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Abstract

Synchronization is a fundamental phenomenon in nature. It can be considered as a
general property of self-sustained oscillators to adjust their rhythm in the presence of
an interaction.

In this work we investigate complex regimes of synchronization phenomena by means of
theoretical analysis, numerical modeling, as well as practical analysis of experimental
data.

As a subject of our investigation we consider chimera state, where due to sponta-
neous symmetry-breaking of an initially homogeneous oscillators lattice split the sys-
tem into two parts with different dynamics. Chimera state as a new synchronization
phenomenon was first found in non-locally coupled oscillators system, and has at-
tracted a lot of attention in the last decade. However, the recent studies indicate that
this state is also possible in globally coupled systems. In the first part of this work,
we show under which conditions the chimera-like state appears in a system of globally
coupled identical oscillators with intrinsic delayed feedback. The results of the research
explain how initially monostable oscillators became effectivly bistable in the presence
of the coupling and create a mean field that sustain the coexistence of synchronized
and desynchronized states. Also we discuss other examples, where chimera-like state
appears due to frequency dependence of the phase shift in the bistable system.

In the second part, we make further investigation of this topic by modeling influence
of an external periodic force to an oscillator with intrinsic delayed feedback. We made
stability analysis of the synchronized state and constructed Arnold tongues. The results
explain formation of the chimera-like state and hysteric behavior of the synchronization
area. Also, we consider two sets of parameters of the oscillator with symmetric and
asymmetric Arnold tongues, that correspond to mono- and bi-stable regimes of the
oscillator.

In the third part, we demonstrate the results of the work, which was done in collabora-
tion with our colleagues from Psychology Department of University of Potsdam. The
project aimed to study the effect of the cardiac rhythm on human perception of time
using synchronization analysis. From our part, we made a statistical analysis of the
data obtained from the conducted experiment on free time interval reproduction task.
We examined how ones heartbeat influences the time perception and searched for pos-
sible phase synchronization between heartbeat cycles and time reproduction responses.
The findings support the prediction that cardiac cycles can serve as input signals, and
is used for reproduction of time intervals in the range of several seconds.



Allgemeinverstandliche Zusammenfassung

Synchronisation ist ein fundamentales Naturphdnomen. Es ist die grundlegende Eigen-
schaft sich selbsterhaltender Oszillatoren, in Gegenwart einer Wechselwirkung, danach
zu streben, ihre Rhythmen anzupassen.

In dieser Arbeit betrachten wir komplexe Synchronisationszusténde sowohl mit Hilfe
analytischer Methoden als auch durch numerische Simulation und in experimentellen
Daten.

Unser Untersuchungsobjekt sind die sogenannten Chimera Zusténde, in welchen sich
Ensemble von gekoppelten, identischen Oszillatoren auf Grund eines Symmetriebruches
spontan in Gruppen mit unterschiedlicher Dynamik aufteilen. Die Entdeckung von
Chimeras in zunéchst nichtlokal gekoppelten Systemen hat in den letzten zehn Jahren
ein grofles Interesse an neuartigen Synchronisationsphdnomenen geweckt. Neueste
Forschungsergebnisse belegen, dass diese Zustidnde unter bestimmten Bedingungen
auch in global gekoppelten Systemen existieren konnen. Solche Bedingungen werden im
ersten Teil der Arbeit in Ensemblen global gekoppelter Oszillatoren mit zusétzlicher,
zeitverzogerter Selbstkopplung untersucht. Wir zeigen, wie zundchst monostabile Os-
zillatoren in Gegenwart von dem Treiben der globalen Kopplung effektiv bistabil wer-
den, und sich so in zwei Gruppen organisieren. Das mittlere Feld, welches durch diese
Gruppen aufgebaut wird, ist quasiperiodisch wodurch der Chimera Zustand sich selbst
stabilisiert. In einem anderen Beispiel zeigen wir, dass der Chimera Zustand auch
durch einen frequenzabhéngigen Phasenunterschied in der globalen Kopplung erreicht
werden kann.

Zur genaueren Untersuchung der Mechanismen, die zur effektiven Bistabilitdt fiihren,
betrachten wir im zweiten Teil der Arbeit den Einfluss einer externen periodischen
Kraft auf einzelne Oszillatoren mit zeitverzogerter Selbstkopplung. Wir fiihren die
Stabilitdtanalyse des synchronen Zustands durch, und stellen die Arnoldzunge dar.

Im dritten Teil der Arbeit stellen wir die Ergebnisse einer Synchronisationsanalyse
vor, welche in Kooperation mit Wissenschaftlern der Psychologischen Fakultéit der
Universitdt Potsdam durchgefiihrt wurde. In dem Projekt wurde die Auswirkung des
Herzrhythmus auf die menschliche Zeitwahrnehmung erforscht. Unsere Aufgabe war es,
die experimentellen Daten statistisch zu analysieren. Im Experiment sollten Probanden
ein gegebenes Zeitintervall reproduzieren wiahrend gleichzeitig ihr Herzschlag aufgeze-
ichnet wurde. Durch eine Phasenanalyse haben wir den Zusammenhang zwischen dem
Herzschlag und der Start- bzw. Stoppzeit der zu reproduzierenden Zeitintervalle unter-
sucht. Es stellt sich heraus, dass Herzschlage bei Zeitintervallen {iber einige Sekunden
als Taktgeber dienen kénnen.
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1. Introduction

Synchronization is a fundamental phenomenon [22 55 [7T]. Examples of it can be
found in various natural systems of different size and level. Synchronization was first
observed and described by Ch. Huygens in seventies century as he discovered that two
mechanical clocks oscillate in opposite directions. Nowadays this phenomenon is well
known and has found an application in synchronizing the clocks and frequency adjust-
ing of electrical systems, as well as in bridge construction [44) [70]. Synchronization
appears in mechanical systems, like musical instruments, in lasers, and in Josephson
junctions |4, 20]. An interesting demonstration of synchronization effect is observed
in periodic chemical reactions, e.g. in the Belousov-Zhabotinsky reaction [32]. In bi-
ological systems the synchronization emerges not only in the level of cells, e.g. in the
circadian rhythm [47], but also among a large population, as the synchrony firing of fire-
flies. Moreover, the synchronous behaviour was found in cardiorespiratory coordination
[63] [TT], and in neuroscience. The model of phase oscillators and their synchronization
are considered as one of the main models of interacting neurons [25] 12].

Synchronization phenomenon is essential for normal functioning of a live system. For
example, in coordinated motion of body parts or in production of a macroscopic rhythm
by synchronous firing of many cells, which governs respiration, heart contraction, and
other rhythmic oscillations. Sometimes, synchronization leads to a pathology, e.g. in
the case of the Parkinson’s disease, when locking of many neurons results in tremor
activity.

In this work we consider complex regimes of synchronization. We make theoretical
modeling, numerical simulations, and use synchronization method to analyse experi-
mental data.

Since Y. Kuramoto [33],34] developed the phase approximation method as a general de-
scription for weakly coupled oscillators, a lot of works were dedicated to study dynamics
of globally coupled oscillators. However, recently a lot of attention was attracted to the
field of complex regimes between synchrony and asynchrony [76], 146l 61]. One of them is
the regime of coexistence of coherence and incoherence in system of coupled oscillators
[5, B5], which was called later as "chimera state" [2], [52) 66, 9, [36], 41 83, 37, 85 53]
and was demonstrated in an experiment [51]. Some recent works |17, 64, 65] imply
that chimera state is also possible in identical globally coupled oscillators. In the first
part of this work, we investigate an example of this state, which we called chimera-like
state, and answer the question, under which conditions this state emerges in identical
globally coupled oscillators systems. We explain appearance and stability of chimera-



like state in our model. Also, we present another examples, where the chimera state
appears due to frequency dependence of the phase shift.

In the second part of this work we inquire into the question, what is the role of the
bistability of the oscillator with intrinsic delayed feedback in inducing chimera-like
state. Therefore, we model influence of an external periodic force to the oscillator and
analyse synchronization in the case of mono- and bistable state.

The property of phase oscillators to be synchronized even by a weak interaction make
the synchronization analysis a useful method to reveal an influence of one oscillating
system to another. This was used in the third part of this dissertation, where we present
the results of the work, which was done in collaboration with our colleagues from the
Psychology Department of the University of Potsdam. The aim of this research was
to revel influence of body signals, like one’s heartbeat on perception of time. We
made statistical analysis of the experimental data and measured possible phase locking
between cardiac cycle and time interval reproduction responses.

We continue the introduction with description of main synchronization concepts that
are necessary to consider the problems discussed in other chapters. Let’s start with the
phase concept. Consider N > 2 dimensional dissipative autonomous system of ODE

le_)t(:f(x)’ X:(l'l,ZL‘Q,...,l'N), (11)

with stable periodic solution with period T x¢(t) = xo(t + Tp), Since the system is
dissipative, the solution will be a limit cycle. By the index 0 we denote the solution
along the limit cycle. We can introduce a coordinate along the limit cycle, that changes
to 27 after each rotation, as a phase variable ¢. This variable will obey the following
equation

a = Wo, (12)
where wy = 27/Ty will be referred as the natural frequency of the oscillator. In the
presence of a small perturbation the system in Eq. is described by

& = Fx) + Pl 1), (1.3
where the external force ep(x,t) = ep(x,t+T) is periodic with the period 7', in general
different from 7Tj. If we introduce the phase in the vicinity of the limit cycle, then since
the phase is a smooth function of the coordinate, one can write the equation of phase
dynamics as [34], 55]:

% = wy +£Q(o,1), (1.4)
where
Qo) = 32 2D )0, (15)
k



is a 27-periodic function of the phase ¢ and a T-periodic function of . Thus, one can
represent Eq. in the form of Fourier series. Then by averaging and leaving only
resonance terms

kwy 4+ lw = 0, (1.6)

where k and [ are integer numbers and w = 27/T is the frequency of the external force,
one obtain an averaged equation for phase dynamics

d
dé = wp + eq(¢ — wt), (1.7)
dt
where ¢ is a 27 periodic function of it arguments. In the simplest case the function ¢
is represented by sin function.

By introducing a new variable ¢ which is the difference between the phase of the
oscillator and the external force 1) = ¢ — wt, and substituting in Eq. we have

@

=V + eq(v), (1.8)

where v is the frequency detuning v = w — wy [55]. Tt is clear, that for some values of
parameters v and ¢ Eq. [1.8 will have a fixed solution, and the phase of the oscillator will
rotate with the frequency of the external force, i.e. will be synchronized. It happens
when emin{q} < v < emax{q}. The domain of parameters, where synchronization
appears, called synchronization region and the typical form of it is called Arnold tongue.

If we have a system of two interacting oscillators, by providing the same procedure we
obtain an equation for phase difference, similar to Eq.

dtpmn
dt

= ~Vin + €q(Vrn), (1'9)

where ¥,,, = m@;—n¢, the phase difference between two oscillators, and v = mw; —nw»
frequency mismatch in m : n resonance case.

In application of the synchronization analysis, to introduce the quantitative measure-
ment of synchronization, one reproduce the phases of two different oscillations in the
system, then by using the phase difference as a relative phase calculate the synchro-
nization index [49]

Von = (€08(¥mn))” + (i (W) (1.10)

In the absence of synchronization between this two elements of the system the syn-
chronization index ~ will be 0. In contrast, the value of v will tend to 1, if there are an
interaction. For noisy systems it will never reach 1, and remain in some intermediate
value.

Let’s consider the simplest case for Eq. [1.9] i.e. 1 : 1 resonance and ¢(¢)) = sin(¢),
then we obtain Adler’s equation

g

= —v + esin(v). (1.11)



Depending on the sign of € we have two cases. First, if ¢ > 0, then the fixed value of
the phase lies in —7/2 < ¢ < w/2, and b = 0 for zero detuning v = 0. In this case the
coupling between oscillators are called attractive. In contrary, if € < 0, then fixed value
lies in 7/2 < ¢ < 37/2, and for similar oscillators (v = 0) the phase difference equals
to m, i.e. in anti-phase to each other. In this case the coupling is called repulsive.

Another important model used in synchronization analysis is the model of Kuramoto
[34], the simple model of N mutually coupled oscillators with different natural frequen-
cies wg. The equation of dynamics is governed by

d¢ £ —
d—tk =W+ jzlsin(szﬁj — Or)- (1.12)

One can introduce the complex mean field

N
) 1 )
0 _ i
Ke =5 5 e’k (1.13)
7j=1
and rewrite Eq. in the following form
d
% = wy, + K sin(O — ¢). (1.14)

The main feature of this model is that for some arbitrary frequency distribution g(w)
there will be a non-zero mean field with the central frequency @w and an amplitude
K # 0. All oscillators with the frequencies |w —@| < e K will be entrained by the mean
filed and synchronized. Whereas, other oscillators with frequencies |w — w| > e K will
have asynchronous solutions. Starting from some critical value of the coupling strength
€ = &, the transition, similar to the second-order phase transition, happens and the
amplitude of the mean field grows with the square root low: K ~ (g — &.,.)/2.



2. Chimeralike state in globally
coupled oscillators

In spite of over forty years of research pioneered by A. Winfree [79, 80] and Y. Ku-
ramoto [33, B34], the dynamics of globally coupled oscillator populations remains a
challenging issue, with applications ranging from laser and Josephson junction arrays
to problems of bridge engineering and modeling of brain waves |4} 20, 44} [70] 25, 12]. In
addition to the well-studied self-synchronization transition, of particular recent inter-
est are complex states between synchrony and asynchrony [76, 46|, 61]. However, a lot
of attention have attracted regimes of the coexistence of coherence and incoherence in
oscillators lattices [5, 35]. These states, also known as "chimeras", have been addressed
in numerous theoretical studies [2], 52, [66], 9, [36, 4T, 83, 37, 85, 53] and demonstrated
in an experiment [51]. Furthermore, it has been shown that already two interacting
populations of globally coupled identical oscillators can for some initial conditions ex-
hibit symmetry breaking of synchrony, so that one population synchronizes whereas the
other remains asynchronous [T}, 54]; existence of such chimeras has been also confirmed
experimentally [74) [40].

A natural question is under which conditions can such a symmetry-breaking into syn-
chronous and asynchronous groups be observed in a completely homogeneous globally
coupled population of identical oscillators.

In our work [84] we have demonstrated that chimera-like states appear for a minimal
generalization of the popular Kuramoto-Sakaguchi phase model to the case of globally
coupled identical phase oscillators with internal delayed feedback, and discussed the
underlying mechanism of dynamically sustained bistability. In this chapter, for the
most part, we consider the results obtained in [84]. We start with the brief introduction
to the global coupling and the chimera state. Then we introduce our model, which
demonstrate the state, reminiscent to classical chimera, and called chimeralike state.
More detailed description of this state is presented in the section of numerical simulation
results. Further, we give theoretical description to the chimeralike state, it’s stability
and qualitatively explanation, formulated as a dynamical sustained bistability. Finally,
we give two other examples, where the chimeralike state can be observed.



2.1. Synchronization in ensemble of coupled
oscillators

Even two oscillating objects which has a weak interaction can be synchronized. The
natural expectation is the ensemble of oscillators and oscillatory media to be synchro-
nized. Several examples can be found in the nature, like the synchronization of fireflies
and the synchronous applauding of a large audience. They are the examples of the
global, all-to-all, coupling in the ensemble of self-sustained oscillators.

Globally coupled self-sustained oscillators can be quite generally treated in the phase
approximation [34]. In the simplest case of identical sine-coupled units such an ensem-
ble of N units is described by the Kuramoto-Sakaguchi model [62]:

N

. 5 . i —1

gpk:w—i—ﬁz;sm(goj—apk—l—ﬁ) :w+51m(eﬁZe or) (2.1)
j:

where ¢ are the oscillators’ phases, € > 0 is the coupling strength, [ is the phase shift
in the coupling, and

N
Z =Re'® =N el (2.2)
k=1

is the complex Kuramoto order parameter (complex mean field). The system is known
to tend to the fully synchronous state o1 = o = ... = @y, if the coupling is attractive,
ie. || < m/2, and to remain asynchronous otherwise. Notice, that this model, in
contrast to the Kuramoto model presented by Eq. [I.12] has identical oscillators with
the same natural frequencies.

However, the global coupling is not the only one type of coupling. It can be near-
est neighbours coupling in the chain, in two dimensional lattice or non-local coupling,
where the interaction is defined as an integral over the neighbours and with the kernel,
that decay with the distance. In the last type of coupling revealed complex spaciotem-
poral state, later called "chimera", which is the subject of the next section.

2.2. Chimera state

An interesting spaciotemporal state was first reported in the work [35], where oscillators
on the ring were coupled by means of finite-range nonlocal coupling demonstrated the
coexistence of coherence and incoherence states. The system splitted into two domains
with different dynamics. The first domain consists of mutually synchronized oscillators,
whereas the second domain was completely desynchronized. Later in the work [2], the
name "chimera" was given to this new synchronization phenomenon. According to
the ancient Greek mythology, the chimera was a monster with parts of the body from
different animals, like the body of a goat, the head of a lion and serpent’s tail.
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Figure 2.1.: Chimera state from [2]. (a) Phase pattern. (b) Local order parameter R(z) defined
by (¢) Local average phase ©(x). A denotes frequency mismatch: A = |w — 2|. Coherent
solutions appear for the oscillators with coordinates x, where R(x) > A. Drifting solutions take
place where R(z) < A.

The model considered in the works |35, 2] was the system of nonlocally coupled complex
Ginsburg-Landau equations, which was reduced to a phase equation of the following
form

ot

where G(x — ') is the coupling function. By moving to rotating coordinates 6§ = ¢ — 2t
and introducing the order parameter that depends on space and time

9 (2,t) =w — /G(a: —2')sin (p(x,t) — (2, t) + a) da’, (2.3)

R(z,t)e®®) = /G(x — 2)e?@ Dy, (2.4)
Eq. [2.3)is reduced to a forced one-oscillator equation

%Q(x,t) =w-—{—Rsin(0 — O +a).

In Fig. [2.1] taken from [2] the chimera state and profiles of R(x) and ©(z) is shown. For
the oscillators with coordinates x, where |R(x)/(w—{2)| > 1, the constant synchronized
solution appears, while for other oscillators, where |R(x)/(w — 2)| < 1, the drifting
solution takes place. In that way, the symmetry-breaking appears and the system of
homogeneous oscillators splits into two groups with different dynamics.

2.3. The model

The main questions, addressed in this chapter are: (1) can chimera state be observed in
the ensemble of globally coupled identical oscillators, and (2) what are the mechanism



behind the symmetry breaking if this state is possible.

In case of global coupling all oscillators are subject to the same force. Therefore, if the
units are identical, one may expect that they should evolve similarly. This expectation
is rather natural and is indeed true for simple systems like the standard Kuramoto
model, as well as for many other examples from the literature. However, in a system
of globally coupled identical chaotic maps, K. Kaneko observed one large synchronized
cluster and a cloud of scattered units (see Fig 2b in [3I]) — a state reminiscent of
a chimera. For periodic units, namely for nonisochronous Stuart-Landau oscillators,
such a state has been reported by Daido and Nakanishi [I7] and Schmidt et al. [64],
who studied the cases of linear and nonlinear global coupling, respectively, see also [65].
These observations that identical nonlinear elements behave differently in spite of being
driven by the same force, indicate presence of bi- or multistability.

We consider a setup similar to Kuramoto-Sacaguchi model Eq. for oscillators with
an internal delayed feedback loop. The latter is a natural ingredient, e.g, of lasers
with external optical feedback [42] and of numerous biological systems where signal
transmission in the feedback pathway may be rather slow [23| [72, [7]. It is known, that
phase dynamics of an autonomous oscillator with a delayed feedback loop can be in
the simplest case represented as ¢ = w + asin(p, — @), where ¢, = @(t — 7), 7 is the
delay, and o quantifies the feedback strength [50] 42, 24]. Depending on the values
of the parameters w, 7 and « the oscillator has one, two or multiple stable solutions.
More detailed discussion of this oscillator we present in the chapter .

Assuming the global coupling to be of the Kuramoto-Sakaguchi type as above, we write
our basic model as

Or = w + asin(rr — @r) + elm (e Ze ) | (2.5)

Here again Z is the complex Kuramoto order parameter (Eq. . The system of N
equations is formally infinite dimensional, since every oscillator is described by a
nonlinear delay differential equation.

2.4. Results of numerical simulation, chimeralike
state

In this section we show the results of numerical simulations and demonstrate a chimera-
like state in model mostly for parameter set w = 1, o« = 1/3, 5 = /2 4 0.01,
7=m—0.02, e =0.05, and N = 100. It is noteworthy, that for this set of parameters
the individual oscillator without coupling is in monostable state (see Fig. . Depend-
ing on the initial conditions and the parameter § the system reveal different states:
fully synchronized state; desynchronized state, when all oscillators are desynchronized;
chimeralike state, with one large synchronized cluster and a cloud of desynchronized
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Figure 2.2.: Snapshot of phases for particular solutions of Eq. The parameters of the system
are: (a) 8 =7/240.1,e =0.05 7 =7 —0.02; (b) 8 =7/2+0.01, e = 0.05, 7 = 7 — 0.1; (c)
B=7m/240.25 ¢=0.05,7=7—0.01; (d) 8=n/2—04,e=0.02, 7 =7 —0.1. The oscillators
are shifted by radial coordinate. The black star (x) depict the mean field.

oscillators; clustered state, when the system splits into several clusters (in every cluster
oscillators are mutually synchronized) and a cloud of desynchronized oscillators.

Some particular states are shown in Fig. 2.2 In all four states the system has n = 100
oscillators. The initial conditions were defined with one mutually synchronized 40
element cluster and 60 desynchronized oscillators with different frequencies. In the
panels (a) and (b) four and two clustered states are shown. In these examples all
clusters have different number of elements. As a result, the mean field is always nonzero.
This lead to irregular frequencies and quasiperiodic motion of the clusters. However,
there is another state, that is shown in the panel (c). The system splits into symmetric
sized clusters, as well as symmetric distribution of this clusters on the circle, thereby
producing zero mean field and equal frequencies. For example, in the panel (¢) two
clusters have 7 elements and two other clusters have 43 elements, which rotate with
the frequency 0.7987. Fully synchronized state is shown in the panel (d).

In Fig. 2.3 (a),(b) we show chimeralike state after transients in the dynamics are over;
the snapshot and the time evolution of the phases clearly depict a synchronized cluster
of 64 oscillators and a cloud of 36 asynchronous ones. Notice that throughout this
example we number the oscillators in a way that units with indices £ = 1,...,n are
in the cluster, whereas units with £ = n + 1,..., N belong to the cloud. The size of
the cluster we denote as ¢ = n/N. Temporal phase dynamics is further illustrated in
Fig. [2.3] (¢): for the elements in the cluster it is highly regular with a nearly constant
instantaneous frequencies, while oscillators in the cloud are chaotic and their instan-
taneous frequencies strongly fluctuate. Moreover, individual frequencies in the cloud
are only weakly correlated, so that the phase differences demonstrate many phase slips



and are unbounded. This irregularity is also reflected in the strong fluctuations of the
cloud contribution to the mean field, to be compared with nearly constant contribution
from the cluster (Fig. [2.3| (d)).

Figure 2.3.: Chimera state in model . The parameters of the system: w =1, a = 1/3,
B=7/240.01, 7=7—0.02, ¢ = 0.05, and N = 100. (a) Snapshot of the phases reveals that 64
oscillators (red circles, numbered with £ = 1,...,64) are in the cluster and 36 oscillators (blue
squares) belong to the cloud. For visibility, the radial coordinate is increased proportionally to the
oscillator index k. (b) Temporal evolution ¢ (t), shown by color/grey coding. (¢) Instantaneous
frequencies of an oscillator from the cluster (upper red curve) and of an oscillator from the
cloud (lower blue curve). The average values are (Psyn)e = 1.2897 (cluster) and (Pgsyn)t =
0.9033 (cloud). (d) Amplitude of the mean field component contributed by the cluster, Ry =
| 202 €#%]/100 (red bold line), and by the cloud, Ry = | 33 25%; #*|/100 (blue solid line). Black
dotted line shows the amplitude R of the total mean field. From [84]

Formation of the chimera state is illustrated in Fig. [2.4] . Here in panel (a) we show
the cluster growth for different initial conditions. For every run of this numerical
experiment we changed the initial size of the cluster form n = 30 to n = 60 oscillators.
All elements of the cluster had the same initial frequency and phase in the time range
[to, to — 7]. The rest of the oscillators, i.e. the cloud elements, were places on the circle
with random uniform distribution. The initial frequencies of the cloud elements were
taken randomly between 0.7 and 1.2.
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From the Fig. 2.4 we see that the cluster size saturates at a value between n = 60 and
n = 71. Notice the logarithmic scale of the time axis: formation of the cluster with
g =n/N = 0.5 is relatively fast, while its further growth is an extremely slow process.
Below, in theoretical description (Chapter , we will show that the full synchrony
state, i.e. the cluster with ¢ = 1, cannot appear for choosen parameter set.

To show that formation of the chimera-like state is not a finite-size effect, in Fig. [2.4]
(b) we illustrate formation of the chimera-like state for ensembles of different sizes,
up to NV = 1000. In all cases the final state has cluster of size ¢ ~ 0.6. As shown
below, for the stability of the chimera-like state it is important, that the fluctuation
of the order parameter Ry of the cloud does not vanish in the thermodynamic limit
N — oo; Fig. [2.4] (¢) demonstrates that the variance of Ry practically does not depend
on N up to values N = 2000. This fact indicates that the units of the cloud are not
uncorrelated, but are organized in a collective chaotic mode. Finally, we emphasize
that chimeras exist not only for parameters chosen above for an illustration, but in a
finite parameter domain, shown in Fig. together with domains of other types of
dynamics.

2.5. Theoretical description

Next, we present theoretical arguments explaining existence of a chimera-like state in
model . Let us consider first the fully synchronized, uniformly rotating one-cluster
state o1 = ... = pn = @ = (2t, where frequency (2 is yet unknown. Substituting this
expression into Eq. (2.5]) we obtain

2 =w—asin27 +esinf, (2.6)

its solution (2(7) is shown in Fig. for cases ¢ = 0 (uncoupled oscillators) and
e = 0.05 (one-cluster state). We see that in both cases, the solution for the chosen
delay 7 is unique, i.e. there is no multistability. The fully synchronous cluster is,
however, unstable. Indeed, consider a symmetric small perturbation to two arbitrary
oscillators, p12 = @ £ 9. Such a perturbation is transversal to the synchronization
manifold and leaves the mean field unchanged; it obeys linearized equation

0 = avcos(£27)(8, — 6) — &b cos f. (2.7)

The detailed stability analysis of this linear delay differential equation we present in
Appendix , where we derive that the zero solution of Eq. (and correspondingly of
Eq. is unstable for b = e cos § < 0 (see Fig. [3.3|). However, one can show that it is
unstable with a simpler way: Most important is the eigenvalue which is close to zero;
using its smallness we obtain in the first approximation A = —& cos 8[1+7a cos(27)] L.
Because for parameters used in Fig. 2.3 the quantity in brackets is positive, the fully
synchronous state for ecos # < 0 is unstable. Physically, this means evaporation of
the oscillators from the cluster. Numerical studies show that the fully asynchronous

11
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Figure 2.4.: Temporal evolution of the cluster and saturation of its size. (a) Growth of the
relative cluster size ¢ = n/N for different initial conditions for N = 100 oscillators. (b) Saturation
of ¢ for different ensemble size: N = 250 (red solid), N = 500 (blue dashed), N = 750 (green
dash-dotted), and N = 1000 (black dotted). (c¢) Standard deviation for the amplitude of the
mean field component Ry contributed by the cloud, for different ensemble size N.

state with uniform distribution of phases is unstable, too. Although we cannot exclude
less trivial asynchronous states, i.e. with a non-uniform distribution of phases or with
several clusters and zero mean field (see Fig. [2.2]), we have not observed them for the
chosen parameters.

A natural question is, why a partial cluster with n < N elements (we denote its phase
by @) is stable, while the full synchrony for n = N is not. To analyze this, we again
denote the perturbed phases of oscillators in the cluster as @ + 9, and obtain after

linearization (see detailed derivation in Appendix |A]):

o(t) = acos(®, — P)(0, — 0)—
N 2.8
—[%Cosﬁ—i-% > cos(p; —P+p)| 9. (28)
Jj=n+1

Simultaneously we want to check, whether formation of another cluster via merging of
oscillators from the cloud is possible. For this purpose we assume that two oscillators
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Figure 2.5.: Approximate domain of chimera states (white region); w, a, and § are same as
above, N = 256. Symbol x marks the parameters used in Figs. , . In the black domain
we observed multi-cluster states, while the gray domain corresponds to the states with zero mean
field and equal rotation frequencies for all units. The initial conditions were defined with the
cluster of the size ¢ = 0.4 and a cloud of desynchronized oscillators with different frequencies.
From [84].
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Figure 2.6.: Solution of Eq. ): frequency of the one-cluster state 2 as function of 7, for
uncoupled oscillators, ¢ = 0, (blue dashed line) and for € = 0.05 (red bold line). Vertical black
dash-dotted line marks 7 = = — 0.02. From [84] .

in the cloud come close to each other, so that A(t) = ¢, — ¢, [,k > n, is small, and
we can linearize the corresponding equations to obtain for the difference (see detailed
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derivation in Appendix [A])

A(t) = acos(prr — @1)(Ar — A)—

N 2.9
—|Scos(P - +8) — & Zlcos(goj—gol+ﬁ) A. (29)
j=n+

We cannot solve Eqs. analytically, as ¢;(t) are unknown irregular functions of
time. However, we solve this linear delay differential equations with varying coefficients
numerically for large time interval T together with the full system (2.5) and compute
the corresponding Lyapunov exponents

A= tim 200D o5 102,
T—00
and 10 A(T
A= tim 2AD o ag. 102
T—o00

Because the Lyapunov exponent A\ describing transversal stability of the cluster is
negative, and the exponent /A describing transversal stability in the cloud is positive,
the cluster is stable towards evaporation of the oscillators, while merging of cloud
oscillators to another mini-cluster is forbidden.

Stabilization of the cluster can be qualitatively explained as follows. Contrary to the
fully synchronized case, in presence of a cloud, oscillators in the cluster are subject to a
force which has two components, as illustrated by Fig.[2.3[(d): a regular force from the
cluster (egsin(f) = const) and an irregular one from the cloud, which is proportional
to (1 —q)

. . ) 1 .

& =w+ asin(@, — D) + egsin(f) + €N Z sin(¢; — @ + f). (2.10)

j€Ecloud

In the first approximation, the irregular component can be treated as a random force,
and this effective noise is common for all elements of the cluster. It is known that
common noise tends to synchronize oscillators [55, [I0]. Here, for sufficiently strong
noise, this tendency to synchrony overcomes the internal repulsion in the cluster and
stabilizes it. However, the cluster cannot absorb all elements, because for n = N the
noisy component vanishes; hence, n < N.

Considering now the system from a different viewpoint, we discuss, why the periodic
forcing from the cluster does not entrain the cloud oscillators and they eventually do not
join the cluster. Indeed, at initial state of chimera formation more and more oscillators
join the cluster (see Fig. [2.4] ) and the more oscillators merge into the cluster, the
stronger is the forcing on the cloud oscillators. Hence, one may expect the increased
tendency to synchrony. However, the size of the cluster always saturates between
g =60 and ¢ = 71 (see Fig. [2.4] ).
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In order to answer to this question in the chapter 3] we considered synchronization of an
individual oscillator with delayed feedback loop by a periodic force, which corresponds
to the cluster (Eq. ). We show there that the synchronization appears in some area
of the parameters space (see Fig. ). If the frequency of the cluster is outside of this
domain, the oscillator is not captured by the cluster and the cluster size stops growing.

Thus, with increase of n, the frequency of the cluster grows as described by 2 =
w—asin 27 + e sin 3, where in the first approximation we neglect the random forcing
from the cloud in Eq. . For n = 64 the estimated frequency is 2 = 1.2901, in a
perfect agreement with the observed value 1.2897 (see Fig. [2.3| (¢)). Hence, not only
the amplitude en/N of the forcing on non-synchronized units grows with n, but also
the frequency mismatch. The growth of the cluster saturates when these values drift
outside of the synchronization domain for the forced oscillators in the cloud. To confirm
this, we have used the result of the chapter [3.2] and determined the synchronization
domain for chosen parameters using a periodic forcing with parameters taken from the
cluster dynamics. In Fig.[2.7 one can see that the forcing with the cluster frequency and
the corresponding amplitude lies almost exactly at the border of the domain. Thus,
the further entrainment of oscillators by the cluster is not possible.

1 0.1

0.8 0.08
0.6
W
0.4

0.06
W
0.04

0.2

0.02

O0 0.5 1 1.5 2 qj 1.15 1.2 1.25 1.3 1.35 1.4

174 174

Figure 2.7.: The synchronization region for Eq. (gray). The theoretically found border of
synchronization region shown by red line. Red circle, which corresponds to the values of the
cluster frequency and corresponding amplitude (we, €q) obtained by the numerical simulation,
lies almost exactly at the border of the synchronization region. The right plot is the enlarged
view of the left plot. From [84].

Presented discussion explains the mechanism of the dynamically sustained bistability
that underlies the chimera-like state in our globally coupled system of identical units:
the ensembles splits into two parts with completely different dynamics, and these parts
together create a mean field that allows such a bistability. This mechanism is nontrivial,
because, as illustrated in Fig. for the chosen parameters the uncoupled systems are
monostable. However, due to interaction, the oscillators become effectively bistable:
being forced by the same field they exhibit two very different dynamical patterns. The
oscillators in one group are regular and therefore easily synchronize with each other,
while the others are highly irregular and remain in different asynchronous, although
correlated, states. The global field that leads to the bistability is dynamically sustained
in a self-consistent way.
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2.6. Other examples of chimeralike state

Next we discuss less nontrivial, though more transparent, setups where already non-
coupled oscillators are bistable. Here the coupling is organized in a way, that it acts
repulsively on the oscillators in one state and attractively on those which are in the
other state. For the first example we consider a model

Vr = w + asin(r, — ¢r) + eRsin(Or — ¢ + 0) (2.11)

where Re’® = Z and ©7 = O(t — T). In contradiction to our model (2.F)), here not
only individual oscillators possess a delayed feedback loop, but the global coupling
is also delayed, with another delay time 7 # 7. Parameters of oscillators are taken
asw =7, 7 = 0.99, and o = 1.2, so that uncoupled units oscillate either with the
frequency §2; = 2.0845 or {2y = 4.0795, i.e. are bistable. For coupling parameters
e =0.1, 8 =x/2, and T = 0.27 we observe a chimera state (see Fig. [2.8]), what can
be explained as follows. Suppose there is a non-zero mean field with the frequency v.
In the first approximation, the delay in the coupling is equivalent to the phase shift
VT which sums with the constant phase shift parameter 5. The coupling is attractive
if the total shift obeys |vT + 8| < 7/2, and repulsive otherwise. Since the phase shift
is frequency-dependent, the effective coupling through the same global mean field is
attractive for individual oscillators having frequency v = (2, and repulsive for those
with v = (2. As a result, the sub-population of oscillators which initially are in the
state with (2, synchronize, while the elements with (2, remain asynchronous. Indeed,
after the transient in the system is over the mean field produced by desynchronized
oscillators is almost zero. Thus, the mean field will be defined only by the cluster
elements. The cluster and the mean filed will be phase locked with phase difference
(21 —w)T +7/2| = |(£4 —w)7-0.2+7/2] = 1.3615 < 7/2. In contrary, the phase of the
oscillator with frequency (2, the phase shift will be |(£2y—w)7-0.24+7 /2| = 1.7565 > 7/2.

—_

|
—_

(0.5 4 0.0017 - k) sin(¢y)

-1 0 1
(0.5 + 0.0017 - k) cos(¢y)

Figure 2.8.: Phase snapshot of the chimera state in the system Eq. Clearly seen the
synchronized cluster and desynchronized group of oscillators. To distinguish the oscillators the
radial coordinates were shifted proportional to their index k.
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Figure 2.9.: Chimera state in the system of identical Stuart-Landau type oscillators Eq. (2.12]).
(a) Snapshot clearly demonstrates one cluster and a group of asynchronous units. Notice that for
visibility, in the plot the amplitudes of all units are substituted as r;, — r;+0.01%k. (b) Mean fields

of two subgroups, X; = N1 Zj\[:/f i cos ¢; (bold black line) and X = N1 Z;.V:N/QH T} COS @;
(solid red line). From [84]

A similar scenario can be implemented with bistable identical oscillators without de-
lays. Consider N Stuart-Landau type oscillators, (here written in polar coordinates
Tk, k) having two stable limit cycles and let these oscillators be globally coupled via
an additional linear circuit, described by variable u:

e = 017 (1 — 7)) (4 — 72)(9 — 77) + eti cos @y,

w
op =14 ari —e—singy,
o ST (2.12)
d+7u+772u:N_1ercosg0j.
J

Parameters are a = 0.1, ¢ = 0.1, v = 0.01, n = 1.5, N = 400. In the simulation,
initially N/2 units were close to the limit cycle with the amplitude ~ 1 whereas the
others were close to the second limit cycle, with the amplitude ~ 3. The observed
chimera state is shown in Fig.[2.9). Indeed, the frequencies of the limit cycle oscillations
are {2 = 1.1 and (2, = 1.9. Since the resonant frequency of the circuit 7 lies between
them, 2y < n < {25, the phase shift in the global coupling introduced by the harmonic
circuit is attractive for the state with {2 and repulsive for that with (2.

2.7. Summary

In summary, we have demonstrated numerically and explained semi-quantitatively
the emergence of chimera states in ensembles of identical globally coupled oscillators.
We have outlined a mechanism of dynamically sustained bistability which results in
symmetry-breaking of the initially homogeneous system. Here, a remarkable construc-
tive role is played by collective chaos of non-synchronized units: the irregular forcing
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from the cloud counteracts the instability of the fully synchronous state, thus stabi-
lizing the cluster of synchronized n < N elements. We have also demonstrated that
chimera-like states are possible without this mechanism, if the individual units are
naturally bistable, like in setups described by Egs. ). We stress that the
chimera-like regimes here are conceptually much simpler than in the model ): the
asynchronous oscillators are not chaotic; moreover, here the partition into synchronous
and asynchronous states is fully determined by initial conditions, while in Eq. )
the partition appears self-consistently.

In this chapter we analyzed only ensembles of identical oscillators, as here the effect is
mostly striking. However, we expect that the main features survive for small hetero-
geneity and/or noise; this issues remain a subject of a future study.
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3. Phase synchronization of an
oscillator with delayed feedback
by external force

As it was shown in the previous chapter, globally coupled oscillators with internal
delayed feedback can reveal non trivial states, like chimeralike and clustered states.
Coexistence of a coherent and incoherent domains in chimeralike state was explained
by dynamically sustained bistability. Initially small amount of mutually synchronized
oscillators build a cluster. By absorbing other oscillators the cluster starts growing.
However, when the cluster reaches the certain size it can not capture new elements, and
the system does not reach the fully synchronized state. To understand the saturation of
the cluster in the level of the individual oscillator we consider the synchronization of the
oscillator with internal delayed feedback with the cluster. In the first approximation
the cluster with constant mean frequency can be replaced by external periodic force.

We represent our model in the following form
¢ = w + asin(¢, — ¢) + esin(vt — ¢). (3.1)

Here w is the natural frequency of the oscillator, 7 and « are delay and strength of
the internal feedback loop. Parameters of the external force are its strength ¢ and
frequency v, which is assumed to be close to w. The interaction with the external force
is taken as a sine of the phase difference.

One can rewrite this equation introducing the phase difference to that of the external
force, i.e. Y = ¢ — vt:
Y=¢—v=1-v+asin, +vt—vr—1 —vt)—esin(y).

Finally we have

Y =1—v+asin(y, — ¢ —vr) —esin(y). (3.2)
In this chapter we start with an individual oscillator and it’s properties. Next, we

find the synchronization region in general case. Finally, we consider two modes of the
oscillator and discuss bistable and hysteretic features of their Arnold tongues.
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3.1. An oscillator with intrinsic delayed feedback

An autonomous oscillator with delayed feedback loop can be reduced to a phase model.
In the simplest case the delayed feedback loop is represented as a sine function, i.e. the
first term of Fourier set [50), 42], 24]:

¢ =w+ asin(p, — @), (3.3)

where 7 is the delay, o, = ¢(t — 7), and « quantifies the feedback strength. The
intrinsic delayed feedback can appear in a natural manner in several biological systems
[42, [72], in gene-oscillators [43] [69], in human physiological systems, namely control
systems [6], in lasers with opto-electronic feedback [2I], and in mechanical systems
[19].

The monotone growing solution of Eq. lead to the following relation
2 =w— asin(27). (3.4)

This equation for |a7| > 1 has, depending on the value of 7, one, two or multiple stable
solutions @12 = £25t (see Figs. B.1] 3.2).

The turning point of the curve 2(7) can be easily found. It appears when the derivative
df2/dr = oo. Indeed, if we rewrite the Eq.[3.4/and define the curve (1) as a parametric
function

F(2,7)=02—1+ asin(27) =0,

then the derivative will be

@__%:f__ a cos(§27)
dr 25 1+arcos(Q2r)

If the feedback strength ow = 1 /7 then df2/dT = 00 at T = 7 (see Fig. [3.1).

To have a bistable mode in 2(7) we take the value of the feedback strength as o =
1/3 > 1/m. Further we will consider two modes of the oscillator Eq. 3.3} the first one
is the symmetric case with 7 = 7. In this mode there are two stable solutions with
frequencies (2, = 0.8333(3) and (2, = 1.1666(6) . The second case is called asymmetric,
with 7 = m — 0.02, where only one stable solution with frequency (2, = 0.7987 exists.
They are shown in Fig. [3.2]

Notable, that in a real system the delay is not have to be so large like 7. The com-
bination of w, o and 7 defines whether the oscillator is in one-, bi- or in multi-stable
mode. The choice of the parameters value were guided by convenience in theoretical
calculations.
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°8.

Figure 3.1.: Representation of the transition from mono to bistable mode of the oscillator Eq. ?7.
The blue solid lines are the dependence of the frequency (2 on the delay 7 in Eq. 3.4 for w =1
and different values of o (shown as numbers). The red dashed line corresponds to the value of
a = 1/, where bistability appears.

3.2. Synchronization by external periodic force

In this section we find the region of parameters where the oscillator is synchronized by
the external force, i.e. we construct Arnold tongue. Therefore we consider the stability
of the phase locked state of Eq. [3.2]

If the oscillator is synchronized with the external force and ¥ (t) = ¢y = const then
form Eq. we obtain

0=1—v—asin(vr) — esin(y). (3.5)
Linearization around the solution 1)y gives

5 = acos(v7)(8, — 8) — e cos(thg)s. (3.6)
if we denote

a = acos(vt) and b= ecos(¢) = /€2 — (v + asin(vr) — 1)2, (3.7)

we obtain a linear delay differential equation
0 = ad, — (a + b)d.
The stability of this equation is discussed in Appendix [B] The stability chart is shown
in Fig. B3
Using this results and Eq. we find stability of the phase locked solution for Eqs. [3.2;

1. First condition comes from the fact that the phase v is a real number:

e > |(v+ asin(vr) — 1)|. (3.8)
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Figure 3.2.: An example of bistable solution of Eq. The frequency of an oscillator 2 (Eq.
is presented as a function of 7 for w = 1, @ = 1/3. The vertical black dashed line is 7 = 7 — 0.02,
and vertical red dash-dotted line is 7 = 7. In the first case there is only one stable solution (the
black circle) with the frequency 2, = 0.7987, whereas in the second case there are two stable

solutions: lower 21 = 0.8333 and upper (2> = 1.16666 (red circles); and one unstable solution
with 2 =1 (middle red circle).
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Figure 3.3.: Stability chart for zero solution of the linear delay differential equation (Eq. [B.1}
see Appendix enlarged around origin. The border of the stability region (gray colored) is given
by two red curves: the horizontal line (b = 0) and the left curve starting from (a,b) = (—1/7,0),

which is given as a parametric function of w: a(w) = —Snter) b(w) = wtan(wT/2), w € [0, 1].

2. From the stability conditions of Eq. we have:

- if £ cos(t)y) < 0 the solution is unstable.

if £ cos(1p) > 0 and o < 1/7, then system is stable. (See Fig. |3.3))

if @ > 1/7 and €cos(v)y) > w; tan(w;7/2), where w; is the solution for w; —
asin(wyT) = 0, then the solution is stable

if @« > 1/7 and ecos(1hy) < wy tan(w;7/2), where w; is the solution for w; —
asin(w;7) = 0, then if acos(v7) > —ws/ sin(wsT), where wy is the solution
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for ecos(1y) = wytan(we/2), the constant solution is stable. Otherwise
unstable.

In other words, the main stability condition is Eq. Due to the fact that in our case
b = ecos(thy) > 0, and @ > 1/7, we have extra conditions (See Fig. [3.3): Two vertical
dashed lines in Fig. [3.3] show the minimal value of @ = —« and the value of —1/7. To
the left of —1/7 the Hopf bifurcation curve starts. If we change the parameter ¢ and
v according to Eq. we will have corresponding nontrivial curve in the parameters
plane (a,b). When a < 1/7, then the curve never crosses the bifurcation curve. And
if & > 1/7, which is in our case, the Hopf bifurcation can appear. We can find the
points where the curve Eq. crosses the bifurcation curve and correct the value of €
for that region (See Appendix |C| for details). Thus, for

Y Y

. {arccos(;l/(om')) 2 — arccoi(—l/(on))

the value of € should be corrected and obey

e = o (wi)tan (£2T 2+(V+ozsin(1/7-)—1)2, (3.9)
(o (45))

where w(v) can be found from

w(v) + acos(vT) sin(w(v)r) =0,
and w(v) € [0, Wimaz), Where wyq, is the solution of the equation

Winaz — O SIN(WpaeT) = 0.

The stability regions for 7 = 7 and 7 = 7 — 0.02 is shown in Fig. 3.4] (b) and Fig. 3.5
(b) for the symmetric (7 = 7) and asymmetric (7 = m — 0.02) cases correspondingly.
More discussion of this cases will be in the next section.

3.3. Arnold tongues

We carried out numerical simulations by solving the Eq. for different initial condi-
tions and different values of v and €. The predictor-corrector integration method for
delay differential equations was used to find the solution of Eq.

By calculating the mean value of the frequency ¢ and it’s root mean square one can find
the regions of the phase locked synchronization and frequency locked synchronization.
In the first case both values are zero. These points are shown as gray points in Fig.
(b), and Fig.[3.5/(b). The second case appears, when the phase is periodically oscillating
around some constant value, so that the mean of the frequency is the same as the
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frequency of the external periodic force. Thus in the coordinates of the periodic force
the mean frequency is zero. Whereas, the root mean square is not equal to zero. These
points are shown with red points in Figs. (b), (b). They correspond to the
solutions that appear after Hopf bifurcation. The frequency 1 of typical solutions
are shown in Fig. In Figs. (a), (a), and Fig. [3.6] (d) the color plots were
obtained by smoothing procedure of the MatLab function surface() applied to the
numerical results. The original grid steps were 0.005 in both axes v and €. The typical
realizations of ¢ of the solutions of Eq. for asymmetric case is shown in the Fig.|3.6|

3.3.1. Symmetric case 7 =7
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Figure 3.4.: Arnold tongue for symmetric case (7 = 7). The black lines show theoretically found
border of the synchronized state. (a) Mean value of ¢) on the (v, €) plane coded by color. (b) The
fully synchronized states obtained by numerical simulation are marked with the gray points, the
synchronized states with varying phase difference (after Hopf bifurcation) are marked with the
red points. The white region is desynchronized states (periodic solutions).

In the symmetric case the oscillator (Eq. without external force is bistable and has
two stable solutions with frequencies: 2; = 0.8333 and (2, = 1.1666 (See Fig. |3.2)).

The result of numerical simulations shown in Fig. [3.4] agree with the theoretical cal-
culations. In the Arnold tongue for this case (Fig. [3.4] (b)) has two edges "touching"
the v axes exactly on the values of the stable frequencies (2, and (2. In the middle,
the Hopf bifurcation curve defined by Eq. divide the synchronized solution from
periodic solution with zero mean (see Fig. [3.5 (g)). This solution loose the stability
as € tends to zero. Outside of the tongue the Eq. has periodic solution, similar to
those shown in Figs. [3.6] (a), (c), (¢). When the parameters come close to the border of
the Arnold tongue the period of the oscillators frequency increases (Fig. [3.6] (c)), and
synchronization emerges by extending of the period to infinity. The transition of the
periodic solutions remains continues, during the change of the value of £ from small to
high and backward.
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3.3.2. Asymmetric case, 7 =1 — 0.02

The results of the numerical simulations and theoretical calculations for this case shown
in Fig. 3.5 Similar to the previous case, the black line denotes the theoretically found
border of the synchronized solution, which are shown with the gray points. The red
points indicate the frequency locked solutions. It is need to be mentioned, that this
numerical results was obtained with initial conditions corresponding to synchronized

state with small perturbation.
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Figure 3.5.: Arnold tongue for asymmetric case 7 = m—0.02. The black lines shows theoretically
found border of the synchronized state. (a) Mean value of ¢ on the (v, €) plane coded by color. On
the right side the abrupt change (discontinuity) of the solution is visible. (b) Theoretically found
Arnold tongue (black solid line) and the results of numerical simulation. The fully synchronized
states obtained by numerical simulation are marked with the gray points, the synchronized states
with varying phase difference (after Hopf bifurcation) are marked with the red points. The white

region is desynchronized states. Only one edge of the tongue is "touching" the horizontal axis at
2, =0.7987.
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The synchronized solution inside the tongue (Fig. (b)) and the periodic solution
for the small v (Fig. (a)) does not differs from the symmetric case. Moreover, the
transition to synchrony by increasing the parameter ¢ also emerges by the mﬁmte—
period bifurcation. The typical realization of ¢ close to the border is shown in Fig. [3
( ). The periodic solution has the property that the frequency of the oscillation of the
¢, and correspondingly of 1, is equal to the mean value of ¢ (see Appendix @)

In asymmetric case the oscillator without external force has only one stable frequency
(Fig. 2, = 0.79871. Indeed, in the Arnold tongue for this case the right edge
is "detached" from the horizontal axis (see Fig. (b)). Thus, the oscillator can be
synchronized with the weak external force (¢ < 1) only around the frequency (2,. As a
result, we have asymmetric view of the Arnold tongue. However, it is not the only one
asymmetry that appears. On the right side of Fig. (a) (v 2 1.2) the discontinuity
of the mean frequency value is clearly seen. It appears due to hysteretic behavior of
the periodic solution. Indeed, two examples of the realization of i) Fig. (e) and
(f) have not only different mean values, but also different period of oscillation. Slowly
increasing of the parameter ¢ for the case with lower frequency (f) leads to abrupt jump
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to the higher frequency (e), and vice versa. The hysteretic dependence of the di/dt on
parameter ¢ along the dashed line (v = 1.8) in Fig. [3.6] (d) is demonstrated in Fig.

(b). The red line corresponds to increasing and the blue line to decreasing e.

The hysteretic bistability of the periodic solution extends to the synchronized solution
around the "detached" edge of the Arnold tongue. If we start on the synchronized
state close to the border (Fig. (k)) and decrease € we will observe discontinuous
transition to periodic solution with lower frequency (Fig. (h)). Explicitly this
behavior is demonstrated in Fig. (a).

3.4. Conclusion

In this chapter we considered synchronization of an oscillator with an internal delayed
feedback by an external periodic force. We found theoretically and confirmed numer-
ically the synchronization region (the Arnold tongue) for two typical cases, with the
parameter 7 = w and 7 = 7w — 0.02. Since the oscillator in the first case is bistable the
synchronization region has respectively two edges and symmetric form. On the con-
trary, in the second case, the oscillator is monostable. Therefore, the Arnold tongue
for this case has asymmetric form with only one edge. However, the closeness of the
parameter 7 to 7 exhibits as a bistability, and respectively hysteresis, that appears for
large frequency of the periodic force (v 2 1.0). As a result, for some values of the
frequency v and the coupling strength ¢ the solution of Eq. [3.3] depending on initial
conditions, is not synchronized even inside the region of synchronization (Fig. (a),
the lower branch). This symmetry breaking plays crucial role for appearance of the
chimeralike state (see Chapter [2)).

The phase model of an oscillator with an internal delay considered in this chapter can
be applied to many biological systems and laser with external feedback, where the
delay can appear as natural limitation to the speed of the signals. Another possibility
is when current state of the system depends on its previous states, i.e. its history.
Moreover, this phase approximation can be used in systems with retarded reaction, like
the systems which are already "fixed" in a certain state and controlled by an external
delayed feedback. Furthermore, the problem considered in this chapter corresponds
to the reaction of this system to the periodic influence. This motivates the further
investigation. The border of the bistability, the change of the synchronization region
in the presence of a weak noise or a small perturbation of the frequency of the external
force still need to be considered.
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Figure 3.6.: Mean value of the di/dt plotted with color coding (d) on the parameters plane (v, €).
The figures around ((a), (b),(c),(e),(f),(g),(h),(k)) show typical solutions of di/dt for different
points on the plane pointed with arrows. Solid black line is the border of the synchronized state.
Dependence of the mean frequency on ¢ along the black vertical dash-dotted line (v = 1.2) and
dashed line (v = 1.8) are plotted in Fig.

27



0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1
9 9

Figure 3.7.: Hysteretic behavior of the dependence of < 1) > on ¢ for (a) v = 1.2 and (b) v = 1.8
(correspond to black dash-dotted and dashed lines in Fig. [3.6). The red line and blue line are
branches of increasing and decreasing e, respectively. The horizontal plateau (< 1/) >=0) is the
synchronized solution.
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4. Synchronization analysis:
application to time perception

Synchronization was observed in many live systems of different scales [22, 55| [71], [80] .
However, the functional role of synchrony is quite often unclear. This phenomenon can
be not only vital, e.g. as a source of pacemaker in the synchronous contraction of many
cells in the respiration and heart cycle [63, [I1], but also be the reason of pathology,
e.g. in Parkinson’s disease. This phenomenon could be just presentation of a general
property of self-sustained oscillators to synchrony in the presence of a weak interaction.
Moreover, this property of the synchronization give an opportunity to reveal even a
weak physiological influence of one system to another by using synchronization analysis.
As an example of application of this analysis we discuss in this chapter the results of
our work [59] on the human time perception problem.

Perception of time was always an intriguing problem. In everyday live we complete
a lot of tasks which need predicting and responding in a certain time interval. This
intervals could be of a wide duration range. Like a short milliseconds reaction time
of our electronic equipments, several seconds spend to cross the street until the traffic
light turns red, or several minutes of waiting the public transport in stations. Moreover,
by usual activity, like walking, speaking, playing sports, and hearing music, we always
face with the time perception task. It is a very important part of human experience.
However, the underlying processes is still not completely understood.

The resent works in this field [81], [T5] present the models, that propose an interaction
between ability to perceive internal body signals (interoception) and the time percep-
tion. Furthermore, respiration and heart beat was suggested as a candidate to the
biorhythm used in timing task [14} [45], 82 28].

In collaboration with Olga Pollatos and Jennifer Meyer from the Psychology Depart-
ment of the University of Potsdam we carried out an investigation, where we suggested
the model based on the synchronization concept to find the interaction between the
cardiorespiratory signals of the body and the time perception. Olga Pollatos and Jen-
nifer Meyer performed corresponding experiments and made processing of initial data.
My part of the work covered further processing of the data and a statistical analyse of
the results.

This chapter we start with the discussion of time perception models and our hypoth-
esis. Further we present the description of an experiment and the methods used to
analyse obtained data by means of the synchronization concept. We then present the
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results related to the synchronization analysis. The results concerning to interoceptive
sensitivity we describe in Appendix [E] Finally we discuss the significance of the results,
correctness of our hypothesis and give suggestions for further investigations.

4.1. Time perception models

Perceptual time is not "isomorphic" to real subjective time, and many factors, like
attention, working memory, ongoing activity, arousal, cognitive load, and emotional
states, can be modulators of it [§]. There are many models of time estimation. Some
of them assume existence of an "internal clock", with an accumulator and a pacemaker
[75, [81], where an oscillator (a peacemaker) produce the sequence of pulses that are
recorded in the accumulator and present the time estimation.

Recently there are another concepts which assume that perception of time is also
an emotional process and depend on physiological state. The simple example when
the attention and emotion affects one’s time judgement is the waiting situation and
being under the stress, which lead to longer time estimation. In previous models
emotion and physiological states together with the cognitive functions like memory
and attention were considered as a modulator of an neural clock. But in the works
[15, 14, 8I] the emotion and physiological state considered to function themselves as
a timekeepers. According to [14] there is a direct link between the time perception
and physiological processes. And our experience of time relates to emotional and
visceral processes (processes in internal body organs), because they share a common
neural system, namely insula cortex and the interoceptive system. It is plausible that
our perception of duration is created by the rate of body signals accumulated in the
insula over a given time span. Moreover, [15] [14] suggest possible relationship between
heartbeat-related inputs and the perception of time. Another work [28] considered the
idea that ones body rhythm is linked to the time perception, and showed that the tones
preferred by the participants were in the harmonic relation (with a ratio 1:1, 3:2, and
2:1) with their individual heart rate.

To answer the questions, how internal signals like one’s heartbeat could influence the
time perception and what is the relationship between the time perception and internal
signal processing, we used the concept of synchronization.

This relationship could be reflected in the phase locking of the internal clock with
the cardiac rhythm. However, the phase locking will not increase the precision of the
time estimation. Indeed, only intervals with an integer number of heartbeat will give
minimal time estimation error. Whereas, for other time intervals the synchronization
will lead to systematic "error". Since it was not clear how high is the effects of cardiac
rhythms on the internal clock and is it enough to be measured statistically, we decided
to cover a relatively wide span of time interval lengths: from 0.5 to 40 seconds.

Our main hypothesis was that heart rate does not directly determine the time esti-
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mation but weakly influences it and that this effect may well depend on the interval
duration [59]. Additionally, we hypothesized that interoceptive processes and inter-
individual variance in interoceptive sensitivity affect the time perception accuracy.

4.2. Experimental setup

Twenty-three participants (mean age and standard deviation (M £ SD yrs) 23.8 +3.1;
five males and eighteen females) were recruited among the students of the University
of Potsdam. Using a questionnaire at the beginning of the experiment we excluded
the participants with common somatic disorders and with any common psychiatric
disorder. Drug use (except of contraceptives) was also an exclusion criterion. The
experiments were conducted in accordance with the Declaration of Helsinki. Ethical
approval from a local ethic board was obtained. All participants gave their written
informed consent. The experiment was carried out in the laboratory of the Department
of the Psychology of the University of Potsdam. Advanced Neuro Technology, ANT,
was used as a physiological heart rate recording equipment.

The experiment was started with 10 minuts rest period. During this period baseline
measurement was assessed, and individual heart rate and its average value was mea-
sured. Then the participants performed the IS task (see Appendix [E| ), where the
ability to percept the body signals, namely individual heart rate, was tested.

Afterwards, the participants performed the time interval estimation trial. We used a
free reproduction task in which participants had to encode the duration of varying time
intervals (so-called presentation intervals) in order to reproduce them later (so-called
reproduction intervals). Every participant heard a tone with certain time length in
encoding part, and asked to reproduce this given time length by pressing the button in
reproduction part of the experiment. Further, we denote the beginning and end points
of the presented intervals as PB and PE, respectively. Similarly, the beginning and the
end points of the reproduced intervals are denoted by RB and RE. We recorded heart
rate during the whole experiment. The length of the time intervals varied between 0.5
and 40 s (0.5, 2, 3, 7, 10, 14, 25, 40 s). The time reproduction task consisted of ten
repetition of increasing time length (from 0.5 to 40 s) and decreasing time length (from
40 to 0.5 s) for every participant. Thus, the whole experiment lasted about 40 minutes.

4.3. Synchronization analysis

The quantity of the synchronization level is measured by the synchronization index
(SI), also known as phase locking value [3] 39, [78]. This method of quantification of
synchrony and interaction strength was suggested in 73], 60] 48|, and it was applied to
e.g. cardiorespiratory coordination [49] and brain activity [73] 60].
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Figure 4.1.: Design of the experiment on time perception and cardiorespiratory signal processing.
The participants were seated in front of a computer, where text instructions were shown on a
display. The time interval was given by a tone with frequency of 300 Hz and of corresponding
duration. Before the presentation begin (PB) and after the presentation end (PE) the black
screen was displayed. The participants reproduced the tone by pressing the button at will,
thereby indicating the reproduction begin (RB) and end (RE). During the whole experiment the
ECG and respiration information were recorded.

Higher value of the synchronization index indicates a strong interdependence between
oscillator’s phases, i.e. synchronization. The fully synchronization is characterized by
the value of SI close to one. On the contrary, in the absence of synchrony the index is
nearly zero. To find the index one should first obtain the phases of oscillating processes
from original data. Usually, the Hilbert transform or the complex wavelet transform
and many other methods are used for this purposes [55].

To find the interdependence between the cardiac cycle and the perception of time we
tested the phase of the reproduced sequence and the phase of the cardiac cycle. First,
we detected all R-peaks in the electrocardiogram and labeled them by corresponding
times ¢, (see Fig. [4.2/a). Let’s assume that the moment of pushing the button for the
end of interval reproduction (reproduction end event) occurred at time 7. The phase
of the R-peak preceding this event we assigned as ¢ = 0, and the phase of the next
R-peak as ¢ = 2m. The times when this peaks occur we denoted as t; and t;;. Thus,
the phase of the event relative to the phase of the cardiac phase is the result of a linear
interpolation (see Fig. 4.2/ b) [63]:
T — tk

¢ —om—
tpt1 — t

We repeated this procedure for all N trials, and obtained a set of values ¢;, where
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Figure 4.2.: Calculation of the phase of an event relative to the phase of cardiac cycle from [59].
(a) The black curve is ECG (electrocardiogram), the red triangles denote R-peaks, and the blue
vertical circle denotes the time of the response, e.g., of reproduction begin (RB) or reproduction
end (RE).(b) Defining the phase of R-peak, preceding the response, as 0 and the phase of the
following R-peak as 27 we find the phase of the response ¢ by linear interpolation. (c) An example
of distribution of the response phases of RE for ten different trials. From [59].

j=1,...,N. In Fig. (c) we plotted this phases for one subject and certain time
interval on a circle. The non uniform distribution of this phases on the circle indicates
the presence of the synchronization, i.e interrelation between the processes. As it was
mentioned, the quantity that measure the interrelation is the synchronization index

(SI):

1 N 2 N 2
ST = N <;COS(¢]'>> + (;sm(qu)) : (4.1)

We calculated synchronization indices (SIs) for every person and for the eight different
interval lengths, separately for RB and RE events. Since, in the experiment we had 23
subjects, 8 time intervals, and ten repetition of the increasing and decreasing length
of time intervals sequences we obtained 184 values of SI. Every index was calculated
from ten trials (an example is presented in Fig. (c)). Further, to assess the statis-
tical significance of the obtained SI's (for each time interval and for each subject) we
compared them with the index for randomly distributed points. As in the real exper-
iment where we had (with several exceptions) 10 trials, we took 10 points randomly
distributed between 0 and 27, and calculated the synchronization index. We repeated
this procedure ten thousand times. Of course, the synchronization index should tend
to zeros for large number of randomly distributed points. Due to positive value of
the index and the small amount of the set (10 points), we obtained the average value
of the synchronization index 0.28. Also, from the random distribution we calculated

33



quantiles of the distribution for 0.05, 0.10, and 0.20 (see Fig. [4.3)), which were used
to identify significant cases (see Fig. [4.4] ). Finally, we checked whether the averaged
synchronization indices for every time interval referring to RB and RE are significantly
larger than 0.28.

1 ‘
qunatile function
0O 0.05:0.540
| O 0.10: 0.478 1
0.8 + 0.20:0.403
c ¢ 0.50:0.282
i)
Q 0.6] .
=
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>
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(024 i 1
o - \7 - | 1 | | |
0 0.2 0.4 0.6 0.8 1

synchronization index

Figure 4.3.: The quantile function for synchronization index (ST) calculated from ten uniformly
distributed between 0 and 27 random points. The legend shows the values of quantiles and the
corresponding threshold values for SI. For example: the probability to have the value of SI larger
or equal to 0.478 is 0.10. The mean value of SI 0.282 is the threshold value of the quantile 0.5.

4.4. Results

We analysed the data obtained from experiment in two phases. First, we assessed the
time reproduction accuracy by comparing the time durations estimated form reproduc-
tion part with the actual time given in encoding part. Then we calculated an average
absolute error score for each of the eight time intervals.

Further, we made synchronization analysis of heart beat cycle and time reproduction
variables. First, we averaged SI over all subjects for every time interval referring to
RB and RE (See Table [4.1). The obtained results revealed that for one time interval
length in several individuals there was a tendency towards a synchronization either for
reproduction begin (RB) or for reproduction end (RE). Thus, we assessed maximum
synchronization index for each time interval using this indices.

For further statistical analyses we compared the obtained synchronization index (for
each time interval) with the index for randomly distributed points which had an average
value of 0.28 (see Methods). To test the SI obtained in experiments for significance
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using t-tests, we artificially generated the distribution of indices for surrogate data.
Due to multiple comparisons, for our analysis of the maximum SI we used a Bonferroni
corrected significance level (i.e. statistically significance value p<.05 corresponds to
p < 0.05/8 = 0.006; p < 0.01 corresponds to p < 0.01/8 = 0.001). Using this
correction, the SIs were higher than the random distribution score for the time intervals
of 3, 10, 14 and 25 seconds (see Table . We should notice that taking a maximum
of SIs for RB and RE leads to slightly overestimation of the significance.

From the artificial distribution we obtained the threshold values that corresponds to
0.05, 0.10 and 0.20 quantiles. They are 0.540, 0.478 and 0.403 respectively (see Fig. .
In Fig. we show all 184 values of SI, and also the threshold values depicted as
horizontal lines. The number of cases when the SI’s were larger than threshold values
are presented in Table [4.2]

Table 4.1.: Statistical analysis of the synchronization indices (SI) for different time intervals
(At): The mean values of SI are averaged over 23 participants. Each synchronization index was
computed from 10 measurements, obtained from 10 trials. The fourth column shows the mean
of the maximal(from RB and RE) index. Notations for the significance level: *p < 0.05; **p <
0.01; n.s. stands for not significant

AL sec RB RE Max. SI

’ Mean SI (SD) | Mean SI (SD) | Mean SI (SD) | T(df=23) | p
0.5 030 (0.14) | 027 (0.11) | 0.34(0.12) 259 | s
2 0.25 (0.13) | 0.28 (0.15) | 0.36 (0.14) 176 | ns
3 0.30 (0.15) | 0.28 (0.14) | 0.38 (0.12) 403 | *
7 0.25 (0.12) | 0.26 (0.15) | 0.34 (0.12) 253 | s
10 0.30 (0.17) | 0.30 (0.17) | 0.38 (0.14) 363 | *
14 0.25 (0.13) 0.30 (0.16) 0.36 (0.14) 2.94

25 0.27 (0.13) | 0.34 (0.15) | 0.39 (0.13) 123 | **
40 0.30 (0.15) | 0.28 (0.16) | 0.36 (0.16) 265 | s

Table 4.2.: The number of cases N, when synchronization index (SI) was larger than threshold
values, obtained for random distributed points on a circle (see Fig. for different time intervals
At and for reproduction begin (RB) and reproduction end (RE) event points.

At, sec RB RE
’ No.os | No.io | No2o | Noos | Noao | No.2o
0.5 1 1 2 0 2 3
2 0 1 3 2 4 6
3 2 2 3 0 1 4
7 1 1 2 0 0 5
10 4 5 5 1 1 3
14 1 1 2 2 2 4
25 1 1 4 3 5 8
40 1 4 6 2 4 6
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Figure 4.4.: The synchronization indices of RE response for all 23 participants and for different
interval durations. Horizontal blue dash-dotted line, red dashed line, and black dotted line show
5%, 10%, and 20% quantile thresholds, with the values of 0.540, 0.478 and 0.403, correspondingly.
Interval durations are 0.5s (a),2s (b), 3s (c), 7s (d), 10s(e), 14s(f),25s (g), and 40s (h). From [59].

From Fig. and Table one can see that for time interval 25 s and for RE event,
3,5, and 8 subjects out of 23 reached significance level of 5%, 10%, and 20% quantile,
correspondingly. RE event for time intervals 2 and 40 seconds is also characterized by
high SI (6 out of 23 for 20% quantile).

Further, we estimate the significance of the synchronization analysis by means of statis-
tical analysis. We compared our results (in Table with an amount of cases obtained
in a random distribution model. We used the following formula of the probability to
have n events with the probability ¢ within N measurements

P(n,q) = CR(1 — gV 2¢", (4.2)

where C% is the binomial coefficient. In Fig[d.5| lines show the probabilities P(n, q)
for ¢ = 0.05, ¢ = 0.10, and ¢ = 0.20 for N = 23 measurements for each of eight time
intervals, and symbols (circles and tiangles) depict the values of IV, actually obtained
for these quantiles (see Table ). If these symbols are situated close to the maxima of
the probability curves it means that the results are indistinguishable from the random
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Figure 4.5.: Probability to have n cases with probability ¢ within N measurements (see
Eq. [i.2)for different interval durations: 0.5s (a),2s (b), 3s (c), 7s (d), 10s(e), 14s(f), 25s (g),
and 40s (h). The blue dash-doted, red dashed, and black dotted lines correspond to the proba-
bility ¢ = 0.05, ¢ = 0.1, and g = 0.2. The experimentally obtained values of N, (see Table
and corresponding probabilities are shown by triangles (for reproduction begin) and circles (for
reproduction end). The total number of measurements for each time interval is N = 23. From

[59].

distribution and thus non-significant. On the contrary, if the symbols are positioned
on the tail of the distribution, then the indices are larger than can be expected for the
random distribution. The difference from the random case is especially pronounced for
the RE events for 25s interval.

Finally, we performed correlation analyses between synchronization indices and a. cor-
responding time reproduction accuracy and b. interoceptive sensitivity (IS) (see Ap-
pendix [E] ). Time reproduction accuracy was not significantly correlated with any cor-
responding synchronization index (maximum SI used). However, we found significant
correlation between IS and maximum SI for 2s time intervals (r = 0.54, p < 0.05,
p-value Bonferroni corrected; see Fig. [E.1J).
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4.5. Discussion

The results show that the cardiac rhythm affects time perception. By using synchro-
nization analysis we observed that the cardiac cycle influences the encoding and repro-
duction of time. For time intervals of 3, 10, 14 and 25 seconds in the whole sample the
average SI’s between reproduction start/stop points and heart cycle were marginally
significant in comparison to the random distribution of points on a circle. However,
on average, we did not observe a significant synchronization between heart rate and
time reproduction responses for intervals of shorter as well as of longer duration. In
contrast, for individual persons we observed significant synchrony for intervals of 2 and
25 seconds length.

We hypothesized that the interaction and synchronization between heart beat and time
preproduction is more possible when the intervals cover at least 3 and up to 30 heart
cycles. The measurements of during the baseline show that mean heart rate was 66
beats per minute (bpm). However, individual heart rates varied between participants
from 49 bpm to 84 bpm. Thus, the intervals between 3 second and 25 seconds were
within this preferable time length, and therefor were with higher SI’s. To specify it,
the future studies should include on line individual heart rate assessment and interval
length adjustment.

The hight variance of the heart rate between participants imply that significant syn-
chronization can be found on an individual level and only for certain time length. To
find it we used two other measures that take into account an inter-individual variety,
namely vagal control and interoceptive sensitivity (IS)(see Appendix [E]).

We obtained a significant positive correlation between IS and the maximum of SI for
2 s time interval. This means that the participants with higher IS show higher phase
locking between heart cycle and time reproduction star/stop responses. In the work
[45] it was demonstrated that IS is associated with time reproduction accuracy in the
multi-second range. Our results show that we have synchronization for the shorter
time range of 2 s. It is need to be noticed, that this time interval was only one interval
with significantly many individual high Sls.

The hypothesis that the higher degree of synchronization lead to higher time repro-
duction accuracy was not conformed by the results. We did not observe significant
correlation between SI and time reproduction accuracy. Therefore our hypothesis that
heart rate only influences the perception of time and not determine it found evidence.
Indeed, if we would have the phase locked synchronization, then the reproduction accu-
racy would be high only for time intervals which is the whole multiple to the individual
heart cycle. Alternatively, if the time interval is not rational to the heart cycle then
the reproduction error would be high. Thus, high synchronization degree could be the
source of "errors" in timing tasks as e.g. demonstrated by [28]. The latter study could
showed a harmonic relation (1:1, 3:2, 2:1) between the participant’s individual heart
rates and the tempo of represented successive tones. This support our idea that one’s
own cardiac rhythm is used in a timing task.
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At the end some shortcomings have to be noticed. In our study we had rather small
sample size, wide range of time length, which caused to make less repetitions. The next
studies with more repetitions and with more participants as well as a new experimental
design with online heart rate assessment and interval duration adjustment could help
to clarify our assumptions. Also focusing on intervals between 2,3 s and 25 s and using
another biorhythm like respiration should be included in future works.
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5. Conclusion

Synchronization has wide range of application in modern researches. In this work, the
modeling of complex regimes of synchronization, such like chimera state, and applica-
tion of the synchronization analysis in time perception model were considered.

In chapter [2]it was shown, that minimal generalization of the model of globally coupled
identical oscillators can lead to complex solutions like chimera state. Initially homo-
geneous system of oscillators with intrinsic delayed feedback splits into two domains
with different dynamics: the mutually synchronized coherent cluster and the desyn-
chronized cloud. The synchronized part of the system has nearly constant frequency,
whereas the oscillators in the cloud demonstrate chaotic behaviour with the strongly
fluctuating instantaneous frequency. The emergence of the chimeralike state was ex-
plained by dynamically sustained bistability. The global coupling make the oscillators
effectively bistable, and this symmetry breaking slits them into two groups. The mean
field created by two domains, on the one hand, stabilize the coherent part, and on
the other hand, does not let this part grow by capturing other oscillators from the
incoherent part.

It was also shown, that chimeralike state can be obtained in a system, where individual
oscillators are naturally amplitude and/or frequency bistable. In two presented exam-
ples the phase shift between the mean field and the phase of oscillator is frequency
dependent. Delay in the coupling or frequency of the external linear circuit were "ad-
justed" in such a way, that the coupling affects repulsively to the oscillators in one of
the bistable state, and attractively to the oscillators in other state.

The role of bistability of the phase oscillator with intrinsic delayed feedback to create
the chimeralike state was considered in chapter [3| The theoretical analysis of synchro-
nization of the oscillator by external periodic force revealed non-typical Arnold tongues
for bistable and nearly bistable regimes. Emergence of complex states, like chimeralike
state, was explained by asymmetric and hysteretic behaviour of the Arnold tongue in
large frequency part for the oscillator in nearly bistable state.

Synchronization analysis can be used to revel an interaction or interdependence between
elements of a complex system. In the third part of this dissertation (in chapter , we
presented results of the collaborative work, where we used the synchronization analysis
to find influence of the cardiac rhythm to human perception of time in the time interval
reproduction task. Our approach was based on synchronization of two weak interacting
phase oscillators. Using the techniques of experimental studies of synchronization we
reconstructed the phase of an irregular oscillation, like human heartbeat, and made
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statistical analysis to qualify the interaction strength by means of the synchronization
index.

The results show that in comparison to random distribution the synchronization index
in the whole sample was marginally significant for time intervals of 3, 10, 14, and 25
seconds. And in the individual level significant synchrony was observed for 2 and 25
second intervals. According to the assumption, that high time interval reproduction
accuracy related to the ability of a person to percept her/his own body signals, which is
characterised by the interoseptive sensitivity, we observed positive correlation between
the interospetive sensitivity and the synchronization index for 2 second time intervals.

We concluded that the heart cycle signals can be used as input signals to judge the
reproduced time intervals in the range of several seconds. Moreover, oscillating pro-
cesses like heartbeat and respiration can be interpreted as an inflow units in the time
perception mechanism.

The results of this work can help to explains the emergence of the complex regimes, like
chimera states in many systems. The recent works show that chimera states appears
in chemical oscillations, and in opto-electronic lasers, and networks. And we hope that
the result of this research can support future development of other applications in this

fields.

This work is interesting not only for solution of the fundamental theoretical problems,
but also can find a practical application in modern branches of science. Hereby, the
findings of this work can be applicable in neurodynamics. For example, unihemispheric
sleeping, the possibility of animals to sleep with one part of their brain when another
part is awake, can quite possibly be explained by the chimera state. Or in contrary,
understanding of the emergence of the complex synchronization regimes can be used
to prevent and recognise undesirable synchrony onsets, that lead to a pathology, e.g.
to Parkinson decease.

Moreover, this work demonstrates that considering a synchronization of complex mod-
els extends our understanding of difficult processes such as time perception of human
and animals. Confirmation of the assumption, that the ability of the person to perceive
ongoing body signals affect their time sensing, support a new model of interaction be-
tween physiological states and emotions. It can add new area of research in this field
and suggest directions of the future investigations.

This research provide ample opportunity for scientists to work in interdisciplinary
projects, that can incorporate different branches of the science, like physics, physi-
ology, psychology, biology, and neuroscience.
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A. The perturbation equations for
the cluster and the cloud

To show the stability of the cluster (stability of synchronized state in the cluster)
and unstablility of the cloud (unstability of synchronized state in the cloud) we use
Lyapunov exponents, which will be found from linearized equations.

Let’s assume that we have n oscillators in the cluster and m oscillators in non synchro-
nized "cloud". Then we rewrite the sum in the global coupling in Eq. as following

n+m

> sin(6,(t) = oult) + ) =
=52 finy (1) + ) cos(n(t)) ~ cos(0,(t) + B)sin(an(t))] =
=n sin(@(t) + B) cos(dy(t)) — n (fs(@(t) + B) sin(¢x(t))+ (A.1)
30 sin(6,(0) + B)cos(éu(t)) = D cos(y(t) + ) sin(n(1)).
\ Al l B() l

where @(t) is the phase of the cluster.

So the equation for individual oscillator will be
Or(t) = 1+ asin(@y(t —7) — (1)) +
+ i [SIn(D(t) 4 B) cos(d(t)) — cos(P(t) + 3) sin(¢y(t))] + (A.2)
+ o [A(2) cos(y(t)) — B(t) sin(ex(t))] -

Let’s take this equation for the oscillator which has the solution close to the cluster’s
and linearize it around the cluster solution. Our aim is to show that this solution is
stable.

6(t) = acos(P(t — 1) —D(t)) (6, — 6)—
— 5 sin(@(t) + B) sin(9(t)) + cos(P(t) + B) cos(P(t))] -

) cos(8)
— o [A(t) sin(@(t)) + B(t) cos(®(t))] 0 = (A.3)

= acos(efﬁ(t —7)—P(t)(6, — 0)—
[ncos(f) + A(t) sin(P(t)) + B(t) cos(P(t))] 6.

n+m

X(t)
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If we set the definition of A(t), B(t) to the last equation then we obtain simple equation
for 0 (see Eq. [2.8):

5(t) = acos(P(t — 1) — D(t)) (5, — 6)—
[n+m cos(B) + 7 nin cos(p;(t) — d(t) + B) | 0. (A4)

j=n+1

In the same way we can find the Lyapunov exponents for an oscillator of the cloud.

Here we observe phase difference of two oscillators from the cloud. First, we write
equation for them in similar way like in (A.2)):

¢1(t) = 1+asin(gi(t —7) — ¢1(t))+
o5 [sin(@(t) + B) cos(d1(t)) — cos(D(t) + B) sin(¢n(t))] +
‘ +o [A(t) cos(91(t)) — B(t) sin(¢1(1))] (A.5)
Go(t) = 1+ asin(¢a(t —7) — ¢o(t))+ '
- [sin(P(t) + B) cos(pa(t)) — cos(P(t) + ) sin(¢a(t))] +
\ +o [A(t) cos(¢2(t)) — B(1) sin(2(1))] -

;

Let’s define the difference of the phases as A = ¢; — ¢5. The equation for A

1(t) = du(t) = A(t) = a(sin((t = 7) = ¢1(1)) —sin(da(t — ) — d2(1)))+
+n+m sin(P(t) + §)(cos(¢1(t)) — cos(¢a(t)))—

n+m cos(@(t) + ) (sin(¢1 (1)) — sin(da(t)))+ (A.6)
n+m A(t)(cos(1(t)) — cos(¢a(t))) -
= B(t)(sin(¢1(t)) — sin(ga(t))).

We assume that two oscillators are close to each other, i.e. A << 1 and ¢; ~ ¢ ~ ¢.
Further, we linearize the previous equation therm by therm.

The first therm:
sin(or(t — 7) — é1(t)) — sin(da(t — 7) — da(t)) = 2co8(dy — ¢) sin (ATZ— A) ~
~ cos(pr — @) (Ar — A).

Difference of the sine and cosine:

sin(¢q(t)) — sin(pa(t)) = 2 cos(¢) sin(A/2) ~ cos(¢p)A.

cos(¢1(t)) — cos(pe(t)) = —2sin(¢) sin(A/2) ~ —sin(p) A.
So the equation for A
At) = acos(@ —¢)(A, — A)—
— sin(®(t) + f) sin(¢p) A — _ cos(P(t) + B) cos(p)A— (A.7)
— o A(t) sin(¢) A — - B(t) cos(¢) A.
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Or if we collect therms with A and A,

A(t) = acos(¢(T¢— ¢)Q5A)TA_
— [z, sin(@(t) + B) sin(0) @) + fyeos() + (AP
+ o At) sin(¢) + 7 B(t) co ( )] A.

If we use the definition of A(t), B(t) and ®(t), we have simple equation for A (see

Eq.

At) = acos(¢, — 9)(A; — A)-

n+m

— | cos(P — gzﬁ—l—ﬁ)A—ner'Zlcos(gbj—gb—i—ﬁ) A
J=n+
n+m

A(t) = acos(¢, — ) (A, — A) —

e Zcos — ¢+ f)A. (A.9)

Egs. (A.9) and (A.4]) are similar linear delay differential equations, which can be written
as (compare with Eq.

§ = a(t)s, — (a(t) + b(t))6. (A.10)

where

a(t) = acos(¢(t — 1) — o(t)),

n+m

t>=njmj21cos<¢j—¢+ﬁ>.
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B. Stability analysis of a linear
delay differential equation

As it was shown in Section stability of the fully synchronized state, and in the Sec-
tion the problem of synchronization of an oscillator with internal delayed feedback
loop by external periodic force (Eq. lead to the linear delay differential equation
of the following form

0 = ad, — (a + b)d. (B.1)

This equation is similar to the Hayes equation [26], the simplest example of linear
delay differential equation. The difference of Eq. from Hayes equation is another
combination of parameters in scalar ODE part. In this section we consider the stability
region of the zero solution of Eq. .

Stability analysis starts with the characteristic function D(A). For Eq. it is
DN =A+a+b—ae™. (B.2)
The solutions of the characteristic equation
DA)=A+a+b—ae ™ =0, (B.3)

gives us characteristic exponents. In general, this equation has infinite many solutions.

One can find the exact solution by means of the Lambert function [38],[13], which is
defined as the function satisfying

W(z)eW® = 2,

where W is a complex function.

Multiplying the characteristic equation Eq. by 7 and defining a new variable z = At
we have

z=Ae * — A— B, (B.4)
where A = ar, B = br. Then, the solution by the Lambert function is

z=W(AeMP) — A - B.
The solution is stable if z is negative, and it happens if only if

Re(Wy(Ae™P)) — Re(A+ B) <0,
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where Wy (+) is the zero branch of the Lambert W function [67]. Finding the stability
chart by this method is possible only numerically.

We find stability chart analytically, by D-subdivision method [27]. Therefor, we search
for the values of the parameters when the real parts of some characteristic exponents A
change the sign. This set of parameters give us the curves (D-curves) in the parameters
plane.

Since we are interested in real parts of the characteristic exponents we make a substi-
tution A = vy +iw, w > 0 in characteristic equation D(\) = 0 and separate real and
imaginary parts. It gives

Re: v+a+b—ae " cos(wr) =0,
Im: w+ ae 77 sin(wr) = 0.

One can find D-curves as a parametric function of w by the condition v = 0.

Re: a+b— acos(wr) =0,
Im: w+ asin(wr) = 0.

Here we have two set of solutions. The first, if wr # km, then

w w(1 — cos(wT))
a @)’ b= a(cos(wr) — 1) Sn(wr) w tan(wT/2) (B.5)
and the second,
a=—1/7, b=0; and b= 0 as a curve, (B.6)

ifw=0.

Along this curves + changes it’s sign by crossing imaginary axes. In order to find how,
we take partial derivative of D(\) with respect to one parameter. Let’s take parameter
b:

v, + 1 — a(—7 cos(wT)y, — Tsin(wT)w;) = 0,

wy, + a(—7 sin(wT)y, + 7 cos(wT)w;) = 0,
where we denoted with ~, and wj partial derivatives of v and w with respect to pa-
rameter b. After some rearrangements we obtain the system of linear equations with
respect to 7, and wy:

(1 + a7 cos(wT))yy, + a7 sin(wr)wy, = —1,
—arsin(wT)y, + (1 + a7 cos(wT))wy, = 0.

The solution for ~; is

= —(1+ at cos(wT)) ‘
b (14 at cos(wT))? + (a1 sin(wT))?

(B.7)

Let’s find the sign of 7, along the D-curves. If w = 0, then from Eq. and
v =—(1+ar)™!. If a > —1/7 then 7} < 0, i.e. the critical exponent crosses imaginary
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axes from right to left when b increases, so unstable characteristic exponents become
stable. Otherwise, if a < —1/7, then critical exponent crosses imaginary axes from left
to right when b increases, i.e becomes unstable.

For other D-curves defined by Eq. the equation turns to

N —(1 — wr cos(wT)/ sin(wT)) _
"7 (14 wr cos(wr)/ sin(wr))? + (wT)?
anar) L

5 .

(tarﬁ:ﬂ) - 1) + <w7-)2
The delimiter is always positive, so sign(v;) = f(w7) = sign((w7)/ tan(wr) — 1). This
function with corresponding curves in the (a, b) plane is shown in the Fig.|B.1l The red
and blue lines are positive and negative sign of 7, correspondingly. As it was mentioned
before, if 7} is negative along some certain line, then real part of two complex conjugate
characteristic exponents become negative, i.e. stable, when the line is crossed in the
b increasing direction. In contrary, if 4; is positive, crossing the line in b increasing
direction makes real value of two complex conjugate exponents become positive, i.e.
unstable.

One can also use Stepan’s formula [68, 27] to find number of unstable characteristic
exponents. They are shown in the right plot of Fig. So the stable region is that
with 0 unstable characteristic exponents. Separately the stable region for zero solution

of the Eq. [B.1]is shown in Fig. 3.3

50
=
30
g
_ : : 4 :
50 -5 0 5 -20 0 20 40
(wT)/7 a

Figure B.1.: In the left figure the function f(w7) = (w7)/tan(w7r) — 1 and in the right figure
the D-curves are shown. The positive and negative values of the 7; shown with the red and blue
color lines correspondingly. Every crossing of the red (blue) lines in the directing of growing b
increases (decreases) the number of unstable characteristic exponents for bold line to one, and
for thin lines to two. The numbers in the (a,b) planes show the number of unstable characteristic
exponents.
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C. Hopf bifurcation curve

The Hopf bifurcation curve for the linear delay differential equation on the para-
metric plane (a,b) is given as

— b(w) = wtan(wt/2),

where w € [0, 1] (see Fig. |3.3)).

If the parameter « > 1/7 in Eq. , then at some values of the parameter v the
coefficient a of Eq. will be on the left side of the bifurcation curve, i.e. in the
unstable region. The critical (boundary) values are obtained form the condition of
equality a = accos(v,7) = 1/7:

arccos(—1/(at)) 21 — arccos(—1/(ar))
Verl = y Ver2 = .
T T

Let’s assume that
Ve [Vcrlaycr2]

then for given v the bifurcation curve is crossed at (a, b.), where

(
= acos(vr) = — _wl)
b= (v7) sin(w(v)7)” (C1)

E

and

(S

) (C.2)

et T
Form Eq. we can find transcendental equation for w(v)
w(v) + acos(vT) sin(w(v)7) = 0.

To solve this equation we should know the domain of w. The minimal value is zero,

and the maximal value w4, is defined by the condition min(a) = —a:
wmax
— = -_——,
SIN(WpnazT)

Winaz — O SIN(WpnaeT) = 0.
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To stay in the stability region the value of b should be larger that b,. Thus, from
Eq.

_w)
¢ cos(to) = sin(w(v)7)

We substitute the value of € cos() using Eq.

S 72— (s (42)).

finally we have the condition for

£ > \/(w(y) tan <w(g)7>)2 + (v + asin(vr) — 1)%
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D. Periodic solution

Here we introduce a periodic solution for Eq. [3.2] Let’s consider that the Eq. has
the periodic solution with period T"

P+ T) =), Yt +T) =p(t).

We denote the mean value of the frequency as (2, thus
¥ =0+ f(t),
where f(t) is a periodic function with zero mean value:
T
fe+1) = @), [ Fds =0
0

Th phase at arbitrary time ¢ is then
t
v=gt+ [ fes
to
and if we apply it to Eq.

&(t):1—1/+asin(9(t—7)+/0_Tf(s)ds—i—%—ﬂt—/o f(s)ds — 1y — v1)

—esin(2t + / f(s)ds + 1) =
0

=1—v—oasin(27 +vr+ t f(s)ds) — esin(2t + /tf(s)ds + ).
0

t—1

Similarly we can write it the for time ¢t + T

' t+T t+T

Y(t+T) = 1—1/—asin((27'+1/7'+/ f(s)ds)—esin(0t+QT+/ f(s)ds+ o).
t+1T—71 0

If we take into account the periodicity of f(¢) and that the mean of f(t) is zero:

¢(t+T):1—l/—asin(QT+l/T+/t f(s)ds)—esin(Qt%—QT—{—/tf(s)dst@bg).
t—r 0

If we compare the results for 9 (t) and for U(t+T) we see that 2T = 2k, ke N. It
means that, due to the periodicity, ¢ oscillates exactly with the frequency equal to the
mean value of it.
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E. Individual sensitivity to body
signals and heart rate variability

In this chapter we present the results published in [59], but not presented in Chapter .
It is mostly relate to measuring of an individual difference of perception of body signals,
like one’s heart beat or respiration.

Ability of a person to perceive a body reaction, so called interoception, significantly
differs. It is associated with emotion: the feeling of an emotion happened because of
our perception of body signals [30, [77, 29] 18]. One of the measures of an individual’s
sensitivity is interoceptive sensitivity (IS), which is often used as a quantity of an ability
to perceive one’s heartbeats [16, 57]. Individuals with higher sensitivity (IS) should
intensively experience emotions. Several works conformed this prediction [58, [56].

The time perception model proposed by Craig and Wittmann [I5] 14, 81| suppose
an interaction between interoceptive process and time perception: the emotional and
visceral states is reflected in the insular cortex and form our experience of time.

E.1. Measurement of IS

To measure interoseptive sensitivity (IS) the participants of the experiment completed
following task: They were asked to count their own heartbeats silently. At the end of
the counting trial they reported the number of counted heartbeats only verbally. We
also asked them not to count their pulse or attempt to use other manipulations during
heartbeat counting. The beginning and the end of the counting intervals were signaled
acoustically. IS was estimated as the averaged over N trials heartbeat perception score:

1S = Ly 1 —‘N]Y)_NIEC) BE.1
- NZ - N ’ (E.1)
k=1 k

where NV, ,EC) and . ]gr) are the numbers of the counted and actually recorded heartbeats
within the k-th trial.

Time estimation error scores were analysed using a repeated-measures analysis of vari-
ance (ANCOVA) with the factors Interval Length (eight levels) and IS as covariate.
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We also computed the heart rate variability (HRV). For this goal we first obtained
all normal interbeat intervals RRy = t;.1 — tx and then computed their average, the
standard deviation, and the root mean square of the successive differences (RMSSD).
The RMSSD, an indicator of vagal activity, is derived from the HRV as

1

MSSD =
RMSS 71

M-1
Y (RRip1 — RRy)?,

k=1

where M is the number of RR intervals. Then, we performed a correlation analysis of
IS, synchronization indices, and HRV measures.

E.2. Results

We calculated the correlation between vagal cardiac control (RMSSD) and IS. The
correlation coefficient obtained was significantly positive with » = 0.48 and statistically
significance value (p-value) p < 0.05. This indicated that IS is associated with greater
vagal control of the heart.

Next, we assessed the correlation between time perception accuracy (mean score across
all time intervals) and vagal cardiac control (RMSSD). We obtained a significant neg-
ative correlation coefficient of » = —0.34 (p < .05). This result means that a higher
RMSSD is associated with lower time estimation error, i.e. a better time reproduction
accuracy.

Finally, we carried out correlation analysis to check whether higher synchronization is
associated with time reproduction accuracy or with IS. We found significant correlation
between IS and synchronization index (SI) (see section ) only for 2 seconds time
interval. The result is shown in Fig. [E.]]
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synchronization index for the 2 seconds interval

T T T T
20 30 A0 50 B0 70 80 90
interoceptive sensitivity

Figure E.1.: Scatterplot between interoceptive sensitivity and the maximum synchronization
index for the 2s time interval. Positive correlation coefficient » = 0.54 with statistically signifi-
cance value (p-value) p < 0.05 indicates that participants with higher IS show higher degree of
synchronization between heart cycle and time reproduction begin/end responses. From [59].
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