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ABSTRACT

The term Linked Data refers to connected information sources comprising structured
data about a wide range of topics and for a multitude of applications. In recent years,
the conceptional and technical foundations of Linked Data have been formalized and
refined. To this end, well-known technologies have been established, such as the Re-
source Description Framework (Rdf) as a Linked Data model or the SPARQL Protocol
and RDF Query Language (Sparql) for retrieving this information.

Whereas most research has been conducted in the area of generating and publishing
Linked Data, this thesis presents novel approaches for improved management. In par-
ticular, we illustrate new methods for analyzing and processing Sparql queries. Here,
we present two algorithms suitable for identifying structural relationships between these
queries. Both algorithms are applied to a large number of real-world requests to eval-
uate the performance of the approaches and the quality of their results. Based on this,
we introduce different strategies enabling optimized access of Linked Data sources.
We demonstrate how the presented approach facilitates effective utilization of Sparql
endpoints by prefetching results relevant for multiple subsequent requests.

Furthermore, we contribute a set of metrics for determining technical characteristics
of such knowledge bases. To this end, we devise practical heuristics and validate them
through thorough analysis of real-world data sources. We discuss the findings and
evaluate their impact on utilizing the endpoints. Moreover, we detail the adoption of
a scalable infrastructure for improving Linked Data discovery and consumption. As
we outline in an exemplary use case, this platform is eligible both for processing and
provisioning the corresponding information.
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ZUSAMMENFASSUNG

Unter dem Begriff Linked Data werden untereinander vernetzte Datenbestände verstan-
den, die große Mengen an strukturierten Informationen für verschiedene Anwendungs-
gebiete enthalten. In den letzten Jahren wurden die konzeptionellen und technischen
Grundlagen für die Veröffentlichung von Linked Data gelegt und verfeinert. Zu diesem
Zweck wurden eine Reihe von Technologien eingeführt, darunter das Resource Descrip-
tion Framework (Rdf) als Datenmodell für Linked Data und das SPARQL Protocol
and RDF Query Language (Sparql) zum Abfragen dieser Informationen.

Während bisher hauptsächlich die Erzeugung und Bereitstellung von Linked Data
Forschungsgegenstand war, präsentiert die vorliegende Arbeit neuartige Verfahren zur
besseren Nutzbarmachung. Insbesondere werden dafür Methoden zur Analyse und Ver-
arbeitung von Sparql-Anfragen entwickelt. Zunächst werden daher zwei Algorithmen
vorgestellt, die die strukturelle Ähnlichkeit solcher Anfragen bestimmen. Beide Algo-
rithmen werden auf eine große Anzahl von authentischen Anfragen angewandt, um
sowohl die Güte der Ansätze als auch die ihrer Resultate zu untersuchen. Darauf auf-
bauend werden verschiedene Strategien erläutert, mittels derer optimiert auf Quellen
von Linked Data zugegriffen werden kann. Es wird gezeigt, wie die dabei entwickelte
Methode zur effektiven Verwendung von Sparql-Endpunkten beiträgt, indem relevante
Ergebnisse für mehrere nachfolgende Anfragen vorgeladen werden.

Weiterhin werden in dieser Arbeit eine Reihe von Metriken eingeführt, die eine
Einschätzung der technischen Eigenschaften solcher Endpunkte erlauben. Hierfür wer-
den praxisrelevante Heuristiken entwickelt, die anschließend ausführlich mit Hilfe von
konkreten Datenquellen analysiert werden. Die dabei gewonnenen Erkenntnisse werden
erörtert und in Hinblick auf die Verwendung der Endpunkte interpretiert. Des Weite-
ren wird der Einsatz einer skalierbaren Plattform vorgestellt, die die Entdeckung und
Nutzung von Beständen an Linked Data erleichtert. Diese Plattform dient dabei sowohl
zur Verarbeitung als auch zur Verfügbarstellung der zugehörigen Information, wie in
einem exemplarischen Anwendungsfall erläutert wird.
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CHAPTER 1
INTRODUCTION

“I start where the last man left off.”

Thomas Alva Edison

Computer networks have radically changed the ways in which information is dis-
seminated and consumed. Traditionally, most means of communication either required
close physical proximity between sender and receiver or manual assistance of one or
more additional human agents for transmitting messages. Hence, exchanging news,
ideas, and information over great distances was considered expensive, time-consuming,
and error-prone.

In contrast, packet-switched networks, in particular the Internet, allow transfer-
ring data across the globe nearly instantaneously. As advances in improving physical
communication channels have enabled conveying large amounts of information in short
periods of time, numerous research areas investigate how to publish, interpret, and
integrate this data. Whereas in its initial form, data transmitted over the Internet
comprised mostly unstructured records or binary files, representing this information by
leveraging well-defined, standardized formats has facilitated its consumption tremen-
dously, both for human users as well as machine agents. Prominent examples alleviating
wide-area information dissemination are the World Wide Web (WWW) and the Linked
Data movement.

1.1 Linked Data

The World Wide Web is based on a graph structure: Individual nodes, i.e., Web pages,
are connected through edges, i.e., hyperlinks. The contents of Web pages are typically
published in the Hypertext Markup Language (HTML) format and can be transferred
using the Hypertext Transfer Protocol (HTTP). Special markup included in these Web
pages allows referencing other documents by including a hyperlink (indicated by the
HTML tag <a>), e.g., for expressing “is a”, “contains”, or “is synonymous to” rela-
tionships. However, the concrete semantics of these links can only be determined by
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1. INTRODUCTION

investigating the provided unstructured information accompanying it. In general, this
requires at least some manual effort.

Linked Data represents an approach for establishing more expressive semantics when
referencing resources on the Internet. Whereas the WWW combines a number of tech-
nologies to create, link, and consume hypertext documents, Linked Data approaches
focus on providing machine-readable structured records. Consequently, the entirety of
this information is oftentimes referred to as the Web of Data. Tim Berners-Lee, one
of the inventors of the modern day WWW, described the four key features of Linked
Data in a W3C document [Berners-Lee, 2006]:

• Provide unique Uniform Resource Identifier (URI) for referencing entities.

• Allow accessing those URIs through HTTP so that users may investigate entities.

• Use standards for presenting information about entities through their URI.

• Refer to other related entities by linking their URI when appropriate.

Hence, URIs and HTTP are considered fundamental mechanisms for identifying
and accessing information on the Web of Data. Instead of simply providing the current
location of a document on the WWW, i.e., a URL for a Web page, URIs in Linked
Data refer to representations of real-world entities. For example, whereas the URL
http://en.wikipedia.org/wiki/Auguste_Comte points to an unstructured natural
language text description of French philosopher Auguste Comte, the Linked Data URI
http://dbpedia.org/resource/Auguste_Comte represents a structured abstraction
of the real-world resource. The corresponding information provided when accessing the
URI through an HTTP request may be revised or augmented to model altered or new
facts about this entity.

The goal of Linked Data is to enable machine agents to retrieve, parse, and interpret
information, with an emphasis on the latter aspect. For instance, whereas HTML
documents typically provide only rendering information, Linked Data resources can
be utilized for complex reasoning, e.g., by leveraging well-defined ontologies. Hereby,
Linked Data facilitates the Semantic Web, i.e., a large-scale knowledge base containing
vast amounts of information about real-world entities and means to infer relationships
between them.

Several popular projects have been established in the context of Linked Data. For
example, DBpedia [Lehmann et al., 2014] aims at publishing structured contents from
manually curated Wikipedia1 pages. At the time of writing, the most recent DBpedia
dataset 3.9 contains information about four million distinct entities across different
domains, including knowledge about persons, organizations, or works of art. To discern
the context of these resources, the DBpedia project provides a hierarchical taxonomy
for classifying the comprised entities.

Other projects focus on publishing information about resources of a specific domain.
For instance, LinkedGeoData [Auer et al., 2009b] offers structured geo-location data

1http://www.wikipedia.org
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1.2 Research Questions and Contributions

extracted from the community project OpenStreetMap1. Currently, LinkedGeoData
provides information about more than one billion spatial objects, e.g., cities, build-
ings, or roads. Again, a corresponding class hierarchy enables relating these different
entities. Further examples of domain-specific Linked Data repositories include Linked-
MDB [Hassanzadeh and Consens, 2009] for movie data, Data.gov [Ding et al., 2010] for
US government records, or LinkedCT [Hassanzadeh et al., 2009] for information about
clinical trials.

Currently, hundreds of sources of Linked Data are publicly available. In general,
these sources are offered as open data, i.e., no restrictions are applied on using, altering,
and disseminating the contained information. Hence, Linked Open Data (LOD) enables
users to freely aggregate and process structured knowledge from a variety of sources
and for a multitude of information needs. The W3C Semantic Web Education and
Outreach Group has established the Linking Open Data community project2 to foster
this movement.

Whereas the focus of Linked Data research throughout the last decade has been
mostly on transforming and publishing legacy information [Auer et al., 2009a; Bizer
and Cyganiak, 2006; Hert et al., 2011], few efforts have been made at analyzing if and
how these datasets are utilized. In particular, this means that little knowledge exists
about the challenges and impediments data consumers face when working with such
information sources. Although exploiting existing standards facilitates lowering techno-
logical barriers for these data consumers, aiding users in leveraging suitable information
repositories effectively and efficiently is a prerequisite for furthering the dissemination
of Linked Data [Heath and Bizer, 2011].

1.2 Research Questions and Contributions

This thesis aims at alleviating several of the challenges currently associated with uti-
lizing Linked Data. Particularly, we focus on assisting data consumers in Linked Data
access. To this end, we address a number of research questions.

Access Patterns. How can we identify and qualify differences and similarities be-
tween Linked Data queries to assess common access strategies?

Whereas the number of Linked Data sources such as DBpedia [Lehmann et al.,
2014] or YAGO [Suchanek et al., 2007] has soared in recent years, little research work
has been conducted on discerning Linked Data access patterns. However, recently
large-scale Linked Data query logs have been made available [Berendt et al., 2012,
2013]. These log files allow analyzing how information provided as Linked Data is
being consumed. To evaluate access patterns in this context, we contribute the notion
of Linked Data query similarity. Furthermore, we introduce two different algorithms
for determining corresponding recursive matchings between these requests. We show

1http://www.openstreetmap.org/
2http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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1. INTRODUCTION

that both these algorithms are more efficient than a current state-of-the-art matching
approach and demonstrate their applicability based on real-world query logs.

Query Guidance. How can we assist data consumers incrementally retrieving related
information through a sequence of Linked Data queries?

As mentioned above, Linked Data consumption patterns have been investigated
to only a limited extend. Consequently, there have been comparably few efforts aim-
ing at enabling users to retrieve information from Linked Data sources effectively and
efficiently, e.g., by caching query results [Martin et al., 2010]. This is especially unsat-
isfactory considering that one of the goals of the Linked Data movement is to access
and share knowledge as easily as possible [Heath and Bizer, 2011]. We address this
issue by exploiting and modifying the structure of Linked Data queries to gather data
relevant for subsequent requests without the need for a priori knowledge of the data
source. We illustrate different strategies capable of reducing part of the workload by re-
trieving results in advance. We evaluate these strategies and discuss their applicability
for different datasets and request patterns.

Endpoint Characteristics. What are notable properties of knowledge bases influ-
encing Linked Data query execution behavior?

One of the distinct features of numerous popular Linked Data sources is their avail-
ability to the general public through well-defined interfaces. Whereas in principle these
interfaces allow to query and retrieve information from a variety of endpoints, in re-
ality data consumers face a number of limitations, such as restricted availability and
accessibility [Lehmann et al., 2014]. Although users encounter several of these impedi-
ments when issuing queries, they are typically unaware of their causes and implications.
We contribute a concise set of heuristics for deriving corresponding characteristics of
Linked Data sources and indicate how these can be determined ad hoc using a light-
weight probing approach. Furthermore, we apply this approach for generating these
heuristics to several well-known Lined Data endpoints and discuss the results. Here,
we focus on possible consequences for data consumers.

Data Management. What are current obstacles in Linked Data consumption and
dissemination and how can they be alleviated?

The volume and velocity of sets of Linked Data is unprecedented among publicly
available (semi-)structured information sources. Different frameworks exist to aid data
extraction and interpretation efforts [Haase et al., 2011; Schultz et al., 2011; Tummarello
et al., 2010; Glaser et al., 2008]. Thus, generating and analyzing Linked Data has
become considerably easier even for users unfamiliar with the technical details. On
the other hand, discovering and utilizing suitable data sources has become increasingly
complex, especially due to their amount and scale. In an exemplary use case we point
out some of the impediments and outline how to leverage a flexible platform for allowing
access to Linked Data aggregated from different sources. Moreover, we comment on
describing those sources by introducing a scalable approach for generating descriptive
metadata for large amounts of Linked Data.

4



1.3 Outline

1.3 Outline
This thesis is structured as follows: In Chapter 2, we introduce different concepts and
technologies related to the notion of Linked Data. In particular, we detail the Resource
Description Framework (Rdf), a modeling approach for Semantic Web resources, and
the associated SPARQL Protocol and RDF Query Language (Sparql). Based on these
preliminaries, we tackle the first research question introduced in the previous section
and illustrate a means for qualifying Linked Data access patterns in Chapter 3. In that
chapter, we also demonstrate how these patterns can be derived efficiently. Chapter 4
comprises a number of approaches related to the second research question: Here, we
outline how changing query structures ad hoc can help reduce the overall amount
of successively issued requests. We further discuss the benefits and implications of
applying these approaches.

Next, we address the third research question in Chapter 5 and illustrate different
properties of publicly available sources of Linked Data relevant for data consumption.
To this end, we introduce a number of queries suitable for estimating the behavior of
these knowledge bases in specific scenarios. In Chapter 6, we examine a use case to
demonstrate how the previous findings can help in provisioning data flexibly. More-
over, we indicate how large-scale sources of Linked Data can be scalably analyzed and
appropriately annotated in order to aid discovery and consumption of the contained in-
formation. Finally, we summarize this thesis and present an outlook on future research
issues in Chapter 7.

Several of the ideas and findings contained in different parts of this thesis have been
published previously:

Chapter 3: Johannes Lorey and Felix Naumann. Detecting SPARQL Query
Templates for Data Prefetching. In Proceedings of the Extended Semantic
Web Conference (ESWC), pages 124–139, Montpellier, France, 2013

Chapter 4: Johannes Lorey and Felix Naumann. Caching and Prefetching
Strategies for SPARQL Queries. In Proceedings of the Extended Semantic
Web Conference (ESWC) (Satellite Events), pages 46–65, Montpellier, France,
2013

Chapter 5: Johannes Lorey. SPARQL Endpoint Metrics for Quality-Aware
Linked Data Consumption. In Proceedings of the International Conference on
Information Integration and Web-based Applications & Services (iiWAS), pages
319–323, Vienna, Austria, 2013

Chapter 6: Christoph Böhm, Johannes Lorey, and Felix Naumann. Creat-
ing voiD Descriptions for Web-scale Data. Journal of Web Semantics, 9
(3):339–345, 2011

Chapter 6: Johannes Lorey. Storing and Provisioning Linked Data as a
Service. In Proceedings of the Extended Semantic Web Conference (ESWC),
pages 666–670, Montpellier, France, 2013
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CHAPTER 2
LINKED DATA FUNDAMENTALS

“Science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.”

Henri Poincaré

In Chapter 1, we have already introduced the notion of Linked Data and commented
on several projects dedicated to publishing this information either specifically for certain
knowledge domains or across such domains. As mentioned in Sec. 1.1, one of the
design principles of Linked Data is to leverage existing standards when publishing and
consuming this information [Heath and Bizer, 2011]. In this chapter, we comment
on the core technologies provided for these tasks. In particular, we discuss the data
model underpinning the Linked Data notion. Moreover, we describe the query language
designed for gathering information about resources presented in this format.

The contents of this chapter are structured as follows: In Sec. 2.1, we introduce the
Resource Description Framework (Rdf), the data model most commonly employed for
representing Linked Data resources and relationships. Next, we discuss the SPARQL
Protocol and RDF Query Language (Sparql) for retrieving information from the Web
of Data in Sec. 2.2. We conclude this overview chapter in Sec. 2.3.

2.1 RDF

The Resource Description Framework [Miller and Manola, 2004] (Rdf) has been es-
tablished as a model for providing information about Linked Data resources on the
Internet. Thus, Rdf implements the principles proposed for publishing Linked Data
which include (i) representing resources using URIs, (ii) making these URIs derefer-
enceable through HTTP requests, and (iii) providing detailed information and links to
other resources when looking up URIs [Bizer et al., 2009a]. In this section, we introduce
the syntax of Rdf, comment on its implementation, and point out its relationship to
other technologies.

7



2. LINKED DATA FUNDAMENTALS

2.1.1 RDF Syntax

The Resource Description Framework allows to model facts, i.e., statements about
Linked Data entities, as so-called triples. An Rdf triple τ is defined as

τ := (s, p, o) ∈ (U)× (U)× (U ∪ L),

where U is a set of URIs (typically in the HTTP schema) and L is a set of lit-
erals with U ∩ L = ∅. Literals can be either plain (i.e., simple strings) or classi-
fied using XML schema datatypes [Peterson et al., 2009], for example denoting inte-
ger (e.g., "13"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>) or Boolean (e.g.,
"true"ˆˆ<http://www.w3.org/2001/XMLSchema#boolean>) values. Additionally, for
plain text literals a language tag can be specified, e.g., "London"@de or "Londres"@fr.

The three elements of a triple s, p, o are commonly referred to as the subject, pred-
icate, and object, respectively [Bizer et al., 2009a]. This notion allows to easily model
simple binary relationships between two nodes (subject, object) using a directed edge
(predicate). Thus, Rdf spans a directed graph over all available resources, possi-
bly containing cycles (e.g., for representing symmetric relationships). Figure 2.1 ex-
emplifies such an Rdf graph: For three entities (represented by ellipses) a number
of relationships (represented by arrows) are indicated. For instance, Fig. 2.1 illus-
trates that the resource http://dbpedia.org/resource/Auguste_Comte has the prop-
erty http://xmlns.com/foaf/0.1/givenName with the literal value "Auguste" (rep-
resented by a gray rectangle).

http://dbpedia.org/resource/David_Hume

http://dbpedia.org/resource/Auguste_Comte

http://dbpedia.org/ontology/influenced    http://dbpedia.org/ontology/influencedBy

http://dbpedia.org/resource/Paris

http://dbpedia.org/ontology/deathPlace   

Auguste

 http://xmlns.com/foaf/0.1/givenName

2234105

http://dbpedia.org/ontology/populationTotal  

Paris

http://www.w3.org/2000/01/rdf-schema#label

Figure 2.1: Example of an Rdf graph

In case no concrete value for either a subject or object of an Rdf triple (i.e., no
URI or no literal) is known, a so-called blank node may be used instead. Typically,

8



2.1 RDF

the identifier of a blank node (if given) is unique to the specific Rdf graph it occurs
in. Blank nodes can be useful if the concrete values are either unknown or change
frequently. In the latter case, updating the Rdf graph accordingly might result in
many incremental changes, whereas a blank node does not need to be altered as long
as its relationships with associated entities is not influenced.

2.1.2 RDF Serialization

As one of the main goals of the Resource Description Framework is to provide data in
a machine-readable format, Rdf information needs to be serialized so that it may be
loaded into so-called triple stores or exchanged between different users. To this end, a
number of serialization formats have been proposed. Among those, XML is considered
the default approach for expressing Rdf information according to the W3C [Miller and
Manola, 2004]. Listing 2.1 comprises a serialization of the Rdf graph visualized in
Fig. 2.1 in the RDF/XML format.✞ ☎

1 <rdf:RDF
2 xmlns :dbo="http :// dbpedia .org/ ontology /"
3 xmlns :foaf="http :// xmlns .com/foaf /0.1/ "
4 xmlns :rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"
5 xmlns :rdfs="http :// www.w3.org /2000/01/ rdf - schema #"
6 >
7 <rdf: Description rdf: about ="http :// dbpedia .org/ resource / David_Hume ">
8 <dbo: influenced rdf: resource ="http :// dbpedia .org/ resource / Auguste_Comte "/>
9 </rdf: Description >

10 <rdf: Description rdf: about ="http :// dbpedia .org/ resource / Auguste_Comte ">
11 <dbo: influencedBy rdf: resource ="http :// dbpedia .org/ resource / David_Hume "/>
12 <foaf:givenName >
13 Auguste
14 </foaf:givenName >
15 <dbo: deathPlace rdf: resource ="http :// dbpedia .org/ resource / Paris "/>
16 </rdf: Description >
17 <rdf: Description rdf: about ="http :// dbpedia .org/ resource / Paris ">
18 <rdfs: label xml:lang="fr">
19 Paris
20 </rdfs:label >
21 <dbo: populationTotal rdf: datatype ="http :// www.w3.org /2001/ XMLSchema # integer ">
22 2234105
23 </dbo: populationTotal >
24 </rdf: Description >
25 </rdf:RDF >✝ ✆

Listing 2.1: RDF/XML representation of Fig. 2.1

As illustrated in Listing 2.1, several well-known XML constructs can be
utilized for formatting Rdf data. For instance, prefix definitions such
as xmlns:dbo="http://dbpedia.org/ontology/" simplify referencing namespaces.
Moreover, the listing demonstrates how literals can be tagged with a specific language
or XML datatype in Line 18 and Line 21.

Whereas RDF/XML builds on the established key specifications of the markup
language, Linked Data documents published in this format tend to be difficult to read

9



2. LINKED DATA FUNDAMENTALS

for human users. Additionally, parsing XML documents becomes cumbersome with
increasing size, especially if a user is only interested in portions or basic summaries
of the data. Thus, several alternative serialization formats have been proposed for
publishing Rdf data.

Perhaps the most concise of these is the N-Triples format [Beckett and Barstow,
2001]: Here, the subject s, predicate p, and object o of a triple τ = (s, p, o) are separated
by whitespace and individual triples τ1, τ2, . . . are serialized on a single line. Addition-
ally, each separate statement is terminated with a full stop ".". Listing 2.2 provides
the N-Triples serialization of the Rdf graph visualized in Fig. 2.1. Note that whereas
line breaks within individual statements published in the N-Triples format typically
indicate the end of this fact, in Listing 2.2 lines have also been wrapped for improved
legibility (actual line breaks are visualized by ←↪).

N-Triples enables streamlined parsing of Rdf documents. For example, no prefix
definitions can be established in this format. Consequently, all individual statements
can be considered isolated from any other serialized information. Additionally, new
facts can be introduced ad hoc by adding the corresponding line. Moreover, simple
statistics for Rdf files formatted in the N-Triples format can be generated easily, e.g.,
the number of lines in these documents corresponds to the overall number of edges (or
relationships) in the respective Rdf graph.✞ ☎

1 <http :// dbpedia.org/resource/David_Hume >
2 <http :// dbpedia.org/ontology/influenced >
3 <http :// dbpedia.org/resource/Auguste_Comte > .←↪
4 <http :// dbpedia.org/resource/Auguste_Comte >
5 <http :// dbpedia.org/ontology/influencedBy >
6 <http :// dbpedia.org/resource/David_Hume > .←↪
7 <http :// dbpedia.org/resource/Auguste_Comte >
8 <http :// dbpedia.org/ontology/deathPlace >
9 <http :// dbpedia.org/resource/Paris > .←↪

10 <http :// dbpedia.org/resource/Auguste_Comte >
11 <http :// xmlns.com/foaf /0.1/ givenName >
12 "Auguste" .←↪
13 <http :// dbpedia.org/resource/Paris >
14 <http :// dbpedia.org/ontology/populationTotal >
15 "2234105"^^<http ://www.w3.org /2001/ XMLSchema#integer >.←↪
16 <http :// dbpedia.org/resource/Paris >
17 <http :// www.w3.org /2000/01/rdf -schema#label >
18 "Paris"@fr .←↪✝ ✆

Listing 2.2: N-Triples representation of Fig. 2.1

There exist several other serialization technologies for Rdf: The Terse RDF Triple
Language [Beckett and Berners-Lee, 2008] (Turtle) is a superset of the N-Triples for-
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2.1 RDF

mat and enables abbreviating common prefixes, similarly to RDF/XML. Additionally,
Turtle allows aggregating multiple facts for the same subject using a shorthand list
notation, thereby reducing the overhead for publishing various information about the
same resource. In another recent serialization suggestion entitled N-Quads1, the au-
thors propose adding a context to an N-Triples statement. Particularly, it is advised
to supply provenance information through this context field. In case Rdf data is ag-
gregated from different sources, e.g., by crawling multiple web sites, the provenance
record can be employed for indicating the original source of a statement.

2.1.3 Vocabularies and Ontologies

The Rdf data model and associated standardized serialization formats enable ma-
chines to parse Linked Data. However, a number of challenges remain for interpret-
ing the comprised information. For example, Fig. 2.1 indicates that a cyclic rela-
tionship exists between the two entities http://dbpedia.org/resource/David_Hume
and http://dbpedia.org/resource/Auguste_Comte. However, as hinted at
by the two distinct predicates http://dbpedia.org/ontology/influenced and
http://dbpedia.org/ontology/influencedBy, this relationship is not symmetric.

Vocabularies and ontologies (terms usually used interchangeably in Linked Data
contexts) assist in grasping the full semantics of Rdf documents. To this end, they
typically provide proper class definitions for Linked Data resources, i.e., including tax-
onomies, inheritance information, and property specifications. Several domain-specific
and cross-domain ontologies, such as the Web Ontology Language2 (OWL) and the
RDF Schema3 (RDFS) aid Linked Data integration and consumption as they provide a
unified conceptual view on entities detailed using the Resource Description Framework.
Another common use case for leveraging Linked Data vocabularies lies in providing
metainformation about the resources contained in a dataset, e.g., using the Vocabulary
of Interlinked Datasets4 [Alexander et al., 2009] (voiD).

Although it is considered good practice to reuse existing terms from estab-
lished vocabularies when publishing Linked Data [Bizer et al., 2009a], the Web of
Data contains numerous similar and synonymous concept and property definitions,
potentially even within single vocabularies. For example, the popular Friend-of-
a-Friend ontology5 (FOAF) for describing attributes of and relationships between
persons defines possibly ambiguous terms for representing certain properties, e.g.,
http://xmlns.com/foaf/0.1/lastName and http://xmlns.com/foaf/0.1/surname.
Moreover, there is the notion of implicit inheritance of properties for subclasses in an
Rdf type hierarchy. As ontologies evolve, these definitions oftentimes become obsolete
or need to be rectified to ensure their semantical coherence [Abedjan et al., 2012].

1http://sw.deri.org/2008/07/n-quads/
2http://www.w3.org/TR/owl-ref/
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/void/
5http://xmlns.com/foaf/spec/
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2.2 SPARQL

The SPARQL Protocol and RDF Query Language (Sparql) is the standard query
language for Rdf data. Similarly to SQL, Sparql enables users to retrieve infor-
mation through structured unambiguous requests. In this section, we introduce the
core concepts of Sparql, which represent the foundation of all Sparql queries. More
specifically, we first present the recursive definition of triple and graph patterns. Fur-
thermore, we demonstrate different query types and modifiers. Finally, we provide a
brief overview of the evolution of Sparql and point out recent developments in the
language specification.

2.2.1 SPARQL Syntax

As Sparql is a graph-based query language targeted at retrieving Rdf information
from the Web of Data, its syntax closely resembles that of the triple notation established
by the Resource Description Framework as introduced in the previous section. In
particular, the Sparql query syntax is similar to that of the Turtle or N-Triples format
detailed in Sec. 2.1.2 as we illustrate in the following.

A central concept of a Sparql query is that of a triple pattern T defined as:

T := (s, p, o) ∈ (V ∪ U)× (V ∪ U)× (V ∪ U ∪ L).

Here, V is a set of variables, U is a set of URIs, and L is a set of literals with V ∩U =
V ∩ L = U ∩ L = ∅. As with Rdf triples, we typically refer to the first element (s) of
a triple pattern T as the subject, the second (p) as the predicate, and the last one (o)
as the object.

Using the concept of triple patterns, Sparql recursively defines graph patterns P
as follows [Pérez et al., 2009]:

Definition 2.1 (Graph Patterns). (i) A valid triple pattern T is a graph pattern. (ii)
If Pi and Pj are graph patterns, then P := Pi AND Pj, P := Pi UNION Pj, and P := Pi

OPTIONAL Pj are graph patterns.

In terms of relational operations, the keyword AND represents an inner join of two
such graph patterns Pi and Pj , UNION denotes their union, and OPTIONAL indicates
a left outer join between Pi and Pj . Consequently, AND and UNION are commutative
and associative operations, while OPTIONAL is left-associative. Whereas UNION and
OPTIONAL are reserved keywords in actual Sparql queries to indicate the corresponding
connection between two graph patterns, the AND keyword is omitted. Moreover, AND
takes precedence over the other keywords [Pérez et al., 2009].

In [Pérez et al., 2009], it is shown that there exists the notion of a normal form for
Sparql queries based on the recursive graph pattern structure presented earlier and
the precedence of the operators connecting those graph patterns. Hence, a Sparql
query can always be expressed as a composition of graph patterns, connected either by
UNION, AND, or OPTIONAL.
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Curly braces delimiting a graph pattern (i.e., {P}) are syntactically required for
both P1 and P2 in a UNION statement and only for P2 in an OPTIONAL statement. While
there is the notion of empty graph patterns (represented by {}) in Sparql, in this work
we consider only non-empty graph patterns. A graph pattern containing a number of
triple patterns connected by AND is referred to as basic graph pattern (BGP), i.e., a
basic graph pattern P has the form P := T1 AND T2 AND . . . AND Tn, where T1, . . . , Tn

are triple patterns.
Furthermore, we refer to the largest graph pattern P contained in a Sparql query

Q as the query pattern PQ. Note that every query has exactly one query pattern PQ.
For brevity and to avoid confusion with set braces, we omit the brace delimiters when
referring to graph patterns in this work whenever possible. For the remainder of this
work, Pi always denotes a valid graph pattern contained in a Sparql query.

An example of a Sparql SELECT query with four triple patterns is illustrated in
Query 2.1. In this query Q, several prefixes are defined for improved readability. The
query pattern PQ is contained between the first occurrence of { and last occurrence of }.
Similarly to SQL, SELECT statements in Sparql queries limit the projection to certain
variables contained in the query, i.e., ?philosopher1 and ?philosopher2. Essentially,
for query evaluation all projection variables in PQ are bound to concrete resources based
on Rdf statements contained in the queried triple store and the resolved bindings are
added to the result set.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?philosopher1 ?philosopher2 WHERE {
{

?philosopher1 foaf:givenName "Auguste" .
?philosopher1 ?relationWith :Paris .

} UNION {
?philosopher2 dbo:influenced ?philosopher1 .
OPTIONAL {
?philosopher2 foaf:givenName "David" .

}
}

}✝ ✆
Query 2.1: Example of a Sparql query

When comparing Sparql triple patterns with Rdf statements provided in the
Turtle or N-Triples serialization format, it is easy to see how those bindings can be
generated. For example, when considering the contents of the Rdf graph depicted in
Fig. 2.1 as serialized in Listing 2.2, variable ?philosopher1 in Query 2.1 is bound by re-
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source http://dbpedia.org/resource/Auguste_Comte and variable ?philosopher2
in Query 2.1 is bound by resource http://dbpedia.org/resource/David_Hume.

2.2.2 Query Forms

In total, there are four different forms of queries in Sparql: SELECT, CONSTRUCT, ASK,
and DESCRIBE. While all of them operate to some degree on the graph pattern notation
introduced in the previous subsection, they serve different purposes.

SELECT As mentioned earlier, a SELECT statement is typically used to discover
bindings for variables in graph patterns. In case no bindings can be determined, the
result set for the SELECT statement is empty. The star notation * can be used to add
all variables contained in the query to the projection. Notice that valid SELECT queries
need to include at least one variable in both query pattern and projection.

ASK The ASK statement can be considered a special case of a SELECT query in which
no concrete bindings are returned. Instead, the query engine only evaluates whether
bindings can be determined at all for the query pattern and returns a Boolean answer
reflecting the result. In contrast to SELECT statements, the query pattern of an ASK
statement does not need to contain any variable. If the query merely contains one
or more triples, the query engine will determine whether (all of) these statements are
included in the triple store. ASK queries can assist in evaluating the eligibility of Sparql
endpoints for certain workloads without incurring high network traffic.

CONSTRUCT Whereas SELECT statements return only individual URIs or liter-
als depending on the bindings discovered for the variables in the query pattern, the
CONSTRUCT statement composes an entire Rdf graph as a result by substituting all
variables by the discovered bindings. Here, the number of triples in the resulting Rdf
graph depends on the number of triple patterns contained in the initial query and the
number of bindings for each variable. As with ASK queries, the query pattern of a
CONSTRUCT request may not contain any variables.

DESCRIBE While DESCRIBE is part of the W3C recommendation for Sparql, the
actual implementation may differ depending on the used query engine. When including
only a single URI instead of a query pattern, the DESCRIBE statement typically identifies
and returns all triples where this resource is discovered as subject or object. For actual
query patterns, the DESCRIBE statement is supposed to return relevant information for
solutions determined during evaluation. However, as the implementation (if any) of the
operator varies from system to system, the retrieved information may or may not be
useful to the specific application need and has to be evaluated manually before further
processing.
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2.2.3 Query Modifiers

As described above, the three basic operations AND, UNION, and OPTIONAL represent
different algebraic operators for modifying the contents of a Sparql query. To ap-
ply further restrictions on variables, typically FILTER conditions are utilized. Using
these filters, a number of logical, numerical, or lexical limitations can be imposed on
the variables in Sparql queries. For example, to require the ?philosopher1 and
?philosopher2 variables to have non-identical bindings when issuing Query 2.1, the
following FILTER condition can be added to the query pattern:✞ ☎
FILTER (? philosopher1 != philosopher2)✝ ✆
To reduce the number of retrieved results without restricting the scope of a query, the
LIMIT keyword can be employed. Endpoints may additionally impose a server-side
limitation on the number of returned results, thus rendering it infeasible to retrieve a
large set of results at once. The keyword OFFSET on the other hand allows specifying
the amount of skipped results in the overall result set when retrieving variable bindings.
In other words, the value for OFFSET indicates the position of the first returned solution
in the complete result set. Omitting the OFFSET keyword is identical to OFFSET 0.

By combining LIMIT and OFFSET, the entire result set for a query can be retrieved
incrementally even if server-side restrictions on the amount of returned solutions are
in place. For instance, to retrieve only the first result for Query 2.1, the expression
LIMIT 1 can be added after the query pattern. Retrieving exactly the next result can
be achieved by adding LIMIT 1 OFFSET 1 instead.

It should be noted that in general there is no deterministic ordering of results
for a Sparql query. Thus, using the approach described above potentially results
in retrieving different result (sub-)sets when executing the same query with identical
LIMIT and OFFSET values. In practice we have never encountered a scenario where the
ordering was indeterministic. Nevertheless, such cases can be addressed by specifying
an explicit solution sequence sorting using the ORDER BY construct combined with one
of the projection variables.

2.2.4 Evolution of SPARQL

Initially, Sparql was proposed as W3C public working draft in 20041. In 2008,
Sparql 1.0 was released as a W3C recommendation2, comprising mostly minor design
changes compared to previous versions. In contrast, the recent release of Sparql 1.13

added several new features to the specification of the query language. Although most
of the ideas introduced in the following chapters do not require any Sparql 1.1 con-
structs, for the sake of completeness we briefly elaborate on the added query language
features in the following.

1http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/
2http://www.w3.org/TR/rdf-sparql-query/
3http://www.w3.org/TR/sparql11-query/
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Conceptually, Sparql 1.1 introduced property paths: Instead of tediously deriving
the relationship of distinct resources by specifying a sequence of triple patterns, prop-
erty paths allow investigating the connection between these entities as a variable-sized
sequence of incident edges. Thus, property paths correspond better to the underlying
Rdf data model. For example, property paths enable or simplify determining certain
characteristics of the Rdf graph, such as identifying cliques and connected components.
However, a recent study has shown that the current specification of property paths and
consequently all implementations of this feature do not scale well [Arenas et al., 2012].

In terms of operations, grouping and aggregates have been included in the
Sparql 1.1 standard. Similarly to their counterparts in SQL, these operations allow
to partition a set of bindings and compute more complex results over these partitions,
respectively. Moreover, Sparql 1.1 enables users to impose negations on the result set,
i.e., expressing result set complements. These negations can consequently be employed
for excluding certain bindings from the result set.

From a technical perspective, Sparql 1.1 establishes two main novel features.
First, in addition to the read-only operations SELECT, ASK, CONSTRUCT, and DESCRIBE,
Sparql 1.1 allows altering the contents of a knowledge base, e.g., by inserting or
removing individual triples through INSERT and DELETE1 operations, respectively. Fur-
thermore, whereas issuing traditional Sparql requests against a federation of endpoints
required introducing an additional layer, Sparql 1.1 offers explicit distributed query
processing capabilities2.

2.3 Summary

In this overview chapter, we have briefly covered the two core technologies associated
with Linked Data: The Resource Description Framework and the SPARQL Protocol
and RDF Query Language. Both standards are essential for the dissemination of Linked
Data as they provide the technical fundamentals for publishing and consuming this
information, respectively. The employed data model facilitates interacting with the
underlying graph structure.

However, as hinted at in this chapter, the implementation details of Rdf and
Sparql are still fluctuating. For example, whereas the W3C recommends RDF/XML
as serialization format, sources of Linked Data frequently employ other standards. Sim-
ilarly, the additions in the Sparql 1.1 standard exhibit great potential for alleviating
several of the challenges faced previously when issuing queries. However, users applying
some of the other recently added concepts, such as property paths, might encounter
scalability issues. Moreover, several popular Sparql frameworks currently only imple-
ment a subset of the new features.

In the remainder of this thesis, we introduce several novel approaches for leveraging
Linked Data sources more effectively and efficiently. Most of these contributions revolve
around improving interaction with these sources through Sparql. These ideas go

1http://www.w3.org/TR/sparql11-update/
2http://www.w3.org/TR/sparql11-federated-query/
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beyond the mere technical scope of the query language and instead focus on discerning
real-world request behavior. To this end, we formalize a means for identifying structural
correspondences between Sparql queries in the next chapter.

17





CHAPTER 3
IDENTIFYING LINKED DATA ACCESS PATTERNS

“Every habit makes our hand more witty and our wit less handy.”

Friedrich Nietzsche

Throughout the past decade, numerous research projects have focused on publish-
ing [Auer et al., 2009a; Bizer et al., 2009b; Dello et al., 2006], profiling [Böhm et al.,
2010; Li, 2012], or processing Linked Data [Neumann and Weikum, 2008; Böhm et al.,
2012; Hose et al., 2011]. However, whereas the contents of Rdf data sources have been
widely studied, little work has been conducted on analyzing access patterns on this
data. To facilitate research in this context, several real-world Sparql query logs have
been made available in recent years, e.g., released as part of the International Work-
shop on Usage Analysis and the Web of Data (USEWOD) [Berendt et al., 2012, 2013]
or for establishing repeatable benchmarking set-ups [Morsey et al., 2011]. Access to
and analysis of this log data plays a vital role in discerning Linked Data consumption
behavior [Berendt et al., 2011].

In this chapter, we present a novel approach for qualifying such consumption pat-
terns. To this end, we introduce a means to decompose and compare Sparql queries.
Moreover, we present two algorithms aimed at matching structurally similar queries.
We illustrate properties of these algorithms and the derived matchings before evaluat-
ing the performance of these approaches. Additionally, we present findings discovered
by applying our approach to real-world Sparql query logs and discuss these results.

We introduce the preliminaries and definitions necessary for our matching approach
in Sec. 3.1. In Sec. 3.2 we present an algorithm to match Sparql queries based on
the triple patterns they contain. We extend this notion and illustrate an algorithm to
derive minimum weight matches in Sec. 3.3. In Sec. 3.4, we present on evaluation of
these two algorithms. This evaluation is two-fold: First, we compare the algorithms
against one another and against the well-known similarity flooding approach presented
in [Melnik et al., 2002] in Sec. 3.4.1. Second, we discuss results derived from applying
our approach in Sec. 3.4.2. Finally, we comment on related work and summarize this
chapter in Sec. 3.5 and Sec. 3.6, respectively.
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3.1 Preliminaries

In this section, we introduce a number of preliminaries necessary for our approach of
analyzing Sparql queries and referencing the individual elements they contain. In par-
ticular, we illustrate how a query pattern can be decomposed recursively into subgraph
patterns. Furthermore, we comment on how the similarity of two triple patterns can
be determined. This triple pattern similarity notion serves as a fundamental building
block for the matching algorithms detailed in the next two sections.

3.1.1 Decomposing SPARQL Queries

To extract subgraph patterns, we introduce the three functions ΘUNION(P ), ΘAND(P ),
and ΘOPTIONAL(P ). They each take as input a graph pattern P and decompose P into
the set of its non-empty subgraph patterns P1, P2, . . . , Pn, all conjoined exclusively
by UNION, AND, or OPTIONAL, respectively. The three functions can then be applied
recursively to the individual elements P1, P2, . . . , Pn in the result set, possibly yielding
further non-empty sets of subgraph patterns.

As an example for demonstrating the decomposition functions, consider the
Sparql query Q illustrated in Listing 2.1 in Sec. 2.2.1. This query contains the
following three subgraph patterns PAND, POPTIONAL, and PUNION:

✞ ☎
PAND := ?philosopher1 foaf:givenName "Auguste" .

?philosopher1 ?relationWith :Paris .✝ ✆
✞ ☎
POPTIONAL := ?philosopher2 dbo:influenced ?philosopher1 .

OPTIONAL {
?philosopher2 foaf:givenName "David" .
}✝ ✆

✞ ☎
PUNION = PQ := PAND UNION POPTIONAL✝ ✆

Hence, if we apply ΘUNION(PQ) to the query pattern of Q, we generate the set
{PAND, POPTIONAL}. Similarly, invoking ΘAND(PAND) results in a set containing two triple
patterns. If no such decomposition can be derived, the result set is empty, e.g.,
ΘAND(PQ) = ∅ and ΘUNION(PAND) = ∅.

More formally, the decomposition functions are defined as follows (note that
P, P1, . . . , Pn represent graph patterns and n ≥ 2):
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ΘUNION(P ) :=

{P1, . . . , Pn}, iff P := P1 UNION P2 . . . UNION Pn

∅, else.
(3.1)

ΘAND(P ) :=


{P1, . . . , Pn}, iff P := P1 AND P2 . . . AND Pn

{P}, iff P is a triple pattern
∅, else.

(3.2)

ΘOPTIONAL(P ) :=

{P1, . . . , Pn}, iff P := P1 OPTIONAL P2 . . . OPTIONAL Pn

∅, else.
(3.3)

We also introduce the function Θ(P ) as a convenience method to deduce whether
for a graph pattern P a decomposition exists for either ΘUNION(P ), ΘOPTIONAL(P ), or
ΘAND(P ). For subsequent analysis of graph pattern decompositions, we typically rely
on this function which is defined as follows:

Θ(P ) :=


ΘUNION(P ), iff ΘUNION(P ) ̸= ∅
ΘOPTIONAL(P ), iff ΘOPTIONAL(P ) ̸= ∅
ΘAND(P ), else.

(3.4)

Except for when P is a triple pattern and we apply ΘAND(P ) = {P}, we also assume
that all decompositions are non-trivial, i.e., Θ(P ) ̸= {P}. Hence, according to the
underlying graph pattern normal form [Pérez et al., 2009], for any non-empty graph
pattern P the three cases ΘUNION(P ) ̸= ∅, ΘAND(P ) ̸= ∅, and ΘOPTIONAL(P ) ̸= ∅ are
mutually exclusive and |Θ(P )| = 1 ⇔ Θ(P ) = {P} ⇔ ΘAND(P ) = {P}. We call
|P | = |Θ(P )| the size of a graph pattern P . Furthermore, we refer to γ(P ) as the depth
of a graph pattern P :

γ(P ) :=

0, iff Θ(P ) = {P}
1 + max

Pi∈Θ(P )
(γ(Pi)), else. (3.5)

In addition, we introduce the function κ(P ) for a graph pattern P :

κ(P ) :=


UNION, iff ∃P1 : P ∈ ΘUNION(P1)
OPTIONAL, iff ∃P1, P2 : P, P2 ∈ ΘOPTIONAL(P1) ∧ P2 OPTIONAL P

AND, else.
(3.6)

The function κ(P ) allows determining how P is connected to other graph patterns
in a graph pattern decomposition, e.g., ∀Pi ∈ ΘUNION(P ) : κ(Pi) = UNION. We employ
both κ(P ) and Θ(P ) in the algorithms presented in the next sections. This information
allows us to decide whether two graph patterns can be matched to one another or not.
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3.1.2 Triple Pattern Distance

To match graph patterns, we use a bottom-up approach based on the similarity of
contained triple patterns. Thus, we first need to derive this similarity of two triple
patterns by accumulating the distance scores between their two subjects, predicates,
and objects, respectively. If two triple pattern parts are both variables, their distance
is defined to be 0. In case they are both URIs or both literals, their distance is the nor-
malized Levenshtein distance [Levenshtein, 1966] of the respective strings. Otherwise,
i.e., if the two triple pattern parts have different types, the distance is defined as 1. In
other words, if x1 ∈ V ∪U ∪L and x2 ∈ V ∪U ∪L are either the subjects, predicates, or
objects of two triple patterns T1 and T2, respectively, we define the symmetric distance
score 0 ≤ ∆(x1, x2) ≤ 1 as

∆(x1, x2) :=


0, if x1 ∈ V ∧ x2 ∈ V

levenshtein(x1, x2)
max(length(x1), length(x2)) ,

if (x1 ∈ U ∧ x2 ∈ U)
∨ (x1 ∈ L ∧ x2 ∈ L)

1, else.

(3.7)

We determine the overall distance ∆(T1, T2) = ∆(T2, T1) of two triple patterns T1, T2
by aggregating the individual triple pattern parts distance scores ∆(s1, s2), ∆(p1, p2),
∆(o1, o2) as follows: In case ∆(s1, s2)+∆(p1, p2)+∆(o1, o2) = 0, we define ∆(T1, T2) :=
0. Otherwise, there exists a minimum triple pattern part distance score ∆min :=
min(∆(s1, s2), ∆(p1, p2), ∆(o1, o2))) with ∆min > 0. In this case, the triple pattern
distance score is defined as

∆(T1, T2) := ⌈∆(s1, s2)⌉+ ⌈∆(p1, p2)⌉+ ⌈∆(o1, o2)⌉ − (1−∆min) (3.8)

In this way, a distance ∆(T1, T2) ≤ 1 always indicates a dissimilarity in at most one
triple pattern part, i.e., subject, predicate, or object, whereas for two non-equal triple
pattern parts 1 < ∆(T1, T2) ≤ 2, and a distance score ∆(T1, T2) > 2 hints at differences
between the two subjects, predicates, and objects. In our approach, we are typically
interested in discovering highly similar triple patterns T1, T2, i.e., ∆(T1, T2) ≤ 1.

Consider the two basic graph patterns BGP1 and BGP2 in Listing 3.1 and List-
ing 3.2, respectively, where the line numbers serve as indices for the included triple
patterns. Here, the most similar triple pattern for T1 in Θ(BGP2) can be determined
by computing min(∆(T1, T4), ∆(T1, T5), ∆(T1, T6)), which is equal to ∆(T1, T5) = (⌈0⌉+
⌈0⌉+⌈12

16⌉−
4
16) = 0.75. For T2, the minimum value is ∆(T2, T6) = (⌈1⌉+⌈0⌉+⌈0⌉−0) =

1, and for T3 it is ∆(T3, T4) = (⌈0⌉+ ⌈ 5
14⌉+ ⌈5

9⌉ −
9
14) ≈ 1.36. Thus, the most similar

triple patterns for T1, T2, T3 in Θ(BGP2) are T5, T6, and T4, respectively.

3.1.3 Matching Graph Patterns

In the remainder of this chapter, we introduce different methodologies to compare and
align graph patterns with one other. In accordance with the reference literature [Rahm
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3.1 Preliminaries

✞ ☎
1 ?city1 rdfs:label "Paris"@fr .
2 ?person ?relationWith ?city1 .
3 :Auguste_Comte foaf:givenName "Auguste" .✝ ✆

Listing 3.1: Basic graph pattern example BGP1✞ ☎
4 :Auguste_Comte foaf:surname "Comte" .
5 ?city2 rdfs:label "Montpellier"@en .
6 :Auguste_Comte ?association ?city2 .✝ ✆

Listing 3.2: Basic graph pattern example BGP2

and Bernstein, 2001], we refer to two entities that correspond semantically to each
other as a match or matching, whereas a mapping represents a transformation function
explicitly detailing how to correlate the entities to one another. For example, for
matching the schemas of two relational tables a mapping of table columns is required.

In the context of our work, we are typically interested in matches between two
graph patterns P1, P2. Note that in general a necessary prerequisite for such a match
are identical keywords κ(P1) = κ(P2). In this case, a mapping represents a function
that correlates the subgraph patterns contained in one graph pattern P 1

i ∈ Θ(P1)
with the subgraph patterns of the other graph pattern P 2

j ∈ Θ(P2). Thus, a mapping
m ⊆ Θ(P1) × Θ(P2) indicates how a match between P1 and P2 is established. For
example, in the next section we present an algorithm to determine matches between
graph patterns based on a mapping of the triple patterns they contain.

We present a formal definition of graph pattern mappings and matches:

Definition 3.1 (Graph pattern mappings and matches). Let P1, P2 be two graph pat-
terns. We refer to m ⊆ Θ(P1) × Θ(P2) as a mapping between Θ(P1) and Θ(P2).
Unless otherwise noted, κ(P1) ̸= κ(P2) ⇒ m = ∅. If m ̸= ∅, we say that P1 and P2
present a match. Conversely, if any two graph patterns P1 and P2 are mapped to one
another in a mapping m, i.e., (P1, P2) ∈ m, and there exist two graph patterns P 1

∗ and
P 2

∗ with P1 ∈ Θ(P 1
∗ ) and P2 ∈ Θ(P 2

∗ ), P 1
∗ and P 2

∗ are a match. In general, if P1 and
P2 are mapped to one another, they are also a match.

Consider the two basic graph patterns BGP1 in Listing 3.1 and BGP2 in Listing 3.2:
Using the triple pattern distance score ∆(Ti, Tj) we have previously determined that
T1, T2, and T3 in Θ(BGP1) are most similar to T5, T6, and T4 in Θ(BGP2), respectively.
Thus, a match between BGP1 and BGP2 can be based on a mapping mBGP1,BGP2 =
{(T1, T5), (T2, T6), (T3, T4)} ⊆ Θ(BGP1)×Θ(BGP2) of the individually matched triple
patterns.

Note that based on Def. 3.1 matches are recursive, i.e., if P1 and P2 are a match,
so are P 1

∗ and P 2
∗ with P1 ∈ Θ(P 1

∗ ) and P2 ∈ Θ(P 2
∗ ). For brevity, we usually refer

to the individual elements of a mapping m ⊆ Θ(P1) × Θ(P2) as m := {(P 1
i , P 2

j )}.
Furthermore, building on the previous definition, we define complete mappings:
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Definition 3.2 (Complete graph pattern mappings). Let P1, P2 be two graph patterns
that are matched based on a corresponding mapping m ⊆ Θ(P1) × Θ(P2). We call
this mapping m complete, if and only if all P 1

i ∈ Θ(P1) are mapped to exactly one
P 2

j ∈ Θ(P2) and all P 2
j ∈ Θ(P2) are mapped to exactly one P 1

i ∈ Θ(P1) in m, i.e., m
is complete iff

∀P 1
i ∈ Θ(P1)∃!P 2

j ∈ Θ(P2) : (P 1
i , P 2

j ) ∈ m

∧∀P 2
j ∈ Θ(P2)∃!P 1

i ∈ Θ(P2) : (P 1
i , P 2

j ) ∈ m

In consequence of Def. 3.2, any complete mapping m is also bijective, i.e., the
individually mapped element pairs contained in m are symmetric. Thus, in general a
complete mapping {(P 1

i , P 2
j )} ⊆ Θ(P1) × Θ(P2) is identical to {(P 2

j , P 1
i )} ⊆ Θ(P2) ×

Θ(P1). Conversely, a mapping m = {(P 1
i , P 2

j )} is surjective if ∃(P 1
i , P 2

j ), (P 1
k , P 2

j ) ∈ m
with i ̸= k and injective if ∃(P 1

i , P 2
j ), (P 1

i , P 2
l ) ∈ m with j ̸= l. We note for the size of

a complete mapping |m| = |Θ(P1)| = |Θ(P2)|. Notice that the mapping mBGP1,BGP2 is
complete, as all elements in Θ(BGP1) are mapped to exactly one element in Θ(BGP2)
and vice versa.

We further build on the notion of complete mappings established by Def. 3.2 to
define fully complete mappings:

Definition 3.3 (Fully complete graph pattern mappings). Let P1, P2 be two graph pat-
terns that are matched based on a corresponding complete mapping m = {(P 1

i , P 2
j )} ⊆

Θ(P1)×Θ(P2). We call this mapping m fully complete, if and only if (i) ∀(P 1
i , P 2

j ) ∈
m : Θ(P 1

i ) = {P 1
i } ∧ Θ(P 2

j ) = {P 2
j }, i.e., all elements in the mapping are triple pat-

terns, or (ii) all mapping pairs (P 1
i , P 2

j ) ∈ m are matched based on fully complete
mappings m′ ⊆ Θ(P 1

i )×Θ(P 2
j ).

By using Def. 3.3, we are able to express in a top-down manner that complete map-
pings are recursively complete, i.e., that established matches are based on complete
mappings between all subgraph patterns throughout all levels of recursion. In particu-
lar, this means that fully complete mappings do not contain any inter-graph matches,
i.e., mappings between (sub-)graph patterns of different parent graph patterns.

The complete triple pattern mapping mBGP1,BGP2 introduced earlier is fully com-
plete. Assume that there exist two more basic graph patterns BGP3 and BGP4 that
can also be matched based on a fully complete triple pattern mapping mBGP3,BGP4 ⊆
Θ(BGP3) × Θ(BGP4). Now consider two Sparql queries Q1 and Q2 with the query
patterns PQ1 := BGP1 UNION BGP3 and PQ2 := BGP2 UNION BGP4. Then, the com-
plete mapping mPQ1 ,PQ2

= {(BGP1, BGP2), (BGP3, BGP4)} is also fully complete, as
it neither maps any Ti ∈ Θ(BGP1) to a Tj ∈ Θ(BGP4) nor any Tk ∈ Θ(BGP2) to a
Tl ∈ Θ(BGP3). If such a match (Ti, Tj) or (Tk, Tl) existed, our prerequisite that both
mBGP1,BGP2 and mBGP3,BGP4 are fully complete would be false.
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3.2 Stable Graph Pattern Matching

3.2 Stable Graph Pattern Matching
Our first approach for matching graph patterns is inspired by the Stable Marriage
Problem (SMP), which is typically motivated using the following example: Assume
that there exist a group A of n men and another group B of n women who are to be
married to one another monogamously. To this end, each man a ∈ A has a (sorted)
preference list ranking all women in B from most to least favorite to propose to, and
each woman b ∈ B similarly ranks all men in A. The goal is to determine a marriage
of every single man a ∈ A to exactly one woman b ∈ B, so that for no two distinct
married couples (ai, bj) and (ak, bl) both ai prefers bl over bj and bl prefers ai over ak.

In this section, we first introduce an algorithm that can be used to generate stable
matches between the elements of two disjoint sets. We then illustrate a novel approach
built on the notion of this algorithm. Namely, we extend the application domain of the
algorithm to recursive data structures, i.e., Sparql graph patterns. Finally, we discuss
characteristics of our new algorithm and properties of the determined results.

3.2.1 Stable Bipartite Matching

We give a general definition of stable matches:

Definition 3.4 (Stable matches). Let A and B be two sets with |A| = |B|. Further-
more, let θ : A × B → N be a scoring function so that ∀a ∈ A, bi, bj ∈ B, bi ̸= bj :
θ(a, bi) ̸= θ(a, bj) and ∀b ∈ B, ai, aj ∈ A, ai ̸= aj : θ(ai, b) ̸= θ(aj , b), where for any
a ∈ A and all bi ∈ B the maximum score max(θ(a, bi)) := |A| = |B|. Without loss of
generality, we assume that given a ∈ A and b ∈ B so that ∀bi ∈ B\{b} : θ(a, bi) > θ(a, b)
means that element a will be mapped to element b. A complete bipartite mapping
m ⊆ A×B, i.e., a match between A and B, is considered stable if and only if

¬∃(ai, bj), (ak, bl) ∈ m : θ(ai, bj) > θ(ai, bl) ∧ θ(ai, bj) > θ(ak, bj).

The authors of [Gale and Shapley, 1962] introduce the Gale-Shapley Algorithm
to establish a stable mapping between the elements of two disjoint, equal-sized sets
A and B based on the (monotonously decreasing) ranked preference lists rA,B : a →→
(b1, b2, . . . , bn) and rB,A : b →→ (a1, a2, . . . , an) as illustrated in Algorithm 1. The result-
ing mapping is complete in the same sense as introduced in Def. 3.2, i.e., it maps every
element in A to exactly one element in B and vice versa.

In Algorithm 1, all elements ai ∈ A are successively (Line 2) compared to all
elements in bj ∈ B in order of decreasing rank rA,B(ai) (Line 3). A match between
ai and bj is established iff (i) bj is currently unmatched (Line 6), or (ii) the element
a∗ matched previously to bj has a lower rank, i.e., higher index in rB,A(bj), than ai

(Line 9). In the second case, a new mapping partner for the previously matched element
a∗ has to be determined.

The Gale-Shapley Algorithm has three important characteristics: First, the algo-
rithm always yields a stable mapping between the elements of any two equal-sized
disjoint sets according to the two ordered preference lists. Second, the resulting stable
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Algorithm 1: Gale-Shapley
Input : A, B : Two sets of equal size (|A| = |B|)
Input : rA,B, rB,A : Ranked preference lists for all a ∈ A in B and all b ∈ B in A
Output: Stable mappings (b, a) ∈ B ×A

1 mappings ← ∅
2 foreach ai ∈ A \mappings.values() do
3 foreach bj ∈ rA,B(ai) do
4 a∗ ← mappings.get(bj)
5 if a∗ = NIL then
6 mappings.put(bj , ai)
7 break

8 else
9 if rB,A(bj).indexOf(a∗) > rB,A(bj).indexOf(ai) then

10 mappings.put(bj , ai)
11 break

12 return mappings

mapping is identical for all possible sequences of elements from A in the outer loop
(Line 2). Finally, any stable matching pair (a, b) generated by the algorithm is al-
ways optimal w.r.t. θ(a, bi) > θ(a, b) in Def. 3.4 for all elements a ∈ A and b, bi ∈ B
when compared to other conceivable stable matchings [Gusfield and Irving, 1989]. The
Gale-Shapley Algorithm has complexity of O(|A| |B|), i.e., exhibits quadratic runtime.

3.2.2 Recursive Stable Matching

We build on the basic intuition of Algorithm 1 and apply it to the problem of discovering
triple pattern mappings for determining graph pattern matches. Here, we contribute
two novel aspects to the previous approach: First, we extend the original algorithm
to be applied to recursive data structures, i.e., graph patterns. Second, we generalize
the algorithm so that it no longer requires ranked preference lists, but instead uses the
similarity score defined in Sec. 3.1.2 for mapping triple patterns. Our goal is to derive
fully complete stable triple pattern mappings.

We present Algorithm 2, an extended version of our approach illustrated in [Lorey
and Naumann, 2013a], for generating fully complete stable triple pattern mappings.
The recursive algorithm takes as arguments two graph patterns P1, P2 and previously
determined mappings between triple patterns. This set of mappings is initially empty
and established by iterating over all graph patterns contained in Θ(P1) and Θ(P2).
Further, Algorithm 2 utilizes a maximum distance threshold ∆max in Line 13 for map-
ping any two triple patterns based on their distance score as defined in Sec. 3.1.2. We
typically set ∆max to 1. If no match between P1 and P2 can be derived based on a
complete mapping of contained triple patterns, the result of the algorithm is empty.
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Algorithm 2: StableTriplePatternMatching
Input : P1, P2 : Two graph patterns
Input : mappings : Current triple pattern mappings
Output: Fully complete stable triple pattern mappings between P1, P2

1 S1 ← Θ(P1)
2 S2 ← Θ(P2)
3 if κ(P1) ̸= κ(P2) ∨ |S1| ≠ |S2| then
4 return ∅
5 while S1 ̸= ∅ do
6 P 1

i = S1.poll()
7 foundMapping ← false
8 foreach P 2

j ∈ S2 do
9 if

P 1
i

 = 1 ∧
P 2

j

 = 1 then
10 if κ(P 1

i ) = κ(P 2
j ) ∧ P 1

i /∈ mappings.values() then
11 P 1

∗ ← mappings.get(P 2
j )

12 if P 1
∗ = NIL then

13 if ∆(P 1
i , P 2

j ) ≤ ∆max then
14 mappings.put(P 2

j , P 1
i )

15 foundMapping ← true
16 break

17 else
18 if ∆(P 1

i , P 2
j ) < ∆(P 1

∗ , P 2
j ) then

19 mappings.put(P 2
j , P 1

i )
20 if P 1

∗ ∈ Θ(P1) then
21 S1 = S1 ∪ {P 1

∗ }
22 foundMapping ← true
23 break

24 else
25 oldMappings ← mappings
26 mappings ← StableTriplePatternMatching(P 1

i , P 2
j , mappings)

27 if mappings ̸= ∅ ∧mappings ̸= oldMappings then
28 foundMapping ← true
29 foreach Pi ∈ oldMappings.values() \mappings.values() do
30 S1 = S1 ∪ {Pi.getParent()}

31 else
32 mappings ← oldMappings

33 if ¬foundMapping then
34 return ∅

35 return mappings
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Two necessary preconditions for a match between P1 and P2 are κ(P1) = κ(P2)
and |Θ(P1)| = |Θ(P2)| (Line 3). Hence, the algorithm does not establish a match
between graph patterns with different keywords or of different sizes. These conditions
are required as there might exist partial (i.e., non-complete) mappings between the
contained triple patterns. However, as our overall goal is to determine structurally
similar queries, we are interested in discovering only complete mappings, i.e., matches
between all individual elements of two graph patterns.

The algorithm traverses over the graph patterns P 1
i contained in S1 (which is initial-

ized with the results of Θ(P1)) and tries to match these graph patterns with the graph
patterns P 2

j in S2 (comprising the results of Θ(P2)) (Line 8), similarly to Algorithm 1.
In case both graph patterns currently in consideration have size 1, i.e., they are triple
patterns (Line 9), the algorithm checks whether a mapping can be established between
these two triple patterns.

Assuming that P 1
i and P 2

j exhibit the same keyword (Line 10), a mapping between
the two triple patterns can be established under two conditions: (i) ∆(P 1

i , P 2
j ) ≤ ∆max

and there is currently no other mapping between P 2
j and another triple pattern P 1

∗
(Line 13), or (ii) the triple pattern P 1

∗ currently mapped to P j
2 has a higher distance

score to P j
2 than ∆(P 1

i , P 2
j ) (Line 18). In the first case, the mapping is established,

in the second case, the existing mapping is changed accordingly, and the previously
mapped element P 1

∗ is again added to S1 (Line 21). This ensures that the algorithm
tries to determine a new match for P 1

∗ in a subsequent iteration.
Note that we add P 1

∗ to S1 only if it was originally included in the set (Line 20). More
precisely, we only derive another mapping for P 1

∗ in the current iteration if P 1
∗ ∈ Θ(P1).

Omitting this restriction can have two consequences: (i) There might not be another
eligible match for P 1

∗ in the current iteration, thus rendering all mappings for this
iteration invalid (Line 34), or (ii) the derived triple pattern mappings may not be fully
complete, i.e., the algorithm would generate inter-graph pattern matches.

In case we map P i
1 to P 2

j , either by creating a new mapping or altering an existing
one, the algorithm sets the value of the Boolean variable foundMapping to true and
continues by examining the next element in S1. It should be noted that the triple
pattern distance score needs to be smaller to replace any triple pattern with another in
an existing matching (Line 18) to guarantee that Algorithm 2 terminates, e.g., if two
identical triple patterns are contained in S1.

If P 1
i and P 2

j are not triple patterns, i.e., their size is greater than 1, the algorithm
is executed recursively, using P 1

i and P 2
j along with mappings as arguments (Line 26).

If the result of this recursive execution is not empty and mappings has changed, either
because there were new mappings added or previous mappings altered, foundMapping
is set to true. In the latter case, i.e., if previously determined mappings have been
changed, the algorithm strives to determine new mapping partners for the now un-
mapped elements (Line 29). As mappings are established only at the base case level
of Algorithm 2 (Lines 12–23) and the algorithm tries to prevent inter-graph pattern
matches (Line 20), any potential new mapping partners need to be determined at the
recursion step, i.e., by comparing the parent graph pattern (Line 30).
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If throughout a recursion step, no match was discovered between P 1
i and P 2

j , i.e.,
foundMapping is false, the returned mappings are empty (Line 34). Potentially, some
mappings could have been determined throughout the recursion and added to mappings,
whereas the current graph pattern P 1

i cannot be matched to any other graph pattern
based on a complete mapping. To avoid generating partial mappings, a non-empty
result is returned only if matches were established for all subgraph patterns.

3.2.3 Properties of Recursive Stable Matching

As mentioned earlier, Algorithm 2 determines a mapping between two triple patterns
T1, T2 if and only if they reside in graph patterns T1 ∈ Θ(P1), T2 ∈ Θ(P2) with identical
keywords κ(P1) = κ(P2) and sizes |Θ(P1)| = |Θ(P1)| (Line 3). While there might exist a
triple pattern Ti in another graph pattern Ti ∈ Θ(Pj) with j > 2 and a lower distance
score ∆(T1, Ti) < ∆(T1, T2), T1 and Ti cannot be mapped, e.g., because of different
keywords κ(P1) ̸= κ(Pj).

Hence, any mapping resulting from Algorithm 2 is stable in the sense that the
mapped triple patterns have minimal distance to their mapping partner with respect
to the graph pattern they are contained in. If there exists another possible mapping
with a lower distance score for a particular triple pattern so that the two corresponding
graph patterns form a complete match, this mapping would have been established
instead of the current one (Line 18).

Note however that the algorithm prefers the first possible triple pattern mapping
over all other possible mappings with identical triple pattern distance (Lines 16 and 23).
Additionally, existing complete graph pattern matches (P1, P2) are only disbanded in fa-
vor of matching (P1, P3) if better mappings have been determined for all contained triple
patterns, i.e., in case ∀T 1

i ∈ Θ(P1), T 2
j ∈ Θ(P2), T 3

k ∈ Θ(P3) : ∆(T 1
i , T 3

k ) < ∆(T 1
i , T 2

j ).
As hinted at earlier, this is necessary to guarantee that Algorithm 2 terminates. Hence,
in contrast to Algorithm 1, the order of input elements influences the result of Algo-
rithm 2.

Depending on the triple pattern distance function used, this may even lead to an
empty mapping of the triple patterns contained in two graph patterns P1, P2 while
a non-empty solution exists, e.g., if a previous mapping (T1, T2) prevents a mapping
between T3 and T2 and T3 has no other eligible mapping partners whereas T1 has.
However, these edge cases can be handled by adjusting the triple pattern distance
function to consider all contained elements holistically.

If for any evaluated graph pattern no match could be determined, the overall re-
turn value of the algorithm is an empty set of mappings (Line 34). Conversely, any
non-empty mapping result is complete (or perfect) and therefore maximal (the size of
non-empty mappings is determined by the number of triple patterns contained in the
graph pattern). Additionally, all returned non-empty mappings are fully complete: As
illustrated above, in Line 20 of Algorithm 2 we ensure that previously mapped triple
patterns are only added again to S1 if they have been an element in the current (re-
cursive) execution of the algorithm. Conversely, any mapping established during the
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current run is only returned if it is complete, i.e., no unmapped triple patterns remain
in S1.

The set of triple pattern mappings m derived by Algorithm 2 can more accurately be
considered as a partition of fully complete disjoint mappings


mi = m. For discovering

which basic graph patterns P1, P2 are matched to one another based on a fully complete
mapping mi we need to determine the triple pattern mappings (P 1

i , P 2
j ) ∈ m for which

P 1
i ∈ Θ(P1) and P 2

j ∈ Θ(P2). Here, identifying a single triple pattern mapping pair
(P 1

i , P 2
j ) ∈ mi ⊆ Θ(P1) × Θ(P2) is sufficient for matching P1 and P2, as Algorithm 2

guarantees that all other triple patterns in Θ(P1) are also only mapped to exactly one
triple pattern in Θ(P2).

The time complexity of Algorithm 2 depends on the depth of the graph patterns
γ(P1), γ(P2) and their size |P1| , |P2|. For estimating the worst case running time, we
assume without loss of generality that |P1| = |P2| = n throughout all levels of recursion,
i.e., Algorithm 2 cannot terminate early. Further, we assume that the depth of the two
graph patterns is identical, i.e., γ(P1) = γ(P2) = p. Then, the overall complexity is in
O(np2), i.e., the maximum number of comparisons is determined by the overall number
of triple patterns in all BGPs.

3.3 Minimum Weight Graph Pattern Matching

In the previous section, we introduced Algorithm 1 as an approach to determine a fully
complete stable mapping between all triple patterns contained in two graph patterns.
Whereas the algorithm works well in practice for generating sensible matches as we show
in Sec. 3.4, it leaves a number of issues unaddressed: Firstly, stable matches generated
by Algorithm 1 are not necessarily globally optimal in terms of aggregated triple pattern
distance. As discussed in Sec. 3.2.1, this is because the algorithm considers only the
best matches for the elements in the outer loop of the Gale-Shapley Algorithm.

Moreover, as hinted at in Sec. 3.2.3, by greedily assigning triple patterns matches
Algorithm 1 might not derive a fully complete mapping even if one exists. Additionally,
initializing the algorithm with an unreasonably high triple pattern distance threshold
(i.e., ∆max ≥ 3) potentially results in a high average-case time complexity, as poten-
tially many established mappings need to be re-evaluated in later iterations.

To cope with these issues, we introduce an approach that aims at determining
minimum weight matches, where the weight is determined by the (aggregated) triple
pattern distance. In this section, we first illustrate the basic intuition of the underlying
optimization problem. Next, we introduce two mutually recursive functions, GraphPat-
ternMatching and MappingScore, to match graph patterns and determine the aggregated
score used as objective function in our approach, respectively. Finally, we discuss prop-
erties of the two functions and the derived results.
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3.3.1 Minimum Weighted Bipartite Matching

In graph theory, an elementary problem for a complete bipartite graph G = (V1∪V2, E)
with an edge weight function w : E → R is to determine a (complete) mapping m ⊆
V1 × V2 with minimum aggregated edge weights


(vi,vj)∈m w(vi, vj). In analogy to

Def. 3.4, we define minimum weighted matching more generally:

Definition 3.5 (Minimum weight matches). Let A and B be two sets with |A| = |B|,
and w : A×B → R a weight function. A complete bipartite mapping m ⊆ A×B, i.e.,
a match between A and B, is of minimum weight if and only if there is no other
complete bipartite mapping m′ ⊆ A×B with

(ak,bl)∈m′

w(ak, bl) <


(ai,bj)∈m

w(ai, bj).

In contrast to stable mappings as defined in Def. 3.4, minimum weight mappings are
determined holistically: Instead of considering only stable mappings between individ-
ual elements based on (unidirectional) preference, here weights are aggregated for all
mapped tuples. Conversely, this means that determining minimum weighted bipartite
mappings is inherently more expensive than generating stable mappings. Typically, for
any graph pattern mapping, we use the terms weight, cost, and score interchangeably,
as they often have identical meaning in different related approaches.

The well-known Hungarian method [Kuhn, 1955] can be used to create an assign-
ment between the elements of two disjoint sets with minimum cost in polynomial time.
This approach is typically presented as a combinatorial optimization algorithm in the
form of a primal-dual simplex method, e.g., in [Munkres, 1957]. The initial version
of the Hungarian algorithm introduced in [Kuhn, 1955] exhibited time complexity of
O(n4) which was quickly improved to O(n3) [Edmonds and Karp, 1972] by reducing
the problem to discovering single-source shortest paths. Recent advances in determin-
ing maximum weight matchings in bipartite graphs have improved the complexity to
O(n2 log n) [Fredman and Tarjan, 1987]. Other improvements for solving this assign-
ment problem impose certain restrictions not applicable in our scenario, e.g., limiting
the edge weights to integer values.

3.3.2 Recursive Minimum Weight Matching

We determine recursive minimum weight matches between two Sparql query patterns
using a dynamic programming approach: To this end, we first determine mappings be-
tween triple patterns, which we use to evaluate matches of basic graph patterns. These
in turn are then employed as input mappings for matching general graph patterns. We
continue this bottom-up approach until we either cannot generate any fully complete
mapping or match the query patterns.

Consequently, matches between basic graph patterns are determined based on the
aggregated distance scores of the contained triple patterns. Discovering such matches is
equivalent to deriving a complete bipartite mapping with minimum aggregated weight
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between the triple patterns of two individual basic graph patterns where the edge weight
w(Ti, Tj) is determined by the triple pattern distances ∆(Ti, Tj). Here, we employ an
implementation of the Hungarian method [Edmonds and Karp, 1972] as introduced in
the previous subsection.

Based on basic graph pattern matches, we continue to match general graph patterns
by aggregating the distances of the mapped triple pattern included in the BGPs. Here,
we build on the definition of the score function ∆(T1, T2) to allow the computation of a
distance score for general graph patterns P1, P2 based on a mapping m ⊆ Θ(P1)×Θ(P2).

To this end, we introduce Algorithm 3 to calculate the score of given graph pat-
tern mappings. The algorithm takes as input an existing mapping between two graph
patterns. If the mapping is incomplete, e.g., because |Θ(P1)| ̸= |Θ(P2)| (Line 2) or
because it is not bijective (Line 5), the returned score if ∞.

If the mapping is complete, for any contained mapped triple patterns (P 1
i , P 2

j ) we
add the triple pattern distance score ∆(P 1

i , P 2
j ) to the overall mapping score (Line 8).

For graph patterns, we first check whether these are legitimately mapped, i.e., if their
keywords are identical (Line 10). If this is not the case, the overall mapping is invalid
and thus has infinite cost. In case the keywords are identical, we calculate the mapping
score by matching the elements they contain (Line 12) and add it to the overall mapping
score. Finally, the mapping score is normalized by the number of elements contained
in mappings (Line 13) before returning it.

Algorithm 3: MappingScore
Input : mappings : A set of matched graph patterns with mappings ⊆ P1 × P2
Output: Aggregated total score for matched graph patterns
1 score← 0
2 if |mappings| ≠ |Θ(P1)| ∨ |mappings| ≠ |Θ(P2)| then
3 return ∞
4 foreach (P 1

i , P 2
j ) ∈ mappings do

5 if ∃(P 1
k , P 2

j ) ∈ mappings : (P 1
i = P 1

k ∧P 2
j ̸= P 2

l )∨ (P 1
i ̸= P 1

k ∧P 2
j = P 2

l ) then
6 return ∞

7 if
Θ(P 1

i )
 = 1 ∧

Θ(P 2
j )

 = 1 then
8 score← score + ∆(P 1

i , P 2
j )

9 else
10 if κ(P 1

i ) ̸= κ(P 2
j ) then

11 return ∞
12 score← score + MappingScore(GraphPatternMatching(P 1

i , P 2
j ))

13 return score

|mappings|

As mentioned above, we use the notion of graph pattern distance as calculated in
Algorithm 3 to recursively generate fully complete mappings with minimum weight
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between graph patterns. Once again, we use the distance scores as weight for matching
two graph patterns. In Algorithm 4, we illustrate the generation of these minimum
weight graph pattern matches. Similarly to Algorithm 2, this algorithm takes as input
two graph patterns P1, P2 and first generates two sets S1, S2 containing the decomposed
graph patterns (Lines 1 and 2). If no valid match is possible, i.e., either because the two
graph patterns differ in keyword or size of their contained elements, an empty mapping
is returned (Line 4).

Algorithm 4: GraphPatternMatching
Input : P1, P2 : Two graph patterns
Output: Fully complete minimum weight graph pattern mappings between P1, P2

1 S1 ← Θ(P1)
2 S2 ← Θ(P2)
3 if κ(P1) ̸= κ(P2) ∨ |S1| ≠ |S2| then
4 return ∅
5 E ← ∅
6 foreach (P 1

i , P 2
j ) ∈ S1 × S2 do

7 if
Θ(P 1

i )
 = 1 ∧

Θ(P 2
j )

 = 1 then
8 if ∆(P 1

i , P 2
j ) ≤ ∆max then

9 E.add((P 1
i , P 2

j ), ∆(P 1
i , P 2

j ))
10 else
11 E.add((P 1

i , P 2
j ),∞))

12 else
13 if κ(P 1

i ) ̸= κ(P 2
j ) then

14 E.add((P 1
i , P 2

j ),∞)
15 else
16 E.add((P 1

i , P 2
j ), MappingScore(GraphPatternMatching(P 1

i , P 2
j )))

17 return MinimumWeightedBipartiteMatching(S1 ∪ S2, E)

If these prerequisites for generating a match are met, we consider the task of finding
a complete mapping a minimum weighted bipartite matching problem and choose the
Hungarian method as implemented in [Edmonds and Karp, 1972] to solve it. For this,
we need to determine edge weights, i.e., the mapping score for all decomposed graph
patterns. Similarly to Algorithm 3, if these analyzed graph patterns are triple patterns,
we assign the triple pattern distance score as edge weight (Line 9). Here, we again factor
in the threshold ∆max: If the triple pattern distance exceeds this value, we associate
an infinite edge weight with this particular triple pattern pair (Line 11). If the graph
patterns are not triple patterns, e.g., in case they are basic graph patterns, we associate
an infinite edge weight for mapping them if their keywords differ (Line 14).
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In case the graph patterns exhibit the same keyword, we rely on Algorithm 3 to
determine the edge weight: In Line 16, we execute the introduced method for deriving
the mapping score for (P 1

i , P 2
j ). Again, this score might be infinite, e.g., in case the

decompositions of the two subgraph patterns P 1
i , P 2

j are of different size. In general,
the edge weight is determined by the minimum cost mapping m′ ⊆ Θ(P 1

i ) × Θ(P 2
j ).

After deriving all edge weights, we execute the minimum weighted bipartite matching
algorithm, i.e., the Hungarian method, in Line 17.

3.3.3 Properties of Recursive Minimum Weight Matching

It is easy to see that Algorithm 4 returns a mapping m with finite cost only if m
is also (fully) complete: Assume that m ⊆ Θ(P1) × Θ(P2) has finite score, i.e.,
MappingScore(m) < ∞, while m is not fully complete, i.e., without loss of general-
ity ∃P 1

i ∈ Θ(P1) so that ∀P 2
j ∈ Θ(P2) : (P 1

i , P 2
j ) ̸∈ m. Then, in contradiction to

MappingScore(m) < ∞, the mapping score as determined in Line 2 of Algorithm 3 is
infinite, as |Θ(P1)| ≠ |m|.

However, there might be cases in which a fully complete mapping with infinite cost
is determined: For example, if for two triple patterns we determine a distance score
that exceeds ∆max, an edge with infinite weight is associated (Line 11). Potentially,
executing the minimum weighted bipartite matching algorithm in Line 17 will select
this edge as a match if no other edges exist or all other edges also are of infinite weight.
Conversely, if Algorithm 4 determines a mapping m ⊆ Θ(P1) × Θ(P2) with infinite
cost, any other mapping m′ ⊆ Θ(P1) × Θ(P2) with MappingScore(m′) < ∞ cannot be
complete as the algorithm does not terminate before discovering a maximal match.

As with Algorithm 2, the runtime complexity of Algorithm 4 depends on the graph
pattern size n = |P1| = |P2| and their depth p = γ(P1) = γ(P2). In the base case,
i.e., when executing the algorithm on two basic graph patterns containing n triple pat-
terns each, assigning edge weights is in O(n2) whereas the minimum weighted bipartite
matching in our case is derived in O(n3). Thus, overall the base case of Algorithm 4
for matching two graph patterns is in O(n3). Note that we do not need to execute
Algorithm 3 in this case.

On the other hand, for more complex graph patterns, e.g., graph patterns containing
n BGPs, we need to execute Algorithm 3 at least n2 times to evaluate the score of all
possible matches. Potentially, this needs to be done throughout all recursion levels,
thus the overall complexity amounts to O(n2+p2). Here, the two terms in the power
expression, i.e., 2 and p2, indicate the time spent on evaluating the mapping score and
executing the recursion, respectively.

3.4 Evaluation

The evaluation of the introduced graph pattern matching approaches is two-fold: First,
we compare the algorithms illustrated in Sec. 3.2 and Sec. 3.3 to each other and to a
state-of-the-art graph-based matching approach introduced in [Melnik et al., 2002]. As
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both this work and our first algorithm do not necessarily generate optimal matches, i.e.,
minimum weight mappings, we are interested in how much their runtime and results
diverge from those of the optimal Algorithm 4. In the second part of our evaluation,
we investigate Linked Data access patterns: Specifically, we analyze the structural
similarity of query sequences in real-world Sparql query logs. For two different sources,
we visualize how users retrieve the data at hand and discuss potential characteristics
of these users.

To evaluate our query matching approach we analyzed a number of Sparql requests
presented in the Common Log Format1 in the USEWOD 2012 dataset [Berendt et al.,
2012] for DBpedia 3.6 and LinkedGeoData (LGD). The larger of these two corpora, the
DBpedia 3.6 query log files, contains around 8.5 million queries received by the public
DBpedia endpoint2 on 14 individual days in 2011. For all queries, we take into account
not only the actual request string, but also the issuing user as identified by a (possibly
anonymized) IP address. Additionally, we rely on explicit temporal information, i.e.,
request timestamps, and implicit temporal information, i.e., the request sequence in
the log file.

The second dataset containing queries issued against the LinkedGeoData endpoint3

comprises significantly fewer requests than the DBpedia 3.6 log files. Overall, only a
few thousand queries are included, however these were recorded for all individual days
of several months in 2011. Thus, in contrast to the DBpedia 3.6 log files, the LGD
corpus enables a comprehensive breakdown of query trends over extended periods of
time. Again, we also leverage the user and time information supplied alongside the
actual requests.

3.4.1 Quality and Performance Comparison

As mentioned above, we compare our two algorithms to each other and to the similarity
flooding approach introduced in [Melnik et al., 2002]. Before discussing our results, we
briefly introduce the notion of the latter work and point out how we configure the
parameters of and prepare the input for the presented algorithm. Afterwards, we
compare the determined matching results and the runtime behavior of all approaches.

Similarity Flooding Algorithm

The authors of the similarity flooding algorithm [Melnik et al., 2002] motivate their
work using a schema matching problem: For two relational database schemas, they aim
at discovering mappings between individual elements, e.g., columns. To this end, two
labeled graphs are constructed, modeling table names, column names, and datatypes
as vertices, and the corresponding association as edges. Using a simple string matcher,
the creators of the algorithm obtain initial similarities between the nodes. In this
process, they do not distinguish between entities of different type: For instance, the

1http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
2http://dbpedia.org/sparql
3http://linkedgeodata.org/sparql
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initial mapping may suggest mapping a column contained in one schema to a table of
another schema.

In the next step, this initial mapping is refined based on iterative similarity flood-
ing: The intuition of this approach is that the similarity of two vertices influences the
similarity of any vertices connected to them. Thus, the initial connection between two
vertices propagates through the graph until the overall similarity between all elements
stabilizes. Finally, out of all possible mapping combinations the algorithm selects the
most suitable one by applying different filters: Essentially, a filter aggregates the de-
termined converged similarities based on some user preference. For example, a basic
filter may exclude all mappings of elements with different type (e.g., columns mapped
to tables). As with Algorithm 1, the authors rely on the intuition of the Stable Mar-
riage Problem as a selection metric for suitable matches. During each iteration, the
algorithm performs n ∗m comparisons, where n, m is the number of edges in the first
and second schema, respectively.

For our evaluation, we adapted the similarity flooding approach as follows: For
two Sparql queries, we create labeled graphs where the vertices are represented by
the contained graph patterns. Here, the label of all triple patterns is derived from the
included statement. For all other graph patterns, we use a combination of graph pattern
keyword, graph pattern depth, and a unique identifier as label. The initial similarity
mapping is then determined using the Levenshtein distance, in analogy to the triple
pattern distance definition presented in Sec. 3.1.2 and used in both our algorithms. For
all other values, e.g., the convergence parameters, we rely on the default settings of the
algorithm.

As the similarity flooding approach does not distinguish between different node
types, it may generate semantically incorrect matches, e.g., by mapping triple patterns
to BGPs. However, as this is intended in the algorithm design, we did not modify this
behavior. Instead, for each generated mapping of the similarity flooding algorithm, we
verify whether it is correct and filter it out in case it is not. We consider a mapping
m ⊆ Θ(P1) × Θ(P2) between two graph patterns P1, P2 to be correct, if m is fully
complete and ∀(P 1

i , P 2
j ) ∈ m : Θ(P 1

i ) = {P 1
i } ⇔ Θ(P 2

j ) = {P 2
j }, i.e., mappings are

only established between triple patterns or between non-triple graph patterns.

Quality and Performance of Stable Matching

First, we analyzed the recall of the stable graph pattern matching approach w.r.t.
the minimum weight matching approach. To this end, we extracted a sample of
81,758 queries from the log files. Among these requests, the minimum weight matching
algorithm discovered 79,331 queries matching to at least one other element in the sam-
ple data. In other words, there are 2,427 query patterns among the analyzed requests
that cannot be matched to any other analyzed query pattern. Of the 79,331 baseline
matches, the stable matching algorithm derived 61,263 (77.22% recall).

In addition, we compared the performance of the algorithms. To this end, we
measured the overall execution time for applying each matching algorithm to queries
with identical query pattern depth and the same amount of contained triple patterns.
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For each individual combination, we chose the average execution time of Algorithm 4
for generating minimum weight matches as the baseline value and compared this value
with the average runtime of Algorithm 2 for generating stable matches. In Fig. 3.1,
we illustrate the performance relationship between the different algorithms: Here, the
x-axis represents the overall number of triple patterns in the query pattern, whereas
the y-axis indicates the depth of the query pattern.
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Figure 3.1: Runtime of stable matching algorithm w.r.t. minimum weight matching
algorithm

In case we did not encounter a specific combination of triple pattern amount and
query pattern depth during our matching experiments, the illustrated data point is
blank (white). All other data points indicate whether executing the stable graph pat-
tern matching algorithm resulted in a runtime decrease (positive value or red color), i.e.,
performance gain, or runtime increase (negative value or blue color), i.e., performance
loss, when compared to the minimum weight variant. Please note that the values are
in orders of magnitude: For instance, a value of “1” indicates a performance advantage
of factor 10 in comparison to the minimum weight matching approach, whereas the
value “-1” represents a performance disadvantage of factor 10 w.r.t. Algorithm 4, both
in terms of runtime.

We especially noticed slight runtime disadvantages of the minimum weight algo-
rithm for shorter queries, i.e., containing fewer triple patterns. For example, when
matching two queries containing only one triple pattern each, the minimum weight
matching approach computes the respective triple pattern distance twice: First, when
generating the edge weight as input for the bipartite matching algorithm, and then
again in the Hungarian method itself to identify the (trivial) mapping. In comparison,
for a stable matching, this calculation is only performed once.

Overall however, the performance advantage of Algorithm 2 over Algorithm 4 is
not as evident for matching query patterns with more triple patterns or larger query
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pattern depth: In these cases, stable matchings need to be rectified more often so
that the runtime of Algorithm 2 converges towards its worst-case value. Note that for
certain combinations of query pattern depth and triple pattern amount, e.g., for query
patterns of depth 2 containing 24 triple patterns overall, we recorded only a low number
of matches (in this case, between 19 distinct queries). However, other combinations,
for instance query patterns of depth 1 containing 2 triple patterns, account for a much
larger amount of analyzed queries (41,150 queries), thus the runtime estimation can be
considered more reliable for these cases.

Quality and Performance of Similarity Flooding

The similarity flooding approach discovered 63,590 of the 79,331 minimum weight
matches (80.16% recall). Thus, recall was slightly better for similarity flooding than for
the stable matching approach. On the other hand, the similarity flooding determined
1,069 incorrect matches (44.27% false positive rate). For instance, a large amount of
matches discovered by the similarity flooding approach contained mappings of graph
patterns to triple patterns. The filtering concept illustrated in the approach can be
employed to remove these incorrect matches as discussed previously.

As visualized in Fig. 3.2, we discovered that the runtime of the similarity flooding
algorithm in most cases increases compared to the minimum weight matching approach
(which in turn oftentimes performs worse when compared to the stable matching algo-
rithm). This effect is amplified when the amount of triple patterns or the depth of the
query pattern increases.
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Figure 3.2: Runtime of similarity flooding algorithm w.r.t. minimum weight matching
algorithm

In general, we noticed that the similarity flooding approach spends much of its exe-
cution time on creating the initial mapping, i.e., for calculating similarities between all
graph patterns of the two queries. As explained earlier, in particular the algorithm de-

38



3.4 Evaluation

termines these scores even for unreasonable combinations, e.g., between triple patterns
and BGPs. This behavior is intended by the creators of the algorithm who assume that
either during multiple iterations the algorithm converges towards sensible results or the
incorrect matches are filtered out eventually. Conversely, in both our approaches, these
combinations are never considered a potential match, but instead disregarded early on
by comparing the graph pattern sizes and keywords.

As with the stable matching algorithm, the performance of the similarity flooding
approach in comparison to the minimum weight matching algorithm generally decreases
for query patterns of large depth. Whereas for the stable matching approach this results
from the large number of mappings that need to be re-evaluated in later stages, for the
similarity flooding method this can be explained by the increased number of iterations
needed for propagating the similarity of mappings through the graph.

3.4.2 Query Log Results

In our second experiment, we evaluated the applicability and relevance of our graph
pattern matching intuition in general. As our goal is identifying Linked Data access
patterns, we analyzed the relatedness of successive queries from the same source. Here,
we are particularly interested in basic data exploration strategies of users: By issuing
a large amount of similarly structured queries, i.e., queries that can be matched to
one another, users may be investigating semantically related information. Moreover,
requests issued through machine agents, e.g., Web Services or mash-ups, may also
exhibit high similarity as the underlying query structure is typically hard-coded to
some extent.

To illustrate their relatedness, we aggregate structurally similar queries Q in match-
ing sets M so that ∀Qi, Qj ∈ M : PQi , PQj can be matched to one another using Al-
gorithm 4. Hence, applying the algorithm to two arbitrary queries belonging to the
same set yields a non-empty result with finite weight. Then, we analyze the conditional
probability of two successive queries Qt, Qt+1 issued from the same origin to be mem-
bers of specific matching sets. We use m : Q → M to identify the matching set M of
a query Q. Again, if we find that two subsequent requests Qt, Qt+1 are member of the
same matching set m(Qt) = m(Qt+1), i.e., Qt, Qt+1 can be matched to one another, we
assume high similarity between these queries.

Analysis of DBpedia 3.6 Query Logs

We visualize the conditional probabilities for different days in the DBpedia 3.6 log files
in the heat maps of Fig. 3.3a -3.3i. Here, both axes m(Qt) and m(Qt+1) of all individual
diagrams correspond to matching sets, where a single tick mark on each axis represents
one set. Both axes are sorted in descending cardinality of these sets. The values for
p(m(Qt+1)|m(Qt)) illustrate the probability of observing a query from a specific set
given the set of the previous query from the same user. A high value (represented by a
“warmer” color such as red) indicates that queries from the two matching sets are likely
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to occur in sequence. Conversely, a low value (depicted by a “cooler” color such as blue)
illustrates that queries from the respective sets rarely or never occur sequentially.

While the plots differ slightly for the various dates in Fig. 3.3, two general trends
can be observed: First, the matrix of all conditional probabilities is sparsely populated,
i.e., for any query discovered in the log, the subsequent query usually belongs to one
of a limited number of matching sets. In addition, there is typically a high probability
that query Qt and the subsequent query Qt+1 can be matched to one another using
Algorithm 4. This notion is illustrated by the high values exhibited on the diagonal of
all diagrams.

As illustrated in Fig. 3.3a-3.3i, the amount of matching sets for a specific log day
has little influence on the high probability for two subsequent queries to match. For
example, in Fig. 3.3h, only 32 unique matching sets were discovered, whereas Fig. 3.3c
represents over 100 of these matching sets. Additionally, for all analyzed log days, the
vast amount (typically around 80%) of query sequence occurrences can be attributed
to the lower left hand corner of each diagram. As illustrated, especially for this area
the probability of two subsequent queries being matched to one another is very high.

One possible explanation for this finding might be the high popularity of the DB-
pedia endpoint among developers of Semantic Web Services: Due to the diverseness
of the contained information, the data provided by the DBpedia project is utilized in
many different application scenarios, e.g., for exploring geo-spatial information [Becker
and Bizer, 2009] or recommending music [Passant, 2010]. Consequently, requests from
a specific source share many characteristics due to the underlying query blueprints
hard-coded by the developers.

Analysis of LinkedGeoData Query Logs

Whereas in the DBpedia 3.6 log files we encountered a large amount of requests orig-
inating from machine agents, such as Web Services or mash-ups, when inspecting the
LinkedGeoData log files we noticed many queries evidently issued by human users. For
example, several queries exhibited structural or spelling errors which we would not ex-
pect to occur if these requests were hard-coded. Moreover, we discovered that many
query sequences from a specific IP address in the DBpedia 3.6 log files were comprised
of hundreds of individual requests, thus hinting at machine agents as likely sources.
Conversely, for LinkedGeoData these query sequences typically contained only single
or few requests, possibly entered manually into the provided browser interface.

Figures 3.4a-3.4d summarize the evaluation of conditional probabilities for se-
quences of queries for the LinkedGeoData Sparql endpoint. For our analysis, we
collated all individual days in a month. Note that this has only insignificant effects on
the findings: Aggregating multiple successive days potentially results in creating longer
query sequences in-between days, i.e., before and after midnight, but does not alter the
contents of intra-day sequences.

Although we suspect that the LGD endpoint receives many more queries issued by
human users in proportion to machine-generated requests compared to the DBpedia
Sparql endpoint, once again it is very likely that subsequent queries can be matched
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Figure 3.3: Conditional probabilities for pairwise sequences of queries from different
matching sets for several days in the DBpedia 3.6 log files
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Figure 3.3: Conditional probabilities for pairwise sequences of queries from different
matching sets for several days in the DBpedia 3.6 log files
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Figure 3.4: Conditional probabilities for pairwise sequences of queries from different
matching sets for several months in the LinkedGeoData log files
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to one another as indicated by the high conditional probabilities values on the diagonals
of the heat maps in Fig. 3.4. This is true even for months with many matching sets,
such as October 2011 illustrated in Fig. 3.4d. In this case, the issued queries were more
varied so that the amount of matching sets was higher whereas the size of each set
decreased. However, the overall trend of high relatedness between successive queries
can still be observed. This in turn hints at general trends in access patterns on Rdf data
through public Sparql endpoints: Within the course of one query sequence, the basic
structure of a query oftentimes remains static and only certain parts, e.g., individual
triple patterns, are altered.

3.5 Related Work

Throughout this chapter, we have already commented on influences on our graph
pattern matching approach, namely originating from the field of schema matching.
However, most works in this context focus on deriving matches on element-level, i.e.,
by mapping individual schema elements [Rahm and Bernstein, 2001]. In comparison,
structure-level matching is applied if only partial mappings need to be determined or
well-defined equivalence pattern, such as “is a” hierarchies, are available [Rahm and
Bernstein, 2001].

Conversely, generic graph matching approaches, such as the ones presented
in [P. Cordella et al., 2004] or [Gold and Rangarajan, 1996], focus more on structural
details of the underlying data model but disregard the semantics of individual vertices.
The similarity flooding approach introduced earlier [Melnik et al., 2002] factors in both
criteria, but in its default implementation suffers from poor performance in our specific
scenario.

In addition, there have been a number of scientific projects aiming at a better
understanding of structures and patterns of Linked Data. Here, most of the work
has focused on profiling the data itself, such as [Bartolomeo and Salsano, 2012; Böhm
et al., 2011; Khatchadourian and Consens, 2010]. However, analyzing and profiling
actual queries on Linked Data has recently also spawned a number of applications,
such as establishing Sparql benchmarking [Bizer and Schultz, 2009; Morsey et al.,
2011] or providing query suggestions [Lehmann and Bühmann, 2011; Zenz et al., 2009].

Our work is closely related to the latter topic. As the results in [Raghuveer, 2012]
suggest, there is great potential for discovering and reusing patterns of Sparql queries.
Indeed, in [Lehmann and Bühmann, 2011] the authors present a supervised machine
learning framework to suggest Sparql queries based on examples previously selected by
the user. The authors claim that their approach benefits users who have no knowledge
of the underlying schema or the Sparql query language. A similar approach in [Zenz
et al., 2009] allows users to refine an initial query based on keywords.

In contrast to these works, the goal of our research is an automated approach to
discern related queries without a priori knowledge of the knowledge base. To this
end, we rely on the structure of queries instead of applying natural language process-
ing techniques on potentially unrelated keywords or resources. Additionally, we allow
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analysis of complex Sparql queries and offer a means to cluster such queries for subse-
quent analysis. Overall, our research extends previous works on profiling Linked Open
Data usage [Möller et al., 2010; Raghuveer, 2012] by suggesting a concrete use case for
recurring patterns in Sparql queries in the next chapter.

3.6 Summary
In this chapter, we introduced the notion of Sparql query decomposition: We outlined
several functions for recursively deriving and annotating the contents of graph patterns.
Moreover, we introduced a means to discern the similarity of triple patterns based on the
resources they contain. We used these concepts to illustrate two graph pattern matching
approaches for identifying structurally and semantically related Sparql queries.

The first graph pattern matching algorithm detailed in Sec. 3.2 is inspired by the
Stable Marriage Problem [Gale and Shapley, 1962] and works best on Sparql queries
with low complexity, i.e., without nested graph patterns, as illustrated in Sec. 3.4.1.
The approach is implemented as a recursive algorithm that generates mappings between
the triple patterns of the two input queries. Whereas the algorithm generally works
well in practice, we identified a number of instances in which it failed to determine
matches.

In contrast to the stable matching variant, the second algorithm presented in Sec. 3.3
generates minimum weight matches of graph patterns, i.e., allows deriving optimal
mappings between nested subgraph or triple patterns of two queries based on the (ag-
gregated) triple pattern distance. To this end, we employed the well-known Hungar-
ian method in a dynamic programming approach for deriving optimal graph pattern
matches.

We conducted several experiments to emphasize both the runtime performance and
applicability of our algorithms. For this, we analyzed a large number of real-world query
logs recorded for two publicly available Sparql endpoints. Here, we demonstrated that
both algorithms outperform a state-of-the-art matching approach as they require little
set-up overhead and detect matches more reliably.

Additionally, we investigated the relationship of successive queries by identifying the
probability of two subsequent requests to exhibit recurring structural characteristics.
We concluded that the conditional probability that any request within a query session
can be matched to its successor is remarkably high, both for different endpoints and
time periods. This in turn means that our matching algorithms present adequate means
for investigating Linked Data access patterns. In the next chapter, we illustrate how
this insight can be exploited for utilizing Sparql endpoints more efficiently in different
scenarios.
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CHAPTER 4

PREFETCHING SPARQL QUERY RESULTS

“Foreknowledge is power.”

Auguste Comte

In the previous chapter, we illustrated different methods for identifying recurring
patterns in Linked Data access. As the results in the evaluation section suggested,
these recurring patterns occur frequently in real-world Sparql requests logs, e.g., when
individual users or applications issue similarly structured queries over short periods of
time. Similar discoveries have also been presented by other authors [Möller et al., 2010;
Raghuveer, 2012].

Based on these findings, in this chapter we introduce a novel approach for leveraging
this information in the context of data consumption. More specifically, we propose a
means suitable for alleviating the request load on Sparql endpoints by prefetching
results relevant for subsequent queries. Here, we exploit the previously derived patterns,
but also introduce additional mechanisms for aggregating relevant information based
on concrete requests. In our approach, we aim at modifying the query structure instead
of relaxing the scope of the query by deducing the relationship among the contained
resources. This latter technique would require detailed knowledge of the data at hand,
e.g., in the form of a language model [Elbassuoni et al., 2011] or as precomputed
metadata [Hogan et al., 2012]. None of this information is available in our context of
data-agnostic endpoint access.

The contents of this chapter are structured as follows: In Sec. 4.1 we apply the
notion of graph pattern matching introduced previously for clustering similar queries.
We further present two means suitable for discerning the core intent of Sparql queries.
In Sec. 4.2 we illustrate different strategies for prefetching query results by altering given
requests and outline the intuition of these modifications. We discuss relevant related
publications in Sec. 4.4, before summing up the presented ideas in Sec. 4.5.
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4.1 Preliminaries

As noted earlier, we build on the concepts introduced in the previous chapter for several
aspects of our prefetching approach. Thus, in this section we apply the graph pattern
matching intuition to present a more formal way of grouping multiple similar queries.
Particularly, we discuss how structurally related queries can be aggregated and nor-
malized. Further, we introduce the basic intuition of prefetching information relevant
for subsequent requests based on the contents of a Sparql query. Here, we outline an
algorithm suitable for identifying the “pivot resource” in a query.

4.1.1 Query Clusters

In Chapter 3, we illustrated a means to determine structural recurrences in query
patterns and demonstrated that these patterns occur frequently in real-world Sparql
requests. Whereas in Sec. 3.4.2 we have already introduced the concept of matching
sets, i.e., sets of queries that all can be matched to one another using Algorithm 4, we
now present a more formal definition for the refined concept of query clusters:

Definition 4.1 (Query Cluster). Let {Q1, . . . , Qn} be a set of Sparql queries with
corresponding query patterns {PQ1 , . . . , PQn}. A query cluster C ⊆ {Q1, . . . , Qn} is a
subset of those queries so that for all Qi, Qj ∈ C the query patterns PQi , PQj can be
matched based on a fully complete minimum weight mapping m ⊆ Θ(PQi)×Θ(PQj ).

Given this definition, it should be clear that we also rely on Algorithm 4 in Sec. 3.3.2
for determining query clusters. When executing the algorithm on an arbitrary pair of
query patterns PQi , PQj using parameter ∆max = 0, a non-empty mapping can only be
derived if the two query patterns PQi , PQj are identical. Hence, all individual query
clusters generated in this way contain only requests with one distinct query pattern.

For ∆max > 0 on the other hand, query clusters can overlap, i.e., a query may
belong to multiple clusters. As mentioned earlier, we typically execute Algorithm 4
with ∆max = 1, thus generating potentially overlapping query clusters. For instance,
a triple pattern PQ1 may coincide in predicate and object values, but differ in subject
compared to triple pattern PQ2 . On the other hand, PQ1 may exhibit identical subjects
and predicates, but different objects compared to triple pattern PQ3 of another request.
Therefore, PQ1 may be matched to PQ2 and PQ3 , whereas PQ2 and PQ3 cannot be
matched to one another with ∆max ≤ 1. Thus, for the query set {Q1, Q2, Q3} two
query clusters can be established: {Q1, Q2} and {Q1, Q3}.

4.1.2 Query Templates

As we are interested in labeling and referencing an extracted query cluster, we aim
at deriving a means to generate cluster centroids. In our approach, a centroid needs
to represent the common structural properties of all queries in a cluster. To this end,
we first introduce the generalization function λ(T1, T2) = T̂ that takes as input two
triple patterns T1, T2 and merges them into one T̂ = (ŝ, p̂, ô). It does so by replacing

48



4.1 Preliminaries

all non-equal triple pattern elements between T1 := (s1, p1, o1) and T2 := (s2, p2, o2)
with arbitrary, uniquely named variables. More specifically, we first define λ(x1, x2)
based on the distance score established in Def. 3.7, where x1, x2 are either the subjects,
predicates, or objects of two triple patterns T1, T2:

λ(x1, x2) :=


x1, iff ∆(x1, x2) = 0
?var, else.

(4.1)

In Def. 4.1, ?var ∈ V represents a random variable for which ∆(x1, ?var) ̸= 0 and
∆(x2, ?var) ̸= 0, i.e., ?var must not be equal to either x1 or x2. Similarly to the
distance score function ∆ in Def. 3.8, we extend λ to be applied to triple patterns as a
whole:

λ(T1, T2) := (λ(s1, s2), λ(p1, p2), λ(o1, o2)) (4.2)

Here, we require that

∆(λ(s1, s2), λ(p1, p2)) = 0 ⇔ ∆(s1, p1) = 0 ∧∆(s2, p2) = 0 ∧
∆(λ(s1, s2), λ(o1, o2)) = 0 ⇔ ∆(s1, o1) = 0 ∧∆(s2, o2) = 0 ∧
∆(λ(p1, p2), λ(o1, o2)) = 0 ⇔ ∆(p1, o1) = 0 ∧∆(p2, o2) = 0

By validating this condition for two merged triple patterns λ(T1, T2), we ensure
that newly introduced variables are unique in the resulting triple pattern T̂ , e.g., a ran-
domly generated variable subject in T̂ differs from a (predefined or generated) variable
predicate or object. In particular, this means that ∆(T̂ , T1) = 0⇔ ∆(T1, T2) = 0, i.e.,
merging is trivial if the two triple patterns are identical. On the other hand, in case
0 < ∆(T1, T2) ≤ 1, i.e., either the two subjects, the two predicates, or the two objects
of T1 and T2 differ, λ(T1, T2) will also only differ in exactly that triple pattern part
from both T1 and T2. More generally, for a merged triple pattern λ(T1, T2) the triple
pattern distance can be estimated as ⌈∆(T1, λ(T1, T2)⌉ = ⌈∆(T1, T2)⌉.

Given a query cluster C = {Q1, . . . , Qn} we can now derive a query template,
i.e., a centroid used for labeling the cluster. Our goal is to generate a representative
template that can be used as a valid Sparql query itself. Such a query template can
be determined using Algorithm 5. In this algorithm, the query template Q̂ is first
initialized using the first query of a cluster (Line 1). Additionally, all variables (i.e.,
projection and non-projection variables) of all cluster queries are added to the set VC

(Line 2). This set is needed as a reference when introducing new unique variable names
during the merge process. Afterwards, the query template is incrementally refined by
traversing over every query of the cluster (Line 3–Line 12).

In each iteration, we first determine the mapping of triple patterns between the
template query pattern and the pattern of the current cluster query Qi (Line 4). For
brevity, here we utilize the stable triple pattern matching result in Algorithm 5. We
merge any two triple patterns discovered in the mapping Tj , Tk (Line 7). To this
end, we require that the variables contained in the generated merged triple pattern
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Algorithm 5: QueryTemplateAlgorithm
Input : C = {Q1, . . . , Qn} : A query cluster
Output: The query template
1 Q̂← Q1
2 VC ←


Qi∈C Qi.getVariables()

3 foreach Qi≥2 ∈ C do
4 m← StableTriplePatternMatching(PQ̂, PQi)
5 foreach (Tj , Tk) ∈ m do
6 repeat
7 T̂ ← λ(Tj , Tk)
8 until T̂ .getVariables() ∩ VC ⊆ Tj .getVariables() ∪ Tk.getVariables()
9 if ∆(T̂ , Tj) > 0 then

10 Q̂.replace(Tj , T̂ )
11 Q̂.addToProjection(T̂ .getVariables() \ Tj .getVariables())
12 VC ← VC ∪ T̂ .getVariables()

13 return Q̂

T̂ = λ(Tj , Tk) are either also contained in the union of the variables of Tj , Tk or are
unique among all variables in VC (Line 8). Any variable v ∈ T̂ .getVariables() ∩ VC \
Tj .getVariables() ∪ Tk.getVariables() that has been added to T̂ and is also part of
another query Qi, but not included in the two triple patterns Tj , Tk, could potentially
collide with a variable included in a different cluster query.

Once we determine a non-trivial merged triple pattern T̂ (Line 9), we replace the
corresponding unmerged triple pattern in the query template (Line 10). Next, we add
the newly introduced variables in T̂ to the template projection (Line 11). Finally, we
also add the newly introduced variables to VC (Line 12) to take them into consideration
when deriving new variables (Line 7) in subsequent iterations.

As mentioned above, a query template itself is a valid Sparql query. By applying
Algorithm 5 to a cluster C = {Q1, . . . , Qn}, we iteratively generalize the contained
queries so that only variables are added to the query pattern (and projection) of Q̂.
Thus, all results generated for the individual queries Q1, . . . , Qn are also contained in
the results of Q̂, as the triple patterns contained in Q1, . . . , Qn either coincide in their
resources or these resources are subsumed as variables in Q̂.

We typically set the triple pattern matching threshold ∆max to 1 when determin-
ing a query cluster as input for Algorithm 5. Thus, for all queries within a cluster
all pairwise-mapped triple patterns (Ti, Tj) exhibit a maximum triple pattern distance
⌈∆(Ti, Tj)⌉ = 1. Given that ⌈∆(Ti, λ(Ti, Tj)⌉ = ⌈∆(Ti, Tj)⌉, the maximum triple pat-
tern distance between any triple pattern T̂i,j = λ(Ti, Tj) contained in the query tem-
plate of this cluster and the corresponding triple pattern Ti of every cluster query is
also ⌈∆(Ti, T̂i,j)⌉ = 1. Hence, the template query itself can be considered an element
of the cluster as it can be matched to all other queries with ∆max = 1.
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Consider the query cluster C with two elements illustrated in Query 4.1 and
Query 4.2: By applying Algorithm 5 to C, the query template Q̂ of this cluster is
first initialized with Query 4.1. Next, the stable matching between the triple patterns
of the query pattern of Query 4.1 and Query 4.2 is determined. Here, the first and
second triple pattern of Query 4.1 are mapped to the first and second triple pattern
of Query 4.2, respectively. Merging the first pair of these mapped triple patterns is
trivial, as both triple patterns are identical. However, the other two mapped triple
patterns differ in their objects. Thus, merging these two requires introducing a new
variable ?var both to the template query pattern and projection. The query template
for cluster C is illustrated in Query 4.3.✞ ☎
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?philosopher WHERE {
?philosopher rdf:type dbo:Philosopher .
?philosopher foaf:name "Auguste␣Comte" .

}✝ ✆
Query 4.1: First Sparql query contained in a query cluster C

✞ ☎
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?philosopher WHERE {
?philosopher rdf:type dbo:Philosopher .
?philosopher foaf:name "David␣Hume" .

}✝ ✆
Query 4.2: Second Sparql query contained in a query cluster C

4.1.3 Central Concept

In this work, for a given query cluster C = {Q1, . . . , Qn} we are sometimes interested in
retrieving additional information related to a central concept, namely the subject (i.e.,
either a variable or URI) occurring most often in the query patterns PQ1 , . . . , PQn .
Here, we require a central concept to be either part of the projection if it is a variable
or to influence the selection if it is a URI. We assume that a URI influences the query
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✞ ☎
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

SELECT ?philosopher ?var WHERE {
?philosopher rdf:type dbo:Philosopher .
?philosopher foaf:name ?var .

}✝ ✆
Query 4.3: Query template for query cluster C

selection if at least one triple pattern, in which the URI is the subject, contains a
projection variable.

To generate the central concept from a query C, we employ Algorithm 6. In this
simple algorithm, we aggregate the frequency of discovered subjects in all triple patterns
of the cluster queries using the initially empty map subjectsCount. For this, we iterate
over all graph patterns Pj contained in the decomposition of the query pattern Θ(PQi)
(Line 5) of every cluster query Qi. In case the graph patterns are not triple patterns
(Line 6), we analyze their decomposition in a subsequent iteration.

Once we discover a triple pattern (Line 8), we extract its statement (Line 9) and
check whether the contained subject is already included in subjectsCount. If this is
the case, we increase the count for this subject (Line 11), otherwise we add it to
subjectsCount (Line 13). We continue this process until we have analyzed every triple
pattern and return the subject occurring most frequently in the query patterns of all
cluster queries, i.e., the central concept.

The central concept can give good indication of the common theme among multiple
Sparql queries. In particular, when analyzing a query cluster, the central concept
can be considered a diametric indicator to identify the cluster essence when related to
the query template: Whereas the template normalizes alternating resources contained
in only some of the cluster queries, the central concept represents the distinct subject
included most commonly in all of these queries. For the query cluster C containing
only Query 4.1 and Query 4.2, the central concept is the variable ?philosopher.

Nevertheless, there might also be cases when the central concept of a query cluster is
not part of the query template. For instance, if a number of cluster queries each contain
only one triple pattern, and all these triple patterns coincide in predicate and object,
applying Algorithm 5 will replace all subjects with a common variable to generate a
query template. However, one of these subjects will be identified as the central concept
by Algorithm 6. Intuitively, in this case the central concept does not represent a
common theme among the cluster queries as it is not included in all of these queries.
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Algorithm 6: CentralConceptAlgorithm
Input : C = {Q1, . . . , Qn} : A query cluster
Output: The central concept
1 subjectsCount ← ∅
2 foreach Qi ∈ C do
3 S ← Θ(PQi)
4 while S ̸= ∅ do
5 foreach Pj ∈ S do
6 if |Θ(Pj)| > 1 then
7 S ← S ∪Θ(Pj)
8 else
9 (s, p, o)← Θ(Pj)

10 if s ∈ subjectsCount then
11 subjectsCount.increaseCount(s)
12 else
13 subjectsCount.put(s, 1)

14 S ← S \ {Pj}

15 return subjectsCount.getElementWithHighestCount()

4.2 Prefetching Strategies

Our intuition of Sparql result prefetching builds on concepts from information re-
trieval. For example, in traditional keyword-based search engines, a user might be
unaware of the most suitable string pattern to retrieve all relevant results at once.
However, in several iterations the user may choose to refine or extend the initial query
based on retrieved results. In Linked Data terms, a user might query for more detailed
information about a certain resource or for similar information of related resources after
analyzing preliminary results, thus incrementally modifying the initial query.

Therefore, we base our intuition of iteratively refined user requests on query sessions,
i.e., sequences of queries Qt, Qt+1, Qt+2, . . . attributed to the same source and issued
within a certain period of time. Using the concepts illustrated in Sec. 4.1, we qualify
different query sessions: If a query session represents a single cluster of queries, i.e., all
queries in a session can be matched to one another, we refer to this query session as
homogeneous, otherwise the query session is heterogeneous.

Based on query sessions, we call the process of modifying the contents of individ-
ual queries query augmentation to emphasize that the results retrieved by issuing the
original query are included in the result set for the modified query. In other words,
the results for the unmodified query form a subgraph of the results for the augmented
query. Hence, in our approach we aim at preserving the recall of the original query
while prefetching results potentially relevant for subsequent requests.
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In the remainder of this section we introduce different strategies for achieving this
goal. We illustrate the effect of applying these strategies on the exemplary Query 4.4.
Put simply, this query retrieves the influences with the place of death :Paris for French
philosopher :Auguste_Comte. Table 4.1 contains the three results retrieved by issuing
Query 4.4 against the public DBpedia Sparql endpoint1, comprising DBpedia 3.9 data
at the time of writing.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT ?influence WHERE {
:Auguste_Comte dbo:influencedBy ?influence .
?influence dbo:deathPlace :Paris .

}✝ ✆
Query 4.4: Example of a Sparql query

influence
:Claude_Henri_de_Rouvroy,_comte_de_Saint-Simon
:Marie_François_Xavier_Bichat
:Jean-Baptiste_Say

Table 4.1: The results for Query 4.4 in DBpedia 3.9 (3 results overall)

4.2.1 Template Augmentation

In the template augmentation approach, we identify the query template for a suitable
query cluster discovered in a session as discussed in Sec. 4.1.2. In our approach, we
typically select the query template of the first non-trivial cluster discovered in the query
session for template augmentation. For homogeneous query sessions, it is easy to see
that issuing the query template is sufficient to retrieve all results of the session queries,
i.e., the union of all individual result sets. In addition, when analyzing real-world
heterogeneous query sessions we witnessed that the first encountered query cluster is
likely the one representing the most queries in these sessions.

A typical use case where template augmentation may be employed for more efficient
information retrieval is Linked Data crawling. Here, an agent incrementally gathers
similar information about elements contained in an initial set of resources while adding
intermediary results to this set. In a different scenario, a mash-up may utilize Linked
Data sources to present information based on user interaction. For this application, a
limited number of hard-coded request drafts can be implemented and concrete queries

1http://dbpedia.org/sparql
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are formed by substituting placeholders in those blueprints with user input (e.g., coor-
dinates clicked on a map or keywords entered by keyboard).

As we discussed in Sec. 3.4.2 there is a high probability that queries of any in-
dividual cluster are followed by queries of the same cluster. Thus, instead of issuing
many similarly structured queries with only little variance, a query template instead
retrieves all relevant information using only a single request. A possible query tem-
plate for Query 4.4 is illustrated in Query 4.5 in which the respective modifications
are underlined. In Query 4.5, a specific resource has been replaced with a unique
variable, which has also been added to the projection of the query in the SELECT state-
ment. As indicated in Tab. 4.2, the result set contains the previous bindings as well
as information about other persons with similar properties, e.g., about philosopher
:John_Stuart_Mill who was also influenced by :Claude_Henri_de_Rouvroy.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT ?influence ?var WHERE {
?var dbo:influencedBy ?influence .
?influence dbo:deathPlace :Paris .

}✝ ✆
Query 4.5: Template augmentation of Query 4.4

influence var
:Claude_Henri_de_Rouvroy,_comte_de_Saint-Simon :Auguste_Comte
:Claude_Henri_de_Rouvroy,_comte_de_Saint-Simon :John_Stuart_Mill
:Victor_Hugo :Jules_Verne
:Samuel_Beckett :Don_DeLillo

...

Table 4.2: Some results for Query 4.5 in DBpedia 3.9 (885× 2 results overall)

4.2.2 Exploratory Augmentation

In exploratory augmentation, we query for additional facts that are available for the cen-
tral concept. The idea of exploratory augmentation is that based on some initial results,
a user might be interested in more information about a specific resource. However, this
augmentation strategy is also helpful if the initial result set is empty, e.g., because of
misspelled or ambiguous vocabulary terms (e.g., foaf:img and foaf:Image).

Exploratory augmentation is applied by adding a triple pattern to the query, so
that the subject in the newly added triple pattern corresponds to the central concept,
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whereas the predicate as well as the object of this new triple pattern are unique vari-
ables. Moreover, these two variables are added to the projection, thus matching all
knowledge base facts in which the central concept is subject. We highlight the corre-
sponding changes in the resulting Query 4.6 by underlining modified or added sections.
An excerpt of the extended result set for Query 4.6 is listed in Tab. 4.3.

Potentially, there may exist certain divergences between ontological information as-
sumed by the user and the vocabulary used in the actual knowledge base. For example,
we discovered that although a number of properties are used frequently for instances
of certain types in DBpedia, they are not defined in the ontology (e.g., dbo:anthem
for dbo:Country). On the other hand, there are also several defined properties that
are rarely used in instance data for the corresponding classes (e.g., dbo:depth for
dbo:Place) [Abedjan et al., 2012]. Even in those cases, exploratory augmentation can
assist users in retrieving relevant information if it exists.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT ?influence ?var1 ?var2 WHERE {
:Auguste_Comte dbo:influencedBy ?influence .
?influence dbo:deathPlace :Paris .
?influence ?var1 ?var2 .

}✝ ✆
Query 4.6: Exploratory augmentation of Query 4.4

influence var1 var2
:Marie_François_Xavier_Bichat dbo:birthDate “1771-11-14”
:Marie_François_Xavier_Bichat dbo:birthPlace :Thoirette
:Jean-Baptiste_Say dbo:birthPlace :Lyon
:Jean-Baptiste_Say dbo:influenced :Auguste_Comte

...

Table 4.3: Some results for Query 4.6 in DBpedia 3.9 (476× 3 results overall)

4.2.3 Type Augmentation

If class membership information in the knowledge base is available for the central
concept, exploiting this ontological data can help in discovering information for seman-
tically related resources. In type augmentation we identify the rdf:type of the central
concept and retrieve data for the instances belonging to the same classes.

The intuition of type augmentation is similar to that of template augmentation,
i.e., querying information about different related resources. Whereas in template aug-
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mentation this relatedness is solely determined by the context of the replaced triple
pattern part, in type augmentation it is derived by exploiting ontological information.
However, for type augmentation the connection between different resources may be
stronger than for template augmentation given the type information of the resources.

According to the RDF Schema1, a resource may be instance of multiple classes,
where these classes may either be unrelated or reside at the same or different levels of
an ontological hierarchy. Therefore, an Rdf resource may be instance of a very generic
type, such as owl:Thing, among other more specific classes. Hence, one challenge
for type augmentation lies in determining a suitable class for which instance data
is retrieved, especially without assuming any a priori knowledge of the underlying
ontology.

A number of techniques can be employed to gather this class information, e.g.,
using multiple preliminary queries to construct a simple type hierarchy or utilizing
aggregate functions, such as COUNT, to generate heuristics about the distribution of
different types. In our approach, we introduce a FILTER NOT EXISTS to exclude all
those (generic) types that have (more specific) subclasses. By doing so, we assume
that the endpoint supports Sparql 1.1 expressions and all resources are instances of
at least one leaf node in the type hierarchy. If this is not the case, we exclude the filter
condition.

Query 4.7 illustrates the result of applying type augmentation on the reference
query, i.e., by introducing the new triple patterns retrieving rdf:type information as
well as querying for instances belonging to this class, and applying the filter condition.
The latter restriction warrants that the results for Query 4.7 listed in Tab. 4.4 include
resources that are instances of specific subclasses, such as dbo:Philosopher, instead
of or in addition to generic parent classes, e.g., dbo:Person.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT ?influence ?var WHERE {
:Auguste_Comte dbo:influencedBy ?influence .
?influence dbo:deathPlace :Paris .
?influence rdf:type ?type .
?var rdf:type ?type .
FILTER NOT EXISTS { ?subType rdfs:subClassOf ?type }

}✝ ✆
Query 4.7: Type augmentation of Query 4.4

1http://www.w3.org/TR/rdf-schema
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influence var
:Claude_Henri_de_Rouvroy,_comte_de_Saint-Simon :Jean-Paul_Sartre
:Marie_François_Xavier_Bichat :Montesquieu
:Jean-Baptiste_Say :Blaise_Pascal
:Jean-Baptiste_Say :Claude_Lévi-Strauss

...

Table 4.4: Some results for Query 4.7 in DBpedia 3.9 (89, 699× 2 results overall)

4.2.4 Holistic Augmentation

The intuition of holistic augmentation is that the scope of Sparql queries can be
broadened by removing certain triple patterns they contain. However, to ensure that
the result set of these modified queries still contains all results of the original requests,
the removed parts must not contain variables essential to the projection or selection
of the specific query. In other words, the variables in the SELECT statement still need
to be present in the modified query so that they may be bound to an Rdf term in a
graph matching.

Typically, if we select a triple pattern T ∈ Θ(Pi) to be removed from a graph
pattern Pi ∈ Θ(PQ) containing it, we also remove T from any other graph pattern
Pj ∈ Θ(PQ) in the query that can be matched to Pi as described in Sec. 3.3. For
example, if multiple basic graph patterns P1, . . . , Pn are connected through UNION, i.e.,
PQ = P1 UNION . . . UNION Pn any triple pattern T ∈ Θ(Pi) selected for removal from
one of these BGPs Pi needs to be removed from all other BGPs Pj that contain it so
that T ̸∈


Pi∈Θ(PQ) Θ(Pi).

We call a triple pattern removal valid, if applying it to a valid Sparql query results
in a valid Sparql query, i.e., if all projection variables are referenced in at least one
remaining triple pattern of the query pattern. Note that there exist queries for which no
valid triple pattern removal is possible, e.g., queries containing only one triple pattern.

To identify the most suitable triple pattern to remove from a query, we utilize
the variable counting heuristic introduced in [Stocker et al., 2008]. Essentially, this
heuristic is based on the assumption that unbound subjects are more selective than
unbound objects, which in turn are more selective than unbound predicates. The
authors of [Stocker et al., 2008] argue that this assumption holds for the majority
of knowledge bases. They suggest that generally a triple pattern with an unbound
predicate, but bound subject and object matches fewer Rdf statements than a triple
pattern with either only an unbound subject or object, i.e., is more selective. Also, the
authors determine that usually a triple pattern with two or three unbound parts is less
selective than a triple pattern with only one or two unbound parts, respectively. Thus,
according to [Stocker et al., 2008] the least selective triple pattern is the one containing
only variables.

In any query pattern there can be more than one triple pattern with maximum
selectivity according to the variable counting heuristic. In this case, we select an arbi-
trary triple pattern for removal. If this removal is not valid, we check whether a valid
removal can be achieved for a different triple pattern with same or lesser selectivity. We
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continue until we have either exhaustively checked all triple patterns or discovered a
validly removable triple pattern. In the latter case, we modify the query by deleting the
triple pattern from the parent basic graph pattern and any other basic graph pattern
this BGP can be matched to within the query.

Removing a highly-selective query triple pattern not essential for the projection
mostly assists in situations where either the query is too restrictive or the data or
ontology in the knowledge base is inconsistent, e.g., as described in [Abedjan et al.,
2012]. The most selective triple pattern in Query 4.4 is crossed out in Query 4.8,
thereby indicating its removal in this augmented query. Table 4.5 lists some results for
Query 4.8.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT ?influence WHERE {
:Auguste_Comte dbo:influencedBy ?influence .
?influence dbo:deathPlace :Paris .

}✝ ✆
Query 4.8: Holistic augmentation of Query 4.4

influence
:Jean-Jacques_Rousseau
:David_Hume
:Francis_Bacon
:Jean-Baptiste_Say

...

Table 4.5: Some results for Query 4.8 in DBpedia 3.9 (7 results overall)

In summary, the four augmentation approaches introduced in this section aim at
modifying the contents of a Sparql query so that executing an altered request en-
ables prefetching results relevant later on in the session. Here, the template and type
augmentation approaches assist in scenarios in which a number of queries concerning re-
lated resources are issued, e.g., by crawlers. The exploratory and holistic augmentation
strategies instead aim at supporting human users in Linked Data access by retrieving
information beyond the scope of the original query intent.

4.3 Evaluation

In the evaluation section of this chapter we focus on two aspects of the introduced ideas.
First, we further investigate the intuition of structural similarities between subsequent

59



4. PREFETCHING SPARQL QUERY RESULTS

requests presented in Sec. 3.4.2 by broadening the scope of analyzed query sequence
pairs to entire query sessions. In particular, we discuss the contents of those sessions
in terms of query clusters.

In the second part of the evaluation for this chapter, we validate the applicability of
our prefetching strategies. To this end, we determine how many of the results prefetched
for the remainder of a given session are actually useful later on. Here, we compare the
different augmentation approaches introduced in the previous section with a baseline
approach, i.e., simply caching the results of the original, unmodified query.

As with the findings presented in Sec. 3.4, we also use the USEWOD 2012
dataset [Berendt et al., 2012] for evaluating the results of this chapter. To give a better
understanding of the included requests presented in the Common Log Format, we illus-
trate an excerpt of the DBpedia 3.6 query log file 2011-01-24.log in Listing 4.1. Each
line starts with the hashed IP address of the issuing source, followed by the timestamp
and the actual request. As detailed later, we use this information to extract sequences
of queries for further analysis. We found that additional metadata provided in the log
files, e.g., the user agent sending the requests, did not provide any information relevant
for session building, either because it was too ambiguous or infrequently supplied.

✞ ☎
237... - [24/ Jan /2011 01:00:00 +0100] "/ sparql ..." 200 512 "-" "-"
f45 ... - [24/ Jan /2011 01:00:00 +0100] "/ sparql ..." 200 1024 "-" "Java"
9b1 ... - [24/ Jan /2011 02:00:00 +0100] "/ sparql ..." 200 512 "-" " Mozilla "
f45 ... - [24/ Jan /2011 02:00:00 +0100] "/ sparql ..." 200 1024 "-" "-"✝ ✆

Listing 4.1: Excerpt from query log file 2011-01-24.log

Listing 4.1 also indicates that the level of granularity in the DBpedia 3.6 query log
is hours. Consequently, for our experiments on this dataset, we consider all queries
from one user within one hour (i.e., with the same timestamp) to constitute a query
session. Whereas this represents a coarse means for delimiting query sessions, more
fine-grained approaches would require more detailed temporal information.

4.3.1 Query Session Contents

For our first evaluation, we analyze the size, frequency, and contents of query sessions
for the DBpedia 3.6 logs files. Figure 4.1 illustrates how often query sessions of different
length, i.e., the amount of contained queries, occur as a log-log plot. As introduced
in Sec. 4.2, we distinguish between homogeneous query sessions (blue), i.e., sessions
containing only queries from the same cluster, and heterogeneous query sessions (red),
i.e., sessions containing queries from at least two distinct clusters.

Overall, homogeneous query sessions can be observed far more often than heteroge-
neous query sessions, even if query sessions of length 1 (which are by definition homo-
geneous) are disregarded. This is surprising as we analyze possibly oversized sequences
by relying on a rather coarse delimitation of query sessions, i.e., based on hourly reso-
lution. Most related approaches, e.g., in keyword-based search engines, typically use a
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Figure 4.1: Length of query sessions correlated with their frequency

much shorter time period for aggregating sequences of queries, for instance by applying
timeouts of a few minutes between subsequent requests [Silverstein et al., 1999]. In
consequence, these sessions tend to comprise only a few requests.

On the other hand, elongating query sessions by adding a large number of requests
to them likely turns a homogeneous query session into a heterogeneous session. It is easy
to see that a homogeneous session can become heterogeneous, whereas the reverse case
is impossible. As all sessions start homogeneous, i.e., containing only a single query,
aggregating many queries over extended periods of time increases the probability that
a newly added query cannot be matched to all queries previously encountered in the
session. Thus, intuitively one would assume that longer sequences of requests are more
likely to represent a heterogeneous query session.

However, our results are also verified when investigating the length of homogeneous
and heterogeneous query sessions. Here, the average length of homogeneous query
sessions is in order of magnitudes higher than the average length of heterogeneous query
sessions. Again, this is a remarkable insight: For example, intuitively we would not
assume to discover a query session containing hundreds of structurally similar queries,
let alone multiple of these sessions. Yet, as the findings of Sec. 3.4.2 suggested, there
is a notably higher chance for two subsequent requests to be similar than for them
to differ in their structure. This in turn increases the potential for our prefetching
strategies based on the structural similarity of queries.
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4.3.2 Augmenting DBpedia 3.6 Query Sessions

In this experiment, we analyzed the benefits of prefetching DBpedia 3.6 query results
for subsequent requests during the course of a session. To this end, we set up a local
Sparql endpoint containing the same data as the public endpoint at the time the query
logs were recorded1. Note that while we aimed at replicating the knowledge base, we
noticed that for several log queries we could not retrieve any results. Possible reasons
for this might be that the requested resources are simply not available in the dataset
or some information was missing in our local endpoint.

As mentioned earlier, the requests included in the DBpedia 3.6 query logs exhibit
timestamps in hourly resolution, e.g., [24/Jan/2011 01:00:00 +0100]. Additionally,
we assume that the sequence in which the queries are included in a log file represents the
chronological order in which they were issued. In our analysis, only successive queries
from the same user with identical timestamps may belong to the same session. However,
as this heuristic introduces some vagueness regarding the contents of a session, e.g., by
ignoring session timeouts, for our following analysis we also limit the maximum number
of successive queries belonging to any single session to 25.

It should be noted that by applying this conservative restriction, we potentially
impede the usefulness of prefetched results as these may be utilized more often in
sessions containing a larger number of queries. Moreover, we noticed that for the
majority of requests in the DBpedia 3.6 query logs that included user agent information,
this field hinted at a software library. Most likely, this indicates that the corresponding
queries were not issued by human users, but instead by automated applications, such
as crawlers. Typically, in such scenarios query sessions indeed tend to encompass a
large number of requests over short periods of time. Therefore, limiting the number of
queries per session possibly penalizes our prefetching approaches.

We base our evaluation on 288 query sessions for which we were able to retrieve
results for at least one contained query. Of these query sessions, 176 (61%) were
homogeneous. On average, the sessions contained around 21 queries for which we
analyzed the benefits of prefetched results. For this purpose, we replicate and retain
the triples included in the knowledge base by aligning the query contents with the
bindings retrieved through evaluating a request. Consequently, we record a cache hit
once we discover that a triple generated this way is already contained in our cache.

In around 34% of all query sessions, we could not identify any cache hits. We
believe that this is because the total result set size for these sessions is relatively small:
The sessions with no cache hits only result in about 100 generated triples compared
to around 3,300 triples for sessions with cache hits. As mentioned earlier, there are
two reasons for this: (i) Our local Sparql endpoint was not an exact copy of the
public DBpedia 3.6 endpoint, or (ii) some queries did not yield any results even when
executed against the public DBpedia endpoint (e.g., because of syntax errors). Note
that we restrict the maximum number of retrieved results by setting the query LIMIT
to 100,000.

1http://wiki.dbpedia.org/DatasetsLoaded/revisions
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Initially, we augmented only the first query of a session without taking into con-
sideration that subsequent requests from the same session most likely belong to the
same cluster as indicated in the findings of Sec. 4.3.1. Leveraging this information
for our prefetching approach would induce a bias towards the template augmentation
approach, as only this strategy yields advantages for sequences of structurally similar
queries. On the other hand, the other augmentation approaches are targeted at a more
diverse information need.

For all sessions with at least one cache hit, we illustrate the total number of cache
hits in relation to the total number of generated (unique) triples for all unmodified
queries in a session in Fig. 4.2. Each marker represents the best augmentation strategy
resulting in the most cache hits for this session. If for none of the augmentation
strategies the number of hits was greater than the cache hits generated by issuing the
original first query, the marker “no augmentation” is used.
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Figure 4.2: Best augmentation strategy when caching results of the first query in a session
in the DBpedia 3.6 log files

Overall, our findings indicate that caching the results of the first, non-augmented
query of a session yields the most amount of cache hits in about 38% of all analyzed
query sessions. The results for type and template augmentation have the most cache
hits in 28% and 23% of the sessions, respectively, whereas applying exploratory and
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holistic augmentation on the first session query only results in the most cache hits for
7% and 4% of all sessions.

When considering homogeneous query sessions only, type augmentation yields the
most cache hits in 39% of all sessions, followed by no augmentation (30%), template
augmentation (28%), exploratory and holistic augmentation (1% each). Notice that
we discovered a number of homogeneous query sessions that contain an identical query
multiple times. For example, this is the case if only one triple is generated for all queries
in a session and identified as cache hit repeatedly as represented by markers located
on the y-axis. Obviously, if the exact same query is issued over and over again within
the course of a session, no additional cache hits can be generated when applying an
augmentation strategy.

When considering only those sessions where the respective augmentation strategy
yields the largest amount of cache hits, the mean number of cache hits is highest for
exploratory augmentation (4,541 cache hits) and lowest for type augmentation (33 cache
hits). On average, in all sessions with markers above the diagonal (indicated by the
dashed line in Fig. 4.2), each generated triple represents a cache hit at least once.

We further examined the ratio of cache hits and prefetched triples for the aug-
mentation strategy yielding the most cache hits per session, i.e., the cost incurred for
prefetching w.r.t. its benefit. In Fig. 4.3 we present the corresponding results. It can
be observed that in our experiments not augmenting a query results in the most favor-
able cost ratio: As all our prefetching strategies are targeted at retrieving additional
related results for a given query, precision decreases when applying these approaches.
Nevertheless, depending on the use case this decrease in precision may be negligible
compared to the benefit of prefetching related information for subsequent access, even
if not all of this retrieved data is relevant later on. Additionally, recall that we manually
limited the amount of queries per session, but the cost ratio for prefetching is likely to
improve for longer sessions. Once again, results in Fig. 4.3 that are on or close to the
y-axis indicate that for a specific query session only one or few results were generated
for all contained queries.

We also evaluated how caching the result of every (augmented) query influenced
the number of cache hits for subsequent (unmodified) queries in a session. While the
percentage of query sessions with no cache hits dropped to around 24%, for those query
sessions with cache hits we observed comparable results to the ones illustrated. Hence,
we assume that by analyzing the first request only, a suitable caching strategy can be
determined for all subsequent queries of the same session. For example, for homoge-
neous query sessions (which represent the majority of all sessions) applying template or
type augmentation on the first query most likely results in the same augmented query
as applying it on any of the subsequent session requests.

In general, due to the large number of homogeneous query sessions in the DBpedia
query logs, type and template augmentation appear to be the most successful among
the augmentation strategies. Combining the vast amount of resources in DBpedia, the
usually simple query structures in the issued requests, and our restriction on the maxi-
mum number of results, we are impairing the success of these strategies to some extent,
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Figure 4.3: Costs of best augmentation strategy when caching results of the first query
in a session in the DBpedia 3.6 log files

as many potentially relevant facts are simply not retrieved. Without this restriction,
these prefetching strategies should yield even better results.

On the other hand, the amount of query sessions benefiting most from holistic
or exploratory augmentation is limited. This might stem from the apparently small
number of queries issued by human users, towards whom these strategies are targeted.
Moreover, in more than half the query sessions (55%) holistic augmentation could not
be applied as no valid triple pattern removal was possible. Naturally, in these cases the
number of cache hits for holistic augmentation equals the one of not applying any aug-
mentation. In particular, for these sessions this also means that holistic augmentation
is never considered the most suitable strategy in our experiments.

4.3.3 Augmenting LinkedGeoData Query Sessions

As the timestamps provided for the queries in the LGD logs include minutes and sec-
onds, we delimit query sessions in these logs more accurately by introducing a session
timeout and maximum session duration. If for any query from a specific user we can-
not discover another query from the same user within 10 minutes time, we assume this
particular query is the last one in a session. Overall, we delimit a user query session by
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restricting its duration to a maximum of 60 minutes, its session timeout to 10 minutes,
and its maximum number of queries to 50 (whichever comes first).

As with the DBpedia query logs, we analyzed only those query sessions in which we
determined at least one query for which we were able to generate a result as described
above, i.e., we based our evaluation on 440 query sessions. This time, for only 9% of
these query sessions no cache hits could be discovered at all. The analysis of which
augmentation strategy resulted in the most cache hits for the remaining 424 query
sessions is illustrated in Fig. 4.4.
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Figure 4.4: Best augmentation strategy when caching results of the first query in a session
in the LinkedGeoData log files

For the LGD logs, caching the results of unmodified queries, i.e., applying no aug-
mentation, resulted in the most hits (48% of all query sessions), followed by exploratory
augmentation (26%), template augmentation (15%), type and holistic augmentation
(5% each). For heterogeneous query sessions (55% of all query sessions), exploratory
augmentation is the best augmentation strategy (30%), followed by template augmen-
tation (19%), holistic augmentation (7%), and type augmentation (6%), while the re-
mainder of the query sessions benefited from no augmentation approach.

We also discovered that the number of mean cache hits was much higher than the
one of the DBpedia log files: For those sessions that benefited from prefetching, the
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average number of cache hits was highest for template augmentation with 72,917 and
lowest for type augmentation with 48,320. On the other hand, the average session
length was comparatively small with only 12 queries per session. This could be because
most LGD log queries were actually issued by human users (as opposed to crawlers or
other software agents). Intuitively, this would also explain why the majority of query
sessions are heterogeneous: Whereas software agents use somewhat hard-coded HTTP
requests to retrieve Linked Data, human users are more flexible when issuing queries,
e.g., by leveraging the LGD Sparql web interface1.

Again, caching the result of every query in a session had only little impact on the
choice of augmentation strategy, which is to be expected considering the small mean
number of queries in a session. However, the percentage of query sessions not benefiting
from any caching decreased slightly to 6%. In general, the cached results for the queries
can almost always be used for subsequent queries in a session for the LGD logs. Once
more, our local Sparql endpoint might have not contained all data available in the
public Sparql endpoint. However, the impact on our results is negligible as we were
able to generate query results for the vast majority of sessions (75%) and cache hits in
almost all of these (91%).

In Fig. 4.5 we also illustrate the ratio of cache hits and prefetched triples for the
most suitable augmentation strategy in a session. Similarly to the results for DBpedia
presented in Fig. 4.3, not applying any augmentation strategy yields the best ratio for
shorter sessions. Again, this is typically the case if a single query is repeated multiple
times in a session, hence none of the actual augmentation approaches can increase the
overall number of cache hits. For longer query sessions on the other hand, similar cost
ratios are achieved by applying one of the augmentation strategies.

4.4 Related Work
Research in the field of information retrieval has generally focused on increasing the ef-
fectiveness or efficiency of query execution. Whereas boosting efficiency typically trans-
lates to query optimization w.r.t. a specific cost model, e.g., by considering operator
reordering, increasing effectiveness may have varying meanings in different contexts.
On the one hand, the goal can be to provide a meaningful ranking of results, e.g., by
estimating their relevance. On the other hand, it may be desirable to increase the recall
of a query, e.g., by broadening its scope.

Here, query relaxation aims at discovering interesting related information based on
a user request. For keyword queries, this process is sometimes referred to as query
expansion and has been a major research topic in the field of information retrieval
(see [Carpineto and Romano, 2012] for a survey). Typically, the goal is to improve
the recall in retrieval effectiveness. To this end, either precomputed metadata, such as
language models, or runtime information gained during the course of query sessions is
utilized. There exist a number of works implementing query relaxation when retrieving
Linked Data. The authors of [Hurtado et al., 2008] suggest logical relaxations based

1http://linkedgeodata.org/sparql
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Figure 4.5: Costs of best augmentation strategy when caching results of the first query
in a session in the LinkedGeoData log files

on ontological metadata. In contrast, the approach in [Hogan et al., 2012] relies on
precomputed similarity tables for attribute values whereas in [Elbassuoni et al., 2011]
the authors utilize a language model derived from the knowledge base.

In comparison, our rewriting strategies are not targeted at increasing recall when
executing a single query, but instead aim at retrieving additional data related to future
queries. Moreover, we do not assume any knowledge of the data source itself or of
metadata describing it. Thus, while most previous approaches require at least some
precomputation, our approach can be used ad hoc solely by analyzing and modifying
queries issued during runtime.

In the context of remote query execution, (semantic) caching builds on the idea of
maintaining a local replica of retrieved data that can be useful for subsequent requests.
As with traditional caching, one of the major motivations for semantic caching is to
reduce the transmission overhead when retrieving data over a network link. Conven-
tional approaches, such as tuple or page caching, usually retain fetched data based on
either temporal aspects or frequency considerations, e.g., by prioritizing least-recently
or most-frequently used items. Such techniques also exist for Sparql query result
caching [Martin et al., 2010; Yang and Wu, 2011]. Compared to these methods, seman-
tic caching employs more fine-grained information to characterize data, e.g., in order
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to establish variable-sized semantic regions containing related tuples [Dar et al., 1996]
or detect data items with similar geo-location information [Ren and Dunham, 2000].

Closely related to semantic caching and our work is prefetching. Instead of simply
retaining tuples retrieved previously, prefetching allows to gather data that is poten-
tially relevant for subsequent queries based on semantic information derived from past
queries or the overall system state. In computer architecture design, prefetching is
usually employed to request instructions that are anticipated to be executed in the
future and place them in the CPU cache. For information retrieval, query prefetch-
ing typically assumes a probabilistic model, e.g., considering temporal features [Fagni
et al., 2006]. However, to the best of our knowledge, there have been no attempts to
prefetch Rdf data based on the structure of sequential related Sparql queries within
and across query sessions.

4.5 Summary

Public Sparql endpoints provide straightforward access to knowledge bases of different
domains through a structured query language. Consequently, these endpoints have
the potential to serve as data sources for a variety of information needs. However,
efficiently leveraging the provided interfaces requires sophisticated retrieval strategies.
In this chapter, we have presented different approaches for aiding data consumption
with the goal of prefetching relevant information based on previous requests.

To this end, we first introduced a number of concepts related to the ideas illustrated
in Chapter 3. Mainly, we established the concept of query templates for normalizing
a number of requests exhibiting structural similarities and discussed how these tem-
plates are generated. Furthermore, we commented on how sequences of queries can be
described using the notion of Sparql query sessions. Here, we explained how these
sessions can be qualified by aligning the structure of the queries they contain.

In Sec. 4.2, we outlined a number of augmentation strategies, i.e., approaches for
altering the structure of Sparql queries to increase their recall. Whereas some of these
strategies are targeted at alleviating the overhead of multiple individual requests for
machine agents, i.e., template and type augmentation, others aim at assisting human
users in retrieving relevant information, i.e., exploratory and holistic augmentation.

We have evaluated these augmentation strategies on a number of real-world query
sessions and discovered that different approaches are suitable in different scenarios.
During this evaluation, we identified several peculiarities in data access patterns, such
as identical queries being repeatedly issued multiple times by the same user during
the course of a session. Whereas in these cases obviously no prefetching approach can
attain additional cache hits compared to simple result caching, in other settings we were
able to achieve a notably higher number of cache hits when applying our augmentation
strategies.

As discussed in the evaluation section of this chapter, while prefetching and caching
Sparql query results is beneficial in a large number of cases, retaining this data on the
client side can sometimes be justified more easily, for example if individual bindings are
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included in the result set of several successive requests. However, replicating relevant
data locally can also be advantageous in scenarios where retrieving this information
(again) from a knowledge base is either expensive or entirely impossible, e.g., because
of network limitations. To assess such specific Sparql endpoint characteristics, in the
next chapter we discuss different metrics to qualify these properties and illustrate how
realistic values can be determined for those metrics.
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CHAPTER 5
DETERMINING SPARQL ENDPOINT CHARACTERISTICS

“Our estimates vary with our moods; the time may be much
longer than our hopes and much shorter than our fears.”

H. G. Wells

In the past two chapters, we have extensively elaborated on how to discern the
contents of Sparql queries. In particular, we introduced different strategies aimed
at retrieving results relevant for a subsequent information need based on a previously
encountered request. Whereas we discovered that altering a query to achieve this goal
oftentimes leads to multiple cache hits later on, in some cases the benefits of applying
this approach are marginal as it increases the amount of retrieved information devoid
of a substantial number of cache hits.

Nevertheless, replicating data locally might still be advisable in several other situa-
tions, e.g., as a failover mechanism for times of endpoint overload or outage, if the gen-
eral query execution performance is poor, or to cope with network issues when accessing
the endpoint. Overall, when querying public Sparql endpoints, exploiting available
metadata is crucial for effective and efficient data consumption. Conventionally, this
metadata details the information contained in the knowledge base and indicates how
it can be leveraged, e.g., in the form of voiD documents [Alexander et al., 2009] or as
Sparql 1.1 service descriptions1.

In this chapter, we discuss how to determine and specify the technical non-functional
characteristics of Sparql endpoints. Here, we focus on analyzing network properties,
such as latency and throughput, but also on detecting behavioral aspects users face
while querying the knowledge base. In particular, we are interested in estimating the
time required for executing different types of requests.

To this end, we illustrate two contributions: First, we identify a number of endpoint
metrics relevant for quality-aware Linked Data consumption. Secondly, we describe
how representative values for these metrics can be attained using Sparql requests.
We argue that issuing elementary Sparql queries allows establishing reliable heuristics
while maintaining general applicability of our approach. This latter aspect can be

1http://www.w3.org/TR/sparql11-service-description/
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considered two-fold as we strive to obtain universally applicable metric results through
queries conforming to the standard Sparql syntax while representing common access
patterns, e.g., as identified in [Arias et al., 2011] or in Chapter 3.

This chapter is organized in the following manner: We introduce the different met-
rics suitable for deriving representative endpoint characteristics in Sec. 5.1. In this
section, we also comment on the intuition and implementation of each heuristic. Sec-
tion 5.2 details a number of experiments in which we apply all metrics to publicly
available endpoints in a variety of set-ups. In Sec. 5.3, we interpret the results and
point out possible consequences for data consumers when utilizing the corresponding
endpoints. In the remainder of this chapter, we discuss related work in Sec. 5.4 and
summarize the presented findings in Sec. 5.5.

5.1 SPARQL Endpoint Metrics

As several of the popular publicly available Linked Data repositories have been set
up as proof-of-concept in the context of research projects (e.g., DBpedia [Lehmann
et al., 2014], LinkedGeoData [Auer et al., 2009b], Bio2RDF [Callahan et al., 2013],
LinkedMDB [Hassanzadeh and Consens, 2009], . . . ), retrieving information from those
Sparql endpoints at large scale is cumbersome. Typically, a number of policies are im-
plemented to limit the bandwidth per request, the number of requests per time period,
or the amount of retrievable information. For example, to prevent malicious attacks
and ensure responsiveness, the well-known DBpedia Sparql endpoint is configured to
return at most 50,000 result rows or 10 MB per request while allowing only a maximum
number of 15 requests per second and IP address [Lehmann et al., 2014].

Furthermore, as publicly available Sparql endpoints are usually deployed on com-
modity hardware using off-the-shelf frameworks, they are typically not configured to
process specific workloads as efficiently as possible. In an enterprise context on the other
hand, databases are often fine-tuned for dedicated applications (e.g., OLTP, OLAP).
For example, creating indexes for stored data generally improves query execution speed.
Whereas it might be useful to know if and which indexes exist at the time of query gen-
eration for accessing information more efficiently, this insight is typically not available
to data consumers accessing public Sparql endpoints.

Assisting users in leveraging Sparql endpoints requires insight into functional and
non-functional properties of these knowledge bases. To this end, we introduce the
different metrics we consider as criteria for characterizing the technical behavior of
Sparql endpoints in this section. We point out the intuition of these metrics and
illustrate how we determine corresponding values by issuing Sparql requests.

5.1.1 Latency

We define the (query) latency of a Sparql endpoint as the sum of (i) the delay between
a client sending a request and the endpoint receiving it, and (ii) the delay between
the endpoint generating the corresponding response and the client receiving it. By
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measuring this value, we aim at discovering the (minimum) time required for processing
any issued valid Sparql request. We use this information to normalize the values of
all metrics introduced subsequently.

In our approach, we are not only interested in determining the network latency itself
(i.e., the round-trip time of the communication channel), but also in the delay associated
with accessing the triple store via the Sparql interface of an endpoint. Consequently,
to measure the overall latency for querying the knowledge base we employ requests
that incur no or only negligible execution cost. In Query 5.1, we use the ASK query
form that returns a Boolean result (which is true for any non-empty triple store). As
ASK has been part of Sparql since the first working draft1 of the query language, we
expect all endpoints to support corresponding queries.✞ ☎
ASK {

?s ?p ?o .
}✝ ✆

Query 5.1: Latency probing query using ASK

The evaluation of any Sparql query with only one basic graph pattern is in O(n)
(cf. Theorem 1 in [Pérez et al., 2009]), where n is the size of the dataset. Given that
Query 5.1 always checks the first triple stored in the endpoint, evaluating this query
should be done in constant time. As the actual query result, i.e., the data sent back to
the client, is of small size, the execution time of this query should give a good indication
of how high the latency is.

Another approach for measuring latency is illustrated in Query 5.2. Here, we use
the more common SELECT query form, but retrieve no results (as indicated by LIMIT
0). Again, query evaluation can be performed in constant time. Whereas Query 5.2
can be considered a fallback solution in case an endpoint does not support Sparql ASK
queries, in our experiments we have not encountered this limitation for any knowledge
base.✞ ☎
SELECT * WHERE {

?s ?p ?o .
} LIMIT 0✝ ✆

Query 5.2: Latency probing query using SELECT

Latency in packet-switched networks is influenced by several factors, one of them
being the (physical) length of the communication channel connecting the sender and
the receiver of the packets. In most cases, a packet will be forwarded over a number of
intermediary links before reaching the receiver, thus the overall (minimum) latency is

1http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/
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determined by the aggregated individual latencies between all hops. Whereas the well-
known ping command can give a good indication of the general latency on the network
layer, this method underestimates the actual round-trip time for transferring requests
on the application layer (e.g., when issuing Sparql queries). Hence, issuing Query 5.1
and Query 5.2 reflects access on this layer more accurately in terms of utilization of the
SPARQL Protocol and RDF Query Language.

5.1.2 Throughput

Measuring the throughput of a Sparql endpoint indicates how much data can be
transmitted over a certain period of time. In our case, the amount of data is represented
by the number of bindings generated by and received from the endpoint for the variables
contained in the Sparql query. We normalize the overall result time measured for
executing Query 5.3 using the latency and the number of received result bindings.
Assuming a reasonably large dataset containing at least 1,000 distinct triples, we expect
the total amount of bindings for Query 5.3 to be 3,000 (1,000 possibly non-unique values
for each of the variables ?s, ?p, and ?o).✞ ☎
SELECT * WHERE {

?s ?p ?o .
} LIMIT 1000✝ ✆

Query 5.3: Throughput probing query

As with latency, throughput is influenced by the network infrastructure. In case
either the receiver or any of the intermediary links experiences a high request load,
throughput may suffer. Due to the best-effort characteristics of the Internet, typically
no guarantees can be given for the achieved throughput between any two nodes in the
network. However, as the number of potential routes for short-distance packet switching
is smaller due to the lower number of intermediary hops, throughput can generally be
estimated more reliably than for long-distance communication [Prasad et al., 2003].

5.1.3 Random Access

Some Sparql endpoints will try to deliver certain information faster by caching ap-
propriate results, e.g., in main memory [Erling and Mikhailov, 2010]. For instance,
in our experiments we issued the throughput request illustrated in Query 5.3 multiple
times against public Sparql endpoints: In this case, it is beneficial (both for the end-
point and our experiments) to cache this frequently accessed portion of the dataset to
generate results for future requests more quickly.

For arbitrary incoming queries on the other hand, it is unlikely that the (complete)
relevant information is already cached. To emulate such a request and trigger the
retrieval of a record from the triple store instead of the cache, we choose a random
OFFSET value within the bounds of the total amount of stored triples. To infer this
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upper bound, the overall number of triples total can be easily determined by issuing
Query 5.4.✞ ☎
SELECT (count (*) AS ?total) WHERE {

?s ?p ?o .
}✝ ✆

Query 5.4: Triple count query

We then randomly select an integer 0 < n < total for Query 5.5 to retrieve an
arbitrary triple (more formally, arbitrary bindings for the variables ?s, ?p, ?o) from
the Sparql endpoint. Executing Query 5.5 helps in estimating the maximum time
required for accessing the triple store in case the query result cannot be generated by
the cache.✞ ☎
SELECT * WHERE {

?s ?p ?o .
} LIMIT 1 OFFSET n✝ ✆

Query 5.5: Random Access probing query

Notice that by setting the LIMIT we enforce that exactly one binding for each ?s,
?p, ?o is returned. This is necessary as the query engine may choose to evaluate the
LIMIT first which, if set to 0, may result in a truncated query plan, thus potentially
resulting in Query 5.5 to be executed in similar time as Query 5.1 or Query 5.2.

5.1.4 Join Execution Time

Actual Sparql queries can be quite complex, e.g., with regard to the number of con-
tained graph patterns. In particular, Sparql queries typically contain basic graph
patterns, i.e., multiple joined triple patterns. Thus, we base the execution time mea-
surements on three elementary join patterns derived from the observations illustrated
in [Arias et al., 2011]: The subject-subject-join, the object-object-join, and the subject-
object-join. These graph patterns can give hints about certain endpoint characteristics,
such as available indexes or selectivity of subjects and objects.

To determine the execution time of the join operations, we need to retrieve a number
of sample triples to which they can be applied. As a reference, for the subject-subject-
join operation, the appropriate sampling request is displayed in Query 5.6. Using the
FILTER condition, we ensure that the retrieved bindings differ in at least the object,
thus eliminating joins of identical triples. Typically, predicates are less selective than
either subjects or objects in Rdf statements [Stocker et al., 2008], therefore in general
non-equality can be identified more easily for objects than for predicates when issuing
Query 5.6.
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✞ ☎
SELECT ?p1 ?p2 ?o1 ?o2 WHERE {

?s ?p1 ?o1 .
?s ?p2 ?o2 .
FILTER (?o1 != ?o2)

}✝ ✆
Query 5.6: Subject-Subject-Join sampling query

We also randomize the position of the first match for these sampling queries. As
discussed in Sec. 5.1.3, in general we can use random values for the OFFSET operator
to retrieve information from an arbitrary position in the knowledge base, assuming the
OFFSET position is smaller than the overall number of results for the query. When
querying an endpoint provisioned through the OpenLink Virtuoso framework [Erling
and Mikhailov, 2010], we also utilize the custom bif:rnd function which retrieves
elements considerably faster than using a high OFFSET value.

We devised Query 5.7, Query 5.8, and Query 5.9 to probe the execution time of the
subject-subject-join, object-object-join, and subject-object-join operation, respectively.
Here, resources in the queries are instantiated using the data retrieved through the cor-
responding sampling requests. For instance, in Query 5.7 the placeholders p1, o1, p2, o2
are replaced by the corresponding resources retrieved by issuing Query 5.6.✞ ☎
SELECT ?s WHERE {

?s p1 o1 .
?s p2 o2 .

} LIMIT 1✝ ✆
Query 5.7: Subject-Subject-Join probing query

✞ ☎
SELECT ?o WHERE {

s1 p1 ?o .
s2 p2 ?o .

} LIMIT 1✝ ✆
Query 5.8: Object-Object-Join probing query

5.2 Experiments

To demonstrate their applicability, we gathered results for the metrics described in
Sec. 5.1 for a number of Sparql endpoints. Namely, we analyzed the endpoints avail-

76



5.2 Experiments

✞ ☎
SELECT ?so WHERE {

?so p2 o1 .
s1 p1 ?so .

} LIMIT 1✝ ✆
Query 5.9: Subject-Object-Join probing query

able for DBpedia1, LinkedGeoData2 (LGD), LinkedMDB3, and Data.gov4. Whereas
the latter of these endpoints is provided by the United States Government, the first
three have been established in the context of research projects. At the time of writing,
the Data.gov, DBpedia, and LinkedGeoData endpoints utilize the OpenLink Virtuoso
framework [Erling and Mikhailov, 2010] (Version 6.03, 7.00, and 6.02, respectively),
while LinkedMDB uses the D2R server [Bizer and Cyganiak, 2006] to allow data access
via Sparql. In contrast to native triple stores, D2R provides a Linked Data layer on
top of relational databases, thus enabling access to these databases through Sparql.

5.2.1 Methodology

For our experiments, we measured values for the metrics described in Sec. 5.1 by
issuing the corresponding queries from a local machine running Microsoft Windows
Server 2008 R2 and connected to the Internet through a 1 Gbps network interface.
In addition, we conducted more measurements on the Elastic Compute Cloud5 (EC2)
provided by Amazon Web Services (AWS) to compare various locations and hardware
resources by using so-called Amazon Machine Images (AMI) in different configurations.

More specifically, we instantiated the default 64-bit Amazon Linux virtual ma-
chine6 (version 2013.03) in the regions “EU (Ireland)” and “US West (Northern Cali-
fornia)”. For region “US West (Northern California)”, we also experimented with two
distinct hardware resource configurations (so-called instance types7), i.e., m1.tiny and
m1.medium. Here, we are mostly interested in the different network characteristics
of the (virtualized) hardware. While the official EC2 documentation lacks details, it
states that the network performance of the two instance types m1.tiny and m1.medium
is “Very low” and “Moderate”, respectively.

For each set-up, we recorded 100 measurements for all metrics described in Sec. 5.1.
For all our experiments, we randomized the order of the requests sent to the endpoint
to reduce potential (short-term) server-side caching of results. Additionally, all exper-
iments were run during a 24 hour time period to factor in potential access spikes at
certain times of the day in different parts around the globe. The average delay between

1http://dbpedia.org/sparql
2http://linkedgeodata.org/sparql
3http://linkedmdb.org/sparql
4http://services.data.gov/sparql
5http://aws.amazon.com/ec2/
6http://aws.amazon.com/amazon-linux-ami/
7http://aws.amazon.com/ec2/instance-types/
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any two successive requests was approx. 22 seconds. Any request that did not yield
an HTTP 200 response, e.g., because of transmission errors, was not included in the
analyses. All sample bindings required for the join operations described in Sec. 5.1.4
were retrieved several days before conducting the actual experiments, thus eliminating
any caching effects.

5.2.2 Results for Local Client

In the first experiment, we issued the metric queries from our local machine. In
Tab. 5.1, we present the results for the public DBpedia, LinkedGeoData, LinkedMDB,
and Data.gov Sparql endpoints. In this table, we report on minimum, maximum, av-
erage, and upper quartile (Q3) values for all discussed measurements. We report the Q3
value as it provides a robust upper bound estimation by eliminating high-value outliers,
e.g., caused by unusual network bursts. It should be noted that for the LinkedMDB end-
point some requests did not execute successfully and were subsequently not considered
for the results illustrated in Tab. 5.1. However, this amount of unsuccessful requests
was negligible when compared to the overall number of issued queries (approx. 1.8%).
Please note that the unit of all measurements is ms, except for throughput, where it
is bindings/ms. We also normalize all values for throughput, random access, and join
execution times by removing the latency determined for each endpoint from them.

As detailed in Sec. 5.1.1, latency is influenced by the distance between the client
(our local machine) and the server (the respective Sparql endpoint), as larger dis-
tances generally result in an increased number of intermediary hops. This is reflected
by the low latency values for the LGD and DBpedia endpoints: The geodesic dis-
tance between the local machine and these two endpoints is approximately 150 km and
550 km, respectively. On the other hand, the (intercontinental) geodesic distance be-
tween the client and both the LinkedMDB and Data.gov Sparql endpoint is roughly
6,500 km. Consequently, the traceroute command reports on 8 intermediate hops for
LGD, 11 hops for DBpedia, 18 hops for LinkedMDB, and 21 hops for Data.gov.

Throughput on the other hand is dependent on many factors: It can be considered
an indicator of the quality of the network link, but also of the general hardware perfor-
mance of the endpoint as more powerful servers are able to generate and deliver results
faster than low-end computers. For example, the well-known DBpedia Sparql end-
point is hosted in a 4-node cluster environment comprising 8-core Intel Xeon processors
with 64 GB of main memory each [Lehmann et al., 2014], whereas the LGD Sparql
endpoint is currently hosted in a single-node set-up as indicated on the corresponding
web site. The measurements in Tab. 5.1 illustrate that on average the throughput is
considerably higher for DBpedia than for any other endpoint.

The results for the other metrics are mixed: For the Data.gov endpoint we recorded
both low mean and Q3 values for all join operations as well as for the random access
operation. On the one hand we noted even better Q3 values for the random access
and object-object-join operation for the LinkedGeoData endpoint, but on the other
hand we discovered a remarkable variance in measurement results, e.g., as indicated
by the large difference between mean and Q3 results. In contrast, for LinkedMDB this
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Endpoint Measurement Min Max Average Q3

DBpedia

Latency (ms) 48 1,295 67.62 51
Throughput ( bindings

ms ) 31.34 73.07 62.55 70.1
Random Access (ms) 4 2,296 314.24 249
Subject-Subject-Join (ms) 5 3,090 378.43 443
Object-Object-Join. (ms) 3 2,335 150.68 43
Subject-Object-Join (ms) 4 2,474 251.26 213

LGD

Latency (ms) 24 338 32.7 26
Throughput ( bindings

ms ) 13.28 55.65 51.95 54.01
Random Access (ms) 4 204 15.32 8
Subject-Subject-Join (ms) 5 29,222 594.11 53
Object-Object-Join (ms) 3 29,121 385.8 7
Subject-Object-Join (ms) 4 787 54.99 43

LinkedMDB

Latency (ms) 230 485 266.94 267
Throughput ( bindings

ms ) 3.09 16.24 10.43 11.38
Random Access (ms) 61 2,167 302.96 327
Subject-Subject-Join (ms) 15 1,761 210.79 227
Object-Object-Join (ms) 3 1,763 60.53 40
Subject-Object-Join (ms) 5 320 72.42 80

Data.gov

Latency (ms) 196 813 231.32 207
Throughput ( bindings

ms ) 2.68 11.75 8.35 10.71
Random Access (ms) 2 195 32.56 15
Subject-Subject-Join (ms) 2 2,970 81.56 18.5
Object-Object-Join (ms) 2 2,735 62.69 9
Subject-Object-Join (ms) 1 421 35.26 12

Table 5.1: Measurements for queries issued from local machine

difference was much smaller, but the Q3 execution time in general was higher for all
metrics compared to the LGD and Data.gov endpoints. Surprisingly, we measured the
highest Q3 execution times when analyzing the DBpedia endpoint. As noted in Sec. 5.1,
when accessing the DBpedia endpoint a user might face different restrictions enforced
because of the popularity of the endpoint. Thus, the observed execution times may
result from a combination of high endpoint utilization and those limitations.

5.2.3 Results for EC2 EU Tiny Instance

The results for accessing the DBpedia, LGD, LinkedMDB, and Data.gov Sparql end-
points from an EC2 EU Tiny instance are illustrated in Tab. 5.2. As with our local
machine, the latency for accessing the servers located in Europe (DBpedia, LinkedGeo-
Data) from the EC2 EU instance (ami-d9c0d6ad) is lower than for accessing those end-
points hosted on a different continent (LinkedMDB, Data.gov). However, the through-
put between the European-based endpoints and the EC2 EU instance was also generally
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lower than that of the local client, whereas the throughput for accessing the US-based
endpoints is similar to that of our local machine.

Endpoint Measurement Min Max Average Q3

DBpedia

Latency (ms) 31 1,331 82.12 37
Throughput ( bindings

ms ) 9.91 121.21 40.09 43.36
Random Access (ms) 3 1,648 116.88 23
Subject-Subject-Join (ms) 5 3,593 425.84 380
Object-Object-Join. (ms) 4 1,701 246.49 263
Subject-Object-Join (ms) 4 5,433 337.67 283

LGD

Latency (ms) 83 26,876 464.86 90
Throughput ( bindings

ms ) 7.77 30.61 21.46 24.05
Random Access (ms) 2 18,486 208.34 12
Subject-Subject-Join (ms) 2 10,591 138.72 50
Object-Object-Join (ms) 2 23,216 391.63 12
Subject-Object-Join (ms) 1 20,949 359.5 46

LinkedMDB

Latency (ms) 186 1,744 251.54 229
Throughput ( bindings

ms ) 7.01 17.44 12.67 14.21
Random Access (ms) 51 2,072 338.11 465
Subject-Subject-Join (ms) 23 1,738 221.48 232
Object-Object-Join (ms) 11 396 52.8 44
Subject-Object-Join (ms) 16 1,630 94.7 78

Data.gov

Latency (ms) 174 459 211.79 227
Throughput ( bindings

ms ) 3.79 14.91 13.44 14.53
Random Access (ms) 1 390 45.78 55
Subject-Subject-Join (ms) 2 237 34.37 25
Object-Object-Join (ms) 2 201 38.25 55
Subject-Object-Join (ms) 1 914 50.36 38

Table 5.2: Measurements for queries issued from EU Tiny instance

In terms of execution times, we observed similar results for the different endpoints
when compared to the measurements from our local machine. There are only few
exceptions to this, e.g., the reduced random access time for DBpedia. As with the
measurements from our local machine, we noticed a large variance in the execution
times for the LinkedGeoData and DBpedia Sparql endpoints. However, whereas the
Q3 values for execution times on LGD are almost identical to the ones obtained from
our local machine, they differ quite significantly for DBpedia. For example, while for
our local client the object-object-join execution time was measured to be one order of
magnitude faster than the other two join operations, this effect is insignificant for the
EC2 EU instance.
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5.2.4 Results for EC2 US West Tiny Instance

In Tab. 5.3, we report on our measurements for connecting from an EC2 US West
Tiny instance to the DBpedia, LGD, LinkedMDB, and Data.gov endpoints. Naturally,
by using a client (ami-c5fed180) hosted in a data center on the North American
continent, the latency for accessing the DBpedia and LGD Sparql endpoints increases.
On the other hand, the latency for communicating with the Data.gov and LinkedMDB
endpoints is also surprisingly high: While the geodesic distance between our client and
these two endpoints on the same continent is nearly half of that found in Sec. 5.2.2,
the latency is only reduced insignificantly.

Endpoint Measurement Min Max Average Q3

DBpedia

Latency (ms) 311 2,386 378.12 331
Throughput ( bindings

ms ) 3.04 15.19 12.18 12.85
Random Access (ms) 2 4,052 218.05 29
Subject-Subject-Join (ms) 6 5,052 438.44 416
Object-Object-Join. (ms) 5 3,757 368.82 175
Subject-Object-Join (ms) 5 2,083 119.34 41

LGD

Latency (ms) 353 496 365.1 360
Throughput ( bindings

ms ) 0.61 9.52 7.97 8.44
Random Access (ms) 2 396 16.07 13
Subject-Subject-Join (ms) 3 5,010 83.11 49
Object-Object-Join (ms) 2 29,605 309.46 17
Subject-Object-Join (ms) 2 12,200 143.03 23

LinkedMDB

Latency (ms) 138 449 185.29 193
Throughput ( bindings

ms ) 3.86 23.25 14.35 15.76
Random Access (ms) 44 2,079 359.46 497
Subject-Subject-Join (ms) 8 2,282 271.82 252
Object-Object-Join (ms) 2 1,564 67.58 62
Subject-Object-Join (ms) 2 1,582 119.36 140

Data.gov

Latency (ms) 154 388 187.94 184
Throughput ( bindings

ms ) 3.56 16.65 14.54 15.67
Random Access (ms) 4 305 37.56 84
Subject-Subject-Join (ms) 3 233 42.11 86
Object-Object-Join (ms) 2 301 34.24 23
Subject-Object-Join (ms) 3 5,008 88.21 92

Table 5.3: Measurements for queries issued from US West Tiny instance

As with latency, throughput decreases between the EC2 US Tiny instance and the
European-based endpoints. However, the throughput for the LinkedMDB and Data.gov
Sparql endpoints only increases slightly. Thus, we determine that the overall through-
put for these two endpoints is unlikely to become much larger even when connecting
from close-by clients as it is potentially limited by the network link of these Sparql
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endpoint. Yet, the Q3 values for the execution times are on par with the previous
measurements except for the DBpedia endpoint. As before, the variance among the
recorded values is considerable for the DBpedia endpoint.

5.2.5 Results for EC2 US West Medium Instance

In our final experiment, we analyzed if a more powerful hardware configuration on
the client side has any effect on our measurements. Here, we are especially interested
whether higher performance has an impact on the throughput rates, e.g., because of
more potent network capabilities. To illustrate the impact of different hardware config-
urations compared to Sec. 5.2.4, we utilize the same instance template (ami-c5fed180)
and region (“US West (Northern California)”), but chose a different instance type with
higher general-purpose performance factors (m1.medium).

Table 5.4 illustrates the results for using this set-up to access the DBpedia, Linked-
GeoData, LinkedMDB, and Data.gov Sparql endpoints. Once again, the results for
the DBpedia endpoint indicate a high degree of variance for the random access and join
operations. Whereas for this endpoint, the latency and throughput values are similar
to those reported in Sec. 5.2.4, the mean and Q3 execution times have increased in
orders of magnitude. However, when we analyzed the median values of the join and
random access operations, we determined similar results for this experiment compared
to our previous measurements as we discuss in the next section. Thus, one possible
explanation for the large amount of high-value outliers is that the DBpedia endpoint
experienced heavy load during our experiments which impedes the execution time of
many (non-trivial) requests.

Apart from our results for the DBpedia endpoint, we did not encounter vastly
different measurements for any other endpoint. Whereas throughput rates are slightly
lower for the LGD endpoint, they are insignificantly higher for the LinkedMDB and
Data.gov endpoints. Additionally, the values for any of the join and random access
operations are similar to those recorded previously. Hence, we conclude that in general
the instance size (i.e., the hardware resources) of the client has no or only limited
impact on the performance of querying Linked Data from remote Sparql endpoints.

5.3 Evaluation

In Fig. 5.1-5.4, we visualize the median and Q3 values for the different join opera-
tions w.r.t. the individual latency values across all experimental set-ups for the DB-
pedia, LinkedGeoData, LinkedMDB, and Data.gov endpoints, respectively. Here, each
striped column represents the aggregated Q3 execution time for the respective operation
whereas the horizontal black line within each of these columns indicates the median
value for the operation. The minimum latency of the individual endpoint is depicted by
the gray column stacked on top of each Q3 bar. The entire column, i.e., the aggregate
of the Q3 and the latency values, corresponds to the upper quartile round-trip time of
the Sparql requests introduced in Sec. 5.1.4.
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Endpoint Measurement Min Max Average Q3

DBpedia

Latency (ms) 305 2,350 386.71 312
Throughput ( bindings

ms ) 3.17 13.04 10.53 11.16
Random Access (ms) 5 4,731 909.61 1,498
Subject-Subject-Join (ms) 6 3,537 837.05 1,440
Object-Object-Join. (ms) 127 5,484 996.91 1,633
Subject-Object-Join (ms) 36 6,121 1,244.27 1,947

LGD

Latency (ms) 352 581 357.66 355
Throughput ( bindings

ms ) 5.67 8.49 7.39 7.57
Random Access (ms) 3 93 8.89 8
Subject-Subject-Join (ms) 2 285 26.42 38
Object-Object-Join (ms) 3 1,004 17.82 5
Subject-Object-Join (ms) 3 208 22.51 31

LinkedMDB

Latency (ms) 136 526 170.84 152
Throughput ( bindings

ms ) 4.05 23.08 17.93 19.97
Random Access (ms) 45 2,196 368.23 452
Subject-Subject-Join (ms) 10 1,805 218.61 229
Object-Object-Join (ms) 2 1,756 50.98 34
Subject-Object-Join (ms) 3 1,651 108.74 96

Data.gov

Latency (ms) 155 370 182.57 174
Throughput ( bindings

ms ) 6.39 16.83 15.31 16.61
Random Access (ms) 1 294 32.13 14
Subject-Subject-Join (ms) 2 181 24.6 13
Object-Object-Join (ms) 1 818 35.79 8
Subject-Object-Join (ms) 2 4,694 70.96 9

Table 5.4: Measurements for queries issued from US West Medium instance

The results for DBpedia illustrated in Fig. 5.1 exhibit great variation: Whereas the
subject-subject-join execution times for the first three experiments (Local, EU Tiny,
US Tiny) is similar, for the other two join operations the results differ significantly.
However, it should be noted that the Q3 execution time for the subject-subject-join
operation was always higher than for the other two metrics. As mentioned previously,
for the last set-up (US Medium), the Q3 execution times were noticeably longer for the
DBpedia endpoint, possibly caused by high load experienced by the server at the time
of our experiments. However, the median values for this set-up are only slightly higher
(object-object-join, subject-object-join) or even lower (subject-subject-join) when com-
pared to the EU Tiny setting.

Even though the results depicted in Fig. 5.1 are mixed, a general trend can be ob-
served for our experiments with DBpedia: In nearly all cases, the aggregated execution
time, i.e., the sum of the time for the join operation and the latency, is higher than
for any other endpoint. When considering the limitations on the DBpedia endpoint
outlined in [Lehmann et al., 2014] this observation suggests to replicate data locally
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Figure 5.1: Q3 execution times w.r.t. latency for the DBpedia Sparql endpoint (all
measurements in ms)

when deploying time-critical Linked Data applications relying on this knowledge base.
For instance, this can be done by caching retrieved results or by exploiting the provided
serialized Rdf files.

For LGD, the median and Q3 values for all client configuration are remarkably
similar as indicated in Fig. 5.2. Additionally, the general ratio between the different join
operations remains nearly constant for all measurements. On the other hand, Fig. 5.2
illustrates the effect of latency when evaluating overall execution time: Whereas for
the two EC2 instances launched in the US the different join operations require nearly
identical time as the other clients, the latency is in orders of magnitude higher compared
to the local client or the EC2 instance hosted in the EU. In a real-world application this
fact can assist in establishing suitable caching strategies: For low-latency connections
to the LGD endpoint, caching any data may not be necessary. However, retaining data
locally might be beneficial if a client accessing the LGD endpoint incurs high latency.

As with LGD, the ratio of the median and Q3 execution time values between the
different join operations for the LinkedMDB endpoint is nearly identical throughout
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Figure 5.2: Q3 execution times w.r.t. latency for the LGD Sparql endpoint (all mea-
surements in ms)

our measurements as depicted in Fig. 5.3. Additionally, in our experiments the la-
tency for connecting to this endpoint also remained nearly constant regardless of the
client location. Thus, the overall execution times including latency for LinkedMDB
are highly similar. Again, when consuming data from the LinkedMDB endpoint this
insight might prove useful: If a client issues complicated requests (e.g., multiple subject-
subject-joins), thereby aggregating costly execution time, the received data (if any) can
be cached locally for future access. In contrast to LGD and Data.gov, we noticed com-
parably high execution times for LinkedMDB, although we suspect that the amount of
comprised data is lower than that of the other endpoints. Potentially, issuing queries
against the LinkedMDB endpoint is impeded by server misconfiguration, insufficient
hardware resources, or performance issues of the D2R framework.

When examining round-trip execution times for the Data.gov endpoint, latency can
be considered the most influential factor. As the results in Fig. 5.4 demonstrate, the
cost of performing join operations is almost negligible compared to the latency and
therefore the overall round-trip time of a Sparql request. Most importantly perhaps,
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Figure 5.3: Q3 execution times w.r.t. latency for the LinkedMDB Sparql endpoint (all
measurements in ms)

for the Data.gov endpoint we identified comparatively steady median results across all
locations and operations. Consequently, even for complex queries local data replication
may not be necessary when leveraging the Data.gov Sparql endpoint and ignoring
latency effects, as the time required for actual query processing is reasonable.

Figure 5.5 summarizes the discussed findings by illustrating the Q3 and latency
values for all Sparql endpoints averaged over all four client configurations, i.e., from
a local machine as well as from an EU Tiny, US Tiny, and US Medium EC2 instance.

5.4 Related Work

Publicly available Sparql endpoints can be considered RESTful Web Services. Closely
related to our work are approaches with a focus on evaluating and aggregating Quality of
Service criteria of such (composite) Web Services. On the one hand, previous works [Yu
et al., 2007; Zeng et al., 2004] propose a number of generic metrics to evaluate features
of these services, such as availability and request execution duration. Thus, given a
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number of tasks and eligible Web Services, determining an optimal execution plan is
then formalized as an integer programming problem. However, none of these approaches
comment on how Quality of Service features can be estimated systematically as input
parameters.

On the other hand, the authors of [Blanco et al., 2010] propose a sampling-based
framework to derive heuristics for different performance measures, e.g., execution time
of requests sent to Web Services. Here, they introduce an adaptive and a sequential
sampling technique used to estimate the cost for executing query plans on a composi-
tion of Web Services. Similarly, in [Cavallo et al., 2010] an empirical study is conducted
to forecast future QoS features by analyzing time series and establishing response time
estimates. Whereas both papers consider Web Services and workloads only in an ab-
stract manner, we argue for a more fine-grained analysis of service characteristics given
our concrete use case.

These characteristics are also considered important parameters for optimizing dis-
tributed query processing over multiple remote Linked Data repositories. In this con-
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text, DARQ [Quilitz and Leser, 2008] provides a transparent layer that enables access
to a federation of Sparql endpoints. Here, the goal is to minimize the overall query ex-
ecution time by determining the optimal execution plan. The information used for this
task is based on statistics included in the service description for each endpoint. SPLEN-
DID [Görlitz and Staab, 2011], a similar framework, uses voiD [Alexander et al., 2009]
descriptions instead. However, in real-world scenarios, this kind of metainformation is
oftentimes not available, insufficient, or outdated.

Another recent project named FedX [Schwarte et al., 2011] allows for efficient dis-
tributed Sparql query processing without the need of any explicit service annotations
or voiD descriptions. Instead, extensive operator re-ordering techniques are applied:
For example, a rule-based optimizer is utilized for ordering joins according to heuristics
determined in advance. Whereas this approach does not rely on metadata published
by the endpoint provider, it also does not factor in endpoint characteristics at runtime
which might be useful for ad hoc fine-tuning the execution strategy.
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ANAPSID [Acosta et al., 2011] enables adaptive Sparql query processing using a
federation of data sources by storing runtime information of these sources gathered dur-
ing query evaluation. The main goal of this project is to prevent query execution failure
in case remote endpoints become unavailable due to blocking query processing models.
To this end, the proposed framework records different execution timestamps to detect
possible delays and allows decomposing complex queries and issue simpler sub-queries
when appropriate. While the presented architecture assists in iteratively retrieving
data segments for further processing, it does not comprise a systematic approach to
gather appropriate endpoint characteristics for generic workloads.

The common goal of these frameworks is to optimize federated Sparql query pro-
cessing, e.g., by either determining the most suitable query plan or modifying the query
structure. The corresponding approaches rely on different information, such as pro-
vided service descriptions (DARQ, SPLENDID), precomputed metadata (FedX), or
workload-dependent statistical features iteratively recorded at runtime (ANAPSID).
Conversely, our work aims at determining generic characteristics of real-world Sparql
endpoints that allow predicting the performance of individual operations (such as joins).
On the one hand, the goal of our work is to assist data consumers in the evaluation of
the Quality of Service of publicly available Sparql endpoints. On the other hand, the
performance metrics introduced in this chapter can also be considered as additional
input features for distributed query processing frameworks.

Other performance features of Linked Data repositories have been investigated
in the context of triple store benchmarking. The Berlin SPARQL Benchmark
(BSBM ) [Bizer and Schultz, 2009] is one of the earliest frameworks for comparing
the behavior of different Rdf triple stores. In this benchmark, various systems are
analyzed using synthetic workloads that represent typical operations in an e-commerce
scenario. A similar project entitled SP2Bench [Schmidt et al., 2009] utilizes DBLP
publication records for generating workloads instead. Whereas the majority of queries
in BSBM contain fairly simple Sparql expressions, SP2Bench exploits the variety of
complex Sparql operators, such as FILTER expressions. However, as both benchmarks
rely on very specific (synthetic) query workloads, their general eligibility for assessing
execution performance of real-world public Sparql endpoints is limited.

Hence, a number of alternative benchmarking frameworks also aim at capturing
realistic Linked Data interactions. In [Morsey et al., 2011], the authors examine ag-
gregated user queries issued against the popular DBpedia dataset. Similar approaches
targeting the generation of representative benchmark queries for concrete Rdf knowl-
edge bases are presented in [Görlitz et al., 2012; Schmidt et al., 2011]. The goal of
these works is to establish empirical workloads suitable for determining more realis-
tic performance results. However, whereas the benchmarks presented in the previous
paragraph are typically deemed too generic, approaches custom-tailored for specific
real-world datasets (e.g., DBpedia) lack universal applicability.

In our work, we instead aim at providing a means for discerning characteristics of
different Sparql endpoints without the need of (synthetic or real-world) query work-
loads. Here, we do not compare different fine-tuned frameworks hosted within an
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isolated environment using complex requests, but rather strive to capture the behav-
ior of publicly available Sparql endpoints without any a-priori information of their
configuration. As those endpoint typically employ some limitations on the amount of
resources provided to process individual requests, complex benchmark queries such as
the ones presented in [Schmidt et al., 2009] potentially incur timeouts. Thus, we focus
on representative queries adhering to Sparql standards and argue that the aggregated
individual results can serve as heuristics for estimating the execution performance of
more intricate query workloads.

5.5 Summary

In this chapter we have presented a number of metrics aimed at characterizing Sparql
endpoints and conducted several experiments on publicly available Linked Data repos-
itories to record corresponding values. We determined in our evaluation that endpoints
exhibit different characteristics: While it comes as no surprise that latency and through-
put are influenced by the network infrastructure, the costs for join operations depend
on a number of factors that are not obvious to a data consumer. However, by taking
into account the metrics outlined in this work, he or she can determine whether an
endpoint is eligible for certain types of services, e.g., for retrieving, processing, and
presenting data in an interactive application.

We illustrated several basic heuristics, which we consider essential buildings blocks
for estimating the execution times of more complex workloads. Based on previous
findings (e.g., as reported in [Arias et al., 2011]), the different operations underlying
our metrics account for a large majority of all Sparql queries. Consequently, the
determined values are relevant for many application scenarios, e.g., for generating query
execution plans for federated systems.

Moreover, the results derived by applying the introduced metrics can be utilized for
devising appropriate data caching and integration strategies. As discussed in Sec. 5.3,
for some Sparql endpoints the time spent for query execution is negligible so that
leveraging these endpoints for interactive applications without caching any information
might be feasible. However, for other knowledge bases we determined that processing
requests might take considerably longer. Consequently, retaining data locally assists
mostly in those situations in which retrieving any information from an endpoint is
costly.

Combining these findings with the idea of prefetching query results introduced in
Chapter 4 can assist in leveraging Linked Data sources more efficiently: For example,
for an interactive application exploiting a public Sparql endpoint with high latency
or query execution time values, prefetching relevant information may prove beneficial
to lower the overall response time. Alternatively, some Linked Data sources are offered
in the form of serialized Rdf files, which can also be used in such cases.

However, storing varying amounts of Linked Data locally requires flexible data
placement mechanisms. Moreover, exploiting serialized Rdf datasets effectively yields
new research challenges: For instance, when encountering a file presented in any of the
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formats introduced in Sec. 2.1 its contents might not be immediately obvious to a user,
especially given the large size of knowledge bases in the Web of Data. Thus, in the
next chapter we present a use case of how a flexible infrastructure can be utilized for
storing and processing Web-scale amounts of Linked Data.
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CHAPTER 6
PROCESSING AND MANAGING LINKED DATA

“The problems of the real world are primarily those you are left with
when you refuse to apply their effective solutions.”

Edsger W. Dijkstra

As we have already discussed in this thesis, leveraging real-world Linked Data
sources yields several challenges. Consequently, the authors of [Jain et al., 2010] argue
that in its current state the Linked Data movement only partially fosters the vision
of a Semantic Web, i.e., a large knowledge base containing structured information in
a machine-readable and -interpretable format. In particular, the authors determine
that utilizing Linked Data sources is tedious, as oftentimes users have no guidance in
discovering and retrieving suitable information from a huge corpus of facts.

Moreover, interacting with such vast amounts of information on a technical level is
also non-trivial. In recent years, new paradigms for storing, profiling, and processing
Web-scale data have been implemented in various application scenarios. In particular,
the concept of flexible resource allocation on different abstraction levels has been es-
tablished [Lenk et al., 2009]. However, these approaches have not yet been embraced
to their full extent by the Linked Data community.

In this chapter, we outline an implementation of the ideas presented in the previous
chapters using such a scalable infrastructure. To this end, we illustrate a use case
in which we employ a publicly available flexible service platform for enabling scalable
access to Linked Data. We point out current challenges for the involved stakeholders
and indicate how these issues are alleviated in our approach.

The structure of this chapter is as follows: In Sec. 6.1, we introduce our use case for
flexible Linked Data access. Here, we detail how the ideas proposed in Sec. 3, Sec. 4, and
Sec. 5 can be combined to support consumption of such information. Furthermore, we
comment on how Linked Data presented in on the of the serialization formats discussed
in Sec. 2.1.2 can be utilized in this context. In particular, we emphasize how to generate
descriptive metainformation for large-scale data sources in Sec. 6.2. In the subsequent
Sec. 6.3, we discuss related work in the fields of managing and consuming Linked Data.
Finally, we conclude this chapter in Sec. 6.4.
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6.1 Linked Data Provisioning
As hinted at earlier, one of the main goals of the Linked Data movement is to en-
able Web-scale information integration by representing real-world entities using unique
identifiers, i.e., in the form of dereferenceable URIs, and relationships among these
entities by leveraging well-established ontologies. This notion allows users to combine
and utilize Linked Data for various application and information needs. For example,
in [Lorey et al., 2011] we demonstrated an interactive tool for correlating statistical
records with event data. The corresponding results are then visualized for individual
countries based on user input. In our implementation, we leveraged Linked Data as
well as structured and unstructured information provided in other formats from a total
of ten information sources.

In this use case, one of the first challenges we faced was selecting appropriate Linked
Data knowledge bases for the described application scenario. This process involved
careful manual investigation of the provided contents. Subsequently, retrieving relevant
information was cumbersome: For example, when accessing DBpedia using Sparql
requests, we were required to iteratively refine and rephrase the corresponding queries.
On the one hand, this was because of restrictions imposed by the endpoint provider,
e.g., as the number of requests allowed in a certain time period is limited [Lehmann
et al., 2014]. On the other hand, for aggregating related information, e.g., regarding
different countries, we incrementally issued a large number of highly similar requests.

Moreover, the overall amount of information relevant for our application was un-
known prior to its implementation. As the hardware resources available for processing
and storing data in the project detailed in [Lorey et al., 2011] were limited, we were
forced to disregard potentially relevant information in the later phase of our work. In
addition, deploying our application on-site induces periodic manual administration for
maintaining its availability and performance. Overall, we spent a substantial amount
of time and work on those and other side tasks before, during, and after the implemen-
tation.

In the portrayed scenario, there are two involved stakeholders: Data consumers and
data publishers. As illustrated above, data consumers, e.g., represented by application
developers, encounter several challenges:

• Data Discovery, i.e., finding suitable information sources for a particular infor-
mation need,

• Data Integration, i.e., merging multiple data sources to allow homogeneous
access to the combined information contained in all sources, and

• Data Consumption, i.e., retrieving, processing, and storing relevant data items.

Linked Data publishers typically disseminate the provided information as Rdf
downloads, e.g., presented in one of the formats discussed in Sec. 2.1.2, through one
or multiple Sparql endpoint, or by employing both approaches simultaneously [Heath
and Bizer, 2011]. In either set-up, data publishers need to provide at least some storage
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resources. In case a Sparql endpoint is offered, further processing capabilities are re-
quired. As discussed in Sec. 5.1, usually when setting up a Sparql endpoint additional
access policies are implemented to prevent disproportionate and malicious usage.

To assist both data consumers and data publishers in the illustrated use case, we
propose leveraging a flexible Infrastructure-as-a-Service (IaaS) solution for establishing
on demand and flexible access to Linked Data in [Lorey, 2013a]. We refer to this
process of alleviating information access as Linked Data provisioning. In our notion
of Linked Data provisioning, we identified two additional stakeholders besides data
publishers and data consumers, namely infrastructure providers, i.e., operators of the
IaaS offering, and data providers.

In this context, data providers do not necessarily need to be data publishers: In-
stead, the tasks of data providers may lie in identifying and aggregating different sources
of Linked Data. These sources can then be replicated in a central data repository. In
addition, data providers may also offer descriptive metadata to aid data consumers
in determining relevant information sources. However, data publishers can also act
as data providers themselves. The interactions between infrastructure providers, data
providers, and data consumers in the context of an IaaS solution are visualized in the
UML use case diagram depicted in Fig. 6.1.

Data Provider

IaaS Solution

Infrastructure Provider

Data Consumer

Store RDF Data

Store Metadata

Provision SPARQL

Endpoint

«includes»

«extends»

Utilize RDF Data

«extends»

Maintain Hardware

«includes»

«includes»

«includes»

Figure 6.1: UML use case diagram of stakeholders in the Linked Data provisioning set-up

As Fig. 6.1 implies, the IaaS offering can be utilized both for storing Rdf data and
metadata as well as for provisioning custom Sparql endpoints containing this infor-
mation. In our prototypical implementation, we employ both computing and storage
resources from Amazon Web Services. Particularly, we leverage the Elastic Compute
Cloud to host individually deployed Sparql endpoints for data consumers. Conse-
quently, data consumers can access the resources relevant for their information need
through on-line requests instead of setting up and maintaining on-site storage facilities.

95



6. PROCESSING AND MANAGING LINKED DATA

In an exemplary proof of concept, we created a custom Amazon Machine Image
(AMI) based on Ubuntu 12.04 LTS (ami-8f78188e), which contains the start-up script
illustrated in Listing 6.1. In this script, the OpenLink Virtuoso open-source triple
store and Sparql framework [Erling and Mikhailov, 2010] is installed together with the
corresponding management console “Virtuoso Conductor” (Lines 2 and 3). After this
installation completes successfully and the Sparql endpoint has been started (Line 4),
update privileges are granted to the default dba user (Line 6) before the password for
this user is changed (Line 7).

✞ ☎
1 # install virtuoso
2 apt -get install virtuoso - opensource
3 apt -get install virtuoso -vad - conductor
4 service virtuoso restart
5 # set role and password
6 isql -vt 1111 dba dba ’EXEC= grant SPARQL_UPDATE to " SPARQL "’
7 isql -vt 1111 dba dba ’EXEC=set password dba password’
8 # load initial data
9 curl -T rdfdata http :// localhost :8890/ DAV/home/dba/ rdf_sink /data.rdf -u dba:password✝ ✆

Listing 6.1: Initializing and populating a Virtuoso open-source edition Sparql endpoint
in an EC2 instance

Finally, in the last line of Listing 6.1 serialized Rdf information aggregated by the
data provider is retrieved and loaded into the triple store through an HTTP request
(Line 9). Additional Rdf files can be integrated into the Sparql endpoint by executing
this last command of the script multiple times. As indicated in Fig. 6.1, the data
provider may retain copies of serialized Rdf information from different data publishers
using resources of the infrastructure provider, who in turn maintains this hardware, e.g.,
by warranting fail-secure data access. In our implementation, we employ the Amazon
Simple Storage Service for this task.

In addition to static Rdf data, data consumers may be interested in leveraging in-
formation from public Sparql endpoints as well. For example, as mentioned previously
in our use case we utilized the DBpedia Sparql endpoint for retrieving information
about different countries. According to the observations in Sec. 5.3, the worst-case
query execution times for issuing requests against this endpoint are quite high. Thus,
when accessing the endpoint DBpedia dynamically these long execution times possibly
impede interactive applications, such as the one illustrated in the use case.

However, as discussed in the use case definition, only a limited number of related
DBpedia resources are relevant for the specific application. Hence, applying data
prefetching as illustrated in Chapter 4 helps in reducing the aggregated query execution
times incurred when processing multiple individual user interactions. In particular, the
template augmentation approach introduced in Sec. 4.2.1 and based on the matching
algorithms of Chapter 3 alleviates retrieving information about a large amount of sim-
ilar Linked Data resources. Consequently, the prefetched data can be retained in the
Sparql endpoint provisioned to the data consumer within the IaaS environment.
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As mentioned in Chapter 2, in contrast to read-only access Sparql 1.1 also enables
altering the contents of a triple store through INSERT or DELETE operations. Query 6.1
demonstrates the application of the INSERT operation to add a new statement to our
Virtuoso triple store through a Sparql interface. Note that in Query 6.1 the triple
is inserted into a specific named graph [Carroll et al., 2005]. This simplifies data
management: For instance, when prefetching and storing Linked Data as discussed in
Chapter 4, related records can be stored in a separate named graph per session.✞ ☎
PREFIX : <http :// dbpedia.org/resource/>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

INSERT DATA {
GRAPH <http :// tempGraph.org > {

:Auguste_Comte foaf:name "Auguste␣Comte" .
}

}✝ ✆
Query 6.1: Example of a Sparql INSERT query

Similarly, executing a DELETE query removes the corresponding triples from a knowl-
edge base. Moreover, it is also possible to delete entire named graphs using the DROP
command. For example, Rdf data retrieved by applying one of the prefetching strate-
gies illustrated in Chapter 4 may be only relevant for a limited time. Thus, storing this
information in a named graph allows holistically deleting the triples once they are no
longer needed by dropping the graph.

An overall system architecture for our approach is depicted in Fig. 6.2. In the il-
lustrated set-up, the data consumers query custom Sparql endpoints hosted within
the IaaS solution (indicated by a solid arrow), possibly comprising a cache, e.g., for
prefetched data as conveyed in Chapter 4. The Sparql endpoints are populated (visu-
alized by a dashed arrow) using a data catalog containing information from both static
Rdf data files and other external Sparql endpoints, e.g., as offered by data publishers.
In the latter case, a mediator [Wiederhold, 1992; Langegger et al., 2008] component is
utilized for distributed information integration.

In this set-up, the mediator handles federated query processing, e.g., by applying
ontology mapping or creating suitable query execution plans. The results determined
for the metrics introduced in Chapter 5 serve as input for the mediator, e.g., for de-
riving the optimal order in which requests are issued against a federation of endpoints.
Additionally, these metrics can help in establishing suitable caching strategies: For ex-
ample, if the latency incurred when accessing an endpoint is high, it might be beneficial
to retain query results instead of retrieving them possibly multiple times. Moreover, in
case the system identifies recurring Linked Data access patterns among different users
based on the ideas indicated in Chapter 3, a request can be delegated to the cache
instead of issuing it against the actual endpoint instead.
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Figure 6.2: System architecture for Linked Data provisioning using an IaaS solution

6.2 Metadata Generation

In the previous section, we have proposed the concept of Linked Data provisioning
designed for assisting users in information access. In Fig. 6.1, we have illustrated that
data consumers can take advantage of descriptive metadata for discovering suitable
information sources in the data catalog. However, such metadata is scarcely provided
for Linked Data sources, possibly because in the advent of the Linked Data movement
the main focus was laid on transforming legacy information sources and publishing
them in the Rdf format.

The Vocabulary of Interlinked Datasets1 [Alexander et al., 2009] (voiD) was es-
tablished to aid data discovery and consumption. To this end, the vocabulary def-
inition includes means for characterizing different entities, most notably datasets
(void:Dataset2) and linksets (void:Linkset). A void:Dataset entails a set of Rdf
triples published and maintained by a single provider, and a void:Linkset contains a

1http://www.w3.org/TR/void/
2The prefix void: denotes the URI http://rdfs.org/ns/void#.
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number of Rdf triples for which all subjects are contained in one void:Dataset and
all objects are contained in another void:Dataset.

Furthermore, a void:Dataset can be attributed with a number of features, such
as a void:exampleResource, i.e., a representative resource contained in the dataset,
or a void:sparqlEndpoint for indicating the Sparql endpoint provided for accessing
the published information. Similarly, several vocabulary properties can be utilized for
detailing statistical information. For instance, void:triples lists the total number
of contained triples whereas void:distinctSubjects and void:distinctObjects de-
note the number of unique subjects and objects, respectively. Furthermore, the authors
of the voiD standard propose to reuse existing terms from other vocabularies when ap-
propriate as suggested by the Linked Data design principles [Bizer et al., 2009a]. For
example, they advise to include a foaf:homepage1 record for indicating the homepage
or a dcterms:description2 statement as textual description of a voiD dataset.

In general, voiD information is manually created by data publishers and provided
alongside the structured information. However, at the time of writing only a limited
number of data publishers offer this metadata [Konrath et al., 2012]. Whereas some
tools guide users in manually creating voiD descriptions3, 4, these tools do not aim at
automatically generating this information for large-scale Rdf datasets.

Especially when considering a heterogeneous knowledge base, e.g., aggregated by
crawling multiple Linked Data repositories, voiD descriptions help data consumers
in discerning the information contained in the entire dataset or in individual subsets
that can be extracted from such a corpus. For example, the Billion Triple Challenge
(BTC) 2010 dataset [Harth, 2010] contains around 3.1 billion Rdf statements from
a multitude of sources. Similarly, cross-domain Linked Data knowledge bases, such
as DBpedia, typically also consist of distinct subsets of information, e.g., describing
persons or organizations, as mentioned in Chapter 1.

To allow automatically annotating such Rdf datasets with voiD descriptions, we
have devised the two MapReduce Algorithms 7 and 8. These algorithms can be applied
to a file containing facts from only one source as well as to a collection of heterogeneous
serialized statements from multiple distinct datasets, e.g., gathered during a crawl.
To this end, the map function of Algorithm 7 takes as input an Rdf statement and
aggregates all subjects belonging to the same dataset and described by a common
predicate. Here, a dataset may be defined by provenance information, e.g., through
the context field in an N-Quad statement as is the case for the BTC corpus. Note
that the dataset may also be identical for all triples, i.e., if the analyzed file comprises
statements from only one knowledge base.

Based on the results of the map function, the reduce function of Algorithm 7 gen-
erates the frequencies (totalCount) of each predicate per dataset. This information can
be used to infer the void:vocabulary of a dataset: For example, if a large number of

1http://xmlns.com/foaf/spec/#term_homepage
2http://purl.org/dc/terms/description
3http://lab.linkeddata.deri.ie/ve2/
4http://openphacts.cs.man.ac.uk/Void-Editor/
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entities exhibit foaf:givenName and foaf:familyName values, the Friend-of-a-Friend
ontology is utilized.

Algorithm 7: DatasetVocabularyInformation
Input : key : Line number
Input : value : Line containing Rdf triple
Output: Subjects in the same dataset with common predicate
function map (Int key, Text value):
1 triple ← parse(value)
2 emit([triple.getDataset(), triple.getPredicate()], triple.getSubject())

Input : key : Dataset, predicate
Input : values : List of subjects in the dataset occurring with the predicate
Output: Distinct predicates with count and all subjects for a dataset
function reduce (Text[] key, List<Text> values):
3 totalCount ← values.size()
4 foreach v ∈ values do
5 emit(key[0], [v, key[1], totalCount])

Algorithm 8 allows further annotating the contents of a dataset. In this algo-
rithm, the map function takes as input the results generated by Algorithm 7 and
simply emits them as input for the reduce function. In the reduce function, a
void:exampleResource and a dcterms:description are generated for the dataset.
To this end, the number of occurrences of all subjects for a specific predicate in the
dataset are extracted (Line 6). As a subject typically is associated with multiple predi-
cates, the individual frequencies need to be partitioned per subject (Line 8). We identify
the void:exampleResource resource as the subject occurring most often in the context
of different predicates (Line 10).

Furthermore, we aggregate the frequencies of all distinct predicates of a dataset in
predicateStatsSortedMap (Line 9). We then generate the dcterms:description of the
dataset by retrieving the top 5 predicates from this sorted map. This approach enables
determining the most important properties of resources contained in the dataset which
helps providing further insight about its contents, e.g., when issuing keyword-based
searches. If available, exploiting other metadata, e.g., rdf:type information of the
subjects, can be used to assemble a more intricate textual description.

In [Böhm et al., 2011] we introduce additional scalable algorithms for generating
suitable dataset annotations. For example, we illustrate how to determine the URI
string pattern of all contained resources as void:uriRegexPattern and how to dis-
cover different notions of void:Linkset instances. We applied all of our approaches
to the large-scale BTC 2010 crawl [Harth, 2010] and evaluated our algorithms on the
Amazon Elastic Compute Cloud with 20 “High-CPU Extra Large” (c1.xlarge) in-
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6.2 Metadata Generation

Algorithm 8: DatasetDescription
Input : key : Dataset
Input : value : Distinct predicates with count and all subjects for a dataset
Output: dataset, [subject, predicate, subjectCount]
function map (Text key, Text[] value):
1 emit(key, value)

Input : key : Dataset
Input : values : List of distinct predicates with count and all subjects
Output: void:exampleResource and dcterms:description for dataset
function reduce (Text key, List<Text[]> values):
2 subjectStatsMap ← ∅
3 predicateStatsSortedMap ← ∅
4 foreach v ∈ values do
5 if v[0] ̸∈ subjectStatsMap.keys() then
6 subjectStatsMap.put(v[0], v[2])
7 else
8 subjectStatsMap.put(v[0], subjectStatsMap.get(v[0]) + v[2])
9 predicateStatsSortedMap.put(v[1], v[2])

10 exampleResource ← getHighestCountSubject(subjectStatsMap)
11 description ← getHighestCountPredicates(predicateStatsSortedMap, 5)
12 emit(key, [exampleResource, description])

stances running Apache Hadoop1. The results for each individual phase are illustrated
in Tab. 6.1.

Table 6.1 details that we process the 3.1 billion triples contained in the BTC 2010
crawl in approx. one hour and ten minutes. Of all individual tasks, loading the pro-
vided data into the Hadoop Distributed File System required the most runtime (28:21
minutes). Generating basic statistics, i.e., counting the number of distinct subjects,
properties, objects, and the overall number of triples, took significantly less runtime
(16:21 minutes). In total, extracting individual datasets and discovering linksets be-
tween these was performed in around 15 minutes. Applying Algorithm 7 and Algo-
rithm 8 to the contained data for generating the indicated properties resulted in a
runtime of approx. 8 minutes.

As Tab. 6.1 demonstrates, even more complex operations, such as determining a
representative sample resource for multiple datasets, were executed in reasonable time.
Additionally, the illustrated algorithms can be easily incorporated into the Linked Data
provisioning approach introduced in the previous section as in our implementation both
utilize the same IaaS solution. Hence, data providers may employ the MapReduce
paradigm for generating descriptive metadata for sources contained in the data catalog.

1http://hadoop.apache.org/
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Task Runtime (mm:ss)
Load into HDFS 28:21
void:distinctSubjects

16:21void:properties
void:distinctObjects
void:triples
Extract all void:Dataset 13:20
void:vocabulary
void:exampleResource

08:04void:uriRegexPattern
dcterms:description
Extract all void:Linkset 01:32
Total 67:37

Table 6.1: Runtimes for generating voiD metainformation for the BTC2010 corpus on 20
Amazon EC2 c1.xlarge instances using Apache Hadoop

In turn, data consumers can leverage these voiD resources for discovering information
relevant for their application scenario.

6.3 Related Work

As summarized in the previous sections, combining the ideas introduced in this work
benefits both data consumers and data providers. Conventionally, Linked Data is dis-
seminated and consumed by warehousing one or more Rdf datasets, or by querying
publicly available Sparql endpoints [Heath and Bizer, 2011]. Given an adequate hard-
and software infrastructure, the first method enables high-performance access to the
data at hand. Consequently, several novel materialized Linked Data management tech-
niques have been proposed in recent years [Neumann and Weikum, 2008; Mühleisen
et al., 2010; Böhm et al., 2012].

However, maintaining the warehoused data requires sophisticated approaches for
index creation, compression, and updating [Betz et al., 2012]. Gathering information
by querying (a federation of) public endpoints alleviates some of these challenges, but
may degrade execution performance. Typically, such optimization issues are addressed
by different distributed query processing techniques [Quilitz and Leser, 2008; Görlitz
and Staab, 2011; Schwarte et al., 2011; Acosta et al., 2011].

Most research advances for retrieving and processing Rdf data from multiple
sources are based on related approaches in distributed relational data management.
However, many challenges in real-world application settings influence the success of
distributed query processing, including latency and bandwidth restrictions [Betz et al.,
2012], or reduced endpoint availability. We have illustrated how the ideas for accessing
Sparql endpoints detailed in the previous chapters can be combined for leveraging
such sources more effectively.
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6.4 Summary

In addition, we have outlined how a public IaaS offering can be utilized for stor-
ing Rdf files, generating metadata for these files, and enabling flexible data access.
Previous efforts in this context have mostly focused on managing traditional relational
information in such environments [Curino et al., 2011; Abadi, 2009]. Conversely, we
described how an IaaS solution can be employed for alleviating data consumption using
a combination of serialized Rdf files and Sparql endpoints.

There exist a number of projects to assist interaction with Linked Data sources,
such as SIG.MA [Tummarello et al., 2010], RKB Explorer [Glaser et al., 2008], or the
Information Workbench [Haase et al., 2011]. Their focus mostly lies on integrating
and visualizing information provided during an initial set-up time, while support for
discovering, updating, and consuming resources at runtime is limited. Typically, these
tools are designed to allow information exploration and analysis in combination with
a certain degree of UI customization. Whereas these features allow for straightforward
interpretation of the contained information, the tools might be insufficient for data
consumers to further process and extend the knowledge base. Instead, in our por-
trayed use case we aim at assisting data consumers in discerning and accessing relevant
information.

6.4 Summary
To demonstrate the applicability of the contributions discussed in the previous three
chapters, in this chapter we portrayed a specific use case utilizing the respective ideas
and findings. In this use case, we also commented on exploiting serialized Rdf infor-
mation. To aid consumption of Linked Data provided in this manner, we illustrated a
scalable approach for generating descriptive metadata for such Rdf files.

Furthermore, we depicted how an IaaS solution can be employed for leveraging
Linked Data sources. In a prototypical implementation based on such an offering, we
identified four different stakeholders: Infrastructure providers, data providers, data
publishers, and data consumers. We outlined their relationships and discussed how
particularly data providers can take advantage of the ideas presented in this work for
enabling flexible Linked Data provisioning.

In the scenario indicated in this chapter we addressed different challenges associated
with discovering and exploiting Linked Data sources. We focused on demonstrating
the applicability of the previously introduced approaches, both individually and in
combination with each other. In the next chapter, we summarize these contributions
and point out future research potential.
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CHAPTER 7
CONCLUSION AND OUTLOOK

“I may not have gone where I intended to go, but I think I
have ended up where I needed to be.”

Douglas Adams

The benefits of utilizing Linked Data are manifold: Structured data provided at
large scale for domain-specific as well as for cross-domain information needs enables
novel opportunities for developers and end users. In particular, publicly available
knowledge bases allow collecting and combining manually curated facts from differ-
ent sources, thus fostering collaboration among data publishers. Overall, the Linked
Data movement has the potential to transform many data sources previously offered
only in either legacy or proprietary format into a common machine-readable standard
suitable for Web-scale information dissemination.

However, exploiting Linked Data sources is currently tedious: Discovering, inte-
grating, and processing the comprised information yields numerous challenges for data
consumers. In this thesis, we have presented several contributions aimed at alleviat-
ing some of the impediments associated with Linked Data utilization. Particularly,
we focused on analyzing and assisting information retrieval through Sparql queries.
Whereas issuing such structured unambiguous requests in principle allows leveraging
Linked Data effectively for different applications, interacting with those knowledge
bases is cumbersome. As discussed, Sparql endpoints typically impose several restric-
tions on data access. Furthermore, efficient utilization of these endpoints is oftentimes
hindered by improper configurations or limited hardware resources. Overall, based on
results derived by applying our solutions on real-world queries and endpoints we suggest
that implementing them can benefit data publishers as well as data consumers.

In Chapter 3, we have introduced a means for discerning structurally similar queries.
To this end, we presented two algorithms for decomposing Sparql queries and mapping
contained elements. We applied these algorithms to real-world query patterns and
discovered notable structural correlations, especially among requests issued successively
by individual users. We compared both algorithms with a general state-of-the-art
schema mapping approach and found that they are in orders of magnitude faster.
Future application scenarios and research endeavors include:

105



7. CONCLUSION AND OUTLOOK

Formal categorization of structural relatedness. In a recent master thesis [Fara-
hani, 2013], a number of formal concepts for identifying structural relatedness are
presented based on the ideas outlined in Chapter 3. Most importantly, [Farahani,
2013] introduces the notion of query isomorphism by evaluating all query parts
for possible alignment with the contents of other queries. In general, these ideas
can be further extended, i.e., by considering the language constructs introduced
in Sparql 1.1.

Analysis of other structured query languages. As hinted at in Sec. 2.2, other
structured query languages exhibit similar characteristics as Sparql. In partic-
ular, SQL is recognized as one of the most important information access mech-
anisms in relational databases and can be considered influential to the Sparql
development. Translating the concept of query similarity introduced in Chapter 3
to SQL potentially allows identifying and leveraging recurring request patterns
for relational data in a similar manner.

Matching recursive data structures. Recursive data structures, e.g., Sparql
graph patterns, can be found in different application scenarios. Most generally,
these structures are represented as directed acyclic graphs, and adopting the al-
gorithms discussed in Chapter 3 for these structures is straightforward assuming
a suitable graph labeling. Moreover, as we discussed in the evaluation section
of this chapter, the similarity flooding algorithm performs worse than our meth-
ods for recursive Sparql graph patterns. However, depending on the concrete
semantics and weighting approaches, these results may differ for other recursive
data structures, e.g., traditional relational database schemas.

We used the findings and concepts derived in Chapter 3 for introducing a con-
crete application for leveraging structural similarity of successive Sparql requests in
Chapter 4. Here, we illustrated different approaches for prefetching Linked Data rele-
vant for a subsequent information need by altering the structure of a given preceding
query. As with Chapter 3, we evaluated these ideas on several real-world query logs
and discussed the determined results. Here, the introduced strategies proved beneficial
in several situations, in which we discovered that the prefetched results were utilized
later on. However, compared to simple caching, overall precision typically decreased
when applying one of the prefetching strategies. In light of these findings, a number of
possible extensions come to mind:

Additional augmentation and caching methods. The four prefetching methods
illustrated in Chapter 4 cater for different retrieval approaches, such as ex-
ploratory search or crawling. However, we also observed other request patterns
that we could not model properly. For instance, we identified cases in which a
single query is issued multiple times within a short period of time by the same
user. Whereas in this example, prefetching may not be applicable, discerning the
underlying information need can help in assisting data access, e.g., by establishing
suitable caching strategies.
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Sequential prefetching. As indicated in the evaluation section of Chapter 4, we were
mostly interested in the benefits of our prefetching approaches on entire query
sessions. For a more fine-grained analysis, shorter sequences, e.g., request pairs,
could be considered as well. In [Farahani, 2013], such a pairwise prefetching
methodology is suggested for which the author reports on good recall values, i.e.,
a large number of cache hits. However, the proposed approach also suffers from
poor precision caused by prefetching many irrelevant results. Consequently, in
case of limited storage capabilities more sophisticated strategies are necessary.

Applying augmentation automatically. Implementing a fully-fledged automatic
prefetching approach either on the client or server side requires classifying which
of the augmentation strategies introduced in Chapter 4 are to be applied on an
issued query (if any). To this end, the author of [Farahani, 2013] proposes a basic
probability model established by analyzing a large corpus of query logs. However,
the introduced approach is overfitted to this training data: The author relies on
statistical information rather than on generic request features for prefetching re-
sults. In this context, more thorough investigation regarding feature extraction
is required.

The metrics detailed in Chapter 5 enable determining several characteristics of
Sparql endpoints relevant for effective and efficient information retrieval. As we em-
phasized in this chapter, all metrics are designed to work with generic knowledge bases
offering a Sparql interface, thus we rely on simple queries for deriving the correspond-
ing results. We thoroughly evaluated the introduced heuristics on several publicly
available Sparql endpoints and discussed the determined results. Potential future
research directions for this approach entail:

Framework benchmarking. In our evaluation, we have focused on four public
Sparql endpoints. Three of them employ the popular Virtuoso framework [Er-
ling and Mikhailov, 2010] in different versions, whereas the LinkedMDB Sparql
endpoint is provided using the D2R server [Bizer and Cyganiak, 2006]. As dis-
cussed in Sec. 5.3, interacting with this latter endpoint typically results in longer
join execution times compared to the other endpoints which comprise similarly
sized datasets, potentially caused by performance issues of the D2R framework.
Hence, the metrics outline in Chapter 5 can assist in determining such framework
performance differences by introducing appropriate benchmarking environments,
e.g., characterized by specified hardware set-ups and defined datasets.

Additional metrics. As indicated, we have focused on more or less general endpoint
characteristics, such as latency or throughput. Here, our goal is to provide heuris-
tics suitable for a wide range of endpoints. However, the recently introduced
Sparql 1.1 standard offers novel constructs for issuing Linked Data queries, e.g.,
grouping and aggregates. Whereas currently not all publicly available endpoints
support these new specifications, the introduced metrics can be extended to cover
these features.
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Extensive cost model. Whereas the individual metrics illustrated in Chapter 5 pro-
vide insight into specific aspects of Sparql endpoint behavior, they cannot be
used to determine the cost for executing entire workloads. In Sec. 5.3, we already
discussed how to aggregate the cost of different metrics for individual queries.
Similarly, a more thorough evaluation of entire Sparql workloads, e.g., similarly
to the ones generated by the Berlin SPARQL Benchmark framework [Bizer and
Schultz, 2009], can be used to establish a generic cost model suitable for different
application scenarios such as federated query processing.

Finally, in Chapter 6 we presented a use case for combining the previously in-
troduced ideas for alleviating Linked Data consumption. We particularly argued for
employing an IaaS offering for flexibly storing and provisioning Linked Data. In this
context, we also touched on issues in data discovery and briefly illustrated how we ex-
ploit the MapReduce programming paradigm to efficiently generate suitable metadata.
To further the proposed ideas, we identify several research opportunities:

Metadata generation. We have demonstrated a scalable approach for creating voiD
descriptions for Linked Data repositories. In Sec. 6.2 we have already commented
on the fact that our algorithms work well for computing statistical information.
However, there is potential for improving human-readable content, e.g., in terms
of the dcterms:description. To better grasp the contents of a dataset, it might
also be helpful to indicate type summaries, although determining them is com-
putationally more complex.

Elastic provisioning. In our implemented prototype, we rely on Amazon EC2 to
instantiate scalable Sparql endpoints. While these can be adapted for growing or
shrinking amounts of Linked Data, this process is not straightforward: Modifying
the storage capabilities resources requires several steps, i.e., creating a new storage
device, copying the current data onto it, and deleting the initial storage device.
Given the volume and velocity of Linked Data sources, a different storage model
and more sophisticated prediction models can help in reducing the overhead for
the resource scaling required for dynamic information needs.

Data visualization. In our work, we have focused on aggregating and describing data
sources. However, for supporting data consumers in their evaluation of whether
these sources are relevant for their information need, (meta-)data visualization
can prove beneficial. As mentioned in Sec. 6.3 different open-source tools exist for
this task. Integrating these for providing enhanced user interaction may alleviate
data discovery challenges.

In summary, in this thesis we addressed multiple challenges in Linked Data access
through Sparql queries. Whereas previous Linked Data research advances mostly
elaborated on publishing, processing, and managing Rdf data, investigating and as-
sisting user interaction with this information is crucial for establishing its acceptance
among data consumers.
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