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Abstract

The overarching goal of this dissertation is to provide a better understanding of
the role of wind and water in shaping Earth’s Cenozoic orogenic plateaus -
prominent high-elevation, low relief sectors in the interior of Cenozoic mountain
belts. In particular, the feedbacks between surface uplift, the build-up of
topography and ensuing changes in precipitation, erosion, and vegetation
patterns are addressed in light of past and future climate change. Regionally, the
study focuses on the two world’s largest plateaus, the Altiplano-Puna Plateau of
the Andes and Tibetan Plateau, both characterized by average elevations of >4
km. Both plateaus feature high, deeply incised flanks with pronounced gradients
in rainfall, vegetation, hydrology, and surface processes. These characteristics
are rooted in the role of plateaus to act as efficient orographic barriers to rainfall
and to force changes in atmospheric flow.

The thesis examines the complex topics of tectonic and climatic forcing of
the surface-process regime on three different spatial and temporal scales: (1)
bedrock wind-erosion rates are quantified in the arid Qaidam Basin of NW Tibet
over millennial timescales using cosmogenic radionuclide dating; (2) present-
day stable isotope composition in rainfall is examined across the south-central
Andes in three transects between 22° S and 28° S; these data are modeled and
assessed with remotely sensed rainfall data of the Tropical Rainfall Measuring
Mission and the Moderate Resolution Imaging Spectroradiometer; (3) finally, a
2.5-km-long Mio-Pliocene sedimentary record of the intermontane Angastaco
Basin (25°45’ S, 66°00’ W) is presented in the context of hydrogen and carbon
compositions of molecular lipid biomarker, and oxygen and carbon isotopes
obtained from pedogenic carbonates; these records are compared to other
environmental proxies, including hydrated volcanic glass shards from volcanic
ashes intercalated in the sedimentary strata.

There are few quantitative estimates of eolian bedrock-removal rates from
arid, low relief landscapes. Wind-erosion rates from the western Qaidam Basin
based on cosmogenic 1°Be measurements document erosion rates between 0.05
to 0.4 mm/yr. This finding indicates that in arid environments with strong

winds, hyperaridity, exposure of friable strata, and ongoing rock deformation

XXI



and uplift, wind erosion can outpace fluvial erosion. Large eroded sediment
volumes within the Qaidam Basin and coeval dust deposition on the Chinese
Loess plateau, exemplify the importance of dust production within arid plateau
environments for marine and terrestrial depositional processes, but also health
issues and fertilization of soils.

In the south-central Andes, the analysis of 234 stream-water samples for
oxygen and hydrogen reveals that areas experiencing deep convective storms do
not show the commonly observed patterns of isotopic fractionation and the
expected co-varying relationships between oxygen and hydrogen with increasing
elevation. These convective storms are formed over semi-arid intermontane
basins in the transition between the broken foreland of the Sierras Pampeanas,
the Eastern Cordillera, and the Puna Plateau in the interior of the orogen. Here,
convective rainfall dominates the precipitation budget and no systematic stable
isotope-elevation relationship exists. Regions to the north, in the transition
between the broken foreland and the Subandean foreland fold-and-thrust belt,
the impact of convection is subdued, with lower degrees of storminess and a
stronger expected isotope-elevation relationship. This finding of present-day
fractionation trends of meteoric water is of great importance for
paleoenvironmental studies in attempts to use stable isotope relationships in the
reconstruction of paleoelevations.

The third part of the thesis focuses on the paleohydrological characteristics
of the Mio-Pliocene (10-2 Ma) Angastaco Basin sedimentary record, which
reveals far-reaching environmental changes during Andean uplift and orographic
barrier formation. A precipitation- evapotranspiration record identifies the onset
of a precipitation regime related to the South American Low Level Jet at this
latitude after 9 Ma. Humid foreland conditions existed until 7 Ma, followed by
orographic barrier uplift to the east of the present-day Angastaco Basin. This was
superseded by rapid (~0.5 Myr) aridification in an intermontane basin,
highlighting the effects of eastward-directed deformation. A transition in
vegetation cover from a humid C3 forest ecosystem to semi-arid C4-dominated

vegetation was coeval with continued basin uplift to modern elevations.
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Zusammenfassung

Das iibergreifende Ziel dieser Dissertation ist es, ein besseres Verstdndnis des
Einflusses von Wind und Wasser auf die Entstehung orogener Plateaus im
Kdnozoikum zu erlangen. Orogene Plateaus sind hochgelegene, durch geringes
Relief und oft endorheische Entwdsserung charakterisierte trockene
Hochgebirgsregionen. In dieser Arbeit wird vor allem die Riickkopplung
zwischen tektonischer Hebung, dem Aufbau von Relief und den daraus
resultierenden Veranderungen des Niederschlags, der Erosion und variierenden
Vegetationsmustern im Zusammenhang mit vergangenen und zukinftigen
Klimaveranderungen untersucht. Der regionale Fokus dieser Arbeit liegt auf den
zwei grofdten Plateaus der Erde, das Altiplano-Puna-Plateau in den Anden und
das Tibet Plateau. Beide besitzen eine durchschnittliche Hohe von > 4 km. Als
effiziente orographische Barrieren und ,Heizflachen“ beeinflussen Plateaus
grofdraumig die atmospharische Zirkulation und bewirken somit ausgepragte
Gradienten in Niederschlag, Vegetation, Hydrologie und Oberflachenprozessen.
Vor diesem Hintergrund untersucht diese Arbeit das komplexe
Zusammenspiel zwischen Tektonik und Klima und damit verbundene
Auswirkungen auf Erdoberflachenprozesse auf drei verschiedenen zeitlichen
und rdaumlichen Skalen: (1) die Quantifizierung von Wind-Erosionsraten im
Festgestein des ariden Qaidam-Beckens von Nordwest-Tibet mittels kosmogener
Nukliddatierungen tliber Zeirdume von mehreren 103 Jahren; (2) die heutige
[sotopenzusammensetzung von Niederschlage wird entlang von drei Transekten
iiber die Stidzentralanden zwischen 22° und 28° S ermittelt; diese Daten werden
modelliert und der Niederschlag mit satellitenbasierten Fernerkundungsdaten
der Tropical Rainfall Measuring Mission und des Moderate Resolution Imaging
Spectroradiometer ausgewertet; (3) eine 2,5 km machtige mio-pliozdne
Sedimentabfolge des intermontanen Angastaco-Beckens (25°45’ S, 66°00" W)
wird auf die Wasserstoff- und Kohlenstoffzusammensetzungen von molekularen
Blattwachsen und hinsichtlich der Sauerstoff- und Kohlenstoffisotopie von
Bodenkarbonaten untersucht; diese Datensiatze werden mit anderen
Umweltindikatoren verglichen, u.a. mit hydratisierten Glasern vulkanischer

Aschen, die in der Sedimentabfolge aufgeschlossen sind.
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Es gibt nur wenige quantitative Abschiatzungen von Winderosionsraten im
Festgestein arider Gebiete mit geringem Relief. Kosmogene 1°Be-Messungen im
westlichen Qaidam-Becken dokumentieren Erosionsraten zwischen 0,05 bis 0,4
mm/a. Diese Resultate zeigen, dass in ariden Gebieten mit hohen
Windgeschwindigkeiten, leicht erodierbaren Gesteinen und andauernder
Deformation und Hebung, Wind-Erosionsprozesse die Denudationsraten der
fluvialen Erosion bei weitem iibersteigen kann. Das grofde Volumen erodierter
Gesteine im Qaidam-Becken und die gleichzeitige Lossablagerung im
chinesischen Loss-Plateau veranschaulichen die wichtige Rolle der &olischen
Sedimentproduktion in ariden Plateaugebieten und unterstreichen deren
Bedeutung fiir marine und terrestrische Ablagerungsprozesse sowie
Nahrstoffeintrage in Bdden und respiratorische Gesundheitsprobleme.

Die Analyse der Sauerstoff- und Wasserstoffisotopie von 234
Flusswasserproben aus den Siidzentralanden belegt, dass Gebiete mit starken
konvektiven meteorologischen Ereignissen nicht die erwarteten Isotopenmuster
zwischen der Abnahme der Isotopie und der Hohe aufweisen. Diese konvektiven
Ereignisse werden iiber semiariden intermontanen Becken in der
Ubergangszone zwischen dem zerbrochenen Vorland der Sierras Pampeanas, der
Ostkordillere und dem Puna-Plateau im Inneren des Orogens gebildet.
Konvektiver Niederschlag dominiert hier den Niederschlagshaushalt und
eliminiert jegliche systematische Beziehung zwischen der Isotopie und der Hohe.
In den noérdlichen Regionen, - in der Ubergangszone zwischen dem zerbrochenen
Vorland und dem subandinen Falten- und Uberschiebungsgiirtel, verringert sich
der Einfluss konvektiver Niederschldge und hydrometeorologische
Extremereignisse gegeniiber den orographischen bedingten
Niederschlagsmechanismen. Dieser Unterschied wirkt sich in einer besseren
Beziehung zwischen Isotopenverhaltnissen und Hohe aus. Eine bessere Kenntnis
der meteorologischen Einfliisse auf die Wasserisotopie sind der Schliissel fiir
zukinftige Palaoumweltstudien und zukinftige Bestrebungen, mit Hilfe der
Trends in der Isotopie meteorischer Wasser das vertikale Wachstum von
Gebirgen zu quantifizieren.

Der dritte Teil der Arbeit behandelt die Isotopenverhéltnisse in

Blattwachsen und daraus abgeleitete paldohydrologische Eigenschaften des
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Anagastaco-Beckens im Mio-Pliozan (10-2 Ma), welche weitreichende
Umweltverdnderungen wahrend der Hebung der Anden und der Bildung von
orografischen Barrieren im Vorland aufzeigen. Als Proxies fiir Niederschlag und
Evapotranspiration dokumentieren Isotopenverhéltnisse in Blattwachsen,
Bodenkarbonaten und  vulkanischen Gliasern den  Beginn eines
Niederschlagsystems in diesem Teil der Anden, welches durch feuchtebringende
Winde des South American Low Level Jet ab 9 Ma etabliert war. Humide
Bedingungen existierten bis 7 Ma im Vorland, gefolgt von einer Bildung einer
orografischen Barriere im Osten des heutigen Angastaco-Beckens. Als Folge
dieser Hebung folgte eine rasche Aridifikation (innerhalb ~0,5 Ma) des nun
intermontanen Angastaco-Beckens. Ein Wechsel von einem feuchten C3-Wald-
Okosystem zu semiariden Umweltbedingungen mit einer C4-dominierten
Vegetationsdecke vollzog sich gleichzeitig mit der fortlaufenden Hebung des

Beckens auf heutige Hohen.
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Chapter 1

Introduction

1.1 General background / framework

Earth’s orogenic plateaus, elevated low-relief regions in the interior of Cenozoic
mountain belts, have always impressed researchers, explorers and naturalists,
including Alexander von Humboldt (1808), Walther Penck (1920), Isaiah
Bowman (1924), and Heinrich Harrer (1952), to name just a few. Heinrich
Harrer, one of the earliest western explorers visiting the Tibetan Plateau,

marveled at the sheer endlessness and low-relief plateau landscape:

"Die Landschaft, durch die wir seit Tagen zogen, war von
eigenartiger Schonheit. Weite Ebenen wechselten ab mit
hiigeligem Geldnde und kleinen Passen, und oft mufdten wir
durch eiskalte, reiffende Bache waten. [...] Schon lange hatten
wir keine Gletscher mehr gesehen, doch als wir uns dem
Tasamhaus von Barka naherten, lag eine ganze Kette im
Sonnenlicht strahlend da." (Harrer, 1952)

Alexander von Humboldt was moved by the freedom offered by this pristine

plateau landscape while he was traveling through the Andes:

"Auf den Bergen ist Freiheit! Der Hauch der Griifte

Steigt nicht hinauf in die reinen Liifte;

Die Welt ist vollkommen tiberall,

Wo der Mensch nicht hinkommt mit seiner Qual." (Humboldt, 1808)

As part of the ongoing quest for natural resources in orogenic settings, and more
than two hundred years after Humboldt’'s expedition, humans have begun seizing
these last vast, virtually untouched areas the planet has to offer and settled on
and around all major plateaus. This has fundamentally impacted a very fragile
natural environment, which is characterized by pronounced topographic and
climatic gradients along the plateau flanks, and low-relief environments with

generally low rates of geomorphic processes within the plateau interiors (e.g.,



Strecker et al., 2007; Molnar et al,, 2010). Typically, plateaus such as the Tibetan,
Anatolian or Andean plateaus are rather dry environments, whereas their flanks
are often humid, especially if the orientation of the plateau flanks is
perpendicular to moisture-bearing air masses that impinge on their flanks.
Changes in plateau landscapes and the processes that shape them are societally
relevant. Numerous inhabitants of Asia and South America are increasingly
dependent on the water supply provided through runoff by major streams
draining the plateau margins for irrigation, energy production, and human
consumption (e.g., Immerzeel, 2010; Bookhagen and Burbank, 2010; Viviroli et
al, 2011; Hoorn et al, 2010; 2013). These are very important aspects with
immediate consequences for humans, but another, equally relevant issue
associated with plateaus is the generation of dust particles by erosive processes
in these environments, their long-distance transport, and air pollution. This topic
has been gaining increased attention in recent years and is rooted in the
plateaus’ arid interiors that affect faraway regions. Conversely, the influence of
soot from distant industrial centers can affect human health across plateaus. This
is a major problem for humans that was recently recognized and that might
significantly impact the well-being of mountain communities (Beniston, 2003;
Kurosaki and Mikami; 2003; Kurosaki et al.,, 2011; Indoitu et al., 2012). Indeed,
the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (2007)
identifies dust and aerosol emission from arid landscapes and water availability
in plateau regions as key effects of future climate change that will strongly affect
the socio-economic state and future prosperity of humankind (IPCC, 2007;
Immerzeel, 2010;) (Fig. 1.1). In this context, the scientific community would like
to be able to predict how continued global warming will enhance glacial melting
and runoff to major streams, including those draining the Tibetan and Altiplano-
Puna plateaus (Fig. 1.1). A warmer climate might change the seasonality of
snowfall and snowmelt, potentially causing severe consequences for hydropower
generation, water management, and communities due to flooding. The impact of
dust and aerosols on future climate change and the role of variations of solar
radiation, and thus the potential of a negative feedback on global air
temperatures, is highly debated in this context (IPCC, 2007; Seinfeld and Pandis,

2012). Even though the feedback mechanism between the amount of aerosols



and dust in the atmosphere and their impact on lowering global air temperatures
is known, climate simulations concerning future dust production amounts and
atmospheric concentrations are still fraught with many problems (e.g., Stier et
al, 2005; Mahowald et al,, 2011; Dufresne et al., 2013). Furthermore, as future
climate is expected to warm and aridity in arid core regions and climatic

threshold areas is projected to increase, vegetation cover will be reduced.
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Figure 1.1. Projections and model consistency of relative changes in runoff by the end of the 21st
century. Large-scale relative changes in annual runoff (water availability, in percent) for the
period 2090-2099, relative to 1980-1999. Values represent the median of 12 climate models
using the SRES A1B scenario. White areas are where less than 66% of the 12 models agree on the
sign of change and hatched areas are where more than 90% of models agree on the sign of
change. The quality of the simulation of the observed large-scale 20th century runoff is used as a
basis for selecting the 12 models from the multi-model ensemble. The global map of annual
runoff illustrates a large scale and is not intended to refer to smaller temporal and spatial scales.
In areas where rainfall and runoff is very low (e.g. desert areas), small changes in runoff can lead
to large percentage changes. In some regions, the sign of projected changes in runoff differs from
recently observed trends. In some areas with projected increases in runoff, different seasonal
effects are expected, such as increased wet season runoff and decreased dry season runoff.
Studies using results from few climate models can be considerably different from the results
presented here. Figure and figure caption is taken from the IPCC Fourth Assessment Report,

Climate Change 2007 (AR4 Synthesis Report, p. 49).



This will lead to more wind erosion and dust emissions, but the impact of hydro-
meteorological extreme events and their impact on pulsed erosion is also
expected to be exacerbated (Shao et al, 2011; Marticorena, 2014). Dust
production and emission continued to be poorly understood and are viewed as a
passive response to an ecological response to climate change because missing
vegetation covers leaves soil and ground barren and thus susceptible to deflation

(e.g., Washington et al., 2006; Cowie et al., 2013).

Often, different characteristics of plateau environments, such as rainfall amount,
erosion, vegetation, hydrologic aspects, and their associated landforms, are
studied independently of each other, without integrating different forcing factors
that might impact these environments (Owen et al., 2006; Dong et al., 2012;
Zhang et al., 2012; Yao and Liu, 2014). Previous studies have focused either on
landforms, processes, and the overall geologic characterization of humid plateau
flanks or on the arid plateau interiors. In addition, some of these studies are
limited, because they have not integrated present-day processes and
environmental characteristics with past processes that were inferred from proxy
indicators in geological archives (e.g., Sun et al, 2008; Duvall et al, 2012;
Canavan et al, 2014). It is here, at the intersection between present-day
characteristics of plateau regions and processes in the geological past that are
recorded in various proxy indicators, where the research design of this thesis
attempts to bridge the gap between different spatial and temporal scales. The
chosen approach addresses the impact of plateaus on hydrologic characteristics
and erosional processes from a geological, geomorphic, and isotope geochemical
perspective. By using this approach, the study furnishes new information for a
unifying view across different plateau environments and their impact on
environmental evolution. Against this background, the erosion processes of the
flanks of the Tibetan Plateau are analyzed and the characteristics of extreme
climate gradients from humid to arid environments across the Altiplano-Puna
Plateau of South America are studied with respect to water stable isotopes. The
windward flanks of the latter environment receive between 2000 and 6000
mm/year of rainfall, whereas the leeward sides receive less than 100 mm/yr

(e.g., Bookhagen and Strecker, 2008; Garreaud et al,, 2009). The erosion rates,



vegetation, and hydrology of both plateau environments mimic the pronounced
gradients in rainfall (Strecker et al, 2007; Bookhagen and Burbank, 2010;
Bookhagen and Strecker, 2012). In turn, the evolution of these gradients through
time is recorded in the sedimentary record of the plateau basins and
intermontane basins that straddle the plateau flanks (e.g., Jordan and Alonso,
1987; Schemmel et al.,, 2013; Garzione et al., 2014; Hoke et al., 2014; Schildgen et
al, 2014). Knowledge of these extreme climate and surface-process gradients
and the plateau’s control on the flow of atmospheric circulation in blocking and
re-routing air masses is still at an early stage, as is knowledge of associated
impacts on erosional processes and thus landscape evolution of plateau margins
(Strecker et al., 2007; Bookhagen and Strecker, 2012; Kirby and Whipple, 2012;
Gasparini and Whipple, 2014). Especially the feedback processes between
tectonic build-up of topography and ensuing changes in precipitation, erosion,
vegetation, and the hydrological cycle, are still largely unresolved and subject to
ongoing debate (e.g.,, Whipple and Meade, 2006; Whipple, 2009; Bookhagen and
Burbank, 2010; Thiede and Ehlers, 2013; Whipple and Gasparini, 2014). To
capture the complex spatiotemporal evolution of rainfall gradients during
plateau growth and to better understand the competing influences of eolian vs.
fluvial processes in high-mountain environments, this thesis presents
investigations of processes that span timescales from years to millions of years.
Performing research over more than six orders of magnitude in timescales
requires a wide array of methodologies from different fields, such as stable-
isotope geochemistry, organic geochemistry of n-alkane leaf-waxes, cosmogenic
nuclide dating, geological mapping, and structural and basin analysis, and each of
these will be employed to add to the broader picture of plateau feedbacks an

evolution.



1.2 Geological setting of the Tibetan and Altiplano-Puna

plateaus

There are several definitions of the term plateau. In its most basic form a plateau
is defined as “a large flat area of land that is high above sea level” (Cambridge
Dictionary, 2014). By this very loose definition, more than 40 percent of the
Earth’s surface can be classified in terms of plateaus regions. This is unrealistic
and underscores the necessity to better characterize plateau environments and
their morphotectonic evolution, their forcing of rainfall distribution, amount, and
their impact on the evolution of flora and fauna (e.g., Molnar et al., 2010; Hoorn

etal, 2010 and 2013; Baker et al., 2014) (Fig. 1.2).

Although plateaus are also found in extensional environments, such as in East
Africa (e.g., Wichura et al., 2010), I focus my attention to orogenic plateaus that
are formed by continent-continent collision or non-collisional subduction
processes beneath the continents (e.g., Cloos, 1993; van Hunen et al., 2000). Next
to the Tibetan and Altiplano-Puna plateaus, which constitute the focus of this
study, the Colorado and Turkish-Iranian plateaus are also important orogenic
plateau regions that fundamentally impact environmental conditions (Figs. 1.2

and 1.3).
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Figure 1.2. Overview of Earth’s largest orogenic plateaus. Elevation SRTM-data is modfied from

CGIAR SRTM 90 m Digital Elevation Database v4.1 (Jarvis et al., 2008).



The Himalayan-Tibetan collision zone consists of the Himalayas including
fourteen principal peaks having elevations above 8 km, the Karakorum ranges in
the west, the Himalayan syntaxes in Pakistan and Eastern India, respectively, and
the Tibetan Plateau to the north (Figs. 1.2 and 1.3). The Himalayan-Tibetan
system spans from ~70° to 105° E and ~40° to 25° N, exhibiting extreme
topographic relief of up to 6 km along the Himalayan fronts and syntaxes, and
low internal relief of less than 500 m in extensive parts of the central Tibetan
Plateau (Burbank et al, 1996; Zeitler et al., 2001; Fielding et al.,, 1994). The
Tibetan Plateau comprises several range uplifts with intermediate-size basins
with more than 5 km of sedimentary fill (e.g., Horton et al., 2012). Common to
many models of Tibetan Plateau formation is the assumption that most of Tibet
was near sea level prior to the India-Asia collision at around 50 Ma and that the
plateau grew radially outward from a central core due to the subduction of the
Indian plate beneath Asia (Houseman and England, 1996; Tapponnier et al,
2001; Rowley and Currie, 2006). Recent data contradicts this and instead
suggests that substantial Cretaceous crustal thickening prior to the early
Cenozoic collision at ~50 Ma had already created high topography in large parts
of central Tibet (DeCelles et al.,, 2007; Rohrmann et al., 2012).

The Andes are a continuous, 7000-km-long mountain range along the active
convergent margin of South America, extending from ~10°N to 55° S and
between ~80° and 60° W (Fig. 1.2). The Andes host some of the highest peaks
outside the Himalayan-Tibetan orogen with elevations close to 7 km. In general,
the Andes and their present-day elevations are interpreted to result from crustal
shortening and thickening, associated with the continuing coupled interaction of
the subducting oceanic Nazca plate with the overriding South American

continent (e.g., Jordan et al., 1983; Isacks, 1988; Allmendinger et al., 1997).

The Altiplano-Puna Plateau, the second largest orogenic plateau on Earth, is
approximately located between 15° and 27° S and has an average elevation of 3.7
km. The plateau has a compressional, low relief basin-and-range topography
with numerous internally drained and partly coalesced sedimentary basins

(Allmendinger et al., 1997). Although structurally very similar, this contrasts



with the adjacent high-relief intermontane basins and ranges of the Eastern
Cordillera and the Santa Barbara and Sierras Pampeanas morphotectonic
provinces that are part of the broken Andean foreland (Jordan et al., 1983). The
hydrologically closed basins of the Puna have sedimentary fills of up to 5 km
thickness and thus lie in stark contrast to much thinner, partially exposed fills in
the intermontane basins to the east (e.g., Jordan and Alonso, 1987; Allmendinger
et al., 1997; Strecker et al.,, 2009). The age and deformation mechanism of the
Altiplano-Puna plateau uplift is actively debated, with the proposed timing of
uplift ranging from early Oligocene to late Miocene (Garzione et al., 2008; Barnes
and Ehlers, 2009; Canavan et al., 2014). In addition to crustal shortening and
magmatic addition, it has been suggested that the final stages of plateau uplift
were associated with the isostatic response to lithospheric delamination
processes (Froideveaux and Isacks, 1984; Kay and Mahlburg, 1993;
Allmendinger et al., 1997; Sobolev et al., 2005).

1.3 Tibet and Puna-Altiplano plateaus climate conditions

The Altiplano-Puna and Tibet plateaus both exert strong control over
atmospheric circulation and moisture distribution (e.g., Hahn and Manabe, 1975;
Lenters and Cook et al.,, 1995; Bookhagen and Burbank, 2006; Takahashi and
Battisti, 2007; Bookhagen and Strecker, 2008; Garreaud et al., 2009; Molnar et
al, 2010). The topographic distribution of high-standing topography in plateau
regions not only blocks and reroutes airflow patterns and thus controls overall
moisture supply to the plateau and its flanks, but also often creates its own
regional circulation regimes known as monsoons (e.g.,, Fu and Fletcher, 1985;
Lenters and Cook et al,, 1995). For example, significant heating over the Tibetan
Plateau increases upper tropospheric air temperatures compared to air above
the Indian Ocean, driving the flow of warm, moist air toward the orogen as part
of the Southeast Asian and Indian summer monsoons (Fig. 1.3 A) (e.g., Fu and
Fletcher, 1985). The Indian Summer Monsoon transports moisture during
summer (June, July, and August) from the Bay of Bengal toward and along the
Himalayan front in a northwestward direction, with far-reaching impacts on

surface processes during intensified monsoon years (e.g, Bookhagen and



Burbank, 2006; 2010; Wulf et al, 2010) (Fig. 1.3 A; white arrows). Heavy
precipitation of more than 3 m/yr results as the moisture-laden winds encounter
the orographic front. In contrast, the Southeast Asian Monsoon has its moisture
source in the South China Sea and the Pacific (An, 2000). In the case of China,
moisture is transported across Asia and along the eastern Tibetan margin as far
north as 35° N (Fig. 1.3 A). Areas north and west of the Tibetan Plateau are
influenced by the westerlies. However, here the westerlies are not moisture-
laden as farther west, but instead constitute a dry, high speed air-flow, especially

during winter (Bryson, 1986; Toggweiler and Russel, 2008).

In South America, the South American Monsoon System (SAMS) is the most
important feature controlling moisture supply to the Altiplano-Puna Plateau and
the Andean orogen to a latitude of approximately 28° S, but moisture also
reaches the orogen from the east due to the influence of the South Atlantic
Convergence Zone (Carvalho et al,, 2011; Marengo et al., 2012). The SAMS is
modulated by the El Nifio-Southern Oscillation (ENSO) phenomenon. During
positive ENSO cycles, reduced moisture transport into the central Andes has
been observed (e.g. Bookhagen and Strecker, 2008). Typically, low-level trade
winds drive tropical Atlantic moisture into the Amazon basin, a process that is
caused by differential heating between ocean and land (e.g. Marengo et al,
2012), and part of this moisture is recycled and transported southward by the
SAMS. The SAMS is most active between December and February (DJF). The
heaviest precipitation east of the Andes is formed in the South Atlantic
Convergence Zone (SACZ) by convection (Carvalho et al, 2002). The South
American Low-Level Jet (SALLJ]) as an integral part of the SAMS, however, exerts
the greatest control on modulating the moisture supply to the Altiplano-Puna
Plateau (Fig. 1.3 B). The Andes deflect low-level flow southward parallel to the
strike of the Andes, and when these moisture-laden winds are orographically
lifted, there will be heavy rainfall (e.g., Bookhagen and Strecker, 2008; Garreaud
et al, 2009; Rohrmann et al., 2014). The largest rainfall amounts are found
between ~1 and 1.5 km elevation, whereas higher elevations and leeward sides
often receive less than 0.2 m/yr (Bookhagen and Strecker, 2008; Boers et al,,

2013; Rohrmann et al., 2014).



Wdry sector

stud

Figure 1.3. The Tibetan (A) and Altiplano-Puna plateaus (B). (A) Satellite composite of the
Himalayan-Tibetan system with vegetation and glacial cover (image source: NASA, 2013). (B)
Proba-V satellite image acquired on April 23th, 2014 (image source: ESA, 2014). In case of the
Andes note the large distortion of the image for more southern regions as Patagonia due to the
Mercator projection. White arrows highlight the major atmospheric circulation systems, e.g.
monsoon or westerlies, and orange line represents the boundary between dry and wet sectors
along Tibet and the Andes, exemplifying the importance of the monsoonal systems in providing
moisture and thus controlling the density of vegetation cover in both areas. Red boxes denote

study areas for chapters two, three, and four.

Another important component of South American hemispheric-scale
atmospheric circulation are the westerlies south of ~28° S (Fig. 1.3). The
westerlies transport moisture from the Pacific Ocean into the western Andes,

where rain-out takes place along the steep topographic range fronts (e.g.,
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Garreaud and Aceituno, 2001; Garreaud et al., 2009). After the westerlies cross
from west to east over the Andes, the air masses sink, are adiabatically heated,
and become a very dry airmass that is largely responsible for the aridity in the

southern-central and southern foreland of the Andes.

1.4 Tibet and Puna-Altiplano plateaus environments

The topography and relief conditions of the Altiplano-Puna and Tibetan plateaus
and their impact on airflow patterns and moisture supply have created distinct
humid and arid sectors/ environments along and within the plateaus (Fig. 1.3).
These sectors vary significantly in vegetation cover, hydrology, and
geomorphology. For example, the arid sector of the plateau interiors are more
stable, with low streampower and erosion rates, related to a deficit in
precipitation and runoff (e.g., Rech et al., 2010; Bookhagen and Strecker, 2012;
Jungers et al.,, 2013). The sparse vegetation cover, in combination with high wind
speeds, exposes these areas to wind erosion, but the efficiency of this process has
never been fully quantified in the plateau interiors and their arid margins (Isacks
et al., 1989; Goudie, 2007). There are few estimates of wind erosion with values
between 1 and 10 mm/yr, but these are only crude estimates based on inversion
of topographic features or eolian removal of lacustrine sediments from dry
lakebeds (e.g., Beresford-Jones et al., 2009; Washington et al., 2006; see in-depth
review in chapter 2). In contrast, the wet, windward sectors with their steep
topographic flanks acting as orographic barriers, have higher precipitation
amounts and erosion rates (e.g., Bookhagen and Strecker, 2012; Blothe and

Korup, 2013).

The nature (i.e. convective or stratiform) and spatio-temporal distribution of
precipitation is highly non-uniform in plateau regions (e.g., Bookhagen and
Burbank, 2006; Bookhagen and Strecker, 2008; Romatschke and Houze, 2013).
For example, precipitation along the Tibetan and Altiplano-Puna plateaus is
limited to the summer months - often in combination with an intensification of
monsoonal circulation - governing the amount and severity of rainfall. There is

little information on the character of precipitation along plateaus especially
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regarding convective rainfall (Zipser et al., 2006; Houze et al., 2012). In light of a
potentially warmer future, climate air masses in these regions will be able to
absorb higher amounts of water vapor, and consequently the number of
convective storms and extreme rainfall events will likely be increased. In the
Andes, it has been shown that deep convective storms (storms with a cloud
height of more than 10 km) develop in the transition zone between the humid
flanks and the arid plateau margin (Zipser et al.,, 2006; Houze et al., 2012). In the
Himalaya-Tibetan system, such convective storms are located in the
northwestern regions, such as the Karakorum Mountains and Ladakh, where a
sparse vegetation cover and high insolation provides an ideal setting to form
convective storms (Fig. 1.3). Since precipitation amount in mountainous regions
is generally strongly linked to hillslope processes, fluvial erosion and landsliding,
it is therefore very important to identify and understand the link between
convective rainfall and the mechanisms of mass removal (e.g., Bookhagen and
Strecker, 2012; Kirby and Whipple, 2012). The steep topographic and climatic
gradients and the transitions between humid and arid high-altitude sectors, in
addition to the ongoing tectonic activity, make these areas very vulnerable to the
impacts of future climate shifts (e.g., Bradley et al., 2006) and repercussions on

infrastructure and populations is to be expected.

The wet and dry sectors of the Tibetan and Altiplano-Puna plateaus are not
static, but evolved over time as tectonic shortening caused lateral and vertical
topographic growth and thus modified atmospheric circulation systems by
establishing orographic barriers and aridifying the orogen interiors (Fig. 1.3)
(Vandervoort et al,, 1995; Alonso et. al., 2006; DeCelles et al.,, 2007). The rich
sedimentary records of basins on the Altiplano-Puna and Tibetan plateaus and
intermontane basins along their margins may potentially record corresponding
paleoenvironmental and hydrological changes through time and thus furnish
important archives reflecting the impacts and feedbacks of tectonic forcing of
climatic conditions (e.g., Isacks et al., 1989; Kleinert and Strecker, 2001; Thiede
et al., 2004; Strecker et al., 2007). In the Andes, a general eastward migration of
the deformation front from the western parts of the present-day of the orogen

toward the eastern foreland is observed, although this eastward migration may
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be highly unsystematic and disparate in time and space in the broken foreland
sectors (Sempere et al.,, 1990; Horton, 1998; Kley et al., 2005; Strecker et al,,
2009). The formerly continuous foreland was fragmented and filled with
synorogenic clastics that were progressively incorporated into the orogen (e.g.,
Jordan and Alonso, 1987; Reynolds et al., 2000; Carrera et al., 2006; Hain et al,,
2011). This led to uplift and exposure of older basin fills within the plateau, the
Eastern Cordillera, and adjacent geological provinces to the east of the plateau
(Horton, 1998; Horton and DeCelles, 2001; Hilley and Strecker, 2005). Proxy
indicators and facies variations in these strata offer the unique opportunity to
study hydrologic transitions over time and thus provide an unprecedented
archive of paleoenvironmental and biotic evolution for the foreland and orogen
interior in response to tectonic and climatic forcing (Fig. 1.3 B). Ultimately, these
proxy indicators also furnish information that is needed to better understand the
response of plateau environments and their forelands to the impact of global
change, as the long-term build-up of topography and ensuing changes in climate

may have a similar effect as short-term climate change in a particular location.

1.5 Principal scientific questions addressed in this study

This thesis is an attempt to decipher the role of wind and water in shaping two of
the most prominent plateaus on Earth. The approach is based on the study of the
humid and arid environments and surface processes in these environments on
different timescales, spanning the present-day to millions of years. To help guide

me through this process, I developed the following research questions:

1. What is the rate of wind erosion on a local to global scale in the context of
plateaus? How does wind erosion operate in plateau settings (i.e.
deflation vs. abrasion) and how important are eolian processes in shaping

arid plateaus? (Chapter 2)

2. Where do convective rainstorm events occur along plateau
environments? Which mechanisms control them? Can these impacts be

deciphered by analyzing water stable isotopes and does this information
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help to reconstruct plateau paleoenvironments, climate, and topography?

(Chapter 3)

3. How is the changeover from a humid to an arid environment
accomplished during plateau growth and how do erosion, vegetation, and
hydrology respond to tectonic forcing via topographic growth?

(Chapter 4)

1.6 Thesis outline

After this general introduction into the topic and the short characterization of
the Tibetan and Andean plateaus, wind erosion in the arid Tibetan Plateau
environment of the Chinese Qaidam Basin is assessed in Chapter 2 (Fig. 1.3 A).
Here, 19Be cosmogenic nuclide surface-dating is used to quantify wind-erosion
rates over the last ~15,000 years. Additional issues concerning wind erosion in
this environment are considered. These include: (1) the nature and differences of
deflation and abrasion processes and how they operate; (2) the significance of
wind-erosion rates for the arid Tibetan Plateau environment and the Chinese
Loess Plateau; and (3) the obtained wind-erosion rates are compared to global
rates of wind erosion from North to South America, Europe, Africa, and Asia, with

the objective to highlight their general significance for arid landscape evolution.

After having dealt with the specifics of arid plateau environments and illustrating
the role of wind in shaping these environments, the thesis turns to the
characterization of humid environments along plateau flanks in South America
and the role of water in Chapter 3. The eastern, windward flanks of the Altiplano-
Puna Plateau and the Eastern Cordillera of the south-central Andes receive high
rainfall amounts, which decreases westward with increasing topography. This
represents an ideal setting to first study the present-day characteristics of the
humid plateau flanks, and second, their development through time (Fig. 1.3 B). A
hydrogen and oxygen water-stable isotope proxy approach is used to identify,
analyze, and characterize the nature of precipitation along the eastern Altiplano-

Puna Plateau margin. The moisture sources, precipitation gradients, and the
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temperature-elevation dependence of stable isotopes of water are evaluated.
These help to illustrate where and why deep-convective storms occur along
certain parts of the plateau. The data can elucidate which impact present-day
convection processes have on isotope proxies based on hydrogen and oxygen in
precipitation, but it is equally important for reconstructions of paleotopography,

former climate, and past sedimentary environments.

In the fourth chapter, I analyze the evolution of a previously open foreland and
its progressive integration into the eastern flanks of the Altiplano-Puna Plateau,
with a deep-time perspective. Environmental records from this region suggest
that this sector of the formerly contiguous foreland was transformed from humid
to arid conditions as the deformation front migrated eastward and orographic
barriers were created. The main focus of this chapter is the assessment as to
how erosion, vegetation, and the hydrology change over the course of plateau
growth and coeval tectonic movements in the broken foreland between the late
Miocene and Pliocene. Several stable isotope proxies, including lipid biomarker
n-alkanes, pedogenic carbonates, and volcanic glass shards help to reconstruct
the paleoenviromental changes. Furthermore, it is demonstrated how the
different stable isotope proxies record environmental change, and which

components of the paleoenvironment they help to reconstruct.

Chapter 5 synthesizes and discusses the major outcomes of all studied topics and
presents an outlook for future research in the realm of stable isotope studies of

environmental conditions in actively deforming mountain belts.

1.7 Publications and author contributions

The work presented in the following chapters has been planned, organized, and
conducted by myself. The different co-authors contributed to each publication
listed below, and provided the analytical equipment for isotope analysis. They
also provided guidance during data analysis and interpretation. In addition,

several people were involved in fieldwork and sample preparation that I like to
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acknowledge. These include Xenophonne Hadeen, Vanesa Niento-Moreno,

Stefanie Tofelde, Hanno Meyer, and Ullrich Treffert.

The results presented in chapters 2, 3 and 4 have already been published
(chapters 2 and 3) or are sent out for review in international peer-review
journals (chapter 4). The published articles’ layout has been modified and
adjusted to match the thesis format. No changes have been made to either text or
figures. The author and co-authors’ contributions to chapters 2 to 4 are as

follows:

Chapter 2
Rohrmann, A., Heermance, R., Kapp, P. and Cai, F. (2013), Wind as the primary
driver of erosion in the Qaidam Basin, China. Earth Planetary Science Letters,

374, 1-10, doi: 10.1016/j.epsl.2013.03.011

AR. performed fieldwork, sample collection and analysis. R.H. and P.K. and F.C.
supported field work and sample collection. A.R. conducted sample preparation
for 10Be surface exposure dating, and A.R. and R.H. carried out chemical sample
treatment. A.R, RH., P.K. designed and wrote the manuscript; all authors
discussed interpretations and commented on the manuscript. A.R. designed all

artwork.

Chapter 3

Rohrmann, A., Strecker, M.R,, Bookhagen, B., Mulch, A., Sachse, D., Pingel, H.,
Alonso, R.N,, Schildgen, T.F., Montero, C. (2014), Can stable isotopes ride out the
storms? The role of convection for water isotopes in models, records, and
paleoaltimetry studies in the central Andes. Earth Planetary Science Letters,

407,187-195, doi:10.1016/j.epsl.2014.09.021

A.R. conducted field work and sample collection. A.R., M.S. and B.B. collected
samples and were responsible for TRMM and MODIS-satellite analysis and A.M.
supervised stable isotope measurements. A.R. performed water-stable isotope

modeling and analysis. D.S., H.P., RA,, T.S. and C.M. supported field work and
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sample collection. AR, M.S,, B.B,, AM,, D.S. and H.P. designed and wrote the
manuscript; all authors discussed interpretations and commented on the

manuscript. A.R. designed all artwork.

Chapter 4
Rohrmann, A, Sachse, D., Strecker, M.R., Mulch, A, Pingel, H., Alonso, R.N., Rapid
hydrological response to orographic barrier and central Andean Plateau uplift.

Submitted to Science.

AR. performed fieldwork, sample collection and analysis. M.S., H.P., A.M. and D.S.
supported field work and sample collection. A.R. conducted sample preparation
for lipid biomarker analysis, and A.R. carried out chemical sample treatment. A.R.
and D.S. performed lipid biomarker hydrogen and carbon IRMS-measurements.
A.R. and A.M. conducted soil-carbonate stable isotope analysis. H.P. performed
volcanic glass shards hydrogen isotope analysis. A.R. designed all artwork and
conducted statistical data analysis. A.R,, M.R,, D.S., A.M., H.P. and R.A. wrote the
manuscript; all authors discussed interpretations and commented on the

manuscript.

During the course of my PhD I contributed as co-author to the following

publication, which is not included in this thesis:

- Pingel, H., Alonso, R.N., Mulch, A., Rohrmann, A., Sudo, M., Strecker, M.R.
(2014), Pliocene orographic barrier uplift in the southern Central Andes.

Geology 42, 691-694. d0i:10.1130/G35538.1

H.P. performed fieldwork, sample collection and analysis. A.R. M.S., R.A. and A.M.
supported field work and sample collection. H.P. conducted sample preparation
for volcanic glass shard analysis. H.P. and A.M. performed volcanic glass
hydrogen measurements. H.P. performed volcanic glass-shard hydrogen isotope
analysis. H.P,, RA,, AR, M.S,, AM,, and MA.S. wrote the manuscript; all authors

discussed interpretations and commented on the manuscript.
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Chapter 2

Wind as the primary driver of erosion in the
Qaidam Basin, China

Rohrmann, A., Heermance, R., Kapp, P. and Cai, F. (2013), Wind as the primary
driver of erosion in the Qaidam Basin, China. Earth Planetary Science Letters,
374,1-10, doi: 10.1016/j.epsl.2013.03.011

Abstract

Deserts are a major source of loess and may undergo substantial wind-erosion as
evidenced by yardang fields, deflation pans, and wind-scoured bedrock
landscapes. However, there are few quantitative estimates of bedrock removal
by wind abrasion and deflation. Here, we report wind-erosion rates in the
western Qaidam Basin in central China based on measurements of cosmogenic
10Be in exhumed Miocene sedimentary bedrock. Sedimentary bedrock erosion
rates range from 0.05 to 0.4 mm/yr, although the majority of measurements
cluster at 0.125 * 0.05 mm/yr. These results, combined with previous work,
indicate that strong winds, hyper-aridity, exposure of friable Neogene strata, and
ongoing rock deformation and uplift in the western Qaidam Basin have created
an environment where wind, instead of water, is the dominant agent of erosion
and sediment transport. Its geographic location (upwind) combined with
volumetric estimates suggest that the Qaidam Basin is a major source (up to
50%) of dust to the Chinese Loess Plateau to the east. The cosmogenically
derived wind erosion rates are within the range of erosion rates determined
from glacial and fluvial dominated landscapes worldwide, exemplifying the

effectiveness of wind to erode and transport significant quantities of bedrock.
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2.1. Introduction

Knowledge of bedrock erosion rates on Earth's surface over timescales of 102 -
106 years is limited, yet fundamental in assessing the dynamics of landscape
evolution and sediment production as a function of tectonic processes, climate,
and lithology and their superposed forcing factors (Molnar, 2004; Whipple,

2004). Significant advances have been made in recent decades in quantifying

13,14
yr

3
1.5-2 mm/yr

4
0.013-0.18 mm/yr

Wind erosion studies- bedrock:Osemi— to unconsolidated;@consolidated;l:_':- mixed

Figure 2.1. Global compilation of wind erosion estimates reporting erosion by deflation (semi- to
unconsolidated) and abrasion (consolidated) or both. Erosion rate estimates are based on 4C-
dating, optical luminescence-dating (OSL), cosmogenic °Be-dating or U-Pb dating of eroded
rocks. Where no rates were reported, a conservative erosion rate was estimated using the age of
the deposit and wind removed material by geometric considerations, e.g. yardang troughs;
inverted channels; elevated lake beds or paleo-soils above the general basin floor. Note the order
of magnitude difference between wind erosion by deflation and abrasion, suggesting bedrock
strength controlling the effectiveness of wind erosion. References: 1. Clarke et al. (1996); 2. Ward
et al. (1984); 3. Beresford-Jones et al. (2009); 4. de Silva et al. (2010); 5. Inbar et al. (2001); 6.
Washington et al. (2006); 7. Bristow et al. (2009); 8. Haynes et al. (1980); 9. Goudie et al. (1999);
10. Brookes et al. (2003); 11. Ruszkiczay- Ridiger et al. (2011); 12. Al-Dousari et al. (2009); 13.
Krinsley et al. (1970); 14. Kehl (2009); 15. McCaulay et al. (1977); 16. Dong et al. (2012); 17.
Rittley et al. (2004).

20



bedrock and drainage-basin erosion rates in regions where fluvial and glacial
processes dominate. Short-term landscape sedimentary flux and erosion rates
(109-102% yr) have been recorded by sedimentary traps and gauging stations on
rivers (Meade, 1988; Kirchner et al., 2001; Lavé and Burbank, 2004), whereas on
longer timescales (103-10° yr) concentrations of in situ cosmogenic
radionuclides (i.e. 19Be) in fluvial sediments have been used (e.g., Granger et al.,
1996; Gosse and Philips, 2001; Blanckenburg et al., 2005, Owen et al,, 2001;
Portenga and Bierman, 2011). In contrast, few studies have quantified eolian
erosion processes in deserts (e.g., McCaulay et al, 1977; Ward et al.,, 1984;
Bristow et al., 2009; Fig. 2.1), particularly on time-scales >5000 yr (Inbar et al,,
2001; DeSilva et al., 2010; Ruszkiczay-Riidiger et al.,, 2011). This is despite the
recognition of wind as an important transport agent (Pye et al., 1995; Uno et al,,
2009) that loess is one of the most important fertilizers for plankton growth in
the open ocean (Pye et al,, 1995; Hanebuth and Henrich, 2009), and the ubiquity
of wind-deflated and abraded landforms in many desert regions on Earth
(Goudie, 2007) and extraterrestrial bodies such as Mars and Jupiter’s moon Titan
(e.g. Bridges et al,, 2004; Sullivan et al., 2005; Thomson et al., 2008; Rubin and
Help, 2009).

The in-situ produced cosmogenic nuclide 1°Be can be used to quantify in-situ
bedrock erosion because of its long half life (~1.3 x106 yrs), short attenuation
length (< 2 m), and known production rate in quartz at the Earth’s surface (Lal,
1991), making it useful for studying bedrock erosion processes and assessing
rates of landscape evolution in general (e.g, Bierman and Caffee, 2002;
Bookhagen, 2012). In this study, we quantify eolian erosion rates by measuring
cosmogenic 19Be in quartz from wind-scoured and deflated sedimentary bedrock
surfaces in the Qaidam Basin (Fig. 2.2). We then compare our results with world-
wide bedrock erosion studies in an effort to document the significance of wind as

a global erosion agent.
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2.1.1 Deflation vs. abrasion and evidence for wind erosion

In general, wind erosion is effective in arid, windy regions characterized by
sparse to no vegetation cover. Wind erosion is viewed as being the result of both
deflation and abrasion processes (Laity, 2011). Disagreements exist about the
correct use of these terms, since both processes can spatially and temporally
overlap and contribute to the overall wind-erosion signal. Deflation is defined
here as the passive entrainment of loose material at the Earth’s surface into the
air-flow. In contrast, abrasion is the physical process of actively eroding material
by the impact of wind-blown grains onto a bedrock surface (Goudie et al., 2008;

Laity et al.,, 2009). Deflation dominates wind erosion in areas where
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Figure 2.2. A) Landsat image of the Qaidam Basin showing the distribution of yardangs and dune
fields, wind directions, and sample locations for 1°Be-dating. B) Location of the Qaidam Basin and
the Loess Plateau. C) Regional overview of the major circulation systems: The westerlies and
dashed lines indicate the maximum modern extent of the Indian and East Asian Monsoon

systems (after Gao, 1962).
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unconsolidated sediments or poorly lithified rocks are exposed at the surface. In
bedrock-dominated areas floored by either consolidated sedimentary or
crystalline rocks, only abrasion is able to remove material from bedrock surfaces
(Laity et al., 2009 and 2011). However, other factors such as water (e.g. gullying,
mudflow, sheet wash), temperature (freeze-thaw), and chemical weathering (salt
corrosion and expansion) also impact bedrock surfaces and are able to produce
loose material covering bedrock (Aref et al,, 2002). Loose sediment is prone to
deflation, resulting in bedrock lowering without physical abrasion. In many
places it is impossible to distinguish between deflation or abrasion because of
the complex relationships among weathering, climate, and bedrock lithology.
Thus, information on rates and time scales of either deflation or abrasion alone

are scarce.

The primary evidence for wind erosion, and specifically abrasion, in the Qaidam
Basin and elsewhere are yardangs (Fig. 2.3 A, B, E), ventifacts (Fig. 2.3 B,
foreground), and scoured, low-relief bedrock landscapes devoid of a fluvial
network (Fig. 2.3 C and D). Yardangs are wind eroded narrow ridges up to 100 m
high and up to hundreds of meters in length (Hedin, 1903; Goudie, 2007). They
are sculpted into poor-to-well consolidated bedrock by saltating particles that
are transported by strong, uni-directional winds (McCauley et al., 1977; Dong et
al, 2012). The few estimates available for the time scales of yardang formation
range from thousands of years for small yardangs (1-10 m) (Halimov and Fezer,

1989) to millions of years for large yardangs (>50 m) (Goudie, 2007).

Ventifacts provide evidence for the strong abrasive power of wind at much
smaller scales (Laity, 1994; Knight, 2008). Ventifacts are rocks that exhibit
grooves, facets, or polishing as a result of abrasion by wind-entrained sand and
typically consist of crystalline and well consolidated sedimentary rocks; they are
found in most deserts and periglacial environments (Spate et al., 1995; Knight,
2002; Laity, et al. 2009). Reported abrasion rates associated with ventifacts are
generally between 0.015 and 6.8 mm/yr (Knight 2008), although one study
reported a maximum abrasion rate of 36 mm/yr over a time period of 15 years

(Sharp et al., 1980).
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Most wind erosion occurs in the large, windy, semi-arid to arid region stretching
from North Africa to central China and parts of North and South America (Fig.
2.1). Here, bedrock removal by wind is ubiquitous and reported wind deflation
rates from semi- to unconsolidated sediment range from 1 to 20 mm/yr over
short (<5000 yrs) time periods (Fig. 2.1; Krinsley et al., 1970; McCaulay et al.,
1977; Haynes et al,, 1980; Ward et al., 1984; Clarke et al, 1996; Goudie et al,,
1999; Inbar et al., 2001; Brookes et al., 2003; Rittley et al., 2004; Washington et
al., 2006; Beresford-Jones et al, 2009; Bristow et al., 2009; Al-Dousari et al., 2009;
Kehl, 2009; de Silva et al., 2010; Ruszkiczay- Riidiger et al., 2011; Dong et al,,
2012). Most of the presented compilation in Figure 2.1 is based on studies of
wind eroded features (yardangs, tree roots, channels, lake beds, lava flows) with
ages quantified by 1#C-dating, optical luminescence-dating (OSL), and 40Ar-3°Ar
dating. There are, however, very few studies from well-lithified bedrock in areas
affected by wind erosion, where abrasion should be dominant (Inbar et al., 2001;
DeSilva et al, 2009, Ruszkiczay-Rudiger et al, 2011). Recently, Ruszkiczay-
Ridiger et al. (2011) reported cosmogenically derived eolian erosion rates
between 0.003 to 0.056 mm/yr from consolidated sedimentary bedrock in the
Pannonian Basin of Hungary (Fig. 2.1). Although this technique is promising,
there have been few studies of long-term (>5000 year) erosion rates from
Central Asia (e.g. Lal et al,, 2003). Here, the hyper-arid and windy conditions
prevalent in northern Tibet may have enhanced eolian erosion and transport, as
testified by the widespread and locally thick (hundreds of meters) accumulations
of loess in eastern Asia, including the Chinese Loess Plateau (CLP) (Fig. 2.2 B)
and beginning as early as 22 Myr ago (Porter et al., 2001; Guo et al., 2002).

2.1.2 Study area

The Qaidam Basin (QB) is situated at the northern edge of the Tibetan Plateau
and covers an area of approximately 120,000 km? (Fig. 2.2). Today, the western
QB receives less than 70 mm/yr of precipitation and is one of the highest (mean
elevation of ~2700 m) and driest deserts on Earth, being shielded by efficient

orographic barriers (Sobel et al., 2003). In response to the ongoing Indo-Asian
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Figure 2.3. Photos from the study area showing: A.) Yardang field with 5 to 8 m high yardangs. B.)
Foreground: desert pavement/ ventifacts, with 10-30 cm clasts. Background: ~25-50 m high
yardangs and inter-yardang trough. C.) Typical aréte sampling side with no visible fluvial
network. D.) Vast wind scoured-bedrock landscape exposing sampled Miocene bedrock. E.) Road-
cut through a yardang, exposing a ~20-cm-thick layer of salt crust, armoring the landscape from
wind erosion. F.) Picture was taken after a strong but very rare rain-event. The yardangs are ~10
m high. Mass-wasting is seen on the side of the front yardang in form of debris-flows and rock

fall.

collision, the basin is being shortened in a NE-SW direction (Tapponnier et al.,
2001) and its floor exposes folded, friable sedimentary rock of the Miocene
Shang Youshashan, Shizigou and Qigequan formations (e.g. Kapp et al.,, 2011,
Wang et al,, 2012). The Miocene formations (Shang Youshashan and Shizigou)
are characterized by sandstone and conglomerate lenses (i.e. deltaic facies) that
pinch out laterally into deeper-water siltstone and shale (i.e. lacustrine facies;

Heermance et al., 2013).

Based on its low internal relief (<300 m), internal drainage, intermontane basin
setting, and thick accumulations of Cenozoic basin fill, it generally has been
inferred that the QB has been dominated by sediment accumulation rather than
erosion until recently (Zhou et al., 2006), even though roughly one-third of the
modern basin floor (~3.88 x 10% km?) exposes yardangs carved in folded

sedimentary strata (Fig 2.2; Kapp et al,, 2011). The predominant wind direction
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in the basin is from the northwest to southeast, while in the eastern part of the
basin the predominant wind direction is more easterly, parallel to the
orientation of the >5000-m-high basin-bounding mountain ranges to the north
and south (Fig. 2.2). The wind eroded and quartz-rich strata throughout the
basin make it ideal to quantify wind erosion and bedrock removal rates with
cosmogenic 1°Be. In this study, we define wind erosion as being the sum of
deflationary and abrasive processes acting on a surface, resulting in lowering
and removal of bedrock in a hyperarid landscape marginally affected by rainfall
events and fluvial processes. These conditions are met by the QB, where
hundreds to thousands of vertical meters of consolidated basin fill may have

been removed by wind over the last 2.8 million years (Kapp et al,, 2011).

2.2. Methods

2.2.1 Cosmogenic nuclide dating

Terrestrial cosmogenic nuclides are isotopes that form from the interaction of
cosmic particles with elements in Earth’s atmosphere and surface. In particular,
the cosmogenic nuclide 19Be forms from the interaction of cosmogenic particles
with quartz (Lal, 1991). Production of 19Be decays exponentially with depth as
the penetration of cosmic rays attenuates to zero a few meters below the ground
surface. Furthermore, 1°Be is radiogenic with a half-life of ~1.3 x 10¢ years
(Nishizumi et al.,, 2007) and thus is not present in buried rocks more than a few
million years old. The concentration of 1°Be in rocks at the Earth’s surface is
therefore a function of the production rate, the radioactive decay, and the local
erosion rate. Erosion rate can be determined because the production rate (itself
a function of altitude and latitude) and the decay rate of the target isotope is
known (Lal et al, 1991). This technique has been applied to bedrock within
many landscapes (e.g., Bierman et al., 1995; Brown et al., 1995, Nishiizumi et al,,
1991; Small et al., 1997), including on bedrock exposed across the Tibetan
Plateau (Lal et al., 2003). The calculated erosion rates are essentially a measure
of the time required to remove ~2 m of bedrock, which corresponds to the

absorption depth for most cosmic rays in typical rocks. Our calculations are
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based on the assumption of steady-state erosion, although as discussed later

(section 4.1) it is likely that erosion rates have varied significantly over time.

The 250-500 um sand fraction of quartz was separated from twelve samples
distributed across the western QB and processed following the methodology of
Kohl and Nishizumi (1992). Samples were spiked with an in-house, low 1°Be-
concentration carrier (1°Be/?Be 4 x 10-1>made from Ural Mts. phenacite) at the
University of Arizona. 1°Be/?Be ratios were measured at the Acceleration Mass
Spectrometer at Lawrence Livermore National Laboratories, Berkeley, CA.
Erosion rates were calculated using the CRONUS calculator (Balco et al., 2008)
and account for 1°Be production at the latitude and elevation of the sample
location and any potential shielding of the sample site from cosmic radiation by

nearby topography.

2.2.2 Sampling method and sites

Twelve bedrock samples were collected for 1°Be analysis from the western QB
(Fig. 2.2). Here, the basin floor exposes actively growing anticlines, where strata
form wind scoured bedrock surfaces or are sculpted into yardangs (Fig. 2.3 A-F).
Eleven samples were collected from medium- to coarse-grained sandstones
within Miocene fluvio-lacustrine strata. The age of the strata for all our samples
is greater than 5.3 Ma based on regional mapping and stratigraphic correlation
with magnetostratigraphy (Heermance et al, in 2013; Wang et al, 2012).
Miocene bedrock was targeted because these rocks would have been buried to
sufficient depths (more than hundreds of meters) for at least the last 5 Myr, such
that the 19Be inheritance produced during prior exposure should have decayed
to near zero concentration. Most of the targeted samples were located along
sharp crested ridges. The ridges in turn are elevated above the mean basin floor,
show evidence of wind scouring, and lack any fluvial network (see
supplementary data for photos of individual sample sites). By sampling sharp
crested ridges that stand above the landscape, we avoided the effects of surface-
water runoff that would be focused into low spots within the landscape.

Moreover, sharp crested ridges represent points in the landscape that have been
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lowered to a lesser degree, and thus lower rate, than their surroundings, and
therefore should yield erosion rate minima assuming an initially flat landscape. It
is possible that infrequent rain events (Fig. 2.3 F) impact the local erosion signal,
although the lack of any continuous catchment area implies that erosion due to
runoff, particularly on the tops of the ridges, was very low. Moreover, rain events
are not capable of removing sediment from the basin because of the basin’s
internal drainage; any eroded material must ultimately have been removed from
the basin by wind. The basin floor is almost scoured clean of sediment, implying
the removal of locally produced sediment by deflation was more efficient than
the amount of loose sediment generated by wind abrasion and other erosional/

weathering processes.

Three of the twelve samples were taken from inclined hillslope surfaces. These
samples have a higher probability to having been affected by hill-slope and mass-
wasting processes in contrast to the remaining samples and we take these into
account during our interpretation of the erosion rates. Sample 4-28-09-1 was
taken from a 60° dipping side-slope of a yardang. Samples 4-17-09-1 and 4-26-
09-1 were collected from well consolidated bedrock exposed on steep (>70°) cliff
faces. In order to assess variations in wind erodibility as a function of bedrock
cohesiveness/ strength, we also analyzed one granite sample (4-24-09-1)
exposed along the northwestern margin of the QB adjacent to the Altyn Tagh
Range (Fig. 2.2).

2.3. Results

10Be concentrations for the twelve samples ranged between 6.291x10%* and
1.054x107 atoms/ gram of quartz (Table 2.1). These concentrations, when
corrected for topographic shielding, provide cosmogenically derived bedrock
erosion rates of 0.003-0.4 mm/yr (Fig. 2.4, Table 2.1). Under the assumption of
steady-state erosion, the rates would integrate erosion over a time period of up
to 15,000 years for the Miocene bedrock samples and 500,000 years for the
Altyn-Tagh granite - the time required to remove the upper 2 m of material

(zone of 1°Be accumulation).
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Nine of the twelve samples have bedrock removal rates that cluster between
0.09-0.17 mm/yr within average of 0.125 mm/yr (Fig. 2.4). Among these nine
samples, three (4-17-09-1, 4-26-09-1 and 4-28-09-1) were collected from 50-70°
dipping surfaces and thus the results are more ambiguous to interpret due to
their prominent position with respect to mass-wasting activity. Furthermore,
applying shielding correction to these samples is difficult because the surface
may have catastrophically failed over the time span of 1°Be accumulation. The
effect of mass wasting processes for these three samples (samples 4-17-09-1, 4-
26-09-1 and 4-28-09-1) is not detectible on the basis of anomalously high
erosion rates compared to samples collected from ridges on regionally flat
landscapes, however, and implies that hillslope processes may be negligible
compared to wind erosion in most places within the western QB. Overall,
sampling on sharp crested ridges within overall flat landscapes is advised for
future studies to rule out potential mass wasting events during the exposure of

the sampled surface.

Whereas most of our samples clustered tightly around 0.125 mm/yr, samples 4-
23-09-2 (hard sandstone) and 4-24-09-1 (granite sample) yielded lower rates
(0.057 and 0.003 mm/yr, respectively) and 4-26-09-3 yielded a higher rate (0.4
mm/yr; Figure 2.4). These discrepancies can be accounted for by variations in
rock strength. Sample 4-23-09-2 is a very coarse grained, well-consolidated
sandstone and provides a lower bedrock erosion rate of 0.057 mm/yr, lower
than the average (0.09-0.17 mm/yr). This reflects greater resistance to bedrock
erosion, which is further supported by its prominent high-elevation position
relative to most of the basin floor. The Altyn-Tagh granite 4-24-09-1 exhibits the
greatest rock strength of all samples and correspondingly shows the strongest
resistance to erosion with an erosion rate of 0.003 mm/yr. This very low erosion
rate is consistent with other 1°Be-erosion rates determined for granitic bedrock
exposed elsewhere adjacent to the Qaidam Basin and on the Tibetan Plateau (Lal
et al.,, 2003, Fig. 2.4). The highest erosion rate of 0.4 mm/yr was obtained from
sample 4-26-09-3, collected from a yardang located on a limb of an actively

growing anticline in the northwestern part of the basin near Leng Hu (Fig. 2.2).
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10Be-erosion rate results
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Figure 2.4. 10Be-erosion rate results with 2-s-error bars, showing range of results and mean-
erosion rate. In addition, Qaidam erosion rate estimates from yardangs carved into initially flat
laying lake sediments (light gray box) and cross-sections both from Kapp (2011). Dark gray box
shows, for comparison, the erosion rate range for granite samples from the Qaidam Basin and the

Tibetan Plateau (Lal et al., 2003).

2.4. Discussion
2.4.1 Temporal variability of Qaidam wind erosion rates

The erosion rates presented here, with the average being ~0.125 mm/yr, are
based on the assumption of steady-state erosion over the past ~15,000 years,
resulting in ~2 m of bedrock removal. Based on a number of paleoclimatic and
geologic arguments, however, it is likely that erosion in the QB was higher than
our determined erosion rates in other parts of the wind-eroded basin and during

the last glacial episode.
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First, all samples were exclusively collected from indurated and erosion-
resistant Miocene bedrock exposed along the axes of anticlines, in contrast to the
less consolidated and younger strata exposed along syncline axes. Wind erosion
rates would be expected to be greater in troughs that have been lowered to a
greater extent than the intra-basin ridges. We did not sample and analyze the
more friable Plio-Quaternary strata exposed in the syncline axes because rocks
younger than Miocene presumably contain inherited 19Be acquired prior to and
during deposition, and would further underestimate overall basin-wide erosion

rates.

Second, considering the regional paleoclimatic evidence (e.g. Thompson, 1989;
Liu et al., 1994; Shao et al., 2005; Herzschuh et al., 2006; Zhao et al., 2007, 2010;
Wang et al,, 2008), the greatest factor influencing wind erosion rates and their
temporal variability is climate change controlling changes in wind patterns and
vegetation cover. Wind patterns and moisture supply in the QB are strongly
influenced by the westerlies and in part by the East-Asian summer and winter
monsoon system (Fig. 2.2 C; Bryson, 1986). Changes in these systems have
resulted in complex impacts on the erosional system. The available climatic
records indicate drier conditions during the last glacial in northern Tibet
compared to a much wetter Holocene (Herzschuh et al, 2006). This pattern is
attributed to a weakening and southward shift of the monsoonal systems during
glacial periods, which suppressed moisture supply to NE-Tibet, and a Holocene
northward migration of the monsoon with progressively wetter conditions
during warming (Thompson et al,, 2005; Wang et al., 2008). The southward shift
of the monsoonal system in glacial times may have been associated with a >10°
southward shift of the polar jet stream compared to its modern position (Shin et
al,, 2003; Toggweiler and Russel, 2008; Kapp et al,, 2011; Pullen et al,, 2011). The
more southerly position of the jet stream during glacial periods would have
favored the passage of large, low-pressure systems over the QB, which likely
resulted in high wind speeds that, together with less vegetation cover during dry
glacial periods, were able to efficiently erode large quantities of sediment. The
increase in wind erosion and removal of material from the western QB during

glacials is recorded in the Dunde ice cap located in the Qilian Shan ~100 km east
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of the study area (Fig. 2.2 b; Thompson, 1989). The ice-core shows large
quantities of dust input throughout the last glacial, followed by a dramatic
reduction at the onset of the Holocene. Lake, pollen, and tree-ring records from
the QB itself indicate aridity in the basin throughout the glacial until today, not
capturing the Holocene northward shift and increased monsoonal precipitation
(Phillips et al., 1993; Zhao et al., 2007 and 2010). The prolonged aridity may be
explained by the high present-day evapo-transpiration potential of 2000-3000
mm/yr, which also existed during the glacial periods (Phillips et al., 1993). The
overall high evapo-transpiration must have suppressed any incoming high
moisture fluxes during the Holocene. It is surprising, however, that even as the
Holocene climate in the QB stayed dry and favorable to produce dust, dust fluxes
and thus wind erosion were dramatically reduced as evidenced by the Dunde ice-
core record (Thompson, 1989). Simultaneously, dust emission and loess
accumulation in the CLP also decreased substantially as evidenced by the start of
paleosol formation at 9.3 * 0.5 ka (Porter et al., 2001; Yaofeng et al., 2008). The
greatest factor for the Holocene reduction in the dust flux and in turn wind
erosion may have been the changing wind pattern and reduction of wind speeds

in response to a northward shift in the polar jet stream.

Another factor that may have decreased Holocene wind erosion in the QB is the
local formation of salt crust. Today, parts of the Qaidam, including yardangs and
depressions, are covered with a 10 to 35 cm thick salt crust (Fig. 2.3 E),
especially where the salt-rich Qigequan Formation (Pleistocene) is exposed at
the surface. Here, the salt-crust potentially armored the landscape and protected
the underlying material from erosion. Formation of the salt crust in the QB may
have coincide with the massive increase of chloride in the Dunde ice-core record
at the Pleistocene-Holocene transition ~10,000 years ago and in turn a
significant reduction of dust input (Thompson et al.,, 1989), resulting in lower

erosion rates in areas affected by salt-crust formation throughout the Holocene.
On the basis of the above mentioned climatic and geologic considerations it is

reasonable that wind-erosion rates were significantly higher during the last

glacial period compared to our determined 1°Be-erosion rates covering the past
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~15,000 years. This is in line with the dust deposition history in the Dunde ice-
core and the CLP, both of which show major changes with the start of the
Holocene around ~10% years. In general, such a history would translate into
higher wind erosion rates during previous glacial conditions compared to
determined mean 1°Be bedrock erosion rate of 0.125 mm/yr. This interpretation
is in line with basin-wide averaged erosion rates from the QB, based on
geological cross-sections (0.29 mm/yr, Kapp et al,, 2011) (Fig. 2.4). Likewise, 50
m high yardangs carved into 120 to 400 ka flat laying lake deposits, imply
similarly high minimum averaged erosion rates (0.12 to 0.42 mm/yr, Kapp et al,,

2011, Fig. 2.4).

In summary, variable climate conditions (a drier climate, less vegetation, and
stronger wind speeds during the LGM compared to the Holocene) within the QB
should directly translate to variable wind erosion rates over time. Similar
variability in wind erosion also occurred in southern Argentina, where yardangs
are carved into an early Pleistocene lava flow that is overlain by a 1000 year old
lava flow that does not show signs of wind erosion (Inbar et al., 2001) or in the
Western Pannonian Basin in Hungary, where times of strong wind erosion
activity (during glacial periods) varied with times of enhanced vegetation,
landform stability, and subdued erosion (during interglacial periods)
(Ruszkiczay-Rudiger 2011). These correlations imply a global climate impact

during the last glacial maximum on wind erosion rates worldwide.

2.4.2 The link to the Chinese Loess Plateau

Despite Quaternary wind erosion in the Qaidam Basin and the presence of the
Chinese Loess Plateau located downwind from and east of the QB (Fig. 2.2 B,
Porter et al, 2001), few studies have argued for a source-sink relationship
between the two areas (Liu et al., 1994; Wu et al,, 2010; Kapp et al, 2011). A
recent study of wind-blown zircons from the CLP has identified the QB and the
northern Tibetan Plateau as the principal source areas (Pullen et al.,, 2011). Kapp
et al. (2011) suggested that wind erosion in the QB has been active since 2.6 Ma

and estimated from geological cross-sections that roughly two-thirds of the
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Loess Plateau volume can be explained by the volume of eroded sedimentary
basin fill. Today, roughly one-third (~3.88 x 10% km?) of the modern basin floor
exposes yardangs. If we consider our mean basin-wide averaged wind-erosion
rate of 0.125 mm/yr, we estimate a wind eroded volume of ~1 x 10% km3
(erosion rate (0.125 mm/yr) x start of erosion (2.6 Ma) x modern yardang area
(~3.88 x 10% km?)). The result is equivalent to a volume of one-sixth of the CLP
(Loess Plateau volume ~6 x10% km?3). However, if the atmospheric circulation
pattern was different than today (Shin et al., 2003; Toggweiler and Russel, 2008;
Kapp et al,, 2011; Pullen et al,, 2011) and wind erosion rates were higher during
glacial periods in line with QB basin-wide averaged erosion rates from geological
cross-sections and yardangs cut in original flat lying lake sediments (Kapp et al,,
2011), erosion rates may have been higher over the long-term. This would result
in higher volumes of eroded basin material and would account for a higher
amount of the Loess Plateau volume, whereas the remaining material could have
been derived from northern Tibet and the Gobi and adjacent sand deserts during
interglacial periods (Pullen et al., 2011). Overall, the cosmogenically derived
volumetric estimates of eroded QB material support the hypothesis that the QB is
a major source of loess for the CLP (Bowler et al., 1987; Kapp et al., 2011; Pullen
etal, 2011).

2.4.3 Global comparison and control on wind erosion rates

The wind erosion rates determined for the western QB constitute some of the
highest erosion rates measured using in-situ cosmogenic nuclide dating in an
arid environment (Fig. 2.1, Table 2.1). This contrasts with 1°Be bedrock erosion
rates in the hyper-arid Atacama Desert of Chile, which vary between 0.0003-
0.006 mm/yr (Nishiizumi et al., 2005), cosmogenic nuclide erosion rates from
the Tibetan Plateau of < 0.03 mm/yr (Lal et al., 2003), and typical erosion rates
for bedrock surfaces not affected by fluvial or glacial processes (~0.01-0.05
mm/yr ; see Small et al.,, 1997 for a review of other studies). The range of Qaidam
bedrock erosion rates (0.05 to 0.4 mm/yr) agrees well with rates of calculated
wind abrasion and yardang development in well-consolidated bedrock from

Argentina, Chile, Hungary, Saudi-Arabia and other parts of China (0.01-0.18
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mm/yr) (Fig 2.1: red circles; Inbar et al,, 2001; DeSilva et al., 2009; Al-Dousari et
al, 2009; Ruszkiczay-Riidiger et al., 2011; Dong et al., 2012), but are much lower
than global wind deflation rates (1- 20 mm/yr) (Fig 2.1: green circles; e.g.
McCaulay et al., 1977; Goudie et al., 1999; Brookes et al., 2003; Washington et al,
2006; Al-Dousari et al, 2009; Bristow et al, 2009). The stark difference in
reported wind erosion rates may be attributed to the different bedrock strengths
of the eroding material (unconsolidated vs. weakly consolidated and well
consolidated). Overall, in comparison with other global studies on yardang
development in bedrock-floored deserts, the QB is by far the most erosive,
perhaps with the exception of the Lut desert of Iran, where yardangs, having
relief of >100 m, have formed in consolidated late Pleistocene strata (Krinsley et

al, 1970; Kehl, 2009).

To further investigate the differences between abrasion and deflation and their
individual control on wind-erosion efficiency, we plotted the global estimates of
wind erosion rates against rock strength of wind eroded material (Fig. 2.5). We
used the range of rock tensile strengths determined by Marin and Sauer (1954),
Kulhawy (1975), and Larma and Vutukuri (1978), as a measure of bedrock
strength and resistance to erosion. There exists a clear break in the efficiency of
wind erosion as bedrock tensile strength increases (Fig. 2.5 A and B).
Consolidated bedrock, with greater tensile strength, has much lower wind-
erosion rates of ~0.003- 0.667 mm/yr compared to semi- to unconsolidated
material, which range between 1 to 20 mm/yr. The result is not surprising since
deflation should be dominant in semi- to unconsolidated material, whereas
deflation is limited in strong material where the generation of loose material
available for deflation is supply limited. In contrast, consolidated rocks, having
high bedrock strengths, should only erode by the mode of wind abrasion, but in
turn at much lower rates. On the basis of Figure 2.5 b, we define domains of
predominantly deflation (o: < 2 MPa) or abrasion (o: > 2 MPa) as a function of

rock tensile strength (Fig. 2.5 b).
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Figure 2.5. A.) Plot of wind erosion rate versus rock tensile strength using the global compilation
of wind erosion rates in Figure 2.4 and determined bedrock strengths of the eroding material by
Marin and Sauer (1954), Kulhawy (1975), and Larma and Vutukuri (1978). Each box represents a
single study and its range of wind erosion estimates and error, as well as the range of determined
tensile strengths for the eroding material. Note the large rate difference between semi- to
unconsolidated (gray) and consolidated material (white). B) Wind erosion rate is plotted in log-
space versus rock tensile strength with error bars. Different colors (black- deflation; white-

abrasion) represent individual wind erosion domains controlled by deflation or abrasion.

The exact rock tensile strength at which this transition occurs needs to be
systematically investigated in future studies. The relationships depicted in
Figure 2.5 b, however, provide a first-order assessment. In summary, deflation
processes should be supply-limited, since high rates of up to 20 mm/yr are not
sustainable over long periods. This short-term process contrasts with wind
abrasion, which is detachment-limited. In general, wind deflation and abrasion
should be viewed as two modes of wind-erosion that are not fully distinct from

each other, but are controlled by bedrock strength.
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2.4.4 Significance of wind erosion and global sediment flux

The role of wind as an erosive agent in significantly contributing to global
sedimentary flux has not been analyzed in depth (Goudie, 2008). Nonetheless,
wind erosion as shown may be very effective in eroding material in some
deserts, and possibly as equally effective as fluvial erosion in many other
environments. Our cosmogenically derived wind erosion rates (average 0.125
mm/yr) are within the range of those reported worldwide from glacial (~ 0.08 to
1000 mm/yr) and fluvial (~0.001 to 100 mm/yr) dominated regions (Koppes
and Montgomery, 2009). Wind erosion rates are on the same order as glacial
erosion rates obtained from the mountains of the Pacific Northwest of North
America, for example (~0.1 mm/yr). Compared to fluvial erosion rates, wind
erosion rates are on the same order as fluvial erosion measured in rivers from
the Apennines (~0.1 mm/yr), they are higher than fluvial erosion rates in
cratons (<0.1 mm/yr), and they are comparable to the lower end of the spectrum

of fluvial erosion of rivers in tectonically active regions.

The effectiveness of wind as an erosional agent is further highlighted by the thick
loess deposits of the CLP as well as large accumulations of dust offshore in the
Pacific, Atlantic, and Indian oceans (Porter et al., 2001; Rea et al., 1998; Hanebuth
and Henrich, 2009). Loess production itself is today viewed as a direct product of
sand grain abrasion and subsequent grain-size reduction, because during the
impact of saltating grains the grain size is reduced (Anderson et al., 1986; Crouvi
et al., 2008). Under modern conditions, only sand seas and deflating lake basins
have been recognized to be major sources and production areas of loess in mid-
latitude deserts where loess is not sourced from glacial environments (Crouvi et
al,, 2010, Enzel et al,, 2010). Our study shows that areas with yardangs are also a
major source for loess. It is in this type of environment that material is actively
being eroded and subsequently experiencing a grain size reduction from sand to

fine silt due to the impact of saltating grains during wind storm events.
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2.5. Conclusions

New 19Be cosmogenic erosion rates obtained from well consolidated Miocene
sedimentary rocks on the Qaidam Basin floor yield eolian bedrock erosion rates
between 0.05 and 0.4 mm/yr, with a mean rate of ~0.125 mm/yr. Rates are
highest along an actively growing anticlines in Miocene sedimentary strata, and
lowest in resistant, granitic bedrock, with a rate of 0.003 mm/yr. Our results
provide the first quantification of eolian bedrock erosion rates associated with
yardang fields in central Asia. The virtual absence of fluvial erosion on the sharp
crested ridges and yardang tops sampled suggest that the erosion is dominated
by wind processes. Paleoclimate and geologic evidence, together with the
enhanced formation of salt crust at the start of the Holocene, suggest that wind
erosion rates may have been highly variable and were likely significantly higher
during past, especially during cold, glacial conditions. Our study identifies the
Qaidam Basin as an environment of severe wind erosion and implies that wind
erosion can occur at rates comparable to fluvial and glacial processes in specific
climatic and tectonic settings. Based on existing global long-term (>5000 years)
datasets, the Qaidam Basin is one of the most erosive deserts on Earth.
Calculated volumes of eroded material from the Qaidam Basin during the
Quaternary suggest that at least 16% and potentially more of the Chinese Loess
Plateau deposits may have been derived from the Qaidam Basin. In addition, a
relationship between wind deflation and abrasion rates was established in
relation to the bedrock strength of the eroding material. Our new data will help
to calibrate numerical models of wind erosion and yardang development and
contribute to a better understanding of abrasion vs. deflation processes in

general.
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Chapter 3

Can stable isotopes ride out the storms? The
role of convection for water isotopes in
models, records, and paleoaltimetry studies
in the central Andes

Rohrmann, A., Strecker, M.R,, Bookhagen, B., Mulch, A., Sachse, D., Pingel, H.,
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Abstract

Globally, changes in stable isotope ratios of oxygen and hydrogen (6180 and 6D)
in the meteoric water cycle result from distillation and evaporation processes.
[sotope fractionation occurs when air masses rise in elevation, cool, and reduce
their water-vapor holding capacity with decreasing temperature. As such, d180
and dD values from a variety of sedimentary archives are often used to
reconstruct changes in continental paleohydrology as well as paleoaltimetry of
mountain ranges. Based on 234 stream-water samples, we demonstrate that
areas experiencing deep convective storms in the eastern south-central Andes
(22 - 28° S) do not show the commonly observed relationship between 6180 and
0D with elevation. These convective storms arise from intermontane basins,
where diurnal heating forces warm air masses upward, resulting in cloudbursts
and raindrop evaporation. Especially at the boundary between the tropical and
extra-tropical atmospheric circulation regimes where deep-convective storms
are very common (~ 26° to 32° N and S), the impact of such storms may yield
non-systematic stable isotope-elevation relationships as convection dominates
over adiabatic lifting of air masses. Because convective storms can reduce or
mask the depletion of heavy isotopes in precipitation as a function of elevation,

linking modern or past topography to patterns of stable isotope proxy records
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can be compromised in mountainous regions, and atmospheric circulation
models attempting to predict stable isotope patterns must have sufficiently high

spatial resolution to capture the fractionation dynamics of convective cells.

3.1. Introduction

The use of oxygen and hydrogen stable isotopes (6180 and 6D) in the meteoric
water cycle has become common practice when assessing the complex
relationships among tectonics, climate, topography, atmospheric circulation, and
evapotranspiration of the biosphere (e.g. Dansgaard, 1964; Gonfiantini et al,,
2001; Bowen and Wilkinson, 2002; Cerling et al,, 1993; Dettman et al., 2003;
Garzione et al., 2008; Mix et al. 2013). Despite the plethora of applications of
these isotopes as proxies for earth surface and atmospheric processes, there is
still a lack of understanding of the key factors that affect isotope distillation in
orographic rainfall (Rozanski et al., 1993; Worden et al., 2007). This problem is
especially relevant in high-elevation mountain ranges and plateau regions,
where a systematic decrease in §180 and 6D of meteoric waters with elevation is
not observed, even though large temperature gradients as a function of elevation
exist (Poage and Chamberlain, 2001; Rowley et al, 2001; Hren et al, 2009;
Lechler et al., 2012; Schemmel et al., 2013). Explanations for this phenomenon
have included mixing of different moisture sources (Hren et al., 2009), high-
elevation evaporation (Schemmel et al., 2013), and snow sublimation (Lechler et
al,, 2012). Beyond these factors that likely contribute to discrepancies between
expected/ modeled and observed 680 and 6D patterns in the geologic proxy
record, the isotope-enabled atmospheric circulation and climate models
themselves suffer from limitations that are attributed to (1) the low spatial
resolution of General Circulation Models (> 50 km), in which mesoscale
circulation patterns, e.g., convective storms, cannot be reproduced and local
topography is smoothed; (2) oversimplifications in models that tie temperature-
dependent isotope fractionation directly to surface elevation; and (3) the low
density of meteorological stations in arid and/ or high-elevation terrains, which

results in over-representation of station data from humid lowlands and valleys.
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Here, in a combined empirical and modeling approach, we investigate the effects
of topographic relief, storminess, rainfall mode, moisture recycling, and airflow
patterns on modern 680 and 6D patterns in stream waters sampled along three
E-W transects across eastern margin of the south-central Andes between ~ 22
and 28° S (Fig. 3.1) to unravel the relationships between 6180 and 6D values and

storminess.
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Figure 3.1. Topography, rainfall, and stream-water 8'°0 data for the south-central Andes. A.
TRMM 3B42 annual rainfall and morphotectonic provinces (SBS: Santa Barbara System).
Arrows highlight moisture transport (SALLJ - South American Low Level Jet) (Vera et al.,
2006) and orogenward-moisture transport controlled by the Chaco low (Vuille et al., 2003).
GNIP-stations from Fig. 3.2 are represented by white squares. B. SRTM DEM and stream-
water color-coded 8'°0 values (VSMOW). Right diagrams (C-E) represent mean-catchment
elevation versus 8O (blue circles represent catchment samples), linear regression (solid
black line) and global empirical fractionation curve (-2.8 %o km™', black dashed line) for each
transect. Rowley et al. (2001) thermodynamic atmospheric model simulations based on DJF
MOD11C2 night-temperature and NCEP-NCAR 1000 mbar re-analysis relative humidity data
(%) from 2008 to 2013 (Kalney et al., 1996) as starting model input parameters are shown in

red.
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3.1.1 Precipitation and wind patterns along the south-central Andes

Extending from ~7° N to 45° S, with elevations rising to over 6 km, the Andes
constitute a major orographic barrier to southern-hemisphere atmospheric
circulation, exerting fundamental control on wind and precipitation patterns
(Figs. 3.1 a, 3.2 and figs. B.1, B.2). For at least the last 7 to 8 Myr, the Andes have
deflected moisture-bearing trade winds from the equatorial Atlantic and
Amazonia towards the south to form the South American Low-Level Jet (SALLJ,
Fig. 3.1 a) (Vera etal., 2006; Uba et al., 2007; Mulch et al. 2010), which transports
moisture to the eastern Andean flanks and accounts for annual rainfall of up to 3
m/yr (Fig. 3.1 a) (Bookhagen and Strecker, 2008). High seasonality results in
>80% of the annual precipitation falling during the austral summer (December
to February; Fig. 3.2) (Prohaska et al., 1976). To the south of the region affected
by the SALLJ, a secondary jet (Chaco Jet) controlled by the Chaco Low influences
moisture transport for the south-central Andes (Fig. 3.1 a) (Salio et al.,, 2002;
Saulo et al., 2004). The Chaco low forms in response to continental heating of the
Andean foreland (Chaco plains) in northern Argentina and Paraguay (Salio et al,,
2002). To the west, above the ca. 4-km high Altiplano-Puna Plateau, a dry and
stable westerly atmospheric airflow occurs at >500 mbar (>5 km; Figs. B.1 and
B.2) (Garreaud et al.,, 2003). After crossing the plateau, the air descends along the
eastern Andean flanks forming an orographic wave (Romatschke and Houze,
2013). To the east of the plateau, generally north-south oriented intermontane
basins of the Eastern Cordillera and northern Sierras Pampeanas extend over
areas of up to ~ 10* km? These basins are often bounded by ranges with
topographic relief in excess of 3 km, rendering them very favorable to high
nocturnal heat storage. The descent of upper atmospheric dry and stable air
crossing the plateau prohibits orographic ascent of heated and moist air from the
foreland and the plateau-parallel intermontane basins (Fig. 3.3 and figs. B.1 and
B.2). As a result of the different air-mass properties, an inversion develops. In
such a scenario, rainfall is only produced by deep convective storms, which allow
warm and humid air below the inversion to break through the overlaying lid

(Fig. 3.3 b) (Zipser et al., 2006; Romatschke and Houze, 2013).
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3.2. Methods

We established an extensive dataset of 680 and 6D values of stream-water
samples across the eastern border of the NW-Argentine Andes between ca. 22°S
and 28°S. Our stream-water sampling strategy included individual catchments
along the eastern Andean flanks and the internally drained interior of the Puna
Plateau with upstream areas between 10 and 100 km? and contained flowing
water. Field campaigns took place during the months of October through March
from 2010 to 2013 with a sampling focus during December, January and
February (DJF; Fig. 3.2; Table B.1). As more than 80 % of the mean annual
rainfall occurs during DJF contrasted with generally dry austral winter (JJA)
months (Fig. 3.2), we were able to capture the bulk of the annual signal of

stream-waters.

Samples were collected in 10 ml centrifuge tubes, sealed with plastic caps, and
wrapped with parafilm and PTFE tape to prevent sample loss and evaporation
prior to analysis. The elevation of each sampling location was recorded and
catchment mean elevations were calculated using standard GIS methods. Mean
catchment elevations range from 340 m in the east to 4836 m in the west, with

high peak elevations well represented in all three transects.

Samples were analyzed at the joint Goethe University-BiK-F Stable Isotope
facility at Goethe University Frankfurt. Stable hydrogen and oxygen isotope ratio
measurements were made on 1 ml aliquots using an LGR 24d liquid isotope
water analyzer. 6D and 6180 values were corrected based on internal laboratory
standards calibrated against VSMOW (Vienna Standard Mean Ocean Water). The
absolute analytical precision was typically better than 0.6 %o and 0.2 %o (both
20) for 6D and 6180, respectively. Absolute stable isotope values of the sample
set range from -24 to -96 %o for 8D and -4.5 to -13.0 %o for §180. Detailed results

for all samples are presented in Table B.1.

46



Figure 3.3. Conceptual framework of the orographic wave, inversion ("capping") and lifting
("triggering") across the eastern Andean plateau margin. A: Inversion in place showing intact
cap/boundary layer (heavy dashed line) between dry and adiabatically heated sinking air above
and advected warm humid air below. B: Reduced orographic airflow and lifting of inversion (light
dashed line) with strong upward lifting of warm humid air and eruption of deep-convective
storms. Warm humid air in the intermontane basins below the inversion is connected with the
foreland through topographic lows (river valleys), which help to advect the humid air mass into
the interior (indicated by black circles with point). The large basins south of 24°S act as
reservoirs for potential energy (resulting from daily solar heating) from which deep-convective

storms can erupt.
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3.3. Results

To characterize the spatial distribution of 880 and 6D in meteoric water
(reported in VSMOW), we sampled 234 streams, lakes, springs, snow, and
rainfall events over a period of four years along three E-W transects (Figs. 3.1 b,
3.4 a and Fig. B.3; Table B.1). All transects have the same easterly moisture
source, but differ in topography, with relatively small intermontane basins and a
distinct plateau margin in the north transitioning to large intermontane basins
and a highly irregular plateau margin in the south (Figs. 3.1, 3.5 and Fig. B.1).
6180 values from stream waters range from -0.6 to -11.5 %o along transect 1 (22
to 24° S), -4.3 to -11.4 %o along transect 2 (between 24 to 26° S), and -2.3 to -6.9
%o along transect 3 (26 to 28° S; Figs. 3.1 and 3.5). As we focus on studying the
relationships of 6180 and 6D stream water with elevation, we define isotope
lapse rates, A(6180) and A(6D), which reflect the change of 6180 (or 8D) as a
function of elevation. A significant negative correlation between &80 and
elevation exists in transect 1 with A(6180) = -1.7 %o km! (R?= 0.68). Along
transect 2, A(8'80) is reduced to -0.9 %o km1 (R?= 0.43), while there is no
significant relationship between elevation and 6180 for transect 3 (A(6180) =-0.2

%o km! with R2= 0.17).

Each transect deviates from the global empirical relationship between 680 and
elevation (A(6180) = -2.8 %o km-1; Fig. 3.1), although deviations are much larger
in the south (transect 3) compared to the north (transect 1) (Poage and
Chamberlain, 2001). In general, there is an increase from -0.2 to -2.4 %o km-! in
the isotopic lapse rate from 28° S to 15° S along the eastern Andes when the data
are compared to stable isotope stream-water data from Bolivia (Gonfiantini et al.,
2001). South of 28° §, it is difficult to obtain data as aridity limits perennial
stream flow. Stream-water data from a study near Mendoza ca 33° S indicate an
isotopic lapse rate of up to -3.9 %o km1; however, sample elevations below 2 km
are strongly underrepresented and a spill-over effect of Pacific moisture has
been reported there, complicating the comparison with our data from NW

Argentina (Hoke et al., 2013).
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3.4. Interpretations

Figure 3.4. Stream-water 6180, 8D,
and D-excess data and latitudinal
distribution. A. 6180 versus &D
values shape-coded for different
water transects and color-coded
for their sampling year. Dashed
black line represents the global
meteoric water line (GMWL) and
solid black line is the local
meteoric water line (LMWL). B.
6180 values of stream-water data
against latitude. Symbol-color
coded objects represent 1-km
bins and illustrate the large
latitudinal gradient in stream-
water. C. 1-km binned D-excess
values of stream water data with
latitude. Note the scatter in data
from elevations >4 km potentially

showing Pacific moisture mixing.

3.4.1 Spatial patterns in oxygen and hydrogen stable isotope composition

Although all low-elevation foreland locations have similar 680 values of ~ -4 %o

(Global Network of Isotopes in Precipitation (GNIP) stations; Fig. 3.2), our data

49



show a strong north-south gradient in 6180, isotopic lapse rate, and deuterium
excess for the higher-elevation regions (Figs. 3.1 b, 3.4 b-c and 3.5) (IAEA/WMO,
2012). Deuterium excess (defined as d = 8D - 8 * &§180) is a parameter
determined by non-equilibrium fractionation indicative of sub-cloud
evaporation, moisture recycling, snow sublimation, or changes in moisture

source (Stewart, 1975; Froehlich et al., 2008; Lechler et al., 2012).

The large decrease in 6180 (< -10 %o) along transect 1 (northern transect)
compared with §180 water values in the foreland is - to a first-order - similar to
Rayleigh fractionation. Rayleigh distillation treats the isotopic composition as an
open-system distillation, where precipitation is successively removed from the
vapor as it condenses and the residual vapor is consistently depleted in 180 and
D (Dansgaard, 1964). This process is reflected in the good correlation of 6180
with elevation (Figs. 3.1 b and 3.5). The westward decrease in d from ca. 19 %o to
-13 %o in transect 1 on the plateau is expected for ascending easterly humid air
masses that progressively rainout above increasingly drier air. During rainout,
sub-cloud evaporation of the falling rain droplets occurs, lowering the deuterium

excess values (Fig. 3.5) (Stewart, 1975; Froehlich et al,, 2008).

Along transect 2, the relationship between §'80 and elevation weakens and it
essentially disappears along transect 3. There, 6180 and deuterium excess values
from the foreland to the plateau margin are virtually constant (Figs. 3.1 b and
3.5). Such a pattern is inconsistent with simple orographic lifting of warm, humid
air masses and associated rainout. Rather, it is indicative of upward convective
mixing, resulting in limited open-system distillation necessary for Rayleigh
fractionation and hence limited oxygen (and hydrogen) isotope fractionation of
precipitation falling at the Earth’s surface. Across the entire latitudinal swath
from 22° to 28° S, a strong 6180 gradient is prominent (Figs. 3.1 and 3.4 b-c).
Moreover, there are systematic relationships of the 880 values at different
elevation intervals as the gradient in the amount of 180 depletion (and hence the
isotopic lapse rate) increases with elevation from south to north (Fig. 3.4 b-c).
This trend suggests that convection is not only limited to the southernmost

transect, but also that the amount of convective rainfall decreases northward,
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thus directly affecting the observed oxygen-isotope lapse rates (Fig. 3.1). D-
excess (d) shows no trend with latitude, illustrating that the moisture source
along all three transects is similar and derived from the Amazon Basin (Figs. 3.1
and 3.4 b-c). However, several samples at elevations > 4 km show much more

negative d values, likely resulting from mixing with a Pacific moisture source.
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Figure 3.5. Swath profiles showing maximum, minimum (gray shading), and mean elevation
(black) TRMM-2B31 rainfall data (blue) (Bookhagen et al., 2008), and TRMM 3B42 V7 90th/50th
percentile ratio of daily rainfall (red) across the south-central Andes (Huffmann et al.,, 2007;
Boers et al,, 2013). Stable isotopic values (6180) have the same color scale as in Figure 3.1. Blue
bins below each transect show range and mean (gray line) of deuterium excess values along the
profile. Each box represents samples located in a 30-km-wide interval with numbers of samples

for each bin shown above.
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3.4.2 Temperature-lapse rates and modeling of stable isotopes in

precipitation

To gain additional insight into the controls on 680 and 8D values of meteoric
water in the Central Andes, we use a numerical thermodynamic Rayleigh
condensation model to predict stable isotopic compositions along the sampled
transects (Fig. 3.1 b; and supplementary materials for further details) (Rowley et
al., 2001). First, we define a surface temperature-lapse rate for each transect
based on 12 yrs of satellite-derived DJF land-surface temperature data
(MOD11C2) to obtain input starting temperatures for the model (Figs. 3.6 a and
3.7; and Supplementary materials for further details) (Wan et al,, 2002). The
MODIS satellite data are calibrated against surface stations and have accuracies
of better than 1°C (Wan et al., 2008). In general, temperature-lapse rates below
2000 m are in line with a dry adiabatic cooling trend of ~ 1.0 °C per 100 m,
whereas at elevations above 2000 m, they follow a moist-adiabatic cooling trend
of 0.5 °C per 100 m (Fig. 3.7). Consequently, the obtained data set was
subdivided into elevations above and below 2000 m based on the different
temperature lapse-rate trends. For transect 1, lapse rates <2000 m are -
0.92°C/100 m (n = 134, R?=0.85, p << 0.01) and -0.21°C/100m for > 2000 m (n =
855, R?2 = 0.63, p << 0.01); transect 2 lapse rates < 2000 m are -0.80°C/100 m (n
=346, R? = 0.55, p << 0.01) and -0.38°C/100 m for > 2000m (n = 1965, R? = 0.63,
p << 0.01); transect 3 lapse rates < 2000m are -0.64°C/100m (n = 748, R? = 0.74,
p << 0.01) and -0.47°C/100 m for > 2000m (n = 2121, R? = 0.68, p << 0.01) (Fig.
3.7). The null hypothesis for the p-values was that the elevation (x) and
temperature (y) are derived from independent, random samples from normal
distributions with equal means and equal, but unknown variances. For the model
input humidity starting parameters, we used the NCEP-NCAR 1000 mbar re-
analysis relative humidity data (%) from 2008 to 2013 (Kalney et al., 1996).
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Figure 3.6. A. TRMM-3B42 V7 90th/50th percentile of daily rainfall data averaged over 15 yrs
(Huffmann et al., 2007; Boers et al, 2013). Low ratios indicate a narrow rainfall distribution (i.e.,
stratiform rainfall), whereas high ratios indicate a 'heavy-tail' rainfall distribution (i.e., deep
convective storms). White lines represent international borders. B. Night land surface
temperatures (MOD11C2) (Wan et al, 2002) for DJF averaged over 12 yrs. Note the intermontane

basins between 26° and 30°S storing excess heat and potential energy for convection.

The thermodynamic Rayleigh condensation model based on atmospheric
temperature-lapse rates and fractionation with elevation as rising air masses
cool provides a reasonable prediction of observed isotopic compositions along
transect 1 (red lines; Fig. 3.1 c-e). Isotope 680 values >3 km are well
represented, whereas lower elevations show a mismatch between observed and
modeled values, likely due to downstream mixing of higher-elevation stream
water. However, in transect 2, the fit of predicted §180 and 8D values weakens, as
high-elevation samples obtained in locations >4 km start to fall outside the
model’s 95% confidence level. In transect 3, the model does not match the
observed 8180 pattern at all. Especially, elevations > 3 km plot outside the model
bounds, implying that fractionation here does not follow open-system behavior,

which is a prerequisite for Rayleigh fractionation (Fig. 3.1 e).
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Figure 3.7. MOD11C2 night land surface temperatures for December, January, and February (D]JF)
averaged over 12 yrs from 2000 to 2012. The temperature data are divided into elevations above
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of individual cells. Only cells overlapping sampled catchments are used for calculating
temperature-lapse rates. Note the differences between lapse rates above and below 2 km. Lapse
rates below 2 km are much closer to dry adiabatic cooling trend, whereas above 2 km, a very

suppressed wet adiabatic cooling trend is observed.

3.4.3 Tracing convective rainfall and storminess

Similar to other plateau margins worldwide, strong insolation, high humidity,
and pronounced topographic and relief gradients along the windward flanks of
the Andean plateau result in frequent and extreme hydro-meteorological events
(Zipser et al., 2006; Bookhagen and Strecker, 2008; Romatschke and Houze,
2013). High-spatial resolution TRMM-2B31 and 2A25 satellite data (Tropical

Rainfall Measuring Mission - TRMM) allows for examination of convection
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processes and precipitation patterns between 36° N and 36°S (Huffman et al,,
2007; Bookhagen and Strecker, 2008; Romatschke and Houze, 2013). We use
TRMM 3B42V7 90th/50th percentile ratios for daily rainfall as a proxy for deep-
convective rainfall and to define patterns of strong convection and storminess
(Huffman et al., 2007; Boers et al,, 2013) (Fig. 3.6 b). We normalize extreme
rainfall amounts associated with convective storms (90t percentile) by the
median (50t percentile) for each pixel to document distinct spatial patterns in
rainfall extreme events (Fig. 3.6 b). The 90th/50t percentile ratio is a measure of
how skewed the rainfall distribution is for a particular area and thus cannot
identify the mode of precipitation. Therefore, it is necessary to identify the
source (e.g., convection) of the skewness in the rainfall data to interpret the
90th /50t percentile data accurately. For example, the high 90th/50t percentile
ratios along the western flank of the Andes do not exhibit convective nature, but
reflect very strong, infrequent wintertime frontal rainfall events producing a

skewed rainfall distribution (Fig. 3.6 b).

In the Eastern Andes, the high 90t /50t percentile ratios south of 26°S (Fig. 3.6
b) agree well with TRMM-Precipitation Radar data (PR, product 2A25), which
characterizes the nature of rainfall in South America and also shows frequent
deep-convective storms south of 26° S (Romatschke and Houze, 2013). There,
the trigger for convection is not diurnal heating as elsewhere in the tropics, but
rather conditions favorable to lifting the inversion found along the south-central
Andes over intermontane basins (Fig. 3.3 and B.4) (Romatschke and Houze,
2013). Specifically, daytime warming of large intermontane basins stores
significant potential heat, which is available at night to lift the inversion and
promote deep-convective storms (Fig. 3.6 a). The rapid lifting of warm, humid air
from beneath the inversion causes rapid upward convective mixing of moisture,
resulting in limited open system distillation. As a result, convective rainfall does
not systematically deplete the air mass of heavy isotopes, because moisture
recycling replenishes the depleted air at high elevation (Risi et al., 2008). Hence,
convective air circulation allows storms to cross high topography without major

depletion in 180 or D, as illustrated by consistently high deuterium-excess values
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along transect 3 and only slightly decreasing deuterium-excess values in transect

2 (Figs. 3.4 and 3.5).

3.5. Discussion

3.5.1 Controls on stable-isotope systematics

Our results demonstrate that despite general agreement with globally observed
stable isotope-elevation relationships in transect 1, elevation does not exert a
first-order control on 680 values in the southernmost transects across the
southern-central Andes (Figs. 3.1, 3.4 and 3.5). This interpretation is supported
by the virtual absence of a relationship between rainfall amount and topographic
relief (Fig. 3.5). In contrast, 6180 and 6D stream-water samples along transect 1
agree with other available studies of 6180 and 6D located north of 22° S, where
the climate is generally more humid and the tropical atmosphere regime is
characterized by lower storm frequencies (Fig. 3.6 b) (Gonfiantini et al.,, 2001;
Insel et al,, 2012). In the region of transect 1, the temperature-lapse rate with
elevation drives rainout and stable-isotope fractionation, but this is not the case
south of 26°S along transect 3, which is influenced by the extra-tropical
atmospheric circulation regime and increased convection (Fig. 3.5). These
contrasting patterns in our data between the northern and southern transects
exemplify how studies of 6180 and 8D at the boundary between the tropics and
extra-tropics (~ 26° to 32° N and S) can be strongly affected by deep convective
storms (Fig. 3.6). Consequently, repeated convective storms may yield
unexpected and non-systematic oxygen-isotope lapse rates as a function of
elevation. In such cases, the assumption of temperature-controlled rainout with
elevation producing a systematic isotopic lapse rate can be severely
compromised. Our data are the first to demonstrate the causes and
consequences of missing oxygen (and hydrogen) isotope depletion in the
presence of large temperature gradients with elevation, and particularly how
deep-convection can overprint isotope systematics in precipitation as upward
moisture mixing in storms violates the open-system assumption in Rayleigh

fractionation.
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3.5.2 Implications for isotope-enabled atmospheric circulation models,

paleoenvironmental studies, and paleoaltimetry studies

Reconstructions of paleo-environmental conditions and the topographic
evolution of mountain belts are often derived from stable isotope proxies in
materials such as pedogenic carbonates, volcanic glass, mammal-tooth enamel,
or organic compounds. Each of these materials retains the 60 or 6D
composition of ancient meteoric waters (e.g. Lee-Thorpe and van der Merwe,
1987; Cerling et al., 1993; Garzione et al., 2008; Mulch et al., 2008; Sachse et al,,
2012). Especially for materials that capture short-term variations in the isotopic
composition of rainfall, the absence of systematic stable isotope-elevation
relationships may render any paleoaltimetry interpretation complex, if not
impossible (Blisniuk and Stern, 2005). Our results therefore have major
implications for understanding, interpreting, and modeling present and past §180
and 8D data, especially regarding paleoelevation and paleoenvironment

assessments within and along the Andean orogeny and beyond.

First, current stable-isotope enabled General Circulation Models rely solely on
adiabatic cooling and temperature fractionation induced by changes in elevation.
Our results demonstrate the need for sufficiently high resolution in these models
to capture regional mesoscale convective cells, which would far more accurately
reflect regional stable isotope values of precipitation. Otherwise, modeled 6180
and 8D values will substantially deviate from observation data, a phenomenon
observable for the region along our transect 3, which is characterized by highly

convective rainfall (Insel et al. 2012).

Second, in regions with deep convection, it will be difficult to reliably reconstruct
topography or paleoenvironmental conditions through stable-isotope
approaches, because strong convection may reduce or mask any elevation signal
in the geologic proxy record. Therefore, interpretations of 680 and 8D records
(e.g., from pedogenic carbonates, lipid-biomarkers, or tooth enamel) that assume

simple Rayleigh fractionation in areas influenced by deep convection at the
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tropical-extratropical boundary may provide misleading information on the
elevation and/or climate history and should be validated against additional
proxy records. As an example, 6180 values from pedogenic carbonate and
mammal teeth of Tertiary sediments within the deep-convective zone of transect
3 at 27.5°S / 67°W (Fig. 3.1) at the Puerta de Corral Quemado intermontane
basin show little variability (-7.5 to -4.5 %o) between ~ 8 to 3 Ma (Latorre et al,,
1997; Hynek et al, 2012). Nonetheless, several lines of evidence indicate a
pronounced phase of mountain building and surface uplift during that time. At ~
6 Ma, low-temperature thermochronology data derived from adjacent basement
ranges and sediment characteristics of the adjacent basins indicate that ranges to
the north and east of the basin were uplifted and started forming orographic
barriers (Strecker et al., 1989; Bossi et al., 2001; Kleinert and Strecker, 2001;
Sobel and Strecker, 2003). These range uplifts blocked moist easterly airflow and
induced changes from C3 to C4 plant communities in the basin (Hynek et al,,
2012). The lack of concurrent significant variation in the §'80 record likely
indicates that the region was influenced by convective storms, both between ~ 8

to 3 Ma as well as today.

In the context of these paleoenvironmental studies, we caution that only those
areas that are not affected by deep-convection may be appropriate for stable
isotope paleoaltimetry -- an approach whose applicability and reliability has
been intensely discussed over the past decade (e.g., Poage and Chamberlain,
2001; Blisniuk and Stern, 2005; Rowley and Garzione et al., 2007; Ehlers et al,,
2009). We also conclude that the complicating effects of convective rainfall have
not been fully considered in a variety of stable isotope paleoaltimetry studies in
the southern-central Andes (e.g., Canavan et al. 2014; Carrapa et al., 2014). This
oversight may potentially lead to oversimplified misinterpretations of quasi-
constant stable isotope - elevation relationships in regions that today (and likely
in the past) were strongly subjected to convective rainfall conditions. Conversely,
farther north, where extensive intermontane basins are less frequent and deep
convective storms are typically not generated (e.g., regions adjacent to the

Subandean fold-and-thrust belt or in the Eastern Cordillera), our identification of
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Rayleigh fractionation in modern precipitation is encouraging for stable isotope

paleoaltimetry studies.

3.6. Conclusions

Overall, our results add a new element in the interpretation of stable isotope
data from precipitation along elevation/ temperature transects, particularly
when attempting to interpret past records of 6180 and 6D. Such present-day
validation studies of water stable-isotope patterns are crucial for extra-tropical
regions that are affected by deep-convection, as convection can disrupt simple
patterns of rainout and Rayleigh isotopic fractionation with increasing elevation.
Understanding atmospheric circulation patterns along plateau margins with
pronounced rainfall gradients, such as the Altiplano-Puna or Himalaya-Tibetan
Plateau, is of particular importance, as strong convection cells can arise not only
from areally extensive intermontane basins and foreland regions, but also from
steep topographic barriers. In summary, our results illustrate that (1)
atmospheric convection can strongly affect 8180 and 8D in precipitation and
overprint simple relationships between stable isotopes in precipitation and
elevation that are due to temperature-controlled fractionation and orographic
lifting; (2) isotope-in-precipitation models based on temperature-related
fractionation alone that do not have sufficient spatial resolution to capture
convective storms can deviate substantially from the observed 6§80 and 6D
patterns; and (3) in regions with convective rainfall, we emphasize the necessity
for careful assessments of modern 6180 and 8D data before attempting to

interpret 6180 and 6D data in the geologic record.
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Chapter 4

Rapid hydrological response to orographic
barrier and central Andean Plateau uplift

Rohrmann, A., Sachse, D., Strecker, M.R., Mulch, A. Pingel, H. Alonso, R.N.
(submitted), Rapid hydrological response to orographic barrier and central
Andean Plateau uplift. Science

Abstract

Orogenic plateaus and their flanking ranges may strongly impact regional and
global hydrology, vegetation, and erosion. Yet, the detailed temporal
characteristics of topographic growth and possible feedbacks between tectonics
and climate are not well understood in these regions (Molnar et al, 2010;
Garzione et al., 2008; Hoorn et al., 2010). During the last decade reconstructions
of the topographic evolution of mountain belts and orogenic plateaus and
ensuing environmental changes have been increasingly retrieved from stable
isotope proxies in sedimentary deposits from basins within and along the
plateaus. These proxies retain the oxygen (6180) or hydrogen (8D) composition
of ancient meteoric waters or they reflect former vegetation covers (§'3C), in
case of pedogenic carbonates (e.g. Cerling et al,, 1993; Friedman et al.,, 1993;
Kleinert and Strecker, 2001; Hoke et al., 2014; Zhuang et al., 2014). Sedimentary
fills with intercalated volcanic ash horizons in the intermontane basins east of
the Andean Plateau of NW Argentina (Puna) record the eastward-directed lateral
growth of the central Andes and their impact on hydrologic, sedimentary and
ecological changes through time (Jordan and Alonso, 1987; Baby et al.,, 1997;
Hilley and Strecker, 2005; Hain et al., 2011). We reconstructed paleohydrological
changes from a sedimentary sequence exposed in the intermontane Angastaco
Basin of NW Argentina (25°45 S, 66° W) deposited during Andean plateau uplift
and adjacent orographic barrier formation (10-2 Ma) by using an array of stable
water isotope proxies (lipid biomarker 6D and §13C; soil carbonate 180 and 613C;
and volcanic glass 8D). Combined, these proxies provide a unique precipitation -

evapotranspiration record that reveal the onset of a monsoonal precipitation
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regime related to the South American Low Level Jet at this latitude by 9 Ma. This
was accompanied by protracted, seasonally humid foreland conditions until 7
Ma, followed by orographic barrier formation upwind of the basin and later,
rapid (~0.5 Myr) intermontane aridification, with a shift to semi-arid conditions.
For the first time, our new high-resolution multi-proxy isotope approach enables
the reconstruction of the response of the hydrologic cycle, ecosystem, and

erosion to Mio-Pliocene Andean tectonism in unprecedented detail.

4.1 Introduction

With average elevations of ~4 km, low internal relief, closed, and partially
coalesced sedimentary basins, and high, deeply incised flanks, the Cenozoic
Andean plateau constitutes the world’s second largest orogenic plateau. The
topographic growth of the plateau and the adjacent mountain ranges has
generated steep climatic gradients across the orogen, with a humid foreland and
increasing aridity towards the orogen interior. The Cenozoic uplift of the Andean
orographic barrier has been instrumental in establishing the modern
atmospheric circulation and rainfall patterns throughout South America (Lenters
and Cook, 1995; Garreaud et al., 2003; Bookhagen and Strecker, 2008) (Fig. 4.1
a). Today, the eastern flanks of the central Andes receive up to 3 m of annual
precipitation during the austral summer via the South American Monsoon
System and the southward transport of Amazonian moisture along the eastern
flanks of the orogen by the South American Low-Level Jet (SALLJ) (Carvalho et
al, 2011; Marengo et al., 2012). In contrast, basins to the west of the orographic
barrier receive less than 0.2 m/yr (Bookhagen and Strecker, 2008). This pattern
characterizes the climate in the region between 13° and 27 ° S and is thought to
have been established with the onset of the SALLJ] due to surface uplift of the
Altiplano-Puna Plateau at 9 Ma (Garzione et al, 2008; Mulch et al, 2010).
However, it is unclear as to how far south SALLJ moisture transport reached
during an episode of pronounce Miocene mountain building, and when humid
conditions were established along the inherently arid southeastern flank of the

Puna. Following the hydrological patterns found along the windward flanks of
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Figure 4.1. Regional tectonic overview of the study area and stratigraphy. A. Elevation binned
SRTM-data and location of the study area. B. Geological map of the Angastaco Basin with lipid-
biomarker sample locations and volcanic ash dates (for soil-carbonates samples locations see
Table C.2). See legend for symbols and colors. Black boxes mark location of the measured
stratigraphic log. C. Measured stratigraphic profile from the Angastaco Basin with lipid-
biomarkers sample levels marked with red dots, volcanic ashes with U-Pb zircon and 40Ar/3%Ar-
ages. All samples and ashes outside the measured stratigraphic profile are projected along strike

of the bed into the stratigraphic section.

the southern-central Andes a dense C3 vegetation developed here, whereas the
leeward sectors host a C3/C4 vegetation mosaic, reflecting a semi-arid to arid
environment (Ruthsatz and Hofmann, 1984; Starck et al., 2001; Kleinert and

Strecker, 2001).

Here, we identify the timing of hydrological changes in response to Andean
plateau and orographic barrier uplift through a stable water isotope proxy array
from terrestrial sediments exposed in the semi-arid Angastaco intermontane
basin (AB) at 25°45 S and 66° W. The basin, located at ca. 2 km elevation, with up
to 6 km of lacustrine and fluvial sediment fill, contains one of the best
chronologically constrained sedimentary sections in the region. Importantly,
organic material and pedogenic carbonates make the Angastaco sequence an

ideal site for a multi-proxy stable isotope study to decipher the evolution of
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environmental conditions along the eastern flank of the Andean plateau (Starck

etal, 2001; Coutand et al., 2006) (Figs. 4.1 and 2; C.1).

4.2 Results and Discussion

The AB record contains abundant terrestrial lipid biomarkers, specifically the
nCz7 to nCs3 alkanes derived from the leaf waxes of higher terrestrial plants that
originated in the basin’s paleo-catchment area at the eastern Andean plateau
margin (Eglington and Hamilton, 1967; Sachse et al., 2012) (Figs. 4.2; C.2-7;
Table C.1). Our analysis focuses on the nCz9 and nCz; alkanes because their high
abundance allowed measurement of the wax’s hydrogen isotope values (8Dwax)
reflecting paleohydrologic changes (Sachse et al,, 2012). In addition to the wax’s
O0Dwax and carbon isotopes (8§13Cwax), we provide high-resolution soil-carbonate
oxygen (6'®0carp) and carbon (6'3Ccarp), and hydrogen volcanic glass (8Dvoic)

isotope values sampled on the same section (Fig. 4.2; Table C.2-3).

The combined stable isotope records reveal three distinct stages in
environmental conditions: (1) the integration of sedimentary units of a formerly
contiguous foreland into the eastern flanks of the plateau; (2) the formation of an
orographic barrier, followed by (3) the development of an intermontane
sedimentary basin, similar to a predicted scenario in the lateral plateau-growth
model by Sobel et al. (2003) (Fig. 4.2). During early deposition of the Palo
Pintado formation in a contiguous foreland 6Dwax and &180cn values all
decreased from high values at ~10 Ma to reach a first isotope minimum after
~8.8 Ma (Fig. 4.2). The data suggest the existence of a foreland-basin setting
characterized by humid conditions during the late Miocene, although this region
should have been arid, considering its latitudinal position and proximity to cold
upwelling along the Pacific coast (Strecker et al., 2007). A humid climate regime
at that time is furthermore supported by the character of sedimentary strata
from other basins farther north along the eastern Andean flanks, as in the Iruya
basin at 22°53 S and 64°36 W (Echavarria et al,, 2003) or the Rio Pilcomayo
region of southern Bolivia at 21°S (Mulch et al, 2010). These observations

support the notion that a southward moisture transport by a paleo SALLJ, similar
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to present-day foreland conditions in Argentina, reached as far south as 26 °S at

approximately ~8.5 Ma.

Next, we reconstructed the proxy source-waters (SW) and established 6Dicafwater
and SDpreciptation, as Well as §180soil-water from 8Dwax, 6Dvolc and 8180carb, respectively,
providing unique insights into the changes that impacted the hydrological cycle
(Figs. 4.3, C.8 and C.9; for source-water reconstruction see supplementary).
Converting 680carb swto 6D using the local meteoric water line from Rohrmann
et al. (2014) and assuming that dDvoic sw and 8'80carb sw are representative of
precipitation and soil water, respectively, the isotopic difference between both
values reflects the effects of soil evaporation (Cerling et al., 1993; Friedman et al,,
1993). Instead, the difference between §180carb sw and 8Dwax sw reflects leaf-water
deuterium isotope enrichment above soil water, and thus transpiration (Cerling
et al., 1993; Sachse et al, 2012; Kahmen et al., 2013) (Fig. 4.3). The relative
difference between reconstructed source-waters 6Dvoic swand 8Dwax sw therefore
documents regional trends in evapotranspiration (Fig. 4.3). The
evapotranspiration record fits well with the different isotopic phases mirroring
the foreland-intermontane basin transition. Plant transpiration was high
between ~10 to 8.5 Ma and decreased to low levels after 8.5 Ma, which is

compatible with the regional increase in humidity via the SALL] (Fig. 4.3).

Subsequently, 6Dwax and 6180carb values showed a trend towards more positive
values suggesting slightly drier conditions (Fig. 4.2). The larger variability in
0180carb compared to §Dwax values may result from the fact that the §180 signal is
derived from within the basin, whereas the §Dwaxreflects organic material from
overbank deposits supplied by western catchments along the plateau flanks. This
signal is consequently interpreted to integrate runoff from the basin, the
uplifting eastern flanks of the Puna, and the Eastern Cordillera, thus dampening
the overall magnitude of change (Coutand et al., 2006; Deeken et al., 2006; Galli
et al., 2014; Ponton et al., 2014) (Fig. 4.2). The 613Cwax and 813Ccarb values during
this period range between -31 to -35 %o, and -17 to -10 %o, respectively,
representative of an exclusively C3 vegetation cover (e.g. Cerling et al., 1993;

Chikaraishi and Naraoka, 2003) (Fig. 4.2).
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Figure 4.2. Stable isotope data and compilation of all proxy materials of 6Dwax, 613Cwax, 680carb,
613Cearb and 8Dyoic. Each record has a precise age model based on tephrochronology shown in
figure 4.1. All 6D and 8180 data are represented according to the Vienna Standard Mean Ocean
Water (VSMOW) scale; §13C data are reported according to the Pee Dee Belemnite (PDB). 1-sigma
dating error for all isotope proxies of + 0.1 to 0.3 Ma. Error bars represent pooled precision for
S8Dwax (5 %0) and 813Cwax (0.5 %0) of external isotope standards. Analytical errors are being used
for 8180carb, 613Ccarband 8Dyolc. See supplementary data and tables for isotope proxies sources and
analytical values. Alligator fossil information and location is from Bona et al. (2014). Fossil leaf

and tree-trunk data is derived from the measured stratigraphic log in this study.

The fit between 813Cwaxand 813Ccarb has a slope of 0.94 (R? = 0.48), supporting the
inference that pedogenic carbonates reflect plant COz respiration and track the
amount of C3 and C4 vegetation in the landscape (e.g., Cerling et al, 1993).
Together with a high estimated clumped isotope temperature of 38°C (biased
towards summertime temperatures) obtained from the basin strata (Carrapa et
al., 2014), tree trunks, leaf morphologies, and pollen assemblages from the same
section record a humid C3 forest-ecosystem, potentially similar to the present-
day Paranaense flora of southwest Brazil (e.g. Herbst et al., 1987; Starck et al,,
2001; Hoorn et al,, 2010) (Fig. 4.2). Plant transpiration must have been low
between ~8.5 to 7 Ma, suggesting high humidity during this time interval (Fig.
4.3). The stable isotope proxy data together with available paleoenvironmental
indicators therefore suggest a low-elevation (< 0.5 km), humid open foreland for

this area during the late Miocene.

Sediments of the Palo Pintado formation deposited between approximately 7 and
6.3 Ma record a rapid decrease in §Dwax, 6180carb, and 613Cwax and 813Ccarp with the
lowest isotope values measured in the section. These trends were coupled with
an increase in sedimentation rate from ca. 0.4 to > 1 km/Myr, corresponding to
the transition from the contiguous foreland to the orographic barrier stage as
rapid accumulation space was created (Figs. 4.1 and 4.2). The fluvial network of
the basin changed dramatically due to orographic barrier uplift of the Ledn

Muerto and Los Colorados ranges to east of the present-day AB.
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Figure 4.3. Reconstruction of evaporation, transpiration and evapotranspiration over time based
on proxy source-water reconstruction. Reconstructed source-waters for lipid-biomarkers,
pedogenic carbonates and volcanic glass shards, suggest different source-waters for the
individual proxies: volcanic glass: precipitation; pedogenic carbonates: soil-water; lipid
biomarkers: leaf /soil -water (Figs. C.8, C.9 and supplementary data repository). Note that
6180carb sw is converted to 6D values for comparison with 6Dyax sw and 8D volc sw. The relative
source-water differences track the paleohydrological evolution over time, i.e. volcanic glass -
pedogenic carbonates = evaporation; pedogenic carbonates - lipid biomarkers = transpiration;

volcanic glass - lipid biomarkers = evapotranspiration.

The uplift severed the connectivity between the eastern flanks of the Puna, the
Eastern Cordillera, and the open foreland (Coutand et al.,, 2006; Deeken et al,,
2006; Carrapa et al,, 2011; Hain et al,, 2011) (Fig. 4.1). Fining-upward sediments
and wetland and lacustrine facies assemblages document this stage (Fig. 4.1).
Today, the threshold elevation for effective orographic barriers in the southern-
central Andes is ~2 km (Bookhagen and Strecker, 2008; Hain et al., 2011). Since
sufficient moisture still reached the AB during the early uplift of the proto Sierra
de Leon Muerto to support a C3 vegetation, as indicated by 6!3Cwax values
spanning from -30 to -34 and low plant transpiration, the proto Sierra de Ledén
Muerto did not yet constitute an effective orographic barrier (< 2 km) between 7
and 6.3 Ma (Figs. 4.2 and 4.3). The reductions in 8Dwax and 6180carb at that time
therefore record growth of the Sierra de Le6n Muerto and not uplift of the basin
sensu stricto (Fig. 4.2). Therefore, a minimum estimate for the uplift of the

orographic barrier between 7 to 6.3 Ma, may correspond to ca. 1.5 km (previous
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foreland < ~0.5 km), since an effective orographic barrier (> 2 km) was
established after 6.3 Ma. Orographic barrier uplift on the order of 1.5 km was
accompanied by a ~30 %o decrease in 6Dwax and a 5 %o decrease in 8180carb.
Thus, a surface uplift of about 1 km in the southern-central Andes was
accompanied by a 20 %o change in §Dwax or a 3.3 %o change in 6180car. However,
other effects, such as the amount affect, changing moisture source or overall
wetter conditions, can similarly influence the signal, but might not have the first-
order control on isotope values in rainfall in such a tectonically active region

(e.g. Poage and Chamberlain, 2001; Risi et al., 2008).

After 6.3 Ma the basin aridified rapidly, evidenced by increasing §Dwax and
0180carp values from -160 to -102 %o and 18 to 31 %o, respectively. This
happened likely in response to uplift of the Sierra de Leén Muerto as an effective
orographic barrier and occurred over a time span of only 0.5 Ma, (Fig. 4.2). At the
same time plant transpiration quickly increased responding to reduced humidity
as a result of orographic barrier formation (Fig. 4.3). During the same time A47
temperatures decreased from 29° to 11 °C (Carrapa et al., 2014). Despite these
severe environmental changes toward more arid conditions the AB still
supported a diverse fauna and a C3 vegetation indicative of sufficiently high
water availability, which may have been sourced from run-off generated at
higher elevations (Herbst et al.,, 1987; Starck et al,, 2001) (Fig. 4.2). The inference
of sustained humid conditions is supported by a recent alligator fossil find
(Caiman latirostris). Today, living relatives of this species exist in the low-
elevation foreland, suggesting that the basin itself had not gained any significant

elevation yet (Bona et al.,, 2014).

At approximately 5.8 Ma the region transitioned into the intermontane basin
stage as the basin started to be uplifted along west-verging back thrusts (Fig. 4.2)
(Carrera et al,, 2006). Between ~6 to 4.5 Ma an overall 20 %o reduction in 6Dvolc
is observed, possibly reflecting uplift of the basin itself. However, increased
aridity and the observation of convection in present-day stable isotope meteoric
waters from this region indicate no significant isotope lapse rate (Fig. 4.2)

(Poage and Chamberlain, 2001; Rohrmann et al., 2014). During this time the
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sedimentation rate significantly decreased from 0.4 km/Myr to ca. 0.15 km/Myr.
In addition, the basin further aridified as documented by §Dwax value increase to -
98 %o and sediment coarsening up-section, with increasing deposition of
conglomerates and saline lacustrine sediment in the superseding San Felipe
formation (Figs. 4.1 and 4.2). A47 temperatures also stabilized at values around
18 to 20°C, similar to the present-day, with little variability throughout the
remaining intermontane basin stage (Carrapa et al., 2014). During this episode
013Cwax values indicate further aridification expressed through a change from a C3
to a C4 dominated ecosystem, in line with tooth-enamel isotope data from the AB
(Fig. 4.2) (Bywater-Reyes et al,, 2010; Diefendorf, et al. 2011). Furthermore, the
level of plant transpiration stabilized at a high level, related to new plant species
populating the area in response to increased aridity (Fig. 4.3). Overall, the
paleoenvironmental evapotranspiration appears to have been mainly driven by
plant transpiration in response to basin aridification, as the evaporation seems
to be relatively stable over the entire time-period signal (Fig. 4.3). The stable
evaporation signal throughout the record likely reflects the overall seasonal
climate as soil carbonates preferentially form at the end of the wet season when

evaporation increases (Peters et al., 2013).

4.3. Conclusions

Our new multi-isotope proxy record highlights specific paleohydrological and
ecological changes and their timing in response to tectonic deformation and
surface uplift in the southern-central Andes. These observations emphasize the
potential to reconstruct spatiotemporal changes in evapotranspiration trends in
the context of tectonic forcing. Interestingly, the large 6Dwax inferred increase in
leaf-water isotope enrichment of > 50 %o throughout the Palo Pintado
sedimentary section is similar to the present-day difference between the
Amazonian rainforest and the semi-arid environments of the intermontane
basins on the western flank of the Andes (Kahmen et al., 2013). The precipitation
- evapotranspiration record obtained from our analysis reveals that in regions
with monsoonal climates the overall degree of evaporation remains rather

constant. In contrast, transpiration rapidly reacts to a decrease in available
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moisture related to orographic barrier uplift and tectonically induced
environmental changes. For the first time, our results deconvolve the complex
links between environmental changes and their imprint on stable isotopes in the
hydrological cycle, as well as vegetation changes and tectono-climatic feedback

processes in the southern-central Andes.
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Chapter 5

Discussion, Outlook and Conclusion

The main goal of this thesis was to understand the impact of eolian and fluvial
processes on the evolution of orogenic plateaus and the impact of tectonic
processes on forcing hydrologic conditions during the build-up of orographic
barriers to rainfall. One of the most important issues in this undertaking is to
understand present-day hydrological processes with the goal of better
understanding the environmental impact of similar processes in the geological
past. This will ultimately help to assess present-day climate variability and future
climate change. Such a complex task can be best achieved by integrating
geological, geomorphic, paleontological, and isotope geochemical data. Thus,
retrieving and generating interdisciplinary data sets from a variety of geological
archives may provide the raw material to decipher the full spectrum of forcing
factors that drive the surface-process regime in orogenic plateaus. Below, I
summarize my findings of chapters 2, 3, and 4 by discussing the newly generated
information that assists in efforts to provide new, unifying view across different
plateau environments. Since the direct implications have already been discussed
in the individual chapters, I will now focus on the outcome of my investigation,
particularly in the context of remaining challenges in characterizing plateau
paleoenvironments. [ will also discuss the implications of my research with
respect to the environmental evolution of high-mountain regions and their
forelands in light of future climate change, as envisioned in the IPCC’s fourth
assessment. Finally, I will present an outlook for future studies, followed by a

conclusion.

5.1. Discussion

My results highlight the existence of hydrological, vegetation, and surface-

process regimes in the different elevational sectors of plateau regions and their
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flanking mountain ranges, spanning humid to arid environments. First, wind
erosion is one of the most important processes for eroding arid plateau interiors,
as low amounts of rainfall, low streampower, and internal drainage conditions
prevent material evacuation toward the foreland (e.g., Goudie, 2007; Kapp et al,,
2011). In contrast to these environments, fluvial processes and protracted fluvial
connectivity within the foreland dominate in the fully humid plateau flanks and
their arid to wet transitional regions, (e.g., Ouimet et al., 2010; Gasparini and
Whipple, 2014). The erosional gradient from wet to arid environments across
plateau margins and the reduction of fluvial erosive power is complemented by
the greater efficiency of wind erosion in arid regions. However, it will be difficult
to quantify each erosive agent independently, since mixing between fluvial and
wind erosion will occur in the climatic transition zones (de Silva et al., 2010). In
this context, it is important to note that the water stable isotope results of
chapter 3 show that the strongest convective storms are located in semi-arid
transition zones. These extreme hydrometerological events aid further to
increase the erosivity in such climatic environments, which are characterized by
a sparse vegetation cover and steep hillslopes (Bookhagen and Strecker, 2012;
Carretier et al,, 2013; Whipple and Gasparini, 2014). Corresponding observations
were made in the Angastaco Basin paleorecord (chapter 4). Here, deposition
rates and by inference, erosion rates were found to be highest during orographic
barrier uplift and the tectonically forced transition from wet to dry conditions. It
is noteworthy that the effects of reduced fluvial connectivity and the creation of
sediment-accommodation space have a similar control on the deposition rate
(e.g., Sobel et al,, 2003). It is known that vegetation cover has a stabilizing effect
on the landscape and protects the underlying soil or sediments from erosion
(e.g., Langbein and Schumm, 1958; von Blanckenburg et al., 2004; Vanacker et al.,
2007). In the Angastaco Basin record, this stabilizing effect may have been
greatest during the humid foreland stage and is documented by leaf-wax carbon
isotope values and supporting paleoecological evidence, which suggest humid,
dense C3 vegetation covers at this time (e.g., Herbst et al., 1987; Starck and
Anzotegui, 2001). It is conceivable that the dense vegetation would have
potentially limited erosion, although precipitation and fluvial runoff would have

been greatest. A similar, present-day pattern is also seen parallel to the western
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flanks of the Chilean Andes, where erosion rates decrease with increasing

vegetation cover and rainfall (Rehak et al., 2010; Carretier et al., 2013).

Interestingly, in arid landscapes a positive feedback between the degree of wind
erosion, dust production, and plant bioproductivity should exist as dust is
transported towards the vegetated humid foreland. Indeed, desert dust and loess
are often rich in calcite and other minerals and fertilize soils (e.g., Pye, 1995;
Ridgwell, 2002). Therefore, dust production in arid plateau landscapes, such as
the Tibetan and Altiplano-Puna plateaus, has a positive effect on vegetation and
bioproductivity in the humid foreland sectors. It is important to point out that
today a significant portion of agricultural land is situated in these humid lowland
areas downwind from the source regions in arid highlands, providing a major
contribution to Argentina’s, Bolivia’s, China’s, and India’s Gross Domestic
Product and food supply (Fischer Weltalmanach, 2003). Desert dust therefore

provides an important supply of nutrients and prevents soil leaching over time.

Erosional processes forced by wind and water in tectonically active plateau
regions result in different landscape characteristics. Wind erosion has the
tendency to reduce overall relief and topography, because wind homogeneously
attacks exposed surfaces (e.g., Goudie, 2007; Kapp et al,, 2011; Laity et al.,, 2011).
Fluvial erosion is focused on channels and riverbeds, where stream incision
undercuts hillslopes, leading to steeper slopes, intensified mass transfer, and
ultimately more relief (e.g., Burbank et al., 1996; Whipple et al,, 1999). Both
processes operate on a plateau-wide scale. Filling of the arid, internally drained
basins of the Tibetan and Altiplano-Puna plateaus has produced a setting where
wind erosion lowers and smooths relief by selectively eroding topographic
features above the basin floor (Goudie, 2007; Kapp et al., 2011). Basin filling and
wind erosion are thus synergistic and create low-relief plateau landscapes. In
contrast, the role of fluvial incision and its tendency to increase relief is
exemplified along the three major Tibetan rivers, Yangtze, Mekong, and Yellow
River (e.g., Clark et al.,, 2004; 2005; Craddock et al., 2010; Ouimet et al., 2010).
Here, high amounts of orographic precipitation result in high fluvial runoff and

erosion. These observations match the results of chapter 3 along the eastern
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flank of the south-central Puna margin, where high relief and rainfall amounts
covary north of 25 ° S (e.g., Bookhagen and Strecker, 2008; Strecker et al., 2009;
Hain et al, 2011). These regions also produce the highest erosion rates as

determined by cosmogenic nuclide dating (Bookhagen and Strecker, 2012).

The modulation of moisture availability forced by tectonic uplift and orographic
barrier formation is exemplified by the deposition of intermontane Angastaco
Basin sediments (chapter 4). The study demonstrated how humid plateau flanks
and associated sedimentary environments might become isolated from moisture
supply by orographic barrier uplift. In the case of Angastaco this process was
coeval with rapid ecologic and hydrologic responses. Ensuing environmental
adaption to the reduced water availability occurred on millennial timescales.
These changes are also reflected in changes in the spatiotemporal trends of
depositional systems and sedimentary basin fills. Clearly, tectonic processes and
related topographic growth significantly govern moisture availability along
plateaus by modulating moisture pathways, thereby impacting environmental
conditions. These trends match those of previously published records in the
southern-central Andes (Strecker et al, 2007; Hain et al, 2011; Pingel et al,,
2014), but these recorded changes have never been shown in such temporal
resolution as the new stable isotope data presented in chapter 4. Outward
plateau growth along fold-and-thrust belts (e.g., central Andes of Bolivia) or
isolated block uplifts along steep reverse faults (e.g., Sierras Pampeanas) would
result in orographic barriers and exacerbated aridification of plateau interiors
(e.g., Isacks, 1989; Jordan and Alonso, 1987; Sobel et al., 2003). These processes
are vividly demonstrated by my new multi-proxy data set, as initial rapid 0.5 Ma
aridification in the context of orographic barrier formation, and a second later

aridification pulse during basin uplift is observed.

As shown in this study and previous investigations on various aspects of plateau
growth, changes in topography have a major impact on atmospheric circulation
systems as plateaus form orographic barriers and are extensive heating surfaces
at high elevation that impact seasonal changes in air pressure (e.g., Prell and

Kutzbach; 1997; Ruddiman et al., 1997; Molnar et al,, 2010). General circulation

76



models (GCM) have highlighted the topographic importance of the Himalayan-
Tibetan system and Andes for re-routing atmospheric flow and initiating the
South American, Indian, and East Asian monsoons (e.g., Lenters and Cook, 1995;
Insel et al., 2009; Poulsen et al., 2010; Boos and Kuang, 2010). For the Andes,
GCMs have shown that a threshold elevation of ~2 km must be reached before
monsoonal circulation patterns start to operate (Poulsen et al., 2010). The South
American Low Level Jet (SALLJ), as an integral part in the South American
Monsoon circulation system, transports moisture into inherently arid regions in
the southern central part of the orogen (Strecker et al., 2007; Garreaud et al,,
2009; Silva et al, 2009). My stable isotope multi-proxy study (chapter 4)
indicates that this moisture-transport system must have started to operate after
9 Ma and began transporting humid air masses as far south as 26° S. It has been
suggested by Mulch et al. (2010) that the SALLJ] was established in response to
significant topographic uplift of the Central Bolivian Andes. Combined with
observations made in NW Argentina, this highlights how plateau topography and
atmospheric circulation are strongly connected. A change in either topography
or atmospheric circulation would lead in turn to changes in vegetation,
hydrology, and/or the form and magnitude of Earth-surface processes, similar to
observations made in the Angastaco Basin paleorecord (chapter 4). It remains to
be seen if hydrological and vegetation-cover changes in response to the onset of
the SALL] after 9 Ma have had an impact along the entire length of the south-
central Andes and if this was a synchronous event. This is an important issue,
because there exists little paleoclimatological information for the transition zone
between the SALL] and the westerlies to the south of 28° S (Garreaud et al,
2009). Furthermore, it is important to recognize that with the establishment of
the South American Monsoon System there exists not only a stronger moist
airflow from the ocean towards the continent during summer, but also a counter-
flow from the plateau to the ocean during winter (e.g., Garreaud et al.,, 2009).
This would increase dust transport from the arid plateau interiors towards the
foreland and to the Atlantic Ocean. The impact of such dust transport is
demonstrated along eastern Tibet, where severe winter dust storms transport
sediment far eastward across China and into the Pacific Ocean (e.g., Sun et al,,

2001; Wang et al.,, 2004).
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The results of my study have implications for how to view future climate change
and climate variability in an increasingly warm world. The Intergovernmental
Panel on Climate Change Fourth Assessment claims that global warming will lead
to reduced water availability and precipitation along the Andean and Tibetan
plateaus (IPCC, 2007) (Fig. 1.1). This will have implications for the plateaus’
erosion processes, hydrology, and vegetation cover. The reduced water
availability and precipitation are expected to lead to further aridification of the
plateau interiors, where wind erosion and dust production will then likely
increase because of the disappearance and destruction of a protective vegetation
cover (e.g, Wolfe and Nickling, 1993). Such a scenario may lead to a local
negative feedback cycle in which air temperatures along plateaus may be lower
than expected, because of increased albedo (e.g., IPCC, 2007; Seinfeld and Pandis,
2012). Corresponding observations have been made concerning high
atmospheric aerosol concentrations in China, where a cooling of air
temperatures in response to high atmospheric dust concentrations is observed
(e.g., Menon et al., 2002; Qian et al,, 2004). The second effect of a projected
increase in aridity along plateaus will be the potential for more frequent
convective hydrometerological extreme events. As highlighted in Chapter 3,
deep-convective storms develop in semi-arid basins along the Eastern Cordillera
of Argentina. These environments may foster excessive heat storage, which in
turn fuels deep convection. If arid landscapes and environments will expand due
to synergistic climatic and tectonic processes, the number of convective storms
can be expected to increase and will lead to greater, event-based fluvial runoff

and erosion.

5.2. Outlook for future studies

The fields of arid landscape geomorphology, paleoecology, and Earth surface
processes have experienced a revival in recent years as new analytical
techniques such as cosmogenic °Be-dating and stable isotope applications to
paleohydrology have opened up new possibilities to study complex

environmental history (e.g., Ruszkiczay-Riidiger et al., 2011; Sachse et al, 2012).
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In the context of these new developments, the results presented in chapter 2 are
the first quantitative wind-erosion estimates using cosmogenic 1°Be-dating. As
such, this is a promising approach that can be applied to other arid, low-relief
landscapes that are impacted by high-speed surface winds. With more
quantitative wind-erosion data it will be possible to redefine global sediment
fluxes more rigorously (Koppes and Montgomery, 2009). This is particularly
important in efforts to better understand the links between sediment sources
and sinks for the reconstruction of paleoenvironmental and climatic conditions
using loess records (e.g., Porter, 2001; Yaofeng et al., 2008; Kapp et al,, 2011;
Pullen et al,, 2011). The establishment of a source-to-sink relationship, however,
has been hampered by a lack of appropriate analytical methods resulting in
limited analyses, which are often focused on chemical composition (e.g., Ding et
al, 2001; Sun, 2002). Cosmogenic 1°Be-dating in wind-eroded landscapes can
also help to directly identify the dust sources and quantify wind-erosion rates. At
present, many loess records have received little attention, such as the Andean
loess record in the Pampean foreland in Argentina (e.g., Smith et al., 2003). For
this record, there exists several hypotheses from where the loess might have
originated and under what atmospheric conditions it was deposited (e.g., Smith
et al.,, 2003; Gaiero et al.,, 2013). Further cosmogenic work on yardang fields and
wind-abraded bedrock surfaces on the Altiplano-Puna Plateau will help to
elucidate wind-erosion rates and dust production in these areas to establish a
more reliable source-to-sink relationship (e.g., Greene, 1995; Goudie, 2007; de

Silva et al., 2010; Gaiero et al,, 2013).

With respect to the water stable isotope studies along and across the south-
central Andes (chapter 3), the reduction or masking of the stable isotope-altitude
effect in convective regions could be shown to play a significant role for water
stable isotope values in precipitation in other regions as well. These include the
Karakorum, NW India, and Pakistan (e.g., Poage and Chamberlain, 2001; Houze,
2012). A similar morphotectonic setting and atmospheric conditions exist in
these regions and deep-convective storms are frequent (e.g., Houze et al., 2012).

Future paleoelevation studies in these regions and elsewhere should take these
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issues into consideration. In the South American context, the role of deep-
convective storms along strike of the eastern Andes should be systematically
analyzed in future studies. Such an analysis of stable isotopes in precipitation
spanning southern Argentina to regions as far north as Colombia would be
greatly supplemented by several recently published stable isotope data sets
(Gonfiantini et al., 2001; Saylor et al., 2009; Hoke et al., 2013). The combination
of new and published data would help to identify and understand the complex
controls on isotope fractionation and its relationship with topography, climate,
and atmospheric conditions. Eventually, such an analysis might furnish
information on the controlling atmospheric conditions, i.e. convection, that
would be reflected in stable isotope paleorecords. Only then, changes of oxygen
and hydrogen isotopes retrieved from ancient records would provide an
unambiguous view of topographic changes through time. Recently analyses of
atmospheric water-vapor isotope composition in South America using satellite-
data products show that modern atmospheric water vapor does not follow
simple Rayleigh fractionation, because the reported vapor-isotope composition
is too enriched (Worden et al., 2007; Galewsky et al., 2014; Samuels-Crow et al,,
2014). The reasons for such enriched atmospheric water vapor are still debated.
In general, these studies lack the systematic linkage of the stable isotope
composition in atmospheric water vapor and stable isotope composition in
precipitation. Open future questions in interdisciplinary studies of this subject
therefore are: does the enriched atmospheric water vapor result from
convection, and are the enriched isotope values in convective regions a result of
enriched atmospheric water vapor? Again, if we are ultimately interested in
understanding long-term stable isotope records in the context of surface uplift, it
is important to study present-day conditions with several caveats that prevent us

from over-interpreting paleoisotope data sets.

The high-resolution Angastaco Basin stable isotope record (chapter 4) was
derived from a single basin along the eastern flanks of the Andean Puna Plateau.
There is, however, an ambiguity as to how representative the information from a
point source (basin) is for the broader regional context of the eastern flanks of

the plateau. Fortunately, there are many basins along the Eastern Cordillera,
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Sierras Pampeanas and Altiplano-Puna Plateau that expose thick Miocene
sedimentary sequences. In light of my studies in the Angastaco Basin and the
results that I was able to obtain from organic materials in Miocene sediments,
similar sedimentary sequences in the Toro and Humahuaca basins as well as
basins farther north in Bolivia or on the Puna Plateau (e.g., the Hombre Muerto,
Pocitos, and Pastos Grandes basins) would be excellent locations for future
multi-proxy stable isotope studies to identify environmental changes associated
with plateau uplift (e.g., Vandervoort et al., 1995; Echavarria et al,, 2003; Hilley
and Strecker, 2005; Mulch et al., 2010).

5.3 Conclusion

In light of the spatial and temporal environmental changes along and across the
eastern flanks of the Altiplano-Puna Plateau and wind erosion processes in Tibet,

I reached the following conclusions:

(1) °Be-erosion rates on wind-eroded bedrock surfaces in the Qaidam Basin
range from 0.05 to 0.4 mm/yr, with the majority of these values clustering at
0.12 mm/yr. These rates are comparable to global estimates of wind erosion

rates and highlight their general significance for arid landscape evolution.

(2) The reduced importance of fluvial erosion in many semi-arid low-relief
environments within or at plateau margins, as demonstrated in the case of the
Qaidam Basin, suggests that wind erosion may outpace rates of fluvial erosion.
These findings reveal that from a surface-process perspective, these
environments are far from being stable, contradicting a long-held paradigm that

arid, low-relief environments have generally low erosion rates.

(3) There exists a large difference regarding how deflation and abrasion operate.
Abrasion is the process of physical erosion of the underlying bedrock due to
particle impacts, and corresponds to erosion rates several orders of magnitudes
lower than deflation, which requires only the motion of sediment grains. This

relationship is governed by the bedrock strength of the material being eroded.
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(4) Precipitation in the arid sectors along the Andes (22-28° S) is low. However,
the precipitation that does fall is mainly related to deep-convective storms that

are related to day-time heating of intermontane basins.

(5) Hydrological changes and aridification can occur rapidly (~0.5 Ma) along

plateaus as moisture availability is modulated by uplifting orographic barriers.

Regarding processes and characteristics of humid plateau flanks, I have reached

the following conclusions:

(1) The eastern, windward flanks of the Altiplano-Puna Plateau and the Eastern
Cordillera of the south-central Andes receive large amounts of precipitation,
decreasing westward with rising topography. Here, the stable isotope-altitude
effect in fractionation is expected; however, this pattern is not observed in water
stable isotopes of oxygen and hydrogen, and other patterns emerge in the Andes
between 22 and 28° S. In this environment, convective storms reduce or mask

the depletion of heavy isotopes in precipitation as a function of elevation.

(2) In regions with convective rainfall, I emphasize the need to carefully assess
the modern oxygen and hydrogen relationships before attempting to reconstruct

plateau paleo-elevations, environmental conditions, climate, or topography.

(3) The 63Cwax of plant material contained in Neogene sediments in NW
Argentina suggests sustained C3 vegetation along former humid plateau flanks

that were superseded by arid environments following orographic barrier uplift.

(4) The large inferred leaf-water isotope enrichment of >50 %o in the Mio-
Pliocene strata of the Angastaco Basin of NW Argentina is similar to the present-
day difference between the humid Amazon rainforest and semi-arid
intermontane basins in the arid orogen interiors. This exemplifies the large
environmental transformations that typically affect laterally and vertically

growing plateau margins.
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Appendix A

Supplementary material to chapter 2

Sampling sites
Sample site 4-16-09-2

Sample site 4-17-09-2 (70°-cliff face)

E | N
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Sample site 4-18-09-2

Sample site 4-21-09-2
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Sample site 4-23-09-2

Sample site 4-24-09-1 (Granite sample)

Letter in the upper left corner indicates view
direction: S- south; W- west; N- north; E- east.
Red dot shows the sampling location for
cosmogenic °Be dating.
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Sample site 4-24-09-2
W S

Sample site 4-26-09-1 (70°-cliff face)

—

N

Letter in the upper left corner indicates view
direction: S- south; W- west; N- north; E- east.
Red dot shows the sampling location for
cosmogenic "°Be dating.
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Sample site 4-26-09-2

Sample site 4-26-09-3 (Yardang top)
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Sample site 4-27-09-1

Letter in the upper left corner indicates view
direction: S- south; W- west; N- north; E- east.
Red dot shows the sampling location for
cosmogenic °Be dating.

Fig. A.1. Overview of sampling sites for 19Be cosmogenic nuclide dating
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Appendix B

Supplementary material to chapter 3

Temperature lapse rate analysis

The MOD11C2 night land surface temperatures for DJF, averaged over 12 years
from 2000-2012, was used for temperature-lapse rate analyses (Wan et al,
2003). The raster resolution of this dataset is 5.5 km and all analyses were
performed using ArcGIS software (Version 10 by ESRI) and MATLAB software
(Version R2013b by MathWorks). Sampled catchments were extracted from the
DEMs (AsterDTM 30x30m) using ArcGIS’s watershed and pour-point function
where sample locations defined pour points. In MATLAB, temperature from the
MOD11C2 raster set was extracted for each catchment. Catchments with a
catchment size <10 km? were dilated to represent at least 4 pixels (ca. 20 km?) to
obtain a more appropriate local temperature gradient that better reflects the
atmospheric conditions above the catchment. Instead of using all temperature
data along a transect, this approach has the advantage to obtain a more
meaningful temperature-lapse rate along the sampled water transects. The
obtained data set was subdivided into elevations above and below 2000 m,
because the lapse rate below this elevation is following a drier adiabatic cooling
trend. Results for each transect are plotted in Fig. 3.7. Finally, we used the
obtained temperature lapse rates to calculate the starting input temperature (To)
for the thermodynamic Rayleigh condensation model by Rowley et al. (2001).
We obtained starting temperature input values for transect 1: 23.5 °C; transect 2:

22.9 °C; and transect 3: 21.7 °C.
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Stable isotope modeling

A numerical thermodynamic atmosphere model based on a Rayleigh adiabatic
condensation process was used to compare sampled stream-water data with
model predictions of rain-isotopic compositions with altitude (Fig. 3.1). Here, we
applied the numerical model from Rowley et al. (2001). A full mathematical
description of the model and all fractionation factors are found therein (Rowley
et al,, 2001). The model considered the simplest case of Rayleigh fractionation,
where the liquid phase formed by vapor condensation is removed from the
system by precipitation. We obtained the model starting parameters for
temperature from the MOD11C2 data (see above: temperature lapse-rate
analysis), the humidity starting values (RHo) where derived from the NCEP-
NCAR 1000 mbar re-analysis relative humidity (%) composition from 2008 to
2013 for DJF (Kalney et al, 1996). The obtained humidity starting values were for
transect 1: 85 % RH, for transect 2: 78 % RH, and for transect 3: 67 % RH. Model

results are presented in Figure 3.1 c-e.
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NCEP/NCAR Reanalysis
1000 mb Vector Wind (m/s)
Dec to Feb: 1979 to 2012
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Fig. B.1.

NCEP-NCAR 1000 mbar reanalysis winds (m/s) composition from 1979 to 2012
(Kalney et al, 1996). Image provided by the NOAA/ESRL Physical Sciences
Division, Boulder Colorado from their web site at

http://www.esrl.noaa.gov/psd/.
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NCEP/NCAR Reanalysis
500 mb Vector Wind (m/s)
Dec to Feb: 1979 to 2012
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Fig. B.2.

NCEP-NCAR 500 mbar re-analysis winds (m s-1) composition from 1979 to 2012
(Kalney et al, 1996). Image provided by the NOAA/ESRL Physical Sciences
Division, Boulder Colorado from their web site at

http://www.esrl.noaa.gov/psd/.
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Fig. B.3.

(A) 8180 versus 6D values shape-coded for different water sources (lake/playa,
spring, rain, tap and snow). Solid black line represents the global meteoric water
line (GMWL) and dashed line is the local meteoric water line (LMWL). Note the
strong evaporation trend of Puna lakes and playas. Snow samples are enriched in
deuterium indicating minor snow-sublimation at high altitude. (B) 6180 versus

6D values of stream-water data (coded for sampling year and transect). Solid line
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is the GMWL and dashed lines represent the LMWL for each transect and
goodness of each fit. At first glance all stable isotopes from stream waters are
following the same trend, as they all have similar starting 680 and &D
compositions, however, there is a clear divergence in the amount of isotopic

depletion of 180 and D-isotopes from north to south.

A

Y

mospheric inversion m B Atmospheric inversion (foreland)

Turbulent upwelling
_—

Fig. B.4.

Example of the development of deep-convective storms along the south-central
Andes during a sampling campaign in January 2011 in the Santa Maria Basin

(Sierras Pampeanas). All pictures were taken within 24 hours.
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Table B.1. Water stable isotopes results table (continued)
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Appendix C

Supplementary material to chapter 4

Sampling and stratigraphic profile logging

Samples for leaf-wax and pedogenic carbonate oxygen, hydrogen, and carbon
stable isotope analyses were collected during two field seasons in 2011 and
2013 from the sedimentary basin record of the Angastaco Basin (~25.5°S).
Sampling and section measurements (thickness and bedding orientation) were
performed along an E-W transect in exposed successions of the Mio-Pliocene
Angastaco, Palo Pintado, and San Felipe formations along the Rio Calchaquies
near the town of Santa Rosa (Fig. 4.1). We focused our attention on organic-rich
layers of the Angastaco basin strata with abundant paleosoils and lacustrine
sediments intercalated with volcanic ash deposits. Overall, 66 leaf-wax samples
and 64 pedogenic carbonate samples were collected from paleosoils, overbank
deposits and lacustrine sediments. Our aim to collect equidistant samples was
limited by suitable organic-rich material or soil-carbonate horizons for analysis.
However, whenever possible, well-consolidated nodules were sampled at least
30 cm below paleosoil horizons. Sampling intervals for leaf-wax samples vary
between 20 to 150 m, with higher sampling rates in sections with evidence for
more humid depositional environments. Samples collected north and south of
the measured stratigraphic profile were projected into the stratigraphic log, as

individual beds can be traced along strike on satellite imagery.

Sample preparation for leaf-wax 8§Dwax and 813Cwax analyses and

measurement.

Samples were crushed using DCM-cleaned (dichloromethane) equipment and
pulverized (ca. 40 to 60 um) in a shatterbox with agate grinding chamber.

Soluble organic matter was extracted from samples (100 g) at the University of
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Potsdam using an accelerated solvent extractor (ASE350, Dionex Crop.,
Sunnyvale, USA) with a dichloromethane/ methanol mixture of 9:1 at 100°C and
1500 psi. Total extracts of three 18-minute cycles were captured in 250 ml
bottles, later concentrated to 4 ml in a Turbovap, and then separated on silica gel
using a solid phase extraction (SPE). SPE-columns preparation included the use
of 1.5 g of silica gel (0.040-0.063 mesh; Alfa Aesar, Ward Hill, USA) filled into 6
ml glass columns (Macherey-Nagel, Diiren, Germany). Columns were cleaned
with three times the column volume of acetone and DCM and then dried
overnight at 60°C. The column was again flushed with three times the column
volume of acetone, DCM, and hexane prior to transferal of the total lipid extract
onto the column. n-Alkanes and alcohols were eluted in 15 ml hexane and DCM,
respectively, and the remaining substances were flushed with 15 ml methanol.
Two out of three separated fractions were stored for later analysis. The
remaining n-alkane fraction was treated with 6 pg 5a-androstane standard for
gas chromatographic quantification. The identification and quantification of
individual compounds was performed using a gas chromatograph with a coupled
flame ionization and mass-selective detector (GC-FID/MSD Agilent 7890A GC,
5975C MSD, Agilent Technologies, Palo Alto, USA) flushed with helium carrier
gas. Temperatures in the GC oven were programmed to increase at a rate of
12°C/min starting from 70°C to 320°C at which temperatures were held constant
for 21 min. The PTV injector had a split ratio of 5:1 at an initial temperature of
70°C. The injector was heated up to 300°C at a programmed rate of 7.2°C/min
and held constant at this temperature for 2.5 min. The n-alkane FID-peak areas
were compared with the previously added 5a-androstane standard from which
n-alkane concentrations were calculated. The n-alkane concentrations are
reported as pg per gram dry sediment. In addition the average chain-length

(ACL) and the carbon preference index (CPI) were calculated in Mathlab®.

For all samples 6Dwax and 06!'3Cwax were measured using a coupled gas
chromatography-isotope ratio mass spectrometer (GC-IRMS) Delta V Advantage
(ThermoFisher Bremen, Germany) at the University of Potsdam. The n-alkane
fractions were dried and concentrated to 200 pg/pl per compound in hexane for

6D measurements. The n-alkane fraction was injected (1 pl) into an TRACE 1310
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Gas Chromatograph equipped with an Agilent DB-5 column, 30 m x 0.25 mm x 25
um film. The injector was operated in splitless mode at 300°C and the oven was
held at 70°C for 2 min. The oven was heated at 15°C/min until 150°C, and then
heated with 5°C/min to 320°C. The final temperature was held for 10 min. The
column effluent was transferred via a ConFlo IV interface (ThermoFisher,
Bremen, Germany) into an isotope ratio mass spectrometer after conversion to
Hz in a high-temperature oven at 1420 °C. In general, triplicate analysis of 25
samples was performed, however, for 31 samples we performed only duplicate
analysis. All results are reported using the conventional delta notation in permil
(%o0) units. 8D values were corrected using a calibrated and known standard
mixture of n-C16 to n-C3o alkanes obtained from the Biogeochemical Laboratories
of the University of Indiana (As, A4 and As) as well as a concentration depended
standard mixture (Bg, B3). A linear regression was produced using the known vs.
measured values of the A4 and As standards, having a linear regression slope of 1
+ 0.021 for all analyzed standards. Three standards were measured after every
sixth to ninth injection, where an As.s standard was measured in the beginning
and at the end and a B standard in the middle of each sequence. The Hs* factor
was determined at the start and end of the sequence and was very robust over
the measurement period at 4.4 *+ 0.25 (Hilkert et al, 1999). The analytical
standard deviation for all single measurements was typical better than + 3%o
(Table C.1). We report averaged sample duplicate and triplicate measurements
with a standard deviation of * 5%o that represents the total variability in all
measured n-alkane standard mixtures of the As.s standards and is more than the

analytical standard deviation of each single measurement of + 3%o.

613Cwax values were measured using the same fractions used for §Dwax. The n-
alkane fractions were concentrated to 60 pg/pl in hexane for 613C
measurements. The same instrumental setup (GC-IRMS) and temperature
programming was used as for the §13C measurements, only the oxidation oven
was run at a lower temperature of 960°C. Duplicates were measured for each
sample and a CO; gas with known isotopic composition was used as reference
gas. The same n-alkane standard mixtures (As.s and Bz standard) were used as

for 6D measurements with the same standard setup in the measured sequence.
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Only duplicate analysis for each sample was performed. The standards were
used to correct the analyzed samples to Vienna Standard Pee Dee Belemnite
scale (VPDB). A Linear regression was produced using the known vs. measured
values of the A4 and As standards and linear regression had a slope of 1 * 0.14 for
all analyzed standards. The results are reported in delta notation in permil (%o).
The analytical precision of each single measurement had a typical standard
deviation of + 0.5%0. We report all measured samples with a standard deviation
of +1%o0, which represents the total variability in all measured n-alkane standard
mixtures of the Asz.s standards and is more than the analytical standard deviation
of £0.5%o. All lipid-biomarker n-alkane data of 6D and 613C and ACL, CPI and
cross-correlation plots are reported in Table C.1; Figs. C.2-C.3 and 4.2. ACL, CPI

and cross-correlation plots are reported in Figs. C.4-C.6.

Sample preparation for soil-carbonates 8180 and 8§13C analyses and

measurement.

In total 64 pedogenic carbonates were selected from the Angastaco Basin,
ranging from ~10 to 4 Ma. Pedogenic carbonate nodules were cut in half and
bulk carbonate powder was extracted with a diamond tip dental drill. 100 to 180
ug untreated pedogenic carbonate was reacted with 98% H3PO4 for 90 min at
70°C in continuous flow mode using a Thermo MAT 253 mass spectrometer
interfaced to a Thermo GasBench II at the Goethe University-BiK-F Joint Stable
I[sotope Facility Frankfurt. Analytical precision was typically +0.1%o for §180 and
+0.2%o for 613C based on replicate measurements of international and in-house
standards. Stable isotope values are presented with respect to VSMOW (680)
and PDB (613C). All pedogenic carbonates 6180 and §13C values are reported in
Table C.2 and Figure 4.2.

Reconstruction of lipid biomarker, pedogenic-carbonates, and volcanic

glass source water.

There has been an increasing effort to develop an empirical equation instead

linking isotope depletion in lipid biomarker n-alkanes to source water through
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apparent fractionation (Sachse et al,, 2012; Garcin et al., 2012) (Fig. C.8). We use
the empirical equation 8Dwaxsw = 1.08 x 8Dwax — 140 from Garcin et al. (2012),
derived from along a large temperature, rainfall and moisture gradient in
tropical Africa (Ghana), to reconstruct lipid-biomarker source water (SW). We
prefer this equation because a global compilation by Sachse et al. (2012) is
dominated by mid-latitude data underrepresenting semi-arid and arid regions.

Reconstructed source waters are presented in Table C.1 and Figs. C.3 and C.9.

Pedogenic carbonates usually form in soil depths of ~20 to 30 cm as the result of
evaporating surface water. As calcite forms it records a signal of 6180 and 613C
stable isotopes. The 6180 signal reflects the isotopic composition of the surface
water and the 613C signal has been interpreted to reflect bioproductivity, CO:
plant respiration or C4/C3 vegetation type. The calcite formation and the 8180
isotope values are strongly controlled by temperature-dependent isotope
fractionation between water and carbonate (e.g., Cerling and Quade, 1993; Liu
and Ku, 1997). Therefore, for the reconstruction of paleosurface water the
carbonate formation temperature needs to be known. Here, we use
reconstructed clumped-isotope temperatures from Carrapa et al. (2014) for
deciphering the temperature-dependent isotope fractionation using the
fractionation factor of Kim and O’Neil (1997). Calculated values of the 6180carb sw
are reported in Table C.2 and Figs. 4.3 and C.9. For comparison with 8Dsw of
lipid-biomarker n-alkanes and volcanic glass shards the pedogenic carbonate
8180carb sw were converted to 8Dcarb sw using the local meteoric water line of 8D =
8.44*6180 + 15.91 for 26°S from Rohrmann et al. (2014) (Table C.2 and Figure
4.3 and C.9).

After deposition rhyolitic glass incorporates large amounts of meteoric water (3
to 8 wt%) over a time frame of 5 to 10 ky (Friedman et al., 1993; Mulch et al,
2008; Cassel et al, 2009). The final 6Dvoc signal represents an integrated
meteoric water signal during hydration over geological time scales. To compare
O0Dvolc with other isotope proxy materials, e.g. lipid-biomarker and soil-
carbonates, we converted the 6Dvolc signal to ancient meteoric water (source

water), using the equation 6Dsw= 1.0343 [1000 + 6Dyolc] - 1000 by Friedman et
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al. (1993). Converted meteoric-water and 6Dvolc sw values are presented in Table
C.3 and Figs. 4.3 and C.9. A time series is constructed using the reconstructed
source waters with a time resolution of 200 k and used for calculating the source
water differences in figure 4.3. All isotope relationships between source waters
and the single isotope proxies and evaporation, transpiration and

evapotranspiration are schematically sketched in figure C.8.
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Table C.1. Lipid biomarker n-alkane results and source water reconstruction
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