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DEFORMATION QUANTISATION

AND BOUNDARY VALUE PROBLEMS

B. FEDOSOV AND N. TARKHANOV

Dedicated to S. Grudsky on the occasion of his 60 th birthday

Abstract. We describe a natural construction of deformation quantisation
on a compact symplectic manifold with boundary. On the algebra of quantum

observables a trace functional is defined which as usual annihilates the com-

mutators. This gives rise to an index as the trace of the unity element. We
formulate the index theorem as a conjecture and examine it by the classical

harmonic oscillator.
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Part 1. Deformation quantisation on manifolds with boundary

1. Introduction

In this paper a deformation quantisation on a symplectic manifold with bound-
ary is elaborated. A prototype for our construction is the Boutet de Monvel algebra
of boundary value problems in much the same way as the usual algebra of pseudo-
differential operators is a prototype for deformation quantisation on a symplectic
manifold without boundary. Our quantum observables are thus pairs consisting
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2 B. FEDOSOV AND N. TARKHANOV

of interior and boundary components, and the composition (star product) gives a
nontrivial contribution from interior components to the boundary ones.

We also define a trace functional on our algebra of quantum observables which
vanishes on commutators. When having an algebra with a trace, we introduce
in a familiar way the index as the trace of the unity element and we formulate
as conjecture an index theorem. This latter expresses the trace of unity through
topological invariants of the manifold with boundary, bundle connections and the
symplectic structure. Unfortunately, we have not been able to prove our index
theorem in full generality and we address this to our forthcoming investigations in
this direction.

Deformation quantisation on a symplectic manifold with boundary has first been
considered in the paper of Nest and Tsygan [NT96]. The prototype of their con-
struction is however the b -calculus of Melrose. The corresponding algebra of quan-
tum observables does not contain any boundary components. Moreover, there is
no trace on the algebra which vanishes on commutators, and hence no index with
standard properties is available. Our construction has the advantage of being free
of these drawbacks, which is due to stronger assumptions on the geometry and
symplectic structure.

By quantum mechanical systems in a mathematical model of quantum mechanics
are meant couples {Ĥ, S}, where Ĥ is the so-called Hamilton operator of the system

and S the eigenstate of the system. In the deformation quantisation model Ĥ is
an element of an associative algebra of quantum observables corresponding to a
classical observable H which is a smooth real-valued function on a manifold M .
In order to treat a concrete physical problem within the framework of deformation
quantisation one needs the corresponding “operator‘” Ĥ. To this end, one uses
the rules of classical mechanics to determine the Hamilton function H on a phase
space. Under symplectic structure, one exploits a simple quantisation procedure
leading from H to Ĥ, see [Fed94].

The idempotent elements in the quantum algebra can be thought of as projectors,
and so their traces are the dimensions of the corresponding “eigenspaces”, if there
are any. If λ ∈ R is a noncritical value of H, then the level surface {H = λ} is
often a circle bundle over a compact symplectic manifold B. It bears a canonical
quantum algebra and the trace of the unity element is expected to contain encoded
spectral data. Deformation quantisation on the sublevel manifold {H ≤ λ} leads
to spectral asymptotics.

In our opinion, the spectral interpretation of the index formula is of especial
interest, and it was actually a crucial motivation of our treatment here. When
directly understood, the spectral problems do not make sense in the framework of
deformation quantisation. One may ask whether this is still possible to show such a
reformulation of spectral problems which would have meaning within deformation
quantisation. For this purpose we suggest to make use of index theorems. Thus,
in our preceding paper [FST04] we treated several examples of evaluating spectra
with the help of index theorem for symplectic orbifolds. As we recently learned,
similar methods had been regularly used in physics and chemistry for qualitative
description of spectra of molecules with many atoms [FZ02]. While the proofs are
not of crucial importance for physicists, the punctual setting of a spectral problem
in the framework of deformation quantisation is as much important for us as its
solution.



DEFORMATION QUANTISATION AND BOUNDARY VALUE PROBLEMS 3

In the present paper we deal with spectral problems which are slightly differ-
ent from those in [FST04]. Their prototype in the theory of pseudodifferential
operators are spectral asymptotics for � → 0. Concerning this we mention the
method of approximate spectral projection of [Shu87], which consists of replacing
the step-function of an operator by smoothed step-like data followed by applying
pseudodifferential techniques. The approach we take is quite different. Instead
of smoothing we construct an algebra with trace, in which the step-function is a
perfect element. It is actually the unity element in this algebra. Then the trace
of this unity element can be thought of as the trace of spectral projection, the
latter being exact, not approximate. On the other hand, the trace of the unity el-
ement is an index, and the index theorem evaluates it explicitly. The quantisation
condition consists of the requirement that this index had to be a positive integer
number, namely, be equal to the dimension of the spectral subspace. While being
still incomplete, these observations demonstrate rather strikingly that there exists a
spectral theory in deformation quantisation rich in content and based on the index
theorem and its variants. For a fuller treatment we refer the reader to [Fed06], see
also [Tar15].

2. Deformation quantisation

Here we give a brief summary of results concerning deformation quantisation on
a symplectic manifold {M,ω}. More details and proofs may be found in [Fed94] or
in the book [Fed96].

In the sequel the letter W refers to (Hermann) Weyl and D stands for a special
connection. The notation WD means that our quantum objects are flat sections of
a bundle W (the Weyl algebras bundle) with respect to the connection D.

Let E be a complex vector bundle over M and K the bundle Hom(E,E). This
latter will be referred to as coefficient bundle. A connection ∂E on E defines a
connection on K (with the same notation) given in local frames by

(∂Ea)(h) = ∂E(a(h))− a(∂Eh)

for h ∈ C∞(M,E) (the Leibniz rule). Thus,

∂Ea = da+ [ΓE , a]

for all sections a ∈ C∞(M,K), where ΓE = Γidx
i is the local connection one-form

of ∂E .
We introduce the Weyl algebras bundle W = W (M,K) by describing the space

C∞(M,W ) of its sections over M . A section a of the bundle W is a function of
x ∈ M with values in formal power series in a small parameter � (Planck constant)
whose coefficients are formal power series in y ∈ TxM with coefficients in Kx. To
wit

(2.1) a = a(x, y, �) =
∑

2k+|α|≥0

�
kak,α(x)y

α,

where y = (y1, . . . , y2n) is a tangent vector in TxM , yα = (y1)α1 . . . (y2n)α2n , and
ak,α(x) are symmetric tensors on M with values in Kx. We prescribe the degrees
2 and 1 to � and yi, respectively, and order the terms of (2.1) by the total degree
2k + |α| in each tangent space TxM .
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The latter carries a linear symplectic structure given by the form ω at the point
x ∈ M . Using this structure, we define a fibrewise product, called the Weyl (or
Moyal) product, by

a ◦ b = exp
(
− ı�

2
ωij(x)

∂

∂yi
∂

∂zj

)
a(x, y, �)b(x, z, �) |z=y

=

∞∑
k=0

(
− ı�

2

)k 1

k!
ωi1j1(x) . . . ωikjk(x)

∂ka

∂yi1 . . . ∂yik
∂kb

∂yj1 . . . ∂yjk
.(2.2)

We will also need differential forms on M with values in W . These are sections
of the bundle W ⊗Λ, where Λ = ⊕ΛqT ∗M means the bundle of exterior forms. In
local coordinates such a section looks like

a =
∑

hkakpq,

where

(2.3) akpq = aki1...ipj1...jq (x) y
i1 . . . yip dxj1 ∧ . . . ∧ dxjp

with the total degree of terms 2k+p. The coefficients in (2.3) are tensors symmetric
in i1, . . . , ip and skewsymmetric in j1, . . . , jq.

Let ∂s be a symplectic connection onM , i.e., a torsion-free connection preserving
the symplectic tensor ωij(x). Given connections ∂s and ∂E , we define a connection
∂ in the bundle W (or W ⊗ Λ) by taking covariant differentials of coefficients in
(2.1) which are tensors on M with values in K. In local Darboux coordinates we
have

∂a = dxa+
ı

�
[Γ , a],

where

(2.4) Γ =
1

2
Γijk(x)y

iyjdxk − ı�Γi(x)dx
i

and Γijk = ωilΓ
l
jk are the coefficients of the symplectic connection ∂s (Christoffel

symbols). They are completely symmetric in i, j, k.
Introduce an important derivation

δa = dxi ∧ ∂a

∂yi
= − ı

�
[ωijy

idxj , a]

for a ∈ C∞(M,W ). It acts on summands in (2.3) by replacing in turn yi1 by dxi1 ,
etc., yip by dxip , and summing up the results. A direct verification actually shows
that

δ2 = 0,
δ∂ + ∂δ = 0.

Consider the operator

δ∗a = yk i
( ∂

∂xk

)
a

for a ∈ C∞(M,W ). It acts on summands in (2.3) by replacing in turn dxj1 by yj1 ,
etc., dxjq by (−1)q−1yjq , and summing up the results. It is clear that (δ∗)2 = 0,
however, δ∗ fails to be a derivation.

Finally, we introduce the fibrewise Laplace operator

δ∗δ + δδ∗ = (δ + δ∗)2
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which acts on the coefficients (2.3) by (δ∗δ + δδ∗)akpq = (p+ q)akpq. Put

δ−1akpq =
1

p+ q
δ∗akpq

if p + q > 0, and δ−1ak00 := 0. This leads immediately to the fibrewise Hodge-de
Rham decomposition

(2.5) a = a00 + δ−1δa+ δδ−1a

for a ∈ C∞(M,W ).
We will consider more general connections on the bundle W which are of the

form

(2.6) Da = ∂a− δa+
ı

�
[r, a],

where r ∈ C∞(M,W ⊗Λ1) is a globally defined one-form with deg r ≥ 3. A simple
calculation shows that

∂2a =
ı

�
[R, a],

where

R = dΓ +
ı

�
Γ ◦ Γ =

1

4
Rijkly

iyjdxk ∧ dxl − ı�

2
RE

kldx
k ∧ dxl

is the curvature of ∂, RE
kl is the curvature tensor of ∂E and Rijkl = ωimRm

jkl is the
curvature tensor of the symplectic connection ∂s.

In local Darboux coordinates we may rewrite (2.6) in the form

(2.7) Da = dxa+
ı

�
[ωijy

idxj + Γ + r, a]

for a ∈ C∞(M,W ). Then, an easy calculation yields

D2a =
ı

�
[−1

2
ωijdx

i ∧ dxj +R+ ∂r − δr +
ı

�
r2, a].

The two-form Ω = −ω+R+ ∂r− δr+
ı

�
r2 appearing in this formula is called the

Weyl curvature of D.
We now look for a special connection D whose Weyl curvature just amounts to

−ω. The form ω is central, so we would have

D2a = − ı

�
[ω, a] ≡ 0

for all a ∈ C∞(M,W ). A connection D with this property is called Abelian. From
the formula for the Weyl curvature Ω we obtain an equality for the one-form r,
namely

(2.8) δr = R+ ∂r +
ı

�
r2.

If we impose an additional condition δ−1r = 0 on r (this just amounts to saying that
r is fibrewise coclosed), then by virtue of (2.5) we obtain an equivalent equation

(2.9) r = δ−1R+ δ−1
(
∂r +

ı

�
r2
)

with δ−1R =
1

8
Rijkly

iyjykdxl − ıh

2
Rijy

idxj .

The basic theorem of deformation quantisation reads

Theorem 2.1. There exists a unique solution r of (2.8) satisfying δ−1r = 0. It
may be found by iterations of (2.9).
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Proof. See [Fed94]. �

We define quantum objects to be flat sections of the bundle W with respect to
the special connection D. In other words, WD is the space of all a ∈ C∞(M,W )
satisfying Da = 0. The property of being flat may be written by (2.6) as

(2.10) δa = ∂a+
ı

�
[r, a]

or, using (2.5), as

(2.11) a = a0 + δ−1
(
∂a+

ı

�
[r, a]

)
,

where a0(x, �) = a(x, 0, �) is a function on M with values in formal power series in
� with coefficients in K.

Theorem 2.2. Equation (2.10) has a unique solution satisfying a(x, 0, �) = a0. It
may be found by iterations of (2.11).

Proof. See [Fed94]. �

We will use the notation a = â0 = Q(a0) for the solution of Theorem 2.2. The
operator Q : C∞(M,K)[[�]] → WD is called the quantisation procedure or simply
quantisation map. Its inverse is the restriction to y = 0. On using Q and Q−1

we may transport the product ◦ in WD directly to the functions on M , defining
the so-called star-product a(x, �) ∗ b(x, �) = Q−1(Q(a) ◦Q(b)). However, it is more
convenient to work with the algebra WD and the fibrewise product ◦ than with the
algebra of functions equipped with the star-product.

3. Local isomorphisms

The simplest example of the above construction is the standard symplectic space
R

2n with a constant symplectic form

ω =
1

2
wijdx

i ∧ dxj

and a trivial bundle K. We set ∂ = dx and

(3.1) D0 = d− δ = d+
ı

�
[wijy

i ∧ dxj , ·],

so that the flat sections in WD0
(R2n) are those of the form

â = Q(a(x, �)) = a(x+ y, �) =
∑

α∈Z2n
≥0

1

α!
a(α)(x, �)yα.

Choose a Darboux chart O in M and a local frame of the bundle E and con-
sider the restriction W |O of the Weyl algebras bundle to O. We have two Abelian
connections on W |O. One of them D has been constructed in the previous section
globally on M . The other connection D0 is defined locally on W |O by (3.1). Thus,
we have two different algebras WD and WD0

over O and two different quantisation
maps Q and Q0 corresponding to D and D0, respectively. It turns out that the
algebras WD and WD0 are isomorphic. Moreover, the isomorphism can be taken in
the special form

(3.2) a0 = (adU)a := U ◦ a ◦ U−1
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with

U = exp
( ı

�
H
)
,

where H ∈ C∞(O,W ) is a section of the bundle W over O whose degree is at least
3. Although U is not defined as a section of W , the expression (3.2) is defined
correctly, for

U ◦ a ◦ U−1 = exp
( ı

�
adH

)
a

=
∞∑
k=0

1

k!

ı

�

[
H,

ı

�

[
H, . . .

ı

�

[
H,︸ ︷︷ ︸

k times

a
]
. . .

]]
.

We may also define the exponential U in an extension of the bundle W which
admits negative powers of �. To this end, consider an algebra bundle W+ whose
sections are sums (2.1) where k may be negative, provided the total degree 2k+ |α|
is positive, with a finite number of terms at each total degree entering into the sum
(2.1). Then

U = 1 +
ı

�
H +

1

2

( ı

�

)2

H ◦H + . . .

is an invertible section of the bundle W+ since degH ≥ 3.
If we require a0 given by (3.2) to belong to WD0

for any a ∈ WD, then we arrive
at the condition [

U−1 ◦D0U − ı

�
ΔΓ , a

]
= 0,

which is obtained by differentiating (3.2) with respect to the connection D0 and
using

D0a = Da− ı

�
[ΔΓ , a]

with ΔΓ = Γ + r, as is easily seen from (3.1) and (2.7). To satisfy this condition,
we set

(3.3) U−1 ◦D0U =
ı

�
ΔΓ .

First of all we observe that the solution of (3.3) is not unique, for multiplying
U by an invertible section V ∈ C∞(O,WD0

) from the left yields another solution
V ◦ U . To find a particular solution of (3.3), we look for an exponential solution
and make use of the well-known formula

D0 expw = expw ◦ 1− exp(−adw)

adw
D0w.

Thus, since D0 = d− δ, we would have

δH = dH −
ad

ı

�
H

1− exp
(
− ad

ı

�
H
) (Γ + r).

On applying δ−1 and setting H|y=0 = 0, we come to the equation

H = δ−1
(
dH −

ad
ı

�
H

1− exp
(
− ad

ı

�
H
) (Γ + r)

)
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which can be solved by iterations starting with H0 ≡ 0. This gives

H =
1

6
Γijky

iyjyk − ı �Γiy
i + . . .

and we arrive at the following theorem.

Theorem 3.1. Any algebra WD is locally isomorphic to the standard algebra WD0

and the isomorphism can be taken in the form (3.2).

This theorem allows one to define a trace functional on elements a ∈ WD having
compact support in M . So, let a be supported in a local Darboux coordinate chart
O ⊂ M . We choose an isomorphism of the form (3.2) to the algebra WD0

(Rn) and
set

Tr a =
1

(2π�)n

∫
R2n

tr (adU)a|y=0
ωn

n!
.

For an arbitrary section a ∈ WD with compact support we take a locally finite
covering of M by Darboux charts Oi and trivialisations of the bundle E over Oi.
Next, taking a partition of unity ρi(x) ∈ C∞(M) subordinate to the covering Oi,
we construct flat sections ρ̂i = Q(ρi) which give a partition of unity in the algebra
WD. Now, choosing isomorphisms Ui for each chart Oi, we set

(3.4) Tr a =
∑
i

1

(2π�)n

∫
R2n

tr (adUi)ρ̂i ◦ a|y=0
ωn

n!
.

Theorem 3.2. The functional Tr is correctly defined (that is, independent of the
particular choices of Oi, ρi, Ui) and satisfies the trace property Tr a ◦ b = Tr b ◦ a
for any a, b ∈ WD with compactly supported product. This is a unique (up to a
normalisation factor) functional with this property.

The factor (2π�)−n in (3.4) is taken by analogy with pseudodifferential operators.
There are deeper reasons for this choice. If M is a compact symplectic manifold,
then any a ∈ WD possesses a trace.

Take a scalar-valued function a ∈ C∞(M) with compact support, consider
the section a(x) ⊗ 1 ∈ C∞

comp(M,K), where 1 means the unit in the algebra
K = Hom(E,E), quantise this section obtaining â = Q(a ⊗ 1) in WD(M,K),
and calculate its trace. The result will be

Tr â =
1

(2π�)n

∫
M

t(x, �)a(x)
ωn

n!
,

where t(x, �) = rankE + �t1(x) + �
2t2(x) + . . . is an element of C∞(M)[[�]] called

trace density. The explicit formulas of Section 3 show that the coefficients tk(x) may
be expressed as polynomials in connection coefficients Γi, Γijk and their derivatives
in local coordinates. One can do it explicitly for lower dimensions 2 and 4, but even
for dimM = 4 the calculations become extremely tiresome and lead to the formula
which at first glance is quite different from the formula for the number of quantum
states (index formula)

(3.5) Tr 1̂ =

∫
M

chE Â(M) exp
( ω

2π�

)
,

where chE is the Chern character of the connection ∂E and Â(M) the Atiyah-
Hirzebruch form of the connection ∂s, see [Fed91], [Fed96], etc.
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4. Symplectic manifolds with boundary

Let M be a smooth symplectic manifolds, and ωM a symplectic form on M .
Let moreover H(x) be a smooth real-valued function on M , called Hamiltonian.
Consider the level surface M0 = {H = 0} and the sublevel set M− = {H ≤ 0}.
Suppose that M0 is a smooth compact submanifold of M , i.e., 0 is not a critical
value of H. Moreover, M− is assumed to be a compact manifold whose boundary
is ∂M− = M0. The Hamiltonian vector field VH induced by H defines an one-
dimensional foliation of M0. We assume that this foliation is actually a circle
bundle. Thus, the trajectories of the vector field are orbits of free action of the
group U(1), hence the space of trajectories

B = M0/U(1)

is a smooth compact manifold.
In other words, we consider a smooth reduction of M under the action of the

group U(1). The base B is automatically a symplectic manifold with the form ωB

that is uniquely determined by the condition

i∗ωM = p∗ωB ,

where i : M0 → M is the embedding and p : M0 → B the projection. This
symplectic manifold is called the reduced manifold (or simply reduction) and it
is going to bear the boundary conditions in the sequel. In the classical theory
of boundary value problems on a compact manifold X with boundary ∂X the
role of M− is played by T ∗X. The submanifold M0 is defined by the equation
H(x, ξ) ≡ xn = 0, i.e., M0 just amounts to the restriction of T ∗X to ∂X. Since
VH = ∂/∂ξn, the trajectories of VH are straight lines along conormal vectors, and
the space of trajectories is B = T ∗(∂X). The analogy to smooth reduction is
evident, and what is still lacking is the compactness, which is however impossible
in the case of cotangent bundles.

Generally speaking, as is in the theory of boundary value problems, the function
H need not be defined on all of M . It may be given merely in a neighbourhood of
M0, i.e., M− need not be a sublevel manifold of H on the whole.

The neighbourhood U of the level manifold M0 in M given by the inequality
|H| < ε admits the following standard model, cf. for instance [Fed96]. Topologically
U is the direct product M0 × I, where I is the interval −ε < H < ε, and the
symplectic form has the form

ωU = ωM |U
= ωB + d (Hγ) .

Here ωB means the symplectic form on the base B pulled back to M0 × I, and γ
is the 1 -form of a connection on M0 pulled back to M0 × I. Recall that on M0,
which is a principal U(1) -bundle, there exists a connection form, i.e., a 1 -form γ,
satisfying

(4.1)
i(VH) γ = 1,
LVH

γ = 0.

Here the vector field VH is thought of as a vector field onM0×I with zero projection
on I. From (4.1) it easily follows that

i(VH)ωU = −dH,
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i.e., VH is a Hamiltonian vector field with Hamiltonian H.
Sometimes it is convenient to pass from the principal bundleM0 to the associated

one-dimensional complex bundle

E = M0 ×U(1) C

= M0 × C/U(1)

with associated connection ∂E and Hermitian metric (·, ·). We regard the Hermitian
metric as being conjugate linear in the first variable and linear in the second one.
Then we get

ωU = ΩB + 
 d (z, ∂z)

and
H = (z, z)− 1 = |z|2 − 1,

VH = ız
∂

∂z
− ız̄

∂

∂z̄
.

Here z designates a vector of the fibre of E, and ∂z = dz + ıγz is the covariant
differential of the “tautological” section z at the point (b, z) ∈ E, the 1 -form γ
satisfying (4.1).

5. The Toeplitz-Boutet de Monvel algebra

We begin with an algebra of pseudodifferential operators on the circle S which
depend on a small positive parameter �. The dependence on � is understood in an
asymptotic sense. We restrict our discussion to merely indicating formal expansions
which stem from formal Taylor series, and we skip the proofs of the fact that the
formal expansions are actually asymptotic series. Such assertions are well known in
the theory of pseudodifferential operators, cf. for instance [Shu87]. For the Boutet
de Monvel algebra of boundary value problems similar assertions are discussed in
detail in [Gru86]. Furthermore, when passing to deformation quantisation, we will
regard the asymptotic series as formal ones. Note that both algebraic and analytical
relations between asymptotic series imply analogous relations between formal series
which can be obvious by no means.

Functions on a circle are given by the Fourier series or Laurent series, in the latter
case the circle is specified as the unit circle in the complex plane. For calculations
it is convenient to assume that these Laurent series actually converge in a small
annular neighbourhood of the unit circle. Such functions are dense in L2. There is
a projection Π+ onto the functions holomorphic in the unit disk, and a projection
Π− onto the functions holomorphic in the complement and vanishing at infinity.
These projections are given by the Cauchy-type integrals(

Π±u
)
(z) =

1

2πi

∫
S±

u(ζ)

ζ − z
dζ,

where S± is the contour consisting of the circle |ζ| = 1 with going around the
point z over a small outer or inner semicircle, respectively. The ranges of these
projections in L2 will be denoted by H±. For functions u on S, we also introduce
their means over the circle

〈u〉 =
1

2πı

∫
S

u(ζ)

ζ
dζ

=
1

2π

∫ 2π

0

u(x) dx.
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We want to study the operator algebra generated by the � -pseudodifferential
operators on S and the projection Π+. We first consider � -pseudodifferential op-
erators. Let a(x, ξ) be a smooth function with compact support on the cylinder
T ∗S = S × R, called symbol. Define a pseudodifferential operator A� = Op (a) by
the formula

(A�u)(x) =

∞∑
k=−∞

eıkx a(x, �k) û(k),

where û(k) is a Fourier coefficient of u. An equivalent definition of A� in Fourier
images is

(5.1) v̂(l) =

∞∑
k=−∞

â(l − k, �k) û(k),

â(k, ξ) being a Fourier coefficient of a(x, ξ) as function of x ∈ S. For the product
of two operators we get

ŵ(m) =

∞∑
l=−∞

∞∑
k=−∞

b̂(m− l, �l) â(l − k, �k) û(k).

Expanding b̂(m− l, �l) in the formal Taylor series at the point ξ = �k

b̂(m− l, �l) ∼
∞∑

α=0

1

α!
∂α
ξ b̂(m− l, �k) (�l − �k)α

we arrive at a formula for the composition of symbols

(5.2) (b ◦ a) (x, ξ) =

∞∑
α=0

(−ı�)α

α!
∂α
ξ b(x, ξ) ∂

α
x a(x, ξ)

in the form of a formal series in powers of �. As is known from the theory of
pseudodifferential operators, this series is asymptotic.

It follows that if one introduces symbols which formally depend on the parameter
� by

(5.3) a(x, ξ, �) =

∞∑
k=0

ak(x, ξ) �
k

then the composition (5.2) makes the set of formal symbols an associative algebra
called the algebra of quantum observables.

We next consider a more complicated algebra generated by the operators of the
form

(5.4) A+
�
= Π+ Op (a(x, ξ))Π+.

Such operators are called Toeplitz operators. In the book [BdMG81] they are
treated in detail even for the higher dimensional case. Similarly to pseudodiffer-
ential operators they form an algebra. However, in contrast to pseudodifferential
operators, the transition from operators depending on a small parameter � to for-
mal series in � is not possible within this algebra. In the framework of deformation
quantisation there appear the so-called Green operators.
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Definition 5.1. By a Green kernel g(z, ζ) is meant a smooth function on S × S
which belongs to H+ in z and H− in ζ. The integral operator G : H+ → H+ given
by

(5.5) (Gu) (z) =

∫
S

g(z, ζ)u(ζ) dζ

for u ∈ H+ is said to be a Green operator.

At first sight, when rewriting the operator (5.5) as an integral operator over
the interval [0, 2π], one can pass from the kernel to a symbol and thus represent a
Green operator in the form Op (a(x, ξ)). However, it is easily seen that the symbol

a(x, ξ) will have the form ã(x, ξ/�), where ã(x, ξ̃) is a smooth function vanishing

for ξ̃ < 0. This shows that a is a function of boundary layer type, i.e., it is rapidly
decreasing for ξ < 0. Such functions are not defined in deformation quantisation.
On the contrary, an operator of the form (5.5), where the kernel g(z, ζ, �) is a formal
series in �, makes sense in deformation theory. We thus conclude that introducing
Green operators just amounts to legitimating boundary layers in the deformation
approach.

Definition 5.2. An operator of the form

(5.6) A+
�
+G : H+ → H+

is said to be a Toeplitz-Boutet de Monvel operator.

The operators (5.6) form already an algebra even in the deformation approach, as
we will see soon. This algebra is very similar to the usual Boutet de Monvel algebra,
where the role of conormal variable ξn is played by the variable of the circle. Since
x varies over a compact set (unlike ξn), the situation gets considerably simplified.
Namely, one needs no transmission property (it is automatically fulfilled), there
does not arise the condition of invertibility of the symbol outside of a compact set,
and hence no trace and potential operators are required. They can be added if one
wishes. However, in the simplest setting one can do without them as well. Note
that if one maps the circle onto the real axis by a linear fractional map then one
arrives at the genuine Boutet de Monvel algebra. This allows one to invoke the
results of [Gru86], when one needs to verify the asymptotic character of formal
series.

We will give an operator (5.6) as a pair

(5.7) t = {a(x, ξ), g(z, ζ)}
where a ∈ C∞

c (T ∗S) is the symbol of the pseudodifferential operator A� = Op (a)
that enters into the Toeplitz operator A+

�
, and g is a Green kernel. Note that the

symbol a is uniquely determined but up to symbols Δa ∈ C∞
c ((T ∗S)−), i.e., those

vanishing on (T ∗S)+, where (T ∗S)± stands for the semicylinder ±ξ > 0. To prove
this we observe that the operator A+

�
acts by the formula similar to (5.1), however,

the indices k and l now vary over nonnegative integers. Hence it follows that for the
symbols Δa ∈ C∞

c ((T ∗S)−) the corresponding Toeplitz operator Π+ Op (Δa)Π+

is equal to 0. Thus, it would be more precise to say that a in (5.4) belongs to the
quotient space

C∞
c (T ∗S)/C∞

c ((T ∗S)−).
However, we will not be so pedantic and we will work with representatives of equiv-
alence classes, i.e., with symbols on the whole cylinder T ∗S.
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We will also consider the formal series

t(h) =

∞∑
k=0

tk�
k,

the coefficients tk being pairs (5.7). We call such series the formal Toeplitz-Boutet
de Monvel symbols.

Theorem 5.3. The operators (5.6) form an algebra, which survives under passing
to deformation quantisation.

A bit vague phrase that the algebra survives under passing to deformation quan-
tisation means in fact that the composition rule extends to formal symbols of
Toeplitz-Boutet de Monvel.

Proof. We have

(B+
�
+G2)(A

+
�
+G1) = (B�A�)

+ + (B+
�
A+

�
− (B�A�)

+) +B+
�
G1 +G2A

+
�
+G2G1.

Here the first summand is a Toeplitz-Boutet de Monvel operator defined by the
symbol b ◦ a. To complete the proof it remains to show that the other summands
are Green operators. We give the proof only for the most difficult case of the
operator B+

�
A+

�
− (B�A�)

+.
For a composition w = Π+Op (b)Π+Op (a)u with u ∈ H+, we get similarly to

formula (5.1)

ŵ(m) =
∞∑
l=0

∞∑
k=0

b̂(m− l, �l) â(l − k, �k) û(k),

in contrast to (5.1) the sums being over nonnegative indices k and l. For the
operator B+

�
A+

�
− (B�A�)

+ we get an analogous formula but with summation over
negative integers l

(5.8) ŵ(m) = −
−1∑

l=−∞

∞∑
k=0

b̂(m− l, �l) â(l − k, �k) û(k),

the index m takes nonnegative values. Clearly, the difference l−k is always negative
and the differencem−l is always positive for all admissible values k and l. Moreover,
both l − k and m − l tend to ∓∞, respectively. Therefore, one can replace the
symbol a by a−(x, ξ) = Π−

x a(x, ξ) and the symbol b by b+(x, ξ) = Π+
x b(x, ξ). Since

the Fourier coefficients are rapidly decreasing, the double series in (5.8) converges
rapidly.

We first consider the case where a and b do not depend on ξ, i.e., Op (a) is the
multiplication operator by a function a(z), and similarly for Op (b).

Lemma 5.4. If a and b are independent of ξ then (5.8) is a Green operator with
kernel

(5.9) g(z, ζ) =
1

(2πı)2

∫
S

b+(υ)− b+(z)

υ − z

a−(ζ)− a−(υ)
ζ − υ

dυ.

Proof. It is easily verified that(
B+

�
A+

�
− (B�A�)

+
)
u = Π+b(z)Π+ (a(z)u(z))−Π+ (b(z)a(z)u(z))

= Π+b(z)Π− (a(z)u(z)) .
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The function a(z) can be replaced by a−(z), for a+(z)u(z) ∈ H+ and so Π−

annihilates such a function. In the same manner we can see that b can be replaced
by b+. Thus, the operator takes the form

(B+
�
A+

�
− (B�A�)

+)u (z) =
1

(2πı)2

∫
S+

b+(υ)

υ − z
dυ

∫
S−

a−(ζ)u(ζ)
ζ − υ

dζ.

Clearly, ∫
S−

a−(υ)u(ζ)
ζ − υ

dζ = a−(υ)
∫
S−

u(ζ)

ζ − υ
dζ

= 0

whence

v(υ) =

∫
S−

a−(ζ)u(ζ)
ζ − υ

dζ

=

∫
S

a−(ζ)− a−(υ)
ζ − υ

u(ζ) dζ,

the contour S− can be replaced by S, for the singularity at ζ = υ disappears.
Similar arguments apply to the external integral. Taking into account that v ∈ H−

we get ∫
S+

b+(υ)v(υ)

υ − z
dυ =

∫
S

b+(υ)− b−(z)
υ − z

v(υ) dυ,

which proves the lemma. �

In the sequel, for symbols a(z) and b(z) independent of ξ, we use the designation
G(b, a) for the Green operator with kernel (5.9). The kernel itself will be denoted
by g(b, a). When passing to the real variables z = eıx and ζ = eıy, one should
attach the factor ıζ to the kernel g(b, a), for dζ = ıeıy dy. We will use both the real
and the complex form of the kernel without further comments.

Returning now to the general case, we expand the symbols a(x, ξ) and b(x, ξ) in
the equality (5.8) in a formal Taylor series in ξ at ξ = 0, obtaining

â(l − k, �k) =
∞∑

α=0

∂α
ξ â(l − k, 0)

(�k)α

α!

as well as

b̂(m− l, �l) =

∞∑
α=0

∂α
ξ b̂(m− l, 0)

(�l)α

α!

=
∞∑

β,γ=0

∂β+γ
ξ b̂(m− l, 0)

(�m)β(�l − �m)γ

β!γ!

=

∞∑
β,γ=0

∂β+γ
ξ ∂̂γ

xb(m− l, 0)
ıγhβ+γmβ

β!γ!
.

Substituting these into formula (5.8) yields

ŵ(m) =
∞∑

α,β,γ=0

mβ
−1∑

l=−∞

∞∑
k=0

ıγhα+β+γ

α!β!γ!
∂β+γ
ξ ∂̂γ

xb(m− l, 0) ∂α
ξ â(l − k, 0) kαû(k),
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which in turn can be written, by Lemma 5.4, in the form

w(x) =

∞∑
α,β,γ=0

hα+β+γ

α!β!γ!
(−ı∂x)

βG
(
∂β+γ
ξ (ı∂x)

γb(x, 0), ∂α
ξ a(x, 0)

)
(−ı∂x)

αu(x).

For the kernel of this operator we readily obtain a formal series in powers of �,
namely

(5.10)

∞∑
α,β,γ=0

hα+β+γ

α!β!γ!
(−ı∂x)

β(ı∂y)
α g

(
∂β+γ
ξ (ı∂x)

γb(x, 0), ∂α
ξ a(x, 0)

)
(x, y),

which is asymptotic by [Gru86].
The compositions G2A

+
h and B+

h G1 can be handled in much the same way. We
first assume that the symbol a does not depend on ξ, i.e., Ah is the operator of
multiplication by a function a(z). Then as in Lemma 5.4 we deduce that G2A

+
h

is a Green operator. In the general case we expand the symbol a(x, ξ) in a formal
Taylor series in ξ at ξ = 0, which leads to a formal power series in h, the coefficients
being Green operators. The asymptotic character of these series is a consequence
of results of [Gru86]. The same reasoning applies to the case of B+

h G1. It is not
difficult to write down explicit formulas of the type (5.10), however, we need not
them in the sequel. �

Part 2. Index theorem for manifolds with boundary

6. Trace in the Toeplitz-Boutet de Monvel algebra

Once again we start with the algebra of pseudodifferential operators on a circle.
For symbols with compact support, the operator A� = Op (a(x, ξ)) is of trace class
in the space L2(S), and the trace of this operator is equal to the sum of diagonal
elements in any orthonormal basis. Taking as a basis the functions eıkx, with k ∈ Z,
and using (5.1), we get

TrA� =

∞∑
k=−∞

â(0, �k)

=

∞∑
k=−∞

〈a(x, �k)〉

=
1

2π�

∫
T∗S

a(x, ξ) dxdξ +O(h∞).(6.1)

Here we used the summation formula of Euler-Maclaurin to replace the sum over k
by integration over ξ. The expression (6.1) makes also sense for formal series (5.3).
It follows that one can introduce a trace on the algebra of quantum observables as
termwise integral

(6.2) Tr a(x, ξ, �) =
1

2πh

∫
T∗S

a(x, ξ, �) dxdξ.

Thus, the trace is a linear functional on the algebra of quantum observables
with values in C[[h]] (formal series with complex coefficients), which vanishes on the
commutators. This latter property can be directly verified by using the composition
formula. However, it is not necessary because the operator origin of the trace
formula (6.2) guarantees this property.
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We now turn to Toeplitz operators (5.4) in the space H+. As an orthonormal
basis we take the same functions eıkx with nonnegative frequences k = 0, 1, . . ..
Then we get similarly to (6.1)

TrA+
�

=

∞∑
k=0

â(0, �k)

=
∞∑
k=0

〈a(x, �k)〉

∼ 1

2π�

∫
S

∫ ∞

0

a(x, ξ) dxdξ −
∞∑
j=1

Bj

j!
〈∂j−1

ξ a(x, 0)〉hj−1.(6.3)

We have once again used the Euler-Maclaurin formula for the interval 0 ≤ k� ≤ N ,
where N is the width of the symbol support, i.e., a(x, ξ) = 0 for ξ ≥ N . Along with
the integral over the semicylinder there are also boundary terms at ξ = 0, and Bj

are Bernoulli numbers. The series is asymptotic if h → 0.
The trace of a Green operator G with kernel

g(z, ζ) =
∞∑

m,n=0

gm,nz
mζ−n−1

is also defined as the sum of diagonal elements in the basis zm = eımx. This sum
can be rewritten as the integral of the kernel over the diagonal, i.e.,

TrG =
∞∑

n=0

gn,n

=

∫
S

g(z, z) dz.(6.4)

The formulas (6.3) and (6.4) allow one to introduce a trace functional for the
formal algebra of Toeplitz-Boutet de Monvel by linearity. It splits into an interior
and boundary parts in a natural way. Namely, let t = {a, g} where

a = a(x, ξ, �) =

∞∑
k=0

hkak(x, ξ),

g = g(z, ζ, �) =
∞∑
k=0

hkgk(z, ζ).

Then we set

Tr t = Tri t+Trb t,

where

(6.5)

Tri t =
1

2π�

∫
(T∗S)+

a(x, ξ, �) dxdξ,

Trb t =

∫
S

g(z, z, �) dz − 1

2π

∫
S

∞∑
j=1

Bj

j!
�
j−1 ∂j−1

ξ a(x, 0, �) dx,

all the integrals being understood as termwise ones. The very operator nature
of these formulas ensures that this way defined trace vanishes on commutators.
Indeed, for the Toeplitz-Boutet de Monvel operators t1 = A+

�
+G1 and t2 = B+

�
+G2

the equality Tr [t1, t2] = 0 is fulfilled for all positive values �, since for operators in
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a Hilbert space it always holds. Hence, this equality remains valid if by the trace
is meant the asymptotic expansion in � given by (6.3) and (6.4). From this it in
turn follows that the equality still holds if the asymptotic expansion is replaced
by the formal one, and then it extends to formal linear combinations. It is worth
pointing out, however, that the interior and the boundary traces do not vanish on
commutators separately.

Note that the direct verification of the equality Tr [t1, t2] = 0 is rather lavish
similarly to cumbersome calculations that are done in [FGLS96] for the noncom-
mutative residue of Wodzicki. Here we can prove this equality in a roundabout way
without invoking cumbersome calculations.

7. Global construction

In the section we construct an algebra of quantum observables A = {Ai,Ab}
consisting of interior and boundary components. Along with symplectic structures
described in Section 4, we need symplectic connections ∂s

M and ∂s
B and vector

bundles EM and EB with connections ∂EM and ∂EB over M and B, respectively.
In a boundary neighbourhood U we require

EM |U = π∗EB ,

where π : U → B is a projection. The connections ∂s
M and ∂EM in the neighbour-

hood U are assumed to be invariant under the action of the group U(1).
We will use the following notation. By x is meant a point of M and by y ∈ TM

a tangent vector. The variables x′ and y′ have the same meaning with respect to
the base B. In the neighbourhood U we have

x = (x′, ϕ,H),
y = (y′,Δϕ,ΔH)

where ϕ, H are the coordinates ‘angle’ and ‘action’ in the fibre S × I over x′, or
x = (x′, z, z̄) if one uses complex coordinates in the fibres of the bundle E (cf.
Section 4). By KM = Hom(EM , EM ) and KB = Hom(EB , EB) we denote the
coefficient bundles with connections induced by ∂EM and ∂EB .

The algebraAi is the standard algebra of quantum observables onM restricted to
M−, cf. [Fed96]. To construct it one introduces the bundle of Weyl algebras W (M)
on tangent spaces, and the bundle of Weyl algebras with coefficients in KM , i.e.,
W (M,KM ) = W (M)⊗KM equipped with the connection ∂M = ∂s

M ⊗1+1⊗∂EM .
Furthermore, one constructs an Abelian connection DM = ∂M + [γM , ·] where γM
is an 1 -form with values in WM of the form

γM =
ı

�
(ωM )ij y

idxj +
ı

�
rM .

The principal term of γM is of degree −1 in y and � under the convention deg y = 1
and deg � = 2, and the remainder has degree ≥ 1. The Abelian property of DM

means that the Weyl curvature of DM

ΩM := ∂MγM + γ2
M + Ωs

M + ΩEM

coincides with −ıωM/h, where Ωs
M and ΩEM are curvatures of the connections ∂s

M

and ∂EM . In particular, ΩM is a form with values in the centre. The form γM
is defined uniquely modulo a scalar (central) summand. The Weyl normalisation
assumes that

γM |y=0 = 0.
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As a consequence of the Abelian property we readily deduce D2
M = 0, and Ai is

actually the algebra of all flat sections a = a(x, y, �) of the bundle W (M,KM ).
The algebra Ab is constructed in much the same way on the manifold B, the

only difference being in more involved coefficients. More precisely, the coefficients
are operator-valued. In the theory of pseudodifferential operators the correspond-
ing objects are called operator-valued symbols. Recall (cf. Section 4) that the
neighbourhood U of the boundary is a bundle with fibre S × I, and the transition
functions are angle shifts ϕ → ϕ+ϕ0(x

′). In the fibres we have the Toeplitz-Boutet
de Monvel algebra, on which the group U(1) acts by angle shifts, i.e., through mul-
tiplication with complex numbers of modulus 1. Thus, over B there live the bundle
H+ and the bundle T of Toeplitz algebras that can be thought of as Hom(H+, H+).
The sections of the bundle T are pairs

t = {a(x′, ϕ,H, �), g(x′, z, ζ, �)}.
When comparing to Section 4, we have slightly changed the notation: instead
of (x, ξ) ∈ T ∗S we now write (ϕ,H) ∈ S × I. Moreover, there has appeared a
dependence of x′ ∈ B as a parameter. On the bundle T one can introduce the
connection

(7.1) ∂T = dx′ +
[ ı
�
Hγ, ·

]
.

Here dx′ is the de Rham differential in x′ ∈ B, γ is a connection form in the
principal bundle M0, and H is regarded as an element of the Toeplitz-Boutet de
Monvel algebra with {a, g} = {H, 0}. Clearly, the commutator with H yields
the differentiation in the angle, hence the connection (7.1) in fact corresponds to
infinitesimal angle shifts, see Chapter 8 in [Fed96] for more details.

We can now introduce the coefficient bundle K ′ = KB ⊗ T with connection
∂′ = ∂EB ⊗ 1 + 1⊗ ∂T , and the bundle of Weyl algebras W (B,K ′) = W (B)⊗K ′,
the tensor product of the latter expression is understood over C[[�]]. The rest runs in
the same manner as forM . Namely, we introduce the connection ∂B = ∂s

B⊗1+1⊗∂′

and then construct an Abelian connection

(7.2) DB = ∂B + [γB , ·]
whose Weyl connection is

ΩB := ∂BγB + γ2
B + Ωs

B + ΩEB + ΩT

= − ı

�
ωB .

Then Ab is the algebra of all flat sections of W (B,K ′) relative to the connection
DB . Technically this construction is much more complicated than that for M , and
we refer the reader to Chapter 8 of [Fed96] for more details.

The interior and boundary components in a pair {ai, ab} ∈ A should be compat-
ible in an appropriate manner. The boundary component is also a pair consisting
of a Toeplitz operator and of a Green operator, both depending on parameters x′,
y′ and the formal parameter �. Omitting the projection Π+ in the designation of
a Toeplitz operator, we write a flat section of W (B,K ′) in the form

(7.3) ab(x
′, y′, �) = {a(x′, y′, �, ϕ,H), g(x′, y′, �, z, ζ)}.

Loosely speaking, the compatibility condition means that the symbol a in the pair
(7.3) and a flat section ai = ai(x, y, �) of the bundle W (M,KM ) are diverse forms
of the same object. In other words, we must be able to rewrite any symbol a of
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(7.3) in the form of a flat section of the bundle W (M,KM ). This is done in three
steps.

1. Formalisation: Omitting the arguments x′, y′ and �, we consider a function
a(ϕ,H) of (7.3) on the fubre F = S×I of the bundle U → B. We assign to a(ϕ,H)
the formal Taylor series Fa = a(ϕ+Δϕ,H +ΔH) in powers of Δϕ and ΔH. Such
expansions form an algebra with respect to the Leibniz product

(7.4) a ◦ b =

∞∑
α=0

(−ı�)α

α!

∂αa

∂(Δϕ)α
∂αb

∂(ΔH)α
.

This algebra is isomorphic to the algebra of left symbols of pseudodifferential op-
erators on a circle. The isomorphism is given by the formalisation map F , and the
inverse isomorphism reduces to the substitution Δϕ = ΔH = 0. Obviously, Fa
satisfies the equation

DF (Fa) := dϕ,HFa+
[ ı
�
(ΔϕdH −ΔH dϕ),Fa

]
= 0(7.5)

where the commutator is taken with respect to multiplication (7.4). This equality
expresses the fact that Fa depends only on the combinations ϕ+Δϕ and H+ΔH.
On the other hand, the equality just amounts to saying that Fa is a flat section
of the bundle of Leibniz algebras in a fibre F = S × I relative to the Abelian
connection DF . Here dϕ,H stands for the de Rham differential in the fibre F , and
the connection form is

γF =
ı

�
(ΔϕdH −ΔH dϕ) .

2. Transition to Weyl symbols: From the Leibniz algebra with product (7.4) one
can pass to the Weyl algebra with multiplication

a ◦ b =

∞∑
α,β=0

(
− ıh

2

)α+β (−1)α

α!β!

∂α+βa

∂(Δϕ)α∂(ΔH)β
∂α+βb

∂(ΔH)α∂(Δϕ)β
.

These two products are equivalent, for the left symbols are transferred to Weyl
symbols by the formal differential operator

P = exp
( ıh
2

∂2

∂(Δϕ)∂(ΔH)

)
.

The “function” PFa can be thus thought of as a section of the bundle of Weyl
algebras over U ⊂ M . However, it is not in general a flat section of the bundle with
respect to the Abelian connection DM .

3. Transition to another Abelian connection: The original section a in the pair
t = {a, g} is flat with respect to the Abelian connection DB , cf. (7.2). Hence the

section PFa is flat relative to the connection D̃B that is the image of the connection
DB under the isomorphism PF . Moreover, it is flat in each fibre S × I relative to
DF , cf. (7.5). Therefore, PFa is a flat section of the bundle of Weyl algebras over

U ⊂ M with respect to the connection D̃B +DF . In [Fed96, Chapter 8] it is shown

that the Weyl curvatures of the connections D̃B +DF and DM coincide in a small
neighbourhood U ⊂ M of the boundary M0. Hence the corresponding algebras of
flat sections of the Weyl bundle over U are isomorphic, cf. Chapter 5 in [Fed96].
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Denoting this isomorphism by J , we conclude that the composition I = JPF gives
an epimorphism of the algebras

WDB
� {a, g} �→ Ia ∈ WDM

.

Given a pair {ai, ab}, with ai ∈ WDM
and ab = {a, g} ∈ WDB

, we say that
ai and ab are compatible if ai = Ia in a neighbourhood of M0. The component-
wise product does not destroy the compatibility condition, for I = JPF is an
isomorphism of algebras. Thus, we introduce the algebra of quantum observables
A as the set of all compatible pairs with component-wise product.

8. Trace and index

Recall that we consider a compact symplectic manifold M− = {H ≤ 0} with
boundary embedded into a larger symplectic manifold M . Our main assumption is
that the boundary of M− is a circle bundle over a compact closed manifold B whose
dimension is thus two less than that of M−. We use the construction of smooth
reduction with respect to the action of the group U(1) elaborated in [Fed98]. This
yields deformation quantisation on B with coefficients in K ′ = KB ⊗ T , where
KB = Hom(EB , EB) and T = Hom(H+, H+) is the bundle of Toeplitz algebras
over B. The algebra of quantum observables on M− is defined to consist of interior
and boundary components, i.e., A = {Ai,Ab}, where Ai is the restriction of WDM

to M− and Ab just amounts to WDB
. The trace functional on WDM

restricted to
the elements of Ai does not vanish on commutators, for M− bears a boundary. On
the other hand, the Toeplitz operators t = {a, g} need not be of trace class unless
a(x, ξ, �) is o(|ξ|−1) for ξ → ∞. Hence, the fibres of T are no longer endowed with
operator trace. To get rid of these difficulties and construct a trace functional on
A, we require the interior and boundary components of {ai, ab} with ab = (a, g)
to be compatible in the sense clarified in the preceding section. Then ai and a are
diverse forms of the same objects in WDM

and we introduce

Tr {ai, ab} = Tri {ai, ab}+Trb {ai, ab}
where

(8.1)

Tri {ai, ab} =

∫
M−

exp
ωM

2π�
tr ai |y=0,

Trb {ai, ab} =

∫
B

exp
ωB

2π�
trb ab |y′=0

for {ai, ab} ∈ A. Here, we have slightly changed the notation and write trb for the
trace in the fibres of T given by the second formula of (6.5).

Lemma 8.1. As defined above, the functional Tr {ai, ab} is a trace on the quantum
algebra A, i.e., it vanishes on commutators.

Proof. For those couples {ai, 0} whose components ai are compactly supported in
the interior of M− the assertion follows immediately from what has been said in
Section 3. Using a partition of unity in the quantum algebra Ai, one can write
an arbitrary {ai, ab} as the sum of two couples {a′i, 0} and {a′′i , ab}, where a′i is
compactly supported in the interior of M− and a′′i has compact support in a neigh-
bourhood {−ε < H ≤ 0} of ∂M−. Since ai and ab are compatible, it follows that
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the trace of {ai, ab} with ai compactly supported in {−ε < H ≤ 0} is given by the
integral ∫

B

exp
ωB

2π�
(tri ab + trb ab) |y′=0.

From the construction of the trace in the Toeplitz-Boutet de Monvel algebra given
in Section 6 we conclude readily that the functional vanishes on commutators, as
desired. �

It is clear that Lemma 8.1 can be proved immediately by integration by parts.
However, the direct verification is rather cumbersome.

In [FGLS96] it is shown that any continuous trace on Boutet de Monvel’s algebra
on a compact manifold with boundary is a scalar multiple of the noncommutative
residue constructed there.

Note that for the couples of the form {ai, 0}, where ai ∈ WDM
is compactly sup-

ported in the interior ofM−, the trace functional coincides with that in the quantum
algebra WDM

. By Theorem 3.2, the trace in this algebra is defined uniquely up
to a normalisation factor. On the other hand, if ai is supported in a sufficiently
small neighbourhood of the boundary ∂M−, then the trace of {ai, ab}A coincides
with the trace of ab in the quantum algebra WDB

endowed with the operator trace
in the fibres, as is shown in the proof of Lemma 8.1. Theorem 3.2 still applies to
this algebra thus proving the uniqueness of the trace up to a normalisation factor.
Using the localisation procedure based on the partition of unity in the quantum
algebra WDM

, we can represent any {ai, ab} ∈ A as the sum of two elements {a′i, 0}
and {a′′i , ab} as above. Since the components ai and ab are compatible, it follows
that the trace functionals in WDM

and WDB
should agree. Hence, the trace func-

tional on A is defined uniquely up to a normalisation factor, if one assumes some
continuity of the trace.

Take a scalar-valued function a ∈ C∞(M−) and consider the section a ⊗ 1 in
C∞(M,KM ), where 1 stands for the unit in the algebra KM . Similarly to the
calculus of pseudodifferential operators on a compact manifold with boundary, there
is no canonical way to quantise this section in the quantum algebra A. Write
a = a′ + a′′, where a′ is a C∞ function with compact support in the interior of
M− and a′′ ∈ C∞(M−) is supported in a sufficiently small neighbourhood of the
boundary ∂M−. Then a′ ⊗ 1 can be quantised in the quantum algebra Ai while
a′′ ⊗ 1 can be quantised in the quantum algebra Ab. In this way we obtain an
element

â = {Q(a′ ⊗ 1), Q(a′′ ⊗ 1)}
in A, where we use the same letter Q to designate the different quantisation maps in
Ai and Ab. Nevertheless the trace Tr â does not depend on the particular splitting
a = a′ + a′′, as is easy to see. Proceeding by analogy with the index theorem for
deformation quantisations on a compact closed manifold, cf. [Fed96], we come to
the conjecture

(8.2) Tr 1̂ =

∫
M−

chEM exp
ωM

2π�
Â(M) +

∫
B

ch′ EB exp
ωB

2π�
Â(B),

where ch′ EB means the Chern character of the bundle EB with respect to the
“trace” trb.

Formula (8.2) is very similar to the formula for the index of an elliptic boundary
value problem, see [Fed91, (2.24)]. The arguments of [Fed01] show that the index
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theorem for elliptic boundary value problems may be obtained as a consequence of
the index theorem for deformation quantisation. Formula (8.2) has also intimate
relations to the index formula for symplectic orbifolds of [FST04, (6.3)]. It should
be noted that the techniques for establishing formulas [FST04, (6.3)] and (8.2) has
been understood well. A challenging problem consists in finding a direct proof of
the index theorem.

9. Spectral asymptotics

We use the designation Hamiltonian for any smooth real-valued functionH(x) on
M used an element of a quantum algebra. An eigenstate 〈·〉λ with eigenvalue λ ∈ R

for the Hamiltonian H(x) is a functional on the compactly supported elements of
the quantum algebra

〈a〉λ =
∑

k�−∞
�
kck(�),

such that 〈Ĥ ∗ a〉λ = 〈a ∗ Ĥ〉λ = λ 〈a〉λ for all a, where k � −∞ means that k is
bounded away from −∞. See [Fed06], [Tar15].

The property 〈Ĥ ∗ a〉λ = 〈a ∗ Ĥ〉λ means that the functional 〈·〉λ vanishes on

commutators with Ĥ. We say that the spectral theorem holds if

(9.1)

∫ ∞

−∞
〈a〉λdλ = Tr a

for any a in the quantum algebra with compact support. It is clear that the eigen-
state may be multiplied with any number, and the equality (9.1) gives a proper
normalisation.

Let λ ∈ R be a noncritical value of H(x). Then the construction of Section 8
applies to yield a quantum algebra A = A{H≤λ} with trivial coefficients in KM ,
where EM = M × C, on the compact manifold with boundary M− = {H ≤ λ}.
The trace functional Tr = Tr{H≤λ} gives rise to the construction of an eigenstate
with eigenvalue λ for H.

Namely, assuming that the derivative exists we set

〈a〉λ =
d

dλ
Tr a

for a ∈ A. By the very construction, 〈a〉λ is a formal Laurent series in � with
a finite number of negative powers of �, whose coefficients depend on λ. Write
Ĥ = Q{H≤λ}(H) for a quantisation of H(x) in the quantum algebra A. By the
trace property, we obtain

〈Ĥ ∗ a〉λ =
d

dλ
Tr Ĥ ∗ a =

d

dλ
Tr a ∗ Ĥ = 〈a ∗ Ĥ〉λ

for all a ∈ A. Moreover,

〈Ĥ ∗ a〉λ = lim
Δλ→0

Tr{H≤λ+Δλ} Ĥ ∗ a− Tr{H≤λ} Ĥ ∗ a
Δλ

= λ lim
Δλ→0

Tr{H≤λ+Δλ} a− Tr{H≤λ} a
Δλ

= λ 〈a〉λ,
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as desired. The spectral theorem holds for H(x) in the sense that∫ ∞

−∞
〈a〉λ dλ =

∫ ∞

−∞

d

dλ

(
Tr{H≤λ} a

)
dλ

= Tr{H<∞} a

whenever a is supported away from the critical levels of H.
Having eigenstates at his disposal, one may introduce further important spectral

notions purely within the framework of deformation quantisation. Let Δ be a
closed interval in the real λ -axis which does not contain any critical value of the
Hamiltonian H(x). A formal spectral projector E(Δ) is the functional on the
compactly supported elements of the quantum algebra with values in C[�−1, �]]
given by

〈E(Δ), a〉 =
∫
Δ

〈a〉λ dλ.
If an interval Δ = [λ1, λ2] is free of the critical values of the Hamiltonian H(x),

then
〈E(Δ), a〉 = Tr{H≤λ2} a− Tr{H≤λ1} a,

showing the relation of E(Δ) to the index formula for compact symplectic manifolds
with boundary.

Definition 9.1. In the case where E(Δ) is a distribution with compact support,

the expression 〈E(Δ), 1̂〉 ∈ C[�−1, �]] is called a formal spectral asymptotics and
denoted by N(Δ).

This definition is motivated by analogy with operator formulas but in fact it
has nothing to do with spectral theory. However, it is instructive to compare these
formal spectral objects with genuine ones defined for � -pseudodifferential operators,
see [Ivr98].

For a treatment of the contribution of Morse critical points to the spectral de-
composition we refer the reader to [Fed06], see also [Tar15].

10. An example

The simplest example for which all the quantities in question may be calculated
explicitly is an n -dimensional harmonic oscillator in R

2n. Let M = C
n be endowed

with symplectic form

ωM =
1

2ı

n∑
k=1

dz̄k ∧ dzk.

Given any λ > 0, consider the Hamiltonian

H =
1

2
|z|2 − λ

which has the only critical point at the origin. Then M− = {|z| ≤ √
2λ} is a com-

pact manifold with boundary. The Hamiltonian vector field VH on the boundary
M0 = {|z| = √

2λ} induced by H is

VH =

n∑
k=1

ızk
∂

∂zk
− ız̄k

∂

∂z̄k
,

i.e. i(VH)ωM = −dH. The vector field VH defines the structure of a circle bundle
on M0 whose base is B = CP

n−1.
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The base B is a compact symplectic manifold with symplectic form ωB = 2πλ c
where

c =
1

2πı

n∑
k=1

d
z̄k

|z| ∧ d
zk

|z|
is the standard Fubini-Study form on CP

n−1.
The connection 1 -form on M0 × I is

γ =
1

2ı

n∑
k=1

z̄k

|z|d
zk

|z| −
zk

|z|d
z̄k

|z| =
1

2ı

n∑
k=1

z̄k

|z|2 dz
k − zk

|z|2 dz̄
k

whence

i(VH)γ = 1,

dγ =
2

2ı

n∑
k=1

d
z̄k

|z| ∧ d
zk

|z| = 2πc.

It is easy to verify that
ωM = ωB + d(Hγ).

The index formula (8.2) for M− reads

Tr 1̂ =

∫
M−

exp
ωM

2π�
+

∫
B

trb exp
(
− d(Hγ)

2π�

)
exp

ωB

2π�
Â(CPn−1)

Since

trb exp
(
− Hdγ

2π�

)
= −

∞∑
j=1

Bj

j!
�
j−1 ∂j−1

H exp
(
− Hdγ

2π�

)∣∣
H=0

= − 1

z

( z

ez − 1
− 1

)∣∣
z=− dγ

2π=−c

=
1

1− e−c
− 1

c

and the Atiyah-Hirzebruch class is represented by the form

Â(CPn−1) =
( c

ec/2 − e−c/2

)n

= e(n/2)c
( c

ec − 1

)n

(see [Fed96]), we obtain

(10.1) Tr 1̂ =

∫
M−

exp
ωM

2π�
+

∫
B

( 1

1− e−c
− 1

c

)
exp

λ

�
c
( c

ec/2 − e−c/2

)n

.

The integral over M− of (10.1) is easily evaluated, namely∫
|z|2≤2λ

exp
ωM

2π�
=

1

n!

(λ
�

)n

,

and it remains to calculate the integral over B. An easy computation shows that
the integrand of the boundary integral just amounts to( 1

1− e−c
− 1

c

)
e
λ
�
c
( c

ec/2 − e−c/2

)n

=
( ec

ec − 1
− 1

c

)
e

(
λ
�
+n

2

)
c cn

(ec − 1)n

=
e

(
λ
�
+n

2 +1
)
c

(ec − 1)n+1 cn − e

(
λ
�
+n

2

)
c

(ec − 1)n
cn−1.
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Write f(c) for the function on the right-hand side of this equality. Since the
integral ∫

CPn−1

cn−1

just amounts to 1, it follows that the boundary integral in (10.1) is equal to the
Taylor coefficient of f(z) at zn−1. This coefficient can be evaluated as the residue

Res0
f(z)

zn
=

1

2πı

∫
|z|=ε

f(z)

zn
dz,

where ε is a small positive number. We now calculate

Res0
f(z)

zn
= Res0

e

(
λ
�
+n

2 +1
)
z

(ez − 1)n+1 − Res0
e

(
λ
�
+n

2

)
z

z(ez − 1)n
.

The first residue is easily seen to be Cn
λ
�
+n

2

, where

Cn
Q =

(
Q
n

)
=

Q(Q− 1) . . . (Q− n+ 1)

n!
,

see Lemma 3.5 of [Fed06]. To calculate the more difficult second residue, we make
the change of variables ζ = ez − 1, thus obtaining

z = log(1 + ζ),

dz =
dζ

1 + z
.

Then

(10.2) Res0
e

(
λ
�
+n

2

)
z

z(ez − 1)n
= Res0

(1 + ζ)
λ
�
+n

2−1

ζn log(1 + ζ)
,

the function log(1+ ζ) being holomorphic in the disk of radius 1 with centre at the
origin and it has a simple zero at ζ = 0. Write

ζ

log(1 + ζ)
=

∞∑
k=0

ckζ
k,

where ck are explicit real numbers. For instance, we have

c0 = 1, c1 =
1

2
, c2 = − 1

12
, c3 =

1

24
,

etc. Substituting this expansion into (10.2) yields

Res0
e

(
λ
�
+n

2

)
z

z(ez − 1)n
= Res0

∞∑
j=0

( j∑
k=0

(
Q
k

)
cj−k

)
ζj

ζn+1

=

n∑
k=0

(
Q
k

)
cn−k,

where Q =
λ

�
+

n

2
− 1.

Summarising we arrive at the following index formula for the harmonic oscillator
at the sublevel {|z| ≤ √

2λ} in C
n.



26 B. FEDOSOV AND N. TARKHANOV

Theorem 10.1. For each λ > 0, the index of deformation quantisation on the
manifold M− = {|z| ≤ √

2λ} is given by

Tr 1̂ =
1

n!

(λ
�

)n

+ Cn
λ
�
+n

2
−

n∑
k=0

Ck
λ
�
+n

2−1
cn−k.

We complete the section by a short discussion of the index formula for the par-
ticular cases n = 1, 2, 3. For n = 1, it takes the form

Tr 1̂ =
λ

�
+
(λ
�
+

1

2

)
−
(1
2
+

λ

�
− 1

2

)
=

λ

�
+

1

2
,

which is precisely C1
λ
�
+1

2
.

When starting this research the authors believed that the index formula would
look like

Tr 1̂ = Cn
λ
�
+n

2
.

However, this equality holds merely in an asymptotic sense when λ → ∞. Namely,
for n = 2 the formula reads

Tr 1̂ =
1

2

(λ
�

)2

+
1

2

(λ
�
+ 1

)λ
�
−
(
− 1

12
+

1

2

λ

�
+

1

2

λ

�

(λ
�
− 1

))
,

which reduces to C2
λ
�
+1

+
1

12
.

Finally, in the case n = 3 we get

Tr 1̂ =
1

6

(λ
�

)3

+
1

6

(λ
�
+

3

2

)(λ
�
+

1

2

)(λ
�
− 1

2

)
−

( 1

24
− 1

12

(λ
�
+

1

2

)
+

1

4

(λ
�
+

1

2

)(λ
�
− 1

2

)
+

1

6

(λ
�
+

1

2

)(λ
�
− 1

2

)(λ
�
− 3

2

))
,

which reduces to C3
λ
�
+3

2
+

1

8

λ

�
.
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