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WEAK BOUNDARY VALUES

OF SOLUTIONS OF LAGRANGIAN PROBLEMS

AMMAR ALSAEDY AND NIKOLAI TARKHANOV

Abstract. We define weak boundary values of solutions to those nonlinear
differential equations which appear as Euler-Lagrange equations of variational
problems. As a result we initiate the theory of Lagrangian boundary value

problems in spaces of appropriate smoothness. We also analyse if the concept

of mapping degree of current importance applies to the study of Lagrangian
problems.
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Introduction

Distribution theory steams from weak solutions of linear differential equations
and it is hardly efficient for nonlinear equations. The use of distributions is actu-
ally difficult in linear boundary value problems, for no canonical duality theory is
available for manifolds with boundary X . The scale of Sobolev-Slobodetskij spaces
W s,p(X ) makes it possible to consider the restrictions of functions to the bound-
ary surface, however, these latter are defined only if s − 1/p > 0. To go beyond
this range, one applies integral equalities obtained by manipulation of the Green
formula. The study of general boundary value problems for differential equations
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2 A. ALSAEDY AND N. TARKHANOV

in Sobolev-Slobodetskij spaces of negative smoothness goes back at least as far as
[Sch60].

For a boundary value problem, the Green formula is determined uniquely up to
the counterpart of boundary data within the entire Cauchy data, see [Tar95, 9.2.2].
This allows one to avoid much ambiguity in the choice of formal adjoint boundary
value problem and to set up duality. As a result one is in a position to introduce
weak solutions of the boundary value problem, see for instance Section 9.3.1 ibid.
and elsewhere. The Cauchy data of a weak solution to an overdetermined elliptic
system in the interior of X are proved to possess weak boundary values at ∂X if
and only if the solution is of finite order of growth near the boundary surface, see
[Tar95, 9.3.6].

When considering a boundary value problem for a nonlinear equation, one has
no good guide to an appropriate concept of weak solution. Perhaps one has to pass
to the linearised problem. In any case the definition of a weak solution is implicitly
contained in the variational setting of the boundary value problem. If the problem
itself fails to be Lagrangian, it can be relaxed to variational one. It is just the task
of experienced researcher to recover the concept of weak solution in the variational
formulation, see [AT14].

The aim of this work is to introduce the concept of weak boundary values for
solutions of nonlinear differential equations. We restrict the discussion to those
equations which appear as Euler-Lagrange equations for a variational problem of
minimasing the discrepancy Au − f in the problem of finding a function u in X ,
such that Au = f(x, u) in X and Bu = u0 at ∂X . Here, A is an overdetermined
elliptic operator of order one and B is a matrix of functions at ∂X . The direct
approach of variational calculus of [Mor66] applies well to search for a solution in
the Sobolev spaces W 1,p(X ) with non-extreme 1 < p < ∞. However, the Euler-
Lagrange equations include the boundary condition B∗|Au− f |p−2(Au− f) = 0 at

∂X . The function |Au − f |p−2(Au − f) is of class Lp′
(X ), where 1/p + 1/p′ = 1,

and hence B∗|Au− f |p−2(Au− f) has no clear meaning at the boundary. We give
this expression a weak meaning using the variational setting and an appropriate
Green formula.

On specifying the spaces of weak boundary values one is in a position to con-
sider the nonlinear mapping of Banach spaces or, more generally, Banach manifolds
corresponding to the Lagrangian problem. The tangent mapping is a morphism of
tangent (Banach) bundles and it is given by the linearisation of the nonlinear map-
ping at the points of X . The nonlinear mapping is called elliptic if its tangent
mapping is elliptic at each tangent space, cf. [Pal68]. In this sense the Lagrangian
boundary value problems are never elliptic but for p = 2, for they degenerate at each
boundary point where Au = f(x, u). By a Hodge theory for a nonlinear mapping
is meant the Hodge theory for the corresponding morphism of tangent (Banach)
bundles. This bundle is Hilbert, if p = 2, in which case the problem arises if the
Hodge decompositions depend continuously on the point of the underlying Hilbert
manifold. To treat this problem of differential geometry on Hilbert manifold we
exploit the results of [ZKKP75].

Any Lagrangian boundary value problem proves to be a quasilinear Fredholm
mapping. To the best of our knowledge, this class of nonlinear mappings was first
introduced in [Shn72]. The quasilinear Fredholm mappings admit a reasonable
degree theory elaborated in [FP93]. As but one consequence of our results we
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show that the degree theory of [FP93] applies to the Lagrangian boundary value
problems.

1. Lagrangian boundary value problems

By Lagrangian boundary value problems are meant those arising as the Euler-
Lagrange equations for functionals minimising discrepancy in overdetermined prob-
lems.

Let X be a bounded closed domain with C∞ boundary in R
n. Consider the

boundary value problem {
Au = f(x, u) in X ,
Bu = u0 at ∂X ,

(1.1)

where A is a (possibly, overdetermined) elliptic linear partial differential operator
of the first order near X , f a function of its numerical variables (x, u) ∈ X × R

�

with values in R
m, and B an (�′ × �) -matrix of smooth functions on the boundary

of X whose rank is �′ for all x ∈ ∂X .
The operator A is given by an (m × �) -matrix of scalar differential operators

in a neighbourhood U of X , and the principal symbol of A has rank � for all
(x, ξ) ∈ U × (Rn \ {0}). Our standing requirement on f is that u �→ f(x, u) be a
continuous mapping of W 1,p(X ,R�) into Lp(X ,Rm).

Remark 1.1. Classical elliptic boundary value problems correspond to the case
m = � and �′ = �/2.

The most conventional Banach space setting of this problem is W 1,p, where
1 < p < ∞. Hence, we pick u0 in W 1−1/p,p(∂X ,R�′) and look for a u ∈ W 1,p(X ,R�)
satisfying (1.1).

If the operator

A =
(

A
B

)
: W 1,p(X ,R�) → Lp(X ,Rm)×W 1−1/p,p(∂X ,R�′)

has a left parametrix P = (G,P ), then on applying P to (1.1) from the left we
obtain

u = Gf(·, u) + Pu0 + (PA− I)u (1.2)

in X for all u ∈ W 1,p(X ,R�) satisfying (1.1). (Note that A possesses a left
parametrix if and only if its null space is finite dimensional and its range is comple-
mented, see [Nie68]. In this case PA− I can be thought of as projection onto the
null space.) The operator u �→ G◦f(·, u) is known as the Hammerstein operator. If
u �→ f(·, u) maps W 1,p(X ,R�) compactly into Lp(X ,Rm), then the Leray-Schauder
theory applies to equation (1.2). However, the solutions of the latter equation need
not satisfy (1.1).

Moreover, if A is overdetermined (i.e. m > �) then there is a nonzero differential
operator A1, such that A1A = 0. Then, for the equation Au = f(·, u) to be solvable,
it is necessary that A1f(·, u) = 0 in X for some function u ∈ W 1,p(X ,R�). Another
obstacle to the existence of solutions of problem (1.1) is possible overdeterminacy
of boundary conditions. This is the case, e.g., if �′ = �, i.e. Bu represents the whole
Cauchy data of u with respect to A − f(x, ·) at the boundary surface ∂X . This
gives evidence of replacing the exact equation Au = f(·, u) in X by minimising the
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discrepancy Au− f(·, u) in the norm of Lp(X ,Rm). For this purpose, we introduce
the functional

I(u) =

∫
X
|Au− f(x, u)|p dx (1.3)

whose domain is the affine subspace DI of W 1,p(X ,R�) consisting of all u, such that
Bu = u0 at ∂X . Obviously, every solution of (1.1) minimises (1.3). The converse
assertion is not true.

Write m for the infimum of I(u) over u ∈ DI . In order that u ∈ DI may satisfy
I(u) = m it is necessary that u would fulfill the so-called Euler-Lagrange equations.
We now describe these.

Lemma 1.2. Let C be an ((�− �′)× �) -matrix C of smooth functions on ∂X , such
that

rank
(
B(x)
C(x)

)
= �

for all x ∈ ∂X . Then there are unique matrices B∗ and C∗ of continuous functions
on ∂X with the property that∫

∂X
((Bu,C∗g)x − (Cu,B∗g)x) ds =

∫
X
((Au, g)x − (u,A∗g)x) dx (1.4)

for all u ∈ W 1,p(X ,R�) and g ∈ W 1,p′
(X ,Rm), where ds is the surface measure on

the boundary.

As usual, A∗ stands for the formal adjoint of the differential operator A in a
neighbourhood of X .

Proof. For an explicit construction of matrices B∗ and C∗ we refer the reader to
[AT14]. �

Formula (1.4) is usually referred to as the Green formula. On arguing as in
Section 3 of [AT14] one sees that if functional (1.3) has a local extremum at a
function u ∈ DI then∫

X
((A− f ′

u)v, |Au− f |p−2(Au− f))x dx = 0 (1.5)

for all v ∈ W 1,p(X ,R�) such that Bv = 0 at ∂X . Here, f ′
u is the Jacobi matrix of

f(x, u) with respect to u = (u1, . . . , u�), i.e., the (m× �) -matrix whose entries are
f ′
i,uj

.

If g = |Au− f |p−2(Au− f) is of class W 1,p′
(X ,Rm), then we can apply formula

(1.4) on the left-hand side and move A − f ′
u from v to |Au − f |p−2(Au − f), thus

obtaining ∫
∂X

(Cv,B∗g)x ds+
∫
X
(v, (A− f ′

u)
∗g)x dx = 0

for all v ∈ W 1,p(X ,R�) satisfying Bv = 0 at the boundary. We first choose v to
be arbitrary with compact support in the interior of X and so we conclude by the
main lemma of variational calculus that (A− f ′

u)
∗g vanishes almost everywhere in

X . Hence, the boundary integral is equal to zero for all v ∈ W 1,p(X ,R�), such
that Bv = 0 on ∂X . It is a simple matter to see that the boundary integral
actually vanishes for all functions v ∈ W 1,p(X ,R�). Hence it follows immediately
that B∗g = 0 on ∂X .
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Lemma 1.3. For the variational problem I(u) → min over u ∈ DI , Euler-Lagran-
ge’s equations just amount to⎧⎨

⎩
(A− f ′

u)
∗(|Au− f |p−2(Au− f)) = 0 in X ,

Bu = u0 at ∂X ,
B∗(|Au− f |p−2(Au− f)) = 0 at ∂X .

(1.6)

Proof. If u ∈ DI and |Au − f |p−2(Au − f) is of class W 1,p′
(X ,Rm) then this is

precisely what has been proved above. For general u ∈ DI equalities (1.6) are
understood in the weak sense suggested by (1.5). To wit, the differential equation
is satisfied in the sense of distributions in the interior of X . The interpretation of
the second boundary condition in (1.6) is more sophisticated. This will be discussed
in detail in Section 2. �

The differential equation of (1.6) represents a system of � second order partial
differential equations for � unknown functions. The number of boundary conditions
just amounts to �.

Example 1.4. The variational problem of minimising the functional

I(u) :=

∫
X
(|du|p + |d∗u|p) dx

over the set of all i -forms u of class W 1,p(X ) with normal part ν(u) = u0 at the
boundary leads to the Lp -setting of the Neumann problem for the de Rham complex
in X . To wit,⎧⎨

⎩
d∗(|du|p−2du) + d(|d∗u|p−2d∗u) = 0 in X ,

ν(u) = u0 at ∂X ,
ν(|du|p−2du) = 0 at ∂X ,

cf. [Mor56].

2. Weak boundary values

In (1.6), u is an element ofW 1,p(X ,R�), and so g = |Au−f |p−2(Au−f) belongs to

Lp′
(X ,Rm), where p′ = p/(p−1) is the dual exponent for p. Hence, the differential

equation (A − f ′
u)

∗g = 0 is readily interpreted in the sense of distributions in
the interior of X , just as it comes from (1.5) into consideration. One encounters
difficulties in interpreting the equality B∗g = 0 at the boundary surface ∂X , for g
is defined almost everywhere in X . To give a meaning to B∗g at ∂X , we strongly
invoke the fact that g satisfies (A− f ′

u)
∗g = 0 weakly in the interior of X . Namely,

if g ∈ W 1,p′
(X ,Rm), then∫

∂X
((Bv,C∗g)x − (Cv,B∗g)x) ds =

∫
X
(((A− f ′

u)v, g)x − (v, (A− f ′
u)

∗g)x) dx

(2.1)
holds for all v ∈ W 1,p(X ,R�), which is due to Green formula (1.4). Since (A−f ′

u)
∗g

vanishes in the interior of X , we may neglect the second term on the right-hand
side and use (2.1) to specify both C∗g and B∗g at the boundary in the general case

g ∈ Lp′
(X ,Rm).
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Definition 2.1. Let g ∈ Lp′
(X ,Rm) satisfy (A− f ′

u)
∗g = 0 weakly in the interior

of X . Then we define∫
∂X

((v0, C
∗g)x − (v1, B

∗g)x) ds =
∫
X
((A− f ′

u)v, g)x dx

for all v0 ∈ W 1/p′,p(∂X ,R�′) and v1 ∈ W 1/p′,p(∂X ,R�−�′), where v ∈ W 1,p(X ,R�)
is an arbitrary function satisfying Bv = v0 and Cv = v1 at ∂X .

Note that the equalities Bv = v0 and Cv = v1 at the boundary surface just
amount to

v =
(

B
C

)−1( v0
v1

)

at ∂X , where the right-hand side belongs to W 1/p′,p(∂X ,R�). Hence, the existence
of a function v ∈ W 1,p(X ,R�) with the property that Bv = v0 and Cv = v1 at ∂X
and

‖v‖W 1,p(X ,R�) ≤ C
(
‖v0‖W 1/p′,p(∂X ,R�′ ) + ‖v1‖W 1/p′,p(∂X ,R�−�′ )

)
(2.2)

follows from the Sobolev trace theorem.

Theorem 2.2. Definition 2.1 is correct and specifies the boundary values C∗g and
B∗g in the dual spaces W−1/p′,p′

(∂X ,R�′) and W−1/p′,p′
(∂X ,R�−�′), respectively.

Proof. Suppose v and w are two functions in W 1,p(X ,R�) satisfying Bv = Bw and
Cv = Cw at ∂X . Set z = v − w. Then z ∈ W 1,p(X ,R�) satisfies Bz = 0 and
Cz = 0 at the boundary. By the spectral synthesis theorem for Sobolev spaces,
there is a sequence

zν ∈ C∞
comp(

o

X ,R�)

which approximates z in the W 1,p(X ,R�) -norm. Hence it follows that∫
X
((A− f ′

u)v, g)x dx =

∫
X
((A− f ′

u)w, g)x dx+

∫
X
((A− f ′

u)z, g)x dx

=

∫
X
((A− f ′

u)w, g)x dx+ lim
ν→∞

∫
X
((A− f ′

u)zν , g)x dx,

where the last integral on the right-hand side vanishes, for g satisfies (A−f ′
u)

∗g = 0
weakly in the interior of X . We have thus proved that Definition 2.1 is correct, i.e. it
does not depend on the choice of v. Finally, combining Definition 2.1 and estimate
(2.2) yields

|
∫
∂X
((v0, C

∗g)x − (v1, B
∗g)x) ds| ≤ ‖(A− f ′

u)v‖Lp(X ,Rm)‖g‖Lp′ (X ,Rm)

≤ C (‖v0‖W 1/p′,p(∂X ,R�′ )+‖v1‖W 1/p′,p(∂X ,R�−�′ ))

for all v0 ∈ W 1/p′,p(∂X ,R�′) and v1 ∈ W 1/p′,p(∂X ,R�−�′), the constant C being

independent of v0 and v1. Hence it follows that C∗g ∈ W−1/p′,p′
(∂X ,R�′) and

B∗g ∈ W−1/p′,p′
(∂X ,R�−�′), as desired. �

Thus, for each u ∈ W 1,p(X ,R�) satisfying (A−f ′
u)

∗(|Au−f |p−2(Au−f)) = 0
weakly in the interior of X , both C∗(|Au−f |p−2(Au−f)) and B∗(|Au−f |p−2(Au−f))

have weak values at the boundary surface ∂X which belong to W−1/p′,p′
(∂X ,R�′)

and W−1/p′,p′
(∂X ,R�−�′), respectively. This completes, in particular, the result of

[She13].
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For a thorough treatment of weak boundary values of solutions to linear overde-
termined elliptic equations we refer the reader to [Tar95, 9.4].

3. Variational boundary value problems after Browder

By the very nature, the function (A−f ′
u)

∗(|Au−f |p−2(Au−f)) appears as dis-
tribution in the interior of X , i.e. as element of

(
o

W 1,p(X ,R�))′.

Since
o

W 1,p(X ,R�) is not dense in W 1,p(X ,R�), the continuous extension of this
functional to all of W 1,p(X ,R�) is not uniquely determined. In fact, any continuous
extension of (A−f ′

u)
∗(|Au−f |p−2(Au−f)) to a closed subspace V of W 1,p(X ,R�)

containing C∞ functions of compact support in the interior of X with values in R
�

defines a variational boundary value problem in the sense of [Bro63]. We confine
the discussion to (1.5).

Corresponding to the representation (1.5) for the critical points of functional
(1.3), we have the nonlinear Dirichlet form a(u, v) defined for all u and v in
W 1,p(X ,R�) by

a(u, v) = (|Au− f |p−2(Au− f), (A− f ′
u)v),

where (g, h) stands for the natural sesquilinear pairing between g in Lp′
(X ,Rm)

and h in Lp(X ,Rm). By assumption, a(u, v) is well defined for all u and v in
W 1,p(X ,R�) and

|a(u, v)| ≤ c
(
‖u‖W 1,p(X ,R�)

)
‖v‖W 1,p(X ,R�)

by Hölder’s inequality, where c(r) is a continuous function of the real variable r
depending on A and f .

Let V be the closed subspace of W 1,p(X ,R�) that consists of all v satisfying
Bv = 0 at the boundary ∂X , and V ∗ be the conjugate space of V , i.e. the space of
all bounded conjugate linear functionals on V . For w ∈ V ∗ and v ∈ V , the value of
w at v is denoted by (w, v). In particular, if w ∈ Lp′

(X ,R�), the bounded conjugate
linear functional (w, v) on V yields an element of V ∗ which we may again denote
by w.

We are now in a position to define the variational boundary problem correspond-
ing to (a, V ). Denote by F the mapping V → V ∗ given by (Fu, v) := a(u, v) for all
v ∈ V . In particular, we get

Fu = (A− f ′
u)

∗ (|Au− f |p−2(Au− f)
)

(3.1)

in the sense of distributions in the interior of X . Given w ∈ V ∗, the variational
boundary problem corresponding to (a, V ) consists in finding u ∈ V such that
Fu = w. Hence it follows that Fu = w holds weakly in the interior of X and Bu = 0
at the boundary. As usual, in order to include also inhomogeneous conditions
Bu = u0 at ∂X , one solves these first in functions u ∈ W 1,p(X ,R�) which need not
satisfy Fu = w.

If u ∈ V satisfies Fu = w with w ∈ V ∗, then w is a relevant extension of the
distribution (A−f ′

u)
∗(|Au−f |p−2(Au−f)) in the interior of X to a continuous linear

functional on V . Then Definition 2.1 for the weak value of B∗g at ∂X transforms
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to

−
∫
∂X

(B∗g, v1)x ds =

∫
X
(g, (A− f ′

u)v)x dx− (w, v)

= a(u, v)− (w, v)

for all v1 ∈ W 1/p′,p(∂X ,R�−�′), where v ∈ W 1,p(X ,R�) is an arbitrary function
satisfying Bv = 0 and Cv = v1 at ∂X . Since a(u, v) = (w, v) for all v ∈ V ,
it follows that B∗g = 0 at the boundary. Thus, the study of Euler-Lagrange’s
equations (1.6) can be carried out within the framework of mapping properties of
F : V → V ∗.

To formulate the hypothesis of our existence theorem, we need an additional con-
cept. Namely, by an admissible lower order operator is meant u → Δf(x, u), where
Δf is a continuous function of its numerical arguments satisfying an inequality of
the form

|Δf(x, u)| ≤ c
(
‖u‖W 1,p(X ,R�)

)(
|u(x)|(p−1)+Q + 1

)

where 0 ≤ Q <
p2

n− p
, if p ≤ n, and Q = 0, if p > n.

Theorem 3.1. Suppose that there exists an admissible lower order operator Δf
and a continuous function c(r) of the real variable r with c(r) → +∞ as r → ∞,
such that

1) If Δa(u, v) := (Δf(x, u), v) is the nonlinear Dirichlet form corresponding to
Δf , then

	
(
a(u, u− v)− a(v, u− v) +Δa(u, u− v)−Δa(v, u− v)

)
≥ 0

for all u and v of V .
2) For all u in V ,

	a(u, u) ≥ c
(
‖u‖W 1,p(X ,R�)

)
‖u‖W 1,p(X ,R�).

Then, for every w in V ∗, the variational boundary problem for Fu = w with null
V -boundary conditions has at least one solution u.

Proof. The proof is along the lines of Theorem 1 of [Bro63]. �

Note that in the case f ≡ 0 and Δf = 0 the condition 1) is fulfilled. Indeed, we
get

	
(
a(u, u− v)− a(v, u− v)

)

=

∫
X

(
|Au|p − |Au|p−2	(Au,Av)x − |Av|p−2	(Av,Au)x + |Av|p

)
dx

≥
∫
X

(
|Au|p − |Au|p−1|Av| − |Av|p−1|Au|+ |Av|p

)
dx

≥
∫
X

(
|Au|p−1 − |Av|p−1

)(
|Au| − |Av|

)
dx

which is obviously nonnegative for all u, v ∈ V . Furthermore, the condition 2)
reduces to

‖Au‖pLp(X ,Rm) ≥ c
(
‖u‖W 1,p(X ,R�)

)
‖u‖W 1,p(X ,R�)

for all u ∈ V .
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4. Hodge theory for nonlinear mappings

Let V and W be Banach manifolds and F a differentiable mapping of V to W,
i.e. we have a short complex

0 → V F→ W → 0. (4.1)

Given an arbitrary point v ∈ V , the tangent mapping F ′(v) : TvV → TwW is
a bounded linear mapping of tangent spaces to V and W at v and w = F (v),
respectively. These mappings are gathered together to form the Banach bundle
morphism

0 → TV F ′
→ TW → 0,

see [ZKKP75].

Definition 4.1. A differentiable mapping F : V → W is said to be Fredholm if the
linear mappings F ′(v) : TvV → TF (w)W are Fredholm for all v ∈ V.

By the Hodge theory for the nonlinear mapping F we mean the Hodge theory for
the tangent bundle morphism. According to the properties of Fredholm mappings,
there are bounded linear projections P (v) and Q(v) in TvV and TwW, respectively,
such that

TvV = N(F ′(v)) ⊕ R(I − P (v)),
TwW = R(Q(v)) ⊕ R(F ′(v)), (4.2)

P (v) being a projection onto the finite-dimensional null-space of F ′(v) and Q(v)
being a projection onto a finite-dimensional direct complement of the range of F ′(v)
in TwW.

Using the inverse mapping theorem of Banach we conclude that the restriction
of F ′(v) to R(I−P (v)) is an isomorphism of this Banach space onto R(F ′(v)). The
mapping

Π (v) =
(
F ′(v) �R(I−P (v))

)−1

(I −Q(v))

is therefore a bounded linear operator from TwW to TvV satisfying

Π (v)F ′(v) = I − P (v),
F ′(v)Π (v) = I −Q(v),

i.e. Π (v) is a parametrix of F ′(v) for each v ∈ V. Note that if V is contractible then
the parametrix Π (v) can be chosen to depend continuously on the point v ∈ V, see
[ZKKP75, FP93].

If V and W are Hilbert manifolds, there is a canonical way for the choice of P (v)
and Q(v). Namely, P (v) is the orthogonal projection onto N(F ′(v)) and I −Q(v)
is the orthogonal projection onto R(F ′(v)). By the lemma on the annihilator of the
kernel of operator,

R(I − P (v)) = R(F ′(v)∗),
R(Q(v)) = N(F ′(v)∗),

where F ′(v)∗ is the Hilbert space adjoint for F ′(v) : TvV → TwW. We have thus
proved

Theorem 4.2. If F : V → W is a Fredholm mapping of Hilbert manifolds, then
the tangent bundles of V and W split as

TV = N(F ′) ⊕ R(F ′∗),
TW = N(F ′∗) ⊕ R(F ′).



10 A. ALSAEDY AND N. TARKHANOV

These decompositions are scarcely useful to characterise the range of the global
nonlinear mapping (4.1).

Example 4.3. Let F be a differentiable selfmapping of Rn, such that detF ′ ≡ 1
in all of Rn. Then the decompositions of Theorem 4.2 reduce to TRn = R(F ′∗)
and TRn = R(F ′), however, F need not be surjective in general. This is related to
Jacobian problems, cf. [Mei82].

5. Quasilinear Fredholm mappings

Let V and W be real Banach spaces. Throughout we assume that V is compactly
embedded into another Banach space V −. When we refer to topological properties
of a set U ⊂ V , we will mean the topology induced by V , unless we explicitly refer
to the topology induced by V −.

A mapping F : V → W is called quasilinear Fredholm if it can be written in the
form

F (v) = L(v)v + C(v) (5.1)

for v ∈ V , where L is the restriction to V of a continuous mapping L− of V −

into the subset of L(V,W ) consisting of Fredholm operators of index zero, and
C : V → W is compact. Of course, quasilinear Fredholm mappings need not be
differentiable.

Quasilinear Fredholm mappings were introduced in [Shn72] in the study of the
nonlinear Riemann-Hilbert problem. Another typical situation in which quasilin-
ear Fredholm mappings arise quite naturally is the study of the Dirichlet problem
for quasilinear elliptic equations. By [Bab74], fully nonlinear elliptic equations
with general nonlinear Shapiro-Lopatinskii boundary conditions induce quasilin-
ear Fredholm mappings between appropriate function spaces, provided that the
“coefficients” are sufficiently smooth.

If F : V → W is any C1 mapping, we may write F as F (v) = L(v)v + F (0) for
v ∈ V , where L(v) ∈ L(V,W ) is defined by

L(v) =

∫ 1

0

F ′(tv)dt,

which is a curve integral in the space of bounded linear operators from V to W .
Thus, the algebraic representation of (5.1) is not very restrictive. The crucial point
is that each L(v) is a Fredholm operator of index zero and that the family L(v)
is defined and depends continuously on v for v belonging to a larger space V − in
which V is compactly embedded. The latter property implies that v �→ L(v) factors
through a compact embedding V ↪→ V −, and so it is a compact mapping from V
to L(V,W ).

We now establish several general properties of quasilinear Fredholm mappings,
following [FP93]. The mapping L is usually referred to as a principal part of f .
Note that if L : V → L(V,W ) is continuous at v0 ∈ V then the mapping of V to W
given by v �→ L(v)(v − v0) is Fréchet differentiable at v0 and its Fréchet derivative
at v0 just amounts to L(v0).

Lemma 5.1. Two principal parts of a quasilinear Fredholm mapping F : V → W
differ by a family of compact operators.

Proof. Suppose that F : V → W is represented by F (v) = Lj(v)v + Cj(v), for
j = 1, 2. Fix v0 ∈ V and set Gj(v) = Lj(v)(v − v0) for v ∈ V . As mentioned,
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we get G′
j(v0) = Lj(v0), for j = 1, 2. From the equality of both representations it

follows that the difference

G1(v)−G2(v) = −(C1(v)− C2(v))− (L1(v)− L2(v))v0

is a compact mapping of V to W . But the Fréchet derivative of a compact mapping
is compact, so that G′

1(v0)−G′
2(v0) = L1(v0)− L2(v0) is compact. �

Lemma 5.2. Let F : V → W be quasilinear Fredholm and be represented by
F (v) = L(v)v + C(v) for v ∈ V . If F : V → W is Fréchet differentiable at v0 ∈ V ,
then F ′(v0)− L(v0) is compact.

Proof. Write
R(v) = F (v)− L(v)(v − v0)

for v ∈ V . The differentiability of F at v0 implies that R′(v0) = F ′(v0) − L(v0).
Since R : V → W is compact, it follows that F ′(v0) − L(v0) is compact, too, as
desired. �

So far we have not used the property of L : V → L(V,W ) to take on its values
in Fredholm operators of index zero. Our next lemma makes use of this property.
The Fredholm operators of index zero possess parametrices which are invertible
mappings of W onto V . We confine ourselves to formulation of this result, re-
ferring the reader to [ZKKP75] and [FP93] for a proof. Recall that an operator
A ∈ L(V,W ) is Fredholm of index zero if and only if there exists P ∈ GL(W,V )
with PA − I ∈ K(V ). Let A(λ) be a family of Fredholm operators of index zero
acting from V to W and continuously depending on a parameter λ ∈ Λ, Λ being a
topological space. By a strong parametrix for A(λ) is meant any continuous family
P : Λ → GL(W,V ) satisfying P (λ)A(λ) − I ∈ K(V ) for all λ ∈ Λ. In general, a
family A(λ) has no strong parametrix. For instance, when Λ is the unit circle in
the plane, the non-existence of strong parametrices for certain continuous families
A(λ) of Fredholm operators of index zero just amounts to the nontriviality of the
Poincaré group of the Fredholm operators of index zero in L(V,W ). However, if
Λ is a contractible paracompact Hausdorff space, then any continuous family A(λ)
of λ ∈ Λ with values in Fredholm operators of index zero in L(V,W ) possesses a
strong parametrix, see Theorem 2.1 of [FP93] which is referred to as a fundamental
result.

Lemma 5.3. Suppose F : V → W is a quasilinear Fredholm mapping represented
by F (v) = L(v)v + C(v) for v ∈ V . Let Π− : V − → GL(W,V ) be a continuous
mapping with the property that Π−(v)L−(v) − I ∈ K(V ) for all v ∈ V −. Then
Π−(v)F (v) = v −K(v) holds valid for all v ∈ V , where K : V → V is a compact
mapping.

Proof. We get Π−(v)L−(v) = I − R−(v) for v ∈ V −, where R− : V − → K(V ) is
continuous. Hence,

Π−(v)F (v) = Π−(v) (L(v)v + C(v))

=
(
I −R−(v)

)
v +Π−(v)C(v)

= v −K(v)

for all v ∈ V , where K(v) = R−(v)v−Π−(v)C(v). Since V is compactly embedded
into V − and both

R− : V − → L(V,W ),
Π− : V − → L(V,W )
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are continuous, the compactness of K : V → V follows from the compactness of
C : V → W and of each R−(v) for v ∈ V −. �

Theorem 5.4. Let F : V → W be a quasilinear Fredholm mapping. Then F can
be represented as

F (v) = T−(v) (v −K(v)) (5.2)

for v ∈ V , where T− : V −→ GL(V,W ) is a continuous family of isomorphisms and
K is a compact mapping of V .

Proof. Write F in the form F (v) = L(v)v+C(v) for v ∈ V . On applying Theorem
2.1 of [FP93] we choose Π− : V −→ GL(W,V ) to be any strong parametrix for the
family L−. Set

T−(v) :=
(
Π−(v)

)−1

for v ∈ V − and use Lemma 5.3 to get (5.2), as desired. �

If A ∈ L(V,W ) is a Fredholm operator of index zero, then the restriction of A to
any bounded closed subset of V is proper. The following lemma is a generalisation
of this assertion to nonlinear mappings, which is of independent interest as a quite
general criterion for establishing properness.

Lemma 5.5. Assume that F : V → W is a quasilinear Fredholm mapping. If
Σ ⊂ V is closed and bounded, then F : Σ → W is proper.

Proof. Let F : V → W be represented by (5.1). Then the properness of F : Σ → W
follows from the compactness of the embedding of V into V −, the compactness of
C : V → W and the continuity of L− : V −→ L(V,W ), together with the properness
of L−(v) : Σ → W for each v ∈ V −. �

We now turn to the boundary value problem composed in Lemma 1.3. The
advantage of using quasilinear Fredholm mappings lies in the fact that they require
no linearisation of the problem, which may be cumbersome. To illustrate the results
explicitly, we restrict our attention to the case p = 2, for the theory for p �= 2 does
not fit immediately the framework of quasilinear Fredholm operators. If p = 2 then
(1.6) transforms to ⎧⎪⎨

⎪⎩
(A− f ′

u)
∗(Au− f) = 0 in

◦
X ,

Bu = u0 at ∂X ,
B∗(A− f) = 0 at ∂X ,

(5.3)

cf. [AT14]. The differential equation of (5.3) is understood in the sense of distribu-
tions in the interior of X . While the direct methods of variational calculus apply
to look for a solution u ∈ H1(X ,R�), direct constructions along more classical lines
deal with solutions in H2+s(X ,R�), where s = 0, 1, . . .. Under obvious assumption
on f , the problem corresponds to

F : Hs+2(X ,R�) →

Hs(X ,R�)
⊕

Hs+3/2(∂X ,R�′)
⊕

Hs+1/2(∂X ,R�−�′)
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given by F (u) = L(u)u+ C(u), where

L(v)u =

⎛
⎝ A∗Au

Bu
B∗Au

⎞
⎠ , C(u) =

⎛
⎝ −A∗f − (f ′

u)
∗(Au− f)

0
−B∗f

⎞
⎠

for v ∈ H1(X ,R�).
Denote by Hs+2

B,B∗A(X ,R�) the subspace of Hs+2(X ,R�) that consists of all func-

tions u ∈ Hs+2(X ,R�) satisfying Bu = 0 and B∗(Au) = 0 at ∂X . Applying
Theorem 5 of [AT13] we conclude that the boundary value problem L(v) is for-
mally selfadjoint relative to the Green formula for the Laplacian Δ := A∗A. Hence
it follows that the operator Δ : Hs+2

B,B∗A(X ,R�) → Hs(X ,R�) has index zero.

We may select a compact operator K : Hs+2
B,B∗A(X ,R�) → Hs(X ,R�) such that

Δ+K : Hs+2
B,B∗A(X ,R�) → Hs(X ,R�) is a bijection. The surjectivity of the bound-

ary operators {B,B∗A} then implies that the perturbation of L(v) by {KP, 0, 0}
is bijective, where P is the projection of Hs+2(X ,R�) onto the kernel of {B,B∗A}.
Since the Fredholm index is invariant under compact perturbation, we deduce that
L(v) is Fredholm of index zero, cf. Lemma 10.11 of [FP93]. Hence, F is a quasilinear
Fredholm mapping.

6. Mapping degree of Lagrangian problems

In [FP93], an additive integer-valued degree theory for quasilinear Fredholm
mappings is constructed. The theory is based upon a modification of the well-
known techniques of [LS34] for formulating the solutions of the Dirichlet problem for
a quasilinear second order elliptic equation as the zeroes of a compact perturbation
of the identity, i.e., fixed points of a compact mapping. Following an idea of [Bab74],
it is shown in [FP93] that general elliptic boundary value problems with sufficiently
smooth “coefficients” induce quasilinear Fredholm mappings both in Sobolev and
Hölder spaces.

The definition of degree in [FP93] turns upon first assigning a degree to each
linear isomorphism and then extending the degree to general quasilinear Fredholm
mappings.

If V and W are finite dimensional of the same dimension, the choice of orien-
tation of V and W defines the determinant detT for all T ∈ GL(V,W ). Then
ε : GL(V,W ) → {±1}, defined by ε(T ) = sgn detT , distinguishes the two con-
nected components of GL(V,W ). Of course, ε(T ) is the Brower degree of T with
respect to the choice of orientations.

If V = W is infinite dimensional, then the group of compact perturbations of
the identity in GL(V, V ) also has two components, which are distinguished by the
function ε(T ) = (−1)N where N is the number of the negative eigenvalues of T
counted with their algebraic multiplicities. Obviously, ε(T ) just amounts to the
Leray-Schauder degree of T .

For general spaces V and W the “group” GL(V,W ) may be connected. If we
divide GL(V,W ) into equivalence classes under the Calkin equivalence relation, to
wit T ∼ S if T −S is compact, then each equivalence class has two connected com-
ponents. In fact, if T − S = K then I − T−1S = T−1K, and so T−1S is a compact
perturbation of the identity. The Leray-Schauder degree of T−1S distinguishes two
connected components of the equivalence class indeed. It is reasonable to define
the degree so that it would distinguish the components of each Calkin equivalence
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class. If T and S in GL(V,W ) are equivalent, then they lie in the same component
of their equivalence class if and only if the Leray-Schauder degree of T−1S is equal
to 1. Accordingly, [FP93] defines a function ε : GL(V,W ) → {±1} to be an orien-
tation provided that ε(T )ε(S) just amounts to the Leray-Schauder degree of T−1S,
if T, S ∈ GL(V,W ) are equivalent. An orientation of GL(V, V ) is always required
to assign 1 to the identity.

Once an orientation ε is chosen, the degree of F on an open set U ⊂ V is defined
by

deg(F,U) = ε(T−(0)) deg(I −K,U, 0), (6.1)

where T− and K are as in (5.2) and deg(I−K,U, 0) is the Leray-Schauder degree of
I −K in U with respect to the value 0. The right-hand side of (6.1) is independent
of representation (5.2).

The degree defined by (6.1) has the usual additivity, existence and Borsuk-Ulam
properties, see [FP93]. If V = W and GL(V, V ) is connected, then any integer-
valued degree theory on a class of mappings which includes all linear isomorphisms
and which coincides with the Leray-Schauder degree on the class of compact per-
turbation of the identity can neither be homotopy invariant nor can the classical
regular value formula hold.

In [FP94] a rather different construction of mapping degree is given which uses
a stronger notion of orientation than the one used in [FP93]. If F : V → W is a
C2 quasilinear Fredholm map which has 0 as a regular point, then the function o
defined by o(x) = ε(F ′(x))σ(F ′ ◦γ), where γ is any path between 0 and the regular
point x and σ(F ′ ◦ γ) the parity of the family F ′ along γ, is an orientation of the
map F in the sense of [FP94]. Moreover, for any admissible set U in V , the degree
of F with respect to o is

dego(F,U,w) :=
∑

x∈f−1(w)∩U

o(x)

provided that w �∈ F (∂U) is a regular value of F : U → W . We write it dego(F,U)
for short, if w = 0.

A major breakthrough came with the paper [FPR98] which remedied the short-
comings of [FP94]. Indeed, the theory of [FP94] has required C2 mappings whereas
C1 mappings would be more natural. The paper [BF98] is inspired by the approach
of [FP94] though the details are different. The authors define the orientation of a
linear Fredholm operator T : V → W of index zero between Banach spaces as the
choice of either of the connected components of the set of all finite rank operators
K such that T +K is invertible. They succeed in defining the degree deg(F,U,w)
whenever F : U → W is a C1 oriented Fredholm map of index zero between Banach
manifolds and f−1(w) is compact, and this degree satisfies the expected properties
including invariance under oriented homotopies. For a further progress we refer the
reader to [BFPS03], [BF06].

We now turn to the Euler-Lagrange equations of Lemma 1.3. In the initial setting
the operator

u �→ (A−f ′
u)

∗(|Au−f |p−2(Au−f))

is given the domain W 1,p(X ,R�) and maps it to (
o

W 1,p(X ,R�))′. Our objective is to
single out the principal part of the operator containing all second order derivatives
of u. For this reason our computations will be modulo terms which include the
derivatives up to the first order of u. Under obvious conditions on f they can be



WEAK BOUNDARY VALUES OF SOLUTIONS OF LAGRANGIAN PROBLEMS 15

comprehended as nonlinear compact operators in the relevant Banach spaces. We
first write

Au =

n∑
j=1

Aj ∂ju+A0u,

where Aj and A0 are (m × �) -matrices of smooth functions on X . On using this
formula we get

(A−f ′
u)

∗(|Au−f |p−2(Au−f))

= |Au−f |p−2A∗Au−
n∑

j=1

Aj∗ (Au−f) ∂j |Au−f |p−2 (6.2)

modulo first order terms. The function Au takes on its values in R
m, and we think

of Au as an m -column with entries A1u, . . . , Amu. By the definition, each Ak is an
� -row of scalar partial differential operators of the first order on X . More precisely,
we obtain

Aku =

n∑
i=1

Ai
k ∂iu+A0

ku

for k = 1, . . . ,m, where Ai
k and A0

k are the k th rows of the matrices Ai and A0,
respectively. Now a trivial verification shows that

∂j |Au−f |p−2 = ∂j

( m∑
k=1

(Aku−fk)
2
) p−2

2

=
p−2

2
|Au−f |p−4

( m∑
k=1

2 (Aku−fk) ∂j(Aku−fk)
)

= (p−2) |Au−f |p−4
( m∑

k=1

(Aku−fk)

n∑
i=1

Ai
k∂j∂iu

)

modulo nonlinear terms which include the derivatives of u of order not exceeding
one. On the other hand, we have

Aj∗ =
(
Aj

1
∗ . . . Aj

m
∗ )

for all j = 1, . . . , n, whence

Aj∗ (Au−f) =

m∑
l=1

Aj
l
∗ (Alu−fl).

Substituting these equalities into (6.2) yields

(A−f ′
u)

∗(|Au−f |p−2(Au−f))

= |Au−f |p−2
(
A∗Au− (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f |

n∑
i,j=1

Aj
l
∗Ai

k∂j∂iu
)

modulo nonlinear terms containing the derivatives of u of order ≤ 1. It is easily
seen that

−
n∑

i,j=1

Aj
l
∗Ai

k∂j∂iu = A∗
lAku
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up to terms containing the derivatives of u of order at most one. This gives the
final formula

(A−f ′
u)

∗(|Au−f |p−2(Au−f))

= |Au−f |p−2
(
A∗Au+ (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f | A

∗
lAku

)

(6.3)

up to terms containing the derivatives of u of order ≤ 1. Formula (6.3) gains in
interest if we observe that

A∗A =

n∑
k=1

A∗
kAk.

Remark 6.1. For the classical p -Laplace operator in R
n equality (6.3) takes the

form

Δpu = |∇u|p−2
(
−Δu− (p−2)

n∑
k,l=1

∂lu

|∇u|
∂ku

|∇u| ∂l∂ku
)

modulo terms containing the derivatives of u up to order one.

Summarising we conclude that the operator corresponding to the Euler-Lagrange
equations (1.6)

F : W 1,p(X ,R�) →

W−1,p′
(X ,R�)
⊕

W 1/p′,p(∂X ,R�′)
⊕

W−1/p′,p′
(∂X ,R�−�′)

can be written in the form F (u) = L(u)u+ C(u), where

L(v)u =

⎛
⎜⎜⎜⎝

|Av−f |p−2
(
A∗Au+ (p−2)

m∑
k,l=1

Alv−fl
|Av−f |

Akv−fk
|Av−f | A

∗
lAku

)

Bu
|Av−f |p−2B∗Au

⎞
⎟⎟⎟⎠

for v ∈ W 1,p(X ,R�), and C is a nonlinear compact operator. One sees readily that,
if Av − f(·, v) vanishes at some point of X , then the boundary value problem L(v)
is degenerate.

Theorem 6.2. Let Av(x)−f(x, v) �= 0 for all x ∈ X . Then the differential equation
of L(v) is elliptic in X .

Proof. The theorem just amounts to saying that the second order partial differential
operator

L = A∗A+ (p−2)

m∑
k,l=1

ālak A
∗
lAk

is elliptic in X , where ak =
Akv−fk
|Av−f | for k = 1, . . . ,m.

Fix x ∈ X and denote by σ(L) = σ2(L)(x, ξ) the principal symbol of L at a
point (x, ξ) ∈ T ∗X , where ξ ∈ T ∗

xX is different from zero. An easy computation
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shows that

σ(L) =

m∑
k=1

(σ(Ak))
∗σ(Ak) + (p− 2)

( m∑
l=1

al σ(Al)
)∗( m∑

k=1

ak σ(Ak)
)
,

where σ(Ak) = σ1(Ak)(x, ξ) is the principal symbol of Ak at (x, ξ). The invertibility
of σ(L) : R� → R

� will be established once we prove that (σ(L)u, u) > 0 for each
nonzero vector u ∈ R

�.
We get

(σ(L)u, u) =
m∑

k=1

|σ(Ak)u|2 + (p− 2) |
m∑

k=1

ak σ(Ak)u|2,

which is obviously nonnegative if p ≥ 2. Furthermore, if 1 < p < 2, then using the
Cauchy inequality yields

(σ(L)u, u) ≥
m∑

k=1

|σ(Ak)u|2 + (p− 2)

m∑
k=1

|σ(Ak)u|2

≥ 0, (6.4)

for 1 + (p− 2) > 0.
It remains to show that (σ(L)u, u) = 0 for u ∈ R

� implies u = 0. If p ≥ 2,
then from (σ(L)u, u) = 0 it follows that σ(Ak)u = 0 for all k = 1, . . . ,m. Since
the principal symbol mapping of A is injective, we conclude that u = 0, as desired.
The same proof remains valid for 1 < p < 2, for if σ(A)u �= 0, then (σ(L)u, u) > 0,
which is due to (6.4). �

Thus, if the system of boundary operators {B,B∗A} satisfies the Shapiro-Lopa-
tinskii condition, then L(v) is actually an elliptic boundary value problem. To get
rid of degeneracy it suffices to cancel the scalar factor |Av − f |p−2, thus obtaining
a problem essentially selfadjoint with respect to the Green formula, see Theorem
5 of [AT13]. Therefore, the theory of [FPR98], [BF98] still applies to Lagrangian
boundary value problems.

7. Perturbed Dirichlet problem

In this section we consider the Dirichlet problem for the perturbed Laplace equa-
tion and prove criteria which are needed to apply the degree.

Let X be a bounded closed domain with smooth boundary in R
n. Consider the

problem {
Δu = f(x, u, u′) in X ,
u = 0 at ∂X ,

(7.1)

where f is a nonlinear C1 function of its numerical arguments (x, u, p) ∈ X ×R×R
n

satisfying

|f | ≤ C 〈p〉γ , |f ′
u| ≤ C 〈p〉γ , |f ′

p| ≤ C, (7.2)

with γ < 1 and C a constant independent of x, u and p. Here, we use the designation
〈p〉 = (1 + |p|r)1/r with r = 2 or with any other r > 0, for all the expressions are
equivalent.
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Choose V :=
o

H1(X ) and W := H−1(X ) with norms

‖u‖V =
( ∫

X
|u′|2dx)1/2,

‖f‖W = sup
‖u‖V =1

∣∣ ∫
X
fū dx

∣∣.
Then, F (u) := Δu − f(x, u, u′) maps V continuously into W and it is an elliptic
operator.

Lemma 7.1. The Laplace operator Δ : V → W is an isomorphism and C1, and
so a C1 Fredholm operator of index 0.

Proof. To show that Δ : V → W is an isomorphism, note that if u ∈ V and
Δu = 0 then u = 0, for u is a harmonic function vanishing at the boundary. Thus,
Δ : V → W is one to one. We now assume that f ∈ H−1(X ). The equation Δu = f
for u ∈ V is understood in the weak sense, i.e., a(u, v) = f(v̄) for every v ∈ V ,
where

a(u, v) =

∫
X
(u′, v′)xdx

stands for the inner product in V . By the Riesz representation theorem there is
a unique u ∈ V satisfying a(u, v) = f(v̄) for all v ∈ V . Hence it follows that
Δ : V → W is onto. Moreover, Δ is a linear operator and hence C1. Thus,
Δ : V → W is a C1 isomorphism. �

Lemma 7.2. Under assumptions (7.2) the Nemytskii map u �→ f(x, u, u′) is a C1

compact operator.

Proof. We first observe that, for a fixed u ∈ V , the function x �→ f(x, u(x), u′(x))
belongs to Lp(X ) with any p ≥ 1. Consider the map

o

H1(X ) → L2(X )× L2(X )n
Nf→ L2(X ) ↪→ H−1(X ), (7.3)

where by the first arrow is meant the map u �→ (u, u′) and by the second arrow
the map (u, u′) �→ f(x, u, u′). The first map is linear and bounded, hence it is
continuous and C1. On the other hand, from Theorem 10.58 of [RR04] and the first
inequality of (7.2) it follows that Nf is a continuous map from L2(X )×L2(X )n to
L2(X ). And finally the embedding of L2(X ) into H−1(X ) is also continuous and
C1. Therefore, (7.3) is a composition of continuous maps and thus is continuous.
Moreover, since the last embedding is compact, (7.3) is a compact map from V to
W . On the other hand, the remaining estimates of (7.2) together with Theorem
10.58 of [RR04] imply that Nf is C1, and so (7.3) is C1 as composition of C1

maps. �

We conclude that the map F : V → W is of the form L + C, where Lu := Δu
is a linear Fredholm operator of index zero and Cu := −f(x, u, u′) is a compact
operator. If u is a smooth function with compact support in the interior of the
closed domain X , then

‖Δu‖W = sup
‖v‖V =1

∫
X
Δu v̄dx.
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On integrating by parts we get

‖Δu‖W = sup
‖v‖V =1

∣∣ ∫
X
(u′, v′)xdx

∣∣ = sup
‖v‖V =1

∣∣(u, v)V ∣∣
and choosing

v =
u

‖u‖V
yields ‖Δu‖W ≥ ‖u‖V . On the other hand, ‖Δu‖W ≤ ‖u‖V , which is clear from
the Cauchy-Schwarz inequality. Thus,

‖Δu‖W = ‖u‖V
which extends by continuity to all functions u ∈

o

H1(X ).
If u ∈ V is a solution of (7.1) then Δu = f(x, u, u′), hence

‖u‖V = ‖f(x, u, u′)‖W
≤ c ‖f(x, u, u′)‖L2(X )

with c a constant independent of u. Furthermore, applying the first estimate of
(7.2) on f we get

‖f(x, u, u′)‖2L2(X ) ≤ C2

∫
X
〈u′〉2γ dx

≤ C2
(∫

X
dx

)1−γ(∫
X
〈u′〉2dx

)γ

≤ C (1 + ‖u‖2V )γ ,
where C is a constant independent of u which may be different in diverse applica-
tions. Thus,

‖u‖V ≤ C (1 + ‖u‖2V )γ/2
for all u ∈ V satisfying (7.1). Since the right hand side is a sublinear function of
‖u‖V , such an a priori estimate occurs only if ‖u‖V is bounded, i.e. ‖u‖V ≤ R for
some constant R > 0 independent of u.

We may now appeal to the concept of mapping degree to show the existence of a
solution to problem (7.1). The specific concept we use here is that of regular point
degree clarified in [FPR98, 7.1].

Let U be the ball of radius 2R with centre at the origin in V . By Lemmata
7.1 and 7.2, F is a C1 map from U to W . By the above a priori estimate, F−1(0)
belongs to the ball U/2, and hence F does not vanish at ∂U . It follows that the
mapping degree deg (F,U) is well defined. To compute this degree, we consider the
homotopy

Ft(u) = Δu− t f(x, u, u′)
for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a
priori estimate shows that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for
all t ∈ [0, 1]. Then, the homotopy invariance of the mapping degree implies that
deg (F,U) = deg (Δ, U).

By Lemma 7.1, Δ : V → W is a (linear) isomorphism, and so the mapping degree
deg (Δ, U) is different from zero. This implies immediately that deg (F,U) �= 0. On
using the normalisation property of mapping degree [FPR98] we conclude that the
set F−1(0) is nonempty, i.e., problem (7.1) has at least one solution u ∈ V , as
desired.
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This result extends in an obvious way to the Dirichlet problem for perturbations
of the Laplace operator Δ = A∗A, where A is a first order overdetermined ellip-
tic differential operator satisfying the uniqueness condition for the local Cauchy
problem (U)s, see [Tar95].

8. The Dirichlet problem for the p -Laplace equation

In this section we consider the Dirichlet problem for the perturbed p -Laplace
equation. Let X be a bounded closed domain with smooth boundary in R

n. Con-
sider the problem {

Δpu = f(x, u, u′) in X ,
u = 0 at ∂X ,

(8.1)

where Δpu := ∇∗(|∇u|p−2∇u). The right hand side f is assumed to be a nonlinear
C1 function of its numerical arguments (x, u, p) ∈ X ×R×R

n satisfying inequalities
(7.2) with some γ < p− 1.

Choose V :=
o

W 1,p(X ) and W := H−1,p′
(X ) with norms

‖u‖V =
( ∫

X
|u′|pdx)1/2,

‖f‖W = sup
‖u‖V =1

∣∣ ∫
X
fū dx

∣∣,
where 1/p + 1/p′ = 1. Then, F (u) := Δpu − f(x, u, u′) maps V continuously into
W and it is a degenerate elliptic operator.

Lemma 8.1. The map F : V → W is C1 and it admits a regular point u0 in V ,
i.e., F ′(u0) ∈ GL(V,W ).

Proof. Using the chain rule we see that the Fréchet derivative of the p -Laplace
operator at a point u0 ∈ V is given by

Δ′
p(u0)u = ∇∗

(
|∇u0|p−2

(
En + (p− 2)

∇u0

|∇u0|
( ∇u0

|∇u0|
)∗)

∇u
)

= ∇∗ (a(x)∇u)

for u ∈ V . Note that a(x) is a symmetric (n× n) -matrix with entries in L
p

p−2 (X ).
By Theorem 6.2, Δ′

p(u0) is a second order elliptic operator away from the critical
points of u0 in X .

On the other hand, the Fréchet derivative of the map f̂ : V → W given by
u �→ f(x, u, u′) is

f̂ ′(u0)u = f ′
u(x, u0,∇u0)u+ f ′

p(x, u0,∇u0)∇u

for u ∈ V . The inhomogeneous equation F ′(u0)u = w with w ∈ W just amounts
to finding a u ∈ V which satisfies

∇∗(a(x)∇u)− f ′
u(x, u0,∇u0)u− f ′

p(x, u0,∇u0)∇u = w

weakly in X .
We now refer to [Kos86] to see that in any ball around the origin in V there is

a function u0, such that F ′(u0)u = w has a unique solution u ∈ V for each right
hand side w ∈ W . In other words, F ′(u0) ∈ GL(V,W ), i.e., u0 is a regular point of
F , as desired. �
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If u is a smooth function with compact support in the interior of the closed
domain X , then

‖Δpu‖W = sup
‖v‖V =1

∫
X
Δpu v̄dx.

On integrating by parts we get

‖Δpu‖W = sup
‖v‖V =1

∣∣ ∫
X
(Δpu, v)xdx

∣∣ = sup
‖v‖V =1

∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣.
Let

v =
u

‖u‖V ,

then ∫
X
|∇u|p−2 (∇u,∇v)xdx =

1

‖u‖V

∫
X
|∇u|p−2 (∇u,∇u)xdx

=
1

‖u‖V

∫
X
|∇u|p dx

= ‖u‖p−1
V

whence ‖Δpu‖W ≥ ‖u‖p−1
V . On the other hand, if v ∈

o

W 1,p(X ) and ‖v‖V = 1, then

∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣ ≤ ‖∇v‖Lp(X )

(∫
X
|∇u|(p−1)p′

(∇u,∇v)xdx
)1/p′

= ‖u‖p−1
V ,

the first estimate being due to the Hölder inequality. Thus,

‖Δpu‖W = ‖u‖p−1
V

which extends by continuity to all functions u ∈
o

W 1,p(X ).
If u ∈ V is a solution of (8.1) then Δpu = f(x, u, u′), hence

‖u‖p−1
V = ‖f(x, u, u′)‖W

≤ c ‖f(x, u, u′)‖Lp(X )

with c a constant independent of u. Furthermore, on applying the first estimate of
(7.2) on f we obtain

‖f(x, u, u′)‖pLp(X ) ≤ Cp

∫
X
〈u′〉pγ dx

≤ C
(∫

X
〈u′〉pdx

)γ

≤ C (1 + ‖u‖pV )γ ,
where C is a constant independent of u which may be different in diverse applica-
tions. Thus,

‖u‖V ≤ C (1 + ‖u‖pV )γ/p(p−1)

for all u ∈ V satisfying (8.1). Since γ < p− 1, the right hand side of this inequality
is a sublinear function of ‖u‖V . On arguing as in Section 7 we see that there is a
constant R > 0 with the property that ‖u‖V ≤ R is fulfilled for all u ∈ V satisfying
(8.1).

Let U be the ball of radius 2R with centre at the origin in V . By Lemma 8.1, F
is a C1 map from U to W and it has a regular point u0 ∈ U . By the above a priori
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estimate, F−1(0) belongs to the ball U/2, and hence F (u) �= 0 for all u ∈ ∂U . It
follows that the mapping degree degu0

(F,U) is well defined, see [FPR98, 7.1]. To
compute this degree, we consider the homotopy

Ft(u) = Δpu− t f(x, u, u′)

for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a
priori estimate shows that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for
all t ∈ [0, 1]. Then, the homotopy invariance of the mapping degree implies that
deg (F,U) = deg (Δp, U).

The mapping Δp : V → W is well known to be an isomorphism, see for in-
stance [She13] and elsewhere. This allows one to conclude that the mapping degree
deg (Δp, U) is different from zero. Hence it follows that deg (F,U) �= 0, which
implies immediately that F−1(0) �= ∅. Therefore, problem (8.1) has at least one
solution u ∈ V , as desired.

For a deeper discussion of the Dirichlet problem for compact perturbations of the
p -Laplace equation along more classical lines with f : X × R → R a Carathéodory
function we refer the reader to [DJM01].

No attempt has been made here to generalise this result to the Dirichlet problem
for the p -Laplace operator u �→ A∗(|Au|p−2Au) related to a first order overdeter-
mined elliptic differential operator A satisfying the uniqueness condition for the
local Cauchy problem (U)s.

9. Conclusion

As a byproduct of our study of Lagrangean boundary value problems in X we
derived a linearisation of the nonlinear Laplace operator in general outline up to
first order terms. It looks like

Δ(v)u = A∗Au+ λ

m∑
k,l=1

Alv−fl(·, v)
|Av−f(·, v)|

Akv−fk(·, v)
|Av−f(·, v)| A

∗
lAku,

where A is an (m× �) -matrix of first order partial differential operators on X and
A1, . . . , Am the rows of A. If the principal symbol mapping of A is injective away
from the zero section of T ∗X and λ > −1, then Δ(v) is elliptic. This operator is
supplied with two boundary operators B and B∗A and the problem of solvability of
the corresponding boundary value problem in X is of central interest in the present
paper.

Remark 9.1. The operator Δ(v) is elliptic for all real λ > −1 and it coincides with
A∗A for λ = 0. Hence, the index of the boundary value problem {Δ(v), B,B∗A}
amounts to that of {A∗A,B,B∗A} if the boundary operators satisfy the Shapiro-
Lopatinskii condition.
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