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Introduction

It is a fundamental question whether we need to take into consideration random fluctuations
in our attempt to describe the nature. There are several reasons in favor of this stochastic
approach. Our common-day experience shows that noise or fluctuations are present in every
experimental measurement. This happens because real systems are sometimes embedded in
the complex environment, which is very often of an irregular fluctuational structure (Fig. 1).
In this case stochastic formulation of the problem is usually more elegant and apparently sim-
ple. One typical example for this situation is a movement of small pollen grains suspended in
water. This phenomenon is called Brownian Motion [66] due to the fundamental pioneering
work of Robert Brown in 1827. The simplicity of stochastic models is especially actual for
climate research because to describe ocean or atmosphere dynamics one needs thousands of
deterministic equations. Including noise can decrease the number of model equations and,
hence, significantly speed up the solution and make forecasting more commercially profitable.
On the other hand, fluctuational terms may be needed if we study a dynamics of some iso-
lated particle in a potential, which has a local minimum. Without external forces the particle
will never escape from this local minimum of the potential. To describe this escape we have
to include noisy or fluctuational terms in equations (Fig. 1). An interesting example, illus-
trating this point, and discussing the possible causes of the Permian extinction which some
225 million years ago wiped out more than 80 percent of all species living at that time, can
be found in [81]. However, it would be misleading to consider stochastic approaches as bridg-
ing between phenomenological models and microscopic description of statistical mechanics.
Recent investigations show the growing interest in mesoscopic descriptions of nature, also in
interdisciplinary research, and prove that fluctuations in nonlinear systems may also play
the key role in nonlinear dynamics [174].

Usually noise destroys the order in the system (Fig. 2), or serves as a nuisance in the
communication or any signal transmission. The street noise decreases the quality of the
lecture, we suffer from noise watching the TV, or loud music does not give us the possibility
to sleep. Mathematically this influence of noise consists in the fact that noise destroys the
ordered structure of the trajectory. This influence of noise is illustrated in Fig. 3, where the
attractors for the well-known Van-der-Pol oscillator [100] and the Lorenz model [100] are
shown without noise and after adding a noisy term in the equations. It can be clearly seen
that the ordered structure of the limit cycle or chaotic attractor is destroyed by adding noise.
This is the usual and logical action of random fluctuations on the system.

However, intensive investigations, performed in the last three decades, have shown that
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Figure 1: Real systems are often embedded in the very complex environment of external
conditions (left). In this case a stochastic description is much simpler and more elegant.
Another advantage of including fluctuational terms in equations is that we are able then
to describe an escape of isolated from external forces particle from local minimum of the
potential, which governs the behaviour of the system (right).

under certain conditions the influence of noise can be very counterintuitive, and noise can also
induce ordering in nonlinear nonequlibrium systems. Now it is a well established fact, that
there are many phenomena, which demonstrate noise-induced order in nonlinear systems
far from equilibrium. In these phenomena the energy of noise can be used for constructive
purposes in contrast to the usual role of noise as nuisance. It is very important to note, that
mechanisms responsible for the appearance of noise-induced order are present in biological
systems, and can be even considered as the evolutionary adaptation in living creatures. A
nice example for this is a recent experiment on the stochastic resonance in sensory nervous
system of a paddlefish [169]. In this experiment, the paddle fish was swimming in the aquar-
ium, detecting the electrical signals from the planktonic prey Daphnia and feeding itself by
capturing Daphnia. Some additional electric noise, supplied by putting two electrodes in
the aquarium has helped the paddlefish to detect the location of the planktonic prey. As a
consequence, the increase of the noise intensity resulted in the better detection. Additional
investigations have shown that the detector equipment of paddlefish is tuned to use the noise
from sea and planktonic conglomerations in the most optimal way.

Additionally, mechanisms of noise-induced order can be found not only in the biological
systems, but also in human cognition. The effect of stochastic resonance has been found in
the speed of the memory retrieval in the presence of noise[191]. The idea of the experiment
was to measure the speed of memory retrieval for arithmetical multiplication rules. The av-
erage response time has been found to be minimal for some optimal noise. This result can be
interpreted as a manifestation of stochastic resonance. This can be also the reason why sev-
eral people prefer hearing music during the work, where they need their memory. Moreover,
noise-induced phenomena have been found directly in the human brain’s visual processing
area: it has been found [133] that light noise, sent to one eye, improves the processing of a
periodic signal, which is sent to another eye of a human subject. In what follows we are going
to review state-of-the-art in the investigation of noise-induced phenomena.
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0.1. REVIEW OF NOISE-INDUCED EFFECTS

Order Disorder
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Figure 2: Usually the increase of noise intensity leads to disordering of the system. In con-
trast to this situation, in noise-induced effects the increase of noise may result in ordering,
e.g. in synchronization with a signal or appearance of a new ordered phase.

0.1 Review of noise-induced effects

Numerous theoretical and experimental works demonstrate that there are really many nonequi-
librium systems which demonstrate phenomena manifesting noise-induced ordering. Among
these phenomena we can emphasize several basic ones, such as stochastic resonance (SR)
[21, 53], noise-induced transitions (NIT) [81, 65][11*], coherence resonance [150], or noise-
induced transport in ratchets[122, 162]. This classification does not pretend to be complete,
because there are various modifications and extensions of these basic phenomena (e.g. res-
onance activation [39] or noise-induced pattern formation[146]). On the other hand there
are phenomena which possess properties of different groups from this classification. Two in-
teresting examples may illustrate this point: a synthesis of a ratchet mechanism and noise-
induced phase transition [163] , and a synthesis of stochastic resonance and noise-induced
transition [5*].

I start with stochastic resonance (SR), which is one of the most bright examples of
noise-induced phenomena. In general case of SR, optimal amount of noise improves synchro-
nization of the system output with input, and this improvement has resonant-like character
versus the noise intensity, giving the name to SR (Fig. 4). In the classical situation SR (for
review see [53], [10] and [74]) consists in the optimization of the bistable system response
by noise. The term stochastic resonance has been introduced by Benzi, Sutera and Vulpiani
[21, 47, 141], when they were exploring a model of a bistable oscillator proposed for expla-
nation of the periodic recurrences of the Earth’s ice ages. Two wells of the bistable potential
represented the ice period and the optimal normal climate of the Earth. The periodic force
referred to the oscillations of the eccentricity of the Earth’s orbit. The problem was that ac-
cording to estimations, the actual amplitude of the periodic force is far too small to force the
system to switch from one state to another one. The possibility of hops has been achieved by
the introduction of additional random force, i.e. noise, which induced transitions from one
potential well to another by surmounting the potential barrier of the system. In 1983, SR has
been studied experimentally in the Schmitt trigger system, where the Signal to Noise Ratio
(SNR) was first used to describe the effect [48]. It has been shown that there is an optimal
noise level at which the periodic component of the output is maximized because the SNR of
the Schmitt trigger with increasing noise intensity passes through a maximum and then de-
creases. SR has proven to be a very general phenomenon and there are several classifications
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Figure 3: Usually adding noise in the model equations destroys the order of the trajectory
structure. Top pictures: the Van-der-Pol oscillator, described by the eqs.: ẍ−0.2ẋ(1− x2)− x =
εξ(t), without noise ε = 0 (left) and with noise ε = 10 (right). Bottom pictures: the same for the
Lorenz model, which demonstrate deterministic chaos, and described by eqs.: ẋ = p(y− x),ẏ =
−xz + rx− y + εξ(t), ż = xy− bz. Without noise ε = 0 (left), and with noise ε = 40 (right). The
remaining parameters are: p = 10, b = 8/3, r = 28.

of SR:

1. With respect to the different situations and applications: SR has been found in in a ring
laser [125], in analog systems [35, 54, 55, 56, 57] [58, 59, 70, 71, 72, 135, 211] in mag-
netic systems [45], in passive optical bistable systems [41], in systems with electronic
paramagnetic resonance [60], in experiments with Brownian particles [180], in exper-
iments with magnetoelastic ribbons [185], in a tunnel diode [121], in superconducting
quantum interference devices (SQUIDS) [79], and in ferromagnetics and ferroelectrics
[148, 137]. SR has been also observed in chemical systems[109, 42, 80], in visual percep-
tion [164, 165, 181] and even in social models [14] as well. As it was already discussed
above, SR has been found in the behaviour of paddlefish[169] and in human cognition
[191].

2. With respect to the class of the system: SR has been found in many different sys-
tems, e.g. in monostable [186], excitable [203], non-dynamical [69], nonpotential [9],
and thresholdless [22] systems, and in systems with transient noise-induced structure
[52].

3. With respect to the form of a signal: SR has been found for periodic signal [53], digital
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0.1. REVIEW OF NOISE-INDUCED EFFECTS

or aperiodic signals [17, 18, 16], or in systems without signal [83].

4. With respect to different kinds of noise: SR has been investigated for white noise [53],
colored noise [140], chaotic signal [182], or even high-frequency periodic signal, which
played the role of noise [104].

Noteworthy, the effect of stochastic resonance can be extended for the case of spatially dis-
tributed systems as spatiotemporal stochastic resonance [123, 199], array enhanced stochas-
tic resonance [112], or stochastic resonance in extended bistable systems [205, 23]. Noise-
induced propagation is another effect, which is closely related to the effect of stochastic res-
onance, i.e. can be interpreted as nontrivial spatial extension of stochastic resonance. In
this effect the propagation of a harmonic signal through an unforced system is increased for
an optimal intensity of the additive noise. Noise-induced or noise-enhanced propagation has
been reported in bistable or excitable medium [111, 209, 92, 15, 63, 147, 168].

Output
System

Synchronization?

Signal

Noise

Figure 4: A scheme of stochastic resonance: optimal intensity of noise leads to the syn-
crhonization between input and output of the system

Noise-induced transition is an effect in which changing the noise intensity causes the
transition to the new state, which is qualitatively different from the previous one. This differ-
ence can be estimated by the corresponding order parameter (Fig. 5). Noise-induced transi-
tions in nonequilibrium systems can be considered as a generalization of phase transitions in
thermodynamic equilibrium systems. Tracing the analogy between such equilibrium phase
transitions and nonequilibrium noise-induced transitions, one can say, that the noise inten-
sity plays the role of the temperature of the system, and the order parameter determines the
phase of the system [75]. Noise-induced transitions (NIT) can be classified into three main
groups:

1. NIT which lead to the appearance of additional extrema (maxima) in the system’s prob-
ability distribution,

2. NIT which lead to the excitation of oscillations,

3. NIT in spatially extended systems, which lead to breaking of symmetry and the creation
of a mean field.
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NIT, which lead to the appearance of additional extrema (maxima) in the system’s probabil-
ity distribution ( for the review see the book [81]) or disappearance of old ones [49], occur in
zero-dimensional systems with multiplicative noise. Such transitions have been investigated
in the Verhulst model to study the dynamics of population growth in biological systems [81],
in the genetic model to describe the genotype dynamics in the fluctuational environment ([81]
and experimentally in [183]), in chemical reactions under the action of the fluctuating light
[32] and in bistable systems [166]. Additionally, NIT of this type have been found experimen-
tally in an electrical parametric oscillator [90, 91] and in analog circuits [89, 183]. The mecha-
nism, responsible for these NIT, is the fact, that multiplicative noise changes the “stochastic”
potential, which effectively governs the behaviour of the system. For such transitions the
order parameter will be the location of extrema in the system probability distribution.

Noise intensity

paramerer
Order

(temperature)

Figure 5: Noise-induced transition: changing the intensity of noise, which plays the role
of temperature, results in qualitative change of the order parameter, which can be the ex-
tremum in the system probability distribution, an amplitude of oscillations, or a mean field.

NIT which lead to the excitation of oscillations (for the review see [100, 103, 102]), appear
in oscillatory systems, for example, in the pendulum with randomly vibrated suspension axis
[25*]. In this case, the order parameter is the average of the instantaneous amplitude of
oscillations or average of its square. If the noise intensity is below its critical value, there is
no oscillations in the system, but if the noise intensity is increased above the critical value,
oscillations are excited. Hence, the reason of these NIT is the parametric excitation of os-
cillations, performed by multiplicative noise, which changes the frequency of the system in
the random way. In addition to mechanical systems, this type of NIT can be found in non-
linear models, which describe the dynamics of childhood epidemics [24*][11*]. Noteworthy,
that noise-induced oscillations possess the property of on-off-intermittency [20*] and can be
controlled by additional periodic action [21*][156]. Finally, there exist a hypothesis, that such
NIT occur in open subsonic submerged jets in the appearance and evolution of the turbulence
[101][15*]. In particular, it can be especially potential for applications, that turbulence as
noise-induced oscillations can be controlled by a periodic additional force (acoustic wave or
sound).
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0.1. REVIEW OF NOISE-INDUCED EFFECTS

NIT which lead to breaking of symmetry and the creation of a mean field (for review see
[65]) occur in spatially extended systems, e.g. in systems of noisy coupled nonlinear oscilla-
tors. In this case the order parameter, which determines a phase of a system, is the mean
field In 1979 Mikhailov reported a noise-induced phase transition of this type in a biological
system with diffusion [129]. In [62, 195, 64, 196] generic models, in particular Ginzburg-
Landau equation, which demonstrate the noise-induced transition and formation a mean
fields, have been considered. If oscillators in these models are coupled via the especial form
of coupling,a la Swift-Hohenberg, then a transition will lead to the formation of spatially or-
dered patterns [146]. Noteworthy, the effect of colored noise is crucial for these transitions,
because additional memory of noise is disordering a system [119, 120]. A mechanisms, which
are responsible for these transitions, namely, a joint action of multiplicative noise and cou-
pling, are described in [196] and [172]. With respect to experimental application of the theory
of these noise-induced transitions, the understanding of these NIT will certainly help in the
investigation of liquid nematic crystals [93, 207], of noise-induced bistability in Helium-IV
[73], in electronic circuits [1], as well as in systems, which demonstrate noise-induced shift of
the phase transition, e.g, in: photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127].

System

Noise

Periodicity?

Output

Figure 6: Coherence resonance: increase of the noise intensity improves the periodicity of the
system output.

The effect of coherence resonance (CR) is another manifestation of the noise-induced
order, in which noise shows the surprising ability to increase level of periodicity in the output
of the nonlinear nonequlibrium system (Fig. 6). CR has been reported in different kinds
of systems, in particular, it has been found that some noise amplitude exists at which the
coherence of spiking in the output of the system can be significantly enhanced in an isolated
Fitz-Hugh Nagumo (FHN) system [150], in the Hodgkin-Huxley [106] and Plant/Hindmarsh-
Rose neuron models [115], and in dynamical systems close to the onset of bifurcations [138]
(note also experimental verifications of CR in optical systems [68]). In addition, CR has been
found in the behaviour of a dynamical system, which shows jumps between several attractors
[144]. Hence, two basic mechanisms of CR have been reported, CR in excitable systems via
the competition between the constant excursion time and waiting time, which in optimal
regime is negligibly small, and CR in a system with two attractors via jumps of the trajectory
between these attractors after one period of being on each of them.

In recent years, there has been a great interest in the CR behaviour of spatially extended

7



systems consisting of many interacting elements[77, 139]. It has been shown that match-
ing the noise-related characteristic time scales of the coupled excitable elements results in
noise-induced synchronization regimes very similar to those for coupled limit cycles ( for the
review on synchronization phenomena see [151]). Moreover, array-enhanced CR has been
reported, in which constructing an array of coherence-resonance oscillators significantly im-
proves the periodicity of the output [82, 210]. It is important to note that understanding of
CR mechanisms is very important for the modelling of the generation of different rhythms in
the description of several natural processes, such as locomotion [29] or playing piano [44].

������������������������������
������������������������������

����
����

Noise Periodic signal

Figure 7: Stochastic transport in ratchets: noise induces directied motion of particles in the
periodic assymetric potential, which is harmonically changed.

Stochastic transport in spatially extended systems with a periodic assymetric potential far
from equilibrium, or ratchets (Fig. 7), is still very actual topic in the investigation of noise-
induced effects (for the review see [162]). In 1963 Feynman has predicted that in the presence
of a second heat bath a ratchet effect will manifest itself [50]. Further on, previously known
results in the frame of the concept of molecular motors and pumps [85, 177, 178], have been
developed in numerous works on ratchet effects [24, 192, 107, 30, 12, 13, 190, 202]. Ratchet
effect in the form of voltage rectification by a dc-SQUID in the presence of a magnetic field
and an unbiased ac-current has been experimentally observed and theoretically interpreted
in [34, 33, 20]. Two main ratchet scheme have been mainly investigated, tilted ratchet [117]
and on-off ratchet [8]. A synthesis of a noise-induced phase transition and a ratchet effect
has been considered in [163]. Up to now ratchets belong to the actual topic of modern physics
[173, 25, 161, 105, 145].

0.2 The aim and content of this work

Despite really intensive investigations, carried on in the last three decades, not all mecha-
nisms, responsible for the appearance of noise-induced order have been discovered and ana-
lyzed. Especially interesting are situations, in which a system is under the action of several
noise sources, e.g. an interplay between additive and multiplicative noise can be observed.
In particular, it is still not clear which role can be played by additive noise in the effect of
noise-induced transitions or noise-induced phase transitions, usually induced by multiplica-
tive noise. Also it has not been investigated, that noise-induced order can occur due to the
scenario, in which the role of noise is twofold: first noise creates the necessary feature in
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0.2. THE AIM AND CONTENT OF THIS WORK

the system, and then this feature is used by noise to induce the order. The question which
naturally arises in this considerations is: is it possible to generalize noise-induced resonant
phenomena for systems which do not have necessary features? Hence, the problem is whether
we can observe noise-induced phenomena due to this property which is also induced by noise
and, therefore, use the energy of noise even more efficiently. We call these phenomena as
doubly stochastic effects (DSE), and investigate whether one can apply this concept to ba-
sic noise-induced phenomena, such as stochastic resonance, noise-induced propagation, or
coherence resonance. Doubly stochastic effects also occur due to the interplay between mul-
tiplicative and additive noises, and hence this problem is closely related to the investigation
of the role of additive noise in transitions, which are induced by multiplicative noise. To be
complete, it is neccessary to note that for ratchets, some kind of DSE have been found in
[163]. Finally, there are many other noise-induced effects and effects related to the action of
the noise, which have not been investigated. This was the motivation of the present research,
and hence, the aim of this work is the investigation of nonlinear systems under the action
of multiplicative and additive noise for the determination of new mechanisms responsible for
the appearance of noise-induced order, especially via doubly stochastic effects, and for finding
the appropriate applications of these effects.

According to this aim the following problems are considered in this work:

1. we study the effect of additive noise in noise-induced transitions,

2. we study doubly stochastic effects: doubly stochastic resonance, noise-induced propaga-
tion in monostable media, and doubly stochastic coherence,

3. we study new effects: noise-induced frequency selection of the propagation frequency,
vibrational resonance in a noise-induced structure, system size resonance in coupled
noisy systems, and coherence resonance in inhibitory coupled excitable oscillators,

4. we study possible applications for these findings, in particular, we design the electronic
circuit for doubly stochastic resonance, we study experimentally coherence resonance
via noise-induced symmetry, and we study experimentally a vibrational resonance in
bistable systems.

The research presented in this work is organized as follows. This work is devoted to the
investigation of new mechanisms responsible for the noise-induced ordering in nonlinear sys-
tems, to the development of the concept of doubly stochastic effects, and to some new effects,
which demonstrate the counterintuitive ability of noise to induce order in nonequlibrium sys-
tems. In the first chapter we start with the investigation of the role of additive noise in
noise-induced transitions. If we deal with noise-induced transitions, usually only multi-
plicative noise or the joint action of multiplicative noise and coupling is responsible for the
appearance of the transition. In noise-induced transitions, which lead to the appearance of
new maxima in the system probability distribution, the transition happens, because due to
the multiplicative noise some additional terms appear in the ”stochastic” potential, which
governs the behaviour of the system[81]. In noise-induced transitions, which lead to the exci-
tations of oscillations, the transition occurs due to the parametric action of the multiplicative
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noise[102]. In noise-induced transitions, which lead to the breaking of symmetry and creation
of the mean field, the transition occurs again due to the multiplicative noise which induces
short-time bistability, and then due to coupling, which freezes a system in this bistable state
[65]. Meanwhile additive noise can also play a crucial and very nontrivial role in the effect of
noise-induced transition [11*,24*,19*,18*]. First, we investigate a transition in the presence
of additive noise in a pendulum with randomly vibrated suspension axis. We show that ad-
ditive noise smoothes a transition and influences the effect of on-off intermittency, which is
a characteristical feature of noise-induced oscillations [11*,20*]. Then, on the model, which
describe the behaviour of childhood epidemics, we show that additive noise is able to sta-
bilize noise-induced oscillations, which appear as a result of noise-induced phase transition
[11*]. Finally, we show that additive noise itself can induce a phase transition in the spa-
tially extended system of coupled noisy oscillators. This transition, induced by additive noise,
can be of the second- [19*] and first- order [12*]. In the latter case, the order parameter ,
here a mean field, is a discontinuous function of the noise intensity. If the oscillators coupled
via a coupling a la Swift-Hohenberg, then additive noise can induce a formation of spatially
ordered patterns, as a result of noise-induced phase transition [18*].

Noise

(Signal)

Property
(e.g. threshold,symmetry)

Noise

(or synchronization)
(e.g. ordering)

Effect

Nonlinear System

Noise−induced

Figure 8: A concept of doubly stochastic effects: noise creates a property of the system which
is used by another noise to induce the effect in the nonlinear nonequlibrium system. Usually
it occurs due to the interplay between multiplicative and additive noise.

After an investigation of new mechanisms, which causes noise-induced order in systems
via phase transitions, in the second chapter we develop a concept of doubly stochastic
effects (Fig. 8). The idea of this concept is the following. Usually, if we observe noise-induced
order in an nonlinear system, it occurs due to the presence of some intrinsic property of
a system, which works as a mechanism of a noise-induced phenomenon. For example, in
the effect of stochastic resonance this feature is a threshold, which presents in the system.
Coming noise interacts with this feature, and we observe a noise-induced order. Meanwhile,
this mechanism, responsible for the noise-induced effect, can be also induced by noise. In this
case we deal with doubly stochastic effect, in which noise-induced order appears according to
the scenario, when noise-induced order is created in a system due to the feature, which was,
in its turn, also induced by noise. This is the idea of the concept of doubly stochastic effects.
Certainly, in such effects, the energy of noise is used more efficiently, because it is used not
only for the noise-induced ordering, but also for the mechanism, which is used in this process.
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0.2. THE AIM AND CONTENT OF THIS WORK

The first effect, which has been found and investigated by us in frames of this concept is
doubly stochastic resonance [5*]. In this effect, multiplicative noise induces bistability in
the spatially extended system via a phase transition, and additive noise optimizes a signal
processing, i.e. synchronizes output with input, in this bistable system due to the principle of
stochastic resonance. To suggest a possible experimental implementation of doubly stochastic
resonance, we have designed a simple electronic circuit [4*]. The idea of doubly stochastic
effects can be developed not only for effects, based on the principle of stochastic resonance,
but also for coherence resonance effects. To do this, we consider the effect of doubly stochastic
coherence, which demonstrate a periodicity via noise-induced symmetry [34*]. It is important
to note that usually noise is able only to destroy a symmetry, as it happens in noise-induced
phase transitions. In contrast to this situation, in doubly stochastic coherence, multiplicative
noise induces a symmetry in the system, and then this symmetry helps to generate a periodic
output due to additive noise. We study doubly stochastic coherence on the paradigmatic
model, explain its behaviour by the consideration of an “effective” model, and finally confirm
these idea by experimental measurements on the electronic circuit.

As discussed above, SR can be extended for the case of spatially extended systems, as the
effect of noise-induced or noise-enhanced propagation. Nevertheless, these effects have been
sobserved only in bistable or excitable media, and not in deterministically monostable media,
which certainly describe a rather wide class of systems. Application of the concept of doubly
stochastic effects leads to the discovery of new effects in noise-induced propagation. We
discuss one of such effect in the third chapter, where we describe a noise-induced propagation
in monostable media [3*]. The idea of this effect is the following. First, a joint action of
multiplicative noise and coupling induces a bistability in the spatially extended system via
a noise-induced phase transition. Then additive noise is able to enhance a propagation of a
periodic signal through this system. Interesting that propagation of a signal does not destroy
a bistability, which is a collective effect. Discussing noise-induced propagation, we study also
another effect, which is related to the concept of doubly stochastic effects. Namely, we study
a propagation of a bichromatic signal through a bistable media in the presence of noise, and
find that under certain conditions noise is able to select a propagation frequency.

In the fourth chapter we study noise-induced effects and resonant effects in the
presence of noise, some additional new effects, which have been investigated during the
development of the concept of doubly stochastic effects. We start with the investigation of
vibrational resonance in a noise-induced structure [7*]. In this effect, an addition of high-
frequency optimizes a response of the system at the frequency of a low frequency signal, due
to the bistability, which has been created by joint action of multiplicative noise and coupling.
The effective model, responsible for this effect, is also studied experimentally on the elec-
tronic circuit [7*]. Further on, we study a new effect, which appear only in the presence of
noise, namely, system size resonance [153]. The effect consists in the fact, that when a small
periodic force on the ensemble of coupled noisy systems, the linear response of the system
has a maximum at a certain system size, similar to stochastic resonance phenomenon. This
effect can be observed if we change a size of a system of coupled bistable oscillators, but, in
particular, this effect can be also demonstrated for systems with noise-induced bistability.
After that, we study a coherence resonance in a system of coupled noisy excitable elements,

11



based in the new mechanism [5*]. For this we consider a system of two or three excitable
oscillators with inhibitory coupling. A new mechanism of noise-induced periodic output is
based on anti-phase motion of coupled oscillators, whereas for other mechanisms of coher-
ence resonance in spatially extended systems, in-phase movement was necessary. In the last
chapter we summarize the results, obtained in this work, and discuss possible direction of
the future research.
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Chapter 1

Additive noise in noise-induced
nonequilibrium transitions
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As mentioned in the introduction doubly stochastic effects occur in a nonlinear system
due to the interplay between two noise sources, usually sources of multiplicative and addi-
tive noise. One noise induces a new state in the system or a new property of the system, and
other noise uses this new state to work out noise-induced effect. The effect of noise-induced
transition already consists in the creation of the new state or in the transition to the new
state. Hence, logically the question arises, what additionally can happen, if we have two
noise sources in the system. Since usually transitions are induced by multiplicative noise,
we formulate the problem as follows: what is the role of additive noise in transitions, which
occur in nonlinear systems due to the action of multiplicative noise. We start with a study
of the transition which leads to noise-induced oscillations and happens in a pendulum with
randomly vibrated axis. This model can be considered as a paradigmatic model for such a
transition, besides, a pendulum is a classical and universal object of investigation in theoret-
ical physics.
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1.1. TRANSITIONS IN THE PRESENCE OF ADDITIVE NOISE. ON-OFF
INTERMITTENCY

1.1 Transitions in the presence of additive noise. On-off
intermittency

A pendulum with randomly vibrated suspension axis is a typical example of oscillatory
system, in which parametric action of noise can lead to the excitation of oscillations via a
second-order phase transition [25*,24*,11*]. In this case the intensity of multiplicative noise
plays the role of temperature and the average amplitude is the order parameter. Here we
discuss the question what happens if additionally additive noise is acting upon the system.
Therefore we consider a pendulum whose suspension axis is vibrating in the direction making
the angle γ with respect to the vertical (Fig. 1.1). As shown in [11*], for moderately small
vibrations of a suspension axis, i.e. in the presence of additive noise, the equation of motion
can be written as follows:

ϕ̈+2β
(

1+αϕ̇2) ϕ̇+ω2
0 (1+ξ1(t)) sinϕ = ω2

0ξ2(t), (1.1)

where ϕ is the pendulum angular deviation from the equilibrium position, ω0 is the natural
frequency of small free pendulum’s oscillations, β is the damping factor, α is the coefficient of
nonlinear friction, ξ1(t) and ξ2(t) are comparatively broad-band random processes with zero
mean values.

We assume that the suspension axis vibration is moderately small in amplitude, i.e. the
pendulum oscillations can be considered small enough for ϕ to be substituted in place of sinϕ
in Eq. (1.1).

We start with an approximate analytical solution of this problem, which can be obtained
from the assumptions that β/ω0 ∼ ε, ξ1(t) ∼

√
ε, and ξ2(t) ∼

√
ε, where ε is a certain small

parameter which should be put equal to unity in the final results. Eq. (1.1) can then be
solved by the Krylov–Bogolyubov method; to do this we set ϕ = A(t)cosψ(t)+ εu1 + . . . , where
ψ(t) = ω0t +φ(t),

Ȧ = ε f1 + . . . , φ̇ = εF1 + . . . , (1.2)

u1, . . . , f1, . . . , F1, . . . , are unknown functions. By using the Krylov–Bogolyubov technique for
stochastic equations (see [187]), we find expressions for the unknown functions f1 and F1.
Substituting these expressions into Eqs. (1.2) we obtain

Ȧ = −β
(

1+
3
4

αω2
0A2
)

A+ω0g1(A,ψ(t),ξ1(t),ξ2(t)), (1.3)

φ̇ = ω0g2(A,ψ(t),ξ1(t),ξ2(t)), (1.4)

where
g1(A,φ, t) =

A
2

ξ1(t)sin2ψ(t)−ξ2(t)sinψ(t),

g2(A,φ, t) = ξ1(t)cos2 ψ(t)− 1
A

ξ2(t)cosψ(t),

the bar over the expression denotes averaging over time.
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t)

ϕ(t )

γ

ξ(

Figure 1.1: A scheme of a pendulum with randomly vibrated suspension axis. The direction
of this vibration is not vertical, and this provides additive noise in the model equation.

As follows from [187], the Fokker–Planck equation associated with Eqs. (1.3), (1.4) is

∂w(A,φ, t)
∂t

= − ∂
∂A

[

(

−β
(

1+
3
4

αω2
0A2
)

A+ω2
0R1

)

w(A,φ, t)

]

−ω2
0 R2

∂w(A,φ, t)
∂φ

+

ω2
0

2

{

∂2

∂A2

((

K11

4
A2 +K12

)

w(A,φ, t)
)

+

(

K21 +
K22

A2

)

∂2w(A,φ, t)
∂φ2

}

, (1.5)

where

R1 =

0�

−∞

(〈

∂g1(A,φ, t)
∂A

g1(A,φ, t + τ)

〉

+

〈

∂g1(A,φ, t)
∂φ

g2(A,φ, t + τ)

〉)

dτ, (1.6)

R2 =

0�

−∞

(〈

∂g2(A,φ, t)
∂A

g1(A,φ, t + τ)

〉

+

〈

∂g2(A,φ, t)
∂φ

g2(A,φ, t + τ)

〉)

dτ, (1.7)

the angular brackets denotes averaging over the statistical ensemble,

K11 =
1
2

κξ1(2ω0), K12 =
1
2

κξ2(ω0), (1.8)

K21 =
1
4

(

κξ1(0)+
1
2

κξ1(2ω0)

)

, K22 =
1
4

(

κξ2(0)+
1
2

κξ2(ω0)

)

, (1.9)

and

κξ(ω) =

∞�

−∞

〈ξ(t)ξ(t + τ)〉cosωτdτ

is the power spectrum density of the process ξ(t) at the frequency ω.

Let us now calculate the integrals (1.6) and (1.7) taking account of the expressions for g1
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and g2. As a result we obtain:

R1 =
3A
8

0�

−∞

〈ξ1(t)ξ1(t + τ)〉cos2ω0τdτ+
1

2A

0�

−∞

〈ξ2(t)ξ2(t + τ)〉cosω0τdτ

=
3K11

8
A+

K12

2A
, (1.10)

R2 =
1
4

0�

−∞

〈ξ1(t)ξ1(t + τ)〉sin2ω0τdτ− 1
A2

0�

−∞

〈ξ2(t)ξ2(t + τ)〉sinω0τdτ. (1.11)

The value of R2 depends on the characteristics of the random processes ξ1(t) and ξ2(t): if they
are white noises then R2 = 0; but if, for example, ξ2(t) is white noise and ξ1(t) has a finite
correlation time and its power spectrum density is

κξ1(ω) =
a2

1κξ1(2ω0)

(ω−2ω0)2 +a2
1
,

then

R2 =−
a1ω0κξ1(2ω0)

4
(

16ω2
0 +a2

1

) .

It should be noted that in this case R2 is negative, that results in a decrease of the mean
oscillation frequency with an increase of noise intensity. The Langevin equations which can
be related to the Fokker-Planck equation (1.5) in view of (1.10) and (1.11) are presented the
following:

Ȧ = β
(

η− 3ω2
0

4
αA2

)

A+
ω2

0
2A

K12 +
ω0

2
Aζ11(t)+ω0ζ12(t),

(1.12)

φ̇ = ω2
0M +ω0

(

ζ21(t)+
ζ22(t)

A

)

,

where ζ11(t), ζ12(t), ζ21(t), and ζ22(t) are white noises with zero mean value and uncorrelated
with A. The intensities of these noises are K11, K12, K21, and K22, respectively. We note that
even in the case with κξ2 = 0 Eqs. (1.12) differ from that derived in [187]. The reason is that
there the variable u = lnA in place of A was used, i.e. the correlation between the noise ξ(t)

and the amplitude A was implicitly ignored [100][25*,22*].

First we consider the case when additive noise is absent, i.e. κξ2 ≡ 0. In this case the
steady-state solution of Eq. (1.5), satisfying the condition of zero probability flux, is

w(A,φ) =
C

2πA2 exp
{

3
1+η

(

η lnA− aA2

2

)}

, (1.13)

where a = 3αω2
0/4 is the nonlinear parameter and η = 3ω2

0K11/8β−1. The constant C is deter-
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Figure 1.2: (a) A noise-induced phase transition in a pendulum with randomly vibrated sus-
pension axis (Eq.(1.1)). The dependence of the averaged amplitude squared multiplied by
the parameter a = 3αω2

0/4 on η, where η is an extent on which multiplicative noise intensity
exceeds the threshold value. Without additive noise q0 = 0 (curve 1), and with increasing
additive noise q0 = 0.005 (curve 2) and 0.02 (curve 3). The remaining parameters are β = 0.1,
α = 100, and ω0 = 1. Analytical and numerical results are shown by solid and symbol curves,
respectively. (b) On-off intermittency for subcritical values of multiplicative noise intensity.
In contrast to this situation, if additive noise is absent, on-off intermittency is observed near
a threshold but for supercritical values of the multiplicative noise intensity.

mined from the normalization condition

2π�

0

∞�

0

w(A,φ)AdAdφ = 1.

Upon integrating (1.13) over φ, we find the expression for the probability density w of the
oscillations amplitude

w(A) = CA(2η−1)/(1+η) exp
(

− 3aA2

2(1+η)

)

. (1.14)

From the normalization condition we get

C = 2



















(

3a
2(1+η)

)3η/2(1+η) 1

Γ
(

3η/2(1+η)
) for η ≥ 0

0 for η ≤ 0.

(1.15)

Hence,

w(A) = 2



















(

3a
2(1+η)

)3η/2(1+η) A(2η−1)/(1+η)

Γ
(

3η/2(1+η)
) exp

(

− 3aA2

2(1+η)

)

for η ≥ 0

δ(A) for η ≤ 0.

(1.16)

The fact that for η ≤ 0 the probability density of the amplitude turns out to be a δ-function is
associated with the absence of additive noise (see below).
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Figure 1.3: The system probability distribution for a pendulum. (a) The case without additive
noise. The probability distribution w̃(aA2) = w(A)/2aA for η = 0.01 (curve 1), and η = 0.2 (curve
2). (b) The case with additive noise. The dependence of w̃(aA2) = w(A)/2aA for q = 0.01/(1+η)
and η = −0.2, 0 and 0.2 for curves 1–3 respectively.

Using (1.16), we can determine 〈A〉 and 〈A2〉:

〈A〉 =























√

3
2a(1+η)

Γ
(

(4η+1)/2(1+η)
)

Γ
(

3η/2(1+η)+1
) η for η ≥ 0

0 for η ≤ 0

(1.17)

〈A2〉 =







η
a

for η ≥ 0

0 for η ≤ 0
(1.18)

Therefore, it is evident that for η > 0 the parametric excitation of pendulum oscillations oc-
curs under the influence of multiplicative noise. This manifests itself in the fact that the
mean values of the amplitude and of the amplitude-squared become non-zero (Fig. 1.2, curve
1). This parametric excitation implies a transition of the system to a new state, that can
be treated as a phase transition. The condition η = 0 is the threshold for the onset of this
phase transition. It follows that, in the absence of additive noise, the critical value of the
multiplicative noise intensity is

κcr
ξ (2ω0) ≡ κcr =

16β
3ω2

0
. (1.19)

Hence, the parameter η characterizes the extent to which the intensity of multiplicative noise
component exceeds its critical value.

It should be noted that, for η > 0, the steady state A = 0 loses its stability and the state
A 6= 0 becomes stable. At the same time, eq. (1.16) implies that the probability density of
A2 is monotonically decreasing with increasing A2 for any value of η > 0. Hence, in contrast
to the transitions considered in [81], the appearance of a new stable state needs not to be
accompanied by the appearance of a new maxima in the system probability distribution (see
Fig. 1.3, a).
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Now let us consider the case when the intensity of additive noise is not equal to
zero. The steady-state solution of Eq. (1.5), satisfying the condition of zero probability flux,
is conveniently written as

w(A,φ) =
Ca

2π(aA2 +q)
exp







� 3
(

η−aA2
)

aA2 +q

(1+η)(aA2 +q)A
dA







, (1.20)

where q = 4aK12/K11 characterizes the ratio between the intensities of additive and multi-
plicative noise.

Following the calculations presented in the detail in [11*], we get an expression for

a〈A2〉 ≈ (1+η)

[

4µ
3

Γ(2µ)Γ
(

3
2
−2µ

)

(1+2µ)

(

2(1−2µ)+(5−4µ)
3q

2(1+η)

)

−

3q
2(1+η)

(

√
πΓ(−2µ)(1−2µ)

(

3q
2(1+η)

)2µ

+2Γ(2µ)Γ
(

3
2
−2µ

)

(1+2µ)

)]

×
[√

π
2

Γ(−2µ)(1−2µ)

(

3q
2(1+η)

)2µ(

2(1+2µ)+
9q

2(1+η)

)

+

Γ(2µ)Γ
(

3
2
−2µ

)

(1+2µ)

(

2(1−2µ)+
3(3−4µ)q
2(1+η)

)

]−1

. (1.21)

where µ = 3(η + q)/4(1 + η). Note that similarly to the case without additive noise, after a
transition no additional maxima appear in the system probability distribution and the shape
of this distribution is not qualitatively changed (Fig. 1.3, b).

Next we compare these analytical results with numerical simulations. The corresponding
dependence of a〈A2〉 on η for different values of the parameter q0 is illustrated in Fig. 1.2. We
see that additive noise of the small intensity results in a smoothing of the dependence of the
mean oscillation amplitude-squared on the multiplicative noise intensity: it becomes without
fracture inherent in a phase transition induced by only multiplicative noise. If we increase
additive noise intensity, the transition becomes less detectable (Fig. 1.2, curve 3).

In numerical experiment it is more convenient to calculate the variance of the correspond-
ing variable instead of the mean amplitude squared. It is evident that the dependencies of
these values on the noise intensity should be similar. Indeed, in the case when the amplitude
A is a slowly changing function, the variance is equal to 〈A2〉/2. The dependencies of a〈A2〉 on
η found by numerical simulation of Eq. (1.1) for both the presence of additive noise and its
absence are shown also in Fig. 1.2. We find that near the threshold the simulations match
the analytical results very good and that the dependencies for q = 0 can be approximated by
a straight line intersecting the abscissa at η = 0. With an increase of η, the growth rate of
the variance in numerical simulations is smaller than in the analytical results. This can be
explained by the fact that the Krylov-Bogolyubov method is valid only near a threshold.

Now let us discuss how additive noise influences the effect of on-off intermittency. Nu-
merical simulation of the original Eq.(1.1) shows that if the noise intensity is slightly over
a threshold, then in the absence of additive noise on-off intermittency can observed in the
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form of oscillations [20*]. This means that for the same external action the system is some-
times in the state “on” (the amplitude is large), which is intermittent with the state “off” (the
amplitude is rather small). The additive noise influences the effect of on-off intermittency
in the following way. For supercritical values of the multiplicative noise intensity on-off in-
termittency is now hidden and not observable in the form of oscillations, but can be detected
for subcritical values, below a threshold (see Fig.1.2 b). Hence in the presence of additive
noise on-off intermittency, a sign of noise-induced transition, can be observed even before
this transition occurs with respect to the increase of the control parameter.

It is necessary to note that in the same system chaotic oscillations can be observed, if
the external parametric action is periodic. A comparison with this case is discussed in [25*].
Chaotic pendulum’s oscillations are very similar in its form to noise-induced oscillations.
However, a calculation of the probability distribution of the average amplitude squared allows
to distinguish between both cases of the external action by means of the Rytov-Dimentberg
criterion [25*].

As is shown by further examples, this effect of transition smoothing and influence on on-off
intermittency is not a single effect of additive noise in oscillatory systems.
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1.2. STABILIZATION OF NOISE-INDUCED OSCILLATIONS PERFORMED BY
ADDITIVE NOISE

1.2 Stabilization of noise-induced oscillations performed
by additive noise

In this section we study again a system under the action of noise, which has both additive
and multiplicative components. The aim now is to show that, in contrast to a pendulum,
here additive noise can have also another form of influence, namely, stabilize noise-induced
oscillations. To demonstrate this effect, we use a standard epidemiological model for the
dynamics of children diseases [37]. Two variants of excitation are possible, either by periodic
force [143, 43] or by noise [24*]. In both cases this system exhibits chaotic or noise-induced
oscillations which closely resemble oscillations observed in experimental data.

We analyze the influence of additive component of noise in the following model system
[24*]:

Ṡ = e(1−S)−bSI, Ė = bSI− (e+ l)E, (1.22)

İ = lE − (e+g)I

where S, E, and I denote the number of susceptible, exposed but not yet infected, and in-
vective children, respectively. An independent equation for the variable R, which denotes the
number of recovered children, can be added to this system of equations: Ṙ = gI−mR. Mutual
relations between the components, involved in the model, are illustrated schematically by
Fig.1.4.

Births

S E I R

Figure 1.4: Diagram illustrating mutual relations between different components in the model
of childhood epidemics

The parameters 1/e, 1/l, 1/g are the average expectancy, latency and infection periods of
time. The contact rate b is the parameter of excitation and equal to b = b0(1 + b1ξ(t)) where
ξ(t) is a harmonic noise with the peak of spectral density at the circle frequency 2π (seasonal
noisy oscillations with a period equal to one year) and the parameter b1 is the amplitude of
noise. The excited oscillations are executed in the vicinity of the stable singular point with
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Figure 1.5: (a) Noise-induced oscillations (epidemics)in the epidemiological model Eqs.(1.24).
(b) The dependence of oscillation variance for the variable x on the parameter b1, which is
responsible for the noisy variation of a contact rate (see the text).

the coordinates (S0,E0, I0):

S0 =
(m+a)(m+g)

ab0
, E0 =

m
m+a

− m(m+g)

ab0
, I0 =

am
(m+a)(m+g)

− m
b0

(1.23)

Hence, one can easily rewrite the equations for the new variables x = S/S0−1, y = E/E0−1,
and z = I/I0 −1 which are deviations from the equilibrium point:

ẋ+ ex = −b0I0(1+b1ξ(t))(x+ z+ xz)−b0b1I0ξ(t),

ẏ+(e+ l)y = (e+ l)(1+b1ξ(t))(x+ z+ xz)+(e+ l)b1ξ(t), (1.24)

ż+(e+g)z = (e+g)y.

This form of eqs. clearly shows that the action of noise is multiplicative as well as additive.

An increase of the noise intensity causes noise-induced oscillations of the variables S, I,E

(Fig. 1.6 (a)). Their oscillatory behaviour closely resembles observed epidemiological data
(compare Fig. 1.6 (a) with figures in [157]). These oscillations are excited after a noise-induced
transition (see Fig. 1.6 (b)). There the variance of oscillations together with an approximating
straight line is shown. The point where the straight line crosses the abscissa-axis can be
taken as a critical point of the transition. To prove this, we remove artificially the additive
component of noise from eqs.(1.24). In this case the variance of oscillations is equal to zero
if b1 < b1cr and goes to infinity shortly after the noise intensity exceeds its critical value.
So, multiplicative noise indeed induces a transition. What is even more interesting, if the
additive and multiplicative components of noise act together, as in the model, a stabilization
of noise-induced oscillations occurs: in this case the dependence of the variance on the noise
intensity does not increase to infinity, that is not a case if multiplicative component of noise
acts separately.

Noteworthy, the same model can demonstrate deterministic chaotic oscillations, which are
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Figure 1.6: Left: experimentally measured epidemics[157], Right: chaotic solution of the
model with periodically varied contact rate [24*].

very irregular, and closely resembles in its form both to experimental data [157] and to noise-
induced oscillations [24*]. Hence, the problem arises whether we can distinguish the nature
of oscillations if we analyze time series. These noise-induced and chaotic oscillations can be
distinguished by use of the Rytov-Dimentberg criterion, initially proposed in [171, 38] to solve
the problem of distinguishing between noise passed through a linear narrow-band filter and
periodic but noisy self-oscillations. According to this criterion, the probability distributions
for the process itself and for the instantaneous amplitude squared are monotonic in the case
of noise-induced oscillations, whereas for chaotic oscillations these distributions have to have
peaks [24*,25*]. The instantaneous amplitude can be calculated by means of the Hilbert
transform [167].
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1.3. PHASE TRANSITIONS INDUCED BY ADDITIVE NOISE

1.3 Phase transitions induced by additive noise

1.3.1 Second-order phase transitions. Noise-induced pattern forma-
tion

Now we extend our study to spatially extended systems and show that additive noise is
able to induce second- and first-order phase transitions. We start with an investigation of
a nonlinear lattice of overdamped coupled stochastic oscillators [146][18*] under the action
of noise. In this system a transition manifests itself in the formation of spatially ordered
patterns, as a consequence of a special form of coupling a la Swift-Hohenberg. The system is
described by a scalar field xr, defined on a spatial lattice with points r:

ẋr = f (xr)+g(xr)ξr +Lxr +ζr (1.25)

with f and g taken in the form (for the discussion, which functions can be chosen to observe
a transition see [172])

f (x) = −x(1+ x2)2 g(x) = a2 + x2 (1.26)

and ξr, ζr are independent zero-mean-value Gaussian white noises:

〈ξr(t)ξr′(t
′)〉 = σ2

mδr,r′δ(t − t ′) (1.27)

〈ζr(t)ζr′(t
′)〉 = σ2

aδr,r′δ(t − t ′).

Note that for these functions f (x) and g(x) the transitions described are pure noise-induced
phase transitions, in the sense that they do not exist in the system without noise. The cou-
pling operator L is a discretized version of the Swift-Hohenberg coupling term −D(q2

0 + ∇2)2

[18*].
To study the influence of the additive noise, we consider two limiting cases of correlation

between additive and multiplicative noise : strong correlation (ζr = 0 and parameter a is
varied), and no correlation ( a = 0 and the intensity of ζr is varied).

Using the generalized Weiss mean field theory (MFT) [65], the conditions of phase transi-
tion can be found. Substituting the value of the scalar variable xr′ at the sites coupled to xr

by its special average:
〈xr′〉 = 〈x〉cos[k · (r− r′)], (1.28)

we obtain for x = xr

ẋ = f (x)+g(x)ξ(t)+Dω(k)x−Deff(x−〈x〉)+ζ(t), (1.29)

where

Deff =

[

(

2d
∆2 −q2

0

)2

+
2d
∆2 +ω(k)

]

D (1.30)
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Figure 1.7: Additive noise induced phase transition in a nonlinear lattice Eqs.(1.25): pre-
dictions of the mean field theory. (a) The boundaries of the transition on the plane (σ2

m,D)
for different values of a Eqs.(1.26). It is clearly seen that by variation of a a point from the
dashed region is a point of the transition induced by additive noise. (b) Dependence of order
parameter |〈x〉| if the additive noise intensity is varied. (c) The transition lines for the case
when additive and multiplicative noise are independent: σ2

a = 1 (label 1), 0.5 (label 2), and
0.3 (label 3). (d) Large scaled region from the plot in (c).

and a dispersion relation ω(k) = 0 for the most unstable mode, which is only of interest here
[146].

Now the value 〈x〉 plays the role of the amplitude of the spatial patterns with an effective
diffusion coefficient Deff. The steady state solution of the Fokker-Planck equation correspond-
ing to Eq.(1.28) is written then as follows

wst(x) =
C(〈x〉)

√

σ2
mg2(x)+σ2

a
exp



2
x�

0

f (y)−Deff(y−〈x〉)
σ2

mg2(y)+σ2
a

dy



 , (1.31)

and C(〈x〉) is the normalization constant.
For the mean field value 〈x〉 we obtain [208]

〈x〉 =

�
xwst(x,〈x〉)dx. (1.32)

Solving eq.(1.32) with parameters D, σ2
m , and σ2

a, we obtain a boundary between two
phases: a disordered (|〈x〉| = 0) and an ordered one (|〈x〉| 6= 0). The ordered phase corre-
sponds to the appearance of spatially ordered patterns, because its average amplitude be-
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Figure 1.8: Snapshots of the field for D = 1.0, σ2
m = 1.8, andσ2

a = 0. The parameter a is equal
to (a) 0.1, (b) 1.0, and (c) 10.0. The increase of additive noise induces spatial patterns.

Figure 1.9: (a)2D Fourier transform of the pattern shown in the previous Fig. Rotationally
symmetry is observed. (max,min) values are (1337,0.1). (b) Fourier transform averaged over
angles for D=1.0 and σ2

m = 1.8. values of parameter a are shown in the figure. (c) Dependence
of Smax on a
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Figure 1.10: A formation of spatial patterns induced by additive noise. From left to right
the intensity of additive noise is increased (a = 0): σ2

a = 0.001, 0.7 and 10 (from left to right).
The field in the nonlinear lattice of 128x128 elements is coded from white (minimum) to black
(maximum) colours.

comes nonzero. This happens due to the special form of coupling which includes wave length
of these patterns q0. It is known that in the considered system multiplicative noise induces a
phase transition [146]. We focus our attention to the influence of additive noise. The bound-
ary of the phase transition on the plane (σ2

m,D) is shown in Fig. 1.7 (a), which demonstrates
that variation of the intensity of correlated additive noise (the parameter a in Eq.(1.26))
causes a shift of the transition boundary. The most interesting situation occurs in the dashed
region. Here, the increase of the additive noise intensity causes the reentrant (disorder-
order-disorder) phase transition. The corresponding dependence of the order parameter on
the parameter a is shown in Fig. 1.7 (b). Hence changing additive noise can lead to the for-
mation of spatially ordered patterns (Fig. 1.8). The pattern, which corresponds to the ordered
case, has rotational symmetry, which can be clearly observed in the two-dimensional Fourier
transform of the field, represented in Fig.1.9. To make a transition more evident we have
plotted the Fourier transform of the field averaged over the angles of the wave vector. It is
shown in the Fig. 1.8 for different values of a. With increase of a a maximum in this structure
function is found.

For the case of uncorrelated additive noise (a = 0), the observed behaviour is qualitatively
the same ( Fig. 1.7 (c,d)). Here the transition lines are plotted on the plane (σ2

m,D) and the
intensity σ2

a of uncorrelated additive noise is varied. It is evident that again dashed region
corresponds to the phase transition. If we take parameters from this dashed region (in both
cases of correlation), and change the intensity of additive noise (varying the parameter a or
σ2

a) we observe a formation of patterns and further their destroying (see results of numerical
simulations in Fig. 1.10).

To understand the mechanism behind this transition, it is necessary to note that there
is no bistability either in the “usual” potential or in the so-called “stochastic” potential [81].
Nevertheless, using some approximations it can be shown [196][18*] that the short-time evo-
lution of the mean field can be described by the “effective” potential, which becomes to be
bistable after a transition. If D, and σ2

a vanish, the time evolution of the first moment of a
single element is simply given by the drift part in the corresponding Fokker-Planck equation
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Figure 1.11: An “effective” potential for the short time evolution of the mean field. (a) σ2
m = 2:

solid line, a2 = 0.1; dashed line, a2 = 1.0. (b) a=0: solid line, σ2
m = 2; dashed line, σ2

m = 5. In
case (a) the short time behaviour can be described by the bistable potential if the constant
a is sufficiently large. In case (b) the situation is more complicated: the zero state remains
stable, but large enough additive noise can force a system to leave the zero state and form a
mean field.

(Stratonovich case)

〈ẋ〉 = 〈 f (x)〉+ σ2
m

2
〈g(x)g′(x)〉. (1.33)

As it was argued in [196], the mechanism of the noise-induced transition in coupled sys-
tems can be explained by means of a short time evolution approximation [2]. It means that
we start with an initial Dirac δ function, follow it only for a short time, such that fluctuations
are small and the probability density is well approximated by a Gaussian. A suppression of
fluctuations, performed by coupling, makes this approximation appropriate in our case[193].
The equation for the maximum of the probability, which is also the average value in this
approximation x̄ = 〈x〉, takes the following form

˙̄x = f (x̄)+
σ2

m

2
g(x̄)g′(x̄), (1.34)

which is valid if f (〈x〉) >> 〈δx2〉 f ′′(〈x〉). For this dynamics an “effective” potential Ueff(x) can
be derived, which has the form

Ueff(x) = U0(x)+Unoise = −
�

f (x)dx− σ2
mg2(x)

4
, (1.35)

where U0(x) is a monostable potential and Unoise represents the influence of the multiplicative
noise. In the ordered region, this “effective” potential has additional to x = 0 minima, that
explain the non-zero solutions for the amplitude of spatial patterns [18*] (see Fig. 1.11).

Here I have considered a second-order phase transition induced by additive noise in a spa-
tially extended system. Due to the special form of coupling, the phase transition manifested
itself in the formation of ordered spatial patterns. In what follows, I will demonstrate that
additive noise can also induce first-order phase transition in such systems.

33



CHAPTER 1. ADDITIVE NOISE IN NOISE-INDUCED NONEQUILIBRIUM
TRANSITIONS

34



1.3. PHASE TRANSITIONS INDUCED BY ADDITIVE NOISE

1.3.2 First-order phase transitions.
In [136] a first-order phase transition has been reported, which is induced by multiplicative
noise. Now we show that first-order nonequilibrium transitions in spatially extended sys-
tems can be also induced by additive noise. It is important, that in contrast to second-order
transitions, in a first-order transition very tiny fluctuation of the control parameter can lead
to a drastical change of the order parameter. The study is performed on a nonlinear lat-
tice of coupled stochastic overdamped oscillators introduced in [195] and further studied in
[196, 119][18*,19*]. The time evolution of the system is described by the following set of
Langevin equations:

ẋi = f (xi)+g(xi)ξi(t)+
D
2d ∑

j
(x j − xi)+ζi(t), (1.36)

where xi(t) represents the state of the i-th oscillator, and the sum runs over all nearest neigh-
bors of cell i. The strength of the coupling is measured by D, and d is the dimension of the
lattice, which has N = Ld elements. The noise terms ξi(t) and ζi(t) are the same as defined in
Eqs. (1.27): mutually uncorrelated, gaussianly distributed, with zero mean and white in both
space and time. The functions f (x) and g(x) are defined in Eqs.(1.26).

We study the behaviour of this system by means of a standard MFT procedure. Solving
the corresponding Eq.(1.32) with respect to the variable m = 〈x〉, and wst defined by Eq.(1.31)
with Deff = D, one can set the transition boundaries. In this way obtained order-disorder
transition lines are shown in Fig. 1.12 (a). Here we consider only the case when σ2

a = 0 and
the parameter a is varied. Curve 1 separates regions of disorder (below the curve) and order
(above the curve) for small multiplicative noise intensity. In this case, the ordered region is
characterized by three self-consistent solutions of Eq. (1.32), one of them unstable (m = 0) and
the other two stable and symmetrical. These new solutions appear continuously from m = 0
in the course of the transition. Hence, if we fix the coupling strength e.g. D = 20, and increase
the intensity of additive noise (the parameter a) a second-order phase transition from disorder
to order occurs, followed by a reentrant transition back to disorder, also of second order.

The first-order transition can be observed when the multiplicative noise intensity in-
creases. In that case (curve 2 in Fig. 1.12 (a)), a region appears where Eq. (1.32) has five
roots, three of which (m = 0 and two symmetrical points) are stable. This region is marked
dashed in the figure. Thus, for large enough values of D, a region of coexistence appears in
the transition between order and disorder. This region is limited by discontinuous transition
lines between m = 0 and a nonzero, finite value of m. Hence, additive noise is seen to induce
a first-order phase transition in this system for large enough values of the coupling strength
and multiplicative noise intensity. The reentrant transition is again of second order. When
the first-order phase transition appears, hysteresis can be expected to occur in the coexis-
tence region (if a certain algorithm is applied [3]). The dependence of the order parameter
m on the control parameter a as predicted by MFT is shown in Fig. 1.12 (b) with a solid line.
The region of possible hysteresis is bounded by dotted lines.

In order to contrast the analytical results, we have performed simulations of the complete
model (1.36) using the numerical methods described in [65, 196]. The order parameter mn is

computed as mn =

〈∣

∣

∣

∣

∣

1
L2

N

∑
i=1

xi

∣

∣

∣

∣

∣

〉

, where 〈〉 denotes time average. Results for a two-dimensional
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Figure 1.12: Characteristics on the phase transition in the nonlinear lattice Eqs.(1.36): (a)
Transition lines on the plane (a,D) for σa = 0 and two different intensities of the multiplica-
tive noise (curve 1: σ2

m = 1.6; curve 2: σ2
m = 3.0). The dashed region (starting with the dot)

corresponds to the coexistence of disordered and ordered phase. (b) The corresponding de-
pendence of the order parameters m,mn on a for D = 20, σ2

m = 3.0 and σ2
a = 0.0 are plotted by

solid line (MFT predictions) and by diamonds (numerical simulations). The dotted line delim-
its the coexistence region exhibited by MFT (a region of the hysteresis effect). The unstable
state is plotted by the dashed line.
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Figure 1.13: An “effective” potential for the short-time evolution of m in the lattice
Eqs(1.36),for a2 =: 0.25 (curve 1), 0.28 (curve 2), and 0.34 (curve 3). Other parameters are
σ2

m = 3.0 and σ2
a = 0.0. A coexistence of ordered and disordered phases is observed for the curve

2.

lattice with lateral size L = 32 are shown with diamonds in Fig. 1.12 (b). Analyzing this figure
one can observe that MFT overestimates the size of the coexistence region. This effect, analo-
gous to what was observed for multiplicative-noise induced transitions [195], can be explained
in terms of an “effective potential” derived for the system at short times (see discussion be-
low). For instance, as a increases the system leaves the disordered phase not when this state
becomes unstable but earlier, when the potential minima corresponding to the ordered states
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become much lower than the minimum corresponding to the state m = 0. It should also be
mentioned that the numerical simulations did not show hysteresis, because in the coexistence
region the system occupied any of the three possible states, independently of the initial con-
ditions. It can be explained by the small size of the simulated system, which permits jumps
between steady states when the system is sufficiently perturbed (e.g. by slightly changing the
parameter a).

We have thus seen so far that numerical simulations qualitatively confirm the existence
of a first-order phase transition induced by additive noise in this system, as predicted by
MFT. We note that the transition occurs in the two limiting cases of correlation between
multiplicative and additive noise. We also emphasize that variation of both the multiplicative
noise intensity and the coupling strength can change the order of this transition.

Let us now discuss a possible mechanism behind this effect. As pointed above, the collec-
tive behaviour of this system can be described by the “effective” potential (see Eq.(1.35)). We
can trace the behavior of this potential in the presence of multiplicative noise, for the case
σ2

a = 0 and a 6= 0. Its evolution for increasing a is shown in Fig. 1.13. This approach can be
clearly seen to successfully explain the mechanism of the first-order transition: first, only the
zero state is stable (curve 1), then there is a region where three stable states coexist (curve
2), and finally, the disordered state becomes unstable (curve 3). This approach also explains
why a variation of the multiplicative noise intensity influences the order of the transition: for
another (lower) σ2

m there is no region where ordered and disordered phases simultaneously
exist. We emphasize that the “effective” potential is derived only for short-time evolution, and
should not be confused with the “stochastic” potential [81], which for this system remains al-
ways monostable. For the other case of correlation between multiplicative and additive noise,
in the region of additive noise induced transition, the “effective” potential always has three
minima (two symmetric minima are lower than the central one). Sufficiently large (above a
threshold of the transition) additive noise causes an escape from zero state and leads to the
transition. The value of a critical additive noise intensity for this transition can be estimated
by the “effective” potential approach, only by MFT. Here we have considered only a case of
strong correlation between multiplicative and additive noise. As described in [12*], if additive
noise is independent, it can also induce a first-order phase transition. The level of correlation
between additive and multiplicative noise can be considered as an additional parameter in
this system, what we leave as an open question here.
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In what follows, I consider a concept of doubly stochastic effects and application of this
concept to several basic noise-induced phenomena. In this chapter two doubly stochastic ef-
fects are demonstrated: doubly stochastic resonance and doubly stochastic coherence. This is
the result of application of the concept of doubly stochastic effects to the effect of stochastic
resonance and of coherence resonance. In both these effects we are interested in the behavior
of the system output as a whole. In contrast to it, in propagation effects, it is not the re-
sponse of the system as a whole, but the propagation of a signal that is studied. Concerning
the propagation, doubly stochastic effect can also be found: this effect, called noise-induced
propagation in monostable media will be considered in Chapter 3, together with other new
effects of propagation.
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2.1. DOUBLY STOCHASTIC RESONANCE

2.1 Doubly stochastic resonance

Doubly stochastic resonance is at the borderline of two basic noise-induced phenomena.
The first class of phenomena is noise-induced phase transitions. The second basic phe-
nomenon is stochastic resonance. SR has been found and investigated in a large variety
of different class of systems (see Introduction). However, SR has not been considered in sys-
tems with a noise-induced structure [4]. Here a new type of SR is presented in a system
with a noise-induced nonequilibrium phase transition resulting in a bistable behaviour of the
mean field. This effect is called doubly stochastic resonance (DSR) to emphasize that additive
noise causes a resonance-like behaviour in the structure, which in its own turn is induced by
multiplicative noise.

This DSR is demonstrated on a nonlinear lattice of coupled overdamped oscillators firstly
introduced in [195] and further studied in [196, 119][18*,19*]. The following set of Langevin
equations describes the considered system:

ẋi = f (xi)+g(xi)ξi(t)+
D
2d ∑

j
(x j − xi)+ζi(t)+Acos(ωt +ϕ), (2.1)

where xi(t) represents the state of the ith oscillator, i = 1, ...,Ld , in the cubic lattice of the size
L in d dimensions and with N = Ld elements. The sum runs over 2d nearest neighbors of the
ith cell, and the strength of the coupling is measured by D. The noisy terms ξi(t) and ζi(t)

represent mutually uncorrelated Gaussian noise, with zero mean and uncorrelated both in
space and time

〈ξi(t)ξ j(t ′)〉 = σ2
mδi, jδ(t − t ′), (2.2)

〈ζi(t)ζ j(t ′)〉 = σ2
aδi, jδ(t − t ′). (2.3)

The last item in (2.1) stands for an external periodic force with amplitude A, frequency ω and
initial phase ϕ.

For the sake of simplicity, the functions f (x) and g(x) are taken to be of the form [195]:

f (x) = −x(1+ x2)2, g(x) = 1+ x2. (2.4)

In the absence of external force (A = 0) this model can be solved analytically by means of
a standard mean-field theory (MFT) procedure [65]. The mean-field approximation consists
in replacing the nearest-neighbor interaction by a global term in the Fokker-Planck equa-
tion corresponding to (2.1). In this way, one obtains the following steady-state probability
distribution wst:

wst(x,m) =
C(m)

√

σ2
mg2(x)+σ2

a
exp



2
x�

0

f (y)−D(y−m)

σ2
mg2(y)+σ2

a
dy



 , (2.5)

where C(m) is a normalization constant and m is a mean field, defined by the equation:
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Figure 2.1: Transition lines between ordered and disordered phase on the plane (σ2
m;D) for

different intensities of the additive noise σ2
a = 0 (1); 1 (2), and 5 (3). The black point corre-

sponds to D = 20, σ2
m = 3.

m =

� ∞

−∞
xwst(x,m)dx. (2.6)

Solving Eq. (3.4) self-consistently with respect to the variable m one determines transitions
between ordered (m 6= 0) and disordered (m = 0) phases. Transition boundaries between differ-
ent phases are shown in Fig. 2.1 and the corresponding dependence of the order parameter
on σ2

m is presented in Fig. 2.3. In addition to [195], we show influence of additive noise re-
sulted in the shift of transition lines. For σ2

a = 0 an increase of the multiplicative noise causes
a disorder-order phase transition, which is followed by the reentrant transition to disorder
[195]. In the ordered phase the system occupy one of two symmetric possible states with the
mean fields m1 =−m2 6= 0, depending on initial conditions (for a visualization of this transition
see Fig. 2.2).

Now let us turn to the problem, how the system (1) responses to periodic forcing (Ai = A).
We have taken a set of parameters (σ2

m;D) within the region of two coexisting ordered states
with nonzero mean field. In particular, we choose values given by the dot in Fig. 2.1. As for
the network, we take a two-dimensional lattice of L2 = 18×18 oscillators, which is simulated
numerically [97] with a time step ∆t = 2.5× 10−4 under the action of the harmonic external
force. The amplitude of the force A has to be set sufficiently small to avoid hops in the absence
of additive noise during the simulation time of a single run which is much larger than the
period of the harmonic force [5]. Jumps between m1 ↔ m2 occur only if additive noise is
additionally switched on. Runs are averaged over different initial phases.

Time series of the mean field and the corresponding periodic input signal are plotted in

Fig. 2.4 for three different values of σ2
a. The current mean field is calculated as m(t) =

1
L2

N

∑
i=1

xi(t).

For a small intensity of the additive noise, hops between the two symmetric states m1 and m2

are rather seldom and not synchronized to the external force. If we increase the intensity σ2
a,

we achieve a situation when hops occur with the same periodicity as the external force and,
hence, the mean field follows with high probability the input force. An increase of additive
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Figure 2.2: A symbolic visualization of a phase transition in the model Eqs.(2.1), which leads
to the formation of a mean field. In the disordered phase the mean field is zero due to the
random deviation of different elements around zero (up). In the ordered phase, induced by
noise, the symmetry is broken and the mean field is either positive (right) or negative (left).
The elements in the lattice 128× 128 are coded in accordance to its sign: if positive or zero -
white, if negative - black.

noise provides an optimization of the output of the system which is stochastic resonance. If
σ2

a is increased further, the order is again destroyed, and hops occur much more frequently
than the period of the external force. Note also that for large σ2

a the value of the mean field
which corresponds to the stable state is becoming smaller. It is caused by the fact that ad-
ditive noise influences also transition lines [18*,19*][119]. An increase of σ2

a results in the
reduction of the ordered region (Fig. 2.1, curves 2 and 3) and decreasing the value m1 = −m2

(Fig. 2.3, curves 2 and 3).

Fig. 2.4 illustrates that additive noise is able to optimize the signal processing in the
system (1). In order to characterize this SR-effect we have calculated signal-to-noise ratio
(SNR) by the extracting the relevant phase-averaged power spectral density S(ω) and taking
the ratio between its signal part with respect to the noise background [53]. The dependence
of SNR on the intensity of the additive noise is shown in the Fig. 2.5 for the mean field
(filled points) and the mean field in a 2-state approximation (opaque point). In this 2-states
approximation we have replaced m(t) by its sign and put approximately m(t) =+1 or m(t) =−1,
respectively. Both curves exhibit the well known bell shaped dependence on σ2

a typically for
SR. Since the bimodality of the mean field is a noise-induced effect we call that whole effect
Doubly Stochastic Resonance. For the given parameters and A = 0.1, ω = 0.1 the maximum of
the SNRs is approximately located near σ2

a ∼ 1.8.

Next we intend to give analytic estimates of the SNR. If A, D, and σ2
a vanish, the time
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Figure 2.3: The order parameter |m| vs the intensity of multiplicative noise for D = 20 and
σ2

a = 0 (label 1), 1 (label 2), and 5 (label 3). Inside the ordered region for fixed value of σ2
m an

increase of the additive noise intensity leads to the decrease of the order parameter.

evolution of the first moment of a single element is given simply by the drift part in the
corresponding Fokker-Planck equation (Stratonovich case)

〈ẋ〉 = 〈 f (x)〉+ σ2
m

2
〈g(x)g′(x)〉. (2.7)

As it was argued in [196], the mechanism of the noise-induced transition in coupled sys-
tems can be explained by means of a short time evolution approximation [2]. It means that
we start with an initial Dirac δ function, follow it only for a short time, such that fluctuations
are small and the probability density is well approximated by a Gaussian. A suppression of
fluctuations, performed by coupling, makes this approximation appropriate in our case[193].
The equation for the maximum of the probability, which is also the average value in this
approximation x̄ = 〈x〉, takes the following form

˙̄x = f (x̄)+
σ2

m

2
g(x̄)g′(x̄), (2.8)

which is valid if f (〈x〉) >> 〈δx2〉 f ′′(〈x〉). For this dynamics an “effective” potential Ueff(x) can
be derived, which has the form where U0(x) is a monostable potential and Unoise represents
the influence of the multiplicative noise. In the ordered region, inside the transition lines
(Fig. 2.1), the potential Ueff(x) is of the double-well form, e.g. U(x)eff = −x2 −0.25x4 + x6/6, for
given f (x), g(x) and σ2

m = 3.

Now we consider a conventional SR problem in this potential with an external periodic
force of the amplitude A and the frequency ω. If we neglect intrawell dynamics and follow
linear response theory the SNR is well known [53, 124, 141, 6]

SNR1 =
4πA2

σ4
a

rk (2.9)
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Figure 2.4: Example of input/output synchronization. The time evolution of the current mean
field (output) and the periodic external force F(t) (input) for different intensities of additive
noise (from top to bottom) σ2

a = 0.01, 1.05, and 5.0. If the intensity of the additive noise is close
to their optimal value (middle row), hops occur with the period of the external force. The
remaining parameters are: A = 0.1, ω = 0.1, D = 20, and σ2

m = 3.

where rk is the corresponding Kramers rate [99]

rk =

√

(U ′′
eff(x)|x=xmin |U ′′

eff(x)|x=xmax)

2π
exp(−2∆Ueff

σ2
a

) (2.10)

for surmounting the potential barrier ∆Ueff. Using Eqs.(4.6),(2.19), and (2.20) we get an an-
alytical estimates for a single element inside the lattice. Further on, rescaling this value by
the number N of oscillators in the lattice [175] and taking into account the processing gain G

and the bandwidth ∆ in the power spectral density [124, 141, 6], the SNRN of the mean field
of the network of N elements can be obtained

SNRN = SNR1
NG
∆

+1. (2.11)

This dependence is shown in the Fig. 2.4 by the solid line and demonstrates despite the
rough approximation a good agreement with the results of the numerical simulations. Nearly
exact agreement is found in the location of the maximum as well as for the quantitative
values of the SNR (“scalloping loss” [124, 141, 6] has been avoided in simulations by setting
the frequency ω to be centered on one of the bins in the spectrum).
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Figure 2.5: The dependence of SNR on the additive noise intensity for the output (filled
points) and its 2-states approximation (opaque points). The solid line corresponds to the ana-
lytical estimation SNRN (2.21), performed on the base of derivation of the “effective” potential
and linear response theory. The parameters are the same as for Fig. 2.4 and the processing
gain G = 0.7.

Ueff(x) = U0(x)+Unoise = −
�

f (x)dx− σ2
mg2(x)

4
, (2.12)

Some remarks should be added. Firstly, we have considered a system which undergoes
a pure noise-induced transition, in the sense that a transition is impossible in the absence
of noise. This is an important distinction of the DSR effect from SR in any variation of the
mean-field model [134]. Secondly, despite the coexistence of the two states in the considered
system, the so-called “stochastic” potential [81] for a single oscillator in the lattice (which
differs from (4.6)) always remains monostable. Thirdly, there are clear distinctions between
SR and DSR behaviour, because, in contrast to SR, in DSR additive noise does not only help
an input/output synchronization, but also changes the properties of the system in the absence
of the external force (see Fig. 2.1 and 2.3). As a consequence, completely different to standard
SR, in DSR amplitude of hops is decreased (bistability dissappears) for large noise intensities
σ2

a (compare Fig. 2.4 and Fig. 4 from [53]). Finally, not arbitrary system with noise-induced
bistability will demonstrate DSR, e.g. we did not find DSR in zero-dimensional systems,
which are described in [81].

Noteworthy, noise-induced bistability, described here can be used not only for a synchro-
nization between output and input of the system, but also for other effects, observed in
bistable systems. For example, in 4.2 a system size resonance, which occur in spatially dis-
tributed system of coupled bistable oscillators, has been also demonstrated for the case of
noise-induced bistability.
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2.2 A simple electronic circuit model for doubly stochas-
tic resonance

We expect that these theoretical findings resulted from study of DSR will stimulate experi-
mental works to verify DSR in real physical systems (for the first experimental observation of
noise-induced bistability see [73]). Appropriate situations can be found in electronic circuits
[1], as well as in systems, which demonstrate noise-induced shift of the phase transition, e.g,
in: liquid crystals [93, 207], photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127]. It can be crucial for such experiments, that, in contrast to conventional
SR, in DSR the energy of noise is used in a more profitable way: not only for the optimiza-
tion of the signal processing, but also for the support of the potential barrier to provide this
optimization.

Here we design an electronic circuit for the observation of DSR. The most direct way is the
realization through analog circuits but there are complicated due to the complex construction
of every unit, hence it is worth to look for a simpler electronic circuit model which exhibits
the DSR property. With this aim we consider an electrical circuit which consists of N coupled
elements (i, j). A circuit of one element is shown in Fig. 2.6. Three ingredients in this circuit
are important: input current, time-varying resistor (TVR) and a nonlinear resistor. Every
element is coupled with its neighbours by the resistor Rc (i.e. by diffusive coupling). The
capacitor is shown by C. The nonlinear resistor RN can be realized with a set of ordinary
diodes [86, 28], whose characteristic function is a piecewise-linear function

iN = f1(V ) =















GbV +(Ga −Gb)Bp if V ≤−Bp,

GaV if |V | < Bp,

GbV − (Ga −Gb)Bp if V ≥ Bp,

(2.13)

where iN is the current through the nonlinear resistor(RN), V is the voltage across the ca-
pacitor(C), and parameters Ga, Gb and Bp determine the slopes and the breakpoint of the
piecewise-linear characteristic curve. Another way to realize the nonlinear resistor is via a
third-order polynomial function:

iN = f2(V ) = g1V +g2V 3.

The next important ingredient is a time-varying resistor(TVR)[142, 28]. The conductance G(t)

of TVRs varies with time. Presently, we consider the case that the function which represents
the variation of the TVR is a Gaussian δ−correlated in space and time noise, i.e. G(t) = ξ(t),
where

〈ξi(t)ξ j(t ′)〉 = σ2
mδi, jδ(t − t ′).

An external action on the circuit is performed by the current input I(t), which is a pe-
riodic signal (with amplitude A, frequency ω, and initial phase ϕ), additively influenced by
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Figure 2.6: The electronic circuit of the element (i, j).

independent Gaussian noise ζ(t)

I(t) = ζ(t)+Acos(ωt +ϕ),

where
〈ζi(t)ζ j(t ′)〉 = σ2

aδi, jδ(t − t ′).

The electronic circuit with respect to the element (i, j) can be described by a set of Kir-
choff ’s equations:

C
dVi, j

dt
= I(t)−G(t)Vi, j − f1,2(Vi, j) (2.14)

+
1
Rc

(Vi+1, j +Vi−1, j +Vi, j+1 +Vi, j−1−4Vi, j)

Hence, the following set of Langevin equations describes the considered system:

dVi, j

dt
= − f1,2(Vi, j)+Vi, jξi, j(t) (2.15)

+
D
4

(Vi+1, j +Vi−1, j +Vi, j+1 +Vi, j−1−4Vi, j)

+ ζi, j(t)+Acos(ωt +ϕ),

where C is set to unity by normalization of time and D denotes a strength of coupling equal
to 4

CRc
. In the case when f2 represents the TVR, the model is the time-dependent Ginzburg-

Landau equation, which is a standard model to describe phase transitions and critical phe-
nomena in both equilibrium and nonequilibrium situations [65]. It is important that we con-
sider only the situation when the potential of one element is monostable (Ga = 0.5, Gb = 10,
Bp = 1 for f1, and g1 > 0,g2 = 1 for f2 ), avoiding the possibility to observe SR without multi-
plicative noise

We are interested in the behaviour of the mean field m(t) =
1
N

N

∑
i=1

N

∑
j=1

Vi, j(t) and consider it
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Figure 2.7: Transition lines for the equation with function f1: σ2
a = 0.3 (label 1), 0.5 (label 2)

and 1 (label 3). Also the case with f2 (the potential of every element is monostable: g1 > 0,g2 =
1); g1 = 1, σ2

a = 0.8 (label 4 ), 0.9 (label 5) and 1 (label 6).

as an output and the periodic signal as an input of the whole system. SR behaviour can be
expected if the system is bistable for the chosen set of parameters. Regions of bistability can
be determined by means of a standard mean-field theory (MFT) procedure [65]. The mean-
field approximation consists in replacing the nearest-neighbor interaction by a global term
in the Fokker-Planck equation corresponding to (2.15). In this way, we obtain the following
steady-state probability distribution wst:

wst(x,m) =

C(m)
√

σ2
mg2(x)+σ2

a
exp



2
x�

0

f1,2(y)−D(y−m)

σ2
mg2(y)+σ2

a
dy



 , (2.16)

where C(m) is a normalization constant and m is a mean field, defined by the equation:

m =
� ∞

−∞
xwst(x,m)dx. (2.17)

Self-consistent solution of Eq. (3.4) determines the mean field and the transition lines be-
tween ordered bistable (m 6= 0) and disordered monostable (m = 0) phases. Transition bound-
aries for functions f1 and f2 are shown in Fig. 2.7. Note that bistability is impossible without
multiplicative noise and without coupling between elements. Since SR effect, described be-
low, appears due to the variation of additive noise, it is also important that a change of the
additive noise intensity shifts transition boundaries.

Next we estimate signal-to-ratio (SNR) analytically. Following short-time evolution ap-
proximation, first introduced in [196] and further developed in [18*,5*], the dynamics of the
mean field is governed by an “effective” potential Ueff(x) which has the form

Ueff(V ) = U0(V )+Unoise =

�
f (V )dx− σ2

mV 2

4
, (2.18)

where U0(V ) is a monostable potential and Unoise represents the influence of the multiplicative

51



CHAPTER 2. DOUBLY STOCHASTIC EFFECTS

noise. Note that this approach is valid only if a suppression of fluctuations, performed by the
coupling, is sufficient. It means that the coupling strength should tend to infinity, or actually
be large enough. DSR is expected for the regions where this effective potential has a bistable
form. To obtain an analytical estimation of SNR for one element we use a standard linear
response theory [53, 124], yielding

SNR1 =
4πA2

σ4
a

rk, (2.19)

where rk is the corresponding Kramers rate [99]

rk =

√

(|U ′′
eff(V )|V=Vmin |U ′′

eff(V )|V=Vmax)

2π
exp(−2∆Ueff

σ2
a

). (2.20)

Further we rescale this value by the number N of elements in the circuit [175] and take
into account the processing gain G and the bandwidth ∆ in the power spectral density [124].
The SNRN of the mean field of the whole system of N elements is then

SNRN = SNR1
NG
∆

+1. (2.21)

For the parameters, used below for numerical simulations (σ2
m = 3, A = 0.1, N = 324, G = 0.7,

∆ = 0.012), we obtain the analytic estimation of SNR, shown in Fig. 2.8a by the solid line.
Except for the application for electronic circuits this calculation shows also that DSR can be
observed not only in the specific model described in [5*].

In order to verify the results obtained by our rough analytical approximation, we have
performed simulations of the model (2.15) using numerical methods described in [97]. We
have taken a set of parameters within the region of two coexisting ordered states with nonzero
mean field. As a total system, we take a two dimensional lattice of 18× 18 elements, which
was simulated numerically with a time step ∆t = 2.5× 10−4. The amplitude of the external
signal was set to 0.1, i.e. sufficiently small to avoid hops between two states in the absence of
additive noise. To describe the SR effect quantitatively, we have calculated SNR by extracting
the relevant phase-averaged power spectral density S(ω) and taking the ratio between its
signal part with respect to the noise background [53]. The dependence of SNR on the intensity
of the additive noise is shown in Fig. 2.8a for the mean-field (filled points) and the mean
field in a two-state approximation (opaque points). In this two-state approximation, we have
replaced the value of the mean field in time-series by its sign before calculating the power
spectral density, using method of symbolic dynamics [206], standardly used to investigate SR
[53]. Both curves demonstrate well-known bell-shaped dependence which is typical for SR.
In contrast to two-states approximation, for the mean field, SNR tends to infinity for small
values of multiplicative noise intensity (see black points for σ2

a < 0.1). It can be explained by
intrawell dynamics in the same way as in the conventional SR [53]. Numerical simulations
agree very good with our theoretical estimation despite the very rough approximation via
“effective” potential.

Note that this SR effect is created by multiplicative noise, since a bimodality is induced
by the combined actions of the multiplicative noise and the coupling. If we decrease only the
intensity of multiplicative noise, other parameters fixed, the SR effect is not observed, as it is
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Figure 2.8: (a) Numerical SNR (points) vs analytical estimation (solid line) for the equation
with f1 and D = 3, σ2

m = 3. Numerical results are shown by black points for the mean field and
opaque points for its two-state approximation. The stochastic resonance effect is supported
by noise. If we decrease the intensity of multiplicative noise, we do not observe it; e.g. for (b)
D = 3, σ2

m = 0.5.

shown in Fig. 2.8b. The reason is that in this case our system is not bistable (see Fig. 2.7) For
f2 the behaviour is similar: DSR is observed for g1 = 1, g2 = 1, D = 5, σ2

m = 5, but not for σ2
m = 3,

D = 5. For experimental setup a minimal number of elements, which are neccessary for DSR
observation, can be important. Reduction of the elements number in this system leads to the
fact, that a system can spontaneously (even in the absence of forcing) perform a hop between
two states. These jumps hide DSR effect, since they destroy a coherence between input and
output. For the system size 18× 18, considered here, such jumps are rather seldom [136]
and do not hinder DSR. Our calculations have shown that a size 10× 10 is still satisfactory,
whereas further decrease of the elements number will destroy the effect.
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2.3. DOUBLY STOCHASTIC COHERENCE: PERIODICITY VIA NOISE-INDUCED
SYMMETRY IN BISTABLE NEURAL MODELS

2.3 Doubly stochastic coherence: periodicity via noise-
induced symmetry in bistable neural models

Above we have suggested the concept of doubly stochastic effects. The idea is that ordering
occurs due to interplay of two noise sources and hence an optimization of both noise intensi-
ties is needed. Here we investigate doubly stochastic coherence (DSC), which appears via to
the noise-induced symmetry in the excitable system. Rhythm generation is a long-standing
problem in science, in particular, in biological and cognitive science contexts [204, 44]. A
paradigm of this kind of self-sustained oscillating behavior in nonlinear systems is offered
by limit cycles. But even in the absence of limit cycles, internal rhythms can be generated
in nonlinear systems by the effect of noise. An early realization of this phenomenon was re-
ported in a two-dimensional autonomous system when operating close to a limit cycle, and
was interpreted as a manifestation of stochastic resonance in the absence of external forcing
[83]. An optimal amount of noise was also seen to lead to a maximally coherent output in
an excitable system [150]. This effect, called coherence resonance, was studied in the well-
known FitzHugh-Nagumo model, which has been extensively used to describe the dynamics
of neural systems [94].

A complete understanding of these different mechanisms of coherence resonance is very
important for the study of rhythm generation in biological systems [44, 29], and in particular
in neural tissue. On the other hand, increasing experimental evidence has established in
recent years that certain types of neurons frequently operate in a bistable regime [84]. Thus,
the question arises whether noise can excite an autonomous coherent output in bistable neu-
ral systems. In this direction, both standard stochastic and coherence resonance have been
observed in a symmetrically bistable FitzHugh-Nagumo model [110]. Here we show that
coherence can also be generated in the general asymmetric case, where the stability of the
two stable steady states is not necessarily the same. We demonstrate that the mechanism
of coherence enhancement in this situation is utterly different from the standard one, being
based on the restoration of symmetry induced by a multiplicative source of noise. This effect
vividly contrasts with standard noise-induced phase transitions, where noise usually leads to
the breaking of symmetry [65].

Doubly stochastic coherence (DSC) can be observed in an asymmetric system under the
action of multiplicative and additive noises. Once multiplicative noise induces a symmetric
bistable state in the system, an optimal amount of additive noise can maximize coherence
in the output [110]. Hence, the resulting coherence is doubly stochastic, since simultaneous
optimization of two noise intensities is required in order to get the phenomenon. Here the
occurrence of DSC is reported on a modified version of the well-known FitzHugh-Nagumo
(FHN) model.

We consider the following version of the FHN model:

ε
du
dt

= (u(1−u)(u−a)− v)

dv
dt

= bu− v−uvξ(t)+ζ(t) . (2.22)
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In a neural context, u(t) represents the membrane potential of the neuron and v(t) is related
to the time-dependent conductance of the potassium channels in the membrane [94]. The
dynamics of u is much faster than that of v, as indicated by the small time-scale-ratio param-
eter ε. There are two mutually uncorrelated noise sources, represented by the δ−correlated
Gaussian noises ξ(t) and ζ(t), with zero mean and correlations 〈ξ(t)ξ(t ′)〉 = σ2

mδ(t − t ′) and
〈ζ(t)ζ(t ′)〉 = σ2

aδ(t − t ′). The multiplicative noise ζ(t) is interpreted in the Stratonovich sense
[65].

In what follows we use the parameters a = 0.15, b = 0.12, and ε = 0.01 , for which the
deterministic system has two stable fixed points with different stability (i.e. with different
thresholds of escape through the extrema of the u-nullcline), as shown in Fig. 2.9 (curve 1 and
its crossing points with the u-nullcline). Additive noise induces here jumps between these two
states, but the escape times are very different in the two states. This behavior is shown in
Fig. 2.11(a), as obtained from numerical simulations of model (2.22) for the above-mentioned
parameters.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
u

−0.05

0.00
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0.10

0.15
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1

23

Figure 2.9: Nullcline plot of the FHN model (2.22). Dashed line: u-nullcline (u̇ = 0); solid lines:
v-nullclines (v̇ = 0) for three different values of the multiplicative noise intensity: σ2

m = 0.0
(curve 1), 0.2 (curve 2), and 2 (curve 3). Multiplicative noise changes the relative stability of
the stable points and induces the symmetric situation.

The effect of multiplicative noise in this system can be determined by analyzing the sys-
tematic effect it produces in the system dynamics due to the fact that the corresponding
fluctuating term in the v equation has a nonzero average value. Computation of this average
value by means of standard techniques [172] leads to the following effective deterministic
model, which can be considered as a first order approximation in a small-noise expansion of
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Figure 2.10: Coherence parameter R vs. intensity of the multiplicative (left) and additive
(right) noises. σ2

a = 2× 10−4 and σ2
m = 0.5 rsp. The curves have clearly defined minimum,

which corresponds to the most periodic behaviour.

ξ(t) [65]:

ε
∂u
∂t

= (u(1−u)(u−a)− v) (2.23)

∂v
∂t

= bu− v+
σ2

m

2
u2v, (2.24)

The nullclines of this model for two nonzero values of σ2
m are shown in Fig. 2.9, as curves

2 and 3. It can be seen that for an intermediate value of σ2
m, corresponding to curve 2, the

two states are equally stable and the escape times are basically identical. As a result, jumps
in the output of the system in the presence of an optimal amount of additive noise are more
equidistant (2.11(b)). Hence, an increase of multiplicative noise enhances coherence via noise-
induced symmetry. For larger multiplicative noise intensity the asymmetry arises again, this
time reversed (curve 3 in the Fig. 2.9) and the coherence is strongly reduced [Fig. 2.11(c)].
In fact, in this extreme case the upper steady state has turned unstable, and the system
becomes excitable.

To quantify this coherence enhancement, we have measured the normalized variance of
subsequent periods Ti. The illustration of the definition of Ti is depicted in Fig. 2.11(a).
The normalized variance, which is called coherence parameter [150], is determined as R =
√

σ2
T /〈Ti〉, where σ2

T is the variance of the sequence Ti, and 〈Ti〉 is its average value. The depen-
dence of R on the multiplicative noise intensity for the time series depicted in Fig. 2.11(a-c)
is shown in the Fig.2.10 left. It is clearly seen that R first decreases to some minimum value
and then increases again. The minimal R corresponds to the highest degree of periodicity
in the system output, and is a manifestation of stochastically induced coherence. A similar
behavior occurs for varying the strength of the additive noise as well, as shown in the inset of
Fig. 2.10 right. Hence, both noise intensities need to be tuned in order to optimize periodicity
in the output (see Fig. 2.11 (d)), and hence we call this effect doubly stochastic coherence
(DSC). Different values of the excitation threshold correspond to different optimal intensities
of the noise. Hence, to optimize the periodicity one can vary either the threshold (provided by
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Figure 2.11: (a-c): Time evolution of the activator variable u for three multiplicative noise
intensities: (a) σ2

m=0.0, (b) 0.2, (c) 2. The intensity of additive noise is fixed to σ2
a = 2× 10−4,

other parameters are given in the text. (d): 3D plot of the coherence parameter R vs. intensity
of the multiplicative and additive noises.

multiplicative noise), or the intensity of additive noise.

With the aim of confirming experimentally the phenomenon of DSC via noise-induced
symmetry, we have designed a circuit ( Fig. 2.12), which has two asymmetrically stable steady
states. In this circuit, the difference between the positive and negative voltages feedings
the operational amplifier provides the asymmetry in the stability of the two fixed points.
Multiplicative noise acts on the positive voltage V+, which is a parameter that changes the
stability of the higher voltage fixed point of the circuit [19]. A second source of noise, which
acts as a signal, induces jumps between the two stable states, and acts as an additive noise.
The noise is produced electronically by amplifying shot noise from a junction diode [114].

Following the numerical approach, we fix the intensity of additive noise and increase that
of multiplicative noise. First, the upper steady state is more stable than the lower one, and
the system spends more time in the former [Fig. 2.13(a)]. As the strength of multiplicative
noise increases the situation is reversed [Fig. 2.13(c)], passing through a symmetric regime
for intermediate noise [Fig. 2.13(b)]. Calculating the coherence parameter R for the experi-
mental time traces, we find clearly the effect of doubly stochastic coherence [Fig. 2.13(d)].

We have also examined the effect of spatial coupling on a set of distributed bistable FHN
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Figure 2.12: Nonlinear electronic circuit with two asymmetrically stable steady states. The
values of the elements are: R = 270 Ω, L = 10 mH, C1 = 1 nF, C2 = 10 nF, R′ = 220 Ω, V− = 5 V ,
and V+ = 2 V . The operational amplifier is taken from a TL082 integrated circuit.

oscillators subject to two noise sources. The model is now given by:

ε
∂ui

∂t
= (ui(1−ui)(ui −a)− vi)

+
D
2

(ui+1 +ui−1−2ui)

∂vi

∂t
= bui − vi −uiviξi(t)+ζi(t), (2.25)

where D denotes the strength of coupling and the noise terms are now δ-correlated also in
space, with 〈ξi(t)ξ j(t ′)〉 = σ2

mδ(t − t ′)δi j and 〈ζi(t)ζ j(t ′)〉 = σ2
aδ(t − t ′)δi j.

We now study the joint effect of additive and multiplicative noise on the spatiotemporal
evolution of this extended system, using a binary coding for the activator variable ui(t), asso-
ciating black or white to each one of the two fixed points of the local bistable dynamics. The
numerical simulation results are shown in Fig. 2.14 for three values of σ2

m and a fixed σ2
a. As

expected, the local dynamics becomes more regular for an optimal amount of multiplicative
noise, as happens with an isolated FHN element. However, remarkably enough, the most
temporally coherent case corresponds also to the most spatially uniform behavior of the sys-
tem as a whole. To characterize such a synchronized coherence we calculate the coherence
parameter R for the mean field m(t) = ∑i ui. The dependence of this parameter vs the intensity
of multiplicative noise is shown in Fig. 2.15 (a) for a system of 50 coupled elements. The de-
pendence is non-monotonic, reflecting the DSC characteristic of isolated elements, although
in this case the parameter measures also the degree of synchronization in the system. Fur-
thermore, Fig.2.15 (b) shows that increasing the number of elements in the ensemble first
increases the coherence of the output (R initially decreases), due to the synchronization of
the elements, but further increase of the system size leads to a loss of synchronization, and
thus R increases again. The result is a system-size coherence resonance (cf with system-size
stochastic resonance, which happens in externally forced systems [153]). In a neural con-
text, this property could explain why neurons are coupled in networks of optimal size for the
organization of a pacemaker.
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Figure 2.13: Time evolution of the voltage drop through condenser C1 for the circuit repre-
sented in Fig. 2.12, for three different intensities of the multiplicative noise (measured as
peak-to-peak amplitude of the random voltage): (a) 1.6 V, (b) 1.7 V, and (c) 1.9 V. Additive
noise intensity is fixed to 0.88 V. (d): coherence parameter vs multiplicative noise intensity
for the previous case.

In conclusion of this chapter, it has been shown that bistable neural systems exhibit dou-
bly stochastic coherence via noise-induced symmetry. This mechanism of rhythm generation
arises whenever the two stable steady states of the system have different escape thresholds.
An optimal amount of multiplicative noise renders the two fixed points equally stable, and
tuning the additive noise in this noise-induced symmetric situation maximizes the coherent
behavior in the system. The influence of multiplicative noise can be explained in terms of an
effective model that contains the systematic effect of the noise term. These results have been
confirmed by experimental measurements on a bistable nonlinear electronic circuit. From a
second standpoint, it has been shown that this effect leads to synchronized behavior in spa-
tially distributed systems. In this case, this coherence enhancement also exhibits a resonance
with respect to the size of the system, i.e. there is some optimal size of the system for which
the output is the most periodic one. Our study has been performed in the general framework
of the paradigmatic FHN model, in a bistable asymmetric regime which is realistic for biolog-
ical systems, and hence we expect that our findings could be of importance for understanding
the mechanisms of periodicity generation in neural and other excitable media.
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2.3. DOUBLY STOCHASTIC COHERENCE: PERIODICITY VIA NOISE-INDUCED
SYMMETRY IN BISTABLE NEURAL MODELS

Figure 2.14: Spatiotemporal evolution of a chain of FHN oscillators in the bistable regime for
three intensities of the multiplicative noise. From left to right, σ2

m = 0.01, 0.2;4. Additive noise
is fixed to σ2

a = 4×10−4. Coding is binary, with black corresponding to the upper fixed point,
and white to the lower one. Other parameters are D = 30 , a = 0.15 , b = 0.12 , and ε = 0.01.
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Figure 2.15: (a): Coherence parameter R of the mean field m(t) vs intensity of the multiplica-
tive noise for a system with 50 coupled elements. (b): the dependence of R on the size of the
system (σ2

m = 0.005).
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3.1. NOISE INDUCED PROPAGATION IN MONOSTABLE MEDIA

3.1 Noise induced propagation in monostable media

In previous sections we have shown that in DSR the energy of fluctuations can be used
even more efficiently in spatially extended systems, by using noise twofold: to synchronize
output hops across a potential barrier with an external signal, and also to optimally con-
struct the barrier itself. Another important and nontrivial phenomenon connected with SR
in spatially distributed systems is the phenomenon of noise enhanced propagation, in which
the propagation of a harmonic forcing through an unforced bistable or excitable medium is
increased for an optimal intensity of the additive noise [111, 209, 15].

The idea of doubly stochastic effects in the application to propagation leads to a new propa-
gation phenomenon in monostable media. We show that noise can enhance propagation in de-
terministically monostable media, without any deterministic threshold, provided bistability is
induced by a second (multiplicative) noise and coupling through a noise-induced phase tran-
sition. Although numerous works about noise-induced propagation exist (cf. [63, 147, 168],
for instance), to our knowledge propagation in monostable media, which is a very important
class of dynamical systems, has not been considered before. Some exception is the work [160],
where noise-induced propagation in systems with one stable state has been considered, how-
ever the system was nonpotential and hence not with a monostable potential. In what follows,
we present noise-induced propagation in a general model of overdamped coupled monostable
nonlinear oscillators. Subsequently, and for the sake of concreteness, the phenomenon is
analyzed in particular in a simple model of coupled electronic circuits.

We begin by studying a general class of spatially distributed systems, which are locally
coupled and periodically forced:

ẋi = f (xi)+g(xi)ξi(t)+
D
4 ∑

j∈nn(i)
(x j − xi)+ζi(t)+Ai cos(ωt +ϕ) , (3.1)

where xi is defined in a two-dimensional discrete space of N ×N cells, with i denoting the cell
position (i = ix + N(iy − 1), where ix and iy run from 1 to N). The sum in the right-hand side
runs over all nearest neighbors of site i [nn(i)]. The additive and multiplicative noise terms
are mutually uncorrelated Gaussian distributed with zero mean, and white both in space and
time, i.e. 〈ζi(t)ζ j(t ′)〉 = σ2

aδi jδ(t − t ′) and 〈ξi(t)ξ j(t ′)〉 = σ2
mδi jδ(t − t ′). The results are averaged

over the initial phase ϕ of a harmonic forcing, which has amplitude Ai and frequency ω.

In the absence of periodic forcing (Ai = 0), different types of noise-induced phase transi-
tions can be obtained for different deterministic and stochastic forces f (xi) and g(xi) [172].
In particular, a system with a monostable deterministic potential can undergo a phase tran-
sition to a noise-induced bistable state for a suitable stochastic forcing g(xi) [195]. There,
in the presence of a global harmonic forcing, DSR is observed [5*]. We consider here the
case that the periodic forcing is applied coherently along only one side, as shown in Fig. 3.1
[Ai = A(δix,1 +δix,2 +δix,3)], and study the propagation of this forcing action into the non-excited
portion of the system.

Even though the results shown below are very general, for a quantitative study we choose
particular functions f (x) and g(x). These functions model the local dynamics of the electronic
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PROPAGATION

x

iy

i

EXCITATION

Figure 3.1: Scheme of the spatially distributed system. The periodic excitation is performed
only from one side, elements under the direct periodic action are denoted by black. All oscil-
lators are under the influence of noise. To study the behavior of both driven and non-driven
elements, first three columns (ix = 1,2,3) are periodically driven, however to achieve propaga-
tion it is sufficient to excite only one column.

circuit designed theoretically (i.e. it is so far a thought experiment) and displayed in Fig. 2.6.
This circuit consists of a capacitor with capacitance C, a time-varying resistor (TVR) with
conductance G(t), a current generator I(t), four coupling resistors Rc (responsible for the dif-
fusive coupling with the neighbors), and a nonlinear resistor RN , which is realized with a set
of ordinary diodes or operational amplifiers [4*], and has the characteristic function

iN = h(V ) =











GbV +(Ga −Gb)Bp if V ≤−Bp,

GaV if |V | < Bp,

GbV − (Ga −Gb)Bp if V ≥ Bp,

(3.2)

where iN is the current through the nonlinear resistor (RN), V is the voltage drop across it, and
the parameters Ga, Gb and Bp determine the slopes and the breakpoint of its piecewise-linear
characteristic curve.

We now consider that the conductance of the TVR fluctuates randomly in time, in the
form of a Gaussian noise δ−correlated in space and time [Gi(t) = ξi(t)], and that the input
current I(t) has the form of a periodic signal to which an uncorrelated Gaussian noise ζ(t)

is added [Ii(t) = ζi(t) + Ai cos(ωt + ϕ)]. Under these conditions, the dynamics of the spatially
coupled system is described by Eq. (3.1), where xi now represents the voltage drop across the
nonlinear resistor of circuit i, and the forces are f (x) = −h(x) and g(x) = x [4*]. Additionally,
C = 1 by an appropriate time normalization, and the coupling strength D = 4

CRc
.

SR behavior can be expected if the system is bistable for the chosen set of parameters.
Regions of bistability can be determined approximately by means of a standard mean-field
procedure [65]. The mean-field approximation consists of replacing the nearest-neighbor in-
teraction by a global term in the Fokker-Planck equation corresponding to (3.1) in the absence
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of external forcing. In this way, we get the steady-state probability distribution Pst:

Pst(x,m) =
C(m)

√

σ2
mg2(x)+σ2

a
exp



2
x�

0

f (y)−D(y−m)

σ2
mg2(y)+σ2

a
dy



 , (3.3)

where C(m) is a normalization constant and m is the mean field, defined implicitly by:

m =

� ∞

−∞
xPst(x,m)dx . (3.4)

The value of m is obtained by the self-consistent solution of Eq. (3.4), which enables to deter-
mine the transition lines between the ordered bistable (m 6= 0) and the disordered monostable
(m = 0) phases. These transition boundaries are shown in Fig. 3.2 in the D−σ2

m plane for three
different values of the additive noise intensity. Note that bistability requires both multiplica-
tive noise and coupling between elements. We also find that an increase in additive noise
reduces the bistable region. This gives DSR a special character with respect to standard SR
[5*].

Now we place ourselves within the bistable regime supported by multiplicative noise and
coupling ( e.g. D = 3, σ2

m = 3), and investigate the propagation of a wave through the system.
To that end, we harmonically excite the lattice from one side, as shown in Fig. 3.1, with
boundary conditions periodic in the vertical direction and no-flux in the horizontal direction.
The propagation will be quantified by the system’s response at the excitation frequency, com-

puted as Q( j) =

√

Q( j)
sin

2
+Q( j)

cos
2
, with

Q( j)
sin =

ω
nπ

� 2πn/ω

0
2m j(t)sin(ωt)dt , (3.5)

Q( j)
cos =

ω
nπ

� 2πn/ω

0
2m j(t)cos(ωt)dt , (3.6)

where mi(t) is the field (voltage) averaged along the vertical column (Fig. 3.1), i.e. m j(t) =
1
N ∑N

k=1 xi+(k−1)N(t).

The value of Q( j) for different oscillators along the chain is shown in Fig. 3.3(a), for in-
creasing intensities of additive noise within the noise-induced bistable regime. The forcing
amplitude is taken to be large enough to produce hops between the two wells in the bistable
oscillators, without the need of additive noise. Therefore, for the first oscillators an increase
of additive noise leads only to a decreasing response at the forcing frequency, whereas for dis-
tant oscillators the situation changes qualitatively. There, a response is induced that depends
non-monotonically on the additive noise intensity. Clearly, a certain amount of additive noise
exists for which propagation of the harmonic signal is optimal. For smaller multiplicative-
noise intensity [Fig. 3.3(b)] the system leaves the bistable region; hence the response is small
and always monotonically decreasing. Hence, the resonant-like effect requires suitable inten-
sities of both the additive and multiplicative noises.

A propagation of the harmonic signal can also be obtained for values of the forcing ampli-
tude small enough so that hops are not produced in the directly excited sites in the absence of
additive noise. This is the regime in which DSR really occurs in the excited part of the system,
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Figure 3.2: Mean-field transition lines between disordered monostable (m = 0) and ordered
bistable (m 6= 0) phases for model (3.1): σ2

a = 0.3 (label 1), σ2
a = 0.5 (label 2) and σ2

a = 1.0 (label
3). Other parameters are Ga = 0.5, Gb = 10 and Bp = 1.

and the excitation propagates through the rest of the lattice enhanced by noise. Now all the
oscillators have a non-monotonic dependence on the additive noise intensity for a multiplica-
tive noise within the bistable region [Fig. 3.3(c)], and a monotonic one for a multiplicative
noise within the monostable region [Fig. 3.3(d)]. The former case corresponds to a spatiotem-
poral propagation in the DSR medium, and we call this phenomenon spatiotemporal doubly
stochastic resonance (SDSR).

The mechanism of this phenomenon can be explained theoretically on the basis of a mean-
field approximation. We give a first qualitative glimpse of this analysis in what follows; quan-
titative details will be published elsewhere. Due to coupling and multiplicative noise, the
system becomes bistable with the behavior approximately governed by a mean-field effective
potential [5*]

Ueff(x) = U0(x)+Unoise = −
�

f (x)dx− σ2
mx2

4
. (3.7)

Now the effect can be understood in the frame of a standard SR mechanism [53], where
the external signal is provided by the periodic force for the directly excited oscillators, and by
the influence of the left neighbors for the non-excited oscillators. For large forcing, only the
latter need an additive noise to hop synchronously between wells, whereas for small forcing,
both the excited and the non-excited oscillators display SR. These two behaviors correspond
to the situations depicted in Figs. 3.3(a) and 3.3(c), respectively.

At this point it is worth making several remarks to the phenomenon described above.
First, SDSR and noise-induced propagation in monostable media are strongly different to
spatiotemporal SR [123, 199] or noise enhanced propagation [111, 209] in bistable media.
The effect presented here can be controlled by multiplicative noise, which modifies the depth
and separation of the two potential wells. Therefore, an optimal amount of multiplicative
noise is required to support the bistable structure. Nothing similar occurs in array-enhanced
SR [112] or in SR in extended bistable systems [23, 205]. On the other hand, an increase of
additive noise also leads to a loss of bistability (see Fig. 3.2), and hence a decrease of Q for
large additive noise is explained not only by the fact that disordered hops are produced by
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Figure 3.3: Response Q( j) to a periodic excitation in different oscillators (the order j is shown
in the curve labels) vs. additive-noise intensity (a,c) inside the bistability region (σ2

m = 3),
and (b,d) outside that region (σ2

m = 0.5). As shown in Fig. 3.1, the oscillators with index
j = ix = 1,2,3 are directly excited by the periodic force, and oscillators with j = ix > 3 are
excited through the excitation propagation. Parameters are those of Fig. 3.2, and D = 3.
The amplitude is: (a,b) A = 0.3 (noise-induced propagation) and (c,d) A = 0.2 (spatiotemporal
doubly stochastic resonance).
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intense noise, as in standard SR, but also by the loss of bistability.
Second, noise-induced propagation in monostable media is very intriguing from the view-

point of the theory of extended systems with noise and cannot be directly predicted from DSR.
The noise-induced bistability, on which DSR is based, is a collective phenomenon, which can
be observed only for a positive value of coupling. The coupling causes the situation when all
elements are close to the same position. In contrast to it, here we have shown that a prop-
agation, which implies that different cells are simultaneously in different states, can occur
in such a system without destroying the mechanism of bistability. Moreover this propaga-
tion can be enhanced by additive noise and controlled by multiplicative noise. An interesting
question is, how high can the frequency of the external signal be and still display propagation
in this medium.

In conclusion, we have reported the existence of a propagation phenomenon, in which
noise induces wave propagation in monostable media. The joint action of multiplicative noise
and spatial coupling induces bistability, and additive noise enhances the propagation of har-
monic forcing in the stochastically induced bistable medium. Due to its nontrivial propaga-
tion mechanism, this effect is interesting from a theoretical viewpoint, and can be considered
as a contribution to the theory of extended systems with noise. We also expect that these
theoretical findings will stimulate experimental work. Especially, such kind of a propagation
can be of great importance in communications, due to the fact that the energy of noise is used
in a very efficient way, both to construct the potential barrier and to provide propagation
enhancement in the noise-supported bistable system. We have demonstrated noise-induced
propagation in monostable media in a simple realistic model, but in a general framework.
Due to the generality of the model we expect that this effect can be also found in several
more complicated real extended systems with noise-induced bistability. Probable experimen-
tal implementations include the same as for DSR experimental situations: arrays of simple
electronic circuits as a communication system [4*], analog circuits [1], electronic cellular
neural networks [149, 11, 158], and are expected to be achieved in several real spatially
distributed systems, such as liquid crystals [93], photosensitive chemical reactions [128],
Rayleigh-Bénard convection [127] or liquid helium [73].

70



3.2. NOISE-INDUCED PROPAGATION AND FREQUENCY SELECTION OF
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3.2 Noise-induced propagation and frequency selection
of bichromatic signals in bistable media

Information needs to be transmitted in many different contexts, including for instance
cell signalling in biological systems [94] and optical communications in technological net-
works [7]. Biological systems, and in particular neural tissue (where signal transmission is
of utmost importance), are subjected to a large amount of noise of different origins. This
fact underlies the current interest in examining the effects of random fluctuations in signal
transmission processes. Actually, contrary to intuition, recent investigations have revealed
the constructive role of noise in the effect of noise-induced propagation. Numerical investi-
gations have shown that random fluctuations enhance propagation of harmonic (monochro-
matic) signals through bistable [209, 111] and even monostable [1*] media (see the previous
chapter). In those cases, the periodic response to a harmonic forcing being applied to one
end of the system propagates the farthest when the amount of noise acting on all elements
is optimal. The phenomenon has all ingredients characteristic of stochastic resonance [125];
one can say in fact that the system exhibits locally the noise-induced amplification of a weak
periodic signal coming from the neighboring sites. Here we are interested in the propagation
of a signal which contains more than one frequency.

Noise-enhanced propagation has also been observed for aperiodic signals [63]. But be-
tween the two limiting cases of purely harmonic (single frequency) and completely aperiodic
signals, the intermediate case of signals consisting of a finite number of harmonic modula-
tions is worth being studied. This kind of signals is commonly used, for instance, in multi-
channel optical communication systems based on wavelength-division multiplexing (WDM)
[7]. In a different type of application, probing methods based on the propagation of two-
frequency signals are used, for example, to determine the size and abundance of plankton
[132], to analyze evoked potentials in the human visual cortex [198], and to diagnose the
physical conditions of the Antarctic ice sheet [51]. Here we analyze the effect of noise on the
propagation of such kind of bichromatic signals. Two main conclusions can be drawn from
this study. First, noise enhances propagation of the two harmonic components of the driv-
ing, similarly to what happens with standard monochromatic driving [209, 111]. Second, and
more importantly, noise can be used to select the frequency which is propagated with higher
efficiency. We observe that for small noise levels the harmonic with lower frequency is prop-
agated better than the one with higher frequency, where for large noise levels the reverse
property is found. These two different effects will be analyzed in the following paragraphs.

We consider a one-dimensional chain of N coupled overdamped oscillators under the action
of spatiotemporal noise. The dynamics of this system can be described by the following set of
equations:

ẋn = f (xn)+ ε(xn−1− xn)+ ε(xn+1 − xn)+ξn(t) (3.8)

where n = 1 . . .N denotes the different oscillators, ε represents the strength of coupling be-
tween them, and ξn(t) is a Gaussian noise, δ-correlated in space and time with intensity σ2

a.
The form of the deterministic force f (x), which is assumed equal for all oscillators, is chosen
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to correspond to a bistable dynamics:

f (x) = k1x− k2x3, (3.9)

with k1, k2 > 0. In what follows, we will use the values k1 = 4.74 and k2 = 7.48. The boundary
conditions of the model are such that the ends of the chain are free (x0 = x1, xN+1 = xN). More-
over, an input signal is introduced at one end of the chain by forcing its first element with
two harmonic drivings:

ẋ1 = f (x1)+ ε(x2 − x1)+ξ1(t)+A1 cos(ω1t)+A2 cos(ω2t) (3.10)

We aim to analyze the propagation of this combined signal through the chain. We choose
non-commensurate frequencies and different amplitudes of the two harmonic components, to
avoid interference effects due to their superposition. An example of this signal is shown in
Fig. 3.4.
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Figure 3.4: Two-frequency signal injected in one end of the chain. Its parameters are A1 = 7,
A2 = 10, ω1 = 0.2, and ω2 = ω1e ≈ 0.54, where e is the base of a natural logarithm.

To estimate the quality of signal transmission at a certain oscillator k along the chain
and at a particular frequency ωi, we have calculated the response Q(k)(ωi) as the Fourier
component of the spectrum of the corresponding time series xk(t) at this frequency:

Q(k)(ωi) =
√

Q2
sin +Q2

cos , (3.11)

where

Qsin =
ωi

nπ

� 2πn/ωi

0
xk(t)sin(ωit)dt, (3.12)

and

Qcos =
ωi

nπ

� 2πn/ωi

0
xk(t)cos(ωit)dt. (3.13)

We have performed numerical simulations of model (3.8) in the presence of the signal
shown in Fig. 3.4, and have analyzed the response of the different oscillators at the two
driving frequencies, as a function of the intensity of the spatiotemporal noise. The results

72



3.2. NOISE-INDUCED PROPAGATION AND FREQUENCY SELECTION OF
BICHROMATIC SIGNALS IN BISTABLE MEDIA

for the first oscillators of the chain are shown in Fig. 3.5. We first note that for the second
and third oscillators (left and middle plot of the figure), the response at both frequencies
decreases with noise intensity. The reason for this behavior is that the amplitudes of the two
harmonic signals acting on the first oscillator are large enough to produce in it jumps between
the two wells of the bistable potential even without noise. This noiseless periodic output
pervades the neighboring oscillators (in this case the second and third ones). Therefore, any
amount of noise decreases the quality of the response. On the other hand, far enough from
the input end of the chain (depending on the value of the coupling strength; in this case,
where ε = 4, it occurs at the fourth oscillator; for smaller coupling it occurs earlier, but the
response is weaker) the system does not jump spontaneously, and noise is needed to induce
the switchings between wells. For that reason, the response function of the fourth oscillator
(right plot in Fig. 3.5) initially increases with noise intensity. Naturally, for large noise levels
disorder comes into play and the response function decreases again. The result is that there
exist intermediate amounts of noise for which the response at each one of the two driving
frequencies is optimal, a characteristic signature of stochastic resonance. Hence, one can say
that noise enhances propagation of the two-frequency signal in this system, with the optimal
noise intensity being slightly different for each one of the two frequencies.
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Figure 3.5: Response of the system in the 2nd (left), 3rd (middle), and 4th (right) oscillators
at frequencies ω1 (thick line) and ω2 (thin line). The number of oscillators in the chain is 32.

Another feature that can be observed in Fig. 3.5 is that the response in the first oscilla-
tors is larger at the high frequency than at the low one, for all values of the noise intensity.
As the signal travels farther away from the input end of the chain, the response decreases
monotonously. However, the decrease is fastest for the high frequency than for the low fre-
quency signal, an effect which is more pronounced for low noise levels. As a result, for oscilla-
tors far down the chain and for small enough noise, the response is larger at the low frequency
than at the high one. This can be seen in Fig. 3.6, which represents the response at the two
frequencies for the fifth, sixth and eigth oscillators. For the fifth and sixth oscillators, the
crossover between the two response regimes at an intermediate noise intensity can be clearly
seen. For the eight oscillators and at large noise, the response is approximately equally low
at the two frequencies. The result is that, for a certain set of oscillators along the chain, noise
selects the frequency which is being transmitter with better efficiency: the high-frequency
harmonic for large noise intensity and the low-frequency one for small enough noise. It is
worth to note that due to the intrinsic properties of the bistable chain, the high frequency
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is always better suppressed, hence this noise-induced selection is possible only under the
condition of different initial amplitudes.
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Figure 3.6: Response of the system in the 5th (left), 6th (middle), and 8th (right) oscillators
at frequencies ω1 (thick line) and ω2 (thin line).

In order to visualize the noise-induced frequency selection effect described above, we have
performed a symbol coding of two time series for different amounts of noise. These results
are shown in Fig. 3.7. It can be clearly seen that for σ2

a = 0.65 (second plot from above) the
low-frequency harmonic (top plot) is better transmitted, whereas for σ2

a = 2.0 (third plot from
above) propagation is better for the high-frequency signal (bottom plot). The behavior of the
5th oscillator in Fig. 3.7 can be compared with the corresponding response curves in Fig. 3.6.

Figure 3.7: Symbol coding of the spatio-temporal evolution of the system. Time evolves along
the horizontal axis, space along the vertical one. From top to bottom: low-frequency compo-
nent of the signal (cos(ω1t)); first six oscillators for σ2

a = 0.65; first six oscillators for σ2
a = 2.0;

high-frequency component of the signal (cos(ω2t)).

In conclusion, here we have analyzed the constructive effect of additive noise in the propa-
gation of two-frequency (bichromatic) harmonic signals through discrete bistable media. The
results show that noise enhances propagation of such signals, similarly to what happens
with simpler monochromatic driving. Furthermore, we have shown that by changing the
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noise intensity one is able to select the propagation frequency. We expect this effects to be
also present with more general multifrequency signals. Hence, this results could be relevant
in biological and technological contexts where harmonic signals with many frequencies are
present or used.
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Chapter 4

Noise-induced resonant effects
and resonant effects in the
presence of noise
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4.1. VIBRATIONAL RESONANCE IN A NOISE-INDUCED STRUCTURE

4.1 Vibrational resonance in a noise-induced structure

It has been pointed out that stochastic resonance like phenomena can be also observed
in systems where a chaotic signal is used instead of noise [182]. Moreover, in [104] it has
been shown that a high-frequency periodic force can work as a noise and amplify the re-
sponse to the low frequency periodic signal in bistable systems. This effect has been called
Vibrational Resonance (VR) [104], analogously to SR. In VR the dependence of the system
response versus the amplitude of the high-frequency action has a well-known bell-shaped
resonant form. Since two-frequency signals are very often used in communication technolo-
gies [131], it means that an optimal high-frequency modulation may improve processing of a
low-frequency signal. It is important to mention that two-frequency signals are also object of
intensive interest in laser physics [188], acoustics[118], neuroscience[198], or physics of the
ionosphere[67]. Here we investigate whether VR can be achieved in noise-induced structures,
which do not have any threshold or a potential barrier in the absence of noise. For this pur-
pose we consider a spatially extended system consisting of a network of coupled monostable
noisy oscillators under the action of low- and high-frequency periodic signals. In this system a
collective action of coupling and multiplicative noise results in the organization of bistability
of the mean field. If the amplitude of a low-frequency signal is not enough for a synchronous
response of the system, then the high-frequency force is applied. We find that an increase of
the high-frequency amplitude leads to a non-monotonous change of the system response with
a clearly defined maximum. Therefore, we present a new phenomenon, vibrational resonance
in a noise-induced structure, which is a variation of SR.

We study this effect on a nonlinear lattice of coupled overdamped oscillators introduced in
[195] and further studied in [196][5*]. The following set of Langevin equations describes the
considered system:

ẋi = f (xi)+g(xi)ξi(t)+
D
2d ∑

j∈nn(i)
(x j − xi)+Acos(ωt)+Bcos(Ωt), (4.1)

where xi(t) represents the state of the ith oscillator, i = 1, ...,Ld , in the cubic lattice of size L in
d dimensions with N = Ld elements. The sum runs over the 2d nearest neighbors of the ith
cell [nn(i)], and the strength of the coupling is measured by D. The noisy term ξi(t) represents
Gaussian noise, with zero mean and uncorrelated both in space and time

〈ξi(t)ξ j(t ′)〉 = σ2
mδi, jδ(t − t ′). (4.2)

The last terms in (4.1) stand for external periodic forces, representing a low frequency signal
with amplitude A, frequency ω, and a high-frequency signal with amplitude B and frequency
Ω, where Ω >> ω and these frequencies can be incommensurable.

For the sake of simplicity, the functions f (x) and g(x) are taken to be of the form [4*]:

f (x) =











−Gbx− (Ga−Gb)Bp if x ≤−Bp,

−Gax if |x| < Bp,

−Gbx+(Ga−Gb)Bp if x ≥ Bp,

(4.3)
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Figure 4.1: Time series of the mean field of the system (eq. 4.1) compared with the low-
frequency signal Acos(ωt) (not in scale) for different intensities of high-frequency vibration.
From top to bottom, B=0.5, 1.5, and 4.0. Ω = 5.0,ω = 0.1,A = 0.15,σ2

m = 3.0. This intensity of
multiplicative noise corresponds to the bistable region.

g(x) = x, (4.4)

where the parameters Ga = 0.5, Gb = 10 and Bp = 1 determine the slopes and the breakpoint
of the piecewise-linear characteristic curve (an approximation of the function f (x) = −x− x3).
Such forms of functions describe a realistic electronic circuit designed in [5*]. In the ab-
sence of the external force (A = 0,B = 0) this model can be solved analytically by means of
a standard mean-field theory (MFT) procedure [65]. The mean-field approximation consists
in replacing the nearest-neighbor interaction by a global term in the Fokker-Planck equa-
tion corresponding to (4.1). Using this mean-field approximation, one determines transitions
between ordered (m 6= 0) and disordered (m = 0) phases[5*], where m is the mean field, de-

fined as m(t) =
1

Ld

N

∑
i=1

xi(t). This analysis shows that the joint action of multiplicative noise

and coupling between the elements leads to the bistability of the mean-field (ordered phase).
If we fix the coupling strength above its critical value, then an increase of the multiplicative
noise induces a disorder-order phase transition, which is followed by a reentrant transition
to disorder [195]. In the ordered phase the system occupies one of two possible symmetric
states with the mean fields m1 =−m2 6= 0, depending on the initial conditions. This bistability
disappears if we switch off the multiplicative noise.

Now let us turn to the problem, how the system (1) responds to a periodic signal which
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Figure 4.2: Vibrational resonance in the noise-induced structure. Numerical simulations
(a) vs experimental results for the effective model (b). Response Q of the system vs. the
amplitude of the high-frequency force. In (a): σ2

m = 3 (label 1), 0.5 (label 2), and 0 (label 3);
other parameters are the same as in Fig. 4.1

contains two very different frequencies (e.g. ω = 0.1 and Ω = 5). First, we analyze the behavior
of the system in the parameter region (the parameters being the coupling strentgh and the
multiplicative noise intensity) where the noise-induced bistability is provided. We set the
amplitude of the low frequency signal A fixed and sufficiently small (e.g. A = 0.15), which is
not enough to cause jumps between two potential wells. The time series of the mean field m(t)

and the corresponding periodic input signal are plotted in Fig. 4.1 for three different values
of B (increasing from top to bottom). For a small amplitude B we observe rare jumps between
the two symmetric states m1 and m2 in the output, which are not synchronized with the low-
frequency signal (here d = 2 and N = 10). If we increase B to its optimal value (in the middle), it
is clearly seen that hops occur with the same periodicity as the input signal. Hence, the high-
frequency modulation optimizes signal processing in this noise-induced bistable structure.
Further increase of B leads to oscillations-hops at the high frequency, which completely hide
the signal at the low frequency. The situation differs qualitatively when we choose another
intensity of multiplicative noise corresponding to the monostable region. In this case, an
increase of B leads only to the destruction of synchronization between input and output.
Hence, the high-frequency modulation is unable to improve the quality of signal processing at
low frequency in this case. Therefore, the system considered exhibits vibrational resonance in
a noise-induced structure only when a collective bistability has been created by multiplicative
noise and coupling. To characterize this VR-effect quantitatively, we calculate the dependence
of the system response Q at the signal frequency on the amplitude of the high-frequency force
(Fig. 4.2 a). For the bistable regime the response curve (label 1) exhibits a clearly defined
maximum for the optimal value of B, which gives evidence for the presence of VR. Note that
this effect disappears if we decrease (label 2) or switch off (label 3) the multiplicative noise: in
this case an increase of the amplitude of a high-frequency force may lead only to the decrease
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Figure 4.3: Electronic circuit for the effective model (eq. 4.7).

of the system response.

The mechanism of this effect can be understood as follows. As it has been shown above,
the equation for the maximum of the probability, which is also the average value x̄ = 〈x〉 in
this approximation, takes the following form

˙̄x = f (x̄)+
σ2

m

2
g(x̄)g′(x̄), (4.5)

which is valid if f (〈x〉) >> 〈δx2〉 f ′′(〈x〉). For this dynamics an “effective” potential Ueff(x) can
be derived, which has the form

Ueff(x) = U0(x)+Unoise = −
�

f (x)dx− σ2
mg2(x)

4
, (4.6)

where U0(x) is a monostable potential and Unoise represents the influence of the multiplicative
noise. In the region, where VR in the noise-induced structure is observed, this potential has a
bistable form due to the input provided by multiplicative noise. This effect may be understood
assuming a model of an overdamped system with a bistable potential under the action of a
high- and a low-frequency periodic force:

ṁ = F(m)+Acos(ωt)+Bcos(Ωt)+ξ(t), (4.7)

where m(t) is the mean-field of the initial system, and the function F(x) describes a bistable
potential. The noisy term ξ(t) denotes tiny fluctuations, which are present in every real
system.

To verify the behavior of this effective model, we have constructed an electronic circuit
(Fig. 4.3), which is composed of two main parts. The first part is an adder, whose function is
to add a low and a high frequency signal (operational amplifier OA3 and resistors Re,Re1, and
Re2). The second part is the integrator in the double-well potential, which consists of another
adder (Ra,Ra1,Ra2,Ra3 and OA1), two multiplyers (AD633 with coefficient α), and an integrator
(Rb,Cb and OA2). Taking into account that the output of OA2 is −Vx, the equation describing
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Figure 4.4: Vibrational resonance in the experiment (Fig. 3): in the middle plot the pro-
cessing is optimal. From top to bottom: increase of the amplitude of the high frequency
B = 9.57,10.88,15.41.

the behavior of the circuit is given by

RbCbV̇ x = −VHL
Ra

Ra3
+Vx

Ra

Ra2
−α2 Ra

Ra1
V 3

x , (4.8)

where α is a parameter introduced by the multiplier circuits and VHL is the weighted sum of
the low and high-frequency signals.

The experimental results from a digital oscilloscope are shown in Fig. 4.4. In the upper
panel the jumps between wells are very rare ; in (Fig. 4.4 down) the amplitude is so high that
the “particle” always overcome the potential barrier. However, for intermediate values of the
high-frequency signal the jumps of the particle are synchronized with the low frequency sig-
nal showing the VR phenomenon described here, (Fig. 4.4 middle). Hence, by this experiment
we have shown qualitatively that the “effective” model undergoes the effect of VR, which in
the initial system occurs in the noise-induced structure.

It is worth to note that not every system with noise-induced bistability exhibits vibrational
resonance. For example, zero-dimensional systems, described in [81], demonstrate noise-
induced bistability due to the bistability of a so called “stochastic” potential but do not show
a pronounced VR. Although it is possible to observe a small maximum in the response of the
system, a further increase of the multiplicative noise, which provides bistability, decreases
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the response of the system.
In conclusion, we have described the novel phenomenon of the existence of vibrational

resonance in a noise-induced structure. This effect is a synthesis of a noise-induced phase
transition and vibrational resonance. High-frequency carrier force is able to optimize signal
processing, and this process can be controlled by multiplicative noise. Numerical simulations
for a spatially extended system has been confirmed by a experimental results for a zero-
dimensional “effective” model. We expect that due to its generality, this effect can be of a
great importance in communication technologies.

These theoretical findings can stimulate experimental work in order to verify VR in noise-
induced structures in real physical systems (for the first experimental observation of noise-
induced bistability see [73]). Appropriate situations can be found in electronic circuits [5*],
electronic cellular [149, 11, 158], as well as in systems which show a noise-induced shift of
the phase transition, e.g, in: liquid crystals [93], photosensitive chemical reactions [128],
or Rayleigh-Bénard convection [127]. The results presented here might be crucial for such
experiments because in the noise-induced structure presented here, the bistability of the
mean-field is controlled by noise.
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4.2 System size resonance in coupled noisy systems

In 2.1 we have shown that noise-induced bistability can lead to stochastic resonance phe-
nomena in the presence of additional signal. Here we investigate another effect, system size
resonance, and show that it is also possible in systems with noise-induced bistability. In
stochastic resonance there exists a “resonant” noise intensity at which the response to a pe-
riodic force is maximally ordered. Being first discussed in the context of a simple bistable
model, stochastic resonance has been also studied in complex systems consisting of many
elementary bistable cells [87, 134, 26, 61, 88]. Again, as in the conventional SR one ob-
serves a resonance-like dependence on the noise intensity, moreover, the resonance may be
enhanced due to coupling [112, 113]. Here we discuss another type of resonance in such sys-
tems, namely the system size resonance, when the dynamics is maximally ordered at a certain
number of interacting subsystems. Contrary to previous reports of array-enhanced stochas-
tic resonance phenomena (cf. [112, 113]), here we fix the noise strength, coupling, and other
parameters; only the the size of the ensemble changes.

The basic model to be considered below is the ensemble of noise-driven bistable over-
damped oscillators, governed by the Langevin equations

ẋi = xi − x3
i +

ε
N

N

∑
j=1

(x j − xi)+
√

2Dξi(t)+ f (t) . (4.9)

Here ξi(t) is a Gaussian white noise with zero mean: 〈ξi(t)ξ j(t ′)〉 = δi jδ(t − t ′); ε is the coupling
constant; N is the number of elements in the ensemble, and f (t) is a periodic force to be
specified later. In the absence of periodic force the model (4.9) has been extensively studied
in the thermodynamic limit N → ∞. It demonstrates an Ising-type phase transition from the
disordered state with vanishing mean field

X = N−1 ∑
i

xi (4.10)

to the “ferromagnetic” state with a nonzero mean field X = ±X0. A theory of this transition,
based on the nonlinear Fokker-Planck equation, was developed in [36], where also the ex-
pressions for the critical coupling εc are given.

While in the thermodynamic limit the full description of the dynamics is possible, for finite
system sizes we have mainly a qualitative picture. Formally, for finite ensembles the average
of the mean field 〈X〉 vanishes for all couplings. However, in the ordered phase (i.e. for ε > εc)
the mean field X switches between the values ±X0. The rate of switchings depends on the
system size and tends to zero as N → ∞. The asymptotic dynamics in this limit has been
discussed in [31].

For us, of the main importance is the fact that qualitatively the behavior of the mean field
can be represented as the dynamics of a nonlinear noise-driven variable, with the effective
noise vanishing in the thermodynamic limit. A nonlinear potential of this effective dynamics
has one minimum in the disordered phase (at X = 0) and has two symmetric minima (at
X = ±X0) in the ordered phase. Now we can apply the ideas of the stochastic resonance to
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this effective noise-driven oscillator. In the bistable case, (i.e. in the ordered phase for small
enough noise or for large enough coupling), one can expect a resonant-like behavior of the
response to a periodic external force when the intensity of the effective noise is changed.
Because this intensity is inverse proportional to N, we obtain the resonance-like curve of the
response in dependence of the system size.

The main idea behind the system size resonance is that in finite ensembles of noise-driven
systems the dynamics of the mean field can be represented as driven by the effective noise
whose variance is inverse proportional to the system size. For the rigorous proof of the va-
lidity of this approach see [31]. This idea has been applied to description of a transition to
collective behavior in [152]. In [154] it was demonstrated that the finite-size fluctuations can
cause a transition that disappears in the thermodynamic limit. The description of finite-size
effects in deterministic chaotic systems using the effective noise concept has been suggested
in [155, 76]. We emphasize that noise plays an essential role in this picture: with D = 0 (4.9) is
a deterministic oscillator (double or single well, depending on ε), whose response to a periodic
force does not depend on N.

Before proceeding to a quantitative analytic description of the phenomenon, we illus-
trate it with direct numerical simulations of the model (4.9), with a sinusoidal forcing term
f (t) = Acos(Ωt). Figure 4.5 shows the linear response function, i.e. the ratio of the spec-
tral component in the mean field at frequency Ω and the amplitude of forcing A, in the limit
A → 0. For a given frequency Ω the dependence on the system size is a bell-shaped curve, with
a pronounced maximum. The dynamics of the mean field X(t) is illustrated in Fig. 4.6, for
three different system sizes and for a particular frequency. The resonant dynamics (Fig. 4.6b)
demonstrates a typical for stochastic resonance synchrony between the driving periodic force
and the switchings of the field between the two stable positions. For non-resonant conditions
(Fig. 4.6a,c) the switchings are either too frequent or too rare, as a result the response is
small.

To describe the system size resonance analytically, we use, following [36], the Gaussian
approximation. In this approximation one writes xi = X +δi and assumes that δi are indepen-
dent Gaussian random variables with zero mean and the variance M. Assuming furthermore
that

1
N ∑

i
δ2

i = M ,

and neglecting the odd moments N−1 ∑i δi, N−1 ∑i δ3
i , as well as neglecting the correlations

between δi and δ j, we obtain from (4.9) the equations for X and M:

Ẋ = X −X3−3MX +

√

2D
N

η(t)+ f (t) , (4.11)

1
2

Ṁ = M−3X2M−3M2− εM +D , (4.12)

where η is the Gaussian white noise having the same properties as ξi(t). In the thermo-
dynamic limit N → ∞ the noisy term η vanishes. If the forcing term is absent ( f = 0), the
equations coincide with those derived in [36]. This system of coupled nonlinear equations
(4.11,4.12) exhibits a pitchfork bifurcation of the equilibrium X = 0, M > 0 at εc = 3D. This
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systems (D = 0.5, ε = 2) on the frequency of forcing and the system size N. The response to
forces with smaller frequencies is shifted to larger system sizes, where the effective noise,
and, consequently, the switching rate, is smaller. The linear response is obtained by virtue of
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Figure 4.6: The time dependence of the mean field in the ensemble (4.9) for D = 0.5, ε = 2,
A = 0.02, Ω = π/300, and different sizes of the ensemble: (a) N = 80, (b) N = 35, and (c) N = 15.
In (b) we also depict the periodic force (its amplitude is not in scale) to demonstrate the
synchrony of the switchings with the forcing.

bifurcation is supercritical for D > 2/3 in accordance with the exact solution given in [36],
below we consider only this case. For ε > εc the system is bistable with two symmetric stable
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fixed points

X0 = ±(2− ε+
√

(2+ ε)2 −24D)1/2/2 , (4.13)

M0 = (2+ ε−
√

(2+ ε)2−24D)/12 ,

and the unstable point X = 0, M = (1− ε+
√

(1− ε)2 +12D)/6. Now, with the external noise η
and with the periodic force f (t) the problem reduces to a standard problem in the theory of
stochastic resonance, i.e. to the problem of the response of a noise-driven nonlinear bistable
system to an external periodic force (because the noise affects only the variable X , it does not
lead to unphysical negative values of variance M, since Ṁ is strictly positive at M = 0). This
response has a maximum at a certain noise intensity, which according to (4.11) is directly
related to the system size.

To obtain an analytical formula, we perform further simplification of the system (4.11),(4.12).
Near the bifurcation point the dynamics of X is slower than that of M, and we can exclude
the latter one assuming Ṁ ≈ 0. Then from (4.12) we can express M as a function of X and
substitute to (4.11). Near the bifurcation point we obtain a standard noise-driven bistable
system

Ẋ = aX −bX3 +

√

2D
N

η(t)+ f (t) , (4.14)

where a = 1 + 0.5(ε− 1)− 0.5
√

(ε−1)2 +12D, b = −0.5 + 1.5(ε− 1)((ε− 1)2 + 12D)−1/2. A better
approximation valid also beyond a vicinity of the critical point can be constructed if we use
b̄ = aX−2

0 instead of b, where the fixed point X0 is given by (4.13). Having written the ensem-
ble dynamics as a standard noise-driven double-well system (4.14) (cf. [53]), we can use the
analytic formula for the linear response. It reads

η =
NX2

0
2Da

(D−3/2(−
√

s)
D−1/2(−

√
s)

)2[

1+
π2Ω2

2a2 exp(s)
]−1

(4.15)

where s = aNX2
0 /(2D), and D are the parabolic cylinder functions. We compare the theoret-

ical linear response function with the numerically obtained one in Fig. 4.7. The qualitative
correspondence is good, moreover, the maxima of the curves are rather good reproduced with
the formula (4.15). This shows that the resonant system size is quite good quantitatively
described by the Gaussian approximation, see Fig. 4.8.

Above we concentrated on the properties of the linear response. Numerical simulations
with the finite forcing amplitude yielded the results similar to that presented in Figs. 4.5,4.7.
However, for large amplitudes of forcing (e.g., A > 0.1 for Ω = 0.01, D = 0.5, ε = 2) a saturation
was observed: here the response grows monotonically with N. This is in full agreement with
the corresponding property of the stochastic resonance in double-well systems of type (4.14),
where the saturation occurs for small noise intensities (cf. Fig. 7 in [53]). Qualitatively,
the saturation is due to the disappearance of multistability for large forcing amplitudes, so
that the oscillator (4.14) switches at every period of the forcing, contrary to the case of small
amplitudes, where the switchings are rare (Fig. 4.6a).

Above we have considered the system of globally coupled nonlinear oscillators (4.9). The
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Figure 4.7: Comparison of the system-size dependencies of the linear response function for
frequencies Ω = 0.05 (circles) and Ω = 0.1 (squares) with theory (4.15). The parameters are
D = 1 and ε− εc = 2.5 (where the the exact εc and the approximate εc = 3D are used for the
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Figure 4.8: Dependence of the system size yielding maximal linear response on the driving
frequency Ω. Circles: simulations of the ensemble (4.9), line is obtained by maximizing the
expression (4.15).

same effect of system size resonance can be observed in a lattice with nearest neighbors
coupling as well. Then, instead of (4.9), we have

ẋi = xi − x3
i +

ε
K ∑

〈i j〉
(x j − xi)+

√
2Dξi(t)+ f (t) , (4.16)

where the number of nearest neighbors K depends on the geometry of the lattice and on the
dimension of the space. In the thermodynamic limit, the Ising-type phase transition occurs
in the lattice (if its dimension is larger than one). Similar to the globally coupled ensemble, in
finite lattices in the ordered phase the switchings between the two stable states of the mean
field are observed. With the same argumentation as above we can conclude that the response
of the mean field to a periodic forcing f (t) can have a maximum at a certain lattice size,
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while all other parameters (noise intensity, coupling strength, etc.) are kept constant. We
illustrate this in Fig. 4.9. Here the two-dimensional lattice with periodic boundary conditions
is studied. In order to keep the lattice of nearly quadratic form, we have chosen the lattices
with sizes either l2 or l(l + 1), with l = 2,3,4, . . .. The response to the periodic force has a
pronounced maximum at a certain size of the system.
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Figure 4.9: Filled circles: Response of a rectangular two-dimensional lattice of N nonlinear
bistable noise-driven elements (4.16) to a periodic force with amplitude A = 0.02 and period
T = 500. The noise intensity is D = 0.5, the parameter of nearest-neighbors coupling ε = 4.
Squares: Response of system (4.17) (a two-dimensional lattice with D = 1.25, ε = 30, A = 0.1
and T = 140). Circles: the same as squares, but for a globally coupled lattice with D = 1, ε = 20,
A = 0.1 and T = 100.

As the last example of the system size resonance we consider a lattice where each indi-
vidual element does not exhibit bistable noisy dynamics, but such a behavior appears due to
interaction and multiplicative noise. This model is described by the set of Langevin equa-
tions (see for details the section 2.1)

ẋi = −xi(1+ x2
i )

2 +
ε
K ∑

j
(x j − xi)

+
√

2Dξi(t)(1+ x2
i )+Acos(2πt/T) . (4.17)

The difference to the model (4.9) is that the noise is multiplicative and the on-site potential
has only one minimum. K is the number of elements to which the oscillator i is coupled,
for global coupling K = N and for a lattice of dimension d with nearest-neighbors coupling
K = 2d. As has been demonstrated in [194, 195], in some region of couplings ε system (4.17)
exhibits the Ising-type transition, characterized in the thermodynamic limit N → ∞ by the
onset of nonzero mean field X . Due to the symmetry of (4.17), there are states with positive
and negative mean field. If an additional additive noise is added to (4.17), then one observes
transitions between these states and the so-called double stochastic resonance in the presence
of the periodic forcing [4*,5*]. As is evident from the considerations above, such transitions
occur even in the absence of the additive noise if the system is finite. Thus, the system size
resonance should be observed in the lattice (4.17) as well. We confirm this in Fig. 4.9.

Another possible field of application of the system size resonance is the neuronal dynam-
ics (see, e.g., [189]). Individual neurons have been demonstrated to exhibit stochastic reso-
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nance [116, 40]. While in experiments one can easily adjust noise to achieve the maximal
sensitivity to an external signal, it may be not obvious how this adjustment takes place in
nature. The above consideration shows, that changing the number of elements in a small en-
semble of coupled bistable elements to the optimum can significantly improve the sensitivity
(cf. [87]). Moreover, changing its connectivity and/or coupling strength, a neuronal system
can tune itself to signals with different frequencies.

Concluding, we have shown that in populations of coupled noise-driven elements, exhibit-
ing in the thermodynamic limit the Ising-type transition, in the ordered phase (i.e. for rel-
atively small noise and large coupling) the response to a periodic force achieves maximum
at a certain size of the system. We demonstrated this effect for lattices and globally coupled
ensembles noisy oscillators. We expect the system size resonance to occur also in purely de-
terministic systems demonstrating the Ising-type transition, e.g. in the Miller-Huse coupled
map lattice [130]. The system size resonance is described theoretically by reducing the dy-
namics of the mean field to a low-dimensional bistable model with an effective noise that is
inverse proportional to the system size. The stochastic resonance in the mean field dynamics
then manifests itself as the system size resonance.
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4.3. COHERENCE RESONANCE AND POLYMODALITY IN INHIBITORY COUPLED
EXCITABLE OSCILLATORS

4.3 Coherence resonance and polymodality in inhibitory
coupled excitable oscillators

Coherence resonance(CR) has been reported in different kinds of systems, in particular,
it has been found that some noise amplitude exists at which the coherence of spiking in the
output of the system can be significantly enhanced in an isolated Fitz-Hugh Nagumo (FHN)
system [150], in the Hodgkin-Huxley [106] and Plant/Hindmarsh-Rose neuron models [115],
in dynamical systems close to the onset of bifurcations [138], or in experimentally studied
laser [68]. On the base of another mechanism, in contrast to excitable systems, CR has
been also found in the behaviour of a dynamical system, which shows jumps between several
attractors [144].

The CR behaviour have been also studied in spatially extended systems consisting of many
interacting elements[77, 139]. It has been shown that matching the noise-related character-
istic time scales of the coupled excitable elements results in noise-induced synchronization
regimes very similar to those for coupled limit cycles. Moreover, array-enhanced CR has been
reported, in which constructing an array of coherence-resonance oscillators significantly im-
proves the periodicity of the output [82, 210]. To our knowledge, all these studies of the
CR behaviour have been performed in systems with coupling via fast variable exchange or
pulsed coupling which activates the neighbors. These modes of coupling lead to many collec-
tive phenomena, including noise-induced spiral waves [88] and ”clustering” of FHN stochastic
oscillators [184]. As a consequence of this form of activatory coupling in spatially extended
system, CR may happen only if coupled oscillators move synchronously and in-phase. How-
ever, other interactions between stochastic oscillators, for example inhibitory coupling, are
also very interesting and reported to be important in numerous physical[95], electronical
[170] and chemical systems[197, 27]. To be particular, the inhibitory form of coupling is used
to explain morphogenesis in Hydra regeneration and animal coat pattern formation [126, 98],
or to provide the understanding of pattern formation in an electron-hole plasma and low tem-
perature plasma [95]. In chemistry, the effective increase of inhibitor diffusion by reducing
of activator diffusivity via the complexation of iodide (activator) with the macromolecules of
starch results in a Turing structure formation [108]. It is interesting to note that systems
with inhibitory coupling in its rhythmogenic activity resemble very much systems with time
delay [96, 159].

Following this motivation, here we study a system of noise-driven FHN elements, which
are coupled, in contrast to previous studies of CR, by the slow variable, i.e. by a diffusive
inhibitory coupling. This delays the firing of an element, if its neighbors are firing. We show
that a system of two coupled excitable elements demonstrates CR, which is intrinsically based
on the anti-phase behaviour of the elements. This is a new mechanism of CR, which works
via noise-induced synchronization in antiphase [151] of excitable elements. We demonstrate
that this effect is connected to the fact, that such systems have very rich dynamics in the
generation of rhythms, and, as a result, generate a polymodal interspike distribution. It is
important to note that the generation of polyrythms is an important problem in the descrip-
tion of several natural processes, such as locomotion [29] or playing piano [44]. Recently,
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many model investigations have been motivated by experimental studies of the firing activ-
ity of neurons that revealed polymodality in the interspike interval histograms (ISIH) [46],
[179] or studies of locomotor behaviour of halobacterium [176]. The most interesting feature
of such systems is the appearance of polymodality even without additional forcing. In this
study, we show that the application of an inhibitory coupling in a system of excitable oscilla-
tors is another possible mechanism for the generation of polymodality without any external
periodic stimuli. We study this behaviour in systems of two and three coupled elements and
show how the degree of coherence can be controlled by the noise amplitude and the coupling
strength. Such a nontrivial behaviour can be expected from the possibility of noise-induced
generation of coupling-dependent transient out-of-phase stochastic attractors in the phase
space. For two-dimensional FHN limit cycles, inhibitory coupling results in the appearance
of out-of-phase limit cycles which are stable in large areas of the parameter space if the stiff-
ness is large. The overlapping of the in-phase and the anti-phase limit cycles is typical for
two or three coupled oscillators and depends on the stiffness[200, 201].

We begin with the study of two FHN systems, coupled via diffusive exchange of the re-
covery (slow) variable, which is a kind of mutual inhibition of motion of the phase points
along the slow part of the FHN N-shaped nullcline. The equations of motion for identical
bidirectionally coupled elements are

dx1,2

dt
= A− y1,2 +C(x2,1− x1,2)+ξ1,2 (4.18)

ε
dy1,2

dt
= x1,2 − y3

1,2/3+ y1,2 (4.19)

Here, ε << 1 is a small parameter, which determines that yi are the fast variables and A

is responsible for the excitatory properties of the isolated elements. It is well known that for
|A|> 1 the only attractor is a stable fixed point. For |A|< 1, the limit cycle generates a periodic
sequence of spikes. The choice of ranges for ε and A is crucial in this study. We fix A close to
the bifurcation in the interval (1.01÷1.03) in order not to use high-level noise (parameter D)
to excite oscillation and thereby to avoid masking of the fine structure of the ISIHs. Here ε is
in the range (.001÷ .0001), which is significantly smaller compared to those that are commonly
used [150], [139]. To emphasize this specifically small value of ε, the term ”relaxator” will be
used instead of ”very relaxation oscillator”. The stochastic forcing is represented by Gaussian
white noise ξi with zero mean and intensity 2D: 〈ξi(t)ξ j(t + τ)〉 = 2Dδ(τ)δi, j.

For numerics we take the standard constant-step Runge-Kutta fourth-order routine with
the white noise added according to the algorithm [78]. In cases of any doubt, control runs have
been done with smaller steps. The ISIH usually contains about 10,000 interspike intervals,
ensuring a reasonable statistical accuracy. The numerical results are presented in Fig. 4.10.
For weak noise (Fig. 4.10left(a)) the distribution is polymodal with equidistant positions of the
peaks and progressively decreasing peak amplitudes. Hence, the inhibitory coupling really
provides a mechanism for polyrhythm generation in a system of FHN oscillators. A 2.5-fold
increase of the noise amplitude shifts the peak positions and their relationships. The second
peak becomes now the main one (Fig. 4.10left(b)); however, the polymodal structure of the
ISIH is still preserved. A further increase in the noise amplitude results in the disappearance
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Figure 4.10: (left) Interspike interval histograms for two coupled very stiff (ε = .0001) relax-
ators Eqs.(1,2) for A=1.01, C=0.1: (a) D = 10−6 , (b) D = 2.5× 10−6, (c) D = 10−5; (right) The
same for a larger coupling C=0.6: (a) D = 10−6, (b) D = 10−5, (c) D = 10−3. The built-in plot
corresponds to the typical histogram for a system with activatory coupling (C = 1.5).

of polymodality because of the global dominance of the second peak (Fig.4.10 left (c)). The
spiking behavior becomes highly regular. This simple ISIH shape is observed in a broad
range of noise amplitudes (at least up to D = 10−3). For comparison, in the similar system but
with an activatory coupling, the ISIH has always the same structure with one peak, as it is
shown in the built-in plot in the Fig. 4.10left.

These qualitative changes in the ISIH shape may be explained by analyzing the stochastic
time series. As in [150], the characteristic time of isolated stochastic oscillations is the sum of
the activation and excursion times. The former is the waiting time of the appropriate excita-
tion and fluctuates in a broad range; the latter is almost constant (Tex ≈ 3 for our parameters).
At low noise amplitudes and low coupling strengths, the shape and position of the first peak
in Fig.4.10 left(a) are very similar to those of the entire ISIH for each isolated element and for
activatory coupled elements (built-in plot in Fig. 4.10left). The origin of the ISIH polymodal-
ity is seen from the time dependences of the slow variables as presented in Fig.4.11(a). At this
particular noise amplitude, the average activation time is such that the order of spike gen-
eration by the two relaxators excited near the steady state does not depend on the coupling.
However, as soon as one element fires, the phase point of the other element moves away from
the excitation threshold due to a slow variable exchange (see Fig.4.11(b)). In other words,
when the noise amplitude is low, the second element is unlikely to fire, while its neighbor
makes an excursion. This simple consideration explains why the average interpeak interval
equals nTex. Obviously, the probability of three consecutive firings of the same element is
lower than that of two consecutive firings; therefore, the greater the number of the peak, the
lower the peak amplitude. If the noise amplitude increases at a fixed coupling strength, the
activation time becomes shorter, and the antiphase noise-induced regime as well as the previ-
ously described random excitations begin to compete. Their competition enlarges the second
peak in the ISIH and shifts it to the left ( Fig. 4.10 left(b)), because the augmented noise
may induce one element to fire slightly before the other finishes its excursion. A further in-
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Figure 4.11: Typical waveforms of the slow variables for the cases (a) and (c) in Fig.4.10 left.
(b) - the zoom of (a) in the area near the firing point.

crease in the noise amplitude leads to the full dominance of antiphase stochastic oscillations
( Fig. 4.11left(c)), as can be seen from the waveforms presented in Fig.4.11(c).

Additional calculations (as in [200, 201]) show that the dominance of the antiphase regime
is not surprising because the basin of attraction of the antiphase deterministic limit cycle
(e.g., for A=.98) is significantly larger for coupling strengths .1 < C < .3 than the in-phase
regime basin. This is not the case for larger values of coupling, for which even strong noise
is unable to induce coherency via antiphase motion. Fig. 4.10 right shows the ISIH for C=0.6
and for different noise levels. In the case of low-level noise, the ISIH shape is as in the
Fig. 4.10 left(a), because changes in the coupling strength are not significant for the mech-
anism of equidistant polymodality. The other two histograms, Fig. 4.10 right(b) and (c), are
different from those in Fig. 4.10 left in that (i) anti-phase stochastic oscillations are not dom-
inant in them, and (ii) their peaks are split (especially the first peak of histograms). The
effect of peak splitting is a bright manifestation of the dual role of the coupling we consider:
on the one hand, it causes the phase points to move more slowly when they are on different
branches of the nullcline; on the other hand, it reduces the phase shift between them when
they are on the same branch.

Hence, at A=1.01, we find two main scenarios (Figs. 4.10 left and right), how noise controls
the evolution of ISIH polymodality. Both regimes, which differs in the value of coupling,
demonstrate polymodality, but only for small values of coupling noise is able to suppress this
behaviour and induces a coherent motion via anti-phase oscillations. These observations hold
not only if the system is very close to the bifurcation point. For example, for A=1.03, the main
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Figure 4.12: (left) Coherence resonance in inhibitory coupled noise-driven excitable oscilla-
tors. Correlation time τc vs the noise intensity for different coupling strengths C. A = 1.01;
(right)Interspike interval histograms for a ring of three very stiff relaxators (ε = .0001 for
C=0.1, A=1.01). (a) D = 2×10−6, (b) D = 10−5, (c) D = 10−4.

steps of the ISIH evolution do not change, but a significantly stronger noise is required for
overcoming the threshold.

The changes in the ISIH structure with the noise amplitude increasing in the range from
10−6 to 10−3 clearly indicate a growing coherence of ISIs, which is especially strong for small
values of coupling. In order to characterize this effect quantitatively, we compute the nor-
malized autocorrelation function of the slow variable: C(τ)= < x(t)x(t+τ) >/< x(t)2 >, x(t)=x(t)-
<x>. An important characteristic of the autocorrelation function is the correlation time: τc= �
C(t)2dt. Fig. 4.12 left shows τc as a function of the noise level for weak and strong coupling
strengths. The coherence resonance is clearly seen from this figure; its significant dependence
on the coupling strength is evident. The increase in τc with the noise level can be easily un-
derstood from the above considerations of the ISIH evolution. The reason for smaller τc at
higher noise amplitudes is as in [150]: in this region, the ISIH dispersion grows up more
rapidly with the noise level than does the average ISI value. Note, however, that two stochas-
tic relaxators are running mainly in antiphase, hence the underlying mechanism of this new
form of CR is significantly different from CR effects reported till now in ensembles of excitable
systems [77, 139, 82, 210].

The next important question is how the degree of ISIH polymodality depends on the num-
ber of interacting relaxators. We consider only the simplest extension, a system of three
elements with cyclic boundary conditions. For this ring of three oscillators, large regions of
the phase diagram are co-occupied mainly by the following attractors [200, 201]: (i) in-phase
oscillations and the anti-phase regime in which two oscillators move in phase with each other
and in anti-phase with the third one; (ii) the in-phase limit cycle and different types of the
rotating waves (all phase differences are equal to one third of the period); and (iii) the anti-
phase regime and rotating waves [200, 201]. It has been shown recently [170] that several
additional attractors arise when three inhibitorily coupled relaxators are slightly detuned. It
is natural to expect that the underlying attractors determine the richness of noise-induced
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behavior, although any particular attractor manifests itself only temporarily in the case of
stochastic relaxators. The noise-dependent evolution of the ISIH in the ring with a low exci-
tation threshold (A=1.01) and a low coupling strength (C=0.1) is presented in Fig. 4.12 right.
The qualitative properties of the distributions are not sensitive to C if C ∈ (0.05÷ 0.3) and
to A if A ∈ (1.01÷ 1.03). The main difference between the histograms in Fig. 4.12 right and
Fig. 4.10 left is in the number of detectable peaks, which grows with the number of elements.
However, even in this case, due to the mechanism of out-of-phase motion, provided by in-
hibitory coupling, the increase of noise leads to an increase of coherency. It manifests itself in
the dominance of only one peak in the corresponding ISIH (see the evolution in Fig. 4.12 right
a,b,c) and based on the transient out-of-phase motion of any two oscillators. If the coupling
is strong, it can split all peaks of the ISIH, but the detailed analysis of this phenomenon is
beyond the volume of the Letter.

In summary, we have demonstrated two related phenomena, induced by inhibitory cou-
pling in a system of excitable oscillators: i) The first effect is the generation of nontrivial
polymodal distributions of interspike intervals without any periodic stimuli. Instead of ex-
ternal characteristic times, the time delays of the motion caused by the inhibitor exchange
modulate the probability of the firing. The values of these delays define the peak’s posi-
tions in the ISIHs. ii) The second effect is the coherence resonance which appears for this
polymodal regime if we increase the noise amplitude. This CR has in the background the
noise-dependent dominance of some out-of-phase attractor (anti-phase one for two coupled
relaxators). This type of CR is slightly weaker than the classical CR; it is based on a com-
pletely different mechanism and seems to be quite perspective for the selective interactions of
coupled relaxators with signals of different periods and forms. We have demonstrated these
two effects on a simple model but in a general framework, and, therefore, we expect that
these theoretical findings can be detected and used in different experimental systems with
inhibitory coupling in physics [95], biology[126], electronics [170], or chemistry [197, 27].
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Chapter 5

Main results and conclusions
In this thesis I have investigated analytically, numerically, and experimentally several new
mechanisms of noise-induced transitions, new phenomena in the frame of the concept of dou-
bly stochastic effects, and I have reported several new effects in nonlinear systems, which
lead to noise-induced order. In particular, the following results have been presented in this
work:

1. I have studied an interplay of additive and multiplicative noises in nonequilibrium tran-
sitions, and have shown that the role of additive noise in noise-induced transitions can
be very nontrivial. Consideration of a pendulum under the action of multiplicative and
additive noise has shown that if a transition occurs in the presence of additive noise, it
is blurred by this noise - this behaviour has been described analytically. Moreover, addi-
tive noise hides on-off intermittency, but causes this intermittency before a transition,
i.e. for subcritical values of the noise intensity. Consideration of an epidemiological
model has shown that an action of additive noise can stabilize oscillations.

2. I have shown that in spatially extended systems additive noise can induce second-order
phase transitions, which lead to breaking of the symmetry and the creation of a nonzero
mean field. Moreover, if a coupling term is a la Swift and Hohenberg, then additive noise
is able to induce spatially ordered patterns as a result of reentrant phase transition.
Under certain parameters of the system, additive noise is able to induce also a first-
order phase transition, in which the order parameter is changed not continuously versus
the additive noise intensity.

3. I have suggested and developed a concept of doubly stochastic effects. According to
this concept, a noise-induced order may appear in a nonlinear system in the following
scenario: one noise source creates some property of the system, and then another noise
induces the order in the system due to this property. Hence, the mechanism of a noise-
induced order is also induced by noise. It means that energy of noise is used more
efficiently for constructive purposes. The first effect, which is reported in the frame of
this concept is doubly stochastic resonance. Doubly stochastic resonance is a combined
effect which consists of a noise-induced phase transition and conventional stochastic
resonance. Multiplicative noise induces a bistability, and then this bistability is used
by additive noise to synchronize the output of the system with the incoming periodic
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signal. Doubly stochastic resonance has been investigated numerically, and confirmed
by analytical estimation

4. A simple electronic circuit for experimental implementation of doubly stochastic reso-
nance has been designed and numerically investigated. The main advantage is that the
energy of noise can be used more efficiently, not only for a synchronization as in conven-
tional stochastic resonance, but also for the creation of a potential barrier, needed for
this synchronization, and hence, this effect can be more commercially profitable. This
effect has been explained by a consideration of the ”effective” model.

5. A new effect in neural models, doubly stochastic coherence via noise-induced symmetry,
has been reported. In this effect multiplicative noise creates symmetry in the system,
which is deterministically asymmetric, and additive noise generates periodic output
of the system. An optimization of both noise intensities is needed, and, hence, this
effect is also a doubly stochastic effect. The behaviour is explained in terms of the
”effective” model and confirmed by experimental measurements. For this an excitable
electronic circuit has been designed and measured. Additionally, it has been shown that
this effect can be enhanced in spatially extended system by coupling of elements. This
enhancement has a resonance with respect to the size of the system, i.e. there is an
optimal size of the system. Probably it explains the time generation in ensembles of
neurons due to noise and due to optimal size of the neuron network.

6. Another new phenomenon in the frame of the concept of doubly stochastic effects is a
noise-induced propagation in monostable media. The noise-induced propagation has
been reported only for excitable or bistable media (or systems without local potential).
In this work it has been shown that this effect can be also observed in deterministi-
cally monostable media. Combined action of multiplicative noise and coupling induces
a bistability, and additive noise enhances the propagation of a periodic signal in this
noise-supported bistable structure. Possible experimental implementations of this effect
include arrays of simple electronic circuits as a communication system, analog circuits,
electronic cellular neural networks, liquid crystals, photosensitive chemical reactions,
or liquid helium.

7. Studying the noise-induced propagation, the constructive effect of additive noise in the
propagation of a bichromatic signals through bistable media has been analyzed. Our
results have shown that noise enhances propagation of such signals, similarly to what
happens with simpler monochromatic driving. Moreover, it has been shown that by
changing the noise intensity one is able to select the propagation frequency. These
findings are potentially important for communication technologies.

8. Vibrational resonance in the noise-induced structure has been reported. This effect is a
synthesis of a noise-induced phase transition and a conventional vibrational resonance.
In this effect an additional high frequency force is able to optimize a signal processing
in the system whose bistability is created by noise. The effect has been explained by
the ”effective” model, and this model has been tested in the experiment with a simple
electronic circuit.
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9. The effect of system size resonance in systems of coupled noisy elements has been re-
ported. It has been shown that in populations of coupled noise-driven elements, in
the ordered phase the response to a periodic force achieves maximum at a certain size
of a system. This effect has been also demonstrated in deterministically monostable
elements under the condition that bistability is created by multiplicative noise and cou-
pling.

10. Excitable systems with inhibitory coupling have been studied and two related phe-
nomena have been demonstrated: a generation of nontrivial polymodal distributions
of interspike intervals without any periodic stimuli and a new mechanism of coherence
resonance, that is based on the noise-dependent dominance of out-of-phase attractor
(antiphase one for two coupled relaxators).

Especial attention in this work has been paid to possible application of these theoretical
findings. Let me summarize this discussion and results. The results, concerning the influ-
ence of additive noise in noise-induced transitions can be applied for mechanical systems
[25*], models of epidemics [24*], and systems with a pattern formation [18*]. For the effect
of doubly stochastic resonance a simple electronic circuit has been designed [4*]. Also, it is
discussed that understanding of such doubly stochastic resonance effects, as doubly stochas-
tic resonance and noise-induced propagation in monostable media, can be potentially helpful
in the investigation of liquid nematic crystals [93, 207], noise-induced bistability in Helium-
IV [73], electronic circuits [1], as well as systems, which demonstrate noise-induced shift of
the phase transition, e.g, in: photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127]. For communication technologies it can been important that in these dou-
bly stochastic effects the energy of noise is used more efficiently for constructive purposes.
For an experimental implementation of doubly stochastic coherence, an especial electronic
circuit has been constructed and investigated [34*]. New results, which show the possibility
of noise-induced selection of propagation frequency of bichromatic signal in bistable media,
can be used in communication technologies. A possible field of application of the system size
resonance is neural dynamics [189]. Finally, a new mechanism of coherence resonance, dis-
cussed here, can be found in numerous systems with inhibitory coupling, e.g. in physical[95],
electronical [170], chemical systems[197, 27], in particular, in morphogenesis of Hydra re-
generation and in the animal coat pattern formation [126], in the pattern formation in an
electron-hole plasma and low temperature plasma [95], or in chemical systems, where the
effective increase of inhibitor diffusion is achieved by reducing of activator diffusivity via
the complexation of iodide (activator) with the macromolecules of starch results in Turing
structure formation [108].

In the conclusion I would like to outline some perspective of the further research. It is
important to note that the topic of nonequilibrium phenomena which lead to noise-induced
order is rather new. I see three main directions in the study of these effects:

1. Theory of noise-induced phenomena which lead to ordering in nonlinear systems. The
phenomena described here are demonstrated by a large variety of models, and the ques-
tion naturally arises what is the complete classification of such effects. At the mo-
ment one can distinguish in this classification between several basic phenomena such
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as stochastic resonance, noise-induced transitions, ratchets and so on. Nevertheless,
recent researches, including this work, have shown that a synthesis of these basic phe-
nomena is possible. This makes the complete classification as an open question up to
now. Another and closely connected direction of theoretical research is finding of new
phenomena and new mechanisms, which demonstrate or create noise-induced order.
In particular, in the nearest future it will be very interesting to investigate the role
of colored noise in doubly stochastic effects, the effect of system size resonance in the
generation of periodic output in neuronal networks, i.e. ensembles of excitable system,
vibrational propagation in the chains of noisy elements, or hidden transitions induced
by additive noise in oscillatory systems due to the autoparametric effect. We expect that
doubly stochastic resonance or its modifications can be found not only in the system, de-
scribed here, but probably in oscillatory systems, or systems with a bistable “stochastic”
potential.

2. Experimental implementation and confirmation of theoretical findings developed in the
study of noise-induced effects, and, in particular, in this work. During the research,
presented here, we have paid an especial attention to possible experimental situations,
which can be considered as an application of this theory. Nevertheless, despite to the
discussed results, an experimental research and commercial use of noise-induced effects
is not sufficiently developed, and we leave it as a perspective direction of the future
research in physics, chemistry, and living sciences.

3. Modelling transitions and irregular oscillations observed in experimental data by stochas-
tic models. As has been shown in this work, already known phenomena which have
been explained in the framework of a deterministic theory, could be also successfully
described by stochastic models. Deterministic and noise-induced processes are very dif-
ficult to distinguish in many situations. Moreover, sometimes a noisy excitation looks
more justified. For example, in the recently outlined hypothesis it is mentioned that
turbulence in non-closed flows is a result of noise-induced phase transition. Also we ex-
pect that noise-induced processes may be very important for understanding of complex
natural systems studied in neuroscience or such as microseismic oscillations, or phase
transitions observed in physiological systems, especially in bimanual movements. An-
other open question, closely associated with modelling is the identification of the ex-
citation mechanism by the analysis of irregular time-series. This problem is of high
importance because to model a system one should know the physical mechanism of an
excitation. At the same time, time-series are often the single source of the information
about a nonlinear system - “black box”. At this point, it is essential to note that classical
methods of analysis, such as a spectral analysis or a calculation of correlation dimen-
sion are sometimes unable to distinguish between noise-induced irregular oscillations
and chaotic oscillations of deterministic nature.
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[52] A. Fuliński. Relaxation, noise-induced transitions, and stochastic resonance driven by
non-markovian dichotomic noise. Phys. Rev. E, 52(4):4523–4526, 1995.

[53] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod.
Phys., 70:223, 1998.

[54] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Lett. A,
158:449, 1989.

[55] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Rev.
Lett., 62:349, 1989.

[56] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Rev.
Lett., 65:2607, 1990.

[57] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Rev.
Lett., 71:3625, 1993.

[58] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Rev. E,
49:4878, 1994.

[59] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. Santucci. Phys. Rev. E,
51:R3799, 1995.

[60] L. Gammaitoni, M. Martinelli, L. Pardi, and S. Santucci. Observation of stochastic res-
onance in bistable electron-paramagnetic-resonance systems. Phys. Rev. Lett., 67:1799,
1991.

[61] H. Gang, H. Haken, and X. Fagen. Phys. Rev. Lett., 77:1925, 1996.

[62] J. Garcı́a-Ojalvo, A. Hernández-Machado, and J.M. Sancho. Effects of external noise on
the swift-hohenberg equation. Phys. Rev. Lett., 71:1542, 1993.

[63] J. Garcı́a-Ojalvo, A.M. Lacasta, F. Sagués, and J.M. Sancho. Europhys. Lett., 50:427,
2000.

[64] J. Garcı́a-Ojalvo, J. M. R. Parrondo, J. M. Sancho, and C. Van den Broeck. Reentrant
transition induced by multiplicative noise in the time-dependent ginzburg–landau
model. Phys. Rev. E, 54:6918, 1996.

[65] J. Garcı́a-Ojalvo and J. M. Sancho. Noise in Spatially Extended Systems. Springer, New
York, 1999.

[66] C.W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 1985.

114



BIBLIOGRAPHY

[67] V.E. Gherm, N.N. Zernov, B. Lundborg, and A. Vastberg. The two-frequency coherence
function for the fluctuating ionosphere: Narrowband puls propagation. Journ. of Atmo-
spheric and Solar-terrestrial physics, 59:1831, 1997.

[68] G. Giacomelli, M. Giudici, S. Balle, and J. R. Tredicce. Experimental evidence of coher-
ence resonance in an optical system. Phys. Rev. Lett., 84:3298, 2000.

[69] Z. Gingl, L. Kiss, and F. Moss. Europhys. Lett., 29:191, 1995.

[70] D. Gong, G. hu, X. Wen, C. Yang, G.R. Qin, R. li, and D. Ding. Phys. Rev. A, 36:4243,
1992.

[71] D. Gong, G. hu, X. Wen, C. Yang, G.R. Qin, R. li, and D. Ding. Phys. Rev. E, 48:4862,
1992.

[72] D. Gong, G.R. Qin, G. Hu, and X.D. Weng. Phys. Lett. A, 159:147, 1991.

[73] D. Grisowld and J.T. Tough. Phys. Rev. A, 36:1360, 1987.

[74] P. Haenggi. Stochastic resonance in biology. ChemPhysChem, 3:285–290, 2002.

[75] H. Haken. Synergetics. Springer-Verlag, Berlin, 1978.

[76] A. Hamm. Physica D, 142:41, 2000.

[77] S. K. Han, T.G. Yim, D.E. Postnov, and O.V. Sosnovtseva. Phys. Rev. Lett., 83:1771,
1999.

[78] E. Helfand. Bell Sys. Tech. J., 58:2289, 1979.

[79] A.D. Hibbs. Nuovo Cimento, 17D:811, 1995.

[80] W. Hohmann, J. Muller, and F.W. Schneider. J. Phys. Chem, 100:5388, 1996.

[81] W. Horsthemke and R. Lefever. Noise-Induced Transitions. Springer, Berlin, 1984.

[82] B. Hu and C. Zhou. Phys. Rev. E, 61:R1001, 2000.

[83] Hu Gang, T. Ditzinger, C.Z. Ning, and H. Haken. Stochastic resonance without external
periodic force. Phys. Rev. Lett., 71(6):807, 1993.
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Doubly stochastic effects are effects in which an optimization of both multiplicative and
additive noise intensities is necessary to induce ordering in a nonlinear system. I review
recent achievements in the investigation of these effects and discuss two phenomena: dou-
bly stochastic resonance and noise-induced propagation in monostable medium. Finally
I discuss possible experimental implementations of these phenomena.

Keywords: Stochastic resonance; multiplicative; additive; noise; doubly stochastic.

1. Introduction

It is not surprising nowadays that noise or random fluctuations can induce counter-
intuitive effects, in which noise exhibits a constructive, leading to ordering, role in
the behaviour of dynamical systems. Many phenomena have confirmed this ability
of noise, among these noise-induced phenomena, one can distinguish between sev-
eral basic ones, such as noise-induced transitions [1–6], stochastic resonance [7, 8],
coherence resonance [9], or stochastic transport in ratchets [10]. The most popular
example of noise-induced ordering, which can be also found in the behaviour of bio-
logical objects [11] as well as in human recognition [12] or in human brain waves [13],
is the effect of stochastic resonance (SR). In the most standard situation SR con-
sists in an optimization by noise of the response of a bistable system to a weak
periodic signal. In addition to this conventional situation, due to its generality and
universality SR has been found in a large variety of systems, as monostable [14], ex-
citable [15], non-dynamical [16], and thresholdless [17] systems, in systems without
an external force (called coherence resonance) [9,18], and in systems with transient
noise-induced structure [19].

Noteworthy, the principle of SR can be also extended for the case of spatially
distributed systems. In such systems an optimal intensity of noise may lead to noise-
enhanced propagation, in which the propagation of a harmonic forcing through an
unforced bistable or excitable medium is increased for an optimal intensity of addi-
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tive noise [20,21]. This phenomenon has all ingredients characteristic of SR, because
the system exhibits locally the noise-induced amplification of a weak periodic signal
coming from the neighboring sites. It is important to note that, although numerous
works about noise-induced propagation exist (e.g. [22–24]), to our knowledge prop-
agation in monostable media, which is a very important class of dynamical systems,
has not been considered before. An interesting exception to this point is the ther-
mal resonance in a signal transmission [25], where noise-induced propagation has
been found in monostable systems, but without a local potential and with nonlinear
coupling.

In this review we discuss several phenomena in the frame of a concept of doubly
stochastic effects, which also demonstrate an improvement of signal processing or
signal propagation in nonlinear dynamical systems. This concept has been recently
introduced as new mechanism leading to noise-induced ordering in nonequlibrium
systems. The idea of this concept is the following. If we observe noise-induced order
in a nonlinear system, it occurs due to the presence of some intrinsic property of a
system, which together with noise results in noise-induced ordering. For example,
in the conventional scenario of SR this feature is a threshold, which is present in the
system. Coming noise interacts with this feature, and improves a response of the
system to the external periodic signal. Meanwhile, a crucial property of a system, a
potential threshold in this case, can be also induced by noise. Usually it happens if
we have an interplay of multiplicative and additive noise in the system. In this case
multiplicative noise induces a property of a system and additive noise maximizes
an ordering in a system with this property. Hence, such effects can be called doubly

stochastic effects (DSE), because for maximal ordering an optimization of both noise
intensities is necessary. Certainly, in such effects an energy of noise is used more
efficiently, because it is used not only for noise-induced ordering, but also for system
property, which is necessary for this ordering.

In this paper we review two DSE, doubly stochastic resonance (DSR) [26] and
noise-induced propagation (NIP) in monostable media [27]. After an introduction
of a model and reviewing of noise -induced phase transitions, demonstrated by this
model, we describe the effect of DSR. In DSR multiplicative noise (in combination
with spatial coupling) induces bistability in a deterministically monostable system,
and additive noise induces synchronization with the external signal in this noise-
induced bistable regime. Following this, we show that this system can exhibit doubly
stochastic effects which lead to signal propagation, if the system is periodically
excited from one side. Finally we discuss a possible experimental implementation
of suggested theoretical findings in designed simple electronic circuit [28]. In the
conclusion we discuss the obtained results and possible directions of the future
research.

2. A Model and Noise-induced Phase Transition

We study a general class of spatially distributed systems of elements, which are
locally coupled and periodically forced:

ẋi = f(xi) + g(xi) ξi(t) +
D

4

∑

j∈nn(i)

(xj − xi) + ζi(t) + Ai cos(ωt + ϕ) , (1)
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where xi is defined in a two-dimensional discrete space of N×N cells, with i denoting
the cell position (i = ix + N(iy − 1), where ix and iy run from 1 to N). The sum
in the right-hand side runs over all nearest neighbors of site i [nn(i)]. The additive
and multiplicative noise terms are mutually uncorrelated Gaussian distributed with
zero mean, and white both in space and time, i.e. 〈ζi(t)ζj(t

′)〉 = σ2
aδijδ(t − t′) and

〈ξi(t)ξj(t
′)〉 = σ2

mδijδ(t − t′).
In the absence of periodic forcing (Ai = 0), different types of noise-induced

phase transitions can be obtained for different forces f(xi) and g(xi). In particular, a
system with a monostable local deterministic potential can exhibit a phase transition
to a noise-induced bistable state [3, 29]. This transition breaks a symmetry and
ergodicity of a system and leads to the formation of a non-zero mean field (see
Fig. 1). The reason of this phase transition is the common effect of short time
bistability induced by multiplicative noise and coupling. To understand which forces
f(xi) and g(xi) are necessary for the demonstration of noise-induced transition, let
us consider the following argumentation [30]. The time evolution of the first moment
of a single element can be found by the drift part in the corresponding Fokker-Planck
equation (Stratonovich case)

〈ẋ〉 = 〈f(x)〉 +
σ2

m

2
〈g(x)g′(x)〉. (2)

Next if we start with an initial Dirac δ function, follow it only for a short time, such
that fluctuations are small and the probability density is well approximated by a
Gaussian. A suppression of fluctuations, performed by coupling, which is absolutely
necessary for the transition under consideration, makes this approximation appro-
priate in our case [31]. The equation for the maximum of the probability, which is
also the average value in this approximation x̄ = 〈x〉, has the following form

˙̄x = f(x̄) +
σ2

m

2
g(x̄)g′(x̄), (3)

which is valid if f(〈x〉) >> 〈δx2〉f ′′(〈x〉). For this dynamics an “effective” potential
Ueff(x) can be derived, which has the form

Ueff(x) = U0(x) + Unoise = −

∫

f(x)dx −
σ2

mg2(x)

4
, (4)

where U0(x) is a monostable potential and Unoise represents the influence of the
multiplicative noise. If this effective potential is bistable for some intensity of multi-
plicative noise, then with some approximation the system can undergo noise-induced
phase transition, which leads to bistability of the mean field.

More precisely, a borderline of the phase transition can be found analytically by
means of the standard mean-field theory procedure [3]. This mean-field approxima-
tion is based on replacing the nearest-neighbor interaction by a global term in the
Fokker-Planck equation corresponding to (1) for Ai = 0. A steady-state solution of
Fokker-Planck eq. then gives:

wst(x, m) =
C(m)

√

σ2
mg2(x) + σ2

a

exp



2

x
∫

0

f(y) − D(y − m)

σ2
mg2(y) + σ2

a

dy



 , (5)
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Fig. 1. A visualization demonstration of the phase transition in the model (1). In the disordered
phase the mean field is zero due to the random deviation of different elements around zero (middle).
In the ordered phase, induced by noise, the symmetry is broken and the mean field is either positive
(right) or negative (left). The elements in the lattice 128×128 are coded in accordance to its sign:
if positive or zero - white, if negative - black.

where C(m) is a normalization constant and m is the mean field, defined by the
equation:

m =

∫

∞

−∞

xwst(x, m)dx. (6)

The self-consistent solution of eq.(6) determines transitions between ordered (m 6=
0) and disordered (m = 0) phases. Below we consider two examples of functions
f(x) and g(x), which provide a possibility of a noise-induced phase transition.

3. Doubly Stochastic Resonance

DSR is a synthesis of noise-induced phase transition and conventional SR. To
demonstrate DSR the functions f(x) and g(x) in eq.(1) are taken to be of the
form [29]:

f(x) = −x(1 + x2)2, g(x) = 1 + x2. (7)

With these forces, a system (1) undergoes a phase transition, whose transition
boundaries between different phases are shown in Fig. 2 (left) and the corresponding
dependence of the order parameter on σ2

m is presented in Fig. 2 (right).
Next we consider how the system (1) responses to the global periodic forcing

(Ai = A). We have taken a set of parameters (σ2
m; D) within the region of two

coexisting ordered states with a nonzero mean field. In particular, we choose values
given by the dot in Fig. 2 (left). As for the network, we take a two-dimensional
lattice of L2 = 18 × 18 oscillators, which is simulated numerically [32] with a time
step ∆t = 2.5×10−4 under the action of the harmonic external force. The amplitude
of the force A has to be set sufficiently small to avoid hops in the absence of additive
noise. Jumps between m1 ↔ m2 occur only if additive noise is additionally switched
on. Runs are averaged over different initial phases. Time series of the mean field and
the corresponding periodic input signal are plotted in Fig. 3 left for three different
values of the intensity of additive noise σ2

a. The current mean field is calculated as

m(t) =
1

L2

∑N

i=1
xi(t). For small σ2

a, hops between the two symmetric states m1

and m2 are rather seldom and not synchronized to the external force. If we increase
the intensity σ2

a, we achieve a situation when hops occur with the same periodicity as
the external force and, hence, the mean field follows with high probability the input
force. An increase of additive noise provides a synchronization of the output of the
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Fig. 2. Left: Boundaries of the bistable regime on the plane (σ2
m ;D) for different intensities of

the additive noise σ2
a = 0 (1); 1 (2), and 5 (3). The black point corresponds to D = 20, σ2

m = 3.
Right: The order parameter |m| vs the intensity of the multiplicative noise for D = 20 and σ2

a =
0 (label 1), 1 (label 2), and 5 (label 3). Inside the ordered region for fixed value of σ2

m an increase
of the additive noise intensity leads to the decrease of the order parameter.

system with input forcing. If σ2
a is increased further, the order is again destroyed,

and hops occur much more frequently than the period of the external force. Note
also that for large σ2

a the value of the mean field which corresponds to the stable
state is becoming smaller. It is caused by the fact that additive noise influences
also transition lines. An increase of σ2

a results in a reduction of the ordered region
(Fig. 2 (left), curves 2 and 3) and decreasing the value m1 = −m2 (Fig. 2 (right),
curves 2 and 3).

To quantify this DSR-effect, we have calculated the signal-to-noise ratio (SNR)
by extracting the relevant phase-averaged power spectral density S(ω) and taking
the ratio between its signal part with respect to the noise background [8]. The de-
pendence of SNR on the intensity of the additive noise is shown in the Fig. 3 (right)
for the mean field (filled points) and the mean field in a 2-state approximation
(opaque point). In this 2-states approximation we have replaced m(t) by its sign
and put m(t) = +1 or m(t) = −1, respectively. Both curves exhibit the well known
bell shaped dependence on σ2

a typically for SR. Since the bimodality of the mean
field is a noise-induced effect we call that whole effect Doubly Stochastic Resonance.
For the given parameters and A = 0.1, ω = 0.1 the maximum of the SNRs is
approximately located near σ2

a ∼ 1.8.

To obtain analytic estimates of the SNR, an approximation of “effective” po-
tential (4) can be used. For this we consider a conventional SR problem in this
potential with an external periodic force of the amplitude A and the frequency ω.
If we neglect intrawell dynamics and follow linear response theory the SNR is well
known [8, 33]

SNR1 =
4πA2

σ4
a

rk (8)

where rk is the corresponding Kramers rate [34]

rk =

√

(U ′′

eff(x)|x=xmin
|U ′′

eff(x)|x=xmax
)

2π
exp(−

2∆Ueff

σ2
a

) (9)
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Fig. 3. Left: The time evolution of the current mean field (output) and the periodic external force
F (t) (input) for different intensities of additive noise (from top to bottom) σ2

a = 0.01, 1.05, and 5.0.
If the intensity of the additive noise is close to their optimal value (middle row), an input/output
synchronization occurs. The remaining parameters are: A = 0.1, ω = 0.1, D = 20, and σ2

m = 3.
Right: The dependence of SNR on the additive noise intensity for the output (filled points) and its
2-states approximation (opaque points). The solid line corresponds to the analytical estimation
SNRN (10). The processing gain is G = 0.7.

for surmounting the potential barrier ∆Ueff . Using Eqs.(4),(8), and (9) we get an
analytical estimates for a single element inside the lattice. Further on, rescaling this
value by the number N of oscillators in the lattice [35] and taking into account the
processing gain G and the bandwidth ∆ in the power spectral density [33, 36, 37],
the SNRN of the mean field of the network of N elements can be obtained

SNRN = SNR1
NG

∆
+ 1. (10)

This dependence is shown in the Fig. 3 right by the solid line and demonstrates
despite the rough approximation a good agreement with the results of the numerical
simulations. Nearly exact agreement is found in the location of the maximum as well
as for the quantitative values of the SNR (“scalloping loss” [33] has been avoided
in simulations by setting the frequency ω to be centered on one of the bins in the
spectrum).

4. Noise-induced Propagation in Monostable Media

Next we study a propagation in the system (1). In this case the periodic forcing is
applied to the system (1) coherently along only one side, as shown in Fig. 4 (left)
[Ai = A(δix,1+δix,2+δix,3)]. Even though the results shown below are very general,
for a quantitative study we choose particular functions f(x) = −f1(x)(see eq.(12))
and g(x) = x [28]. Regions of bistability can be as above determined approximately
by means of a standard mean-field procedure [3] and are shown in Fig. 4(right) in
the D − σ2

m plane for three different values of the additive noise intensity.
Now we place ourselves within the bistable regime supported by multiplicative

noise and coupling ( e.g. D = 3, σ2
m = 3), and investigate the propagation of a wave

through the system. The boundary conditions are periodic in the vertical direction



Doubly Stochastic Effects L1

PROPAGATION

x

iy

i

EXCITATION

0 2 4 6 8 10
σm

2
0.0

2.0

4.0

6.0

D

1
2

3

m=0

m=0

Fig. 4. Left: A lattice which is excited only from one side: elements under the direct periodic action
are denoted by black; the first three columns (ix = 1, 2, 3) are periodically driven; all oscillators
are under the influence of noise. Right: Mean-field transition lines between disordered monostable
(m = 0) and ordered bistable (m 6= 0) phases for model (see Sec. 3): σ2

a = 0.3 (label 1), σ2
a = 0.5

(label 2) and σ2
a = 1.0 (label 3). Other parameters are Ga = 0.5, Gb = 10 and Bp = 1.

and no-flux in the horizontal direction. The propagation will be quantified by the

system’s response at the excitation frequency, computed as Q(j) =

√

Q
(j)
sin

2
+ Q

(j)
cos

2
,

with

Q
(j)
sin =

ω

nπ

∫ 2πn/ω

0

mj(t) sin(ωt)dt , Q(j)
cos =

ω

nπ

∫ 2πn/ω

0

mj(t) cos(ωt)dt , (11)

where mi(t) is the field (voltage) averaged along the vertical column (Fig. 4), i.e.

mj(t) = 1
N

∑N
k=1 xi+(k−1)N (t).

The value of Q(j) for different oscillators along the chain is shown in Fig. 5(a)
for increasing intensities of additive noise within the noise-induced bistable regime.
The forcing amplitude is taken to be large enough to produce hops between the
two wells in the bistable oscillators, without a need of additive noise. Therefore,
for the first oscillators an increase of additive noise leads only to a decreasing re-
sponse at the forcing frequency, whereas for distant oscillators the situation changes
qualitatively. There, a response is induced that depends non-monotonically on the
additive noise intensity. Clearly, a certain amount of additive noise exists for which
the propagation of the harmonic signal is optimal. For smaller multiplicative-noise
intensity [Fig. 5(b)] the system leaves the bistable region; hence the response is
small and always monotonically decreasing. Hence, the resonant-like effect requires
suitable intensities of both the additive and multiplicative noises.

A propagation of the harmonic signal can also be obtained for values of the
forcing amplitude small enough so that hops are not produced in the directly ex-
cited sites in the absence of additive noise. This is the regime in which DSR really
occurs in the excited part of the system, and the excitation propagates through the
rest of the lattice enhanced by noise. Now all the oscillators have a non-monotonic
dependence on the additive noise intensity for a multiplicative noise within the
bistable region [Fig. 5(c)], and a monotonic one for a multiplicative noise within
the monostable region [Fig. 5(d)]. The former case corresponds to a spatiotempo-
ral propagation in the DSR medium, and we call this phenomenon spatiotemporal

doubly stochastic resonance (SDSR).
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Fig. 5. Response Q(j) to a periodic excitation in different oscillators (the order j is shown in the
curve labels) vs. additive-noise intensity (a,c) inside the bistability region (σ2

m = 3), and (b,d)
outside that region (σ2

m = 0.5). As shown in Fig. 1, the oscillators with index j = ix = 1, 2, 3
are directly excited by the periodic force, and oscillators with j = ix > 3 are excited through
the excitation propagation. Parameters are those of Fig. ??, and D = 3. The amplitude is:
(a,b) A = 0.3 (noise-induced propagation) and (c,d) A = 0.2 (spatiotemporal doubly stochastic
resonance).

Using an approximation of “effective”potential this effect can be understood in
the frame of a standard SR mechanism [8], where the external signal is provided by
the periodic force for the directly excited oscillators, and by the influence of the left
neighbors for the non-excited oscillators. For large forcing, only the latter need an
additive noise to hop synchronously between the wells, whereas for small forcing,
both the excited and the non-excited oscillators display SR. These two behaviors
correspond to the situations depicted in Figs. 5(a) and 5(c), respectively.

5. Experimental Implementation

We expect that these theoretical findings will stimulate experimental works to verify
DSR in real physical systems (for the first experimental observation of noise-induced
bistability see [38]). Appropriate situations can be found in electronic circuits [?],
as well as in systems, which demonstrate a noise-induced shift of the phase tran-
sition, e.g, in: liquid crystals [39, 40], electronic cellular neural networks [41–43],
photosensitive chemical reactions [44, 45], or Rayleigh-Bénard convection [46]. It
can be crucial for such experiments, that in doubly stochastic effects the energy of
noise is used in a more profitable way: not only for the optimization of the sig-
nal processing or propagation, but also for the support of the potential barrier to
provide this optimization.

Here we discuss a design of a simple electronic circuit which can be used for the
demonstration of these phenomena [28]. This electrical circuit consists of N coupled
elements (i, j). A circuit of one element is shown in Fig. 6 (a). Three ingredients
in this circuit are important: input current, time-varying resistor (TVR) and a
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nonlinear resistor. Every element is coupled with its neighbours by the resistor Rc

(i.e. by diffusive coupling). The capacitor is shown by C. The nonlinear resistor RN

can be realized with a set of ordinary diodes [47, 48], whose characteristic function
is a piecewise-linear function

iN = f(V ) =











GbV + (Ga − Gb)Bp if V ≤ −Bp,

GaV if |V | < Bp,

GbV − (Ga − Gb)Bp if V ≥ Bp,

(12)

where iN is the current through the nonlinear resistor(RN), V is the voltage across
the capacitor(C), and parameters Ga, Gb and Bp determine the slopes and the
breakpoint of the piecewise-linear characteristic curve. The next important ingre-
dient is a time-varying resistor(TVR) [48, 49]. The conductance G(t) of TVRs
varies with time. Presently, we consider the case that the function which represents
the variation of the TVR is a Gaussian δ−correlated in space and time noise, i.e.
G(t) = ξ(t), where

〈ξi(t)ξj(t
′)〉 = σ2

mδi,jδ(t − t′).

An external action on the elements under direct excitation in the circuit is
performed by the current input I(t), which is a periodic signal (with amplitude A,
frequency ω, and initial phase ϕ), additively influenced by independent Gaussian
noise ζ(t) with intensity σ2

a

I(t) = ζ(t) + Ai cos(ωt + ϕ), 〈ζi(t)ζj(t
′)〉 = σ2

aδi,jδ(t − t′).
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Fig. 6. (a) The electronic circuit of the element (i, j). (b) Numerical SNR (points) vs analytical
estimation (solid line) for the equation with f1 and D = 3, σ2

m = 3. Numerical results are shown by
black points for the mean field and opaque points for its two-state approximation. The stochastic
resonance effect is supported by noise. If we decrease the intensity of multiplicative noise, we do
not observe it; e.g. for (c) D = 3, σ2

m = 0.5.

The electronic circuit with respect to the element (i, j) can be described by a
set of Kirchoff’s equations:

C
dVi,j

dt
= I(t) − G(t)Vi,j − f(Vi,j) +

1

Rc
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j)

Hence, the following set of Langevin equations describes the considered system:

dVi,j

dt
= −f(Vi,j) + Vi,j + ζi,j(t) + Ai cos(ωt + ϕ)ξi,j(t) (13)

+
D

4
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j),
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where C is set to unity by normalization of time and D denotes a strength of
coupling equal to 4

CRc

. In the case when f2 represents the TVR, the model is the
time-dependent Ginzburg-Landau equation, which is a standard model to describe
phase transitions and critical phenomena in both equilibrium and nonequilibrium
situations [3]. It is important that we consider only the situation when the potential
of one element is monostable (Ga = 0.5, Gb = 10, Bp = 1), hence avoiding the
possibility to observe SR without multiplicative noise.

Due to the noise-induced bistability (transitions boundaries are shown in the
Fig. 4 right), this circuit will demonstrate both DSE effects considered above. We
focus on the case of DSR, i.e. an external excitation is applied to each element
and Ai = A. An analytical estimation of DSR effect, calculated as in Sec. 2, is
shown in the Fig. 6 (b). The DSR effect is clearly observed in the behaviour of
SNR of the output mean voltage vs. the intensity of additive noise. To verify the
analytical results numerically, we have also performed simulations of the model (13.
We have taken a set of parameters within the region of two coexisting ordered states
with nonzero mean field. As a total system, we take a two dimensional lattice of
18×18 elements, which was simulated numerically with a time step ∆t = 2.5×10−4.
The amplitude of the external signal was set to 0.1, i.e. sufficiently small to avoid
hops between two states in the absence of additive noise. The numerically obtained
dependence of SNR on the intensity of the additive noise is shown in Fig. 6(b)
for the mean-field (filled points) and the mean field in a two-state approximation
(opaque points). In this two-state approximation, we have replaced the value of the
mean field in time-series by its sign before calculating the power spectral density.
Both curves demonstrate well-known bell-shaped dependence which is typical for
SR. Let us note, that for these version of the model SNR for the mean field tends to
infinity for small values of additive noise intensity (see black points for σ2

a < 0.1).
Numerical simulations agree very good with our theoretical estimation despite the
very rough approximation via “effective” potential (we will study the question, what
is the parameters regions of its validity, in a following paper).

The fact that this SR effect is created by multiplicative noise, can be illustrated
as the following. If we decrease only the intensity of multiplicative noise, other pa-
rameters fixed, the SR effect is not observed, as it is shown in Fig. 6(c). The reason
is that in this case our system is not bistable (see Fig. 4 right) For experimental
setup a minimal number of elements, which are necessary for DSR observation, can
be important. Reduction of the elements number in this system leads to the fact,
that a system can spontaneously (even in the absence of forcing) perform a hop
between two states. These jumps hide DSR effect, since they destroy a coherence
between input and output. For the system size 18×18, considered here, such jumps
are rather seldom and do not hinder DSR. Our calculations have shown that a size
10 × 10 is still satisfactory, whereas further decrease of the elements number will
destroy the effect.

6. Summary and Outlook

I have reviewed recent findings on doubly stochastic effects. I have considered two
doubly stochastic phenomena, DSR and noise-induced propagation in monostable
media. In these phenomena the role of noise is twofold: first multiplicative noise (to-
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gether with coupling) induces a bistability in the spatially distributed system, and
then additive noise optimizes a processing or propagation of the input signal. An
optimization of both noise intensities is necessary for the demonstration of these
doubly stochastic phenomena. Noteworthy, DSR and NIP in monostable media,
considered here, differ substantially from the conventional SR and different varia-
tions of spatiotemporal SR or NIP in bistable or excitable systems (see discussion
in [26, 27]).

One can distinguish between two possible directions of future research on dou-
bly stochastic effects. First, one can search for doubly stochastic effects in other
classes of systems, or doubly stochastic effects, which lead to noise-induced order-
ing of other type. For example, we are going to study doubly stochastic coherence
in excitable systems [50], where ordering means a generation of a coherent output
in neuron systems. Second, we hope that our theoretical findings will encourage
observers to perform experiments to study doubly stochastic effects. Here we have
suggested a simple electronic circuit as a possible experimental implementation of
doubly stochastic effects, in [26,27] we have discussed other appropriate experimen-
tal situations. We hope that due to its generality the concept of doubly stochastic
effects will be confirmed by experiments and used in applications, especially in signal
processing systems, such as communication systems or neuron populations.
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The generation of coherent dynamics due to noise in an activator-inhibitor system describing bistable
neural dynamics is investigated. We show that coherence can be induced in deterministically asym-
metric regimes via symmetry restoration by multiplicative noise, together with the action of additive
noise which induces jumps between the two stable steady states. The phenomenon is thus doubly
stochastic, because both noise sources are necessary. This effect can be understood analytically in the
frame of a small-noise expansion and is confirmed experimentally in a nonlinear electronic circuit.
Finally, we show that spatial coupling enhances this coherent behavior in a form of system-size
coherence resonance.

DOI: 10.1103/PhysRevLett.90.030601 PACS numbers: 05.40.–a, 05.70.Fh, 87.10.+e

Rhythm generation is a long-standing problem in sci-
ence, particularly in biological and cognitive science
contexts [1,2]. A paradigm of this kind of self-sustained
oscillating behavior in nonlinear systems is offered by
limit cycles. But even in the absence of limit cycles,
internal rhythms can be generated in nonlinear systems
by the effect of noise. An early realization of this phe-
nomenon was reported in a two-dimensional autonomous
system when operating close to a limit cycle and was
interpreted as a manifestation of stochastic resonance in
the absence of external forcing [3]. An optimal amount of
noise was also seen to lead to a maximally coherent
output in an excitable system [4]. This effect, called
coherence resonance, was studied in the well-known
FitzHugh-Nagumo model, which has been extensively
used to describe the dynamics of neural systems [5].
Coherence resonance has been confirmed in several ex-
perimental situations, such as in laser systems [6]. Fur-
thermore, it has also been predicted in a system with two
chaotic attractors [7] and in excitable media coupled via
an inhibitor concentration, provided the coupled elements
behave in antiphase [8].

A complete understanding of these different mecha-
nisms of coherence resonance is very important for the
study of rhythm generation in biological systems [2,9]
and, in particular, in neural tissue. On the other hand,
increasing experimental evidence has established in re-
cent years that certain types of neurons frequently oper-
ate in a bistable regime [10]. Thus, the question arises
whether noise can excite an autonomous coherent output
in bistable neural systems. In this direction, both standard
stochastic and coherence resonance have been observed in
a symmetrically bistable FitzHugh-Nagumo model [11].
In the present Letter, we show that coherence can also be
generated in the general asymmetric case, where the
stability of the two stable steady states is not necessarily
the same. We demonstrate that the mechanism of coher-
ence enhancement in this situation is utterly different
from the standard one, being based on the restoration of

symmetry induced by a multiplicative source of noise.
This effect vividly contrasts with standard noise-induced
phase transitions, where noise usually leads to the break-
ing of symmetry [12].

Doubly stochastic coherence (DSC) can be observed in
an asymmetric system under the joint action of multi-
plicative and additive noises. Once multiplicative noise
induces a symmetric bistable state in the system, due to
the presence of optimal additive noise, coherence can be
maximized in the output. Hence, the resulting coherence
is doubly stochastic, since simultaneous optimization of
two noise intensities is required in order to observe the
phenomenon. The concept of doubly stochastic effects has
been introduced recently as a new mechanism of noise-
induced phenomena in the context of harmonically
driven systems [13]. These effects are usually possible
due to the interplay between additive and multiplicative
noise. In [13], multiplicative noise (in combination with
spatial coupling) induces bistability in a simple mono-
stable extended system, and additive noise induces
synchronization with the external signal in that noise-
induced bistable regime. Such doubly stochastic reso-
nance has been reported in simple electronic circuit
models [14]. Following those lines, we have shown re-
cently that doubly stochastic effects lead also to signal
propagation in simple monostable media [15]. The syn-
thesis of noise-induced transitions and noise-induced
transport reported in [16] is also related to this kind of
effects. In this Letter, we report the occurrence of DSC in
a modified version of the well-known FitzHugh-Nagumo
(FHN) model. The mechanism is explained theoretically
in the framework of a small-noise expansion of the
model, which extracts the systematic contribution of the
multiplicative noise that accounts for the symmetry res-
toration. The results of this analysis and numerical results
are confirmed by experiments on an electronic circuit.
Finally, we show that this effect can be generalized for
the case of spatially extended systems, where it leads to
synchronization induced by multiplicative noise.
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We consider the following version of the FHN model:

"
du
dt

� u�1� u��u� a� � v;

dv
dt

� bu� v� uv
�t� � ��t�:
(1)

In a neural context, u�t� represents the membrane poten-
tial of the neuron and v�t� is related to the time-dependent
conductance of the potassium channels in the membrane
[5]. The dynamics of u is much faster than that of v, as
indicated by the small time-scale-ratio parameter ".
There are two mutually uncorrelated noise sources, rep-
resented by the -correlated Gaussian noises 
�t� and ��t�,
with zero mean and correlations h
�t�
�t0�i � �2

m�t� t0�
and h��t���t0�i � �2

a�t� t0�. The additive noise is in-
serted in the slow-variable equation, as in most studies
of coherence resonance [4]. The multiplicative noise ��t� is
interpreted in the Stratonovich sense [12].

In what follows we use the parameters a � 0:15, b �
0:12, and " � 0:01, for which the deterministic system
has two stable fixed points with different stability (i.e.,
with different thresholds of escape through the extrema of
the u nullcline), as shown in Fig. 1(a) (curve 1 and its
crossing points with the u nullcline). Additive noise in-
duces here jumps between these two states, but the escape
times are very different in the two states. This behavior is
shown in Fig. 1(b), as obtained from numerical simula-
tions of model (1) for the above-mentioned parameters.

The effect of multiplicative noise in this system can be
determined by analyzing the systematic effect it produces
in the system dynamics due to the fact that the corre-
sponding fluctuating term in the v equation has a nonzero
average value. Computation of this average value by
means of standard techniques [17] leads to the following
effective deterministic model, which can be considered as
a first order approximation in a small-noise expansion of

�t� [12]:

"
@u
@t

� u�1� u��u� a� � v; (2)

@v
@t

� bu� v�
�2

m

2
u2v� ��t�: (3)

The nullclines of this model for two nonzero values of �2
m

are shown in Fig. 1(a), as curves 2 and 3. It can be seen
that for an intermediate value of �2

m, corresponding to
curve 2, the two states are equally stable and the escape
times are basically identical. As a result, jumps in the
output of the system are more equidistant [Fig. 1(c)]. For
larger multiplicative noise intensity the asymmetry in-
creases again, this time reversed, as shown in curve 3 of
Fig. 1(a), and the system spends more time in the lower
state, as shown in Fig. 1(d) (in fact, in this extreme case
the upper steady state has turned unstable, and the system
becomes excitable).

Hence, an optimal amount of multiplicative noise opti-
mizes the symmetric response of the system. In that
situation, we can expect additive noise to be more effec-
tive in producing coherence, since the potential barrier
heights (and thus the corresponding escape times) are the
same in the two jump directions. To quantify this ex-
pected coherence enhancement, we have measured the
normalized variance of subsequent periods Ti. The illus-
tration of the definition of Ti is depicted in Fig. 1(b). The
normalized variance, which is called the coherence pa-
rameter [4], is determined as R �

�������
�2

T

q
=hTii, where �2

T is
the variance of the sequence Ti, and hTii is its average
value. The dependence of R on the multiplicative noise
intensity for the time series depicted in Figs. 1(b)–1(d) is
shown in Fig. 2 (left). It is clearly seen that R first
decreases to some minimum value and then increases
again. The minimal R corresponds to the highest degree
of periodicity in the system output and is a manifestation
of stochastically induced coherence. A similar behavior
occurs for varying the strength of the additive noise
as well, as shown in the inset of Fig. 2 (left). Different
values of the excitation threshold correspond to different
optimal intensities of the noise. To optimize the perio-
dicity, one should vary both the threshold (provided by
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FIG. 1. (a) Nullcline plot of the FHN model (1). Dashed line:
u nullcline ( _uu � 0); solid lines: v nullclines ( _vv � 0) for three
different values of the multiplicative noise intensity: �2

m � 0:0
(curve 1), 0:2 (curve 2), and 2:0 (curve 3). (b)–(d) Time
evolution of the activator variable u for the previous three
multiplicative noise intensities: (b) �2

m � 0:0, (c) 0:2, (d) 2:0.
The intensity of additive noise is fixed to �2

a � 2	 10�4; other
parameters are given in the text.
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multiplicative noise) and the intensity of additive noise.
Both noise intensities need to be tuned in order to opti-
mize periodicity in the output [see Fig. 2 (right)], and
hence we call this effect doubly stochastic coherence.

With the aim of confirming experimentally the phe-
nomenon of DSC via noise-induced symmetry, we have
designed a circuit (Fig. 3), which has two asymmetrically
stable steady states. In this circuit, the difference between
the positive and negative voltages feeding the operational
amplifier provides the asymmetry in the stability of the
two fixed points. Multiplicative noise acts on the positive
voltage V�, which is a parameter that changes the stabil-
ity of the higher voltage fixed point of the circuit [18]. A
second source of noise, which acts as a signal, induces
jumps between the two stable states and acts as an addi-
tive noise. The noise is produced electronically by ampli-
fying shot noise from a junction diode [19].

Following the numerical approach, we fix the intensity
of additive noise and increase that of multiplicative noise.
First, the upper steady state is more stable than the lower
one, and the system spends more time in the former
[Fig. 4(a)]. As the strength of multiplicative noise in-
creases, the situation is reversed [Fig. 4(c)], passing
through a symmetric regime for intermediate noise
[Fig. 4(b)]. Calculating the coherence parameter R for
the experimental time traces, we find clearly that multi-
plicative noise enhances coherence via the appearance of
symmetry [Fig. 4(d)].

We have also examined the effect of spatial coupling on
a set of distributed bistable FHN oscillators subject to two
noise sources. The model is now given by

"
@ui
@t

� ui�1� ui��ui � a� � vi

�
D
2
�ui�1 � ui�1 � 2ui�;

@vi

@t
� bui � vi � uivi
i�t� � �i�t�;

(4)

where D denotes the strength of coupling and the
noise terms are now  correlated also in space,
with h
i�t�
j�t0�i � �2

m�t� t0�ij and h�i�t��j�t0�i �
�2

a�t� t0�ij.

We now study the joint effect of additive and multi-
plicative noise on the spatiotemporal evolution of this
extended system, using a binary coding for the activator
variable ui�t�, associating black or white to each one of
the two fixed points of the local bistable dynamics. The
numerical simulation results are shown in Fig. 5 for three
values of �2

m and a fixed �2
a. As expected, the local

dynamics becomes more regular for an optimal amount
of multiplicative noise, as happens with an isolated FHN
element. However, remarkably enough, the most tempo-
rally coherent case corresponds also to the most spatially
uniform behavior of the system as a whole. To character-
ize such a synchronized coherence, we calculate the
coherence parameter R for the mean field m�t� �

P
i ui.

The dependence of this parameter on the intensity of
multiplicative noise is shown in Fig. 6(a) for a system of
50 coupled elements. The dependence is nonmonotonic,
reflecting the DSC characteristic of isolated elements,

V+V− 

R

R +
C

L 1  −
+ +

R’

R

C2  −

+

− 

Additive
noise

noise
Multiplicative

FIG. 3. Nonlinear electronic circuit with two asymmetrically
stable steady states. The values of the elements are R � 270 �,
L � 10 mH, C1 � 1 nF, C2 � 10 nF, R0 � 220 �, V� � 5 V,
and V� � 2 V. The operational amplifier is taken from a
TL082 integrated circuit.
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FIG. 4. Time evolution of the voltage drop V1 through ca-
pacitor C1 for the circuit represented in Fig. 3, for three
different intensities of the multiplicative noise (measured as
peak-to-peak amplitude of the random voltage): (a) 1.6 V,
(b) 1.7 V, and (c) 1.9 V. Additive noise intensity is fixed to
0.88 V. (d) Coherence parameter vs multiplicative noise
intensity.

FIG. 5. Spatiotemporal evolution of a chain of FHN oscilla-
tors in the bistable regime for three intensities of the multi-
plicative noise. From left to right, �2

m � 0:01; 0:2; 4. Additive
noise is fixed to �2

a � 4	 10�4. Coding is binary, with black
corresponding to the upper fixed point and white to the lower
one. Other parameters are D � 30, a � 0:15, b � 0:12, and
" � 0:01.
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although in this case the parameter measures also the
degree of synchronization in the system. Furthermore,
Fig. 6(b) shows that increasing the number of elements in
the ensemble first increases the coherence of the output (R
initially decreases), due to the synchronization of the
elements, but further increase of the system size leads
to a loss of synchronization, and thus R increases again.
The result is a system-size coherence resonance (cf. with
system-size stochastic resonance, which happens in ex-
ternally forced systems [20]). In a neural context, this
property could imply that neurons benefit from coupling
in networks of optimal size for the organization of a
pacemaker.

In conclusion, we have shown that bistable models of
neural dynamics exhibit doubly stochastic coherence via
noise-induced symmetry. This mechanism of rhythm
generation arises whenever the two stable steady states
of the system have different escape thresholds. An opti-
mal amount of multiplicative noise renders the two fixed
points equally stable, and tuning the additive noise in this
noise-induced symmetric situation maximizes the coher-
ent behavior in the system. The influence of multiplicative
noise can be explained in terms of an effective model that
contains the systematic effect of the noise term. These
results have been confirmed by experimental measure-
ments on a bistable nonlinear electronic circuit. From a
second standpoint, we have shown that this effect leads to
synchronized behavior in spatially distributed systems. In
this case, this coherence enhancement also exhibits a
resonance with respect to the size of the system; i.e., there
is some optimal size of the system for which the output is
the most periodic one. Our study has been performed in
the general framework of the paradigmatic FHN model,
in a bistable asymmetric regime which is realistic for
biological systems [10], and hence we expect that our
findings could be of importance for understanding the
mechanisms of periodicity generation in neural and other
excitable media.
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V. Crunelli, J. Physiol. (London) 517, 805 (1999).
[11] B. Lindner and L. Schimansky-Geier, Phys. Rev. E 61,

6103 (2000); F. Moss, J. K. Douglass, L. Wilkens,
D. Pierson, and E. Pantazelou, Ann. N.Y. Acad. Sci.
706, 26 (1993).

[12] J. Garcı́a-Ojalvo and J. M. Sancho, Noise in Spatially
Extended Systems (Springer, New York, 1999).

[13] A. Zaikin, J. Kurths, and L. Schimansky-Geier, Phys.
Rev. Lett. 85, 227 (2000).

[14] A. Zaikin, K. Murali, and J. Kurths, Phys. Rev. E 63,
020103(R) (2001).

[15] A. Zaikin, J. Garcı́a-Ojalvo, L. Schimansky-Geier, and
J. Kurths, Phys. Rev. Lett. 88, 010601 (2002).

[16] P. Reimann, R. Kawai, C.Van den Broeck, and P. Hänggi,
Europhys. Lett. 45, 545 (1999).

[17] J. M. Sancho and J. Garcı́a-Ojalvo, in Stochastic
Processes in Physics, Chemistry, and Biology, edited
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We show that external fluctuations are able to induce propagation of harmonic signals through monos-
table media. This property is based on the phenomenon of doubly stochastic resonance, where the
joint action of multiplicative noise and spatial coupling induces bistability in an otherwise monostable
extended medium, and additive noise resonantly enhances the response of the system to a harmonic
forcing. Under these conditions, propagation of the harmonic signal through the unforced medium is ob-
served for optimal intensities of the two noises. This noise-induced propagation is studied and quantified
in a simple model of coupled nonlinear electronic circuits.
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It is a well-established fact nowadays that dynamical
noise, which usually has a disordering impact, can be used
to induce order in nonlinear nonequilibrium systems un-
der certain conditions. Examples of this counterintuitive
influence of random fluctuations are noise-induced tran-
sitions [1–4], stochastic transport in ratchets [5] (also in
a synthesis with a transition [6]), or noise-induced pat-
tern formation [7]. However, one of the most far-reaching
examples is stochastic resonance (SR) [8], which has been
experimentally observed in several physical and biological
systems [9]. In the classical situation, SR consists of an
optimization by noise of the response of a bistable system
to a weak periodic signal. Besides this standard scenario,
SR has also been found in monostable [10], excitable [11],
nondynamical [12], and thresholdless [13] systems, in sys-
tems without an external force (what is called coherence
resonance) [14,15], and in systems with transient noise-
induced structure [16].

Additionally, it has been recently shown that the energy
of fluctuations can be used even more efficiently in spa-
tially extended systems, by using noise twofold: to syn-
chronize output hops across a potential barrier with an
external signal, and also to optimally construct the barrier
itself. This phenomenon is known as doubly stochastic
resonance (DSR) [17]. DSR occurs in systems of coupled
overdamped oscillators; and it is a synthesis of two basic
phenomena: SR and noise-induced phase transitions [18].
Another important and nontrivial phenomenon connected
with SR in spatially distributed systems is the phenomenon
of noise enhanced propagation, in which the propagation
of a harmonic forcing through an unforced bistable or ex-
citable medium is increased for an optimal intensity of the
additive noise [19,20].

In this Letter, we present a new propagation phenome-
non in monostable media. We show that noise can enhance
propagation in deterministically monostable media, with-
out any deterministic threshold, provided bistability is
induced by a second (multiplicative) noise and coupling
through a phase transition. Although numerous works

about noise-induced propagation exist (e.g., [21]), to our
knowledge propagation in monostable media, which is a
very important class of dynamical systems, has not been
considered before. In what follows, we present this propa-
gation or in a general model of overdamped coupled
nonlinear oscillators. Subsequently, and for the sake of
concreteness, the phenomenon is analyzed in particular in
a simple model of coupled electronic circuits.

We study a general class of spatially distributed systems,
which are locally coupled and periodically forced:

�xi � f�xi� 1 g�xi�ji�t� 1
D

4

X
j[nn�i�

�xj 2 xi�

1 zi�t� 1 Ai cos�vt 1 w� , (1)

where xi is defined in a two-dimensional discrete space
of N 3 N cells, with i denoting the cell position
[i � ix 1 N �iy 2 1�, where ix and iy run from 1 to
N ]. The sum in Eq. (1) runs over all nearest neighbors
of site i [nn�i�]. The additive and multiplicative noise
terms are mutually uncorrelated Gaussian distributed
with zero mean, and white both in space and time,
i.e., �zi�t�zj�t0�� � s2

adijd�t 2 t0� and �ji �t�jj�t0�� �
s2

mdijd�t 2 t0�. The results are averaged over the initial
phase w of a harmonic forcing, which has amplitude Ai

and frequency v.
In the absence of periodic forcing (Ai � 0), different

types of noise-induced phase transitions can be obtained
for different forces f�xi� and g�xi� [3]. In particular, a
system with a monostable deterministic potential can un-
dergo a phase transition to a noise-induced bistable state
for a suitable stochastic forcing g�xi� [18]. There, in the
presence of a global harmonic forcing, DSR is observed
[17]. We consider in this Letter the case that the peri-
odic forcing is applied coherently along only one side, as
shown in Fig. 1 [Ai � A�dix ,1 1 dix ,2 1 dix ,3�], and study
the propagation of this forcing action into the nonexcited
portion of the system.

Even though the results shown below are very general,
for a quantitative study we choose particular functions
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i

FIG. 1. Scheme of the spatially distributed system. The peri-
odic excitation is performed only from one side, elements under
the direct periodic action are denoted by black. All oscillators
are under the influence of noise. To study the behavior of both
driven and nondriven elements, first three columns (ix � 1, 2, 3)
are periodically driven; however, to achieve propagation it is
sufficient to excite only one column.

f�x� and g�x�. These functions model the local dynam-
ics of the electronic circuit designed theoretically (i.e., it
is so far a thought experiment) and displayed in Fig. 2.
This circuit consists of a capacitor with capacitance C, a
time-varying resistor (TVR) with conductance G�t�, a cur-
rent generator I�t�, four coupling resistors Rc (responsible
for the diffusive coupling with the neighbors), and a non-
linear resistor RN , which is realized with a set of ordinary
diodes or operational amplifiers [22], and has the charac-
teristic function

iN � h�V � �

8<
:

GbV 1 �Ga 2 Gb�Bp , if V # 2Bp ,
GaV , if jV j , Bp ,
GbV 2 �Ga 2 Gb�Bp , if V $ Bp ,

(2)

where iN is the current through the nonlinear resistor (RN),
V is the voltage drop across it, and the parameters Ga, Gb ,
and Bp determine the slopes and the break point of its
piecewise-linear characteristic curve.

We now consider that the conductance of the TVR fluc-
tuates randomly in time [Gi�t� � ji�t�], and that the input

noise

signal

noise

CI(t) G(t) R

 R

R

R

R
c

c

c

c

+

N

FIG. 2. Nonlinear electronic circuit at element i.

current I�t� has the form of a periodic signal to which an
uncorrelated Gaussian noise z �t� is added [Ii�t� � zi�t� 1

Ai cos�vt 1 w�]. Under these conditions, the dynamics
of the spatially coupled system is described by Eq. (1),
where xi now represents the voltage drop across the non-
linear resistor of circuit i, and the forces are f�x� � 2h�x�
and g�x� � x [22]. Additionally, C � 1 by an appropriate
time normalization, and the coupling strength D �

4
CRc

.
SR behavior can be expected if the system is bistable

for the chosen set of parameters. Regions of bistability
can be determined approximately by means of a standard
mean-field procedure [3]. The mean-field approximation
consists of replacing the nearest-neighbor interaction by a
global term in the Fokker-Planck equation corresponding
to (1) in the absence of external forcing. In this way, we
get the steady-state probability distribution Pst:

Pst�x, m� �
C�m�p

s2
mg2�x� 1 s2

a

3 exp

µ
2

Z x

0

f�y� 2 D�y 2 m�
s2

mg2�y� 1 s2
a

dy

∂
, (3)

where C�m� is a normalization constant and m is the mean
field, defined implicitly by:

m �
Z `

2`
xPst�x, m� dx . (4)

The value of m is obtained by the self-consistent solu-
tion of Eq. (4), which enables us to determine the tran-
sition lines between the ordered bistable (m fi 0) and the
disordered monostable (m � 0) phases. These transition
boundaries are shown in Fig. 3 in the �D, s2

m� plane for
three different values of the additive noise intensity. Note
that bistability requires both multiplicative noise and cou-
pling between elements. We also find that an increase in
additive noise reduces the bistable region. This gives DSR
a special character with respect to standard SR [17].

Now, we place ourselves within the bistable regime
supported by multiplicative noise and coupling (e.g.,

0 2 4 6 8 10
σm

2
0.0

2.0

4.0

6.0

D

1
2

3

m=0

m=0

FIG. 3. Mean-field transition lines between disordered monos-
table (m � 0) and ordered bistable (m fi 0) phases for model
(1): s2

a � 0.3 (label 1), s2
a � 0.5 (label 2), and s2

a � 1.0 (la-
bel 3). Here Ga � 0.5, Gb � 10, and Bp � 1.
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D � 3, s2
m � 3), and investigate the propagation of a

wave through the system. To that end, we harmonically
excite the lattice from one side, as shown in Fig. 1, with
boundary conditions periodic in the vertical direction and
no-flux in the horizontal direction. The propagation will
be quantified by the system’s response at the excitation

frequency, computed as Q� j� �
q

�Q�j�
sin �2 1 �Q� j�

cos�2, with

Q
� j�
sin �

v

np

Z 2pn�v

0
2mj�t� sin�vt� dt , (5)

Q� j�
cos �

v

np

Z 2pn�v

0
2mj�t� cos�vt� dt , (6)

where mj�t� is the field (voltage) averaged along the ver-
tical column (Fig. 1), i.e., mj�t� �

1
N

PN
k�1 xj1�k21�N�t�.

The value of Q�j� for different oscillators along the chain
is shown in Fig. 4(a), for increasing intensities of additive
noise within the noise-induced bistable regime. The forc-
ing amplitude is taken to be large enough to produce hops
between the two wells in the bistable oscillators, without
the need of additive noise. Therefore, for the first oscilla-
tors an increase of additive noise leads only to a decreas-
ing response at the forcing frequency, whereas for distant
oscillators the situation changes qualitatively. There, a re-
sponse is induced that depends nonmonotonically on the
additive noise intensity. Clearly, a certain amount of ad-
ditive noise exists for which propagation of the harmonic
signal is optimal. For smaller s2

m [Fig. 4(b] the system
leaves the bistable region; hence the response is small and
always monotonically decreasing. Hence, the resonantlike
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FIG. 4. Response Q� j� to a periodic excitation in different
columns (the order j is shown in the curve labels) vs additive-
noise intensity (a),(c) inside the bistability region (s2

m � 3), and
(b),(d) outside that region (s2

m � 0.5). As shown in Fig. 1, the
oscillators with index j � ix � 1, 2, 3 are directly excited by
the periodic force, and oscillators with j � ix . 3 are excited
through the excitation propagation. Parameters are those of
Fig. 3, and D � 3. The amplitude is: (a),(b) A � 0.3 (noise-
induced propagation) and (c),(d) A � 0.2 (spatiotemporal
doubly stochastic resonance).

effect requires suitable intensities of both the additive and
multiplicative noises.

A propagation of the harmonic signal can also be
obtained for values of the forcing amplitude small enough
so that hops are not produced in the directly excited sites
in the absence of additive noise. This is the regime in
which DSR really occurs in the excited part of the system,
and the excitation propagates through the rest of the lattice
enhanced by noise. Now all the oscillators have a non-
monotonic dependence on the additive noise intensity
for a multiplicative noise within the bistable region
[Fig. 4(c)], and a monotonic one for a multiplicative noise
within the monostable region [Fig. 4(d)]. The former case
corresponds to a spatiotemporal propagation in the DSR
medium, and we call this phenomenon spatiotemporal
doubly stochastic resonance (SDSR).

The mechanism of this phenomenon can be explained
theoretically on the basis of a mean-field approximation.
We give a first qualitative glimpse of this analysis in what
follows; quantitative details will be published elsewhere.
Because of coupling and multiplicative noise, the system
becomes bistable with the behavior approximately gov-
erned by a mean-field effective potential [17]

Ueff�x� � U0�x� 1 Unoise � 2
Z

f�x� dx 2
s2

mx2

4
.

(7)

Now the effect can be understood in the frame of a
standard SR mechanism [8], where the external signal is
provided by the periodic force for the directly excited os-
cillators, and by the influence of the left neighbors for
the nonexcited oscillators. For large forcing, only the lat-
ter need an additive noise to hop synchronously between
wells, whereas for small forcing, both the excited and the
nonexcited oscillators display SR. These two behaviors
correspond to Figs. 4(a) and 4(c), respectively.

At this point it is worth making several remarks to the
phenomenon described above. First, SDSR and noise-
induced propagation in monostable media are strongly
different to spatiotemporal SR [23] or noise enhanced
propagation [19] in bistable media. The effect presented
here can be controlled by multiplicative noise, which modi-
fies the depth and separation of the two potential wells.
Therefore, an optimal amount of multiplicative noise is
required to support the bistable structure. Nothing similar
occurs in array-enhanced SR [24] or in SR in extended
bistable systems [25]. On the other hand, an increase
of additive noise also leads to a loss of bistability (see
Fig. 3), and hence a decrease of Q for large additive noise
is explained not only by the fact that disordered hops are
produced by intense noise, as in standard SR, but also by
the loss of bistability. Second, noise-induced propagation
in monostable media is very intriguing from the viewpoint
of the theory of extended systems with noise and cannot be
directly predicted from DSR. The noise-induced bistabil-
ity, on which DSR is based, is a collective phenomenon,
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which can be observed only for a positive value of
coupling enabling all elements to be close to the same
position. In contrast to it, here we have shown that a
propagation, which implies that different cells are simul-
taneously in different states, can occur in such a system
without destroying the mechanism of bistability.

In conclusion, we have reported the existence of a
propagation phenomenon, in which noise induces wave
propagation in monostable media. The joint action of mul-
tiplicative noise and spatial coupling induces bistability,
and additive noise enhances the propagation of harmonic
forcing in the stochastically induced bistable medium.
Because of its nontrivial propagation mechanism, this
effect can be considered as a contribution to the theory of
extended systems with noise. We also expect that these
theoretical findings will stimulate experimental work.
Especially, such kind of a propagation can be of great im-
portance in communications, due to the fact that the energy
of noise is used in a very efficient way, both to construct
the potential barrier and to provide propagation enhance-
ment in the noise-supported bistable system. We have
demonstrated noise-induced propagation in monostable
media in a simple realistic model, but in a general frame-
work. Because of the generality of the model we expect
that this effect can be also found in several more compli-
cated real extended systems with noise-induced bistability.
Probable experimental implementations include arrays
of simple electronic circuits as a communication system
[22], analog circuits [26], electronic cellular neural net-
works [27], and are expected to be achieved in several
real spatially distributed systems, such as liquid crystals
[28], photosensitive chemical reactions [29], Rayleigh-
Bénard convection [30], or liquid helium [31].
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We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic
limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean
field are observed with the rate depending on the ensemble size. When a small periodic force acts on
the ensemble, the linear response of the system has a maximum at a certain system size, similar to the
stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different
types of noisy oscillators and for different ensembles— lattices with nearest neighbors coupling and
globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.

DOI: 10.1103/PhysRevLett.88.050601 PACS numbers: 05.40.Ca, 05.45.–a, 05.50.+q

Stochastic resonance has attracted much interest re-
cently [1]. As was demonstrated in [2], a response of a
noisy nonlinear system to a periodic forcing can exhibit a
resonancelike dependence on the noise intensity. In other
words, there exists a “resonant” noise intensity at which
the response to a periodic force is maximally ordered. Sto-
chastic resonance has been observed in numerous experi-
ments [3]. Noteworthy, the order in a noise-driven system
can have a maximum at a certain noise level even in the
absence of periodic forcing, this phenomenon being called
coherence resonance [4].

Being first discussed in the context of a simple bistable
model, stochastic resonance has been also studied in com-
plex systems consisting of many elementary bistable cells
[5]; moreover, the resonance may be enhanced due to cou-
pling [6]. In this paper we discuss another type of reso-
nance in such systems, namely, the system size resonance,
when the dynamics is maximally ordered at a certain num-
ber of interacting subsystems. Contrary to previous reports
of array-enhanced stochastic resonance (cf. also [7]), here
we fix the noise strength, coupling, and other parameters;
only the size of the ensemble changes.

The basic model to be considered below is the ensemble
of noise-driven bistable overdamped oscillators, governed
by the Langevin equations,

�xi � xi 2 x3
i 1

´

N

NX
j�1

�xj 2 xi� 1
p

2D ji�t� 1 f�t� .

(1)

Here ji�t� is a Gaussian white noise with zero mean:
�ji �t�jj�t0�� � dijd�t 2 t0�; ´ is the coupling constant;
N is the number of elements in the ensemble, and f�t� is
a periodic force to be specified later. In the absence of pe-
riodic force, the model (1) has been extensively studied in
the thermodynamic limit N ! `. It demonstrates an Ising-
type phase transition at ´ � ´c from the disordered state
with vanishing mean field X � N21

P
i xi to the “ferro-

magnetic” state with a nonzero mean field X � 6X0 [8].

While in the thermodynamic limit the full description of
the dynamics is possible, for finite system sizes we have
mainly a qualitative picture: In the ordered phase the mean
field X switches between the values 6X0 and its average
vanishes for all couplings. The rate of switchings depends
on the system size and tends to zero as N ! `.

For us, the main importance is the fact that qualitatively
the behavior of the mean field can be represented as the
noise-induced dynamics in a potential with one minimum
in the disordered phase (at X � 0) and two symmetric min-
ima (at X � 6X0) in the ordered phase. Now, applying
the ideas of the stochastic resonance, one can expect in the
bistable case (i.e., in the ordered phase for small enough
noise or for large enough coupling) a resonantlike behav-
ior of the response to a periodic external force when the
intensity of the effective noise is changed. Because this
intensity is inverse proportional to N , we obtain the reso-
nancelike curve of the response in dependence of the sys-
tem size. The main idea behind the system size resonance
is that in finite ensembles of noise-driven or chaotic sys-
tems the dynamics of the mean field can be represented
as driven by the effective noise whose variance is inverse
proportional to the system size [9]. This idea has been ap-
plied to the description of a transition to collective behav-
ior in [10]. In [11] it was demonstrated that the finite-size
fluctuations can cause a transition that disappears in the
thermodynamic limit.

Before proceeding to a quantitative analytic description
of the phenomenon, we illustrate it with direct numerical
simulations of the model (1), with a forcing term f�t� �
A cos�Vt�. Figure 1 shows the linear response function,
i.e., the ratio of the spectral component in the mean field
at frequency V and the amplitude of forcing A, in the
limit A ! 0. For a given frequency V the dependence on
the system size is a bell-shaped curve, with a pronounced
maximum. The dynamics of the mean field X�t� is il-
lustrated in Fig. 2, for three different system sizes. The
resonant dynamics (Fig. 2b) demonstrates a typical for
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VOLUME 88, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 FEBRUARY 2002

0.0001

0.001

0.01

0.1

Ω
0

20
40

60
80

N

500

1000

1500

linear response

FIG. 1. Linear response of the ensemble (1) (D � 0.5, ´ � 2)
in dependence on the frequency and the system size N .

stochastic resonance synchrony between the driving peri-
odic force and the switchings of the field between the two
stable positions.

To describe the system size resonance analytically, we
use, following [8], the Gaussian approximation. In this
approximation, one writes xi � X 1 di and assumes
that di are independent Gaussian random variables with
zero mean and the variance M. Assuming furthermore
that N21

P
i d

2
i � M and neglecting the odd moments

N21
P

i di, N21
P

i d
3
i , as well as the correlations between

di and dj, we obtain from (1) the equations for X and M:

�X � X 2 X3 2 3MX 1

s
2D

N
h�t� 1 f�t� , (2)

1
2

�M � M 2 3X2M 2 3M2 2 ´M 1 D , (3)
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FIG. 2. The time dependence of the mean field in the ensemble
(1) for D � 0.5, ´ � 2, A � 0.02, V � p�300, and different
sizes of the ensemble: (a) N � 80, (b) N � 35, and (c) N �
15. We also depict the periodic force (its amplitude is not in
scale) to demonstrate the synchrony of the switchings with the
forcing in (b).

where h is the Gaussian white noise having the same
properties as ji�t�. In the thermodynamic limit N ! `

the noisy term h vanishes. If the forcing term is absent
� f � 0�, the equations coincide with those derived in [8].
This system of coupled nonlinear equations exhibits a
pitchfork bifurcation of the equilibrium X � 0, M . 0 at
´c � 3D. This bifurcation is supercritical for D . 2�3
in accordance with the exact solution of (1) given in [8];
below we consider only this case. For ´ . ´c the system
is bistable with two symmetric stable fixed points,

X2
0 � �2 2 ´ 1 S��4, M0 � �2 1 ´ 2 S��12 (4)

[here S �
p

�2 1 ´�2 2 24D ], and the unstable point
X � 0, M � �1 2 ´ 1

p
�1 2 ´�2 1 12D ��6. Now,

with the external noise h and with the periodic force
f�t�, the problem reduces to a standard problem in the
theory of stochastic resonance, i.e., to the problem of the
response of a noise-driven nonlinear bistable system to an
external periodic force (because the noise affects only the
variable X, it does not lead to unphysical negative values
of variance M, since �M is strictly positive at M � 0).

To obtain an analytical formula, we perform further sim-
plification of the system (2) and (3). Near the bifurcation
point, we can use the slaving principle to obtain a standard
noise-driven bistable system:

�X � aX 2 bX3 1

s
2D

N
h�t� 1 f�t� , (5)

where a � 1 1 0.5�´ 2 1� 2 0.5
p

�´ 2 1�2 1 12D,
b � 20.5 1 1.5�´ 2 1� ��´ 2 1�2 1 12D�21�2. A bet-
ter approximation valid also beyond a vicinity of the criti-
cal point can be constructed if we use b̄ � aX22

0 instead
of b, where the fixed point X0 is given by (4). Having
written the ensemble dynamics as a standard noise-driven
double-well system (5) (cf. [1,12]), we can use the ana-
lytic formula for the linear response R derived in [12]. It
reads

R �
NX2

0

2Da

µ
D23�2�2

p
s �

D21�2�2
p

s �

∂2∑
1 1

p2V2

2a2
exp�s�

∏21

,

(6)

where s � aNX2
0 ��2D�, and D are the parabolic cylin-

der functions. We compare the theoretical linear response
function with the numerically obtained one in Fig. 3. The
qualitative correspondence is good; moreover, the max-
ima of the curves are rather good reproduced with the
formula (6).

Above, we concentrated on the properties of the linear
response. Numerical simulations with the finite forcing
amplitude yielded the results similar to that presented
in Figs. 1 and 3. However, for large amplitudes of
forcing (e.g., A . 0.1 for V � 0.01, D � 0.5, ´ � 2)
a saturation was observed: Here the response grows
monotonically with N . This is in full agreement with the
corresponding property of the stochastic resonance in
double-well systems of type (5), where the saturation
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FIG. 3. Comparison of the system size dependencies of the
linear response function for frequencies V � 0.05 (circles) and
V � 0.1 (squares) with theory (6). The parameters are D � 1
and ´ 2 ´c � 2.5 (where the exact ´c and the approximate
´c � 3D are used for the ensemble and the Gaussian approxi-
mation, respectively). Inset: Dependence of the system size
yielding maximal linear response on the driving frequency V
[circles: simulations of the ensemble (1), line is obtained by
maximizing the expression (6)].

occurs for small noise intensities (cf. Fig. 7 in [1]), due
to the disappearance of multistability for large forcing
amplitudes.

It is instructive to compare the response of the noise-
driven system (1) with the noise-free case D � 0. Without
external force, the ensemble relaxes eventually to a steady
state solution with some mean field X; in this state each
oscillator can be in one of the stable steady positions of
the potential; correspondingly, the oscillators form one or
two clusters. From the clustering it follows that the linear
response does not depend on the number of elements in
the ensemble. Our numerical experiments demonstrated
also that the response is system size independent for large
forcing amplitudes as well, where, e.g., the force-induced
cluster mergings occur. Thus, the effect of system size
resonance essentially relies on the presence of noise, which
breaks the clustering.

Above, we have considered the system of globally cou-
pled nonlinear oscillators (1). The same effect of system
size resonance can be observed in a lattice with nearest
neighbors coupling as well. In the thermodynamic limit,
the Ising-type phase transition occurs in the lattice (if its
dimension is larger than one). Similar to the globally
coupled ensemble, in finite lattices in the ordered phase
the switchings between the two stable states of the mean
field are observed. With the same argumentation as above,
we can conclude that the response of the mean field to
a periodic forcing can have a maximum at a certain lat-
tice size, while all other parameters (noise intensity, cou-

pling strength, etc.) are kept constant. We illustrate this
in Fig. 4.

As the next example we consider the two-dimensional
nearest neighbor Ising model in the presence of a time-
dependent external field. The Hamiltonian of the system
reads

H � 2J
X
�ij�

sisj 2 A cos�Vt�
X

i

si , (7)

where J . 0 and si � 61. We are interested in the depen-
dence of the response of the mean magnetization m�t� �
1
N

P
i si�t� on the system size N (for the usual stochastic

resonance in the Ising model, i.e., for the dependence of
the response on the temperature, see [13]). To calculate the
linear response, we used the fluctuation-dissipation theo-
rem and obtained this quantity by virtue of the power spec-
trum of fluctuations of m�t�. The latter was found using
the Metropolis Monte Carlo method on a lattice with he-
lical boundary conditions [14]. The results presented in
Fig. 5 demonstrate the system size resonance of the linear
response in the two-dimensional Ising model.

As the last example of the system size resonance, we
consider a lattice where each individual element does
not exhibit bistable noisy dynamics, but such a behavior
appears due to interaction and multiplicative noise. This
model is described by the set of Langevin equations
[15,16]:

�xi � 2xi�1 1 x2
i �2 1

´

K

X
j

�xj 2 xi�

1
p

2D ji�t� �1 1 x2
i � 1 f�t� . (8)

As has been demonstrated in [15], in some region of cou-
plings the ´ system (8) exhibits the Ising-type transition.
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FIG. 4. Filled circles: Response of a two-dimensional lattice
of N with nearest neighbors coupling for A � 0.02, T � 500,
D � 0.5, and ´ � 4. Squares: Response of system (8) (a two-
dimensional lattice with D � 1.25, ´ � 30, A � 0.1, and T �
140). Circles: The same as squares, but for a globally coupled
lattice with D � 1, ´ � 20, A � 0.1, and T � 100.
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FIG. 5. Linear response (in arbitrary units) of the Ising model
(7) for the temperature T � 2J slightly below the critical tem-
perature Tc � 2.269J .

If an additional additive noise is added to (8), then one
observes transitions between these states and the so-called
double stochastic resonance in the presence of the periodic
forcing [17]. As is evident from the considerations above,
such transitions occur even in the absence of the additive
noise if the system is finite. Thus, the system size reso-
nance should be observed in the lattice (8) as well. We
confirm this in Fig. 4.

Another possible field of application of the system size
resonance is the neuronal dynamics (see, e.g., [18]). Indi-
vidual neurons have been demonstrated to exhibit stochas-
tic resonance [3,19]. While in experiments one can easily
adjust noise to achieve the maximal sensitivity to an ex-
ternal signal, it may not be obvious how this adjustment
takes place in nature. The above consideration shows that
changing the number of elements in a small ensemble of
coupled bistable elements to the optimum can significantly
improve the sensitivity (cf. [5]). Moreover, changing its
connectivity and/or coupling strength, a neuronal system
can tune itself to signals with different frequencies.

In conclusion, we have shown that, in populations of
coupled noise-driven elements, exhibiting in the thermody-
namic limit the Ising-type transition, in the ordered phase
(i.e., for relatively small noise and large coupling) the re-
sponse to a periodic force achieves maximum at a certain
size of the system. We demonstrated this effect for the
Ising model, as well as for lattices and globally coupled
ensembles of noisy oscillators. We expect the system size
resonance to occur also in purely deterministic systems
demonstrating the Ising-type transition, e.g., in the Miller-
Huse coupled map lattice [20]. The system size resonance
is described theoretically by reducing the dynamics of the
mean field to a low-dimensional bistable model with an ef-
fective noise that is inverse proportional to the system size.
The stochastic resonance in the mean field dynamics then
manifests itself as the system size resonance.
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We have recently reported the phenomenon of doubly stochastic resonance@Phys. Rev. Lett.85, 227
~2000!#, a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenom-
enon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior
in the induced structure. In the present paper we outline possible applications of this effect and design a simple
lattice of electronic circuits for the experimental realization of doubly stochastic resonance.

DOI: 10.1103/PhysRevE.63.020103 PACS number~s!: 05.40.2a, 05.70.Fh

Investigations of phenomena such as noise-induced phase
transitions @1–5#, stochastic transport in ratchets@6#, or
noise-induced pattern formation@7# have shown that the en-
ergy of noise, which was usually considered as a nuisance in
any communication, can be potentially useful to induce order
in nonlinear nonequilibrium systems. One of the most impor-
tant examples is stochastic resonance~SR! @8,9#, which has
been found in different engineering@10# and natural systems
@11#. In the conventional situation this effect consists of the
following: additive noise can optimize the signal processing
in a bistable system, i.e., it increases the signal-to-noise ratio
in the output if a periodic signal acts upon a system. In
addition to this conventional situation, SR has been also
found in monostable systems@12#, systems with excitable
dynamics@13#, noisy nondynamical systems@14#, systems
without an external force@15# ~note also coherence reso-
nance@16#!, systems without any kind of threshold@17#, and
systems with transient noise-induced structure@18#.

However, the energy of noise can be used much more
efficiently: The main point is to use noise not only for a
synchronization of output hops across a potential barrier with
an external signal, but also for the construction of this bar-
rier. This happens in the effect of doubly stochastic reso-
nance~DSR! @19#. In DSR the influence of noise is twofold:
additive noise induces resonancelike behavior in the struc-
ture, which has been, in turn, induced by multiplicative
noise. DSR occurs in a spatially distributed system of
coupled overdamped oscillators and can be considered as a
synthesis of two basic phenomena: SR and a noise-induced
phase transition@20#.

An important question is, How can we observe DSR in
experimental systems? We have mentioned in Ref.@19# sev-
eral appropriate real systems: analog circuits@21#, liquid
crystals @22#, photosensitive chemical reactions@23#,
Rayleigh-Bénard convection@24#, or liquid helium @25#. In
the present Rapid Communication we design an electronic
circuit for the observation of DSR. The most direct way is
the realization through analog circuits, but there are compli-
cations due to the complex construction of every unit; hence,
it is worth looking for a simpler electronic circuit model that
exhibits the DSR property. With this aim we consider an
electrical circuit which consists ofN coupled elements (i , j ).
A circuit of one element is shown in Fig. 1. Three ingredi-
ents in this circuit are important: the input current, a time-
varying resistor~TVR!, and a nonlinear resistor. Every ele-

ment is coupled with its neighbors by the resistorRc ~i.e., by
diffusive coupling!. The capacitor is shown byC. The non-
linear resistorRN can be realized with a set of ordinary di-
odes@26,27#, whose characteristic function is a piecewise-
linear function

i N5 f 1~V!5H GbV1~Ga2Gb!Bp if V<2Bp

GaV if uVu,Bp

GbV2~Ga2Gb!Bp if V>Bp ,

~1!

wherei N is the current through the nonlinear resistor (RN), V
is the voltage across the capacitor (C), and parametersGa ,
Gb , andBp determine the slopes and the breakpoint of the
piecewise-linear characteristic curve. Another way to realize
the nonlinear resistor is via a third-order polynomial func-
tion,

i N5 f 2~V!5g1V1g2V3.

The next important ingredient is a time-varying resistor
~TVR! @28,27#. The conductanceG(t) of TVRs varies with
time. Presently, we consider the case that the function which
represents the variation of the TVR is Gaussiand-correlated
in space and time noise, i.e.,G(t)5j(t), where

^j i~ t !j j~ t8!&5sm
2 d i , jd~ t2t8!.

An external action on the circuit is performed by the cur-
rent inputI (t), which is a periodic signal~with amplitudeA,
frequencyv, and initial phasew), additively influenced by
independent Gaussian noisez(t),

FIG. 1. Electronic circuit of the element (i , j ).
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I ~ t !5z~ t !1A cos~vt1w!,

where

^z i~ t !z j~ t8!&5sa
2d i , jd~ t2t8!.

The electronic circuit with respect to the element (i , j )
can be described by a set of Kirchoff’s equations,

C
dVi , j

dt
5I ~ t !2G~ t !Vi , j2 f 1,2~Vi , j !

1
1

Rc
~Vi 11,j1Vi 21,j1Vi , j 111Vi , j 2124Vi , j !.

~2!

Hence, the following set of Langevin equations describes the
considered system,

dVi , j

dt
52 f 1,2~Vi , j !1Vi , jj i , j~ t !1

D

4
~Vi 11,j1Vi 21,j1Vi , j 11

1Vi , j 2124Vi , j !1z i , j~ t !1A cos~vt1w!, ~3!

whereC is set to unity by normalization of time andD de-
notes a strength of coupling equal to 4/CRc . In the case
when f 2 represents the TVR, the model is the time-
dependent Ginzburg-Landau equation, which is a standard
model to describe phase transitions and critical phenomena
in both equilibrium and nonequilibrium situations@3#. It is
important that we consider only the situation when the po-
tential of one element is monostable (Ga50.5, Gb510, and
Bp51 for f 1 ; g1.0 andg251 for f 2), avoiding the possi-
bility to observe SR without multiplicative noise~The effect
of SR in the system, which consists of bistable elements, is
well-known and beyond the scope of this paper!.

We are interested in the behavior of the mean fieldm(t)
5(1/N)( i 51

N ( j 51
N Vi , j (t) and consider it as an output and the

periodic signal as an input of the whole system. SR behavior
can be expected if the system is bistable for the chosen set of
parameters. Regions of bistability can be determined by
means of a standard mean-field theory~MFT! procedure@3#.
The mean-field approximation consists of replacing the
nearest-neighbor interaction by a global term in the Fokker-
Planck equation corresponding to Eq.~3!. In this way, we
obtain the following steady-state probability distributionwst:

wst~x,m!5
C~m!

Asm
2 g2~x!1sa

2

3expS 2E
0

x f 1,2~y!2D~y2m!

sm
2 g2~y!1sa

2
dyD , ~4!

where C(m) is a normalization constant andm is a mean
field, defined by the equation

m5E
2`

`

xwst~x,m!dx. ~5!

A self-consistent solution of Eq.~5! determines the mean
field and the transition lines between ordered bistable (m
Þ0) and disordered monostable (m50) phases. Transition
boundaries for functionsf 1 and f 2 are shown in Fig. 2. Note
that bistability is impossible without multiplicative noise and
without coupling between elements. Since the SR effect, de-
scribed below, appears due to the variation of additive noise,
it is also important that a change of the additive noise inten-
sity shifts transition boundaries.

Next we estimate the signal-to-ratio~SNR! analytically.
Following the short-time evolution approximation, first intro-
duced in@29# and further developed in@30,19#, the dynamics
of the mean field is governed by an ‘‘effective’’ potential
Ueff(x), which has the form

Ueff~V!5U0~V!1Unoise5E f ~V!dx2
sm

2 V2

4
, ~6!

whereU0(V) is a monostable potential andUnoise represents
the influence of the multiplicative noise. Note that this ap-
proach is valid only if a suppression of fluctuations, per-
formed by the coupling, is sufficient. It means that the cou-
pling strength should tend to infinity, or actually be large
enough. DSR is expected for the regions where this effective
potential has a bistable form. To obtain an analytical estima-
tion of SNR for one element we use a standard linear re-
sponse theory@9,31#, yielding

SNR15
4pA2

sz
4

r k , ~7!

wherer k is the corresponding Kramers rate@32#

r k5
A~ uUeff9 ~V!uV5Vmin

uUeff9 ~V!uV5Vmax
!

2p
expS 2

2DUeff

sz
2 D .

~8!

Further, we rescale this value by the numberN of ele-
ments in the circuit@33# and take into account the processing

FIG. 2. Transition lines for the equation with functionf 1 : sa
2

50.3 ~label 1!, 0.5 ~label 2!, and 1~label 3!. Also the case withf 2

~the potential of every element is monostable:g1.0,g251); g1

51,sa
250.8 ~label 4!, 0.9 ~label 5!, and 1~label 6!.
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gain G and the bandwidthD in the power spectral density
@31#. TheSNRN of the mean field of the whole system ofN
elements is then

SNRN5SNR1

NG

D
11. ~9!

For the parameters, used below for numerical simulations
(sm

2 53, A50.1, N5324, G50.7, andD50.012), we ob-
tain the analytic estimation of the SNR, shown in Fig. 3~a!
by the solid line. Except for the application for electronic
circuits, this calculation also shows that DSR can be ob-
served not only in the specific model described in Ref.@19#.

In order to verify the results obtained by our rough ana-
lytical approximation, we have performed simulations of
model ~3! using numerical methods described in Ref.@34#.
We have taken a set of parameters within the region of two
coexisting ordered states with nonzero mean field. As a total
system, we take a two-dimensional lattice of 18318 ele-
ments, which was simulated numerically with a time step
Dt52.531024. The amplitude of the external signal was set
to 0.1, i.e., sufficiently small to avoid hops between two
states in the absence of additive noise. To describe the SR

effect quantitatively, we have calculated the SNR by extract-
ing the relevant phase-averaged power spectral densityS(v)
and taking the ratio between its signal part with respect to the
noise background@9#. The dependence of the SNR on the
intensity of the additive noise is shown in Fig. 3~a! for the
mean field~closed circles! and the mean field in a two-state
approximation~open circles!. In this two-state approxima-
tion, we have replaced the value of the mean field in time-
series by its sign before calculating the power spectral den-
sity, using the method of symbolic dynamics@35#, standardly
used to investigate SR@9#. Both curves demonstrate well-
known bell-shaped dependence that is typical for SR. In con-
trast to two-state approximation, for the mean field, SNR
tends to infinity for small values of multiplicative noise in-
tensity ~see closed circles forsa

2,0.1). It can be explained
by intrawell dynamics in the same way as in the conven-
tional SR @9#. Numerical simulations agree very well with
our theoretical estimation despite the very rough approxima-
tion via ‘‘effective’’ potential ~we will study the question,
what is the parameters regions of its validity, in a future
publication!.

Note that this SR effect is created by multiplicative noise,
since a bimodality is induced by the combined actions of the
multiplicative noise and the coupling. If we decrease only
the intensity of multiplicative noise, other parameters fixed,
the SR effect is not observed, as is shown in Fig. 3~b!. The
reason is that in this case our system is not bistable~see Fig.
2!. For f 2 the behavior is similar: DSR is observed forg1

51,g251,D55, sm
2 55, but not forsm

2 53,D55. For the
experimental setup a minimal number of elements, which is
neccessary for DSR observation, can be important. Reduc-
tion of the element number in this system leads to the fact
that a system can spontaneously~even in the absence of forc-
ing! perform a hop between two states. These jumps hide the
DSR effect, since they destroy a coherence between input
and output. For the system size 18318, considered here,
such jumps are rather seldom@36# and do not hinder DSR.
Our calculations have shown that a size 10310 is still satis-
factory, whereas further decrease of the element number will
destroy the effect.

In conclusion, we have proposed a rather simple elec-
tronic circuit implementation of the DSR effect in order to
encourage observers to perform this or a similar experiment.
It is important to add that in spite of the fact that the DSR
can be interpreted as some modification of SR, there are
several important distinctions between DSR and conven-
tional SR. First, a potential barrier is supported by multipli-
cative noise; it means that DSR is very efficient from the
energetic viewpoint. Another consequence is that this SR
effect can be controlled by a variation of multiplicative noise
intensity. Second, in contrast to SR, the amplitude of hops is
changed if we change the intensity of additive noise~similar
to Fig. 3 from @19#!. This is explained by the fact that an
increase of additive noise influences the transition lines~see
Fig. 2! and decreases the mean field, which corresponds to a
stable position in the absence of the external force.

A.Z. acknowledges financial support from MPG~Ger-
many! and from ESA~MPA AO-99-030!, and J.K. support
from SFB 555~Germany!.

FIG. 3. ~a! Numerical SNR~circles! vs analytical estimation
~solid line! for the equation withf 1 and D53,sm

2 53. Numerical
results are shown by closed circles for the mean field and open
circles for its two-state approximation. The stochastic resonance
effect is supported by noise. If we decrease the intensity of multi-
plicative noise, we do not observe it; e.g., for~b! D53,sm

2 50.5.
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We report the effect of doubly stochastic resonance which appears in nonlinear extended systems if the
influence of noise is twofold: A multiplicative noise induces bimodality of the mean field of the coupled
network and an independent additive noise governs the dynamic behavior in response to small periodic
driving. For optimally selected values of the additive noise intensity stochastic resonance is observed,
which is manifested by a maximal coherence between the dynamics of the mean field and the periodic
input. Numerical simulations of the signal-to-noise ratio and theoretical results from an effective two
state model are in good quantitative agreement.

PACS numbers: 05.40.Ca, 05.45.Tp, 05.70.Fh

The subject of this Letter is at the borderline of two
basic phenomena nowadays attracting significant interest
of a broad readership. Both phenomena are marked out
by the surprising ability of noise to create more order
in the behavior of nonlinear systems when the intensity
of the noise is increased. The first class of phenom-
ena is noise-induced phase transitions, intensively inves-
tigated since the 1980s. Within the investigated models
the appearance of new maxima in the system probabil-
ity distribution, which has no counterpart in the determin-
istic description, has been observed [1]. The excitation
of noise-induced oscillations [2,3] and the creation of a
mean field in spatially extended systems [4–6] are further
examples; various applications are discussed widely and a
description of many other noise-induced behaviors, even
of inhomogeneous structures, can be found in [1,4,6], and
references therein.

The second basic phenomenon is stochastic resonance
(SR) [7,8], which has been found in many natural
systems [9]. The conventional situation is the Brownian
motion in a bistable potential modulated by an external
periodic force. For an optimally selected strength of noise,
the Brownian particle hops coherently to the periodic
input between the two wells. In addition to this situation,
SR has been also found and investigated in a large variety
of different classes of systems: monostable systems
[10], systems with excitable dynamics [11], noisy non-

dynamical systems [12], systems without an external force
[13], and systems without any kind of threshold [14].

However, SR has not been considered in systems with a
noise-induced structure [15]. Therefore, we present in this
Letter a new type of SR in a system with a noise-induced
nonequilibrium phase transition resulting in a bistable be-
havior of the mean field. We call this effect doubly sto-
chastic resonance (DSR) to emphasize that additive noise
causes a resonancelike behavior in the structure, which in
its own turn is induced by multiplicative noise.

This DSR is demonstrated on a nonlinear lattice of
coupled overdamped oscillators first introduced in [5] and
further studied in [6,16]. The following set of Langevin
equations describes the considered system:

�xi � f�xi� 1 g�xi�ji�t�

1
D
2d

X
j

�xj 2 xi� 1 zi�t� 1 A cos�vt 1 w� ,

(1)

where xi�t� represents the state of the ith oscillator, i �
1, . . . , Ld , in the cubic lattice of the size L in d dimensions
and with N � Ld elements. The sum runs over 2d nearest
neighbors of the ith cell, and the strength of the coupling is
measured by D. The noisy terms ji�t� and zi�t� represent
mutually uncorrelated Gaussian noise, with zero mean and
uncorrelated both in space and time
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�ji�t�jj�t0 �� � s2
jdi,jd�t 2 t0 � , (2)

�zi�t�zj�t0�� � s2
z di,jd�t 2 t0� . (3)

The last item in (1) stands for an external periodic force
with amplitude A, frequency v, and initial phase w.

For the sake of simplicity, the functions f�x� and g�x�
are taken to be of the form [5]:

f�x� � 2x�1 1 x2�2, g�x� � 1 1 x2. (4)

In the absence of external force (A � 0) this model can
be solved analytically by means of a standard mean-field
theory (MFT) procedure [4]. The mean-field approxima-
tion consists in replacing the nearest-neighbor interaction
by a global term in the Fokker-Planck equation correspond-
ing to (1). In this way, one obtains the following steady-
state probability distribution wst:

wst�x, m� �
C�m�q

s
2
jg2�x� 1 s

2
z

3 exp

µ
2

Z x

0

f�y� 2 D�y 2 m�
s

2
jg2�y� 1 s

2
z

dy

∂
,

(5)

where C�m� is a normalization constant and m is a mean
field, defined by the equation

m �
Z `

2`
xwst�x, m� dx . (6)

Solving Eq. (6) self-consistently with respect to the vari-
able m one determines transitions between ordered (m fi

0) and disordered (m � 0) phases. Transition boundaries
between different phases are shown in Fig. 1 and the cor-
responding dependence of the order parameter on s

2
j is

presented in Fig. 2. In addition to [5], we show influence
of additive noise resulted in the shift of transition lines.
For s

2
z � 0 an increase of the multiplicative noise causes

a disorder-order phase transition, which is followed by the
reentrant transition to disorder [5]. In the ordered phase
the system occupies one of two symmetric possible states
with the mean fields m1 � 2m2 fi 0, depending on initial
conditions.

Now let us turn to the problem of how system (1)
responds to periodic forcing. We have taken a set of
parameters �s2

j; D� within the region of two coexisting or-
dered states with nonzero mean field. In particular, we
choose values given by the dot in Fig. 1. As for the net-
work, we take a two-dimensional lattice of L2 � 18 3 18
oscillators, which is simulated numerically [17] with a time
step Dt � 2.5 3 1024 under the action of the harmonic
external force. The amplitude of the force A has to be set
sufficiently small to avoid hops in the absence of additive
noise during the simulation time of a single run which is
much larger than the period of the harmonic force [18].
Jumps between m1 $ m2 occur only if additive noise is
additionally switched on. Runs are averaged over different
initial phases.

Time series of the mean field and the corresponding pe-
riodic input signal are plotted in Fig. 3 for three differ-
ent values of s

2
z . The current mean field is calculated as

m�t� � 1
L2

PN
i�1 xi�t�. For a small intensity of the addi-

tive noise, hops between the two symmetric states m1 and
m2 are rather seldom and not synchronized to the exter-
nal force. If we increase the intensity s

2
z , we achieve a

situation when hops occur with the same periodicity as the
external force and, hence, the mean field follows with high
probability the input force. An increase of additive noise
provides an optimization of the output of the system which
is stochastic resonance. If s

2
z is increased further, the order

is again destroyed, and hops occur much more frequently
than the period of the external force.

Figure 3 illustrates that additive noise is able to optimize
the signal processing in the system (1). In order to char-
acterize this SR effect we have calculated signal-to-noise
ratio (SNR) by extracting the relevant phase-averaged
power spectral density S�v� and taking the ratio between
its signal part with respect to the noise background [8].
The dependence of SNR on the intensity of the additive
noise is shown in the Fig. 4 for the mean field (filled
points) and the mean field in a two-state approximation
(opaque point). In this two-state approximation we
have replaced m�t� by its sign and put approximately
m�t� � 11 or m�t� � 21, respectively. Both curves
exhibit the well-known bell shaped dependence on s

2
z

typically for SR. Since the bimodality of the mean
field is a noise-induced effect we call that whole effect
doubly stochastic resonance. For the given parameters
and A � 0.1, v � 0.1 the maximum of the SNRs is
approximately located near s

2
z � 1.8.

Next we intend to give analytic estimates of the SNR. If
A, D, and s

2
z vanish, the time evolution of the first moment

of a single element is given simply by the drift part in the
corresponding Fokker-Planck equation (Stratonovich case)

� �x� � �f�x�� 1
s

2
j

2
� g�x�g0�x�� . (7)

As it was argued in [6], the mechanism of the noise-
induced transition in coupled systems can be explained
by means of a short time evolution approximation [19].
It means that we start with an initial Dirac d function,
follow it only for a short time, such that fluctuations are
small and the probability density is well approximated by
a Gaussian. A suppression of fluctuations, performed by
coupling, makes this approximation appropriate in our case
[20]. The equation for the maximum of the probability,
which is also the average value in this approximation x �
�x�, takes the following form

�x � f�x̄� 1
s

2
j

2
g�x̄�g0�x̄� , (8)

which is valid if f��x�� ¿ �dx2�f00��x��. For this dynam-
ics an “effective” potential Ueff�x� can be derived, which
has the form
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Ueff�x� � U0�x� 1 Unoise � 2
Z

f�x� dx 2
s

2
jg2�x�

4
,

(9)

where U0�x� is a monostable potential and Unoise rep-
resents the influence of the multiplicative noise. In the
ordered region, inside the transition lines (Fig. 1), the po-
tential Ueff�x� is of the double-well form, e.g., U�x�eff �
2x2 2 0.25x4 1 x6�6, for given f�x�, g�x�, and s

2
j � 3.

Now we consider a conventional SR problem in this
potential with an external periodic force of the amplitude
A and the frequency v. If we neglect intrawell dynamics
and follow linear response theory the SNR is well known
[8,21]

SNR1 �
4pA2

s
4
z

rk , (10)

where rk is the corresponding Kramers rate [22]

rk �

q
�U 00

eff�x�jx�xmin jU
00
eff�x�jx�xmax�

2p
exp

µ
2

2DUeff

s
2
z

∂

(11)

for surmounting the potential barrier DUeff. Using
Eqs. (9)–(11), we get an analytical estimate for a single
element inside the lattice. Further on, rescaling this value
by the number N of oscillators in the lattice [23] and tak-
ing into account the processing gain G and the bandwidth
D in the power spectral density [21], the SNRN of the
mean field of the network of N elements can be obtained

SNRN � SNR1
NG
D

1 1 . (12)

0 2 4 6 8 10
σξ

5

10

15

20

D

1

2

3

FIG. 1. Transition lines between ordered and disordered phase
on the plane �s2

m; D� for different intensities of the additive noise
s

2
z � 0 (1); 1 (2), and 5 (3). The black point corresponds to

D � 20, s
2
j � 3.

This dependence is shown in Fig. 4 by the solid line
and demonstrates, despite the rough approximation, a good
agreement with the results of the numerical simulations.
Nearly exact agreement is found in the location of the
maximum as well as for the quantitative values of the SNR
(“scalloping loss” [21] has been avoided in simulations by
setting the frequency v to be centered on one of the bins
in the spectrum). A more satisfying theory of DSR is left
as an open question in this Letter.

In conclusion, we have reported the existence of doubly
stochastic resonance, which results from the twofold influ-
ence of noise on a nonlinear system. DSR is a combined
effect which consists of a noise-induced phase transition
and conventional SR.

Some remarks should be added. First, we have con-
sidered a system which undergoes a pure noise-induced
transition, in the sense that a transition is impossible in
the absence of noise. This is an important distinction of
the DSR effect from SR in any variation of the mean-field
model [24]. Second, in the considered system the so-called
“stochastic” potential [1] for a single oscillator in the lat-
tice [which differs from (9)] always remains monostable.
Third, there are clear distinctions between SR and DSR be-
havior, because, in contrast to SR, in DSR additive noise
does not only help an input/output synchronization, but
also changes the properties of the system in the absence of
the external force (see Figs. 1 and 2). As a consequence,
in DSR amplitude of hops is decreased (bistability disap-
pears) for large noise intensities s

2
z (compare Fig. 3 and

Fig. 4 from [8]). Finally, not every system with noise-
induced bistability demonstrates DSR, e.g., we did not find
DSR in zero-dimensional systems, which are described
in [1].

We expect that these theoretical findings will stimu-
late experimental works to verify DSR in real physical

0 2 4 6 8 10
σξ

0.0

0.2

0.4

0.6

0.8

1.0

m

1

2

3

FIG. 2. The order parameter jmj vs the intensity of multiplica-
tive noise for D � 20 and s

2
z � 0 (label 1), 1 (label 2), and 5

(label 3).
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FIG. 3. Example of input/output synchronization. The time
evolution of the current mean field (output) and the periodic
external force F�t� (input) for different intensities of additive
noise (from top to bottom) s

2
z � 0.01, 1.05, and 5.0. If the

intensity of the additive noise is close to their optimal value
(middle row), hops occur with the period of the external force.
The remaining parameters are A � 0.1, v � 0.1, D � 20,
and s

2
j � 3.

systems (for experiments on noise-induced bistability, see
[25]). Appropriate situations can be found in electronic
circuits [26], as well as in system, which demonstrate a

0 1 2 3 4 5
σζ

0

50

100

S
N

R
, S

N
R

N

FIG. 4. The dependence of SNR on the additive noise inten-
sity for the output (filled points) and its two-states approximation
(opaque points). The solid line corresponds to the analytical es-
timation SNRN (12), performed on the base of derivation of the
“effective” potential and linear response theory. The parameters
are the same as for Fig. 3 and the processing gain G � 0.7.

noise-induced shift of the phase transition, e.g., in liq-
uid crystals [27], photosensitive chemical reactions [28],
or Rayleigh-Bénard convection [29]. It can be crucial for
such experiments that, in contrast to conventional SR, in
DSR the energy of noise is used in a more efficient way:
not only for the optimization of the signal processing, but
also for the support of the potential barrier to provide
this optimization.
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We study different nonlinear systems which possess noise-induced nonequlibrium transitions and
shed light on the role of additive noise in these effects. We find that the influence of additive noise
can be very nontrivial: it can induce first- and second-order phase transitions, can change properties
of on–off intermittency, or stabilize oscillations. For the Swift–Hohenberg coupling, that is a
paradigm in the study of pattern formation, we show that additive noise can cause the formation of
ordered spatial patterns in distributed systems. We show also the effect of doubly stochastic
resonance, which differs from stochastic resonance, because the influence of noise is twofold:
multiplicative noise and coupling induce a bistability of a system, and additive noise changes a
response of this noise-induced structure to the periodic driving. Despite the close similarity, we
point out several important distinctions between conventional stochastic resonance and doubly
stochastic resonance. Finally, we discuss open questions and possible experimental
implementations. ©2001 American Institute of Physics.@DOI: 10.1063/1.1380369#

In the majority of investigations, devoted to the study of
noise-induced processes, a supplement of additive noise
leads only to smoothing of transition diagrams. Contrary
to this situation, in this contribution we show that addi-
tive noise can play a much more crucial role. In oscilla-
tory systems, additive noise is able to excite oscillations,
to influence on–off intermittency, and to stabilize sto-
chastic oscillations. In spatially extended systems, which
consist of coupled overdamped oscillators, additive noise
can induce first- and second-order phase transitions,
which in particular cases manifest themselves in the ap-
pearance of spatially ordered patterns. Another interest-
ing behavior occurs if a system works as a signal proces-
sor. Then additive noise is able to optimize the response
of a system to an external periodic signal, if this system
possesses a property of multiplicative noise induced bista-
bility.

I. INTRODUCTION

Intensive investigations in nonlinear physics in the last
two decades have shown that there are many nonequilibrium
systems which demonstrate phenomena manifesting noise-
induced ordering. Among these phenomena we emphasize
several basic ones, such as stochastic resonance~SR!1,2 ~for
SR in natural systems see Ref. 3!, noise-induced transitions
~NIT!,4–6 noise-induced transport in ratchets,7 or coherence
resonance.8 This classification does not pretend to be com-
plete, because there are various modifications and extensions
of these basic phenomena~e.g., resonance activation9 or
noise-induced pattern formation10!. On the another hand,
there are phenomena which possess properties of different
groups from this classification. Two interesting examples
may illustrate this point: a synthesis of a ratchet mechanism
and noise-induced phase transition,11 and a synthesis of sto-
chastic resonance and noise-induced transition.12

In the present review we focus on one of these basic

phenomena, namely noise-induced transitions~NIT!. In its
turn, NIT can be classified into three main groups:~i! NIT
which lead to the appearance of additional maxima in the
system’s probability distribution,4 ~ii ! NIT which lead to the
excitation of oscillations,13,14 and ~iii ! NIT in extended sys-
tems which lead to breaking of symmetry and the creation of
a mean field.5,15–17,19In the majority of the papers on these
topics only multiplicative noise is perceived to be respon-
sible for the transitions. However, it was recently
shown,6,18,20–22that under certain conditions additive noise
can also be very important and nontrivial in NIT. The aim of
the present paper is to discuss several aspects and recent
results of this investigation and also to point out open ques-
tions and unsolved problems connected with the influence of
additive noise on transitions in nonlinear systems.

First we analyzeoscillatory systems under the action of
noise. In Sec. II we start by considering a transition induced
by multiplicative noise in a pendulum with randomly vi-
brated suspension axis. We investigate the role of additive
noise in this effect and show that additive noise influences a
transition as well as on–off intermittency, observed in the
excited oscillations. In contrast to this situation in which ad-
ditive noise only smoothes the transition, in the next inves-
tigated oscillatory model, a standard epidemiological model
with random excitation, the transition can be induced both by
multiplicative and additive noise~Sec. III!. Moreover, addi-
tive noise is able to stabilize stochastic oscillations, which
are unstable if only multiplicative noise is present. Another
class of models under consideration are spatially extended
systems, which consist of coupledoverdampedoscillators.
We show that in such systems second- and first-order transi-
tions induced by additive noise are possible~Sec. IV!. If a
nonlinear distributed system is under the action of additional
external force, then doubly stochastic resonance~DSR! can
be observed~Sec. V!. In DSR the influence of noise is two-
fold: multiplicative noise induces a bistability of a mean
field, and additive noise helps the system to respond coher-
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ently to an external signal. Finally, we summarize the results
and discuss open questions of the problem under consider-
ation in order to show that there are a lot of unsolved prob-
lems in this particular field, which is rapidly developing and
attracting constantly growing attention in the modern nonlin-
ear physics.

II. TRANSITIONS IN THE PRESENCE OF ADDITIVE
NOISE: ON–OFF INTERMITTENCY

A pendulum with randomly vibrated suspension axis is a
typical example of oscillatory system, in which parametric
action of noise can lead to the excitation of oscillations via a
second-order phase transition.6,13,18In this case the intensity
of multiplicative noise plays the role of temperature and the
average amplitude is the order parameter. Here we discuss
the question ‘‘what happens if additionally additive noise is
acting upon the system?’’ Therefore we consider a pendulum
whose suspension axis is vibrating in the direction making
the angleg with respect to the vertical. As shown in Ref. 6,
for moderately small vibrations of a suspension axis, the
equation of motion can be written as follows:

ẅ12b~11aẇ2!ẇ1v0
2~11j1~ t !!w5v0

2j2~ t !, ~1!

wherew is the pendulum angular deviation from the equilib-
rium position,v0

2 is the natural frequency of small free pen-
dulum oscillations,b is a damping factor with the nonlinear
coefficienta, j1(t)5j(t)cosg is the multiplicative compo-
nent of the suspension vibration, andj2(t)52j(t)sing is
its additive component,j(t) is a comparatively wide-band
random process~or white noise!, responsible for the shift of
the suspension axis in the direction of vibration.

In the absence of additive noise~j250, g50, i.e., a
vibration is performed strictly in the vertical direction!, the
system can be analyzed analytically. Looking for the solution
in the form w(t)5A(t)cos(v0t1f) and using the Krylov–
Bogolyubov method for stochastic equations,23 we obtain the
following truncated equations for the amplitudeA and the
phasef of the pendulum’s oscillations:

u̇5
1

8
v0

2k~2v0!2bS 11
3

4
bav0

2 exp2uD1
v0

2

2
z1~ t !,

~2!
ḟ5v0z2~ t !,

whereu5 ln A, z1(t), andz2(t) are white noise with inten-
sities

K15 1
2 k~2v0!, K25 1

4~k~0!1 1
2 k~2v0!!. ~3!

Here k(v)5*2`
` ^j(t)j(t1t)&cos(vt)dt is the power

spectrum density of the processj(t) at the frequencyv, and
the angular brackets signify averaging over statistical en-
semble. It is important that in the equation for the amplitude
u5 ln A, we have a constant termv0

2k(2v0)/8, which ap-
peared due to the parametric action of noise. Namely, this
fact is responsible for the excitation of noise-induced oscil-
lations.

Solving the Fokker–Planck equation associated with Eq.
~1!, a probability density for the amplitudew(A) and ampli-
tude squaredw(A2)5 (1/2A) w(A) can be found.13 Using
the functionw(A2) we obtain

^A2&5H 4h

3av0
2 for h>0,

0 for h<0,

~4!

where

h5
v0

2

8b S k~2v0!2
8b

v0
2 D

is proportional to the difference between the noise intensity
at the frequency 2v0 and the critical noise intensity.

It is clear from this that forh>0 the parametric excita-
tion of the pendulum’s oscillations occur under the effect of
noise via a noise-induced transition. This manifests itself in
the fact that the mean value of the amplitude squared be-
comes different from zero. The corresponding dependence of
the order parameter̂A2& on the parameterh is plotted in
Fig. 1~a!. Numerical simulation of the original Eq.~1! shows
that if the noise intensity is slightly over a threshold, then
on–off intermittency can be observed in the form of
oscillations.24 This means that for the same external action
the system is sometimes in the state ‘‘on’’~the amplitude is
large!, which is intermittent with the state ‘‘off’’~the ampli-
tude is rather small!.

Now let us discuss which changes happen in the pres-
ence of additive noise. The analytical consideration for this
case can be found in Ref. 22; here we present the results of
numerical simulations. The results are shown in Fig. 1~a!.
The presence of additive noise leads to the fact that the prob-
ability distribution below the threshold is no longer a
d-function, and the transition is now smoothed and not so
well-defined, as in the case without additive noise. It is in-
teresting to note that in both cases, with or without additive
noise, no additional extrema in the system probability distri-
bution w(A2) are observed in the course of the transition.

The additive noise also influences the effect of on-off
intermittency@see Fig. 1~b!#. For supercritical values of the
multiplicative noise intensity on–off intermittency is now
hidden and not observable in the form of oscillations, but can
be detected for subcritical values, below a threshold. Hence
in the presence of additive noise on–off intermittency, a sign
of noise-induced transition, can be observed even before this
transition occurs with respect to the increase of the control
parameter.

It is necessary to note that in the same system chaotic
oscillations can be observed, if the external parametric action
is periodic. A comparison with this case is discussed in Ref.
13. Chaotic pendulum’s oscillations are very similar in its
form to noise-induced oscillations. However, a calculation of
the probability distribution of the average amplitude squared
allows to distinguish between both cases of the external ac-
tion by means of the Rytov–Dimentberg criterion.13
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As is shown by further examples in this contribution,
this effect of transition smoothing and influence on on–off
intermittency is not a single effect of additive noise in oscil-
latory systems.

III. TRANSITIONS INDUCED BOTH BY
MULTIPLICATIVE AND ADDITIVE NOISE:
STABILIZATION OF NOISE-INDUCED OSCILLATIONS

In this section we study a system under the action of
noise, which has both additive and multiplicative compo-
nents. We show that these both multiplicative and additive
components of noise, considered separately, can induce a
transition, and, what is especially interesting, the combina-
tion of their actions stabilizes noise-induced oscillations. To
demonstrate these effects, we use a standard epidemiological
model for the dynamics of children diseases.25 Two variants
of excitation are possible, either by periodic force26,27 or by
noise.14 In both cases this system exhibits chaotic or noise-
induced oscillations which closely resemble oscillations ob-
served in experimental data.

We analyze the influence of additive component of noise
in the following model system:14

Ṡ5e~12S!2bSI, Ė5bSI2~e1 l !E,
~5!

İ 5 lE2~e1g!I ,

whereS, E, andI denote the number of susceptible, exposed
but not yet infected, and invective children, respectively. The
parameters 1/e, 1/l , 1/g are the average expectancy, latency
and infection periods of time. The contact rateb is the pa-
rameter of excitation and equal tob5b0(11b1j(t)) where
j(t) is a harmonic noise with the peak of spectral density at
the circle frequency 2p ~seasonal noisy oscillations with a
period equal to one year! and the parameterb1 is the ampli-
tude of noise. The excited oscillations are executed in the
vicinity of the stable singular point with the coordinates

(S0 ,E0 ,I 0). Hence, one can easily rewrite the equations for
the new variablesx5S/S021, y5E/E021, and z5I /I 0

21 which are deviations from the equilibrium point:

ẋ1ex52b0I 0~11b1j~ t !!~x1z1xz!2b0b1I 0j~ t !,

ẏ1~e1 l !y5~e1 l !~11b1j~ t !!~x1z1xz!

1~e1 l !b1j~ t !, ~6!

ż1~e1g!z5~e1g!y.

This form of equations clearly shows that the action of noise
is multiplicative as well as additive.

An increase of the noise intensity causes noise-induced
oscillations of the variablesS, I , E @Fig. 2~a!#. Their oscil-
latory behavior closely resembles observed epidemiological
data @compare Fig. 2~a! with figures in Ref. 28#. These os-
cillations are excited after a noise-induced transition@see
Fig. 2~b!#. There the variance of oscillations together with an
approximating straight line is shown. The point where the
straight line crosses the abscissa axis can be taken as a criti-
cal point of the transition. To prove this, we remove artifi-
cially the multiplicative component of noise from Eqs.~6!. In
this case the variance of oscillations is equal to zero ifb1

,b1cr and goes to infinity shortly after the noise intensity
exceeds its critical value. So, additive noise indeed is able to
induce a phase transition. The same situation happens if the
additive component of noise is absent but the multiplicative
one is present.

To conclude, this transition can be induced by noise
which contains both multiplicative and additive components.
As shown by its separate consideration, both components
play an important role in this transition. What is even more
interesting, if the additive and multiplicative components of
noise act together, as in the model, a stabilization of noise-
induced oscillations occurs: in this case the dependence of

FIG. 1. ~a! A noise-induced phase transition in a pendulum with randomly vibrated suspension axis@Eq. ~1!#. The dependence of the averaged amplitude
squared multiplied by the parametera53av0

2/4 onh, whereh is an extent on which multiplicative noise intensity exceeds the threshold value. The curve 1
corresponds to the case without additive noise, curves 2 and 3 to the cases with additive noise intensitiesk1 andk2, wherek2.k1 ~for details and analytical
expressions see Ref. 6!. Analytical and numerical results are shown by solid and symbol curves, respectively.~b! On–off intermittency for subcritical values
of multiplicative noise intensity. In contrast to this situation, if additive noise is absent, on–off intermittency is observed near a threshold butfor supercritical
values of the multiplicative noise intensity.
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the variance on the noise intensity does not increase to infin-
ity, that is not a case if multiplicative component of noise
acts separately.

IV. TRANSITIONS INDUCED BY ADDITIVE NOISE

Now we extend our study to spatially extended systems
and show that additive noise is able to induce second- and
first-order phase transitions. Due to a special form of cou-
pling these transition can also lead to the formation of spa-
tially ordered patterns.

A. Second-order phase transitions: Noise-induced
pattern formation

We investigate a nonlinear lattice of overdamped
coupled stochastic oscillators10,21 under the action of noise.
In this system a transition manifests itself in the formation of
spatially ordered patterns, as a consequence of a special form
of couplinga la Swift–Hohenberg. The system is described
by a scalar fieldxr , defined on a spatial lattice with pointsr :

ẋr5 f ~xr !1g~xr !j r1Lxr1z r ~7!

with f and g taken in the form~for the discussion, which
functions can be chosen to observe a transition see Ref. 29!

f ~x!52x~11x2!2, g~x!5a21x2 ~8!

andj r , z r are independent zero-mean-value Gaussian white
noises:

^j r~ t !j r8~ t8!&5sm
2 d r,r 8d~ t2t8!,

~9!
^z r~ t !z r~ t8!&5sa

2d r,r 8d~ t2t8!.

Note that for these functionsf (x) and g(x) the transi-
tions described arepure noise-induced phase transitions, in
the sense that they do not exist in the system without noise.
The coupling operatorL is a discretized version of the
Swift–Hohenberg coupling term2D(q0

21“

2)2.21

To study the influence of the additive noise, we consider
two limiting cases of correlation between additive and mul-

tiplicative noise: strong correlation~z r50 and parametera is
varied!, and no correlation~a50 and the intensity ofz r is
varied!.

Using the generalized Weiss mean field theory~MFT!,5

the conditions of phase transition can be found. Substituting
the value of the scalar variablexr8 at the sites coupled toxr
by its special average:

^xr8&5^x&cos@k•~r2r 8!#, ~10!

we obtain forx5xr

ẋ5 f ~x!1g~x!j~ t !1Dv~k!x2Deff~x2^x&!1z~ t !,
~11!

where

Deff5F S 2d

D2 2q0
2D 2

1
2d

D2 1v~k!GD ~12!

and a dispersion relationv(k)50 for the most unstable
mode, which is only of interest here.10

Now the valuê x& plays the role of the amplitude of the
spatial patterns with an effective diffusion coefficientDeff .
The steady state solution of the Fokker–Planck equation cor-
responding to Eq.~10! is written then as follows:

wst~x!5
C~^x&!

Asm
2 g2~x!1sa

2
expS 2E

0

x f ~y!2Deff~y2^x&!

sm
2 g2~y!1sa

2 dyD ,

~13!

andC(^x&) is the normalization constant.
For the mean field valuêx& we obtain21

^x&5E xwst~x,^x&!dx. ~14!

Solving Eq.~14! with parametersD, sm
2 , and sa

2 , we
obtain a boundary between two phases: a disordered
(u^x&u50! and an ordered one (u^x&uÞ0). The ordered phase
corresponds to the appearance of spatially ordered patterns,
because its average amplitude becomes nonzero. This hap-
pens due to the special form of coupling which includes

FIG. 2. ~a! Noise-induced oscillations~epidemics! in the epidemiological model Eqs.~6!. ~b! The dependence of oscillation variance for the variablex on the
parameterb1 , which is responsible for the noisy variation of a contact rate~see the text!.
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wave length of these patternsq0 . It is known that in the
considered system multiplicative noise induces a phase
transition.10 We focus our attention to the influence of addi-
tive noise. The boundary of the phase transition on the plane
(sm

2 ,D) is shown in Fig. 3~a!, which demonstrates that
variation of the intensity of correlated additive noise@the
parametera in Eq. ~8!# causes a shift of the transition bound-
ary. The most interesting situation occurs in the dashed re-
gion. Here, the increase of the additive noise intensity causes
the re-entrant~disorder–order–disorder! phase transition.
The corresponding dependence of the order parameter on the
parametera is shown in Fig. 3~b!.

For the case of uncorrelated additive noise (a50), the
observed behavior is qualitatively the same@Figs. 3~c! and
3~d!#. Here the transition lines are plotted on the plane
(sm

2 ,D) and the intensitysa
2 of uncorrelated additive noise

is varied. It is evident that again dashed region corresponds
to the phase transition. If we take parameters from this
dashed region~in both cases of correlation!, and change the
intensity of additive noise~varying the parametera or sa

2!,
we observe a formation of patterns and further their destruc-
tion ~see results of numerical simulations in Fig. 4!.

To understand the mechanism behind this transition, it is
necessary to note that there is no bistability either in the
‘‘usual’’ potential or in the so-called ‘‘stochastic’’ potential.4

Nevertheless, using some approximations it can be
shown17,21that the short-time evolution of the mean field can
be described by the ‘‘effective’’ potential, which becomes
bistable after a transition. IfD, and sa

2 vanish, the time
evolution of the first moment of a single element is simply
given by the drift part in the corresponding Fokker–Planck
equation~Stratonovich case!

FIG. 3. Additive noise induced phase transition in a nonlinear lattice Eq.~7!: predictions of the mean field theory.~a! The boundaries of the transition on the
plane (sm

2 ,D) for different values ofa Eqs.~8!. It is clearly seen that by variation ofa a point from the dashed region is a point of the transition induced by
additive noise.~b! Dependence of order parameteru^x&u if the additive noise intensity is varied.~c! The transition lines for the case when additive and
multiplicative noise are independent:sa

25 1 ~label 1!, 0.5 ~label 2!, and 0.3~label 3!. ~d! Large scaled region from the plot in~c!.

FIG. 4. A formation of spatial patterns
induced by additive noise. From left to
right the intensity of additive noise is
increased (a50): sa

250.001, 0.7, and
10 ~from left to right!. The field in the
nonlinear lattice of 1283128 elements
is coded from white~minimum! to
black ~maximum! colors.
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^ẋ&5^ f ~x!&1
sm

2

2
^g~x!g8~x!&. ~15!

As it was argued in Ref. 17, the mechanism of the noise-
induced transition in coupled systems can be explained by
means of a short-time evolution approximation.30 It means
that we start with an initial Diracd function, follow it only
for a short time, such that fluctuations are small and the
probability density is well approximated by a Gaussian. A
suppression of fluctuations, performed by coupling, makes
this approximation appropriate in our case.31 The equation
for the maximum of the probability, which is also the aver-
age value in this approximationx̄5^x&, takes the following
form:

xG 5 f ~ x̄!1
sm

2

2
g~ x̄!g8~ x̄!, ~16!

which is valid if f (^x&)@^dx2& f 9(^x&). For this dynamic, an
‘‘effective’’ potential Ueff(x) can be derived, which has the
form

Ueff~x!5U0~x!1Unoise52E f ~x!dx2
sm

2 g2~x!

4
, ~17!

whereU0(x) is a monostable potential andUnoise represents
the influence of the multiplicative noise. In the ordered re-
gion, this ‘‘effective’’ potential has additionalx50 minima
that explain the nonzero solutions for the amplitude of spatial
patterns.21

B. First-order phase transitions

In Ref. 33 a first-order phase transition has been re-
ported, which is induced by multiplicative noise. Now we
show thatfirst-order nonequilibrium transitions in spatially
extended systems can also be induced by additive noise. It is
important, that in contrast to second-order transitions, in a
first-order transition very tiny fluctuation of the control pa-
rameter can lead to a drastic change of the order parameter.
The study is performed on a nonlinear lattice of coupled
stochastic overdamped oscillators introduced in Ref. 16 and

further studied in Refs. 20, 21, 17, and 32. The time evolu-
tion of the system is described by the following set of Lange-
vin equations:

ẋi5 f ~xi !1g~xi !j i~ t !1
D

2d (
j

~xj2xi !1z i~ t !, ~18!

wherexi(t) represents the state of thei th oscillator, and the
sum runs over all nearest neighbors of celli . The strength of
the coupling is measured byD, andd is the dimension of the
lattice, which hasN5Ld elements. The noise termsj i(t) and
z i(t) are the same as defined in Eqs.~9!: mutually uncorre-
lated, Gaussian distributed, with zero mean and white in both
space and time. The functionsf (x) andg(x) are defined in
Eqs.~8!.

We study the behavior of this system by means of a
standard MFT procedure. Solving the corresponding Eq.~14!
with respect to the variablem5^x&, andwst defined by Eq.
~13! with Deff5D, one can set the transition boundaries. In
this way obtained order–disorder transition lines are shown
in Fig. 5~a!. Here we consider only the case whensa

250 and
the parametera is varied. Curve 1 separates regions of dis-
order~below the curve! and order~above the curve! for small
multiplicative noise intensity. In this case, the ordered region
is characterized by three self-consistent solutions of Eq.~14!,
one of them unstable (m50) and the other two stable and
symmetrical. These new solutions appear continuously from
m50 in the course of the transition. Hence, if we fix the
coupling strength, e.g.,D520, and increase the intensity of
additive noise~the parametera! a second-orderphase tran-
sition from disorder to order occurs, followed by a re-entrant
transition back to disorder, also of second order.

Thefirst-order transition can be observed when the mul-
tiplicative noise intensity increases. In that case@curve 2 in
Fig. 5~a!#, a region appears where Eq.~14! has five roots,
three of which ~m50 and two symmetrical points! are
stable. This region is marked dashed in the figure. Thus, for
large enough values ofD, a region of coexistence appears in
the transition between order and disorder. This region is lim-
ited by discontinuous transition lines betweenm50 and a
nonzero, finite value ofm. Hence, additive noise is seen to

FIG. 5. The nonlinear lattice Eqs.~18!: ~a! Transition lines on the plane (a,D) for sa50 and two different intensities of the multiplicative noise~curve 1:
sm

2 51.6; curve 2:sm
2 53.0!. The dashed region~starting with the dot! corresponds to the coexistence of disordered and ordered phase.~b! The corresponding

dependence of the order parametersm,mn on a for D520, sm
2 53.0, andsa

250.0 are plotted by solid lines~MFT predictions! and by diamonds~numerical
simulations!. The dotted line delimits the coexistence region exhibited by MFT~a region of the hysteresis effect!. The unstable state is plotted by the dashed
line.
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induce afirst-order phase transition in this system for large
enough values of the coupling strength and multiplicative
noise intensity. The re-entrant transition is again of second
order. When the first-order phase transition appears, hyster-
esis can be expected to occur in the coexistence region~if a
certain algorithm is applied34!. The dependence of the order
parameterm on the control parametera as predicted by MFT
is shown in Fig. 5~b! with a solid line. The region of possible
hysteresis is bounded by dotted lines.

In order to contrast the analytical results, we have per-
formed simulations of the complete model~18! using the
numerical methods described in Refs. 5 and 17. The order
parametermn is computed as

mn5K U 1

L2 (
i 51

N

xiU L ,

where ^ & denotes time average. Results for a two-
dimensional lattice with lateral sizeL532 are shown with
diamonds in Fig. 5~b!. Analyzing this figure one can observe
that MFT overestimates the size of the coexistence region.
This effect, analogous to what was observed for
multiplicative-noise induced transitions,16 can be explained
in terms of an ‘‘effective potential’’ derived for the system at
short times~see discussion below!. For instance, asa in-
creases the system leaves the disordered phase not when this
state becomes unstable but earlier, when the potential
minima corresponding to the ordered states become much
lower than the minimum corresponding to the statem50. It
should also be mentioned that the numerical simulations did
not show hysteresis, because in the coexistence region the
system occupied any of the three possible states, indepen-
dently of the initial conditions. It can be explained by the
small size of the simulated system, which permits jumps be-
tween steady states when the system is sufficiently perturbed
~e.g., by slightly changing the parametera!.

We have thus seen so far that numerical simulations
qualitatively confirm the existence of a first-order phase tran-
sition induced by additive noise in this system, as predicted
by MFT. We note that the transition occurs in the two limit-
ing cases of correlation between multiplicative and additive
noise. We also emphasize that variation of both the multipli-
cative noise intensity and the coupling strength can change
the order of this transition.

Let us now discuss a possible mechanism behind this
effect. As pointed out above, the collective behavior of this
system can be described by the ‘‘effective’’ potential@see Eq.
~17!#. We can trace the behavior of this potential in the pres-
ence of multiplicative noise, for the casesa

250 andaÞ0. Its
evolution for increasinga is shown in Fig. 6. This approach
can be clearly seen to successfully explain the mechanism of
the first-order transition: first, only the zero state is stable
~curve 1!, then there is a region where three stable states
coexist ~curve 2!, and finally, the disordered state becomes
unstable~curve 3!. This approach also explains why a varia-
tion of the multiplicative noise intensity influences the order
of the transition: for another~lower! sm

2 there is no region
where ordered and disordered phases simultaneously exist.
We emphasize that the ‘‘effective’’ potential is derived only

for short-time evolution, and should not be confused with the
‘‘stochastic’’ potential,4 which for this system remains al-
ways monostable. For the other case of correlation between
multiplicative and additive noise, in the region of additive
noise induced transition, the ‘‘effective’’ potential always has
three minima~two symmetric minima are lower than the
central one!. Sufficiently large~above a threshold of the tran-
sition! additive noise causes an escape from zero state and
leads to the transition. The value of a critical additive noise
intensity for this transition can be estimated by the ‘‘effec-
tive’’ potential approach, only by MFT. Here we have con-
sidered only a case of strong correlation between multiplica-
tive and additive noise. As described in Ref. 35, if additive
noise is independent, it can also induce a first-order phase
transition. The level of correlation between additive and mul-
tiplicative noise can be considered as an additional parameter
in this system, what we leave as an open question here.

In conclusion, we have reported that additive noise can
induce a first-order phase transition in a spatially extended
system. This transition leads to breaking of symmetry and
the creation of a mean field. It should also be mentioned that
for another form of coupling,a la Swift–Hohenberg as in
Sec. IV A, spatial patterns can appear as a result of a first-
order phase transition.

V. ADDITIVE NOISE IN DOUBLY STOCHASTIC
RESONANCE

Doubly stochastic resonance~DSR!12 is a synthesis of
two basic phenomena: noise-induced phase transition and
stochastic resonance~SR!.

In the conventional situation SR manifests itself as fol-
lows: additive noise optimizes the response of a bistable sys-
tem to an external periodic force. In addition to this situation,
SR has also been found and investigated in a large variety of
different class systems: monostable systems,36 systems with
excitable dynamics,37 noisy non-dynamical systems,38 sys-
tems with sensitive frequency SR dependence,39 systems
without an external force,8,40 and systems without any ex-
plicit threshold.41 In all these works SR has been observed in
the structure, given by the system, and not in the noise-
induced structure. In contrast to it, here we address the prob-

FIG. 6. An ‘‘effective’’ potential for the short-time evolution ofm in the

lattice Eqs.~18!, for a25..0.25 ~curve 1!, 0.28~curve 2!, and 0.34~curve 3!.
Other parameters aresm

2 53.0 andsa
250.0. A coexistence of ordered and

disordered phases is observed for the curve 2.
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lem whether SR can be observed in the bistable structure,
which in its own turn is induced by multiplicative noise via
phase transition.

We study DSR in the nonlinear lattice of coupled over-
damped oscillators Eq.~18!, but now under the action of an
additional periodic force. Hence, the following set of Lange-
vin equations describes the considered system:

ẋi5 f ~xi !1g~xi !j i~ t !1
D

2d (
j

~xj2xi !1z i~ t !

1A cos~vt1w!, ~19!

where all notations and functionsf (x) andg(x) are taken as
above. The last term in~19! stands for an external periodic
force with amplitudeA, frequencyv, and initial phasew.

Obtained by a standard MFT procedure~see Sec. IV B!
transition boundaries between different phases are shown in
Fig. 7. In addition to Ref. 16, we show that the influence of
additive noise resulted in the shift of transition lines. For
sa

250 an increase of the multiplicative noise causes a
disorder–order phase transition, which is followed by the
re-entrant transition to disorder.16 In the ordered phase the
system occupies one of two symmetric possible states with
the mean fieldsm152m2Þ0, depending on initial condi-
tions ~for a visualization of this transition see Fig. 8!.

Now let us consider the problem, how the system~19!
responds to periodic forcing. We have taken a set of param-
eters (sm

2 ;D) within the region of two coexisting ordered
states with a nonzero mean field. In particular, we choose
values given by the dot in Fig. 7. For numerical simulations
we take a two-dimensional lattice ofL2518318 oscillators,
which is simulated numerically42 with a time stepDt52.5
31024 under the action of the harmonic external force. The
amplitude of the forceA has to be set sufficiently small to
avoid hops in the absence of additive noise during the simu-
lation time of a single run which is much larger than the
period of the harmonic force.43 Jumps betweenm1↔m2 oc-
cur only if additive noise is additionally switched on. Runs
are averaged over different initial phases.

Time series of the mean field along the corresponding
periodic input signal are plotted in Fig. 9 for three different
values ofsa

2 . The current mean field is calculated asm(t)
5 (1/L2) ( i 51

N xi(t). For a small intensity of the additive
noise, hops between the two symmetric statesm1 andm2 are
rather seldom and not synchronized to the external force. If
we increase the intensitysa

2 , we achieve a situation when
hops occur with the same periodicity as the external force

FIG. 7. Transition lines between ordered~inside the curves! and disordered
~outside! phase in the lattice Eqs.~19! on the plane (sm

2 ;D) for different
intensities of the additive noisesa

250 (1), 1 ~2!, and 5~3!. The black dot
corresponds toD520, sm

2 53.

FIG. 8. A symbolic visualization of a
phase transition in the model Eqs.
~19!, which leads to the formation of a
mean field. In the disordered phase the
mean field is zero due to the random
deviation of different elements around
zero ~up!. In the ordered phase, in-
duced by noise, the symmetry is bro-
ken and the mean field is either posi-
tive ~right! or negative ~left!. The
elements in the lattice 1283128 are
coded in accordance to its sign: if
positive or zero, white; if negative,
black.
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and, hence, the mean field follows with high probability the
periodic input force. An increase of additive noise provides
an optimization of the output of the system which is stochas-
tic resonance. Ifsa

2 is increased further, the order is again
destroyed, and hops occur much more frequently than the
period of the external force. Note also that for largesa

2 the
value of the mean field which corresponds to the stable state
is becoming smaller. It is caused by the fact that additive
noise also influences transition lines.20 An increase ofsa

2

results in the reduction of the ordered region~Fig. 7, curves
2 and 3! and decreasing the valuem152m2 .

Figure 9 illustrates that additive noise is able to optimize
the signal processing in the system~19!. In order to charac-
terize this SR effect quantitatively, we have calculated
signal-to-noise ratio~SNR! by extracting the relevant phase-
averaged power spectral densityS(v) and taking the ratio
between its signal part with respect to the noise background.2

The dependence of SNR on the intensity of the additive
noise is shown in the Fig. 10 for the mean field~filled points!
and the mean field in a two-state approximation~opaque
point!. In this two-states approximation we have replaced
m(t) by its sign and put approximatelym(t)511 or m(t)
521, respectively. Both curves exhibit the well known bell
shaped dependence onsa

2 typically for SR.
Next we estimate the SNR analytically, in order to com-

pare it with numerical simulations. IfA, D, andsa
2 are equal

to zero, the dynamics of the system is described by the ‘‘ef-
fective’’ potential Ueff(x) @see Eq.~17!#. In the ordered re-

gion, inside the transition lines~Fig. 1!, the potentialUeff(x)
is of the double-well form, e.g.,U(x)eff52x220.25x4

1x6/6, for given f (x), g(x), andsm
2 53.

From the analytical form of the system’s bistable poten-
tial, we can solve a conventional SR problem in this potential
with an external periodic force of the amplitudeA and the
frequencyv. Using the well-known approach of a linear re-
sponse theory,2,44 we get the following expression for SNR:

SNR15
4pA2

sa
4 r k , ~20!

wherer k is the corresponding Kramers rate45

r k5
AuUeff9 ~x!ux5xmin

uUeff9 ~x!ux5xmax

2p
expS 2

2DUeff

sa
2 D

~21!

for surmounting the potential barrierDUeff . Using Eqs.~17!,
~20!, and ~21! we get analytical estimates for a single ele-
ment inside the lattice. Further on, rescaling this value by the
numberN of oscillators in the lattice46 and taking into ac-
count the processing gainG and the bandwidthD in the
power spectral density,44 the SNRN of the mean field of the
network ofN elements can be obtained

SNRN5SNR1

NG

D
11. ~22!

This dependence is shown in Fig. 10 by the solid line
and demonstrates despite the rough approximation a good
agreement with the results of the numerical simulations.
Nearly exact agreement is found in the location of the maxi-
mum as well as for the quantitative values of the SNR
~‘‘scalloping loss’’44 has been avoided in simulations by set-
ting the frequencyv to be centered on one of the bins in the
spectrum!.

In conclusion, we have reported the existence of doubly
stochastic resonance, which is resulted from the twofold in-
fluence of noise on a nonlinear system. DSR is a combined
effect which consists of a noise-induced phase transition and
conventional SR. It is important to add, that there are clear

FIG. 9. Doubly stochastic resonance in the lattice~19!: a coherent response
to periodic driving induced by additive noise. The time evolution of the
current mean field~output! and the periodic external forceF(t) ~input! for
different intensities of additive noise~from top to bottom! sa

250.01, 1.05,
and 5.0. For the optimal value of the additive noise intensity~middle row!,
hops occur mostly with the period of the external force. The remaining
parameters areA50.1, v50.1, D520, andsm

2 53.

FIG. 10. The dependence of SNR vs the additive noise intensity in the
lattice ~19!. The full output and its two-states approximation are plotted by
filled and opaque points, respectively. The solid line shows the analytical
estimation SNRN ~22!, performed on the base of derivation of the ‘‘effec-
tive’’ potential and linear response theory. The parameters are the same as
for Fig. 9 and the processing gainG50.7.
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distinctions between SR and DSR behavior, because, in con-
trast to SR, in DSR additive noise does not only help an
input/output synchronization, but also changes the properties
of the system in the absence of the external force~see Fig. 7!.
As a consequence, in DSR amplitude of hops is decreased
~bistability disappears! for large noise intensitiessa

2 , that is
not the case for standard SR~compare Fig. 9 and Fig. 4 from
Ref. 2!. It means also that a decrease of SNR with the in-
crease of the additive noise intensity can be explained not
only by disordered hops induced by large additive noise, but
also by the fact that the system loses its bistability. Another
distinction is that DSR can be controlled by multiplicative
noise, and this control is not possible in a conventional SR. It
happens because change of multiplicative noise results in the
change of the ‘‘effective’’ potential@Eq. ~17!#, which governs
the behavior of the system.

VI. SUMMARY AND OPEN QUESTIONS

We have reported here recent results concerning the in-
fluence of additive noise on noise-induced nonequlibrium
phase transitions. We have shown that the role of additive
noise can be crucial in various aspects:~i! In oscillatory sys-
tems, represented by a single oscillator, additive noise is able
to induce such NIT, it strongly influences this transition and
stabilizes oscillations occurred as a result of this transition.
~ii ! In spatially extended systems, which are lattices of
coupled overdamped oscillators, additive noise can induce
first- as well as second-order phase transitions, cause the
formation of spatial patterns, and optimize the response of
such a system to periodic driving. In the latter case, it is
important that the bistability of the collective behavior is
supported by multiplicative noise.

Despite these findings there are several open questions
and promising directions of future research. Note that the
topic of nonequilibrium phase transitions induced by additive
noise is rather new. We see three main directions in the study
of these transitions.

~1! Theory of noise-induced phase transitions. The phe-
nomena described here are demonstrated by a large variety
of models, and the question naturally arises whether these
transitions belong to any of the existing universality classes.
A discussion about it can be found in Ref. 17 for the transi-
tions which leads to the breaking of symmetry and creation
of the mean field. In general, however, this is still an open
question as well as a question whether dependencies in the
presented models are universal for other models demonstrat-
ing these transitions. Another interesting problem is a search
of combined effects, as, e.g., a synthesis of white noise
driven ratchets and noise-induced nonequilibrium phase
transitions,11 globally synchronized oscillations in subexcit-
able media47 or DSR. One should investigate the translation
of the transitions discussed into other phenomena, probably
systems of coupled excitable elements. It is interesting also
to find hidden transitions induced by additive noise in oscil-
latory systems in the absence of multiplicative noise.48 An-
other group of open questions is connected to DSR. We ex-
pect that DSR or its modifications can be found not only in
the system, described here, but probably in oscillatory sys-

tems~see also a case considered in Ref. 19!, or systems with
a bistable ‘‘stochastic’’ potential.49

~2! Experimental confirmation of noise-induced transi-
tions predicted by theoretical studies. For the pendulum,
modelling a real mechanical object~Sec. II!, and the epide-
miological model, describing a real experimental data~Sec.
III !, the connection to the experiment is clear. Concerning
spatially extended systems with noise, described in Secs. IV
and V, we suggest the following potential experimental
implementations. As proposed in Ref. 17, it is worth to re-
evaluate experiments in physical systems for which noise-
induced shifts15,16or purely noise-induced transitions may be
relevant. Some examples of noise-induced shifts can be men-
tioned here, such as processes in photosensitive chemical
reactions under the influence of fluctuating light
intensity,50,51 in liquid crystals,52–55 or in the Rayleigh–
Bénard instability with a fluctuating temperature at the
plates.56

We expect also that our theoretical findings will stimu-
late experimental works to verify DSR in real physical sys-
tems~for the first experimental observation of noise-induced
bistability see Ref. 57!. Appropriate situations can be found
in analog58 or electronic circuits,59 as well as in systems,
which demonstrate noise-induced shifts of the phase transi-
tion ~see the discussion above!. It can be crucial for such
experiments, that, in contrast to conventional SR, in DSR the
energy of noise is used in a more efficient way: not only for
the optimization of the signal processing, but also for the
support of the potential barrier to provide this optimization.
This can be of a large importance in the communication.

~3! Modelling transitions and irregular oscillations ob-
served in experimental data by stochastic models. As shown
in Ref. 14, already known phenomena which have been ex-
plained in the frames of a deterministic theory, could also be
successfully described by stochastic models. Note that deter-
ministic and noise-induced processes are very difficult to be
distinguished in many situations. Moreover, sometimes a
noisy excitation looks more justified. It is worth to mention a
recently outlined hypothesis that turbulence in nonclosed
flows is a result of noise-induced phase transition~Ref. 60
and the experiment in Ref. 61!. Also we expect that noise-
induced processes may be very important for understanding
of complex natural systems studied in neuroscience~e.g.,
Ref. 62! or such as microseismic oscillations,63 or phase
transitions observed in physiological systems, especially in
bimanual movements.64,65 Despite the fact that up to now
these tempo-induced transitions in the production of poly-
rhythm are explained by deterministic mechanisms in the
presence of noise, we expect that models with noise-induced
oscillations will also be relevant in this case.

Another open question, closely associated with model-
ling is the identification of the excitation mechanism by the
analysis of irregular time series. This problem is of high
importance, because to model a system one should know the
physical mechanism of an excitation. At the same time, time
series are often the single source of the information about a
nonlinear system: ‘‘black box.’’At this point, it is essential to
note that classical methods of analysis, such as a spectral
analysis or a calculation of a correlation dimension are some-
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times unable to distinguish between noise-induced irregular
oscillations and chaotic oscillations of the deterministic
nature.13
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Influence of additive noise on transitions in nonlinear systems
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The effect of additive noise on transitions in nonlinear systems far from equilibrium is studied. It is shown
that additive noise in itself can induce a hidden phase transition, which is similar to the transition induced by
multiplicative noise in a nonlinear oscillator@P. Landa and A. Zaikin, Phys. Rev. E54, 3535~1996!#. Inves-
tigation of different nonlinear models that demonstrate phase transitions induced by multiplicative noise shows
that the influence of additive noise upon such phase transitions can be crucial: additive noise can either blur
such a transition or stabilize noise-induced oscillations.

PACS number~s!: 05.40.2a, 05.70.Fh

I. INTRODUCTION

Noise-induced transitions occupy an important place
among phenomena that demonstrate a strong influence of
weak noise on the behavior of a system@2#; e.g.,stochastic
resonance@3–5#, noise-induced transport@6#, coherence
resonance@7# or noise-induced pattern formation@8#. Inten-
sive investigations of recent years have shown that noise-
induced phase transitions can manifest themselves in the ap-
pearance of new extrema in the system probability
distribution @9,10#, in the creation of a mean field@11–13#,
and in the excitation of oscillations@1,14,15#. The last two
types of transitions@16# have been termed nonequilibrium
noise-induced phase transitions@17,1#.

In these and other works multiplicative noise is perceived
to be responsible for the transitions. However, as has been
recently shown in@18–20#, additive noise plays a crucial role
in these transitions. Hence, studying the influence of additive
noise is of great importance. In this paper we study several
major aspects of the influence of additive noise by consider-
ation of typical models in which a transition leads to noise-
induced oscillations.

First, we study a transition induced by multiplicative
noise in the presence of additive noise. We investigate such a
transition theoretically and numerically in a pendulum with
randomly vibrating suspension axis. In this model the addi-
tive noise blurs the transition induced by multiplicative
noise. The pendulum is a key model for understanding an-
other effect: a hidden phase transition induced purely by ad-
ditive noise. We demonstrate it for an oscillator with qua-
dratic nonlinearity and random force by showing that
autoparametrical excitation occurs due to the additive noise
and quadratic nonlinearity. At the same time the presence of
additive noise makes this transition hidden. The mechanism
of this transition is similar to subharmonic resonance@14#.
Another mechanism, combination resonance, can also be as-
sociated with a phase transition induced by additive noise.
This mechanism is illustrated by an electromechanical vibra-
tor energized from a source of sufficiently high-frequency
random current in place of a periodic source@21,14#. The
combination resonance is caused by nonlinear interaction of
random oscillations of the source current and the oscillations

induced in the high-frequency subsystem. Then we consider
a standard epidemiological model@22–24# with a random
action and show that this action can be split into additive and
multiplicative parts. In contrast to the pendulum, here the
transition can be induced by both additive and multiplicative
noise. The mechanisms are likely to be the same as in the
oscillator with quadratic nonlinearity and in the pendulum,
respectively. The combined action of additive and multipli-
cative noise in this system extends the range of the param-
eters where noise-induced oscillations are stable, so we in-
terpret this phenomenon as stabilization of noise-induced
oscillations by additive noise.

The organization of the paper is as follows. In Sec. II we
consider a pendulum with multiplicative and additive noise,
which demonstrates a phase transition induced by multipli-
cative and influenced by additive noise. In Sec. III systems
with additive noise alone are considered: an oscillator with
quadratic nonlinearity and an electromechanical vibrator.
Section IV is devoted to the study of transitions induced by
both additive and multiplicative noise and of the stabilizing
influence of additive noise in an epidemiological model. In
Sec. V we summarize the results obtained.

II. NOISE-INDUCED PHASE TRANSITIONS
IN THE PRESENCE OF ADDITIVE NOISE

First, we study the problem of excitation of a nonlinear
oscillator under parametric and forcing random actions. We
give an approximate analytical solution of this problem to
reveal the influence of additive noise on a phase transition
induced by multiplicative noise in a pendulum with a ran-
domly vibrated suspension axis. In the absence of additive
noise such a transition has been considered in@1,25#. It
should be noted that the additive constituent of noise appears
by itself if the vibration of the pendulum’s suspension axis
occurs in a certain direction making a nonzero angle with the
vertical @18#.

In the presence of additive noise the equation of motion
for this system can be written as

ẅ12b~11aẇ2!ẇ1v0
2@11j1~ t !#sinw5v0

2j2~ t !, ~1!
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wherew is the pendulum’s angular deviation from the equi-
librium position,v0 is the natural frequency of a small free
pendulum’s oscillations,b is the damping factor,a is the
coefficient of nonlinear friction, andj1(t) and j2(t) are
comparatively broadband random processes with zero mean
values. We assume that the suspension axis vibration is mod-
erately small in amplitude, i.e., the pendulum oscillations can
be considered small enough forw to be substituted in place
of sin w in Eq. ~1!.

An approximate analytical solution of this problem can be
obtained from the assumptions thatb/v0;e, j1(t);Ae,
and j2(t);Ae, wheree is a certain small parameter which
should be put equal to unity in the final results. Equation~1!
can then be solved by the Krylov-Bogolyubov method; to do
this we set w5A(t)cosc(t)1eu11¯ , where c(t)5v0t
1f(t),

Ȧ5e f 11¯ , ḟ5eF11¯ , ~2!

andu1 ,...,f 1 ,...,F1 ,... areunknown functions. By using the
Krylov-Bogolyuov technique for stochastic equations~see
@26#!, we find expressions for the unknown functionsf 1 and
F1 . Substituting these expressions into Eqs.~2! we obtain

Ȧ52b~11 3
4 av0

2A2!A1v0g1„A,v~ t !,j1~ t !,j2~ t !…,
~3!

ḟ5v0g2„A,c~ t !,j1~ t !,j2~ t !…, ~4!

where

g1~A,f,t !5
A

2
j1~ t !sin 2c~ t !2j2~ t !sinc~ t !,

g2~A,f,t !5j1~ t !cos2 c~ t !2
1

A
j2~ t !cosc~ t !.

The bar over an expression denotes averaging over time.
As follows from @26#, the Fokker-Planck equation associ-

ated with Eqs.~3! and ~4! is

]w~A,f,t !

]t
52

]

]A
$@2b~11 3

4 av0
2A2!A1v0

2R1#

3w~A,f,t !%2v0
2R2

]w~A,f,t !

]f
1

v0
2

2

3H ]2

]A2 F S K11

4
A21K12Dw~A,f,t !G

1S K211
K22

A2 D ]2w~A,f,t !

]f2 J , ~5!

where

R15E
2`

0 S K ]g1~A,f,t !

]A
g1~A,f,t1t!L

1K ]g1~A,f,t !

]f
g2~A,f,t1t!L D dt, ~6!

R25E
2`

0 S K ]g2~A,f,t !

]A
g1~A,f,t1t!L

1K ]g2~A,f,t !

]f
g2~A,f,t1t!L D dt, ~7!

~the angular brackets denoting averaging over the statistical
ensemble!,

K115
1
2 kj1

~2v0!, K125
1
2 kj2

~v0!, ~8!

K215
1
4 @kj1

~0!1 1
2 kj1

~2v0!#,

K225
1
4 @kj2

~0!1 1
2 kj2

~v0!#, ~9!

and

kj~v!5E
2`

`

^j~ t !j~ t1t!&cosvtdt

is the power spectrum density of the processj(t) at the
frequencyv.

Let us now calculate the integrals~6! and~7!, taking into
account the expressions forg1 andg2 . As a result, we obtain

FIG. 1. The influence of additive noise on a noise-induced phase
transition in a pendulum with randomly vibrated suspension axis.
The dependence of the valuea^A2&, which is proportional to the
mean amplitude squared, onh without additive noiseq050 and
with additive noiseq050.005 and 0.02 for curves 1–3 respectively.
Theoretical~solid lines! and numerical results~symbols!. In the
presence of additive noise the dependence is smooth. The remaining
parameters areb50.1, a5100, andv051.
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R15
3A

8 E
2`

0

^j1~ t !j1~ t1t!&cos 2v0tdt

1
1

2A E
2`

0

^j2~ t !j2~ t1t!&cosv0tdt

5
3K11

8
A1

K12

2A
, ~10!

R25
1

4 E2`

0

^j1~ t !j1~ t1t!&sin 2v0tdt

2
1

A2 E2`

0

^j2~ t !j2~ t1t!&sinv0tdt. ~11!

The value ofR2 depends on the characteristics of the random
processesj1(t) and j2(t): if they are white noises thenR2
50; but if, for example,j2(t) is white noise andj1(t) has a
finite correlation time and its power spectrum density is

kj1
~v!5

a1
2kj1

~2v0!

~v22v0!21a1
2 ,

then

R252
a1v0kj1

~2v0!

4~16v0
21a1

2!
.

It should be noted that in this caseR2 is negative, which
results in a decrease of the mean oscillation frequency with

increasing noise intensity. The Langevin equations which
can be related to the Fokker-Planck equation~5! in view of
Eqs.~10! and ~11! are presented in Appendix A.

First we considerthe case when additive noise is absent,
i.e., kj2

[0. In this case the steady-state solution of Eq.~5!,
satisfying the condition of zero probability flux, is

w~A,f!5
C

2pA2 expF 3

11h S h ln A2
aA2

2 D G , ~12!

where a53av0
2/4 is the nonlinear parameter andh

53v0
2K11/8b21. The constantC is determined from the

normalization condition

E
0

2pE
0

`

w~A,f!AdAdf51.

Upon integrating Eq.~12! overf, we find the expression for
the probability densityw of the oscillation amplitude:

w~A!5CA~2h21!/~11h! expS 2
3aA2

2~11h! D . ~13!

From the normalization condition we get

C523H S 3a

2~11h! D
3h/2~11h! 1

G„3h/2~11h!…
for h>0

0 for h<0.
~14!

Hence,

w~A!523H S 3a

2~11h! D
3h/2~11h! A~2h21!/~11h!

G„3h/2~11h!…
expS 2

3aA2

2~11h! D for h>0

d~A! for h<0.

~15!

The fact that forh<0 the probability density of the ampli-
tude turns out to be ad function is associated with the ab-
sence of additive noise~see below!.

Using Eq.~15!, we can determinêA& and ^A2&:

^A&5HA 3

2a~11h!

G„~4h11!/2~11h!…

G„3h/2~11h!11…
h for h>0

0 for h<0,
~16!

^A2&5H h

a
for h>0

0 for h<0.

~17!

Therefore, it is evident that forh.0 the parametric excita-
tion of pendulum oscillations occurs under the influence of

multiplicative noise. This manifests itself in the fact that the
mean values of the amplitude and of the amplitude squared
become nonzero~Fig. 1, curve 1!. This parametric excitation
implies a transition of the system to a new state, which can
be treated as a phase transition. The conditionh50 is the
threshold for the onset of this phase transition. It follows
that, in the absence of additive noise, the critical value of the
multiplicative noise intensity is

kj
cr~2v0![kcr5

16b

3v0
2 . ~18!

Hence, the parameterh characterizes the extent to which the
intensity of the multiplicative noise component exceeds its
critical value.

It should be noted that, forh.0, the steady stateA50
loses its stability and the stateAÞ0 becomes stable. At the
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same time, Eq.~15! implies that the probability density ofA2

is monotonically decreasing with increasingA2 for any value
of h.0. Hence, in contrast to the transitions considered in
@9#, the appearance of a new stable state need not be accom-
panied by the appearance of a new maximum in the system
probability distribution@see Fig. 2~a!#.

Now let us considerthe case when the intensity of addi-
tive noise is not equal to zero. The steady-state solution of
Eq. ~5!, satisfying the condition of zero probability flux, is

conveniently written as

w~A,f!5
Ca

2p~aA21q!
expF E 3~h2aA2!aA21q

~11h!~aA21q!A
dAG ,

~19!

whereq54aK12/K11 characterizes the ratio between the in-
tensities of additive and multiplicative noise.

Following the calculations presented in Appendix B, we
get an expression for

a^A2&'~11h!H 4m

3
G~2m!G~ 3

2 22m!~112m!S 2~122m!1~524m!
3q

2~11h! D2
3q

2~11h!

3FApG~22m!~122m!S 3q

2~11h! D
2m

12G~2m!G~ 3
2 22m!~112m!G J FAp

2
G~22m!~122m!S 3q

2~11h! D
2m

3S 2~112m!1
9q

2~11h! D1G~2m!G~ 3
2 22m!~112m!S 2~122m!1

3~324m!q

2~11h! D G21

, ~20!

wherem53(h1q)/4(11h). Note that, similarly to the case
without additive noise, after a transition no additional
maxima appear in the system probability distribution and the
shape of this distribution is not qualitatively changed@Fig.
2~b!#.

Next we compare these analytical results with numerical
simulations. The corresponding dependence ofa^A2& on h
for different values of the parameterq0 is illustrated in Fig.
1. We see that additive noise of small intensity results in a
smoothing of the dependence of the mean oscillation ampli-
tude squared on the multiplicative noise intensity: it becomes
without the break inherent in a phase transition induced by
only multiplicative noise. If we increase the additive noise
intensity, the transition becomes less detectable~Fig. 1,
curve 3!.

In a numerical experiment it is more convenient to calcu-
late the variance of the corresponding variable instead of the
mean amplitude squared. It is evident that the dependencies
of these values on the noise intensity should be similar. In-
deed, in the case when the amplitudeA is a slowly changing
function, the variance is equal tôA2&/2. The dependencies
of a^A2& on h found by numerical simulation of Eq.~1! for
both the presence of additive noise and its absence are shown
also in Fig. 1. We find that near the threshold the simulations
match the analytical results very well and that the dependen-
cies for q50 can be approximated by a straight line inter-
secting the abscissa ath50. With an increase ofh, the
growth rate of the variance in numerical simulations is
smaller than in the analytical results. This can be explained
by the fact that the Krylov-Bogolyubov method is valid only
near a threshold.

III. PHASE TRANSITIONS INDUCED
BY ADDITIVE NOISE

A. Oscillator with quadratic nonlinearity

In this section we show that the mechanism of the noise-
induced phase transition may exist also in an oscillatory sys-

tem with additive noise only. For this we consider an oscil-
lator with a quadratic nonlinearity and additive random
force.

The oscillator under consideration can be described by

ẍ12b ẋ1v0
2~11x1gx2!x5v0

2bj~ t !, ~21!

where the friction factorb is assumed to be sufficiently small
in comparison with the natural frequencyv0 , j(t) is an
external force, which is a sufficiently broadband random pro-
cess with zero mean value, the parameterb is responsible for
the noise intensity, and the termgx3 is introduced to avoid
the solution going to infinity@caused by the presence of an
unstable singular point of Eq.~21! for g,0.25#.

At this point it is necessary to note that direct use of the
Fokker-Planck equation@26# and its stationary solution does
not show that the system probability distribution for vari-
ables (x,ẋ) is qualitatively changed with increase of the
noise intensity. However, as we learned from the example in
the previous section, the transition can take place despite the
facts that there is no noise-induced maximum in the system
probability distribution~see Fig. 2! and that the transition is
not observable in the dependence of variance on noise inten-
sity ~see Fig. 1, curve 3!. Obviously, the presence of moder-
ately strong additive noise makes every transition hidden and
undetectable. Nevertheless, the mechanism of the noise-
induced transition is present in the model and, therefore, we
call this phenomenon ahidden phase transition induced by
additive noise.

To demonstrate the physical mechanism that is respon-
sible for the hidden noise-induced phase transition, we will
use the same procedure as for the calculation of subharmonic
resonances@14#. First, we decomposex into

x~ t !5y~ t !1x~ t !, ~22!

wherex(t) is a random process satisfying the equation
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ẍ12bẋ1v0
2x5v0

2bj~ t !. ~23!

Now we will show that the system described by the vari-
abley undergoes a noise-induced transition. Substituting Eq.
~22! into Eq. ~21! and taking into account Eq.~23!, we get
the equation for the variabley,

ÿ12b ẏ1v0
2$11y1j2~ t !1gy@y13x~ t !#%y5v0

2j1~ t !,

~24!

where j1(t)52x2(t)@11gx(t)# is additive noise and
j2(t)5x(t)@213gx(t)# is multiplicative noise. Comparing
Eq. ~24! with Eq. ~1!, we find that these equations are simi-
lar. In the absence of additive noisej1(t), Eq. ~24! is similar
also to Eq.~1! in @1#, except that the role of the random
processj(t) is played by the noisej2(t). In the previous
section we have shown analytically and numerically that in
the oscillator described by such an equation multiplicative
noise causes a phase transition. Hence, the noisej2(t) is
responsible for the phase transition, whereas, as will be seen
from subsequent results, the additive noise makes the transi-
tion hidden.

An approximate analytical analysis of Eq.~24!, in view of
Eq. ~23!, is possible in the specific case when the random
force in Eq.~23! is nonresonant. Owing to this,x(t) is suf-
ficiently small, and we can ignore in Eq.~24! bothj1(t) and
3gx2y. As a result we obtain the following approximate
equation fory:

ÿ12b ẏ1v0
2@11y12x1gy~y13x!#y50. ~25!

Putting y5A(t)cosc(t)1¯ , wherec(t)5v0t1f(t), and
using now the Krylov-Bogolyubov method for stochastic
equations, we obtain the following truncated equations for
A(t) andf(t):

Ȧ5~h2aA2!A1v0z1~ t !, ḟ5M11v0z2~ t !, ~26!

where

h5
3v0

2K1

2b
21, a5

3g

4 S 12
15gv0

2

8b D ~K21K3!,

M15E
2`

0

^x~ t !x~ t1t!&S sin 2v0t1
9g2A3

4

3~3 sinv0t1sin 3v0t! Ddt,

z1(t) andz2(t) are white noises with intensities

N15S K11
9g2A2

16
~K21K3! DA2

and

N252K01K11
9g2A2

16
~K21K3!,

respectively, K15kx(2v0)/2, K25kx(v0)/2, K3
5kx(3v0)/2, K05kx(0)/2, andkx(v) is the spectral den-
sity of the random processx(t) at the frequencyv.

Solving the Fokker-Planck equation associated with Eqs.
~26!, we get the probability densityw(A):

w~A!5CA~2h21!/~11h!~11rA2!2@~215h!r 13a#/2r ~11h!,

~27!

where

r 5
9g2

16

K21K3

K1
.

From the normalization condition we find

C523H a1rh

a
r 3h/2~11h!

G„3~a1rh!/2r ~11h!…

G„3h/2~11h!…G„3a/2r ~11h!…
for h>0

0 for h<0.

~28!

FIG. 2. The system probability distribution
for a pendulum.~a! The case without additive
noise. The probability distributionw̃(aA2)
5w(A)/2aA for h50.01 ~curve 1! and h50.2
~curve 2!. ~b! The case with additive noise. The
dependence of w̃(aA2)5w(A)/2aA for q
50.01/(11h) and h520.2, 0, and 0.2 for
curves 1–3, respectively.

PRE 61 4813INFLUENCE OF ADDITIVE NOISE ON TRANSITIONS . . .



It follows from here that the probability density of the am-
plitude turns out to be ad function for h<0, as for the
pendulum considered in@1#.

Using Eqs.~27! and ~28! we calculatê A2& ~^•& denotes
the statistical average!:

^A2&5H 3h

3a1r ~215h!
5

4h

3g24r
for h>0

0 for h<0.

~29!

Note that the solution found is valid only for 3g(K21K3)
,4K1 .

Thus, we have shown analytically that in the absence of
the additive noisej1 and the term 3gx2y, in a system de-
scribed by Eq.~24!, a noise-induced phase transition indeed
occurs. As shown below, numerical simulations demonstrate
that this transition remains well defined if the term 3gx2y is
included; though the additive noisej1 makes it hidden. The
main results of our numerical simulations are as follows.

~1! The results of numerical simulation of the complete
equations~23! and~24! in the case of sufficiently broadband
noise, which can be considered as white noise, are shown in
Fig. 3. For comparison, the results of numerical simulation
of Eq. ~24! after dropping only the additive noisej1(t) are
also given there. We call Eq.~24! with j1(t)[0 the ‘‘re-
duced equation’’ and denote its solution byyr . The solution
of Eq. ~25! is denoted byyrr . We see that for the complete
equations, which are equivalent to the initial equation, the
phase transition is practically undetectable and very noisy
~curve 1!. For the reduced equation, the phase transition is
clearly defined~curve 2!. Close to the critical point the de-

pendence ofsyr

2 , which can be treated as an order parameter,

on the parameterb2, which can be regarded as temperature,
is well approximated by the straight line described by the
equationsyr

2 50.056(b22bcr
2 ), wherebcr'4.1. This means

that the critical index is equal to 1@see Fig. 3~a!#.
~2! Figure 3~b! demonstrates that we can use as an order

parameter not only the variance, but the mean value as well.
Close to the critical point the dependence of^yr& on b2 can
be approximated by the straight linêyr&520.025(b2

2bcr
2 ).

~3! To reveal the influence of the term 3gx2y that was
dropped in the analytical consideration, we also numerically
simulated Eq.~25!. The results are given in Fig. 3~a! ~curve
4! and Fig. 3~b! ~curve 3!. We see that the phase transition
occurs for a smaller value ofb2 if in the reduced equation the
term 3gx2y is ignored, i.e., this term suppresses the phase
transition@compare curves 2 and 4 in Fig. 3~a!#. This is also
attested by the fact that the slopes of the dependencies ofs r

2

ands rr
2 on b2 are essentially different. Thus, the numerical

simulations have shown that in the absence of additive noise
j1 only, we obtain a clearly defined phase transition. As
mentioned above, the additive noisej1 makes the transition
hidden~see the dependence forsy

2!. It is interesting that the
dependence forsx

2 is close to that forsy
2; the difference

appears only for large values of the parameterb. This means
that close to the critical point the influence of the noisex(t)
is negligibly small.

~4! To reduce the noise spectral density at the frequency
v0 , we have passed the noisej(t) through a bandpass filter
with central frequency 2v0 and bandwidthv0 . The spectral
density of this noise is shown in Fig. 4. We see that it is
indeed very narrowband in the vicinity ofv0 . Next, we
simulate Eqs.~23! and ~24! using this filtered noise asj(t).
For comparison we simultaneously simulate the reduced
equation~24!. Figure 5 illustrates that, even though the spec-
tral density of the filtered noisej(t) at v0 is very small, the
influence of the noisej1(t) and of the term 3gx2y is essen-
tial. The reason is that the component of the noisex(t) at v0
is not small because it is resonant. The smooth increase of

FIG. 3. Dependencies of the first moments of the simulated
solutions onb2 for g50.251, v051, b50.1. ~a! variancessy

2

~curve 1!, syr

2 ~curve 2!, sx
2 ~curve 3!, andsyrr

2 ~curve 4!; ~b! mean
value^y& ~curve 1!, ^yr& ~curve 2!, and^yrr & ~curve 3! for the same
value ofg.

FIG. 4. The spectral density of the noise used in numerical
simulations for the oscillator with quadratic nonlinearity to exclude
the resonant frequency. The noise is passed through a bandpass
filter.
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syr

2 with increasingb2 from bcr
2 onward is explained by the

fact that the influence of the term 3gx2y is less than for
broadband noise.

Coming back to the initial equation~22!, we decomposed
the initial variablex into the sum of variablesy and noisex,
which has practically no influence, since the dependencies
for x and y are very similar~Figs. 3 and 5!. Dropping the
additive constituent of the noise from the equation fory, we
get a clearly defined transition with an increase of noise in-
tensity. From this we conclude that the initial equation de-
scribes a system in which a hidden nonequilibrium phase
transition is induced by additive noise.

The transition under consideration is similar to the transi-
tion studied in the previous section, not only in the physical
mechanism~autoparametrical and parametrical excitation, re-
spectively!, but also in the sense that both these transitions
occur via on-off intermittency@27,28#. This is clearly visible
from the shape ofyr(t) @Fig. 6~b!#. Because of additive noise
the intermittency forx(t) is hidden @Fig. 6~a!#. As for a
pendulum with randomly vibrated suspension axis and addi-
tive noise@28#, the intermittency is defined more clearly for
b,bcr @Fig. 6~a!#.

At the current stage of investigation we have shown that
an oscillator with quadratic nonlinearity may contain a
mechanism for a phase transition induced only by additive
noise. The strong influence of additive noise makes this tran-
sition undetectable in the initial equation, but we guess that it
is possible to find a situation when the transition becomes

well defined just by dropping some terms from the initial
system equation. We leave this as an open question in the
present paper.

B. Electromechanical vibrator

An electromechanical vibrator energized from a source of
periodic alternating current has been considered in@21,14#. It
consists of a sprung plate attracted to an electromagnet with
a power supply circuit forming an oscillatory circuit. We
demonstrated that under certain conditions powerful low-
frequency oscillations of the plate can be excited@21,14#.
Below we show that similar oscillations can also be excited
in the case when the power source is random. The scheme of
the vibrator with a random power source is presented in Fig.
7.

The equations of this vibrator can be written as

d2

dt2 S L~x!I

L0
D12d1

dI

dt
1V0

2I 5j~ t !,

d2x

dt2
12d2

dx

dt
1n0

2x5F~x,I !, ~30!

where x is the plate displacement,I is the current in the
oscillatory circuit, L(x)5L0(11a1x1a2x21a3x31¯) is
the inductance of the coil with a core depending on the size
of the clearance between the plate and the core,d15R/2L0
and d25a/2m are the damping factors for the oscillatory
circuit and the plate, respectively,V051/AL0C0 and n0

5Ak/m are the corresponding natural frequencies,F(x,I )
5(I 2/2)(dL/dx) is the pondermotive force acting on the
plate, andj(t) is a random process that is proportional the
electromotive force of the power source. We setj(t) to be
described by the following equation:

FIG. 6. A phase transition via on-off intermittency. The time
series ofx(t) ~a! and ~c!, andyr(t) ~b! for b2520 ~a! and ~b! and
b254 ~c!. The remaining parameters are the same as in Fig. 4.

FIG. 5. Dependencies of the first moments of the simulated
solutions onb2 obtained using bandpass filtered noise.~a! Vari-
ancessy

2 ~curve 1!, syr

2 ~curve 2!, andsx
2 ~curve 3!; ~b! mean values

^y& ~curve 1! and ^yr& ~curve 2!.
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j̈10.5vj̇11.125v2j5kx~ t !, ~31!

wherex(t) is white noise. It follows from Eq.~31!, that the
spectral density ofj(t) peaks at the frequencyv.

Numerical simulation of Eqs.~30! shows that from a cer-
tain value of the power source intensity, low-frequency os-
cillations of the plate appear. The dependence of the variance
of these oscillations (sx

2) on k2, which is proportional to the
noise intensity, is illustrated in Fig. 8~a!. The form of this
dependence closely resembles the corresponding dependence
for a pendulum with a randomly vibrated suspension axis
and additive noise~see Fig. 1!. We find from this plot that,
for sufficiently large values ofk2, the dependence can be
approximated by a straight line described by the equation
sx

250.3(k220.025). Taking into account the similarity with
the dependencies for noise-induced transitions in a pendu-
lum, we can take the point where this straight line crosses the
abscissa as the threshold of a noise-induced transition.
Hence, the critical value ofk is equal to 0.158. Unlike the
variancesx

2, the variance of the current fluctuations (s I
2

5I 2) increases with an approximately constant rate ask2

increases. The corresponding dependence is presented in Fig.
8~b! ~curve 1!. It can be approximated by the straight line
s I

250.075k2. Owing to the presence of a quadratic nonlin-
earity, the mean value of the plate displacement is nonzero.
The dependence ofx̄ on k2 is also shown in Fig. 8~b! ~curve
2!.

Typically for noise-induced transitions that lead to the
excitation of oscillations@28#, for k,kcr one can detect on-
off intermittencylike behavior in oscillations of the variablex
@see, for example, Fig. 9~a!#. With increase ofk this effect
disappears. An example of the oscillations ofx, I, andj for
k.kcr is given in Fig. 9~b!.

Power spectra of the random source and excited oscilla-
tions are shown in Fig. 10. It is clearly seen that we deal with
high-frequency excitation. The mechanism responsible for
the excitation seems to be similar to combination resonance.

As in the case of a pendulum with slight additive noise,
noise-induced oscillations of the vibrator under consideration

can be partially suppressed by additional harmonic action
@27#. But, in contrast to the pendulum, the suppression oc-
curs at low-frequency action rather than at high frequency. If
the action frequency is high, the action has little or no effect
on the variance of the plate oscillations. To describe the ad-
ditional action, we add the terma cosvt to j(t) on the right
of the first equation of Eq.~30!. Under low-frequency action
a considerable constant displacement of the plate appears.
Therefore, the study of the suppression is conveniently per-
formed using the variance of the plate velocity instead of the
plate displacement. The dependencies of this variance (sy

2)
on the action amplitudea for a fixed value of the action
frequencyv and onv for a fixed value ofa are shown in Fig.
11. We see that for a fixed value of the frequency (v
50.2) the variancesy

2 initially decreases as the action am-
plitude increases, and then abruptly increases owing to exci-
tation of oscillations at the frequencyv. For a fixed value of
the action amplitude, the dependence ofsy

2 on v has a mini-
mum whose location depends on the amplitudea @Fig.
11~b!#.

IV. TRANSITIONS INDUCED BY BOTH
MULTIPLICATIVE AND ADDITIVE NOISE:

STABILIZATION OF NOISE-INDUCED OSCILLATIONS
BY ADDITIVE NOISE

In this section we consider an example of a system under
the combined action of additive and multiplicative noise.
Both multiplicative and additive noise can induce a transi-
tion, and, what is especially interesting, a combination of
their actions stabilizes noise-induced oscillations. To demon-

FIG. 8. The noise-induced transition in the electromechanical
vibrator caused by a mechanism similar to combination resonance.
The dependencies ofsx

2 ~a! and 10s I
2 and x̄ ~b! on k2 for v51,

V050.9, n050.05, d150.1, d250.005, L0 /m50.1, a151, a25
20.5, anda350.1.

FIG. 7. A schematic image of an electromechanical vibrator
with random power source.x is the plate displacement,a the fric-
tion, L the inductance,I the current,R the resistance,j(t) the ran-
dom process responsible for the electromotive force of the power
source, andk the rigidity of the springs.
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strate these effects, we use a standard epidemiological model
for the description of seasonal oscillations of childhood in-
fections, such as chickenpox, measles, mumps, and rubella,
under the influence of variations of the contact rate of chil-
dren susceptible to infection with infective children. This
model has been studied in detail both in the case of periodic
variation of the contact rate@22–24,29# and in the case of
random variation of the contact rate@15,29#. Here we dwell
only on one important aspect of this problem, namely, on the
stabilizing influence of a combination of additive and multi-
plicative noise on the excitation of induced oscillations.

The model equations are

Ṡ5m~12S!2bSI, Ė5bSI2~m1a!E,

İ 5aE2~m1g!I , ~32!

Ṙ5gI2mR, ~33!

where S is the relative number of children susceptible to
infection, E is the relative number of children exposed but
not yet infective,I is the number of infective children,R is
the number of children recovered and immune, 1/m is the
average expectancy time, 1/a is the average latency period,
1/g is the average infection period, andb is the contact rate
~the average number of susceptibles in contact yearly with

infectives!. Let us note that Eqs.~32! do not contain the
variableR; hence these equations can be considered indepen-
dently of Eq.~33!.

It is easy to show that Eqs.~32! for b5b05const, and for
any values of the remaining parameters, have one aperiodi-
cally unstable singular point with coordinatesS51,E5I
50, and one stable singular point with coordinates

S05
~m1a!~m1g!

ab0
, E05

m

m1a
2

m~m1g!

ab0
,

I 05
am

~m1a!~m1g!
2

m

b0
. ~34!

If the parameterb varies with time then the variablesS, E,
and I will oscillate, and these oscillations will be executed
around the stable singular point with coordinates~34!. There-
fore, it is convenient to substitute into Eqs.~32! the new
variablesx5S/S021, y5E/E021, andz5I /I 021. Putting
b5b0@11b1f (t)#, where f (t) is a function describing the
shape of the contact rate variation, we rewrite Eqs.~32! in
the variablesx, y, z:

ẋ1mx52b0I 0@11b1f ~ t !#~x1z1xz!2b0b1I 0f ~ t !,

FIG. 9. On-off intermittency in the vibrator. Examples of oscillations of the plate (x), of the current in the oscillatory circuit (I ), and of
the power source~j! for k50.08 ~a! andk50.3 ~b!.

FIG. 10. The power spectra of the random
power source~a! and of the solutionx ~b!.
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ẏ1~m1a!y5~m1a!@11b1f ~ t !#~x1z1xz!

1~m1a!b1f ~ t !, ~35!

ż1~m1g!z5~m1g!y.

In Eqs.~35! the termb1f (t) can be considered as an external
action upon the system. This form of the equations clearly
shows that this action is not only multiplicative, i.e., para-
metric, but additive as well.

Olsen and Schaffer@23# set the following values of the
parameters: m50.02 year21, a535.84 year21, g
5100 year21, b051800 year21, andb150.28. These param-
eters correspond to estimates made for childhood diseases in
first world countries. We follow them.

In @15# we supposed that the contact rateb varies ran-
domly with the main period equal to one year, i.e.,f (t)
5x(t), wherex(t) is a random process that is a solution of
the equation

ẍ12pẋ16p2x5kj~ t !, ~36!

j(t) is white noise, andk is a factor that we choose so that
the variance ofx(t) is equal to 1/2. It is easily seen that the
spectral density ofx(t) peaks at the frequencyv52p.

Noise-induced oscillations appear as a result of a noise-
induced phase transition. To show this let us consider Fig.
12, where the dependence ofsx

2 on b1 is presented. With an
increase of noise intensity, the intensity of noise-induced os-
cillations is increased too. For rather largeb1.bcr this de-
pendence can be approximated by a straight line. The inter-
section point of this line and the abscissa can be taken as a
point of a transition—a threshold valuebcr . To prove it let
us drop the artificially multiplicative noise from Eqs.~35!. In

this case the variance of oscillations is equal to zero forb1
,bcr and goes to infinity shortly after the noise intensity
represented by the parameterb1 exceeds its critical value.
The same situation is observed if additive noise is absent but
multiplicative noise is present. Now it is clear that the point
b15bcr is a point of noise-induced phase transition, which
can be induced by both multiplicative and additive noise.
The physical mechanisms responsible for this effect are
likely to be the same as for the pendulum~Sec. II! and the
nonlinear oscillator~Sec. III A!, respectively.

It is even more interesting that the combined action of
additive and multiplicative noise performs a stabilization of
noise-induced oscillations: in this case the dependence of
variance on noise intensity does not go to infinity. Again, as
for previously considered models@28#, the transition can be
accompanied by the effect of on-off intermittency. In the
absence of additive noise one can observe on-off intermit-
tency near the threshold~Fig. 13!.

V. CONCLUSIONS

We have studied in this paper the role of additive noise in
noise-induced phase transitions and have shown that it can
be nontrivial. We have found several phenomena by consid-
eration of different typical models; each of them has demon-
strated a certain aspect of the problem. Consideration of a
pendulum under the action of multiplicative and additive
noise has shown that, if a noise-induced transition occurs in

FIG. 11. The dependencies of the variancesy
2 on the action

amplitudea for v50.2 ~a! and on the action frequencyv for a
50.3 ~b!. For v50.2, a.0.4, the variance abruptly increases ow-
ing to excitation of oscillations at the frequencyv and goes, in fact,
to infinity.

FIG. 12. A noise-induced phase transition in the SEIR model.
The dependence ofs2 on the parameterb1 in the case of a random
variation of the contact rate. The solid line representss2

50.47(b120.066).

FIG. 13. On-off intermittency in the SEIR model. An example
of oscillations of the variablesx andy for b150.099 for the case of
multiplicative random action alone.
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the presence of additive noise, it is blurred by this noise and
becomes hidden. We have presented results of an analytical
study confirmed by numerical simulations. By the examples
of Sec. III we have demonstrated that there are mechanisms
which allow additive noise alone to induce a hidden transi-
tion. Consideration of an epidemiological model has shown
that, moreover, there exist nonlinear systems in which only
the combined action of multiplicative and additive noise
causes stable noise-induced oscillations. In such systems the
joint influence of additive and multiplicative noise can be
interpreted as the stabilization of noise-induced oscillations.
In the present study we have considered only transitions that
lead to the excitation of oscillations~e.g., in contrast to
@20,30,31#!. It should be mentioned also that we have re-
cently shown in@19,20# that the role of additive noise may
also be crucial in noise-induced transitions that lead to the
creation of a mean field in a spatially extended system.
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APPENDIX A: LANGEVIN EQUATIONS

The following Langevin equations can be related to the
Fokker-Planck equation~5! in view of Eqs.~10! and ~11!:

Ȧ5bS h2
3v0

2

4
aA2DA1

v0
2

2A
K121

v0

2
Az11~ t !1v0z12~ t !,

ḟ5v0
2M1v0S z21~ t !1

z22~ t !

A D , ~A1!

wherez11(t), z12(t), z21(t), andz22(t) are white noises with
zero mean value and uncorrelated withA. The intensities of
these noises areK11, K12, K21, andK22, respectively. We
note that even in the case withkj2

50 Eqs.~37! differ from

that derived in@26#. The reason is that there the variableu
5 ln A in place ofA was used, i.e., the correlation between
the noisej(t) and the amplitudeA was implicitly ignored
@14,1,25#.

APPENDIX B: CALCULATIONS IN THE CASE
WITH ADDITIVE NOISE

The dependence of the mean amplitude squared on the
multiplicative noise intensity in the case where additive
noise also acts on the pendulum can be calculated as follows.
Upon integrating Eq.~19! overf and calculating the integral
within the exponential, we obtain

w~A!52pAw~A,f!5CA2~A21q/a!3~q21!/2~11h!

3expS 2
3aA2

2~11h! D . ~B1!

It follows from the normalization condition that

C215E
0

`

A2~A21q/a!3~q21!/2~11h! expS 2
3aA2

2~11h! DdA.

~B2!

The integral on the right-hand side of Eq.~B2! can be ex-
pressed in terms of a Whittaker function@32#. As a result we
find

C215
Ap

4a2mq1/22m S 3

2~11h! D
2m21/2

expS 3q

4~11h! D
3Wm21,mS 3q

2~11h! D , ~B3!

wherem53(h1q)/4(11h).
We obtain the expression forC in explicit form in the

limiting case when the additive noise intensity is small com-
pared to that of the multiplicative noise, so that

q!1. ~B4!

In this case we can use a representation of the Whittaker
function Wl,m(z) in terms of two other Whittaker functions
Ml,m(z) andMl,2m(z) @32#:

Wl,m~z!5
G~22m!

G~1/22m2l!
Ml,m~z!

1
G~2m!

G~1/21m2l!
Ml,2m~z!. ~B5!

We then expand each of the functionsMl,m(z) and
Ml,2m(z) in powers ofz @32#:

Wl,m~z!5Az expS 2
z

2D F G~22m!

G~1/22m2l!
zm

3S 11
122~l2m!

2~112m!
z1¯ D

1
G~2m!

G~1/21m2l!
z2mS 11

122~l1m!

2~122m!
z1¯ D G .

~B6!

Substituting Eq.~B6! into Eq. ~B3! we get

C215
Ap

4a2m F G~22m!

G~3/222m!
q2mS 11

9q

4~112m!~11h!
1¯ D

1
G~2m!

G~3/2! S 2~11h!

3 D 2m

3S 11
3~324m!q

4~122m!~11h!
1¯ D G . ~B7!

The expression~14!, obtained in the absence of additive
noise, follows at once from Eq.~B7! for q→0.

The probability distribution~B1! for qÞ0 differs essen-
tially from Eq. ~15!: first, it is not ad function forh,0 and,
secondly,w(A)50 for A50.

Using Eqs.~B1! and~B3! we can calculatêA& and^A2&.
For example, for̂ A2& we obtain

a^A2&5A3q~11h!

2

Wm23/2,m11/2@3q/2~11h!#

Wm21,m@3q/2~11h!#
.

~B8!
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Taking into account the recursion relation@32#

Wl,m~z!5AzWl21/2,m11/2~z!1~ 1
2 2l2m!Wl21,m~z!,

the expression~B8! can be rewritten as

a^A2&5~11h!S 12~ 3
2 22m!

Wm22,m@3q/2~11h!#

Wm21,m@3q/2~11h!# D .

~B9!

The expression for̂ A2& can be obtained in explicit form
only with the constraint~B4!. Using Eq. ~B6! we find
for Wm22,m(z)/Wm21,m(z) the following approximate
expression:

Wm22,m~z!

Wm21,m~z!
'

2

~324m!
FAp

2
G~22m!zm~122m!

3@2~112m!15z#1G~2m!G~ 3
2 22m!

3S 12
4m

3 D z2m~112m!@2~122m!

1~524m!z#G SAp

2
G~22m!zm~122m!@2~1

12m!13z#1G~2m!G~ 3
2 22m!z2m

3~112m!@2~122m!1~324m!z# D 21

.

~B10!

Substituting Eq.~B10! in Eq. ~B9! we get the required
Eq. ~20!.
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We show that a nonequilibrium first-order phase transition can be induced by additive noise. As a model
system to study this phenomenon, we consider a nonlinear lattice of overdamped oscillators with both additive
and multiplicative noise terms. Predictions from mean field theory are successfully confirmed by numerical
simulations. A physical explanation for the mechanism of the transition is given.@S1063-651X~99!51912-0#

PACS number~s!: 05.40.2a, 47.54.1r, 05.70.Fh

Among all the counterintuitive phenomena observed in
nonlinear systems with noise~such as stochastic resonance
@1#, noise-induced transport@2#, coherence resonance@3#,
resonant activation@4#, etc.! an important place is occupied
by noise-induced transitions. Discovered in the 1980s@5# and
confirmed by numerous experiments~see, for example,@6#!,
noise-induced transitions have attracted intensive attention
due to the surprising ability of noise to produce order in the
system. These transitions can be characterized by a qualita-
tive change in the probability distribution of the system~e.g.,
by a change in the number of maxima!. In the 1990s other
kinds of transitions were found, such as those giving rise to
noise-induced oscillations in single nonlinear oscillators
@7,8#. On the other hand, systems of spatially coupled over-
damped oscillators have been recently shown to display
noise-inducedphasetransitions. In this case, contrary to the
previous phenomena, the system exhibits ergodicity breaking
and the transition can be characterized by standard tools in
equilibrium statistical mechanics@9#. Several models have
exhibited so far the existence of noise-induced second-order
~continuous! phase transitions leading to the creation of a
nonzero mean field@9–12#. In @13# it was shown that noise-
induced phase transitions can also be of first order~discon-
tinuous!.

In the majority of the above-mentioned studies, phase
transitions are induced by multiplicative noise. However, re-
cent results@14–16# have shown that additive noise can play
a crucial role in this phenomenon, and even induce a transi-
tion by itself. Such an influence has been observed both in
oscillatory @14# and in nonoscillatory~overdamped! systems
@15,16#. The present Rapid Communication shows that addi-
tive noise can also inducefirst-order nonequilibrium transi-
tions in spatially extended systems. These arepure noise-
induced phase transitions, in the sense that they do not exist
in the system in the absence of noise. The study is performed
on a nonlinear lattice of coupled stochastic overdamped os-
cillators introduced in @11# and further studied in
@15,16,18,19#. It is described by the following set of Lange-
vin equations:

ẋi5 f ~xi !1g~xi !j i~ t !1
D

2d (
j

~xj2xi !1z i~ t !, ~1!

wherexi(t) represents the state of thei th oscillator, and the
sum runs over all nearest neighbors of celli. The strength of

the coupling is measured byD, andd is the dimension of the
lattice, which hasN5Ld elements. The noise termsj i(t) and
z i(t) are mutually uncorrelated, Gaussian distributed, with
zero mean and white in both space and time,

^j i~ t !j j~ t8!&5sj
2d i , jd~ t2t8!, ~2!

^z i~ t !z j~ t8!&5sz
2d i , jd~ t2t8!. ~3!

For the sake of simplicity, the functionsf (x) andg(x) are
taken to be of the form@11#

f ~x!52x~11x2!2, g~x!5a21x2, ~4!

so that two different sources of additive noise can be consid-
ered to exist in this system: the first one, controlled bysz , is
completely uncorrelated with the multiplicative noise; the
second one, controlled bya, is strongly correlated with it.

The behavior of this system can be analytically studied by
means of a standard mean-field theory~MFT! procedure@9#.
The mean-field approximation consists of replacing the
nearest-neighbor interaction by a global term in the Fokker-
Planck equation corresponding to Eq.~1!. In this way, one
obtains the following steady-state probability distribution
wst:

wst~x,m!5
C~m!

Asj
2g2~x!1sz

2
expS 2E

0

x f ~y!2D~y2m!

sj
2g2~y!1sz

2
dyD ,

~5!

where C(m) is a normalization constant andm is a mean
field, defined by the equation

m5E
2`

`

xwst~x,m!dx. ~6!

By solving Eq. ~6! self-consistently with respect to the
variable m, one can find transitions between ordered (m
Þ0) and disordered (m50) phases. As shown in@11#, for
a51 andsz50 the system exhibits a disorder-order phase
transition, followed by a reentrant transition back to disorder,
both induced by multiplicative noise. Whena or sz are used
to control the system, additive noise is seen to lead to similar
transitions@15,16#. In all cases, the transition~which exists
only in the presence of noise! is of second order. But when
the complete system is analyzed more carefully, new aspects
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arise. Figure 1 shows order-disorder transition lines in the
plane (a,D), for sz50 and two different values of the mul-
tiplicative noise intensitysj

2 . Curve 1 separates regions of
disorder~below the curve! and order~above the curve! for
small multiplicative noise intensity. In this case, the ordered
region is characterized by three self-consistent solutions of
Eq. ~6!, one of them unstable (m50) and the other two
stable and symmetrical. These new solutions appear continu-
ously from m50 in the course of the transition. Hence,
curve 1 corresponds to asecond-orderphase transition from
disorder to order asa increases, followed by a reentrant tran-
sition back to disorder~also of second order!.

The situation changes noticeably when the multiplicative
noise intensity increases. In that case~curve 2 in Fig. 1!, a
region appears where Eq.~6! has five roots, three of which
(m50 and two symmetrical points! are stable. This region is
shown as dashed in the figure. Thus, for large enough values
of D, a region of coexistence appears in the transition be-
tween order and disorder. This region is limited by discon-
tinuous transition lines betweenm50 and a nonzero, finite
value of m. Hence, additive noise is seen to induce afirst-
order phase transition in this system for large enough values
of the coupling strength and multiplicative noise intensity.
The reentrant transition is again of second order.

When the first-order phase transition appears, hysteresis
can be expected to occur in the coexistence region~if a cer-
tain algorithm is applied@17#!. The dependence of the order
parameterm on the control parametera as predicted by MFT
is shown in Fig. 2 by a solid line. The region of possible
hysteresis is bounded by dotted lines.

In order to contrast the previous MFT results, we have
performed simulations of the complete model~1!–~4! using
the numerical methods described in@9,18#. The order param-
etermn is computed as

mn5K U 1

L2 (
i 51

N

xiU L ,

where ^ & denotes time average. Results for a two-
dimensional lattice with lateral sizeL532 are shown with
diamonds in Fig. 2. Analyzing this figure one can observe

that MFT overestimates the size of the coexistence region.
This effect, analogous to what was observed for
multiplicative-noise-induced transitions@11#, can be ex-
plained in terms of an ‘‘effective potential’’ derived for the
system at short times~see the discussion below!. For in-
stance, asa increases the system leaves the disordered phase
not when this state becomes unstable but earlier, when the
potential minima corresponding to the ordered states become
much lower than the minimum corresponding to the state
m50. It should also be mentioned that the numerical simu-
lations did not show hysteresis, because in the coexistence
region the system occupied any of the three possible states,
independently of the initial conditions. This fact can be ex-
plained by the small size of the simulated system, which
permits jumps between steady states when the system is suf-
ficiently perturbed~e.g., by slightly changing the parameter
a).

Now we consider the second kind of additive noise
present in the system, namely, the one uncorrelated with the
multiplicative noise (a50 andsz

2Þ0). MFT results are pre-
sented in the phase diagram of Fig. 3, which shows transi-
tions lines in the plane (sj

2 ,D) for three different values of
the additive noise intensitysz

2 . A coexistence region is again
found in the disorder-order transition~left! branch for all
three values ofsz

2 . For points in the dashed region~inset
plot in Fig. 3!, the system is in a disordered phase for small
and large values ofsz

2 , and in an ordered phase for interme-
diate values of this parameter. Hence, in that region additive
noise is able to induce two consecutive phase transitions
from disorder to order and back to disorder. The character of
the first transition is very sensitive to the parameter values:
as can be clearly seen in Fig. 4~curves 1 and 2!, for very
close values ofD andsj

2 , additive noise can induce either a
second- or a first-order phase transition. Note also that, if we
consider the multiplicative noise intensity as a control pa-
rameter, the width of the coexistence region as predicted by
MFT decreases with an increase of the additive noise inten-
sity.

Numerical simulations for this kind of additive noise are
shown as diamonds in Fig. 4, again for a two-dimensional
lattice with L532. MFT overestimates once more the loca-

FIG. 1. Phase transition boundaries on the plane (a,D) for sz

50 and two different intensities of the multiplicative noise~curve
1, sj

251.6; curve 2,sj
253.0). The dashed region~starting with the

dot! corresponds to the coexistence of the disordered and ordered
phases.

FIG. 2. First-order phase transition induced by additive noise.
Order parametersm, mn vs a for D520, sj

253.0 andsz
250.0.

MFT predictions~solid line! and numerical simulations~diamonds!
are presented. The dotted line delimits the coexistence region ex-
hibited by MFT. The unstable state is plotted by the dashed line.
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tion of the transition, hence if, according to MFT, a transition
is observed forD54.15, in numerical simulations it occurs
for D56.5. The region of possible hysteresis for this set of
parameters is too thin to be shown in Fig. 4; this fact is also
confirmed by numerical simulations. But if we slightly in-
creaseD, hysteresis appears@17#. For example, forD57.0
the hysteresis region spans even fromsj

250.0 to 0.2.
We have thus seen so far that numerical simulations

qualitatively confirm the existence of a first-order phase tran-
sition induced by additive noise in this system, as predicted
by MFT. We note that in the two limiting cases of correla-
tion between multiplicative and additive noise, the transition
occurs. We also note that variation of both the multiplicative
noise intensity and the coupling strength can change the or-
der of this transition.

Let us now present a possible physical mechanism behind
this effect. In@16,18# it was argued that the short-time evo-
lution of the average value of the local field can be described
by the equation

ẋ̄5 f ~ x̄!1
sj

2

2
g~ x̄!g8~ x̄!, ~7!

for which an ‘‘effective’’ potential can be derived. It is de-
scribed by U(x)5U0(x)1Unoise52* f (x)dx2sj

2g2(x)/4,
where Unoise represents the influence of the multiplicative
noise. We can trace the behavior of this potential in the pres-
ence of multiplicative noise, for the casesz

250 and nonzero
a. Its evolution for increasinga is shown in Fig. 5. This
approach can be clearly seen to successfully explain the
mechanism of the first-order transition: first, only the zero
state is stable~curve 1!, then there is a region where three
stable states coexist~curve 2!, and finally, the disordered
state becomes unstable~curve 3!. This approach also ex-
plains why a variation of the multiplicative noise intensity
influences the order of the transition: for another~lower! sj

2

there is no region where ordered and disordered phases si-
multaneously exist. We emphasize that the ‘‘effective’’ po-
tential is derived only for short-time evolution, and should
not be confused with the ‘‘stochastic’’ potential@5#, which
for this system remains always monostable. For the other
case of correlation between multiplicative and additive noise,
in the region of additive noise induced transition, the ‘‘effec-
tive’’ potential always has three minima~two symmetric
minima are lower than the central one!. Overcritical additive
noise causes an escape from zero state and leads to the tran-
sition. Hence, the ‘‘effective’’ potential approximation does
not explain all results of MFT: it explains well the transition
but not an existence of threshold in the additive noise inten-
sity. It is important to add that the transition under consider-
ation has much in common with the phenomenon of stochas-
tic resonance: in both cases there is a multistability, and there
exists an optimal value of the additive noise intensity for
which the ordering is the most effective one. This similarity
is limited by the fact that here the multistability is induced
only in short-time terms, and there is no external signal to be
synchronized with~see also@16#!.

In conclusion, we have reported the existence of nonequi-
librium first-order phase transitions induced by additive
noise. Such a phenomenon can be expected to be experimen-
tally observed@18# in systems exhibiting shifts in a transition
induced by multiplicative noise. Possible candidates could be
photosensitive chemical reactions@20,21#, liquid crystals

FIG. 3. Phase diagram in the plane (sj
2 ,D) for a50 and three

different values of the additive noise intensity:sz
25 0.3 ~thick solid

line!, 0.5 ~thin solid line!, and 1.0~dashed line!. For large coupling
D additive noise shrinks the region of coexisting solutions, whereas
its left boundary coincides for differentsz

2 and remains unaffected.
The inset plot shows peculiarities of the transition lines in the small
box. Inside the dashed region an increase of additive noise induces
disorder-order and the reentrant transition~see the text and Fig. 4!.

FIG. 4. First- and second-order phase transitions induced by
uncorrelated additive noise. Curves 1 (D53.5, sj

2512.0) and
2 (D54.15, sj

2511.0) correspond to MFT results, diamonds to
numerical simulations (D56.5, sj

2511).

FIG. 5. ‘‘Effective’’ potential for the short-time evolution ofm

for a25..0.25 ~curve 1!, 0.28 ~curve 2!, and 0.34~curve 3!. Other
parameters aresj

253.0 andsz
250.0.
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@22,23#, and Rayleigh-Be´nard convection under a fluctuating
temperature gradient@24#. It should also be mentioned that
another form of coupling, Swift-Hohenberg, is possible in
the presented model. In that case, one can observe ordered
spatial patterns appearing as a result of a first-order phase
transition induced by additive noise.

The results presented here open up several questions.
First, it should be determined whether the behaviors reported
are universal. Second, one should investigate the translation
of these effects into other phenomena, such as globally syn-
chronized oscillations in subexcitable media@25#, transport

properties in coupled ratchets@26#, and relation between
noise-induced transitions and stochastic resonance in sys-
tems with external forcing. Finally, these results could be of
relevance for the stochastic modeling of transitions and ir-
regular oscillations that have been explained in the frames of
deterministic theory@8,14,27#.

It is a pleasure to thank J. Kurths for useful discussions.
A.Z. acknowledges financial support from MPG~Germany!
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Spatial patterns induced by additive noise

A. A. Zaikin and L. Schimansky-Geier
Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, 10115 Berlin, Germany

~Received 18 May 1998!

We consider a nonlinear lattice with spatial coupling under the influence of multiplicative and additive noise.
In contrast to other studies, we pay attention mainly to the role of the additive noise and show that additive
noise, much like multiplicative noise, is able to induce spatial patterns. The reason is that the increase of
additive noise causes a nonequilibrium phase transition that manifests itself in the formation of ordered spatial
patterns. The presence of the additive noise correlated or uncorrelated with the multiplicative noise is a
necessary condition of the phase transition. We review the mean field theory for this model and show that this
theory predicts a reentrant phase transition caused by additive noise. Theoretical predictions are confirmed by
numerical simulations.@S1063-651X~98!12510-2#

PACS number~s!: 05.40.1j, 47.54.1r, 05.70.Fh

I. INTRODUCTION

Over the past two decades nonlinear systems with noise
have been continuously attracting attention. The reason is the
ordering role of noise in such phenomena as stochastic reso-
nance@1#, noise-induced transport@2#, or noise-induced tran-
sitions@3#. A large variety of models@4–12# appear to dem-
onstrate nonequilibrium noise-induced phase transition. In
these studies only multiplicative noise is shown to be the
reason for the transition and much less attention has been
paid to the role of additive noise. Recently, we started to
study the influence of an additive noise on noise-induced
transitions. It was shown that this influence can be crucial
because the additive noise may shift the boundaries of the
noise-induced phase transition@13# or even cause these tran-
sitions @13,14#.

In the present paper we continue to study the influence of
additive noise on noise-induced phase transitions. We con-
sider the role of the additive noise in the formation of the
ordered spatially inhomogeneous patterns. For this we inves-
tigate a paradigmatic model introduced in@7# ~for the history
of the subject see also@15–18#!. As noted in@19#, investiga-
tion of this model is helpful for the understanding of results
of experiments on electrohydrodynamic convection in nem-
atic liquid crystals with thermal fluctuations~additive noise!
and an external stochastic voltage~multiplicative noise!. We
show that this model displays noise-induced spatial patterns
with an increase of additive noise. After exceeding an opti-
mal level of the additive noise a further increase destroys the
structures again.

First we review mean field theory for this model@7#. The
theory predicts the existence of the reentrant phase transition
by increasing the additive noise for two limiting cases of
correlation between both additive and multiplicative noises.
The transition manifests itself in breaking the symmetry and
appearing ordered spatial structures. Next we perform nu-
merical calculations and confirm some results of the theoret-
ical considerations. After a discussion about understanding
of the phenomena observed we summarize results obtained.

II. MODEL AND MEAN FIELD THEORY

We consider a scalar fieldxr defined on a spatial lattice
with pointsr . The time evolution of the field is described by

a set of Langevin equations@7#

ẋr5 f ~xr !1g~xr !j r1Lxr1z r , ~1!

with f andg defined as

f ~x!52x~11x2!2, g~x!5a21x2 ~2!

and j r ,z r independent zero-mean-value Gaussian white
noise sources

^j r~ t !j r8~ t8!&5sj
2d r ,r8d~ t2t8!, ~3!

^z r~ t !z r8~ t8!&5sz
2d r ,r8d~ t2t8!. ~4!

We note that such a form of the functiong(x) implies that
the parametera is responsible for an additive noise strongly
correlated with the multiplicative one. To gain knowledge
about the influence of additive noise on the noise-induced
phase transition we study two different problems. First the
constant contributiona2 of the multiplicative noisej r is
changed, settingsz

250. The origin one could see, for in-
stance, in a decomposition of the multiplicative noise into
two partsg(x)j r5a2j r

11x2j r
2 . Changing the parametera

would imply an increase or a decrease of additive noisea2j r
1

strongly correlated with the multiplicative one. We prove
that the constant contribution of that noise is essential for the
nonequilibrium phase transition. Only in the presence of the
additive component with an optimally selected value does
the system exhibit spatially disordered states.

A different situation is the variation of the noise intensity
sz

2 . It models additive noise independently of the multipli-
cative one. In that case we seta50. Again we will find a
strong influence of the additive noisez.

The spatial coupling in the model is described by the cou-
pling operatorL @see Eq.~1!#, which is a discretized version
of the Swift-Hohenberg coupling term2D(q0

21¹2)2:

Lxr52DH q0
22

1

D2(
i 51

2d F12expS Dei•
]

]r D G J 2

xr . ~5!
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Hereei are the unit vectors associated with the cubic lattice
of the dimensiond, andD is the lattice space.

The conditions of phase transition can be found using
generalized Weiss mean field theory@7#. According to this
theory, we replace the value of the scalar variablexr8 at the
sites coupled toxr by its averaged value, assuming the spe-
cific nonuniform average field

^xr8&5^x&cos@k•~r2r 8!#. ~6!

Substituting Eq.~6! into Eq. ~5! we get forxr

ẋ5 f ~x!1g~x!j1Dv~k!x2Deff~x2^x&!1z, ~7!

where

Deff5F S 2d

D2 2q0
2D 2

1
2d

D2 1v~k!GD ~8!

and

v~k!52DFq0
22

2

D2 ~22coskxD2coskyD!G2

. ~9!

The expression forv(k) can be obtained if one considers
how L acts on a plane waveeik•r for the case of a two-
dimensional lattice:

Leik•r5v~k!eik•r. ~10!

Note that for uku!2p/D the dispersion relationv(k) re-
duces to the relation for the continuous Swift-Hohenberg
model: 2D(q0

22uku2)2. For the most unstable mode in the
discrete casev(k)50 ~see@7#!.

Now the valuê x& plays the role of the amplitude of the
spatial patterns with an effective diffusion coefficientDeff .
The Fokker-Planck equation corresponding to Eq.~7! in the
casev(k)50 is

]w

]t
52

]

]xF @ f ~x!2Deff~x2^x&!#w2
sj

2

2 S g~x!
]

]x
@g~x!w# D

2
sz

2

2

]w

]x G .
For this equation it is possible to find the exact steady

state probability, parametrically dependent on^x&:

wst~x!5
C~^x&!

Asj
2g2~x!1sz

2
expS 2E

0

x f ~y!2Deff~y2^x&!

sj
2g2~y!1sz

2
dyD ,

~11!

whereC(^x&) is the normalization constant determined by

C21~^x&!5E
2`

` 1

Asj
2g2~x!1sz

2

3expS 2E
0

x f ~y!2Deff~y2^x&!

sj
2g2~y!1sz

2
dyD dx.

~12!

For the valuê x& we obtain

^x&5E xwst~x,^x&!dx, ~13!

FIG. 1. ~a! Boundaries of the phase transition on the plane
(sj

2 ,D) in the case of correlated additive noise. The values of pa-
rametera are shown in the picture.~b! Dependence of the order
parameteru^x&u on the control parametera for D50.06 andsj

2

53.0.

FIG. 2. Boundaries of the phase transition on the plane (sj
2 ,D)

in the case of uncorrelated additive noise. The parametersz
2 is

equal to 1.0~label 1!, 0.5 ~label 2!, and 0.3~label 3!.
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which is nonlinear equation for the unknown value^x& and
closes the system of equations.

Solving Eq.~13!, we can calculate boundaries of phases
with ^x&Þ0 ~order! and ^x&50 ~disorder! for specific k
whose modes are excited first. Nonzero solution of Eq.~13!
means excitation of the corresponding mode and hence exis-
tence of the phase transition. Due to the special form of the
spatial coupling, the transition manifests itself in a formation
of ordered spatial patterns with the wave number defined by
the parameterq0 .

The computation of Eq.~13! shows that the condition for
the existence of nonzero solutions is

UdF

dmU
m50

>1. ~14!

We note that for rather largeD four nonzero roots~two
stable and two unstable! of Eq. ~13! may be observed. It is an
open question whether this indicates that additionally also
noise-induced first-order phase transition may be found in
this model~to this point see also@19,20#!.

III. ADDITIVE NOISE AND NOISE-INDUCED
TRANSITION

First we study the case if an additive noise is strongly
correlated with multiplicative noise~in this casesz

250). For
different values ofa the boundary of the phase transition on
the plane (sj

2 ,D) is shown in Fig. 1. As it is seen from this
plot, the reentrant phase transition occurs for the specific
value ofa with the increase ofsj

2 @7#. Solving Eq.~13! for
other values ofa, we find that asa decreases the boundary of
the phase transition significantly drops and is right shifted
~see Fig. 1!. Hence there is a set of parameters (sj

2 ,D) for
which the reentrant phase transition occurs with the increase
of a ~dashed region in Fig. 1!. This means that for fixed
values ofsj

2 and D an increase of additive noise intensity
will first induce the spatial patterns and then destroy them.
We note that this phase transition is possible only in the
presence of multiplicative noise. The corresponding depen-
dence of the order parameteru^x&u on the control parametera
is shown in Fig. 1~b!.

Now we study the case where the additive noise is uncor-
related ~independent! from the multiplicative noise (a
50, sz

2Þ0). As Fig. 2 shows in this case the behavior of
the system is qualitatively the same: For fixed parameters
(D,sz

2) an increase of the multiplicative noise intensitysj
2

causes the noise-induced phase transition. Hence for large
enough couplingD one expects the formation of the spatially
ordered patterns ifsj

2 exceeds it critical value. As concerns
the influence of the additive noise on the transition, an am-
plification of the additive noise intensity shifts the transition
boundaries and therefore causes the reentrant disorder-order-
disorder nonequilibrium phase transition. It can be clearly
seen if one take a point with fixed parameters (D,sj

2) from
the dashed region in the Fig. 2: With an increase ofsz

2 this
point first belongs to the disordered phase, then to the or-
dered one, and then again to the disordered phase.

IV. NUMERICAL SIMULATIONS

We check the relevance of the theory presented above by
numerical simulations of the initial equations~1!. We use an
Euler scheme for stochastic differential equations interpreted
in the Stratonovich sense@21,22#. The time step has been set
Dt5531024. For simulations we integrate the scalar field
xr(t) on a two-dimensional square lattice 1283128 with
conditionsxr50 andn•“xr50 at the boundaries. Heren is
the vector normal to the boundary.

First we setsz
250 andaÞ0. The remaining parameters

are D51, q050.7, D50.5, andsj
251.8. For these values

the mean field theory predicts the existence of spatial pat-
terns of the most unstable modeuku51.0478 fora51. For
additive noise intensities significantly larger than this value,
for example,a510.0, or significantly smaller,a50.1, ac-
cording to the mean field theory no spatial patterns will be
exhibited.

In Fig. 3 the picture of the field after 100 time units has
been plotted for three different noise intensities. Clearly one
can see the appearance of the spatial patterns with the in-
crease of the additive noise and its further destruction. These
calculations confirm the predictions of the mean field theory
for the case of correlated additive noise.

The ordered patterns in Fig. 3~b! have rotational symme-
try, which can be clearly observed in the two-dimensional

FIG. 3. Snapshots of the field forD51.0, sj
251.8, andsz

250. The parametera is equal to~a! 0.1, ~b! 1.0, and~c! 10.0. The increase
of the additive noise induces spatial patterns. The scalar field from minimum to maximum value is coded in accordance with the color scale
shown in the same figure.
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Fourier transform of the field represented in Fig. 4. To make
the transition more evident we have plotted the Fourier trans-
form of the field averaged over the angles of the wave vector.
It is shown in Fig. 4 for different values ofa. With an in-
crease ofa a maximum in this structure function is found. It
corresponds to the dominating valueukumax, indicating the
appearance of a spatial pattern with a wavelength 2p/ukumax.
After an optimal value ofa the maximum of the structure
function disappears, again signaling the destruction of the
order.

Next we consider the case of uncorrelated additive noise,
in which a50 andsz

2Þ0. Numerical simulations show that
the behavior of the model is quite similar to the case of the
correlated additive noise. An increase of the additive noise
causes the formation of the rotationally symmetric spatial
patterns. A further increase of the additive noise destroys this
pattern~see Fig. 5!. These results are also in good agreement
with the predictions of mean field theory.

V. DISCUSSION

Now we discuss the mechanism providing the appearance
of the ordered spatially patterns with the increase of the ad-
ditive noise and its further destruction. The appearance of the
ordered state is a manifestation of the phase transition, so
one should understand which factors lead to this transition.
To do this, let us follow the argumentation suggested in@6#
to give an explanation of the phase transition induced by the
multiplicative noise but now influenced by the additive
noise.

For a single element of the lattice the time evolution of
the first moment is given simply by the drift part in the
Fokker-Planck operator, which reads~Stratonovich case!

^ẋ&5^ f ~x!&1
sj

2

2
^g~x!g8~x!&. ~15!

As it was argued in@6#, the evolution over short times of an
initial d function is well approximated by a Gaussian whose
extremum obeys

ẋ̄5 f ~ x̄!1
sj

2

2
g~ x̄!g8~ x̄!. ~16!

Herex̄5^x& is the maximum of the probability, which is the
average value in this approximation. For this dynamics one
is able to introduce a potentialU(x)5U0(x)1Unoise5
2* f (x)dx2sj

2g2(x)/4, whereU0(x) is the unperturbed po-
tential andUnoise,0 describes the action of the noise. In the
case under considerationU0(x)5x2(11x21x4/3)/2, which
is monostable with a minimum atx050.

Let us consider how additive noise modifies the potential
U(x). We start with the case ofsz

250 and additive noise is
included in the equations throughg(x)5a21x2 by the con-
stanta. For smalla the potentialU(x) remains monostable
and there is no possibility of a phase transition in the system.
If we increasea, i.e., the intensity of the correlated additive
noise, the potentialU(x) becomes bistable ifa.acrit

51/Asj
2 @see Fig. 6~a!#. For sufficiently strong coupling this

bistability will be the reason for the local ordered regions at
short time scales, which coarsen and grow with time. Hence
the additive part of the noise in the functiong is essential for
the occurrence of the nonequilibrium phase transition.

The situation with uncorrelated additive noise (a50 and
sz

2Þ0) is more complicated. In this case the statex50 al-
ways remains stable since the noisy partUnoise(x)}x4 @see
Fig. 6~b!#. Nevertheless, as it is seen from this figure, for

FIG. 4. ~a! 2D Fourier transform of the pattern shown in Fig.
3~b!. Rotational symmetry is observed.~max,min! values are
~1337,0.1!. ~b! Fourier transform averaged over angles forD51.0
and sj

251.8. Values of parametera are shown in the figure.~c!
Dependence ofSmax on a.
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large enough intensitysj
2 , in addition to the stable statex

50, the potentialU(x) has two minima more, precisely if
sj

2.4. Therefore, in this case the phase transition is a result
of hard excitation and requires independent additive noise.
Sufficiently large additive noise causes escapes from the cen-
tral minimum and the system does not return if the new
minimal states are lower than the central one. This argumen-
tation can be considered as an intuitive explanation of the
observed noise-induced phase transition by uncorrelated ad-
ditive noise.

Another interesting finding to be mentioned is the relation
between phenomena discussed and the well-known problem
of stochastic resonance~SR!. Namely, we trace the parallels
between the nonmonotonic behavior of the signal to noise
ratio ~SNR! in SR phenomena and the reentrant phase tran-
sitions dependent on the additive noise.

Let us consider possible reasons for this similarity. For
that purpose we reformulate the process of ordering in the
bistable potentialU(x) as a situation typically occurring in
SR. The influence of the neighbors supplied by the coupling
serves as a driving force for the single system in the lattice
with a bistable potential. Under this influence every single
system is trying to obey the rules of the whole system, for
example, to choose the proper minimum of a potential. Ac-
cordance with stochastic resonance becomes evident since
this information is best transmitted to the single system if the

intensity of an additive noise is optimally selected. For
smaller and larger values of noise intensity the ordering pro-
cess is not effective as in stochastic resonance. As a result
and quite analogously to the shape of the SNR, the maximum
of the structure function behaves nonmonotonically depen-
dently on the parametera. The similarities are obviously
bounded since in SR the input is independent from the reac-
tion of the system. In our case it differs due to the mutual
interaction between the elements of the lattice. It determines
the structure of the output, which plays the role of the input
for another element.

VI. CONCLUSION

In conclusion, we have shown by the example of the non-
linear model with coupling term similar to that ofSwift and
Hohenbergthat an increase of the additive noise may sur-
prisingly induce ordered spatial patterns. The reason is the
reentrant phase transition caused by the additive noise. The
further increase of the additive noise destroys these struc-
tures. In both limiting cases of the correlation between addi-
tive and multiplicative noise the pictures are similar but the
origins differ. We stress that this phase transition is possible
only in the presence of multiplicative noise. As we have
discussed, we interpret the phenomenon observed as a coop-

FIG. 5. Snapshots of the field for in the case of the uncorrelated additive noise. The parametersz
2 is equal to~1! 0.001,~b! 0.7, and~c!

10.0. The remaining parameters areD53.5, sj
2513, a50, andDt51027. ~max,min! values are (0.0072,20.0075), (7.14,26.33), and

(1.07,20.61).

FIG. 6. Potential for the short time evolution of the average value^x(t)&. ~a! sj
252: solid line,a250.1; dashed line,a251.0. ~b! a

50: solid line,sj
252; dashed line,sj

255. In case~a! the short time behavior can be described by the bistable potential if the constanta is
sufficiently large. In case~b! the situation is more complicated: the statex0 remains stable, but large enough additive noise can force a
system to leave the zero state and form a mean field.
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erative work of a noise-induced phase transition and ordering
process with an optimal value of the additive noise. From
this point of view the phenomena observed can be under-
stood as a mixture of the phase transition induced by the
multiplicative noise and processes that have similarities to
features of stochastic resonance.
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