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ANALYTIC SEMIGROUPS OF HOLOMORPHIC

MAPPINGS AND COMPOSITION OPERATORS

MARK ELIN, DAVID SHOIKHET, AND NIKOLAI TARKHANOV

Abstract. In this paper we study the problem of analytic exten-
sion in parameter for a semigroup of holomorphic self-mappings of
the unit ball in a complex Banach space and its relation to the
linear continuous semigroup of composition operators. We also
provide a brief review around this topic.
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Introduction

For a continuous semigroup of bounded linear operators on a complex
Banach space the problem of analytic continuation in the parameter
goes back to the pioneer works [HP57] and [Yos65]. In these works some
criteria of analytic continuation were established along with estimates
of those sector in the complex plane to which the analytic continuation
is possible. This study was developed by many mathematician (see for
instance [BB67, Paz79, Kan10]). The recent paper [ACP15] presents
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2 M. ELIN, D. SHOIKHET, AND N. TARKHANOV

also specific criteria for analytic continuation of a continuous semigroup
of composition operators.
On the other hand, the linear semigroup of composition operators

is induced by a nonlinear semigroup of holomorphic self-mappings of a
domain in an underlying complex space. The relations between those
semigroups and the topological structure of their domains play a crucial
role in the study of analytic continuation.
Although the nonlinear semigroup theory of holomorphic self-map-

pings of a bounded convex domain in a complex Banach space was
developed very intensively in the last thirty years, a little has been
known of analytic continuation of such semigroups in a complex pa-
rameter. This problem is very well motivated by diverse applications
in geometric function theory, such as the radii problem for starlike and
spirallike mappings, Bloch constants for locally biholomorphic map-
pings, etc., and the continuous Newton method for solving algebraical
or more general nonlinear equations, see [BLRS15]. Specifically for a
generated nonlinear semigroup of holomorphic mappings there arises an
additional problem of studying local analytic continuation in a complex
parameter. More precisely, if the semigroup generator has a singular
point inside the domain, then there exists a family of subdomains which
are invariant under semigroup action, e.g., hyperbolic balls around the
critical point. It turns out that although there are semigroups which
have no analytical continuation in parameter, for an invariant subdo-
main, all semigroups can be continued analytically into a sector in the
complex plane with vertex at the origin. The paper is aimed in studying
this phenomenon.
It should also be mentioned that our approach is based mostly on

analytic continuation in parameter of the so-called nonlinear resolvent
function which is of independent interest by itself. We show that the
existence domain of the resolvent which preserves some subdomain is
much wider than the domain of analyticity of the semigroup induced
by using the nonlinear exponential formula.
Returning to linear continuous semigroups of composition operators,

we apply our results to study the problem of analytic continuation
for suitable Banach spaces of holomorphic self-mappings on shrinking
invariant subdomains.

1. One-parameter semigroups of holomorphic

self-mappings

1.1. Analytic semigroups. Let D be a domain in a complex Banach
space X . A mapping f : D → X is said to be holomorphic in D if the
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Frechét derivative f ′(x) exists at each point x ∈ D as a bounded linear
operator on X .
The set of all holomorphic mappings of D to X whose values belong

to a set V ⊂ X is denoted by Hol(D, V ). For V = D we will write it
simply Hol(D). Note that Hol(D) is a unital algebra with respect to
the composition operation.

Definition 1.1. A family S = {F (t)}t≥0 in Hol(D) is called a one-
parameter semigroup on D if
1) F (t+ s) = F (t) ◦ F (s) for all s, t ≥ 0;
2) F (0) = I, where I(x) := x for each x ∈ D.

Such a semigroup is said to be continuous at the point t = 0 if

lim
t→0+

F (t) = I

pointwise inD. If this limit is achieved uniformly in a neighbourhood of
each point of D, then one says that the semigroup is locally uniformly
continuous in D.
Given a family S = {F (t)}t∈R in Hol(D) satisfying both 1) and 2)

for all real s and t, one sees easily that each Ft is a biholomorphic
mapping (automorphism) of D whose inverse is F−t. In this case S
bears actually the structure of a continuous one-parameter group of
automorphisms of D.
From the composition rule it follows immediately that if a semigroup

is continuous at t = 0 then it is continuous at each point t > 0, i.e.,
F (t + s) → F (s) pointwise in D, as t → 0+. Moreover, it is known
that if D is a bounded convex domain in X and {F (t)}t≥0 a locally
uniformly continuous semigroup in Hol(D) then it is also differentiable
in t ≥ 0 and satisfies the Cauchy problem

{

d

dt
(F (t)x) = f(F (t)x),

F (0) = I,
(1.1)

where

f(x) = lim
t→0+

1

t
(F (t)− I)x

exists and belongs to Hol(D,X) (see [BP78] for the one-dimensional
case and [Aba92], [RS96, RS05] for the case of arbitrary Banach spaces).
This mapping f : D → X is called the (infinitesimal) generator of the
semigroup.
Denote by G(D) the set of all holomorphic semigroup generators on

D. If D is a convex domain, the set G(D) is a real cone in Hol(D,X),
while the set of all holomorphic group generators on D is a real Banach
algebra (see [RS96]).
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Various characterizations and parametric representation of the class
G(D) are established in [BP78, Aba92, AERS99] and [RS97a] (see also
the results presented below).
However, even continuous semigroups of bounded linear operators in

X need not be locally uniformly continuous on X . Hence, they may
fail to be differentiable at each point of X . In particular, this is mostly
the case for the one-parameter semigroups of composition operators to
be considered below.

Definition 1.2. A set S = {F (t)}t∈Λ indexed by a parameter t in a
(nonempty) sector Λ = {| arg t| < α} of the complex plane is said to be
a one-parameter analytic semigroup if the composition rule holds for
all s, t ∈ Λ and the mapping (x, t) 7→ F (t)x is jointly holomorphic in
D × Λ.

For a family {F (t)} of nonlinear mappings of the domain D paramet-
rised by real or complex parameter t ∈ Λ, we set

Ft(x) := F (t)x

whenever (x, t) ∈ D × Λ.

1.2. The one-dimesional case. First we consider the one-dimension-
al case and quote a familiar formula of [BP78] which gave a great push
in the development of semigroup theory [Aba92, Gor93, RS96, CD05,
CDP06, ES10], Loewner’s evolution equation theory [BCD10] and the
theory of semigroups of composition operators. Write D for the unit
(open) disk in C.
A natural question is whether, given a holomorphic function f in D,

there are conditions which insure that f ∈ G(D). The paper [RS96]
provided a simple criterion for a special case. Namely, if f has a con-
tinuous extension to the closure of D, then f is a semigroup generator
in D if and only if ℜ(f(z)z) ≤ 0 for all z ∈ ∂D. However, there are
holomorphic functions on the disk which have no continuous extension
to D.

Theorem 1.3. For a holomorphic function f in D, the following are
equivalent:
1) f ∈ G(D).
2) There exists a unique point a ∈ D such that

f(z) = (z − a)(az − 1)p(z), (1.2)

where p is a holomorphic function in D with nonnegative real part.
3) f admits the representation

f(z) = c− cz2 − zq(z), (1.3)
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where c ∈ C and q is a holomorphic function in D with nonnegative
real part. Moreover, f generates a group of automorphisms of D if and
only if ℜq(z) ≡ 0.

As mentioned, formula (1.2) is due to [BP78]. Representation (1.3)
was established in [AERS99].
The equivalence of 1) and 3) implies that the set G(D) is a real

cone, i.e., it survives under multiplication by nonnegative real numbers.
Furthermore, any group generator inD is actually a polynomial of order
at most 2 which has the form f(z) = c− cz2 − ırz with complex c and
real r.
The following assertion combines and generalizes those criteria which

are established in [Aba92, ARS99] and [RS97a].

Theorem 1.4. Suppose that f is a holomorphic function in the disk
D. Then f ∈ G(D) if and only if there is a constant λ ∈ [0, 1] with the
property that

ℜ(f(z)z) ≤ (1− |z|2)
(

λℜ(f(0)z)− (1− λ)
1

2
ℜf ′(z)

)

for all z ∈ D.

To prove the theorem we use the following result of [AERS99].

Lemma 1.5. Let q be a holomorphic function in D. Then ℜq(z) ≥ 0
if and only if there is a nonnegative function χ on [0, 1) satisfying

ℜ (zq′(z) + χ(|z|)q(z)) ≥ 0

for all z ∈ D.

Proof of Theorem 1.4. Write f in the form f(z) = c− cz2 − zq(z) for
z ∈ D, where q is a holomorphic function in D. By Theorem 1.3, we
shall have established the lemma if we prove that the inequality in our
assertion just amount to saying that ℜq(z) ≥ 0. To this end, we note
that it is equivalent to

ℜ
(

(1− λ)(1− |z|2) zq′(z)
)

+ ℜq(z)
(

(1− λ)(1− |z|2) + |z|2
)

≥ 0

for some λ ∈ [0, 1]. If λ = 1, then the required inequality ℜq(z) ≥ 0
follows immediately. If λ < 1, then we obtain the same inequality by
setting

χ(m) =
m2

(1− λ)(1−m2)
+ 1

in Lemma 1.5. �
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1.3. General Banach spaces. Appropriate nonlinear analogues of
the familiar Lumer-Phillips and Hille-Yosida theorems for holomorphic
mappings were first studied in [HRS00]. This paper shows also several
applications.
In this section we assume that D is a bounded convex domain in

a complex Banach space X , such that 0 ∈ D. Let X∗ stand for the
dual space of X . For a boundary point x ∈ ∂D, we denote by s(x) the
set of all linear functionals l on X which are tangent to D at x. In
other words, s(x) consists of those l ∈ X∗ which satisfy l(x) = 1 and
ℜl(y) ≤ 1 for all y ∈ D.
The concept of a numerical range was first introduced in [Har71] and

developed later in [HRS00].

Definition 1.6. Let f be a continuous mapping of D to X . By the
numerical range of f with respect to D is meant the subset of C given
by

V (f,D) = {l(f(x)) : l ∈ s(x), x ∈ ∂D}.
By the Hahn-Banach theorem, for each x ∈ X there is a functional

lx ∈ X∗ with the property that lx(x) = ‖lx‖ ‖x‖. On normalising lx one
obtains a functional whose norm is ‖x‖. Write x∗ for any functional
l ∈ X∗ satisfying ℜl(x) = ‖x‖2 = ‖l‖2. Such a functional x∗ is in
general not unique. However, if X is a Hilbert space, then the element
x∗ is unique and it can be identified with x, which is due to the Riesz
theorem.
Roughly speaking, by the dissipative mappings f : D → X are meant

those which satisfy ℜ 〈f(x), x∗〉 ≤ 0 for all x ∈ ∂D.

Definition 1.7. Let f : B → X be a continuous mapping of an open
ball with centre at the origin in X . We say that f is dissipative on B
if

lim sup
r→1−

(

sup
λ∈V (fr ,B)

ℜλ
)

≤ 0,

where fr(x) := f(rx) for x ∈ B and 0 ≤ r < 1.

In view of their numerous applications, dissipative mappings consti-
tute an important class of mappings in complex Banach spaces. We
are now in a position to formulate nonlinear versions of the theorems
mentioned at the beginning. For more details we refer the reader to
[RS05] (see also [RS97a]).

Theorem 1.8. Assume that D is a bounded convex domain in a com-
plex Banach space X, and let f : D → X be a holomorphic mapping.
Then there exists a real number λ0 with the property that the mapping
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f−λ0I is dissipative on D if and only if, for each λ > λ0, the resolvent
equation (λI − f)(x) = (λ − λ0)y has a unique solution x ∈ D for all
y ∈ D.

Thus, the inverse R(λ, f) := (λI − f)−1 (λ − λ0)I is a well-defined
self-mapping of D for each λ > λ0. We call it the associate resolvent
mapping for f − λ0I. The factor (λ − λ0)I is really required, for oth-
erwise the associate resolvent mapping fails to be a self-mapping of D.
The latter property is needed to define its iterates. In the case of linear
operators λ can be placed before the operator, but not for nonlinear
mappings f .
For n = 1, 2, . . ., we write R(λ, f)n for the n -fold iterate of the self-

mapping R(λ, f) of D.

Theorem 1.9. Suppose D is a bounded convex domain in a complex
Banach space X, and let f : D → X be a holomorphic mapping on D.
Then, for f to be dissipative on D, it is necessary and sufficient that
its associate resolvent mapping R(λ, f) = (λI−f)−1 λI would exist for
all λ > 0 and be a holomorphic self-mapping of D (we take λ0 = 0).
Moreover, if S = {Ft}t≥0 is the semigroup generated by f , then the
exponential formula

Ft(x) = lim
n→∞

R
(n

t
, f

)n

(x)

holds for all x ∈ D, where the limit is achieved uniformly in a neigh-
bourhood of each point x ∈ D.

From Theorems 1.8 and 1.9 we conclude immediately that for holo-
morphic mappings of an open ball with centre at the origin in X the
concepts of a generator and a dissipative mapping are actually the
same.

1.4. The Schwarz-Pick type estimates. Let B be the open unit ball
with centre at the origin in a complex Banach space X , and let f be the
generator of a one-parameter continuous semigroup S = {Ft}t≥0 on B.
Suppose that a ∈ B is a null point of f , and assume that the derivative
A := f ′(a) is strongly dissipative in the sense that ℜ〈Ax, x∗〉 ≤ k ‖x‖2
for all x ∈ X , with a negative constant k. It follows that the spectrum
of the linear operator A lies strictly inside the left half-plane. In this
case, a is an attractive fixed point of the semigroup S and the linear
semigroup

F ′
t (a) = exp(tA)

converges to 0 uniformly on bounded subsets of X , as t → ∞ (see
[Sho01] and [RS96]). If assuming f(0) = 0, one establishes, by the
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familiar Schwarz lemma, the invariance condition ‖Ft(x)‖ ≤ ‖x‖ for
all x ∈ B and t ≥ 0. The fact that S is a continuous semigroup
generated by f leads actually to a more qualified estimate (see for
instance [Sho01]).

Theorem 1.10. Let f ∈ G(B) and S = {Ft}t≥0 be the semigroup
generated by f . Assume that f(0) = 0 and

k = sup
‖x‖=1

ℜ〈Ax, x∗〉 ≤ 0.

Then there is c ∈ [0, 1], such that

exp
(

kt
1+c‖x‖
1−c‖x‖

)

‖x‖ ≤ ‖Ft(x)‖ ≤ exp
(

kt
1−c‖x‖
1+c‖x‖

)

‖x‖,

exp(kt)
‖x‖

(1+c‖x‖)2 ≤ ‖Ft(x)‖
(1−c‖Ft(x)‖)2

≤ exp(kt)
‖x‖

(1−c‖x‖)2
(1.4)

for all x ∈ B and t ≥ 0.

Theorem 1.10 refines not only the upper bound estimate for ‖Ft(x)‖
in B but also the lower bound estimate. In fact, the inequlities in the
first line of (1.4) imply that, for each x ∈ B, the rate of convergence
of the semigroup to its interior Denjoy-Wolff point is exponential. The
estimates in the first line with c = 1 are established in [Gur75] and
those in the second line in [Por91].
The following consequence of Theorem 1.10 is useful in the theory

of starlike and spirallike mappings of complex Banach spaces (see for
instance [Por91, Gur75, ERS04, GK03]).

Theorem 1.11. Suppose that f ∈ G(B) and S = {Ft}t≥0 is the semi-
group in Hol(B) generated by f . If f(0) = 0 and f ′(0) = −I, then the
limit

h(x) := lim
t→∞

etFt(x)

is achieved uniformly in a neighbourhood of each point x ∈ B and it
satisfies the so-called Shröder functional equation

h(Ft(x)) = e−th(x). (1.5)

The Shröder equation shows readily that the mapping h is starlike
with respect to the origin. For a discrete type semigroup this map-
ping was introduced in [Kœn84], see also [ES10] and references therein.
Nowadays it plays a crucial role in the study of asymptotic behavior
of semigroups and applies to various problems of geometric function
theory. This mapping is often called the Kœnigs function associated
with the semigroup S.
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2. Semigroups of composition operators

2.1. Analytic extension of nonlinear resolvents and semigroups.

Our approach to analytic extension of semigroups of holomorphic self-
mappings is based on the following two results.

Theorem 2.1. Let S = {Ft}t≥0 be a semigroup of holomorphic self-
mappings of B generated by f : B → X with f(0) = 0 and f ′(0) = −I.
Then S extends holomorphically to a sector Λ = {| arg λ| < α ≤ π/2}
in C if and only if, for each ϕ satisfying |ϕ| < α, the mapping eıϕf is
dissipative on B.

As a matter of fact it is sufficient to verify if the mappings e±ıαf are
dissipative on B.

Proof. Assume that, for any ϕ satisfying |ϕ| < α, the holomorphic
mapping eıϕf is dissipative on B. By Theorem 1.9, for each t ≥ 0 one
can define the resolvent

R = R(1/t, eıϕf) = (I − teıϕf)−1

which is a holomorphic self-mapping of B. In other words, for each
λ = teıϕ in Λ, the equation x − λf(x) = y has a unique solution
x = x(y, λ) ∈ B for any y ∈ B. One defines R(y) := x(y, λ) for y ∈ B.
For each t > 0, the fixed point set of the resolvent R is known to
coincide with the null point set of the generator eıϕf (see for instance
[RS05]). Therefore, in our situation the value x(0, λ) just amounts to
zero for all λ ∈ Λ. On the other hand, the mapping g(·, y, λ) : B → X
defined by g(x, y, λ) = y − (x − λf(x)) for fixed (y, λ) ∈ B × Λ is
dissipative on B, since

ℜ〈g(x, y, λ), x∗〉 = ℜ〈y, x∗〉 − ‖x‖2 + ℜ〈λf(x), x∗〉 < 0

on each sphere ‖x‖ = r with ‖y‖ < r < 1. For each λ ∈ Λ, we get
g(0, 0, λ) = 0 and the operator g′x(0, 0, λ, 0) = −I +λf ′(0) = −(1+λ)I
is invertible. Hence it follows by a global version of the implicit function
theorem for holomorphic generators (see for instance [RS05]) that the
(unique) solution x(y, λ) = (I − λf)−1 of the equation g(x, y, λ) = 0 is
holomorphic in (y, λ) ∈ B × Λ. On applying Theorem 1.9 we deduce
that the limit

lim
n→∞

(

I − λ

n
f
)−n

(y) =: Fλ(y)

exists for all (y, λ) ∈ B× Λ and thus defines an operator family which
is analytic in λ ∈ Λ and satisfies

lim
t→0+

Fteıϕ(y) = y,

F(t+s)eıϕ = Fteıϕ ◦ Fseıϕ
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for all y ∈ B and ϕ with |ϕ| < α. The last equality means that Fλ
preserves the semigroup property on any ray λ = teıϕ in Λ. Since a
ray is a uniqueness set for analytic functions we conclude readily that
Fλ+κ = Fλ ◦ Fκ is actually valid for all κ and λ in Λ. Moreover, if
|ϕ| < α, then

eıϕf(x) = lim
t→0+

Fteıϕ(x)− x

t
or, what is the same,

f(x) = lim
λ→0

Fλ(x)− x

λ
,

λ converging to zero along the ray λ = teıϕ. The converse considera-
tions by using the last two formulas complete the proof. �

To formulate our next result we need the definition of a starlike
mapping. For mappings of the complex plane it was first introduced in
[Sta66, BK69].
A biholomorphic mapping h ∈ Hol(B, X) satisfying h(0) = 0 and

h′(0) = I is said to be strongly starlike of order α, where 0 ≤ α < 1, if
it fulfils

| arg〈(h′(x))−1h(x), x∗〉| ≤ (1− α)
π

2
(2.1)

for all x ∈ B \ {0}.
Theorem 2.2. Let S = {Ft}t≥0 be a semigroup of holomorphic self-
mappings of B generated by a mapping f : B → X satisfying f(0) = 0
and f ′(0) = −I. Then S can be holomorphically continued to a sector
Λ = {| argλ| < α(π/2)} in the complex plane with 0 < α < 1 if and
only if the Kœnigs function h associated with S is strongly starlike of
order α.

Proof. Differentiating (1.5) at t = 0, one sees that h and f are related
by the equation

h′(x)f(x) = −h(x).
So we get by (2.1)

| arg〈−f(x), x∗〉| ≤ (1− α)
π

2

whence

| arg〈−eıϕf(x), x∗〉| = |ϕ+ arg〈−f(x), x∗〉| ≤ π

2
.

Therefore, ℜ〈eıϕf(x), x∗〉 ≤ 0, which means that the mapping eıϕf is
dissipative. The converse arguments along with Theorem 2.1 complete
our proof. �
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By using the same techniques as in [AERS99] one proves the follow-
ing simple assertion.

Theorem 2.3. Let f : B → X be a holomorphic mapping. Then f is
dissipative on B if and only if, for any point x ∈ ∂B, the holomorphic
mapping g : D → C given by g(z) = 〈f(zx), x∗〉 is dissipative on the
disk D.

In the case of strongly convex domains in Cn, Theorem 2.3 holds
for the restriction to any complex geodesic (see Proposition 4.5 in
[BCD10]).

Lemma 2.4. Suppose f : B → X is a dissipative holomorphic mapping
satisfying f(0) = 0 and f ′(0) = −I. Then, for each ϕ ∈ [0, 2π), it
follows that

cosϕ r2
1+r2

1−r2 − 2r3

1−r2 ≤ ℜ〈−eıϕf(x), x∗〉 ≤ cosϕ r2
1+r2

1−r2 +
2r3

1−r2
whenever ‖x‖ = r < 1.

Notice that these estimates generalise in certain sense the classical
Harnack inequalities.

Proof. Fix x′ ∈ X with ‖x′‖ = 1 and define a holomorphic function p
on D by

p(z) = − 1

|z|2 〈f(zx
′), (zx′)∗〉

for z ∈ D. Since p is a Carathéodory’s function with p(0) = 1 and
ℜp(z) ≥ 0 for z ∈ D, it follows from the Schwarz lemma applied to the
function

z 7→ p(z)− 1

p(z) + 1
,

which maps D into D, that
∣

∣

∣

p(z)− 1

p(z) + 1

∣

∣

∣

2

≤ |z|2. Hence,

|p(z)|2 − 2ℜp(z) + 1 ≤ |z|2
(

|p(z)|2 + 2ℜp(z) + 1
)

or
|p(z)|2(1− |z|2)− 2ℜp(z) (1 + |z|2) ≤ |z|2 − 1,

implying

|p(z)|2 − 2ℜp(z) 1 + |z|2
1− |z|2 ≤ −1

and
∣

∣

∣
p(z)− 1 + |z|2

1− |z|2
∣

∣

∣

2

≤
( 2|z|
1− |z|2

)2

.
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Given any ϕ ∈ [0, 2π), we thus obtain
∣

∣

∣
eıϕp(z)− eıϕ

1 + |z|2
1− |z|2

∣

∣

∣
≤ 2|z|

1− |z|2 ,

showing that

− 2|z|
1 − |z|2 + cosϕ

1 + |z|2
1− |z|2 ≤ ℜeıϕp(z) ≤ 2|z|

1− |z|2 + cosϕ
1 + |z|2
1− |z|2 .

If x ∈ B is arbitrary, then we write x = zx′ with |z| = ‖x‖ = r to get
∣

∣

∣
〈−eıϕf(x), x∗〉 − eıϕ r2

1 + r2

1− r2

∣

∣

∣
≤ 2r3

1− r2
,

as desired. �

We now consider the following problem. Let f : B → X be a dissipa-
tive holomorphic mapping of the ball B with f(0) = 0 and f ′(0) = −I.
For a given r ∈ (0, 1), find the set of all complex numbers λ, such that
the associated resolvent (λI − f)−1(λI) is a well-defined holomorphic
self-mapping of Br. (Here, Br stands the open ball with centre 0 and
radius r in X .)
To this end, fix y ∈ Br and consider the resolvent equation

λx− f(x) = λy.

This equation has a unique solution in Br if and only if the mapping g
defined by g(x) = λy− (λx− f(x)) has a unique null point in Br. (By
abuse of notation, we write g(x) instead of g(x, y, λ).) By [HRS00], the
latter condition is satisfied if there is ϕ ∈ [0, 2π) depending on λ, such
that the inequality

ℜ〈eıϕg(x), x∗〉 < 0

holds whenever ‖x‖ = ‖x∗‖ = r.
We compute

ℜ〈eıϕg(x), x∗〉 = ℜ〈eıϕ(λy − λx+ f(x)), x∗〉
= ℜ〈eıϕλy, x∗〉 − ℜ〈eıϕλx, x∗〉+ ℜ〈eıϕf(x), x∗〉
≤ |λ〈y, x∗〉| − ℜ〈eıϕλx, x∗〉+ ℜ〈eıϕf(x), x∗〉.

Using Lemma 2.4 yields

ℜ〈eıϕg(x), x∗〉 ≤ r2
(

|λ| − ℜ(eıϕλ)− cosϕ
1 + r2

1− r2
+

2r

1− r2

)

.

So, the inequality ℜ〈eıϕg(x), x∗〉 < 0 is fulfilled provided that

cosϕℜλ− sinϕℑλ+ cosϕ
1 + r2

1− r2
> |λ|+ 2r

1− r2
. (2.2)



ANALYTIC SEMIGROUPS AND COMPOSITION OPERATORS 13

Set

a := ℜλ+
1 + r2

1− r2
,

b := ℑλ.
Now, for some fixed λ ∈ C, we wish to verify whether there is ϕ, such
that the inequality (2.2) holds. Since

a cosϕ− b sinϕ =
√
a2 + b2

( a√
a2 + b2

cosϕ− b√
a2 + b2

sinϕ
)

,

then, on denoting

cosα :=
a√

a2 + b2
,

sinα :=
b√

a2 + b2
,

we get

a cosϕ− b sinϕ =
√
a2 + b2 cos(ϕ+ α).

Choosing ϕ = −α we conclude that the inequality ℜ〈eıϕg(x), x∗〉 < 0
is fulfilled if

√
a2 + b2 > |λ|+ 2r

1− r2
.

Substituting the formulas for a and b we get

2ℜλ 1 + r2

1− r2
+ 1 >

4r

1− r2
|λ|

or
(

ℜλ+
1 + r2

2(1− r2)

)2

r2

(1− r2)2

− (ℑλ)2
1

4

> 1. (2.3)

The domain Ω in the plane of the complex variable λ, which is
bounded by the hyperbola (2.3), is illustrated on Fig. 1. Summarising
we arrive at the following theorem.

Theorem 2.5. Let f : B → X be a dissipative holomorphic mapping
on B satisfying f(0) = 0 and f ′(0) = −I. Then, for each r ∈ (0, 1) and
λ in the domain Ω given by (2.3), the nonlinear associated resolvent
R(λ, f) := (λI − f)−1λI is a well-defined holomorphic self-mapping of
the ball Br.
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Fig. 1. The domain Ω for r = 1/3.

It is easy to see that Ω contains a keyhole domain of the form Ω ′∪Ω ′′

where

Ω ′ =
{

λ ∈ C : |λ| < 1

2

1− r

1 + r

}

,

Ω ′′ =
{

λ ∈ C \ {0} : | argλ| < arcsin
1− r2

1 + r2

}

are a disk around the origin and a sector around the nonnegative semi-
axis in the complex plane, respectively.

Theorem 2.6. Under the hypotheses of Theorem 2.5, the associated
resolvent mapping R(λ, f) is holomorphic in λ ∈ Ω ′ ∪ Ω ′′.

Proof. The mapping g defined by g(x, y, λ) = λy−(λx−f(x)) depends
holomorphically on (x, y, λ) ∈ Br × Br × Ω . Since x = R(λ, f)(y) is a
solution of g(x, y, λ) = 0, we want to show that the mapping g(·, y, λ)
is dissipative on Br, i.e.,

sup
‖x‖=r

ℜ〈g(x, y, λ), x∗〉 < 0,

for each fixed pair (y, λ) ∈ Br × (Ω ′ ∪ Ω ′′).
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Indeed, if λ ∈ Ω ′, then on applying Lemma 2.4 with ϕ = 0 we get

sup
‖x‖=r

ℜ〈g(x, y, λ), x∗〉 ≤ sup
‖x‖=r

|λ|‖y − x‖r − r2
1− r

1 + r

<
1

2

1− r

1 + r
2r2 − r2

1− r

1 + r
= 0.

The point x = 0 is a regular point of the mapping g(x, y, λ), for
g′x(0, y, λ) = −(λ + 1)I. Hence it follows by a global version of the
implicit function theorem (see [KRS01] and [RS05]) that R(λ, f) is a
well defined holomorphic self-mapping of Br, which depends holomor-
phically on (λ, y) ∈ Ω ′ ×Br.
If λ ∈ Ω ′′ (and so λ 6= 0), then we rewrite the equation g(x, y, λ) = 0

in the form

x− κf(x) = y,

where κ = λ−1. Consider the mapping h(x, y, κ) = y − x + κf(x).
Since the sector Λ = Ω ′′ is invariant under the inversion λ 7→ λ−1, we
conclude that the equation x−κf(x) = y has a unique solution x ∈ Br,
for each y ∈ Br and κ ∈ Ω ′′, if the mapping e−ıϕf is dissipative on Br,
where ϕ = arg λ. This is the case if

sup
‖x‖=r

ℜ〈e−ıϕ|κ|f(x), x∗〉 ≤ 0.

From Lemma 2.4 it follows that

sup
‖x‖=r

|κ| ℜ〈e−ıϕf(x), x∗〉 ≤ |κ| r2
(2r(1− r cosϕ)

1− r2
− cosϕ

)

≤ 0,

for

|ϕ| = | arg λ| < arcsin
1− r2

1 + r2
.

To finish the proof we just notice that, for each y ∈ Br and κ ∈ Ω ′′, the
closure of the numerical range of the mapping h(·, y, κ) lies in the open
right half-plane. Hence it follows that the closure of the numerical
range of the linear operator h′x(R(1/κ, f), y, κ) and its spectrum lie
in the left half-plane, which means that this operator is continuously
invertible. By the implicit function theorem, R(1/κ, f) is holomorphic
in κ ∈ Ω ′′, as desired. �

Now, by using the exponential formula, Vitali’s theorem and the
uniqueness property of analytic functions, we get the following asser-
tion.
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Corollary 2.7. Let f : B → X be a dissipative holomorphic mapping
satisfying f(0) = 0 and f ′(0) = −I. Then, for any r ∈ (0, 1), the semi-
group {Ft}t≥0 in Hol(Br) generated by f can be analytically continued
to the sector

Λ =
{

λ ∈ C \ {0} : | arg λ| < arcsin
1− r2

1 + r2

}

.

Moreover, the family {Fλ}λ∈Λ forms a one-parameter analytic semi-
group in λ ∈ Λ which satisfies

lim
λ∈Λ
λ→0

Fλ(x) = x

uniformly in x on each smaller ball Br′ with r
′ < r.

Example 2.8. Let D be the unit open disk in the complex plane C.
Consider the mapping f ∈ Hol(D,C) given by f(z) = zp(z), where

p(z) =
z + 1

z − 1
.

Since ℜf(z)z < 0 for all z ∈ D, this mapping is dissipative. Solving the
Cauchy problem (1.1), we see that the semigroup (with real or complex
parameter λ) generated by f satisfies the equation

Fλ(z)

(1− Fλ(z))2
= e−λ

z

(1− z)2

for all z ∈ D. The problem reads as follows. Given any r ∈ (0, 1), find
a sector Λ := {ζ ∈ C \ {0} : | argλ| < α} depending on r, such that
|Fλ(z)| < r whenever |z| < r and λ ∈ Λ. To solve the problem we
need computations which seem to be fairly complicated. However, by
Corollary 2.7, we get an universal sector Λ with

α = arcsin
1− r2

1 + r2
.

Moreover, this estimate is sharp, i.e., if α < α′ < π/2, then the
semigroup Fλ cannot be analytically continued into the whole sector
{λ ∈ C \ {0} : | arg λ| < α′}. Because of Theorem 2.1, to prove this it
suffices to show that there is a point z0 with |z0| = r, such that

maxℜ(e±ıα′

f(z0)z0) = r2maxℜ(e±ıα′

p(z0)) > 0.

Since the function p maps the circle |z| = r onto the circle

w = −1 + r2

1− r2
+ eıϕ

2r

1− r2
,
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with ϕ ∈ [0, 2π), and cosα′ <
2r

1− r2
, we get

sup
ϕ∈[0,2π)

e−ıα
′

w = −1 + r2

1− r2
cosα′ + sup

ϕ∈[0,2π)

2r

1− r2
cos(ϕ− α′)

= −1 + r2

1− r2
cosα′ +

2r

1− r2

> 0.

This gives the desired conclusion.

As a matter of fact, on using Theorem 2.2 one can prove the following
more general assertion.

Theorem 2.9. Let f : B → X be a dissipative holomorphic mapping
with f(0) = 0 and f ′(0) = −I, and let {Ft}t≥0 be the semigroup in
Hol(B) generated by f . Assume that the Kœnigs function h associated
with the semigroup is strongly starlike of order α ∈ [0, 1). Then, for
each r ∈ (0, 1), the restriction of {Ft}t≥0 to the ball Br can be analyti-
cally continued to the sector Λ = {λ ∈ C \ {0} : | arg λ| < (α+β) π/2},
where

0 ≤ β ≤ β(r, α) :=
2

π
arcsin

(1− r2) cos
(

α
π

2

)

1 + 2r sin
(

α
π

2

)

+ r2
.

Proof. Given any x ∈ ∂B, consider the holomorphic functions on D

defined by

g(z) = 〈f(zx), x∗〉
and e±ıα(π/2)g(z). By Theorems 2.3 and 2.2, these three mappings
are dissipative on D. Therefore, by Theorem 2.1, it is sufficient to
show that, for each r ∈ (0, 1), the mappings e±ı(α+β) π/2g(z) are still
dissipative on rD.
Consider

p(z) = eıα(π/2)
g(z)

z

for z ∈ D. Since eıα(π/2)g(z) is dissipative, it follows that ℜp(z) ≤ 0.
Moreover,

p(0) = eıα(π/2)〈f ′(0)x, x∗〉 = −eıα(π/2).
For each z with |z| = r, the same calculations as in Lemma 2.4 show
that

∣

∣

∣
eıβ(π/2)p(z) + eı(α+β) π/2 + eıβ(π/2)

2r2 cos
(

α
π

2

)

1− r2

∣

∣

∣
≤

2r cos
(

α
π

2

)

1− r2
.
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Therefore,

ℜ
(

eı(α+β) π/2
g(z)

z

)

= ℜ
(

eıβ(π/2)p(z)
)

≤ − cos
(

(α + β)
π

2

)

+
2r cos

(

α
π

2

)

1− r2

(

1− r cos
(

β
π

2

)

)

.

Denote the right-hand side of this inequality by s(r, α, β). Suppose
temporarily that we have already solved the inequality s(r, α, β) ≤ 0
relatively to 0 ≤ β ≤ 1−α. Since the semigroup preserves each smaller
ball invariant, we conclude that the inequality s(r′, α, β) ≤ 0 is satisfied
for each r′ ≤ r. On solving it in r′ we conclude that r′ (and hence r)
does not exceed

r(α, β) :=
cosα

π

2
− sin β

π

2

cos(α− β)
π

2

.

Solving the inequality r ≤ r(α, β) relative to β we get our assertion.
The function e−ı(α+β) π/2g(z) can be considered similarly. �

If α = 0, then β(r, 0) =
2

π
arcsin

1− r2

1 + r2
and we arrive again at

Corollary 2.7 above.

2.2. C0 -semigroups. Assume that X is a complex Banach space. As
usual, we denote by L(X) the space of all bounded linear operators on
X . It is clear that each bounded linear operator T ∈ L(X) is holo-
morphic in X by the very definition. Therefore, setting D = X in
Definition 1.1, one can consider a semigroup of bounded linear opera-
tors {T (t)}t≥0 in L(X) ⊂ Hol(X).

Definition 2.10. A semigroup S = {T (t)}t≥0 in L(X) is said to be
strongly continuous at the point t = 0 (shortly, a C0 -semigroup) if

lim
t→0+

T (t)x = x

pointwise at each point x ∈ X .

The infinitesimal generator A of {T (t)}t≥0 is defined by

Ax = lim
t→0+

1

t
(T (t)− I)x

with domain DA consisting of those points x ∈ X for which the limit
exists. The following assertion characterises the main properties of the
infinitesimal generator A and its domain DA (see for instance [BB67,
Paz79]).
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Theorem 2.11. Assume that A is an infinitesimal generator of a one-
parameter semigroup {T (t)}t≥0 of class C0. Then
1) DA is a dense subspace of X;
2) A is a closed linear operator on DA;
3) For each x ∈ X, the orbit {T (t)x}t≥0 belongs to DA and satisfies

the Candy problem
{

d

dt
T (t)x = AT (t)x, t > 0,

T (0)x = x.

2.3. Composition operators and semigroups. Suppose D is a do-
main in a complex Banach space X . For F ∈ Hol(D), one can define
a linear composition operator TF ) : Hol(D,X) → Hol(D,X) by the
formula

TFh = h ◦ F
for h ∈ Hol(D,X), which is certainly specified within the general con-
cept of adjoint operators F ∗ in mathematics.
Let Σ be a Banach space of mappings in Hol(D,X). We write ‖ · ‖Σ

and assume that the norm topology in Σ is stronger than the topology
of uniform convergence on compact subsets of D. Here are some clas-
sical Banach spaces of holomorphic functions in the unit disk D of the
complex plane.

Example 2.12. For any real number 1 ≤ p ≤ ∞, the Hardy space
Hp(D) is defined to consist of all holomorphic functions h in D with
finite norm

‖h‖p = sup
0<r<1

( 1

2π

∫ 2π

0

|h(reıϕ)|pdϕ
)1/p

.

Example 2.13. For a real number 1 ≤ p ≤ ∞, the Bergman space
Bp(D) is defined to consist of all holomorphic functions h in D with
finite norm

‖h‖Bp =
( 1

π

∫

D

|h(z)|pdv(z)
)1/p

,

where dv(z) is the Lebesgue measure on D.

Example 2.14. By the Dirichlet space D(D) is meant the Banach
space consisting of all holomorphic functions in D with finite (squared)
norm

‖h‖2D =
1

π

∫

D

|h′(z)|2dv(z) + |h(0)|2.
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In particular, if Σ = Hp(D) is a Hardy space on the disk, then we
get

(1− |F (0)|
1 + |F (0)|

)1/p

‖h‖p ≤ ‖TFh‖p ≤
(1 + |F (0)|
1− |F (0)|

)1/p

‖h‖p

for all h ∈ Σ (see for instance [CM95]).
In the case, where Σ is the Dirichlet space on D, there are compo-

sition operators which fail to preserve Σ . However, if F is a univalent
function on D, then the composition operator TF maps Σ continuously
into Σ .
If {Ft}t≥0 is a one-parameter semigroup in Hol(D), then the family

of composition operators S = {T (t)}t≥0 defined by

T (t)h := h ◦ Ft, (2.4)

for h ∈ Hol(D), is also a one-parameter semigroup on Hol(D). If
{Ft}t≥0 is a continuous semigroup on D, then the semigroup S given
by (2.4) is strongly continuous on each of the spaces discussed above
(see [Sis98]).
We now focus on the Hilbert space case which corresponds to p = 2.

To this end, we consider a more general construction based on the
control of Taylor coefficients. To wit, pick a sequence of positive real
numbers s = {sn}n=0,1,.... A holomorphic function f : D → C with
power series expansion

f(z) =

∞
∑

n=0

cnz
n

is said to belong to H2(s) if

‖f‖H2(s) :=
(

∞
∑

n=0

s2n |cn|2
)1/2

<∞.

It is easy to see that H2(s) ⊂ Hol(D,C) is a Hilbert space endowed
with the norm f 7→ ‖f‖H2(s).
If sn = 1 for all n = 0, 1, . . ., then H2(s) is the Hardy space H2(D)

and the corresponding norms coincide. If s0 = 1 and sn = 1/
√
n + 1,

then H2(s) is the Bergman space B2(D) and the norms in these spaces
are equal. If s0 = 1 and sn =

√
n for all n > 0, then H2(s) just

amounts to the Dirichlet space D(D) and the corresponding norms
coincide. Observe that

D(D) →֒ H2(D) →֒ B2(D),

all the embeddings being continuous.
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Remark 2.15. On using the Cauchy integral formula one sees that the
convergence of a sequence in B1(D) implies its uniform convergence
on compact subsets of D. The converse assertion is more delicate (cf.
[Bea13, Sis98]).

From [CP14] one easily derives a condition for the strong continuity
of the semigroup of composition operators on H2(s).

Theorem 2.16. Let s = {sn}n∈Z≥0
be any sequence of positive num-

bers, such that D(D) ⊂ H2(s). Then S is a strongly continuous semi-
group on H2(s).

Returning to the general case, we fix a Banach space Σ in Hol(D,X),
and let {Ft}t≥0 be a locally uniformly continuous one-parameter semi-
group. Assume that the semigroup S of composition operators defined
by (2.4) is of class C0 on Σ . In this case one can define the infinitesimal
generator

Ah = lim
t→0+

T (t)h− h

t
with a domain DA which is dense in Σ and A is a closed linear operator
on Σ .
On the other hand, by the chain rule for each h ∈ D(A) we have

formally that

Ah (x) =
d

dt
(T (t)h)(x)

∣

∣

t=0+

=
d

dt
(h ◦ Ft)(x)

∣

∣

t=0+

= h′(x)
d

dt
Ft(x)

∣

∣

t=0+

= h′(x)f(x), (2.5)

where f ∈ G(D) is the infinitesimal generator of the semigroup {Ft}t≥0

on D.
Repeating the proof of Theorem 2 in [Bea13] yields

Theorem 2.17. Let Σ be a complex Banach space in Hol(D,X). Sup-
pose that A is a closely defined linear operator on Σ which is the gen-
erator of a C0 -semigroup S = {T (t)}t≥0 of composition operators on
Σ defined by equality (2.4), where {Ft}t≥0 is a locally uniformly con-
tinuous semigroup on D. Then Ah = h′f , where f is the generator of
{Ft}t≥0 and the domain of A consists of all h ∈ Hol(D,X), such that
h′f ∈ Σ.

We also notice that if A is a linear operator with domain DA given
by Ah = h′f , where f ∈ Hol(D,X), then the identity operator on Σ
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belongs to DA if and only if f ∈ Σ . In this case it follows from (2.5)
that f is dissipative on D. In fact, this fact holds true in a more general
setting.

Theorem 2.18. Let Σ ⊂ Hol(D,X) be a complex Banach space. As-
sume that the linear operator A defined by Ah = h′f is the generator
of a C0 -semigroup {T (t)}t≥0 of composition operators on Σ defined by
(2.4), where {Ft}t≥0 is a locally uniformly continuous semigroup on D.
If there is a mapping h ∈ DA with the property that h′(x0) is invertible
for at least one x0 ∈ D, then the mapping f is dissipative on D and it
generates {Ft}t≥0.

Proof. Under our assumptions we get

lim
t→0+

‖T (t)h− h‖Σ = 0

for all h ∈ Σ . Taking here h to be the identity mapping of D we deduce
that

lim
t→0+

‖Ft(x)− x‖ = 0

uniformly in x on small balls in D. In other words, {Ft}t≥0 is a locally
uniformly continuous semigroup in Hol(D). Therefore, it possesses a
generator g ∈ Hol(D,X) which has to satisfy h′(x)g(x) = h′(x)f(x) for
all x ∈ D. Since one can choose here h which is locally biholomorphic
in a neighborhood U of the point x0 ∈ D, we conclude that g = f in
U . By the familiar uniqueness theorem it follows that g = f in all of
D, as desired. �

Using the Lumer-Phillips theorem (see for instance [Yos65]) one
shows the following assertion.

Theorem 2.19. Let Σ be a complex Banach space in Hol(D,X) and
f ∈ Hol(D,X) a dissipative mapping of D. Then the linear operator
A defined by Ah = h′f is a generator of C0 -semigroup of composition
operators on Σ if and only if
1) The set DA consisting of those h ∈ Σ, which satisfy h′f ∈ Σ, is

dense in Σ.
2) There is a number λ0 ≥ 0 such that, for each λ > λ0, the equation

λh(x)−h′(x)f(x) = g(x) has a unique solution h(x) = (λI−A)−1g(x)
in Σ whenever g ∈ Σ.
3) There is a positive number C such that, for each n = 0, 1, . . . and

λ > λ0, it follows that

‖(λI −A)−n‖ ≤ C (λ− λ0)
−n.
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In particular, suppose {Ft}t∈(0,t0) is a family of holomorphic self-
mappings of D, such that the limit

f(x) := lim
t→0+

1

t
(Ft(x)− x)

exists for all x ∈ D. If the operator A : DA → Σ given by Ah = h′f is
closely defined in Σ , then A is a generator of a C0 -semigroup {T (t)}t≥0

in L(Σ ). Moreover,

T (t)h = h ◦ lim
n→∞

(

I − t

n
f
)−n

.

2.4. Analytic semigroups of composition operators. We start
this section with a general approach to analytic continuation of semi-
groups of linear operators (see [BB67]).

Theorem 2.20. Let S = {T (t)}t≥0 be a C0 -semigroup of bounded
linear operators in Σ and A its infinitesimal generator with domain
DA ⊂ Σ. The following are equivalent:
1) There is a constant C > 0 such that t ‖AT (t)‖ ≤ C holds true for

all t ∈ [0, 1].
2) The semigroup S admits an analytic continuation {T (λ)}λ∈Λ to

the sector Λ in the complex plane consisting of all λ ∈ Λ with ℜλ > 0
and | arg λ| < (eC)−1.

Another way of stating 2) is to say that T (λ+ κ) = T (λ) ◦ T (κ) for
all κ, λ ∈ Λ and T (λ)x→ x for each x ∈ Σ , as λ→ 0 within a smaller
sector | arg λ| < ϑ(eC)−1 with ϑ < 1.
Theorem 2.20 is traced back to a result in [Yos65] for equicontinuous

semigroups on locally convex spaces X . The theorem can be also used
in the study of analytic continuation of composition operators. How-
ever, to this end one can apply the results of previous sections along
with an obvious fact.

Lemma 2.21. Let Σ ⊂ Hol(D,X) be a complex Banach space con-
taining I, and let S = {T (t)}t≥0 be a C0 -semigroup of composition
operators on Σ defined by (2.4), where {Ft}t≥0 is a locally uniformly
continuous semigroup on D. Then S extends to an analytic semigroup
into a sector Λ if and only if the semigroup {Ft}t≥0 can be analytically
continued into Λ.

The lemma implies immediately that there are semigroups of com-
position operators which possess no analytic extension to a sector in
the right half-plane. As but one example we mention the semigroup
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of composition operators in a Hardy space Hp(D) which is induced by
the semigroup {Ft}t≥0 generated by the function

f(z) = −z 1 + z

1− z

of G(D). However, if one confines himself to the shrinking disks rD
with r ∈ (0, 1), then for each r one can find a sector into which any
continuous semigroup has a holomorphic extension. To develop this
approach we need certain notation.
Pick a scale of Banach spaces Σ r depending continuously on the

parameter r ∈ (0, 1), such that Σ r →֒ Hol(Br, X) and Σ r2 →֒ Σ r1, if
r1 < r2. Consider a locally uniformly continuous semigroup {Ft}t≥0

in Hol(B), such that Ft(0) = 0 and F ′
t (0) = eλtI for some λ ∈ C,

whenever t ≥ 0. Note that if the semigroup is generated by a mapping
f ∈ Hol(B, X) then, by the Schwarz lemma, it preserves each smaller
ball Br invariant. In other words, the restrictions of Ft to Br form
a semigroup in Hol(Br), for any r ∈ (0, 1], which is obviously locally
uniformly continuous. Conversely, if {Ft}t≥0 is a semigroup in Hol(B)
and it is locally uniformly continuous on some Br, with r ∈ (0, 1), then
it is locally uniformly continuous on all of B, which is due to the Vitali
theorem. The scale Σ r is said to be consistent with the semigroup if
each space Σ r survives under the action of the composition operators
T (t) = F ∗

t defined by (2.4), and the norm of any T (t) in L(Σ r) is
bounded uniformly in r ∈ (0, 1].
As mentioned, for semigroups of composition operators one uses clas-

sical methods to find a sector in the complex plane into which they can
be continued analytically. We illustrate such a method for the scale of
Banach spaces Σr = Hp(Dr), where Dr = rD is the disk of radius r
around z = 0.
Let f ∈ G(D) and {Ft}t≥0 be the semigroup in Hol(D) generated by

f . By Theorem 1.10,

|Ft(reıϕ)| ≤ r exp
(

− t
1− r

1 + r

)

(2.6)

holds for all r ∈ (0, 1) and ϕ ∈ [0, 2π). Therefore, for each r ∈ (0, 1),
the semigroup elements preserve the disk Dr invariant, and so T (t)
maps Hp(Dr) into itself.

Theorem 2.22. Let S = {T (t)}t≥0 be the semigroup of composition
operators defined by T (t)h = h◦Ft for h ∈ Hol(D,C). When acting on
the Banach space Hp(Dr) with r ∈ (0, 1) and p ≥ 1, the semigroup can
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be continued analytically in the parameter t into the sector

Λ :=
{

λ ∈ C \ {0} : | arg λ| < 2

e

(1− r

1 + r

)2}

.

Proof. First we recall that the infinitesimal generator A of the semi-
group {T (t)}t≥0 is given by Ah = h′f , where f is the infinitesimal
generator of the semigroup {Ft}t≥0. Further, we wish to use Theo-
rem 2.20 above. For this purpose, we estimate ‖(h′f)(Ft)‖Hp(Dr). By
definition, we get

‖(h′f)(Ft)‖pHp(Dr)
=

1

2π

∫ 2π

0

|f ◦ Ft (reıϕ)|p|h′ ◦ Ft (reıϕ)|p dϕ.

By Theorem 1.3, the generator has the form f(z) = −zq(z), where q
is an analytic function in D satisfying ℜq(z) > 0 and q(0) = 1. Hence
it follows that

|q(z)| ≤ 1 + |z|
1− |z|

for all z ∈ D, and so ‖(h′f)(Ft)‖pHp(Dr)
is majorised by

1

2π

∫ 2π

0

|Ft(reıϕ)|p
(1 + |Ft(reıϕ)|
1− |Ft(reıϕ)|

)p

|h′ ◦ Ft (reıϕ)|p dϕ.

Applying inequality (2.6) and the subordination principle of Littlewood
(see instance Theorem 6.1 of [Dur83]) yields

‖(h′f)(Ft)‖Hp(Dr) ≤ ρ
1 + ρ

1− ρ

(

∫ 2π

0

|h′ ◦ Ft (reıϕ)|p
dϕ

2π

)1/p

≤ ρ
1 + ρ

1− ρ

(

∫ 2π

0

|h′(ρeıϕ)|p dϕ
2π

)1/p

,

(2.7)

where ρ = r exp
(

− t
1− r

1 + r

)

.

In order to estimate the last integral we recall that each h ∈ Hp(Dr)
possesses nontangential boundary values h∗ of the class Lp(∂Dr) and
the Cauchy integral formula for the derivative can be written in the
form

h′(ρeıϕ) =

∫ 2π

0

h∗(reı(ψ+ϕ))
reı(ψ−ϕ)

(reıψ − ρ)2
dψ

2π
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for ρ < r. On using an integral version of the Minkowski inequality we
get
(

∫ 2π

0

|h′(ρeıϕ)|p dϕ
2π

)1/p

≤
∫ 2π

0

∥

∥

∥
h∗(reı(ψ+ϕ))

reı(ψ−ϕ)

(reıψ − ρ)2

∥

∥

∥

Lp[0,2π]

dψ

2π

= ‖h∗‖Lp(∂Dr)

∫ 2π

0

r

r2 − 2rρ cosψ + ρ2
dψ

2π

=
r

r2 − ρ2
‖h‖Hp(Dr).

Combining this estimate with (2.7) yields

‖(h′f)(Ft)‖Hp(Dr) ≤ ρ
1 + ρ

1− ρ

r

r2 − ρ2
‖h‖Hp(Dr)

or, equivalently,
‖(h′f)(Ft)‖Hp(Dr)

‖h‖Hp(Dr)
≤ C(t)

t
,

where

C(t) =
t

2 sinh
(

t
1− r

1 + r

)

1 + r exp
(

− t
1− r

1 + r

)

1− r exp
(

− t
1− r

1 + r

)

.

Now, for a fixed r ∈ (0, 1), we consider the function C = C(t) of
t ∈ (0, 1]. It is easy to see that both factors in presentation of C are
decreasing functions in t, hence,

sup
t∈(0,1]

C(t) = lim
t→0+

C(t) =
1

2

(1 + r

1− r

)2

.

By Theorem 2.20, the semigroup of composition operators can be
analytically continued into the sector

Λ =
{

λ ∈ C \ {0} : | arg λ| < 2

e

(1− r

1 + r

)2}

,

as desired. �

Even in a more general situation, on applying the results concern-
ing analytic continuation of semigroups of holomorphic self-mappings
of the unit ball and Theorem 2.17 we establish new theorems on ana-
lytic continuation in parameter of semigroups of (linear) composition
operators.

Theorem 2.23. Let {Ft}t≥0 be a locally uniformly continuous semi-
group in Hol(B), such that Ft(0) = 0 and F ′

t (0) = eλtI for some λ ∈ C,
whenever t ≥ 0. Assume that Σ r is a scale of Banach spaces consistent
with the semigroup. If for some α ∈ [0, 1) the semigroup S = {T (t)}t≥0
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of composition operators defined by equality (2.4) can be analytically
continued into the sector | argλ| < απ/2, then for each r ∈ (0, 1), this
semigroup acting on Σr can be analytically continued in the parameter
t into the sector

Λ = {λ ∈ C \ {0} : | arg λ| < (α+β) π/2},
where

0 ≤ β ≤ β(r, α) :=
2

π
arcsin

(1− r2) cos
(

α
π

2

)

1 + 2r sin
(

α
π

2

)

+ r2
.
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