
Algorithm Selection, Scheduling and
Configuration of Boolean Constraint Solvers

Dissertation
von

T. Marius Lindauer (M.Sc.)

Universität Potsdam
Institut für Informatik

Professur Wissensverarbeitung und Informationssysteme

Aufgabenstellung und Betreuung:
Prof. Dr. Torsten Schaub, University of Potsdam

Prof. Dr. Holger H. Hoos, University of British Columbia
Disputation am 08. Januar 2015

Eingereicht zur Erlangung des akademischen Grades Dr. rer. nat in der
Wissenschaftsdisziplin "Wissensverarbeitung und Informationssysteme"

Potsdam, den 23. Februar 2015

This work is licensed under a Creative Commons License:
Attribution – Noncommercial – Share Alike 4.0 International
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/4.0/

Lindauer, T. Marius
manju@cs.uni-potsdam.de
Algorithm Selection, Scheduling and Configuration of Boolean Constraint Solvers
Dissertation, Institut für Informatik
Universität Potsdam, 2015

Published online at the
Institutional Repository of the University of Potsdam:
http://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/7126
URN urn:nbn:de:kobv:517-opus4-71260
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-71260

Acknowledgement

First of all, I would like to thank my two advisors, Torsten Schaub and Holger Hoos. I have
learned a lot from both in these four years, particularly they did not always have the same
opinion. Furthermore, a big thanks to Klemens Kittan who supported me on all issues and
questions regarding our cluster. Without his support, most of my experiments would not have
been possible. Sabine Hübner, our secretary, always supported me with administration issues,
such as business travel.
A further thanks to all my proof readers, Frank Hutter, Thomas Jung, Simon Kiertscher,

Ina Lindauer and Max Möller. And of course, I also enjoyed my time in Potsdam with my
colleagues, Benjamin Andres, Steffen Christgau, Martin Gebser, Holger Jost, Roland Kaminski,
Benjamin Kaufmann, Simon Kiertscher, Arne König, Philipp Obermeier, Max Ostrowski, Javier
Davila and Orkunt Sabuncu.
Last but not least, I give a huge thanks to my daughter, who always had a big grin for me, my

wife, who relieved me whenever it was necessary, my mother, who always gave me great advice
for all questions of daily life and my stepfather, who was always a model for me.

Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt, sie nicht ander-
weitig zu Prüfungszwecken vorgelegt wurde, keine anderen als die angegebenen Hilfsmittel
verwendet habe und alle bereits publizierten Kapitel explizit als solche gekennzeichnet sind.
Sämtliche wissentlich verwendeten Textausschnitte, Zitate oder Inhalte anderer Verfasser wur-
den ausdrücklich als solche gekennzeichnet.

Potsdam, den 23. Februar 2015

T. Marius Lindauer

Abstract

Boolean constraint solving technology has made tremendous progress over the last decade,
leading to industrial-strength solvers, for example, in the areas of answer set programming
(ASP), the constraint satisfaction problem (CSP), propositional satisfiability (SAT) and satisfi-
ability of quantified Boolean formulas (QBF). However, in all these areas, there exist multiple
solving strategies that work well on different applications; no strategy dominates all other strate-
gies. Therefore, no individual solver shows robust state-of-the-art performance in all kinds of
applications. Additionally, the question arises how to choose a well-performing solving strategy
for a given application; this is a challenging question even for solver and domain experts. One
way to address this issue is the use of portfolio solvers, that is, a set of different solvers or solver
configurations. We present three new automatic portfolio methods: (i) automatic construction
of parallel portfolio solvers (ACPP) via algorithm configuration, (ii) solving the NP-hard prob-
lem of finding effective algorithm schedules with Answer Set Programming (aspeed), and (iii) a
flexible algorithm selection framework (claspfolio 2) allowing for fair comparison of different
selection approaches. All three methods show improved performance and robustness in com-
parison to individual solvers on heterogeneous instance sets from many different applications.
Since parallel solvers are important to effectively solve hard problems on parallel computation
systems (e.g., multi-core processors), we extend all three approaches to be effectively applicable
in parallel settings. We conducted extensive experimental studies different instance sets from
ASP, CSP, MAXSAT, Operation Research (OR), SAT and QBF that indicate an improvement in
the state-of-the-art solving heterogeneous instance sets. Last but not least, from our experi-
mental studies, we deduce practical advice regarding the question when to apply which of our
methods.

Zusammenfassung

Bool’sche Solver Technologie machte enormen Fortschritt im letzten Jahrzehnt, was beispiels-
weise zu industrie-relevanten Solvern auf der Basis von Antwortmengenprogrammierung (ASP),
dem Constraint Satisfcation Problem (CSP), dem Erfüllbarkeitsproblem für aussagenlogische
Formeln (SAT) und dem Erfüllbarkeitsproblem für quantifizierte boolesche Formeln (QBF) führ-
te. Allerdings gibt es in all diesen Bereichen verschiedene Lösungsstrategien, welche bei ver-
schiedenen Anwendungen unterschiedlich effizient sind. Dabei gibt es keine einzelne Strategie,
die alle anderen Strategien dominiert. Das führt dazu, dass es keinen robusten Solver für das
Lösen von allen möglichen Anwendungsprobleme gibt. Die Wahl der richtigen Strategie für eine
neue Anwendung ist eine herausforderne Problemstellung selbst für Solver- und Anwendungs-
experten. Eine Möglichkeit, um Solver robuster zu machen, sind Portfolio-Ansätze. Wir stellen
drei automatisch einsetzbare Portfolio-Ansätze vor: (i) automatische Konstruktion von paral-
lelen Portfolio-Solvern (ACPP) mit Algorithmen-Konfiguration, (ii) das Lösen des NP-harten
Problems zur Algorithmen-Ablaufplanung (aspeed) mit ASP, und (iii) ein flexibles Algorithmen-
Selektionsframework (claspfolio 2), was viele Techniken von Algorithmen-Selektion parametri-
siert implementiert und eine faire Vergleichbarkeit zwischen Ihnen erlaubt. Alle drei Metho-
den verbessern die Robustheit des Solvingprozesses für heterogenen Instanzmengen bestehend
aus unterschiedlichsten Anwendungsproblemen. Parallele Solver sind zunehmend der Schlüssel
zum effektiven Lösen auf multi-core Maschinen. Daher haben wir all unsere Ansätze auch für
den Einsatz auf parallelen Architekturen erweitert. Umfangreiche Experimente auf ASP, CSP,
MAXSAT, Operation Research (OR), SAT und QBF zeigen, dass der Stand der Technik durch
verbesserte Performanz auf heterogenen Instanzmengen verbessert wurde. Auf Grundlage dieser
Experimente leiten wir auch Ratschläge ab, in welchen Anwendungsszenarien welches unserer
Verfahren angewendet werden sollte.

Contents

1 Introduction 1
1.1 Introduction to Algorithm Configuration, Scheduling and Selection 4
1.2 Contributions and Content . 6

2 Robust Benchmark Set Selection for Boolean Constraint Solvers 9
2.1 Current Practice . 10
2.2 Desirable Properties of Benchmark Sets . 11
2.3 Benchmark Set Selection . 12
2.4 Empirical Performance Analysis . 16
2.5 Conclusion . 20

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration 22
3.1 Related Work . 24
3.2 Parallel Portfolio Configuration from a Single Sequential Solver 26
3.3 Parallel Portfolio Configuration with Multiple Sequential Solvers 37
3.4 Parallel Portfolio Configuration with Multiple Sequential and Parallel Solvers . . 40
3.5 Conclusion . 44

4 Algorithm Scheduling via Answer Set Programming 45
4.1 Algorithm Scheduling . 46
4.2 Solving Timeout-Optimal Scheduling with ASP 49
4.3 Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP 51
4.4 Empirical Performance Analysis . 53
4.5 Related Work . 62
4.6 Conclusion . 64

5 Advances in Algorithm Selection for Answer Set Programming 66
5.1 Related Work . 67
5.2 Generalized Algorithm Selection Framework . 67
5.3 claspre: Instance Features for ASP . 70
5.4 Empirical Performance Analysis on ASP . 71
5.5 Empirical Performance Analysis on ASlib . 77
5.6 Conclusion . 79

6 Algorithm Selection of Parallel Portfolios 81
6.1 Related Work . 82
6.2 Algorithm Selection with Uncertainty . 83
6.3 Empirical Performance Analysis . 86

i

6.4 Empirical Performance Comparison against aspeed 90
6.5 Conclusion . 92

7 Empirical Performance Comparison 94
7.1 Experimental Setup . 94
7.2 Results . 96
7.3 Discussion . 98

8 Conclusion and Discussion 99
8.1 When to apply which method? . 100
8.2 Future Work . 101
8.3 Thesis Contributions in a Nutshell . 103

List of Figures 104

List of Tables 106

A Notation 110

B claspfolio 2 on ASlib 111

C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO 116
C.1 RICOCHET ROBOTS . 116
C.2 ASP-POTASSCO . 118

Bibliography 121

ii

1 Introduction

Boolean constraint solving technology has made tremendous progress over the last decade,
leading to industrial-strength solvers. Although this advance in technology has occurred to a
large extent in the area of propositional satisfiability (SAT) (Biere, Heule, van Maaren, & Walsh,
2009), it also led to significant boosts in neighboring areas, like Answer Set Programming
(ASP) (Baral, 2003), Pseudo-Boolean Solving (Biere et al., 2009, Chapter 22), and even (multi-
valued) Constraint Solving (Tamura, Taga, Kitagawa, & Banbara, 2009). However, in all these
areas multiple solving strategies exist that are complementary to each other, that is, no strategy
dominates all other strategies on all kind of problems. This holds in many sub-communities of
artificial intelligence and is well supported by empirical results in the literature, for example,
propositional satisfiability (SAT) (Xu, Hutter, Hoos, & Leyton-Brown, 2012a), constraint satisfac-
tion (CSP) (O’Mahony, Hebrard, Holland, Nugent, & O’Sullivan, 2008), AI planning (Helmert,
Röger, & Karpas, 2011), and supervised machine learning (Thornton, Hutter, Hoos, & Leyton-
Brown, 2013).
Boolean constraint solvers are of special interest in this context, because they are imple-

mented to efficiently solve NP-hard (or even harder) problems such that runtime optimization
is crucial for them. However, the performance of a solving strategy differs on different prob-
lems. Therefore, applying a badly chosen solving strategy to a given problem can result in a
drastically longer solving time.1 Even in the average case, using the right solving strategy can
improve the runtime of a Boolean constraint solver by orders of magnitude (see, for example,
Hutter, Hoos, and Leyton-Brown (2010)).
Our running example to illustrate this issue is Answer Set Programming (ASP; Baral (2003),

Gebser, Kaminski, Kaufmann, and Schaub (2012)). ASP is a form of declarative programming
with roots in knowledge representation, non-monotonic reasoning and constraint solving. In
contrast to many other constraint solving domains (for example, the satisfiability problem), ASP
provides a rich, yet simple declarative modeling language in which problems in NP, problems
in NPNP and hierarchical optimization problems can be expressed. Since ASP provides a
declarative language, a user does not have to specify how to solve a given problem, but he
merely hast to provide a representation of the problem (without specifying how to solve it).
However, for practical usage, the average solving performance is often crucial, and average
performance strongly depends on the right choice of the solving strategy (besides modelling
techniques). Since only very few experts have enough expertise to find a well-performing solving
strategy, users without expert knowledge are still confronted with the challenge to decide how
to solve his problem in form of selecting a solving strategy. Hence, the declarativeness of ASP
is still limited. The motivation of this dissertation is to provide mechanisms to overcome this
limitation and provide tools to automatically find well-performing solving strategies for a given

1For example, stochastic local search solvers can solve efficiently randomly generated SAT instances that cannot
be solved by CDCL-based solvers within orders of magnitude more time; see, for example, the results of the
international SAT Competition (http://www.satcompetition.org/).

1

http://www.satcompetition.org/

1 Introduction

application.
To be more concrete, the ASP solver clasp (Gebser, Kaminski, & Schaub, 2012a; Gebser,

Kaufmann, & Schaub, 2012c) represents the state of the art in solving ASP problems and has
done so for several years. The Potassco team won the biennial ASP Competition in 2009, 2011,
2013 and 2014 with clasp. However, for each of these competitions, the team put a lot of effort
into preparing clasp, that is, finding a well-performing parameter configuration by instantiating
with more than 80 clasp parameters. In fact, even though clasp is widely used, we are not aware
of any application in which it is used in its default configuration. Finding well-performing
configurations requires substantial expert knowledge about the solver and problem domain.
Unfortunately, in real world applications, such experts are rarely available.
There are mainly two approaches to minimize the need of human intervention to effectively

set up a solver. First, algorithm configuration considers the problem of automatically looking
for a configuration of an algorithm (Hutter, Hoos, Leyton-Brown, & Stützle, 2009). This task
is performed by an algorithm configurator. Thereby, an algorithm is an abstract concept for
all kinds of software; for example, clasp as a solver could be such an algorithm. However, an
algorithm configurator needs to perform several algorithm runs with different configurations to
find a well-performing configuration. On the one hand, a solver can still not be effectively used
out-of-the-box because of the configuration process, which has to be done for each new instance
set and often needs several days on a compute cluster. On the other hand, the requirement of a
human expert is reduced and we can automatically get well-performing and specialized solvers.
Second, an orthogonal approach to algorithm configuration is the use of algorithm portfolio

solvers that goes back to Huberman, Lukose, and Hogg (1997) for parallel portfolio solvers.2 The
idea is that not only one algorithm with a fixed configuration is used to solve a problem instance,
but a portfolio of algorithms can be used to increase the chance that at least one constituent
algorithm solves the instance quickly. In the simplest case, the algorithms in the portfolio run
in parallel; the first algorithm that solved an instance sends a signal to terminate the other
algorithms. More sophisticated approaches include running a schedule of algorithms (algorithm
scheduling) or selecting an algorithm to be run on an instance at hand (algorithm selection) based
on characteristics of that instance (so called instance features). All these approaches result in
more robust solvers which can be effectively applied out-of-the-box to a wide range of problem
instances. However, since solvers have to be robust on a large variety of instances, solvers are
not as specialized as configured solvers found with algorithm configuration.
From the perspective of a solver developer, the process of software development often of-

fers several design choices and different solving strategies. In the simplest case, a solving
strategy includes an adjustable parameter, for example, the frequency of restarts. Because of
interactions between these choices, decisions between the choices can not be prematurely made
without loosing performance potential. The programming by optimization paradigm (Hoos, 2012)
recommends to implement all reasonable choices and expose them as parameters. This is one
of the reasons why clasp has more than 80 parameters nowadays and even its main developer,
Benjamin Kaufmann, needs several days or weeks to manually find good configurations of clasp
for new applications. Thus in the context of programming by optimization, a goal of this dis-
sertation is to reduce the burden on new users of a solver but also on solver developers since

2An algorithm portfolio can consists of different solvers, but also of one solver with different configurations or a
combination of both.

2

also developers are not free of wrong decisions.

This goal is achieved by providing methods to automatically build effective and robust solvers
with the help of (i) algorithm configuration to automatically construct parallel portfolio solvers,
(ii) algorithm schedules via ASP and (iii) algorithm selection.

One focus of this dissertation is parallel solving, because parallel solvers are increasingly
key to effective solving since the advent of multi-core processors. Especially parallel portfolio-
based solvers have empirically proven to be effective (for example, see Hamadi, Jabbour, and
Sais (2009a) or Roussel (2011)). However, for the sequential and parallel use-case, the questions
arise and are answered in this thesis: (i) how to efficiently find an effective portfolio and (ii)
how to adapt more advanced portfolio techniques, such as algorithm scheduling and algorithm
selection, for parallel solving.

Table 1.1 gives a first impression about the performance of our methods when applied to clasp
on a diverse set of 1294 ASP instances.3 Default clasp denotes the default configuration of clasp,
that is, clasp (2.1.3) as distributed at http://potassco.sourceforge.net/ and run out-of-
the-box. We note that the performance can be gradually improved by each of the presented
methods. Our best assessed approach solved 202 additional instances in comparison to clasp’s
default by applying algorithm selection in a parallel setting using four CPU cores. We note
that 82 instances were never solved by any considered clasp configuration in our portfolios.
Hence, none of our presented methods are able to solve these instances. Nevertheless, our best
approach nearly reaches this performance bound represented by a theoretical oracle solver that
always selects the best clasp configuration for a given instance.

PAR10 #Timeouts PAR1
Sequential

Default clasp 1374.18 287 176.50
Algorithm Configuration 880.55 183 116.87
Algorithm Schedule (aspeed) 774.72 149 152.93
Algorithm Selection (claspfolio 2) 497.15 101 75.66

Parallel with 4 Cores
Algorithm Configuration (ACPP) 552.01 114 76.31
Algorithm Schedule (aspeed) 458.89 93 70.79
Algorithm Selection (claspfolio 2) 417.16 85 62.4
Theoretical Optimum (oracle) 400.17 82 57.98

Table 1.1: Performance on a diverse set of 1294 ASP instances regarding average runtime with
penalized timeouts by 10 times the runtime cutoff (PAR10), number of timeouts (#TOs)
and penalized average runtime with factor 1 (PAR1). Each solver had at most 600 seconds
to solve an instance.

In the remainder of the chapter, we give a very brief introduction to algorithm configuration,
algorithm scheduling and algorithm selection. Afterwards, we state in detail the contributions
of this dissertation and preview the individual chapters.

3The experiment is described and discussed in detail in Chapter 7.

3

http://potassco.sourceforge.net/

1 Introduction

1.1 Introduction to Algorithm Configuration, Scheduling and
Selection

Whereas algorithm configuration is the problem of finding an effective configuration of a given
algorithm, algorithm scheduling and algorithm selection are portfolio-based methods to in-
crease the robustness of an algorithm. In the following, we give a brief introduction to each of
these three meta solving strategies.

1.1.1 Problem Setting

In this work, we follow the typical runtime evaluation setting for solvers for NP-hard problems.
It is motivated by a typical user behavior: a user has a threshold on time he is willing to wait
for a program’s execution before he will abort the program. In the context of solvers, a solver
has to solve a given problem instance within this threshold. In detail, given a set of problem
instances I, an algorithm gets the chance to solve each instance i ∈ I within a fixed runtime
cutoff tc. Typical evaluation metrics to assess the performance of algorithms are number of
timeouts, penalized average runtime by factor 10 (PAR10)4 or PAR1 (sometimes also called
average runtime). Also, many solver competitions consider this setting, for example, the SAT
Competitions5 and ASP Competitions6.

1.1.2 Algorithm Configuration

Configuration Task

Algorithm
Configuration

Space

Select
Configuration

Run Configuration
on (some) InstancesInstances Configuration

Return Performance

Figure 1.1: Workflow of Algorithm Configuration

Figure 1.1 shows the basic workflow of algorithm configurators. As input, the configuration
task requires a set of problem instance, an algorithm, and the configuration space of the al-
gorithm.7 The configuration space is the cross-product of the parameters, and for discrete

4Penalized average runtime by factor X (PARX) is the average runtime where timeouts are penalized by X times
the runtime cutoff (Hutter et al., 2009).

5http://www.satcompetition.org/
6https://www.mat.unical.it/aspcomp2014/
7On the technical side, more inputs for algorithm configurators are required, such as a performance metric, a
configuration budget and sometimes also an initial configuration.

4

http://www.satcompetition.org/
https://www.mat.unical.it/aspcomp2014/

1.1 Introduction to Algorithm Configuration, Scheduling and Selection

parameters, of exponential size in the number of parameters. In each iteration, an algorithm
configurator selects a configuration from the configuration space and runs the algorithm with
this configuration on one or several instances. Each algorithm run is limited by the runtime
cutoff tc. The algorithm returns its performance, for example, runtime or solution quality, to
the configurator. Based on this new information, the configurator selects the next configuration
to investigate. After its configuration budget is exhausted, the configurator will return the best
known configuration of the algorithm. Examples of well-known algorithm configurators are
ParamILS (Hutter et al., 2009), GGA (Ansótegui, Sellmann, & Tierney, 2009), irace (López-
Ibáñez, Dubois-Lacoste, Stützle, & Birattari, 2011) and SMAC (Hutter, Hoos, & Leyton-Brown,
2011a).

1.1.3 Algorithm Scheduling

Instance
Solve with

a1 for σ(a1)
Solve with

a2 for σ(a2)
. . .failed failed

Solved Solved

Figure 1.2: Workflow of Algorithm Schedules with algorithm ai ∈ A and time slices σ : A→ R+
0

Figure 1.2 shows the workflow of an algorithm schedule. Algorithm schedules are an iterative
process of algorithm runs. Each algorithm a in a portfolio gets a time slice σ(a) to solve a
given instance. If the algorithms fails to do so, the next algorithm will try to solve the instance
within its time slice and so on until the overall runtime cutoff tc is reached. Therefore, the
sum of all time slices has to be at most tc. The main challenge when applying algorithm
schedules is how to find the time slices for each algorithm such that the number of timeouts is
minimized, and the alignment of the algorithms, that is, the sequence of algorithm runs, such
that the average runtime of the schedule is minimized. For example, algorithm schedules are
used in CPhydra (O’Mahony et al., 2008), Fast Downward Stone Soup (Helmert et al., 2011;
Seipp, Braun, Garimort, & Helmert, 2012) and 3S (Kadioglu, Malitsky, Sabharwal, Samulowitz,
& Sellmann, 2011).

1.1.4 Algorithm Selection

Figure 1.3 shows the workflow of an algorithm selector. For a given problem instance first, nu-
merical characteristics of this instance are computed These so-called instance features include
for example, the number of variables or clauses in a SAT formula. Based on these instance
features, an appropriate algorithm from a portfolio is selected to solve the given instance. The
complete workflow (including feature computation, algorithm selection and running the algo-
rithm) is limited by the runtime cutoff tc. The main problem of applying algorithm selection
is how to find a mapping from instance features to an effective algorithm for an arbitrary
instance. Examples for algorithm selectors are SATzilla (Xu, Hutter, Hoos, & Leyton-Brown,
2008), AQME (Pulina & Tacchella, 2007) and LLAMA (Kotthoff, 2013). We note that algo-

5

1 Introduction

Instance Compute Features Select Algorithm
Solve Instance
with Selected
Algorithm

Algorithm
Portfolio

Figure 1.3: Workflow of Algorithm Selectors

rithm selectors, such as SATzilla, often use further techniques, such as pre-solving algorithm
schedules, to increase their performance and do not solely rely on algorithm selection.

1.2 Contributions and Content

In the following, we give an overview of the content of the dissertation and point out the
contributions of each individual chapter.

Chapter 2. Much time in designing a Boolean constraint solver is spent for benchmarking new
ideas on large and representative benchmark sets. However, many benchmark sets are not
suited for this task, for example, they include overly easy or excessively hard instances,
or they are not well balanced between different types of instances. In Chapter 2, we
introduce a method to select a subset of benchmark instances to efficiently and robustly
benchmark Boolean constraint solvers.8 Benchmarks on the selected subset save compu-
tational resources and thus facilitate faster development of new solvers. Additionally, a
good distribution of instance characteristics leads to solvers performing more robustly on
a large variety of benchmark instances.

Chapter 3. Effective parallel solvers are increasingly key to solving computationally challenging
problems. Unfortunately, the manual construction of parallel solvers is non-trivial, often
requiring redesign of existing sequential approaches. In Chapter 3, we study generic me-
thods to automatically construct parallel portfolio solvers, named ACPP.9The ability to
automatically construct parallel solvers from a sequential source reduces the burden on
the developer since the development of natively parallel solvers requires special expertise,
long development and debugging cycles. To reduce the amount of required computation
resources, we applied the benchmark selection strategy of Chapter 2 to the empirical
performance analysis of our automatically constructed parallel solvers.

Chapter 4. The rather simple approach of relying on handmade, uniform and unordered solver
schedules followed by ppfolio (Roussel, 2011) won several medals in the 2011 SAT Com-
petition. Inspired by this, we took advantage of the modeling and solving capacities of

8partly published in a conference paper (Hoos, Kaufmann, Schaub, & Schneider, 2013) – we note that Marius
Lindauer (previously Marius Schneider) was leading author in all publications used in this thesis.

9partly published in a workshop article (Hoos, Leyton-Brown, Schaub, & Schneider, 2012)

6

1.2 Contributions and Content

ASP to automatically determine more refined, that is, non-uniform and ordered sched-
ules from existing benchmarking data. In Chapter 4, we show how to efficiently model
this problem using ASP.10 Beyond the sequential case, we extend the problem to parallel
schedules. We provide the problem definition as well as the ASP encoding for parallel
schedules. Based on this, we introduce aspeed , an open-source framework that is able
to efficiently find optimal algorithm schedules. Furthermore, we assess the performance
of our optimized sequential and parallel schedules on several constraint solving domains
and compare them with other state-of-the-art solvers. Here, we provide an interesting ap-
plication for ASP, on the one hand, and on the other, a way to improve the performance
and robustness of Boolean constraint solvers.

Chapter 5. Building on our award-winning, portfolio-based ASP solver claspfolio, we present
claspfolio 2 in Chapter 5.11 It provides a modular and open solver architecture that in-
tegrates several different portfolio-based algorithm selection approaches and techniques.
The claspfolio 2 solver framework supports various feature generators, solver selection
approaches, solver portfolios, as well as algorithm schedule based pre-solving techniques
from Chapter 4. The default configuration of claspfolio 2 relies on a light-weight version
of the ASP solver clasp to generate static and dynamic instance features. The flexible open
design of claspfolio 2 is a distinguishing factor even beyond ASP. As such, it provides a
unique framework for comparing and combining existing portfolio-based algorithm selec-
tion approaches and techniques in a single, unified framework. Taking advantage of this,
we conducted an extensive experimental study to assess the impact of different feature
sets, selection approaches and base solver portfolios. In addition to gaining substantial
insights into the utility of the various approaches and techniques, we identified a default
configuration of claspfolio 2 that achieves substantial performance gains not only over
clasp’s default configuration and the earlier version of claspfolio, but also over manually
tuned configurations of clasp.

Chapter 6. In practice, algorithm selection of sequential algorithms is rarely able to reach
the performance of a perfect selector, that is, always selecting the best algorithm from a
portfolio for a given instance. One way to improve the performance of algorithm selectors
and to leverage parallel hardware architectures is the selection of a parallel per-instance
portfolio of algorithms. We present PASU , an approach to select parallel portfolios under
consideration of the uncertainty of the predicted performance of the selected algorithms,
in Chapter 6. In this way, we further increase the probability to select the best-performing
algorithm for a given instance. PASU is implemented using the flexible framework of
claspfolio 2. We conducted an extensive experimental study to assess the utility of PASU
on a large and diverse set of different algorithm selection scenarios from the Algorithm
Selection Library (ASlib12).

Chapter 7. While in Chapters 3 to 6, we assessed the presented approaches on scenarios that

10partly published in a conference and in a journal article (Hoos, Kaminski, Schaub, & Schneider, 2012; Hoos,
Kaminski, Lindauer, & Schaub, 2015). We thank Roland Kaminski for helping us to model the ASP encodings
effectively.

11partly published in a journal paper (Hoos, Lindauer, & Schaub, 2014)
12www.aslib.net

7

www.aslib.net

1 Introduction

were available at the time we developed them, in Chapter 7, we compare all of them using
the same setup. Specifically, we compare parallel portfolios from the ACPP approach,
algorithm schedules by aspeed and algorithm selection by claspfolio 2 with PASU . On
the one hand, this comparison is based on a homogeneous instance set of ASP Ricochet
Robots13 instances (a transverse benchmark problem to compare different modeling and
solving techniques; Gebser, Jost, Kaminski, Obermeier, Sabuncu, Schaub, and Schneider
(2013)). On the other hand, we use the heterogeneous instance set of the ASP-POTASSCO
scenario from ASlib. Based on these results, we deduce practical advice regarding the
question when to apply which of our methods.

Chapter 8. In this final chapter, we discuss the presented methods in a larger context and
suggest directions for future work. For example, we outline how the presented methods
can be combined to create the next level of meta solving approaches.

13http://en.wikipedia.org/wiki/Ricochet_Robot

8

http://en.wikipedia.org/wiki/Ricochet_Robot

2 Robust Benchmark Set Selection for
Boolean Constraint Solvers

The availability of representative sets of benchmark instances is of crucial importance for the
successful development of high-performance solvers for computationally challenging problems,
such as propositional satisfiability (SAT) and answer set programming (ASP). Such benchmark
sets play a key role for assessing solver performance and thus for measuring the computational
impact of algorithms and/or their vital parameters. On the one hand, this allows a solver
developer to gain insights into the strengths and weaknesses of features of interest. On the
other hand, representative benchmark instances are indispensable to empirically underpin the
claims of computational benefit of novel ideas.
A representative benchmark set is composed of benchmark instances derived from a vari-

ety of different benchmark classes. Such benchmark sets have been assembled (manually) in
the context of well-known solver competitions, such as the SAT and ASP competitions, and
then widely used in the research literature. These sets of competition benchmarks are well-
accepted, because they have been constituted by an independent committee using sensible
criteria. Moreover, these sets evolve over time and thus usually reflect the capabilities (and
limitations) of state-of-the-art solvers; they are also publicly available and well-documented.
However, instance sets from competitions are not always suitable for benchmarking scenarios

where the same runtime cutoff is used for all instances. For example, in the last three ASP
competitions, only ≈10% of all instances were non-trivial (runtime over 9 second, that is, 1% of
the runtime cutoff) for the state-of-the-art ASP solver clasp, while all other instances were trivial
or unsolvable for clasp within the time cutoff used in the competition. When benchmarking,
results of benchmarks are (typically) aggregated over all instances. But if the percentage of
interesting instances in the benchmark set is too small, the interesting instances have small
influence on the aggregated result and the overall result is dominated by uninteresting, that is,
trivial or unsolvable instances. Hence, a significant change of the runtime behaviour of a new
algorithm is harder to identify on such degenerate benchmark sets. In addition, uninteresting
instances unnecessarily waste computational resources and thus cause avoidable delays in the
benchmarking process.
Moreover, in ASP, competition instances do not necessarily represent real world applications.

In the absence of a common modelling language, benchmark instances are often formulated in
the most basic common setting and thus bear no resemblance to how real world problems are
addressed (for example, they are usually free of any aggregates).1 The situation is simpler in
SAT, where a wide range of benchmark instances is derived from real-world applications and
are quite naturally encoded in a low-level format, without the modelling layer present in ASP.
Notably, SAT competitions place considerable emphasis on a public and transparent instance

1In ASP competitions, this deficit is counterbalanced by a modelling track, in which each participant can use its
preferred modelling language.

9

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

selection procedure (Balint, Belov, Järvisalo, & Sinz, 2012b). However, as we discuss in detail in
Section 2.2, competition settings may differ from other benchmarking contexts.
In what follows, we elaborate upon the composition of representative benchmark sets for

evaluating and improving the performance of Boolean constraint solvers in the context of ASP
and SAT. Starting from an analysis of current practice of benchmark set selection in the context
of SAT competitions (Section 2.1), we isolate a set of desiderata for representative benchmark
sets (Section 2.2). For instance, sets with a large variety of instances are favourable when
developing a default configuration of a solver that is desired to perform well across a wide
range of instances. We rely on these desiderata for guiding the development of a parametrized
benchmark selection algorithm (Section 2.3).
Overall, our approach makes use of (i) a large base set (or distribution) of benchmark in-

stances; (ii) instance features; and (iii) a representative set of state-of-the-art solvers. Fun-
damentally, it constructs a benchmark set with desirable properties regarding difficulty and
diversity by sampling from the given base set. It achieves diversity of the benchmark set by
clustering instances based on their similarity w.r.t a given set of features, while ensuring that no
cluster is overrepresented. The difficulty of the resulting set is calibrated based on the given set
of solvers. Use of the benchmark sets thus obtained helps save computational resources during
solver development, configuration and evaluation, while concentrating on interesting instances.
We empirically demonstrate in Section 2.4 that optimizing solvers on the obtained selection

of benchmarks leads to better configurations than obtainable from the vast original set of
benchmark instances. We close with a final discussion and some remarks on future work in
Section 2.5.

2.1 Current Practice

The generation or selection of benchmark sets is an important factor in the empirical analysis
of algorithms. Depending on the goals of the empirical study, there are various criteria for
benchmark selection. For example, in the field of Boolean constraint solving, regular compe-
titions are used to asses new approaches and techniques as well as to identify and recognize
state-of-the-art solvers. Over the years, competition organizers came up with sets of rules for
selecting subsets of submitted instances to assess solver performance in a fair manner. To begin
with, we investigate the rules used in the well-known and widely recognized SAT Competition2,
which try to achieve (at least) three overall goals. First, the selection should be broad, that
is, the selected benchmark set should contain a large variety of different kinds of instances to
assess the robustness of solvers. Second, each selected instance should be significant w.r.t. the
ranking obtained from the competition. Third, the selection should be fair, that is, the selected
set should not be dominated by a set of instances from the same source (either a domain or a
benchmark submitter).
For the 2009 SAT Competition (Berre, Roussel, & Simon, 2009) and the 2012 SAT Chal-

lenge (Balint et al., 2012b), instances were classified according to hardness, as assessed based
on the runtime of a set of representative solvers. For instance, for the 2012 SAT Challenge, the
organizers measured the runtimes of the best five SAT solvers from the Application and Crafted
tracks of the last SAT Competition on all available instances and assigned each instance to one

2http://www.satcompetition.org

10

http://www.satcompetition.org

2.2 Desirable Properties of Benchmark Sets

of the following classes: easy instances are solved by all solvers under 10% of the runtime cutoff,
that is, 90 CPU seconds; medium instances are solved by all solvers under 100% of the runtime
cutoff; too hard instances are not solved by any solver within 300% of the runtime cutoff; and
hard instances are solved by at least one solver within 300% of the runtime cutoff but not by
all solvers within 100% of the runtime cutoff. Instances were then selected with the objective
to have 50% medium and 50% hard instances in the final instance set and, at the same time, to
allow at most 10% of the final instance set to originate from the same source.
While the easy instances are assumed to be solvable by all solvers, the too hard instances

are presumably not solvable by any solver. Hence, neither class contributes to the solution
count ranking used in the competition.3 On the other hand, medium instances help to rank
weaker solvers and to detect performance deterioration w.r.t. previous competitions. The hard
instances are most useful for ranking the top-performing solvers and provide both a challenge
and a chance to improve state-of-the-art SAT solving.
Although using a large variety of benchmark instances is clearly desirable for robust bench-

marking, the rules used in the SAT Competition are not directly applicable to our identified
use cases. First, the hardness criteria and distribution used are directly influenced by the use
of the solution count ranking system. On the other hand, ranking systems that also consider
measured runtimes, like the careful ranking4(van Gelder, 2011), might be better suited for dif-
ferentiating solver performance. Second, limiting the number of instances from one source to
achieve fairness is not needed in our setting. Furthermore, the origin of instances provides
only an indirect way of achieving a heterogeneous instance set, as certain instances of different
origin may in fact be more similar than other pairs of instances from the same source.

2.2 Desirable Properties of Benchmark Sets

Before diving into the details of our selection algorithm, let us first explicate the desiderata for
a representative benchmark set (cf. (Hoos & Stützle, 2004)).

Large Variety of Instances. As mentioned, a large variety of instances is favourable to assess
the robustness of solver performance and to reduce the risk of generalising from results that
only apply to a limited class of problems. Such large variety can include different types of
problems, that is, real-world applications, crafted problems, and randomly generated problems;
different levels of difficulty, that is, easy, medium, and hard instances; different instance sizes;
or instances with diverse structural properties. While the structure of an instance is hard to
assess, a qualitative assessment could be based on visualizing the structure (Sinz, 2007), and
a quantitative assessment can be performed based on instance features (Nudelman, Leyton-
Brown, Hoos, Devkar, & Shoham, 2004; Xu et al., 2008). Such instance features have already
proven useful in the context of algorithm selection (Xu et al., 2008; Kadioglu et al., 2011) and
algorithm configuration (Hutter et al., 2011a; Kadioglu, Malitsky, Sellmann, & Tierney, 2010).

3Solution count ranking assesses solvers based on the number of solved instances.
4Careful ranking compares pairs of solvers based on statistically significant performance differences and ranks
solvers based on the resulting ranking graph.

11

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

Adapted Instance Hardness. While easy problem instances are sometimes useful for inves-
tigating certain properties of specific solvers, intrinsically hard or difficult to solve problem
instances are better suited to demonstrate state-of-the-art solving capabilities through bench-
marking. However, in view of the nature of NP-hard problems, it is likely that many hard
instances cannot be solved efficiently. Resource limitations, such as runtime cutoffs or mem-
ory limits, are commonly applied in benchmarking. Solver runs that terminated prematurely
because of violations of resource limits are not helpful in differentiating solver performance.
Hence, instances should be carefully selected so that such prematurely terminated runs for the
given set of solvers are relatively rare. Therefore, the distribution of instance hardness within a
given benchmark set should be adjusted based on the given resource limits and solvers under
consideration. In particular, instances that are too hard (that is, for which there is a high prob-
ability of a timeout) as well as instances that are too easy, should be avoided, where hardness
is assessed using a representative set of state-of-the-art solvers, as is done, for example, in the
instance selection process of SAT competitions (Berre et al., 2009).
Since computational resources are typically limited, the number of benchmark instances

should also be carefully calibrated. While using too few instances can bias the results, us-
ing too many instances can cost computational resources without improving the information
gained from benchmarking. Therefore, we propose to start with a broad base set of instances,
for example, generated by one or more (possibly parametrized) generators or a collection of
previously used competition instance sets, and to select a subset of instances following our
desiderata.

Free of Duplicates, Reproducible, and Publicly Available. Benchmark set should be free of
duplicates, because using the same instance twice does not provide any additional information
about solver performance. Nevertheless, non-trivially transformed instances can be useful for
assessing the robustness of solvers (Brglez, Li, & Stallmann, 2002). To facilitate reproducibility
and comparability, both the problem instances and the process of instance selection should be
publicly available. Ideally, problem instances should originate from established benchmark sets
and/or public benchmark libraries. To our surprise, these properties are not true for all com-
petition sets. For example, we found duplicates in the SAT Challenge 2012, ASP Competitions
2007 and 2009 (for example, 15-puzzle.init1.gz and 15puzzle_ins.lp.gz in the latter).

2.3 Benchmark Set Selection

Based on our analysis of solver competitions and the resulting desiderata, we developed an
instance selection algorithm. Its implementation is open source and freely available at http:
//potassco.sourceforge.net. In addition, we present a way to assess the relative robustness
and quality of an instance set based on the idea of Q-scores (Balint et al., 2012b).

2.3.1 Benchmark Set Selection Algorithm

Our selection process starts from a given base set of instances I. This set can be a benchmark
collection or simply a mix of previously used instances from competitions.
Inspired by past SAT competitions, a representative set of algorithms A – for example, best

solvers of the last competition, the state-of-the-art (SOTA) contributors identified in the last

12

15-puzzle.init1.gz
15puzzle_ins.lp.gz
http://potassco.sourceforge.net
http://potassco.sourceforge.net

2.3 Benchmark Set Selection

competition, or contributors to SOTA portfolios (Xu et al., 2012a) – is used to assess the
hardness h(i) ∈ R of an instance i ∈ I. Typically, the runtime t(i,a) (measured in CPU seconds)
is used to assess the hardness of an instance i ∈ I for algorithm a ∈ A. The aggregation of the
runtimes of all algorithm a ∈ A on a given instance i can be carried out in several ways, for
example, by considering the minimal (mina∈A t(i,a)) or the average runtime (1

|S| ·∑a∈A t(i,a)).
The resulting hardness metric is closely related to the intended ranking scheme for algorithms.
For example, the minimal runtime is a lower bound of the portfolio runtime performance and
represents a challenging hardness metric appropriate in the context of solution count ranking.
In contrast, the average runtime would be better suited for a careful ranking (van Gelder, 2011),
which uses pairwise comparisons between algorithms for each instance, because the pairs of
runtimes for two algorithms are of limited value if neither of them solved the given instance
within the given cutoff time. Since all algorithms contribute to the average runtime per instance,
this metric will assess instances as hard even if only some solvers time out on time, and selecting
instances based on it (as explained in the following) can therefore be expected to result in fewer
timeouts overall.
After selecting a hardness metric, we have to choose how the instance hardness should be

distributed within the benchmark set. As stated earlier, and under the assumption that the
set to be created will not be used primarily in the context of solution count ranking, the
performance of algorithms can be compared better, if the incidence of timeouts is minimized.
This is important, for example, in the context of algorithm configuration (manual or automatic).
The incidence of timeouts can be minimized by increasing the runtime cutoff, but this is
infeasible or wasteful in many cases. Alternatively, we can ensure that not too many instances
on which timeouts occur are selected for inclusion in our benchmark set. At the same time, as
motivated previously, it is also undesirable to include too many easy instances, because they
incur computational cost and, depending on the hardness metric used, can also distort final
performance rankings determined on a given benchmark set.
One way to focus the selection process on the most useful instances w.r.t. hardness, namely

those that are neither too easy nor too hard, is to use an appropriately chosen probability
distribution to guide sampling from the given base set of instances. For example, the use
of a normal (Gaussian) distribution of instance hardness in this context leads to benchmark
sets consisting predominantly of instances of medium hardness, but also include some easy
and hard instances. Alternatively, one could consider log-normal or exponential distributions,
which induce a bias towards harder instances, as can be found in many existing benchmark
sets. Compared to the instance selection approach used in SAT competitions (Balint et al.,
2012b; Berre et al., 2009), this method does not require the classification of instances into
somewhat arbitrary hardness classes.
The parameters of the distribution chosen for instance sampling, for example, mean and

variance in the case of a normal or log-normal distribution, can be determined based on the
hardness metric and runtime limit; for example, the mean could be chosen as half the cutoff
time. By modifying the mean, the sampling distribution can effectively be shifted towards
harder or easier benchmark instances.
As argued before, the origin of instances is typically less informative than their structure, as

reflected, for example, in informative sets of instance features. Such informative sets of instance
features are available for many combinatorial problems, including SAT (Xu et al., 2008),
ASP (Gebser, Kaminski, Kaufmann, Schaub, Schneider, & Ziller, 2011) and CSP (O’Mahony

13

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

Algorithm 1: Benchmark Selection Algorithm
Input : instance set I; desired number of instances n; representative set of algorithms A;

runtimes t(i,a) with (i,a) ∈ I×A; normalized instance features f (i) for each
instance i ∈ I; hardness metric h : I→ R of instances; desired distribution Dh
regarding h; clustering algorithm ca; cutoff time tc; threshold e for too easy
instances;

Output: selected instances I∗

1 remove instances from I that are not solved by any a ∈ A within tc;
2 remove instances from I that are solved by all a ∈ A under e% of tc ;
3 cluster all instances i ∈ I in the normalized feature space f (i) into clusters s(i) using
clustering algorithm ca;

4 while |I∗|< n and I 6= /0 do
5 sample x ∈ R∼Dh;
6 select instance i∗ ∈ I with the nearest h(i∗) to x;
7 remove i∗ from I;
8 if s(i∗) is not over-represented then
9 add i∗ to I∗;

10 return I∗

et al., 2008), where they have been shown to correlate with the runtime of state-of-the-art
algorithms and have been used prominently in the context of algorithm selection (see, for
example, (Xu et al., 2008; Kadioglu et al., 2011)). To prevent the inclusion of too many similar
instances in the benchmark sets, we cluster the instances based on their similarity in feature
space. We then require that a cluster must not be over-represented in the selected instance
set; in what follows, roughly reminiscent of the mechanism used in SAT competitions, we say
that a cluster is over-represented if it contributes more than 10% of the instances to the final
benchmark set. While other mechanisms are easily conceivable, the experiments we report later
demonstrate that this simple criterion works well.

Algorithm 1 implements these ideas with the precondition that the base instance set I is free
of duplicates. (This can be easily ensured by means of simple preprocessing.) In Line 1, all in-
stances are removed from the given base set that cannot be solved by all algorithm from the rep-
resentative algorithm set A within the selection runtime cutoff tc (rejection of too hard instances).
If solution count ranking is to be used in the benchmarking scenario under consideration, the
cutoff in the instance selection process should be larger than the cutoff for benchmarking, as
was done in the 2012 SAT Challenge. In Line 2, all instances are removed that are solved by
all algorithms under e% of the cutoff time (rejection of too easy instances). For example, in the
2012 SAT Challenge (Balint et al., 2012b), all instances were removed which were solved by
all algorithms under 10% of the cutoff. Line 3 performs clustering of the remaining instances
based on their normlized features. To perform this clustering, the well-known k-means algo-
rithm could be used, and the number of clusters could be computed using G-means (Hamerly
& Elkan, 2003; Kadioglu et al., 2010) or by increasing the number of clusters until the clus-
tering optimization does not improve further under a cross validation (Hill & Lewicki, 2005).

14

2.3 Benchmark Set Selection

In our experiments, we used the latter, because the G-means algorithm relies on a normality
assumption that is not necessarily satisfied for the instance feature data used here. Beginning
with Line 4, instances are sampled within a loop until enough instances are selected or no more
instances are left in the base set. To this end, x ∈ R is sampled from a distribution Dh induced
by instance hardness metric h, such that for each sample x from hardness distribution Dh, the
instance i∗ is selected whose hardness h(i∗) is closest to x. Instance i∗ is removed from the base
instance set I. If the respective cluster s(i∗) is not already over-represented in I∗, instance i∗ is
added to I∗, the benchmark set under construction.

2.3.2 Benchmark Set Quality

We would like to ensure that our benchmark selection algorithm produces instance sets that are
in some way better than the respective base sets. At the same time, any benchmark set I∗ it
produces should be representative of the underlying base set I in the sense that if an algorithm
performs better than a given baseline (for example, some prominent solver) on I∗ it should also
be better on I. However, the converse may not hold, because specific kinds of instances may
dominate I but not I∗, and excellent performance on those instances can lead to a situation
where an algorithm that performs better on I does not necessarily perform better on I∗.
Bayless et al. (Bayless, Tompkins, & Hoos, 2012) proposed a quantitative assessment of in-

stance set utility. Their use case is the performance assessment of (new) algorithms on an
instance set I1 that has practical limitations, for example, the instances are too large, too hard
to solve, or not enough instances are available. Therefore, a second instance set I2 without
these limitations is assessed as to whether it can be regarded as a representative proxy for the
instance set I1 during algorithm development or configuration. The key idea is that any I2 that
is a representative proxy for I1 can be used in lieu of I1 to assess performance of an algorithm,
with the assurance that good performance on I2 (which is easier to demonstrate or achieve)
implies, at least statistically, good performance on I1.
To assess the utility of an instance set, they use algorithm configuration (Hutter et al.,

2009, 2011a; Kadioglu et al., 2010). An algorithm configurator is used to find a configuration
c := a(cI) of algorithm a on instance set I by optimizing, for example, the runtime of a. If I2
is a representative proxy for I1, the algorithm configuration a(cI2) should perform on I1 as well
as a configuration optimized directly on I1, that is, a(cI1). The Q-score Q(I1, I2,a,m) defined
in Equation (2.1) is the performance ratio of a(cI1) and a(cI2) on I1 with respect to a given
performance metric m. A large Q-score means I2 is a good proxy for I1. The short form of
Q(I1, I2,a,m) is QI1(I2).
To compare both sets, I1 and I2, we want to know whether I2 is a better proxy for I1 than

vice versa. To this end, we extended the idea in (Bayless et al., 2012) and propose the Q∗-score
of I1 and I2 by computing the ratio of QI1(I2) and QI2(I1) as per Equation (2.2). If I1 is a better
proxy for I2 than vice versa, the Q∗-score Q∗(I1, I2) is larger than 1.

Q(I1, I2,a,m) =
m(a(cI1), I1)

m(a(cI2), I1)
(2.1)

Q∗(I1, I2) =
QI1(I2)

QI2(I1)
(2.2)

15

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

We use the Q∗-score to assess the quality of the sets I∗ obtained from our benchmark selection
algorithm in comparison to the respective base sets I. Based on this score, we can assess
the degree to which our benchmark selection algorithm succeeded in producing a set that is
representative of the given base set in the way motivated earlier. Thereby, a Q∗-score
(Q∗(I1 = I, I2 = I∗)) and a Q-score (QI1=I(I2 = I∗)) of larger than 1.0 indicates that I∗ is better
proxy for I than vice versa and I∗ is a good proxy for I.

2.4 Empirical Performance Analysis

We evaluated our benchmark set selection approach by means of the Q∗-score criterion on
widely studied instance sets from SAT and ASP competitions.

Instance Sets. We used three base instance sets to select our benchmark set: SAT-Application
includes all instances of the application tracks from the 2009 and 2011 SAT Competition and
2012 SAT Challenge; SAT-Crafted includes instances of the crafted tracks (resp. hard combi-
natorial track) of the same competitions; and ASP-Set includes all instances of the 2007 ASP
Competition (SLparse track), the 2009 ASP Competition (with the encodings of the Potassco
group (Gebser, Kaminski, Kaufmann, Ostrowski, Schaub, & Schneider, 2011)), the 2011 ASP
Competition (decision NP-problems from the system track), and several instances from the ASP
benchmark collection platform asparagus5. Duplicates were removed from all sets, resulting in
649 instances in SAT-Application, 850 instances in SAT-Crafted , and 2589 instances in ASP-Set.

Solvers. In the context of the two sets of SAT instances, the best two solvers of the application
track, that is, Glucose (Audemard & Simon, 2012) (2.1) and SINN (Yasumoto, 2012), and of the
hard combinatorial track, that is, clasp (Gebser et al., 2011) (2.0.6) and Lingeling (Biere, 2012)
(agm), and the best solver of the random track, that is, CCASAT (Cai, Luo, & Su, 2012), of the
2012 SAT Challenge were chosen as representative state-of-the-art SAT solvers. clasp (Gebser
et al., 2011) (2.0.6), cmodels (Giunchiglia, Lierler, & Maratea, 2006) (3.81) and smodels (Simons,
Niemelä, & Soininen, 2002) (2.34) were selected as competitive and representative ASP solvers
capable of reading the smodels-input format (Syrjänen, 2001).

Instance Features. We used efficiently computable, structural features to cluster instances.
The fifty-four base features of the feature extractor of SATzilla (Xu et al., 2008) (2012) were
utilized for SAT. The seven structural features of claspfolio (Gebser et al., 2011) were considered
for ASP, namely, tightness (0 or 1), number of atoms, all rules, basic rules, constraint rules,
choice rules, and weight rules of the grounded program. For feature computation, a runtime
limit of 900 CPU seconds per instance and a z-score normalization was used. Any instance for
which the complete set of features could not be computed within 900 seconds was removed from
the set of candidate instances. This led to the removal of 52 instances from the SAT-Application
set, 2 from the SAT-Crafted set, and 3 from the ASP-Set set.

5http://asparagus.cs.uni-potsdam.de/

16

http://asparagus.cs.uni-potsdam.de/

2.4 Empirical Performance Analysis

Execution Environment and Solver Settings. All our experiments were performed on a
computer cluster with dual Intel Xeon E5520 quad-core processors (2.26 GHz, 8192 KB cache)
and 48 GB RAM per node, running Scientific Linux (2.6.18-308.4.1.el5). Each solver run was
limited to a runtime cutoff of 900 CPU seconds. Furthermore, we set parameter e in our
benchmark selection procedure to 10, that is, instances solved by all solvers within 90 CPU
seconds were discarded, and the number of instances to select (n) to 200 for SAT (because of
the relatively small base sets) and 300 for ASP. After filtering out too hard instances (Line 1
of Algorithm 1), 404 instances remained in SAT-Application, 506 instances in SAT-Crafted and
2190 instances in ASP-Set; after filtering out too easy instances (Line 2), we obtained sets of size
393, 425, and 1431, respectively.

Clustering. To cluster the instances based on their features (Line 3), we applied k-means 100
times with different randomised initial cluster centroids. To find the optimal number of clusters,
we gradually increased the number of clusters (starting with 2) until the quality of the clustering,
assessed via 10-fold cross validation and 10 randomised repetitions of k-means for each fold,
did not improve any further (Hill & Lewicki, 2005). This resulted in 13 clusters for each of the
two SAT sets, and 25 clusters for the ASP set.

Selection. To measure the hardness of a given problem instance, we used the average runtime
over all representative solvers. We considered a cluster to be over-represented (Line 8) if more
than 20% of the final set size (n) were selected for SAT, and more than 5% in case of ASP; the
difference in threshold was motivated by the fact that substantially more clusters were obtained
for the ASP-Set set than for SAT-Application and SAT-Crafted .

Algorithm Configuration. After generating the benchmark sets SAT-Application∗, SAT-Crafted∗

and ASP-Set∗ using our automated selection procedure, these sets were evaluated by assessing
their Q∗-scores. To this end, we used the freely available, state-of-the-art algorithm configurator
ParamILS (Hutter et al., 2009) to configure the SAT and ASP solver clasp (2.0.6). clasp is a
competitive solver in several areas of Boolean constraint solving6 that is highly parameterized,
exposing 46 performance-relevant parameters for SAT and 51 for ASP. This makes it partic-
ularly well suited as a target for automated algorithm configuration methods and hence for
evaluating our instance sets. Following standard practice, for each set, we performed 10 inde-
pendent runs of ParamILS of 2 CPU days each and selected from these the configuration with
the best training performance as the final result of the configuration process for each instance
set.

Sampling Distributions. One of the main input parameters of Algorithm 1 is the sampling
distribution. With the help of our Q∗-score criterion, three distributions are assessed: a normal
(Gaussian) distribution, a log-normal distribution, and an exponential distribution. The pa-
rameters of these distributions were set to the empirical statistics (for example, empirical mean
and variance) of the hardness distribution over the base sets. The log-normal and exponential
distributions have fat right tails and typically reflect better the runtime behaviour of solvers for
NP problems than the normal distribution. However, when using the average runtime as our

6clasp won several first places in previous SAT, PB and ASP competitions.

17

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

Distribution PAR10 on I PAR10 on I∗ Q∗-score

cdef cI cI∗ cdef cI cI∗

SAT-Application

Normal 4629 4162 3997 3410 2667 1907 1.46
Log-Normal 4629 4162 4683 3875 2601 3487 0.66
Exponential 4629 4162 4192 2969 2380 2188 1.08

SAT-Crafted

Normal 5226 5120 5056 2429 2155 1752 1.25
Log-Normal 5226 5120 5184 3359 3235 3184 1.04
Exponential 5226 5120 5072 1958 1819 1523 1.21

ASP-Set

Normal 2496 1239 1072 1657 705 557 1.46
Log-Normal 2496 1239 1128 3136 1173 678 1.90
Exponential 2496 1239 1324 1648 710 555 1.20

Table 2.1: Comparison of set qualities of the base sets I and benchmark sets I∗ generated by
Algorithm 1; evaluated with Q∗-Scores with I1 = I, I2 = I∗, clasp as algorithm A and
PAR10-scores as performance metric m

hardness metric, the instances sampled using a normal distribution are not necessarily atypi-
cally easy. For instance, an instance i, on which half of the representative solvers have a timeout
while the other half solve the instance in nearly no time, has an average runtime of half of the
runtime cutoff. Therefore, the instance is medium hard and will be likely selected by using the
normal distribution.
In Table 2.1, we compare the benchmark sets we obtained from the base sets SAT-Application,

SAT-Crafted and ASP-Set when using these three types of distributions, based on their Q∗-
scores. On the left of the table, we show the PAR10 performance on the base set I of the default
configuration of clasp (cdef; we use this as a baseline), the configuration cI found on the base
set I, and the configuration cI∗ found on the selected set I∗; this is followed by the performance
on the benchmark sets I∗ generated using our new algorithm. The last column reports the
Q∗-score values for the pairs of sets I and I∗.
For all three instance sets, the Q∗-scores obtained via the normal distribution were larger

than 1.0, indicating that cI∗ performed better than cI and the set obtained from our benchmark
selection algorithm I∗ proved to be a good alternative to the entire base set I. Although on the
ASP-Set set, by using the log-normal distribution a larger Q∗-score (1.90) was obtained than for
the normal distribution (1.46), on the SAT-Application set, using the log-normal distribution did
not produce good benchmark sets. When using exponential distributions, Q∗-scores are larger
than 1.0 in all three cases, but smaller than those obtained with normal distributions.
When using the normal distribution, configuration cI∗ performed better than cI on both sets

I and I∗ (implying QI1(I2)> 1.0). Therefore, configuration on the selected set I∗ leads to faster
(and more robust) configurations than on the base set I. Furthermore, the benchmark sets
produced by our algorithm are smaller and easier than the respective base sets. Hence, less

18

2.4 Empirical Performance Analysis

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

f e h 1 3 5 7 9 11 13

S
pe

ed
up

 (
P

A
R

10
 in

 C
P

U
 s

ec
)

Cluster (ID)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

f e h 1 3 5 7 9 11 13

S
pe

ed
up

 (
P

A
R

10
 in

 C
P

U
 s

ec
)

Cluster (ID)

Figure 2.1: Boxplots indicating the median, quartiles minimum and maximum speedup achieved
on the instance clusters within the base set SAT-Application; (left) compares cde f ault and
cI (high values are favourable for cI); (right) compares cde f ault and cI∗ (high values are
favourable for cI∗); special clusters: s f uncompleted feature computation; se too easy, sh
too hard;

CPU time is necessary to assess the performance of an algorithm on those benchmark sets.
For instance, the default configuration of clasp needed 215 CPU hours on the base ASP-Set
set and only 25 CPU hours on the benchmark set ASP-Set∗. For developing a new algorithm
or configuring an algorithm (manually or automatically), fast and informative assessment, as
facilitated by our new benchmark set generation algorithm, is very important.

Cluster Assessment. An additional advantage of Algorithm 1 is the fact that it produces a
feature-based instance clustering, which can be further used to assess more precisely the perfor-
mance of algorithms (or configurations). Normally, the performance of an algorithm is assessed
over an entire instance set, but with the help of instance clusters, the performance can be as-
sessed on different types of instances. This is useful, for example, in the context of developing a
robust solver which should perform equally well across different types of instances. An example
for such a solver is the CPLEX solver for mixed integer programming (MIP) problems, which is
designed to perform well over a broad range of application contexts, each of which gives rise
to different types of MIP instances.
The box plots in Figure 2.1 show the speedups (y-axis) of the configurations cI (left) and cI∗

(right; while sampling with a normal distribution) against the default configuration cdef of clasp
on each cluster s1..13 (x-axis) within the SAT-Application base set. Furthermore, three special
clusters contain the instances that were discarded in Algorithm 1 because, feature computation
could not be completed (s f), they were too easy (se), or too hard (sh).
The comparison against a common baseline, here: the default configuration, helps to de-

termine whether the new algorithm improved only on some types of instance or on all. For
instance, configuration cI (configured on the base set; left plot) improved the performance by
two orders of magnitude on cluster s8 but is slightly slower on s9. However, configuration cI∗

(configured on the set generated by Algorithm 1; right plot) achieved better median performance
on all clusters except for s f . In addition, the comparison between both plots reveals that cI∗

produces fewer outliers than cI , especially on clusters s6, s9, s11 and S13. Similar results (not
shown here) were obtained for SAT-Crafted and ASP-Set. Therefore, cI∗ can be considered to be

19

2 Robust Benchmark Set Selection for Boolean Constraint Solvers

a more robust improvement over cdef than cI .
We believe that the reason for the robustness of configuration cI∗ lies in the fact that the

(automatic) configuration process tends to be biased by instance types that are highly repre-
sented in a given training set. Since Algorithm 1 produces sets I∗ that cover instance clusters
more evenly than the respective base sets I, the configuration process is naturally guided more
towards robust performance improvements across all clusters.
Particular attention should be paid to the special clusters s f , se and sh for the assessment of

cI∗ , because the instances contained in these clusters are not at all represented in I∗. On none
of our experiments with the three types of sampling distributions did we ever observe that the
performance of cI∗ on the too hard instances sh decreased; in fact, it sometimes increased. In
contrast, the performance on the too easy instances se and instances with no features s f was less
consistent, and we observed speedups between 300 and 0.1 in comparison to cI . Therefore, the
threshold for filtering too easy instances e should be set conservatively (below 10%), to ensure
that not too many too easy instances are discarded (we note that this is in contrast to common
practice in SAT competitions).
Furthermore, our Algorithm 1 ensures that no cluster is over-represented, but does not ensure

a sufficient representation of all clusters in the selected set. For instance, cluster s4 has 141
instances in the base ASP-Set set but only one instance in ASP-Set∗ set (with normal distribution).
Nevertheless, a low representation of a cluster in the selected set did not necessarily harm the
configuration process, and in most observed cases, the configuration cI∗ performed as well as
cI on the under-represented clusters.

2.5 Conclusion

In this work, we have introduced an algorithm for selecting instances from a base set or dis-
tribution to form an effective and efficient benchmark set. We consider a benchmark set to
be effective, if a solver configured on it performs at least as well as when configured on the
original set, and we consider it to be efficient, if the instances in it are on average easier to
solve than those in the base set. By using such benchmark sets, the computational resources
required for assessing the performance of a solver can be reduced substantially. Our benchmark
selection procedure can use arbitrary sampling distributions; yet, in our experiments, we found
that using a normal (Gaussian) distribution is particularly effective. Since our approach filters
out instances considered too easy or too hard for the solver under consideration, it can lead to
a situation where the performance of a given solver, when configured on the benchmark set, be-
comes worse on those discarded instances. However, the risk of worsening the performance on
too hard instances can be reduced by setting the runtime cutoff of the selection process higher
than in the actual benchmark. Then, the selected set contains very challenging instances un-
der the runtime cutoff in the benchmark, which are yet known to be solvable. We have also
demonstrated that clustering of instances based on instance features facilitates diagnostic as-
sessments of the degree to which a solver performs well on specific types of instances or across
an entire, heterogeneous benchmark set. Our work reported here is primarily motivated by the
desire to develop solvers that perform robustly well across a wide range of problem instances,
as has been (and continues to be) the focus in developing solvers for many hard combinatorial
problems.

20

2.5 Conclusion

In future work, it may be interesting to ensure that semantically different types of instances,
such as satisfiable and unsatisfiable instances in the case of SAT, are represented evenly or
equivalently as in a given base set. Furthermore, one could consider more sophisticated ways to
assess the over-representation of feature-based clusters and to automatically adjust the sampling
process based on the number of clusters and their sizes. Finally, we believe that it would be
interesting to study criteria for assessing the robustness of solver performance across clusters
and to use such criteria for automatic algorithm configuration.

21

3 Automatic Construction of Parallel
Portfolios via Algorithm Configuration

Over most of the last decade, additional computational power has come primarily in the form of
increased parallelism. As a consequence, effective parallel solvers are increasingly key to solv-
ing computationally challenging problems. Unfortunately, the manual construction of parallel
solvers is non-trivial, often requiring fundamental redesign of existing, sequential approaches,
as stated in (Hamadi & Wintersteiger, 2012) as the challenge of Starting from Scratch. It is
thus very appealing to employ generic methods for the construction of parallel solvers from
inherently sequential sources as a first step. Indeed, the prospect of a substantial reduction
in human development cost means that such approaches can have a significant impact, even
if their performance does not reach that of special-purpose parallel designs—just as high-level
programming languages are useful, even though compiled software tends to fall short of the
performance that can be obtained from expert-level programming in assembly language. One
promising approach for parallelizing sequential algorithms is the design of parallel algorithm
portfolios (Huberman et al., 1997; Gomes & Selman, 2001).
In this work1, we study generic methods for solving a problem we call Automatic Construction

of Parallel Portfolios (ACPP), that is, how can we construct automatically a parallel solver from a
sequential solver or a set of sequential solvers. This task can be understood as falling within the
programming by optimization paradigm (Hoos, 2012) in that it involves the design of software in
which many design decisions have been deliberately left open during the development process
(here exposed as parameters of SAT solvers) to be made automatically later (here by means of
an automated algorithm configurator) in order to obtain optimized performance for specific use
cases. Hence, the only requirement to apply our ACPP methods is a sequential solver with a
rich and complementary configuration space.
We study three variants of the ACPP problem. First, we consider building parallel portfolios

starting from a single, highly parametric sequential solver design. However, for well-studied
problems (for example, SAT), there often exist a wide range of different solvers that contribute to
the state of the art (see, for example, (Xu et al., 2012a)). Complementarities among such solvers
can be exploited by algorithm portfolios, whether driven by algorithm selection (like SATzilla
(Xu et al., 2008)) or by parallel execution (such as ppfolio (Roussel, 2011) or pfolioUZK (Wotzlaw,
van der Grinten, Speckenmeyer, & Porschen, 2012)). Thus, the second problem we consider is
leveraging such complementarities within the context of the ACPP problem, generating a par-
allel portfolio based on a design space induced from a set of multiple (possibly parametrized)
solvers. Finally, some parallel solvers already exist; these have the advantage that they can in-
crease performance by communicating intermediate results—notably, learned clauses—between
different processes. The third problem we study is constructing parallel portfolios from a set
containing both sequential and parallel solvers.

1which extends a previous workshop publication (Hoos et al., 2012)

22

We investigate four methods for solving the ACPP problem.

1. Global simultaneously configures all solvers in a k-solver parallel portfolio, representing
this ACPP problem as a single-algorithm configuration problem with a design space cor-
responding to the kth Cartesian power of the design space of the given sequential solver.
This has the advantages of simplicity and comprehensiveness (no candidate portfolios
are omitted from the design space) but the disadvantage that the size of the design space
increases exponentially with k, which quickly produces extremely difficult configuration
problems.

2. hydra is a method for building portfolio-based algorithm selectors from a single, highly
parameterized solver (Xu, Hoos, & Leyton-Brown, 2010). It proceeds iteratively. In
the first round, it aims to find a configuration that maximizes overall performance on
the given dataset. In the i+ 1st round, it aims to find a configuration that maximizes
marginal contribution across the configurations identified in the previous i rounds. In
the original version of hydra, these marginal contributions were calculated relative to the
current selector; in the latest version of hydra, they are determined based on an idealized,
perfect selector (Hutter, Hoos, & Leyton-Brown, 2014). The wall-clock performance of a
perfect selector across i solvers (also known as virtual best solver) is of course the same
as the wall-clock performance of the same i solvers running in parallel; thus, the same
general idea can be used to build parallel portfolios. (Building a parallel portfolio in this
way has the added advantage that no instance features are required, since there is no
need to select among algorithms.) We introduce some enhancements to this approach
for the parallel portfolio setting (discussed in Section 3.2.1.3), and refer to our method as
parHydra.

3. isac is a second method for building portfolio-based algorithm selectors from parallel
portfolios (Kadioglu et al., 2010), which works by clustering instances based on instance
features and configuring a different solver for each cluster. Like hydra, isac can be adapted
to the parallel setting. Because our implementation of this idea differs somewhat from
isac—chiefly in its reliance on the underlying clustering algorithm and in feature normal-
ization; see Section 3.2.1.4—we refer to our parallel variant as Clustering.

4. Some parallel solvers only achieve strong performance when running on more than one
core; such solvers will not be selected by a greedy approach like parHydra. To overcome
this problem, we introduce a new method called parHydrab, which augments parHydra
to train b solvers per iteration. This method trades off the computational benefit of
parHydra’s greedy approach with the greater coverage of Global.

We evaluated our ACPP methods on SAT. We chose this domain because it is highly relevant
to academia and industry and has been widely studied. We thus had access to a wide range
of strong, highly parametric solvers and were assured that the bar for demonstrating efficacy
of parallelization strategies was appropriately high. We note that our approach is not limited
to SAT solvers and can be directly applied to other domains. To evaluate our methods in the
single-solver setting, we studied both Lingeling and clasp, prominent, highly parametric state-
of-the-art solvers for SAT. Lingeling won a gold medal in the application (wall-clock) track of
the 2011 SAT Competition and clasp placed first in the hard combinatorial track of the 2012

23

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

SAT Challenge. For the generation of parallel portfolios involving multiple solvers, we took
the solvers from pfolioUZK , a parallel portfolio solver based on several solvers in their default
configurations that won the gold medal in the parallel track of the 2012 SAT Challenge. This
set includes Plingeling , a parallel solver.
Our results demonstrate that parHydra works well and robustly for the task of producing

parallel portfolios based on a single solver. Its performance on standard 8-core CPUs com-
pared favourably with that of hand-crafted parallel SAT solvers. For the generation of parallel
algorithm portfolios based on a set of both parallel and sequential solvers, we found that
parHydrab performed best, even better than pfolioUZK . More detailed experimental results and
open-source code are available at http://www.cs.uni-potsdam.de/acpp.

3.1 Related Work

Well before widespread interest in multi-core computing, the potential benefits of parallel algo-
rithm portfolios were identified in seminal work by Huberman et al. (Huberman et al., 1997).
Gomes et al. (Gomes & Selman, 2001) further investigated conditions under which such portfo-
lios outperform their component solvers. Both lines of work considered prominent constraint
programming problems (graph colouring and quasigroup completion), but neither presented
methods for automatically constructing portfolio solvers. Instead, portfolios of algorithms first
saw practical application in this domain as the basis for algorithm selectors such as SATzilla (Xu
et al., 2008) and subsequently with a wide range of additional methods (see, for example,
(Kotthoff, 2012)). Parallel portfolios have also seen practical impact, both in cases where the al-
location of computational resources to algorithms in the portfolio is static (Petrik & Zilberstein,
2006; Yun & Epstein, 2012) and where a portfolio’s constituent algorithms can change over
time (Gagliolo & Schmidhuber, 2006). In the field of SAT solving, 3Spar (Malitsky, Sabharwal,
Samulowitz, & Sellmann, 2012) and CSCHpar (Malitsky, Sabharwal, Samulowitz, & Sellmann,
2013b, 2013a) introduced selection of parallel portfolios. All of these methods, whether parallel
or selection-based, build a portfolio from a relatively small candidate set of distinct algorithms.
While, in principle, these methods could also be applied given a set of algorithms expressed
implicitly as the configurations of one parametric solver, in practice, they are useful only when
the set of candidates is relatively small. The same limitation applies to existing approaches that
combine algorithm selection and scheduling, notably CPhydra (O’Mahony et al., 2008), which
also relies on cheaply computable features of the problem instances to be solved and selects
multiple solvers to be run in parallel, and aspeed (Hoos et al., 2012), which computes (parallel)
algorithm schedules by taking advantage of the modelling and solving capacities of Answer Set
Programming (ASP (Baral, 2003; Gebser et al., 2012)).
Recently, automatic algorithm configuration has become increasingly effective, with the ad-

vent of high-performance methods such as ParamILS (Hutter et al., 2009), GGA (Ansótegui
et al., 2009), irace (López-Ibáñez et al., 2011) and SMAC (Hutter et al., 2011a). As a result,
there has been recent interest in automatically identifying useful portfolios of configurations
from large algorithm design spaces. As before, such portfolio-construction techniques were
first demonstrated to be practical in the case of portfolio-based algorithm selectors. We have
already discussed the two key methods for solving this problem: hydra (Xu et al., 2010) greed-
ily constructs a portfolio by configuring solvers iteratively, changing the configurator’s objec-

24

http://www.cs.uni-potsdam.de/acpp

3.1 Related Work

tive function at each iteration to direct it to maximize marginal contribution to the portfolio;
isac (Kadioglu et al., 2010) clusters instances based on features and runs the configurator sepa-
rately for each cluster. In (Malitsky & Sellmann, 2012), Malitsky et al. extended scope of isac to
the construction of portfolios from a set of different solvers. However, there are three differences
between the construction of sequential portfolios and static parallel portfolios: (i) the size of the
portfolio is unlimited in the sequential case and limited to the number of used processor cores
in the parallel case; (ii) a sequential portfolio solver has to select somehow component solvers
which can result in wrong decision; static parallel solvers ran the entire portfolio in parallel
and perform nearly as good as the virtual best solver of this portfolio; (iii) using several cores
in parallel induces hardware caused overhead which has to be considered in the configuration
process.

Parallel SAT solvers have received increasing attention in recent years. ManySAT (Hamadi
et al., 2009a; Hamadi, Jabbour, & Sais, 2009b; Guo, Hamadi, Jabbour, & Sais, 2010) was one
of the first parallel SAT solvers. It is a static portfolio solver that uses clause sharing between
its components, each of which is a manually configured, DPLL-type SAT solver based on Mini-
Sat (Eén & Sörensson, 2004). PeneLoPe (Audemard, Hoessen, Jabbour, Lagniez, & Piette, 2012)
is based on ManySAT and adds several policies for importing and exporting of clauses between
the threads. Plingeling (Biere, 2010, 2011) is based on a similar design; its version 587, which
won a gold medal in the application track of the 2011 SAT Competition (with respect to wall
clock time on SAT+UNSAT instances), and the 2012 version ala, share unit clauses as well as
equivalences between its component solvers. Similarly, CryptoMiniSat (Soos, Nohl, & Castelluc-
cia, 2009), which won silver in the application track of the 2011 SAT Competition, shares unit
and binary clauses. clasp (Gebser et al., 2012c) is a state-of-the-art solver for SAT, ASP and
PB that supports parallel multithreading (since version 2.0.0) for search space splitting and/or
competing strategies, both combinable with a portfolio approach. clasp shares unary, binary
and ternary clauses, and (optionally) offers a parameterized mechanism for distributing and
integrating (longer) clauses. Finally, ppfolio (Roussel, 2011) is a simple, static parallel portfolio
solver for SAT without clause sharing that uses CryptoMiniSat, Lingeling , clasp, tnm (Wei & Li,
2009) and march_hi (Heule, Dufour, van Zwieten, & van Maaren, 2004) in their default config-
urations as component solvers, and that won numerous medals at the 2011 SAT Competition.
Like the previously mentioned portfolio solvers for SAT, ppfolio was constructed manually, but
uses a very diverse set of high-performance solvers as its components. pfolioUZK (Wotzlaw
et al., 2012) follows the same idea as used for ppfolio but uses other component solvers; it
won the parallel track of the 2012 SAT Challenge. On one hand, ACPP can be understood as
automatically replicating the (hand-tuned) success of solvers like ManySAT , Plingeling , Crypto-
MiniSat or clasp, which are inherently based on different configurations of a single parametric
solver; on the other, it is also concerned with automatically producing effective parallel portfo-
lio from multiple solvers, such as ppfolio and pfolioUZK , while exploiting the rich design spaces
of these component solvers.

25

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

3.2 Parallel Portfolio Configuration from a Single Sequential
Solver

We begin by considering the problem of automatically producing a parallel portfolio solver
from a single, highly-parametric sequential solver; this closely resembles the problem (manually)
addressed by the developers of solvers like ManySAT , Plingeling , CryptoMiniSat and clasp. First
of all, we define our three ACPP methods. Then, we show exemplarily how well our ACPP
portfolio solvers perform based on Lingeling and clasp. Also, the empirical scalability of our
trained ACPP solvers is analysed. In case of availability of clause sharing, we extend our
ACPP solvers with clause sharing and investigate how much the performance can be improved
further.

3.2.1 Approach

We now describe three methods automatically constructing parallel portfolios from a single
parametric solver. We first introduce formal notation and then define our methods.

3.2.1.1 Formal Notation

We use C to denote the configuration space of our parametric solver, c ∈ C to represent in-
dividual configurations, and I to refer to the given set of problem instances. Our goal is to
optimize (without loss of generality, to minimize) performance according to a given metric
m. (In our experiments, we minimize penalized average runtime, PAR10.2) We use a k-tuple
c1:k = (c1, . . . ,ck) to denote a parallel portfolio with k component solvers. The parallel portfo-
lio’s full configuration space is Ck = ∏

k
l=1{(c) | c ∈C}, where the product of two configuration

spaces X and Y is defined as {x||y | x ∈ X ,y ∈ Y}, with x||y denoting the concatenation (rather
than nesting) of tuples. Let AC denote a generic algorithm configuration procedure. (In our
experiments, we used SMAC (Hutter et al., 2011a)). Following established best practices (see
(Hutter et al., 2011a)), we performed n independent runs of AC, obtained configured solvers
c(j) with j ∈ {1 . . .n} and kept the configured solver ĉ with the best performance on instance
set I according to metric m. By tb we denote the overall time budget available for producing a
parallel portfolio solver.

3.2.1.2 Simultaneous configuration of all component solvers (Global)

Our first portfolio configuration method is the straightforward extension of standard algorithm
configuration to the construction of a parallel portfolio (see Algorithm 2). Specifically, if the
given solver has ` parameters, we treat the portfolio c1:k as a single algorithm with ` · k pa-
rameters inducing a configuration space of size |C|k, and configure it directly. As noted above,
we identify a single configuration as the best of n independent runs of AC. These runs can be
performed in parallel, meaning that this procedure requires wall clock time tb/n if n machines
with k cores are available. The practicality of this approach is limited by the fact that the global
configuration space Ck to which AC is applied grows exponentially with k. However, given a
powerful configurator, a moderate value of k and a reasonably sized C, this simple approach

2PARX penalizes each timeout with X times the given cutoff time (Hutter et al., 2009).

26

3.2 Parallel Portfolio Configuration from a Single Sequential Solver

Algorithm 2: Portfolio Configuration Procedure Global
Input : parametric solver with configuration space C; desired number k of component

solvers; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time budget tb

Output: parallel portfolio solver with portfolio ĉ1:k

1 for j := 1 . . .n do

2 obtain portfolio c(j)
1:k by running AC on configuration space ∏

k
l=1{(c) | c ∈C} on I

using m for time tb/n

3 choose ĉ1:k ∈ argmin
c(j)

1:k| j∈{1...n}
m(c(j)

1:k, I) that achieved best performance on I according to
m

4 return ĉ1:k

has the potential to be effective, especially when compared to the manual construction of a
parallel portfolio.

3.2.1.3 Iterative configuration of component solvers (parHydra)

The key problem with Global is that Ck may be so large that AC cannot effectively search
it. We thus consider an extension of the hydra methodology to the ACPP problem, which we
dub parHydra (see Algorithm 3). This method has the advantage that it adds and configures
component solvers one at a time. The key idea is to use AC only to configure the component
solver added in the given iteration, leaving all other components clamped to the configurations
that were determined for them in previous iterations. The procedure is greedy in the sense that
in each iteration i, it attempts to add a component solver to the given portfolio ĉ1:i−1 in a way
that myopically optimizes the performance of the new portfolio ĉ1:i (Line 4). While the sets of n
independent configurator runs in Line 2 can be performed in parallel (as in Global), the choice
of the best-performing configuration ĉ1:i has to be made after each iteration i, introducing a
modest overhead compared to the cost of the actual configuration runs.
A disadvantage of the original hydra approach is that it discards any intermediate results

learned during configuration when it proceeds to the next iteration. In particular, configurations
that were examined but not selected may turn out to be useful later on. We thus introduce
a new idea here—which, indeed, can also be applied to the construction of portfolio-based
algorithm selectors—as follows. We identify the unselected configuration c(j) 6= ĉi:i with the
best marginal contribution to the current portfolio ĉ1:i (Line 5), and use it to initialize the
configuration procedure in the next iteration (Line 3). Our intention is that using different
initial configurations in each iteration will more quickly guide the configuration procedure to
complementary parts of the configuration space.
Another way that parHydra differs from the original hydra methodology is that it runs en-

tire portfolios on each instance considered during configuration. Because we target multicore
machines, we consider these computational resources to be available without cost. While hydra
explicitly modifies the performance metric in each round, parHydra thus achieves the same
modification implicitly, optimizing marginal contribution to the existing portfolio because only
the ith element of the portfolio is available to be configured in the ith iteration. Because parHy-

27

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

Algorithm 3: Portfolio Configuration Procedure parHydra
Input : parametric solver with configuration space C; desired number k of component

solvers; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time tb

Output: parallel portfolio solver with portfolio ĉ1:k

1 for i := 1 . . .k do
2 for j := 1 . . .n do

3 obtain portfolio c(j)
1:i := ĉ1:i−1||c(j) by running AC on configuration space

{ĉ1:i−1}×{(c) | c ∈C} and initial incumbent ĉ1:i−1||cinit on I using m for time
tb/(k ·n)

4 let ĉ1:i ∈ argmin
c(j)

1:i | j∈{1...n}
m(c(j)

1:i , I) be the configuration which achieved best

performance on I according to m
5 let cinit ∈ argminc(j)| j∈{1...n}m(ĉ1:i||c(j), I) be the configuration that has the largest

marginal contribution to ĉ1:i

6 return ĉ1:k

dra only runs portfolios of size i in iteration i, if there is a cost to CPU cycles, we achieve
some savings relative to Global in iterations i < k. If the overhead for the evaluation of the
portfolios after each iteration is bounded by ε, the CPU cycles used in parHydra are bounded
by ∑

k
i=1 i · (tb

k + ε) as compared to k · (tb + ε) for Global . If k > 1 and tb
k > ε, parHydra will use

fewer CPU cycles than Global .
Obviously, for k > 1, even if we assume that AC finds optimal configurations in each iteration,

the parHydra procedure is not guaranteed to find a globally optimal portfolio. For instance,
since the configuration found in the first iteration will be optimized to perform well on average
on all instances I, the configuration added in the second iteration will then specialize to some
subset of I. A combination of two configurations that are both specialized to different sets of
instances may perform better; however, the configuration tasks in each parHydra iteration will
be much easier than those performed by Global for even a moderately sized portfolio, giving
us reason to hope that under realistic conditions, parHydra might perform better than Global,
especially for large configuration spaces C and for comparatively modest time budgets tb.

3.2.1.4 Independent configuration of component solvers (Clustering)

isac (Kadioglu et al., 2010; Malitsky & Sellmann, 2012) is a second method for automatically
designing portfolio-based algorithm selectors. It works by clustering a set of instances in a
given (normalized) instance feature space and then independently configuring the given highly
parameterized algorithm on each instance cluster (see Algorithm 4). We adapted isac to the
ACPP problem by making two generalizations. First, isac uses a linear normalization of the
features, whereas we leave this decision as a parameter open to the user (for example, allowing
standard, or so-called z-score, normalization). In general, the best normalization strategy is
unknown and may vary between feature sets. Furthermore, there is no way to assess cluster
quality before the configuration experiments are complete. Second, we set the number of

28

3.2 Parallel Portfolio Configuration from a Single Sequential Solver

Algorithm 4: Portfolio Configuration Procedure Clustering
Input : parametric solvers with configuration space C; desired number k of component

solvers; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time tb; feature normalizer FN;
cluster algorithm CA; features f (i) for all instances i ∈ I

Output: parallel portfolio solver with portfolio ĉS

1 normalize features with FN into feature space f ′

2 cluster instances with CA in normalized feature space f ′ into k clusters S
3 foreach s ∈ S do
4 for j := 1..n do

5 obtain configuration c(j)
s by running AC with configuration space C on Is using m

for time tb/(k ·n), where Is denotes all instances in cluster s

6 let ĉs ∈ argmin
c(j)

s | j∈{1...n}
m(c(j)

s , I) be the configuration which achieved best

performance on I according to m

7 let ĉS be the portfolio consisting the configurations for each clusters
8 return ĉS

clusters as a parameter, equaling the number of cores targeted by the parallel portfolio. Hence,
we do not have to use a clustering method to determine how many clusters to choose (for
example, isac uses g-means). To avoid suggesting that isac’s authors endorsed these changes,
we refer to the resulting method using the neutral moniker Clustering . A key advantage of
this approach is that execution of the configurator over clusters (Line 3) and over repetitions
(Line 4) are independent and hence can be parallelized trivially, requiring overall wallclock time
tb/(k · n). However, Clustering performs the same amount of overall computation as Global,
running k times n configuration experiments while Global runs n configuration experiments for
a portfolio of size k; hence, Clustering is computationally more demanding than parHydra. A
key disadvantage of the Clustering approach is that, unlike Global and parHydra, it requires
instance features; moreover, these features should be suitable to induce homogeneous instance
clusters in order to provide a good basis for automated configuration for those clusters (see also
(Schneider & Hoos, 2012)).

3.2.2 Experiments

To empirically evaluate our methods for solving the ACPP problem, we applied Global, parHy-
dra and Clustering to two state-of-the-art SAT solvers: clasp and Lingeling . Specifically, we
compared our automatically configured parallel portfolios alongside performance-optimized
sequential solvers, running on eight processor cores. Furthermore, we investigated the scalabil-
ity of parHydra by assessing the performance of our portfolio after each iteration, thereby also
assessing the slowdown observed for increasing number of component solvers due to hardware
bottlenecks. Finally, we integrated our configured portfolio for clasp into clasp’s flexible multi-
threading architecture and configured the clause sharing policy to investigate the influence of
clause sharing on our trained ACPP solvers.

29

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

3.2.2.1 Scenarios

We compared six evaluation scenarios for each solver. We denote the default configuration of
a single-process solver as Default-SP and that of a multi-process solver with 8 processes and
without clause sharing as Default-MP(8); Default-MP(8)+CS denotes the additional use of clause
sharing, which is activated by default in both Plingeling and clasp. We contrasted these solver
versions with four versions obtained using automated configuration: Configured-SP denotes
the best (single-process) configuration obtained from configurator runs on a given training set,
while Global-MP(8), parHydra-MP(8) and Clustering-MP(8) represent the 8-component portfolios
obtained using our Global, parHydra and Clustering methods. We chose this portfolio size to
reflect widely available multi-core hardware, as used, for example, in the 2013 SAT Competition
and also supported by the Amazon EC2 cloud (CC2 instances). However, our approach is not
limited to eight cores but it scales as long as there are enough complementary configurations
in the rich design space.

3.2.2.2 Solvers

We applied our approach to the SAT solvers clasp version 2.1.3 (Gebser et al., 2012c) and
Lingeling version ala (Biere, 2012). We have selected clasp and Lingeling because they are
state-of-the-art solvers for hardcombinatorial and industrial SAT instances since some time and
therefore, the bar for demonstrating the efficacy of our ACPP approach is appropiately high.
Furthermore, both solvers fulfil our only requirement for ACPP by being highly parameterized;
clasp has 81 parameters and Lingeling has 118. Hence, the configuration space for 8 processes
has 648 parameters for clasp and 944 parameters for Lingeling. We have not considered other
state-of-the-art parameterized solvers, like Glucose, in these experiments, because Glucose has
no parallelized counterpart for comparison with our automatically constructed solvers.
We did not apply our ACPP methods to Plingeling , the “official” parallel version of Lingeling ,

because it lacks configurable parameters for individual threads. We also disregarded the native
parallel version of clasp, because clasp’s clause sharing mechanism, which cannot be turned
off, results in highly non-deterministic runtime behaviour, rendering the configuration process
much more difficult. We investigated the impact of clause sharing in a separate experiment.
We executed all automatically constructed parallel portfolios via a simple wrapper script that
runs a given number of solver instances independently in parallel and without communication
between the component solvers.

3.2.2.3 Instance Sets

We conducted our experiments on instances from the application and hard combinatorial tracks
of the 2012 SAT Challenge. Our configuration experiments made use of disjoint training and
a test set, which we obtained by randomly splitting both instance sets into subsets with 300
instances each.3

3A random split into training and test set is often used in machine learning to get an unbiased performance
estimate. However, such a simple split is pessimistic in its performance estimation. Because of the large amount
of CPU resources needed for our experiments, we could not effort to measure the performance of our ACPP
methods on more splits, for example, based on cross validation.

30

3.2 Parallel Portfolio Configuration from a Single Sequential Solver

To ensure that our experiments would complete within a feasible amount of time, we made
use of the instance selection technique proposed in (Hoos et al., 2013) on our training set to
obtain a representative and effectively solvable subset of 100 instances for use with a runtime
cutoff time of 180 seconds. As a reference for the selection process, we used the base features
of SATzilla (Xu et al., 2008) and SINN (Yasumoto, 2012), Lingeling (Biere, 2012), Glucose
(Audemard & Simon, 2012), clasp (Gebser et al., 2012c) and CCASat (Cai et al., 2012) as
representative set of state-of-the-art solvers, as also proposed in (Hoos et al., 2013).

3.2.2.4 Resource Limits and Hardware

We chose a cutoff time of 180 seconds for algorithm configuration on the training set and 900
seconds for evaluating solvers on the test set (as in the 2012 SAT Challenge). Additionally, we
performed three repetitions of each solver and test instance run and report the median of those
three runs. All solver runs (on both training and test sets) were restricted to use at most 12 GB
of memory (as in the 2012 SAT Challenge). If a solver was terminated because of memory
limitations, we recorded it as a timeout. We performed all solver and configurator runs on Dell
PowerEdge R610 systems with two Intel Xeon E5520 CPUs with four cores (2.26GHz) running
64-bit Scientific Linux (2.6.18-348.6.1.el5).

3.2.2.5 Configuration Experiments

We performed configuration using SMAC (version 2.04.01) (Hutter et al., 2011a), a state-of-
the-art algorithm configurator. SMAC allows the user to specify the initial incumbent, as
required in the context of our parHydra approach (see Lines 2 and 5 of Algorithm 3). We
specified PAR10 as our performance metric, and gave SMAC access to the base features of
SATzilla (Xu et al., 2008). (SMAC builds performance models internally; it can operate without
instance features, but often performs better when they are available.) To enable fair performance
comparisons, in the case of Configured-SP (n = 80) and Global-MP(8) (n = 10) we allowed 80
hours of configuration time and 2 hours of validation time, which amounts to a total of 6560
CPU hours for k = 8. For parHydra-MP(8), we allowed for 10 hours of configuration time and
2 hours of validation time per configurator run (n = 10) in each iteration, which amounts to a
total of 3360 CPU hours. When using a cluster of dedicated machines with 8-core CPUs, each of
these solver versions could be produced within 96 hours of wall-clock time. For Clustering-MP(8)
(n = 10), we allowed for 10 hours of configuration time and 2 hours of validation time, which
also amounts to a total of 6560 CPU hours for k = 8. On a cluster, a parallel solver with this
approach could be produced within 12 hours of wall-clock time. Even though, we used a large
amount of CPU resources, the ACPP process is fully automatic so that no human intervention is
needed. Therefore, more valuable human time is saved by avoiding the need of implementing
a parallel solver from scratch.
Clustering-MP(8) used k-means with random initial centroids, 1000 restarts and the base

features of SATzilla (Xu et al., 2008), the same features as used by isac (Kadioglu et al., 2010).
Since the right choice of the feature normalization strategy can vary between applications, we
considered three standard methods from literature, namely, no feature normalization, denoted
as Clustering-None-MP(8), linear min-max feature normalization to a range of [−1,1] (as used
by isac), denoted as Clustering-Linear-MP(8), and z-score feature normalization (mean 0 and

31

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

Lingeling (application) clasp (hard combinatorial)

Solver Set #TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
Configured-SP 68 2204 368 140 4253 473

Global-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
parHydra-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Clustering-None-MP(8) 47∗ 1571∗ 302∗ 107 3257 368
Clustering-Linear-MP(8) 61 1970 323 114 3476 398
Clustering-Zscore-MP(8) 51∗ 1674∗ 297∗ 99 3035 362

Default-MP(8) 64 2073 345 96 2950 358
Default-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

Table 3.1: Runtime statistics on the test set from application and hard combinatorial SAT instances
achieved by single-processor (SP) and 8-processor (MP8) versions. Default-MP(8) was
Plingeling in case of Lingeling and clasp -t 8 for clasp where both use clause shar-
ing (CS). The performance of a solver is shown in boldface if it was not significantly
different from the best performance, and is marked with an asterisk (∗) if it was not
significantly worse than Default-MP(8)+CS (according to a permutation test with 100 000
permutations and significance level α = 0.05). The best ACPP portfolio on the training
set was marked with a dagger (†).

standard deviation 1; assuming some normal distribution properties of the features), denoted
as Clustering-Zscore-MP(8).

3.2.2.6 Results and Interpretation

To evaluate our ACPP solvers, we present the number of timeouts (#TOs), PAR10 and PAR1
based on the median performance of the three repeated runs for each solver–test instance pair in
Table 3.1. The best ACPP portfolio on the training set was marked with a dagger (†) to indicate
that we would have chosen this portfolio if we had to make a choice only on the trainings data.
Furthermore, we applied a statistical test (a permutation test with 100 000 permutations and
significance level α = 0.05) to the (0/1) timeout scores, the PAR10 scores and the PAR1 scores
to determine whether performance differences of the solvers were significant. In Table 3.1,
performance of a given solver is indicated in bold face if it was not significantly different from
the performance of the best solver. Furthermore, we use an asterisk (∗) to indicate that a given
solver’s performance was not significantly worse than the performance of Default-MP(8)+CS—
the official parallel solver with clause sharing produced by experts.
Table 3.1 summarizes the results of experiments with Lingeling and clasp. Running a con-

figurator to obtain an improved, single-processor solver (Configured-SP) made a statistically
insignificant impact on performance. We thus believe that these default configurations are
nearly optimal, reflecting the status of Lingeling and clasp as state-of-the-art solvers. With Lin-
geling as the component solver, Clustering-None-MP(8) produced the best-performing portfolio.
The portfolio of Clustering-None-MP(8) also significantly outperformed parHydra-MP(8) on time-

32

3.2 Parallel Portfolio Configuration from a Single Sequential Solver

out scores and PAR10 scores, but not on PAR1 scores. There was no significant difference on
any of these scores between Clustering-None-MP(8), Clustering-Zscore-MP(8), Global-MP(8) and
Default-MP(8)+CS and also no significant difference between parHydra-MP(8) and Default-MP(8)+CS .
However, the portfolio performance of both Clustering-Linear-MP(8) and Default-MP(8) (Plin-
geling with deactivated clause sharing) was significantly worse than the performance of all
other parallel portfolios and not even significantly better than Configured-SP in terms of time-
out scores or PAR10 scores. Note that Plingeling (without clause sharing) builds a parallel
portfolio only in a degenerate sense, simply using different random seeds and thus making
different choices in the default phase (Biere, 2012). Hence, it is not surprising that Plingeling
without clause sharing performed significantly worse than Plingeling with clause sharing.
With clasp as the component solver, the portfolio constructed by parHydra-MP(8) was the

best ACPP solver and matched (up to statistically insignificant differences) the performance
of Default-MP(8)+CS (the expert-constructed portfolio solver with clause sharing) according to
all metrics we considered, despite incurring six more timeouts. All other ACPP solvers fell
short of this (high) bar; however, the portfolios of Global-MP(8) and Clustering-Zscore-MP(8)
performed as well as the default portfolio of clasp without clause sharing (Default-MP(8)). While
Clustering-None-MP(8)’s portfolio and Clustering-Linear-MP(8)’s portfolio performed significantly
worse than Default-MP(8), all parallel solvers significantly outperformed the single-threaded
versions of clasp.
We note that Clustering-MP(8) clusters the training instances based on instance features; thus,

normalizing these features in different ways can result in different instance clusters. There is
no way to assess cluster quality before configuration experiments are complete; one can only
observe the distribution of the instances in the clusters. For example, the instances in the
training set of the application distribution for Clustering-None-MP(8) were distributed across
clusters with 2, 2, 3, 11, 13, 18, 21, and 30 instances per cluster; we observed qualitatively
similar distributions for Clustering-Linear-MP(8) and Clustering-Zscore-MP(8). This is potentially
problematic, because running a configurator on sets of 2 or 3 instances can lead to overfitting
and produce configurations whose performance does not generalize well to new instances.
In (Kadioglu et al., 2010), Kadioglu et al. described how isac removes such small clusters by
integrating them in larger clusters. However, the number of clusters is fixed in the case of
parallel portfolios because the number of clusters has to match the size of the portfolio to use
the parallel resources to their fullest.
For both solvers, linear feature normalization (Clustering-Linear-MP(8)) produced clusters

that were insufficiently complementary, and hence led to relatively poor performance. (We
note that linear normalization is used in isac.) Using clustering without feature normalization
(Clustering-None-MP(8)) led to surprisingly strong performance in the case of Lingeling on the
application instances, but failed to reach the performance of Default-MP(8)+CS for clasp on the
hard combinatorial scenario. Similarly, the use of z-score normalization (Clustering-Zscore-MP(8))
did not produce portfolios that consistently reached the performance of Default-MP(8)+CS .
Finally, parHydra-MP(8) was the only ACPP solver that matched the performance of Default-MP(8)+CS

on both domains. parHydra-MP(8)’s portfolio had also the best training performance and there-
fore, out of the ACPP solvers, we would choose it. However, while Default-MP(8)+CS uses
clause sharing, parHydra-MP(8) does not. This is surprising, because the performance of Plin-
geling and clasp without clause sharing was significantly worse than with clause sharing. Thus,
parHydra-MP(8) was the best performing method among those that did not perform clause

33

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

Lingeling (application) clasp (hard combinatorial)

Solver #TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
parHydra-MP(1) 82 2594 380 136 4136 464
parHydra-MP(2) 65 2086 331 118 3607 421
parHydra-MP(3) 60 1933 313 115 3515 410
parHydra-MP(4) 56 1874 308 115 3507 402
parHydra-MP(5) 58 1878 312 105 3219 384
parHydra-MP(6) 60 1935 315 103 3161 380
parHydra-MP(7) 59 1902 309 102 3126 372
parHydra-MP(8) 55 1788 303 96 2945 353

Table 3.2: Runtime statistics of parHydra-MP(i) after each iteration i (test set). The performance of a
solver is shown in boldface if it was not significantly different from the best performance,
(according to a permutation test with 100 000 permutations and significance level α =
0.05).

sharing.

3.2.2.7 Scalability and Overhead

Although 8-core machines have become fairly common, 4-core machines are still more com-
monly used as desktop computers. Furthermore, in (Asin, Olate, & Ferres, 2013), Asin et al.
observed that parallel portfolios scale sublinearly in the number of cores—in part, because
component solvers share the same CPU cache. Therefore, we investigated how the performance
of our automatically constructed portfolio scales with the number of processors. The parHy-
dra approach has the advantage that the portfolio is extended by one configuration at each
iteration, making it easy to perform such scaling analysis.
Table 3.2 shows the test-set performance of parHydra-MP(i) after each iteration. First of

all, parHydra-MP(1) was able to find a better performing configuration than Default-SP for
clasp. In contrast, parHydra-MP(1) found a poorly performing configuration for Lingeling in
comparison to Default-SP , and had to compensate in subsequent iterations. For both solvers,
the largest performance improvement occurred between the first and second iterations, with
the number of timeouts reduced by 17 for Lingeling and 18 for clasp. In later iterations,
performance can stagnate or even drop: for example, parHydra-MP(5) solves two more instances
than parHydra-MP(6) with Lingeling . This may in part reflect hardware limitations: as the size of
a portfolio increases, more processes compete for fixed memory (particularly, cache) resources.
We investigated the influence of these hardware limitations on the performance of our parallel

solvers by constructing portfolios consisting of identical copies of the same solver. In particular,
we replicated the same configuration multiple times with the same random seed; clearly, this
setup should result in worsening performance as portfolio size increases, because each com-
ponent solver does exactly the same work but shares hardware resources. (We note that these
experiments are particularly sensitive to the underlying hardware we used.) To compare directly
against Table 3.2, we used the configurations found in the first iteration of parHydra-MP(1). In

34

3.2 Parallel Portfolio Configuration from a Single Sequential Solver

Lingeling (application) clasp (hard combinatorial)

Processes #TOs PAR10 PAR1 #TOs PAR10 PAR1

1 82 2594 380 136 4136 464
2 79 2509 376 134 4079 461
3 85 2509 376 135 4106 451
4 86 2677 382 135 4107 452
5 89 2707 385 135 4108 463
6 90 2793 390 135 4110 465
7 90 2820 390 135 4110 465
8 92 2877 393 136 4139 467

Table 3.3: Runtime statistics of Lingeling and clasp with parallel runs of the same configuration on
all instances in the corresponding test sets. The performance of a solver is shown in
boldface if it was not significantly different from the best performance, (according to a
permutation test with 100 000 permutations and significance level α = 0.05).

Table 3.3, we see that hardware limitations do seem to impact the portfolio of Lingeling solvers;
for example, a single Lingeling configuration solves 10 more instances than eight such config-
urations running in parallel on an eight-core machine. In contrast, the performance of clasp
varied only slightly as duplicate solvers were added. Based on the results in (Aigner, Biere,
Kirsch, Niemetz, & Preiner, 2013), we suspected that this overhead arose because of memory
issues, noting that we evaluated clasp on hard combinatorial instances with an average size of
1.4 MB each, whereas we evaluated Lingeling on application instances with an average size of
36.7 MB. We confirmed that clasp’s portfolio did experience overhead on instances with large
memory consumption, and that Lingeling produced nearly no overhead on instances with low
memory consumption.
An interesting further observation is that Lingeling and clasp performed best if two copies

of the same configuration ran in parallel and that running only one copy was worse than two
copies. We can only speculate about the reasons which may are connected with cache misses
or something similar.

3.2.2.8 Algorithm Configuration of Clause Sharing

Our previous experiments did not allow our component solvers to share clauses, despite evi-
dence from the literature that this can be very helpful (Hamadi et al., 2009b). The implemen-
tation of clause sharing is a challenging task; for example, if too many clauses are shared, the
overhead caused by clause sharing may exceed the benefits (Lazaar, Hamadi, Jabbour, & Sebag,
2012). Furthermore, the best clause sharing policy varies across instance sets. In the following,
we investigate the application of clause sharing on our ACPP portfolio. Since there are a lot of
possible clause sharing policies, we again use algorithm configuration for the purpose of iden-
tifying effective clause sharing policies. This can be understood as an additional instrument to
improve the performance of ACPP portfolios if clause sharing is already available.
To study the impact of clause sharing on our ACPP procedures, we relied upon the clause

sharing infrastructure provided by clasp (Gebser et al., 2012c), which has a relatively highly

35

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

clasp variant #TOs PAR10 PAR1

Default-MP(8) 96 2950 358
Default-MP(8)+CS 90 2763 333

parHydra-MP(8) 96 2945 353
parHydra-MP(8)+defCS 90 2777 347
parHydra-MP(8)+confCS 88 2722 346

Table 3.4: Runtime statistics of clasp’s parHydra-MP(8) portfolio with default clause sharing (defCS)
and configured clause sharing (confCS) on the test instances of the hard combinatorial
set. The performance of a solver is shown in boldface if its performance was at least as
good as that of any other solver, up to statistically insignificant differences (according to
a permutation test with 100 000 permutations and significance level α = 0.05).

parametrized clause sharing policy (10 parameters) and allows for the configuration of each
component solver. Plingeling , on the other hand, does not support the configuration of each
component solver. As before, we considered the hard combinatorial instance set.
We started with the portfolio identified by parHydra-MP(8). clasp’s multi-threading architec-

ture performs preprocessing before threading is used. Hence, we ignored the preprocessing
parameters identified in the parHydra-MP(8) portfolio, adding them again to the configura-
tion space as global parameters. Since the communication of clause sharing induces greater
variation in solving behaviour, we used 50 CPU hours as the configurator’s time budget.
Table 3.4 shows the performance of clasp’s default portfolio with clause sharing,

Default-MP(8)+CS ; the portfolio originally returned by parHydra, which does not perform clause
sharing, parHydra-MP(8); the application of clasp’s default clause sharing and preprocessing
settings to the original parHydra portfolio, parHydra-MP(8)+defCS; and the parHydra portfolio
with newly configured clause sharing and preprocessing settings, parHydra-MP(8)+confCS. As
confirmed by these results, the use of clause sharing led to significant performance gains; fur-
thermore, while the additional gains through configuring the clause sharing and preprocessing
mechanisms were too small to reach statistical significance, parHydra-MP(8)+confCS solved two
more instances than Default-MP(8)+CS and parHydra-MP(8)+defCS.
We note that there is potential for performance to be improved even further if clause sharing

were configured alongside the portfolio itself. For example, clasp’s default portfolio contains
configurations that are unlikely to solve instances directly, but that generate useful clauses for
other clasp instances.4 Clearly, our methodology for configuring clause sharing will not identify
such configurations. Configuration of clause sharing can be directly integrated in Global and
parHydra because the solvers are actually running in parallel. However, since the solver with
clause sharing is highly non-deterministic, the configuration process should get a lot more
time to construct the portfolio. Related to this, some results in the literature indicate that
the collaboration of SAT solvers via clause sharing is more natural if the solvers uses similar
strategies, for example, the same solver with a fixed configuration runs several times in parallel
but with different seed (e.g., Plingeling). If the configuration of the portfolio is done alongside
the configuration of the clause sharing policy, such homogeneous portfolios would be also in

4Personal communication with the main developer of clasp, Benjamin Kaufmann.

36

3.3 Parallel Portfolio Configuration with Multiple Sequential Solvers

the design space of our ACPP methods. We plan to investigate other approaches in future
work.

3.2.2.9 Conclusion

Given a solver with a rich design space (such as Lingeling and clasp), all our ACPP methods
were able to generate parallel solvers with 8 cores that significantly outperform their sequential
counterparts - although 2 cores were already enough to do so. Therefore, we were able to show
that our ACPP methods are able to automatically build parallel portfolio solvers without the
need to start from scratch to get an efficient parallel SAT solver. However, the analysis of the
scalability showed that hardware restrictions incur overhead if more processor cores are used.
The scalability of our ACPP methods is therefore limited by the richness and complementarity
of the solver’s design space. Furthermore, we were able to verify that clause sharing can be
used to improve the performance of our ACPP solver even more and should be also adjusted
with algorithm configuration. Nevertheless, we note that our ACPP methods do not depend on
the availability of clause sharing to generate efficient parallel solvers.

3.3 Parallel Portfolio Configuration with Multiple Sequential
Solvers

So far, we have shown that our procedures are able to construct effective parallel portfolios
based on single solvers with rich design spaces. There is considerable evidence from the liter-
ature and from SAT competitions that strong portfolios can also be built by combining entirely
different solvers in their default configurations (see, for example, SATzilla (Xu et al., 2008),
ppfolio (Roussel, 2011) and pfolioUZK (Wotzlaw et al., 2012)). For instance, ppfolio was simply
build by taking the best solver from the last competition and combining them in a portfolio.
pfolioUZK considered some more state-of-the-art solvers and made some simple experiments
to find the best combination of solvers in a portfolio. Both portfolios do not consider the con-
figuration space of the component solvers and therefore, they are simple baselines for our ACPP
approach. However, ppfolio and pfolioUZK use Plingeling as a portfolio component. Since we
want to investigate the strength of our ACPP methods without the human expert knowledge
on parallel solving, we consider first only sequential solvers to construct ACPP solvers. This
section and the following section investigates the extension of our automatic techniques to the
construction of portfolios based on the configuration spaces spanned by such solver sets.

3.3.1 Approach

As long as all of our component solvers are sequential, we can simply use the ACPP procedures
defined in Section 3.2. We can accommodate the multi-solver setting by introducing a solver
choice parameter for each portfolio component (see Figure 3.1). The parameters of solver a ∈ A
are only active when the solver choice parameter is set to use a. This is implemented by using
conditional parameters (see the PCS format of the Algorithm Configuration Library (Hutter,
Lopez-Ibanez, Fawcett, Lindauer, Hoos, Leyton-Brown, & Stützle, 2014a)). Similar architectures
were used by SATenstein (KhudaBukhsh, Xu, Hutter, Hoos, & Leyton-Brown, 2009) and Auto-
WEKA (Thornton et al., 2013).

37

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

for each portfolio component

solver choice parameter

Lingeling
Glucose

clasp

. . .

Figure 3.1: Using a solver choice parameter, we can specify a single configuration space that spans
multiple solvers.

We have so far aimed to create portfolios with size equal to the number of available processor
cores. But as observed in Section 3.2.2.7, each component solver used within a parallel portfolio
incurs some overhead. A similar observation was made by the developer of pfolioUZK (personal
communication) and prompted the decision for pfolioUZK to use only 7 components on an 8-
core platform. To allow our portfolios to make the same choice, we included “none” as one of
choices available for each portfolio component.

3.3.2 Experiments

While we would presumably have obtained the strongest parallel solver by allowing our portfolio
to include a very wide range of modern SAT solvers, this would have made it difficult to
answer the question how our automated methods compare to human expertise in terms of
the performance of the parallel portfolios thus obtained. In particular, we were interested in
pfolioUZK (Wotzlaw et al., 2012), a state-of-the-art parallel solver that won the parallel track
of the 2012 SAT Challenge with application instances. To compare our automatic methods with
the manual efforts of pfolioUZK ’s authors, we thus chose the same set of solvers they considered
as the basis for our experiments. This allows us to fairly assess the strength of our automated
portfolio generation methods.

3.3.2.1 Solvers

pfolioUZK uses satUZK , Lingeling , tnm, and MPhaseSAT_M on the same core in its sequential
version (Default-SP) and satUZK , Glucose, contrasat and Plingeling with 4 threads and clause
sharing in its 8-process parallel version (Default-MP(8)+CS). In all cases, solvers are used in
their default configurations. However, in designing pfolioUZK (Wotzlaw et al., 2012), Wotzlaw
et al. considered the following, larger set of component solvers:

• contrasat (van Gelder, 2012): 15 parameters

38

3.3 Parallel Portfolio Configuration with Multiple Sequential Solvers

8-Processor Parallel Solver #TOs PAR10 PAR1

pfolioUZK -ST 150 4656 606
pfolioUZK -MP(8)+CS 35 1168 223

Global-MP(8)(pfolioUZK w/o Plingeling) 44 1463 275
parHydra-MP(8)(pfolioUZK w/o Plingeling) 39† 1297† 244†

Clustering-None-MP(8)(pfolioUZK w/o Plingeling) 42 1390 256
Clustering-Linear-MP(8)(pfolioUZK w/o Plingeling) 48 1581 285
Clustering-Zscore-MP(8)(pfolioUZK w/o Plingeling) 52 1676 272

Table 3.5: Runtime statistics for 8-processor parallel solvers on the application test set. The perfor-
mance of a solver is shown in boldface if it was not significantly different from the best
performance (according to a permutation test with 100 000 permutations at significance
level α = 0.05). The best ACPP portfolio on the training set was marked with a dagger
(†).

• Glucose 2.0 (Audemard & Simon, 2012): 10 parameters for satelite preprocessing and 6
for Glucose

• Lingeling 587 (Biere, 2011): 117 parameters

• march_hi 2009 (Heule et al., 2004): 0 parameters

• MPhaseSAT_M (Chen, 2011): 0 parameters

• satUZK (Grinten, Wotzlaw, Speckenmeyer, & Porschen, 2012): 1 parameter

• sparrow2011 (Tompkins, Balint, & Hoos, 2011): 0 parameters5

• tnm (Li, Wei, & Li, 2012): 0 parameters

Overall, the configuration space we considered has 144 parameters for each portfolio com-
ponent, and thus 1152 parameters for an 8-component parallel portfolio.

3.3.2.2 Instances and Setup

We evaluated pfolioUZK and our Global, parHydra, and Clustering approaches on the same 300
application test instances of the 2012 SAT Challenge as used before. Otherwise, our experimen-
tal setup was as described in Section 3.2.2.

3.3.2.3 Results and Interpretation

The first part of Table 3.5 shows the results of pfolioUZK in its sequential and parallel versions.
Recall that pfolioUZK uses Plingeling with clause sharing as a component solver. Sequential
pfolioUZK experienced 114 more timeouts than its parallel version; indeed, it was only ranked
16th in the sequential application track of the 2012 SAT Challenge.
The second part of Table 3.5 summarizes the performance of our ACPP solvers (which do

not use Plingeling as a component solver). parHydra-MP(8) performed best; indeed, there

5Although sparrow2011 should be parameterized (Tompkins et al., 2011), the source code and binary provided
with pfolioUZK does not expose any parameters.

39

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

was no significant difference between parHydra-MP(8) and pfolioUZK -MP(8) in terms of time-
out and PAR10 scores. This indicates that our ACPP approach is indeed able to match the
performance of parallel portfolios manually constructed by experts, even with the disadvan-
tage of being prohibited from using Plingeling and thus clause sharing. Global-MP(8) and
Clustering-None-MP(8) performed significantly worse than pfolioUZK -MP(8), but not signifi-
cantly worse than parHydra-MP(8) in terms of timeout and PAR10 scores.
As we previously observed with portfolios based on Lingeling , Clustering-None-MP(8) (no

feature normalization) performed best among the Clustering approaches. However, this time,
Clustering-Zscore-MP(8) performed worse than Clustering-Linear-MP(8). This indicates that the
quality of the clusters depends not only on the instance set but also on the configuration space
of the portfolio (which, indeed, is disregarded by the Clustering approach).
Although we allowed our portfolio-building procedures to choose “none” for any component

solver, this option was never selected. We note that the component solvers of all Clustering
approaches are configured independently; “none” would thus never be chosen by any Clustering
approach.

3.3.2.4 Conclusion

The use of a set of complementary solvers and exploiting their configuration space lead to
even better performing ACPP solvers in comparison to using only one solver such as Lin-
geling (compare Table 3.1 and Table 3.5). To get such an ACPP solver, we did not need to
modify our ACPP methods but we used conditionals in our configuration space to distinguish
between the design spaces of the individual solvers. However, since we did not used parallel
solvers with clause sharing, such as Plingeling , in our portfolio, our parHydra method was able
to generate a parallel solver without clause sharing as good as pfolioUZK but was not able to
outperform it.

3.4 Parallel Portfolio Configuration with Multiple Sequential and
Parallel Solvers

Our results reported so far confirm the intuition that clause sharing is an important ingredient
of high-performance parallel solvers. This section extends the scope of our ACPP methods to
allow inclusion of parallel solvers that perform clause sharing as portfolio components. By this,
we combine our automatic methods with the human expert knowledge to boost the solving
performance even further.

3.4.1 Approach

To add parallel solvers as portfolio components, we consider them as single solvers with large
configuration spaces rather than multiple copies of solvers with smaller configuration spaces.
This allows us to set parameters of parallel solvers that are common to several threads or
processes, such as those that control clause sharing.

40

3.4 Parallel Portfolio Configuration with Multiple Sequential and Parallel Solvers

3.4.1.1 parHydrab

The components of Plingeling are not parameterized. If the portfolio can also consist of config-
ured versions of Lingeling , which subsumes single-core Plingeling , and the configurator is run
for long enough, there is no reason for the parHydra approach to choose Plingeling as a com-
ponent, unless Plingeling already belongs to the previous iteration’s portfolio (in which case the
benefits of clause sharing can make themselves felt). Obviously then, an argument by induction
shows that Plingeling will never be added by parHydra, revealing a disadvantage of its greedy
optimization strategy. Global does not have this problem, but has difficulties dealing with the
large configuration space encountered here.
To overcome both of these limitations and effectively interpolate between parHydra and

Global, we introduce a new approach, which we call parHydrab (Algorithm 5). In brief, un-
like parHydra, parHydrab simultaneously configures b processes in each iteration. Specifically,
in Lines 2 and 3, parHydrab iterates up to the desired number of component solvers with a step
size of b; in Line 5, the algorithm configurator is used to find a portfolio of b configurations

with b times the configuration time budget and adds them to the current portfolio c(j)
1:i′ . Af-

ter the n independent runs of the algorithm configurator (Line 4 and 5), the best performing
portfolio ĉ1:i′ is selected in Line 6, and in Line 7, the initial incumbent for the next iteration is
selected based on the marginal contribution to the currently selected portfolio. The parameter
b controls the size of the configuration space in each iteration. Since the configuration space
grows exponentially with b but we allow configuration time to grow only linearly, the algorithm
configurator has a harder task under parHydrab than under parHydra. However, for sufficiently
small b, this additional cost can be worthwhile, because of parHydrab’s reduced tendency to
stagnate in local minima.

3.4.1.2 Clustering

The Clustering approach cannot be effectively applied to sets of component solvers that include
parallel solvers. When the configuration of each component solver is performed independently
of all other solvers, there is no way to direct a configurator to consider synergies between
solvers, such as those arising from clause sharing. Therefore, an unparameterized, parallel
solver with clause sharing, such as Plingeling , will never be selected. Thus, we did not consider
a variant of Clustering in the experiments described below.

3.4.2 Experiments

We used the set of solvers described in Section 3.3.2, with the addition of Plingeling . We added
parHydrab to the set of ACPP methods considered and allowed b ∈ {2,4}. We use the same
setup as before, except that we allowed a 20-hour configuration budget per configured process,
twice as much as before, to take into consideration the greater variation in solving behaviour
of Plingeling which induces a harder configuration task.
We compared our results to a variety of state-of-the-art solvers on this benchmark set. We

considered two state-of-the-art sequential solvers: Glucose (2.1) (Audemard & Simon, 2012)
(winner of the single-engine application track—like all other competition results cited below, in
the 2012 SAT Challenge); and SATzilla-App (Xu, Hutter, Shen, Hoos, & Leyton-Brown, 2012b),

41

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

Algorithm 5: Portfolio Configuration Procedure parHydrab

Input : set of parametric solvers a ∈ A with configuration space Ca; desired number k of
component solvers; number b of component solvers simultaneously configured
per iteration; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time tb

Output: parallel portfolio solver with portfolio ĉ1:k

1 i := 1
2 while i < k do
3 i′ := i+b−1
4 for j := 1..n do

5 obtain portfolio c(j)
1:i′ := ĉ1:i−1||c

(j)
i:i′ by running AC on configuration space

{ĉ1:i−1}× (∏i′
l=i

⋃
a∈A{(c) | c ∈Ca}) and initial incumbent ĉ1:i−1||cinit on I using m

for time tb ·b/(k ·n)

6 let ĉ1:i′ ∈ argmin
c(j)

1:i′ | j∈{1...n}
m(c(j)

1:i′ , I) be the configuration that achieved best

performance on I according to m
7 let cinit ∈ argmin

c(j)
i:i′ | j∈{1...n}

m(ĉ1:i′ ||c
(j)
i:i′ , I) be the configuration that has the largest

marginal contribution to ĉ1:i′

8 i := i+b

9 return ĉ1:k

which is SATzilla trained on application instances (winner of the sequential portfolio application
track). We also considered the following high-performance parallel solvers6:

• clasp (2.1.3) (Gebser et al., 2012c);

• Plingeling (ala) (Biere, 2012) and Plingeling (aqw) (Biere, 2013)7;

• ppfolio (Roussel, 2011) (bronze medal in the parallel track);

• PeneLoPe (Audemard et al., 2012) (silver medal in the parallel track);

• and again pfolioUZK (Wotzlaw et al., 2012) (winner of the parallel track).

The first part of Table 3.6 summarizes the performance results for these solvers: first the
sequential solvers in their default configurations (Default-SP), then the parallel solvers using
clause sharing in their default configurations (Default-MP(8)+CS), and finally our ACPP solvers
based on the component solvers of pfolioUZK . As already discussed, the performance of the
sequential pfolioUZK does not achieve the state-of-the-art performance; this distinction goes to

6We did not considered 3Spar and CSCHpar , parallel algorithm selection solvers, here because the only availabe
versions are optimized for a mixed set of SAT instances (application, handcrafted and random) and there is
no trainable version available. Therefore, a fair comparison between them and our ACPP portfolios is not be
possible.

7The process of implementing, benchmarking and writing the paper took more than one year; so that a new SAT
Competition (2013) took place and the new Plingeling aqw version won the gold medal in the parallel track.

42

3.4 Parallel Portfolio Configuration with Multiple Sequential and Parallel Solvers

Solver #TOs PAR10 PAR1

Single threaded solvers: Default-SP
pfolioUZK -ST 150 4656 606
Glucose-2.1 55 1778 293
SATzilla-2012-APP 38 1289 263

Parallel solvers with default config: Default-MP(8)
Plingeling (ala)+CS 53 1730 299
PeneLoPe+CS 49 1563 240
ppfolio+CS 46 1506 264
clasp+CS 37 1203 204
pfolioUZK -MP8+CS 35 1168 223
Plingeling (aqw)+CS 32 1058 194

ACPP solvers including a parallel solver
parHydra-MP(8)(pfolioUZK) 34 1143 225
parHydra2-MP(8)(pfolioUZK) 32 1082 218
parHydra4-MP(8)(pfolioUZK) 29† 992† 209†

Global-MP(8)(pfolioUZK) 35 1172 227

Table 3.6: Comparison of parallel solvers with 8 processors on the test set of application. The
performance of a solver is shown in boldface if its performance was at least as good
as that of any other solver, up to statistically insignificant differences (according to a
permutation test with 100 000 permutations at significance level α = 0.05). The best
ACPP portfolio on the training set was marked with a dagger (†).

Glucose for a single solver, and SATzilla for a portfolio-based algorithm selector. The perfor-
mance differences between all three of these solvers were statistically significant.

pfolioUZK and clasp performed significantly better than ppfolio, PeneLoPe and Plingeling ; we
observed no significant performance difference between pfolioUZK and clasp in terms of any of
the scores we measured. (Even with further, extensive experiments, we have not been able to
determine why clasp performed significantly worse than pfolioUZK and Lingeling in the 2012
SAT Challenge.)

parHydra4-MP(8) produced the best parallel portfolio solver overall, which turned out to
be significantly faster than pfolioUZK . The portfolio solvers produced by parHydra-MP(8) and
parHydra2-MP(8) exhibited no significant performance differences from pfolioUZK . Further-
more, parHydra4-MP(8) also solved more instances than Plingeling (aqw) although Plingeling (aqw)
won the 2013 SAT competition and the solvers in parHydra4-MP(8) were mostly published in
2011, which gives Plingeling (aqw) two more years of development.

Taking a closer look at these portfolio solvers, parHydra2-MP(8), parHydra4-MP(8) and Global-MP(8)
allocated three cores to Plingeling . As expected, parHydra-MP(8) did not include Plingeling in
its portfolio; however, it did include three variants of Lingeling . All four portfolio solvers used
at most seven processes by selecting “none” on one process; Global-MP(8) selected “none” twice.

43

3 Automatic Construction of Parallel Portfolios via Algorithm Configuration

3.4.2.1 Conclusion

Using our extended parHydrab method and a parallel solver with clause sharing, our parHydrab
was able to generate an ACPP solver outperforming pfolioUZK and being at eye level with Plin-
geling (aqw) which used a lot more modern solving strategies than used in baseline portfolio
from pfolioUZK . This shows that the combination of our automatic ACPP methods in combina-
tion with the knowledge of an expert can be not only used to generate efficient parallel solvers
but also to improve the state-of-the-art in parallel SAT solving. So our ACPP method can also
used to support an expert in parallel solving to build parallel solvers.

3.5 Conclusion

In this work, we demonstrated that sequential algorithms can be combined automatically and
effectively into parallel portfolios, following an approach we call Automatic Construction of Par-
allel Portfolios (ACPP). This approach enables solver developers to leverage parallel resources
without having to be concerned with synchronization, race conditions or other difficulties that
arise in the explicit design of parallel code. However, we acknowledge that parallel solving
techniques like clause sharing can further improve the performance of our ACPP portfolios.
We investigated three different ACPP procedures: (i) configuration in the joint configuration

space of all portfolio components (Global); (ii) configuration on a set of instance clusters (Clus-
tering); and (iii) iteratively adding one or more component solvers at a time (parHydra). We
assessed these procedures on widely studied classes of satisfiability problems: the application
and hard combinatorial tracks of the 2012 SAT Challenge. Overall, we found that parHydra was
the most practical method. The configuration space of Global grows exponentially with the size
of the portfolio; thus, while in principle it subsumes the other methods, in practice, it tended
not to find state-of-the-art portfolios within available time budgets. Clustering also tended not
to yield state-of-the-art portfolios; furthermore, unlike our other methods, Clustering relies on a
set of instance features, and is hence sensitive to feature normalization. We experimented with
different approaches, and found that the best approach varied from one setting to another. In
contrast to Global and Clustering, parHydra was able to find state-of-the-art portfolios on all
of our domains, even improved the state-of-the-art on application instances using pfolioUZK ’s
solvers and was able to keep up with the state-of-the-art from one year later, that is, Plin-
geling (aqw) won the 2013 parallel track. We expect that as additional highly parametric SAT
solvers become available, parHydra will produce even stronger parallel portfolios.
In future work, we will investigate how information exchange strategies such as clause sharing

can be integrated more deeply into our procedures. Since parameters governing such informa-
tion exchange are global (rather than restricted to an individual component solver), we will also
investigate improved methods for handling global portfolio parameters. Finally, we will consider
ways of reusing already trained portfolios for building new ones, for instance, if the instance
set changes slightly or new solvers become available.

44

4 Algorithm Scheduling via Answer Set
Programming

Boolean Constraint Technology has made tremendous progress over the last decade, leading
to industrial-strength solvers. Although this advance in technology was mainly conducted in
the area of Satisfiability Testing (SAT; (Biere et al., 2009)), it meanwhile also led to significant
boosts in neighboring areas, like Answer Set Programming (ASP; (Baral, 2003)), Pseudo-Boolean
Solving (Biere et al., 2009, Chapter 22), and even (multi-valued) Constraint Solving (Tamura
et al., 2009). However, there is a prize to pay. Modern Boolean constraint solvers are rather
sensitive to the way their search parameters are configured. Depending on the choice of the
respective configuration, the solver’s performance may vary by several orders of magnitude.
Although this is a well-known issue, it was impressively illustrated once more during the 2011
SAT Competition, where 16 prizes were won by the portfolio-based solver ppfolio (Roussel,
2011). The idea underlying ppfolio is very simple: it independently runs several solvers in
parallel. If only one processing unit is available, three solvers are started. By relying on the
process scheduling mechanism of the operating system, each solver gets nearly the same time to
solve a given instance. We refer to this as a uniform, unordered algorithm schedule1. If several
processing units are available, one solver is started on each unit; however, multiple solvers may
end up on the last unit.
Inspired by this simple, yet effective system, we devise a more elaborate, yet still simple

approach that takes advantage of the modeling and solving capacities of ASP to automatically
determine more refined, that is, non-uniform and ordered algorithm schedules from existing
benchmarking data. The resulting encodings are easily customizable for different settings.
For instance, our approach is directly extensible to the generation of parallel schedules for
multi-processor machines. Also, the computation of optimum schedules can mostly be done
in the blink of an eye, even when dealing with large runtime data sets stemming from many
algorithms on hundreds to thousands of instances. Despite its simplicity, our approach matches
the performance of much more sophisticated ones, such as SATzilla (Xu et al., 2008) and
3S (Kadioglu et al., 2011). Unlike both, our approach does not rely on the availability of
domain-specific features of the problem instance being solved, which makes it easily adaptable
to other domains.
The remainder of this article is structured as follows. In Section 4.1, we formulate the problem

of determining optimum schedules as a multi-criteria optimization problem. In doing so, our
primary emphasis lies in producing robust schedules that aim at the fewest number of timeouts
by non-uniformly attributing each algorithm (or algorithm configuration) a different time slice.
Once such a robust schedule is found, we optimize its runtime by selecting the best algorithm

1We refer to algorithms here as a more general concept as solvers since schedules can be applied to arbitrary
algorithms and not only to solvers. However, in the context of this chapter, algorithm can be synonymously
understood as solvers.

45

4 Algorithm Scheduling via Answer Set Programming

a1 a2 a3 oracle
i1 1 ≥ 10 3 1
i2 5 ≥ 10 2 2
i3 8 1 ≥ 10 1
i4 ≥ 10 ≥ 10 2 2
i5 ≥ 10 6 ≥ 10 6
i6 ≥ 10 8 ≥ 10 8

timeouts 3 3 3 0

Table 4.1: Table of algorithm runtimes on problem instances with tc = 10; ’≥ 10’ indicates a timeout.

alignment. We then extend this approach to parallel settings in which multiple processing units
are available. With these formalizations at hand, we proceed in two steps. First, we provide
an ASP encoding for computing (parallel) timeout-minimal schedules (Section 4.2). Once such
a schedule is identified, we use a second encoding to find a time-minimal alignment of its
algorithms (Section 4.3). Both ASP encodings are also of interest from an ASP modelling per-
spective, because they reflect interesting features needed for dealing with large sets of (runtime)
data. Finally, in Section 4.4, we provide an empirical evaluation of the resulting system aspeed,
and we contrast it with related approaches (Section 4.5). In what follows, we presuppose a basic
acquaintance with ASP (see (Gebser et al., 2012) for a comprehensive introduction).

4.1 Algorithm Scheduling

In the following, we formulate the optimization problem of computing an algorithm schedule.
To this end, we introduce robust timeout-minimal schedules for single-threaded systems that are
extended by an algorithm alignment mechanism to minimize the used runtime. Furthermore,
in order to exploit the increasing prevalence of multi-core processors, we consider the problem
of finding good parallel algorithm schedules.

4.1.1 Sequential Scheduling

Given a set I of problem instances and a set A of algorithms (for example, solvers with a fixed
configuration), we use function t : I×A 7→ R+ to represent a table of algorithm runtimes on
instances. Also, we use an integer tc to represent a given cutoff time. For illustration, consider
the runtime function in Table 4.1; it deals with 6 problem instances, i1 to i6, and 3 algorithms,
a1, a2, and a3.
Each algorithm can solve three out of six instances within the cutoff time, tc = 10; timeouts

are indicated by ’≥ 10’ in Table 4.1. The oracle, also known as virtual best solver (VBS), is
obtained by assuming the best performance of each individual algorithm. As we see in the
rightmost column, the oracle would be able to solve all instances in our example within the
cutoff time; thus, if we knew beforehand which algorithm to choose for each instance, we could
solve all of them. While we can hardly hope to practically realize an oracle on a single threaded
system (at least in terms of CPU time), performance improvements can already be obtained by

46

4.1 Algorithm Scheduling

successively running each algorithm for a limited period of time rather than running a single
algorithm until the cutoff is reached. For instance, by uniformly distributing time over all three
algorithms in our example, as done in ppfolio, we could solve 4 out of 6 instances, namely
instance i1 . . . i4. Furthermore, the number of solved instances can be increased further by
running a1 for 1, a2 for 6, and a3 for 2 seconds, which allows us to solve 5 out of 6 instances,
as indicated in bold in Table 4.1. In what follows, we show how such a optimized non-uniform
schedule can be obtained beforehand from given runtime data.
Given I, A, t, and tc as specified above, a timeout-optimal algorithm schedule can be expressed

as a function σ : A→ [0, tc], satisfying the following condition:

σ ∈ argmaxσ:A→[0,tc] |{i | ∃a ∈ A : t(i,a)≤ σ(a)}|
such that ∑a∈Aσ(a)≤ tc

(4.1)

An optimal schedule σ consists of slices σ(s) indicating the (possibly zero) time allotted to
each algorithm a∈A. Such a schedule maximizes the number of solved instances, or conversely,
minimizes the number of timeouts. An instance i is solved by σ if there is an algorithm a ∈ A
that has an equal or greater time slice σ(a) than the time needed by the algorithm to solve the
instance, viz. t(i,a). As a side constraint, the sum of all time slices σ(a) has to be equal or less
than the cutoff time tc.
The above example corresponds to the schedule σ = {a1 7→ 1,a2 7→ 6,a3 7→ 2}; in fact, σ

constitutes one of nine timeout-optimal algorithm schedules in our example. Note that the
sum of all time slices is even smaller than the cutoff time. Hence, all schedules obtained by
adding 1 to either of the three algorithms are also timeout-optimal. A timeout-optimal schedule
consuming the entire allotted time is {a1 7→ 0,a2 7→ 8,a3 7→ 2}.
In practice, however, the criterion in (4.1) turns out to be too coarse, that is, it often admits a

diverse set of solutions among which we would like to make an educated choice. To this end,
we make use of (simplified) L-norms as the basis for refining our choice of schedule. In our
case, an Ln-norm on schedules is defined2 as Σa∈A,σ(a)6=0 σ(a)n. Depending on the choice of n
as well as whether we minimize or maximize the norm, we obtain different selection criteria.
For instance, L0-norms suggest using as few (or as many) algorithms as possible, and L1-norms
aim at minimizing (or maximizing) the sum of time slices. Minimizing the L2-norm amounts to
allotting each algorithm a similar time slice, while maximizing it prefers schedules with large
runtimes for few algorithms. In more formal terms, for a given set A of algorithms, using an
Ln-norm we would like to determine schedules satisfying the constraint

σ ∈ argminσ:A→[0,tc] Σa∈A,σ(a)6=0 σ(a)n, (4.2)

or the analogous constraint for argmax (in case of maximization).
For instance, our example schedule σ = {a1 7→ 1,a2 7→ 6,a3 7→ 2} has the Ln-norms 3, 9, and

41 for n = 0..2. In contrast, we obtain norms 3, 9, and 27 for the (suboptimal) uniform schedule
{a1 7→ 3,a2 7→ 3,a3 7→ 3} and 1, 9, and 81 for a singular schedule {a3 7→ 9}, respectively.
Although empirically, we found that schedules for various n as well as for minimization and
maximization have useful properties, overall, we favor schedules with a minimal L2-norm. First,

2The common Ln-norm is defined as n
√

Σx∈X xn. We take the simpler definition in view of using it merely for
optimization.

47

4 Algorithm Scheduling via Answer Set Programming

this choice leads to a significant reduction of candidate schedules and, second, it results in
schedules with a maximally homogeneous distribution of time slices, similar to ppfolio. In
fact, our example schedule has the smallest L2-norm among all nine timeout-optimal algorithm
schedules.

Once we have identified an optimal schedule w.r.t. criteria (4.1) and (4.2), it is interesting
to determine which algorithm alignment yields the best performance as regards time. More
formally, we define an alignment of a set A of algorithms as a bijective function π : {1, . . . , |S|}→
S. Consider the above schedule σ = {a1 7→ 1,a2 7→ 6,a3 7→ 2}. The alignment π = {1 7→ a1,2 7→
a3,3 7→ a2} induces the execution sequence (a1,a3,a2) of σ. This sequence takes 29 seconds
for all six benchmarks in Table 4.1; in detail, it takes 1,1+2,1+2+1,1+2,1+2+6,1+2+7
seconds for benchmark ik for k = 1..6, whereby instance i6 could not be solved. For instance,
benchmark i3 is successfully solved by the third algorithm in the alignment, viz. a2. Hence
the total time amounts to the time allotted by σ to a1 and a3, viz. σ(a1) and σ(a3), plus the
effective time of a2, viz. t(i3,a2).

This can be formalized as follows. Given a schedule σ and an alignment π of a set A of
algorithms, and an instance i ∈ I, we define the runtime τ of schedule σ aligned by π on i:

τσ,π(i) =

{(
∑

min(Pσ,π)−1
j=1 σ(π(j))

)
+ t(i,π(min(Pσ,π))) if Pσ,π 6= /0,

tc otherwise
(4.3)

where Pσ,π = {l ∈ {1, . . . , |A|} | t(i,π(l)) ≤ σ(π(l))} are the positions of algorithms solving in-
stance i in a schedule σ aligned by π. If an instance i cannot be solved at all by a schedule,
τσ,π(i) is set to the cutoff tc. For our example schedule σ and its alignment π, we obtain for i3:
minPσ,π = 3 and τσ,π(i3) = 1+2+1 = 4.
For a schedule σ of algorithms in A, we then define the optimal alignment of schedule σ:

π ∈ argminπ:{1,...,|A|}→A ∑i∈Iτσ,π(i) (4.4)

For our timeout-optimal schedule σ = {a1 7→ 1,a2 7→ 6,a3 7→ 2} w.r.t. criteria (4.1) and
(4.2), we obtain two optimal execution alignments, namely (a3,a1,a2) and (a1,a3,a2), both of
which result in a solving time of 29 seconds for the benchmarks of Table 4.1.

4.1.2 Parallel Scheduling

The increasing availability of multi-core processors makes it interesting to extend our approach
for distributing schedule’s algorithms over multiple processing units. For simplicity, we take a
coarse approach in binding algorithms to units, thus precluding re-allocations during runtime.

To begin with, let us provide a formal specification of the extended problem. To this end,
we augment our previous formalization with a set U of (processing) units and associate each
unit with subsets of algorithms from A. More formally, we define a distribution of a set A of
algorithms as the function η : U → 2A such that

⋂
u∈U η(u) = /0. With it, we can determine

timeout-optimal algorithm schedules for several cores simply by strengthening the condition
in (4.1) to the effect that all algorithms associated with the same unit must respect the cutoff

48

4.2 Solving Timeout-Optimal Scheduling with ASP

time. This leads us to the following extension of (4.1):

σ ∈ argmaxσ:A→[0,tc] |{i | ∃a ∈ A : t(i,a)≤ σ(a)}|
such that ∑a∈η(u)σ(a)≤ tc for each u ∈U

(4.5)

For illustration, let us reconsider Table 4.1 along with schedule σ = {a1 7→ 1,a2 7→ 8,a3 7→ 2}.
Assume that we have two cores, 1 and 2, along with the distribution η = {1 7→ {a2},2 7→
{a1,a3}}. This distributed schedule is an optimal solution to the optimization problem in (4.5)
w.r.t. the benchmarks in Table 4.1 because it solves all benchmarks within a cutoff time of
tc = 8.

We keep the definitions of a schedule’s Ln-norm as a global constraint. However, for deter-
mining our secondary criterion, enforcing time-optimal schedules, we relativize the auxiliary
definitions in (4.3) to account for each unit separately. Given a schedule σ and a set U of
processing units, we define for each unit u ∈U a local alignment of the algorithms in η(u) as
the bijective function πu : {1, . . . , |η(u)|} → η(u). Given this function and a problem instance
i ∈ I, we extend the definitions in (4.3) as follows:

τσ,πu(i) =

{(
∑

min(Pσ,π)−1
j=1 σ(πu(j))

)
+ t(i,πu(min(Pσ,π))) if Pσ,π 6= /0,

tc otherwise
(4.6)

where Pσ,π = {l ∈ {1, . . . , |η(u)|} | t(i,πu(l))≤ σ(πu(l))}.
The collection (πu)u∈U regroups all local alignments into a global alignment. For a schedule σ

of algorithms in A and a set U of (processing) units, we then define an optimal global alignment:

(πu)u∈U ∈ argmin(πu:{1,...,|η(u)|}→η(u))u∈U ∑i∈I minu∈U τσ,πu(i) (4.7)

For illustration, reconsider the above schedule σ = {a1 7→ 1,a2 7→ 8,a3 7→ 2} and distribution
η = {1 7→ {a2},2 7→ {a1,a3}}, and suppose we chose the local alignments π1 = {1 7→ a2} and
π2 = {1 7→ a1,2 7→ a3}. This global alignment solves all six benchmark instances of Table 4.1
in 22 seconds wallclock time. In more detail, it takes 12,1+ 22,11,1+ 22,61,81 seconds for
instance ik for k = 1..6, where the solving unit is indicated by the subscript.
Note that the definitions in (4.5), (4.6), and (4.7) correspond to their sequential counterparts

in (4.1), (4.3), and (4.4) whenever we are faced with a single processing unit.

4.2 Solving Timeout-Optimal Scheduling with ASP

To begin with, we detail the basic encoding for identifying robust (parallel) schedules. In view of
the remark at the end of the last section, however, we directly provide an encoding for parallel
scheduling, which collapses to one for sequential scheduling whenever a single processing unit
is used.
Following good practice in ASP, a problem instance is expressed as a set of facts. That is,

Function t : I×A 7→ R is represented as facts of form time(i,a,t), where i ∈ I, a ∈ A, and
t is the runtime t(i,a), converted to a natural number with limited precision. The cutoff is
expressed via Predicate cutoff/1, and the number of available processing units is captured via
Predicate units/1, here instantiated to 2 units. Given this, we can represent the contents of

49

4 Algorithm Scheduling via Answer Set Programming

Table 4.1 as shown in Listing 4.1 below.

cutoff(10).
units(2).

time(i1, a1, 1). time(i1, a2, 11). time(i1, a3, 3).
time(i2, a1, 5). time(i2, a2, 11). time(i2, a3, 2).
time(i3, a1, 8). time(i3, a2, 1). time(i3, a3, 11).
time(i4, a1, 11). time(i4, a2, 11). time(i4, a3, 2).
time(i5, a1, 11). time(i5, a2, 6). time(i5, a3, 11).
time(i6, a1, 11). time(i6, a2, 8). time(i6, a3, 11).

Listing 4.1: Facts

The encoding in Listing 4.3 along with all following ones are given in the input language of
gringo (Gebser, Kaminski, Kaufmann, Ostrowski, Schaub, & Thiele,). The first three lines of
Listing 4.3 provide auxiliary data. The set A of algorithms is given by Predicate algorithm/1.
Similarly, the runtimes for each algorithm are expressed by time/2 and each processing unit
by unit/1. In addition, the ordering of instances by time per algorithm is precomputed; it is
expressed via order/3, as shown in Figure 4.2.

order(I,J,A) :-
time(I,A,T), time(J,A,V), (T,I) < (V,J),
not time(K,A,U) : time(K,A,U) : (T,I) < (U,K) : (U,K) < (V,J).

Listing 4.2: I is solved immediatly before J by algorithm A

The above results in facts order(I,J,A) capturing that instance J follows instance I by
sorting the instances according to their runtimes. Although this information could be computed
via ASP (as shown above), we make use of external means for sorting (the above rule needs
cubic time for instantiation, which is infeasible for a few thousand instances). Instead, we use
gringo’s embedded scripting language lua for sorting.
The idea of Listing 4.3 is now to guess for each algorithm a time slice and a processing unit

(in Line 5). With the resulting schedule, all solvable instances can be identified (in Line 10−12),
and finally, all schedules solving a maximal number of instances are selected (in Line 14).
In more detail, a schedule is represented by atoms slice(U,A,T) allotting a time slice T to

algorithm A on unit U. In Line 5, at most one time slice is chosen for each algorithm, subject
to the condition that it does not exceed the cutoff time. At the same time, a processing unit
is uniquely assigned to the selected algorithm. The integrity constraint in Line 6 ensures that
the sum over all selected time slices on each processing unit is not greater than the cutoff time.
This implements the side condition in (4.5), and it reduces to the one in (4.1) whenever a single
unit is considered. The next line projects out the processing unit because it is irrelevant when
determining solved instances (in Line 8). In Lines 10 to 12, all instances solved by the selected
time slices are gathered via predicate solved/1. Considering that we collect in Line 8 all time
slices among actual runtimes, each time slice allows for solving at least one instance. This
property is used in Line 10 to identify the instance I solvable by algorithm A; using it, along
with the sorting of instances by algorithm performance in order/3, we collect in Line 11 all

50

4.3 Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP

1 algorithm(A) :- time(_,A,_).
2 time(A,T) :- time(_,A,T).
3 unit(1..N) :- units(N).
4
5 {slice(U,A,T): time(A,T): T <= K: unit(U)} 1 :- algorithm(A), cutoff(K).
6 :- not [slice(U,A,T) = T] K, cutoff(K), unit(U).
7
8 slice(A,T) :- slice(_,A,T).
9
10 solved(I,A) :- slice(A,T), time(I,A,T).
11 solved(I,A) :- solved(J,A), order(I,J,A).
12 solved(I) :- solved(I,_).
13
14 #maximize { solved(I) @ 2 }.
15 #minimize [slice(A,T) = T*T @ 1].

Listing 4.3: ASP encoding for Timeout-Minimal (Parallel) Scheduling

instances that can be solved even faster than the instance in Line 10. Note that at first sight it
might be tempting to encode Lines 10−−12 differently:

solved(I) :- slice(A,T), time(I,A,TS), T <= TS.

The problem with the above rule is that it has a quadratic number of instantiations in the
number of benchmark instances in the worst case. In contrast, our ordering-based encoding is
linear, because only successive instances are considered. Finally, the number of solved instances
is maximized in Line 14, using the conditions from (4.5) (or (4.1), respectively). This primary
objective is assigned a higher priority than the L2-norm from (4.2) (priority 2 vs 1).

4.3 Solving (Timeout and) Time-Minimal Parallel Scheduling with
ASP

In the previous section, we have explained how to determine a timeout-minimal (parallel) sched-
ule. Here, we present an encoding that takes such a schedule and calculates an algorithm align-
ment per processing unit while minimizing the overall runtime according to Criterion (4.7).
This two-phase approach is motivated by the fact that an optimal alignment must be deter-
mined among all permutations of a schedule. While a one-shot approach had to account for all
permutations of all potential timeout-minimal schedules, our two-phase approach reduces the
second phase to searching among all permutations of a single timeout-minimal schedule.
We begin by extending the ASP formulation from the last section (in terms of cutoff/1,

units/1, and time/3) by facts over slice/3 providing the time slices of a timeout-minimal
schedule (per algorithm and processing unit). In the case of our example from Section 4.1.2, we
extend the facts of Listing 4.1 with the following obtained timeout-minimal schedule to create
the problem instance:

slice(1,a2 ,8). slice(2,a1 ,1). slice(2,a3 ,2).

Listing 4.4: Schedule Facts

51

4 Algorithm Scheduling via Answer Set Programming

The idea of the encoding in Listing 4.5 is to guess a permutation of algorithms and then to
use ASP’s optimization capacities for calculating a time-minimal alignment. The challenging
part is to keep the encoding compact. That is, we have to keep the size of the instantiation of
the encoding small, because otherwise, we cannot hope to effectively deal with rather common
situations involving thousands of benchmark instances. To this end, we make use of #sum ag-
gregates with negative weights (Line 23) to find the fastest processing unit without representing
any sum of times explicitly.

1 algorithm(U,A) :- slice(U,A,_).
2 instance(I) :- time(I,_,_).
3 unit(1..N) :- units(N).
4 algorithms(U,N) :- unit(U), N := {algorithm(U,_)}.
5 solved(U,A,I) :- time(I,A,T), slice(U,A,TS), T <= TS.
6 solved(U,I) :- solved(U,_,I).
7 capped(U,I,A,T) :- time(I,A,T), solved(U,A,I).
8 capped(U,I,A,T) :- slice(U,A,T), solved(U,I), not solved(U,A,I).
9 capped(U,I,d,K) :- unit(U), cutoff(K), instance(I), not solved(U,I).
10 capped(I,A,T) :- capped(_,I,A,T).
11
12 1 { order(U,A,X) : algorithm(U,A) } 1 :- algorithms(U,N), X = 1..N.
13 1 { order(U,A,X) : algorithms(U,N) : X = 1..N } 1 :- algorithm(U,A).
14
15 solvedAt(U,I,X+1) :- solved(U,A,I), order(U,A,X).
16 solvedAt(U,I,X+1) :- solvedAt(U,I,X), algorithms(U,N), X <= N.
17
18 mark(U,I,d,K) :- capped(U,I,d,K).
19 mark(U,I,A,T) :- capped(U,I,A,T), order(U,A,X), not solvedAt(U,I,X).
20 min(1,I,A,T) :- mark(1,I,A,T).
21
22 less(U,I) :- unit(U), unit(U+1), instance(I),
23 [min(U,I,A1,T1): capped(I,A1,T1) = T1, mark(U+1,I,A2,T2) = -T2] 0.
24
25 min(U+1,I,A,T) :- min(U,I,A,T), less(U,I).
26 min(U,I,A,T) :- mark(U,I,A,T), not less(U-1,I).
27
28 #minimize [min(U,_,_,T): not unit(U+1) = T].

Listing 4.5: ASP encoding for Time-Minimal (Parallel) Scheduling

The block in Line 1 to 10 gathers static knowledge about the problem instance, that is, al-
gorithms per processing unit (algorithm/2), instances appearing in the problem description
(instance/1), available processing units (unit/1), number of algorithms per unit (algorithms/2),
instances solved by an algorithm within its allotted slice (solved/3), and instances that could be
solved on a unit given the schedule (solved/2). Note that, in contrast to the previous encoding
(Listing 4.3), the solved instances (solved/3) can be efficiently expressed as done in Line 5 of
Listing 4.5, because slice/3 are facts here. In view of Equation (4.6), we precompute the times
that contribute to the values of τσ,πu and capture them in capped/4 (and capped/3). A fact
capped(U,I,S,T) assigns to instance I run by algorithm A on unit U a time T. In Line 7, we
assign the time needed to solve the instance if it is within the algorithm’s time slice. In Line 8,
we assign the algorithm’s time slice if the instance could not be solved, but at least one other

52

4.4 Empirical Performance Analysis

algorithm could solve it on processing unit U. In Line 9, we assign the entire cutoff to dummy
algorithm d (we assume that there is no other algorithm called d) if the instance could not be
solved on the processing unit at all; this is to implement the else case in (4.6) and (4.3).
The actual encoding starts in Line 12 and 13 by guessing a permutation of algorithms. Here,

the two head aggregates ensure that for every algorithm (per unit) there is exactly one position
in the alignment and vice versa. In Line 15 and 16, we mark indexes (per unit) as solved if
the algorithm with the preceding index could solve the instance or if the previous index was
marked as solved. Note that this is a similar “chain construction” used in the previous section
in order to avoid a combinatorial blow-up.
In the block from Line 18 to 26, we determine the time for the fastest processing unit

depending on the guessed permutation. The rules in Line 18 and 19 mark the times that
have to be added up on each processing unit; the sums of these times correspond to τσ,πu(i) in
Equation (4.6) and (4.3). Next, we determine the smallest sum of times by iteratively determining
the minimum. An atom min(U,I,A,T) marks the times of the fastest unit in the range from
unit 1 to U to solve an instance (or the cutoff via dummy algorithm d, if the schedule does not
solve the instance for the unit). To this end, we initialize min/4 with the times for the first
unit in Line 20. Then, we add a rule in Line 22 and 23 that, given minimal times for units in
the range of 1 to U and times for unit U+1, determines the faster one. The current minimum
contributes positive times to the sum, while unit U+1 contributes negative times. Hence, if the
sum is negative or zero, the sum of times captured in min/4 is smaller than or equal to the sum
of times of unit U+1, and therefore, the unit thus slower than some preceding unit, which makes
the aggregate true and derives the corresponding atom over less/2. Depending on less/2, we
propagate the smaller sum, which is either contributed by unit U+1 (Line 25) or the preceding
units (Line 26). Finally, in Line 28, the times of the fastest processing unit are minimized in the
optimization statement, which implements Equation (4.7) and (4.4).

4.4 Empirical Performance Analysis

After describing the theoretical foundations and ASP encodings underlying our approach, we
now present the results from an empirical evaluation on representative ASP, CSP, MaxSAT,
SAT and QBF benchmarks. The python implementation of our approach, dubbed aspeed, uses
the state-of-the-art ASP systems (Calimeri, Ianni, Ricca, Alviano, Bria, Catalano, Cozza, Faber,
Febbraro, Leone, Manna, Martello, Panetta, Perri, Reale, Santoro, Sirianni, Terracina, & Veltri,
2011b) of the potassco group (Gebser et al., 2011), namely the grounder gringo (3.0.4) and the
ASP solver clasp (2.0.5). The sets of runtime data used in this work are freely available online. 3

4.4.1 Experimental Setup

Our experiments are based on a set of runtime data obtained by running several algorithms
(or algorithm configurations) on a set of benchmark instances (similar to Table 4.1). To provide
a thorough empirical evaluation of our approach, we selected eight large data sets of runtimes
for five prominent and widely studied problems, ASP, CSP, MaxSAT, SAT and QBF; these are
summarized in Table 4.2. The sets Random, Crafted and Application contain the authentic

3http://www.cs.uni-potsdam.de/aspeed

53

http://www.cs.uni-potsdam.de/aspeed

4 Algorithm Scheduling via Answer Set Programming

Random Crafted Application ASP-Set
Cutoff (sec.) 5000 5000 5000 900
#Instances 600 300 300 2589
#Algorithms 9 15 18 25
Source (1) (1) (1) (2)

3S-Set CSP-Set QBF-Set MaxSAT-Set
Cutoff (sec.) 5000 5000 3600 1800
#Instances 5467 2024 1368 337
#Algorithms 37 2 5 11
Source (3) (4) (5) (6)

Table 4.2: Runtime data sets used in our experiments from the 2011 SAT Competition (1), the ASP
benchmark repository asparagus (2), Kadioglu et al. 2011 (3), Gent et al. 2010 (4), Pulina
and Tacchella 2009 (5) and Malitsky et al. 2013 (6).

runtimes taken from the 2011 SAT Competition4 with a cutoff of 5000 seconds. We selected all
non-portfolio, non-parallel solvers from the main phase of the competition, in order to provide
a fair comparison with the portfolio-based SAT Solver SATzilla (Xu et al., 2008), which has
been evaluated based on the same data (Xu et al., 2012a).
Also, we evaluated our approach on an ASP instance set (ASP-Set) based on different con-

figurations of the highly parametric ASP solver clasp (Gebser, Kaufmann, & Schaub, 2012b),
which is known to show excellent performance on a wide range of ASP instances. We used the
complementary configuration portfolio of claspfolio (1.0.1) (Gebser et al., 2011) designed by the
main developer of clasp, B. Kaufmann, and measured the runtime of clasp (2.1.0). Because the
instance sets from recent ASP competitions are very unbalanced (Hoos et al., 2013) (most of
them are either too easy or too hard for clasp), we select instances from the ASP benchmark
repository Asparagus,5 including the 2007 (SLparse track), 2009 and 2011 ASP Competitions.
gringo was not able to ground some instance from the 2011 ASP Competition within 600 CPU
seconds and 2 GB RAM, and thus those instances were excluded. Our ASP-Set is comprised of
the 2589 remaining instances.
The runtime measurements for our ASP-Set were performed on a compute cluster with 28

nodes, each equipped with two Intel Xeon E5520 2.26GHz quad-core CPUs and 48 GB RAM,
running Scientific Linux (2.6.18-308.4.1.el5). Since all clasp configurations used in our experi-
ments are deterministic, their runtimes on all instances were measured only once.
Furthermore, we evaluated our approach on sets already used in the literature. The set of

runtime data provided by Kadioglu et al. was part of the submission of their solver 3S (Kadioglu
et al., 2011) to the 2011 SAT Competition. We selected this set, which we refer to as 3S-
Set, because it includes runtimes of many recent SAT solvers on prominent SAT benchmark
instances. The CSP-Set was used by Gent, Jefferson, Kotthoff, Miguel, Moore, Nightingale, and
Petrie (2010), the QBF-Set by Pulina and Tacchella (2009), and MaxSAT-Set by Malitsky, Mehta,
and O’Sullivan (2013), respectively.

4http://www.cril.univ-artois.fr/SAT11
5http://asparagus.cs.uni-potsdam.de

54

4.4 Empirical Performance Analysis

The performance of aspeed was determined from the schedules computed for Encodings 4.3
and 4.5 with a minimization of the L2-norm as second optimization criterion. Although we
empirically observed no clear performance gain from the latter, we favour a schedule with a
minimal L2-norm: First, it leads to a significant reduction of candidate schedules and second,
it results in schedules with a more uniform distribution of time slices, (resembling those used
in ppfolio). All runtimes for the schedule computation were measured in CPU time rounded up
to the next integer value, and runtime not allocated in the computed schedule was uniformly
distributed among all algorithms in the schedule.
Using the previously described data sets, we compared aspeed against

• single best: the best algorithm in the respective portfolio,

• uniform: a uniform distribution of the time slices over all algorithms in the portfolio,

• ppfolio-like: an approach inspired by ppfolio, where the best three complementary algo-
rithms are selected with an uniform distribution of time slices in the sequential case,

• SATzilla (Xu et al., 2012a) and claspfolio (Gebser et al., 2011), prominent examples of
model-based algorithm selection solvers for SAT and ASP, respectively,

• as well as against the oracle performance (also called virtual best solver)6.

The performance of SATzilla for Random, Crafted and Application was extracted from results
reported in the literature (Xu et al., 2012a), which were obtained using 10-fold cross validation.
In the same way, claspfolio was trained and cross-validated on the ASP-Set. In the following, the
selection approach represents SATzilla for the three SAT competition sets and claspfolio for the
ASP-Set.
Unfortunately, aspeed could not be directly compared against 3S , because the tool used by

3S to compute the underlying model is not freely available and hence, we were unable to train
3S on new data sets. To perform a fair comparison between aspeed and 3S, we compare both
systems in an additional experiment in the last part of this section.

4.4.2 Schedule Computation

Table 4.3 shows the time spent on the computation and the proof of the optimality of timeout-
minimal schedules and time-minimal alignments on the previously described benchmark sets
for sequential schedules (first two rows) and parallel schedules for eight cores (next two rows).
For the Random, Crafted and CSP-Set benchmark sets, the computation of the sequential and
parallel schedule always took less than one CPU second. Some more time was spent for the
Application, QBF-Set and MaxSAT-Set benchmark set but it is still feasible to find an optimal
schedule. We observe that the computation of parallel time slices is faster than the computation
of sequential schedules, except for the very simple CSP-Set. Given the additional processing
units, the algorithms can be scheduled more freely, resulting in a less constrained problem that
is easier to solve. Furthermore, calculating a time-minimal alignment is easier in the parallel
setting. In our experiments, we obtained fewer selected algorithms on the individual cores than

6The performance of the oracle is the minimal runtime of each instance given a portfolio of algorithms and
corresponds to a portfolio-based solver with a perfect selection of the best algorithm for a given instance.

55

4 Algorithm Scheduling via Answer Set Programming

#cores Opt. Step Random Crafted Application ASP-Set
1 Schedule (sec) 0.54 0.45 119.2 > 1d
1 Alignment (sec) 0.04 0.23 0.07 0.50
8 Schedule (sec) 0.28 0.05 61.65 > 1d
8 Alignment (sec) 0.02 0.006 0.07 0.50
1 Combined (sec) > 1d 47175 > 1d MEMOUT

3S-Set CSP-Set QBF-Set MaxSAT-Set
1 Schedule (sec) > 1d 0.10 14.98 1.64
1 Alignment (sec) > 1d 0.04 0.75 0.02
8 Schedule (sec) > 1d 0.20 0.21 0.30
8 Alignment (sec) > 1d 0.12 0.27 0.02
1 Combined (sec) MEMOUT 0.89 32.09 > 1d

Table 4.3: Runtimes of clasp in CPU seconds to calculate an optimal schedule for one and eight
cores.

in the sequential case. This leads to smaller permutations of algorithms and, in turn, reduces
the total runtime. For the ASP-Set, we could not establish the optimal schedule even after one
CPU day and for the 3S-Set, the calculation of the optimal schedule and optimal alignment was
also impossible. However aspeed was nevertheless able to find schedules and aligments, and
hence, was able to minimize the number of timeouts and runtime. Finally, it is also possible that
aspeed found an optimal schedule but was unable to prove its optimality. Therefore, we limited
the maximal runtime of clasp for these sets to 1200 CPU seconds in all further experiments,
and used the resulting sub-optimal schedules and alignments obtained for this time.7

We also ran experiments on an encoding that optimizes the schedule and alignment simulta-
neously; this approach accounts for all permutations of all potential timeout-minimal schedules.
The results are presented in the row labelled ‘Combined’ in Table 4.3. The combination in-
creases the solving time drastically. Within one CPU day, clasp was able to find an optimal
solution and proved optimality only for Crafted , CSP-Set and QBF-Set. In all other cases, we
aborted clasp after one CPU day and then used the best schedules found so far. Nevertheless,
we could find better alignments than in our two step approach (between 0.6% and 9.8% im-
provement), at the cost of substantially higher computation time and memory. Because this
encoding has a very large instantiation, viz., more than 12 GB memory consumption, we were
unable to run aspeed using it on the 3S-Set and ASP-Set.

4.4.3 Evaluation of Timeout-Minimal Schedules

Having established that optimal schedules can be computed within a reasonable time in most
cases, we evaluated the sequential timeout-minimal schedule of aspeed corresponding to the first
step of our optimization process (cf. Equation (4.1)). The number of timeouts for a fixed time
budget assesses the robustness of an algorithm and is in many applications and competitions
the primary evaluation criterion.

7Note that in our experiments, the performance of unclasp (Andres, Kaufmann, Matheis, & Schaub, 2012), which
optimizes based on unsatisfiable cores, did not exceed the perfomance of clasp in computing algorithm schedules.

56

4.4 Empirical Performance Analysis

Random Crafted Application ASP-Set
single best 254/600 155/300 85/300 446/2589
uniform 155/600 123/300 116/300 536/2589
ppfolio-like 127/600 126/300 88/300 308/2589
selection 115/600 101/300 74/300 296/2589
aspeed 131/600 98/300 83/300 290/2589
oracle 108/600 77/300 45/300 156/2432

3S-Set CSP-Set QBF-Set MaxSAT-Set
single best 1881/5467 288/2024 579/1368 99/337
uniform 1001/5467 283/2024 357/1368 21/337
ppfolio-like 796/5467 283/2024 357/1368 10/337
aspeed 603/5467 275/2024 344/1368 7/337
oracle 0/5467 253/2024 314/1368 0/337

Table 4.4: Comparison of different approaches w.r.t. #timeouts / #instances. The performance of
the best performing system is in boldface.

To obtain an unbiased evaluation of performance, we used 10-fold cross validation, a stan-
dard technique from machine learning: First, the runtime data for a given instance set are
randomly divided into 10 equal parts. Then, in each of the ten iterations, 9/10th of the data is
used as a training set for the computation of the schedule and the remaining 1/10th serves as
a test set to evaluate the performance of the algorithm schedule at hand; the results shown are
obtained by summing over the folds. We compared the schedules computed by aspeed against
the performance obtained from the single best, uniform, ppfolio-like, selection (SATzilla and clasp-
folio; if possible) approaches and the (theoretical) oracle. The latter provides a bound on the
best performance obtainable from any portfolio-based solver.
Table 4.4 shows the fraction of instances in each set on which timeouts occurred (smaller

numbers indicate better performance). In all cases, aspeed showed better performance than
the single best algorithm. For example, aspeed reduced the number of timeouts from 1881 to
603 instances (less 23% of unsolved instances) on the 3S-Set, despite the fact that aspeed was
unable to find the optimal schedule within the given 1200 CPU seconds on this set. Also,
aspeed performed better than the uniform approach. The comparison with ppfolio-like and
selection (SATzilla and claspfolio) revealed that aspeed performed better than ppfolio-like in seven
out of eight scenarios we considered, and better than SATzilla and claspfolio in two out of four
scenarios. We expected that aspeed would solve fewer instances than the selection approach in all
four scenarios, because aspeed, unlike SATzilla and claspfolio, does not use any instance features
or prediction of algorithm performance. It is somewhat surprising that SATzilla and claspfolio
do not always benefit from their more sophisticated approaches, and further investigation into
why this happens would be an interesting direction for future work.

4.4.4 Evaluation of Time-Minimal Alignment

After choosing the time slices for each algorithm, it is necessary to compute an appropriate
algorithm alignment in order to obtain the best runtimes for our schedules. As before, we used

57

4 Algorithm Scheduling via Answer Set Programming

10-fold cross validation to assess this stage of aspeed. To the best of our knowledge, there is
no system with a computation of alignments to compare against. Hence, we use a random
alignment as a baseline for evaluating our approach. Thereby, the expected performance of
a random alignment is the average runtime of all possible alignments. Since the number of
all permutations for ASP-Set and 3S-Set is too large (� 1 000 000 000), we approximate the
performance of a random alignment by 10 000 sampled alignments.
Table 4.5 shows the ratio of the expected performance of a random alignment and alignments

computed by aspeed. Note that this ratio can be smaller than one, because the alignments are
calculated on a training set and evaluated on a disjoint test set.
Also, we contrast the optimal alignment with two easily computable heuristic alignments to

avoid the search for an optimal alignment. The alignment heuristic heu-Opt sorts algorithms
beginning with the algorithm with the minimal number of timeouts (most robust algorithm),
while heu-Min begins with the algorithm with the smallest time slice.

Random Crafted Application ASP-Set∗

aspeed 1.16 1.15 1.03 1.13
heu-Opt 1.02 0.84 1.00 1.05
heu-Min 1.15 1.14 1.00 1.12

3S-Set∗ CSP-Set QBF-Set MaxSAT-Set
aspeed 1.21 1.12 1.27 2.13
heu-Opt 0.96 0.90 1.14 0.89
heu-Min 1.20 1.11 1.14 1.63

Table 4.5: Ratios of the expected performance of a random alignment and alignments computed by
aspeed , heu-Opt and heu-Min; heu-Opt sorts the algorithms beginning with the algorithm
with the minimal number of timeouts; heu-Min begins with the algorithm with the small-
est time slice. The expected performance of a random alignment was approximated by
10.000 samples for all sets marked with ∗.

As expected, the best performance is obtained by using optimal alignments within aspeed
(Table 4.5); it led, for example, to an increase in performance by a factor of 2.13 on MaxSAT-
Set. In all cases, the performance of heu-Min was strictly better than (or equal to) that of heu-Opt.
Therefore, using heu-Min seems desirable whenever the computation of an optimal alignment
is infeasible.
The actual runtimes of aspeed and the other approaches are quite similar to the results on the

number of timeouts (Table 4.4) (data not shown). The penalized runtimes (PAR10) are presented
in Figure 4.1 (a),(b) and (c) at #cores = 1.

4.4.5 Parallel Schedules

As we have seen in Section 4.2, our approach is easily extendable to parallel schedules. We
evaluated such schedules on Random, Crafted , Application and ASP-Set. The results of this
experiment are presented in Figure 4.1. These evaluations were performed using 10-fold cross
validation and measuring wall-clock time.
In each graph, the number of cores is shown on the x-axis and the PAR10 (penalized average

58

4.4 Empirical Performance Analysis

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 1 2 3 4 5 6 7 8

P
A

R
10

#cores

(a) Random - Parallel Schedule

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1 2 3 4 5 6 7 8

P
A

R
10

#cores

(b) Crafted - Parallel Schedule

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8

P
A

R
10

#cores

(c) Application - Parallel Schedule

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8

P
A

R
10

#cores

(d) ASP-Set - Parallel Schedule

Figure 4.1: Parallel Schedules single best (+), uniform (×), ppfolio-like approach (∗), aspeed (�), selec-
tion (�), oracle (©).

runtime)8 on the y-axis; we used PAR10, a commonly used metric from the literature, to capture
average runtime as well as timeouts. (The sequential performance of aspeed can be read off the
values obtained for one core.) Since the single best algorithm (+) and selection (�, SATzilla resp.
claspfolio) cannot be run in parallel, their performance is constant. Furthermore, the ppfolio-
like approach (∗) is limited to run at most three component algorithm on the first core with
uniform time slices and one component algorithms on each other core. This more constrained
schedule is also computed with the ASP encodings presented in Section 4.2 by adding three
more constraints.
As stated previously, the sequential version of aspeed (�) performed worse than SATzilla (�)

in Random and Application. However, aspeed turned out to perform at least as well as SATzilla
when using two or more cores, in terms of PAR10 scores as well in terms of average run-
time (data not shown). For example, aspeed-4P – that is parallel aspeed using four cores –
achieved a speedup of 1.20 over the sequential aspeed on Random (20 fewer timeouts), 1.10
on Crafted (9 fewer timeouts), 1.44 on Application (26 fewer timeouts) and 1.57 on ASP-Set
(111 fewer timeouts); furthermore, aspeed-4P solved 4, 13, 17, 117 instances more on these
sets than (sequential) SATzilla and claspfolio, respectively. Considering the high performance

8PAR10 penalizes each timeout with 10 times the given cutoff time (Hutter et al., 2009).

59

4 Algorithm Scheduling via Answer Set Programming

of SATzilla (Xu et al., 2012a) and claspfolio (Gebser et al., 2011), this represents a substantial
performance improvement.

3S-Set CSP-Set QBF-Set MaxSAT-Set
#TO PAR10 #TO PAR10 #TO PAR10 #TO PAR10

uniform-SP 1001 9847 283 7077 357 10176 21 1470
ppfolio-like-SP 796 7662 283 7077 357 9657 10 731
aspeed-SP 603 6001 275 6902 344 9272 7 516
uniform-4P 583 5720 253 6344 316 8408 4 511
ppfolio-like-4P 428 4095 253 6344 316 8404 4 353
aspeed-4P 204 2137 253 6344 316 8403 3 332
oracle 0 198 253 6344 314 8337 0 39

Table 4.6: Comparison of sequential and parallel schedules with 4 cores w.r.t. the number of
timeouts and PAR10 score.

Table 4.6 presents the performance of parallel aspeed with four cores (aspeed-4P), the parallel
uniform and parallel ppfolio-like schedule, respectively, on 3S-Set, CSP-Set, QBF-Set andMaxSAT-
Set. We decided to use only four cores because (i) CSP-Set and QBF-Set have two resp. five
algorithms, and therefore it is trivial to perform as well as the oracle with 4 or more cores, and
(ii) we saw in Figure 4.1 that the curves flatten beginning with four cores, which is an effect of
the complementarity of the algorithms in the portfolio. The performance of aspeed-SP , that is,
sequential aspeed , is already nearly as good as the oracle on MaxSAT-Set and aspeed-4P was only
able to improve the performance slightly. However, aspeed-4P was able to decrease the number
of timeouts from 603 to 204 on the 3S-Set.

4.4.6 Generalization Ability of aspeed

The schedule computation of aspeed uses runtime data measurements, which require extensive
computational resources. Therefore, we investigated the possibility to decrease the cutoff time
on the training data to reduce the overall computational burden of training. The schedules thus
obtained were evaluated on test data with an unreduced cutoff time. We note that only instances
are considered for the computation of schedules that are solved by at least one algorithm in the
portfolio. Therefore, using this approach with a lower training cutoff time, the computation of
a schedule is based on easier and fewer instances than those in the test set used to ultimately
evaluate it. Figures 4.2 show the results of evaluating the resulting schedules in the same way
as in the experiments for parallel schedules with 10-fold cross validation but using only one
processing unit. The cutoff time on the training set (shown on a logarithmic x-axis) was reduced
according to a 2/3-geometric sequence, from the maximal cutoff time of 5000 down to 195 CPU
seconds for Random, Crafted and Application and 900 down to 52 CPU seconds for the ASP-Set.
A flat line corresponds to the expected optimal case that the performance of a schedule does
not suffer from a reduced cutoff time; the uniform approach (×) does not rely on training data
and therefore has such a constant performance curve.
Surprisingly, the reduced cutoff time had nearly no effect on the performance of aspeed (�) on

Random (Figure 4.2a) and ASP-Set (Figure 4.2d). On the other hand, the selection of the single

60

4.4 Empirical Performance Analysis

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 100 1000 10000

P
A

R
10

cutoff in sec

(a) Random - Reduced Training Cutoff Time

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 100 1000 10000

P
A

R
10

cutoff in sec

(b) Crafted - Reduced Training Cutoff Time

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 100 1000 10000

P
A

R
10

cutoff in sec

(c) Application - Reduced Training Cutoff Time

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 100 1000

P
A

R
10

cutoff in sec

(d) ASP-Set - Reduced Training Cutoff Time

Figure 4.2: Reduced cutoff time, single best (+), uniform (×), ppfolio-like approach (∗), aspeed (�),
selection (�), oracle (©).

best algorithm (+) got worse with an increased cutoff time on the training data of Random. On
the Crafted set (Figure 4.2b), the performance of aspeed was found to benefit from an increased
cutoff time, but the improvement was small for a cutoff time longer than 2222 CPU seconds
(4/9 of the maximal cutoff time). In contrast, the improvement of the ppfolio-like approach (∗)
was small on Crafted and Random; and the performance of aspeed, ppfolio-like approach and
single best fluctuated on the Application set (Figure 4.2c). All three approaches benefited from
the maximal cutoff time (5000 CPU seconds); however, the benefit was small in comparison
to aspeed with the fully reduced cutoff time (195 CPU seconds). We conjecture that in the
case of Crafted, the easy instances are not representative for the harder instances in the test
set, unlike in the case of Random, where all instances were randomly generated and of similar
structure. Consequently, on sets like Random, easier instances can be used for the computation
of a schedule, even if the resulting schedule is ultimately applied to (and evaluated on) harder
instances.
In an additional experiment, we assessed the performance of aspeed in the context of prepar-

ing for a competition. aspeed was trained on instances of the 2009 SAT Competition with the
SAT solvers CryptoMiniSat, clasp and tnm, which are the same solvers used by ppfolio, and
evaluated on the instances of the 2011 SAT Competition; see Table 4.7. On the entire instance
set, aspeed had a PAR10 of 21196, in contrast to the single best algorithm with 32457 (a factor

61

4 Algorithm Scheduling via Answer Set Programming

Random Crafted Application Complete
single best 23662 29906 16942 32457
aspeed 19061 24623 16942 21196

Table 4.7: PAR10 of single best and aspeed , trained on 2009 SAT Competition and evaluated on
2011 SAT Competition.

1.53 higher). Also, aspeed outperformed the single best algorithm on Random and Crafted, and it
performed just as well as the single best algorithm on Application. This latter observation is due
the fact that the performance of CryptoMiniSat dominated on the Application set, and hence,
aspeed was unable to obtain improved performance on Application.

4.4.7 Comparison with 3S

In our final experiment, we compared aspeed with the SAT solver 3S , which uses an approach
similar to aspeed , but combines a static algorithm schedule with algorithm selection based on
instance features (see Section 4.5). Since only the sequential version of the solver 3S is freely
available but not the schedule building method, we could not train the models of 3S on new
benchmark sets. Therefore, we trained aspeed on the same training runtime measurements used
by the authors of 3S for training on the 2011 SAT Competition, namely the 3S-Set. We note
that training of 3S , unlike aspeed, additionally requires a set of instance features. Using these
versions of aspeed and 3S trained on the same set of instances, we measured the runtime of
both solvers (utilizing a single processor SP or multi-processor environment with four parallel
threads MP4) on the instances of the 2011 SAT Competition with the same cutoff of 5000 CPU
seconds as used in the competition.

Random Crafted Application Complete
3S 16415 23029 19817 18919
aspeed-SP 22095 22180 24579 22737
aspeed-4P 16380 20142 17164 17517

Table 4.8: PAR10 of 3S and aspeed , trained on the training data of 3S and evaluated on 2011 SAT
Competition.

Table 4.8 shows the results based on the PAR10 of the runtime measurements. The results are
similar to the comparison between SATzilla and aspeed . The single processor version of aspeed ,
aspeed-SP , outperformed 3S on Crafted in the sequential case. This could indicate that the
instance feature set, used by SATzilla and 3S , does not sufficiently reflect the runtime behaviour
of the individual algorithms on these types of instances. Furthermore, aspeed with four cores,
aspeed-4P , performed better than 3S on all three instance sets.

4.5 Related Work

Our work forms part of a long line of research that can be traced back to John Rice’s seminal
work on algorithm selection (1976) on one side, and to work by Huberman, Lukos, and Hogg

62

4.5 Related Work

(1997) on parallel algorithm portfolios on the other side.
Most recent work on algorithm selection is focused on mapping problem instances to a given

set of algorithms, where the algorithm to be run on a given problem instance i is typically
determined based on a set of (cheaply computed) features of i. This is the setting considered
prominently in (Rice, 1976), as well as by the work on SATzilla, which makes use of regression-
based models of running time (Xu, Hoos, & Leyton-Brown, 2007; Xu et al., 2008); work on
the use of decision trees and case-base reasoning for selecting bid evaluation algorithms in
combinatorial auctions (Guerri & Milano, 2004; Gebruers, Guerri, Hnich, & Milano, 2004); and
work on various machine learning techniques for selecting algorithms for finding maximum
probable explanations in Bayes nets in real time (Guo & Hsu, 2004). All these approaches
are similar to ours in that they exploit complementary strengths of a set of solvers for a given
problem; however, unlike these per-instance algorithm selection methods, aspeed selects and
schedules solvers to optimize performance on a set of problem instances, and therefore does
not require instance features.
It may be noted that the use of pre-solvers in SATzilla, that is, solvers that are run feature-

extraction and feature-based solver selection, bears some resemblance to the sequential solver
schedules computed by aspeed ; however, SATzilla considers only up to 2 pre-solvers, which are
determined based on expert knowledge (in earlier versions of SATzilla) or by exhaustive search,
along with the time they are run for.
CPhydra is a portfolio-based procedure for solving constraint programming problems that

is based on case-based reasoning for solver selection and a simple complete search procedure
for sequential solver scheduling (O’Mahony et al., 2008). Like the previously mentioned
approaches, and unlike aspeed , it requires instance features for solver selection, and, according
to its authors, is limited to a low number of solvers (in their work, five). Like the simplest
variant of aspeed , the solver scheduling in CPhydra aims to maximize the number of given
problem instances solved within a given time budget.
Early work on parallel algorithm portfolios highlights the potential for performance improve-

ments, but does not provide automated procedures for selecting the solvers to be run in parallel
from a larger base set (Huberman et al., 1997; Gomes & Selman, 2001). ppfolio, which demon-
strated impressive performance at the 2011 SAT Competition, is a simple procedure that runs
between 3 and 5 SAT solvers concurrently (and, depending on the number of processors or
cores available, potentially in parallel) on a given SAT instance. The component solvers have
been chosen manually based on performance on past competition instances, and they are all
run for the same amount of time. Unlike ppfolio, our approach automatically selects solvers
to minimize the number of timeouts or total running time on given training instances using a
powerful ASP solver and can, at least in principle, work with much larger numbers of solvers.
Furthermore, unlike ppfolio, aspeed can allot variable amounts of time to each solver to be run
as part of a sequential schedule.
Concurrently with our work presented here, Yun and Epstein (2012) developed an approach

that builds sequential and parallel solver schedules using case-based reasoning in combination
with a greedy construction procedure. Their RSR-WG procedure combines fundamental aspects
of CPhydra (O’Mahony et al., 2008) and GASS (Streeter, Golovin, & Smith, 2007); unlike aspeed ,
it relies on instance features. RSR-WG uses a relatively simple greedy heuristic to optimize
the number of problem instances solved within a given time budget by the parallel solver
schedule to be constructed; our use of an ASP encoding, on the other hand, offers considerably

63

4 Algorithm Scheduling via Answer Set Programming

more flexibility in formulating the optimization problem to be solved, and our use of powerful,
general-purpose ASP solvers can at least in principle find better schedules. Our approach also
goes beyond RSR-WG in that it permits the optimization of parallel schedules for runtime.
Gagliolo and Schmidhuber consider a different setting, in which a set of algorithms is run in

parallel, with dynamically adjusted timeshares (2006). They use a multi-armed bandit solver
to allocate timeshares to solvers and present results using two algorithms for SAT and winner
determination in combinatorial auctions, respectively. Their technique is interesting, but con-
siderably more complex than aspeed ; while the results for the limited scenarios they studied are
promising, so far, there is no indication that it would achieve state-of-the-art performance in
standardized settings like the SAT competitions.
For AI planning, Helmert et al. implemented the portfolio solver Fast Downward Stone

Soup (Helmert et al., 2011; Seipp et al., 2012) which statically schedules planners. In con-
trast to aspeed , Fast Downward Stone Soups computes time slices using a greedy hill climbing
algorithm that optimizes a special planning performance metric, and the solvers are aligned
heuristically. The results reported by Seipp et al. (2012) showed that an uniform schedule
achieved performance superior to that of Fast Downward Stone Soup. Considering our results
about uniform schedules and schedules computed by aspeed , we have reason to believe that the
schedules optimized by aspeed could also achieve performance improvements on AI planning
problems.
Perhaps most closely related to our approach is the recent work of Kadioglu et al. on al-

gorithm selection and scheduling (Kadioglu et al., 2011), namely 3S. They study pure al-
gorithm selection and various scheduling procedures based on mixed integer programming
techniques. Unlike aspeed , their more sophisticated procedures rely on instance features for
nearest-neighbour-based solver selection, based on the (unproven) assumption that any given
solver shows similar performance on instances with similar features (Kadioglu et al., 2010).
(We note that solver performance is known to vary substantially over sets of artificially created,
‘uniform random’ SAT and CSP instances that are identical in terms of cheaply computable
syntactic features, suggesting that this assumption may in fact not hold.) The most recent ver-
sion of 3S (Malitsky et al., 2012) also supports the computation of parallel schedules but is
unfortunately not available publicly or for research purposes. We focussed deliberately on a
simpler setting than their best-performing semi-static scheduling approach in that we do not
use per-instance algorithm selection, yet still obtain excellent performance. Furthermore, 3S
only optimizes the number of timeouts whereas aspeed also optimizes the solver alignment to
improve the runtime.

4.6 Conclusion

In this work, we demonstrated how ASP formulations and a powerful ASP solver (clasp) can be
used to compute sequential and parallel algorithm schedules. In principle, a similar approach
could be pursued using CP or ILP as done within 3S (Kadioglu et al., 2011). However, as we have
shown in this work, ASP appears to be a good choice, since it allows for a compact and flexible
encoding of the specification, for instance, by supporting true multi-objective optimization, and
can be applied to effectively solve the problem for many domains.
Compared to earlier model-free and model-based approaches (ppfolio and SATzilla, respec-

64

4.6 Conclusion

tively), our new procedure, aspeed , performs very well on ASP, CSP, MaxSAT, QBF and SAT –
five widely studied problems for which substantial and sustained effort is being expended in the
design and implementation of high-performance solvers. In the case of SAT, there is no single
dominant algorithm, and portfolio-based approaches leverage the complementary strength of
different state-of-the-art algorithms. For ASP, a situation exists with respect to different con-
figurations of a single solver, clasp. This latter case is interesting, because we essentially use
clasp to optimize itself. While, in principle, the kind of schedules we construct over various
configurations of clasp could even be used within aspeed instead of plain clasp, we have not yet
investigated the efficacy of this approach.
Our open-source reference implementation of aspeed is available online. We expect aspeed to

work particularly well in situations where various different kinds of problem instances have to
be solved (for example, competitions) or where single good (or even dominant) algorithms or
algorithm configurations are unknown (for example, new applications). Our approach leverages
the power of multi-core and multi-processor computing environments and, because of its use of
easily modifiable and extensible ASP encodings, can in principle be readily modified to accom-
modate different constraints on and optimization criteria for the schedules to be constructed.
Unlike most other portfolio-based approaches, aspeed does not require instance features and
can therefore be applied more easily to new problems.
Because, like various other approaches, aspeed is based on minimization of timeouts, it is

currently only applicable in situations where some instances cannot be solved within the time
budget under consideration (this setting prominently arises in many solver competitions). In
future work, we intend to investigate strategies that automatically reduce the time budget if too
few timeouts are observed on training data; we are also interested in the development of better
techniques for directly minimizing runtime.
In situations where there is an algorithm or configuration that dominates all others across

the instance set under consideration, portfolio-based approaches are generally not effective
(with the exception of performing multiple independent runs of a randomized algorithm). The
degree to which performance advantages can be obtained through the use of portfolio-based
approaches, and in particular aspeed , depends on the degree to which there is complementarity
between different algorithms or configurations, and it would be interesting to investigate this
dependence quantitatively, possibly based on recently proposed formal definitions of instance
set homogeneity (Schneider & Hoos, 2012). Alternatively, if a dominant algorithm configuration
is expected to exist but is unknown, such a configuration could be found using an algorithm
configurator, for instance ParamILS (Hutter, Hoos, & Stützle, 2007; Hutter et al., 2009),
GGA (Ansótegui et al., 2009), F-Race (López-Ibáñez et al., 2011) or SMAC (Hutter et al.,
2011a). Furthermore, automatic methods, like hydra (Xu et al., 2010) and isac (Kadioglu et al.,
2010), construct automatically complementary portfolios of algorithm configurations with the
help of algorithm configurators which could be also combined with aspeed to further increase
its performance.

65

5 Advances in Algorithm Selection for
Answer Set Programming

Answer Set Programming (ASP; (Baral, 2003)) has become a popular approach to declarative
problem solving. This is mainly due its appealing combination of a rich and simple modeling
language with high performance solving technology. ASP decouples problem specifications
from solving algorithms; however, modern ASP solvers are known to be sensitive to search
configurations – a phenomenon that is common to advanced Boolean constraint processing
techniques. To avoid the necessity of manual solver configuration, a substantial amount of
research was thus devoted to automated algorithm configuration and selection approaches, as
we detail in Section 5.1; in ASP, we find work by Gebser et al.(2011), Hoos et al.(2012), Maratea,
Pulina, and Ricca(2012), Silverthorn, Lierler, and Schneider(2012) and Maratea, Pulina, and
Ricca(2013), and in particular the two portfolio-based systems claspfolio (Gebser et al., 2011)
and ME-ASP (Maratea et al., 2013). The idea of such portfolio-based systems is to train
classifiers on features of benchmark instances in order to predict the putatively best solver from
a given solver portfolio. The portfolio of solvers used in this approach may consist of distinct
configurations of the same solver or contain different solvers.
In what follows, we describe the new portfolio-based ASP system claspfolio, whose earlier

version 1.0 won first, second, and third places at various ASP competitions. Version 0.8 of
claspfolio was briefly described in a short paper by Gebser et al. (2011) and is conceptually
identical to the first stable release of version 1.0. The key design features of this prototype were
(i) feature generation using a light-weight version of the ASP solver clasp, the original claspre
system, (ii) performance estimation of portfolio solvers via support vector regression, and (iii)
a portfolio consisting of different clasp configurations only. In contrast to this rigid original
design, the new version 2 of claspfolio provides a modular and open architecture (Section 5.2)
that allows for integrating several different approaches and techniques. This includes (i) different
feature generators, (ii) different approaches to solver selection, (iii) variable solver portfolios, as
well as (iv) solver-schedule-based pre-solving techniques. The default setting of claspfolio 2 relies
on an advanced version of claspre (Section 5.3), a light-weight version of clasp that produces
statistics based on which numerous static and dynamic instance features are generated.
The flexible and open design of claspfolio 2 is a distinguishing factor even beyond ASP.

As such, it provides a unique framework for comparing and combining existing approaches
and techniques in a uniform setting. We take advantage of this and conduct an extensive ex-
perimental study comparing the influence of different options regarding (i), (ii), and (iii). In
addition to gaining insights into the impact of the various approaches and techniques, we iden-
tify distinguished options showing substantial performance gains not only over clasp’s default
configuration but moreover over manually tuned configurations of clasp. claspfolio 2 is 19-51%
faster than the best known static clasp configuration and also 14-37% faster than claspfolio 1.0,
as shown in Table 5.8 at the end of the paper. To facilitate reproducibility of our results and to

66

5.1 Related Work

promote the use of high-performance ASP solving technology, we have made claspfolio 2 pub-
licly available as open-source software at http://potassco.sourceforge.net/#claspfolio.

5.1 Related Work

Our work continues a long line of research that can be traced back to John Rice’s seminal
work on algorithm selection (Rice, 1976) on one side, and to work by Huberman et al. (1997)
on parallel algorithm portfolios on the other side. Especially on SAT problems, automatic
algorithm selectors have achieved impressive performance improvements in the last decade.
SATzilla ((Xu et al., 2008, 2008, 2007; Xu, Hutter, Hoos, & Leyton-Brown, 2009, 2011))
predicted algorithm performance by means of ridge regression until 2009 and nowadays uses a
pairwise voting scheme based on random forests; isac (Kadioglu et al., 2010) clusters instances
in the instance feature space and uses a nearest neighbour approach on cluster centers for
algorithm selection; 3S (Kadioglu et al., 2011; Malitsky et al., 2013b) uses k-NN in the feature
space and introduces pre-solving schedules computed by Integer Linear Programming and cost-
sensitive clustering; SNAPP (Collautti, Malitsky, Mehta, & O’Sullivan, 2013) predicts algorithm
performance based on instance features and chooses an algorithm based on the similarity of
the predicted performances. All these systems are specialized on a single approach. They
are highly efficient but do not provide a uniform setting, that is, different inputs and different
performance metrics.
Apart from SAT, there exist several algorithm selectors for other problems. Following the

original claspfolio of Gebser et al. (2011) approach, Maratea et al. (2012) presented ME-
ASP, a multi-engine algorithm selector for ASP with an instance feature generator for syntactic
features. Similarly, AQME (Pulina & Tacchella, 2007) is a multi-engine selector for QSAT.
CPhydra (O’Mahony et al., 2008) selects a set of CSP solvers based on case-based reasoning
and schedules them heuristically. Fast Downward Stone Soup (Seipp et al., 2012; Helmert et al.,
2011) uses greedy hill climbing to find algorithm schedules for planning problems. aspeed (Hoos
et al., 2015) also computes algorithm schedules, but takes advantage of the modeling and
solving capabilities of ASP to find timeout-minimal schedules.
Related to our work on a more general level, Hutter, Xu, H.Hoos, and Leyton-Brown (2014b)

gave an overview over runtime prediction techniques, which is also used in some algorithm
selection approaches, for example, SATzilla’09. A comparison of different machine learning
algorithms for algorithm selection was presented by Kotthoff, Gent, and Miguel (2012). Based
on these results, Kotthoff (2013) introduced LLAMA, Leveraging Learning to Automatically
Manage Algorithms, a flexible framework that provides functionality to train and assess the
performance of different algorithm selection techniques.

5.2 Generalized Algorithm Selection Framework

The algorithm framework of claspfolio 2 combines the flexibility of LLAMA with additional
state-of-the-art techniques and produces an executable algorithm selection solver. As such, it
provides a unique framework for comparing and combining existing approaches and techniques
in a uniform setting. Furthermore, the new design of claspfolio 2 follows the idea of Level 4
of programming by optimisation (Hoos, 2012): “The software-development process is centered on the

67

http://potassco.sourceforge.net/#claspfolio

5 Advances in Algorithm Selection for Answer Set Programming

Resources

Data Collection

Prediction Scheduling

Training

Solving

Training Instances Algorithms

Assess PerformanceCompute Featuresclaspre

Feature Preprocessing Performance
Preprocessing

Train Scoring Model

Performance Estimation

Algorithm Schedule
by aspeed

Run Pre-Solving
Schedule

Run Best Scored
Algorithm

I

if not successful

Score AlgorithmsCompute Features(New) Instance

Run Backup
Algorithm

failed

II

Figure 5.1: General workflow of claspfolio 2. Objects such as algorithms and instances are shown
as rectangles, and activities are depicted as rectangles with rounded corners. Activities
related to algorithm are tinted red and activities related to algorithm schedules yellow.

idea of providing design choices and alternatives in all parts of a project that might benefit from
them; design choices that cannot be justified convincingly are not made prematurely.”

A further distinguishing feature of the claspfolio 2 framework is the efficient and deep inte-
gration of an algorithm scheduling system, viz. aspeed (Hoos et al., 2015), into an algorithm
selection framework to compute a static pre-solving schedule. claspfolio 2 uses aspeed to deter-
mine the running times used within pre-solving schedules. Thereby, it considers the estimated
quality of the algorithm selector to determine the running time of the complete pre-solving
schedule. This also allows us to integrate the pre-solving strategies of SATzilla and 3S .

The general workflow underlying claspfolio 2 consists of collecting training data, learning
a prediction model and training a pre-solving schedule; the portfolio-based ASP solver thus
obtained solves a given problem instance with the pre-solving schedule and a solver selected by
the prediction model. In what follows, we describe how this workflow is implemented efficiently
in claspfolio 2; see Figure 5.1.

1. Resources. To train an algorithm selector, training instances and a portfolio of algorithms
are required. Algorithm selection is based on the assumption that the given training instances
are representative for the instances to be solved using the trained algorithm selection solver.
In addition, a portfolio, that is, a set of algorithms with complementary strengths (for example,
high-performance solvers used in a competition), provides the basis for algorithm selectors to
efficiently solve a large variety of instances.

68

5.2 Generalized Algorithm Selection Framework

2. Data Collection. An algorithm selection task is defined based on the performance of
all algorithms on all training instances (Assess Performance), instance features for each in-
stance (Compute Features) and the costs for feature computation define an algorithm selection
task.claspfolio 2 supports several feature generators, of which claspre is used by default.

3. Training. The training phase of claspfolio 2 makes use of two distinct components: Predic-
tion and Scheduling. Both components can also be used separately in claspfolio 2.
The Prediction component of claspfolio 2 involves feature pre-processing, for example, feature

normalization and feature selection, and performance pre-processing, for example, performance
score transformation and algorithm filtering1. Based on the preprocessed data, a scoring model is
learned, which maps the feature vector for a given problem instance to scores for all algorithms
such that algorithms expected to perform well on the given instances are assigned better scores.
The Scheduling component of claspfolio 2 computes a timeout-minimal pre-solving schedule

using aspeed (Hoos et al., 2015), where each algorithm gets a (potentially zero) time slice of the
overall runtime budget available for solving a given problem instance. If the prediction compo-
nent is not used, the schedule consists only of the given algorithms. If the prediction component
is used, cross validation is used to obtain an unbiased estimate of the performance (Performance
Estimation) of the prediction component (Arrow I). The resulting performance estimate of the
prediction component is used as an additional simulated algorithm in the schedule generation
process. All components of the schedule except the simulated one form the pre-solving sched-
ule used in claspfolio 2. If the prediction performs well, the pre-solving schedule may be empty
because the pre-solving schedule cannot perform better than a perfect predictor, that is, the
selection of the best solver. In contrast, if prediction performs very poorly (for example, as a
result of non-informative instance features), the simulated algorithm may be assigned a time
slice of zero seconds and the prediction component is de facto ignored in the solving step.
Like SATzilla (Xu et al., 2008), claspfolio 2 allows to ignore instances solved by the pre-

solving schedule (Arrow II) when learning the scoring model, such that the resulting model
is focused on the harder instances not solved by the pre-solvers that are actually subject to
algorithm selecting during the solving phase.

4. Solving a (new) instance starts with the computation of its features. If feature computation
fails, for example, because it requires too much time, a backup solver is used to solve the
instance. Otherwise, the scoring model is used to score each algorithm of the portfolio based
on the computed feature vector. If the algorithm with the best score is part of the pre-solving
schedule, it is removed from the schedule, because running the same algorithm twice does not
increase the solving probability (when using deterministic algorithms like clasp). Next, the pre-
solving schedule is executed.2 If at the end of executing the pre-solving schedule, the instance
has not been solved, the algorithm with the highest score is run for the remainder of the overall
time budget.

1Algorithm filtering removes components of the portfolio given some strategy, for example, algorithms with a
marginal contribution on virtual best solver performance of 0 can be removed. In (Xu et al., 2008), this is called
solver subset selection and in (Maratea et al., 2012), solver selection.

2Unlike this, SATzilla runs the pre-solving schedule first and then computes the instance features, because the
feature computation can be costly in SAT and the pre-solving schedule can solve the instance without incurring
this cost. However, this does not permit removal of the selected solver from the pre-solving schedule.

69

5 Advances in Algorithm Selection for Answer Set Programming

Is Tight?
Problem Variables
Free problem Variables
Assigned problem Variable
Constraints
Constraints / #Variables
Created Bodies
Program Atoms
SCCs
Nodes in positive BADG

Rules
#,% Normal Rules
#,% Cardinality Rules
#,% Choice Rules
#,% Weight Rules
% Negative body Rules
% Positive body Rules
% Unary Rules
% Binary Rules
% Ternary Rules

% Integrity Constraints
Equivalences
#,% Atom-Atom Equivalences
#,% Body-Body Equivalences
#,% Other Equivalences
#,% Binary Constraints
#,% Ternary Constraints
#,% Other Constraints

Table 5.1: 38 static features computed by claspre (# = number, % = fraction, SCCs = Strongly
Connected Components, BADG = Body-Atom-Dependency Graph)

Choices
Conflicts / #Choices
∅ conflict level
∅ LBD level
#,% Learnt conflict nogoods
#,% Learnt loop nogoods

#,% Literals conflict nogoods
#,% Literals loop nogoods
#,% Removed nogoods
#,% Learnt binary nogoods
#,% Learnt ternary nogoods
#,% Learnt other nogoods

Longest backjump (bj)
#,∅ Skipped levels while bj
running average Conflict level
running average LBD level

Table 5.2: 25 dynamic features computed (at each restart) by claspre
(# = number, % = fraction, ∅ = average, LBD = Literal Blocking Distance)

5.3 claspre: Instance Features for ASP

The entire concept of algorithm selection is based on instance features which characterize
benchmark instances and allow for predicting the putatively best solver from a given portfolio.
These instance features should be cheap-to-compute to save as much time as possible for the
actual solving process, but should also provide sufficient information to distinguish between
(classes of) instances for which different solvers or solver configurations work best.
For feature generation, claspfolio 2 uses claspre in its default configuration. claspre is a light-

weight version of clasp (Gebser et al., 2011) that extracts instance features of ground ASP
instances in smodels format (Syrjänen, 2001), using clasp’s internal statistics. The features de-
termined by claspre can be grouped into static and dynamic ones. The former are listed in
Table 5.1 and include 38 properties, such as number of constraints. Beyond that, claspre per-
forms a limited amount of search to collect dynamic information about solving characteristics.
These dynamic features are computed after each restart of the search process, where restarts
are performed after a fixed number of conflicts. Thereby, 25 dynamic features (Table 5.2)
are extracted after each restart, such as the average number of conflict levels skipped while
back-jumping.

70

5.4 Empirical Performance Analysis on ASP

The number of restarts performed is a parameter of claspre. More restarts lead to longer
feature vectors that may contain more information. The number of restarts and number of
conflicts between restarts determine the time used by claspre for feature computation We note
that the pre-processing and search performed by claspre can actually solve a given ASP instance.
The probability of this happening increases with the length of the search performed within
claspre; however, at the same time, long runs of claspre reduce the time available for running
solvers from the portfolio.

5.4 Empirical Performance Analysis on ASP

As previously described, claspfolio 2’s modular and open architecture (Section 5.2) allows for in-
tegrating several different approaches and techniques, including (i) different feature generators,
(ii) different approaches to solver selection, as well as (iii) variable solver portfolios. Taking ad-
vantages of this flexibility, we conducted an extensive experimental study to assess the efficacy
of the various choices on large and representative sets of ASP instances.
Training data of claspfolio 2 is stored in the algorithm selection data format of the Algorithm

Selection Library (ASlib) developed by the COSEAL Group,3 an international group of experts
in the field of algorithm selection and configuration. Detailed experimental results and the
source code of claspfolio 2 are available at http://www.cs.uni-potsdam.de/claspfolio.
Our empirical analysis makes use of commonly used techniques from statistics and machine
learning (see, for example, (Bishop, 2007)).

5.4.1 Setup

All our experiments were performed on a computer cluster with dual Intel Xeon E5520 quad-
core processors (2.26 GHz, 8192 KB cache) and 48 GB RAM per node, running Scientific
Linux (2.6.18-308.4.1.el5). Each algorithm run was limited to a runtime cutoff of 600 CPU
seconds and to a memory cutoff of 6 GB. Furthermore, we used permutation tests with 100 000
permutations and significance level α = 0.05 to our performance metrics, the (0/1) timeout
scores, the PAR10 scores and the PAR1 scores,4 to asses the statistical significance of observed
performance differences.

5.4.2 Instance Sets

We used all instances submitted to the 2013 ASP Competition in the NP category that could
be grounded with gringo (3.0.5) within 600 CPU seconds and 6 GB memory. The resulting
instance set consists of 2214 instances from 17 problem classes; we call it Comp-13-Set. As an
even more heterogeneous instance set, we used the ASP Potassco-Set introduced by Hoos et al.
(2013); it consists of 2589 instances from 105 problem classes and includes instances from the
ASP competitions organized in 2007 (SLparse track), 2009 (with the encodings of the Potassco
group) and 2011 (decision NP-problems from the system track), as well as several instances from

3https://code.google.com/p/coseal
4PARX is the penalized average runtime penalizing timeouts by X times the runtime cutoff.

71

http://www.cs.uni-potsdam.de/claspfolio
https://code.google.com/p/coseal

5 Advances in Algorithm Selection for Answer Set Programming

the ASP benchmark collection platform asparagus.5 All instances were grounded with gringo,
and the grounding time was not counted towards solving the instances.
Each instance set was randomly split into equally sized, disjoint training and test set; only

the training sets were used in the process of building algorithm portfolios. The resulting
claspfolio 2 solvers were evaluated on the hold-out test sets. We also used the training instances
to determine the best claspfolio 2 configuration (Subsection 5.3). To assess the performance of
claspfolio 2 (Subsection 5.6), we used a 10-fold cross validation on the test set. Notice that we
cannot use the training set for claspfolio 2 to obtain an unbiased learned model, because the
algorithm portfolios have an optimistic performance estimation on the training set on which
they were build.

5.4.3 Building Algorithm Portfolios

In addition to a set of training instances, a portfolio (that is, a set) of algorithms is required
to construct a portfolio solver. claspfolio 2 can handle portfolios containing different solvers
as well as different configurations of a given solver, all of which are viewed as individual ASP
solvers. We investigated the following portfolios of ASP solvers:

• Expert-portfolio of four clasp (2.1.3) configurations designed by Benjamin Kaufmann (con-
figurations: frumpy (default), jumpy, handy and crafty)

• SOTA-portfolio (Maratea et al., 2012): non-portfolio solvers participating in the 2013 ASP
Competition6 and in addition, the well-established solvers cmodels and smodels; in detail:
clasp (Gebser et al., 2011), cmodels (Giunchiglia et al., 2006), lp2bv (Nguyen, Janhunen,
& Niemelä, 2013), lp2mip (Liu, Janhunen, & Niemelä, 2012), lp2sat (Janhunen, 2006),
smodels (Simons et al., 2002), and wasp (Alviano, Dodaro, Faber, Leone, & Ricca, 2013)

• Hydra-like-portfolio (Xu et al., 2010, 2011) of clasp (2.1.3) configurations

• ISAC-like-portfolio (Kadioglu et al., 2010) of clasp (2.1.3) configurations

Expert-portfolio and SOTA-portfolio are portfolios manually constructed by experts. In con-
trast, hydra and isac are automatic methods for constructing portfolios using algorithm con-
figurators, for example, ParamILS (Hutter et al., 2007), GGA (Ansótegui et al., 2009) or
SMAC (Hutter et al., 2011a). They generate a portfolio of configurations of a given solver
by determining configurations that complement each other well on a given set of training
instances, with the goal of optimizing the performance of the portfolio under the idealized
assumption of perfect selection; this performance is also called the virtual best solver (vbs) or
oracle performance of the portfolio.
An implementation of hydra that can be applied to solvers for arbitrary problems has not yet

been published by (Xu et al., 2010); therefore, we have implemented our own version of hydra
(in consultation with the authors), which we refer to as Hydra-like-portfolio in the following.
Also, since the only published version of isac (2.0) does not include algorithm configuration, we
reimplemented the part of isac responsible for portfolio generation, dubbed ISAC-like-portfolio.
In contrast to the original isac, which performs g-means clustering, ISAC-like-portfolio uses

5http://asparagus.cs.uni-potsdam.de
6IDP3 was removed from the portfolio because it was strongly dominated by all other solvers.

72

http://asparagus.cs.uni-potsdam.de

5.4 Empirical Performance Analysis on ASP

Comp-13-Set Potassco-Set
#TOs PAR10 PAR1 #TOs PAR10 PAR1

Expert-portfolio 360 2169 255 100 491 74
SOTA-portfolio 335 1866 231 111 538 75
Hydra-like-portfolio 326 1798 207 82 400 58
ISAC-like-portfolio 313 1724 196 99 476 63

Table 5.3: Virtual best solver (VBS) performance of portfolio building approaches on test sets.
Results shown in boldface were statistically significantly better than all others within
the respective column (according to a permutation test with 100 000 permutations and
α = 0.05).

k-means clustering, where the number of clusters is determined by using cross-validation to
optimize the scoring function of the k-means procedure (following Hoos et al. (2013)).
Using this approach, ISAC-like-portfolio found 15 clusters for Comp-13-Set and 11 clusters for

Potassco-Set, inducing 15 and 11 configuration tasks, respectively. To obtain a fair comparison,
we allocated the same time budget to Hydra-like-portfolio and allowed it to perform 15 and 11
iterations, respectively (each consisting of one configuration task). The configuration process
performed by SMAC (2.06.01; (Hutter et al., 2011a)) on each cluster and in each hydra iteration,
respectively, was allocated 120 000 CPU seconds, that is, 200 times the target algorithm cutoff
time, and 10 independent repetitions, from which the result with the best PAR10 score on the
given training set was selected. SMAC optimized PAR10.
Table 5.3 shows the performance of the virtual best solvers (that is, the performance of

a perfect algorithm selector) for the different considered portfolios. Interestingly, the results
differ qualitatively between two benchmark sets. While SOTA-portfolio performs better than
Expert-portfolio on Comp-13-Set, Expert-portfolio is better on Potassco-Set. Furthermore, while for
both sets, the automatic generation methods found better performing portfolios than the the
manual selected methods, on the Comp-13-Set, ISAC-like-portfolio produced a better results than
Hydra-like-portfolio, and the opposite holds for Potassco-Set. Furthermore, unlike conjectured by
Maratea et al. (2012), a set of configurations of the same, highly parameterized solver (Expert-
portfolio, ISAC-like-portfolio and Hydra-like-portfolio) generally did not yield worse performance
than a mixed portfolio, such as SOTA-portfolio.
While we gave hydra the same time budget as isac to find portfolios, the components added

by Hydra-like-portfolio in its final three iterations decreased the number of timeouts only by one
on our training and test sets. Following Xu et al. (2010), hydra would be terminated when
the performance does not improve on the training set after an iteration. Hence, Hydra-like-
portfolio not only produced a better portfolio on Potassco-Set than isac, but also does so using
less configuration time than isac.

5.4.4 Feature Sets

In addition to the claspre feature set presented in Section 5.3, we considered a set of ASP features
introduced by Maratea et al. (2013) that is focussed on very efficiently computable syntactic
features, such as number of variables. The published version of their feature generator supports

73

5 Advances in Algorithm Selection for Answer Set Programming

Comp-13-Set Potassco-Set
Min Q0.25 Median Q0.75 %TOs Min Q0.25 Median Q0.75 %TOs

claspre(s) 0.04 1.43 1.72 8.83 16.2 0.13 0.91 1.38 1.72 1.0
claspre(s+d) 0.07 1.36 1.72 13.94 16.2 0.18 0.87 1.48 1.81 1.1
ME-ASP 0.04 1.18 1.97 15.97 3.2 0.06 0.83 1.10 1.79 0.1
lp2sat 0.08 24.88 484.85 600 49.4 0.04 3.81 21.82 91.13 14.6

Table 5.4: Time required for computing the features of a single ASP instance in CPU seconds, with
a 600 seconds runtime cutoff. We report minimum (Min), 25% quartile (Q0.25), median
and 75% quartile (Q0.75) of the distribution over the respective instance set, as well as
the percentage of timeouts (%TOs).

only the ASPCore 1.0 (Calimeri, Ianni, & Ricca, 2011a) language of the 2011 ASP Competition.
Our Comp-13-Set consists of instances of the 2013 ASP Competition in ASPCore 2.0, which
introduced further language constructs. Therefore, we re-implemented this feature generator
with the help of (Maratea et al., 2013) to be compatible with ASPCore 2.0.7

One of the most established and investigated feature generators for SAT is provided as part
of SATzilla (Xu et al., 2008). ASP instances can be translated to SAT with techniques by
Janhunen (2006), using his tool lp2sat. We use a combination of lp2sat8 with the feature
generator of SATzilla to generate a set of instance features for ASP instances; this is the first
time, these features are studied in the context of ASP. Since the full set of SATzilla features is
very expensive to compute and our SAT encodings can get quite large, we decided to only use
the efficiently computable base features.
Table 5.4 shows the runtime statistics for claspre with static features, claspre(s), claspre with

static and dynamic features, claspre(s+d), with 4 restarts and 32 conflicts between the restarts,
the (re-implemented) feature generator of ME-ASP and the combination of lp2sat and SATzilla’s
feature generator on our full benchmark sets (training + test instances). claspre(s) is only slightly
faster than claspre with additional dynamic features, since its search was limited to 128 con-
flicts. To solve typical ASP instances, searches well beyond 100000 conflicts are often required;
nevertheless, claspre(s) solved 51 instances through pre-processing, and claspre(s+d) solved 123
instances on Comp-13-Set, 9 and 400 instances on Potassco-Set, respectively. The feature genera-
tion of ME-ASP was faster, but (unsurprisingly, considering the nature of these features) did not
solve any instance. Because of the substantial overhead of generating translations from ASP to
SAT, the combination of lp2sat and SATzilla’s feature generator turned out to be substantially
slower than the other approaches and failed to compute the feature vectors of 1094 instances
on Comp-13-Set and 377 instances on Potassco-Set within the given cutoff time.

5.4.5 Algorithm Selection Approaches

As previously mentioned, claspfolio 2 was explicitly designed to easily integrate several state-of-
the-art algorithm selection approaches. This not only permits us to optimize the performance
of claspfolio 2, but also to compare the considered algorithm selection approaches within a

7The new feature generator is implement in Python, whereas the original generator was implemented in C++,
which induced an overhead of a factor 2 in terms of running time on average on ASPCore 1.0 instances from
the 2011 ASP Competition.

8lp2sat was used as submitted at the 2013 ASP Competition.

74

5.4 Empirical Performance Analysis on ASP

Approach Feat. Norm. Pre-Solver Pre-Solver Time [sec]
aspeed static schedule none ≤ ∞ ≤ ∞

claspfolio-1.0-like SVR z-score 0 0
ME-ASP-like nearest neighbor none 0 0
ISAC-like k-means clustering linear 0 0
3S-like k-NN linear ≤ ∞ ≤ cutoff/10
SATzilla’09-like ridge regression z-score ≤ 2 ≤ 20
SATzilla’11-like voting with random

forest
z-score ≤ 3 ≤ 30

Table 5.5: Excerpt of algorithm selection mechanism supported by claspfolio 2.

controlled environment. Although our re-implementations may not reproduce the original
implementations in all details (something that would be difficult to achieve, considering that
sources are not available for some published approaches), they provide the only freely available,
open-source implementations of some of these systems and thus provide a basis for further
analysis and improvements.9

Table 5.5 gives an overview of the approaches available within claspfolio 2. These differ
with respect to (i) the algorithm selection method, (ii) the feature normalization technique, (iii)
the maximal number of pre-solvers used and (iv) the maximal running time allocated to the
pre-solving schedule. In all cases, the pre-solving schedules were computed by aspeed , and
hyperparameters of the machine learning techniques were set using grid search on training
data.

5.4.6 Results

We have assessed the performance of claspfolio 2 on all 112 combinations of our 4 feature
sets, 4 portfolios and 7 algorithm selection approaches, using a cross validation on both test
sets. To study the effect of each design choice, we collected statistics over the distribution
of results by keeping one choice fixed and varying all remaining components; the results are
shown in Table 5.6. The top part of the table shows results obtained for using each of the
feature sets, in terms of average PAR10 performance, standard deviation in PAR10 performance
and best PAR10 performance over all 28 combinations of portfolios and selection approaches.
The subsequent parts of Table 5.6 show analogous results for different portfolios and selection
approaches.
On average, the best feature set was claspre(s) (the static claspre features) on Comp-13-Set,

followed by claspre(s+d) (the static + dynamic claspre features), the feature sets of ME-ASP and
lp2sat. However, the best claspfolio 2 configuration on Comp-13-Set used ME-ASP . The fact
that claspre(s+d) gave worse results than claspre(s), although the former is superset of the latter,
indicates that not all features were useful and that feature selection should be used to identify
a subset of features with highest information content. On Potassco-Set, the best average perfor-
mance and the best performance of any claspfolio 2 configuration was consistently obtained by

9As with hydra and isac above, published and trainable, general-purpose implementations of 3S and ME-ASP are
not available.

75

5 Advances in Algorithm Selection for Answer Set Programming

Impact of feature set
Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
claspre(s) 2116.3±128.7 1927.0 638.9±81.1 490.6
claspre(s+d) 2127.6±122.6 1931.3 630.8±78.1 480.0
ME-ASP 2138.4±127.7 1919.4 661.0±108.8 486.0
lp2sat 2240.3±81.3 2056.9 688.3±45.6 610.3

Impact of portfolio
Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
Expert-portfolio 2251.8±55.0 2165.0 679.1±47.7 621.6
SOTA-portfolio 2172.4±60.6 2072.9 691.9±55.3 614.7
Hydra-like-portfolio 2141.5±160.4 1943.7 609.6±103.5 480.0
ISAC-like-portfolio 2056.9±111.3 1919.4 638.3±90.9 526.7

Impact of selection mechanism
Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
aspeed 2292.8±66.1 2222.0 731.2±40.8 672.6
claspfolio-1.0-like 2152.7±108.0 1978.6 650.3±58.3 519.3
ME-ASP-like 2245.3±77.3 2091.8 753.3±76.7 656.8
ISAC-like 2100.1±113.5 1939.5 608.4±65.7 490.6
3S-like 2092.0±109.2 1927.0 596.0±57.6 489.1
SATzilla’09-like 2120.3±99.4 1932.6 652.7±48.2 544.0
SATzilla’11-like 2086.4±125.9 1919.4 591.1±62.5 480.0

Table 5.6: Statistics (µ = average, σ = standard deviation, min = minimum) of PAR10 performance
over all combinations except for the one kept fixed to assess its impact.

using claspre(s+d). We believe that the additional dynamic features are necessary to distinguish
between the larger number of different problem classes in Potassco-Set.
The results on the impact of the portfolio of algorithms used as a basis for algorithm selection

confirm our assumption that the best potential performance, that is, best VBS performance, is a
good indicator of the actual performance achieved by a high-performance selection approach.
On Comp-13-Set, ISAC-like-portfolio achieved the best performance, while on Potassco-Set, Hydra-
like-portfolio yielded even better results. Furthermore, the portfolios obtained using the two
automatic portfolio generation methods, isac and hydra, yielded better results than the manually
created ones, Expert-portfolio and SOTA-portfolio.
As shown in the lower part of Table 5.6, the SATzilla’11-like approach performed best on both

benchmark sets, followed closely by 3S-like and ISAC-like. SATzilla’09-like and claspfolio-1.0-like
showed similar, but weaker performance results, followed by the ME-ASP-like approach and the
pure algorithm schedules of aspeed .
Overall, the best combination both on the training and test sets of Comp-13-Set was the

ME-ASP features, ISAC-like-portfolio and SATzilla’11-like selection approach, and claspre(s+d)
features, Hydra-like-portfolio and SATzilla’11-like selection approach for Potassco-Set.

76

5.5 Empirical Performance Analysis on ASlib

Scenario |I| |U | |A| |F |

ASP-POTASSCO 1294 82 11 138
CSP-2010 2024 253 2 17
MAXSAT12-PMS 876 129 6 37
PREMARSHALLING-ASTAR-2013 527 0 4 16
QBF-2011 1368 314 5 46
SAT11-HAND 296 77 15 115
SAT11-INDU 300 47 18 115
SAT11-RAND 600 108 9 115
SAT12-ALL 1614 20 31 115
SAT12-HAND 767 229 31 115
SAT12-INDU 1167 209 31 115
SAT12-RAND 1362 322 31 115

Table 5.7: Overview of algorithm selection scenarios in Algorithm Selection Library with the num-
ber of instances |I|, number of unsolvable instances |U | (U ⊂ I), number of algorithms
|A|, and number of features |F |.

5.5 Empirical Performance Analysis on ASlib

The flexible framework of claspfolio 2 is not limited to ASP algorithms but it can also be applied
to arbitrary algorithm selection scenarios. For this purpose, claspfolio 2 reads the format of the
Algorithm Selection Library (ASlib10). We have assessed the selection approaches discussed in
the previous section to investigate their strengths and weaknesses

5.5.1 Algorithm Selection Scenarios

ASlib contains a diverse set of algorithm scenarios from different applications. We note that
the algorithm schedules implemented in claspfolio 2 via aspeed mainly optimize the number
of timeouts which limits the application of claspfolio 2 to scenarios with runtime as perfor-
mance type. 12 out of 14 scenarios have runtime as performance type, that is, ASP-POTASSCO,
CSP-2010 , MAXSAT12-PMS , PREMARSHALLING-ASTAR-2013 , QBF-2011 , SAT11-INDU , SAT11-
HAND, SAT11-RAND, SAT12-ALL, SAT12-INDU , SAT12-HAND and SAT12-RAND. For a detailed
description of these scenarios, we refer to Table 5.7.

5.5.2 Setup

Since the complete feature set of the SAT scenarios can generate a large amount of overhead,
we use only the so-called 50 base features, which relate to the following feature computation
steps: Pre, Basic, KLB and CG. Furthermore, we used the same algorithm selection approaches
as described in Subsection 5.4.5. We use again a 10-fold cross validation, to unbiasedly assess
the performance of claspfolio 2. Since claspfolio 2 cannot solve instances that are not solved by
any selectable algorithm, we remove such instances from the test sets.

10www.aslib.net

77

www.aslib.net

5 Advances in Algorithm Selection for Answer Set Programming

5.5.3 Results

3S
-li

ke

as
pe

ed

cl
as

pf
ol

io
-1

.0
-li

ke

IS
AC

-li
ke

M
E-

AS
P-

lik
e

SA
Tz

illa
'0

9-
lik

e

SA
Tz

illa
'1

1-
lik

e

ASP-POTASSCO

CSP-2010

MAXSAT12-PMS

PREMARSHALLING-ASTAR-2013

QBF-2011

SAT11-HAND

SAT11-INDU

SAT11-RAND

SAT12-ALL

SAT12-HAND

SAT12-INDU

SAT12-RAND

4.12 1.27 3.20 3.44 1.85 2.77 4.28

1.46 1.15 1.81 2.08 2.65 2.62 2.88

6.09 2.74 1.91 4.56 2.05 3.43 7.17

3.30 3.23 1.15 1.31 1.09 1.55 1.79

7.26 4.44 2.25 2.74 2.83 3.88 8.83

2.49 2.93 1.17 1.17 0.99 2.01 1.89

1.16 1.00 1.21 1.31 1.20 1.14 1.20

3.89 4.65 2.31 2.46 1.83 2.56 3.08

1.49 1.04 1.21 1.08 1.05 1.38 1.61

1.68 1.54 1.15 1.07 1.00 1.48 1.54

1.20 0.80 1.17 1.25 1.11 1.19 1.29

0.84 0.86 0.93 0.92 0.88 0.91 0.92 1

2

3

4

5

6

7

8

Figure 5.2: The color shading shows the factor by which the selection approach implemented in
claspfolio 2 outperformed the single best on PAR10 without consideration of the unsolv-
able instances.

Figure 5.2 presents the performance of the different algorithm selection approaches in clasp-
folio 2 on the ASlib scenarios. The color shading and the values show the factor by which the
selection approach outperformed the single best solver on PAR10. Detailed results - including
number of timeouts and PAR1 - can be found in Appendix B.

5.5.4 Discussion

In contrast to our results for our ASP sets, SATzilla’11-like is not always the best approach.
SATzilla’11-like is the best approach for 7 out of 12 scenarios, that is, ASP-POTASSCO, CSP-
2010 , MAXSAT12-PMS , QBF-2011 , SAT12-ALL, SAT12-INDU and SAT12-RAND. Surprisingly,
SATzilla’11-like is on the SAT scenarios not always the best approach even though it was de-
veloped in particular on this domain. We note that the original SATzilla implementation does
not only consists of their selection approach, but its authors also collected the solvers in the
algorithm portfolio, invented the instance features and uses further techniques to select a subset
of features; this is more than we do in our experiments with claspfolio 2.
Furthermore, aspeed is twice the best solver on PAR10, that is, on SAT11-HAND and SAT11-

RAND. However, it also solves the largest number of instances on MAXSAT12-PMS and PRE-
MARSHALLING-ASTAR-2013 . On these scenarios, it is not the best approach on PAR10 and

78

5.6 Conclusion

PAR1 because its algorithm schedule looses some time in unsuccessful algorithm runs before it
runs the right solver that solves the instance.
Out of the scenarios, PREMARSHALLING-ASTAR-2013 and SAT12-RAND are noticeable in

particular. On PREMARSHALLING-ASTAR-2013 , 3S-like and aspeed perform very well. Both
approaches use algorithm schedules with an unlimited number of constituent solvers for boost-
ing their performance. SATzilla’09-like and SATzilla’11-like perform worse than these two be-
cause its pre-solving schedules are limited to 2 and 3 constituent solvers. Removing this restric-
tion, increases also the performance of SATzilla’-like approaches. However, all approaches are
not able to yield a performance matching a perfect algorithm selector. A perfect selector would
get a speed up of 30.84 on PREMARSHALLING-ASTAR-2013 . One possible reason could be
that the instance features do not contain enough information for the selection approach.
On SAT12-RAND, all tested approaches have a worse performance than single best. This

is consistent with the published results on ASlib. The authors of ASlib also only found one
approach that was better than the single best, that is, a Random Forest regression. Furthermore,
a look at the exploratory data analysis (EDA) at the ASlib online platform reveals that the CG
features are not computed for 509 out of 1326 instances. Since claspfolio 2 does not impute
missing features - in contrast to the ASlib reference approach - but uses a backup algorithm
when the feature vector is incomplete, claspfolio 2 does no per-instance selection for these 509
instances. The PAR10 performance of claspfolio 2 with a Random Forest Regression without
CG features is 3175. This is better than the single best with 3271 and the best result on ASlib
with 3188.
So, we observed two things: (i) no selection approach dominates all other approaches and (ii)

feature selection can be important to improve further the performance of claspfolio 2. However,
a-priori it is not known which approach should be used of a given algorithm selection scenario.
Therefore, one future step is to apply algorithm configuration to claspfolio 2 to get a well-
performing scenario-specific configuration of claspfolio 2 (including feature selection).

5.6 Conclusion

Our new, modular claspfolio 2 ASP solver architecture comprises a diverse set of portfolio-based
algorithm selection techniques, including feature extractors, manually and automatically con-
structed base algorithm portfolios, algorithm selection mechanisms and solver-schedule-based
pre-solving techniques. As seen from the high-level overview of empirical performance results
in Table 5.8, on standard, diverse and heterogeneous sets of ASP benchmarks, claspfolio 2 is
substantially more robust than the default configuration of clasp, the manual tuned configu-
ration of clasp of the 2013 ASP Competition, and than all other assessed individual solvers
(including automatically configured clasp and other ASP solvers); in fact, its performance in
terms of PAR10-score lies only about 20% and 15% above that of the best known oracle on
Potassco-Set and Comp-13-Set benchmark sets, respectively. The reimplementation of claspfo-
lio 1.0 in claspfolio 2, which had a similar performance in preliminary experiments than the
original implementation, achieves also about 14− 37% higher PAR10-score than claspfolio 2.
While the best configuration of claspfolio 2 varies between these two benchmark sets, the per-
formance differences are relatively minor: on Comp-13-Set, the best configuration of claspfolio 2
for Potassco-Set – which we also chose as the default configuration for claspfolio 2 – achieves a

79

5 Advances in Algorithm Selection for Answer Set Programming

Comp-13-Set Potassco-Set
#TOs PAR10 PAR1 #TOs PAR10 PAR1

clasp (default) 577 3168 351 287 1347 176
clasp (ASP Comp 13) 421 2329 273 150 723 97
single best 414 2333 268 150 723 97
claspfolio 1.0 403 2237 269 134 658 99
claspfolio 2 353 1960 237 97 480 75
best known VBS 313 1724 196 82 400 58

Table 5.8: Comparison of two clasp configurations, the single best solver in all portfolios (cf. Subsec-
tion 5.3), claspfolio 1.0, the claspfolio 2 with claspre(s+d) features, Hydra-like-portfolio and
SATzilla’11-like approach. The significantly best performances (except VBS) are shown
in boldface (according to a permutation test with 100 000 permutations and significance
level α = 0.05).

PAR10-score only about 2.1% lower than the best configuration for Comp-13-Set, and on Potassco-
Set, its PAR10-score is about 9.6% higher. This configuration uses the claspre(s+d) feature set
in combination with the Hydra-like-portfolio base algorithm portfolio construction approach
and the SATzilla’11-like algorithm selection mechanism, but other feature sets, base algorithm
portfolios and algorithm selection mechanisms also achieve very strong performance.
Also on a diverse set of algorithm selection scenarios from the Algorithm Selection Library,

claspfolio 2 showed that it outperforms by a factor of up to 8.8 the single best solver on PAR10.
However, the best selection approach varied between the scenarios.
In future work, we believe that further performance improvements could be achieved via

automatic configuration of claspfolio 2. It exposes more than 40 performance relevant param-
eters. It is infeasible to manually configure such a large configuration space, so that automatic
algorithm configurators, such as SMAC , should be used again.

80

6 Algorithm Selection of Parallel Portfolios

Current modern and highly efficient solvers are known to be performance sensitive to configu-
rations of the search strategies. Apart from algorithm configuration, algorithm selection can be
used to automatically construct robust algorithms, which are more effective than using a single
algorithm (for an overview see, for example, Kotthoff et al. (2012)). Algorithm selection is
based on the idea to select per-instance the putatively best algorithm or algorithm configura-
tion. However, a learned mapping (for example, implemented with a machine learning model)
from instance to an algorithm is not perfect in many cases, as we have seen in Section 5.5.
Since the increase of computational power is nowadays primarily achieved through additional

parallel cores, the effectiveness of algorithms can not only be increased by selecting a single
algorithm, but also by selecting a parallel portfolio of algorithms. For example, the SAT solver
CSCHpar (Malitsky et al., 2013b, 2013a) won the open parallel track in the 2013 SAT Competi-
tion. The idea of CSCHpar is simple yet effective; CSCHpar always runs in parallel the parallel
SAT solver Plingeling (Biere, 2010, 2011) with 4 threads, the sequential SAT Solver CCASAT (Cai
et al., 2012) and three per-instance selected solvers. These per-instance solvers are selected by
three models that are trained on application, hard-combinatorial and random SAT instances.
However, CSCHpar is particularly designed for the SAT Competition with its 8 available cores
and its three kinds of instances.
In this chapter, we focus on the fundamental problem of selecting a parallel portfolio in the

following setting:

(i) one processing unit (for example, processor core) is exactly assigned to one algorithm
(that is, no algorithm schedules are used);

(ii) there is no communication between the algorithms;

(iii) the size of the parallel portfolio can be adjusted arbitrarily, (that is, the overhead grows
at most linearly with the size of the parallel portfolio);

(iv) we do not have special structural knowledge about the problem domain (for example, we
do not know that SAT instances can be divided into three kinds).

CSCHpar does not fall into this setting, because it violates (ii) - (iv).
We present an approach to the problem of selecting a per-instance selected parallel portfolio,

named PASU , which can be applied to arbitrary algorithm selection scenarios. It is built
upon the assumption that selection of solvers can be associated with an uncertainty metric,
that is, how sure is the selector that it selects the best algorithm for a given instance. If the
uncertainty is zero and the prediction of the best solver is always correct, a parallel portfolio
cannot improve the performance in comparison to perfect selection. However, if the selection
of a solver is somehow uncertain, we try to select a parallel portfolio optimizing a distribution
of predicted performance scores induced by an uncertainty measure. Using bootstrapping, our

81

6 Algorithm Selection of Parallel Portfolios

approach can be applied to every algorithm selection approach that is based on performance
predictions. Furthermore, to minimize the overhead generated by the selection phase, the
approach is modelled in such a way that its complexity grows only linearly with the number of
considered solvers and the size of the parallel portfolio.
The remaining chapter is structured as follows: First, work related to algorithm selectors for

parallel portfolios is discussed in Section 6.1. Then, we present the theoretical foundations of
our PASU approach in Section 6.2 and demonstrate its performance on a diverse and hetero-
geneous set of algorithm selection scenarios from the Algorithm Selection Library (ASlib1) in
Section 6.3.

6.1 Related Work

Our work forms part of a long line of research that can be traced back to John Rice’s seminal
work on algorithm selection (1976) on one side, and to work by Huberman et al. (1997) on
parallel algorithm portfolios on the other side. However, Huberman et al. did not provide
automated procedures for selecting the solvers to be run in parallel from a larger algorithm set.
Gagliolo and Schmidhuber (2006) considered parallel portfolios with dynamically adjusted

timeshares. For this, they used a multi-arm bandit model to periodically reallocate timeshares
of solvers. However, so far they only showed that their approach worked for two algorithms in
SAT and winner determination in combinatorial auctions.
As already discussed in the introduction, the cost-sensitive hierarchical clustering approach

of CSCH (Malitsky et al., 2013b) was extended for the 2013 SAT Competition to select parallel
portfolios in CSCHpar (Malitsky et al., 2013a). They used some constantly selected solvers
(Plingeling with four threads and CCASAT) and three independently trained per-instance selec-
tion models. These models are trained on industrial, handcrafted and random SAT instances.
Such an approach is only possible if several models can be learned for different sub-problems
(for example, different tracks of the SAT Competition). Furthermore, the number of processes
is not directly adjustable.
The extension of 3S (Kadioglu et al., 2011), named 3Spar (Malitsky et al., 2012), selects

a parallel portfolio by using k-NN to find the k most similar instances in the feature space.
With the help of Integer Linear Programming (ILP), 3Spar constructs a per-instance parallel
algorithm schedule based on training data of these k instances. A limitation of 3Spar is that
the complexity of the to be solved problem for every instance is NP -hard. It grows with the
number of parallel processing units and number of available solvers.2

aspeed (see Chapter 4) solves a similar scheduling problem as 3Spar , but does this during
an off-line training phase. Therefore, aspeed does not generate overhead in the solving phase.
Unlike 3Spar , aspeed does not allow to include parallel solvers in the algorithm schedule and
the algorithm schedule is static and not per-instance selected.
RSR-WG (Yun & Epstein, 2012) combines case-based-reasoning from CPhydra (O’Mahony

et al., 2008) with a greedy construction of parallel portfolio schedules via GASS (Streeter et al.,
2007) for CSP problems. The schedules are constructed per-instance, such that RSR-WG also
relies on instance features. In the first step, a schedule is greedily constructed to maximize the

1www.aslib.net
2We note that 3Spar is not available publicly or for research purposes.

82

www.aslib.net

6.2 Algorithm Selection with Uncertainty

number of solved instances and in the second step, the components of the schedule are spread
over the available processing units. In this process, RSR-WG requires a method to determine
similar training instances for a new given instance. Therefore, it is not applicable to other
algorithm selection approaches, for examples, as used in SATzilla.

6.2 Algorithm Selection with Uncertainty

We start with the classical algorithm selection problem, as also stated for the Algorithm Selec-
tion Library (ASlib).

Per-instance algorithm selection problem Given a set I of instances of a problem and a
probability distribution D over I , a set of algorithms A, and a performance metric
m : I×A→R to be minimized, the objective in the per-instance algorithm selection problem
is to find a mapping φ : I→ A that minimizes the expected performance Ei∼Dm(i,φ(i))
we incur by running the selected algorithm φ(i) for instance i, where the expectation is
taken with respect to instances i ∈ I drawn from distribution D .

We extend this definition to the selection of parallel portfolios:

Per-instance parallel portfolio selection problem Given a set I of instances of a problem and
a probability distribution D over I, a set of algorithms A, a set of processing units U and
a performance metric m : I×A→ R to be minimized, the objective in the per-instance
parallel portfolio selection problem is to find mappings φu : I → A for each processing
unit u∈U that minimize the minimal expected performance Ei∼D minu∈U(m(i,φu(i))) we
incur by running the selected algorithms {φu(i)}u∈U for instance i, where the expectation
is taken with respect to instances i ∈ I drawn from distribution D .

In definition of the parallel selection problem, we assume that the selected algorithms are
running in parallel with no communication between them. Therefore, the expected performance
of such a portfolio is the performance of the best algorithm in the portfolio, that is, the optimal
performance (e.g., minimal runtime) of all running φu(i) algorithms. In the following, we
first present a straightforward approach for solving this problem, which directly extends the
commonly used algorithm selection approach for parallel portfolio. Afterwards, we present
our new approach, PASU which considers the estimated performance uncertainty of a selected
algorithm.
In the following, we assume that we have a (potentially non-perfect) mapping φ : I → A

for the sequential algorithm selection problem and that the (machine learning) model M to
implement this mapping φ will also return a performance estimation for each algorithm, for
example, log-transformed runtime predictions, as used in SATzilla’09 (Xu et al., 2008).

Baseline. For a parallel portfolio of size k, a straightforward idea is to select the algorithms
that have the best k predicted performance values. In our artificial example in Figure 6.1,
the predicted performance of each algorithm obtained from the model M are marked in red.
Algorithm a1 has the best predicted performance, a2 the second best and so on. Therefore, a
portfolio of size 2 would consist of a1 and a2.

83

6 Algorithm Selection of Parallel Portfolios

a1 a2 a3 a4

Pe
rfo

rm
an

ce

(a) predicted performance of algorithms

a1 +a2 a1 +a3 a2 +a3 a3 +a4

Pe
rfo

rm
an

ce

(b) predicted performance of parallel portfo-
lios

Figure 6.1: Predicted performance (red line) with uncertainty (blue box with whiskers)

Algorithm 6: Training of PASU
Input : Algorithms a ∈ A, performance metric m, instances i ∈ I, training data

DI = 〈(f (i),〈m(i,a)〉a∈A)i∈I〉, subset size u, feature subset size v, ensemble size n

1 for j := 1 . . .n do
2 sample with bootstrapping a new training set D j

I of size u from DI

3 subsample v features from complete feature set and modify D j
I accordingly

4 train model M j on D j
I that learns mapping I×A→ R

5 return 〈(M j)〉 j∈{1...n}

PASU : Parallel Algorithm Selection with Uncertainty. Since we assume that the models
are not perfect, there is uncertainty associated with the predictions obtained from each model
(boxes and whiskers in Figure 6.1). We assume that we can also compute this uncertainty. In
Figure 6.1, a1 has the smallest predicted performance and hence the probability that prediction
is incorrect is also small. In contrast, the predicted performance of a4 is high and the uncer-
tainty is also high; this means that the chance is high that a4 can perform a lot better than
expected. Taking into account the uncertainty of the prediction, the portfolio of size 2 with
the best predicted performance would be a1 and a3, because a1 has the best single predicted
performance, and a3 has a high uncertainty maybe inducing a better performance than a1.
The portfolio consisting of a1 and a2 – chosen in the baseline approach – has nearly the same
predicted performance as a1 alone, because the range of the uncertainty performances of a2 is
larger than the range of a1. Therefore, we conclude that the expected performance does not
provide enough information in all cases to select a parallel portfolio and we should also take
into account the uncertainty. We call our new algorithm for parallel algorithm selection with
consideration of uncertainty PASU .

84

6.2 Algorithm Selection with Uncertainty

How to Measure Uncertainty? Selection models, for example, as implemented in claspfo-
lio (see Chapter 5) and LLAMA (Kotthoff, 2013), can return scores for each algorithms that
are correlated with the predicted performance. For instance, regression models directly return
a predicted performance score for each algorithm; or pairwise classification approaches (Xu
et al., 2011) return votes for each algorithm. To determine the uncertainty of these predictions,
in Algorithm 6, an ensemble of models is trained that returns a set of scores for each algo-
rithm. Ensembles can be trained with bagging (subset sampling with bootstrapping) and feature
subsampling to increase the diversity of the models. For example, we predict with two models
(n = 2) that a1 has performance 1.0 or 2.0 and a2 has performance 1.5 and 2.5, respectively.
To run a parallel portfolio of algorithms, all portfolio components are started simultane-

ously. If one component was able to solve the instance, all other components are terminated.
Therefore, the performance of a parallel algorithm portfolio is related to the component that
solves an instance first. Since we have several predicted performance scores for each algorithm,
the performance scores of a portfolio are the minima of all possible combinations of the algo-
rithm scores. For the above example, all combinations of the performance scores are (1.0,1.5),
(1.0,2.5), (2.0,1.5) and (2.0,2.5) and the scores of the portfolio, that is, the minimum of each
tuple, are 1.0, 1.0, 1.5 and 2.0.
We note that this approach is based on the assumption that the scores of the algorithms are

not related to each other. For example, the predicted runtimes of an algorithm is not related to
the predicted runtime of another algorithm. However, the pairwise classification voting scores
of SATzilla’11 (Xu et al., 2011) are related, that is, if an algorithm gets all votes to be best in
comparison to all other algorithms, other algorithms cannot have the same number of votes.

How to Optimize with Uncertainty? To construct a parallel portfolio, we have to decide
between several possible portfolios. Given the predicted score distribution of a portfolio, there
are several ways to construct a parallel portfolio:

1. Minimize the expected performance of the portfolio; we note that this is not necessarily
the same as using only one model and looking only at expected performances, as shown
above in Figure 6.1

2. Minimize the upper part of the score distribution, that is, a pessimistic risk estimate to
reduce the chance of poor decisions

3. Minimize the lower part of the score distribution, that is, an optimistic estimate to in-
crease the chance to select a very well performing portfolio

In a general view, we can optimize a percentile q of the score distribution of a portfolio.

Greedy Portfolio Selection. Algorithm 7 shows how a portfolio can be built efficiently. Since
the time complexity of selecting the best portfolio grows exponentially with the size of the
portfolio, we use a greedy approach that selects a portfolio of size k in time O(k · |A|). In Line
1 and 2, the scores ~sa for all algorithms a ∈ A are predicted. We start with an empty portfolio
in Line 3 and iterate as long as the portfolio has not reached the desired size k in Line 4. In
Line 5 to 10, we compute the portfolio scores for all possible extended portfolios Pj−1||a. Since
the cross product of all predicted scores in iteration j has size n j, we approximate the score

85

6 Algorithm Selection of Parallel Portfolios

Algorithm 7: Greedy Portfolio Selection in PASU

Input : Algorithms a ∈ A, instances i ∈ I, trained models 〈(M j)〉 j∈{1...n}, feature vector ~f ,
portfolio size k, sample size r, percentile q

1 forall the a ∈ A do
2 let ~sa be the scores for algorithm a returned by 〈(M j)〉 j∈{1...n} given ~f

3 P0 := []
4 for j := 1 . . .k do
5 forall the a ∈ A\Pj−1 do
6 ~sPj−1||a := 〈〉 // predicted scores of extended portfolio;

7 for l := 1 . . .r do

8 ~s(l)Pj−1||a := min(〈(s′a∗)〉a∗∈Pj−1||a) where s′a∗ is a random element from ~sa∗ , a∗ is an

algorithm in the extended portfolio Pj−1||a and ~s(l)Pj−1||a is the l-th element of the
vector ~sPj−1||a

9 choose algorithm â ∈ A\Pj−1 minimizing the percentile q of ~sPj−1||â
10 Pj := Pj−1||â
11 return Pk

distribution by sampling a subset of scores ~sPj−1||a (Lines 6 to 8). Then, we extend the portfolio
with â which minimizes the percentile of the portfolio scores. In Line 11, we return the selected
portfolio of size k.

6.3 Empirical Performance Analysis

We implemented our PASU approach within the flexible framework of claspfolio 2. As described,
Algorithm 7 has a crucial parameter for the performance of PASU , that is, the percentile q of
the score distribution to be optimised. We investigate the impact of this parameter on the
performance here. Furthermore, we compare our PASU approach with the baseline approach
and later on, with static parallel algorithm schedules from aspeed to show advantages and
limitations of PASU .

6.3.1 Setup

Algorithm Selection Scenarios. We use algorithm selection scenarios from the Algorithm
Selection Library (ASlib3). However, since we want to select parallel portfolios for commonly
used parallel architectures, that is, at least a quadcore processor, we focus on scenarios with
at least four algorithms, that is, excluding the CSP-2010 scenario with only two algorithms.
Furthermore, 7 of the 12 ASlib scenarios are built upon SAT solvers. We focus only on the
newer and larger SAT scenarios from 2012, that is, excluding three SAT11-*scenarios. Thus,
we conduct an extensive experimental study to assess the efficacy of PASU on eight scenarios,

3www.aslib.net

86

www.aslib.net

6.3 Empirical Performance Analysis

namely, ASP-POTASSCO, MAXSAT12-PMS , PREMARSHALLING-ASTAR-2013 , QBF-2011 , SAT12-
ALL, SAT12-INDU , SAT12-HAND and SAT12-RAND.

As specified in the scenarios, we evaluated our approaches using a 10-fold cross validation.
Since PASU cannot solve instances that are not solved by any selectable algorithm, we removed
such instances from the test sets; see Table 5.7 in Section 5.5.

Score Prediction Model. Since our approach assumes independent performance estimations
for each algorithm, we cannot use approaches as those underlying SATzilla’11-like (see Sec-
tion 5.4.5). However, first results on ASlib show that a performance estimation approach with
Random Forest Regression performs well on all these scenarios. Also, Hutter, Xu, Hoos, and
Leyton-Brown (2014c) show that Random Forest Regression is well suited for predicting algo-
rithm runtimes. Such an approach is also supported by claspfolio 2 and we will use it for the
selection models M . The Random Forest Regression is implemented via the Python Package
sklearn (Pedregosa et al., 2011). This implementation has three further parameters; we set them
to the default values used in sklearn: (i) the number of trained regression trees is 10, (ii) the
maximal number of features at each split is the square root of the number of features and (iii)
the minimal number of samples in each leaf is 2.

Approaches and Parameters. We compare the two presented approaches, that is, the baseline
approach with the selection of the k algorithms with the best predicted performances and
the PASU approach with consideration of the score distribution. For PASU , we consider five
commonly used percentiles q ∈ {0,25,50,75,100}, that is, the minimum, the lower quartile,
median, the upper quartile and the maximum. q = 0 can be interpreted as a portfolio with
optimistic performance estimation, that is, the best predicted performance. In contrast, q =
100 refers to a pessimistic performance estimation, that is the worst predicted performance.
q ∈ {25,50,75} are gradations between these two extremes.
For the training of our models, we used n = 42 models M , a feature subset size of v = 70% of

the original feature size, and bootstrapped training data per model of k = 70% of the original
training data size. In the construction method for the parallel portfolio, we sampled r = 1 000
performance scores to estimate the score distribution of each parallel portfolio.

Overhead. Normally, hardware bottlenecks induce some overhead for running parallel port-
folios. However, since this overhead is hardware-dependent and we have no access to the
hardware used to generate the ASlib scenarios, we will not consider such overhead in our
experiments. Therefore, the performance presented in our experiments can be seen as a theo-
retical lower bound (under the assumption that the performance is minimized).

Statistical Testing. With growing size of parallel portfolios, the performance will improve in-
dependently of the underlying approach because the portfolio is constructed greedily. However,
the performance of a parallel portfolio is bound by the performance of the maximal portfolio,
that is, a portfolio with all selectable algorithms.4 Since we use algorithm selection, the per-

4We do consider instance feature computation costs in the performance of the maximal portfolio. Therefore, the
performance of the maximal portfolio is worse than a perfect oracle selector that does not consider the feature
costs.

87

6 Algorithm Selection of Parallel Portfolios

formance of the maximal portfolio should be reached with much smaller portfolios, and we
can save parallel resources with smaller portfolios. In the best case, the portfolio would have
a size of 1, that is, the best per-instance algorithm was always selected. Therefore, we prefer
approaches with the smallest parallel portfolios whose performance is indistinguishable from
that of the maximal portfolio. We use a statistical test, that is, the Mann-Whitney U test with
significance level 0.05, to verify that the performance of a given per-instance portfolio is not
worse than the performance of the maximal portfolio.5

6.3.2 Results

Figures 6.2 and 6.3 show the PAR10 performance trend over the size of the portfolio. A vertical
line marks the smallest portfolio with a indistinguishable performance to the maximal portfolio
(according to the Mann-Whitney U test). Hence, an approach is better if a vertical line is further
left. To prevent overlapping of the vertical lines, they are minimally shifted to the right if several
approaches have the same value.
In MAXSAT12-PMS , PASU(q = 25) and in SAT12-HAND, PASU(q = 50) selects parallel portfo-

lios with smaller size than the baseline approach. However, PASU(q = 0) needs larger portfolios
in all scenarios except PREMARSHALLING-ASTAR-2013 and MAXSAT12-PMS , and PASU(q =
100) in all except PREMARSHALLING-ASTAR-2013 and SAT12-ALL. In all scenarios, PASU(q =
50) is at least as good as the baseline.

6.3.3 Discussion

First, we note that PASU(q) improved the performance of the sequential claspfolio 2 in compar-
ison to baseline on all scenarios for q = 50, and in 7 out of 8 scenarios with q = 25. This is
surprising, because the used Random Forest Regression for the performance estimation models
already uses an ensemble of regression trees and PASU adds only a further ensemble level
on top of this. However, Random Forest Regression models average the predictions of each
regression tree. In contrast, PASU does not average performance scores, but optimizes a given
percentile of the score distribution.
In the sequential case and in the parallel case, totally pessimistic (q = 0) and optimistic (q =

100) performance predictions induce a worse performance than more intermediate predictions.
The best choice between PASU(q ∈ {25,50,75}) and the baseline approach depends on the
algorithm selection scenario.
We note that on SAT12-HAND, PASU and also the baseline approach found portfolios with

sizes of 20−23 that are indistinguishable from the maximal portfolio. However, these portfolios
have a PAR10 score that is approximately five times greater than the PAR10 score of the
maximal portfolio. Since the Mann-Whitney U test is based on ranks of performances, the
average performance difference can be substantial, because of outliers.
We observed in preliminary experiments that apart from q, also the parameters for the feature

subset size and for the bootstrapped training data size influence the performance of PASU . The

5We cannot apply a permutation test to differentiate the performance of greedily constructed portfolios. If we
incrementally construct our parallel portfolio, the performance of the portfolio will improve after each iteration.
Hence, the performance of a subset of a portfolio P′ ⊂ P is always dominated by P, that is, if P′ ⊂ P then
m(i,P′) ≥ m(i,P) holds for every instance i ∈ I. A permutation test will always return that P′ is significantly
worse than P.

88

6.3 Empirical Performance Analysis

1 2 3 4 5 6 7 8 9 10 11
Portfolio Size

101

102

103

P
A

R
1
0
 s

co
re

PASU(0)

PASU(100)

PASU(25)

PASU(50)

PASU(75)

baseline

(a) ASP-POTASSCO

1 2 3 4 5 6
Portfolio Size

101

102

103

P
A

R
1
0
 s

co
re

(b) MAXSAT12-PMS

1 2 3 4
Portfolio Size

102

103

104

P
A

R
1
0
 s

co
re

(c) PREMARSHALLING-ASTAR-2013

1 2 3 4 5
Portfolio Size

101

102

103

104

P
A

R
1
0
 s

co
re

(d) QBF-2011

Figure 6.2: Diverse Scenarios - PAR10 Performance (without unsolvable instances) over size of
portfolio. Vertical lines indicate that there is no statistical difference between the
performance and the optimal performance of the maximal portfolio (according to a
Mann-Whitney-U-Test with significance level 0.05).

influence differed between the individual algorithm selection scenario. For these experiments,
we decided to use commonly used values for these parameters (see above). A further degree
of freedom is the approach used for predicting the performance scores – in our case: Random
Forest Regression. We therefore expect that the performance of PASU can be further increased
by using automatic algorithm configuration methods, such as SMAC (Hutter et al., 2011a), to
configure q and the other parameters.
We also investigated in preliminary experiments whether using a higher number of perfor-

mance estimation models (n) would influence the performance of PASU . The number of used
models cannot be increased without limit because PASU obtains a performance prediction
from each trained model when selecting an algorithm or parallel portfolio. Even though, per-
formance predictions are normally cheap, using too many predictions increase the overhead for
the selection and hence reduce the time for the actual solving process. In our experimental
setup, we trained a Random Forest Regression model for each bootstrapped sampled training

89

6 Algorithm Selection of Parallel Portfolios

5 10 15 20 25 30
Portfolio Size

102

103

104

P
A

R
1
0
 s

co
re

PASU(0)
PASU(100)
PASU(25)
PASU(50)
PASU(75)
baseline

(a) SAT12-INDU

5 10 15 20 25 30
Portfolio Size

102

103

104

P
A

R
1
0
 s

co
re

(b) SAT12-HAND

5 10 15 20 25 30
Portfolio Size

101

102

103

P
A

R
1
0
 s

co
re

(c) SAT12-RAND

5 10 15 20 25 30
Portfolio Size

102

103

104

P
A

R
1
0
 s

co
re

(d) SAT12-ALL

Figure 6.3: SAT Scenarios - PAR10 Performance (without unsolvable instances) over size of portfo-
lio. A vertical line marks the first portfolio with a performance indistinguishable to the
maximal portfolio (according to a Mann-Whitney-U-Test with significance level 0.05).

set and each algorithm. The performance of PASU began to drop between 10 and 20 models
(depending on the scenario) since the uncertainty estimation was too rough. On the other side,
we have not observed substantial changes of the performance between 20 and 100 models.6

6.4 Empirical Performance Comparison against aspeed

As already shown in Section 5.5, aspeed ’s static algorithm schedules perform sometimes better
than the per-instance selection approaches in claspfolio 2 in the sequential case. Now, we further
investigate the difference between the per-instance selected parallel portfolio of claspfolio 2 with
PASU and the static parallel algorithm schedules computed by aspeed .

6100 model evaluations were still negligible in comparison to the runtime cutoff and have not produced overheads
that induced timeouts when solving problem instances.

90

6.4 Empirical Performance Comparison against aspeed

6.4.1 Setup.

Since PASU with q = 50 performed best on average in our experiments reported in Section 6.3,
we fixed the parameter accordingly. For aspeed , we limited the memory usage to 4 GB (never
encountered) and the runtime to 600 CPU seconds (encountered in all SAT scenarios because
of the large number of solvers in these scenarios7). aspeed relies on the ASP grounder gringo
3.0 and the ASP solver clasp 2.2. Furthermore, we assessed the performance of the single best in
parallel setting, that is, a static selection of the n best solvers on the training data. The single
best and aspeed do not rely on instance features so that the costs to compute instance features
is only considered for PASU and baseline.
The overhead due to hardware bottlenecks for parallel portfolio runs is again not taken into

account. Once again, we used the 10-cross validation given by the scenarios and report PAR10
performance that does not include unsolvable instances.

6.4.2 Results.

Table 6.1 shows the PAR10 performances of PASU(q = 50), single best, the baseline approach
and aspeed with parallel portfolio sizes of 1, 2, 4 and 8. As expected, the performance of all
three approaches improves with the size of the portfolio, except for aspeed at MAXSAT12-PMS
with a portfolio of size 2. Since parallel portfolios of aspeed are not incrementally constructed
as done in PASU and baseline, aspeed can select other solvers for each portfolio. Therefore, it
is in theory possible that a larger portfolio can generalize worse on a test set than a smaller
portfolio. However, this is the only time we observed this.
We note that single best and aspeed perform in particular well on scenarios with large costs for

feature computation. For example, aspeed is the best approach on SAT12-INDU with a portfolio
size of 8 and single best is also better than baseline and PASU . Furthermore, single best is the best
approach on SAT12-RAND. As already observed in Section 5.5, claspfolio 2 would need further
tuning of its parameter to perform better than the single best. On PREMARSHALLING-ASTAR-
2013 , single best, baseline and PASU have the optimal performance with a portfolio size of 4
since the scenario contains of 4 selectable algorithms and the cost of the feature computation
is negligible.
Independent of the portfolio size, PASU(q = 50) is the best approach on ASP-POTASSCO and

QBF-2011 . aspeed performs consistently the best on SAT12-HAND. On the other four scenar-
ios, the best approach depends on the size of the portfolio. On MAXSAT12-PMS , SAT12-ALL
and SAT12-INDU , PASU(q = 50) has better performance on smaller portfolios and aspeed gets
better for larger number of processing units. The converse situation is observed for PRE-
MARSHALLING-ASTAR-2013 .

6.4.3 Discussion.

The unique characteristic of the SAT scenarios in comparison to the other scenarios is that
there are many more algorithms available. In all other scenarios, a portfolio with a size of 4
or 8 nearly uses the entire range of possible algorithms. Since the parallel schedule produced
by aspeed can run several algorithms on one processing unit, aspeed may take better advantage

7In all cases of timeouts of aspeed , aspeed nevertheless returned a list of possible schedules with their optimization
scores and we took the best of these schedules.

91

6 Algorithm Selection of Parallel Portfolios

Portfolio Size: 1 2 4 8
ASP-POTASSCO

single best 534 177 72 60
baseline 196 80 48 32
aspeed 367 204 84 50
PASU(q = 50) 142 79 39 32

MAXSAT12-PMS
single best 2111 1635 1197 —
baseline 494 265 69 —
aspeed 280 365 44 —
PASU(q = 50) 263 149 66 —

PREMARSHALLING-ASTAR-2013
single best 7002 4903 227 —
baseline 5896 1677 227 —
aspeed 1969 588 484 —
PASU(q = 50) 5495 1936 227 —

QBF-2011
single best 9172 3344 674 —
baseline 1759 516 231 —
aspeed 1507 927 310 —
PASU(q = 50) 1263 414 164 —

Portfolio Size: 1 2 4 8
SAT12-ALL

single best 2967 2872 2165 1727
baseline 2128 1932 1492 1119
aspeed 2672 2002 1277 668
PASU(q = 50) 2083 1927 1510 1197

SAT12-INDU
single best 1360 879 547 285
baseline 1083 752 572 313
aspeed 1793 1042 544 259
PASU(q = 50) 1067 773 605 349

SAT12-HAND
single best 3929 3885 2775 2093
baseline 3050 2805 2091 1629
aspeed 2296 1757 1166 505
PASU(q = 50) 2980 2845 2090 1676

SAT12-RAND
single best 568 383 143 82
baseline 631 408 185 113
aspeed 681 452 180 141
PASU(q = 50) 620 369 163 102

Table 6.1: Comparison of PASU , a static single best selection, the baseline approach with a Random
Forest Regression and aspeed ’s static algorithm schedules on PAR10 scores without un-
solvable instances. The best performance per scenario is bold. If the number of selectable
algorithms is smaller than the parallel portfolio size, we marked the corresponding entry
with “—”.

of the additional processing units than the approach underlying PASU . Only on SAT12-RAND
from the SAT scenarios, PASU and also the baseline approach perform better than aspeed on
eight processing units. We suspect that aspeed has a harder task here, because of the stochastic
local search SAT solvers which are dominant in the state-of-the art SAT solving for randomly
generated instances. We already made the same observation on SAT11-RAND, see Section 4.4.
A future step is to combine the per-instance selection of parallel portfolio based on PASU

with the algorithm schedules of aspeed , since both were found to have weaknesses and strengths
on different scenarios. The straightforward approach consists of a combination of pre-solving
schedules found by aspeed before PASU selects the portfolio.

6.5 Conclusion

Overall, our new approach to select instance-specific parallel portfolios, PASU , shows promising
results on a diverse set of different algorithm selection scenarios from the Algorithm Selection
Library (ASlib). On a commonly used quad-core machine, PASU reduced the PAR10 in com-
parison to the sequential counterpart by a factor of 1.4−24.20 (on average by 5.95). In some

92

6.5 Conclusion

scenarios, PASU performed better than the baseline approach to select parallel portfolios, that
is, the selection of the k algorithms with best predicted performances. This is due to the fact
that PASU was constructed in a way to overcome certain drawbacks of the baseline approach
which do not apply in all scenarios. One advantage of aspeed over PASU is that the runtime
of aspeed ’s algorithm runs is more strongly limited so that runs can be prematurely aborted if
the probability is low that they will the instance with more time. Therefore, aspeed performed
better than PASU in particular on scenarios with larger sets of selectable algorithms, such as
the SAT12 scenarios, since aspeed can try several algorithms for a short amount of runtime.
Apart from a combination of aspeed and PASU , we believe that the performance of PASU can

be further improved with the help of automatic algorithm configuration. PASU was designed
and implemented in claspfolio 2 on level 4 of programming by optimization (Hoos, 2012), that is,
PASU has adjustable parameters for all design choices that could not be justified prematurely.
This was the right choice since the best configuration of the parameter q of PASU differed
between different scenarios and should be adjusted depending on the scenario. Nonetheless
with a default value of q = 50, PASU already showed convincing results on all considered
scenarios.
PASU relies only on one requirement for the underlying algorithm selector: the selector has

to return an independently computed score for each algorithm in the base portfolio. Therefore,
PASU is not limited to claspfolio 2 but can also be applied to other algorithm selectors, for
example SATzilla’09 (Xu et al., 2009), to enable them to select also parallel portfolios.

93

7 Empirical Performance Comparison

So far, we compared all presented approaches on different benchmark sets available at the time
our respective studies were carried out. In this chapter, we apply ACPP’s portfolio, aspeed and
claspfolio 2 to two Answer Set Programming (ASP) benchmarks with orthogonal properties to
outline their respective strengths and weaknesses. We follow the ASP Practitioner’s Guide from
Silverthorn et al. (2012) by investigating in which use cases which approach should be applied.
However, in contrast to Silverthorn et al., we do not focus on sets of similar problems but
on problems with two orthogonal use cases. Furthermore, Silverthorn et al. considered only
sequential solvers, whereas we also consider parallel solvers.
First, we use the benchmark suite of Alex Rudolph’s board game RICOCHET ROBOTS 1 on

which Gebser et al. (2013) showed different ways to model and solve the problem using ASP.
We focus on the decision problem variant using the advanced encoding. Since all problem
instances are generated using one encoding, this benchmarks represents the use case of solv-
ing a particular homogeneous problem with ASP. Second, we use the algorithm configuration
scenario ASP-POTASSCO from the Algorithm Selection Library (ASlib2) which consists of a
heterogeneous set including several applications and instances from ASP Competitions. This
second benchmark represents a use case, where an ASP solver is applied to different problems
and needs a robust performance to perform well on all kinds of instances.

7.1 Experimental Setup

In the following, we present the experimental setup we used to empirically compare the perfor-
mance of our systems.

7.1.1 Instance Sets

RICOCHET ROBOTS . We generated 400 instances on the original board and randomly
varied the start positions of the four robots, the color of the goal, the position of the goal on
the board and the maximal horizon (between 10 and 30 steps) of the plan that has to be found.
We used the advanced encoding by Gebser et al. (2013) and grounded all instances with gringo
3.0 (Gebser et al., 2011).

ASP-POTASSCO. The ASP-POTASSCO benchmark set consists of 2589 instances from 105
problem classes and includes instances from the ASP competitions organized in 2007 (SLparse
track), 2009 (with the encodings of the Potassco group) and 2011 (decision NP-problems from
the system track), as well as several instances from the ASP benchmark collection platform

1http://en.wikipedia.org/wiki/Ricochet_Robot
2www.aslib.net

94

http://en.wikipedia.org/wiki/Ricochet_Robot
www.aslib.net

7.1 Experimental Setup

asparagus3. The test set of the ASP-POTASSCO (see Subsection 7.1.2) set is also part of the
ASlib.

7.1.2 Training Test Split

Training Set Test Set

10-fold Cross Validation

Figure 7.1: Training and test split of the instances in the scenarios.

We split the instance sets in the same way as in Section 5.4, illustrated in Figure 7.1. Each
instance set was randomly split in two equal parts, the training set and the test set. The test
set was further randomly split in ten equal parts to be used in a 10-fold cross validation. All
configuration experiments were performed on the training set. On the test set, our systems
were unbiasedly assessed using cross validation.

7.1.3 Systems

All of our presented approaches (ACPP, aspeed and claspfolio 2) are based on a portfolio of
algorithms, that is, a set of different solvers or solver configurations. To compare them in a
fair way, all approaches use the same portfolio. The portfolio was constructed using the ACPP
approach parHydra (see Subsection 3.2.1.3). However, the approach was slightly modified in
the following way to generate arbitrary many constituent algorithms: (i) the method stopped
when the portfolio improved by less than 1% on the PAR10 score in comparison to the previous
iteration and (ii) the constituent algorithms ran sequentially using the same adaption of the
performance metric after each iterations as proposed by hydra (Xu et al., 2010) and not in
parallel as in Chapter 3. In this way, the method resembles more the original hydra method.
The configuration process performed by SMAC (2.06.01; Hutter et al. (2011a)) in each hydra
iteration was allocated 120 000 CPU seconds, that is, 200 times the target algorithm cutoff time,
and 10 independent repetitions, from which the result with the best PAR10 score on the given
training set was selected.
Since the portfolio might suffer from over-tuning on the training set, we could not train

our portfolio systems on the training set, because the performance estimation would be too
optimistic. Therefore, our portfolio systems were unbiasedly assessed on the test set using a
10-fold cross validation.
In our experiment, we study the following sequential systems and parallel systems with four

processing units, because in most mainstream systems, quad-core processes are still dominant.
All systems are based on configurations of the state-of-the-art ASP solver clasp (2.1.3):

• Default-SP : the default sequential configuration of clasp;

3http://asparagus.cs.uni-potsdam.de

95

http://asparagus.cs.uni-potsdam.de

7 Empirical Performance Comparison

• single best: the best known sequential single configuration of clasp on the training set;
the set of configurations we considered includes the default configuration, an expert4

configuration, and all configurations that are part of the configured portfolio;

• parHydra: a static parallel portfolio using the first four constituent components of the pre-
viously described portfolio (although the configuration may produced a larger portfolio);
in this way modification (i) of parHydra is revoked; see Chapter 3;

• aspeed in its sequential and parallel version; see Chapter 4;

• claspfolio 2: in its sequential version with the default configuration based on the SATzilla’11-
like approach including pre-solving schedules by aspeed ;

• claspfolio 2+PASU(q = 50) in its sequential and parallel version where the parameter for
the score distribution percentile q is set to 50; for selection, claspfolio 2 relies on Random
Forest Regression as described in Section 6.3; for instance features, claspre generated 38
static features and 25 dynamic features after each of four restarts (claspre(s+d)); for further
details see Chapters 5 and 6.

7.1.4 Hardware and Software

All our experiments were performed on the Zuse computer cluster in Potsdam with dual Intel
Xeon E5520 quad-core processors (2.26 GHz, 8192 KB cache) and 48 GB RAM per node,
running Scientific Linux (2.6.18-308.4.1.el5). Each algorithm run was limited to a runtime cutoff
of 600 CPU seconds and to a memory cutoff of 6 GB.

7.2 Results

The portfolio found by SMAC for RICOCHET ROBOTS consists of 15 constituent configura-
tions and for ASP-POTASSCO of 11 constituent configurations, see Appendix C. On the one
hand, we expected that the portfolio for RICOCHET ROBOTS would be smaller than the port-
folio for ASP-POTASSCO, because ASP-POTASSCO consists of several problems (more than 100
problem classes) and RICOCHET ROBOTS only of one. Under the assumption that the best
configuration differs for each problem class, a portfolio for ASP-POTASSCO could have more
than 100 components. On the other hand, as already observed by Schneider and Hoos (2012),
configuration on heterogeneous instance set is more challenging than on homogeneous sets.
Since ASP-POTASSCO is a very heterogeneous set, SMAC was not able to find further improving
configurations within the given time budget.
Table 7.1 shows the PAR10 performance, the number of timeouts and the PAR1 performance

of our systems on the RICOCHET ROBOTS test set. Here, single best is the configuration
found in the sixth iteration of the portfolio construction. It solved all instances and improved
the performance by a factor of 55.5 on PAR10. The sequential aspeed (using only 2 of the
15 available clasp configurations) and sequential claspfolio 2+PASU both made an incorrect
decision for one instance leading to a timeout. The default claspfolio 2 even had three timeouts
(running at least once 10 of the 15 available clasp configurations. The parallel portfolio of

4Reference Benjamin Kaufmann, main developer of clasp

96

7.2 Results

PAR10 #TOs PAR1
Sequential
Default-SP 961.97 30 151.0
single best 17.32 0 17.32
aspeed 46.99 1 16.99
claspfolio 2+PASU(q = 50) 50.59 1 23.59
claspfolio 2 110.44 3 29.44

Parallel with 4 Processing Units
parHydra 73.96 2 19.96
aspeed 16.90 0 16.90
claspfolio 2+PASU(q = 50) 13.21 0 13.21
oracle 7.04 0 7.04

Table 7.1: Cross validated performance on RICOCHET ROBOTS ’s test set regarding wall-clock time
in seconds.

parHydra only includes the first four components of the portfolio; hence, it does not include the
single best configuration. Therefore, parHydra’s performance was even worse than the sequential
systems, except Default-SP . The parallel aspeed and claspfolio 2+PASU both solved all instances
and slightly improved the PAR1 performance.

PAR10 #TOs PAR1
Sequential
Default-SP 1374.18 287 176.50
single best 880.55 183 116.87
aspeed 774.72 149 152.93
claspfolio 2+PASU(q = 50) 497.15 101 75.66
claspfolio 2 483.50 98 74.54

Parallel with 4 Processing Units
parHydra 552.01 114 76.31
aspeed 458.89 93 70.79
claspfolio 2+PASU(q = 50) 417.16 85 62.4
oracle 400.17 82 57.98

Table 7.2: Cross validated performance on ASP-POTASSCO’s test set regarding wall-clock time in
seconds.

Table 7.2 shows the same performance metrics on the test set of ASP-POTASSCO. Again, the
single best configuration of clasp outperformed the default configuration by solving 104 more
instances. This time, the single best turned out to be the expert configuration constructed by
Benjamin Kaufmann and used by clasp in the 2013 ASP Competition. In the sequential case,
aspeed solved 34 more instances (running at least once 10 of the 11 available clasp configura-
tions) and claspfolio 2+PASU 48 additional ones. Using claspfolio 2 in its default configuration
with aspeed ’s pre-solving schedule (running at least once all 11 available clasp configurations)
resulted in solving additional 3 instances. In the parallel case, the ACPP portfolio by parHydra

97

7 Empirical Performance Comparison

had a substantially better performance than its configured sequential counterpart, single best,
but parHydra had the worst performance of our parallel systems. Also the performance of
parHydra was worse than sequential claspfolio 2. As in the case of the parallel schedules, aspeed
is able to solve more instances than parHydra’s portfolio and all sequential solvers. The parallel
version of claspfolio 2+PASU is able to solve the most instances and has only 3 timeouts more
than the perfect algorithm selector, oracle.

7.3 Discussion

The results indicate that portfolio-based systems perform well in comparison to non-portfolio
systems on heterogeneous instance sets, such as ASP-POTASSCO. Nevertheless, the portfolio-
based systems have nearly no or only a small advantage in comparison to an automatically
configured version of plain clasp in case of a homogeneous instance set. Silverthorn et al.
(2012) came to a similar conclusion, based on their experiments on three other homogeneous
instance sets. This can have several reasons:

• There exists a single configuration of clasp that performs well on all instances of a homo-
geneous set so that even a portfolio is mainly dominated by this one configuration; results
in literature regarding algorithm selection (see, for example, Xu et al. (2010)) indicate
that such configurations do not exist for heterogeneous sets.

• Instance features are very similar across a homogeneous set of instances so that an
algorithm selection approach has a harder task to reliably differentiate the instances based
on their features; specialized instance features for a certain application could improve the
performance of algorithm selection in this case.

In practice, one question remains unanswered: how to identify homogeneous and hetero-
geneous instance sets. As a rough guideline: an instance set is homogeneous if all instances
belong to one problem class (or application); and an instance set is heterogeneous if it consists
of instances belonging to several problem classes. However, this rough guideline does not hold
always. For example, if an instance set consists of small and large instances of the same prob-
lem, normally there is a well performing configuration for the small instances (for example, a
more conservative deletion strategy of learned clauses) and another configuration for the large
instances (for example, a more aggressive deletion strategy).
First approaches to assess the homogeneity of instance sets in the context of algorithm con-

figuration were proposed by Hutter et al. in a qualitative way (Hutter, Hoos, & Leyton-Brown,
2011b) and by Hoos and Schneider in a quantitative way (Schneider & Hoos, 2012). One of their
conclusion was that “more homogeneous instance sets are more amenable to automated algorithm
configuration” (Schneider & Hoos, 2012). Furthermore, one of their measures “helps to assess
the specific potential of portfolio-based approaches in a given configuration scenario”. Unfortunately,
both approaches are based on computational expensive runtime collections of hundreds or
thousands of different random configurations on an instance set. Therefore, their practical ap-
plicability is limited. For practical usage and in future work, in case benchmarking all proposed
systems is practically not feasible, a tool is needed that assesses effectively the homogeneity
of an instance set and characteristics of the feature space to conclude which of the presented
systems should be used.

98

8 Conclusion and Discussion

In this work, we tackled a widespread problem: Users often have no idea how to choose a well-
performing strategy for solving their applications. This includes the choice between several
solvers and the configuration of the chosen solver. On the one hand, beginners have no idea,
because they literally know nothing about the strengths and weaknesses of different solving
strategies; on the other hand, even experts often have knowledge and deeper understanding
only either of solving strategies or applications. However, experts for both, solving strategies
and application, are seldom available so that users rely on default configurations of a randomly
picked solver in the worst case. As previously reported in literature (Hutter et al., 2009;
Ansótegui et al., 2009; López-Ibáñez et al., 2011; Hutter et al., 2011a) and confirmed as
a by-product in this work, the default configuration of algorithms can be a lot worse than
specialized solving strategies (for example, a configured solver); sometimes by more than one
order of magnitude.
So, the question arises how to improve the robustness of algorithms to enable users to solve

their problems effectively with out-of-the-box solvers. In this work, we tackled this problems by
relying on meta solving techniques, such as algorithm configuration, algorithm schedules and
algorithm selection. Under consideration of the increasing importance of parallel computation,
we also extended all our approaches to parallel solving and investigated its benefits.
We demonstrated that:

1. sequential algorithms can be combined automatically and effectively into parallel portfo-
lios by using algorithm configuration, – we call this approach Automatic Construction of
Parallel Portfolios (ACPP);

2. ASP formulations and a powerful ASP solver (clasp) can be used to compute sequential
and parallel algorithm schedules – this is the basis for our aspeed procedure;

3. an effective and modular algorithm selection solver can be build upon automatic portfolio
construction methods, cheap-to-compute instance features, algorithm-schedule-based pre-
solving techniques and algorithm selection approaches – we demonstrate this with our
claspfolio 2framework;

4. algorithm configurators can be effectively extended to select a parallel portfolio of al-
gorithms – we demonstrate this with our Parallel Algorithm Selection with Uncertainty
(PASU) approach.

These approaches have several advantages in comparison to using an arbitrary algorithm
out-of-the-box:

• basically eliminated the need for human experts to choose an appropriate solving strategy
since our approaches do this automatically;

99

8 Conclusion and Discussion

• improved robustness, so that an algorithm can be efficiently used on large and diverse
sets of instances;

• automatic methods for developers to construct robust sequential and parallel algorithms.

All our approaches are not specific to a certain problem class, such as SAT or ASP, but can
be applied to arbitrary problems. In particular, we expect that our approaches are effective
for NP-hard problems, because poorly chosen solving strategies can have exponential longer
runtimes than the well chosen strategies. However, the application to polynomial problems is
also possible, since polynomial algorithms are often parameterized and they can be adjusted
to given problem characteristics (see, for example, basic linear algebra procedures (Whaley,
Petitet, & Dongarra, 2001), database systems (Diao, Eskesen, Froehlich, Hellerstein, Spainhower,
& Surendra, 2003), sorting (Li, Garzarán, & Padua, 2007) or compilers (Cavazos & O’Boyle,
2005)).

8.1 When to apply which method?

In the end, we have to discuss when to apply which of our presented methods. Our meth-
ods have in common that we assume that there exist algorithms implementing complementary
strategies (that is, no strategy dominates all other strategies) from which we can choose. If the
available algorithms are not complementary, there is a dominant algorithm outperforming all
other algorithms on all kind of instances and we can use this dominant algorithm after apply-
ing algorithm configuration to identify it. In this case, there is no additional benefit in using
portfolios of algorithms (that is, a set of algorithms) as long as they do not interact among
themselves by sharing of intermediate results (for example, clause sharing in SAT or sharing of
optimization bounds in MAXSAT). However, empirical results, also in this work, indicate that
there does not exist such a dominant algorithm over all kinds of NP-hard problems.

Instance
Distribution?

Parallel
Solving?

Algorithm
Configuration

ACPP
(Chapter 3)

Instance
Features?

Parallel
Solving?

Sequential aspeed
(Chapter 4)

Parallel aspeed
(Chapter 4)

Parallel
Solving?

claspfolio 2
(Chapter 5)

claspfolio 2+PASU
(Chapter 6)

homogeneous heterogeneous

no yes not available available

no yes no yes

Figure 8.1: High-level guideline for selecting meta-algorithmic approach to be used in a given
situation.

100

8.2 Future Work

These complementary strategies can be available in the form of parameterized algorithms
or portfolios of different algorithms. Considering the availability of complementary solving
strategies, the question still remains which of our methods should be used. Figure 8.1 visualizes
a simplified guideline that hold in most use cases. The first question considers whether the set
of instances to be solved is homogeneous or heterogeneous, as discussed in Chapter 7.
If a user wants to solve similar instances from a certain application, for example, travelling

salesman with similar properties such as number of cities, the instances are most likely homo-
geneous. Then, algorithm configuration is the right choice to find a well-performing specialized
solving strategy for the application. If parallel resources are available, our ACPP approach can
be used to automatically construct a parallel solver based on sequential solver.
If the user plans to solve instances belonging to many problem classes, such as different action

planning task in robotic scenarios, the instances are most likely heterogeneous, and a portfolio-
based solver (such as algorithm scheduler, algorithm selector or a parallel porfolio solver) will
probably perform better than a configured non-portfolio solver. The choice between static
algorithm scheduling and per-instance algorithm selection (supported by algorithm schedules)
mainly depends on the availability of informative instance features. If instance features are
not available, aspeed can be used to find effective sequential or parallel algorithm schedules. If
cheap-to-compute instance features with information content are available, algorithm selection
systems supported by pre-solving schedules, such as claspfolio 2, should be preferred over static
schedules in many cases, since it selects a presumable well-performing instances per-instance.
As we have seen in the empirical performance analysis in this work (Chapter 4), there are

exceptions to this guideline. For example, there exist algorithm selection scenarios where aspeed
performs better than algorithm selectors, such as claspfolio 2. Furthermore, as we have done in
Chapter 7, claspfolio 2 can also be applied in the homogeneous use case and probably, it will
constantly select the best solver in the portfolio.

8.2 Future Work

Although, according to our empirical results, the methods we have presented in this thesis
improve state-of-the-art solving, there is plenty of room for further work.
So far, we have considered only one type of performance metric, that is, runtime. Another

typical performance metric is solution quality, that is, given a fixed time budget, an algorithm
has to find a solution with the highest quality. This quality can be, for example, the cost
of a round trip through a set of cities (traveling salesman problem). Algorithm configuration
and algorithm selection are defined on an arbitrary performance metric (such as number of
timeouts, average runtime or penalized average runtime) and have already proved to be also
effective for average quality as performance metric (see, for example, Hutter et al. (2009) for
algorithm configuration or (Bischl, Mersmann, Trautmann, & Preuß, 2012; Amadini, Gabbrielli,
& Mauro, 2014) for algorithm selection). However, all these approaches have not yet considered
effective pre-solving schedules. When an optimization algorithm is an anytime algorithms, that
is, on any point in time, the algorithm can be interrupted and will return the best solution so
far, this further degree of freedom complicates the problem of optimising schedules. It is not
anymore a binary decision whether an algorithm solved an instance or not as we studied in
Chapter 4.

101

8 Conclusion and Discussion

Another direction of future work consists of considering interactions between algorithms.
For example, it is well-known that the performance of parallel CDCD-based SAT solvers can be
significantly improved by using clause sharing (see, for example, Hamadi et al. (2009a)). In
Chapter 3, we have considered clause sharing as an additional step of ACPP, but we have not yet
tightly integrated it in ACPP by considering the effect of clause sharing while constructing the
portfolio. For sequential algorithm schedules, Malitsky et al. (2013b) export and import learned
clauses between two SAT solvers in succession. However, they have not considered the influence
of the alignment of the algorithms in the schedule when using this kind of clause sharing. For
algorithm selection, Malitsky et al. (2012) also considered parallel solvers with clause sharing
in their selected parallel portfolios. However, the solvers do not interact with each other. At
least in parallel SAT solving, clause sharing introduces non-deterministic runtime behavior1,
which makes it harder to collect reliable training data for our methods.

Algorithms and
Configurations

Algorithm
Selection

Algorithm
Schedule

Algorithm
Configuration

Selection of Configurators

Configuration of Selectors

Selection of
Schedules

Schedules of
Selectors

Schedules of
Configurators

Configuration
of Schedules

Figure 8.2: Overview of meta-algorithmic techniques and possible combinations.

Another direction for future work is the combination of algorithm configuration, scheduling
and selection. So far, we combine them only in two aspects: (i) we use algorithm configuration
to construct base portfolios for algorithm schedules or algorithm selection; (ii) algorithm sched-
ules are used for pre-solving before algorithm selection is used. However, there exist further
possible combinations, see Figure 8.2. Kadioglu et al. (2011) combined algorithm schedules
and algorithm selection in a way that per-instance schedules are selected. Another combination
is the configuration of schedules by Seipp, Sievers, and Hutter (2015). For example, algorithm
configuration can be seen itself as an (black-box) optimization process and different algorithm

1Deterministic parallel SAT solving with clause sharing (see, for example, Hamadi, Jabbour, Piette, and Sais (2011))
have not yet demonstrated to yield state-of-the-art performance.

102

8.3 Thesis Contributions in a Nutshell

configurators have shown to have strengths and weaknesses on different scenarios (see, for ex-
ample, results of the Configurable SAT Solver Challenge2). Therefore, algorithm selection can
be applied to select a well-performing configurator for a given configuration scenario. Bischl
et al. (2012) proposed algorithm selection for black-box optimization; however, they used only
synthetic black-box functions and have not applied it to algorithm configuration. Alternatively,
schedules of configurators could be used and interact with another to speed up the config-
uration process. As also already mentioned, different algorithm selection strategies perform
well on different scenarios. Additionally, algorithm selectors are typically based on machine
learning methods having parameters itself. So, algorithm configuration can be also applied to
selectors, such as claspfolio 2, to improve their performance for a certain scenario. Related
to this, Thornton et al. (2013) proposed AutoWeka, an algorithm configuration framework to
automatically find a well-performing machine learning approach with its hyper-parameters for
a given data set. This relates to algorithm configuration for selectors, since selectors typically
also rely on machine learning approaches. However, all other parts of algorithm selection, such
as pre-solving schedules, are not yet considered in algorithm configuration scenarios.

8.3 Thesis Contributions in a Nutshell

The meta-algorithmic methods we have introduced in this work, namely ACPP, aspeed , clasp-
folio 2 and PASU , turned out to perform well, especially on heterogeneous instance sets. We
can automatically improve the robustness of algorithms, in particular, solvers for NP-hard prob-
lems; using them reduces the need of human experts to select and configure solvers for new
applications. In the light of increasing importance of parallel processor technology and high
performance computation, we extended all methods to be applicable to parallel solving.

2http://aclib.net/cssc2014/

103

http://aclib.net/cssc2014/

List of Figures

1.1 Workflow of Algorithm Configuration . 4
1.2 Workflow of Algorithm Schedules with algorithm ai ∈ A and time slices σ : A→R+

0 5
1.3 Workflow of Algorithm Selectors . 6

2.1 Boxplots indicating the median, quartiles minimum and maximum speedup
achieved on the instance clusters within the base set SAT-Application; (left) com-
pares cde f ault and cI (high values are favourable for cI); (right) compares cde f ault
and cI∗ (high values are favourable for cI∗); special clusters: s f uncompleted
feature computation; se too easy, sh too hard; 19

3.1 Using a solver choice parameter, we can specify a single configuration space
that spans multiple solvers. 38

4.1 Parallel Schedules single best (+), uniform (×), ppfolio-like approach (∗), as-
peed (�), selection (�), oracle (©). 59

4.2 Reduced cutoff time, single best (+), uniform (×), ppfolio-like approach (∗), as-
peed (�), selection (�), oracle (©). 61

5.1 General workflow of claspfolio 2. Objects such as algorithms and instances
are shown as rectangles, and activities are depicted as rectangles with rounded
corners. Activities related to algorithm are tinted red and activities related to
algorithm schedules yellow. 68

5.2 The color shading shows the factor by which the selection approach imple-
mented in claspfolio 2 outperformed the single best on PAR10 without consider-
ation of the unsolvable instances. 78

6.1 Predicted performance (red line) with uncertainty (blue box with whiskers) . . . 84
6.2 Diverse Scenarios - PAR10 Performance (without unsolvable instances) over size

of portfolio. Vertical lines indicate that there is no statistical difference be-
tween the performance and the optimal performance of the maximal portfolio
(according to a Mann-Whitney-U-Test with significance level 0.05). 89

6.3 SAT Scenarios - PAR10 Performance (without unsolvable instances) over size of
portfolio. A vertical line marks the first portfolio with a performance indistin-
guishable to the maximal portfolio (according to a Mann-Whitney-U-Test with
significance level 0.05). 90

7.1 Training and test split of the instances in the scenarios. 95

104

List of Figures

8.1 High-level guideline for selecting meta-algorithmic approach to be used in a
given situation. 100

8.2 Overview of meta-algorithmic techniques and possible combinations. 102

105

List of Tables

1.1 Performance on a diverse set of 1294 ASP instances regarding average runtime
with penalized timeouts by 10 times the runtime cutoff (PAR10), number of ti-
meouts (#TOs) and penalized average runtime with factor 1 (PAR1). Each solver
had at most 600 seconds to solve an instance. 3

2.1 Comparison of set qualities of the base sets I and benchmark sets I∗ generated
by Algorithm 1; evaluated with Q∗-Scores with I1 = I, I2 = I∗, clasp as algorithm
A and PAR10-scores as performance metric m 18

3.1 Runtime statistics on the test set from application and hard combinatorial SAT
instances achieved by single-processor (SP) and 8-processor (MP8) versions.
Default-MP(8) was Plingeling in case of Lingeling and clasp -t 8 for clasp
where both use clause sharing (CS). The performance of a solver is shown in
boldface if it was not significantly different from the best performance, and is
marked with an asterisk (∗) if it was not significantly worse than Default-MP(8)+CS
(according to a permutation test with 100 000 permutations and significance
level α = 0.05). The best ACPP portfolio on the training set was marked with a
dagger (†). 32

3.2 Runtime statistics of parHydra-MP(i) after each iteration i (test set). The perfor-
mance of a solver is shown in boldface if it was not significantly different from
the best performance, (according to a permutation test with 100 000 permuta-
tions and significance level α = 0.05). 34

3.3 Runtime statistics of Lingeling and clasp with parallel runs of the same con-
figuration on all instances in the corresponding test sets. The performance of
a solver is shown in boldface if it was not significantly different from the best
performance, (according to a permutation test with 100 000 permutations and
significance level α = 0.05). 35

3.4 Runtime statistics of clasp’s parHydra-MP(8) portfolio with default clause shar-
ing (defCS) and configured clause sharing (confCS) on the test instances of the
hard combinatorial set. The performance of a solver is shown in boldface if
its performance was at least as good as that of any other solver, up to statis-
tically insignificant differences (according to a permutation test with 100 000
permutations and significance level α = 0.05). 36

3.5 Runtime statistics for 8-processor parallel solvers on the application test set.
The performance of a solver is shown in boldface if it was not significantly dif-
ferent from the best performance (according to a permutation test with 100 000
permutations at significance level α = 0.05). The best ACPP portfolio on the
training set was marked with a dagger (†). 39

106

List of Tables

3.6 Comparison of parallel solvers with 8 processors on the test set of application.
The performance of a solver is shown in boldface if its performance was at least
as good as that of any other solver, up to statistically insignificant differences
(according to a permutation test with 100 000 permutations at significance level
α = 0.05). The best ACPP portfolio on the training set was marked with a
dagger (†). 43

4.1 Table of algorithm runtimes on problem instances with tc = 10; ’≥ 10’ indicates
a timeout. 46

4.2 Runtime data sets used in our experiments from the 2011 SAT Competition (1),
the ASP benchmark repository asparagus (2), Kadioglu et al. 2011 (3), Gent et al.
2010 (4), Pulina and Tacchella 2009 (5) and Malitsky et al. 2013 (6). 54

4.3 Runtimes of clasp in CPU seconds to calculate an optimal schedule for one and
eight cores. 56

4.4 Comparison of different approaches w.r.t. #timeouts / #instances. The perfor-
mance of the best performing system is in boldface. 57

4.5 Ratios of the expected performance of a random alignment and alignments
computed by aspeed , heu-Opt and heu-Min; heu-Opt sorts the algorithms begin-
ning with the algorithm with the minimal number of timeouts; heu-Min begins
with the algorithm with the smallest time slice. The expected performance of
a random alignment was approximated by 10.000 samples for all sets marked
with ∗. 58

4.6 Comparison of sequential and parallel schedules with 4 cores w.r.t. the number
of timeouts and PAR10 score. 60

4.7 PAR10 of single best and aspeed , trained on 2009 SAT Competition and evaluated
on 2011 SAT Competition. 62

4.8 PAR10 of 3S and aspeed , trained on the training data of 3S and evaluated on
2011 SAT Competition. 62

5.1 38 static features computed by claspre (# = number, % = fraction, SCCs =
Strongly Connected Components, BADG = Body-Atom-Dependency Graph) . . 70

5.2 25 dynamic features computed (at each restart) by claspre
(# = number, % = fraction, ∅ = average, LBD = Literal Blocking Distance) . . . 70

5.3 Virtual best solver (VBS) performance of portfolio building approaches on test
sets. Results shown in boldface were statistically significantly better than all oth-
ers within the respective column (according to a permutation test with 100 000
permutations and α = 0.05). 73

5.4 Time required for computing the features of a single ASP instance in CPU
seconds, with a 600 seconds runtime cutoff. We report minimum (Min), 25%
quartile (Q0.25), median and 75% quartile (Q0.75) of the distribution over the
respective instance set, as well as the percentage of timeouts (%TOs). 74

5.5 Excerpt of algorithm selection mechanism supported by claspfolio 2. 75
5.6 Statistics (µ = average, σ = standard deviation, min = minimum) of PAR10

performance over all combinations except for the one kept fixed to assess its
impact. 76

107

List of Tables

5.7 Overview of algorithm selection scenarios in Algorithm Selection Library with
the number of instances |I|, number of unsolvable instances |U | (U ⊂ I), number
of algorithms |A|, and number of features |F |. 77

5.8 Comparison of two clasp configurations, the single best solver in all portfolios
(cf. Subsection 5.3), claspfolio 1.0, the claspfolio 2 with claspre(s+d) features,
Hydra-like-portfolio and SATzilla’11-like approach. The significantly best perfor-
mances (except VBS) are shown in boldface (according to a permutation test
with 100 000 permutations and significance level α = 0.05). 80

6.1 Comparison of PASU , a static single best selection, the baseline approach with
a Random Forest Regression and aspeed ’s static algorithm schedules on PAR10
scores without unsolvable instances. The best performance per scenario is bold.
If the number of selectable algorithms is smaller than the parallel portfolio size,
we marked the corresponding entry with “—”. 92

7.1 Cross validated performance on RICOCHET ROBOTS ’s test set regarding wall-
clock time in seconds. 97

7.2 Cross validated performance on ASP-POTASSCO’s test set regarding wall-clock
time in seconds. 97

A.1 Overview of Notation . 110

B.1 ASP-POTASSCO: 11 algorithms, oracle (par10): 400.17, feature costs: 1.32 111
B.2 CSP-2010 : 2 algorithms, oracle (par10): 6344.25, feature costs: 0.00 111
B.3 MAXSAT12-PMS : 6 algorithms, oracle (par10): 3127.23, feature costs: 0.15 . . . 112
B.4 PREMARSHALLING-ASTAR-2013 : 4 algorithms, oracle (par10): 227.60, feature

costs: 0.00 . 112
B.5 QBF-2011 : 5 algorithms, oracle (par10): 8337.09, feature costs: 0.00 112
B.6 SAT11-HAND: 15 algorithms, oracle (par10): 13360.66, feature costs: 41.22 . . . 113
B.7 SAT11-INDU : 18 algorithms, oracle (par10): 8187.51, feature costs: 135.34 . . . 113
B.8 SAT11-RAND: 8 algorithms, oracle (par10): 9186.44, feature costs: 22.06 113
B.9 SAT12-ALL: 31 algorithms, oracle (par10): 241.31, feature costs: 40.58 114
B.10 SAT12-HAND: 31 algorithms, oracle (par10): 3662.24, feature costs: 39.06 114
B.11 SAT12-INDU : 31 algorithms, oracle (par10): 2221.49, feature costs: 80.90 114
B.12 SAT12-RAND: 31 algorithms, oracle (par10): 2872.84, feature costs: 9.02 115

108

List of Algorithms

1 Benchmark Selection Algorithm . 14

2 Portfolio Configuration Procedure Global . 27
3 Portfolio Configuration Procedure parHydra . 28
4 Portfolio Configuration Procedure Clustering . 29
5 Portfolio Configuration Procedure parHydrab . 42

6 Training of PASU . 84
7 Greedy Portfolio Selection in PASU . 86

109

A Notation

Algorithm (e.g., solvers) a ∈ A
Alignment π : {1, . . . , |A|} → A
Cluster s ∈ S
Cluster Mapping s : I→ S
Configuration c ∈C
Configuration Budget tb
Configurator AC
Features f : I→ Rd

Hardness Metric h : I→ R
Instance i ∈ I
Performance Metric m : I×A→ R
Portfolio of k Configurations c1:k
Portfolio Size k ∈ R
Q-score I× I×A×m→ R
Runtimes t : I×A→ R
Runtime Cutoff tc
Schedule σ : A→ [0, tc]
Selection Mapping φ : I→ A
Threshold e ∈ R

Table A.1: Overview of Notation

110

B claspfolio 2 on ASlib

All listed results include unsolvable instances in contrast to Figure 5.7.

#Timeouts PAR10 PAR1
3S-like 102 501.79 76.13
aspeed 149 774.72 152.93
claspfolio-1.0-like 109 536.65 81.78
ISAC-like 107 525.78 79.25
ME-ASP-like 134 649.95 90.75
SATzilla’09-like 115 561.14 81.23
SATzilla’11-like 101 497.15 75.66
single best 183 880.55 116.87

Table B.1: ASP-POTASSCO: 11 algorithms, oracle (par10): 400.17, feature costs: 1.32

#Timeouts PAR10 PAR1
3S-like 273 6901.28 831.61
aspeed 277 7079.08 920.48
claspfolio-1.0-like 271 6775.77 750.57
ISAC-like 268 6708.35 749.85
ME-ASP-like 264 6609.21 739.65
SATzilla’09-like 264 6612.85 743.29
SATzilla’11-like 263 6580.71 733.38
single best 288 7201.56 798.39

Table B.2: CSP-2010 : 2 algorithms, oracle (par10): 6344.25, feature costs: 0.00

111

B claspfolio 2 on ASlib

#Timeouts PAR10 PAR1
3S-like 139 3387.90 388.93
aspeed 136 3749.81 815.57
claspfolio-1.0-like 167 4033.44 430.36
ISAC-like 144 3487.49 380.64
ME-ASP-like 164 3969.84 431.48
SATzilla’09-like 149 3618.06 403.34
SATzilla’11-like 138 3343.59 366.20
single best 202 4893.14 534.92

Table B.3: MAXSAT12-PMS : 6 algorithms, oracle (par10): 3127.23, feature costs: 0.15

#Timeouts PAR10 PAR1
3S-like 27 2122.35 462.39
aspeed 25 2165.90 628.90
claspfolio-1.0-like 86 6073.31 786.02
ISAC-like 75 5353.12 742.12
ME-ASP-like 91 6431.63 836.94
SATzilla’09-like 63 4524.39 651.14
SATzilla’11-like 54 3921.90 601.97
single best 99 7002.91 916.38

Table B.4: PREMARSHALLING-ASTAR-2013 : 4 algorithms, oracle (par10): 227.60, feature costs:
0.00

#Timeouts PAR10 PAR1
3S-like 344 9237.10 1089.73
aspeed 349 9853.57 1587.78
claspfolio-1.0-like 430 11406.75 1222.54
ISAC-like 408 10838.02 1174.86
ME-ASP-like 405 10756.89 1164.79
SATzilla’09-like 380 10083.66 1083.66
SATzilla’11-like 340 9063.60 1010.96
single best 579 15330.17 1617.01

Table B.5: QBF-2011 : 5 algorithms, oracle (par10): 8337.09, feature costs: 0.00

112

B claspfolio 2 on ASlib

#Timeouts PAR10 PAR1
3S-like 106 18307.00 2192.13
aspeed 100 17497.90 2295.20
claspfolio-1.0-like 141 24276.22 2840.41
ISAC-like 141 24270.92 2835.10
ME-ASP-like 153 26297.90 3037.77
SATzilla’09-like 113 19553.06 2374.01
SATzilla’11-like 116 19996.89 2361.75
single best 152 26188.09 3079.98

Table B.6: SAT11-HAND: 15 algorithms, oracle (par10): 13360.66, feature costs: 41.22

#Timeouts PAR10 PAR1
3S-like 83 14369.00 1919.00
aspeed 89 15379.63 2029.63
claspfolio-1.0-like 82 14121.53 1821.53
ISAC-like 79 13618.07 1768.07
ME-ASP-like 82 14147.65 1847.65
SATzilla’09-like 84 14457.12 1857.12
SATzilla’11-like 82 14129.46 1829.46
single best 90 15411.24 1911.24

Table B.7: SAT11-INDU : 18 algorithms, oracle (par10): 8187.51, feature costs: 135.34

#Timeouts PAR10 PAR1
3S-like 143 12151.33 1426.33
aspeed 133 11631.68 1656.68
claspfolio-1.0-like 170 14310.28 1560.28
ISAC-like 166 13973.82 1523.82
ME-ASP-like 187 15701.03 1676.03
SATzilla’09-like 164 13791.19 1491.19
SATzilla’11-like 154 12982.65 1432.65
single best 254 21249.66 2199.66

Table B.8: SAT11-RAND: 8 algorithms, oracle (par10): 9186.44, feature costs: 22.06

113

B claspfolio 2 on ASlib

#Timeouts PAR10 PAR1
3S-like 264 2113.40 346.85
aspeed 357 2964.27 575.42
claspfolio-1.0-like 330 2572.93 364.76
ISAC-like 370 2857.17 381.33
ME-ASP-like 381 2938.29 388.85
SATzilla’09-like 290 2275.44 334.92
SATzilla’11-like 249 1969.20 303.03
single best 399 3079.89 410.00

Table B.9: SAT12-ALL: 31 algorithms, oracle (par10): 241.31, feature costs: 40.58

#Timeouts PAR10 PAR1
3S-like 328 5224.27 605.75
aspeed 332 5374.63 699.79
claspfolio-1.0-like 378 5979.42 656.87
ISAC-like 389 6159.70 682.26
ME-ASP-like 401 6343.97 697.56
SATzilla’09-like 343 5439.99 610.27
SATzilla’11-like 339 5375.73 602.33
single best 401 6338.90 692.49

Table B.10: SAT12-HAND: 31 algorithms, oracle (par10): 3662.24, feature costs: 39.06

#Timeouts PAR10 PAR1
3S-like 286 3082.68 435.90
aspeed 325 3548.74 541.03
claspfolio-1.0-like 290 3104.45 420.64
ISAC-like 284 3042.80 414.53
ME-ASP-like 295 3157.45 427.37
SATzilla’09-like 288 3086.89 421.60
SATzilla’11-like 282 3017.90 408.14
single best 308 3266.05 415.66

Table B.11: SAT12-INDU : 31 algorithms, oracle (par10): 2221.49, feature costs: 80.90

114

B claspfolio 2 on ASlib

#Timeouts PAR10 PAR1
3S-like 374 3353.19 387.55
aspeed 369 3343.20 417.21
claspfolio-1.0-like 369 3302.62 376.62
ISAC-like 370 3308.98 375.06
ME-ASP-like 372 3328.74 378.96
SATzilla’09-like 370 3312.28 378.36
SATzilla’11-like 370 3309.19 375.27
single best 366 3271.14 368.93

Table B.12: SAT12-RAND: 31 algorithms, oracle (par10): 2872.84, feature costs: 9.02

115

C Portfolio of clasp Configurations for
RICOCHET ROBOTS and ASP-POTASSCO

C.1 RICOCHET ROBOTS

--eq=0 --trans-ext=no --sat-prepro=0 --update-lbd=2 --heuristic=Vsids --sign-def=1
--restart-on-model --opt-heuristic=3 --vsids-decay=81 --local-restarts --lookahead=no
--otfs=0 --reverse-arcs=0 --save-progress=0 --init-watches=2 --restarts=D,240,0.513,127
--opt-hierarch=3 --strengthen=recursive,0 --deletion=0 --loops=common --del-on-restart=0
--contraction=no

--backprop --eq-dfs --eq=8 --trans-ext=dynamic --sat-prepro=0 --sign-def=1
--restart-on-model --strengthen=recursive,0 --del-init-r=1,8594 --loops=no
--del-max=453160547 --reverse-arcs=3 --heuristic=Vsids --restarts=x,1734,1.9172,477
--deletion=0 --update-act --contraction=no --update-lbd=1 --opt-heuristic=0
--vsids-decay=94 --otfs=1 --init-moms --del-on-restart=50 --init-watches=2
--local-restarts --lookahead=no --save-progress=0 --opt-hierarch=0 --sign-fix

--backprop --eq=1 --trans-ext=no --sat-prepro=0 --sign-def=1 --restart-on-model
--strengthen=local,1 --init-watches=0 --del-init-r=25,20790 --loops=shared
--del-max=1312983571 --reverse-arcs=0 --heuristic=Vsids
--restarts=x,519,1.788,5 --del-algo=inp_sort,0 --del-estimate
--del-grow=1.5672,31.7771,+,137,218 --update-act --del-glue=3,0 --update-lbd=2
--opt-heuristic=1 --deletion=1,90,9.2504 --vsids-decay=70 --otfs=2 --init-moms
--del-on-restart=0 --contraction=no --lookahead=no --save-progress=0 --opt-hierarch=3

--backprop --eq=37 --trans-ext=dynamic --sat-prepro=0 --sign-def=1 --restart-on-model
--strengthen=local,1 --init-watches=2 --del-init-r=56,15164 --loops=shared
--del-max=511359929 --reverse-arcs=3 --heuristic=Vsids --del-cfl=L,1 --restarts=no
--del-algo=inp_sort,0 --deletion=2,36,1.8454 --del-glue=7,0 --update-lbd=0
--opt-heuristic=3 --del-estimate --vsids-decay=82 --otfs=0 --del-on-restart=0
--contraction=no --local-restarts --lookahead=no --save-progress=180 --opt-hierarch=3
--sign-fix

--backprop --eq-dfs --eq=1 --trans-ext=weight --sat-prepro=0 --update-lbd=0
--heuristic=Berkmin --sign-def=1 --init-moms --opt-heuristic=1 --strengthen=local,2
--lookahead=no --reverse-arcs=2 --save-progress=61 --restarts=no --otfs=2
--opt-hierarch=2 --init-watches=2 --deletion=0 --berk-max=3 --loops=no
--update-act --del-on-restart=41 --sign-fix --contraction=1

116

C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO

(Single Best) --eq=1 --trans-ext=dynamic --sat-prepro=3,41,-1,45,1 --update-lbd=0
--heuristic=Vsids --sign-def=2 --del-max=2053365695 --opt-heuristic=3
--vsids-decay=84 --strengthen=recursive,0 --lookahead=hybrid,14 --reverse-arcs=0
--save-progress=180 --del-init-r=24,5723 --restarts=+,1,1 --otfs=1
--opt-hierarch=2 --init-watches=0 --deletion=0 --loops=no --update-act
--del-on-restart=50 --init-moms --contraction=no

--eq-dfs --eq=1 --trans-ext=dynamic --sat-prepro=0 --sign-def=0
--restart-on-model --strengthen=local,2 --loops=no --init-watches=2
--heuristic=Vsids --reverse-arcs=1 --del-cfl=F,14080 --restarts=D,420,0.5333,37
--del-algo=basic,1 --deletion=2,61,9.0412 --update-act --del-glue=7,1
--update-lbd=3 --opt-heuristic=3 --vsids-decay=92 --otfs=0 --del-on-restart=4
--contraction=no --local-restarts --lookahead=no --save-progress=19
--opt-hierarch=2

--eq=0 --trans-ext=integ --sat-prepro=0 --sign-def=1 --del-max=1679545344
--strengthen=recursive,1 --init-watches=0 --del-init-r=89,8153 --loops=no
--restart-on-model --reverse-arcs=2 --heuristic=Vsids --restarts=x,3,1.9488
--del-algo=sort,0 --deletion=1,49,8.3325 --del-grow=1.2595,73.1424,x,4,1.8635
--update-act --del-glue=1,1 --update-lbd=2 --opt-heuristic=0 --vsids-decay=89
--otfs=0 --init-moms --del-on-restart=20 --contraction=no --lookahead=no --save-progress=64
--opt-hierarch=1 --sign-fix

--eq=0 --trans-ext=dynamic --sat-prepro=0 --sign-def=1 --del-max=1908872295
--strengthen=local,1 --del-init-r=3,7089 --loops=distinct --init-watches=2
--heuristic=None --reverse-arcs=1 --restarts=no --del-algo=inp_heap,1
--del-estimate --del-grow=4.3442,4.3608,+,1,11136,1 --del-glue=7,1
--update-lbd=0 --opt-heuristic=2 --deletion=1,100,8.5016 --otfs=2
--init-moms --del-on-restart=0 --contraction=no --lookahead=no
--save-progress=11 --opt-hierarch=1

--eq=53 --trans-ext=all --sat-prepro=0 --update-lbd=1 --heuristic=Vsids
--del-on-restart=50 --sign-def=2 --opt-heuristic=3 --vsids-decay=78
--strengthen=local,0 --lookahead=no --reverse-arcs=2 --save-progress=180
--del-cfl=F,31799 --restarts=no --otfs=0 --del-algo=inp_sort,2 --init-watches=2
--deletion=2,8,4.3982 --contraction=8 --loops=no --opt-hierarch=3 --del-glue=0,0

--backprop --eq=0 --trans-ext=all --sat-prepro=0 --sign-def=0 --strengthen=local,0
--loops=distinct --init-watches=2 --heuristic=Vsids --reverse-arcs=3
--restarts=D,304,0.7808,109 --del-algo=inp_heap,0 --del-estimate
--del-grow=2.4788,76.3835,L,448,3758 --update-act --del-glue=6,0
--update-lbd=0 --opt-heuristic=0 --deletion=1,48,6.3707 --vsids-decay=87
--otfs=1 --init-moms --del-on-restart=25 --contraction=no --lookahead=no
--save-progress=171 --opt-hierarch=0

117

C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO

--eq=0 --trans-ext=choice --sat-prepro=0 --sign-def=2 --restart-on-model
--strengthen=recursive,1 --loops=no --reverse-arcs=0 --heuristic=Vsids
--restarts=no --del-algo=inp_sort,0 --deletion=1,2,3.0926
--del-grow=1.6048,50.6736,F,7 --update-act --contraction=no
--del-glue=6,0 --update-lbd=1 --opt-heuristic=3 --vsids-decay=75
--otfs=1 --init-moms --del-on-restart=0 --init-watches=2
--local-restarts --lookahead=no --save-progress=0 --opt-hierarch=2

--backprop --eq=0 --trans-ext=no --sat-prepro=0 --sign-def=2
--del-max=100521649 --strengthen=recursive,2 --init-watches=0
--del-init-r=535,3187 --loops=shared --reverse-arcs=3 --heuristic=Berkmin
--berk-once --del-cfl=F,7 --restarts=no --del-algo=sort,1 --del-estimate
--berk-max=326 --del-grow=3.3683,29.9185,L,1,804 --del-glue=0,0
--update-lbd=2 --opt-heuristic=0 --deletion=3,100,1.7264 --otfs=0
--del-on-restart=0 --contraction=68 --local-restarts --lookahead=no
--save-progress=0 --opt-hierarch=1

--eq-dfs --eq=3 --trans-ext=choice --sat-prepro=1,41,-1,27,2 --sign-def=1
--del-max=400721214 --strengthen=recursive,0 --init-watches=2
--del-init-r=539,2196 --loops=shared --reverse-arcs=0
--heuristic=Vsids --restarts=L,2 --del-algo=inp_heap,0
--deletion=1,69,9.371 --del-grow=2.6076,85.1081,F,185 --update-act
--del-glue=1,1 --update-lbd=1 --opt-heuristic=3 --vsids-decay=79
--otfs=1 --del-on-restart=36 --contraction=376 --counter-restarts=73
--lookahead=no --save-progress=93 --opt-hierarch=2 --counter-bump=164

--eq=0 --trans-ext=integ --sat-prepro=0 --sign-def=1 --restart-on-model
--strengthen=local,2 --loops=distinct --init-watches=2 --heuristic=Vsids
--reverse-arcs=0 --del-cfl=L,1067 --restarts=+,212,23685,135
--del-algo=basic,1 --deletion=2,95,1.6916 --del-glue=0,1 --update-lbd=3
--opt-heuristic=2 --vsids-decay=89 --otfs=0 --del-on-restart=50
--contraction=52 --local-restarts --lookahead=no --save-progress=21
--opt-hierarch=1

C.2 ASP-POTASSCO

--eq-dfs --eq=125 --trans-ext=dynamic --sat-prepro=0 --update-lbd=3
--heuristic=Vsids --sign-def=0 --opt-heuristic=0 --vsids-decay=92
--strengthen=recursive,2 --lookahead=no --otfs=1 --reverse-arcs=3
--save-progress=7 --restarts=L,14,5 --opt-hierarch=2 --init-watches=0
--deletion=0 --loops=no --update-act --del-on-restart=8 --sign-fix
--contraction=3

118

C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO

--backprop --eq=0 --trans-ext=dynamic --sat-prepro=10,25,-1,100,1
--sign-def=1 --del-max=32767 --strengthen=local,0 --init-watches=2
--del-init-r=1000,9000 --loops=no --reverse-arcs=1 --heuristic=Vsids
--del-cfl=+,10000,1000 --restarts=x,128,1.5 --del-algo=basic,0
--deletion=3,75,10.0 --del-grow=1.1,20.0,L,1000 --del-glue=2,0
--update-lbd=0 --opt-heuristic=0 --vsids-decay=70 --otfs=2
--del-on-restart=30 --contraction=no --counter-restarts=3
--lookahead=no --save-progress=180 --opt-hierarch=0 --counter-bump=10

--eq=75 --trans-ext=all --sat-prepro=30,5,-1,22,2 --sign-def=0
--restart-on-model --strengthen=recursive,2 --init-watches=0
--loops=distinct --reverse-arcs=0 --heuristic=Berkmin
--del-cfl=x,192,1.499 --restarts=+,98,281,642 --del-algo=sort,1
--deletion=3,63,5.5002 --berk-max=1 --del-grow=4.3241,25.8048,x,2023,1.3915
--update-act --del-glue=3,0 --update-lbd=0 --opt-heuristic=3 --otfs=1
--init-moms --del-on-restart=36 --contraction=no --lookahead=atom,106
--save-progress=101 --opt-hierarch=0

--eq=1 --trans-ext=all --sat-prepro=0 --sign-def=2 --restart-on-model
--strengthen=recursive,1 --init-watches=2 --del-init-r=824,10792
--loops=shared --del-max=211572149 --reverse-arcs=2 --heuristic=Vsids
--del-cfl=+,96,250 --restarts=+,3594,10909,9 --del-algo=inp_heap,2
--del-estimate --update-act --del-glue=4,0 --update-lbd=1 --opt-heuristic=2
--deletion=2,87,4.7191 --vsids-decay=90 --otfs=2 --del-on-restart=37
--contraction=no --counter-restarts=2 --local-restarts --lookahead=no
--save-progress=98 --opt-hierarch=2 --counter-bump=65

--backprop --eq=0 --trans-ext=card --sat-prepro=6,2,-1,85,0 --sign-def=1
--del-max=1821250312 --strengthen=local,2 --del-init-r=237,15629
--loops=common --init-watches=2 --heuristic=Vsids --reverse-arcs=1
--restarts=+,13,56 --deletion=0 --update-lbd=2 --opt-heuristic=2
--vsids-decay=76 --otfs=1 --del-on-restart=13 --contraction=no
--counter-restarts=2 --lookahead=atom,2 --save-progress=166
--opt-hierarch=1 --counter-bump=201 --sign-fix

--backprop --eq=0 --trans-ext=choice --sat-prepro=10,25,-1,100,1
--sign-def=1 --del-max=32767 --strengthen=recursive,0 --del-init-r=1000,9000
--loops=no --init-watches=2 --heuristic=Vsids --reverse-arcs=0
--del-cfl=+,10000,1000 --restarts=L,128 --del-algo=basic,0
--deletion=3,75,10.0 --del-grow=1.1,20.0,L,1000 --del-glue=2,0
--update-lbd=0 --opt-heuristic=3 --vsids-decay=70 --otfs=1 --del-on-restart=37
--contraction=no --lookahead=no --save-progress=180 --opt-hierarch=0

--eq=58 --trans-ext=all --sat-prepro=0 --sign-def=1 --strengthen=local,0

119

C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO

--init-watches=2 --loops=shared --reverse-arcs=1 --heuristic=Vsids
--del-cfl=F,4048 --restarts=x,2768,1.2981 --del-algo=inp_sort,0
--deletion=3,93,9.7528 --del-grow=4.214,63.6462,+,1,571,2461 --del-glue=6,1
--update-lbd=3 --opt-heuristic=2 --vsids-decay=71 --otfs=0 --init-moms
--del-on-restart=47 --contraction=no --local-restarts --lookahead=no
--save-progress=42 --opt-hierarch=3 --sign-fix

--backprop --eq-dfs --eq=7 --trans-ext=all --sat-prepro=2,14,-1,29,0
--sign-def=0 --del-max=435043091 --strengthen=recursive,0 --init-watches=0
--del-init-r=59,26445 --loops=no --reverse-arcs=3 --heuristic=Vsids
--del-cfl=x,5,1.9291,12 --restarts=x,1,1.0611 --del-algo=inp_heap,1
--deletion=3,10,9.3132 --del-grow=1.3879,19.738,F,445 --del-glue=5,1
--update-lbd=0 --opt-heuristic=2 --vsids-decay=93 --otfs=2 --del-on-restart=36
--contraction=no --lookahead=hybrid,3 --save-progress=175 --opt-hierarch=0

--eq-dfs --eq=1 --trans-ext=choice --sat-prepro=0 --sign-def=2
--restart-on-model --strengthen=local,0 --del-init-r=4,13882 --loops=no
--del-max=201830159 --init-watches=0 --heuristic=Berkmin --berk-once
--reverse-arcs=1 --restarts=F,5109 --deletion=0 --berk-max=7 --update-act
--update-lbd=3 --opt-heuristic=0 --otfs=0 --berk-huang --del-on-restart=4
--contraction=78 --counter-restarts=30 --lookahead=atom,2 --save-progress=37
--opt-hierarch=2 --counter-bump=214

--backprop --eq=5 --trans-ext=integ --sat-prepro=10,25,-1,100,1 --update-lbd=0
--opt-heuristic=0 --sign-def=1 --del-algo=basic,0 --strengthen=local,0 --reverse-arcs=1
--vsids-decay=70 --save-progress=180 --contraction=no --restarts=x,128,1.0582
--otfs=2
--opt-hierarch=0 --init-watches=2 --heuristic=Vsids --deletion=1,75,10.0 --lookahead=no
--loops=common --del-grow=1.1,20.0,L,1000 --update-act --del-on-restart=30 --del-glue=2,0

--eq-dfs --eq=1 --trans-ext=no --sat-prepro=4,36,-1,75,0 --sign-def=1
--restart-on-model --strengthen=recursive,1 --init-watches=2 --loops=shared
--reverse-arcs=1 --heuristic=Berkmin --berk-once --restarts=D,58,0.8882,31
--del-algo=sort,1 --del-estimate --berk-max=4 --del-grow=3.2967,91.2359,L,26294,221
--update-act --del-glue=3,1 --update-lbd=3 --opt-heuristic=1 --deletion=1,36,1.7415
--otfs=0 --del-on-restart=35 --contraction=no --counter-restarts=67 --local-restarts
--lookahead=no --save-progress=73 --opt-hierarch=2 --counter-bump=1100 --sign-fix

120

Bibliography

Aigner, M., Biere, A., Kirsch, C., Niemetz, A., & Preiner, M. (2013). Analysis of portfolio-
style parallel SAT solving on current multi-core architectures. In Proceeding of the Fourth
International Workshop on Pragmatics of SAT (POS’13).

Alviano, M., Dodaro, C., Faber, W., Leone, N., & Ricca, F. (2013). WASP: A native asp solver
based on constraint learning.. In Cabalar, & Son (Cabalar & Son, 2013), pp. 54–66.

Amadini, R., Gabbrielli, M., & Mauro, J. (2014). Portfolio approaches for constraint optimiza-
tion problems. In Proceedings of the Conference on Learning and Intelligent OptimizatioN
(LION’14), pp. 21–35.

Andres, B., Kaufmann, B., Matheis, O., & Schaub, T. (2012). Unsatisfiability-based optimization
in clasp.. In Dovier, & Santos Costa (Dovier & Santos Costa, 2012), pp. 212–221.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm for the
automatic configuration of algorithms. In Gent, I. (Ed.), Proceedings of the Fifteenth Inter-
national Conference on Principles and Practice of Constraint Programming (CP’09), Vol. 5732
of Lecture Notes in Computer Science, pp. 142–157. Springer-Verlag.

Asin, R., Olate, J., & Ferres, L. (2013). Cache performance study of portfolio-based parallel
CDCL SAT solvers. CoRR, abs/1309.3187.

Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., & Piette, C. (2012). Penelope, a parallel
clause-freezer solver.. In Balint et al. (Balint, Belov, Diepold, Gerber, Järvisalo, & Sinz,
2012a), pp. 43–44. Available at https://helda.helsinki.fi/handle/10138/34218.

Audemard, G., & Simon, L. (2012). Glucose 2.1. in the SAT challenge 2012.. In Balint et al.
(Balint et al., 2012a), pp. 23–23. Available at https://helda.helsinki.fi/handle/
10138/34218.

Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., & Sinz, C. (Eds.). (2012a). Proceedings
of SAT Challenge 2012: Solver and Benchmark Descriptions, Vol. B-2012-2 of Department
of Computer Science Series of Publications B. University of Helsinki. Available at https:
//helda.helsinki.fi/handle/10138/34218.

Balint, A., Belov, A., Järvisalo, M., & Sinz, C. (2012b). Application and hard combinatorial
benchmarks in SAT challenge 2012.. In Balint et al. (Balint et al., 2012a), pp. 69–71.
Available at https://helda.helsinki.fi/handle/10138/34218.

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Bayless, S., Tompkins, D., & Hoos, H. (2012). Evaluating instance generators by configuration.
Tech. rep., Department of Computer Science, University of British Columbia.

Berre, D., Roussel, O., & Simon, L. (2009). http://www.satcompetition.org/2009/
BenchmarksSelection.html, last visited. 09-03-2012.

121

https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
http://www.satcompetition.org/2009/BenchmarksSelection.html
http://www.satcompetition.org/2009/BenchmarksSelection.html

Bibliography

Bessiere, C. (Ed.). (2007). Proceedings of the Thirteenth International Conference on Principles and
Practice of Constraint Programming (CP’07), Vol. 4741 of Lecture Notes in Computer Science.
Springer-Verlag.

Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Tech. rep. 10/1,
Institute for Formal Models and Verification. Johannes Kepler University.

Biere, A. (2011). Lingeling and friends at the SAT competition 2011. Technical report FMV 11/1,
Institute for Formal Models and Verification, Johannes Kepler University.

Biere, A. (2012). Lingeling and friends entering the SAT challenge 2012.. In Balint et al. (Balint
et al., 2012a), pp. 33–34. Available at https://helda.helsinki.fi/handle/10138/
34218.

Biere, A. (2013). Lingeling, plingeling and treengeling entering the sat competition 2013. In
Balint, A., Belov, A., Heule, M., & Järvisalo, M. (Eds.), Proceedings of SAT Competition 2013:
Solver and Benchmark Descriptions, Vol. B-2013-1 of Department of Computer Science Series
of Publications B, pp. 51–52. University of Helsinki.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of Satisfiability, Vol.
185 of Frontiers in Artificial Intelligence and Applications. IOS Press.

Bischl, B., Mersmann, O., Trautmann, H., & Preuß, M. (2012). Algorithm selection based on
exploratory landscape analysis and cost-sensitive learning. In Soule, T., & Moore, J.
(Eds.), Proceedings of the International Conference on Genetic and Evolutionary Computation
(GECCO’12), pp. 313–320. ACM.

Bishop, C. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics)
(2 edition). Springer-Verlag.

Boutilier, C. (Ed.). (2009). Proceedings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI’09). AAAI/MIT Press.

Brglez, F., Li, X., & Stallmann, F. (2002). The role of a skeptic agent in testing and benchmarking
of sat algorithms..

Cabalar, P., & Son, T. (Eds.). (2013). Proceedings of the Twelfth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’13), Vol. 8148 of Lecture Notes in Arti-
ficial Intelligence. Springer-Verlag.

Cai, S., Luo, C., & Su, K. (2012). Ccasat: Solver description.. In Balint et al. (Balint et al.,
2012a), pp. 13–14. Available at https://helda.helsinki.fi/handle/10138/34218.

Calimeri, F., Ianni, G., & Ricca, F. (2011a). Third ASP competition - file and language formats.
Tech. rep., Università della Calabria.

Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro,
M., Sirianni, M., Terracina, G., & Veltri, P. (2011b). The third answer set programming
competition: Preliminary report of the system competition track.. In Delgrande, & Faber
(Delgrande & Faber, 2011), pp. 388–403.

Cavazos, J., & O’Boyle, M. (2005). Automatic tuning of inlining heuristics. In Kramer, W. (Ed.),
Proceedings of the International Conference on High Performance Networking and Computing,
pp. 1–14. IEEE Computer Society.

122

https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218

Bibliography

Chen, J. (2011). Phase selection heuristics for satisfiability solvers. CoRR, abs/1106.1372.

Cimatti, A., & Sebastiani, R. (Eds.). (2012). Proceedings of the Fifteenth International Conference
on Theory and Applications of Satisfiability Testing (SAT’12), Vol. 7317 of Lecture Notes in
Computer Science. Springer-Verlag.

Coelho, H., Studer, R., & Wooldridge, M. (Eds.). (2010). Proceedings of the Nineteenth European
Conference on Artificial Intelligence (ECAI’10). IOS Press.

Collautti, M., Malitsky, Y., Mehta, D., & O’Sullivan, B. (2013). SNAPP: Solver-based nearest
neighbor for algorithm portfolios. In Zelezny, F. (Ed.), Proceedings of the Twenty-Fourth
European Conference on Machine Learning (ECML’13), Lecture Notes in Computer Science.
Springer-Verlag.

Delgrande, J., & Faber, W. (Eds.). (2011). Proceedings of the Eleventh International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’11), Vol. 6645 of Lecture Notes in
Artificial Intelligence. Springer-Verlag.

Diao, Y., Eskesen, F., Froehlich, S., Hellerstein, J. L., Spainhower, L., & Surendra, M. (2003).
Generic online optimization of multiple configuration parameters with application to a
database server. In Brunner, M., & Keller, A. (Eds.), Proceedings of the Fourteenth IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management (DSOM’03), Vol.
2867 of Lecture Notes in Computer Science, pp. 3–15. Springer-Verlag.

Dovier, A., & Santos Costa, V. (Eds.). (2012). Technical Communications of the Twenty-eighth
International Conference on Logic Programming (ICLP’12), Vol. 17. Leibniz International
Proceedings in Informatics (LIPIcs).

Eén, N., & Sörensson, N. (2004). An extensible SAT-solver. In Giunchiglia, E., & Tacchella,
A. (Eds.), Proceedings of the Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT’03), Vol. 2919 of Lecture Notes in Computer Science, pp. 502–518.
Springer-Verlag.

Gagliolo, M., & Schmidhuber, J. (2006). Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence, 47 (3-4), 295–328.

Gebruers, C., Guerri, A., Hnich, B., & Milano, M. (2004). Making choices using structure at the
instance level within a case based reasoning framework. In Régin, J., & Rueher, M. (Eds.),
Proceedings of the First Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR’04), Vol. 3011 of Lecture
Notes in Computer Science, pp. 380–386. Springer-Verlag.

Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., & Schneider, M.
(2013). Ricochet robots: A transverse ASP benchmark.. In Cabalar, & Son (Cabalar &
Son, 2013), pp. 348–360.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Schneider, M. (2011).
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2), 107–124.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Thiele, S. A user’s guide
to gringo, clasp, clingo, and iclingo..

123

Bibliography

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M., & Ziller, S. (2011). A
portfolio solver for answer set programming: Preliminary report.. In Delgrande, & Faber
(Delgrande & Faber, 2011), pp. 352–357.

Gebser, M., Kaminski, R., & Schaub, T. (2012a). Gearing up for effective ASP planning. In
Erdem, E., Lee, J., Lierler, Y., & Pearce, D. (Eds.), Correct Reasoning: Essays on Logic-Based
AI in Honour of Vladimir Lifschitz, Vol. 7265 of Lecture Notes in Computer Science, pp.
296–310. Springer-Verlag.

Gebser, M., Kaufmann, B., & Schaub, T. (2012b). Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence, 187-188, 52–89.

Gebser, M., Kaufmann, B., & Schaub, T. (2012c). Multi-threaded ASP solving with clasp. Theory
and Practice of Logic Programming, 12(4-5), 525–545.

Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., & Petrie, K. (2010).
Learning when to use lazy learning in constraint solving.. In Coelho et al. (Coelho, Studer,
& Wooldridge, 2010), pp. 873–878.

Giunchiglia, E., Lierler, Y., & Maratea, M. (2006). Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning, 36 (4), 345–377.

Gomes, C., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126 (1-2), 43–62.

Grinten, A., Wotzlaw, A., Speckenmeyer, E., & Porschen, S. (2012). satUZK: Solver description..
In Balint et al. (Balint et al., 2012a), pp. 54–55. Available at https://helda.helsinki.
fi/handle/10138/34218.

Guerri, A., & Milano, M. (2004). Learning techniques for automatic algorithm portfolio selec-
tion. In López de Mántaras, R., & Saitta, L. (Eds.), Proceedings of the Sixteenth Eureopean
Conference on Artificial Intelligence (ECAI’04), pp. 475–479. IOS Press.

Guo, H., & Hsu, W. (2004). A learning-based algorithm selection meta-reasoner for the real-
time MPE problem. In Proceedings of the Seventeenth Australian Joint Conference on Artificial
Intelligence, pp. 307–318. Springer-Verlag.

Guo, L., Hamadi, Y., Jabbour, S., & Sais, L. (2010). Diversification and intensification in parallel
SAT solving. In Cohen, D. (Ed.), Proceedings of the Sixteenth International Conference on
Principles and Practice of Constraint Programming (CP’10), Vol. 6308 of Lecture Notes in
Computer Science, pp. 252–265. Springer-Verlag.

Hamadi, Y., Jabbour, S., Piette, C., & Sais, L. (2011). Deterministic parallel DPLL. Journal on
Satisfiability, Boolean Modeling and Computation, 7 (4), 127–132.

Hamadi, Y., Jabbour, S., & Sais, L. (2009a). Control-based clause sharing in parallel SAT
solving.. In Boutilier (Boutilier, 2009), pp. 499–504.

Hamadi, Y., Jabbour, S., & Sais, L. (2009b). ManySAT: a parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation, 6, 245–262.

124

https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218

Bibliography

Hamadi, Y., & Schoenauer, M. (Eds.). (2012). Proceedings of the Sixth International Conference
Learning and Intelligent Optimization (LION’12), Vol. 7219 of Lecture Notes in Computer
Science. Springer-Verlag.

Hamadi, Y., & Wintersteiger, C. M. (2012). Seven challenges in parallel SAT solving. In Hoff-
mann, J., & Selman, B. (Eds.), Proceedings of the Twenty-Sixth National Conference on Arti-
ficial Intelligence (AAAI’12). AAAI Press.

Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In Thrun, S., Saul, L., & Schölkopf,
B. (Eds.), Proceedings of the Sixteenth International Conference on Advances in Neural Infor-
mation Processing Systems (NIPS’03). MIT Press.

Helmert, M., Röger, G., & Karpas, E. (2011). Fast downward stone soup: A baseline for building
planner portfolios. In ICAPS 2011 Workshop on Planning and Learning, pp. 28–35.

Heule, M., Dufour, M., van Zwieten, J., & van Maaren, H. (2004). March_eq: Implementing
additional reasoning into an efficient look-ahead SAT solver. In Hoos, H., & Mitchell,
D. (Eds.), Proceedings of the Seventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’04), Vol. 3542 of Lecture Notes in Computer Science, pp. 345–359.
Springer-Verlag.

Hill, T., & Lewicki, P. (2005). Statistics: Methods and Applications. StatSoft.

Holte, R. C., & Howe, A. (Eds.). (2007). Proceedings of the Twenty-second National Conference on
Artificial Intelligence (AAAI’07). AAAI Press.

Hoos, H. (2012). Programming by optimisation. Communications of the ACM, 55, 70–80.

Hoos, H., Kaminski, R., Lindauer, M., & Schaub, T. (2015). aspeed: Solver scheduling via answer
set programming. Theory and Practice of Logic Programming, 15, 117–142.

Hoos, H., Kaminski, R., Schaub, T., & Schneider, M. (2012). aspeed: ASP-based solver schedul-
ing.. In Dovier, & Santos Costa (Dovier & Santos Costa, 2012), pp. 176–187.

Hoos, H., Kaufmann, B., Schaub, T., & Schneider, M. (2013). Robust benchmark set selection
for boolean constraint solvers.. In Pardalos, & Nicosia (Pardalos & Nicosia, 2013), pp.
138–152.

Hoos, H., Leyton-Brown, K., Schaub, T., & Schneider, M. (2012). Algorithm configuration for
portfolio-based parallel SAT-solving. In Coletta, R., Guns, T., O’Sullivan, B., Passerini,
A., & Tack, G. (Eds.), Proceedings of the First Workshop on Combining Constraint Solving
with Mining and Learning (CoCoMile’12), pp. 7–12.

Hoos, H., Lindauer, M., & Schaub, T. (2014). claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming, 14(4-5), 569–585.

Hoos, H., & Stützle, T. (2004). Stochastic Local Search: Foundations and Applications. Elsevier/-
Morgan Kaufmann.

Huberman, B., Lukose, R., & Hogg, T. (1997). An economic approach to hard computational
problems. Science, 275, 51–54.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer
programming solvers. In Proceedings of the Conference on Integration of Artificial Intelligence
and Operations Research techniques in Constraint Programming (CPAIOR), pp. 186–202.

125

Bibliography

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011a). Sequential model-based optimization for
general algorithm configuration. In Proceedings of the Fifth International Conference on
Learning and Intelligent Optimization (LION’11), Vol. 6683 of Lecture Notes in Computer
Science, pp. 507–523. Springer-Verlag.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011b). Tradeoffs in the empirical evaluation of
competing algorithm designs. Annals of Mathematics and Artificial Intelligence, 60(1), 65–
89.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). Submodular configuration of algorithms for
portfolio-based selection. Tech. rep., Department of Computer Science, University of
British Columbia. (to appear).

Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36, 267–306.

Hutter, F., Hoos, H., & Stützle, T. (2007). Automatic algorithm configuration based on local
search.. In Holte, & Howe (Holte & Howe, 2007), pp. 1152–1157.

Hutter, F., Lopez-Ibanez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown, K., & Stüt-
zle, T. (2014a). AClib: A benchmark library for algorithm configuration. In Pardalos,
P., & Resende, M. (Eds.), Proceedings of the Eighth International Conference on Learning
and Intelligent Optimization (LION’14), Lecture Notes in Computer Science, pp. 36–40.
Springer-Verlag.

Hutter, F., Xu, L., H.Hoos, & Leyton-Brown, K. (2014b). Algorithm runtime prediction: Methods
& evaluation. Artificial Intelligence, 206, 79–111.

Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014c). Algorithm runtime prediction:
Methods evaluation. Artificial Intelligence, 206 (0), 79–111.

Janhunen, T. (2006). Some (in)translatability results for normal logic programs and proposi-
tional theories. Journal of Applied Non-Classical Logics, 16 (1-2), 35–86.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm
selection and scheduling. In Lee, J. (Ed.), Proceedings of the Seventeenth International
Conference on Principles and Practice of Constraint Programming (CP’11), Vol. 6876 of Lecture
Notes in Computer Science, pp. 454–469. Springer-Verlag.

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC – instance-specific algorithm
configuration.. In Coelho et al. (Coelho et al., 2010), pp. 751–756.

KhudaBukhsh, A., Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2009). SATenstein: Au-
tomatically building local search SAT solvers from components.. In Boutilier (Boutilier,
2009), pp. 517–524.

Kotthoff, L. (2012). Hybrid regression-classification models for algorithm selection. In Raedt,
L. D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., & Lucas, P. (Eds.),
Proceedings of the Twentyfirst European Conference on Artificial Intelligence (ECAI’12), Vol.
242, pp. 480–485. IOS Press.

Kotthoff, L. (2013). LLAMA: leveraging learning to automatically manage algorithms. Tech.
rep., Cork Constraint Computation Centre. published at arXiv.

126

Bibliography

Kotthoff, L., Gent, I. P., & Miguel, I. (2012). An evaluation of machine learning in algorithm
selection for search problems. AI Communications, 25 (3), 257–270.

Lazaar, N., Hamadi, Y., Jabbour, S., & Sebag, M. (2012). Cooperation control in parallel SAT
solving: a multi-armed bandit approach. Tech. rep., INRIA.

Li, C., Wei, W., & Li, Y. (2012). Exploiting historical relationships of clauses and variables in
local search for satisfiability.. In Cimatti, & Sebastiani (Cimatti & Sebastiani, 2012), pp.
479–480.

Li, X., Garzarán, M., & Padua, D. (2007). Optimizing sorting with machine learning algorithms.
In Proceedings of the Twenty-first International Parallel and Distributed Processing Symposium
(IPDPS’07), pp. 1–6. IEEE Computer Society Press.

Liu, G., Janhunen, T., & Niemelä, I. (2012). Answer set programming via mixed integer pro-
gramming. In Brewka, G., Eiter, T., & McIlraith, S. (Eds.), Proceedings of the Thirteenth
International Conference on Principles of Knowledge Representation and Reasoning (KR’12),
pp. 32–42. AAAI Press.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The irace package,
iterated race for automatic algorithm configuration. Tech. rep., IRIDIA, Université Libre
de Bruxelles, Belgium.

Malitsky, Y., Mehta, D., & O’Sullivan, B. (2013). Evolving instance specific algorithm configu-
ration. In Helmert, H., & Röger, G. (Eds.), Proceedings of the Sixth Annual Symposium on
Combinatorial Search (SOCS’13), pp. 132–140. Proceedings of the National Conference on
Artificial Intelligence (AAAI).

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2012). Parallel sat solver selection
and scheduling. In Milano, M. (Ed.), Proceedings of the Eighteenth International Conference
on Principles and Practice of Constraint Programming (CP’12), Vol. 7514 of Lecture Notes in
Computer Science, pp. 512–526. Springer-Verlag.

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2013a). Algorithm portfolios based
on cost-sensitive hierarchical clustering. In Rossi, F. (Ed.), Proceedings of the Twenty-third
International Joint Conference on Artificial Intelligence (IJCAI’13). IJCAI/AAAI. 608-614.

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2013b). Boosting sequential solver
portfolios: Knowledge sharing and accuracy prediction.. In Pardalos, & Nicosia (Pardalos
& Nicosia, 2013), pp. 153–167.

Malitsky, Y., & Sellmann, M. (2012). Instance-specific algorithm configuration as a method for
non-model-based portfolio generation. In Beldiceanu, N., Jussien, N., & Pinson, E. (Eds.),
CPAIOR, Vol. 7298 of Lecture Notes in Computer Science, pp. 244–259. Springer-Verlag.

Maratea, M., Pulina, L., & Ricca, F. (2012). Applying machine learning techniques to ASP
solving.. In Dovier, & Santos Costa (Dovier & Santos Costa, 2012), pp. 37–48.

Maratea, M., Pulina, L., & Ricca, F. (2013). A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming, First View, 1–28.

Nguyen, M., Janhunen, T., & Niemelä, I. (2013). Translating answer-set programs into bit-vector
logic. In Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., & Wolf, A.
(Eds.), Proceedings of the Nineteenth International Conference on Applications of Declarative

127

Bibliography

Programming and Knowledge Management (INAP’11) and the Twenty-fifth Workshop on Logic
Programming (WLP’11), Vol. 7773 of Lecture Notes in Computer Science, pp. 105–116. Springer-
Verlag.

Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., & Shoham, Y. (2004). Understanding
random SAT: Beyond the clauses-to-variables ratio. In Wallace, M. (Ed.), Proceedings of the
Tenth International Conference on Principles and Practice of Constraint Programming (CP’04),
Vol. 3258 of Lecture Notes in Computer Science, pp. 438–452. Springer-Verlag.

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., & O’Sullivan, B. (2008). Using case-
based reasoning in an algorithm portfolio for constraint solving. In Bridge, D., Brown,
K., O’Sullivan, B., & Sorensen, H. (Eds.), Proceedings of the Nineteenth Irish Conference on
Artificial Intelligence and Cognitive Science (AICS’08).

Pardalos, P., & Nicosia, G. (Eds.). (2013). Proceedings of the Seventh International Conference on
Learning and Intelligent Optimization (LION’13), Vol. 7997 of Lecture Notes in Computer
Science. Springer-Verlag.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12, 2825–2830.

Petrik, M., & Zilberstein, S. (2006). Learning static parallel portfolios of algorithms. In Pro-
ceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM
2006).

Pulina, L., & Tacchella, A. (2007). A multi-engine solver for quantified boolean formulas.. In
Bessiere (Bessiere, 2007), pp. 574–589.

Pulina, L., & Tacchella, A. (2009). A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints, 14(1), 80–116.

Rice, J. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Roussel, O. (2011). Description of ppfolio..

Sakallah, K., & Simon, L. (Eds.). (2011). Proceedings of the Fourteenth International Conference
on Theory and Applications of Satisfiability Testing (SAT’11), Vol. 6695 of Lecture Notes in
Computer Science. Springer-Verlag.

Schneider, M., & Hoos, H. (2012). Quantifying homogeneity of instance sets for algorithm
configuration.. In Hamadi, & Schoenauer (Hamadi & Schoenauer, 2012), pp. 190–204.

Seipp, J., Braun, M., Garimort, J., & Helmert, M. (2012). Learning portfolios of automatically
tuned planners. In McCluskey, L., Williams, B., Silva, J. R., & Bonet, B. (Eds.), Proceed-
ings of the Twenty-Second International Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI.

Seipp, J., Sievers, S., & Hutter, F. (2015). Automatic configuration of sequential planning port-
folios. In Proceedings of the Conference on Artificial Intelligence (AAAI’15). to appear.

Silverthorn, B., Lierler, Y., & Schneider, M. (2012). Surviving solver sensitivity: An ASP practi-
tioner’s guide.. In Dovier, & Santos Costa (Dovier & Santos Costa, 2012), pp. 164–175.

128

Bibliography

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model
semantics. Artificial Intelligence, 138 (1-2), 181–234.

Sinz, C. (2007). Visualizing SAT instances and runs of the DPLL algorithm. Journal of Automated
Reasoning, 39 (2), 219–243.

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to cryptographic problems.
In Kullmann, O. (Ed.), Proceedings of the Twelfth International Conference on Theory and
Applications of Satisfiability Testing (SAT’09), Vol. 5584 of Lecture Notes in Computer Science,
pp. 244–257. Springer-Verlag.

Streeter, M., Golovin, D., & Smith, S. (2007). Combining multiple heuristics online.. In Holte,
& Howe (Holte & Howe, 2007), pp. 1197–1203.

Syrjänen, T. (2001). Lparse 1.0 user’s manual..

Tamura, N., Taga, A., Kitagawa, S., & Banbara, M. (2009). Compiling finite linear CSP into
SAT. Constraints, 14(2), 254–272.

Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013). Auto-WEKA: combined selection
and hyperparameter optimization of classification algorithms. In I.Dhillon, Koren, Y.,
Ghani, R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., & Uthurusamy, R.
(Eds.), The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’13), pp. 847–855. ACM.

Tompkins, D., Balint, A., & Hoos, H. (2011). Captain Jack – new variable selection heuristics in
local search for SAT.. In Sakallah, & Simon (Sakallah & Simon, 2011), pp. 302–316.

van Gelder, A. (2011). Careful ranking of multiple solvers with timeouts and ties.. In Sakallah,
& Simon (Sakallah & Simon, 2011), pp. 317–328.

van Gelder, A. (2012). Contrasat - a contrarian SAT solver. Journal on Satisfiability, Boolean
Modeling and Computation, 8 (1/2), 117–122.

Wei, W., & Li, C. (2009). Switching between two adaptive noise mechanism in local search for
SAT.. Available at http://home.mis.u-picardie.fr/~cli/EnglishPage.html.

Whaley, R., Petitet, A., & Dongarra, J. (2001). Automated empirical optimizations of software
and the ATLAS project. Parallel Computing, 27 (1-2), 3–35.

Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., & Porschen, S. (2012). pfolioUZK: Solver
description.. In Balint et al. (Balint et al., 2012a), p. 45. Available at https://helda.
helsinki.fi/handle/10138/34218.

Xu, L., Hoos, H., & Leyton-Brown, K. (2007). Hierarchical hardness models for SAT.. In Bessiere
(Bessiere, 2007), pp. 696–711.

Xu, L., Hoos, H., & Leyton-Brown, K. (2010). Hydra: Automatically configuring algorithms for
portfolio-based selection. In Fox, M., & Poole, D. (Eds.), Proceedings of the Twenty-fourth
National Conference on Artificial Intelligence (AAAI’10), pp. 210–216. AAAI Press.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32, 565–606.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2009). SATzilla2009: An automatic algorithm
portfolio for SAT. In Le Berre, D., Roussel, O., Simon, L., Manquinho, V., Argelich,

129

http://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218

Bibliography

J., Li, C., Manyà, F., & Planes, J. (Eds.), SAT 2009 competitive events booklet: preliminary
version, pp. 53–55. Available at http://www.cril.univ-artois.fr/SAT09/solvers/
booklet.pdf.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Detailed SATzilla Results from the Data
Analysis Track of the 2011 SAT Competition. Tech. rep., University of British Columbia.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2012a). Evaluating component solver con-
tributions to portfolio-based algorithm selectors.. In Cimatti, & Sebastiani (Cimatti &
Sebastiani, 2012), pp. 228–241.

Xu, L., Hutter, F., Shen, J., Hoos, H., & Leyton-Brown, K. (2012b). SATzilla2012: Improved
algorithm selection based on cost-sensitive classification models.. In Balint et al. (Balint
et al., 2012a), pp. 57–58. Available at https://helda.helsinki.fi/handle/10138/
34218.

Yasumoto, T. (2012). Sinn.. In Balint et al. (Balint et al., 2012a), pp. 61–61. Available at
https://helda.helsinki.fi/handle/10138/34218.

Yun, X., & Epstein, S. (2012). Learning algorithm portfolios for parallel execution.. In Hamadi,
& Schoenauer (Hamadi & Schoenauer, 2012), pp. 323–338.

130

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Introduction to Algorithm Configuration, Scheduling and Selection
	1.1.1 Problem Setting
	1.1.2 Algorithm Con�guration
	1.1.3 Algorithm Scheduling
	1.1.4 Algorithm Selection

	1.2 Contributions and Content

	2 Robust Benchmark Set Selection for Boolean Constraint Solvers
	2.1 Current Practice
	2.2 Desirable Properties of Benchmark Sets
	2.3 Benchmark Set Selection
	2.3.1 Benchmark Set Selection Algorithm
	2.3.2 Benchmark Set Quality

	2.4 Empirical Performance Analysis
	2.5 Conclusion

	3 Automatic Construction of Parallel Portfolios via Algorithm Configuration
	3.1 Related Work
	3.2 Parallel Portfolio Configuration from a Single Sequential Solver
	3.2.1 Approach
	3.2.1.1 Formal Notation
	3.2.1.2 Simultaneous configuration of all component solvers (Global)
	3.2.1.3 Iterative configuration of component solvers (parHydra)
	3.2.1.4 Independent configuration of component solvers (Clustering)

	3.2.2 Experiments
	3.2.2.1 Scenarios
	3.2.2.2 Solvers
	3.2.2.3 Instance Sets
	3.2.2.4 Resource Limits and Hardware
	3.2.2.5 Configuration Experiments
	3.2.2.6 Results and Interpretation
	3.2.2.7 Scalability and Overhead
	3.2.2.8 Algorithm Configuration of Clause Sharing
	3.2.2.9 Conclusion

	3.3 Parallel Portfolio Configuration with Multiple Sequential Solvers
	3.3.1 Approach
	3.3.2 Experiments
	3.3.2.1 Solvers
	3.3.2.2 Instances and Setup
	3.3.2.3 Results and Interpretation
	3.3.2.4 Conclusion

	3.4 Parallel Portfolio Configuration with Multiple Sequential and Parallel Solvers
	3.4.1 Approach
	3.4.1.1 parHydrab
	3.4.1.2 Clustering

	3.4.2 Experiments
	3.4.2.1 Conclusion

	3.5 Conclusion

	4 Algorithm Scheduling via Answer Set Programming
	4.1 Algorithm Scheduling
	4.1.1 Sequential Scheduling
	4.1.2 Parallel Scheduling

	4.2 Solving Timeout-Optimal Scheduling with ASP
	4.3 Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP
	4.4 Empirical Performance Analysis
	4.4.1 Experimental Setup
	4.4.2 Schedule Computation
	4.4.3 Evaluation of Timeout-Minimal Schedules
	4.4.4 Evaluation of Time-Minimal Alignment
	4.4.5 Parallel Schedules
	4.4.6 Generalization Ability of aspeed
	4.4.7 Comparison with 3S

	4.5 Related Work
	4.6 Conclusion

	5 Advances in Algorithm Selection for Answer Set Programming
	5.1 Related Work
	5.2 Generalized Algorithm Selection Framework
	5.3 claspre: Instance Features for ASP
	5.4 Empirical Performance Analysis on ASP
	5.4.1 Setup
	5.4.2 Instance Sets
	5.4.3 Building Algorithm Portfolios
	5.4.4 Feature Sets
	5.4.5 Algorithm Selection Approaches
	5.4.6 Results

	5.5 Empirical Performance Analysis on ASlib
	5.5.1 Algorithm Selection Scenarios
	5.5.2 Setup
	5.5.3 Results
	5.5.4 Discussion

	5.6 Conclusion

	6 Algorithm Selection of Parallel Portfolios
	6.1 Related Work
	6.2 Algorithm Selection with Uncertainty
	6.3 Empirical Performance Analysis
	6.3.1 Setup
	6.3.2 Results
	6.3.3 Discussion

	6.4 Empirical Performance Comparison against aspeed
	6.4.1 Setup
	6.4.2 Results
	6.4.3 Discussion

	6.5 Conclusion

	7 Empirical Performance Comparison
	7.1 Experimental Setup
	7.1.1 Instance Sets
	7.1.2 Training Test Split
	7.1.3 Systems
	7.1.4 Hardware and Software

	7.2 Results
	7.3 Discussion

	8 Conclusion and Discussion
	8.1 When to apply which method?
	8.2 Future Work
	8.3 Thesis Contributions in a Nutshell

	List of Figures
	List of Tables
	List of Algorithms
	A Notation
	B claspfolio 2 on ASlib
	C Portfolio of clasp Configurations for RICOCHET ROBOTS and ASP-POTASSCO
	C.1 RICOCHET ROBOTS
	C.2 ASP-POTASSCO

	Bibliography

