
Technische Berichte Nr. 94

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the

Second HPI Cloud

Symposium

“Operating the Cloud”

2014

Sascha Bosse, Mohamed Esam Elsaid, Frank Feinbube,
Hendrik Müller (Eds.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 94

Sascha Bosse | Mohamed Esam Elsaid | Frank Feinbube | Hendrik Müller (Eds.)

Proceedings of the Second HPI Cloud Symposium
"Operating the Cloud" 2014

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2015
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URN urn:nbn:de:kobv:517-opus4-76654
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76654

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-319-0

mailto:verlag@uni-potsdam.de

Preface

Every year, the Hasso Plattner Institute (HPI) invites guests from industry and
academia to a collaborative scientific workshop on the topic “Operating the Cloud”.
Our goal is to provide a forum for the exchange of knowledge and experience
between industry and academia. Hence, HPI’s Future SOC Lab is the adequate
environment to host this event which is also supported by BITKOM.

On the occasion of this workshop we called for submissions of research papers
and practitioner’s reports. ”Operating the Cloud” aims to be a platform for pro-
ductive discussions of innovative ideas, visions, and upcoming technologies in the
field of cloud operation and administration.

In this workshop proceedings the results of the second HPI cloud symposium
”Operating the Cloud” 2014 are published. We thank the authors for exciting pre-
sentations and insights into their current work and research. Moreover, we look
forward to more interesting submissions for the upcoming symposium in 2015.

v

Contents

Evaluating IT Service Design Alternatives With Respect to Availability, Response
Times and Costs . 1

Sascha Bosse, Johannes Hintsch, Christian Schulz, Matthias Splieth,
Hendrik Müller, and Klaus Turowski

Live Migration Overhead Performance Modeling 15

Mohamed Esam Elsaid, Christoph Meinel

Quality Attributes for Cloud-based Software Systems 31

Frank Feinbube, Lena Herscheid, Christian Neuhaus, Daniel Richter,
Bernhard Rabe, Andreas Polze

Self-Configuring Data Imports for SAP HANA Cloud Environments 45

Hendrik Müller, Matthias Splieth, Sascha Bosse and Klaus Turowski

vii

Evaluating IT Service Design Alternatives With Respect to
Availability, Response Times and Costs

Sascha Bosse, Johannes Hintsch, Christian Schulz, Matthias Splieth,
Hendrik Müller, and Klaus Turowski

Very Large Business Applications Lab
Otto von Guericke University Magdeburg, P.O. Box 4120, Magdeburg

{sascha.bosse|johannes.hintsch|christian.schulz|matthias.splieth
hendrik.mueller|klaus.turowski}@ovgu.de

The paradigm of cloud computing has become an important driver for IT service-
orientation. A major challenge for IT service providers is to satisfy service-level
objectives in terms of availability and performance with respect to IT system
landscape costs. Decisions affecting these aspects are mainly made in the service
design stage in which reliable quantitative data is often not available. Therefore,
analytical prediction models using architectural information are recommended.
In this paper, an analytical prediction model based on Petri net simulation is
conceptualized to support decision makers by comparing design alternatives
with respect to availability, performance and costs. The developed concept could
be evaluated in a real-world case study and presents a step towards a scalable
decision-support framework for IT service management in the service design
stage.

1 Introduction

Since the advent of cloud computing, it has become a very popular paradigm to
obtain computing resources on-demand. Such cloud services are elastic IT services
which are provisioned using pooled resources and are monitored continuously to
ensure cloud service quality [16]. This quality is measured by IT service metrics
such as availability or response time, for which guarantees are given in service-level
agreements (SLA) by the IT service provider.

One challenge that arises, especially for cloud service providers, is the need to
evolve their IT system landscapes cost-efficiently in order to consolidate computing
capacities and to face new technologies or business demands [7]. On the other
hand, service-level objectives – for instance for the service availability – should
not be violated in this evolution, since this could lead to penalty costs or loss of
reputation for the IT service provider [8]. Hence, a provider needs to evaluate IT
system landscape design alternatives with respect to IT service quality and costs.
Since IT system landscapes, especially those of cloud service providers, are often
complex and heterogeneous, this is not a trivial problem [26].

A possible way to analyze IT service quality is the application of performability
modeling techniques in which performance as well as dependability aspects are
investigated [10]. The IT Infrastructure Library (ITIL), a good-practice set for IT
service management, recommends the application of these analytical prediction

1

mailto:

Bosse et al.: Evaluating IT Service Design Alternatives

models in the service design stage [11] since decisions affecting IT service quality
are mainly made in this stage and are costly to correct in the subsequent stages
[26]. However, existing approaches for perfomability modeling of IT services con-
centrate on single non-functional metrics, ignoring other metrics as well as the
inter-dependencies between them [17]. Therefore, a suitable and scalable method
for performability modeling of IT services is conceptualized in this paper. It is
designed to predict IT service availability and response times as two of the most
crucial performability metrics [13] as well as the IT system landscape costs. Hence,
this concept is supposed to be a step towards effective decision-support when
evolving IT system landscapes in the service design stage.

Before the developed concept is presented in section 3, the current state of
the art in performability modeling for IT services is discussed in section 2. The
implemented prototype is then used to conduct experiments of a real-world case
study in order to demonstrate the ability of the developed concept to support
decision-making. These evaluation results are presented in section 4. Section 5

concludes the contribution by discussing the results and providing an outlook on
further research activities.

2 State of the Art

This section presents the current state of the art for predicting availability, perfor-
mance and costs of an IT service.

2.1 Availability Prediction

The availability of an IT service is defined by the ITIL as “the ability of a service
[...] to perform its agreed function when required” [11]. Analytical approaches for
predicting IT service availability are applicable in the design stage since the system
is modeled as a composition of components for which availability can be estimated.
Depending on the technique with which the service availability is computed from
the availability of components, analytical prediction models can be divided into
combinatorial, state-space and hierarchical methods [27].

Combinatorial approaches assume that the the modeled components are mutu-
ally independent. Hence, service availability can be easily computed by using the
probability theory. Components in these models can be arranged serially (AND)
or parallel (OR) to define their impact on service availability. Parallel connections
represent redundancy mechanisms while serial connections represent critical paths
in the service provisioning [28]. However, other inter-component dependencies
such as maintenance or standby redundancy mechanisms cannot be modeled in
combinatorial approaches, leading to a significantly limited suitability for IT service
availability prediction [3].

This disadvantage is compensated in state-space-based approaches by modeling
all possible states of the system landscape and the transitions between them. The
availability of a service is then associated with certain states and can be computed

2

2 State of the Art

from the probability of occurrence of these states. Markov approaches are a very
popular subcategory in these approaches since the assumption of the Markov
property simplifies the availability computation, although it is unrealistic especially
for component recovery times [5]. Nevertheless, modeling every possible state
of the system leads to the problem of state-space explosion for real-world cases
with hundreds of components, restricting the scalability of explicit state-space
approaches [24]. In order to overcome this problem, different propositions such
as encoding the state-space in a Petri net and Monte Carlo simulation of state-
space models (e.g. in [29]) are suggested in the scientific discussion. Hierarchical
approaches, combinations of system-level combinatorial and component-level state-
space models, can also be used to limit model complexity [27].

2.2 Performance Prediction

As a measure of an IT service’s performance, the services response time is defined
as the time span between service request and response [1]. Other measures that
are related to this metric are utilization and throughput [14]. The response time of
an IT service is mainly determined by the network delay as well as the queuing
and processing time [23]. Prototyping and benchmarking can be applied in order
to analyze response times [15]. However, these methods require measured data
and are, hence, not applicable in the service design stage [1]. Therefore, analytical
prediction models should be applied in this stage [26].

Analytical prediction models for performance can be classified into probabilistic
methods as well as state-space models based on queuing networks, Petri nets or
process algebra [1]. While queuing networks are the preferred class of prediction
models in this area, simulation methods are recommended for model solving
since they allow for dynamic analyses [12]. The Palladio Component Model (PCM)
is a prominent example for a performance prediction meta-model. It allows for
the dynamic analysis of heterogeneous, component-based software systems by
combining state-space models with simulation [22]. The PCM consists of four
submodels, namely the component, the composition, the deployment and the usage
model. However, models for component availability and hierarchical composition
structures are not included in the meta model.

2.3 Costs of an IT System Landscape

Cost calculations for IT system landscapes and data centers are necessary activities
in the financial management of IT services with many specialized approaches (cf.
e. g. [4]). Since the scope of this paper is not focused on these calculation methods,
costs are modeled on a high-level. In [2], the authors identify two basic cost types for
data centers: capital expenses which can be depreciated over a certain time frame
and operational expenses. Capital expenses incorporate costs for data center space
and acquisition costs for components while power and maintenance costs refer
to operational expenses [19]. The main driver for power costs in data centers are
IT components and cooling equipment [2]. However, the power costs for cooling
are directly proportional to the power costs for IT components [19]. Especially

3

Bosse et al.: Evaluating IT Service Design Alternatives

for server components in the data center, the power consumption depends on
the component’s current mode (e.g. active or hot-/cold-standby) and its resource
utilization [2].

3 Prediction Model

The previous section revealed that none of the identified approaches from liter-
ature is able to predict IT service availability, performance and costs in a single
model with respect to their dependencies. Nevertheless, these dependencies are
crucial for the accuracy of the prediction model. For instance, the performance of a
service depends on the amount of available resources which again depends on the
availability of IT components. On the other hand, poor performance may lead to
perceived unavailability for a service consumer. However, introducing additional
components for more resources or redundancy mechanisms will increase the costs
of the IT system landscape.

In order to include these dependencies in a prediction model, a novel approach is
developed and presented in this section. A simulation-based approach was chosen
for dynamic analysis in order to quantify not only the mean value of these aspects,
but also the variance. On that basis, the probability of SLA violations can be
assessed more easily [9]. Since Petri nets were identified as a suitable meta model
for both availability and performance prediction, the concept is developed based
on colored generalized stochastic Petri nets (GSPN) (cf. e.g. [6]). Solving these
models through simulation provides a high scalability since single replications can
be parallelized [24].

In the following, first, a meta model for IT service availability, performance
and cost prediction is introduced, before the behavior of the simulation model is
presented.

3.1 Meta-Model

In order to predict availability, performance and costs of an IT service, the following
relevant entities and attributes have to be modeled:

• The usage of an IT service is determined by a random distribution for request
arrival. A timeout can be defined for each service. It determines the time after
which the processing of a request is aborted and the service is perceived as
unavailable by the consumer.

• For each IT service, an operations graph has to be defined. It arranges opera-
tions sequentially, exclusively (with path probabilities) and parallel. Hence, it
corresponds to trace diagrams such as UML activity diagrams. If a request is
processed through one complete path of the operations graph, the request can
be responded. The time span between request arrival and response is stored
as the request’s response time. An exemplary operations graph is presented
in figure 2.

4

3 Prediction Model

• An operation is an atomic entity for request processing. Its execution requires
a certain amount of resources that is provided by an associated component
system. The execution time of an operation can be modeled depending on its
allocated resources with random distributions.

• A component system is an arrangement of components that provides the
components’ resources to operations and models basic dependencies. De-
pending on the states of the involved components, the provided amount
of resources can vary. Examples for possible component systems are serial,
parallel redundant and voting systems.

• Components represent the elements of an IT system landscape that are cru-
cial to IT service provisioning. These can be infrastructure, hardware or
software components. To each component, set-up costs (are incurred at the
beginning of the simulation) and power costs are assigned. The power costs
for a timestep can depend on the current mode as well as on the resource
utilization of this component. A component provides certain resources which
can be unavailable due to failures. Different failure types can be defined for
a single component determining random distributions for the time to failure
and the time to recover as well as if the recovery requires operator interaction.
Recovery costs can additionally be defined for each failure type, which entail
when recovery happens.

• A pool of operators is defined for an IT system landscape. They process error-
prone tasks with priorities which require manual interaction. If an interaction
is imperfect, it has to be repeated. Tasks can be assigned to components or to
dependencies. For each operator, a wage is defined.

• If components have inter-dependencies not covered by the component system,
a dependency has to be defined between these components. A dependency is
characterized by a trigger and an effect. For instance, a standby-dependency
can be defined where the secondary component is brought online only if the
primary component fails. The time between the trigger condition and the
effect can be defined by a random distribution.

The availability of an IT service can then be computed by equation 1 from the set of
requests reqs and the set of responses resps, the mean response time by equation 2.
The total costs can be calculated by adding the capital expenses set-up and recovery
costs with the operational expenses human resource and power costs. Cooling and
space costs are omitted in this version of the concept, however, cooling costs can
be estimated from component power costs [19].

A = |resps|/|reqs| (1)

rt =
1

|resps|

∑
req∈resps

rt(req) (2)

5

Bosse et al.: Evaluating IT Service Design Alternatives

3.2 Simulation Model

When a specific scenario is modeled in the meta model, a colored GSPN is gen-
erated automatically from this information. It is designed as a hierarchical model
combining submodels for component behavior, operations graph and operator
interaction. The request arrival distribution determines the firing rate of the oper-
ations graph’s source transition which creates tokens representing a request. This
token is processed through the operations graph for sequential and parallel paths
(cf. figure 2). In case of exclusive paths, a random choice is made according to de-
fined path probabilities. An operation transition can be fired if the corresponding
component system provides enough resources. If the resources are available, the
component systems allocates them. If this is not the case, the operation is queued
until resources are available. Due to component failures, allocated resources can
become unavailable, causing the abortion of the request. Abortion also happens if
the time a request is processed in the system landscape is greater than the defined
timeout.

The behavior of components is determined by the component model. Figure 1

presents an exemplary component model. For each resource type, a place is created
with a number of tokens according to the amount of available resource entities. The
places Offline and Online determine the current state of a component, while each
failure type is represented by a colored token leading to different firing times for
the failure and recovery transition. If a failure occurs, the component’s resources
are blocked immediately for operations. When the recovery process is finished, the
resources are made available again. If manual interaction is required for recovery,
the transition can only fire if an operator token is assigned to this component from
the operator pool.

By the start of a simulation run, all components are set online and set-up costs
are stored. By the end of a simulation run, availability, mean response time and
costs of the service are calculated. Since one simulation run represents only one
possible system behavior, a sufficient number of runs has to be executed until
statistically significant results can be computed using confidence intervals.

4 Case Study Evaluation

In order to demonstrate the correctness and the feasibility of the proposed predic-
tion model, experiments were conducted with a prototype implementation of the
concept using the java-based simulation framework AnyLogic 6.9.0. The verification
of the prototype was performed by comparison of results with other analytical
models as well as by sensitivity tests where no comparison was possible. After the
correctness of the prototype was verified, a real-world case study was conducted
by analyzing a website delivery service. Therefore, first this service was modeled
using the meta model from section 3 in order to create a Petri net simulation model.

In figure 2, the operations graph of the service is displayed. In ninety percent
of the cases, the requested HTML page has already been rendered before and

6

4 Case Study Evaluation

Offline

Online

Operator

Failure Recovery

2000

4096

CPU

RAM

2000 2000

40964096

Failure
happened

Recovery
happened

Resources
blocked

Figure 1: Exemplary Component Petri Net Model

Request
arrival

Load
settings

Process
HTML

3

0.9

0.1

Load
cached

page

Load
static

elements

Load
dynamic
elements

Responses

Figure 2: Petri Net Operations Graph for the Website Delivery Service

is provided by a memcached 1.4.2 memory caching system. If the page has not
been rendered before, it has to be created according to the information from a

7

Bosse et al.: Evaluating IT Service Design Alternatives

TYPO3 4.7.6 content management system running on an Apache 2.2.14 web server.
Therefore, settings, static elements and dynamic elements are rendered parallel
using data from a MySQL 5.1.72 database operated on an Ubuntu 10.04 LTS server.
After these templates have been rendered, the HTML page can be created and
delivered to the user. Each operation requires 256 MiB of main memory and its
execution time depends on the amount of allocated processing power. For 250

MHz of processing power, the execution time of the operations were measured
and defined as triangular distributions according to table 1. An uncorrectable
failure was assigned to each component, while the failure and recovery times were
modeled as exponentially distributed random variables with mean values derived
from literature according to table 2. In the original configuration, all software
components are hosted on a single server with an Intel(R) Xeon(R) X5650@2.67

GHz and 4096 MiB of RAM.

Table 1: Execution Time Distributions for Operations of the Website Delivery
Service

Execution time triangular distributions in ms

Operation Minimum Mode Maximum

Load cached page 855 957 1,249

Load settings 16 31 118

Load static content 56 210 1,117

Load dynamic content 1,010 1,719 2,255

Process HTML page 69 74 87

Table 2: Mean Time to Failure (MTTF) and Recover (MTTR) for Case Study
Components

Component MTTF in h MTTR in h

Web server/caching [17] 8,760 1.44

Database server [17] 8,760 1.73

RAM DIMM [25] 38,672 1.45

Physical server [21] 5,463 1.97

In order to compare the simulation results to real values, the website delivery
service was monitored to parametrize the model. It was instantiated with a request
arrival rate of 0.12276 requests per minute and a timeout of 10 seconds. Hence, the
mean response time from reality (0.99894 seconds) could be compared to the mean

8

4 Case Study Evaluation

value of the expected response time after 100 replications simulating one year of
operation (1.142 seconds). This comparison results in a relative difference of 14.32 %,
which is within the tolerable difference of 30 % for response time prediction defined
in literature [14]. Therefore, the validity of the prediction model for response times
cannot be denied.

After the validation experiment, the request arrival rate is varied in order to
analyze availability, response time and costs in a stress test. This is done for the
original configuration as well as for two hypothetical scenarios: in these scenarios, a
second server is installed with 4×3.0 GHz processing power and 8 GiB of RAM. In
the parallel configuration, both servers are hosted parallel redundant while in the
standby configuration, the old server is run in standby mode, only to be activated
if the new server fails. For all configurations, the service-level objective (SLO) for
the service availability is set to 99.5 % and for the service mean response time to
1.2 seconds. In order to compute power costs, data from the SPECpower_ssj2008
benchmark for server systems was used [2], the power consumption in standby
mode is set to 10 % of the active idle value [18]. The energy price is set to 0.2306e
per kWh1.

In figure 3, the results of the stress test are displayed for the original configuration
for request arrival rates between 0.12276 and 1 request per minute. It can be
analyzed that the SLO of 99.5 % availability is violated if the arrival rate exceeds 0.7
requests per minute. This analysis was conducted for the other two configurations
as well, the results are presented in table 3. In order to compare the different
configurations, the table displays the mean results for the original request arrival
rate and the mean results for the last arrival rate where the defined SLO is not
violated (grey highlighted).

It is obvious that the introduction of redundancy mechanisms in the two hypo-
thetical scenarios considerably improves the resilience of the service in terms of
request arrivals. While the original configuration can only handle 0.7 requests per
minute before the SLO is violated, the standby configuration can handle 159, the
parallel configuration even 216 requests per minute before the mean response time
exceeds 1.2 seconds. However, it can be stated that in the standby configuration,
significantly less power costs are generated. Therefore, the standby configuration
would be the better alternative if the request arrival rate does not exceed 159 re-
quests per minute. Using this information, mechanisms could be implemented that
automatically switch the service to a parallel configuration if the request arrival
rate requires that in order to hold the SLO.

1E.ON ProfiStrom tariff at 11-01-2013 https://www.eon.de/de/angebot/gk/
produkteUndPreise/Gewerbekunden/Strom/E.ON_ProfiStrom_ET/index.htm

9

https://www.eon.de/de/angebot/gk/produkteUndPreise/Gewerbekunden/Strom/E.ON_ProfiStrom_ET/index.htm
https://www.eon.de/de/angebot/gk/produkteUndPreise/Gewerbekunden/Strom/E.ON_ProfiStrom_ET/index.htm

Bosse et al.: Evaluating IT Service Design Alternatives

Table 3: Simulation Results for the Three Configurations of the Case Study

Configuration Request arrival
rate per min

Mean avail-
ability in %

Mean response
time in s

Mean power
costs in e

Original 0.1226 99.87100 1.142 349.82

0.7 99.52393 1.146 350.85

Standby 0.1226 99.90857 0.988 384.05

159.0 99.58274 1.198 448.49

Parallel 0.1226 99.99994 0.988 693.01

216.0 99.79986 1.199 774.02

SLO 99.50000 1.200

1.14

1.141

1.142

1.143

1.144

1.145

1.146

1.147

1.148

1.149

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
sp

o
n

se
 T

im
e
 i

n
 s

A
v

a
il

a
b

il
it

y

Arrival Rate in 1/min

Mean Availability Availability 99,5 % Mean Response Time

Figure 3: Availability (Primary Axis) and Response Time (Secondary Axis) Confi-
dence Intervals for Different Request Arrival Rates in the Deliver Website Case
Study

10

5 Conclusion

5 Conclusion

In this paper, a concept for predicting availability, response time and costs of
IT services was developed. It aims at supporting decision makers in the service
design stage to evaluate design alternatives in terms of performability service-level
objectives and costs. Therefore, a Petri net-based simulation model was designed
that incorporates the dependencies between the output variables in a single model.
For instance, response times and power costs depend on the current resource
utilization in the data center. The resource capacities, on the other hand, can be
affected by component unavailability and poor response times will also lead to
perceived unavailability.

The analysis of the state of the art in section 2 revealed that no existing approach
for performability evaluation is able to model these dependencies in a single model.
In section 3, the meta model of the prediction framework presents the modeled
entities and attributes, before the Petri net simulation model is introduced in the
second part of this section. A demonstration of the concept’s abilities is presented
in the evaluation section 4. Therefore, a case study of a website delivery service
was analyzed. The conducted experiments indicate that the developed concept
is feasible to support decision making in the service design stage by comparing
different design alternatives with respect to availability, performance and costs.

Although the concept includes features such as trace-based performance anal-
ysis, component availability, error-prone operator interaction and generic inter-
component dependencies, it has to be extended in the future in order to achieve
sufficient accuracy in the field of performability analysis. For instance, maintenance
activities in order to decrease component failure rate as well as costs of space and
cooling have to be integrated into the model. Also architectural dependencies be-
tween software components could be predefined to increase the usability of the
concept.

Future research in the area of performability analysis in general has to consider
two major problems: model creation and parametrization. The model creation
process is often done manually and is, therefore, error-prone. In addition to that,
in the majority of the performability prediction approaches, models have to be
created in (semi-)formal modeling languages which can be evaluated directly. This
process requires knowledge which is often not available for decision makers in
the service design stage. Therefore, this contribution addresses this problem by
providing a meta modeling language which is automatically translated to Petri
nets. In future work, this could be supported by information from existing sources
such as configuration management databases which was discussed e.g. in [17].

Future research in the area of performability analysis in general has to consider
two major problems: model creation and parametrization. The model creation
process is often done manually and is, therefore, error-prone. In addition to that, in
the majority of the performability prediction approaches, models have to be created
in (semi-)formal modeling languages which can be evaluated directly. This process
requires theoretical knowledge which is often not available for decision makers
in the service design stage. Therefore, this contribution addresses this problem by

11

Bosse et al.: Evaluating IT Service Design Alternatives

providing an meta modeling language which is automatically translated to Petri
nets. In future work, this could be supported by information from existing sources
such as configuration management databases which was discussed e.g. in [17].

Another important problem of analytical prediction models is the model para-
metrization. For hardware components, for example, manufacturers’ data is often
over-optimistic [20] and software component parameters can only be estimated
in early software development phases since benchmarks cannot be used in these
phases. For this problem, one approach could be to find an adequate abstraction
level where previously measured data, for instance from similar services, can be
incorporated into analytical models.

The consideration of the mentioned aspects in future work should improve
the usability and accuracy of performability analysis models applicable in the
service design stage and, therefore, supports IT service managers to trade-off
performability service-level objectives and costs.

References

[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. “Model-Based Perfor-
mance Prediction in Software Development: A Survey”. In: IEEE Transactions
on Software Engineering 30 (2004), pages 295–310.

[2] L. Barroso, J. Clidaras, and U. Hölzle. The Datacenter as a Computer. Edited by
M. Hill. 2nd edition. Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2013.

[3] G. Callou, P. Maciel, D. Tutsch, J. Araújo, J. Ferreira, and R. Souza. “A Petri
Net-Based Approach to the Quantification of Data Center Dependability”.
In: Petri Nets – Manufacturing and Computer Science. Edited by P. Pawlewski.
InTech, 2012. Chapter 14, pages 313–336.

[4] D. Cannon. ITIL Service Strategy 2011 Edition. The Stationery Office, 2011.

[5] C. Chellappan and G. Vijayalakshmi. “Dependability modeling and analysis
of hybrid redundancy systems”. In: International Journal of Quality & Reliabil-
ity Management 26 (2009), pages 76–96.

[6] G. Ciardo, J. Muppala, and K. Trivedi. “SPNP: Stochastic Petri Net Pack-
age”. In: Proceedings of the 3rd International Workshop PNPM. IEEE Computer
Society, 1989, pages 142–151.

[7] J. Eckert, N. Repp, S. Schulte, R. Berbner, and R. Steinmetz. “An Approach
for Capacity Planning of Web Service Workflows”. In: Proceedings of the 13th
Americas Conference on Information Systems (AMCIS). 2007.

[8] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R. Buyya,
and C. A. F. D. Rose. “Towards autonomic detection of SLA violations in
Cloud infrastructures”. In: Future Generation Computer Systems 28.7 (2012),
pages 1017–1029.

12

References

[9] U. Franke. “Optimal IT Service Availability: Shorter Outages, or Fewer?” In:
IEEE Transactions on Network and Service Management 9 (2012), pages 22–33.

[10] B. R. Haverkort and I. Niemegeers. “Performability modelling tools and
techniques”. In: Performance Evaluation 25 (1996), pages 17–40.

[11] L. Hunnebeck. ITIL Service Design 2011 Edition. Norwich, UK: The Stationery
Office, 2011.

[12] D. Jewell. “Performance Modeling and Engineering”. In: edited by Z. Liu and
C. Xia. Springer US, 2008. Chapter Performance Engineering and Manage-
ment Method – A Holistic Approach to Performance Engineering, pages 29–
55.

[13] A. Keller and H. Ludwig. “The WSLA Framwork: Specifying and Monitor-
ing Service Level Agreements for Web Services”. In: Journal of Network and
Systems Management 11 (2003), pages 57–81.

[14] H. Liu and P. Crain. “An Analytical Model for Predicting the Performance
of SOA-based Enterprise Software Applications”. In: Proceedings of the 30th
International Computer Measurement Group Conference (CMG). 2004.

[15] Y. Liu, A. Fekete, and I. Gorton. “Design-Level Performance Prediction of
Component-Based Applications”. In: IEEE Transactions on Software Engineer-
ing 31 (2005), pages 928–941.

[16] P. Mell and T. Grance. “The NIST Definition of Cloud Computing”. In: Na-
tional Institute of Standards and Technology – Special Publication 800–145 (2011),
pages 1–3.

[17] N. Milanovic and B. Milic. “Automatic Generation of Service Availability
Models”. In: IEEE Transactions on Service Computing 4.1 (2011), pages 56–69.

[18] A.-C. Orgerie, L. L., and J.-P. Gelas. “Demystifying Energy Consumption in
Grids and Clouds”. In: Proceedings of the 2010 International Green Computing
Conference. Chicago, IL, USA, 2010.

[19] C. Patel and A. Shah. Cost Model for Planning, Development: and Operation of a
Data Center. Technical report. Hewlett-Packard Laboratories Palo Alto, 2005.

[20] E. Pinheiro, W.-D. Weber, and L. A. Barroso. “Failure Trends in a Large Disk
Drive Population”. In: Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST). 2007.

[21] Records of cluster node outages, workload logs and error logs from the Los Alamos
National Lab. Usenix. 2014. url: https://www.usenix.org/cfdr-data.

[22] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek, H. Kozi-
olek, K. Krogmann, and M. Kuperberg. The Palladio Component Model. Tech-
nical report. Karlsruhe Institute of Technology, Faculty of Informatics, 2011.

[23] D. Rud. “Performancebewertung und -sicherung von orchestrierten Ser-
viceangeboten”. PhD thesis. Otto von Guericke University Magdeburg, 2009.

13

https://www.usenix.org/cfdr-data

Bosse et al.: Evaluating IT Service Design Alternatives

[24] A. Sachdeva, D. Kumar, and P. Kumar. “Reliability analysis of pulping system
using Petri nets”. In: International Journal of Quality & Reliability Management
25 (2008), pages 860–877.

[25] B. Schroeder, E. Pinheiro, and W.-D. Weber. “DRAM Errors in the Wild: A
Large-Scale Field Study”. In: Communications of the ACM 54 (2011), pages 100–
107.

[26] D. Terlit and H. Krcmar. “Generic Performance Prediction for ERP and SOA
Applications”. In: Proceedings of the 18th European Conference on Information
Systems (ECIS). 2011.

[27] K. Trivedi, G. Ciardo, B. Dasarathy, M. Grottke, R. Matias, A. Rindos, and
B. Vashaw. “Achieving and Assuring High Availability”. In: 5th International
Service Availability Symposium (ISAS). Edited by T. Nanya, F. Maruyama, A.
Pataricza, and M. Malek. Volume 5017. Lecture Notes in Computer Science.
Tokyo, Japan: Springer Verlag Berlin Heidelberg, 2008, pages 20–25.

[28] E. Zambon, S. Etalle, and R. Wieringa. “A2thOS: availability analysis and
optimisation in SLAs”. In: International Journal of Network Management 22

(2012), pages 104–130.

[29] V. Zille, C. Bérenguer, A. Grall, and A. Despujols. “Simulation of Main-
tained Multicomponent Systems for Dependability Assessment”. In: Simu-
lation Methods for Reliability and Availability of Complex Systems. Edited by P.
Faulin, A. Juan, S. Martorell, and J. Ramírez-Márquez. Berlin, Heidelberg:
Springer, 2010. Chapter 12, pages 253–272.

14

Live Migration Overhead Performance Modeling
VMware vMotion Based Study

Mohamed Esam Elsaid, Christoph Meinel

Hasso Plattner Institute
University of Potsdam

{mohamed.elsaid|christoph.meinel}@hpi.de

Cloud computing is the future wave of information technology that provides
infrastructure, platform and application as on demand services with low cost
and rapid scalability. Infrastructure resources virtualization is the backbone of
cloud computing to meet on demand, rapid scalability and resource pooling as
the main cloud computing characteristics. Live migration is one of the powerful
features in datacenters virtualization. Hosts load balance, power saving, failure
recovery and dynamic resource allocation are all dependent on having live mi-
gration for the virtual machines. So studying and modeling live migrations is
important to predict its impact on the datacenter performance and to take the
migration decision at the optimum times. In this paper, we study the impact of
live migration on the datacenter resources utilization and power consumption for
VMware environment. This overhead modeling can be used to estimate the live
migration impact on datacenter resources utilization given the virtual machine
and network characteristics. Based on this estimation, the network admin can
be alerted with this estimated overhead in order to confirm the live migration
request or to postpone it to another optimum time for minimum interruption on
the running applications.

1 Introduction

Cloud computing is a promising paradigm for computing and IT services. Now,
it is a widely accepted trend for on demand IT resources with elastic scaling and
cost efficiency. Cloud computing moves data processing and storage away from
desktop and portable PCs into large data centers. To have an on-demand and elastic
resources, the IT infrastructure should be virtualized.Virtualization features such as
flexible resource provisioning, isolation, cloning and live migration have improved
the reliability and utilization of the physical resources. Infrastructure, Platform
and Software as a service (IaaS, PaaS and SaaS), are offered using an illusion of
availability in resources as demanded by the cloud users.

This virtual availability of resources utilizes the hardware usage, facilitates rapid
scaling, and saves power and cost. As a new era for IT services, cloud computing
users can get on demand virtual hosts, storage and networking, after specifying
their hardware settings, storage capacity, operating systems as well as the installed
applications. This is quite different from the earlier infrastructure models where
the enterprises had to invest huge cost in building the IT infrastructure resource
including cooling and IT staff. Traditional data centers were designed to meet the

15

mailto:{mohamed.elsaid|christoph.meinel}@hpi.de

Elsaid, Meinel: Live Migration Overhead Performance Modeling

peak demand for the running applications; which results in low utilization and
waste of resources during the non-peak hours [4].

Live Migration is one of the most important features and a powerful tool in
machine virtualization. It allows an entire running and active virtual machine (VM)
to be transferred from one physical host to another with a very little interruption
which allows seamless movement of online servers in LAN or in MAN scale
without asking clients to disconnect and reconnect [9]. Live migration is supported
by VMware (vMotion), Xen (XenMotion), Microsoft Hyper-V and Redhat KVM [3].
Servers load balancing, online maintenance, fault tolerance and power saving are all
dependent on VMs live migration feature. So live migration is an essential feature
in virtual datacenter and cloud computing environment to have dynamic resource
management. On the other hand, it is important also to study the drawback of live
migration overhead on the datacenter performance.

Live migration cost is classified into energy and performance overhead on the
running machines and the live migration execution cost [9]. Execution costs are
the total migration time and migration down time. However the physical machines
overhead are the increase in CPU utilization, network bandwidth, and power
consumption [9]. Migration time and downtime analysis are studied in [13, 3, 9, 7, 2].
Live Migration time and down time are mathematically modeled in [13, 9, 7, 2]. The
models in [13, 7, 2] are verified with measurements using Xen test beds. So there is
no guarantee if these models are valid for other virtualization tools like VMware; as
one of the best performance and commonly used tool in enterprise datacenters [3].
Xen and VMware use iterative pre-copy technique, however the stopping conditions
are different; which makes the performance difference [10]. This difference will be
more explained in the modeling section of this paper. A very useful comparison
between live migration in VMware, Xen, KVM and Hyper-V is done in [3] in terms
of the migration time, downtime and migration volume, however there are no
models proposed for these results. In [2], RAM intensive, CPU intensive and Disk
IO intensive benchmarks are used to measure the migration time with different
CPU capacities. However there is no model proposed to estimate live migration
impact on CPU and network utilization. To minimize costs, new algorithms are
proposed for live migration [10] and [6]. Proposing new live migration algorithms
is not the focus of this paper; we mainly study the running algorithms impact on
datacenter performance modeling.

In this paper we check the validity of using the proposed migration cost models
in [2] for VMware vMotion. The modeled cost in [9] and [7] are the migration time
and power consumption. Then we use these models to predict the live migration
CPU and network overhead based on regression techniques. Regression techniques
based modeling is used in [7] and [2] due to the complexity of live migration
modeling. These models can be used to notify the network admin with the live
migration impact on the datacenter performance. So the migration request can
be confirmed or postponed based on the resources utilization by the running
applications in order to avoid service interruption. To the best of our knowledge,
no previous work has proposed models to estimate power, network and CPU
consumptions for VMware vMotion.

16

2 Live Migration Time Modeling

2 Live Migration Time Modeling

2.1 Mathematical Modeling

Live migration in iterative pre-copy technique that is used in Xen and VMware has
mainly six phases; as shown in Fig. 1 [10]. These phases are:

1. Initialization: initiating the migration by selecting the VM to be migrated and
selecting the target machine.

2. Reservation: the source machine sends a request to the target machine for re-
sources reservation and the target machine answers with an acknowledgment
after reserving the required resources for the migration.

3. Iterative pre-copy: the entire RAM is sent in the first iteration, then pages
modified during the previous iteration are transferred to the destination.
Using shadow page table for memory dirty pages mapping.

4. Stop-and-Copy: When the stop conditions are met, the VM is halted on the
source for a final transfer round. The stop conditions in the Xen platform are
[13]:

a. Less than 50 pages are dirtied during the last pre-copy iteration

b. 29 pre-copy iterations have been carried out9.

c. More than 3 times the total amount of RAM allocated to the VM has
been copied to the destination.

While the stop conditions for VMware are [8]:

a. Less than 16 megabytes of modified pages are left.

b. There is a reduction in changed pages of less than 1 megabyte.

At the same round of stop- and-copy while transferring the final dirty pages,
the migrated VM’s CPU state is transferred to the destination.

5. Commitment: the destination host checks if it has received successfully a
consistent copy of the migrated VM. Then the target machine sends a message
telling the source that it has successfully synchronized the migrated VM
states.

6. Activation: after target host informs source host that it has synchronized their
states, source VM can be discarded. The migrated VM running on target host
is the primary host now and takes over the services offered by source VM.

From Fig. 1, the migration time can be formulated including all its phases details
as following:

Tmig = TR + Tpre−copy +

n∑
i=0

Ti + Tcheckstop + Tstop + Tcommitment+

Ttrans + TActivation

(1)

17

Elsaid, Meinel: Live Migration Overhead Performance Modeling

TR = TProp + TTran + TProc + TProp + TAckTrans + Tsync (2)

Tpre−copy = TRO + Tcopy + TProp + TTrans (3)

TTrans =
VPkst
R , TProp = L

SProp
, TAckTrans = VAck

R

n∑
i=0

Ti =

n∑
i=0

(Tpropi + TTransi) =
Vmem

R
∗ 1− λ

n+1

1− λ
(4)

λ = D
R , n = logλ

VTh
Vmem

Tmig Total migration time
TR Reservation time
TProp Propagation time from source to target
TTrans Transmission time in the management IP network
TAckTrans Transmission time in the management IP network
Tproc Processing time at target
TSync Synchronization time between source and target
TRO Time for converting source RAM pages to read-only
Tcommitment Time for checking commitment
TA Time taken for activating and handing over the remaining

services to the VM on the target and powering it on
VPkt Packet volume size in bits
VAck Acknowledgement volume size in bits
R Migration transmission rate in bits/sec
L Distance length between source and target
SProp Signal propagation speed
Vmem VM current memory size during migration
n Number of migration iterations
D Dirty pages rate
VTh Stopping condition threshold volume

From the formulation above, some parameters that impact migration time can
be calculated given the environment specifications like TProp , TTrans, R, VProp,
Vmem and D. However, there are also parameters that hardly can be obtained due
to complexity such as TProp, TSync, Tcommitment and TA which might depend on
system caching and CPU handling for transactions. So it is worth to use regression
techniques as well as the formulation to simplify the relation of the migration
time with the main parameters that control it. Migration time formulation (4) is
proposed in [7] for Xen environment. As mentioned in stop-and-copy phase, the
stopping condition for VMware vMotion is different with XenMotion, so firstly we
try to validate if migration time formulation in [7] is valid for vMotion. For models
verification and regression techniques implementation, a VMware test bed is used
with the following specification in the next sub-section.

18

2 Live Migration Time Modeling

Target

Tchoosing

Tprop

Ttrans

Tproc

Tprop

Ttrans

Tsync Tsync

TRAM RO

Tcopy RO

Tprop

TTrans

1st Iteration

Tprop

TTrans

2nd Iteration

Tprop

Ttrans

(n-1)th

Iteration

Tcheck Stop

Tpro

p Ttrans

nth

Iteration

T Commitment

Ttrans

Tprop

THandover

Discard

Source VM

Initialization &

Reservation

Iterative

Pre-copy

Stop & Copy

Commitment

Activation

Source

Figure 1: Live Migration Time Diagram

19

Elsaid, Meinel: Live Migration Overhead Performance Modeling

2.2 Testing Environment

The test bed that we have built has 2 Hosts (Dell PowerEdge 2950) with 8 CPU
×2.992 GHz Intel(R) Xeon, 4 GB RAM, 4 NICs, 2 HBA with 2 Fiber ports/card
and VMware ESXi 5.1 Hypervisor. As shown in Fig. 2; both hosts are connected to
shared storage EMC2 Clariion; 1 TB LUN via FC-SAN. The SAN Switch is Cisco
with 4 Gbps ports. The Ethernet switch is Cisco with 1 Gbps ports. Live migration
copy iterations are done through the Ethernet switch [12].

Figure 2: Testing Lab Network Diagram

The two hosts are configured in a cluster that is managed by VMware vCen-
ter Server which allocates the cluster resources and include vMotion feature [5].
Performance parameters values are also gathered using vCenter Server. The VM
that is used in migration is Linux Ubuntu 12.04 (32bit) with 4 vCPU. The testing
benchmark is Linpack [11] as CPU and RAM intensive benchmark; which is the
worst case for a running application. The RAM size is the most effective parameter
in the migration performance [9], so we test the impact of live migration on the
datacenter performance with different memory sizes to have different migration
volumes. Migration volume is the content in total of the CPU and RAM that should
be moved from the source to the target host. The VM RAM sizes vary between
1 GB, 2 GB and 4 GB.

20

2 Live Migration Time Modeling

2.3 Testing Results

Using the above infrastructure the testing sequence is run as following. The VM is
powered on, the benchmark is run and after ten samples at least, the VM migration
is started from one of the physical hosts to the other in order to distinguish be-
tween the benchmark impact and the migration impact on performance. After the
migration is finished, the migration time is calculated and the impact on the target
host performance is monitored. Finally the benchmark is stopped. The migration
is done 30 times; 10 for 1 GB RAM, 10 for 2 GB RAM and 10 for 4 GB RAM VM.
Source host dirty pages are measured to be used in the formulation (4) to calcu-
late the estimated migration time as modeled in [7] but for VMware environment.
Calculation results are compared with the average measurements results to know
the error of different between modeling and measurements. Comparison results
are presented in Table 1.

Table 1: Migration Time Comparison

VM RAM Iterative Copy
Model (sec)

Measurement
Result (sec)

Error %

1 4 GB 104 113 −7.9
2 2 GB 85 105 −19.0
3 1 GB 58 92 −37.0

From the above table, we notice that the results of the proposed model in [7]
are always less than the measured results. And the less VM memory size the
higher error obtained. The reason for this is the assumption used in [7] in live
migration time modeling. This assumption is considering only the iterative copy
delay

∑n
i=0 Ti and ignoring the other phases delay as the iterative copy phase is

the most time consuming step in live migration. So the calculated time is always
less than measurements. With less memory size the iterative copy phase becomes
less dominant and so the error increases.

In order to enhance the mathematical model accuracy, all migration phases delay
should be considered. The challenge is how to calculate complex parameters like
the processing, synchronization, commitment and activation times. These times
are operating system dependent and affected by system caching, so it is hard to
be calculated. To overcome this challenge, regression technique is used to have an
empirical model for live migration time. Regression techniques were used in [7]
and [2] to avoid modeling complexity in power consumption. From the proposed
model (1), iterative copy is the most time consuming phase; where the source host
memory is transferred to the target host. So we find a relation between the total
migration time Tmig and Vmem

R . As shown in Fig. 3, it is obvious that the relation
between the migration time and the ratio between migration volume and migration
rate. This relation can be simplified in the following formula.

21

Elsaid, Meinel: Live Migration Overhead Performance Modeling

Tmig = a ∗ (Vmem
R

+ b) (5)

Table 2: Migration Time Linear Regression

VM RAM Linear Regression
Model (sec)

Measurement
Result (sec)

Error %

1 4 GB 87.5 113 −22.6
2 2 GB 121.275 105 15.5
3 1 GB 96.0 92 −4.3

Where a and b are constants that depend on the hypervisor management and
system caching for migration. For this CPU and RAM intensive testing, a = 0.9 and
b = −17 Linear regression model is compared with migration time measurements
to check the model accuracy. This comparison is presented in Table 2; which shows
that using linear regression accuracy is acceptable and more accurate than the
modeling in [7] but only for 1 GB active memory VMs.

Figure 3: Migration Volume (kB)/Rate (kB/s)

However for larger active memory sizes, the proposed model in [7] is more accurate.
So the proposed model for migration time estimation is as following:

Tmig = a ∗ (VmemR) + b, if Active Memory < VThr
Tmig =

∑n
i=0 Ti, if Active Memory >= VThr

Based on our testing for CPU and RAM intensive applications, this VThr = 2 GB.

22

3 Live Migration Power Modeling

3 Live Migration Power Modeling

Energy consumption modeling is proposed in [9], [7] and [1].In [1], the impact
of VMs consolidation on live migration power consumption is discussed. In [9]
and [7], it is proven that live migration energy consumption has linear relation
with the migration volume. In [9], Xen test bed is used to verify this relation.
In this paper, we verify this relation using VMware test bed. In [9] and [7], the
relation is between the energy and migration volume. In our testing, the power
consumption is measured for each migration; which is the first derivative of energy
with respect to time. Migration rate is also the first derivative of the migration
volume. Fig. 4 shows an example of power consumption due to one migration
request. The proposed model for energy consumption in [9] and [7], is:

Emig = c ∗ Vmig + d (6)

Emig: Migration Energy Consumption in (Joule)
Vmig: Total network traffic during migration

Equation (6) is proposed in [9] and [7] for power modeling. In [7], the values
of c and d are calculated using linear regression based on testing with Xen test
bed;c = 0.512 and d = 20.165. If the first derivative of (6) is taken the formulation
will be as shown in equation (7).

Pmig =
dEmig

dt
= c ∗

dVmig

dt
= c ∗ R (7)

Pmig: Migration Power Consumption in (Watt)

Figure 4: Migration Source and Target Power Consumption

23

Elsaid, Meinel: Live Migration Overhead Performance Modeling

In this paper, we use VMware test bed that is shown in Fig. 2 to verify the linear
approximation between migration power consumption and migration rate. Power
consumption is measured using vCenter server power and energy charts. After
running 30 migrations between the two hosts in the test bed, we monitor the
average increase in power consumption due to the migration overhead.

Figure 5: Power Consumption Increase

This power increase is plotted versus the migration rate; as shown in Fig. 5.
The relation between the power consumption increase and migration rate can be
approximated to a linear relation using linear regression; as shown in Fig. 5. If we
apply (7) to the results of Fig. 5, the slope c = 0.0016. There is a small constant that
can be ignored in the line equation due to its small value ∼ 4 Watt compared to the
power increase values in the graph.

4 Live Migration Performance Estimation

The models proposed in the formulation section and the model proposed in the
related work papers are useful to relate migration cost with other parameters like
migration rate or migrated memory volume. In order to make these models more
useful, it is important to investigate relations that support the network admins in
estimating the migration cost before approving it. So in case that the migration
costs are relatively high due to large VMs migration, or datacenter resources are
already utilized enough by other applications, it will be recommended to postpone
the migration request or to optimize the migration times if it happens automatically.
Live migration cost estimation is very supportive to avoid running applications
interruption due to the migration overhead. Also, this will reduce the migration
process failure rate due to bottlenecks in physical resources. In this paper, we

24

4 Live Migration Performance Estimation

try to find a relation between parameters that are known for the network admin
before migration and estimate the migration cost based on it. For this research
approach, we depend on empirical models by testing migration performance for
large number of runs and see if this is related to a parameter that we already know
before migration.

VM active memory size is one of the key player parameters in live migration cost.
This is because the iterative copy of the whole active RAM pages from source to
destination. In the next subsection, we show how a phenomenal relation is found
between the active memory size before migration and the average increase in the
IP network rate from the source to the target host due to migration.

4.1 Network Overhead Estimation

The higher VM active memory size before migration, the more pages should be
migrated through the IP network between source and target hosts. To meet the high
migration volumes requirements, the IP network algorithm should afford the high-
est possible transmission rate with keeping low transmission error. Fig. 6 shows
one of the migration runs impact on the source host transmission rate and target
host receive rate using vCenter Server performance chart; which take a monitoring
sample every 20 sec. As shown this increase in the source transmission rate and the
target receive rate happens only after starting the VM migration. The rate increase
is slightly different between source and target, but the area under each curve is
almost the same; which is the migrated volume.

Figure 6: Network Throughput Increase

After running 30 runs, we could notice a fitted relation between the VM active
memory size before migration and the transmission rate from the source host;
as shown in Fig. 7. This relation is the quadratic approximation of the average
transmission throughput increase sample points (8).

25

Elsaid, Meinel: Live Migration Overhead Performance Modeling

Rs = α ∗ (Vmem)2 +β (8)

Rs: Source host throughput increase
Vmem: Source host active memory size before migration

Figure 7: Source Host Network Rate vs VM Active Memory Size

For the curve in Fig. 7, α = 6 ∗ 109 and β = 6 ∗ 103. The coefficient of is very
small, so does not have significance on Rs and can be ignored.

4.2 CPU Overhead Estimation

Live migration consume part of the CPU cycles in the source and target hosts during
the live migration process; as shown in Fig. 1. In this part, we study the impact
of live migration on the source host CPU utilization and propose a regression
based model to predict the CPU overhead in general. CPU regression based model
is proposed in [16] to predict the physical host overload in CPU usage and so
takes the decision of migrating some VMs to another physical host. In this paper,
we use regression techniques to estimate the CPU overhead by the live migration
process. After running 10 test for each VM RAM size and so 30 tests in total, the
results in Fig. 8 are obtained. The point in Fig. 8 are the peak CPU change after
sending VMware vMotion request for each run versus the memory size in kB over
the migration rate in kB/s. As shown in Fig. 8, CPU peak overhead point can be
approximated to a negative exponential relation 8.

Cpeak = A ∗ e−(BVmemR) +C (9)

A, B and C are constants.

26

5 Conclusion

Figure 8: Source Host peak CPU overhead vs VM Active Memory Size Network
Rate

For this test: A = 14, 000, B = 0.052 and C = 800. From equation (8), the migration
rate has a quadratic relation the memory size . If we substitute with according to
equation (8), the CPU peak increase will have a negative exponential distribution
with the memory size. This means that with increasing the memory size, the CPU
overhead increases exponentially.

4.3 Migration Performance Prediction

As shown in Fig. 9, From the results obtained in the section 4.1, equation (8) can
be used to estimate the network throughput increase given the VM active memory
size Vmem. Since the migration average rate R in kB/s is obtained using the VM
memory size at the migration time, the migration time Tmig can be predicted using
(5), the CPU overhead and the power consumption increase can be predicted using
(9) and (7).

Figure 9: Migration Overhead Prediction Sequence

5 Conclusion

Live migration is one of the essential features in virtualized datacenter environ-
ments that drives virtual machines load balance, power saving and fault tolerance.

27

Elsaid, Meinel: Live Migration Overhead Performance Modeling

These resource management techniques are basic for cloud computing in order to
have less cost, higher resource utilization, high availability and green IT environ-
ment. Live Migration overheads have drawbacks on the datacenter CPU, network,
and power consumption.

In this paper, empirical models that are supported by mathematical formulation
are proposed to predict the live migration time, power consumption and network
throughput before taking the VM migration decision. Based on the proposed pre-
diction model results, the network admin can confirm the migration decision and
proceed with it; in case the live migration is a manual action and the prediction
results do not cross certain overhead thresholds. In case of automatic load balance
or automatic power saving, the prediction model can be integrated with these
techniques to optimize the migration decision time. This migration decision op-
timization should consider the estimated migration overhead and the running
applications utilization in order to avoid applications interruption and to minimize
bottlenecks probability that may lead to migration process failure.

In the future work, we plan to study the impact of storage migration on the
datacenter performance; when the disks content is also migrated.

References

[1] Z. Bose. “The Internet Considered Harmful”. In: Journal of Automated Reason-
ing 73 (Dec. 2002), pages 57–68.

[2] E. Clarke, R. Sun, and E. Venkatachari. “The Relationship Between Multicast
Solutions and a* Search Using Faluns”. In: Journal of Flexible Epistemologies
117 (Sept. 1996), pages 48–59.

[3] I. Daubechies. “Comparing Voice-over-IP and Thin Clients with Swarm”. In:
Proceedings of VLDB. Sept. 2001.

[4] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, and I. Stoica. “Above the clouds: A Berkeley view of cloud com-
puting”. In: Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28 (2009), page 13.

[5] F. C. Ito. “Comparing the World Wide Web and XML”. In: Proceedings of
SIGMETRICS. Feb. 1991.

[6] V. Johnson. “Deconstructing Interrupts Using Signet”. In: Proceedings of WM-
SCI. Mar. 1997.

[7] G. Kobayashi, H. Sun, and H. Anderson. “An Emulation of Virtual Machines
with Feaze”. In: Proceedings of VLDB. Mar. 2000.

[8] R. Needham, R. Tarjan, and A. Author. “Decoupling Model Checking from
Smalltalk in Erasure Coding”. In: Proceedings of the Symposium on Pseudoran-
dom Models. Nov. 1993.

[9] A. Pnueli. “Comparing the Location-Identity Split and Web Services”. In:
Journal of Flexible, Self-Learning Epistemologies 79 (Jan. 1991), pages 52–68.

28

References

[10] D. Ritchie, J. Hennessy, and R. Tarjan. “Deconstructing Massive Multiplayer
Online Role-Playing Games with FLIX”. In: Proceedings of INFOCOM. Jan.
1999.

[11] I. Sutherland. “A Case for Neural Networks”. In: Proceedings of the USENIX
Technical Conference. June 1990.

[12] B. Thompson, N. Wirth, J. Hopcroft, F. Corbato, and U. Takahashi. “Decou-
pling Kernels from the World Wide Web in the Partition Table”. In: Proceedings
of the Symposium on Event-Driven, Replicated Methodologies. Dec. 2002.

[13] I. Thompson, K. Thompson, D. Zhou, and I. Bose. “Concurrent Symmetries
for Object-Oriented Languages”. In: Proceedings of the USENIX Technical Con-
ference. July 1999.

29

Quality Attributes for Cloud-based Software Systems

Frank Feinbube, Lena Herscheid, Christian Neuhaus, Daniel Richter,
Bernhard Rabe, Andreas Polze

Operating Systems and Middleware Group
Hasso Plattner Institute

frank.feinbube|lena.herscheid|christian.neuhaus|daniel.richter
bernhard.rabe|andreas.polze@hpi.de

Under the cloud computing term, a vast market of services and products has
emerged. The reasons for their popularity are the classic cloud virtues like cost-
efficiency, manageability, flexibility, scalability or security. These properties are
important for strategic IT planning but difficult to assess and compare in products
and existing software systems. In this report, we review methods and tools to
assess these quality attributes in cloud-based software systems.

1 Introduction

The concept of cloud computing has ushered in a new era for programming and
provisioning of distributed software systems. Traditionally, customized computing
infrastructure was installed at the site of customer – from small-scale office group-
ware solutions to true data centers that serve large companies. On the one hand,
this allows the infrastructure to be tailored to the specific requirements of the use
case. On the other hand, it burdens the operator with the task of datacenter admin-
istration and maintenance. This also presents a large cost-factor, both in up-front
investment and running costs. Cloud computing has brought a different concept
for provisioning computing infrastructure: instead of buying physical machines,
computing resources are offered as services that can be consumed on a pay-per-
use billing model. These services are hosted in large-scale data centers, can be
accessed over network connection and exist on different levels of abstraction: under
the Infrastructure-as-a-Service (IaaS) paradigm, compute resources are provided as
abstractions physical hardware (i.e. virtual machines). Paradigms like Platform-as-
a-Service (PaaS) and Software-as-a-Service (SaaS) provide services on a higher level
of abstraction, where services provide abstract software execution environments
(PaaS, e.g. web frameworks) or entire software stacks (SaaS).

This completely changes how software systems are architected and used: the
Infrastructure requirements can be treated as a commodity that can be consumed
according to current needs and workload. Cloud operators can provide this scal-
ability, as consolidation of computing resources helps to handle the load peaks
of individual customers and helps to achieve a better resource utilization. These
scale effects also allow cloud operators to offer services at prices which can reduce
customer’s total expenditure on computing resources. The effort for maintenance

31

mailto:

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

is greatly reduced, as all tasks that concern the software and infrastructure behind
the service interfaces are the responsibility of the service provider.

Due to the popularity of the cloud paradigm, a great variety of software products
and services has emerged that can be used to provide cloud computing services
and create software system based on these services. Different services and software
modules can be combined to form a distributed software system. While the amount
of products and services provides a great freedom of choice but can also make
it hard to see the forest for the trees: Besides mere functionality, the quality of
software systems depends on its non-functional properties that describe qualities
of operation and development throughout the software lifecycle. The properties
are often called the *-ilities and describe attributes such as security, availability,
portability, scalability or maintainability (Figure 1).

Figure 1: Overview of desired quality attributes for cloud-based software systems

To judge the quality of cloud-based software systems, it is necessary to be able
assess these properties in given software systems, products and services. In this
report, we give an overview of existing methods that can be used to analyze cloud-
based software systems and compare them based on these properties.

2 Availability

A essential requirement for long-running software systems, such as cloud services,
is that of availability. High availability denotes that a service is very likely up and
running at any point in time. This is frequently requested by service level agree-
ments. For instance, a typical high availability requirement – five nines (99.999 %) –
demands that service downtime per year must not exceed 5.39 minutes. Achieving

32

2 Availability

high availability is of substantial interest to cloud service providers, since downtime
is directly related to a loss of customer confidence and revenue.

However, limited downtime (including both scheduled maintenance and un-
planned repair activities) is non-trivial to guarantee. For cloud services, the goal of
high availability requires: First, a means for quantifying and comparing availability
realistically, and second, the presence of fault tolerance (FT) mechanisms to sustain
availability despite single node failures.

2.1 Quantifying Availability

Availability is quantifiable as the probability the system delivering its intended
service at a given point in time [3].

In systems, where single components can fail at any point in time and repair
mechanisms exist, availability is thus a probability distribution in continuous time,
resulting from the failure and repair distributions of individual components. A(t)
denotes the probability of the system providing its intended service at time t.

Under the assumption that the system is in a stable operational state with fixed
failure and repair rates, a static number, the steady state availability is often com-
puted:

A = uptime/(uptime+ downtime) (1)

FT techniques can be classified as either reactive or proactive. Proactive techniques
achieve higher availability levels, since downtime is reduced by handling antici-
pated failures before they occur [29]. However, proactive FT requires the prediction
of future failures, relying on an accurate mathematical failure model.

Traditionally, hardware component failure rates have been obtained from field
data and stress test results. In a similarly experience-based fashion, failure rates
for cloud software should also be based on the dynamic behaviour of the deployed
system. For this purpose, monitoring and diagnosis approaches, tailored for the
cloud computing paradigm, are needed [12].

2.2 Achieving Availability

In distributed environments such as cloud environments, random infrastructure
failures must be anticipated. Therefore, a desired level of availability – that is, toler-
ance against node failures – can only be achieved by redundancy. The consumers
of a cloud service expect failure transparency: how a service achieves availability
despite single node failures (faults to the overall system) should not matter to the
consumer; such failures should go unnoticed.

Hence, a disaster recovery plan needs to 1. detect failures quickly, and 2. provide
reliable failover mechanisms while preserving data consistency and confidentiality
concerns. This kind of FT needs to be architected carefully for each abstraction
layer. Due to its focus on software-based services, the virtual machine (VM) and
application levels are becoming increasingly important. Here, fault tolerant cloud
computing faces novel challenges as opposed to traditional server systems.

33

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

Redundancy
Redundancy in traditional server systems has been achieved mainly at the hardware
and operating system levels. Many FT mechanisms assume that the nodes are of a
fixed number, connected in a fixed topology, and known to each other. Failover to
a different machine is more straightforward under these assumptions.

In recent public cloud environments, such assumptions may not hold anymore. In
order to achieve scalability, support for dynamic reconfiguration of the underlying
infrastructure is necessary. FT needs to become more autonomic and able to handle
a dynamically changing infrastructure. While replicating data in a heterogeneous
cloud infrastructure, the concerns of availability and security (Section 3) need to be
kept in mind simultaneously.

Recovery and Failover
Since cloud services frequently rely on virtualization, the efficient implementa-
tion of VM migration and repair techniques is essential. Such techniques can be
implemented either at the application side, or at the cloud service provider side.
The latter approach is simpler in many cases, since monitoring the VMs can be
implemented directly in the hypervisor. In order to avoid data loss during failover,
some communication is required to keep backup VMs up to date [34]. Recently,
various live VM migration techniques, which avoid VM downtime during failover,
have been proposed [28]. They pave the way for promising proactive FT approaches
which minimize downtime and maintenance overhead.

At the application level, recovery mechanisms may need to incorporate technolo-
gies from different infrastructure providers. This further increases the need for
programmability (Section 6) and manageability (Section 4). Setting up fault tolerant
load balancers is a popular approach. Such load balancers (e.g. the Amazon AWS
elastic load balancer)1 automatically scale with the incoming traffic and redirect
the requests to working application instances only.

To assess availability, the implementations of replication, recovery and failover
– at potentially different levels of the software stack – need to be understood
thoroughly. Each underlying mechanism needs to be fault tolerant within itself.
Since it has become popular to rely on FT mechanisms on the cloud service provider
side, more extensive “availability benchmarks” might be desirable.

3 Security

The security of a software system describes its ability to maintain the confidentiality,
availability and integrity of its data and services. These properties a subset of the
attributes of dependability [2] and are considered under a fault model that also in-
cludes intentional faults, i.e. malicious attacks or misuse. This distinguishes security
properties from other attributes of dependability (e.g. reliability, maintainability).

1http://aws.amazon.com/elasticloadbalancing/, visited on 2014-04-29.

34

http://aws.amazon.com/elasticloadbalancing/

3 Security

Confidentiality describes a systems ability to protect data from unauthorized ac-
cess or disclosure. The concept of confidentiality can be abstracted to exclusivity [22]
an then be applied to data and resources alike. The availability property assures that
a system functions correctly according to its specification. In a security context, this
describes the ability to tolerate intentional attacks on its availability, e.g. robustness
against denial-of-service attacks. Integrity refers to a systems ability to guarantee
the correctness of stored information and prevent unauthorized modification.

Assessing these security properties of computer systems is more important than
ever: The distributed character of modern software systems makes many interfaces
accessible over network connections and therefore increases the attack surface. In
the case of cloud computing large parts are of software systems are no longer
under the owners physical control, which enables cloud operators to access the
information that is stored on processed on their infrastructure. Methods to analyze
the security properties of software systems are therefore required to manage the
tradeoff between security risks and the features and benefits of cloud computing. In
the following sections, we review qualitative and quantitative methods to analyze
the security properties of software systems.

3.1 Qualitative Security Assessment

To describe, plan and compare the security properties of large-scale software sys-
tems, several standards have been proposed. These standards provide legal grounds
to certify and use computer systems for security-critical applications (e.g. in health-
care, public administration or military applications) and serve as technical guide-
lines for the development and operation such systems. In the European Union, the
Information Technology Security Evaluation Criteria (ITSEC) [19] define a set of crite-
ria that independently rate the efficacy of a systems security measures (unsuitable,
weak, middle and strong) and the quality of their implementation (E0–E6). While
weak measures only provide protection against inadvertent security violations,
strong measures should be hard or impossible to circumvent. A similar catego-
rization can be found in the Trusted System Security Evaluation Criteria (TCSEC) [7]
used in the US. In the strictest security levels (E6 in ITSEC, A in TCSEC), a formal
verification of the system is required (see below).

In practice, the security properties of computer system is often influenced by
tradeoffs between security on the one hand and functionality, usability and effi-
ciency on the other hand [6]. Additionally, as the code-base of software systems
increases, bugs cannot always be avoided [14] an inevitably introduce vulnerabil-
ities [13]. Consequently, threats to security exist in every computer system. It is
therefore important to identify and understand these threats. Microsoft STRIDE
[30] represents a structured approach to identify the threats present in a software
system. This tool-aided analysis is based on a data-flow diagram representation of
the software system. Based on this model, the tool automatically identifies security
threats that apply to processes, data stores and network links of the system. The
result of the analysis is a list of threats which can be rated and annotated with
present threat mitigations.

35

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

The most rigid form of security analysis is provable security. In theory, a secu-
rity property can be linked to a set of states of a software system in which the
security properties is fulfilled. If the behavior of the system can be predicted for
all possible use cases and circumstances, all reachable states can be predicted. If
“insecure” states are not reachable, the software system is proven secure. Examples
for provable security security proofs for cryptographic protocols (see e.g. [21, 26])
or information flow theory (see e.g. [33]). However, provable security is usually
limited to small programs or single algorithms and cannot capture the complexity
of large-scale software systems.

3.2 Quantitative Analysis Methods

In reality, security remains a tradeoff between efforts to protect resources and cir-
cumvent security measures. Qualitative methods alone are not sufficient to capture
the probabilistic nature of security. To describe individual security properties, quan-
titative measures are indicate a probability that a given security property is fulfilled
in a given time interval under given circumstances. This allows to include security
properties as quantities of the software engineering process: security measures
become part of the software requirements specification and are tested as part of
the requirements verification.

Quantitative security assessment is usually an analysis in the failure space: in-
dividual threats present in the system are treated as security faults that threaten a
specific security property [24]. Using mathematical models, simulations and field
data, probabilities can be derived for individual threats to be successfully used for
attacks. By combining the probabilities obtained for individual threats, an over-
all probabilistic measure for individual security properties can be calculated (see
e.g. [23]).

Different methods and models have been proposed for quantitative analysis of
security properties. A commonly used method are attack trees [37], which are de-
rived from Fault Tree Analysis [10]: Threats are denoted as leaves in a tree, while
the analyzed security property is at the root. Attack trees model the logical combi-
nations of threats that could harm the security properties as a network of logical
connections (AND/OR) that connects the root to the leaves. If probabilities for
the leaves are available, the overall probability for the security property under
analysis the be violated can be calculated. If an order of events determines the
success of security attacks, state-based models can be used (see e.g. [8, 4]). Where
state-explosion prevents state-based modeling, simulations can be used to analyzed
security-relevant processes or protocols (see, e.g. [35, 36, 38]).

4 Manageability

Operating IT-infrastructures is a challenge that has to be solved in companies and
cloud providers in particular. To master the challenge a powerful set of tools is
required, that may be summarized in manageability. The Information Technology

36

4 Manageability

Infrastructure Library (ITIL)[18] list some well known rules and best practices in
general, but does not covers fast changing cloud computing.

In todays cloud computing systems we have two views for assess manageability:
the provider and the customer view. Both views have different needs in manage-
ment.

4.1 Provider View

The provider of cloud computing resources and services needs management tools
to operate the infrastructure and offer solid services to customers. Section 2 and 3

outlined properties that have to met. These management tools need to fulfill some
basic tasks: monitoring, deployment, and configuration.

Monitoring is required on two levels: the infrastructure and the services. The
infrastructure that runs the services has to be monitored to detect failures, overload
situations or unused resources. Services rely on the infrastructure but monitoring
is required to check service health, billing and customer offering. Deployment is
an integral part for manageability of cloud computing, but they’re different kinds
of deployment: deployment of infrastructure services (e.g. additional server) and
deployment of cloud computing services (e.g. customer service). Configuration is
modifying a service without new deployment (e.g. start, stop).

While most of managing infrastructure services implies human interaction, is
management of cloud computing services automated. That’s the only way how to
operate cloud computing offerings in large and also implies a stable manageability.

4.2 Customer View

A customer has interfaces to use the cloud computing services. These are service
dependent and vary among providers. Limitations in manageability have to be
accepted and can’t changed in general. The cloud computing models offer different
possibilities in management. The SaaS model has only a few settings that can be
managed because the entire service is self-contained. At PaaS level the customer
has the capabilities to modify his services (e.g. start, stop, deploy, publish). In IaaS
the variety of management support is biggest. Amazon offers with CloudWatch
an separate service to monitor and manage resources in the EC2[1]. HP Cloud[16]
relies on OpenStack[27] and supports the standardized interfaces. It is also possible
to deploy own machine images with built-in management solution, but limited to
operating system level support.

Management interfaces for the customer have to meet the self-service model,
where the services can easily monitored, deployed and configured to fulfill its
demands.

But the new world is hybrid! That means management of IT-infrastructures has
to cover not only single cloud computing model and a single public cloud. Today
companies can use hybrid cloud solutions[15] to combine on-premise infrastructure
and public cloud offerings. In that sense the future management has to support
hybrid services. Services may cover different cloud computing offerings that are
defined in orchestration languages (e.g. Hewlett-Packards Cloud Maps[15]).

37

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

But if this is extended to all cloud computing models and public cloud offer-
ings a new model for management and open interfaces is required to support
manageability of future IT-infrastructures.

5 Acceleratability

Clouds are considered to deliver ’pluggable’ computing power. Thus they are
used for performance-hungry applications that involve a lot of number crunching
on state-of-the-art hardware. Due to physical limitations [11] modern CPUs are
accompanied by various types of accelerators [5, 25, 17] to account for the ever
increasing computational demands.

Besides the GPU compute chip that is integrated into modern Intel CPUs [20],
dedicated accelerator cards like NVIDIAs Tesla product line [25] and Intels Xeon
Phi card [17] are of particular interest for the industry.

When it comes to virtualization of accelerators, the following characteristics are
to be considered [9]:

• Performance: indicates the execution speed. Depends primarily on the over-
head introduced by the virtualization mechanism.

• Fidelity: a measure of the number of features of the physical device that are
supported by the virtualized device.

• Multiplexing: indicates the degree of multiple VMs sharing the same physical
GPU.

• Interposition: degree to which access of the a virtual machine to the physical
hardware can be mediated. Interposition enables features like live migration,
hibernation, and fault-tolerant execution.

Keeping these characteristics in mind, let’s take a look at the cloud offerings that
are currently provided by cloud vendors:2

• Amazon Web Services: hosted GPUs and GPU Cloud. Only in North America.

• Nimbix Informatics Xcelerated: hosted GPUs and GPU on Demand. Only in
North America.

• Peer 1 Hosting: hosted GPUs and GPU Cloud. North America and Europe.

• Penguin Computing: hosted GPUs. Only in North America.

• RapidSwitch: high Performance Computing and GPU Cloud. Only in Europe.

2http://www.nvidia.com/object/gpu-cloud-computing-services.html, visited on
2014-04-29.

38

http://www.nvidia.com/object/gpu-cloud-computing-services.html

6 Programmability

• Softlayer: high Performance Computing, Hosted GPUs and GPUs on Demand.
North America, Europe and Asia.

Available offerings grant virtual machines direct access to the GPU card that is
built into the server the virtual machine is running on. This allows a single guest
operating system to enjoy a maximum of performance and fidelity, while inhibiting
multiplexing over multiple virtual machines and disallowing any cloud features
relying on interposition.

The reason for this situation is the fact that with the exception of Microsoft
Hyper-V, which has no GPU virtualization support whatsoever, currently only pass-
through GPU virtualization is supported by all the major vendors of virtualization
technologies. [31]

Since Virtual Desktop Infrastructure (VDI) is a strong focus for current GPU
technology developments, emerging GPUs introduce the concept of vGPU (virtual
GPU) [39] which allows to partition a GPU and use it by multiple virtual machines.
A physical GPU can be divided into at most 32 virtual GPUs of the same size. Citrix
XenServer already supports this technology.

While static fixed-size partitioning helps, real multiplexing can only be achieved
when timesharing and oversubscription are enabled as well. Only then will it be
possible to save resources by consolidating applications. Interposition features like
live migration are also needed for a seamless integration of accelerators into the
cloud, but are still unavailable.

In order to be competitive clouds must target two conflicting objectives: firstly,
they need to deliver the best experiences to their customers, while secondly con-
solidating virtual machines so that they can make the best use of their resources.
The first objective is clearly related to performance and fidelity. It can be achieved
with the current virtualization solutions of allowing guest operating systems direct
access to the underlying accelerator hardware.

For the second objective on the other hand we need a better support for multi-
plexing and interposition. Key players in the industry have already identified this
challenge and are actively working towards applicable solutions, the partitioning
provided by NVIDIAs virtual GPU being the first step towards fully cloud-capable
accelerator technologies.

6 Programmability

While SaaS is a cloud computing model that already offers ready-to-use appli-
cations to end-users, IaaS provides on-demand hardware and operating-system
services as well as PaaS delivers application platforms an solution stacks. So with
cloud-based software systems developers do not have to care about issues such
as scalability and availability while the application’s workload is increasing. With
resources provisioned on-demand, operating IT systems is made more cost effective
and technically flexible.

Programmability of a cloud system means for us the degree of flexibility to define,
extend, and reconfigure a cloud application’s behavior and structure as well as the

39

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

ability to integrate a cloud system into the software lifecycle ecosystem. Within
cloud bases systems, some programmability attributes can roughly be categorizes
as follow: [40] [32]

• The logic layer is where the business logic is executed.

• The data layer manages data processed by the logic layer. It is responsible for
storing and loading required data as well as caring about data consistency
within a distributed cloud environment.

• The infrastructure layer is where both the logic layer and the data layer are
operated, monitored, and managed.

• Crosscutting concerns will cover some most or all layers mentioned above.

6.1 Infrastructure Layer

IaaS cloud providers usually offer different kinds of operating systems with pre-
configured settings. Virtualization technologies make it possible to create a repos-
itory filled with VM-images for a wide range of purposes. It is even possible to
create whole environments with custom settings for network, compute, and stor-
age resources – based upon templates (see HP CloudSystem[15]). On the contrary,
within PaaS environments the chance to influence the structure of the underlying
infrastructure layer is limited or impossible – in exchange a developer or adminis-
trator does not have to manage and maintain these components.

Attributes: provided hardware resources (CPU, memory, storage, network), re-
source performance and scalability, provided operating systems, supported or-
chestration operations, customization (load balancing, auto-scaling, user defined
performance)

6.2 Logic Layer

The logic layer consists of two parts: the application language and the applica-
tion framework. The important attribute for this layer is the support for technology
platforms and stacks.

Either a developer writes native applications targeted to a specific operating
system, or he uses specific runtime environments such as Microsoft .NET or Java.
Depending on the infrastructure layer it is may possible to deploy stand-alone
applications to the cloud environment, or a developer is bound to an application
server such as Apache Tomcat or Microsoft IIS. To achieve a high programmability
it is also important to know whether standard libraries are available (or installable),
whether third party components are available (or installable), or whether direct
resource access (e.g. local file system, threads, outbound network connections) is
possible.

Attributes: programming language, supported frameworks (e.g. .NET, Tomcat,
JavaSE, JavaEE, standard libraries), deployment packages (e.g. WAR, EAR, DLL),
direct resource access

40

7 Conclusion

6.3 Data Layer

The data layer is responsible for the storage and retrieval of data. It manages the
access to the data from potentially multiple different components and cares about
data synchronization and consistency.

Nowadays, there are two popular types for data storage: Relational databases
with a data schema (e.g. SQL databases) and document databases with more
unstructured data (e.g. NoSQL databases, key-value databases, big data stores,
message queues, distributed hash tables). The choice for one of them heavily affects
the tools, methods, and algorithms a developer can use. To change this decision
later mostly needs a huge change in an applications structure and behavior. Also
these two options differ in the ability to deal with evolving data schemata.

Attributes: number of data items, read/write velocity, data quality (structured,
unstructured), data schema, database scalability (clustered, master/slave, single
instance, content delivery network), consistency constraints, migration

6.4 Crosscutting Concerns

Finally, there are some attributes that effect the programmability of a cloud system
and touch most or all layers mentioned above: The availability of development tool
(command line tools, source control integration, web-based console), the availability
of testing environments (development, testing, stating, production), access to log
files, the possibility to debug running applications, integration into build and
deployment systems, and documentation.

7 Conclusion

As an emerging computing paradigm, with novel and large scale technical chal-
lenges to face, quality attributes for cloud systems need to be well understood in
order to evaluate different systems, and to discuss the trade-offs and degrees of
freedom for designers of cloud applications.

We have proposed five distinct non-functional quality attributes for cloud sys-
tems, namely:

• Availability of the service, even in the presence of node failures and byzan-
tine faults;

• Security, the robustness of the system against attacks at different levels in
the software stack;

• Manageability of resource and job allocation, despite increasingly heteroge-
neous applications and infrastructure;

• Acceleratability by providing access to accelerator hardware such as GPUs
to customers in an efficient way;

41

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

• Programmability, in order for the system to be extensible and re-configurable
during runtime.

The different quality attributes relate to each other in different ways. They may
be in trade-off relationships, such as the trade-off between easy manageability and
high security, or they may be pre-conditions for one another, for instance, security is
a precondition for availability in attack scenarios. It is important to understand the
relations and interactions between these attributes thoroughly in order to ensure
high quality cloud applications. Further, the attributes we have named all play a
role at various levels in the software stack. Engineers should be aware of this and
design the software with each of the above named attributes in mind.

We further believe that efforts towards quantifying and further formalizing cloud
system quality attributes is necessary. Quantification is essential to characterize
different cloud systems in a comparable fashion, and to provide a standardized
measure of quality for them.

Taking this discussion (summarized also in Figure 1) as a starting point, research
from different software engineering communities should overlap more, in order to
provide a unifying framework for assessing the quality of cloud applications.

References

[1] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). Aug. 2014.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing”. In: Dependable and Secure
Computing, IEEE Transactions on 1.1 (2004), pages 11–33.

[3] A. Avizienis, J.-C. Laprie, B. Randell, et al. Fundamental concepts of dependabil-
ity. University of Newcastle upon Tyne, Computing Science, 2001.

[4] F. Besson, T. Jensen, D. L. Métayer, and T. Thorn. “Model checking security
properties of control flow graphs”. In: Journal of computer security 9.3 (2001),
pages 217–250.

[5] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli.
“State-of-the-art in Heterogeneous Computing”. In: Sci. Program. 18.1 (Jan.
2010), pages 1–33.

[6] L. F. Cranor and S. Garfinkel. “Guest Editors’ Introduction: Secure or Usable?”
In: Security & Privacy, IEEE 2.5 (2004), pages 16–18.

[7] Department of Defense. Trusted Computer System Evaluation Criteria. Dec.
1985.

[8] D. Dolev and A. Yao. “On the security of public key protocols”. In: Information
Theory, IEEE Transactions on 29.2 (1983), pages 198–208.

[9] M. Dowty and J. Sugerman. “GPU virtualization on VMware’s hosted I/O
architecture”. In: SIGOPS Oper. Syst. Rev. 43.3 (July 2009), pages 73–82.

42

References

[10] A. Ericson and C. Ll. “Fault tree analysis”. In: System Safety Conference, Or-
lando, Florida. 1999.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.
“Dark Silicon and the End of Multicore Scaling”. In: SIGARCH Comput. Archit.
News 39.3 (June 2011), pages 365–376.

[12] I. Foster, Y. Zhao, I. Raicu, and S. Lu. “Cloud computing and grid comput-
ing 360-degree compared”. In: Grid Computing Environments Workshop, 2008.
GCE’08. Ieee. 2008, pages 1–10.

[13] S. Frei, M. May, U. Fiedler, and B. Plattner. “Large-scale vulnerability anal-
ysis”. In: Proceedings of the 2006 SIGCOMM workshop on Large-scale attack de-
fense. ACM. 2006, pages 131–138.

[14] J. E. Gaffney. “Estimating the number of faults in code”. In: Software Engi-
neering, IEEE Transactions on 4 (1984), pages 459–464.

[15] Hewlett-Packard. CloudSystem. 2014.

[16] Hewlett-Packard. HP Helion Public Cloud. 2014.

[17] Intel. Intel® Xeon Phi™ Coprocessor Developer’s Quick Start Guide. 2013.

[18] IT Infrastructure Library. ITIL® Home. Aug. 2014.

[19] ITSEC. Information Technology Security Evaluation Criteria (ITSEC): Preliminary
Harmonised Criteria. Technical report. Commission of the European Commu-
nities, 1991.

[20] M. Kelly and K. Hartman. Intel Ivy Bridge Architecture. 2013.

[21] N. Koblitz and A. J. Menezes. “Another look at" provable security"”. In:
Journal of Cryptology 20.1 (2007), pages 3–37.

[22] C. Meadows. “An outline of a taxonomy of computer security research and
development”. In: New Security Paradigms Workshop: Proceedings on the 1992–
1993 workshop on New security paradigms. Volume 1993. 1993, pages 33–35.

[23] C. Neuhaus, M. von Löwis, and A. Polze. “A Dependable and Secure Autho-
risation Service in the Cloud”. In: CLOSER. 2012, pages 568–573.

[24] D. Nicol, W. Sanders, and K. Trivedi. “Model-based evaluation: From depend-
ability to security”. In: Dependable and Secure Computing, IEEE Transactions on
1.1 (2004), pages 48–65.

[25] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. 2009.

[26] K. Nyberg and L. R. Knudsen. “Provable security against a differential attack”.
In: Journal of Cryptology 8.1 (1995), pages 27–37.

[27] OpenStack Foundation. The OpenStack Project. 2014.

[28] P. D. Patel, M. Karamta, M. D. Bhavsar, and M. B. Potdar. “Article: Live
Virtual Machine Migration Techniques in Cloud Computing: A Survey”. In:
International Journal of Computer Applications 86.16 (Jan. 2014). Full text avail-
able, pages 18–21.

43

Feinbube et al.: Quality Attributes for Cloud-based Software Systems

[29] A. Polze, P. Troger, and F. Salfner. “Timely virtual machine migration for pro-
active fault tolerance”. In: Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops (ISORCW), 2011 14th IEEE International Sympo-
sium on. IEEE. 2011, pages 234–243.

[30] B. Potter. “Microsoft SDL Threat Modelling Tool”. In: Network Security 2009.1
(2009), pages 15–18.

[31] S. Rahim. State of GPU Virtualization for CUDA Applications 2014. July 23,
2014.

[32] R. Ranjan and B. Benatallah. “Programming cloud resource orchestration
framework: operations and research challenges”. In: (2012). arXiv: 1204.2204
[cs.DC].

[33] A. Sabelfeld and A. Myers. “Language-based information-flow security”. In:
Selected Areas in Communications, IEEE Journal on 21.1 (2003), pages 5–19.

[34] D. J. Scales, M. Nelson, and G. Venkitachalam. “The design of a practical sys-
tem for fault-tolerant virtual machines”. In: ACM SIGOPS Operating Systems
Review 44.4 (2010), pages 30–39.

[35] A. Schlosser, M. Voss, and L. Bruckner. “Comparing and evaluating metrics
for reputation systems by simulation”. In: A Workshop on Reputation in Agent
Societies as part of. Citeseer. 2004.

[36] A. Schlosser, M. Voss, and L. Brückner. “On the simulation of global reputa-
tion systems”. In: Journal of Artificial Societies and Social Simulation 9.1 (2006).

[37] B. Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pages 21–29.

[38] V. Venkataraghavan, S. Nair, and P. Seidel. “Simulation-based validation of
security protocols”. In: Proceedings of OPNETWORKS 2002 (2002).

[39] W. Wade and I. Williams. “NVIDIA Grid: State of the Art in Virtualized
Graphics”. In: SIGGRAPH 2013. 2013.

[40] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. Michalk,
and J. Stoesser. “Cloud computing–a classification, business models, and
research directions”. In: Business & Information Systems Engineering 1.5 (2009),
pages 391–399.

44

http://arxiv.org/abs/1204.2204
http://arxiv.org/abs/1204.2204

Self-Configuring Data Imports for SAP HANA Cloud
Environments

Hendrik Müller, Matthias Splieth, Sascha Bosse and Klaus Turowski

Very Large Business Applications Lab
Otto von Guericke University Magdeburg, PO Box 4120, Magdeburg

{hendrik.mueller|splieth|sascha.bosse|klaus.turowski}@ovgu.de

In cloud environments, customer-triggered data imports need to be configured
dependent on information, which is usually not accessible for customers. In this
paper, this problem is addressed by developing a concept for automatically con-
figuring data imports in order to optimize their import speed. The concept relies
on a continuously growing knowledge base that can be used for determining
suitable parameters for new imports. In order to provide data for the knowledge
base, we automated the execution of 878 imports with a total amount of 34 TB
of data for testing all possible parameter permutations within a given range,
and stored the corresponding results. Subsequently, we were able to perform a
self-configuring import of an additional dataset by querying the knowledge base
for the most suitable combination of import parameters based on the similarity
of the additional dataset to the datasets in the knowledge base. For the purpose
of the evaluation, we calculated the number of inserted rows per second and
ascertained an improvement of 84.89 % for the self-configuring import compared
to the default configuration, and an improvement of 15.47 % compared to an
import configuration recommended by SAP.

1 Introduction

In modern times, companies need to be able to rapidly respond to the needs of and
changes in the market in order to remain competitive. In this context, the analysis
of data has proven to be important for decision support in various domains. How-
ever, due to the proliferation of a growing number of data sources, the amount
of data that needs to be analyzed in order to support decision making is growing
rapidly [7]. But in order to be able to derive knowledge from the huge amount
of data, scalable analytic services are needed which require high-performance
systems [11], such as provided by cloud environments. Therefore, it is suitable
to analyze big data using web-based cloud services enabling data mining algo-
rithms to be applied on multiple datasets and leveraging economies of scale. Hence
customers can benefit from fast results without having to maintain potentially ex-
pensive hardware. Offering a multi-tenant database, analytical capabilities and a
built-in web server, SAP HANA is used to develop the concept that is presented
in this paper. In the course of this contribution, we focus the first stage of such big
data cloud services which implies the import of datasets from different sources, po-
tentially at the same time. Assuming the customer’s datasets to be available as files
containing comma-separated values (CSV), we leveraged the bulk load feature of
SAP HANA in order to import these files. Imports can be parameterized depending

45

mailto:{hendrik.mueller|splieth|sascha.bosse|klaus.turowski}@ovgu.de

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

on available hardware resources, the current system load, dataset properties and
customer-specific service level agreements (SLA). Database administrators (DBA)
are able to access this information, but inside cloud environments, data imports
are triggered by customers. In order to be able to quickly import data, the param-
eterization of imports needs to be automated since customers cannot access the
same information as DBAs. In case of high utilization, it might be suitable to adjust
the number of parallel imports in order to maintain a stable system state and not
affect the overall performance in terms of running analytics and other import jobs.
Therefore a separate staging area is required that serves as a buffer in order to
detach user-interactive file uploads from load-dependent data imports.

In this contribution, we present a concept for cloud-based data imports by con-
sidering this aforementioned requirement as a first step toward big data analytics
as a service. To enable data imports to be self-configuring and fully automated,
the proposed concept involves a performance knowledge base for data imports
of different sizes for all database instances of a HANA cloud environment. All
import jobs are controlled and logged by means of stored procedures and tables
inside a relational database schema. By storing the resulting number of inserts
per second as a key performance indicator (KPI) for each import job and by asso-
ciating it with the respective import parameters, (system, hardware and dataset
information), we built an architecture that allows querying for best performing
configurations when invoking similar imports. The architecture scales with the
cloud infrastructure and changing data properties since every import contributes
to the shared knowledge base, which can be made available to all database systems
by means of SAP HANA’s smart data access feature.

The proposed concept was developed and implemented in terms of a proof-
of-concept following a design science approach [4]. The concept is described in
section 2 by means of an exemplary scenario. Subsequently, the technical archi-
tecture of the SAP HANA cloud environment that is used for this purpose is
outlined. In order to be able to evaluate the designed concept, initial KPI values for
different database servers, datasets and import configurations are required. Thus,
we conducted 878 imports within three experiments by automating the imports
for various parameter permutations as presented in section 3 in order to build a
knowledge base that comprises of these KPI values. Subsequently, the proposed
concept is evaluated in section 4 by using the knowledge base for determining the
import parameters that are to be used for an additional dataset. In section 5, the
paper is summarized and, furthermore, an outlook on future research is given.

2 Data Imports for SAP HANA Cloud Services

When integrating big data and cloud services, the three dimensions variety, velocity
and volume [6] will need to be faced by respective providers. Term velocity refers
to both the time that is needed to process data and the time in which new data is
generated. Thus, a growing amount of data needs to be imported from different
sources within an acceptable period of time by a cloud service provider.

46

2 Data Imports for SAP HANA Cloud Services

2.1 Scenario Overview

The import of CSV files can be initiated from both the server and the client by using
SAP HANA Studio. When importing data onto the server, cloud service providers
are able to trigger and parameterize the import of the data autonomously, depend-
ing on system utilization and SLAs, which may be derived from pricing strategies.
Therefore, we split the import process into two sub-processes: “uploading CSV-
formatted data files to a staging area represented by one or more gateway servers
(step 1)” and “importing data files into the appropriate database system through
self-configuring imports (step 2)”. The first sub-process involves user interaction
in terms of uploading the data files that are to be imported, whereas the sec-
ond sub-process is triggered and configured automatically by determining the
performance-influencing parameters “threads” (number of parallel threads for the
concurrent import) and “batch” (number of rows imported for each committed
unit).

The experiments performed in the course of this contribution (confer section 3

and section 4) indicate that there is no generic parameter combination of “threads”
and “batch” (hence referred to as “import configuration”) that archives the best
result in any case. In fact, suitable import parameters seem to depend on the char-
acteristics of the dataset such as the file size, the number of rows and the number
of columns. Furthermore, suitable import parameters depend on hardware char-
acteristics of the respective host, such as the CPU utilization. For this reason, we
parameterize import jobs based on historical data. In order to be able to use histor-
ical data, the relevant information concerning an import needs to be stored. This
includes, for example, the parameters that were used for the import (such as batch
and threads), the properties of the dataset (such as its size) and information on the
database host . When new imports are to be processed, the stored information is
queried for previous results of similar imports. The similarity of previous imports
is thereby determined according to a string metric that relies on the properties
of previously imported datasets. The corresponding parameters of a previously
conducted import that led to a high performance regarding the import speed can
then be used to parameterize the new import. Accordingly, the same information
is stored for new imports after they will have been finished. Hence, the knowledge
base is extended with every new import and scales with a growing amount of
data as well as changing dataset properties, since the probability of finding results
for similar, previously conducted imports increases with every new import. For
implementing the knowledge base, we created a relational database schema and
corresponding features that can be used in order to automatically import the data
uploaded by customers.

2.2 Technical Architecture

The system environment that was used for evaluating the designed concept com-
prises three servers, each of which running a single SAP HANA instance. In order
to increase the cloud provider’s flexibility, the storage is abstracted from the servers.

47

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

Thus, all the data is stored on a central network attached storage (NAS) so that
HANA instances can be started on any server following HANA’s tailored data-
center approach (cf. [10]). Relocations can be performed by mounting the log and
data volumes to different servers. In addition to these servers, we configured an
additional node to operate as a gateway that provides access to the previously
described staging area. Data files that are uploaded by customers will be stored
on the NAS through the gateway server and will therefore be accessible by all
HANA instances for a server-triggered import, using a redundant 10 GB Ethernet
connection. Figure 1 illustrates the components of the architecture.

For logging all import performance results as well as respective import properties
and parameters, we created a database schema, which stores all information that
forms the knowledge base. Besides several procedures that are used to process the
stored information, it comprises of the tables illustrated in Figure 2.

The table “Result”, which is positioned in the center of Figure 2, contains the
start time and end time for each performed import. The resulting values “duration”
and “instertspersecond” are calculated and updated as soon as an import finishes,
whereas “insertspersecond” refers to the average number of inserted rows of the
corresponding dataset per second. By joining the result with the associated tables
“Dataset”, “Host”, “Threads” and “Batch”, the corresponding parameters as well
as the properties of the imported dataset and the server that processed the import
can be determined. In this manner, the parameters that led to the best imports can
be identified when configuring the import of a new dataset.

NASNAS

Shared Knowledge Base

HD1 HD2 HDn

Bulk Load

Data Upload

Bulk Load Bulk Load

CSV Files

...

...

Figure 1: Technical Infrastructure of the Concept

48

3 Import Experiments

However, initial data is needed for the knowledge base in order to be able to
query for suitable import parameters. For generating initial values, we inserted tu-
ples for “threads” and “batch” within a defined range and performed experiments
by running imports parameterized with any possible permutation of threads and
batch, which are computed by a stored procedure.

Figure 2: Database Schema that Forms the Knowledge Base

3 Import Experiments

In order to verify the architecture proposed in the previous section and in order to
provide initial data for the knowledge base, several experiments were conducted
for each of the imported datasets. In each experiment, multiple iterations are
performed over the permutations until the best result in terms of inserts per second
is found. Provided that outliers occurred in the course of an iteration, it was
manually repeated for the particular outlier. Afterwards, the mean values were
computed and inserted into the “result” table. This procedure leads to a knowledge
base that can be queried for suitable parameters when new datasets are to be
imported. The experimental results and the experimental setup are presented in
the following.

3.1 Experiment Design

In the case of a new import, the historical data that is stored in the knowledge base
can be queried for a similar dataset. The associated parameters, a combination of
(Threads, Batch), of the best result in terms of the highest number of achieved inserts

49

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

per second can then be used to parameterize the new import. In order to get to the
required historical data, numerous experiments are conducted. The corresponding
information is stored as described in subsection 3.2. Since a manual execution of the
experiments would be very expensive regarding the vast amount of permutations
of the import parameters, the import process has been automated. This allows the
automatic testing of different combinations of parameters and, subsequently, the
automatic determination of the import results. Figure 3 shows the components that
were implemented for this purpose.

The experiments were configured and controlled by means of database objects
in terms of different tables, views, and a stored procedure. The stored procedure
prepare_load uses different input parameters to automatically generate the import
statements and the corresponding statements for determining the results of the
import, such as the duration and the number of inserts per second achieved with
the respective parameters.

The procedure generates import statements rather than immediately importing
the data since the auto-commit feature that is used by IMPORT FROM statements is
not allowed in BEGIN ... END blocks. The parameter Dataset provides information
about the dataset that is to be imported, such as the number of rows and the name
of the target table. Batch and Threads are the parameters that are varied in the
course of each iteration in order to investigate their effects on the load performance
and to store the corresponding results in the database. M_Views are public system
views, which provide different information about the invoking system, such as the
HANA system identifier and the hostname of the node that is meant to process the
import. Finally, Iteration defines the current iteration of the experiment.These
parameters are used by prepare_load to build the SQL statements that are used for
the data import and stored in the database. The experiment is then started by using
a Linux script that queries the database for the generated import statements and
submits them to the HANA instance via the command line tool hdbsql. Runtime
information, stored in the columns “duration” and “insertspersecond” is updated
after each finished import.

3.2 System Environment

According to the architecture described in section 2, a corresponding environment
based on the Fujitsu FlexFrame®Orchestrator [3] is used for conducting the exper-
iments. This environment consists of three single SAP HANA database instances
(referred to as HD1, HD2 and HD3). In all systems, the used database version is
1.00.63.381310. Each of the instances is hosted on a dedicated server node of the
type Fujitsu PRIMERGY RX600S6 with each four Intel Xeon E7-4870 processors
and 1 TiB of main memory. These nodes are redundantly connected to a central
storage system via a 10 Gbit Ethernet and two redundant Cisco N5548 switches.
The central storage system consists of a NetApp FAS 3250 HA with two NetApp
disk shelves DS2246. These provide a total storage of 28 TB. Although the exper-
iment is designed to work on different hosts, only one system (HD1) is utilized

50

3 Import Experiments

in the course of the experiments in order to avoid interdependencies between the
different servers since these access the same storage.

Controlfile, Size, Rows, Columns

Stored Procedure “prepare_load (iteration)“

ThreadsBatch

Results

Dataset

import.sql

M_Views

Batch Size Number of threads SID, Hostname

starttime, endtime, iteration
insertspersecond, batchid, threadsid

SAP HANA Database Schema: “DATA_LOAD_PERFORMANCE“

Figure 3: Components for Automating the Experiments

3.3 Datasets

Within the context of the experiments, three different datasets are used to create
an initial knowledge base that can be used for parameterizing future imports.
The datasets comprise of performance information that was monitored within
productively running system environments. Hence, the datasets represent a realistic
case. The characteristics of the respective datasets are summarized in Table 1.

Table 1: Characteristics of the Datasets used in the Course of the Experiments

Size in GB Number of Columns Number of Rows

Dataset D1 3.52 9 74,620,735

Dataset D2 9.24 12 135,711,680

Dataset D3 18.1 13 233,321,789

In each dataset, the used data types are varchar, integer and double. The
dataset D1 consists of disk I/O statistics for thousands of different servers, which
host various types of SAP systems. Dataset D2 includes statistics for whole SAP
systems, while dataset D3 comprises of statistics for single instances within a
system. Each of the datasets is stored in a single CSV file and corresponds to a
single table in the database.

51

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

3.4 Experiment Runs

In order to build the knowledge base, three experiments – one for each dataset –
are performed in different iterations. The parameters and the outcomes of the
experiments are stored in the schema as illustrated in Figure 2. Within the sin-
gle iterations, the configuration parameters (“Threads” and “Batch”) are varied
in order to investigate a vast amount of combinations of the parameters. Using
the bulk load feature for importing files into a HANA database, the number of
threads can be varied between 1 and 256 [9]. For the batch size, no limitation is
stated in the SAP HANA reference. Therefore, permutations without repetitions
of both parameters are built by the procedure prepare_load. In order to cover
different values of both parameters, the procedure varies them as follows: in the
first iteration, the number of threads is varied between 2 and 256 in steps of 2n.
The batch size is initially varied from 10 to 100,000,000. The first value of the batch
size is ten, while the following values are determined by multiplying the previous
value by ten. Therefore, 64 combinations of “Threads” and “Batch” are computed
in the first iteration of each dataset. In the following iterations, the parameter com-
binations of the top results concerning the achieved inserts per second are selected
and used for determining the parameters for the next iteration. In order to define
a stop criterion, the top 64 results are initially selected for determining the new
parameters in the first iteration. In each of the following iterations, the number of
top results is bisected (top 32, top 16, etc.) until only one result remains in the last
iteration.

Table 2: Identification of new Parameters

Batch Size Threads Inserts per Threads Inserts per
(Iteration n) Seconds (Iteration n+1) Second

100 32 666,256

100 64 672,258

48 58

1,000 128 888,342 — —
10,000 256 1,081,459 — —

.

For extending the knowledge base and in order to avoid computing the same
parameters several times within an experiment, only new combinations of input
parameters are used in a new iteration. This is ensured by computing new parame-
ter combinations, using the top results from the previous iterations as a basis. In
order to get new parameter combinations, the mean values between two adjacent
values are determined and used as new values for a permutation as shown in
Table 2. Parameter combinations that have already been investigated in a previous
iteration are excluded from the permutations. However, the mean values are only
determined if the adjacent parameters belong to the associated parameter. For this

52

3 Import Experiments

reason, in Table 2, no mean value is computed for the thread size “128” in line 3: it
does not correspond to the same batch size as the other values for “Threads”.

Parameter combinations that have not been investigated yet are used in the next
iteration by inserting these values in the configuration tables. The respective dataset
is then imported into the defined table by using the new parameters. Before each
import, the table is dropped and recreated in order to ensure that the formerly
imported data has no effect on the performance of the current data import. By
applying this method, the knowledge base was extended by each iteration up to a
total amount of 878 available reference imports.

3.5 Results

We performed import experiments for three different datasets (confer Table 1)
with a total of 20 iterations in order to successively approximate the respective
most suitable parameter combination. In total, 878 data imports were performed.
The results were analyzed using analytical capabilities of SAP HANA and are
illustrated in the following.

Figure 4: Avarage Results for Dataset D1

53

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

For dataset D1 we ascertained an average of 808,202.392 inserts per second across
all performed parameter permutations and a maximum value of 1,203,560.242

inserts per second by using 64 threads and a batch size of 550,000. Figure 4 shows
the results for all performed imports of dataset D1. Since the results are sorted by
batch size, the spectrum shows that batch sizes lower than 100 and greater than
1,000,000 led to comparatively poor performance.

In contrast to that, dataset D2 was imported with an average performance of
568,983.442 inserts per second. An import applying 38 threads and a batch size of
3,025 led to the shortest duration and resulted in 789,021.395 inserts per second. We
excluded the corresponding charts for Dataset D2 and D3 since the imports show
a behavior similar to dataset D1. Dataset D3 has been imported with a maximum
performance of 911,413.238 inserts per second, using a batch size of 100,000 and 20

threads as well as 24 threads. In average, dataset D3 was imported with 688,486.184

inserts per second, which implies greater performance than dataset D2, but less
than dataset D1. The gap between the greatest and smallest batch size, recognizable
on top of Figure 4, became smaller for Dataset D3, leading to the assumption that
high batch sizes are more suitable for large tables.

Figure 5: Avarage Results over all Datasets

Independently of the size of a dataset, low numbers of threads led to comparably
poor import performance. These imports are represented by the data points closest
to the center inside the corresponding Figure 4. This correlation is also confirmed
by Figure 5, which compares the import performances of the first iteration across
all datasets.

54

4 Self-Configuring Data Imports

Therefor, Figure 5 illustrates the results for each labeled number of threads
combined with the following batch sizes: 10; 100; 1,000; 10,000; 100,000; 1,000,000;
10,000,000 and 100,000,000. Any configuration including four or less threads per-
formed significantly slower than any other number of threads between 8 and 256.
Within each thread interval, the averagely best performing batch sizes ranged from
10,000 to 1,000,000.

Comparing the imports parameterized by the experimentally determined values
with both the default import configuration (no parameters passed) and a configu-
ration recommended by SAP (10; 10, 000) [9], we ascertain a significant difference
between imports performed with the default values of the parameters and the
imports using the parameter values that were experimentally determined as illus-
trated in Figure 6.

The parameter configuration recommended by SAP led to a number of inserted
rows per second that is located between default and optima with a lag varying
from 93,064 (D2) to 152,563 (D1) inserts per second compared to the respective
parameters that were determined in the context of the experiments.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000
Inserts per Second

D
ef

au
lt

D
ef

au
lt

D
ef

au
lt

SA
P

R
ec

om
m

.

SA
P

R
ec

om
m

.

SA
P

R
ec

om
m

.

Dataset D1 Dataset D2 Dataset D3

Ex
pe

rim
en

ta
l

Ex
pe

rim
en

ta
l

Ex
pe

rim
en

ta
l

Figure 6: Comparison of the Results for each Dataset

4 Self-Configuring Data Imports

Rather than importing datasets by using the default or predefined parameter values
or by randomly choosing the parameters for the import, the import of new datasets
could be conducted based on similar data that was previously loaded. In order to be
able to determine the similarity of datasets, a knowledge base was built as described
in the previous section. The data generated by means of the experiments can now
be used in order to determine suitable parameter values for an import based on
historical data. Therefore, it is first of all necessary to compute the similarity of
all previously imported datasets in relation to the dataset that is to be imported.

55

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

The similarity of data can be computed in various ways, for example by applying
kernel functions [8] or by using distance functions such as presented in [2]. In this
paper, a distance function was chosen to compute the similarity of two datasets,
the canberra distance [5], which is defined in Equation 1.

d(p,q) =
n∑
i=1

|pi − qi|

|pi|+ |qi|
(1)

p and q are vectors that represent a particular dataset and comprise the pa-
rameters of a dataset: its size, its number of rows and its number of columns.
Respectively, pi and qi are elements within the vectors. The most similar dataset in
relation to the dataset that is to be imported is the one with the smallest distance.
The distance is determined for all datasets that were previously imported and can
hence be used to query for the parameters that have led to the best import result
with regard to the most similar dataset.

But up to this point, a suitable configuration for the import parameters would
only be determined based on historical data. However, in a cloud environment, it
is unlikely that each system is idle due to the fact that a provider may serve a vast
amount of users [1]. Thus, it is reasonable to assume that the individual hosts are
differently utilized. Hence, the determined configuration of input parameters may
not be applicable due to the current utilization of a host. For example, user A may
upload data that results in an import configuration of (256; 100,000) according to
the knowledge base. At the same time, user B works on the system, consequently
the current utilization is very high and the additional import would overload the
node. This should be avoided due to possible contractual penalties as a result of
the violation of SLAs. Therefore, it would not be possible to employ the optimal
import configuration for user A due to the current state of the system. It would
rather be desirable to adapt the configuration according to the current state of the
system.

In order to cope with such a scenario, a solution was implemented that deter-
mines a suitable import configuration based on the historical data and adapts this
configuration according to the current utilization (in terms of the CPU utilization)
of the node. In detail, this includes the following steps:

1. Find a node (refered to as “target node”) that provides enough free main
memory to process the import using a first fit approach.

2. Determine a suitable parameter configuration. Therefore, a procedure named
getConfig is called via hdbsql on the target node. The relevant parameters
(CPU utilization, size of dataset, number of rows and columns) are identified
at the OS-layer and passed to the procedure.

a) The canberra distance is computed for all datasets in the database (cf.
Equation 1).

b) Based on the distance, the best parameter combination is then deter-
mined by using the “Results”-table.

56

4 Self-Configuring Data Imports

c) The number of threads determined in the previous step is then linearly
adjusted to the current CPU utilization of the node.

d) Finally, the corresponding import statements are generated and returned
by the procedure.

3. The returned import statements are stored in an SQL file that is parsed and
then passed to hdbsql in order to start the import.

This implementation was tested for an additional dataset D4 whose characteris-
tics are listed in Table 3.

Table 3: Characteristics of the Dataset used to Test the Self-Configuring Import

Size in GB Number of Columns Number of Rows

Dataset D4 20.65 11 265,046,669

The dataset was processed as described before. For D4, the most similar dataset
is D3 with d(D4, D3) = 0.064. Therefore, the parameter-combination that was de-
termined by the procedure is (24; 100,000). This combination was applicable since
there were no other active users on the system so that and no adjustment of the
parameters had to be conducted. In addition to this import, the dataset was also im-
ported by using the default values for threads and batch and the values suggested
in [9]. Figure 7 illustrates the corresponding results.

0 100.000 200.000 300.000 400.000 500.000 600.000

Self-Configured

SAP Recommended

Default
Inserts per Second

Figure 7: Comparison of the Results for Dataset D4

As can be derived from Figure 7, the import that was determined by our im-
plementation achieved the highest number of inserts per second and hence was
the best performing import. In comparison to the import with the default parame-
ters, the import speed improved by 84.89 %. With regard to the parameter values
suggested in [9], an improvement of 15.47 % was achieved. This demonstrates the
ability of the implemented approach to both automate and improve the speed of

57

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

data imports in SAP HANA cloud environments. Up to now, only a simple ap-
proach has been implemented for the proof-of-concept. Certainly there are many
approaches that could be applied in order to determine suitable import parameters
and to adjust these to the current state of the system. For example, more advanced
task scheduling algorithms could be used in order to assign imports to suitable
nodes. Additionally, this approach may be combined with a fair queuing approach
in order to guarantee a minimal level of service to all users in terms of resources
that can be allocated for the import.

5 Conclusion

In this contribution, a concept for self-configuring data imports in SAP HANA
cloud environments was designed and implemented. It can be used to automati-
cally determine a suitable combination of import parameters for a specific dataset.
Furthermore, the developed concept takes into account the current utilization of
the system and correspondingly adjusts the import parameters in order to prevent
a system from being overloaded. Accordingly, an architecture that provides the
features required for such a solution was designed and verified in this contribution.
In the developed concept, the parameterization of an import that is to be initiated
bases on the results of similar datasets that were previously imported. Since histor-
ical data is needed be able to identify similar datasets and their respective import
parameters, different experiments were conducted with the aim to generate histori-
cal data. In the course of these experiments, 878 imports with a total size of about
34 TB of data were automatically performed. This data can be used to identify
suitable parameters for a new import. In order to verify the developed concept,
it was tested with an additional dataset. This additional import suggests that a
generic import configuration that aims to result in the shortest import durations
does not exist for a particular SAP HANA database server. Rather, the parameters
seem to depend on the characteristics of the datasets, such as their size and their
number of rows. Hence, by applying the concept developed in this paper, the im-
port speed was improved by 15 % as compared to a parameterization suggested by
SAP, and by 85 % compared with the default parameterization. Therefore, building
a knowledge base that comprises of configurations and performance results of the
imports can improve further imports by selecting appropriate parameters based on
similar configurations that were previously applied. However, there are still aspects
that need to be addressed in future research. Further improvements may address
the process of determining similar datasets. We expect a different prioritization
of the individual parameters when investigating their respective impacts on the
performance of imports which might thus lead to a surpass of the currently applied
canberra distance. Additionally, other aspects of datasets, such as the maximum
width of a column, may affect the speed of imports and hence may need to be in-
cluded when computing the similarity of datasets. Furthermore, we will extend the
experiment by including differently sized hosts in order to assess the dependence
of the import parameters on particular hardware resources.

58

References

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A View of Cloud
Computing”. In: Commun. ACM 53.4 (Apr. 2010), pages 50–58.

[2] M.-M. Deza and E. Deza. Dictionary of distances. Elsevier, 2006.

[3] FlexFrame Orchestrator Version 1.0A. Technical White Paper. Fujitsu Technol-
ogy Solutions GmbH. 2014.

[4] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information
Systems Research”. In: MIS Q. 28.1 (Mar. 2004), pages 75–105.

[5] G. Lance and W. Williams. “Mixed-Data Classificatory Programs I – Agglom-
erative Systems”. In: Australian Computer Journal 1.1 (1967), pages 15–20.

[6] D. Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety.
Technical report. 208 Harbor Drive, PO Box 120061, Stamford: META Group,
Feb. 2001.

[7] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz. “Big
data, analytics and the path from insights to value”. In: MIT Sloan Manage-
ment Review 53.2 (2011), pages 20–31.

[8] K. Rieck, P. Laskov, and K.-R. Müller. “Efficient Algorithms for Similarity
Measures over Sequential Data: A Look Beyond Kernels”. In: Pattern Recog-
nition. Edited by K. Franke, K.-R. Müller, B. Nickolay, and R. Schäfer. Vol-
ume 4174. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pages 374–383.

[9] SAP HANA SQL and System Views Reference: IMPORT FROM. SAP SE. 2014.
url: http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/
f712e175191014907393741fadcb97/content.htm (visited on 2015-03-03).

[10] SAP HANA Tailored Data Center Integration – Frequently Asked Questions. SAP
SE. 2014. url: http://www.saphana.com/docs/DOC- 3634 (visited on
2015-03-03).

[11] D. Talia. “Clouds for Scalable Big Data Analytics”. In: Computer 46.5 (May
2013), pages 98–101.

59

http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/f712e175191014907393741fadcb97/content.htm
http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/f712e175191014907393741fadcb97/content.htm
http://www.saphana.com/docs/DOC-3634

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

93 978-3-86956-318-3 ecoControl : Entwurf und
Implementierung einer Software
zur Optimierung heterogener
Energiesysteme in
Mehrfamilienhäusern

Eva‐Maria Herbst, Fabian
Maschler, Fabio Niephaus,
Max Reimann, Julia Steier,
Tim Felgentreff, Jens Lincke,
Marcel Taeumel, Robert
Hirschfeld, Carsten Witt

92 978-3-86956-317-6 Development of AUTOSAR
standard documents at Carmeq
GmbH

Regina Hebig, Holger Giese,
Kimon Batoulis, Philipp
Langer, Armin Zamani
Farahani, Gary Yao, Mychajlo
Wolowyk

91 978-3-86956-303-9 Weak conformance between
process models and synchronized
object life cycles

Andreas Meyer, Mathias
Weske

90 978-3-86956-296-4 Embedded Operating System
Projects

Uwe Hentschel, Daniel
Richter, Andreas Polze

89 978-3-86956-291-9 openHPI: 哈索•普拉特纳研究院的
MOOC（大规模公开在线课）计划

Christoph Meinel, Christian
Willems

88 978-3-86956-282-7 HPI Future SOC Lab :
Proceedings 2013

Christoph Meinel, Andreas
Polze, Gerhard Oswald, Rolf
Strotmann, Ulrich Seibold,
Bernhard Schulzki (Hrsg.)

87 978-3-86956-281-0

Cloud Security Mechanisms Christian Neuhaus, Andreas

Polze (Hrsg.)

86 978-3-86956-280-3

Batch Regions Luise Pufahl, Andreas Meyer,
Mathias Weske

85 978-3-86956-276-6 HPI Future SOC Lab:
Proceedings 2012

Christoph Meinel, Andreas
Polze, Gerhard Oswald, Rolf
Strotmann, Ulrich Seibold,
Bernhard Schulzki (Hrsg.)

84

978-3-86956-274-2 Anbieter von Cloud
Speicherdiensten im Überblick

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke,
Markus Freitag

83

978-3-86956-273-5 Proceedings of the 7th Ph.D.
Retreat of the HPI Research
School on Service-oriented
Systems Engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

ISBN 978-3-86956-319-0
ISSN 1613-5652

	Title
	Imprint

	Preface
	Contents
	Evaluating IT Service Design Alternatives With Respect to Availability, Response Times and Costs (Sascha Bosse, Johannes Hintsch, Christian Schulz, Matthias Splieth, Hendrik Müller, and Klaus Turowski)
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Availability Prediction
	2.2 Performance Prediction
	2.3 Costs of an IT System Landscape

	3 Prediction Model
	3.1 Meta-Model
	3.2 Simulation Model

	4 Case Study Evaluation
	5 Conclusion
	References

	Live Migration Overhead Performance Modeling (Mohamed Esam Elsaid, Christoph Meinel)
	Abstract
	1 Introduction
	2 Live Migration Time Modeling
	2.1 Mathematical Modeling
	2.2 Testing Environment
	2.3 Testing Results

	3 Live Migration Power Modeling
	4 Live Migration Performance Estimation
	4.1 Network Overhead Estimation
	4.2 CPU Overhead Estimation
	4.3 Migration Performance Prediction

	5 Conclusion
	References

	Quality Attributes for Cloud-based Software Systems (Frank Feinbube, Lena Herscheid, Christian Neuhaus, Daniel Richter, Bernhard Rabe, Andreas Polze)
	Abstract
	1 Introduction
	2 Availability
	2.1 Quantifying Availability
	2.2 Achieving Availability

	3 Security
	3.1 Qualitative Security Assessment
	3.2 Quantitative Analysis Methods

	4 Manageability
	4.1 Provider View
	4.2 Customer View

	5 Acceleratability
	6 Programmability
	6.1 Infrastructure Layer
	6.2 Logic Layer
	6.3 Data Layer
	6.4 Crosscutting Concerns

	7 Conclusion
	References

	Self-Configuring Data Imports for SAP HANA Cloud Environments (Hendrik Müller, Matthias Splieth, Sascha Bosse and Klaus Turowski)
	Abstract
	1 Introduction
	2 Data Imports for SAP HANA Cloud Services
	2.1 Scenario Overview
	2.2 Technical Architecture

	3 Import Experiments
	3.1 Experiment Design
	3.2 System Environment
	3.3 Datasets
	3.4 Experiment Runs
	3.5 Results

	4 Self-Configuring Data Imports
	5 Conclusion
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

