approach in some cases can be used
to treat inhomogeneous ensembles but it is not applicable for general inhomogeneity.
Furthermore, it is not always possible to obtain the dynamics for the global variables,
so that analytical solutions should be found from self-consistent global field approach.
However, sometimes it is possible to perform further analytical analysis. For example
in some cases stability analysis can be performed. Also a way how one applies these
methods (different reparametrization, etc) depends on a concrete system. That is why
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we do not give a detailed general description of these methods, but rather illustrate
them directly on particular examples. That gives us a possibility to explain not only
the methods themselves but also their application and further additional analysis when
possible.
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2. The Watanabe-Strogatz
approach.

2.1. The Watanabe-Strogatz theory

Before we consider an application of the WS theory, we are going to present a derivation
of the global equations in terms of new notations that differs from the original WS
notations [5, 6]. This new notations were firstly presented in [7].

As mentioned in the introduction, the WS theory is applicable to specific types of
systems of coupled identical phase oscillators. Specific type means that the equation
for the dynamics of each phase has specific form

ϕ̇k = f(t) + Im
(
F (t)e−iϕk

)
, (2.1)

with arbitrary real f(t) and arbitrary complex F (t). The coupling, that is represented
through a global field, can enter either f(t) or F (t) or both.

With WS approach it is possible to formulate exact three-dimensional system of equa-
tions for the network of the globally coupled phase equations (2.1) of any size with
the help of specific variable transformation. This transformation is essentially Möbius
transformation [8] (see Appendix A for a different approach) in the form

eiϕk =
z + ei(ψk+Ψ)

1 + z∗ei(ψk+Ψ)
, (2.2)

where z = z(t) is a complex and Ψ = Ψ(t) is a real global variables and ψk are N
constants. The fact that they are constants will be proven below.

In order to obtain equations for the global variables, the equation (2.1) should be
rewritten for eiϕk :

∂

∂t

(
eiϕk
)
= if(t)eiϕk +

1

2
F (t)− ei2ϕk

2
F ∗(t). (2.3)

Then, we substitute (2.2) into (2.3) and obtain the following:

ż+
[
żz∗ − zż∗ + i(ψ̇k + Ψ̇)(1− |z|2)

]
ei(ψk+Ψ) − ż∗e2i(ψk+Ψ) =

=if
[
z + (1 + |z|2)ei(ψk+Ψ) + z∗e2i(ψk+Ψ)

]
+

+
F

2
[1 + 2z∗ei(ψk+Ψ) + z∗2e2i(ψk+Ψ)]− F ∗

2
[z2 + 2zei(ψk+Ψ) + e2i(ψk+Ψ)]

(2.4)
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By grouping together the terms eni(ψk+Ψ), n = 0, 1, 2, it is possible to rewrite Eq. (2.4)
as:

ż+
[
żz∗ − zż∗ + i(ψ̇k + Ψ̇)(1− |z|2)

]
ei(ψk+Ψ) − ż∗e2i(ψk+Ψ) =

=ifz +
F

2
− F ∗

2
z2+

+
[
if(1 + |z|2) + (z∗F − zF ∗)

]
ei(ψk+Ψ)+

+

[
ifz∗ +

F

2
z∗2 − F ∗

2

]
e2i(ψk+Ψ)

(2.5)

Then if the global variables z(t) and Ψ(t) satisfy equations (2.6), the Eq. (2.5) is valid
for any ψk for every moment of time.

ż = if(t)z +
F (t)

2
− F (t)∗

2
z2,

Ψ̇ = f(t) + Im(z∗F (t)).
(2.6)

Next we are going to prove that ψk are constants. So we need to calculate the time
derivative ψ̇k. First we express eiψk via the inverse WS transformation

eiψk = e−iΨ −z + eiϕk

1− z∗eiϕk . (2.7)

Then we take time derivative of eiψk

∂

∂t

(
eiψk
)
= iψ̇keiψk =− iΨ̇e−iΨ −z + eiϕk

1− z∗eiϕk+

+e−iΨ (
˙eiϕk − ż)(1− z∗eiϕk)− (eiϕk − z)(−ż∗eiϕk − z∗ ˙eiϕk)

(1− z∗eiϕk)2 .

(2.8)

Eq. (2.8) can be rewritten in the following way:

iψ̇keiψk =
e−iΨ

(1− z∗eiϕk)2
[
iΨ̇z − ż + (1− |z|2) ˙eiϕk + (żz∗ − zż∗ − iΨ̇(1 + |z|2))eiϕk + (iΨ̇z∗ + ż∗)e2iϕk

]
.

(2.9)

Then we insert Eq. (2.3) for
∂

∂t

(
eiϕk
)
into Eq. (2.9).

iψ̇keiψk =
e−iΨ

(1− z∗eiϕk)2

[
iΨ̇z − ż + (1− |z|2)

(
if(t)eiϕk +

1

2
F (t)− ei2ϕk

2
F ∗(t)

)
+

+(żz∗ − zż∗ − iΨ̇(1 + |z|2))eiϕk + (iΨ̇z∗ + ż∗)e2iϕk

]
.

(2.10)
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Then, by regrouping we obtain:

iψ̇keiψk =
e−iΨ

(1− z∗eiϕk)2

[
iΨ̇z − ż + (1− |z|2)F

2
+

+
[
żz∗ − zż∗ − iΨ̇(1 + |z|2) + if(1− |z|2)

]
eiϕk+

+

(
iΨ̇z∗ + ż∗ − (1− |z|2)F

∗

2

)
e2iϕk

]
.

(2.11)

It is easy to see that after the substitution of the global equations (2.6) all the coeffi-
cients in (2.11) at eniϕk , n = 0, 1, 2 becomes zero, and thus ψ̇k = 0.

Up to this point we have proved that if the dynamics of the global variables z(t) and
Ψ(t) satisfies the equations (2.6) then these global variables describes the dynamics
of the original system (2.1) and the original phases can be found via the WS trans-
formation (2.2) at any moment of time, where ψk are indeed constants and they are
determined by the initial conditions of the original system. Since we have added three
more variables (one complex and one real variable) in order to determine unique set of
constants ψk and initial conditions z(0) and Ψ(0) for global variables, we have to add
three additional constraints. We choose this constraints to be

∑
i e

iψi =
∑

i cos 2ψi = 0
(see Appendix B for detailed discussion).

Another problem is how to represent a coupling through the new variables. As it
was stressed out before, this method is applicable to global (all-to-all) coupling. So the
oscillators create a global field and then this field acts on each oscillator as an “external”
forcing. Note that a global field can enter either to the function f(t) or F (t) or both.
In order to represent it through the new variables one should substitute the original
phases ϕk (usually phases are included as eiϕk) with the WS transformation (2.2).
Here we will focus on the most popular case when a global field consists from the order
parameter Z (2.12) multiplied by or added to some complex variable.

Z =
1

N

N∑
j=1

eiϕj . (2.12)

So we need to express the order parameter Z in global variables. After substituting
the WS transformation (2.2) we obtain (see [7] for details)

Z =
1

N

N∑
j=1

eiϕj =
1

N

N∑
j=1

z + ei(ψj+Ψ)

1 + z∗ei(ψj+Ψ)
. (2.13)

The expression (2.13) is rather complex and not applicable for analytical analysis. But
there is a special case when this expression becomes extremely simple. First let us use
an identity (

1 + z∗ei(ψj+Ψ)
)−1

=
∞∑
l=0

(−z∗)leil(ψj+Ψ). (2.14)
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Using the identity (2.14) we rewrite the expression (2.13) for Z

Z =
1

N

N∑
j=1

(
z + ei(ψj+Ψ)

) ∞∑
l=0

(−z∗)leil(ψj+Ψ), (2.15)

or

Z = z

[
1 +

(
1− |z|−2

) ∞∑
l=1

(−z∗)l 1
N

N∑
j=1

eil(ψj+Ψ)

]
, (2.16)

Then, in the thermodynamic limit (the number of oscillators goes to infinity), there is
one special configuration of constants ψ (the index has been dropped because constants
now have continuous distribution) when this expression is simple. Such a configuration
is a uniform distribution of constants ψ. In this case the order parameter Z is equal to
the global variable z (due to the fact that the sums over j in (2.16) become integrals over
the distribution and in the case of the uniform distribution these integrals vanish). Note
that the requirement of the uniform distribution of constants ψ is a restriction on initial
conditions, but it does not mean that the initial conditions should be also uniformly
distributed (because z(0) not necessary should be equal to zero (see Appendix B for
details)).

Remarkably, in this case the variable Ψ does not enter the equation for z, thus the dy-
namics of the global variable z fully describes the dynamics of the original system (2.1).
Further in this chapter we will stick with this particular case of the uniform distribution
of constants ψ and by speaking about the system (2.6) of global variables we will mean
only the first complex equation for z, since the equation for Ψ is irrelevant within the
framework of our choice of constants ψ.

2.2. Josephson junctions

In this section we will present an application of the WS approach to the arrays of
Josephson junctions (published in [9]). Let us consider the system of equations for the
Josephson junction series array with a LCR load [10, 11, 12]. The equations for the
junction phases φi and the load capacitor charge Q are

~
2er

dϕi
dt

+ Ic sinϕi = I − dQ

dt
, i = 1, ..., N ,

L
d2Q

dt2
+R

dQ

dt
+
Q

C
=

~
2e

N∑
i=1

dϕi
dt

.
(2.17)

Here N is the number of junctions, Ic is the junction’s critical current and r is the junc-
tion’s resistance, L, C, R are the parameters of the LCR-load. After reparametrization
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according to
ωc = 2erIc/~, t∗ = ωct,

Q∗ = ωcL
∗Q/Ic, I∗ = I/Ic,

R∗ = R/rN, L∗ = ωcL/rN, C∗ = NωcrC ,

(2.18)

we obtain the dimensionless equations

ϕ̇i = I − 1

L∗
Q̇∗ − sinϕi, (2.19a)

Q̈∗ +
R∗

L∗
Q̇∗ +

Q∗

L∗C∗
=

1

N

N∑
i=1

ϕ̇i . (2.19b)

Moreover, it is convenient to substitute the expression for ϕ̇i from (2.19a) into the
equation for the load (2.19b) and introduce new parameters ε = 1/L∗, γ = (R∗+1)/L∗

and ω0 = 1/
√
L∗C∗. So, the following system is obtained (dropping the asterixes for

simplicity)
ϕ̇i = I − εQ̇− sinϕi,

Q̈+ γQ̇+ ω2
0Q = I − 1

N

N∑
i=1

sinϕi.
(2.20)

The sum over sines can be replaced by the imaginary value of the Kuramoto complex
order parameter Z (2.12).

Z =
1

N

N∑
i=1

(cosϕi + i sinϕi) ,

Im(Z) =
1

N

N∑
i=1

sinϕi ,

(2.21)

Also the equation for the junction’s phases ϕi can be rewritten in the form (2.1)

ϕ̇i = I − εQ̇+ Im(e−iϕi) (2.22)

for what the WS approach is applicable. Thus the dynamics of the system of Josephson
junctions can be described by the system (2.6). So we need to insert f = I − εQ̇ and
F = 1 into the equations (2.6) for the WS global variables. From now on we will
consider the thermodynamic limit N → ∞ and the uniform distribution of constants
ψ. In this case the closed system of equations that describes the dynamics of the array
reads

Ż = i(I − εQ̇)Z +
1

2
− Z2

2
,

Q̈+ γQ̇+ ω2
0Q = I − Im(Z).

(2.23)

Further analysis is rather straightforward. At a steady state regime Q̇ = 0, thus the
coupling vanishes, and the only stationary solution is the steady state that describes
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an asynchronous regime with Z0 = i(I −
√
I2 − 1), Q0 = ω−20

√
I2 − 1. Stability of this

solution is determined by the fourth-order characteristic equation

λ4 + γλ3 + (ω2
0 + I2 − 1)λ2+

+[(γ − ε)(I2 − 1) + εI
√
I2 − 1 ]λ+ ω2

0(I
2 − 1) = 0.

(2.24)

The stability border can be easily found by inserting λ = iω in the characteristic
equation (2.24)

ω2
0 = (I2 − 1) +

ε

γ

√
I2 − 1(I −

√
I2 − 1). (2.25)

The dynamics of the phase Φ in fully synchronous regime in (2.23) with |Z| = 1 is
determined by the system

Q̈+ γQ̇+ ω2
0Q = I − sinΦ ,

Φ̇ = I − εQ̇− sinΦ .
(2.26)

The stability of the synchronous solution was analyzed by finding the largest multi-
plier of the numerical solution of Eq. (2.26). Combining this result with the stability
border (2.25) of asynchronous regime, we obtain the intersecting domains of stability
of the asynchronous and synchronous states, that form the region of bistability, see
Fig. 2.1.

In Fig. 2.2 another illustration of the bistability is presented, showing the stable part
of the asynchronous state Z0 and stable synchronous regime |Z| = 1 as a function of
the parameter I. In this figure we also show numerical solution when the distribution
of constants ψi is not uniform. The initial conditions were prepared specially in or-
der to have nonuniform distribution of constants ψi as described in ref. [7], appendix
C. The simulation was done for an ensemble of 100 junctions. For this case there is
no asynchronous steady state Z0, but the asynchrony state demonstrates an oscillat-
ing variable Z(t), minimum and maximum values of which are marked with squares.
The synchronous regime, |Z| = 1, is the same, what means that the system loses its
information on the constants ψi as synchrony establishes.

Additionally, we would like to point out that we found only the fully synchronous and
the fully asynchronous states in the system (2.23). No partial synchrony like it was
described in [13] was observed. In a partial synchronous state there exists a nonzero
mean field, although the oscillators are not perfectly synchronous. They perform a
collective behavior forming a bunch. Unlike the similar setup in [13] where the load
was nonlinear, here the load was considered to be linear. We cannot prove that partial
synchrony is impossible for linear loads, but our numerical simulation, together with
the study of Ref. [14], did not show such regimes.

15



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3

Ω2

ω
2 0

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3

Ω2

ω
2 0

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3

Ω2

ω
2 0

(c)

Figure 2.1.: (Color online) Domains of stability of synchronous (above lower dashed line) and
asynchronous (below upper solid line) states on the plane of parameters (ω2

0 , Ω
2), where Ω =√

I2 − 1 is the natural frequency of the junctions. Here ε = 0.5, and γ = 1.0 (a), 1.7 (b), 2.7
(c). From [9].

2.3. A system of identical phase oscillators with
leader-type coupling

In this section we apply WS approach to the system of phase oscillators with a leader-
type coupling. Such a network structure is often called star network, the simplest
small-world network. In our setup all the phase oscillators ϕk are identical having
frequency ω and are coupled to the leader oscillator φ with coupling strength A and
phase shift α. At the same time the leader φ has its own frequency ω0 and is coupled
to every other oscillators ϕj with coupling coefficient B and phase shift β:

ϕ̇k = ω + A sin(φ− ϕk − α),

φ̇ = ω0 +
1

N

N∑
j=1

B sin(ϕj − β − φ).
(2.27)
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Figure 2.2.: Dependence of the order parameter |Z| on the current I for 100 junctions. Line:
uniform distribution of constants ψi, squares: nonuniform distributions. From [9].

The system (2.27) can be rewritten in terms of mean-field

ϕ̇k = ω + Im(Aei(φ−ϕk−α)),

φ̇ = ω0 + Im(G̃(t)e−iφ),

G̃(t) =
1

N

N∑
j=1

Bei(ϕj−β).

(2.28)

It is convenient to make a variable transformation to the phase differences∆ϕk between
the oscillators ϕk and the leader φ taking into account the phase shift α

∆ϕk = ϕk − φ+ α. (2.29)

Then, the equations for ∆ϕk and φ are

˙∆ϕk = −φ̇+ ω + Im(Ae−i∆ϕk),

φ̇ = ω0 + Im(G(t)),

G(t) =
1

N

N∑
j=1

Bei(∆ϕj−α−β).

(2.30)
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The expression for the leader dynamics can be directly introduced to the equations for
∆ϕk and thus we obtain the closed system

˙∆ϕk = ω − ω0 − Im (G(t)) + Im(Ae−i∆ϕk),

G(t) = Be−i(α+β) 1

N

N∑
j=1

ei∆ϕj ,
(2.31)

that allows us to use the Watanabe-Strogatz ansatz.

Comparing with the system (2.1) we see that in our case f(t) = ω − ω0 − Im (G(t))
and F (t) = A. We consider below the problem in the thermodynamic limit N → ∞
and uniform distribution of constants of motion ψ when the order parameter is equal
to z. In this case from (2.6) it follows that Ψ does not enter the equation for z, so we
obtain an equation for z that describes the system (2.31)

ż = i
(
∆ω −B Im(ze−iδ)

)
z − Az

2 − 1

2
, (2.32)

where ∆ω = ω − ω0 and δ = α + β.

For further analysis it is appropriate to represent the complex variable z = ρei∆Φ in
polar form. Thus

ρ̇ = A
1− ρ2

2
Re(ei∆Φ),

∆̇Φ = ∆ω + (B sin δ)ρRe(ei∆Φ)− A+ (A+ 2B cos δ)ρ2

2ρ
Im(ei∆Φ).

(2.33)

Note that Eqs. (2.33) are invariant under the following transformation of variables and
parameters ∆Φ→ −∆Φ, ∆ω → −∆ω and δ → −δ.
We start the analysis of (2.33) with finding its steady states. From the first equation
in (2.33) it follows that there are two types of steady states when ρ̇ = 0: synchronous
with ρ = 1 and asynchronous with cos∆Φ = 0. The synchronous steady state gives

ρ = 1,

∆̇Φ = ∆ω −
√
A2 +B2 + 2AB cos δ Im

(
e
i
(
∆Φ+arcsin A+B cos δ√

A2+B2+2AB cos δ
−π

2

))
.

(2.34)

From (2.34) it follows that the steady solution ∆̇Φ = 0 exists only if |∆ω| ≤√
A2 +B2 + 2AB cos δ .

By rescaling time it is convenient to reduce the number of parameters. Eq. (2.34)
suggests that the most convenient rescaling is

t′ = t
√
A2 +B2 + 2AB cos δ . (2.35)
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This rescaling is quite general except for two special cases when cos δ = −1 and B = A
(see Appendix C) or A = B = 0, the later is just the case of uniformly rotating uncou-
pled phase oscillators that does not present any interest. So in new parametrization
Eq. (2.34) becomes

ρ = 1,

∆̇Φ = ∆x− Im
(
ei(∆Φ+ξ−

π
2 )
)
,

(2.36)

where

∆x =
∆ω√

A2 +B2 + 2AB cos δ
and sin ξ =

A+B cos δ√
A2 +B2 + 2AB cos δ

. (2.37)

Thus the steady solutions of Eq. (2.36) have the following phases

∆Φs1 =
π

2
+ arcsin∆x− ξ, ∆Φs2 = −

π

2
− arcsin∆x− ξ. (2.38)

In the new parametrization Eq. (2.33) becomes

ρ̇ = g
1− ρ2

2
Re(ei∆Φ),

∆̇Φ = ∆x+ (cos ξ)ρRe(ei∆Φ)− g + (2 sin ξ − g)ρ2
2ρ

Im(ei∆Φ),

(2.39)

where g = A√
A2+B2+2AB cos δ

≥ 0. Note that analogous to Eqs. (2.33), Eqs. (2.39) are
invariant to the following transformation of variables and parameters ∆Φ → −∆Φ,
∆x→ −∆x and cos ξ → − cos ξ. Due to this symmetry we can consider only the case
when cos ξ ≥ 0.

The asynchronous steady states could be found from

∆Φ = ± π/2,

0 = ∆x∓ g + (2 sin ξ − g)ρ2
2ρ

.
(2.40)

Eq (2.40) gives two asynchronous steady solutions:

za1,2 = i
∆x±

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g . (2.41)

It is convenient to rewrite Eq. (2.41) as

za1,2 = sign(∆x) i
|∆x| ±

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g , (2.42)

note that here the cases split, depending on the value of (2 sin ξ−g). If |2 sin ξ−g| > g,
because ρ = |z| ≤ 1, za1 solution exists only if |∆x| ≤ | sin ξ|. And if |2 sin ξ − g| ≤ g,
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also because ρ = |z| ≤ 1, za2 solution exists only if |∆x| ≥ sin ξ. If 2 sin ξ − g = 0, the
asynchronous steady solutions are

za1,2 = ± sign(∆x) i
g

2|∆x| , (2.43)

but the condition on |∆x| ≥ sin ξ = g/2 is still the same.

Note that the expression 2 sin ξ − g is equal to A+2B cos δ√
A2+B2+2AB cos δ

; if cos δ ≥ 0 this
expression is always positive and g < 1 and sin ξ > g. If cos δ < 0 the sign of this
expression depends on the sign of A+ 2B cos δ but sin ξ < g.

2.3.1. Stability analysis

In order to study stability of the asynchronous steady solutions (2.42) we linearize the
system around corresponding fixed point. The linearized system reads

ȧ1,2 = sign(∆x)

(
−(cos ξ) |∆x| ±

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g a1,2 ±

√
∆x2 − g(2 sin ξ − g) b1,2

)
,

ḃ1,2 = sign(∆x)

(
|∆x| − (sin ξ)

|∆x| ±
√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g

)
a1,2,

(2.44)

where a1,2 = Re(z1,2) and b1,2 = Im(z1,2)− Im(za1,2) respectively. Despite the fact that
it is difficult to find explicit expressions for eigenvalues of the linear system (2.44), it
is possible to find regions of parameters when they are positive or negative, thus to
analyze stability of asynchronous solutions.

There is one truly remarkable case when cos ξ = 0 or sin δ = 0. In this case, eigenvalues
of the linear system (2.44) for za2 are purely imaginary, what gives a possibility for the
fixed point za2 to be neutrally stable (see next section for details).

For two synchronous fixed points (2.38): zs1 = ei∆Φs1 and zs2 = ei∆Φs2 , the correspond-
ing linearized system reads

ȧ1,2 =

[
∓
√
1−∆x2 + (sin ξ − g)(−∆x cos ξ ±

√
1−∆x2 sin ξ)

]
a1,2+

+

[
(sin ξ − g)(±

√
1−∆x2 cos ξ +∆x sin ξ)

]
b1,2,

ḃ1,2 =

[
cos ξ(−∆x cos ξ ±

√
1−∆x2 sin ξ)

]
a1,2+

+

[
− sin ξ(−∆x cos ξ ±

√
1−∆x2 sin ξ)

]
b1,2,

(2.45)
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where a1,2 = Re(z1,2)−Re(zs1,2) = Re(z1,2)− (−∆x cos ξ ±
√
1−∆x2 sin ξ) and b1,2 =

Im(z1,2)− Im(zs1,2) = Im(z1,2)− (±
√
1−∆x2 cos ξ +∆x sin ξ) respectively.

Linear system (2.45) has two eigenvalues:

λs
1
1,2 = g(∆x cos ξ ∓

√
1−∆x2 sin ξ),

λs
2
1,2 = ∓

√
1−∆x2.

(2.46)

Their signs depend on the values of the parameters. We will outline all possible steady
solutions together with their stability below.

2.3.2. Reversible case when phase shift cos ξ = sin δ = 0

As shown by the stability analysis above, when cos ξ = 0, za2 can be neutrally stable
for any ∆x. The neutral stability can be proved by the fact that when cos ξ = sin δ = 0,
Eq. (2.32) is invariant to the variable transformation symmetrical with respect to the
imaginary axis: Im(z) → Im(z), Re(z) → −Re(z) and t → −t. Thus any trajectory
that crosses Im(z) axes two times is a closed curve (Fig. 2.3). That makes the asyn-
chronous steady solution neutrally stable. Thus it is difficult to determine it by direct
numerical simulation of the system of oscillators coupled through a leader without
phase shift (star networks). Which caused a debate around hysteretic transitions be-
tween asynchronous and synchronous regimes and the nature of asynchronous regime
with non-zero order parameter (see [16] for detailed description of the problem).

2.3.3. The presentation of the solutions for all values of the
parameters

Since we consider only the case when cos ξ > 0 (for cos ξ = 0 see previous section) and
thus sin ξ 6= 1, the solution with stability for ∆x > 0 [∆x < 0] is

(i) (Fig. 2.4) (2 sin ξ − g) > g, note that 1 > sin ξ > g ≥ 0 and(
|∆x| − (sin ξ)

|∆x| ±
√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g

)
> 0. (2.47)

21



-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
z

Rez

Figure 2.3.: The phase diagram for the case sin ξ = 1. ∆x = 0.85 and g = 0.4.

zs1 − sink(stable)node [sink(stable)node] and

zs2 − source(unstable)node [source(unstable)node], if |∆x| <
√
g(2 sin ξ − g) ,

za1 − saddle [saddle], za2 − stable [unstable] and
zs1 − sink(stable)node [sink(stable)node] and

zs2 − source(unstable)node [source(unstable)node], if
√
g(2 sin ξ − g) ≤ |∆x| ≤ sin ξ,

za2 − stable [unstable] and
zs1 − saddle [sink(stable)node] and
zs2 − source(unstable)node [saddle], if sin ξ < |∆x| ≤ 1,

za2 − stable [unstable], and
|z| = 1, arg(z) = ∆Φ(t), unstable [stable] limit cicle if 1 < |∆x|.

(2.48)
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Figure 2.4.: The dependence of the order parameter |z| on the relative frequency mismatch ∆x,
for the case sin ξ > g ≥ 0

(ii) (Fig. 2.5) −g ≤ (2 sin ξ − g) ≤ g, so g ≥ sin ξ ≥ 0 and(
|∆x| − (sin ξ)

|∆x| ±
√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g

)
> 0 (2.49)

zs1 − sink(stable)node [sink(stable)node] and
zs2 − source(unstable)node [source(unstable)node], if |∆x| < sin ξ,

za2 − stable [unstable] and
zs1 − saddle [sink(stable)node] and
zs2 − source(unstable)node [saddle], if sin ξ ≤ |∆x| ≤ 1,

za2 − stable [unstable], and
|z| = 1, arg(z) = ∆Φ(t), unstable [stable] limit cicle if 1 < |∆x|.

(2.50)

(iii) (Fig. 2.6) (2 sin ξ − g) < −g, thus sin ξ < 0 and(
|∆x| − (sin ξ)

|∆x|+
√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g

)
< 0(

|∆x| − (sin ξ)
|∆x| −

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g

)
> 0

(2.51)
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Figure 2.5.: The dependence of the order parameter |z| on the relative frequency mismatch ∆x,
for the case g ≥ sin ξ ≥ 0

za1 − unstable [stable], za2 − stable [unstable] and
zs1 − saddle [saddle] and
zs2 − saddle [saddle], if |∆x| ≤ | sin ξ|,

za2 − stable [unstable] and
zs1 − saddle [sink(stable)node] and
zs2 − source(unstable)node [saddle], if | sin ξ| < |∆x| ≤ 1,

za2 − stable [unstable], and
|z| = 1, arg(z) = ∆Φ(t), unstable [stable] limit cicle if 1 < |∆x|.

(2.52)

Where

zs1 = ei(
π
2
+arcsin∆x−ξ),

zs2 = ei(−
π
2
−arcsin∆x−ξ),

(2.53)
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Figure 2.6.: The dependence of the order parameter |z| on the relative frequency mismatch ∆x,
for the case sin ξ < 0

and if 2 sin ξ − g 6= 0

za1 = sign(∆x) i
|∆x|+

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g ,

za2 = sign(∆x) i
|∆x| −

√
∆x2 − g(2 sin ξ − g)
2 sin ξ − g ,

(2.54)

or if 2 sin ξ − g = 0

za1 = sign(∆x) i
g

2|∆x| ,

za2 = − sign(∆x) i
g

2|∆x| .
(2.55)

We obtain three main regions of parameters with three different transitions from asyn-
chronous steady solution to synchronous one. We show the transition depending on
the relative frequency mismatch ∆x between individual oscillator’s frequency and the
frequency of the leader. Stability of the solutions depends on the sign of frequency
mismatch ∆x.

In the first case (Fig. 2.4) there is a hysteretic transition due to the existence of unstable
fixed point (2.48). If ∆x > 0 there are stable asynchronous steady solution that exists
for large absolute values |∆x| and stable synchronous steady solution that exists for
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small |∆x|. These solutions coexist for a bounded region of |∆x| forming hysteresis.
If the frequency mismatch ∆x < 0, the synchronous steady solution is still stable and
also synchronous limit cycle solution becomes stable for large |∆x| and asynchronous
steady solution becomes unstable.

In the second case (Fig. 2.5) there is no hysteresis (2.50). In this case there is only
one asynchronous steady solution existing for large values |∆x| that is stable if ∆x > 0
and unstable if ∆x < 0. If ∆x > 0 the synchronous solution is stable for small values
of |∆x|, if ∆x < 0 both synchronous (steady and limit cycle) solutions are steady for
all |∆x|.
In the third case (Fig. 2.6) the transition is not hysteretic (2.52). For ∆x > 0 there
is only one stable steady solution that is asynchronous one. And for ∆x < 0 for
small |∆x| there is stable asynchronous steady solution that transforms to synchronous
steady solution for larger |∆x|, that then with further increase of |∆x| becomes stable
synchronous limit cycle.

2.3.4. Additional mean-field coupling

The analytical approach described above can be partially applied for the system of iden-
tical oscillators coupled not only through a leader but also via a Kuramoto-Sakaguchi
mean-field. The system (2.31) with additional mean-field H(t) becomes

˙∆ϕk = ω − ω0 − Im (G(t)) + Im(Ae−i∆ϕk) + Im(H(t)e−i∆ϕk),

G(t) = Be−i(α+β) 1

N

N∑
j=1

ei∆ϕj ,

H(t) = Ce−iγ 1

N

N∑
j=1

ei∆ϕj .

(2.56)

The WS approach can be also applied for the new system (2.56), so that according
to (2.6)

ż = i(∆ω −B Im(ze−iδ))z − Az
2 − 1

2
+
C

2
(e−iγ − eiγ|z|2)z, (2.57)

Then we perform the similar analysis together with the same rescaling of time (2.35)
and reparameterization (2.37) as in the previous case. In the new notation Eq. (2.57)
becomes

ρ̇ =
1− ρ2

2
(gRe(ei∆Φ) + q cos γ ρ),

∆̇Φ = ∆x− q1 + ρ2

2
sin γ + (cos ξ)ρRe(ei∆Φ)− g + (2 sin ξ − g)ρ2

2ρ
Im(ei∆Φ),

(2.58)
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where q = C√
B2+A2+2BA cos δ

≥ 0. Note that analogous to Eqs. (2.33), Eqs. (2.58) are
invariant to the following transformation of variables and parameters ∆Φ → −∆Φ,
∆x → −∆x and cos ξ → − cos ξ, γ → −γ. Thus, as before we will consider only the
case when cos ξ ≥ 0.

The synchronous steady solutions with ρ = |z| = 1 of Eq. (2.58) are

∆Φs1 =
π

2
+ arcsin(∆x− q sin γ)− ξ, ∆Φs2 = −

π

2
− arcsin(∆x− q sin γ)− ξ. (2.59)

The incoherent steady solutions should be found from the following equations

cos∆Φ = −q cos γ ρ
g

,

0 = ∆x− q1 + ρ2

2
sin γ − (cos ξ)ρ

q cos γ ρ

g
∓ g + (2 sin ξ − g)ρ2

2ρ

√
1−

(
q cos γ ρ

g

)2

.

(2.60)

The system of equations (2.60) for ρ and ∆Φ is rather complex for the analytical
analysis, but it is clear that there are two main limiting cases. The first is the case
with big C (or reparameterized q), this means that the dynamics of the system is mostly
influenced by the mean-field. This case qualitatively coincides with the well studied
case when B = A = 0 with two synchronous fixed points (one stable and one unstable
with |z| = 1) and one asynchronous fixed point (stability of which depends on the
coupling parameters and frequency mismatch). The second case is when the influence
of the mean field is relatively small, or the coupling strength C (or q) is small. The
qualitative picture for this case coincides with the limit C = q = 0 considered in the
main part of this section. The quantitative results can be obtained numerically. Note
that our approach is still useful here because for the numerical analysis the reduced
system (2.58) is much simpler then the original one.

2.4. Nonidentical oscillators

Although the WS approach in its original form can be applied only to identical oscil-
lators, in some organization of distributions of parameters this approach can help to
reduce the number of equations and to obtain some analytical results. Here we will
present such networks with nonidentical elements that can be treated with the help of
the WS approach on the example of nonidentical Josephson junction array (published
in [9]). So we will start with the formulation of the model.

2.4.1. The formulation of the model

In the model of the junctions (2.17) there are two individual parameters that can
differ: the critical current Ic and the resistance r (cf. [11, 12]). The Watanabe-Strogatz
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approach can be applied if the junctions are organized in groups, each of the size P , and
the parameters of all junctions in a group are identical: the critical current is Ic(1+ ξk)
and the resistance is r(1+ ηk), where index k = 1, . . . ,M counts the groups. The total
number of junctions is N = MP . Thus we write the equations for the junctions in a
form

ϕ̇ki = (1 + ηk)[I − εQ̇− (1 + ξk) sinϕki]

Q̈+ γQ̇+ ω2
0Q = I − 1

N

M∑
k=1

(1 + ηk)(1 + ξk)
P∑
i=1

sinϕki.
(2.61)

Next, we apply the Watanabe-Strogatz ansatz to each group of the identical junctions,
and obtain a system

Q̈+ γQ̇+ ω2
0Q = I − 〈(1 + ηk)(1 + ξk)Im(Zk)〉,

Żk = (1 + ηk)

(
i(I − εQ̇)Zk + (1 + ξk)

1− Z2
k

2

)
,

(2.62)

where average 〈〉 is taken over all groups. Next we take a thermodynamic limit of an
infinite number of groups M → ∞, then instead of M WS variables Zk we obtain a
continuous function Z(η, ξ). Then (2.62) becomes an integro-differential equation with
the distribution function W (η, ξ) of the parameters ξ, η (cf. [7]):

Q̈+ γQ̇+ ω2
0Q = I−

−
∫∫

dη dξ W (η, ξ) (1 + η)(1 + ξ)Im(Z(η, ξ)) ,

Ż(η, ξ) = (1 + η)

(
i(I − εQ̇)Z + (1 + ξ)

1− Z2

2

)
.

(2.63)

2.4.2. Asynchronous state and its stability

As in the case of identical junctions the asynchronous state is the steady state of the
system (2.63):

Z0(η, ξ) = i
I −

√
I2 − (1 + ξ)2

1 + ξ
,

Q0 = ω−20

∫∫
dη dξ W (η, ξ) (1 + η)

√
I2 − (1 + ξ)2 ,

(2.64)

where we assume 〈ξ〉 = 〈η〉 = 0. Remarkably, the parameter η (responsible for noniden-
tity of the junction resistances) does not enter the expression for Z0, only the parameter
ξ (nonidentity of the junction critical currents) enters the expression of asynchronous
state. But the stability of the asynchronous state depends on distributions of η and ξ.
We consider two cases of possible sources of diversity separately.

(i) Disorder in resistances only. That means that W (η, ξ) = δ(ξ)Wµ(η) where we as-
sume that Wµ is a uniform distribution in the interval (−µ, µ). In order to analyze the
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stability of the asynchronous state we linearize the integral equation (2.63) around the
steady solution (2.64), and discretize the integral using 500 nodes. Then we calculate
the eigenvalues of the resulting matrix. Fig. 2.7a shows the results for the maximal
eigenvalue. It is clear to see that, as the external current I increases, the asynchronous
state loses its stability nearly at the same critical value as for identical junctions (ex-
pression (2.25)), but with further increase of I the asynchronous state becomes stable
again. The region of instability decreases as the value of µ increases.

(ii) Disorder in critical currents only. Similarly to the previous case W (η, ξ) =
δ(η)Wζ(ξ), where ζ is the width of the uniform distribution. Next, the same pro-
cedure was performed and the stability eigenvalues were found. They are shown in
Fig. 2.7b. The same qualitative picture was obtained: both sources of nonidentity
result in a bounded (in terms of the external current I) domain of instability of the
asynchronous state.

The main result of the calculations presented in Fig. 2.7 show, that the main effect of
disorder in arrays is the stability of the asynchronous state for large values of current
I, and the instability appears only in some closed area (which decreases with increase
of diversity). The appearing synchrony regimes in nonidentical arrays are presented in
the next subsection.

2.4.3. Numerical simulations

The results of numerical study of the nonidentical arrays of Josephson junctions are
shown in Figs. 2.8. As above, we consider two cases when one of the parameters, η
for individual resistance or ξ for individual critical current, has a distribution. For
numerical simulations we use the discrete representation (2.62) with additional very
small viscous term ∼ (Zk+1 + Zk−1 − 2Zk) (it was added in order to avoid spurious
non-smooth solutions) in the equation for Zk that gives numerical stabilization of the
integro-differential equation.

As a characterization of synchrony, the average over the array order parameter z =
M−1∑

k Zk was used. It is plotted vs. parameter I in Fig. 2.8. As explained above, this
parameter attains the fixed point (cf. Eq. (2.64)) in the asynchronous state , while in
the synchronous state it performs oscillations around some mean value (the synchrony
is not complete, |z| < 1, due to diversity of the array). The transition to synchrony and
back is hysteretic both for small and large values of I, as shown on panels (b),(c),(e),
and (f) of Fig. 2.8.

In order to show how the synchronous and asynchronous states appear on the macro-
scopic and the microscopic level, we illustrate the dynamics of the load fields Q, Q̇
(solid and dashed curves, respectively) and of the Josephson phases ϕi in Fig. 2.9.
Panels (a,b) show complete synchrony of identical junctions, when all the phases co-
incide. Panels (c,d) show synchronous state of junctions with a distribution of their
resistances ηk, when the phases are not identical, but form a bunch, rotating with the
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same frequency. In panels (e,f) we show an asynchronous state for bigger difference of
the resistances, when the load fields Q, Q̇ perform no oscillation what means effective
absence of the coupling, and the phases of the junctions have different frequencies and
thus diverge.

2.5. Summary

In this chapter we have presented the Watanabe-Strogatz (WS) theory and its applica-
tions. By virtue of this method we obtain a closed low-dimensional system of equations
for global variables that fully describes the original system. The application to arrays
of Josephson junctions proves the presence of the hysteric transitions from asynchrony
to synchrony. The application to identical star networks gives the possibility for the
full analytical analysis for described set of initial conditions. Such networks also show
hysteretic transitions to synchrony in some region of the parameter space. For the ap-
plication to nonidentical systems, a certain type of inhomogeneity is required, in which
the system consists of the groups, such that the units inside each group are identical
but differ from the units from another group.

The setup when a network can be divided into groups of identical elements is used
in many cases for the analysis of inhomogeneous networks. For example, such setup
has been used in Ott-Antonsen theory [15] (see [7] for details) where they considered
the Cauchy distribution of natural frequencies. However, in the Ott-Antonsen case the
integral over the distribution can be performed beforehand with the help of Cauchy’s
residue theorem. Therefore a low-dimensional system similar to (2.63) is not integro-
differential, but simply is a complex differential equation, where instead of a parameter
distribution the single value obtained from the Cauchy’s residue theorem is substituted.
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Figure 2.7.: (Color online) Real part of the maximum eigenvalue λ as a function of the dimen-
sionless current I for the different values (shown on the panels) of µ (panel (a)) and ζ (panel (b)).
From [9].
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Figure 2.8.: (Color online) Panels (a),(d): Dependence of the averaged order parameter |z| on
current I, µ = 0.01, ζ = 0 and µ = 0, ζ = 0.05 respectively. Three lines show the maximal
(upper dashed line), the average (solid line), and the minimal (lower dashed line) value of vari-
ations of |z| in time, in the asynchronous states these lines coincide. Panels (c), (d), (e) and (f)
show enlargements of the regions near the synchrony-asynchrony transitions, to demonstrate the
hysteresis. From [9].
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Figure 2.9.: (Color online) Results of simulations of an ensemble of 200 junctions for ω2
0 = 1.2,

ε = 0.5, ζ = 0. In panels (b,d,f) we show only 20 phases out of 200, for better clarity. Panels
(a,b): full synchrony for µ = 0, I = 2.5. Panels (c,d): synchronous state in disordered array for
µ = 0.01, I = 2.5. Panels (e,f): asynchronous state for array with large disorder µ = 0.1, I = 1.2.
From [9].
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3. Self-consistent approach without
noise

3.1. Schematic description of the method

The type of oscillators diversity described above (the case when a system splits into
groups of identical elements) is not general and therefore the WS approach is not
suitable for all (or even large enough class of) inhomogeneous systems of coupled phase
oscillators. Following the original Kuramoto approach, the solution for a general system
can be obtained by finding a self-consistent solution of the global equation for the
probability density functions in the thermodynamic limit.

Several remarks have to be added beforehand. First, a global coupling is necessary
for this approach. Second, it will be not always possible to check the stability of the
solutions or to find out the dynamics and general time-dependent solutions. Basically,
we will just look for the solutions of special type, namely stationary and traveling wave
solutions.

Let us consider general system of phase equations with global coupling and without
noise

ϕ̇k = f(H(p, t), ϕk, xk, p), (3.1)

where xk is a general vector of system’s distributed parameters and p is a vector of
common non-distributed (the same for all oscillators) parameters (they can enter both
oscillator’s dynamic equation and global field). A global field is represented by H(p, t),
where

H(p, t) =
1

N

N∑
j=1

h(ϕj(t), xj, p). (3.2)

The function f has to be invariant to a rotation of all phases by an arbitrary angle α
so that

f

(
1

N

N∑
j=1

h
(
ϕj, xj, p

)
, ϕk, xk, p

)
= f

(
1

N

N∑
j=1

h
(
ϕj + α, xj, p

)
, ϕk + α, xk, p

)
. (3.3)

Note that in general a system can have several global fields (see [17, 18] for an example
of the case with two global fields). Here we will schematically explain the self-consistent
method based on the example of one global field.
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In the thermodynamic limit (N → ∞) the index of ϕ and x can be dropped be-
cause they are considered to be continuous functions, where ϕ(t) has time-dependent
conditional probability density function ρ(ϕ, t |x) and x is described through a joint
distribution density g(x). Time-dependent conditional probability density function
ρ(ϕ, t |x) should satisfy continuity equation

∂ρ

∂t
+

∂

∂ϕ

(
f(H(p, t), ϕ, x, p)ρ

)
= 0. (3.4)

And the expression for the global field H(p, t) reads

H(p, t) =

∫
g(x)

∫ 2π

0

ρ(ϕ, t |x)h(ϕ, x, p)dϕ dx. (3.5)

In general it is rather difficult to find time-dependent solutions of (3.4). But of par-
ticular importance are synchronous solutions when the phases rotate uniformly. These
solutions are traveling wave solutions rotating with constant common frequencyΩ (note
that a stationary solution is included in this type of solutions when Ω = 0). First, we
go to the rotating with Ω reference frame by introducing new variable ∆ϕ = ϕ−Φ(t),
where Φ̇ = const = Ω. Taking into account (3.3) the equation for ∆ϕ satisfies

∆̇ϕ = f(H ′(p, t), ∆ϕ, x, p)−Ω, (3.6)

where an expression for the new global field H ′(p, t) reads

H ′(p, t) =

∫
g(x)

∫ 2π

0

ρ(∆ϕ, t |x)h(∆ϕ, x, p)d∆ϕdx. (3.7)

We are looking for solutions such that a distribution of the phases ∆ϕ is stationary,
so ρ̇(∆ϕ, t |x) = 0. Then the new global field (3.7) is also stationary H ′(p, t) = H ′(p).
The equation for the stationary density ρ(∆ϕ, t |x) = ρ(∆ϕ |x) reads

∂

∂∆ϕ

([
f(H ′(p), ∆ϕ, x, p)−Ω

]
ρ

)
= 0. (3.8)

The solution of (3.8) depends on particular values of the distributed parameters, here we
will symbolically denote it as dependence on x. For those x, when there exists ∆ϕ0(x)
such that f(H ′(p), ∆ϕ0(x), x, p)−Ω = 0, the phases are locked and the solution of (3.8)
is ρ(∆ϕ |x) = δ(∆ϕ − ∆ϕ0(x)). For those x, when f(H ′(p), ∆ϕ, x, p) − Ω 6= 0, the
phases rotate keeping stationary distribution ρ(∆ϕ |x) = C(x)|f(H ′(p), ∆ϕ, x, p) −
Ω|−1, where C(x) is a normalization constant. Substituting these solutions into the
equation for the global field H ′(t) (3.7) we obtain the self-consistent problem

H ′(p) = Q(p)ei∆Θ(p) =

∫
locked

g(x)h(∆ϕ0(x), x, p)dx+

+

∫
rotating

g(x)C(x)

∫ 2π

0

|f(H ′(p), ∆ϕ, x, p)−Ω|−1h(∆ϕ, x, p)d∆ϕdx.

(3.9)
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At this point it is convenient to treatQ, ∆Θ and Ω not as unknown, but as auxiliary pa-
rameters and represent via them a set of non-distributed parameters p = F (Q,∆Θ,Ω).
By doing so we find the values of the non-distributed parameters p that gives the so-
lutions with certain values of Q, ∆Θ and Ω. Thus we are able to find traveling wave
solutions for any given set of non-distributed parameters.

Above we have outlined the scheme of the self-consistent approach. A detailed method
of applying this approach and consequent results strictly depend on a particular type of
a system. We will analyze two examples: Kuramoto-type model with generic coupling
(published in [19]) and ensembles of spatially distributed oscillators with a leader-type
coupling (nonidentical star-type networks).

3.2. Kuramoto-type model with generic coupling

Let us consider a generic system of the Kuramoto-type phase oscillators θi(t) with
individual frequencies ωi, coupled through the mean field illustrated in Fig. 3.1. Every
oscillator j contributes to the mean field H(t) with individual coupling parameters:
phase shift βj and coupling constant Bj. On the other hand the mean field H(t) acts
on each oscillator i with different phase shift αi and a coupling strength Ai.

Figure 3.1.: Configuration of the network, coupled via the mean field H(t). From [19].
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The additional overall coupling strength ε is introduced for convenience (e.g, by nor-
malizing one or both of the coupled coefficients Ai, Bj; also for definiteness we assume
Ai, Bj > 0 because the sign of the coupling can be absorbed to the phase shifts βj, αi)
and the overall phase shift δ as well (e.g., by normalizing the shifts βj, αi). In this
formulation the equations of motions of the oscillators read

θ̇i = ωi + Ai
ε

N

N∑
j=1

Bj sin(θj − βj − θi + αi − δ). (3.10)

The system (3.10) can be rewritten in terms of the mean field H(t):

θ̇i = ωi + Ai Im
(
H(t)e−i(θi−αi)

)
,

H(t) =
εe−iδ

N

N∑
j=1

Bje
i(θj−βj).

(3.11)

A transformation of phases ϕi = θi − αi helps to reduce the number of parameters.
Then the equations for ϕi are:

ϕ̇i = ωi + Ai Im
(
H(t)e−iϕi

)
,

H(t) =
εe−iδ

N

N∑
j=1

Bje
i(ϕj−ψj),

(3.12)

where ψj = βj − αj.
This model combines together all the models of mean-field coupled Kuramoto-type
phase oscillators. (i) The standard Kuramoto-Sakaguchi model [3] (all the parameters
of the coupling Ai, Bi, βi, αi are constant). (ii) The case when there are only parameters
Ai, αi and ωi and they have specific form has been considered previously in refs. [20, 21].
(iii) Also, the case with double delta distribution of Ai has been studied in ref. [22].
(iv) The case αi = βi = 0 was considered in ref. [23]. In ref. [24] the system (3.10)
was studied. Self-consistent approach is a natural way to obtain the solution for global
variables. Below we formulate the self-consistent equation for this model and present
its explicit solution.

We would like to mention that the complex mean field H(t) is different from the
“classical” Kuramoto order parameter N−1

∑
j e

iϕj and its absolute value can be larger
than one, depending on the parameters of the system. This mean field acts as the
forcing on the oscillators, and therefore it serves as a natural order parameter for this
model.

3.2.1. Self-consistency condition and its solution

For the mean field H(t) in the thermodynamic limit, a self-consistent equation can be
formulated. In the thermodynamic limit the quantities ω, A, B and ψ have a joint
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distribution density g(x) = g(ω,A,B, ψ), where x is a general vector of parameters.
Below we will derive all the equation in a general form, but for the calculation we will
consider two specific cases: (i) the quantities ω, A and B and ψ are independent, then g
is a product of corresponding independent distribution densities; and (ii) the coupling
parameters A, B, and ψ are determined by a geometrical position of an oscillator and
thus depend on this position, parametrized by a scalar parameter x, while the frequency
ω is distributed independently of x.

Introducing the conditional probability density function ρ(ϕ, t |x), we can rewrite the
system (4.11) as

ϕ̇ = ω + A Im
(
H(t)e−iϕ) = ω + AQ sin(Θ − ϕ),

H(t) = QeiΘ = εe−iδ
∫
g(x)Be−iψ

∫ 2π

0

ρ(ϕ, t |x)eiϕdϕ dx.
(3.13)

It is more convenient to write equations for ∆ϕ = ϕ − Θ, with the corresponding
conditional probability density function ρ(∆ϕ, t |x) = ρ(ϕ−Θ, t |x):

d

dt
∆ϕ = ω − Θ̇ − AQ sin(∆ϕ), (3.14)

Q = εe−iδ
∫
g(x)Be−iψ

∫ 2π

0

ρ(∆ϕ, t |x)ei∆ϕd∆ϕdx. (3.15)

The continuity equation for the conditional probability density function ρ(∆ϕ, t |x)
follows from (3.14):

∂ρ

∂t
+

∂

∂∆ϕ

([
ω − Θ̇ − AQ sin(∆ϕ)

]
ρ
)
= 0. (3.16)

A priori we cannot exclude complex regimes in Eq. (3.16), but the particular important
regimes are the simplest synchronous states where the mean fieldH(t) rotates uniformly
(this corresponds to the classical Kuramoto solution). Therefore, we look for such
solutions that the phase Θ of the mean fieldH(t) rotates with a constant (yet unknown)
frequency Ω. Correspondingly, the distribution of phase differences ∆ϕ is stationary
in the rotating with Ω reference frame (such a solution is often called traveling wave):

Θ̇ = Ω, ρ̇(∆ϕ, t |x) = 0. (3.17)

Thus, the equation for the stationary density ρ(∆ϕ, t |x) = ρ(∆ϕ |x) reads:

∂

∂∆ϕ
([ω −Ω − AQ sin(∆ϕ)] ρ) = 0. (3.18)

The solution of Eq. (3.18) depends on the value of the parameter A. There are locked
phases when |A| > |Ω − ω|/Q so ω − Ω − AQ sin(∆ϕ) = 0 and rotated phases when
|A| < |Ω − ω|/Q such that ρ = C(A, ω)|ω −Ω − AQ sin(∆ϕ)|−1.
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It is convenient to denote

F (Ω,Q) =

∫
g(x)Be−iψ

∫ 2π

0

ρ(∆ϕ, t |x)ei∆ϕd∆ϕdx . (3.19)

After the introduction of the solution of (3.18) to the function (3.19), the integral over
parameter x splits into two integrals:

F (Ω,Q) =

∫
|A|>|Ω−ω|/Q

g(x)Be−iψ ei∆ϕ(A,ω)dx+

+

∫
|A|<|Ω−ω|/Q

g(x)Be−iψ C(A, ω)

∫ 2π

0

ei∆ϕ d∆ϕ

|ω −Ω − AQ sin(∆ϕ)| dx ,
(3.20)

where in the first integral

sin(∆ϕ(A, ω)) = −Ω − ω
AQ

,

and in the second one

C(A, ω) =

(∫ 2π

0

d∆ϕ

|ω −Ω − AQ sin(∆ϕ)|

)−1
.

Integrations over ∆ϕ in (3.20) can be performed explicitely:

C(A, ω) =

(∫ 2π

0

d∆ϕ

|ω −Ω − AQ sin(∆ϕ)|

)−1
=

√
(Ω − ω)2 − A2Q2

2π
,∫ 2π

0

ei∆ϕ d∆ϕ

|ω −Ω − AQ sin(∆ϕ)| =
2πi
AQ

(
Ω − ω
|Ω − ω| −

Ω − ω√
(Ω − ω)2 − A2Q2

)
.

(3.21)

After substitution (3.21) into (3.20), we obtain the final general expression for the main
function F (Ω,Q):

F (Ω,Q) =

∫
|A|>|Ω−ω|/Q

g(x)Be−iψ

√
1− (Ω − ω)2

A2Q2
dx−

− i
∫
g(x)Be−iψ Ω − ω

AQ
dx+

+ i
∫
|A|<|Ω−ω|/Q

g(x)Be−iψ Ω − ω
|Ω − ω|

√
(Ω − ω)2
A2Q2

− 1 dx .

(3.22)

Then in new notations the self-consistency condition (3.15) reads

Q = εe−iδF (Ω,Q) . (3.23)
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In order to find Q and Ω, it is convenient to consider now Q, Ω not as unknowns but
as parameters, and to write explicit equations for the coupling strength constants ε, δ
via these parameters:

ε =
Q

|F (Ω,Q)| , δ = arg(F (Ω,Q)) . (3.24)

Thus, this solution of the self-consistency problem reduces to finding the solutions of
the stationary Liouville equation (3.18) and its integration (3.19) in the parametric
form. So, it is quite convenient for a numerical implementation.

3.2.2. Independent parameters

Let us consider the case of independent distributions of the parameters ω, A and B,
ψ what means that g(x) = g1(ω,A) g2(B,ψ). Since the parameters B and ψ do not
enter explicitly the integrals in (3.22), for the case of independent distributions it is
convenient to consider ε and δ as scaling parameters of the distribution g̃2(B̃, ψ̃), such
that

εe−iδ =

∫ ∫
g̃2(B̃, ψ̃)B̃e

−iψ̃dB̃dψ̃, (3.25)

so the parameters B = B̃/ε and ψ = ψ̃−δ have such a distribution g2(B,ψ) = εg̃2(B̃, ψ̃)
that satisfies ∫ ∫

g2(B,ψ)Be
−iψdBdψ = 1. (3.26)

Eq. (3.26) provides that the integration in (3.22) over B and ψ gives 1, and the following
expression is obtained :

F (Ω,Q) =

∫ ∫
|A|>|Ω−ω|/Q

g1(ω,A)

√
1− (Ω − ω)2

A2Q2
dAdω−

− i
∫ ∫

g1(ω,A)
Ω − ω
AQ

dAdω+

+ i
∫ ∫

|A|<|Ω−ω|/Q
g1(ω,A)

Ω − ω
|Ω − ω|

√
(Ω − ω)2
A2Q2

− 1 dAdω .

(3.27)

As before the parameters ε and δ can be found from Eqs. (3.24) depending on Ω and
Q. Please note that, the distribution of parameters B and ψ is implicitly included
in the values of ε and δ, while the distributions of ω,A are explicitly included in the
integrals.

As an example of application of our theory, in Fig. 3.2 we present results of the calcu-
lation of absolute value Q and the frequency of the global field Ω as function of ε, δ ,
for g1(ω,A) = g(A)g(ω) where g(A) = A

θ2
e−A/θ, g(ω) = 1√

2π
e−ω

2/2.
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(a) (b)

Figure 3.2.: (color online) Dependencies of the amplitude Q of the mean field (a) and of its
frequency Ω on the parameters ε and δ, for θ = 1. White area corresponds to asynchronous state
with vanishing mean field. From [19].

Interestingly, the case of identical individual frequencies of the oscillators, i.e. when
g(ω) = δ(ω − ω0), gives opportunity to parametrize Eq. (3.27) by one variable. The
integration over dω can be performed first:

F (Ω,Q) =

∫
|A|>|Ω−ω0|/Q

g(A)

√
1− (Ω − ω0)2

A2Q2
dA−

− i
∫
g(A)

Ω − ω0

AQ
dA + i

∫
|A|<|Ω−ω0|/Q

g(A)
Ω − ω0

|Ω − ω0|

√
(Ω − ω0)2

A2Q2
− 1 dA .

(3.28)

Then it is convenient to combine the variables Ω and Q in a new variable Y = Ω−ω0

Q

and treat the function F (Ω,Q) in Eq. (3.28) as a function of Y . Then Eq. (3.28) for
F (Ω,Q) transforms to the following equation for F (Y )

F (Y ) =

∫
|A|>|Y |

g(A)

√
1− Y 2

A2
dA−

− i
∫
g(A)

Y

A
dA + i

∫
|A|<|Y |

g(A)
Y

|Y |

√
Y 2

A2
− 1 dA ,

(3.29)

where we took into account that Q ≥ 0.

Eqs (3.24) are still valid for finding ε and δ, but it is more convenient to use Y and ε as
a parameters in Eq. (3.23) instead of Q and Ω. Then the final expressions for finding
Q, Ω and δ take the following form:

Q = ε |F (Y )| , Ω = ω0 + εY |F (Y )| , δ = arg(F (Y )) . (3.30)

Fig. 3.3 shows the results of the calculation of Q(ε, δ) and Ω(ε, δ) for the identical
natural frequencies, where we chose g1(ω,A) = A

θ2
e−A/θδ(ω − ω0).
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(a) (b)

Figure 3.3.: (Color online) Dependencies of the amplitude Q of the mean field (a) and of its
frequency Ω on the parameters ε and δ, for θ = 1 and ω0 = 0. White area corresponds to
asynchronous state with vanishing mean field. From [19].

3.2.3. Example of a geometric organization of oscillators

Here we present an example of application of the expressions above to the case when the
distributions of parameters are determined by geometrical configuration of oscillators.
We consider spatially distributed phase oscillators with a common receiver that collects
signals from all the oscillators, and a common emitter that receives the summarized
signal from the receiver and sends the coupling signal to the oscillators; also we assume
that these signals propagate with velocity c. We consider the identical oscillators with
the same natural frequencies ω0 = 1 (cases where the frequencies are distributed (de-
pendent or independent of geometric positions of oscillators) can be straightforwardly
treated within the same framework).

We assume that oscillators are distributed uniformly on a circle of radius r. Each
oscillator is thus labeled by the angle xi (Fig. 3.4). The receiver, the emitter, and the
center of the circle are supposed to lie on one line. The dynamics of the system is
described by Eq. (3.10), where coupling parameters are determined by the place of the
oscillator. The phase shifts βj and αi are proportional to the distances between the
oscillator, the receiver and the emitter, so that

βj =
ωs
c

√
r2 + b2 − 2rb cosxj , αi =

ωs
c

√
r2 + a2 − 2ra cosxi , (3.31)

where ωs is the frequency of the original signal (since usually phase approximation is
made around some common frequency). Coupling strengths Bj and Ai are inversely
proportional to the square distances between each oscillator, receiver and emitter:

Bj =
1

r2 + b2 − 2rb cosxj
, Ai =

1

r2 + a2 − 2ra cosxi
, (3.32)

where a and b are the distances from the center of the circle to the emitter and the
receiver respectively (Fig. 3.4). The parameters ε and δ can be interpreted as a coupling
coefficient and a phase shift for the signal transfer from the receiver to the emitter.
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Figure 3.4.: (Color online) The scheme of the system. From [19].

The self-consistent approach gives stable solutions for any given parameters a and b.
Since all the oscillators have the same natural frequencies, the variable transformation
Y = (Ω − ω0)/Q described above should be performed. Thus, it is suitable to use
Eqs. (3.30) in order to find Q, Ω and δ as a functions of ε and Y .

In the numerical example presented in Fig. 3.5, we fixed b = r/2 and varied a, finding
the absolute value of the global field Q(a) and the frequency of the collective oscilla-
tions Ω(a) for ε = 1 and δ = 0. There are regimes of synchronous motion separated
by asynchronous motion. The systems with time delay in the coupling show similar
behavior – in our case this delay is due to the separation of the emitter from the com-
munity of oscillators, and the finite speed of signal propagation introduced into the
phase shifts. The dependencies on the parameter a are not smooth, because as the
parameter a varies, some oscillators enter/leave the synchronization domain.

3.3. An ensemble of spatially distributed oscillators
with a leader-type coupling

In this section we will present a generalization of the system with leader-type coupling
described in previous chapter. The generalization consists of introduction of unequal
coupling coefficients and phase shifts. In our setup in the most general case each phase
oscillator ϕk has its own frequency ωk and is coupled to the leader oscillator φ with its
own coupling strength Ak and phase shift αk. At the same time the leader φ has its
own frequency ω0 and is coupled to every other oscillators ϕj with coupling coefficient
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Figure 3.5.: (Color online) The dependence of Q(a), Ω(a) and Y (a) on the distance from the
center of the circle to the emitter a, b = 0.5, r = 1, ε = 1 and δ = 0. Periodicity in a corresponds
to the zones of attractive and repulsive coupling due to delay-induced phase shift. From [19].

Bj and phase shift βj.

ϕ̇k = ωk + Ak sin(φ− ϕk − αk),

φ̇ = ω0 +
1

N

N∑
j=1

Bj sin(ϕj − βj − φ).
(3.33)

Then we perform the similar procedure as to the homogeneous system. The sys-
tem (3.33) can be rewritten in terms of the mean-field

ϕ̇k = ωk + Im(Ake
i(φ−ϕk−αk)),

φ̇ = ω0 + Im(G̃(t)e−iφ),

G̃(t) =
1

N

N∑
j=1

Bje
i(ϕj−βj).

(3.34)

It is convenient to make a variable transformation to the phase differences∆ϕk between
the oscillators ϕk and the leader φ taking into account the phase shift αk

∆ϕk = ϕk − φ+ αk. (3.35)
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Then, the equations for ∆ϕk and φ are

˙∆ϕk = −φ̇+ ωk + Im(Ake
−i∆ϕk),

φ̇ = ω0 + Im(G(t)),

G(t) =
1

N

N∑
j=1

Bje
i(∆ϕj−αj−βj).

(3.36)

The expression for the leader dynamics can be directly introduced to the equations for
∆ϕk and thus we obtain the closed system

˙∆ϕk = ωk − ω0 − Im(G(t)) + Im(Ake
−i∆ϕk),

G(t) =
1

N

N∑
j=1

Bje
i(∆ϕj−αj−βj).

(3.37)

Note that the dynamics of the leader

φ̇ = ω0 + Im(G(t)) (3.38)

does not enter to the equations for the phase difference.

3.3.1. Self-consistent approach

We present the solution of (3.37) in the thermodynamic limit N → ∞, where in
this case the parameters ω, A, B, α and β have a joint distribution density g(x) =
g(ω,A,B, α, β), where x is a general vector of parameters. Introducing the conditional
probability density function ρ(∆ϕ, t |x), we can rewrite the system (3.37) as

∆̇ϕ =ω − ω0 −Q sin∆Θ − A sin∆ϕ,

G(t) = Qei∆Θ =

∫
g(x)Be−i(α+β)

∫ 2π

0

ρ(∆ϕ, t |x)ei∆ϕd∆ϕdx,
(3.39)

where ρ(∆ϕ, t |x) should be calculated from Liouville equation

∂ρ

∂t
+

∂

∂∆ϕ
([ω − ω0 −Q sin∆Θ − A sin(∆ϕ)] ρ) = 0. (3.40)

Then, we look for stationary solution for the phase difference ∆ϕ

ρ̇(∆ϕ, t |x) = 0. (3.41)

Since we look for the stationary solution it is convenient to denote the frequency of the
leader as Ω

Ω = φ̇ = ω0 +Q sin∆Θ, (3.42)
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and treat the unknowns Q, ∆Θ and the parameter ω0 as functions of Ω.

Thus, we obtain the following solution for the stationary Liouville equation (3.40)

sin(∆ϕ(A, ω)) =
ω −Ω
A

, A ≥ |ω −Ω|,

ρ =
C(A, ω)

|ω −Ω − A sin(∆ϕ)| , A < |ω −Ω|.
(3.43)

The first equation in (3.43) has two solutions, we take the microscopically stable one

ei∆ϕ(A,ω) =

√
1−

(
ω −Ω
A

)2

+ i
ω −Ω
A

, (3.44)

Also we need to calculate the following integral

C(A, ω) =

(∫ 2π

0

d∆ϕ

|ω −Ω − A sin(∆ϕ)|

)−1
=

√
(Ω − ω)2 − A2

2π
,∫ 2π

0

ei∆ϕ d∆ϕ

|ω −Ω − A sin(∆ϕ)| =
2πi
A

(
Ω − ω
|Ω − ω| −

Ω − ω√
(Ω − ω)2 − A2

)
.

(3.45)

Since in the integrals there is no dependence on Q, it is better to denote

Qei∆Θ = F (Ω), (3.46)

where

F (Ω) =

∫
|A|≥|Ω−ω|

g(x)Be−i(β+α)

√
1− (Ω − ω)2

A2
dx−

− i
∫
g(x)Be−i(β+α) Ω − ω

A
dx+

+ i
∫
|A|<|Ω−ω|

g(x)Be−i(β+α) Ω − ω
|Ω − ω|

√
(Ω − ω)2

A2
− 1 dx .

(3.47)

Thus instead of Eq. (3.46) and (3.42) we have

Q = |F (Ω)|, ∆Θ = arg(F (Ω)), ω0 = Ω − Im(F (Ω)). (3.48)

Contradictionary to the previous case of the Kuramoto-type model with generic cou-
pling, the solution here is parameterized only by the frequency of the leader Ω and
thereby we have only one non-distributed parameter of the original system that is found
implicitly, namely the natural frequency of the leader ω0. So hereinafter in this section
we will represent the solutions in the form of the dependence of Q and Ω on the ω0.
Also the phase ∆Θ is not indicative, so we will not find it in the examples below.
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In this model, the amplitude of the global field Q that determines the forcing acting on
the oscillators is not normalized and can be larger than unity. Besides it does not vanish
for asynchronous regime. Thus it is not convenient to use it as an order parameter. As
an order parameter it is much more convenient to use the relative number of locked
oscillators, or in the thermodynamic limit the parameter R (3.49).

R =

∫
|A|≥|Ω−ω|

g(x)dx. (3.49)

3.3.2. Drums with a leader

Here, as an example of the application of this method, we will consider the system (3.37)
as a model for the drum orchestra or any other 2D organized ensemble of oscillators.
We assume that the drum orchestra is a manifold of oscillators equally distributed on
a unit square located at the origin (Fig. 3.6).

Figure 3.6.: The scheme of the organization of the drum orchestra.

As in the example of geometric organization of oscillators, we assume that the phase
shifts βj and αi are proportional to the distances between the oscillator and the leader,
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so

βj =
ωs
c

√
(xj − xl)2 + (yj − yl)2 , αi =

ωs
c

√
(xi − xl)2 + (yi − yl)2 , (3.50)

where as before ωs is the frequency of the original signal (around what the phase
approximation was made). Coupling strengths Bj and Ai are inversely proportional to
the square distances between each oscillator and the leader:

Bj =
WB

(xj − xl)2 + (yj − yl)2
, Ai =

WA

(xi − xl)2 + (yi − yl)2
, (3.51)

here additional initial intensities of the signalsWA andWB were added in order to have
coupling coefficients of the order 1 for any distant position of the leader.

Then in the thermodynamic limit the parameter distribution g(A,B, α, β) = g(x, y),
where all the parameters are the functions (3.50,3.51) of the coordinates (x, y) of the 2D
plane, except for, perhaps, ω that can be independently distributed. In our numerical
simulations all the oscillators have identical frequencies. Self-consistent approach gives
solutions for any given position of the leader outside the manifold of the oscillators
and its own individual frequency. As a measure of synchrony, we will use previously
introduced order parameter R (3.49) (if R is close to unity the synchronous regime is
observed and if R is small we call this regime asynchronous). The terms “synchronous”
and “asynchronous” are used here in order to show the resemblance between the solu-
tions of homogenous and non-homogenous systems. For the latter, however, the usage
of these terms is not entirely correct as can be seen on Fig. (3.7), where it is impossible
to distinguish between the partial synchrony and asynchrony because there is no abrupt
transitions and, except for a small region when all the phases are locked (R = 1), there
is a fraction of locked phases and rotating phases with stationary distribution, that can
be named both as partial synchrony and asynchrony in this case.

We present self-consistent solutions together with numerical simulations for different
values of the parameters in order to show different possible regimes. While we cannot
exclude all the complicated regimes, next we will present the solutions that qualitatively
coincide with the solutions (2.48, 2.50, 2.52) of the homogenous system.

First, we show the regime that represents the case when there are two stable fixed points
(one asynchronous and one synchronous) with hysteretic transition between them. The
dependences of the amplitudeQ and the frequencyΩ of the global field on the frequency
mismatch ∆ω = ω−ω0 for this case together with the order parameter R are expressed
on the Fig. (3.8) and Fig. (3.9) respectively. On these figures we show both the results
obtained by the self-consistent method and direct numerical simulations that converge
(slight differences are due to the finite-size effects and the fact that we stop calculations
at finite time) everywhere except for the area of the hysteresis that can be observed in
the neighborhood of the maximum amplitude of the global field and when the values of
the order parameter R is near to unity. For the large absolute values of the frequency
mismatch |∆ω| the order parameter R is small, what means that the number of locked
phases is low and tends to zero with further increasing of |∆ω|.
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The second regime represents the case when there are one stable synchronous fixed
point and one unstable asynchronous fixed point. The results of numerical simulations
and the self-consistent method for this case are expressed on the Fig. (3.10). For the
negative and small positive values of ∆ω there is a steady solution. Asynchronous
for large negative ∆ω, it gradually becomes partly synchronous for small negative ∆ω
transforming to synchronous solution (R = 1) for small positive ∆ω. As can be seen
with the help of numerical simulations, with further increasing of ∆ω steady solution
becomes unstable and we observe the oscillating regime (on Fig. (3.11) it is shown that
this oscillating regime is a limit cycle).

3.4. Summary

In this chapter we have described the self-consistent approach and its application to
noise-free systems. We applied this approach to the systems with distributed parame-
ters and obtain a unified description of the frequency and the amplitude of the global
field in a parametric form. The application to the Kuramoto-type model with generic
coupling gives the possibility to find regions of parameters when the behavior of the
system is synchronous and when asynchronous. As one of the examples we considered
a situation, where contributions to the global field and its action on oscillators are pre-
scribed by a geometric configuration of the oscillators; phase shifts and the contribution
factors result from the propagation of the signals as waves having certain velocity. The
application to ensembles with leader-type coupling leads to analogous results, but due
to the fact that in case of asynchrony the global field does not vanish, an additional
order parameter, namely the amount of locked phases, have to be introduced. As an
example we considered a simplified model of the drum orchestra with a leader, where
we used the same assumption of finite propagation velocity of the signals. Finally
we compared obtained solutions with the results from the analysis of the analogous
identical system from the previous chapter.
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Figure 3.7.: The dependences of the amplitude Q (black curve) and the frequency Ω (red curve)
of the global field together with the order parameter R (green curve) on the frequency mismatch
∆ω = ω − ω0, obtained self-consistently for the following values of the parameters xl = −0.1,
yl = −0.1 and WA =WB , ωs/c = 1.
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Figure 3.8.: The dependences of the amplitude Q of the global field (black curve represents
self-consistent solution, blue and green curves — numeric) and the order parameter R (red curve
obtained from self-consistent method) as functions of the frequency mismatch ∆ω = ω − ω0, for
the case xl = −0.1, yl = −0.1 and WA = 0.25WB , ωs/c = 1.
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Figure 3.9.: The dependences of the frequency Ω of the global field (black curve from self-
consistent approach, blue and green curves from numerics) as functions of the frequency mismatch
∆ω = ω − ω0, for the case xl = −0.1, yl = −0.1 and WA = 0.25WB , ωs/c = 1.
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Figure 3.10.: The dependences of the amplitude Q (black curve is obtained self-consistently, blue
curve is an average value on the limit cycle obtained numericly and brown curves are minimum
and maximum values on the limit cycle) and the frequency Ω (red curve — self-consistent solution,
violet curve is numerical average over the limit cycle, dark green curves are the minimum and
the maximum on the limit cycle) of the global field on the frequency mismatch ∆ω = ω − ω0

together with the order parameter R (light green curve obtained from self-consistent method).
The following values of the parameters were used xl = −1, yl = −1 and WA =WB , ωs/c = 1.
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Figure 3.11.: Numerical simulations for the amplitude Q (black curve) and the frequency Ω
(red curve) of the global field as functions of time for ∆ω = ω − ω0 = 3, for the same values of
the parameters as in Fig. (3.10).
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4. Self-consistent approach in the
presence of noise

4.1. Schematic description of the method

The noise is another kind of disorder beside diversity of frequencies and coupling param-
eters, and the Watanabe-Strogatz approach cannot be applied for that case. However
it is still possible to obtain the solutions in terms of global variables with the help of
the self-consistent approach.

As in the noise-free case let us consider the system (3.1) with all the notations and
the condition (3.3) subject to independent Gaussian white noise forces (〈ξi(t)ξj(t′)〉 =
2δijδ(t− t′)) with intensity D

ϕ̇k = f(H(p, t), ϕk, xk, p) +
√
Dξk(t). (4.1)

The global field H(p, t) is described by (3.2)

H(p, t) =
1

N

N∑
j=1

h(ϕj(t), xj, p),

In the thermodynamic limit instead of the continuity equation (3.4), the conditional
probability density function ρ(ϕ, t |x) should satisfy the Fokker-Planck equation

∂ρ

∂t
+

∂

∂ϕ

(
f(H(p, t), ϕ, x, p)ρ

)
= D

∂2ρ

∂ϕ2
, (4.2)

where the global field H(t) should be calculated from (3.5)

H(p, t) =

∫
g(x)

∫ 2π

0

ρ(ϕ, t |x)h(ϕ, x, p)dϕ dx.

Analogous to the noise-free case, we perform the variable transformation∆ϕ = ϕ−Φ(t),
where Φ̇ = const = Ω. We are looking for traveling wave solutions with constant
frequency Ω and stationary distribution of phase difference ∆ϕ. The equation for ∆ϕ
is the equation (3.6) with noise

∆̇ϕ = f(H ′(p), ∆ϕ, x, p)−Ω +
√
Dξ(t). (4.3)
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Stationary global field H ′(p) is determined by the expression (3.7), with substituted
stationary density function ρ(∆ϕ, t |x) = ρ(∆ϕ |x)

H ′(p) =

∫
g(x)

∫ 2π

0

ρ(∆ϕ |x)h(∆ϕ, x, p)d∆ϕdx. (4.4)

Where stationary density ρ(∆ϕ |x) can be found from stationary Fokker-Planck equa-
tion

∂

∂∆ϕ

([
f(H ′(p), ∆ϕ, x, p)−Ω

]
ρ

)
= D

∂2ρ

∂∆ϕ2
. (4.5)

A solution of (4.5) can be represented as double integrals, but it does not give any
practical results. For further analysis it is more convenient to solve it in the Fourier
modes representation

ρ(∆ϕ |x) = 1

2π

∑
n

Cn(x)e
in∆ϕ Cn(x) =

∫ 2π

0

ρe−in∆ϕd∆ϕ C0(x) = 1. (4.6)

Substitution of (4.6) to Eq. (4.5) gives the equation for the modes∫ 2π

0

d∆ϕ

[
− ∂

∂∆ϕ

([
f(H ′(p), ∆ϕ, x, p)−Ω

]
ρ
)
+D

∂2ρ

∂∆ϕ2

]
e−ik∆ϕ =

= −k2DCk + ikΩCk − ik
∑
n

f fnCk−n = 0,
(4.7)

where f fn are Fourier modes (with different normalization) of f(H ′(p), ∆ϕ, x, p) deter-
mined by

f(H ′(p), ∆ϕ, x, p) =
∑
n

f fn (H
′(p), x, p)ein∆ϕ f fn (H

′(p), x, p) =
1

2π

∫ 2π

0

fe−in∆ϕd∆ϕ.

(4.8)

From the equation (4.7) it follows that Fourier coefficients can be found as a function
of system’s parameters and variables Cn = Cn(H

′(p), Ω, x, p). Also it is convenient to
represent the coupling function h(∆ϕ, x, p) in Fourier modes (with different normaliza-
tion)

h(∆ϕ, x, p) =
∑
n

hfn(x, p)e
in∆ϕ hfn(x, p) =

1

2π

∫ 2π

0

he−in∆ϕd∆ϕ. (4.9)

Then the expression for the global field H ′(p) can be rewritten as

H ′(p) = Q(p)ei∆Θ(p) =

∫
g(x)

∫ 2π

0

ρ(∆ϕ |x)h(∆ϕ, x, p)d∆ϕdx =

=

∫
g(x)

∑
n

hfn(x, p)

∫ 2π

0

ρ(∆ϕ |x)ein∆ϕd∆ϕdx =

=

∫
g(x)

∑
n

hfn(x, p)C
∗
n(H

′(p), Ω, x, p) dx.

(4.10)
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Thus we have obtained the self-consistent equation (4.10) for H ′(p) analogous to (3.9)
that can be solved by the same method by treating parameter family p as unknowns
and finding them as a function p = F (Q,∆Θ,Ω).

This is the scheme of the finding self-consistent solutions for a globally coupled systems
of noisy oscillators. The application of this scheme strictly depends on a particular
setup of a system, so we will present this method based on two examples of noisy
systems: Kuramoto-type model with generic coupling and noise (published in [19])
and an ensemble of noisy oscillators with bi-harmonic coupling (published in [25]).

4.2. Kuramoto-type model with generic coupling
and noise

We will consider the same system of Kuramoto-type model with generic coupling in
the form (4.11) with additional independent Gaussian white noise forces (〈ξi(t)ξj(t′)〉 =
2δijδ(t− t′)) with intensity D:

ϕ̇i = ωi + Ai Im
(
H(t)e−iϕi

)
+
√
Dξi(t),

H(t) =
εe−iδ

N

N∑
j=1

Bje
i(ϕj−ψj).

(4.11)

As in the case of self-consistent approach we consider thermodynamic limit and
describe the system in terms of conditional probability function ρ(ϕ, t |x), where
x = {ω,A,B, ψ} and g(x) = g(ω,A,B, ψ).

Furthermore similar to the noise-free case, we perform the same variable transformation
∆ϕ = ϕ−Θ, whereΘ = Θ(t) is the phase of the common mean fieldH(t). A conditional
probability density function of the variable ∆ϕ is ρ(∆ϕ, t |x) = ρ(ϕ−Θ, t |x).

∆̇ϕ = ω − Θ̇ − AQ sin(∆ϕ) +
√
Dξ(t), (4.12)

Q = εeiδ
∫
g(x)Be−iψ

∫ 2π

0

ρ(∆ϕ, t |x)ei∆ϕd∆ϕdx. (4.13)

The Fokker-Plank equation for ρ(∆ϕ, t |x) reads

∂ρ

∂t
+

∂

∂∆ϕ

([
ω − Θ̇ − AQ sin(∆ϕ)

]
ρ
)
= D

∂2ρ

∂∆ϕ2
. (4.14)

As before, we are looking for special solutions when the mean field rotates uniformly
which satisfy the conditions (3.17).

Θ̇ = Ω, ρ̇(∆ϕ, t |x) = 0. (4.15)
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Thus, in order to find ρ(∆ϕ, t |x) = ρ(∆ϕ |x) we need to solve Eq. (4.16).

∂

∂∆ϕ
([ω −Ω − AQ sin(∆ϕ)] ρ) = D

∂2ρ

∂∆ϕ2
. (4.16)

Eq. (4.16) can be solved with introduction of Fourier modes (4.17).

ρ(∆ϕ |x) = 1

2π

∑
n

Cn(x)e
in∆ϕ Cn(x) =

∫ 2π

0

ρe−in∆ϕd∆ϕ C0(x) = 1. (4.17)

After the substitution of (4.17) to Eq. (4.16) the equation for the modes (4.18) is
obtained.∫ 2π

0

d∆ϕ

[
− ∂

∂∆ϕ
([ω −Ω − AQ sin(∆ϕ)]ρ) +D

∂2ρ

∂∆ϕ2

]
e−ik∆ϕ =

= −k2DCk + ik(Ω − ω)Ck + ikAQ
Ck−1 − Ck+1

2i
= 0.

(4.18)

As a consequence, we get a system of algebraic equations with a tridiagonal matrix:

[2kD − i2(Ω − ω)]Ck + AQ(Ck+1 − Ck−1) = 0. (4.19)

The system (4.19) can be solved by truncation of wavenumbers k at some large K using
the following recursion:

Ck = αkCk−1, ak = 2kD − i2(Ω − ω). (4.20)

αK =
AQ

aK
,

αk =
AQ

ak + AQαk+1

.
(4.21)

As a result, C1 can be found from the application of the recursion

C1 = α1 =
AQ

a1 + AQα2

. (4.22)

From Eq. (4.22) it is easy to see that in general C1 is a function of Ω, Q, ω and A .

C1 = C1(Ω,Q, ω,A). (4.23)

The integral over ∆ϕ in (4.13) can be calculated with the help of Fourier modes (4.17).∫ 2π

0

ρ(∆ϕ |x)ei∆ϕd∆ϕ = C∗1(Ω,Q, ω,A). (4.24)

Thus the expression for Q reads

Q = εeiδ
∫
g(x)Be−iψC∗1(Ω,Q, ω,A)dx. (4.25)
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Denoting the integral in (4.25) as a function F (Ω,Q) of unknown variables Ω and Q

F (Ω,Q) =

∫
g(x)Be−iψC∗1(Ω,Q, ω,A)dx. (4.26)

we obtain analogous to the noise free case equation (3.23)

Q = εe−iδF (Ω,Q)

As in the noise-free case the parameters ε and δ should be treated as unknowns and
can be found from Eqs. (3.24) by using another expression (4.26) for F (Ω,Q).

ε =
Q

|F (Ω,Q)| , δ = arg(F (Ω,Q)) .

4.2.1. Independent parameters

Similar to the noise-free case, because B and ψ do not enter to the function F (Ω,Q)
explicitly it is clear that the integral in (4.26) simplifies in the same case of independent
distribution of the parameters g(x) = g1(ω,A) g2(B,ψ). Here the same notations as
before are used, including condition (3.26), that yields the meaning for ε and δ.

The parameters ε and δ can be found from Eqs. (3.24), where F (Ω,Q) is determined
from

F (Ω,Q) =

∫
g1(ω,A)C

∗
1(Ω,Q, ω,A)dAdω. (4.27)

In this way we obtain Q(ε, δ) and Ω(ε, δ) (Fig. 4.1). For calculations we used the same
distribution g1(ω,A) as in the noise-free case.

(a) (b)

Figure 4.1.: (Color online) The same as Fig. 3.2, but with noise D = 1. From [19].

Contrary to the noise-free case, there is no further simplification of F (Ω,Q) possible
when oscillator’s individual frequencies are identical (delta-function distribution). In
Fig. 4.2 we report the results for the same parameters as in Fig. 3.3, but with noise
D = 1.
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(a) (b)

Figure 4.2.: (Color online)The same as Fig. 3.3, but with noise D = 1. From [19].

In the considered model the main effect of noise consists of moving the synchronization
threshold to larger values of the coupling strength ε. The influence of noise is quite
similar to the disorder caused by the distribution of natural frequencies. In the case of
identical oscillator’s individual frequencies noise leads to a non-zero threshold in the
coupling.

4.3. An ensemble of noisy oscillators with
bi-harmonic coupling

Here we will present how noisy system with bi-harmonic coupling function can be
treated self-consistently. We study an ensemble of phase oscillators (phase variables
φk), coupled through a mean-field bi-harmonic function and noise [we start with for-
mulation in “primed” variables, which will be transformed to dimensionless ones]:

dφk
dt′

= ωk∆
′ +

ε

N

N∑
j=1

sin(φj − φk) +
γ

N

N∑
j=1

sin(2φj − 2φk) +
√
D′ ξk(t

′) . (4.28)

Here ωk are normalized natural frequencies of oscillators that have a symmetrical uni-
modal distribution g(ω) with unit width (the parameter ∆ is responsible for the width
of the distribution) and zero mean value (what can be always achieved by transforming
to a properly rotating reference frame). Gaussian white noise is defined according to
〈ξk(t′1)ξj(t′2)〉 = 2δ(t′1− t′2)δkj. Parameters ε and γ define the coupling strengths of the
first and the second harmonics, respectively.

Eq. (4.28) can be rewritten as

dφk
dt′

= ωk∆
′ + εR1 sin(Θ1 − φk) + γR2 sin(Θ2 − 2φk) +

√
D′ ξk(t

′), (4.29)

where Rme
iΘm = N−1

∑
j e

imφj , m = 1, 2, are the two relevant order parameters [26].
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Eq. (4.29) has 4 parameters, all of them of dimension 1/t′: ∆′, ε, γ,D′. It is possible to
reduce the number of parameters by rescaling time. We choose the following rescaling
t = (ε+ γ)t′ and get

φ̇k = ωk∆+ qR1 sin(Θ1 − φk) + (1− q)R2 sin(Θ2 − 2φk) +
√
D ξk(t), (4.30)

where ∆ = ∆′/(ε + γ), q = ε/(ε + γ) and D = D′/(ε + γ). The new parameter q
describes the relation between coupling coefficients ε and γ, so that the case q = 0
corresponds to a pure second harmonic coupling with ε = 0, and q = 1 corresponds to
a pure Kuramoto-type first harmonic coupling with γ = 0. In this new normalization,
changing of coupling strength is equivalent to changing of the disorder parameters ∆
(spread of frequencies) and D (noise), while keeping a constant relation ∆/D between
them. Such a feature suggests to introduce new parameters T, s in a way that ∆ =
(1− s)T , D = sT . Therefore, the overall disorder (noise and spread of frequencies) is
measured by the parameter T , normalized by the overall coupling strength ε+ γ. The
share between two disorders is measured by the parameter s: for s = 0 the system is
purely deterministic, and for s = 1 it describes an ensemble of identical noisy oscillators.
Then Eq. (4.30) with the new parameters q, T, s becomes

φ̇k = ωk(1− s)T + qR1 sin(Θ1 − φk) + (1− q)R2 sin(Θ2 − 2φk) +
√
sT ξk(t). (4.31)

As in the other sections in this work we consider the thermodynamic limit N →
∞, where the order parameters are just ensemble averages Rme

iΘm = 〈eimφ〉. They
can be represented through the conditional probability density function of the phases
ρ(ϕ, t |ω), as

Rme
iΘm = 〈eimϕ〉 =

∫ ∫
g(ω) ρ(ϕ, t |ω)eimϕdϕ dω (4.32)

In the thermodynamic-limit formulation we use the continuous (without indices) vari-
able ϕ to describe the phase, therefore, according to (4.31) the equation for the phase
variable ϕ at given ω reads

dϕ

dt
= ω(1− s)T + qR1 sin(Θ1 − ϕ) + (1− q)R2 sin(Θ2 − 2ϕ) +

√
sT ξ(t) . (4.33)

The Fokker-Planck equation for ρ(ϕ, t |ω) follows from Eq. (4.33):

∂ρ

∂t
+

∂

∂ϕ

[(
ω(1−s)T + qR1 sin(Θ1−ϕ)+(1− q)R2 sin(Θ2−2ϕ)

)
ρ
]
= sT

∂2ρ

∂ϕ2
. (4.34)

The limiting noise-free case when s = 0 has been described in details in [17, 18]. Here
we will present a general analysis for systems with noise and a finite distribution of
frequencies. The limit s� 1 appears to be singular and goes beyond the scope of these
work (see [25] for detailed consideration of this case). The other limiting case s = 1
is the case of the identical natural frequencies and in terms of the analysis presented
below is not special but, due to the fact that an additional stability analysis for s = 1
can be performed, this case will be also considered in details separately.
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4.3.1. Stationary solutions in a parametric form

The first type and the most trivial solution of the system (4.34, 4.32) is a disordered
state with a uniform distribution of phases ρ = (2π)−1, where the order parameters
vanish R1 = R2 = 0. The second type is an ordered state with two nontrivial syn-
chronized regimes: (i) all order parameters are non-zero, and (ii) a symmetric 2-cluster
distribution where all odd order parameters vanish R2m+1 = 0 and R2m 6= 0, m ∈ N0.

As mentioned above we restrict ourselves to the symmetric distribution of natural
frequencies g(ω), so due to the symmetry of the coupling function the frequency of
the mean fields for the nontrivial solutions is exactly the average oscillator frequency
(that we have considered to be zero). Thus these solutions could be found by setting
Θ1 = Θ2 = 0 (in fact, one of the phases of the order parameters is arbitrary, the
condition above means that the phase shift between the two order parameters is zero).
For details please see [25], where this setting is discussed in full detail. For this work
we will focus on the analysis of the symmetric setup.

In the symmetric setting, the stationary conditional probability density function
ρ(ϕ |ω) satisfies the stationary Fokker-Planck equation

∂

∂ϕ

[(
ω(1− s)− qR1

T
sin(ϕ)− (1− q)R2

T
sin(2ϕ)

)
ρ

]
= s

∂2ρ

∂ϕ2
, (4.35)

where because of symmetry

Rm =

∫ ∫
g(ω) ρ(ϕ |ω) cos(mϕ)dϕ dω . (4.36)

The explicit solution of this self-consistent system can be found with the help of the
introduction of two new auxiliary variables R and α (together with definitions u, v,
and x) according to

R =

√(
qR1/T

)2
+
(
(1− q)R2/T

)2
,

u = cosα =
qR1

TR
,

v = sinα =
(1− q)R2

TR
,

x =
ω

R
.

(4.37)

Then the stationary Fokker-Plank equation (4.35) for the stationary distribution den-
sity ρ(ϕ |x) (which depends on R,α, s as parameters) should be rewritten as

∂

∂ϕ

[
R
(
x(1− s)− u sin(ϕ)− v sin(2ϕ)

)
ρ
]
= s

∂2ρ

∂ϕ2
. (4.38)
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A formal solution of (4.38) is a double integral, but practically it is more convenient
to solve it in the Fourier modes representation

ρ(ϕ |x) = 1

2π

∑
n

Cn(α,R, s, x)e
inϕ, Cn(α,R, s, x) =

∫ 2π

0

ρe−inϕdϕ, C0 = 1.

(4.39)
Substituting (4.39) in Eq. (4.38) we obtain

0 =

∫ 2π

0

[
− ∂

∂ϕ

[
R
(
x(1− s)− u sin(ϕ)− v sin(2ϕ)

)
ρ
]
+ s

∂2ρ

∂ϕ2

]
e−ikϕ dϕ =

= R

[(
−ix(1− s)k − k2s/R

)
Ck + iku

Ck−1 − Ck+1

2i
+ ikv

Ck−2 − Ck+2

2i

]
.

(4.40)

Thus, from (4.40) a system of linear algebraic equations for the mode amplitudes is
obtained:

2
(
ix(1− s) + ks/R

)
Ck + u(Ck+1 − Ck−1) + v(Ck+2 − Ck−2) = 0 . (4.41)

This equation should be truncated to a finite number of Fourier modes (which con-
trols accuracy of the solution) and then solved by standard methods. After finding
C1,2(α,R, s, x), we have to calculate integrals

F1,2(α,R, s) =

∫
g(Rx) Re [C1,2(α,R, s, x)] dx. (4.42)

This allows us to represent the order parameters as

R1,2(α,R, s) = R

∫
g(Rx) Re [C1,2(α,R, s, x)] dx = RF1,2(α,R, s). (4.43)

Substituting this in Eq. (4.37), we obtain our parameters T, q as functions of the
auxiliary variables

T =
1

cosα
F1

+ sinα
F2

,

q =
cosα
F1

cosα
F1

+ sinα
F2

=
1

1 + F1

F2
tanα

.

(4.44)

Thus for each fixed s, by varying α ∈ [0, π/2] and R ∈ [0,∞), we obtain the explicit so-
lution of the self-consistent problem in a parametric form: R1,2 = R1,2(α,R) according
to (4.43), T = T (α,R) and q = q(α,R) according to (4.44).

The case α = π/2 is singular in (4.43, 4.44) and corresponds to purely two-cluster state
with R1 = 0. Here the solution is represented as

R2 = RF2, T = (1− q)F2. (4.45)

63



So the method presented above provides stationary solutions of the Eq. (4.34) for any
given q, T and s. Note that in the general case of s < 1, Eq. (4.34) is integro-differential
equation and the analysis of the stability of all solutions is quite difficult, except for
the simplest incoherent solution ρ = (2π)−1. However, in the limiting case of identical
natural frequencies s = 1, density ρ is ω-independent, and integration in (4.36) over
the frequencies always gives unity. What means that the real values of the Fourier
modes (4.39) are in fact the order parameters: Rm(q, T, 1) = Re [Cm(q, T, 1, 0)]. So,
in the case of identical natural frequencies s = 1 the full time-dependent problem can
be written as a system of nonlinear ordinary differential equations for time-depended
Fourier modes of the density, which can be analyzed for stability after a proper trun-
cation.

First we will present the method for obtaining stability borders for the simplest inco-
herent solution ρ = (2π)−1. And second we will show how to analyze the stability of
the nontrivial solution in the case of identical natural frequencies s = 1.

4.3.2. Stability analysis of the incoherent solution

The stability analysis of the incoherent solution has been performed in [27, 28] for
the system of phase equations in the case of multi-harmonic coupling function. Here
we will restrict ourselves to the case of bi-harmonic coupling function and present the
analysis in the new parameter plane (q, T, s).

Let us return the Fokker-Planck equation (4.34) for conditional probability density
function ρ(ϕ, t |ω)

∂ρ

∂t
+

∂

∂ϕ

[(
ω(1− s)T + q Im

(
Z1e

−iϕ)+ (1− q) Im
(
Z2e

−2iϕ))ρ] = sT
∂2ρ

∂ϕ2
, (4.46)

where
Zm(t) =

∫ ∫
g(ω) ρ(ϕ, t |ω)eimϕdϕ dω (4.47)

are the order parameters [26]. Then we perform the same procedure, namely go in the
Fourier modes representation

ρ(ϕ, t |ω) = 1

2π

∑
n

Cn(t, ω)e
inϕ Cn(t, ω) =

∫ 2π

0

ρe−inϕdϕ, C0(t, ω) = 1 (4.48)

and introduce it to the Fokker-Planck equation (4.46)

dCk
dt

=

∫ 2π

0

[
− ∂

∂ϕ

[(
ω(1− s)T + q Im

(
Z1e

−iϕ)+ (1− q) Im
(
Z2e

−2iϕ))ρ]+ sT
∂2ρ

∂ϕ2

]
e−ikϕ dϕ =

=
(
−ikω(1− s)T − k2sT

)
Ck + ikq

Z∗1Ck−1 − Z1Ck+1

2i
+ ik(1− q)Z

∗
2Ck−2 − Z2Ck+2

2i
.

(4.49)
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Thus the system of differential equations for time-dependent Fourier modes Ck(t, ω) is
obtained

dCk
dt

= k

[
−
(
iω(1− s)T + ksT

)
Ck + q

Z∗1Ck−1 − Z1Ck+1

2
+ (1− q)Z

∗
2Ck−2 − Z2Ck+2

2

]
,

(4.50)
where

Z1,2(t) =

∫
g(ω)C∗1,2(t, ω) dω. (4.51)

Incoherent solution ρ(ϕ, t |ω) = (2π)−1 means that Ck = 0 and in order to analyze the
stability of this solution, a small perturbation should be added to it. So we can take
Ck << 1 for k 6= 0 and thus Zm << 1, so in linearized system we should neglect all
the terms such as CmCn and ZmCn and higher. Then for k > 0

dC1

dt
= −T

(
iω(1− s) + s

)
C1 + q

Z∗1
2
,

dC2

dt
= −2T

(
iω(1− s) + 2s

)
C2 + (1− q)Z∗2 ,

dCk
dt

= −kT
(
iω(1− s) + ks

)
Ck, for k = 3, 4, ...

(4.52)

and complex conjugate equations for k < 0 because C−k = C∗k . Next, the expres-
sions (4.51) for Z1,2 should be introduced to (4.52). Then, only for C1,2 the integro-
differential equations are obtained

dC1

dt
= −T

(
iω(1− s) + s

)
C1 + q

1

2

∫
g(ω)C1 dω,

dC2

dt
= −2T

(
iω(1− s) + 2s

)
C2 + (1− q)

∫
g(ω)C2 dω,

dCk
dt

= −kT
(
iω(1− s) + ks

)
Ck, for k = 3, 4, ...

(4.53)

In the linearized system (4.53) the equations for the harmonics split and all the high
harmonics with k ≥ 3 and their complex conjugates are stable because T ≥ 0 and
0 ≤ s ≤ 1, whereas instability appears in first and second harmonics. And because the
harmonics split it appears independently, depending on q, T .

Since the equations for modes (4.53) are decoupled, boundary conditions when the first
and the second harmonics become unstable can be found independently. If one put
in (4.53) dC1/dt = 0 and dC2/dt = 0 one can self-consistently obtain two conditions
on the parameters q, T . Then, by using expression (4.51) we obtain

T
(
iω(1− s) + s

)
C1 = q

1

2
Z∗1 ,

2T
(
iω(1− s) + 2s

)
C2 = (1− q)Z∗2 .

(4.54)
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Introducing (4.54) to (4.51)

Z∗1 =
q

2T

∫
g(ω)Z∗1

iω(1− s) + s
dω,

Z∗2 =
1− q
2T

∫
g(ω)Z∗2

iω(1− s) + 2s
dω,

(4.55)

we obtain two lines on the (q, T ) parameter plane for any given s:

T = q
1

2

∫
g(ω)s

ω2(1− s)2 + s2
dω, (4.56)

and
T = (1− q)

∫
g(ω)s

ω2(1− s)2 + 4s2
dω. (4.57)

Here the line (4.56) on the (q, T ) plane corresponds to the linear stability boundary for
R1 = 0 and another line (4.57) corresponds to the linear stability boundary for R2 = 0.

4.3.3. Limiting case of identical oscillators

As already have been mentioned, the stability analysis of the nontrivial solution can
be performed only in the case of identical natural frequencies of the oscillators, what
means that ∆ = (1− s)T = 0 or s = 1.

As before we will rewrite the Fokker-Planck equation (4.34) in terms of time-dependent
Fourier modes Cm(t) (4.50), but taking into account that s = 1, so that the complex
order parameters Zm = C∗m:

dCk
dt

= −k2TCk + kq
C1Ck−1 − C∗1Ck+1

2
+ k(1− q)C2Ck−2 − C∗2Ck+2

2
. (4.58)

A stationary solution can be still represented through the parametric formu-
las (4.43, 4.44) or (4.45). Here we are interested in the stability analysis of these
solutions.

So we add a small perturbation around stationary solution C̃k so we set Ck = C̃k + ck
in Eq. (4.58), and in the first order in ck obtain

dck
dt

=− k2Tck +
kq

2

(
c1C̃k−1 − c∗1C̃k+1 + C̃1ck−1 − C̃∗1ck+1

)
+

+
k(1− q)

2

(
c2C̃k−2 − c∗2C̃k+2 + C̃2ck−2 − C̃∗2ck+2

)
.

(4.59)

The system of equations (4.59) is an infinite system. But the amplitudes of the modes
with large k tend to zero,so it is appropriate to truncate it at some large K, and to
write a finite system of Eqs. (4.59), with k varying from 1 to K, where K is large
enough. Since we obtain the stationary solution C̃k as a function of q, T , for any given
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pair of this parameters we can find a maximum eigenvalue of the corresponding matrix.
In this way we find stability properties of the solution C̃k. Based on that it is possible
to build the boundary q = q(T ) where the solution C̃k changes its stability. This can
be done both for general solutions (4.43, 4.44) and for the two-cluster states (4.45).

Fig. 4.3 represents the diagram of synchronous states in the parameter plane (q, T ),
for the case of identical oscillators s = 1. The stability lines of the disordered state
ρ = (2π)−1 are shown with dashed lines. As a result, there are three major states: a
disordered one, one with all non-zero order parameters, and a two-cluster one where
all odd order parameters vanish. For the values of the parameter q where one of the
coupling modes dominates (the first harmonics coupling for 0 << q ≤ 1 or the second
harmonics coupling for 1 >> q ≥ 0), the transitions are supercritical, it is illustrated
in Fig. 4.4 (panels (a),(d)), showing dependencies of the order parameters on T for
constant values of q (marked on the Fig. 4.3 (panel (a)). Whereas in the middle part of
the phase diagram (between the points marked p1, p2 in Fig. 4.3), for q close to 0.3, the
transitions are subcritical, so that a bistability occurs. These regimes are illustrated in
Fig. 4.4 (panels (b),(c)). Note that the transition from the disordered to the two-cluster
state is always supercritical, what can be seen in panels (c,d) of Fig. 4.4 (dashed red
line).
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Figure 4.3.: (a) Different regimes in the parameter plane (q, T ) are shown for s = 1. Area A:
asynchronous solution. Area B: coherent regime with R1,2 6= 0. Area C: two-cluster coherent
regime with only order parameter R2 6= 0, R1 = 0. Area D: region of bistability of incoherent
and synchronous solutions. Area E: bistability of the two-cluster state and a state with R1,2 6= 0.
Dashed blue lines are stability lines of the disordered state, obtained from (4.56) and (4.57).
Between the points p1 and p2 the transition is hysteretic; dashed red line is the stability line of
Area C, obtained from (4.59), it coincides with the line where on the branch existing for small T
the first order parameter tends to zero. (b) Enlarged central region of panel (a). Vertical dashed
lines are cuts of the diagram illustrated in Fig. 4.4. From [25].
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Figure 4.4.: Dependencies of order parameters R12 on the disorder parameter T , for s = 1 and
different values of q: (a) q = 0.6, (b) q = 0.36, (c) q = 0.29, (d) q = 0.2. Solid blue line: branch
of general solution R1 6= 0; dashed red line: branch of the two-cluster state with R1 = 0, R2 6= 0.
Thin curves depict unstable solutions, whereas the bold curves depict stable ones. Insets in the
panels (a) and (d) present logarithmic plots indicating square-root dependencies of the order
parameter R1 on the criticality T0 − T (T0 is a bifurcation point). Here markers denote solution
of the self-consistent equations, the dashed line has a slope 1/2. From [25].

4.3.4. General phase diagram

In this section we present the phase diagram for the Gaussian distribution of natural
frequencies (g(ω) = (2π)−1 exp(−ω2/2)). The lines of stability of the disordered state
(bold dashed lines) (4.56,4.57) are obtained according to stability analysis presented
above. Fig. 4.5 shows two phase diagrams on the plane of basic parameters (q, T ) for
s = 0.1 (relatively weak noise, wide distribution of frequencies) and s = 0.5. The
picture for general values of s is qualitatively the same as Fig. 4.3, and although it
cannot be checked, the stability properties of different solutions are expected to be like
in Fig. 4.4.

The size of the region of the first-order transition changes for different s. In the case of
weak noise (s is small) (Fig. 4.5a) it is rather large. On the other hand with increasing
of s (for stronger noise and narrower distribution of frequencies) it becomes smaller
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(Figs. 4.3,4.5b).
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Figure 4.5.: The same as Fig. 4.3, but for s = 0.1 (a) and s = 0.5 (b). Region E is not denoted
because it is very tiny on these plots. From [25].

4.4. Summary

In this chapter we have considered the application of the self-consistent approach to
noisy systems. The main difference from the noise-free case is the way of finding of
self-consistent solutions, where numerical evaluation of a continued fraction is needed
in order to solve the corresponding stationary Fokker-Planck equation in the Fourier
space. The application to the Kuramoto-type model with generic coupling and noise
leads to the similar results as in the noise-free system, except for the fact that the
synchronization threshold is shifted to larger values of the coupling strength. The
application to an ensemble of noisy oscillators with a bi-harmonic coupling gives a
possibility to calculate a general bifurcation diagram and to describe all possible sta-
tionary regimes of the model, for different values of noise strength, spread of frequencies
distribution, and coupling constants. Quite remarkable is a synchronous two-cluster
state with zero first order parameter (so-called “nematic phase”) which can be observed
for a large area of parameters. Also this method reveals all possible scenarios of the
transitions to synchrony in this model.
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5. Conclusions

In this work we have studied two methods that provide a global description of net-
works of globally coupled phase oscillators. Namely, the Watanabe-Strogatz (WS)
and the self-consistent approaches. These are completely different methods that have
an overlapping area of application. For both of these methods the global coupling is
necessary condition and the self-consistent approach is applicable for the large variety
of such networks. However the application of the WS approach is restricted to the
particular type of phase equation and inhomogeneity. Strictly speaking, in its original
form, it is applicable only to the homogenous systems of identical oscillators but can
be used for inhomogeneous systems that can be divided into the groups of identical
elements. For more general nonidentical systems and noisy systems the WS method is
not applicable. Nevertheless, the expressions for the solutions of a special type, namely
traveling wave solutions, in the thermodynamic limit can be obtained with the help
of the self-consistent approach, generally without a possibility to obtain equations for
global variables. In the thermodynamic limit a system can be described in terms of
the probability density function of the phases. The idea behind this approach is to
find self-consistent solutions for the probability density function of the phases of cor-
responding continuity equation for a noise-free case or of the Fokker-Planck equation
for noisy systems. While it is not possible to analyze stability of obtained solutions
for general case, in some particular cases (like it is shown based on the example of bi-
harmonic coupling) the stability analysis of some solutions (simple incoherent solution
in the considered example) can be done.

We have applied these methods to different systems. With the help of the WS approach
we have analyzed arrays of Josephson junctions and networks of phase oscillators with
leader-type coupling. In both of these systems we have obtained that the transition
from asynchrony to synchrony is hysteretic. With the help of the WS approach the
stability analysis appeared to be possible and proved the existence of bistability for
some regions of the parameters. The self-consistent approach was applied for non-
identical systems with and without noise. The key idea is to write the equation for a
conditional probability density function of the phases at every given value of the dis-
tributed parameters and to perform the integration over their distribution. Then the
traveling wave solutions can be obtained as functions of non-distributed parameters.
As a particular example of systems with a distribution of parameters we took a geo-
metric organization of oscillators with common receiver and emitter and an ensemble
of spatially distributed oscillators with a leader-type coupling. This method gives the
regions of synchrony and asynchrony for any given parameters.
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All the systems mentioned above have one-harmonic (sine) coupling function, but the
self-consistent approach can be applied to a coupling function with several harmonics.
As an example we have studied an ensemble of noisy phase oscillators with bi-harmonic
coupling. The application of the self-consistent theory appeared to be very productive
as it showed the existence of an unexpected region of bistability and of a large area of
parameters when a solution is represented by a synchronous two-cluster state with zero
first order parameter and non-zero second order parameter (so-called “nematic phase”).
Also linear stability borders of the asynchronous state with zero order parameters could
be obtained analytically with the help of the self-consistent approach. Remarkably,
further stability analysis could be performed for the case of the delta distribution of
natural frequencies (identical oscillators) in the presence of noise. A limiting case of
small noise appeared to be singular because there is a problem in finding a stationary
probability density function. This case goes beyond the scope of this work dedicated
to the methods of acquiring global description of different systems.

In essence, we have built the theory of synchronization for different systems that to-
gether with direct numerical simulation provides significant results in obtaining solu-
tions for different values of the system’s parameters.
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A. Watanabe-Strogatz
transformation as a Möbius
transformation

The connection between the Watanabe-Strogatz transformation and a Möbius trans-
formation was shown in [8], where the authors give mathematically rigorous proof of
the equivalence of the time dependent Möbius transformation applied to eiϕk(t) and
phase equation (2.1) for a phase ϕk(t). Here we will present less rigorous, but in our
opinion quite demonstrative explanation of such equivalence from a different point of
view.

As it was shown, the phase equation (2.1) can be rewritten as the equation (2.3) for
eiϕk . This equation, at any given moment of time, can be considered as a transfor-
mation of the complex variable w(0) = r(0)eiϕ(0) with |w(0)| = r(0) = 1 to another
complex variable w(t) = r(t)eiϕ(t) with |w(t)| = r(t) = 1. Or in the other words the
transformation from the border of the unit disk to the border of the unit disk on the
complex plane. The border of the unit disk is subset of the closed unit disk. So this
transformation (2.3) can be treated as a part of more general transformation of the
unit disk to the unit disk such that a point on the border transforms to another point
on the border. Let us consider the following equation:

ẇ = qt(w(w0, t), t) = if(t)w +
1

2
F (t)− w2

2
F ∗(t). (A.1)

In the integral form the transformation (A.1) can be formally written as

w(w0, t) = Qt(w0, t) = w0 +

∫ t

0

qt(w(w0, t), t) dt, (A.2)

where it is assumed that the time dependence of w(w0, t) can be explicitly introduced
to qt(w(w0, t), t) in order to obtain function Qt(w0, t).

First, let us prove that Qt(w0, t) is holomorphic on the unit disk. Then by the definition
of holomorphic functions, we need to prove that Qt(w0, t) is complex differentiable in
a neighborhood of every point on the unit disk. If F (t) and f(t) are holomorphic

functions then the functions qt(w(w0, t), t) and
∂qt
∂w

are holomorphic, thus they are
complex differentiable in a neighborhood of every point on the unit disk. In the function
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Qt(w0, t) the time t is included as a parameter and
∂Qt

∂t
= qt, so we can calculate the

derivative of Qt(w0, t) over w0 from the following equation:

∂

∂t

∂Qt

∂w0

=
∂qt
∂w0

=
∂qt
∂w

∂w

∂w0

=
∂qt
∂w

∂Qt

∂w0

. (A.3)

The equation (A.3) can be rewritten in the integral form:

∂Qt

∂w0

= exp

∫ t

0

∂qt
∂w

dt = exp

∫ t

0

[if(t)−Qt(w0, t)F
∗(t)] dt, (A.4)

where it is taken into account that Q0 = Qt(w0, 0) = w(w0, 0) = w0 and thus
∂Q0

∂w0

= 1.

It is well-known that the exponent function is holomorphic on a complex plane. So,
we have proved that Qt(w0, t) is complex differentiable and thus it is a holomorphic
function of w0 on the same area where the functions f(t) and F (t) are holomorphic,
so if they are holomorphic on the unit disk, then Qt(w0, t) is holomorphic on the unit
disk.

Second, from the Cauchy’s integral formula it follows that any holomorphic on the disk
function is completely determined by its values on the disk’s boundary. This means
that the transformation (A.1) is fully determined by the transformation (2.1).

Third, let us show that, if |w0| ≤ 1 then |w(t)| = |Qt(w0, t)| ≤ 1. In order to do that
let us return to the polar representation and substitute w = reiϕ to the eq. (A.1).

ṙ =
1− r2

2
Re(Feiϕ),

ϕ̇ = f − 1 + r2

2r
Im(Feiϕ).

(A.5)

From the system (A.5) follows that if r(0) = 1 then r(t) = 1 and if r(0) < 1 then
r(t) ≤ 1. That means that |Qt(w0, t)| ≤ 1 inside the unit disk, and if |w0| = 1 then
|Qt(w0, t)| = 1. Also, it is clear that Qt(w0, t) is continuous on the boundary of the unit
disk |w0| = 1. Then, from the maximum modulus principle follows that holomorphic
function within a bounded domain D, continuous up to the boundary of D, takes its
maximum value on the boundary of D, or equal to constant on the domain D. Thus,
either |w| = |Qt(w0, t)| = 1 if and only if |w0| = 1 and |w| = |Qt(w0, t)| < 1 if and only
if |w0| < 1, or |w| = |Qt(w0, t)| = 1 and w = Qt(w0, t) is a constant for any time and
for any |w0| ≤ 1.

Forth, any map defined by the holomorphic function with non-zero derivative is a

conformal map. And from the eq. (A.4) it follows that
∂Qt

∂w0

6= 0 for any w0 and t <∞.

However, if Re 〈∂qt
∂w
〉t < 0 then lim

t→∞

∂Qt

∂w0

= 0.
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Eventually, from the four properties mentioned above follows that the transforma-
tion (A.2) w = Qt(w0, t) is an automorphism of the unit disk for any finite moment of
time t <∞.

From the theory of functions of a complex variable, it is well-known that any auto-
morphism of the main areas of the complex plane is a fractional linear transformation
or a Möbius transformation. And any Möbius transformation is fully characterized by
three complex variables. The unit disk is one of the main areas of the complex plane
and its automorphism has specific form:

w = eiφ
b+ w0

1 + b∗w0

, (A.6)

where since we consider time dependent transformation b = b(t) and φ = φ(t). The
transformation (A.6) has the same form as the Watanabe-Strogatz transformation (2.2)
in the case, when φ(t) = Ψ(t) and b(t) = z(t)e−iΨ(t):

w = eiΨ
ze−iΨ + w0

1 + z∗eiΨw0

=
z + w0e

iΨ

1 + z∗w0eiΨ
, (A.7)

where if w0 = eiϕ0 then w = eiϕ. The transformation (A.7) is the transformation of a
value w0 to w = w(t), such that the latter is a solution of (A.1) with initial condition
w(0) = w0, to satisfy that the transformation parameters z = z(t) and Ψ = Ψ(t) should
be time dependent variables with initial conditions z(0) = Ψ(0) = 0. If w0 = 0 then
w = z for any moment of time and it means that the dynamics of the transformation
parameter z = z(t) is determined by the equation (A.1) with zero initial condition
z(0) = 0.

Next we will explain how the WS constant ψ is related to initial variable ϕ(0). Let us
introduce constant ψ as an inverse to (A.7) transformation

eiψ = e−iΨ0
−z0 + eiϕ(0)

1− z∗0eiϕ(0)
, (A.8)

with some arbitrary z0 such that |z0| < 1 and Ψ0. So that ϕ(0) is the result of time-
independent transformation (A.7) with the transformation parameters z0 and Ψ0 ap-
plied to some constant ψ

eiϕ(0) =
z0 + ei(ψ+Ψ0)

1 + z∗0e
i(ψ+Ψ0)

. (A.9)

The transformation (A.7) applied on the border of the unit disk reads

eiϕ =
z + ei(ϕ(0)+Ψ)

1 + z∗ei(ϕ(0)+Ψ)
. (A.10)

Introducing (A.9) into (A.10) we obtain

eiϕ =
z + eiΨ z0+ei(ψ+Ψ0)

1+z∗0e
i(ψ+Ψ0)

1 + z∗eiΨ z0+ei(ψ+Ψ0)

1+z∗0e
i(ψ+Ψ0)

=
z + z0e

iΨ + eiψei(Ψ0+Ψ)(1 + zz∗0e
−iΨ )

1 + z∗z0eiΨ + (z∗ + z∗0e
−iΨ )eiψei(Ψ0+Ψ)

. (A.11)
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Let us denote zWS as the transformation (A.7) applied to z0

zWS =
z + z0e

iΨ

1 + z∗z0eiΨ
. (A.12)

Then (A.11) can be rewritten as

eiϕ =
zWS(1 + z∗z0e

iΨ ) + eiψei(Ψ0+Ψ)(1 + zz∗0e
−iΨ )

1 + z∗z0eiΨ + z∗WSe
iψei(Ψ0+Ψ)(1 + zz∗0e

−iΨ )
. (A.13)

By dividing both the numerator and denominator in (A.13) by 1 + z∗z0e
iΨ we obtain

eiϕ =
zWS + ei(ψ+ΨWS)

1 + z∗WSe
i(ψ+ΨWS)

, (A.14)

where

eiΨWS = ei(Ψ0+Ψ)
1 + zz∗0e

−iΨ

1 + z∗z0eiΨ
= eiΨ0

zz∗0 + eiΨ

1 + z∗z0eiΨ
. (A.15)

Finally we have obtained the transformation (A.14) that coincide with WS transforma-
tion (2.2). Also from (A.12) follows that the dynamics for zWS = zWS(t) is determined
by the equation (A.1) with initial condition zWS(0) = z0.

Note that we have chosen z0 such that |z0| < 1. The case z0 = eiΦ0 is singular, because
after substitution to (A.9) we obtain eiϕ(0) = eiΦ0 and there is no link between ϕ(0)
and ψ. Basically that is exactly what happens when the synchrony in an ensemble of
identical oscillators is established. And if initially an ensemble is synchronized it stays
synchronized. The condition |z0| < 1 means that we consider non synchronous initial
conditions.
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B. Obtaining the set of WS
constants for a given set of
initial conditions

We will start with the formulation of the equations in the spirit of the original approach
of Watanabe and Strogatz [6] in our notations [7].

The WS variable transformation (2.2) introduces N constants ψk and the complex
time-dependent variable z(t) and real Ψ(t). But initially there are N original phases
ϕk(t). Thus in order to get unique set of constants ψk we need to determine constraints
how we choose z(0) and Ψ(0).

The simplest case would be to choose z(0) = Ψ(0) = 0 and then ψk = ϕk(0) but it is
not convenient for the general analysis. As shown in the Appendix A, by introducing
yet arbitrary initial values z(0) = z0 and Ψ(0) = Ψ0 it is always possible to obtain the
WS transformation in the form (2.2), where constants ψk are determined by inverse
WS transform from the initial values of the phases ϕk(0)

eiψk = e−iΨ0
−z0 + eiϕk(0)

1− z∗0eiϕk(0)
. (B.1)

Since the transformation (B.1) is also a Möbius transformation, for each ϕk(0) it
uniquely determines the only ψk for any given z0 and Ψ0.

Generally, we can take any z0 and Ψ0 but, as it argued in [6], it is more convenient to
choose z0 such that

1

N

N∑
k=1

eiψk = 0. (B.2)

Then the corresponding z(0) can be found by introduction of (B.1) into (B.2)

1

N

N∑
k=1

e−iΨ0
−z0 + eiϕk(0)

1− z∗0eiϕk(0)
= 0. (B.3)

Note that z0 = 0 is the solution if and only if
∑N

k=1 e
iϕk(0) = 0. Below we assume that

this is not the case and z0 6= 0 and as mentioned in Appendix A |z0| < 1.
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By taking into account the identity

(
1− z∗0eiϕk(0)

)−1
=
∞∑
l=0

z∗0
leilϕk(0) (B.4)

and the fact that eiΨ0 6= 0 the expression (B.3) can be rewritten as

0 =
1

N

N∑
k=1

−z0 + eiϕk(0)

1− z∗0eiϕk(0)
=

N∑
k=1

(
−z0 + eiϕk(0)

) ∞∑
l=0

z∗0
leilϕk(0) =

=
1

N

N∑
k=1

(
−z0 − z0

∞∑
l=1

z∗0
leilϕk(0) +

z0
|z0|2

∞∑
l=0

z∗0
l+1ei(l+1)ϕk(0)

)
=

=
1

N

N∑
k=1

(
−z0 − z0

(
1− 1

|z0|2
) ∞∑

l=1

z∗0
leilϕk(0)

)
=

=
1

N

N∑
k=1

(
−z0 − z0

(
1− 1

|z0|2
)( ∞∑

l=0

z∗0
leilϕk(0) − 1

))
=

=
z0
|z0|2

(
−1 +

(
1− |z0|2

) 1

N

N∑
k=1

∞∑
l=0

z∗0
leilϕk(0)

)
.

(B.5)

In general the identity (B.4) can be used again and we obtain

1

N

N∑
k=1

1

1− z∗0eiϕk(0)
=

1

1− |z0|2
, (B.6)

where we took into account that we consider the case when z0 6= 0. But this expression
is not much simpler than (B.3). But we can change the order of summation and the
expression (B.5) can be rewritten as

z0
|z0|2

(
−1 +

(
1− |z0|2

) ∞∑
l=0

z∗0
lCl(0)

)
= 0, (B.7)

where

Cl(t) =
1

N

N∑
k=1

eilϕk(t). (B.8)

In the thermodynamic limit there is a special manifold of initial conditions ϕk(0) when
the expression (B.7) can be greatly simplified. In the thermodynamic limit the phase
can be described as a continuous variable with some time-dependent distribution. If
initially this distribution is a Poisson kernel (see [8] for detail analysis) then

Cl(0) = C l
1(0) (B.9)
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and in this case the expression (B.7) becomes

1

1− z∗0C1(0)
=

1

1− |z0|2
. (B.10)

What gives the only solution

z0 = z(0) = C1(0) =
1

N

N∑
k=1

eiϕk(0). (B.11)

With the calculations similar to (B.5) in the case of initial conditions satisfying (B.9)
and (B.11) it is easy to show that

1

N

N∑
k=1

einψk = 0, (B.12)

for any n = 0, 1, 2, ... and N → ∞. What gives uniform distribution of constants ψ.
And the fact that WS constants ψ have the uniform distribution gives (see expres-
sions (2.13–2.16))

Cl(t) = C l
1(t) = zl(t). (B.13)

What means the well-known fact that Poisson kernel is invariant manifold of Möbius
transformation.

The third constraint to obtain Ψ(0) = Ψ0 is somewhat arbitrary, for example in [6] it
was chosen to be

∑N
k=1 ψk = 0 and in [7] it was

∑N
k=1 cos 2ψk = 0.
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C. Special case when cos δ = −1 and
B = A

If cos δ = −1 and B = A then Eqs. (2.33) transform to

ρ̇ = A
1− ρ2

2
Re(ei∆Φ),

∆̇Φ = ∆ω − A1− ρ2
2ρ

Im(ei∆Φ).

(C.1)

Thus in this special case, there are no synchronous steady states, only limit cycle with
ρ = 1 and ∆Φ(t) = ∆ωt. The asynchronous steady states could be found from the
equations analogous to Eqs. (2.40), they read

∆Φ = ± π/2,

0 = ∆ω ∓ A1− ρ2
2ρ

.
(C.2)

Then the steady asynchronous solutions are

za1,2 = sign(∆ω) i
−|∆ω| ∓

√
∆ω2 + A2

A
. (C.3)

From (C.3) follows that |za1| > 1 and |za2| < 1 if ∆ω 6= 0. And thus there is only one
asynchronous steady solution za2. After linearization around za2 the following linear
system is obtained

ȧ = − sign(∆ω)
√
∆ω2 + A2 b,

ḃ = sign(∆ω) |∆ω|a,
(C.4)

where a = Re(z) and b = Im(z)− Im(za2). Linear system (C.4) has two eigenvalues:

λa
1,2
2 = ±

√
−|∆ω|

√
∆ω2 + A2 , (C.5)

what means that za2 is neutrally stable as in the general case when sin δ = 0.
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