
TEMPLAR

Efficient Determination of Relevant Axioms in Big

Formula Sets for Theorem Proving

Diplomarbeit

von

Mario Frank

Universität Potsdam

Institut für Informatik

Professur Theoretische Informatik

Aufgabenstellung und Betreuung:

Prof. Dr. Christoph Kreitz

Prof. Dr. Torsten Schaub

Potsdam, den 20. Juni 2013

This work is licensed under a Creative Commons License:
Attribution – Share Alike 4.0 International
To view a copy of this license visit
http://creativecommons.org/licenses/by-sa/4.0/

Frank, Mario
Mario.Frank@uni-potsdam.de
TEMPLAR
Diplomarbeit, Institut für Informatik
Universität Potsdam, Juni 2013

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2014/7211/
URN urn:nbn:de:kobv:517-opus-72112
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72112

Thanks to Prof. Dr. Kreitz for the great supervision, to Jens Otten for

the countless discussions on calculi and transformations, Tim Richter for

providing access and support to the hardware on which TEMPLAR was ex-

haustedly tested and for restarting it after TEMPLAR consumed all mem-

ory and destabilized the system. Furthermore, I want to thank Prof. emerit.

Dr. Wolfgang Bibel for providing me a version of his Deduction book

which helped me to brighten my understandings for some special concepts.

Also, many thanks to Jörg Zinke, Stefan Gasterstädt and the Operating

Systems and Distributed Systems chair for providing this incredible amaz-

ing LaTeX thesis template.

Finally, thanks to all those people who provided me coffee and Club

Mate.

Selbständigkeitserklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig angefertigt, nicht anderweitig zu

Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Sämtliche wissentlich verwendeten Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden

ausdrücklich als solche gekennzeichnet.

Potsdam, den 20. Juni 2013

Mario Frank

Abstract

This document presents an formula selection system for classical first order theorem proving based

on the relevance of formulae for the proof of a conjecture. It is based on unifiability of predicates

and is also able to use a linguistic approach for the selection. The scope of the technique is the

reduction of the set of formulae and the increase of the amount of provable conjectures in a given

time. Since the technique generates a subset of the formula set, it can be used as a preprocessor for

automated theorem proving. The document contains the conception, implementation and evalua-

tion of both selection concepts. While the one concept generates a search graph over the negation

normal forms of the given formulae, the linguistic concept analyses the formulae and determines

frequencies of lexemes and uses a tf-idf weighting algorithm to determine the relevance of the

formulae. The system was also evaluated at the world championship of the automated theorem

provers (CASC-24) and the evaluation of the results of the CASC and the benchmarks with the

problems of the CASC of the year 2012 (CASC-J6) show that the concept of the system has pos-

itive impact to the performance of automated theorem provers. Also, the benchmarks with two

different theorem provers which use different inference calculi have shown that the selection is

independent from the calculus.

Zusammenfassung

Dieses Dokument stellt ein System vor, das aus einer (großen) gegebenen Menge von Formeln der

klassischen Prädikatenlogik eine Teilmenge auswählt, die für den Beweis einer logischen Formel

relevant sind. Ziel des Systems ist, die Beweisbarkeit von Formeln in einer festen Zeitschranke

zu ermöglichen oder die Beweissuche durch die eingeschränkte Formelmenge zu beschleunigen.

Das Dokument beschreibt die Konzeption, Implementierung und Evaluation des Systems und geht

dabei auf die zwei verschiedenen Ansätze zur Auswahl ein. Während das eine Konzept eine

Graphensuche auf den Negations-Normalformen der Formeln durchführt, indem Pfade von einer

Formel zu einer anderen durch Unifikation von Prädikaten gebildet werden, analysiert das andere

Konzept die Häufigkeiten von Lexemen und bildet einen Relevanzwert durch Anwendung des in

der Computerlinguistik bekannten tf-idf-Maßes. Es werden die Ergebnisse der Weltmeisterschaft

der automatischen Theorembeweiser (CASC-24) vorgestellt und der Effekt des Systems für die

Beweissuche analysiert. Weiterhin werden die Ergebnisse der Tests des Systems auf den Proble-

men der Weltmeisterschaft aus dem Jahre 2012 (CASC-J6) vorgestellt. Es wird darauf basierend

evaluiert, inwieweit die Einschränkungen die Theorembeweiser bei dem Beweis komplexer Prob-

leme unterstützen. Letztendlich wird gezeigt, dass das System einerseits positive Effekte für die

Theorembeweiser hat und andererseits unabhängig von dem Kalkül ist, das die Theorembeweiser

nutzen.

Contents

1 Introduction 11

2 Preliminaries 13

2.1 Fundamentals of Classical First Order Logic and Reasoning 14

2.2 Fundamentals of Graphs and Graph Search Algorithms 17

2.3 Selected Linguistic Aspects . 18

3 Concept 20

3.1 Data Import and Representation . 21

3.2 Analysis . 24

3.3 Unification based Search Strategies . 26

3.3.1 Selection Algorithm Basics . 26

3.3.2 Search Graph Restrictions . 28

3.4 Frequency Based Selection . 32

4 Implementation 34

4.1 Overall Workflow . 35

4.2 Data Import and Representation . 36

4.2.1 Representation of the Formulae . 36

4.2.2 Import of Formulae with Structure Sharing 39

4.3 Normal Form Transformations and Analysis . 43

4.4 Unification . 46

4.5 Search Engines . 48

4.6 Output . 50

5 Related Work 54

6 Evaluation 56

6.1 Evaluation Setup . 56

6.2 Results from CASC-24 . 57

6.3 Results on problems of the CASC-J6 . 59

7 Conclusion and Future Work 64

7.1 Conclusion . 64

7.2 Future Work . 65

A Benchmark Results 67

A.1 Post-CASC-24 Benchmarks . 67

9

A.2 Full Benchmarks on CASC-J6 Problems . 70

A.2.1 ISA . 70

A.2.2 SMO . 79

A.2.3 MZR . 83

B Files of the thesis 86

List of Figures 87

List of Tables 88

Listings 90

C Abbreviations 91

Bibliography 92

10

1. Introduction

Automated deduction is not just an academic field of research nowadays. Multiple concepts are

used in industrial software and hardware verification. For example, the transformation of models

for Electronic Stability Control (ESC)1 into source code (e.g. C code) can be verified by use of

automated deduction.

But the systems which can check the validity of such transformations need to be able to handle

arithmetic, type systems and big formula sets, too since physical aspects can contain many for-

mulae. Some of the systems with these properties work fully automated and are called automated

theorem provers. They get a set of formulae which are seen as valid (like the laws of mechanics,

called axioms) and a conjecture which is a formula that has to be proven with the laws.

Since the theorem provers need to be as fast as possible but get increasing sets of formulae, they

sometimes suffer from too big sets which lead to slow proof attempts. Quite often, they can not

prove some conjecture due to the huge amount of formulae or they just need too much memory.

But theorem provers need to analyse all given formulae together with the conjecture, transform

them into specific normal forms and proof the conjecture with the rules of a calculus. And the

bigger the number of axioms becomes, the more inference steps are possible which enormously

increases the memory usage and calculation time.

In practice, not all axioms are needed to prove the conjecture since there can be many laws

which are not even relevant for the conjecture or some inference step. Thus, using all of the

formulae would be a waste of resources. This is where relevance filter can be applied. They have

the aim to decide about the relevance of a set of formulae and select the ones which can be seen as

relevant enough.

The current state-of-the-art filtering technique is described in SinE [HV11] and used by well-

known theorem proves like E [Sch04], Vampire [HKV11], iProver[Kor08], MaLARea [USPV08]

and E-KRHyper [PW07].

Since theorem provers need to be tested, some of them attend the annual CADE ATP Systems

Competition (CASC) in order to compete with each other. Some are specialised on arithmetics or

first order logic and some are specialised on finding non-theorems but they all can benefit from

filtering techniques. There are many different terms used to describe filtering techniques. In

order to use a consistent description, this document uses the term "relevance filter" or pruner since

usually, all techniques use a relevance metric in order to filter(prune or reorder) the formula sets.

In the CASC J6[Sut12b], the competition which took place in Manchester in June 2012, all

theorem provers of the Large Theorem Batch (LTB) division used the SinE filtering technique

1This is a module in vehicles which aims to stabilize vehicles. The loss of traction is detected

and reduced by automatically applying break actions. For reference, see the patent, for example:

https://register.dpma.de/DPMAregister/marke/register/2912578/DE

11

https://register.dpma.de/DPMAregister/marke/register/2912578/DE

1 Introduction

while leanCoP-ARDE used unification based relevance filtering. leanCoP[Ott08]/[OB03] is a lean

connection calculus based theorem prover, implemented by Jens Otten.

This document addresses the TEMpestuous Pruner based on Logical Axiom Relevance (TEM-

PLAR) which contains the extension of the filtering technique of ARDE, which was partly de-

scribed and published in [Fra12b].

The TEMPLAR is a modular system which has the scope to select relevant formulae for the

proof of a formula and can use both logical and also linguistic relevance approaches. The name

is derived from the Knights Templars2 and has the aim to describe the structure of the system.

Templars are well-armed and fight with stormy attacks against their foes and are merciful to the

innocent. And TEMPLAR just does the same. It uses tempestuous attacks on the sets of formulae

to reduce them (to prune them) but is merciful to those formulae which he accepts as innocent (rel-

evant). And he does this mostly with logical relevance which is based on unification algorithms.

But there are many heuristics to prune the search space and there is even an implementation of a

linguistic concept.

In this years CASC (CASC-243), a beta version of TEMPLAR with a reduced set of heuristics

(in order to save memory) in combination with leanCoP named TEMPLAR::leanCoP with version

0.8 was handed in in order to compare the new filtering approach and the effects with the other

theorem provers.

This document is separated in six parts where the first one describes the preliminaries which

are mostly well-known but also contain some linguistic aspects. The second part described the

concept of TEMPLAR including the search strategies, the formula analysis and import and also

some structure sharing approaches. The third part describes the most important aspects of the

implementation including the relevance filtering, search graph restrictions and output mechanisms.

The evaluation chapter contains results from tests with TEMPLAR on a set of problems which

were used in CASC J6 and the related work chapter describes some concepts which have common

aspects with TEMPLAR. The last part gives a brief conclusion on the effects of TEMPLAR and

some possible improvements which can be done. The appendix contains all detailed benchmarks

with TEMPLAR together with leanCoP and the eprover(E) and also some usage information for

TEMPLAR including the installation.

2An ancient fellowship of Christian soldiers. There are many references to them so a quite new academic one was

chosen[Ger96]
3http://www.cs.miami.edu/~tptp/CASC/24/

12

http://www.cs.miami.edu/~tptp/CASC/24/

2. Preliminaries

13

2 Preliminaries

This chapter covers knowledge which is partly common for computer scientists and partly out of

scope. But since the terms which are used in this document need to be clear, all needed knowledge

is introduced.

The covered topics are the syntax of classical first order logic, normal form transformations,

unification and connections(all included in section 2.1), search concepts in graphs and graph re-

ductions (included in section 2.2) and also linguistic approaches to automated text summarization

(included in section 2.3).

All introduced concepts can be found in primary literature for the specific topics but references

to quite clear descriptions or initial authors of the concepts are given in the specific parts.

2.1 Fundamentals of Classical First Order Logic and Reasoning

This section copes with the fundamentals of classical first order logic (fol) including normal form

transformations, unification and connections. All these topics are described in-depth in [Bib92]

and [BBJ07] and many other literature contains these topics, too.

First Order Logic and Normal Forms In order to use consistent terms, the syntax of classical

first order logic formulae needs to be introduced.

Definition 1 (Syntax of first order logic) A formula in first order logic consists of predicates

(e.g. p(x,Y)) and equalities (e.g. x = y or equal(x,y)) which are bound by the logical junc-

tions negation (¬), conjunction (∧), disjunction (∨), implication (→), equivalence (↔), existential

quantification (∃) and the universal quantification (∀). Predicates of a higher arity then zero and

equalities contain terms which are variables (e.g. Z), functions (e.g. f (x)) and constants (func-

tions with zero arity, e.g. x). All variables that are not free, are either bound by an existential

quantification (e.g. ∃X ,Y : X = Y) or by an universal quantification (e.g. ∀X : p(x)). �

Note: Technically, equalities can be seen as special predicates with a fixed arity of two and

symmetry property concerning unification. Thus, the terms predicate or (equality-)predicate

will be used also as description for equalities whenever no distinction between equality and

predicate is needed.

The figure 2.1, for example shows a set of first order formulae conforming to the syntax defini-

tion which contains a conjecture (Conj) which needs to be proven with the formulae (Ax 1 - Ax

6).

There are some fact formulae which state that tweety is a bird (Ax 3) but not a penguin (Ax 5)

and that ralph and tux both are penguins (Ax 6, Ax 4). Also, there are quantified formulae which

state that every bird which is not a penguin is able to fly (Ax 1) and that there is a substitution for

the variable X such that X is able to fly if and only if (iff) X is a bird and has wings (Ax 2).

But to simplify the automated reasoning with the formulae, usually they are transformed into

normal forms like the negation normal form, Skolem normal form or clausal normal form. In order

to transform a formula into clausal normal form, it already needs to be in Skolem normal form and

the Skolem normal form transformation works only on formulae which are in prenex normal form.

Thus, all formulae are first transformed into negation normal form, then into prenex normal

form and Skolem normal form and finally into clausal normal forms.

14

2.1 Fundamentals of Classical First Order Logic and Reasoning

Conj) canFly(tweety)
Ax 1) ∀X : ((bird(X)∧¬penguin(X))⇒ canFly(X))
Ax 2) ∃X : (canFly(X)⇔ (hasWings(X)∧bird(X)))
Ax 3) bird(tweety)
Ax 4) penguin(tux)
Ax 5) ¬penguin(tweety)
Ax 6) penguin(ralph)

Figure 2.1: Formulation of the Tweety-problem as first order logic formulae

The negation normal form is a simplification which only includes the logical junctions nega-

tion, disjunction, conjunction and quantifiers. The implication and equivalence are replaced by

semantically equivalent formulae and all negations are propagated into sub-formulae until they

are located directly before the predicates and equalities.

The rules for semantic equivalence over some arbitrary formulae A and B are (including De

Morgan’s laws):

• A⇒ B≡ ¬A∨B (Elimination of implication)

• A⇔ B≡ (¬A∨B)∧ (A∨¬B) (Elimination of equivalence)

• ¬∀A(F)≡ ∃A(¬F) (Negation of universal quantification)

• ¬∃A(F)≡ ∀A(¬F) (Negation of existential quantification)

• ¬(A∧B)≡ (¬A∨¬B) (De Morgan’s law 1)

• ¬(A∨B)≡ (¬A∧¬B) (De Morgan’s law 2)

• ¬¬A≡ A (Elimination of double negation)

The fact whether a predicate is negated in negation normal form or not can be described as

it’s polarity. All predicates in the negation normal form of the formula get a polarity which is

negative ("-") if the predicate is negated and positive ("+"), otherwise. There are different notions

for polarities like T for positive and F for negative as used in [Smu95], for example.

After transforming a formula to negation normal form, it can be transformed into prenex normal

form and Skolem normal form. The prenex normal form is a form where no ambiguities about the

variable bindings are present.

Definition 2 (rectified prenex normal form) A formula in classical first order logic is rectified if

no two quantifiers bind the same variable with the one quantifier being in the scope of the other and

no variable is unbound. A formula is in prenex normal form, iff it has the form Q1X1...QnXn(F)
where Qi ∈ {∃,∀} with Xi being a variable and i ∈ N. Furthermore, F is a formula which does not

contain any quantifiers and is called the matrix while the quantifier sequence is called prefix. �

Note: Technically, a formula can be seen as in rectified prenex normal form if no variables

are unbound and all ambiguities by nested quantifications of the same variable are resolved

by renaming the bound variable in the nested quantifier and in the sub-formulae which are

contained in the nested quantified formula.

15

2 Preliminaries

Every formula can be transformed into prenex normal form if it is not already in this form

which was proven in [BBJ07]. The transformation is done by shifting all quantifiers to the left

(the outer scope) end and replacing all variables which would become bound by them with a new

variable. All unbound variables are bound by introduction a new universal quantifier in the most

outer scope.

Definition 3 (Skolem normal form) A formula in classical first order logic which is in rectified

prenex normal form is in Skolem normal form iff the only quantifiers are universal quantifiers. �

The fact that every fol-formula has a Skolem normal form which also is satisfiability-equivalent1

(≡sat) to the original formula was proven in [BEL01] for example.

The transformation into Skolem normal form is done by replacing every existentially quantified

variable by a Skolem function (or constant) which does not occur in the matrix and also not in any

other formula. All universally quantified variables left to the existentially quantified variable form

the arguments of the new function.

To illustrate this, consider the following two first order formulae in figure 2.2. The skolem-

∀X∃Y : (contains(X ,Y))≡sat ∀X(contains(X ,sk_ f un1(X)))
∃X : (isNaturalNumber(X))≡sat isNaturalNumber(sk_ f un1)

Figure 2.2: Skolemization of fol-formulae

ization of the first formula is done by replacing the variable Y with sk_ f un1 and defining X as

its argument. The skolemization of the second formula is done by replacing the variable X with

sk_ f un1 which is a Skolem constant.

Since most of the theorem provers use a clause normal form or the definitional normal form

for the proof search and TEMPLAR uses meta-informations from this forms, they will be intro-

duced,too.

Definition 4 (Clause normal form) A fol-formula is in clause normal form, if it is in Skolem

normal form and a conjunction of disjunctions (conjunctive normal form) or a disjunction of

conjunctions (disjunctive normal form). For the conjunctive normal form, the disjunctions are

clauses and contain only predicates (and equalities). For the disjunctive normal form, the clauses

are conjunctions and contain only predicates (and equalities). �

Every first order formula can be transformed into a clause normal form which is obviously possible

by just applying the laws of distributivity.

While the naive transformation via the laws of distributivity can lead to exponential growth

of the formula, the definitional transformation only leads to linear growth in size of the original

formula as noticed in [Ede92]. The definitional transformation is done by introducing a new name

(definition) for every sub-formula of the Skolem normal form. By this, the formula is virtually

flattened. Every definition contains informations about the contained variables in this sub-formula.

1The skolemized formula is satisfiable iff the original formula is satisfiable and unsatisfiable iff the original formula

is unsatisfiable.

16

2.2 Fundamentals of Graphs and Graph Search Algorithms

Unification and Connections Since the concept of TEMPLAR is mostly based on unifications

and connections, these concepts also need to be introduced and can also be found in standard

literature like [Bib92].

Definition 5 (Substitution and Unifiability) Let V = {V1,V2, ...,Vn} with n ∈N be a set of vari-

ables. Also, let T = {T1,T2, ...,Tn} with n ∈ N be a set of terms (variables, functions and con-

stants). Then, the mapping σ : V → T from variables to terms is called a substitution.

Two predicates p(s1,s2, ...,sn) and p(t1, t2, ..., tn), with si, ti being terms with i ∈N are unifiable

iff there is a substitution such that σ(si) = σ(ti) holds for every i ∈ N. �

If the predicates are unifiable, then σ is called their unifier and σ is called the most general

unifier (mgu), if an unifier θ exists for every other unifier σ
′ such that σ

′ = θ(σ). Precisely, every

unifier is constructible by applying a substitution to the most general unifier.

But substitutions of the form σ(Y) = f (Y), for example would lead to infinite loops in the unifi-

cation when not being avoided. Thus, unification algorithms usually implement an occurs-check.

This check fails, if a function would substitute a variable while containing it. The unification fails

if the occurs check fails since no finite set of substitutions would be constructible.

With unifications being defined, the connections which are the paths in the graph search of

TEMPLAR, can be described.

Definition 6 (Connection) A pair {p,¬p} of predicates which are unifiable is called a connec-

tion. A pair {A = B,¬(C = D)} of equalities with A,B,C and D being terms is a connection iff

A= B is unifiable either with ¬(C = D) or with ¬(D=C). �

In the following section, a brief introduction into graph theory will be given to make the synopsis

of used terms in the scope of this document consistent.

2.2 Fundamentals of Graphs and Graph Search Algorithms

In this short section, we will take a look at some basics about graphs and search algorithm types

which can also be found in [Sip96].

Definition 7 (Graph) A graph G = (N,E) consists of a set N of nodes(vertices) and a set E of

edges with every element of the set of edges being a pair e= (ni,n j) where i, j ∈N and ni,n j ∈ N.

A directed graph follows the rule that every edge is directed such that the pair e is an edge with

ni being the source and n j being the target. For undirected graphs, ni and n j are both source and

target.

A graph is acyclic if there is no path p= (ni,ni+1, ...,ni+m) with m, i ∈ N such that ni = ni+m.�

There are two different commonly used graph search types, depth-first and breadth-first. The

(standard) depth-first search always extends the leftmost path until it cannot be extended and then

tries to extend the next leftmost path. By this, the depth-first search always finds (if it terminates)

the first solution but not necessarily the shortest path. The (standard) breadth-first search tries to

extend every path in every iteration of the search until the searched-for object is found. Due to

this, the breadth-first search always finds the shortest path. While the depth-first search can run

into cycles and thus does not necessarily terminate, the breadth-first search always terminates if

the searched-for object can be found in the graph even if there are cycles.

17

2 Preliminaries

Sometimes, a node n in a graph is a target node of directed edges of different source nodes ni
with i ∈N. Then, for every node ni with the target n, the sub-graph of n is identical and n is called

a nexus. This is described in detail in [Bir10] and the nexus concept can be adapted in multiple

ways in automated reasoning.

For example, if two predicates both contain a function (e.g. f (x,1,3)), the function root f in the

graph representation of the predicates would be a nexus which states that the complete function

graph can be shared by the two predicates. Also, if two connections have the same target predicate

of the same formula, further outgoing connections from the shared target predicate will be identical

in both paths if the substitutions of both connections concerning the target formula are unifiable

and the formula was visited in both paths for the first time.

The next section covers some basic linguistic aspect commonly used in the computational lin-

guistics in Natural Language Processing (NLP).

2.3 Selected Linguistic Aspects

In computational linguistics, natural language like speech, documents and other media are anal-

ysed in order to compute specific relations like dominance of a word over another word or a

sequence of words. Commonly, words ("the","bear",...) and punctuation (",", ".",...) are called

token. Multiple token can be joined into spans or structures (e.g. "the bear" and "the wolf is howl-

ing"). While spans merely overlap token, structures may overlap both spans and structures. This

constructs make it possible to recognise (though with potential failures) the meaning of sentences

and documents in order to automatically produce summarizations of texts. Also, computational

linguistic concepts can be used to decide whether a subset of a set of documents address the same

topic.

But in order to do these things, the language has to be analysed. For example, to recognise the

topic of a text, all relevant words or sequences of words need to be found. One of the metrics used

for the topic recognition is the tf-idf value.

tf-idf-value In linguistics, the frequency of a word in one document (text) is called text fre-

quency(tf) and the frequency of a word in different documents is called document frequency

(df). For the df, if a word is contained in a document multiple times, it is just counted once.

The tf-idf-value (probably originated from [Jon72]) of a word in a specific text is used to decide,

how relevant a word is for the text and idf is the inverse document frequency. The text frequency

is multiplied with the inverse document frequency. A high frequency of a word in one text may

increase the tf-idf-value and a high document frequency may lower it. The aim is to penalise

so-called common word like "it", "the" and "I". The probability that the word "the" will occur in

nearly every English document is high but the probability that "vehicle" will often occur is quite

low unless most of the documents have some vehicles as topic.

We will now consider the formal definitions of the text frequency and the inverse document

frequency.

Definition 8 (Text Frequency) The text frequency t f (w,d) if the frequency of the word w in

document d. It can be calculated as

18

2.3 Selected Linguistic Aspects

• boolean text frequency :

t f (w,d) =

{

1 w ∈ d

0 w /∈ d

• normalised text frequency :

t f (w,d) = f (w,d)
max{ f (v,d)|v∈d}

where f is the raw frequency

. While the boolean frequency merely tells whether the word is contained, the normalised fre-

quency establishes a relation between the frequency of the word w and the most common word in

the document. �

The inverse document frequency is a measure of the commonness of a word in the set of docu-

ments.

Definition 9 (Inverse Document Frequency) Let D= {d1,d2, ...,dn} with n ∈N be a set of doc-

uments and w a word for which we want to know the inverse document frequency. Then, the

inverse document frequency is defined as followed.

id f (w,D) = log
|D|

|{d∈D|w∈d}| �

The more common a word is in the documents, the smaller the inverse document frequency will

be. Due to this, multiplying the inverse document frequency of an extremely common word with

the text frequency usually leads to a smaller tf-idf-value. Thus, a high tf-idf-value for a word

indicates that this word is quite uncommon in all documents but common in the one document, for

example.

19

3. Concept

20

3.1 Data Import and Representation

This concept addresses the selection of first order formulae from big formula sets in order to

assist theorem provers which can not handle those big formula sets. The selected formulae need

to be relevant for the proof of a specified formula. But for this, the assisting system needs to

decide about the relevance. In order to be able to decide about the relevance of some formulae and

select the ones which are classified as relevant we need to import and represent these formulae in

some machine readable form. Thus, we need some input format which can specify first order logic

formulae and can be processed easily.

One of this formats is the TPTP[Sut09] syntax which specifies a generic syntax definition which

can be used to represent logic formulae of different types. One of this specified languages is the

first order formula (fof)-language which is used in this concept. The formulae in fof-syntax need to

be imported into internal data structures of the system TEMPLAR. The import and representation

process will be addressed in the next section. Following to this topic, the analysis of the formulae

and generation of some metrics which can aid the theorem prover or the selection engine will be

described in the section 3.2.

After importing and analysing the formulae, the concrete selection of relevant formulae needs

to be done which will be the subject of the sections 3.3 and 3.4. While the section 3.3 covers

the unification based algorithms, the section 3.4 describes some linguistic approach which was

partially used in some other systems.

3.1 Data Import and Representation

Now, the import and representation concept will be described in order to give a brief overview.

This overview covers the original form of the formulae, the negation normal form and specific

information about the Thousands of Problems for Theorem Provers (TPTP) syntax. All conven-

tions of the TPTP syntax can be found in the technical report 1 by Geoff Sutcliffe. The formulae

are held persistent in files conforming to the TPTP syntax. The file itself can contain an arbitrary

number of formulae which are classified as different types of first order logic formulae. The file

also contains an arbitrary number of import statements which are references to other TPTP files

which contain more formulae to import. This makes a domain specific fragmentation of formula

sets possible since it would not be adequate to mix first order formulae with propositional logic,

for example.

Each formula in TPTP syntax has one of the following forms

fof(NAME,TYPE,FORMULA,ANNOTATIONS).

fof(NAME,TYPE,FORMULA).

where NAME is the TPTP-internal name of the formula. The field TYPE is a classification about

the validity or purpose of the formula, FORMULA is the raw logic formula in TPTP syntax and the

optional ANNOTATIONS field contains information about the source of the formula, for example.

Table 3.1 summarizes the most important types of TPTP formulae. The base type is the type

axiom which resembles formulae which are generally valid. Formulae of the type conjecture or

question are formulae whose validity needs to be proven. For formulae of the type question, the

variable substitutions for the most outer existentially qualified variables need to be specified by

the theorem prover after successfully finding a proof. Formulae of the types lemma and theorem

1http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml

21

http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml

3 Concept

can be seen as valid but are redundant with respect to the axioms in the axiom set. If a lemma or

theorem is not redundant, the axiom set is ill-formed and thus inconsistent. Formulae of the types

hypothesis and assumption also can be seen as valid but are not necessarily valid for all formula

sets.

TPTP formula type Valid Special

conjecture/question unknown output yes/no and variable bindings for question

axiom yes

lemma,theorem yes must be redundant w.r.t. axioms

hypothesis yes

assumption yes

Table 3.1: Most important formula types in the TPTP library and their properties

These TPTP files are read and all formulae are imported into a graph representation which can

map the hierarchy of sub-formulae and terms of predicates. After that, all formulae are trans-

formed into negation normal form and Skolem normal form. While conjectures and questions are

seen as invalid and thus negated (polarised negative) before the transformation, all other formula

types are assumed to be valid and thus not negated (polarised positive). This polarisation simulates

the negation of the logical validity which states that the conjecture is the logical consequence of

the set of axiom like formulae. Negating this, the negated conjecture is no logical consequence

and thus, there is a possibility to show that there is a way to show that the negated conjecture is

refutable with respect to the set of axioms.

Since every formula is a hierarchic structure (a directed graph), we need some terms to con-

sistently describe the structure. Predicates, equalities, disjunctions and conjunctions are called

formulae hereafter and equalities and predicates are summarised as connectible formulae. The

TPTP structure of the formula will be called root formula since it contains the information of it’s

name, type and the actual formula structure and after the import the negation normal form formula,

too.

Formula Representation Every imported formula is represented in two different forms - orig-

inal formula structure and negation (skolemized) normal form. The TPTP specifies the logical

operations negation (∼), disjunction (;), conjunction (&), negated disjunction (NOR, ∼;), negated

conjunction (NAND, ∼&), left oriented implication (<=), right oriented implication (=>), equiv-

alence (<=>), negated equivalence (<∼>), equality (=), negated equality (!=), existential quan-

tification (?) and universal quantification (!). Those operators are all supported by the concept of

TEMpestuous Pruner based on Logical Axiom Relevance (TEMPLAR).

In table 3.2, the most important formula types and their representation in the TPTP-syntax and

their mapping to negation normal form are summarized. Commonly, equivalence is first trans-

formed into a conjunction of implications and then into a conjunction of disjunctive formulae. But

the intermediate transformation can be and is omitted. Negations are propagated to sub-formulae

as in the standard negation normal form transformation with use of De Morgan’s laws, if necessary.

The identifiers X and Y which are used in the table are place-holders for formulae or for terms

in case of inequality.

The existential and universal quantifiers are removed during the (optional) skolemization. After

22

3.1 Data Import and Representation

Formula type Original(TPTP input) Negation Normal Form

Inequality X! = Y ∼ (X = Y)
Equivalence X <=> Y (∼ X ;Y)&(X ;∼ Y)
Negated equivalence X <∼> Y (X& ∼ Y);(∼ X&Y)
Left-implicative X <= Y X ;∼ Y

Right-implicative X => Y ∼ X ;Y

NAND X ∼ &Y ∼ (X&Y)
NOR X ∼;Y ∼ (X ;Y)

Table 3.2: Mapping of TPTP input formulae to negation normal form

the negation normal form transformation was done, every normal form formula has the following

set of information:

• For all formulae: The containing root formula and the potentially empty set of recursively

containing super-formulae

• For conjunction and disjunction: The roots of the sub-formula graphs

• For connectible formulae: The arity and the roots of the term graphs

Every function with an arity of at least one knows it’s direct sub-terms in the sub-graph and op-

tionally, which variables are contained in the sub-graph. Functions with an arity of zero,conforming

to the TPTP syntax, are called constants and constants can be numbers, single-quoted strings or

words which begin with a lower case letter.

Structure Sharing The formula and term hierarchies are called graphs and not trees. The reason

is that the concept includes structure sharing [MB72] and the graphs are directed. Structure shar-

ing is a concept where every object which occurs at different positions and is identical in every

position can be seen as unique object which is shared between every occurrence. In the concept

of TEMPLAR, restricted structure sharing is used in order to speed up the unification process.

Every constant, number, single-quoted string and function classifier (name and arity) is unique

and shared between all formulae contained in the formula set. Variables are shared in one formula

since two variables which occur in different formulae could have the same name but need to be

seen as different variables. Thus, calling the formulae trees would be formally wrong. They need

to be seen as directed graphs with every super-formula or super-term being the source and every

formula or term being a target since extended structure sharing. The restriction in the structure

sharing is that two functions whose graphs are identical are not shared since this would require

to make an identity check. The same holds for formulae which are syntactically identical. An

example formula is the formula equal_defn from the problem set SET002+32 which is shown in

negation normal form in figure 3.1 which is a visualization generated by TEMPLAR.

As it can be seen, the variables are only existent once but referenced by multiple predicates.

2http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET002+3.p

23

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SET&File=SET002+3.p

3 Concept

equal_defn,axiom

 &

+normal form

 |

 |

~ =

 &

 = ~ s u b s e t ~ s u b s e t

B C

s u b s e t s u b s e t

Figure 3.1: Formula in negation normal form with visualized structure sharing

3.2 Analysis

In this section we will take a look at some metrics which are generated by TEMPLAR during the

negation normal form transformation or directly thereafter. These metrics include the worst-case

clause count, the original formula depth, the structure containment information and the equality

scopes.

Clause Count Theorem provers usually transform every formula into conjunctive normal form

or disjunctive normal form which can lead to exponential growth of the clause count. Though

some theorem provers are able to create a definitional normal form which does not yield expo-

nential growth, the standard transformations may be more adequate for the proof search. To help

the theorem prover to decide which transformation should be done, TEMPLAR can compute the

worst case count of clauses which would be created in the standard transformation [dlT92] (con-

junctive normal form) and give this information together with the selected formulae to the theorem

prover. This informations are generated during the negation normal form transformation. Since

TEMPLAR uses the negative representation of validity, a conjunctive normal form would be cre-

ated. Thus, the predicates are distributed over disjunctions and the clause count can be calculated

as described in table 3.3 where |X | is the count of clauses which are generated by X .

Formula type clause count

Conjunction |sub f ormula1|+ |sub f ormula2|+ ...+ |sub f ormulan| for n> 1

Disjunction |sub f ormula1| ∗ |sub f ormula2| ∗ ...∗ |sub f ormulan| for n> 1

Predicate/Equality 1

Table 3.3: Clause Count Calculation Formulae

Thus, if a disjunction is generated by the negation normal form transformation, the multiplica-

tive formula is used and the additive formula is used, if a conjunction is generated.

24

3.2 Analysis

Formula Depth While transforming the original formula into negation normal form, TEMPLAR

evaluates the maximum formula depth of the original formula. This metric, together with the

clause count may be usable for the decision of the theorem prover which clause form (conjunc-

tive/disjunctive or definitional) should be chosen.

Structure Containment Some theorem provers have specialized inference engines which han-

dle special sets of formulae. For example, a theorem prover could use specialized heuristics when

it is aware that equalities are existent or absent in the given formula set. The same holds for the

case that single-quoted strings or numbers are contained. Thus, TEMPLAR determines whether

equalities, single-quoted strings and numbers are existent in a formula and may output this infor-

mation to the theorem prover. This informations are generated during the negation normal form

transformation.

Equality Scope We will now consider classical first order logic with equalities for which there

is no optimal solution in automated theorem proving. If two predicates are not unifiable due to

some function symbols being incompatible, there may still be an equality in the source or the

target formula which states that those two functions are equal. After the negation normal form

transformation, the equality scopes for a formula are created iff the formula contains equalities.

The equality scope is a virtual relation that states for one predicate (or equality) and a set of

equalities that if the formula would be transformed into disjunctive normal form, the predicate

(or equality) would occur together with every equality in the set in at least one of the clauses. In

conjunctive normal form in contrast, the predicate would not be in the same clause as the scoping

equalities. This scope is created by using the laws of distributivity. Despite extensive search, no

literature was found which describes such an analysis with this scope so that it is assumed that this

technique is either new or not well-known.

equal_defn,axiom

 &

+normal form

 | |

~ =

 &

 =

~ s u b s e t ~ s u b s e t

B C

+ e q S

s u b s e t s u b s e t

-eqS+ e q S + e q S

-eqS -eqS

Figure 3.2: Formula in negation normal form with visualized equality scope

25

3 Concept

Figure 3.2 shows the formula equal_defn, again with visualised equality scope. The dotted

relations show that the target of the relation scopes the source of the relation. A relation +eqS

states that the scope is one of a positive equality and -eqS is a scope of a negative equality.

The equality scope of one predicate can be used by TEMPLAR to apply unification via equali-

ties and has the aim to reduce the number of selectable equalities for the E-Unification.

3.3 Unification based Search Strategies

This section covers the search for connections in the set of all formulae. In especial, different

search strategies with different properties are introduced and described in depth. First of all, the

basics of the different selection algorithms are described, followed by a description of search graph

restrictions for specific algorithms.

3.3.1 Selection Algorithm Basics

This part illustrates the basic concepts of all selection algorithms. Here, the selection process

which is used by the unification based selection strategies is described. Based on this, the basic

selection, the non-structural and the structural selection will be introduced.

Selection Process Every unification based selection makes a breadth first search starting with

a seed. The selection of the seed is not trivial since not every formula is adequate for initializing

the selection. For example, the conjecture could be a formula like $false which states that the

formula is false. This is commonly known as the liar’s paradox [Rus08]. If the formula does

not contain any predicate which can be connected, we need to use another formula as seed. The

TPTP specifies several formula roles including conjecture/question, definition, lemma, theorem,

hypothesis, assumption and axiom. According to the TPTP technical report, the formulae with the

types lemma and theorem are derived from the axioms and thus must be provable from the axioms.

If the conjecture cannot be used as seed, other formula types may be used.

Thus, a list of seeds is generated with the following precedence:

1. conjectures/questions

2. theorems

3. lemmas

4. hypothesis

5. assumptions

If none of the conjectures can be used to create a connection graph, try to create a connection

graph for a theorem. If this fails, try to use the lemmas as seeds and so on. Axioms are not used

as seeds since this would require to chose an axiom randomly which is not feasible when having

many thousands of axioms.

When the initial search for connection is successful (first iteration), connections are searched

for the now included (connected) formulae (second iteration). After that, connections are always

26

3.3 Unification based Search Strategies

searched for the formulae which were connected in the last iteration. The process halts if a proof

was found or the time expired.

After every iteration, a prover instance is started if wished.

Basic Selection This selection is based on the concept of ARDE which was described in [Fra12b].

Every formula is seen as a set of predicates which is a relatively weak model but easy to imple-

ment.

In the initial iteration, a connection is searched for every predicate contained in the seed formula.

Since every connection has a predicate as target and the target is contained in a formula, the target

formula can be seen as connected to the source formula and is included. In every following

iteration, connections are searched for formulae which were connected in the last iteration for the

first time. If a formula is connected in the second iteration for example, every possible connections

to the predicates of this formula are ignored (no predicate of an already included formula is used

as target of a connection) in the third and every following iteration since the formula was already

included. Also, every variable substitution which is a consequence of an unification process is

discarded.

This search model is obviously not a graph search in it’s common way. It is a layer based search

algorithm and all iteration results are pairwise disjunct sets of formulae.

To be precise, let i, j >= 0 be iteration indexes and Selectedi be the set of formulae which were

selected in iteration i (or j). Then,

∀i≥ 0.∀0 < j < i. Selectedi∩Selected j = /0 must be true.

Non-Structural Selection This selection is a refinement of the basic selection and uses the vari-

able substitutions which lead to the unifiability of two predicates. The aim is to reduce the possible

connections in later iterations by binding the variables with the unifier. This involves the need to

break with the layer-based representation of the search. In a layer, there are no information which

two predicates were connected and thus lead to the inclusion of a formula into the selected formula

set. But if we want to use the variable substitutions, we need chains of connections which contain

the variable substitutions, the source predicate and the target predicate.

This implies a graph-representation of the search. If a predicate was the target of a connection

from multiple different predicates, potentially contained in different formulae with potentially

different variable substitutions, we need to consider the connections as separate result sets.

The initial iteration is conceptionally equivalent to the one for the basic selection. But in contrast

to the basic selection, including a formula multiple times is possible. For every predicate in the

seed formula, connections are searched and saved as connection chain with initial length of one.

The variable substitutions applied to the source and target predicate are saved in the connection

chain. In every following iteration, every chain is tried to be extended by connecting all predicates

in the target formula which were not yet connected in the chain.

Structural Selection The Structural selection is a strong refinement to the non-structural se-

lection. In contrast to the non-structural selection concept, the structure of a formula for which

connections are searched is considered. Since the search process is refutation-driven, the formula

structure is extremely valuable.

27

3 Concept

Consider an arbitrary formula of first order logic which shall be refuted. To achieve this, we need

to find a set of connections from the predicates of this formula to predicates of another formula

- but not necessarily a different one. In especial, consider the two different types of compound

formulae in conjunctive normal form - conjunction and disjunction. A conjunction is refutable iff

there is at least one contained predicate which is refutable and a disjunction is refutable iff for all

contained predicates a refutation exists. If we can not refute all predicates in a disjunction, the

entire disjunction cannot be refutable and we can discard at least all found connections for this

disjunction. If we can not refute even one predicate of a conjunction, the entire conjunction can

not be refutable.

These rules are used as restriction. Since the search does not use the clause normal form (con-

junctive or disjunctive) but the negation normal form, nested formulae can lead to even more

restrictions. Consider a disjunction which contains at least one conjunction and some predicates.

If the conjunction is not refutable, all connections of the disjunctions are discarded. But if one of

the connections in the disjunction or conjunction was the one which lead to the inclusion of the

formula, we can roll back the inclusion - the including connection becomes invalid.

But for this, we need a slightly different representation of the search graph. every connection

needs to know which two predicates and which variable substitution were used but also which

outgoing connections were established and which connection lead to the construction of it. Every

connection needs to know it’s source connection.

3.3.2 Search Graph Restrictions

In this part, the restrictions to the search graph for the non-structural and structural selection are

described.

Spanning a search graph can lead to an enormous growth of the search space. This is due to

the fact that the use of the search graph leads to the possibility of visiting a predicate more than

once. But this is needed since a predicate normally can be used for different connections with

different variable bindings. And the use of different variable bindings is explicitly wished since

it can reduce the number of possible connections when other constraints apply like the use of the

formula structure.

Thus, pruning techniques are needed to reduce the search space. Those are the Reconnection

Suppression, the Ground Connection Target Merging, the Conjunction Cut and the Nexus Path

Union.

Reconnection Suppression This technique is quite simple and should be intuitive. Since the

search is represented by paths and in every path, the visited predicates are known, the connection

of already visited predicates should be omitted. This can be done since re-connecting will not

change the search space in any way apart from possibly creating circular loops which should

obviously be avoided.

Ground Connection Target Merging This technique uses the identity of multiple target pred-

icates to prune the search space. Consider the two formulae F1 and F2 as shown in figure 3.3.

While F1 is a fact, F2 contains three predicates of which two are identical. As this figure shows,

two connections are possible and are normally evaluated. Note that both connections are ground

28

3.3 Unification based Search Strategies

which means that no variables are involved. In both branches, two predicates need to be connected

which leads to at least four connections when the non-structural search is used.

Figure 3.3: Two connections using syntactically identical targets

But since both connections between F1 and F2 are identical, they can be merged into one con-

nection, marking both target predicates as visited. The application of this pruning leads to a

connection depicted in figure 3.4.

Figure 3.4: Two merged connections using syntactically identical targets

This merging omits the branch and leads to the reduction of four predicates to one predicate

which has to be revised for connection.

This pruning technique can be applied for non-structural and structural graph search.

Conjunction Cut The conjunction cut is a set of pruning techniques which are used for the

structural search since the formula structure is needed. The first one is a technique for choosing

connections to follow and uses the fact that one connection into a conjunction is sufficient to

refute it and uses ground connections. Consider the formulae shown in figure 3.5 where F2 is a

conjunctive formula.

All of the shown connections to F2 are valid refutations. Thus, choosing one of the connections

is sufficient and all others can be discarded. But if F2 is just a sub formula of a disjunction,

choosing the one connection which binds a variable could be the wrong choice when the variable

binding is not the right one for a proof. So, taking a ground connection should be the most secure

way since this results in minimal restrictions to the further search graph. This leads to a quite

simple rule. Whenever there are multiple connections from one predicate to multiple predicates in

29

3 Concept

Figure 3.5: Three connections to one conjunctive formula

one conjunctive formula, choose a ground connection, if existent. If there is no ground connection,

choose all connections.

The second technique reduces the count of possible outgoing connections depending on the

ingoing connection to the formula. It tries to reduce the drawbacks of not having a clause form.

One of the drawbacks is the nested structure of the formulae. Consider a connection which leads

into a conjunctive formula when having a clause form. This connection eliminates the complete

clause. But when the formula is not in clause form but in negation normal form and the predicate

is directly contained in a disjunction, the disjunction cannot be eliminated.

To see this problem and the solution, consider the formula (¬p(x)∧ q(x))∨ (r(x)), given in

figure 3.6 in a matrix representation.

Figure 3.6: The matrix representation of the formula (¬p(x)∧q(x))∨(r(x)) in negation- and conjunc-

tive normal form

In conjunctive normal form, it would be clear that the connection 3 can be omitted. But in

negation normal form, this is not clear when having deeply nested matrices. But the predicates

¬p(x) and q(x) have a common super formula which is a conjunction. In especial, the conjunction

is the most inner common super formula and this fact can be used to simulate the knowledge

existent in the clause normal form. If the law of distributivity would be applied, the two predicates

would not be in the same clause.

This leads to a rule for omitting outgoing connections depending on the ingoing connection.

If the most inner super formula of the predicate to connect and the predicate which was used to

visit the formula is a conjunction, do not connect. But the complexity of this check should not

be forgotten. Consider two predicates of which one lies in depth i and the other in depth j where

i, j > 1. If the common super formula has to be evaluated and one starts with the predicate in

depth i, one needs to check i times for all j whether it is the same super formula and whether it is a

conjunction. But when having the information for both predicates, which super formulae contain

30

3.3 Unification based Search Strategies

those predicates, this is possible in linear time. If every predicate knows the set of conjunctive

formulae which contain it recursively, the containment of a formula in this set can be checked in

constant time. Then, only n checks are needed where n is the count of conjunctions which contain

the predicate which is considered. But what if a formula is included by m distinct paths? In every

path, and for every predicate which could be connectible, this check would be done. This, still is

not efficient enough. But to reduce the count of checks, more information about the formulae are

needed. The solution is to compute a closure for every predicate (and equality) which contains

references to all predicates whose nearest common super formula with the specific predicate is

a conjunction. In a matrix representation as it is used to describe the connection calculus, all

predicates which have a conjunction as nearest common super formula are next to each other in

horizontal direction. All predicates which share a disjunction are next to each other in vertical

direction. So, if a connection is found into a formula, all predicates which are in the closure of the

target predicate of the connection can be marked as irrelevant and will not be used for outgoing

connection. Since the conjunctive closure is an extension of the equality closure, it can also be

created almost completely during the negation normal form transformation.

 &

 |

 | ~ =

 &

 =

cc+ e q S

~ s u b s e t

cc

~ s u b s e t

cc

s u b s e t

s u b s e t

cc

+ e q Scc

cc

+ e q Scc

-eqS

-eqS

cc

-eqS

cc

cc

Figure 3.7: Formula in negation normal form with visualized equality scope and conjunctive closure

Figure 3.7 shows the formula equal_defn, again but this time with equality scopes and the

conjunctive closures which are marked with the dotted relation cc. The variables are removed in

order to make the figure better printable. The semantics of this relation are the same as those of

the equality scope relation. To see that the the conjunction closure is an extension of the equality

scope, it should be sufficient to see that for every equality scope relation, there is one conjunctive

closure relation with the same source and the same target but the conjunctive closure relation is an

undirected one.

31

3 Concept

Nexus Path Union The Nexus Path Union is the only technique in TEMPLAR which breaks

the independence of distinct paths. This independence is quite important since different paths

normally contain different variable substitutions which should not be mixed up. But in order to

reduce the search space, the union of paths should be done, if appropriate. Consider two paths,

both connecting into the same formula for the first time and thus including it. If both connections

target the same predicate and the connection is ground, the extensions of both paths must be

identical since the variable state of the target formula is identical. But what if the extension fails

and the path becomes invalid? Both paths would have to be rolled back. And if they do not

become invalid, they are completely redundant. This is a spot where pruning can be applied. If

one path connects a predicate in a ground manner and the target formula is visited for the first

time, the incident may be saved. If another path ground-connects to the same predicate and also

for the first time into the formula, this path can be marked as alternative source connection path

for all extending paths of the first path which ground-connected into the predicate. If the first path

happens to be invalid, the connection into the predicate can be discarded, possibly yielding an

invalidity of the second path.

Surely, this technique can only be applied to the structural search since invalid paths can only

occur if the formula structure is used.

In the next section, the frequency based selection is conceptually described.

3.4 Frequency Based Selection

This section describes a more linguistic approach on the selection of relevant formulae which has

some common parts to the SinE selection.

The selection uses a tf-idf weight which is applied to every lexeme (function classifier, constant,

equality and predicate) and is created in the following steps.

1. calculate the raw frequency of all lexeme in the formula

2. calculate the normalised text frequency based on the raw frequency.

While the first step merely counts the number of occurrences of each lexeme in the formula,

the second step uses a normalisation function like the division of the raw frequency by the raw

frequency of the most common lexeme in the formula.

After this steps are done for all given formulae, the inverse document frequency is calculated

for all lexemes. First, the count of formulae in which the lexeme is contained is calculated (raw

document frequency). After that, the count of formulae is divided by the raw document frequency

and the logarithm of the result is taken.

But the lexemes with the highest tf-idf value are not necessarily the most important. Thus,

the relevance of lexemes is based on a range of th-idf values. A lexeme is seen as relevant for a

formula if it’s tf-idf weight is at most n times lower than the most relevant lexeme (comparable to

the "triggers" relation in SinE).

With this triggers, the selection is done. The conjecture is included as relevant in the first

iteration of the selection process. In every iteration after that one, the following steps are applied.

For every formula which was included in the last iteration:

1. if the maximum iteration was reached, end the search

32

3.4 Frequency Based Selection

2. get the lexemes which trigger this formula

3. search for all formulae which are triggered by those lexemes, too

4. include all formulae which are triggered and not already included

This search can lead to the inclusion of (too) many (not relevant) formulae which is not the

wished result. Thus, a finer granularity is needed. Consider a conjecture which has more than one

triggering lexeme. It is possible that not all lexemes lead to the needed formulae in the search but

only a subset. In this case, it is more feasible to perform the search per relevant lexeme (seed) of

the conjecture. But it is also possible that multiple seeds are needed in combination. Thus, the

search is performed for every seed and after that, the formula sets of all seeds can be merged per

iteration.

33

4. Implementation

34

4.1 Overall Workflow

This chapter describes the implementation of TEMPLAR which includes the import and repre-

sentation of the data, normal form transformations, analysis of the formulae, the search algorithms

and the output. First, an overview of the workflow of TEMPLAR is given in order to make the

modularity clear.

4.1 Overall Workflow

The workflow of TEMPLAR is managed by three parts which work hand in hand. The top-level of

the workflow is the TEMPLAR main function which triggers the subsystems. The overall work-

flow is shown in figure 4.1 which is a Unified Modelling Language (UML)1 sequence diagram.

Figure 4.1: The overall workflow of TEMPLAR

As mentioned, TEMPLAR is the top-level management layer. It’s first action is to trigger the

command line parsing. If this one is successful, a configuration object called TEMPLARConfig-

uration is generated which contains the following information:

• The input file name (mandatory)

• Whether the input file is a batch file or not (default: no batch file but TPTP file)

• Whether proofs should be attempted (default: no attempts)

• The chosen search engine (basic/non-structural/structural/frequency based/dynamic selec-

tion, default: dynamic)

• The output form of the formulae (original or Skolem, default: original)

1http://uml.org

35

http://uml.org

4 Implementation

• Whether conjectures should be seen as valid and axioms as invalid, default is invalid con-

jectures

• The global wall clock time (default: unlimited)

• The CPU core count (default: 4)

If the batch mode is activated, a batch file parser is triggered which parses the file and returns

a vector of Batch objects which contain informations like global axiom files, problem time limits

and the problem input and output files. In batch mode, the BatchProcessor is triggered with the

TEMPLARConfiguration and the vector of Batch objects. The BatchProcessor itself iterates over

the vector of Batch objects. In every iteration, global axiom files are imported (concurrently, if

there are enough cores and files). The global axiom files are held persistent until the complete

batch is finished in order to reduce the count of files which need to be loaded again. After that, the

BatchProcessor iterates over all problem definitions in the Batch object and imports the problem

file and all local axiom files. The local axiom files are cached for later problems and batches. If

a local axiom file has the same path as a global one, the duplicate is recognised. After loading

all files, the formula selection is triggered. This is done by creating a FormulaSelector object

which is one of the search engines. Then, a chain of functions is called until no new formulae

are selected or the time limit is reached (which is checked by TEMPLAR). After every iteration

(select,getSelectedFormulae and check whether new formulae were selected), a prover instance is

started on the selected formulae if proofs should be attempted. If one of the prover instances finds

a proof before the time limit is reached, all other prover instances and the selection are stopped.

If the batch mode is not activated, the input file is seen as TPTP file and a direct call to the

problem routine is done. For this mode, the ProblemProcessor was implemented. It only imports

the problem file and local axiom files, if existent and uses the FormulaSelector and the prover in

the same way the BatchProcessor does.

Now that the general workflow is clear, the specific parts can be described in-depth.

4.2 Data Import and Representation

This section concerns the import and representation of the data. The first order formulae need to

be imported from the TPTP syntax into a structure which can be processed by the system.

4.2.1 Representation of the Formulae

In order to process the formulae, specific parts of them need to be distinguishable from each other.

For example, a variable needs to be distinguishable from a constant, function, number or quoted

string. Thus, all variants of terms need to have specific representations. But since numbers and

quoted strings are constants, they have some common properties with constants. Though constants

formally are functions with an arity of zero, they are not seen as a subtype in this implementation.

The reason is that checking whether two terms are equal is easier to implement when constants are

not treated as functions. If the constant would be treated as function, at least the arity comparison

would be needed which is a waste of time when it is possible just to check whether both terms

are constants. Furthermore, no argument vector needs to be saved for constants which would be

empty anyway but still use a minimum amount of memory.

36

4.2 Data Import and Representation

All this implies the implemented class hierarchy for terms as shown in figure 4.2 which is an

UML class diagram. All UML class diagrams used in the following may contain the following

relations:

• Generalization (arrow with triangle tip): the target is the generalization of the source

• Aggregation (arrow with non-filled diamond): the target has an object of the source type

• Composition (arrow with filled diamond): the target contains the source, if the target is

destroyed then the source is, too.

• Association (dotted arrow): the target is somehow associated with the source, e.g by aggre-

gation

Figure 4.2: The Hierarchy of Terms

Though the figure is self-explanatory, there are some details which are important. Some of

the attributes of the classes contain the symbol * which denotes that the attribute is a pointer or

more specific, a variable which saves the unique memory address of the object. This already gives

a small insight to the way the unification works. The comparisons of constants, variables and

functions are not done by comparing the name (and arity for function) but by merely comparing

the fixed-size memory addresses. If a constant is used in two functions, the memory address

is the same for both occurrences. For functions, the memory address cannot be used since a

function with a specific arity and name can contain different arguments in different occurrences.

Thus, the Function class is merely a container for the argument vector and an object which is

called FunctionClassifier. The FunctionClassifier encapsulates the name and arity which allows

the unification of functions with the same classifier but different argument vectors. Obviously, the

check for the equality of name and arity can be done in one step by merely comparing the memory

address of the classifier objects. Also, the Function class contains a HashSet of Variable pointers

which is the set of all variables which are contained in the function. This allows an occurs-check

with constant time complexity in the average case for the unification.

Since the formula structure is used by TEMPLAR, the formula structure needs to be represented

in a usable way, too. The figure 4.3 shows the class hierarchy for formulae which is quite complex

due to the complexity of the TPTP syntax.

37

4 Implementation

Figure 4.3: The Hierarchy of Formulae

In order to make the processing of the formulae as easy as possible, some inheritances were

introduced. The negated equality (∼=) inherits from the equality and just behaves inverse to the

equality but has the same properties. The negated disjunctions and conjunctions inherit from the

disjunction and conjunction though the TPTP specifies NAND and NOR as non-associative op-

erators while disjunction and conjunction are specified to be associative. The reason is that the

negation normal form transformations can be implemented in the DisjunctiveFormula and Con-

junctiveFormula class and the NORFormula and NANDFormula class just calls the inverse trans-

formation functions in their base classes. The Equality class has two unification functions since

equalities are symmetric and thus, two unifications are needed to check whether two equalities are

unifiable. The Predicate class contains two Name object (string container) pointer which are the

qualified name of the predicate and the qualified name of the predicate class which is a candidate

for connection. The reason for using the Name class is that predicate classes are quite common

and may become long. Thus, saving the full name once and using an fixed-size pointer can spare

a lot of memory if the average length of the predicate class name is higher than eight. This is due

to the fact that a pointer uses eight byte on a 64 bit architecture which is equivalent to a string of

size eight and the predicate class consists of the polarity (one byte), the predicate name and the

arity (at least two bytes since a slash is used as delimiter). Thus, an average predicate name size

of six or higher leads to reduction of memory consumption. Also, the predicate classes can be

held persistent in a hash table which has pointers instead of possibly long strings as key and sets

of Predicate pointers as value. The access can be expected to be faster with pointers since memory

addresses are unique which allows some optimizations for the hashing algorithm of hash tables.

In order to save equalities as (Equality)predicate classes, too an abstraction is needed. This is the

purpose of the ConnectibleFormula class. It is a generalization for all formulae which can be used

for a connection process.

38

4.2 Data Import and Representation

4.2.2 Import of Formulae with Structure Sharing

As it was stated in the concept chapter, structure sharing is a crucial part of TEMPLAR. There are

two possible ways to assure structure sharing. The first one is to import all data and then apply

structure sharing. But since this leads to higher memory consumption and takes much computation

time, a second approach is used. This approach applies structure sharing already during the parsing

of the TPTP files. But for this, a central container is needed which holds all structures persistent

and can deliver every structure which is existent and also can construct them. This is quite easy

to implement when only one file has to be parsed at a time. But when the parsing of multiple files

shall be concurrent, there are some problems which need to be addressed. First of all, the container

needs to synchronize access to the structures. And every parser which processes one file needs to

be able to construct complex formulae or non-constant terms which are not shared.

Structure Sharing The way the structure sharing is assured already during the parsing step in

TEMPLAR is depicted in figure 4.4.

Figure 4.4: Assertion of Structure Sharing with concurrent Parsing

The ObjectVault is the container which holds all primitive structures like constants, numbers,

quoted strings and Skolem id counters persistent and also can create them. It implements the

Singleton Pattern (described in [GHJV95], for example) which assures that there can only be one

instance of the class during the complete lifetime of TEMPLAR. The synchronization of access is

assured by mutual exclusion (mutex)[Tan07] constructs which are locked on access and unlocked

when the access is not needed any more. The module which processes a problem or a complete

batch file can start multiple TPTP file parsing functions concurrently and assign an ObjectFactory

to the specific parsing thread. All factories are independent to each other and each of them gets

construction queries from the parser they were assigned to. The factories produce formulae or

terms with higher complexity like functions, predicates, disjunctions and so on. If a constant,

for example, is requested, the factories query the ObjectVault for the construction. Whenever a

TPTP formula was successfully parsed, the assigned ObjectFactory constructs the Skolem normal

form for the formula, creates the conjunctive closure and equality closure. More precise, the

ObjectFactory calls the RootFormula (the structure which encapsulates the logic formula) with a

method to transform itself into normal form.

The number of parsing threads is limited since it does not make sense to create six threads on a

dual core processor. Also, it would not make much sense to construct four parsing threads when

39

4 Implementation

there are only two files to parse. Thus, the limit of threads (countthreads) is calculated with the

formula shown in figure 4.5.

countthreads(count f iles,countcores) =

{

count f iles count f iles ≤ (countcores−1)
countcores−1 count f iles > (countcores−1)

Figure 4.5: Formula for calculating the parsing thread count

The reason for using not all cores for parsing is that the operating system usually needs a core,

too since file operations like reading are not directly done by TEMPLAR but by the operating

system. The files to parse are just enqueued in a synchronised First In First Out (FIFO)[Tan07]

queue whose memory address is given to all threads which take files from the queue until it is

empty.

Note: Structure sharing has some impact to the memory management. Since constants, for

example are shared, and thus are not allowed to be removed from memory when one formula

is deleted which uses them, a possibility is needed to keep the data consistent. In TEMPLAR,

every shared structure has a multiplicity value which is the number of references that are held

to them and there is no direct way to delete them (which is done by a destructor in C++).

The destructor is hidden from external access in order to prevent the structures from being

deleted. If a shared structure needs to be used, e.g. for unification and would be copied, a

function called getInstance needs to be called which increases the multiplicity by one. If a

reference to a shared structure is not needed any more, the function release has to be called

which decrements the multiplicity. The access to these functions is synchronized by mutexes

in order to make them thread-safe. If the multiplicity of a shared structure is decreased to zero,

the structure de-registers itself from the ObjectVault and deletes itself.

TPTP Parsing Grammar The parsing is done by a grammar which constructs a formula graph

for every formula by applying semantic actions which include the access to the ObjectFactory. The

grammar is implemented in ordinary C++ syntax but in a more declarative manner which omits the

specific implementation of the parsing. It has some similarities with the Extended Backus-Naur

Form (EBNF) and is transformed into a real parser by the boost spirit2 parser generator. Though

the TPTP syntax definition is precise and good for checking grammars, it is not really tailored for

grammars which generate the parsed formulae. One of the reasons can be seen in the listing 4.1.

1 <fof_logic_formula > ::= <fof_binary_formula > | <

fof_unitary_formula >

2 <fof_binary_formula > ::= <fof_binary_nonassoc > | <

fof_binary_assoc >

3 <fof_binary_nonassoc > ::= <fof_unitary_formula > <

binary_connective > <fof_unitary_formula >

4 <fof_binary_assoc > ::= <fof_or_formula > | <fof_and_formula >

5 <fof_unitary_formula > ::= <fof_quantified_formula > | <

fof_unary_formula > |

2http://boost-spirit.com

40

http://boost-spirit.com

4.2 Data Import and Representation

6 <atomic_formula > | (<fof_logic_formula

>)

Listing 4.1: Excerpt of the TPTP fof syntax definition for logic formulae

The formula (fof_logic_formula) can be a binary formula or an unitary (predicate, negated for-

mula, quantified formula and so on). A binary formula could be an associative formula (& or |) or

a non-associative (∼ & or ∼ |). So consider a formula which is just a predicate. First, the rule for

fof_binary_formula would be chosen which first leads to the rule for fof_binary_nonassoc which

parses two unitary formulae with for example NAND as junction. This rule would fail but would

have produced the predicate in-memory since a predicate is an unitary formula. Next, the parser

would try to apply the rule for associative binary formulae and would fail both in fof_or_formula

and fof_and_formula and produce the predicate in-memory again. Then, the parser would find the

rule for unitary formulae where he would finally find the matching rule. So, there would be at least

four wasted constructions of the predicate.

But the grammar can be adapted for a generating purpose. This is done in TEMPLAR and looks

like the C++ code in the listing 4.2.

1 formula = unitaryFormula[_a=_1] >>

2 (/// Non-Associative

3 (binaryConnective >> unitaryFormula)

4 | /// Associative

5 conjunctiveVector | disjunctiveVector

6 |/// only unitaryFormula

7 eps[_val=_a]

8);

Listing 4.2: Disambiguated definition for TPTP formulae

Since an unitary formula is part of every rule in the syntax definition, it has to be in first position

and the result of the rule for unitaryFormula (_1) can be saved in a variable (_a). After that, the

following formula parts may follow in this order:

1. ∼ & unitaryForula or ∼ | unitaryForula

2. (& unitaryFormula)+ or (| unitaryFormula)+

3. the empty word which results in the unitary formula being the result (_val)

In all cases, no additional objects are created since the connectives lead to a failing sub-rule and

the already saved unitary formula is not lost.

The other source of ambiguities is the fact that equalities are used infix (X = Y). The listing

4.3 shows another excerpt which contains the definitions for predicates, infix equalities and infix

inequalities.

1 <fof_unitary_formula > ::= <fof_quantified_formula > |

2 <fof_unary_formula > | <atomic_formula > |

3 (<fof_logic_formula >)

4 <fof_unary_formula > ::= <unary_connective >

41

4 Implementation

5 <fof_unitary_formula > | <fol_infix_unary >

6 <fol_infix_unary > ::= <term > <infix_inequality > <term >

7 <atomic_formula > ::= <plain_atomic_formula > |

8 <defined_atomic_formula > | <system_atomic_formula >

9 <plain_atomic_formula > ::= <plain_term >

10 <plain_atomic_formula > :== <proposition > |

11 <predicate >(<arguments >)

12 <defined_atomic_formula > ::= <defined_plain_formula > |

13 <defined_infix_formula >

14 <defined_infix_formula > ::= <term > <defined_infix_pred >

15 <term >

16 <defined_infix_pred > ::= <infix_equality >

Listing 4.3: Excerpt of the TPTP fof syntax definition for unitary formulae

An infix inequality is a fol_infix_unary which is a fof_unary_formula while the infix equality is a

defined_infix_formula and also a defined_atomic_formula. The predicate is a plain_atomic_formula

which is, as the infix equality an atomic_formula. This segmentations lead to an ambiguity which

needs to be resolved.

Consider the formula p(a,b,c) = q which obviously is an equality. Following the precedence

in the rule fof_unitary_formula, the sub-rule unary formula would be chosen since quantified for-

mulae have a quantifier and the rule for them would not match. In the rule fof_unary_formula,

the fol infix unary branch would be taken which leads to the creation of the term p(a,b,c) which

is correct. But since the formula is no inequality, the rule would fail and the term would be lost.

After that, the rule atomic_formula and in that one, the sub-rule plain_atomic_formula and in the

end, a predicate p(a,b,c) would be constructed and after failure, lost again. This shows the overall

problem. No matter how the precedences in fof_unitary_formula are changed between the unary

and atomic formula branch. Either there will be false creations of terms or of predicates. Thus,

another grammar is needed for this purpose. The grammar which is used in TEMPLAR is shown

in listing 4.4.

1 equalityOrPredicate =

2 // equality since only vars are upper-case

3 (variable >> equalityType >> term)

4 | // or

5 (

6 (

7 // save name and arguments

8 // still could be term or predicate

9 (lowerCaseWord >> (arguments | eps))

10 // or some kind of constant

11 | quotedString | complexNumber

12) >> // followed by

13 (// either "= term" or "!= term"

14 // -> construct equality

15 (equalityType >> term)

42

4.3 Normal Form Transformations and Analysis

16 | // or nothing -> construct predicate

17 eps

18)

19);

Listing 4.4: Disambiguated definition for TPTP predicates, equalities and inequalities

If the input to parse starts with an upper case letter, the first part can only be a variable and

thus, the complete input has to be an equality or inequality if it is conform to the syntax. If

the input to parse starts lower-case, the first part may be a term or predicate. Thus, the name

and, if existent, the arguments are saved. From this saved information, both an equality and a

predicate can be constructed. With this grammar, equalities, inequalities and predicates can be

parsed unambiguously.

In the following section, the implementation of the normal form transformations is described.

Also, the analysis of the formulae, in especial the generation of the metrics like formula depth and

clause count is described.

4.3 Normal Form Transformations and Analysis

To use the results of the analysis and transformation, a way is needed to save the results. This is the

purpose of the class RootFormula. But since there are different types of formulae, this abstraction

is to high. Thus, the RootFormula is just the base class of the Axiom class and Conjecture class.

The RootFormula class has the following attributes which are partly TPTP-specific and partly

TEMPLAR-specific.

• Formula name

• Formula role (conjecture, axiom, lemma, etc.)

• List of Predicates (used for the basic selection)

• Original formula graph (Formula* created by the import and used for output)

• Normal form graph (Formula*, created by the normal form transformation, used for search)

• Formula depth (integer) of the normal form (may be lower than the original formula depth)

• Equality containment (boolean value, used for deciding whether the equality scope should

be calculated)

• Number and QuotedString containment (boolean value)

• Conjunctive Normal Form (CNF) clause count (integer, worst-case value)

Some of the attributes of the RootFormula objects are created during the parsing. These are

the formula name, role and the original formula graph. The other attributes need to be set after

that. Obviously, the normal form graph is created during the normal form transformation. But

the transformation, as it is implemented does much more. In this step, the list of predicates, the

43

4 Implementation

formula depth, the Equality, Number and QuotedString containment and also the clause count

are determined. Some of the determined attributes can be generated trivially. For example, the

Equality containment and also the Number and QuotedString containment is simply set by giving

the boolean attributes as pointers to the transformation function and setting the value to true when

an Equality (or InEquality) or Numbers and QuotedStrings are visited, respectively.

But the normal form transformation does much more. Whenever a TPTP formula was success-

fully parsed, the ObjectFactory constructs an Axiom or Conjecture object, depending on the role

of the TPTP formula. All formulae which are not conjectures are constructed as Axioms since

they are defined to be true by the TPTP definition. After constructing the object, the ObjectFac-

tory sends a request to the object to transform itself into normal form and gives some parameters

to the transformation function which include the following but are not limited to them.

• Pointer to the Equality containment variable

• Pointer to the Number/QuotedString containment variable

• Pointer to the formula depth variable

• Pointer to the clause count variable

The transformation itself is done by the RootFormula. If the current RootFormula is an Axiom,

it transforms itself with positive polarity. If it is a Conjecture, it transforms itself with negative

polarity. This behaviour can be inverted by a command line option. The RootFormula itself sends

a request to the encapsulated Formula object to transform itself into normal form and return the

normal form formula. This request can be a positive or negative transformation, depending on the

subtype of the RootFormula. The Pointers are handed down to the top-level Formula object and an

initial formula depth of zero is given as parameter, too. The Formula, recursively, hands down the

parameters to it’s sub-formulae. Whenever a sub-formula gets the transformation request, it hands

down the current depth incremented by one. If the current formula is a Predicate, an Equality

of InEquality, the current depth is compared to the depth which is saved in the RootFormula

(maxdepth) object. If the current depth is higher than the value in the RootFormula, the maxdepth

is set to the current one. Whenever an Equality is visited, the respective variable is set to true.

The same holds for Number objects and QuotedString objects. The clause count is calculated, too.

Whenever a Formula would transform itself into a disjunction (e.g. negative transformation of an

Equivalence), the clause counts of the sub-formulae would be multiplied. Whenever a Formula

would construct itself into a conjunction (e.g. negative transformation of an implication), the

clause counts of the sub-formulae would be added. Whenever a Predicate, Equality or InEquality

object is transformed, it returns a clause count of one for itself to a parameter which was passed to

it. This complies to the clause count calculation formulae in paragraph 3.2 of section 3. In order

to make the normal form as small as possible, flattening is applied. If a Disjunction is constructed,

for example and the constructed normal form of a part of the Disjunction contains a Disjunction,

the sub-formulae of the embedded Disjunction are lifted to a higher level.

Note: The normal form depth does currently not consider the flattening. The reason is that

there is no a priori knowledge about the formula type of the transformed sub-formulae. Thus,

there is no way to calculate the flattened formula depth during the normal form transformation.

44

4.3 Normal Form Transformations and Analysis

The skolemization is also done during the normal form transformation in order to reduce the

number of graph traversions. Since the Formula objects also get a vector (precisely, the copy of

the vector which was passed to the super formula) of the variables which were bound universally

in the outer scope, this is also passed to the quantified formulae.

Also, a HashTable (precisely, the copy of the HashTable which was passed to the super formula)

is passed which contains the Skolem substitutions to variables which are to apply. The key of an

entry of this table is a Variable* and the value is a Term* which, internally is either a Constant* or

a Function*. Whenever an existentially quantified formula or universally quantified formula gets

the request to transform it into normal form, one of the following transformations are done:

• positive transformation:

– positive existential quantification: (∃[X1, ...,Xn] : F ≡ ∃[X1, ...,Xn] : F)

create a new Skolem constant or function with the outer bound variables as arguments

and add the substitution to the table.

– negative existential quantification: (∼ ∃[X1, ...,Xn] : F ≡ ∀[X1, ...,Xn] :∼ F)

Append the variables which are bound by this formula to the passed vector.

– positive universal quantification: (∀[X1, ...,Xn] : F)

Append the variables which are bound by this formula to the passed vector.

– negative universal quantification: (∼ ∀[X1, ...,Xn] : F ≡ ∃[X1, ...,Xn] :∼ F)

create a new Skolem constant or function with the outer bound variables as arguments

and add the substitution to the table.

• negative transformation:

– positive existential quantification: (∼ ∃[X1, ...,Xn] : F ≡ ∀[X1, ...,Xn] :∼ F)

Append the variables which are bound by this formula to the passed vector.

– negative existential quantification: (∼∼ ∃[X1, ...,Xn] : F ≡ ∃[X1, ...,Xn] : F)

create a new Skolem constant or function with the outer bound variables as arguments

and add the substitution to the table.

– positive universal quantification: (∼ ∀[X1, ...,Xn] : F ≡ ∃[X1, ...,Xn] :∼ F)

create a new Skolem constant or function for all bound variables with the outer bound

variables as arguments and add the substitution to the table.

– negative universal quantification: (∼∼ ∀[X1, ...,Xn] : F ≡ ∀[X1, ...,Xn] : F)

Append the variables which are bound by this formula to the passed vector.

Actually, the behaviour of the skolemization can be inverted together with the polarities used

for the normal form transformation by a command line parameter. Whenever a variable would

be appended to the vector and whenever a skolemization would be done, the multiplicity (usage

count) of the variable in the original formula structure is checked. If this is zero, the variable is

ignored and thus is not used as argument for Skolem functions for example.

Note: Obviously, no prenex normal form is generated explicitly. But implicitly, it is. There

are two concepts which assure that no variable scopes clash. If, for example an equivalence

is transformed into a conjunction of disjunctions and the left or right side of the equivalence

45

4 Implementation

contained a quantified formula, the quantified formula is transformed in both disjunctions.

Since the bound variables vector and variable substitutions table are passed by value (they

are copied), changes in the one branch of the transformation do not have effect to the other

branch.3 Furthermore, the parsing is adapted to construct formulae which are already in a form

which is prenex-like. Whenever a quantified formula is visited while parsing, a new variable

scope (table having the variable names as keys and the Variable objects as value) is created and

appended to a vector and all variables which are bound by the quantified formula are inserted

in this set. This insertion includes the creation of a new Variable object. Thus, if a variable is

bound by multiple quantifications, they do have the same name but a different memory address.

If a variable which is contained in a predicate or equality is parsed, a reverse iteration through

the variable scope vector is done (from the end to the start of the vector). If the variable with

the name is found in a variable scope, the Variable object is chosen. Thus, the Variable object

of the most inner scope is used regardless whether a Variable object with the same object exists

in an outer scope. Whenever a quantified formula was completely parsed, it’s variable scope is

removed from the variable scope vector which eliminates the possibility of using the Variable

objects in a wrong scope.

If a variable name is not found in the vector, the variable is unbound and TEMPLAR can

print a warning which can help the TPTP maintainers to identify ill-formed formulae.

In the following section, the unification in TEMPLAR will be described. The description in-

cludes the basis of the implementation and two variants which are implemented in TEMPLAR.

4.4 Unification

This section concerns the implementation of the unification as it is used by TEMPLAR. The basis

is the concept of unification as it was described in the section 2.1 but the implementation is opti-

mized for the way the formulae are represented in TEMPLAR. The unification algorithm which is

used is based on the unification algorithm by Martelli and Montanari[MM82].

The basic algorithm which is described in the article by Martelli and Montanari can be described

as follows.

Definition 10 (Basic Martelli-Montanari unification) Let E = {s1 = t1, ...,sn = tn} with i,n∈N

and i≤ n be a set of equations where si is the top-level term of the one predicate and ti the top-level

term of the other predicate.

Apply one of the following rules until no rule can be applied any more.

1. ¬var(si) and var(ti)→ E ′ = E ∪{ti = si} (Swap)

2. si == ti → remove {si = ti} (Identity elimination)

3. si(x1,x2, ...,xn) and ti(y1,y2, ...,yn) and si == ti → E ′ = E∪{x j = y j} with 1 ≤ j≤ n (Func-

tional decomposition)

3This only holds for formulae which do not contain equivalences. Though the skolemization does work properly, the

connection of one side of the transformed equivalence may lead to unwished restrictions for the other side. This is

a conceptional bug which will be corrected in future development of TEMPLAR.

46

4.4 Unification

4. var(si) and ¬occurs(si, ti) → E ′ = E[si/ti] (Variable substitution)

When no rule can be applied any more, the unification is successful and the set E only contains

equations whose left-hand sides are variables. If no rule can be applied but there are equations

whose left-hand side is not a variable, the unification fails. The result of a successful unification is

the most general unifier. �

This algorithm has, as stated in the article, a worst-case time complexity which is exponential.

Though there is an algorithm with multi-equations and thus nearly linear complexity, this base

algorithm is chosen since the use of pointers in TEMPLAR has a similar effect to multi-equations.

The version which is used is defined as follows.

Definition 11 (Adapted unification algorithm) Let E = {s1 = t1, ...,sn = tn} with i,n ∈ N and

i ≤ n be a set of equations where si is the top-level term of the one predicate and ti the top-level

term of the other predicate. Furthermore, let V be a variable substitution table with Variable

pointers as key and Term pointers as value. This table was constructed in previous unifications.

First, apply all variable substitutions in V to the set E.

Let type(Arg) be the type of a term which can be constant, variable or function and == the

equality of pointers or integers and 6= the inequality. Also, let ⋊⋉ be the operator which applies

the functional decomposition and sub=<Variable∗,Term∗> be a temporary pair which saves a

candidate substitution. Iterate over the set of Equations and apply the following rules in this order

until no rule can be applied. If one sub-rule is applied, jump to the next equation. The result of

every iteration is a set of equations I.

1. si == ti, jump to next equation

2. type(si) == type(ti)

a) type(si) == f unction : si.classi f ier == ti.classi f ier→ I = I∪ (si ⋊⋉ ti), else fail

b) type(si) == variable : if sub is not set, set it to < si, ti >

3. type(si) 6= type(ti)

a) type(ti) == variable :

if type(si) == f unction and ti occurs in si fail if sub is not set, set it to < ti,si >

b) type(si) == variable :

if type(ti) == f unction and si occurs in ti fail if sub is not set, set it to < si, ti >

c) fail

4. if no functional decomposition was applied and sub is set: I = I[sub. f irst/sub.second]

5. E = I

If this unification ends without failure, the set E contains the most general unifier. �

This unification has some positive aspects. The first rule instantly eliminates all constant and vari-

able pairs which are equal as in the basic version of the unification. Extending the structure sharing

to graph sharing (graphs of functions) would lead to the instant elimination of complete graphs.

47

4 Implementation

The use of the candidate substitution is used in order to delay substitutions until no functional

decomposition can be applied. This reduces the count of function copies which would be created

otherwise. Also, the swap operation which is used in the basic algorithm is omitted here. The

occurs-check has constant time complexity due to the fact that every function knows the variables

which are contained. Also, pointer comparison has enormous advantages compared to string com-

parison. Since pointers are numbers, two pointers can be added binary (XOR) and the result has

to be compared to zero. This are only two operations which can be done by the processor almost

instantly.

Sometimes, no variables are contained (ground predicates) or only a syntactical comparison is

needed. For this two cases, a special unification was implemented. It is similar to the normal

unification but uses a different rule-set.

Definition 12 (Syntactical Equality) Let E = {s1 = t1, ...,sn = tn} with i,n ∈ N and i ≤ n be a

set of equations. Also, let ⋊⋉ be the operator which applies the functional decomposition. Iterate

over the set of Equations and apply the following rules in this order until no rule can be applied.

The result of every iteration is a set of equations I. Apply the following rules until E is empty.

1. si == ti, jump to next equation

2. type(si) == f unction and type(ti) == f unction : si.classi f ier == ti.classi f ier → I = I∪
(si ⋊⋉ ti), else fail

If the check terminates and E is empty, the two predicates are identical. �

The search engines are based on the implementation of the unification and the linguistic analy-

sis. The following section introduces the implementation of the search engines and the way they

are used.

4.5 Search Engines

The search engines are the most important parts of TEMPLAR but the implementation of them is

almost equivalent to the descriptions in the chapter 3. Nevertheless, there are some details which

are worth to be described.

First of all the search engines are implemented as modules which can be chosen by a command

line parameter, as described in the workflow description. But to assure modularity and also make

the implementation extendible, they need to have some common interfaces. They at least need to

have the same functions for triggering the search iteration and for access to the currently selected

formulae.

Thus, a class hierarchy was designed to ensure the common interfaces and also the easy ex-

tendibility of the set of search engines. This hierarchy is shown in figure 4.6.

The FormulaSelector class is the interface to the different selectors and provides the basic func-

tionalities. All selectors need to implement this interface in order to be usable. While the ARDE-

FoFSelector (implementation of the basic selection concept) is a reimplementation of ARDE, the

NonStructuralFoFSelector, the StructuralFoFSelector, the FrequencyBasedSelector and the Dy-

namicSelector are new modules. The DynamicSelector is the default module which also has the

highest performance. This is due to the fact that it inherits all functionalities from the Structural-

FoFSelector and thus can access the strongest restrictions to the search graph. Furthermore, the

48

4.5 Search Engines

Figure 4.6: The class hierarchy of the search engines

DynamicSelector contains a FrequencyBasedSelector which uses the natural language processing

approach. The DynamicSelector is more a scheduler which decides whether the frequency based

selection should be used. Consider a big formula set of, let’s say, 50.000 formulae. The proba-

bility is high that the theorem prover will not be able to solve the problem with the given formula

set. Thus, the DynamicSelector triggers the frequency based selection. In the first select call,

the DynamicSelector creates a beam vector by the frequency based selection. The beam vector

contains vectors itself which contain the selected formula sets. Every entry of the beam vector

except the last is created by triggering the frequency based selection for only one lexeme of the

conjecture. If for example, the conjecture contains four lexemes whose tf-idf value is high enough

to trigger the conjecture, five beams (vectors of formulae) are created. The last beam contains the

merged formula sets of all other beams and thus represents a complete search for the conjecture.

But since a beam needs to have an end, the DynamicSelector needs to decide, when it has to end

the beam expansion which is just a sequence of select calls to the FrequencyBasedSelector. For

this, a threshold is used which currently is 66 % of the formula set for smaller formula sets (up

to 5000 formulae), 50 % for medium sized formula sets (between 5000 and 15000) and 10000

formulae for sets which contain more than 15000 formulae. If the beam reaches the threshold, no

further selections for the current lexeme are done but the set which exceeded the threshold is taken

as the end of the beam. After that, all sets in the beams are sorted by their size, duplicate sets are

removed and the sets are enqueued. On every getSelectedFormulae call by the BatchProcessor or

ProblemProcessor, the head of the queue is returned until the queue is empty. Before emptying the

queue, the DynamicSelector saves the biggest formula set of it and triggers the structural selection

with the set as new base set after emptying the queue.

In some cases, the frequency based selection is not able to create a beam which exceeds the

beam threshold with the default threshold for the tf-idf threshold. In this case, the DynamicSelec-

tor modulates the threshold for the FrequencyBasedSelector by increasing it and trying to create

a beam with the new threshold. But the threshold is limited to a maximum. If this maximum is

reached, the DynamicSelector restarts with the complete formula set and uses the StructuralFoF-

Selector for selection.

If the formula set has less then 2000 formulae, no frequency based selection is applied but the

49

4 Implementation

structural graph search is used.

The structural selector currently uses most of the search graph restriction techniques. It uses

the reconnection suppression, the ground connection target merging and the conjunction cut tech-

niques including the conjunctive closure. Also, the structural selector has it’s own graph represen-

tation for the search. The graph is constructed by a set of Connection objects which are chained

and have the following information.

• The source Predicate object

• The source RootFormula object

• The target Predicate object

• The target RootFormula object

• The source Connection object(is undefined iff the connection is a root)

• A set of outgoing connections per contained predicate in the target RootFormula

• A set of visited Predicate objects

• A set of variable substitutions per RootFormula

With this information, all graph restrictions can be applied. If, for example, one connection be-

comes invalid since the target RootFormula cannot be refuted, all outgoing connections can be

marked as invalid and the source RootFormulae can be checked for validity.

Finally, the possible output formats which are supported by TEMPLAR, are described. This

describes both output usable for theorem proving and output usable for visualisation.

4.6 Output

The output is one of the most important parts of TEMPLAR since the selected formulae are needed

to be given to a theorem prover in some way. Thus, all formulae can be written into output files.

All output files which are meant for a theorem prover are written to a temporary folder. The output

file name is the problem file name with the suffix .depthY where Y is the number of the iteration.

The formulae are printed in TPTP syntax by default and can be printed in their original or the

Skolem normal form.

But there is another way of printing the formulae which is the DOT4 syntax. This is a language

which represents definitions of graphs and can be transformed into images of many formats like

Scalable Vector Graphic (SVG). Formerly, this output was meant for debugging purposes, for

example for checking whether the structure sharing and the equality scope are properly created.

Actually, the RootFormula object can output itself in DOT syntax in two different forms; the

original formula structure and the skolem normal form. To achieve this functionality, a printDOT

functionality was implemented in the base classes of the formula hierarchy and specialised in all

subclasses. But the DOT output is not limited to formulae. In fact, the connection graph of the

4http://www.graphviz.org/doc/info/lang.html

50

http://www.graphviz.org/doc/info/lang.html

4.6 Output

structural search can be printed in DOT, together with the formulae. This allows the visualisation

of the complete graph search.

Apart from formula outputs, other informations can be printed, too. For example, TEMPLAR

contains a logging implementation which is inspired by tools like syslog5. But those tools have

much more functionalities than are needed (for example different output streams for different

logging hierarchies). TEMPLAR uses the following log tags6.

1. FATAL : Something really bad occurred which cannot be resolved, TEMPLAR needs to be

stopped. E.g. Problem file does not exist

2. ERROR : Something bad occurred which cannot be resolved and can lead to undefined

behaviour, TEMPLAR is stopped if the behaviour would be too destructive. E.g. non-

existing axiom file.

3. WARNING : Something weird happened which breaks some standards. TEMPLAR can

recover from the exception. E.g. a quantified variable is never used

4. INFO : General purpose informations like opening a file or importing 17 files, for example.

5. DEBUG : Information with more precision, importing axiom file x with y axioms

6. TimeInfo : Information about durations of specific processes like import or problem pro-

cessing.

The level of informations to print can be set at compile time via the TEMPLAR_LOG_LEVEL

variable:

• level 0 : DEBUG, INFO, WARNING, ERROR, FATAL

• level 1 : INFO, WARNING, ERROR, FATAL

• level 2 : WARNING, ERROR, FATAL

• level 3 : ERROR, FATAL

The time info is always logged and the default log level is 1. Also, the preamble for logs can

be set via the variable TEMPLAR_LOG_PROLOG at compile time. The standard is the TPTP

comment syntax ("% SZS") but changing the preamble to "//" makes sense when DOT output is

needed since graphviz ignores standard C++ comments which are "//".

the following listing shows an excerpt of a sample output of TEMPLAR in combination with

leanCoP.

1 % SZS [WARNING] /My/Path/HOM456+1.p:aTRIVu_ANDu_EXISTSu_THM :

Ignoring unused variable X

2 % SZS [WARNING] /My/Path/HOM456+1.p:aTRIVu_FORALLu_ORu_THM :

Ignoring unused variable A

3 ...

5Reference: man syslog , syslog is one of the standard logging mechanisms for linux based systems
6A tag is a marker with a special semantic

51

4 Implementation

4 % SZS [WARNING] /My/Path/HOM456+1.p:aTRIVu_EXISTSu_IMPu_THM :

Ignoring unused variable X for skolemization

5 % SZS [WARNING] /My/Path/HOM456+1.p:aTRIVu_EXISTSu_IMPu_THM :

Ignoring unused variable X

6 % SZS [TimeInfo] Problem file Parsing duration: 0.47 sec (CPU -

Time) , 0.478712 sec. RT

7 % SZS [TimeInfo] LOCAL Axiom file import duration: 0 sec (CPU -

Time) , 5e-06 sec. RT

8 % SZS [INFO] Included 0 new LOCAL (of 0) axiom files with 0

formulae

9 % SZS [INFO] Using 1787 formulae for dynamic selection

10 % SZS [INFO] Trying to select for conjecture aEMPTYu_DELETE

11 % SZS [INFO] Starting Inference Engine on original formulae :

1787

12 % SZS [INFO] Round time selected of percentage

13 % SZS [INFO] 0 0.011582 50 1787 2.79799

14 % SZS [INFO] Found proof!

15 % SZS [INFO] Found Proof in depth 0 with 50 formulae after

1.08468 seconds

16 % SZS [INFO] Stopped selection after 1.5931 seconds

17 % SZS status Theorem for /My/Path/HOM456+1.p

18 % SZS [TimeInfo] Used time for /My/Path/HOM456+1.p 1.5 sec (CPU

-Time) , 1.67798 sec. RT

19 % SZS status Ended for /My/Path/HOM456+1.p

20

21 % SZS [INFO] Clearing memory

22 % SZS [TimeInfo] Clearing memory 0.09 sec (CPU -Time) , 0.095781

sec. RT

23 % SZS [INFO] Batch results:

24 % SZS [INFO] Count of proven/processed problems: 1

25 % SZS [INFO] Count of given up problems: 0

26 % SZS [INFO] Avg. proof/processing duration: 1.6783

27 % SZS [INFO] Batch file results:

28 % SZS [INFO] Count of proven/processed problems: 1

29 % SZS [INFO] Count of given up problems: 0

30 % SZS [INFO] Deleting file /My/Path/HOM456+1.p

31 % SZS [TimeInfo] Total Runtime: 1.64 sec (CPU -Time) , 1.82812

sec. RT

Listing 4.5: Sample output of TEMPLAR showing the logging implementation

First, some warnings are shown which consider variables which are bound in a formula but not

used. Also, it is shown whether this variable would be skolemized and in which formula of what

file, the warning occurs. Some time information like problem file parsing and axiom file parsing

durations and also problem processing durations are shown. The iterations are shown, too, which

allows the visualisation of the restrictions when the output of open, closed and invalid paths is

52

4.6 Output

done. Furthermore, after every batch and batch file, results about the count of proven problems,

average proof times for the solved problems and the count of problems which could not be solved

are printed.

Note: The logging information that the problem file was deleted does not mean the deletion

of the file in the filesystem but the deletion of the information which were saved about the file

in-memory. So all normal forms, original forms and analysis information are deleted after com-

pleting a batch. The status logs are tailored for the CADE ATP Systems Competition (CASC)

and need to be present in order to make TEMPLAR automatically testable by a supervisor.

53

5. Related Work

Theorem provers do have problems with big formula sets and some complex formulae which is

quite obvious since these two metrics can lead to complex and slow proof searches. Thus, it is just

natural to apply relevance filtering techniques in order to reduce the formula sets or support the

proof search with hints.

There are already many approaches to support theorem proving of which some are described

here in order to give an insight to the state of the art. The techniques can be roughly partitioned into

three classes which are frequency based relevance filters, the semantics based relevance filters and

the unification based relevance filters. Different authors use different names for their techniques.

Some call it "premise selection" (e.g. used for Naproche[CKKS10]), some call it "sine qua non"

(essential condition, e.g. used for SinE[HV11]) and some call it relevance restriction (e.g. used

for the approach described in [PY03]). In order to use a consistent description, this document uses

the term "relevance filter" since all these systems use a relevance metric in order to filter(prune or

reorder) the formula sets.

Frequency based relevance filters use the frequency of predicate and function (which includes

constants) symbols in the formula set in order to either reduce the set by pruning it or reorder

them by relevance. SinE for example, is a frequency based relevance filter which uses symbol

frequencies to decide about the relevance of formulae. If a symbol is both contained in the problem

and in an axiom (shared symbol), it is seen as relevant. This relevance is transitively extended by

iterative deepening where for every last iteration, formulae are selected which share a symbol

with an already selected formula. But SinE uses some sophisticated extensions like the triggers

relation. This relation states that, if the frequency of a symbol is at most n times higher than

the least common symbol in the formula set, it triggers the formula. This extension penalizes

common symbols but does not ignore them completely and can lead to a fine-grained selection

since different seed symbols can be chosen. TEMPLAR also uses frequencies, shared symbols

and trigger-like relations in the FrequencyBasedSelector but does not use absolute frequencies

like SinE does. The tf-idf weight is a relative weight which also takes the frequency of a symbol

in one formula into account and uses normalizations in order to reduce aberrations in the weight

due to extreme high frequencies in one formula.

Another frequency based relevance filter is described in [RPS09] and reorders axioms based

on their relevance. The relevance is determined by checking, how many predicate or function

symbols are shared by two axioms. After the formulae were reordered, Divvy selects a subset of

a specific size, for example 50 % in the first iteration, 25 % in the second and 75 % in the third

iteration. This selection has some common concepts with SinE but has the drawback that 25 %

of, let’s say 100.000 formulae still are 25.000 formulae. Thus, for really big formula sets, this

approach has to be adapted. Though the variation of the percentage increases the probability of

54

selecting a formula set which is small enough to handle, the approach seems somehow weaker

than the concept of SinE.

The Premise Selection Algorithm (PSA) which is used by the Naproche system [CKKS10] is

a somehow hybrid approach which can use both frequency based relevance filtering and machine

learning. With the information about a proof and specific proof steps for a conjecture returned by

a theorem prover, the PSA aims to infer the probably needed formulae for later proofs. Internally,

it creates a connection graph which represents the proof steps and contains the used formulae as

nodes. The path between the conjecture and some arbitrary formula node is then used as distance

and the average distance used for multiple proofs can be used to infer the probably needed distance

for later proofs. The PSA can also use the frequency based relevance filtering technique which is

also implemented in Divvy but the PSA mostly relies on having some successful proof attempts in

order to use it’s full power. TEMPLAR is potentially also able to calculate the average search depth

for successful proofs and also use some comparable selection technique to the one of Naproche

since the search in the StructuralFoFSelector is represented as graph.

The second relevance filtering approach is commonly called semantic selection and uses in-

terpretations of formulae. Two implementations of this approach are described in [Pud07] and

[SP07] (SRASS). Both approaches compute models for the given formulae and use the clause

normal form but they differ in the workflow. While the concept of Petr Pudlák computes interpre-

tations of the given formulae with a model finder, SRASS uses the concept of Divvy in order to

reduce the formula set first.

The third relevance filtering approach is the unification based relevance filtering and was de-

scribed in [PY03], for example. The basis for the relevance is the unifiability via resolving clauses.

The concept searches for connections like TEMPLAR does but it strictly uses the conjunctive nor-

mal form and the workflow is quite resolution-like. Every connection is seen as a distance step

and the transitive distance between the clauses contained in the conjecture and the ones of some

arbitrary formula can be computed by this way. The concept has the drawback that creating the

conjunctive normal form can lead to an explosion of the count of clauses and thus of the possible

paths. Though TEMPLAR uses a similar approach in the ARDEFoFSelector, the NonStructural-

FoFSelector and the StructuralFoFSelector, TEMPLAR does not need clause forms and thus does

not need to cope with the formula growths. Also, TEMPLAR uses restriction approaches which

are more tailored for the connection calculus (e.g. the conjunctive closure) but are not limited to

the calculus.

55

6. Evaluation

This chapter concerns the evaluation of the concept and implementation of TEMPLAR. First, the

evaluation setup is described and after that, benchmarks and the results of them are introduced.

6.1 Evaluation Setup

All tests which were done before or after the CASC-24[Sut13] were done on a compute node

(jk-009) at the University of Potsdam.

The table 6.1 shows the system setup for the benchmarks before and after the competition in

comparison to the specifications of the compute nodes of the CASC-J6[Sut12a] (2012) and the

CASC-24 (2013)

Features jk-009 CASC-J6 CASC-24

Cores 8 (2x4) 8 (2x4) 4 (1x4)

Core-speed 2,66 GHz 2,4 GHz 2,333 GHz

Hyper-Threading (HT) active no yes no

RAM 16 GB 48 GB 12 GB

Kernel version 3.2 (Ubuntu 12.04) 3.2 (Debian 6) 2.6.29 (Fedora 11)

GCC version 4.6.3 4.4.5 4.4.1

SWI-Prolog version 5.10.04 unknown unknown

Table 6.1: Comparison between the compute node specification of the last two CASCs and the one of

the University of Potsdam

Both the memory and the number of cores were reduced significantly from CASC-J6 to CASC-

24 and the operating system was a step backwards and the specifications of the nodes of the

CASC-24 were much weaker than the specifications of jk-009. Thus, TEMPLAR had to be cross-

compiled for Fedora 11 in order to even be able to run. And the lack of memory and cores had

some other drawbacks. The low memory amount forced the deactivation of some heuristics like

the conjunctive closure which was implemented but not tested. Also, when TEMPLAR starts

six leanCoP instances, the probability is high that they slow each other down when not enough

cores are existent. Thus, TEMPLAR was existent in two flavours, a CASC-variant and the orig-

inal (daily) variant. They differ in the activated features and table 6.2 shows the most important

differences.

The deactivation of the equality scope is not a real drawback since it was not even used. Since

the nexus path union is not implemented, it was not active, obviously. But the deactivation of the

56

6.2 Results from CASC-24

Features TEMPLAR::leanCoP TEMPLAR

Equality scope no yes

Conjunctive Closure no yes

Blocking Mutex no(errors on competition systems) yes

Table 6.2: Comparison between the two variants of TEMPLAR concerning the activated/implemented

features

conjunctive closure is a drawback since it speeds-up the connection processing. The blocking mu-

texes are something which works out-of-the-box since mutexes are standard in the C++ standard

library. But the blocking variant somehow lead to run-time errors on the competition systems and

thus, the non-blocking variant of mutex locks was used. But this variant has the drawback that

every part which wants to acquire a lock on the mutex, needs to do busy waiting until it gains the

lock and thus uses up CPU time. This can slow down the overall system.

6.2 Results from CASC-24

TEMPLAR::leanCoP was delivered for the CASC in a specialized variant. In order to reduce

memory consumption, the equality scope computation was deactivated since it was not used any-

way. But also, the conjunctive closure computation was not yet tested in this state and thus was

not active which has negative performance impact for the graph search. Also, the synchronisation

of the mutexes had to be adapted in order to work properly on the quite ancient machines with

operating systems from the year 2009 which do not support all C++ features well which lead to

potentially lost time due to busy waiting(non-blocking mutexes). Furthermore, leanCoP itself was

not changed since the CASC-J6.

Nevertheless, TEMPLAR::leanCoP did not get the last position in the LTB ranking (with 28

proofs and 27 of them with TEMPLAR-output formula sets) as in the CASC-J6 and also was

able to beat iProver in the ISA category and E-KRHyper in all categories. But the system was

also not able to gain a really a good position. Thus, the results of the CASC1 were reviewed

in order to find out whether the restrictions had worked at all. All problems which were proven

by TEMPLAR::leanCoP were given to leanCoP in order to find out whether leanCoP would be

able to solve them. First, the original strategy selection from the CASC was used which lead

to the proof of three problems by leanCoP. But since the strategy selection could just have been

inadequate, a complete benchmark with 19 strategies of leanCoP was done in order to get the

potentially provable problems.

The used leanCoP strategies for the benchmark for the post-competition benchmark were

1. cut,comp(7)

2. conj,def,cut and noeq,conj,def,cut

3. conj,def and noeq,conj,def

4. nodef,scut,cut and noeq,nodef,scut,cut

1http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/Results.html

57

http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/Results.html

6 Evaluation

5. conj,nodef,cut and noeq,conj,nodef,cut

6. def,cut and noeq,def,cut

7. scut,cut and noeq,scut,cut

8. def,scut,cut and noeq,def,scut,cut

9. reo(12),def,scut,cut and reo(12),noeq,def,scut,cut

10. reo(40),conj,scut,cut and reo(40),noeq,conj,scut,cut

with a time limit of 15 seconds for each strategy. For convenience, the features of specific parts of

the strategies are described but a complete description can be found in [Ott10]. While cut applies

restricted backtracking in the proof search, scut applies this cut for the start clause. The option

conj states, that clauses of the conjecture are taken as start clause. The option noeq removes

equalities from the clauses and omits the insertion of the axioms of equality. While the option

nodef forces a disjunctive normal form transformation for all formulae, the option def forces a

definitional transformation. The option reo(X) forces a reordering of the clauses in the matrix X

times and the option comp(Y) forces a complete proof search when the limit for the search depth

(Y) is reached without finding a proof.

Running these strategies on the problems which were solved in the competition by TEM-

PLAR::leanCoP lead to the results in table 6.3 which is derived from the complete benchmark

in table A.1 which can be found in the appendix. The table shows for each category of the LTB di-

Category Proven leanCoP@CASC-24 leanCoP-pot

HOL 12 2 6

ISA 12 0 6

MZR 4 1 2

Table 6.3: CASC-24: Comparison between the solved problems and the ratio of provable problems

for leanCoP in CASC and potentially provable problems for leanCoP, excerpt of table A.1

vision the count of proven problems by TEMPLAR::leanCoP, the count of provable problems with

the strategy chain for leanCoP at CASC and the count of potentially provable problems of leanCoP.

As the table shows, leanCoP could potentially solve one half of the problems which were proven

by TEMPLAR::leanCoP in CASC when the strategy chain would be chosen well. The table also

shows that leanCoP would not be able to solve at least 14 of 28 problems. There must be a reason

why so much problems become provable. Obviously, this must be due to the selected formulae.

In order to show the strength of the restriction, the problems which were solved in CASC-24 were

analysed with respect to the ratio of selected formulae. The table 6.4 shows a condensed variant

of the tables A.2, A.3 and A.4 and in especial the counts of provable problems relative to the ratio

of selected formulae (including the conjecture).

As the table shows, many (19/27) problems could be proven with less than one percent of the

given formulae for the problem and all problems could be proven with less than 30 percent of the

given formulae. The complete benchmarks in tables A.2, A.3 and A.4 also show that most of the

problems could be solved with less than 100 formulae where at least 1000 and at most about 20000

58

6.3 Results on problems of the CASC-J6

Percentage #proven

< 0.1 2

0.1−0.5 11

0.51−1.0 6

1.1−10.0 6

20.1−29.9 2

Table 6.4: Overview of selection ratios for the CASC-24 problems proven, extraction of tables A.2,

A.3 and A.4

formulae were present. Also, the problem ISD291 was provable by TEMPLAR::leanCoP with 24

of 19054 formulae after modulating the relevance threshold but the problem was not provable by

leanCoP itself. Furthermore, no theorem prover except TEMPLAR::leanCoP was able to solve

this problem in CASC.

The problem MZS716 (a problem of the Mizar category) was solved with a set which was

generated by the structural graph search on a set which was preselected by the linguistic search.

Thus, there are cases where the coupling of graph search and linguistic selection works.

6.3 Results on problems of the CASC-J6

In order to analyse the performance of TEMPLAR compared to ARDE, all categories of the LTB

division of the CASC-J6 were given to TEMPLAR. Precisely, TEMPLAR was tested on the Is-

abelle (ISA) category, the Mizar (MZR) category and the SUMO (SMO) category. Additionally,

TEMPLAR was tested with the dynamic selection activated in combination with E. The used ver-

sion of E was 1.6 which was the version that was used in the CASC-J6. All tests with E were done

with the switch −−satauto which enables the integrated preprocessing of E but turns off the SinE

selection.

Note: The statistics module, which was implemented in TEMPLAR, generated the rows for all

tables in this paragraph except for the table 6.8. Also, the full benchmark tables in the appendix

were generated by TEMPLAR.

Results for the Isabelle category

First, the tests were done on the ISA category which contains 75 problems of which leanCoP-

ARDE was able to solve 17 problems. Since the concept of ARDE was reimplemented in TEM-

PLAR with a quite fast unification algorithm and without use of Prolog bindings, the selection of

the ARDE algorithm in TEMPLAR is generally faster than the former system. There was a time

limit of 60 seconds per problem.

The table 6.5 shows the results for the benchmarks on the ISA category with the search engines

which were implemented in TEMPLAR. The ARDE-selection, the structural and non-structural

selection and the linguistic selection with the relevance thresholds 1.0 and 1.5 were tested. Also,

the dynamic selection which starts a linguistic selection when more than 2000 (and more than

10) formulae are existent for a problem and modulates the relevance threshold was tested. The

table shows per algorithm or algorithm variant the count of provable problems together with the

59

6 Evaluation

average proof duration including the preprocessing of TEMPLAR and the average ratio of selected

formulae which was sufficient for a proof. The average ratio of selected formulae is calculated over

the count of problems which were proven with TEMPLAR output files. The table is a condensed

variant of the tables A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12 and A.13 which can be found in

the appendix.

Algorithm #proven TEMPLAR original avg. selected avg. duration

ARDE 14 11 3 47.184 8.1162

Non-Structural 13 8 5 31.4379 8.90493

Structural 15 10 5 40.6953 10.1525

Ling1.0 16 5 11 41.0158 13.5371

Ling1.5 19 14 5 31.7737 9.50811

Dynamic 2000 16 10 6 35.4682 12.7944

Dynamic 10 21 16 5 31.6782 18.1633

Dynamic 10-E 48 27 21 39.5659 14.1259

Table 6.5: Count of provable problems for the Isabelle category with the existent algorithms

As the table shows, the average ratio of selected formulae is smaller for the structural selection

compared to the ARDE selection. Also, the average proof duration for the structural selection is

only two seconds higher. Since the wall clock time is 60 seconds, a difference of two seconds is

small. The count of provable formulae does not differ significantly for those two algorithms. The

non-structural selection is weaker than the structural selection and the ARDE selection concerning

the proofs found with TEMPLAR output. The linguistic selection is quite strong and leads to many

proofs and even more proofs can be found compared to the structural selection. Obviously, the

linguistic selection works for smaller formula sets, too. This is why the dynamic selection leads

to less proofs compared to the linguistic selection variants. Only when the formula set is bigger

than 2000, the embedded linguistic selection is activated. Thus, a dynamic selection which uses

the linguistic selection when more than 10 formulae are present was tested, too. This selection

leads to much more proofs compared to the structural search and linguistic selection but is a bit

slower. Also, more than 66 % of the problems are proven with TEMPLAR output. The structural

selection, on the other hand leads to the provability of problems which are not provable with the

ARDE selection. For example, the problem ISA004 can be proven with the structural selection

which chooses 497 of 533 given formulae. Using the dynamic selection with a formula limit of 10

together with the eprover (E) leads to 48 solvable problems of which more than 50 % are solved

with TEMPLAR output.

Results for the SUMO category

The next benchmarks were done on the SUMO category which contains 20 problems of which

leanCoP-ARDE was able to solve 2 problems. Every problem had a time limit of 60 seconds.

Again, the ARDE-selection, the non-structural and structural selection, the linguistic selection

(in two variants), the dynamic selection (Since every problem had more than 2000 formulae, only

the standard-variant was tested) and the dynamic selection coupled with E were tested and the

results are shown in table 6.6. The table is a summarization of the tables A.14, A.15, A.16, A.17,

60

6.3 Results on problems of the CASC-J6

A.18, A.19 and A.20 which can be found in the appendix, too. Generally, neither leanCoP nor

Algorithm #proven TEMPLAR original avg. selected avg. duration

ARDE 4 4 0 1.9601 7.92294

Non-Structural 4 4 0 1.9601 8.04163

Structural 4 4 0 1.9601 7.9368

Ling1.0 6 6 0 3.72015 11.9831

Ling1.5 6 6 0 4.13433 21.8285

Dynamic 7 7 0 2.86567 11.8458

Dynamic E 11 11 0 5.33094 11.1624

Table 6.6: Count of provable problems for the SUMO category with the existent algorithms

E are able to find a proof for the SUMO problems without preprocessing. Thus, both provers

can benefit from the selection by TEMPLAR. All strategies lead to the provability of at least four

problems. Even the reimplementation of ARDE leads to more proofs than the former ARDE

implementation. The structural and non-structural selection lead to the same proofs and are com-

parable to ARDE concerning the average duration. The linguistic selection on the other hand is

much stronger and both variants lead to six provable problems. Both variants lead to proofs which

are not found with the other variant. The modulation of the relevance threshold which is imple-

mentation of the dynamic selection leads to the provability of seven problems for leanCoP and 11

problems for E.

Results for the Mizar category

The last benchmarks were done on the Mizar category which contains 80 problems in four batches

with 20 problems each. Only the first batch the +1 problems were evaluated completely since the

higher batches contain more problems and the memory consumption of TEMPLAR together with

multiple instances of E or leanCoP was so high that the processes were stopped by the operating

system. The first batch had a time limit of 30 seconds, the second 60 seconds, the third 90 seconds

and the fourth 120 seconds per problem.

Since all problems of the first batch had less than 2000 formulae, the dynamic selection with

a threshold of 10 formulae was used. The table 6.7 shows the results for this batch and is the

condensation of the tables A.21, A.22, A.23, A.24, A.25, A.26 and A.27 which are located in the

appendix.

leanCoP itself is potentially able to solve two of the problems with the original formula sets and

the selection by TEMPLAR does not lead to additionally solvable problems. This does not hold

for E. Almost 50 % of the problems were proven with the output of TEMPLAR.

Finally, the results in this section are summarised and compared to the results of the system

ARDE. The results for the competition mode with ARDE 0.5.6 refer to the document [Fra12a]

which is a description and evaluation of the concept of ARDE.

The table 6.8 summarises the tables 6.5, 6.6 and 6.7 together with informations about the cat-

egories (formula and problem count and time limits). The first block in the table contains the

count of axioms (min., max.) per category, the time limit per problem in seconds and the count

of problems. The second block shows the count of potentially provable problems per category for

61

6 Evaluation

Algorithm #proven TEMPLAR original avg. selected avg. duration

ARDE 2 1 1 86.9565 1.67785

Non-Structural 2 0 2 x 3.44914

Structural 2 1 1 39.1304 3.28891

Ling1.0 1 1 0 43.6364 2.09269

Ling1.5 2 2 0 43.7418 10.8384

Dynamic 10 1 1 0 45.4545 6.59868

Dynamic 10 E 13 6 7 56.5428 4.19006

Table 6.7: Count of provable problems for the MZR (+1) category with the existent algorithms

ISA SMO MZR1 MZR2 MZR3 MZR4

problem # 75 20 20 20 20 20

min. axiom # 518 55568 47 2951 10008 29085

max. axiom # 5249 55619 196 10434 19100 71136

Time (sec.) 60 60 30 60 90 120

Proofs on original files (potential)

leanCoP 19 0 2 0 0 0

E 44 0 12 0 0 0

In competition (CASC-J6)

leanCoP-ARDE 17 2 2 0 0 0

EP-LTB 47 15 11 2 6 6

In competition mode with ARDE 0.5.6

leanCoP-ARDE 18(13) 4(4) 2(1) 0 0 1(1)

E-ARDE 40(15) 5(5) 11(6) 2(2) 2(2) 1(1)

In competition mode with TEMPLAR 0.8.5

TEMPLAR::leanCoP 21(16) 7(7) 1(1) 0 0 OOM

TEMPLAR::E 48(27) 11(11) 13(6) 1(1),OOM OOM OOM

Table 6.8: Provable problems

leanCoP and E which is an excerpt from [Fra12a]. For leanCoP, a proof was attempted by using

multiple strategies and giving all strategies a 30 seconds time limit (the same strategies as in the

benchmarks of the section "Results from CASC-24"). For E, the time limit was the normal one.

The third block shows the results from CASC-J6 for E and leanCoP-ARDE2. The fourth block

shows the competition mode for leanCoP-ARDE and E-ARDE as it was evaluated in [Fra12a].

The numbers in the brackets denote the count of problems which were proven by ARDE output.

The last block shows the summarised results of the current benchmarks with the current version

of TEMPLAR where the numbers in brackets denote the count of proven problems by TEMPLAR

output. OOM denotes that the system was stopped due to lack of memory.

Note: The results for EP-LTB are already very good since the SinE selection could be improved

during more than two years and the thresholds could be optimised with exhaustive benchmarks.

Beating a well-tested concept is obviously not really easy in a quite limited time.

2http://www.cs.miami.edu/~tptp/CASC/J6/WWWFiles/Results.html

62

http://www.cs.miami.edu/~tptp/CASC/J6/WWWFiles/Results.html

6.3 Results on problems of the CASC-J6

Comparing the competition modes of TEMPLAR and ARDE, leanCoP can benefit both in the

ISA category and the SMO category by using TEMPLAR. With TEMPLAR, more problems be-

come provable due to the possibility of using hybrid selection algorithms. In both categories,

additional problems become provable. E benefits from the new selection concepts, too. In the

ISA category, eight more problems (even one more than EP-LTB could prove in CASC-J6) are

proven and the count of problems which are proven on a restricted formula set is nearly doubled.

In the SMO category, the count of provable problems was more than doubled by TEMPLAR in

comparison with ARDE but the results are not yet as good as the results with SinE. In the Mizar

category (+1 batch), two more proofs can be found for E.

63

7. Conclusion and Future Work

This section presents a small overview of the conception and implementation of TEMPLAR and

also some ways to improve the system in the future. The effects of TEMPLAR are described and

motives are described which lead to the way TEMPLAR was implemented.

7.1 Conclusion

Initially, the scope of TEMPLAR was to exclusively use a structural graph search for relevance

pruning. During the implementation and parallel benchmarks, the concept proved to be working

but not strong enough to use the pure graph search. Thus, many graph pruning concepts were

implemented which improved the performance. But still, the graph search could not be improved

to a level where it would still be a search and not a proof algorithm though there were still some

concepts which could significantly improve the performance. Due to the limited time window of

a thesis, the concepts were described but another approach was tried. Adapting the tf-idf based

linguistic selection which is a well-evaluated concept, the performance of TEMPLAR and also

the effects for the underlying theorem provers could be improved noticeably. The conception of

the hybrid search strategy (dynamic selection) which chains the graph search with the linguistic

selection lead to significant improvements.

Though no benchmarks could be done before CASC-24 and the conjunctive closure was not ac-

tive, the CASC-results for TEMPLAR::leanCoP have shown that the described concept for pruning

actually works and leads to improvements for theorem proving with large formula sets. Also it

was shown that a decent frequency based selection with theoretical background can be applied

and also may have strong effects to the selection. The evaluation shows that both the structural

graph search and the linguistic selection and also the dynamic module can lead to a significant

performance increase for the underlying theorem prover. Also, it was shown that the relevance

filtering works for smaller formula sets, too and does not depend on the calculus which is used by

the underlying theorem prover. Overall, the concept of TEMPLAR has shown to be much stronger

than the concept of ARDE.

TEMPLAR can be used as a standalone system which processes some problems and just outputs

filtered formula sets but it can also be used in combination with an arbitrary theorem prover. For

this, an executor module has to be implemented which only includes three interface functions and a

constructor which have to be implemented. Also, TEMPLAR can generate multiple visualisations

like for the formula structure and the graph search. The grammar which is used for parsing input

files (partially concurrently) has shown so far to be unambiguous and has the ability to generate

formula graphs with restricted structure sharing. The graph search itself is based on strict Skolem

64

7.2 Future Work

normal form and the normal form transformations generate usable metrics on the fly while some

meta informations from clause forms are generated, too.

The structure of TEMPLAR is strictly modular which simplifies the extension of the system.

But there are still parts of TEMPLAR which can be improved and should be since it still is in

beta stadium.

7.2 Future Work

This section gives some impressions about some concepts in TEMPLAR which can be improved.

Structure Sharing The structure sharing can be improved by extending the sharing to complete

graphs. For example, the graph of a function may be shareable when a function occurs in different

positions with syntactically identical graphs. Initial graph sharing can be applied during the normal

form transformations and the sharing can be extended during unifications. Furthermore, the central

ObjectVault is some kind of bottleneck. Every time a constant is parsed, the ObjectFactory queries

the ObjectVault for this constant. This is okay when the constant is not yet existent. But after that,

querying the Vault for the constant is a waste of time and may delay the initial query of other

Factories for the constant or other constants. Thus, the ObjectFactory should cache all shared

constructs locally after the first enquiry to the ObjectVault.

The structure sharing can furthermore be extended to support complete predicates when the

predicates are ground (no variables are contained). This would lead to an unification for ground

predicates which has a time complexity of O(1) and all predicates which are syntactically identical

would be equivalent (with disregard of the polarity).

Unification via equalities The equality scope which was implemented can be used to use unifi-

cation via equalities. For this, the equality closures could be used in order to check whether two

functions (or constants) that are normally not unifiable would be with application of the equalities

which enclose the two predicates which contain the functions.

Dynamic Selection/Structural Selection The structural selection currently only uses the for-

mula structure to recognise invalid connections. Lifting the concept to a semi-proof search by

applying constraints for the variable substitutions for outgoing connections could have enormous

impact on the performance of TEMPLAR. This constraints would include that only connections

which are consistent to other connections concerning the variable substitutions and together with

the other connections show the unsatisfiability of the formula would be valid.

Currently, the dynamic module starts a prover thread for every generated formula set. But when

the beam vectors are created (linguistic selection for each lexeme independently), it seems to make

more sense to create a prover instance which processes one beam.

The breadth-first search has shown to be slow in some cases which is not a wished result.

Thus, other search algorithms like cost-based searches should be evaluated. For this, heuristics are

needed which give hints on the connections which should be expanded.

65

7 Conclusion and Future Work

Memory Management The benchmarks with the Mizar batches have shown that the memory

consumption in the graph search is significant. In order to reduce the memory consumption, all

modules and associated structures (predicate vector for ARDE selection, ConnectionPath structure

for non-structural search, for example) should be removed. Furthermore, the current memory

management in not optimal since the problem file objects can only be disposed after a batch file

was completed since race conditions can occur while deleting a function which should not be

needed any more but is needed by an file which is about to be loaded. To solve this problem, a

decent garbage collection mechanism should be implemented.

Search Graph Restrictions Currently, there are some search graph restrictions for the structural

graph search like the conjunctive closures. But the nexus path union is not yet implemented. In

order to allow the nexus path union, the connection graph representation needs to be improved in

order to allow a Connection object to have multiple sources. This adoption also needs a rewrite of

the recognition of invalid paths concerning the back-tracing to the first Connection which would

still be valid

Learning From Proofs The implementation of TEMPLAR which contains the executors would

theoretically allow the analysis of of successful proofs. By this, it could be attempted to recognise

common inference steps (involved formulae) and optimal search depths for the relevance filtering

after successful proofs which could be expanded to machine learning algorithms. For example, a

successful proof, which contains all inference step could be tried to match to the search graph of

TEMPLAR.

Improving the linguistic selection The linguistic selection was not tested exhaustively and the

normalisation functions and thresholds are probably not optimal. Thus, TEMPLAR should be

tested exhaustively on the complete classical first order logic problem set of the TPTP with differ-

ent relevance thresholds and normalisations.

Enlarging the scope of TEMPLAR The initial scope of TEMPLAR was the reduction of big for-

mula sets. But the implementation lead to a system which can be extended to a framework with an

automatic mode. Implementing specialised modules which can be accessed by interactive theorem

provers or automated theorem provers is possible with reasonable work. Extending TEMPLAR by

arithmetic modules, for example could support the implementation of lean theorem provers which

only contain the core of the calculus which is used and use specialised modules without having

functionalities which are not even needed for the problem class which is considered. The source

code of the provers could become smaller and more easily (formally) verifiable which is not easy

for some theorem provers.

66

A. Benchmark Results

A.1 Post-CASC-24 Benchmarks

The table A.1 shows the problems of the CASC-24 which were proven by TEMPLAR::leanCoP

and which are also provable by leanCoP on it’s own. The second column shows for every problem,

Problem Successful of 19 Solved by cut,comp(7)

HOM127+1 17 yes

HOM163+1 17 yes

MZS086+1 17 yes

ISC292+1 9 no

ISA182+1 7 no

ISA084+1 6 no

ISB753+1 6 no

ISB840+1 6 no

HON030+1 4 no

HOP175+1 4 no

ISB586+1 3 no

HOQ331+1 2 no

HON097+1 2 no

MZS278+1 1 no

Table A.1: Problems of CASC-24 which are provable by leanCoP with the count of successful strate-

gies with a time limit of 15 s. per strategy

how many strategies of 19 were able to solve the problem in up to 15 seconds and the last column

states whether the standard strategy is able to solve this problem in up to 15 seconds.

67

A Benchmark Results

The table A.2 shows the problems of the HOL category which were proven by TEMPLAR::leanCoP

in CAsC-24 in combination with the count of sufficient formula count for the proof and the for-

mula count ratio.

Problem CASC/Real name Sufficient Original Ratio (%)

HOL012/HOM163+1 90 1455 6,2

HOL042/HON030+1 14 2400 0,6

HOL045/HON097+1 8 2484 0,3

HOL105/HOO448+1 37 3900 0,95

HOL132/HOP175+1 193 4670 4,1

HOL139/HOP346+1 1275 4845 26,3

HOL154/HOP743+1 12 5253 0,2

HOL165/HOQ215+1 69 5735 1,2

HOL171/HOQ331+1 9 5859 0,2

HOL196/HOQ731+1 3 6318 0,1

HOL189/HOQ776+1 1266 6271 20,1

Table A.2: The ratio of sufficient selection of formulae for the CASC-24 HOL category

The table A.3 shows the problems of the Isabelle category which were proven by TEMPLAR::leanCoP

in CAsC-24 in combination with the count of sufficient formula count for the proof and the for-

mula count ratio.

Problem CASC/Real name Sufficient Original Ratio (%)

ISA004/ISA084+1 56 7789 0,7

ISA005/ISA086+1 58 7800 0,7

ISA009/ISA182+1 63 7898 0,8

ISA030/ISA537+1 103 8796 1,2

ISA072/ISB586+1 42 10801 0,4

ISA078/ISB712+1 19 12514 0,2

ISA081/ISB753+1 48 12559 0,4

ISA087/ISB840+1 4 12651 0,03

ISA114/ISC292+1 13 13130 0,1

ISA148/ISC893+1 4 16907 0,02

ISA178/ISD284+1 28 19046 0,1

ISA179/ISD291+1 24 19054 0,1

Table A.3: The ratio of sufficient selection of formulae for the CASC-24 ISA category

68

A Benchmark Results

The table A.4 shows the problems of the Mizar category which were proven by TEMPLAR::leanCoP

in CASC-24 in combination with the count of sufficient formula count for the proof and the for-

mula count ratio.

Problem CASC/Real name Sufficient Original Ratio (%)

MZR019/MZS086+1 5 1713 0,3

MZR053/MZS230+1 19 2105 0,9

MZR066/MZS278+1 65 2187 2,97

MZR167/MZS716+1 122 3367 3,6

Table A.4: The ratio of sufficient selection of formulae for the CASC-24 MZR category

69

A Benchmark Results

A.2 Full Benchmarks on CASC-J6 Problems

This section contains the full benchmarks on the CASC-J6 problems for the categories ISA, MZR

and SMO.

Note: All tables in this section were automatically generated by the statistics module of TEM-

PLAR. Only the caption and the label had to be adapted. Furthermore, the table of the provable

problems for E with the dynamic selection had to be segmented.

A.2.1 ISA

The table A.5 shows the problems which are provable with applied ARDE selection. All problems

which were proven with a depth of -1 were proven with the original problem file. All other

problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 5.24331

ISA026.p 1 1040 1269 81.9543 6.57882

ISA027.p 1 1028 1199 85.7381 5.45143

ISA028.p 1 1034 1269 81.4815 4.46688

ISA029.p -1 1288 1288 100 2.37488

ISA037.p -1 1288 1288 100 4.50913

ISA052.p 1 603 5231 11.5274 3.23844

ISA053.p 1 602 5230 11.5105 3.17906

ISA054.p 0 15 5225 0.287081 3.26912

ISA056.p 0 348 5225 6.66029 4.30183

ISA057.p 1 556 5224 10.6432 3.36678

ISA058.p 1 2274 5209 43.6552 21.7347

ISA061.p 2 4836 5211 92.8037 22.9108

ISA062.p 2 4832 5209 92.7625 23.0016

Table A.5: Provable problems of the Isabelle category with application of the ARDE selection algo-

rithm

70

A Benchmark Results

The table A.6 shows the problems which are provable with applied non-structural selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 5.3714

ISA026.p -1 1269 1269 100 6.86351

ISA027.p 1 1028 1199 85.7381 5.64025

ISA028.p 1 1034 1269 81.4815 4.7006

ISA029.p -1 1288 1288 100 2.55604

ISA052.p 1 603 5231 11.5274 3.70807

ISA053.p 1 602 5230 11.5105 3.63379

ISA054.p 0 15 5225 0.287081 3.37094

ISA056.p 0 348 5225 6.66029 4.5828

ISA057.p 1 556 5224 10.6432 3.66434

ISA058.p 1 2274 5209 43.6552 22.1573

ISA061.p -1 5211 5211 100 24.7959

ISA062.p -1 5209 5209 100 24.7192

Table A.6: Provable problems of the Isabelle category with application of the non-structural graph

search algorithm

71

A Benchmark Results

The table A.7 shows the problems which are provable with applied structural selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 7.40128

ISA003.p -1 533 533 100 11.5371

ISA004.p 1 497 533 93.2458 16.7922

ISA026.p -1 1269 1269 100 7.62357

ISA027.p 1 1002 1199 83.5696 5.42609

ISA028.p 1 1018 1269 80.2206 4.4307

ISA029.p -1 1288 1288 100 3.47324

ISA052.p 1 603 5231 11.5274 4.48867

ISA053.p 1 602 5230 11.5105 4.49673

ISA054.p 0 15 5225 0.287081 4.2486

ISA056.p 0 348 5225 6.66029 4.86342

ISA057.p 1 555 5224 10.624 4.51909

ISA058.p -1 5209 5209 100 24.7756

ISA061.p 2 3056 5211 58.6452 24.1603

ISA062.p 2 2639 5209 50.6623 24.0514

Table A.7: Provable problems of the Isabelle category with application of the structural graph search

algorithm

72

A Benchmark Results

The table A.8 shows the problems which are provable with applied linguistic selection with a

relevance threshold of 1.0. All problems which were proven with a depth of -1 were proven with

the original problem file. All other problems were proven with a restricted formula set. The table

shows the depth, the count of formulae needed for a successful proof, the percentage of needed

formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 7.10718

ISA002.p -1 533 533 100 13.3917

ISA004.p 3 370 533 69.4184 13.2984

ISA005.p 2 15 523 2.86807 2.22777

ISA026.p -1 1269 1269 100 5.5175

ISA027.p 1 1029 1199 85.8215 3.56719

ISA028.p -1 1269 1269 100 4.51504

ISA029.p 0 604 1288 46.8944 1.47902

ISA037.p -1 1288 1288 100 40.3974

ISA052.p 1 4 5231 0.0764672 3.5283

ISA053.p -1 5230 5230 100 6.64438

ISA054.p -1 5225 5225 100 21.9984

ISA057.p -1 5224 5224 100 23.0457

ISA058.p -1 5209 5209 100 22.143

ISA061.p -1 5211 5211 100 25.3163

ISA062.p -1 5209 5209 100 22.4169

Table A.8: Provable problems of the Isabelle category, linguistic selection algorithm (relevance thresh-

old:1.0)

73

A Benchmark Results

The table A.9 shows the problems which are provable with applied linguistic selection with a

relevance threshold of 1.5. All problems which were proven with a depth of -1 were proven with

the original problem file. All other problems were proven with a restricted formula set. The table

shows the depth, the count of formulae needed for a successful proof, the percentage of needed

formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 6.465

ISA003.p 1 393 533 73.7336 10.8065

ISA005.p 0 15 523 2.86807 2.33939

ISA008.p 1 54 533 10.1313 5.99471

ISA009.p 2 16 519 3.08285 20.7621

ISA026.p 5 1165 1269 91.8046 5.61716

ISA027.p 2 1146 1199 95.5796 5.50898

ISA028.p -1 1269 1269 100 4.4518

ISA029.p -1 1288 1288 100 1.48661

ISA037.p 0 592 1288 45.9627 3.50603

ISA052.p 2 25 5231 0.47792 3.27052

ISA053.p 1 12 5230 0.229446 3.69588

ISA054.p -1 5225 5225 100 22.0126

ISA057.p 3 3108 5224 59.4946 25.2081

ISA058.p -1 5209 5209 100 22.1412

ISA059.p 1 21 5223 0.402068 3.87323

ISA060.p 0 26 5228 0.497322 3.97422

ISA061.p 1 7 5211 0.134331 4.08254

ISA062.p 1 3148 5209 60.4339 25.4575

Table A.9: Provable problems of the Isabelle category, linguistic selection algorithm (relevance thresh-

old:1.5)

74

A Benchmark Results

The table A.10 shows the problems which are provable with applied dynamic selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 7.44508

ISA003.p 1 497 533 93.2458 35.4

ISA004.p 1 497 533 93.2458 34.2271

ISA026.p -1 1269 1269 100 9.31426

ISA027.p 1 1002 1199 83.5696 4.92568

ISA028.p 1 1018 1269 80.2206 3.91777

ISA029.p -1 1288 1288 100 3.221

ISA037.p -1 1288 1288 100 6.20423

ISA052.p 5 23 5231 0.439686 6.3582

ISA053.p -1 5230 5230 100 9.24176

ISA054.p 1 17 5225 0.325359 4.73453

ISA057.p -1 5224 5224 100 31.4708

ISA058.p 5 50 5209 0.959877 9.53446

ISA060.p 1 24 5228 0.459067 4.91965

ISA061.p 6 30 5211 0.575705 9.30201

ISA064.p 7 86 5241 1.64091 24.4936

Table A.10: Provable problems of the Isabelle category with application of the Dynamic selection

(linguistic selection for more than 2000 formulae and modulation of relevance threshold)

75

A Benchmark Results

The table A.11 shows the problems which are provable with applied dynamic selection. The

linguistic selection was applied when more than 10 formulae were present. All problems which

were proven with a depth of -1 were proven with the original problem file. All other problems

were proven with a restricted formula set. The table shows the depth, the count of formulae

needed for a successful proof, the percentage of needed formulae and the proof duration including

all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 6.18278

ISA003.p 24 290 533 54.409 36.7015

ISA004.p -1 533 533 100 52.8575

ISA005.p 0 14 523 2.67686 2.44861

ISA008.p 3 16 533 3.00188 19.6333

ISA009.p 4 17 519 3.27553 32.3676

ISA026.p 5 1155 1269 91.0165 10.695

ISA027.p 19 899 1199 74.9791 28.3805

ISA028.p 2 1018 1269 80.2206 5.06488

ISA029.p -1 1288 1288 100 6.79771

ISA034.p 2 649 1264 51.3449 24.9838

ISA037.p 22 900 1288 69.8758 22.8243

ISA052.p 3 7 5231 0.133818 7.89816

ISA053.p -1 5230 5230 100 10.5657

ISA054.p 1 17 5225 0.325359 5.47113

ISA057.p 5 3760 5224 71.9755 32.6253

ISA058.p 5 50 5209 0.959877 12.3525

ISA060.p 2 25 5228 0.478194 6.02319

ISA061.p 6 30 5211 0.575705 7.5634

ISA062.p -1 5209 5209 100 25.5296

ISA064.p 6 84 5241 1.60275 24.4639

Table A.11: Provable problems of the Isabelle category with application of the Dynamic selection

(linguistic selection for more than 10 formulae and modulation of relevance threshold)

76

A Benchmark Results

The table A.12 shows the problems which are provable with applied dynamic selection for E.

Only a part of the problems is shown in this table The linguistic selection was applied when more

than 10 formulae were present. All problems which were proven with a depth of -1 were proven

with the original problem file. All other problems were proven with a restricted formula set. The

table shows the depth, the count of formulae needed for a successful proof, the percentage of

needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA001.p -1 535 535 100 2.35377

ISA002.p 2 483 533 90.6191 2.23066

ISA003.p 23 282 533 52.9081 5.83819

ISA004.p 29 335 533 62.8518 11.2359

ISA005.p -1 523 523 100 1.39779

ISA006.p 22 325 532 61.0902 10.2485

ISA008.p 3 16 533 3.00188 16.098

ISA009.p 4 17 519 3.27553 5.50066

ISA014.p 6 13 529 2.45747 6.39205

ISA015.p 5 17 529 3.21361 5.61416

ISA026.p 4 467 1269 36.8006 5.09835

ISA027.p 16 857 1199 71.4762 16.7338

ISA028.p -1 1269 1269 100 5.51746

ISA029.p 13 274 1288 21.2733 14.7536

ISA030.p -1 1200 1200 100 4.51866

ISA031.p -1 1269 1269 100 6.5663

ISA032.p -1 1214 1214 100 5.59729

ISA033.p -1 1180 1180 100 2.43732

ISA034.p 2 649 1264 51.3449 28.4224

ISA035.p -1 1264 1264 100 12.903

ISA038.p 4 288 1183 24.3449 9.85522

ISA040.p -1 1200 1200 100 47.5938

ISA041.p -1 1214 1214 100 25.1094

ISA051.p -1 5248 5248 100 15.0639

Table A.12: Provable problems for TEMPLAR::E of the Isabelle category with application of the Dy-

namic selection (linguistic selection for more than 10 formulae and modulation of rele-

vance threshold), Part 1

77

A Benchmark Results

The table A.13 shows the problems which are provable with applied dynamic selection for E.

Only a part of the problems is shown in this table The linguistic selection was applied when more

than 10 formulae were present. All problems which were proven with a depth of -1 were proven

with the original problem file. All other problems were proven with a restricted formula set. The

table shows the depth, the count of formulae needed for a successful proof, the percentage of

needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ISA052.p 3 7 5231 0.133818 6.76896

ISA053.p -1 5230 5230 100 15.46

ISA054.p 1 17 5225 0.325359 4.90162

ISA055.p -1 5230 5230 100 16.9647

ISA056.p -1 5225 5225 100 10.9298

ISA057.p 5 3760 5224 71.9755 8.72237

ISA058.p 5 50 5209 0.959877 10.7578

ISA059.p -1 5223 5223 100 10.7068

ISA060.p 1 24 5228 0.459067 5.27422

ISA061.p 6 30 5211 0.575705 6.67208

ISA062.p -1 5209 5209 100 16.8585

ISA063.p 3 1584 5228 30.2984 7.33661

ISA064.p 10 3139 5241 59.8932 20.8999

ISA065.p 7 3158 5228 60.4055 17.4888

ISA066.p -1 5230 5230 100 46.2834

ISA067.p -1 5222 5222 100 31.1865

ISA068.p -1 5225 5225 100 30.4413

ISA069.p -1 5250 5250 100 35.0878

ISA070.p 3 3069 5225 58.7368 10.5215

ISA071.p 7 3342 5230 63.9006 14.3308

ISA072.p -1 5244 5244 100 31.5512

ISA073.p 10 3848 5244 73.3791 24.7246

ISA074.p 3 4305 5249 82.0156 9.06752

ISA075.p 6 4215 5232 80.5619 18.0278

Table A.13: Provable problems for TEMPLAR::E of the Isabelle category with application of the Dy-

namic selection (linguistic selection for more than 10 formulae and modulation of rele-

vance threshold), Part 2

78

A Benchmark Results

A.2.2 SMO

The table A.14 shows the problems which are provable with applied selection by the ARDE al-

gorithm. All problems were proven with a restricted formula set. The table shows the depth, the

count of formulae needed for a successful proof, the percentage of needed formulae and the proof

duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 108 55590 0.19428 1.52318

SMO104+7.p 0 16 55592 0.0287811 1.55185

SMO108+7.p 0 4024 55611 7.23598 27.0507

SMO089+7.p 0 212 55592 0.38135 1.56603

Table A.14: Provable problems of the SUMO category with application of the ARDE selection algo-

rithm

The table A.15 shows the problems which are provable with applied selection by the non-

structural selection algorithm. All problems were proven with a restricted formula set. The table

shows the depth, the count of formulae needed for a successful proof, the percentage of needed

formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 108 55590 0.19428 1.4795

SMO104+7.p 0 16 55592 0.0287811 1.57434

SMO108+7.p 0 4024 55611 7.23598 27.3072

SMO089+7.p 0 212 55592 0.38135 1.80551

Table A.15: Provable problems of the SUMO category with application of the non-structural selection

algorithm

The table A.16 shows the problems which are provable with applied selection by the non-

structural selection algorithm. All problems were proven with a restricted formula set. The table

shows the depth, the count of formulae needed for a successful proof, the percentage of needed

formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 108 55590 0.19428 1.52061

SMO104+7.p 0 16 55592 0.0287811 1.58818

SMO108+7.p 0 4024 55611 7.23598 27.0535

SMO089+7.p 0 212 55592 0.38135 1.58489

Table A.16: Provable problems of the SUMO category with application of the structural selection

algorithm

The table A.17 shows the problems which are provable with applied selection by the linguistic

selection algorithm with a relevance threshold of 1.0. All problems were proven with a restricted

formula set. The table shows the depth, the count of formulae needed for a successful proof, the

79

A Benchmark Results

percentage of needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 1272 55590 2.28818 5.37817

SMO104+7.p 0 5 55592 0.0089941 4.62122

SMO089+7.p 0 36 55592 0.0647575 4.13798

SMO105+7.p 1 1716 55592 3.08678 23.1374

SMO106+7.p 1 8096 55594 14.5627 25.7506

SMO107+7.p 2 1284 55597 2.30948 8.87298

Table A.17: Provable problems of the SUMO category, linguistic selection algorithm (relevance

threshold:1.0)

The table A.18 shows the problems which are provable with applied selection by the linguistic

selection algorithm with a relevance threshold of 1.5. All problems were proven with a restricted

formula set. The table shows the depth, the count of formulae needed for a successful proof, the

percentage of needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 4109 55590 7.39162 27.1641

SMO104+7.p 0 9 55592 0.0161894 23.0257

SMO108+7.p 1 13 55611 0.0233767 15.6477

SMO089+7.p 0 83 55592 0.149302 20.7206

SMO105+7.p 1 9565 55592 17.2057 28.439

SMO107+7.p 0 11 55597 0.0197852 15.9741

Table A.18: Provable problems of the SUMO category, linguistic selection algorithm (relevance

threshold:1.5)

80

A Benchmark Results

The table A.19 shows the problems which are provable with applied dynamic selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 4 55590 0.00719554 6.22771

SMO104+7.p 0 3 55592 0.00539646 7.78835

SMO108+7.p 3 13 55611 0.0233767 5.95732

SMO089+7.p 0 36 55592 0.0647575 6.03142

SMO105+7.p 1 1716 55592 3.08678 23.9873

SMO106+7.p 1 8096 55594 14.5627 26.5442

SMO107+7.p 2 1284 55597 2.30948 6.38424

Table A.19: Provable problems of the SUMO category with application of the Dynamic selection (lin-

guistic selection for more than 2000 formulae and modulation of relevance threshold)

81

A Benchmark Results

The table A.20 shows the problems which are provable with applied dynamic selection for E.

All problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SMO098+7.p 0 4 55590 0.00719554 5.22823

SMO104+7.p 0 3 55592 0.00539646 7.75883

SMO108+7.p 3 13 55611 0.0233767 5.36057

SMO089+7.p 0 36 55592 0.0647575 6.07582

SMO105+7.p 1 1716 55592 3.08678 4.88345

SMO106+7.p 1 8096 55594 14.5627 15.9235

SMO086+6.p 6 5640 55588 10.1461 24.5339

SMO109+7.p 4 1582 55589 2.84589 6.53374

SMO107+7.p 2 1284 55597 2.30948 5.30074

SMO075+6.p 4 9077 55588 16.3291 33.3223

SMO093+7.p 5 5150 55618 9.25959 7.86525

Table A.20: Provable problems for TEMPLAR::E of the SUMO category with application of the Dy-

namic selection (linguistic selection for more than 10 formulae and modulation of rele-

vance threshold)

82

A Benchmark Results

A.2.3 MZR

The table A.21 shows the problems which are provable with applied ARDE selection. All prob-

lems which were proven with a depth of -1 were proven with the original problem file. All other

problems were proven with a restricted formula set. The table shows the depth, the count of for-

mulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

LAT288+1.p 1 60 69 86.9565 1.16509

SEU449+1.p -1 55 55 100 2.19062

Table A.21: Provable problems of the Mizar (+1) category with application of the ARDE selection

algorithm

The table A.22 shows the problems which are provable with applied non-structural selection.

All problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

LAT288+1.p -1 69 69 100 2.41537

SEU449+1.p -1 55 55 100 4.48292

Table A.22: Provable problems of the Mizar (+1) category with application of the non-structural graph

search algorithm

The table A.23 shows the problems which are provable with applied structural selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

LAT288+1.p 0 27 69 39.1304 2.66848

SEU449+1.p -1 55 55 100 3.90934

Table A.23: Provable problems of the Mizar (+1) category with application of the structural graph

search algorithm

83

A Benchmark Results

The table A.24 shows the problems which are provable with applied selection by the linguistic

selection algorithm with a relevance threshold of 1.0. All problems were proven with a restricted

formula set. The table shows the depth, the count of formulae needed for a successful proof, the

percentage of needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SEU449+1.p 0 24 55 43.6364 2.09269

Table A.24: Provable problems of the Mizar (+1) category, linguistic selection algorithm (relevance

threshold:1.0)

The table A.25 shows the problems which are provable with applied selection by the linguistic

selection algorithm with a relevance threshold of 1.5. All problems were proven with a restricted

formula set. The table shows the depth, the count of formulae needed for a successful proof, the

percentage of needed formulae and the proof duration including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

LAT288+1.p 0 29 69 42.029 19.6021

SEU449+1.p 0 25 55 45.4545 2.07462

Table A.25: Provable problems of the Mizar (+1) category, linguistic selection algorithm (relevance

threshold:1.5)

The table A.26 shows the problems which are provable with applied dynamic selection. All

problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

SEU449+1.p 6 25 55 45.4545 6.59868

Table A.26: Provable problems for TEMPLAR::E of the Mizar +1 category with application of the

Dynamic selection (linguistic selection for more than 2000 formulae and modulation of

relevance threshold)

84

A Benchmark Results

The table A.27 shows the problems which are provable with applied dynamic selection for E.

All problems which were proven with a depth of -1 were proven with the original problem file. All

other problems were proven with a restricted formula set. The table shows the depth, the count of

formulae needed for a successful proof, the percentage of needed formulae and the proof duration

including all preprocessing by TEMPLAR.

Problem name Proof depth Formula count of Percentage Proof duration

ALG220+1.p 0 9 69 13.0435 1.5936

GRP637+1.p -1 55 55 100 2.22519

GRP639+1.p -1 54 54 100 2.01231

LAT288+1.p -1 69 69 100 2.01223

SEU451+1.p -1 48 48 100 13.4015

SEU449+1.p -1 55 55 100 2.81355

LAT302+1.p -1 92 92 100 2.1552

LAT311+1.p 11 52 101 51.4851 2.97511

LAT343+1.p -1 97 97 100 2.36519

SEU447+1.p 10 31 60 51.6667 1.95793

SEU441+1.p 14 46 61 75.4098 10.7585

TOP042+1.p 3 104 122 85.2459 2.70389

TOP032+1.p 6 83 133 62.406 7.49658

Table A.27: Provable problems for TEMPLAR::E of the Mizar +1 category with application of the

Dynamic selection (linguistic selection for more than 10 formulae and modulation of

relevance threshold)

85

B. Files of the thesis

The compact disc which is bundled with this thesis contains the following folder structure:

• /src/ : the source code folder of TEMPLAR

• /binary/ : pre-built binaries folder

• /leanCoP/ : the version 2.2 of leanCoP

• /tests/ : folder containing some test files for TEMPLAR

• /thesis/ : folder containing TeX files, images, listings and benchmark results of this thesis

• /README : a readme file which describes the usage of TEMPLAR

• TEMPLAR.pdf : this document in digital format

86

List of Figures

2.1 Formulation of the Tweety-problem as first order logic formulae 15

2.2 Skolemization of first order logic (fol)-formulae 16

3.1 Formula in negation normal form with visualized structure sharing 24

3.2 Formula in negation normal form with visualized equality scope 25

3.3 Two connections using syntactically identical targets 29

3.4 Two merged connections using syntactically identical targets 29

3.5 Three connections to one conjunctive formula 30

3.6 The matrix representation of the formula (¬p(x)∧q(x))∨ (r(x)) in negation- and

conjunctive normal form . 30

3.7 Formula in negation normal form with visualized equality scope and conjunctive

closure . 31

4.1 The overall workflow of TEMPLAR . 35

4.2 The Hierarchy of Terms . 37

4.3 The Hierarchy of Formulae . 38

4.4 Assertion of Structure Sharing with concurrent Parsing 39

4.5 Formula for calculating the parsing thread count 40

4.6 The class hierarchy of the search engines . 49

87

List of Tables

3.1 Most important formula types in the TPTP library and their properties 22

3.2 Mapping of TPTP input formulae to negation normal form 23

3.3 Clause Count Calculation Formulae . 24

6.1 Comparison between the compute node specification of the last two CASCs and

the one of the University of Potsdam . 56

6.2 Comparison between the two variants of TEMPLAR concerning the activated/im-

plemented features . 57

6.3 CASC-24: Comparison between the solved problems and the ratio of provable

problems for leanCoP in CASC and potentially provable problems for leanCoP,

excerpt of table A.1 . 58

6.4 Overview of selection ratios for the CASC-24 problems proven, extraction of ta-

bles A.2, A.3 and A.4 . 59

6.5 Count of provable problems for the Isabelle category with the existent algorithms 60

6.6 Count of provable problems for the SUMO category with the existent algorithms 61

6.7 Count of provable problems for the MZR (+1) category with the existent algorithms 62

6.8 Provable problems . 62

A.1 Problems of CASC-24 which are provable by leanCoP with the count of successful

strategies with a time limit of 15 s. per strategy 67

A.2 The ratio of sufficient selection of formulae for the CASC-24 HOL category . . . 68

A.3 The ratio of sufficient selection of formulae for the CASC-24 ISA category . . . 68

A.4 The ratio of sufficient selection of formulae for the CASC-24 MZR category . . . 69

A.5 Provable problems of the Isabelle category with application of the ARDE selection

algorithm . 70

A.6 Provable problems of the Isabelle category with application of the non-structural

graph search algorithm . 71

A.7 Provable problems of the Isabelle category with application of the structural graph

search algorithm . 72

A.8 Provable problems of the Isabelle category, linguistic selection algorithm (rele-

vance threshold:1.0) . 73

A.9 Provable problems of the Isabelle category, linguistic selection algorithm (rele-

vance threshold:1.5) . 74

A.10 Provable problems of the Isabelle category with application of the Dynamic selec-

tion (linguistic selection for more than 2000 formulae and modulation of relevance

threshold) . 75

88

List of Tables

A.11 Provable problems of the Isabelle category with application of the Dynamic selec-

tion (linguistic selection for more than 10 formulae and modulation of relevance

threshold) . 76

A.12 Provable problems for TEMPLAR::E of the Isabelle category with application of

the Dynamic selection (linguistic selection for more than 10 formulae and modu-

lation of relevance threshold), Part 1 . 77

A.13 Provable problems for TEMPLAR::E of the Isabelle category with application of

the Dynamic selection (linguistic selection for more than 10 formulae and modu-

lation of relevance threshold), Part 2 . 78

A.14 Provable problems of the SUMO category with application of the ARDE selection

algorithm . 79

A.15 Provable problems of the SUMO category with application of the non-structural

selection algorithm . 79

A.16 Provable problems of the SUMO category with application of the structural selec-

tion algorithm . 79

A.17 Provable problems of the SUMO category, linguistic selection algorithm (rele-

vance threshold:1.0) . 80

A.18 Provable problems of the SUMO category, linguistic selection algorithm (rele-

vance threshold:1.5) . 80

A.19 Provable problems of the SUMO category with application of the Dynamic selec-

tion (linguistic selection for more than 2000 formulae and modulation of relevance

threshold) . 81

A.20 Provable problems for TEMPLAR::E of the SUMO category with application of

the Dynamic selection (linguistic selection for more than 10 formulae and modu-

lation of relevance threshold) . 82

A.21 Provable problems of the Mizar (+1) category with application of the ARDE se-

lection algorithm . 83

A.22 Provable problems of the Mizar (+1) category with application of the non-structural

graph search algorithm . 83

A.23 Provable problems of the Mizar (+1) category with application of the structural

graph search algorithm . 83

A.24 Provable problems of the Mizar (+1) category, linguistic selection algorithm (rel-

evance threshold:1.0) . 84

A.25 Provable problems of the Mizar (+1) category, linguistic selection algorithm (rel-

evance threshold:1.5) . 84

A.26 Provable problems for TEMPLAR::E of the Mizar +1 category with application

of the Dynamic selection (linguistic selection for more than 2000 formulae and

modulation of relevance threshold) . 84

A.27 Provable problems for TEMPLAR::E of the Mizar +1 category with application of

the Dynamic selection (linguistic selection for more than 10 formulae and modu-

lation of relevance threshold) . 85

89

Listings

4.1 Excerpt of the TPTP fof syntax definition for logic formulae 40

4.2 Disambiguated definition for TPTP formulae 41

4.3 Excerpt of the TPTP fof syntax definition for unitary formulae 41

4.4 Disambiguated definition for TPTP predicates, equalities and inequalities 42

4.5 Sample output of TEMPLAR showing the logging implementation 51

90

C. Abbreviations

CASC CADE ATP Systems Competition

CNF Conjunctive Normal Form

EBNF Extended Backus-Naur Form

ESC Electronic Stability Control

FIFO First In First Out

fof first order formula

fol first order logic

HT Hyper-Threading

iff if and only if

LTB Large Theorem Batch

mutex mutual exclusion

mgu most general unifier

NLP Natural Language Processing

PSA Premise Selection Algorithm

UML Unified Modelling Language

SVG Scalable Vector Graphic

TPTP Thousands of Problems for Theorem Provers

TEMPLAR TEMpestuous Pruner based on Logical Axiom Relevance

91

Bibliography

[BBJ07] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cambridge
University Press, 2007. Available from: http://books.google.de/books?id=
8ABhQgAACAAJ.

[BEL01] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form transformations. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reason-
ing, pages 273–333. Elsevier and MIT Press, 2001.

[Bib92] Wolfgang Bibel. Deduktion: Automatisierung der Logik. Oldenbourg, 1992.

[Bir10] Richard Bird. Pearls of Functional Algorithm Design. Cambridge University
Press, 2010. Available from: http://www.cambridge.org/gb/knowledge/isbn/
item5600469.

[CKKS10] Marcos Cramer, Peter Koepke, Daniel Kühlwein, and Bernhard Schröder. Premise
selection in the naproche system. In Proceedings of the 5th international con-
ference on Automated Reasoning, IJCAR’10, pages 434–440, Berlin, Heidel-
berg, 2010. Springer-Verlag. Available from: http://dx.doi.org/10.1007/
978-3-642-14203-1_37.

[dlT92] Thierry Boy de la Tour. An optimality result for clause form translation. J. Symb.
Comput., 14(4):283–302, 1992. Available from: http://dblp.uni-trier.de/db/
journals/jsc/jsc14.html#Tour92.

[Ede92] Elmar Eder. Relative complexities of first order calculi. Verlag Vieweg, Wiesbaden,
Germany, Germany, 1992.

[Fra12a] Mario Frank. Axiom Relevance Decision Engine. Technical report, 2012. Available
from: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72128.

[Fra12b] Mario Frank. Relevanzbasiertes Preprocessing für automatische Theorembeweiser.
In Johannes Schmidt, Thomas Riechert, and Sören Auer, editors, SKIL 2012 – Dritte
Studentenkonferenz Informatik Leipzig 2012, volume XXXIV of Leipziger Beiträge
zur Informatik, pages 87–98. Leipziger Informatik-Verbund (LIV), 2012. Klaus-Peter
Fähnrich (Series Editor).

[Ger96] Michael Gervers. Malcolm barber, the new knighthood: A history of the order of the
temple. cambridge, eng.: Cambridge university press, 1994. pp. xxi, 441; 17 black-
and-white plates and 14 figures. $69.95. Speculum, 71:679–681, 6 1996. Available
from: http://journals.cambridge.org/article_S003871340013413X.

92

http://books.google.de/books?id=8ABhQgAACAAJ
http://books.google.de/books?id=8ABhQgAACAAJ
http://www.cambridge.org/gb/knowledge/isbn/item5600469
http://www.cambridge.org/gb/knowledge/isbn/item5600469
http://dx.doi.org/10.1007/978-3-642-14203-1_37
http://dx.doi.org/10.1007/978-3-642-14203-1_37
http://dblp.uni-trier.de/db/journals/jsc/jsc14.html#Tour92
http://dblp.uni-trier.de/db/journals/jsc/jsc14.html#Tour92
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72128
http://journals.cambridge.org/article_S003871340013413X

Bibliography

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman, Amster-
dam, 1 edition, 1995. 37. Reprint (2009).

[HKV11] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Invariant generation in vampire.
In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, TACAS, volume 6605 of
Lecture Notes in Computer Science, pages 60–64. Springer, 2011.

[HV11] Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In
Proceedings of the 23rd international conference on Automated deduction, CADE’11,
pages 299–314, Berlin, Heidelberg, 2011. Springer-Verlag. Available from: http:
//dl.acm.org/citation.cfm?id=2032266.2032289.

[Jon72] Karen Spärck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation, 28:11–21, 1972.

[Kor08] K. Korovin. iProver – an instantiation-based theorem prover for first-order logic (sys-
tem description). In A. Armando, P. Baumgartner, and G. Dowek, editors, Proceedings
of the 4th International Joint Conference on Automated Reasoning, (IJCAR 2008),
volume 5195 of Lecture Notes in Computer Science, pages 292–298. Springer, 2008.

[MB72] J. Strother Moore and Robert S. Boyer. The sharing of structure in theorem-proving
programs. volume 7, pages 101–116. Edinburgh University Press, 1972.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. TRANSAC-
TIONS ON PROGRAMMING LANGUAGES AND SYSTEMS (TOPLAS), 4(2):258–
282, 1982.

[OB03] Jens Otten and Wolfgang Bibel. leancop: lean connection-based theorem proving.
Journal of Symbolic Computation, 36(1-2):139–161, 2003.

[Ott08] Jens Otten. leancop 2.0 and ileancop 1.2: High performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In Proceedings of the 4th
international joint conference on Automated Reasoning, IJCAR ’08, pages 283–291,
Berlin, Heidelberg, 2008. Springer-Verlag. Available from: http://dx.doi.org/
10.1007/978-3-540-71070-7_23.

[Ott10] Jens Otten. Restricting backtracking in connection calculi. AI Commun., 23(2-
3):159–182, April 2010. Available from: http://dl.acm.org/citation.cfm?id=
1735921.1735931.

[Pud07] Petr Pudlak. Semantic selection of premisses for automated theorem proving. In Geoff
Sutcliffe, Josef Urban, and Stephan Schulz, editors, ESARLT, volume 257 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007.

[PW07] Björn Pelzer and Christoph Wernhard. System description: E-krhyper. In Frank
Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer Science, pages
508–513. Springer, 2007. Available from: http://dblp.uni-trier.de/db/conf/
cade/cade2007.html#PelzerW07.

93

http://dl.acm.org/citation.cfm?id=2032266.2032289
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dl.acm.org/citation.cfm?id=1735921.1735931
http://dblp.uni-trier.de/db/conf/cade/cade2007.html#PelzerW07

Bibliography

[PY03] David A. Plaisted and Adnan H. Yahya. A relevance restriction strategy for au-
tomated deduction. Artif. Intell., 144(1-2):59–93, 2003. Available from: http:
//dblp.uni-trier.de/db/journals/ai/ai144.html#PlaistedY03.

[RPS09] Alex Roederer, Yury Puzis, and Geoff Sutcliffe. Divvy: An atp meta-system based
on axiom relevance ordering. In Renate A. Schmidt, editor, CADE, volume 5663 of
Lecture Notes in Computer Science, pages 157–162. Springer, 2009.

[Rus08] Bertrand Russell. Mathematical logic as based on the theory of types.
American Journal of Mathematics, 30(3):222–262, 1908. Available from:
http://links.jstor.org/sici?sici=0002-9327%28190807%2930%3A3%
3C222%3AMLABOT%3E2.O.CO%3B2-G,http://www.cfh.ufsc.br/~dkrause/pg/
cursos/selecaoartigos/Russell(1905).pdf.

[Sch04] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch, editors, Proc.
of the 2nd IJCAR, Cork, Ireland, volume 3097 of LNAI, pages 223–228. Springer,
2004.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1st edition, 1996.

[Smu95] R.M. Smullyan. First-order logic. Dover Publications, 1995.

[SP07] Geoff Sutcliffe and Yury Puzis. Srass - a semantic relevance axiom selection system.
In Frank Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer Science,
pages 295–310. Springer, 2007.

[Sut09] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[Sut12a] G. Sutcliffe. The CADE-23 Automated Theorem Proving System Competition -
CASC-23. AI Communications, 25(1):49–63, 2012.

[Sut12b] Geoff Sutcliffe, editor. CASC-J6 Proceedings, volume 11 of EPiC Series. EasyChair,
2012.

[Sut13] G. Sutcliffe. Proceedings of the 24th CADE ATP System Competition. Lake Placid,
USA, 2013.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Sad-
dle River, NJ, USA, 3rd edition, 2007.

[USPV08] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jirí Vyskocil. Malarea sg1- machine
learner for automated reasoning with semantic guidance. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195 of Lecture Notes
in Computer Science, pages 441–456. Springer, 2008.

94

http://dblp.uni-trier.de/db/journals/ai/ai144.html#PlaistedY03

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Fundamentals of Classical First Order Logic and Reasoning
	2.2 Fundamentals of Graphs and Graph Search Algorithms
	2.3 Selected Linguistic Aspects

	3 Concept
	3.1 Data Import and Representation
	3.2 Analysis
	3.3 Unification based Search Strategies
	3.3.1 Selection Algorithm Basics
	3.3.2 Search Graph Restrictions

	3.4 Frequency Based Selection

	4 Implementation
	4.1 Overall Workflow
	4.2 Data Import and Representation
	4.2.1 Representation of the Formulae
	4.2.2 Import of Formulae with Structure Sharing

	4.3 Normal Form Transformations and Analysis
	4.4 Unification
	4.5 Search Engines
	4.6 Output

	5 Related Work
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Results from CASC-24
	6.3 Results on problems of the CASC-J6

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Benchmark Results
	A.1 Post-CASC-24 Benchmarks
	A.2 Full Benchmarks on CASC-J6 Problems
	A.2.1 ISA
	A.2.2 SMO
	A.2.3 MZR

	B Files of the thesis
	List of Figures
	List of Tables
	Listings
	C Abbreviations
	Bibliography

