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Abstract: We establish in this paper the existence of weak solu-
tions of infinite-dimensional shift invariant stochastic differential
equations driven by a Brownian term. The drift function is very
general, in the sense that it is supposed to be neither small or
continuous, nor Markov. On the initial law we only assume that
it admits a finite specific entropy.

Our result strongly improves the previous ones obtained for free
dynamics with a small perturbative drift. The originality of our
method leads in the use of the specific entropy as a tightness tool
and on a description of such stochastic differential equation as
solution of a variational problem on the path space.
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1 Introduction

The main object of this paper is the infinite-dimensional stochastic differen-
tial equation (SDE)

dX;(t) =by(0;X)dt +dB;(t) , i€ Z, (1)

on the configuration space Q = C([0, 7], R)%’, where the drift b : [0, 7] x Q
is an adapted functional, #; denotes the space-shift on €2 by vector —i and
(Bi)icza is a sequence of independent real-valued Brownian motions.

Our aim is to prove the existence of a weak solution of the SDE (1) on
the finite time-interval [0, 7|, where the drift b is supposed to be as general
as possible, in particular non-Markov and non-regular. Indeed, in Theorem
2.1, we solve the SDE (1) for a path-dependent drift which is supposed to be
only uniformly bounded and local, that is

blloc = sup [|by(w)] < 400 (2)
te[0,T],we
and by(w) = by(wa(s),s €10,t]), for t € [0,T7, (3)

where A is a fixed finite subset of Z? and wa = (w;)iea denotes the coor-
dinates of the path w indexed by A. The initial condition is assumed to
be shift-invariant with finite specific entropy. In Section 5 we extend our
existence result to drifts b containing also a Lipschitz unbounded part.

Let us illustrate our main result by a typical example. Let 87 # 8~ be
two real numbers and A C Z¢ be a set with cardinality N. Define first the
function b on R by

b(l‘) = ﬁ+ ]1{9602% ZieAl’i} * B_ 11{$0<% ZiEAZi}. <4>

It takes the value S1 (respectively 57) if the 0-coordinate zq is larger (re-
spectively smaller) than the barycentre of the A-coordinates x5. Introducing
a d-delay (with 0 < 0 < T') consider now the drift b;(w) := b(w(0V (t—9)). It
leads to a stochastic differential delay equation (1) whose discontinuous drift
satisfies assumptions (2) and (3). In the above example the time memory
of the drift is bounded (by ¢§), but our approach also allows to deal with
path-dependent drift with long-term memory like by(w) := fot b(s,w(s))ds.

Note that SDE with non-Markov and non-regular drifts are relevant in
many fields of applications like mathematical finance, biomathematics or
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physics, see e.g. [M97], [AHMPO7] or [TPO1].

Let us briefly recall some results concerning infinite-dimensional SDEs. In

the very special Markovian case, when the drift only depends on the present
time by (w) = by(w(t)), and the functions z — by(x) satisfy certain growth
condition at infinity, (strong) solutions of (1) with values in a weighted ¢2-
space were constructed in [SS80] and [F82]; the particular case of gradient
drift (i.e. the function b is the gradient of a smooth Hamilton function)
was treated earlier in detail in [DR78] and [R99]. For the existence of weak
solutions of a Markov SDE with unbounded linear term the theory of Dirich-
let forms can also be used fruitfully, see e.g. [AR91]. Very recently, for
SDEs with values in Hilbert spaces with non-regular Markovian drift, strong
uniqueness results were obtained in several frameworks, see [DPFPR13] and
[DPFRV14].
If the drift is non-Markov but satisfies a Lipschitz assumption (see Section
5 for precise definitions), extending straightforwardly the results in [SS80]
would provide the existence and uniqueness of a strong solution of (1). For
general non-Markov and non-regular drifts b, to our knowledge, till now
only particular perturbative cases were treated, see [DPR06] and [RR14].
They correspond to the perturbation of a free dynamics (involving only a
self-interaction term) by a sufficiently small drift. Thus, for example, the
existence and uniqueness of solutions of (1) for the drift (4) is known when
parameters 4+ are small enough.

A fruitful approach to construct solutions of infinite-dimensional SDEs
is to describe them as Gibbs measures on a path space. This point of view
was initiated for gradient diffusions on a finite time interval in [D87] and
developed later in [CRZ96]. The procedure includes here two steps:

i) the construction of Gibbs measures on the path space associated to a suit-
able Hamiltonian H (depending on the drift b and on the initial law)

ii) the identification of (some of) them as weak solutions of SDE (1).

When the uniform norm of the drift b is small enough, step i) can be done via
the perturbative techniques of cluster expansion, as in [DPR06] and [RR14].
But recently a more general approach, first appeared in [GH96] and based
on the compactness of the level sets of the specific entropy density, allowed
to construct directly infinite-volume Gibbs measures associated to strong in-
teraction [D09, DDG12]. This entropic method will be our first major tool.
When the drift is Markov and regular (i.e. Malliavin-differentiable), step i)
can be done via an integration by parts formula on the path space, as in
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[CRZ96]. In the general case, a variational principle, which characterizes the
shift invariant Gibbs measures as the minimizers of a so-called free energy
functional, is more suitable. So, we will here identify the Gibbs measure
using the variational approach, as in [DPRZ02]: It will be our second major
tool.

Our approach underlines to what extent tools from statistical mechanics
can be powerful in the framework of stochastic analysis. Let us mention that
this strategy has just been applied fruitfully in the framework of stochastic
geometry to construct infinite branching tessellations with interaction, see

[GST14].

The paper is divided into the following sections. Section 2 contains the
framework and first results. In section 3, the proof of the main theorem is
given, consisting in the construction of a weak solution of (1) for a bounded
drift b. In section 4, we will point out some structural properties satisfied
by this solution. We present in the last section the extension of the existence
result in the setting of unbounded drifts b including a bounded non-regular
term and an unbounded Lipschitz continuous one.

2 Framework and main result

2.1 State spaces

From now on, without loss of generality, we fix T' =1, i.e. the time interval
is equal to [0,1]. So the configuration space of the SDE (1) is the canonical
space = C([0,1], R)Z" equipped with the uniform norm, endowed with the
canonical Borel o-field F generated by the cylinders. The canonical process
on Q is denoted by X = (X;(t));czd te0,1)-

For any i € Z¢, we denote by 6; the space shift by vector —i which acts
on R%" or on Q. With P(E) we denote the space of probability measures on
any measurable space (E, ). Moreover,

P(Q) :={PcP(Q),Pob*=P Viecz’

is the set of probability measures on €2 which are space-shift invariant.



Similarly,
Py(RY) ;= {P e P(RY), Po' =P VieZ}.

In a natural way, we take as reference measure on €2 the law W of the non-
interacting infinite system corresponding to b = 0 with a product measure
as initial law, i.e.

W — (/RWZm(dz)>®Zd € PL(Q).

Here W* denotes the Wiener measure on C([0, 1], R) with fixed initial condi-
tion z and m € P(R) is a given probability measure on R.

For any subset A C Z% we denote by X, = (X;)iea the projection from
Q on C([0,1],R)*. We also define the o-field

Fa = U(XA(t)7t € [Oa 1])7 (5)
and the projection by X, of a probability measure P € P():
Py :=Po X' € P(C([0, 1], R)™).

Similarly, for any p € P(R%"), its A-marginal law is denoted by iy € P(RA).

2.2 Specific entropy

For p,v probability measures on a measurable space (F, &), we denote by
Z(p;v) their relative entropy defined as usual by:

v [pWn(f)dp if p < v with density f
Ll v) = { 400 otherwise ’

When the underlying space has a product structure, one localises the entropy
in the following way: for any subset A C Z4 and pu,v € P(RZ"), Zp(u;v) :=
Z(pp;va). Now, we recall the definition of the specific entropy of a shift
invariant probability measure z on R?" (with respect to m®2’):

1
I(p) == lim —— Ty (p; m®%"), (6)

Azd |\
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where the limit above is taken for any increasing sequence (A,), of finite
sets converging to Z? and |A| denotes the cardinal of A. Similarly, at the
path level, the specific entropy of any shift invariant probability measure
Q € Ps(Q2) with respect to W is given by:

3(Q) = Ah/n;dﬁm;wy (7)

The concept of specific entropy appeared first in [RR67] and we advice for
instance Chapter 15, [G11] for a general presentation.

2.3 Results
Our main result is the following theorem.

Theorem 2.1 Fixz an initial probability measure pu € PS(RZd) with finite
specific entropy I(p) and assume that the drift b is uniformly bounded and
local, that is satisfies (2) and (3). Then the infinite-dimensional SDE (1)
admits, at least, one shift-invariant weak solution P with marginal law at
initial time p. Moreover its specific entropy J(P) is finite .

In other words, there exists a probability measure P € Pg(£2) with p as
marginal at time 0 such that the process (Xl-(t) - X;(0) — fot bs(QiX)ds> I
i€z tef0,1
is a family of P-independent Brownian motions. Moreover the finiteness of
the specific entropy of 1 propagates at the path level:
J(pn) < +00 = J(P) < +o0.

In section 5, an extension of Theorem 2.1 is given in the setting of unbounded
drifts.

We now give a more precise description of the set Sol of solutions of the
SDE (1) without prescribing the initial condition.

Sol := {P € P,(Q2) weak solution of (1) with J(P) < 4o00}.

Theorem 2.2 The set Sol is convex and its extremal points are ergodic so-
lutions. In particular, for any ergodic probability measure p € PS(RZd) with
J(p) < 400 there exists an ergodic weak solution P of the SDE (1) which
admits |1 as marginal law at time 0.



More precisely, each probability measure P in Sol admits a unique rep-
resentation in the following way:

P /@ ()9 (du),

where (©,7,4) is an auxiliary probability space and 7 is a kernel on (0, F)
such that

(i) for each F' € F, m(., F') is T-measurable and

(i) for each u € ©, 7(u,.) is an ergodic solution in Sol.

This theorem is proved in Section 4 which is devoted to the Gibbs structure
of the solutions of (1). The proof involves the representation of Gibbs mea-
sures by extremal ones.

Let us note that our approach leads to the explicit construction of a
particular solution but do not allow to obtain a uniqueness result. For sake
of completeness, let us recall a recent result answering this question, obtained
via the cluster expansion method, see [RR14] Corollary 2.4. It only concerns
the perturbative regime, since the dynamics has to be close to a free dynamics.

Proposition 2.1 Consider the infinite-dimensional SDE (1) with a drift of
the form

bu(w) == —5 ¢/ (@o(t)) + Blwals), s € [0,1)

where ¢ is a smooth ultracontractive self-potential (i.e. the semi group of
the associated one-dimensional gradient diffusion maps L*(m) into L>(m)).
Take as initial condition the stationary measure of the free dynamics: p(dx) =
Riezae ¥ @) dx;. If the interaction term b admits a uniform norm which is
sufficiently small, then (1) admits a unique weak solution.

3 Proof of the main Theorem 2.1

In this section, we present the proof of Theorem 2.1 divided in several steps.
The approximate solution of (1) is defined in section 3.1 as a finite volume
solution with vanishing fixed external configuration. In section 3.2, we show
that a well chosen sequence of approximate solutions is tight for the topology
of local convergence on {2 since their specific entropies are uniformly bounded.
Then, the identification of any limit point as a Brownian semimartingale with
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appropriate kernels as local specifications is done in Section 3.3. In Section
3.4, using the preceding sections, we prove that any limit point is a zero of
the free energy functional, which is computed as the difference between the
specific entropy and the specific energy. Thus, in Section 3.5, we complete
the proof by identifying the zeros of the free energy as solutions of (1).

3.1 A sequence of approximate solution.

We define the finite volume approximation of the SDE (1) on A, finite subset
of Z4, by

{ dX;(t) =by(0;(Xa0p))dt +dB;(t), i€ A, te]0,1] (8)
Xa(0)  ~ pa,

where the configuration X,0,c is a concatenation of the configuration X on
A and the constant function 0 outside A. With other words, we freeze the
external configuration outside A to be equal to 0.

Take the increasing sequence of finite cubic volume A, = {—n,...,n —
1}¢ c Z%. By Girsanov Theorem, for any n, there exists a unique probability
measure called P, € P(C([0,1],R)*), weak solution of the SDE (8) on A,,.
Since p admits a finite specific entropy, pa, is absolutely continuous with
respect to m®* (with density denoted by £, ) and so

dP,
giek, Xa.) = fa,(Xa,(0) exp —Ha, (Xa,0n5) 1
where Ha(X) = —Z(/ by (6:X) dX,(t )—% bf(GiX)dt) 9)

Note that, due to the boundedness of b, the functional Hy, is well-defined
W®An_as..

Since we aim at constructing a shift invariant solution of (1), we first
introduce a space-periodisation of P,. Let PP € P(Q)) be the probability
measure under which the restrictions of the configurations on disjoint blocks
((O2knX) A, Jreze are independent and identically distributed like P,. Thus
we consider the space-averaged probability measure on €2

P, = ‘A’ZPP‘” L e P (10)

PE€EA,



P, is shift invariant by construction. It can be interpreted as the shift in-
variant extension of the solution of (8) on A,,.

3.2 Tightness

We now show that the sequence (P,), has an accumulation point for the
L-topology of local convergence on P(£2). This topology is defined as the
coarsest one such that the maps P — P(A), from P(Q2) to R, are continuous
for any local event A € F. The key argument is the following tightness
criterium based on the specific entropy J and proved in [G11], Proposition
15.14.

Proposition 3.1 For any constant M > 0, the level set
{P € Ps(Q), I(P) <M}
15 sequentially compact for the L-topology.

Therefore, we have to prove such a uniform upper bound for the sequence
(Po)n-

Proposition 3.2 The specific entropy of the sequence (P,), is uniformly

bounded: B
supJ(P,) < +oo.

n>1
Proof. First, it is straightforward that

1

|A| Z(Py; W), (11)

I(P) =
(for details, see e.g. the arguments of Proposition 15.52 in [G11]). From (9)

T(Pp; W) = / In(fa, )dus, — Ep, (HAn(XAnOA% ))

(12)

= Z(pa,;m*™)
+ ZA: Ep, (/ 0;(Xa,0n¢)) (dXi(t) — bt(ei(XAnOA%))dt>)
+3 XA: Ep, (/ 6:( X, OAC))dt) .



Since P, is a weak solution of (8), the process (X,-(t) - f(f bt(Qi(XAHOA%))dt> e
i€An, tef0,1

is a random vector of independent P,-Brownian motions. Therefore the sec-
ond term in the right hand side of (12) vanishes. Due to the finiteness of the
specific entropy of p, we obtain

1 1 1
A ’I(Pn; Wehn) < sup mI(MAn;m®A”> +3 Ib||%, < +oo. (13)

With (11), this completes the proof of Proposition 3.2. W

As corollary we get the

Proposition 3.3 There exists a subsequence (P, )i of the sequence (P,)y,
which converges for the L-topology to some P € Py(S2).

From now on we write for simplicity P = lim,, P, instead of P = limy, pnk.
The rest of Section 3 is devoted to the analysis of this limit point P.

3.3 Structure of the limit point P

The class of Brownian semimartingales with bounded specific entropy is
closed by L-limits, as we will see in what follows.

3.3.1 P is a Brownian semimartingale

Recall first the following important structural result for which we give the
main lines of the proof.

Lemma 3.1 Let Q € P,s(2) be a probability measure with finite specific en-
tropy J3(Q). Then there exists an adapted process (Bi)icpo) on Q such that
the family of processes

M;(t) = X;(t) — X;(0) — /Ot B(6:X)ds, ieZ%telo,1],

are independent Brownian motions under (). Moreover, the map (t,w) —
Bi(w) is L*(dt @ dQ)-integrable and

3Qo X0 + 380 [ Bar) < 3@ (14

10



Proof.
First let us notice that the specific entropy J(Q)) admits the following
representation as mean of the relative entropy of a conditional probability:

3(Q) = Eo(Zioy (QUIFHIW)).

where F~ := 0(X;,7 < 0) (here < denotes the lexicographic order). This
result is a version of McMillan theorem, which goes back to the work of
Robinson and Ruelle [RR67] and can be proved as in [DP93], Proposition
4.1. Define now F° := o(X;,i # 0). Since F~ C F°, by Jensen inequality,

Eo(Tioy (QUIF)IW)) < Eo(Tioy (QUIF)IW)) < +oo.  (15)

The left hand side in (15), also called local entropy in [FW86] , is then
finite. Thus, by [FW86] Theorem 2.4, there exists an adapted process f in
L?(dt ® dQ) such that

M) = Xit) = X:0) [ B0x)ts, iezhte o)

are independent (Q-Brownian motions.
It remains to show (14) in following essentially the proof of Lemma 8 in
[DPRZ02]. m

Since P has finite specific entropy, applying Lemma 3.1 we deduce that
it is a Brownian semimartingale characterized by its drift . The proof of
Theorem 2.1 is complete provided we show that 8;(w) = bs(w) for dt ® P-
almost all + and w, and that P o X (0)~! is equal to p. These identifications
will be completed in Section 3.5. The identification of the drift requires
sophisticated tools, which we now develop.

3.3.2 Local structure of P
Define, for £ € Q and A C Z?, a reference probability kernel on €,
113 (¢, dw) := @icaWS O (dw;) @ ¢, (dwne). (16)

It corresponds to a Brownian dynamics with fixed initial position inside A
and frozen path outside A. Next we perturb it via the functional defined in

(9):
I (€, dw) == e T IS (€, dw). (17)
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Note that II¥ is a probability kernel since e=#2) is a II}-martingale. It
corresponds to a solution of (1) on A with fixed initial condition £ (0) and
frozen path outside &yc. We also define a probability kernel with a wider
interaction range, which will be useful in the sequel:

(€, dw) = L e 113 (¢, dw), (18)
Z(8)

where the set AT = {i € Z¢ : (A +i)NA # 2} is a A-enlarged ver-
sion of the set A (recall that A is the interaction range of b). Z,(§) =
[ e Har @I (¢, dw) is the normalising constant, usually called partition func-
tion in Statistical Mechanics.
Notice that this kernel contains a stochastic integral which is not a priori
meaningful. Moreover, it is not trivial why Z, () belongs to ]0, +o00[. How-
ever, it is the case in our framework, as we show in the next lemma.

Lemma 3.2 The map & — Hf’+(f, -) is well-defined for W -almost all §&. In
particular, it is also P-almost surely defined for any probability measure P
which is locally absolutely continuous with respect to W.

Proof. The stochastic integrals with respect to (&;);ea+.a appearing in
Hf’+(§ ,.) are clearly meaningful W-almost surely. Moreover, by Girsanov
theorem, Fw(Z,) = 1 which ensures that Z, is W-a.s. finite. Since H, is
W-almost surely finite, Z, is W-a.s. positive and the lemma is proved. B

The measurability property of the kernels TI¥ and Hf\[’Jr is the subject of
the following remark.

Remark 3.1 Define, for A C Z%, the o-field Gy = o(Xae, X(0)). It builds
a decreasing family when A increases and 113 = W( |Gp) a.s.. Moreover,
& — IIY () is Ga N Far = o{Xan\a, Xa(0)}-measurable since Hy is Fp+-
measurable, and & — HH+(§, -) is OFa-measurable, where the boundary o-

fields OFy are defined by OFp := Gp N Fp++.

We now present an equilibrium equation - or fixed point property - sat-
isfied by P which in fact determines its local specifications, and therefore
induces some Gibbsian structure, as we will emphasize in Section 4.

Lemma 3.3 For any finite subset A of 7,

P(dw) = / I (¢, dw) P(dE). (20)
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Proof. First, let us note that the right term in (20) is meaningful. Indeed,
since the specific entropy of P is finite, P is locally absolutely continuous
with respect to W. Therefore, by Lemma 3.2, Hf’+(§ ,.) is well defined for
P-almost all £.

We have to prove that

o

/ 9(w) P(dw) = / 9T (€, du) P(d€)

holds for any bounded local measurable function g. Denote by I' a bounded
set of Z? which includes both the support of g and A**. Using standard

conditional calculus, it is simple to show that for n large enough assuring
that A,, D I', the probability measure P, satisfies

/ 9(w) Pa(dw) = / 9T (€, du) P, (d8).

Noting that & — fg(w)Hf’Jr(f, dw) is local we have

3 / W) PP 6 0 (dw)

n| €Ny

[owpias) - -

= i Al Z / (O;w) P, (dw)
" | zeAnGFCA
1
= lim > / (00T (€, dw) P, (dE)
" | "| i€An,0;TCAn
_ hml ’Z/ (W) (€, dw) PP o 671 (dE)
n i€A,

= [ st (e de) P(a6)
which is the expected identity. W
We interpret the identity (20) as follows: Randomizing under P the boundary
condition & of the kernel Hf’+(§ ,-) leads back to P. It implies in particular

that
P(-1Gy) =TI as..

13



3.4 P minimizes the free energy functional.

For any probability measure @) € P,(£2) with finite specific entropy, we define
the @-mixtures of the kernels IT{ and TI}"" by:

I o (d) = /Q I (6, dw) QUdE), U (duo) = /Q I (¢, dw) Q(dE).

With these notations, the equilibrium equation (20) reads as follows: P is a
fixed point of the map @ — Hfg .

Moreover we define J°(Q), the so-called free energy of @, as the difference
between its specific entropy and its specific energy, namely

I°(Q) :=3(Q) —I(Qo X(0) ™) — EQ</01 by (X)dXo(t) — %/01 bf(X)dt).

Note that JP(Q) is well defined although a stochastic integral term oc-
curs. Since () has a finite specific entropy, by Lemma 3.1, we have that
EQ(fO1 b;(X)dXo(t)) is nothing but EQ(fO1 b;(X)3:(X))dt) which is finite be-
cause 3 is in L?(dt ® dQ).

In the proposition below we show that J® is a thermodynamical functional,
in the sense that it can be also obtained as limit of rescaled finite-volume
relative entropies.

Proposition 3.4 Consider Q € Ps(Q2) with finite specific entropy. Then

1
Q) = hglmzzx,t(Q;an,Q) (21)

Proof. By definition of the relative entropy we have

dQ
IAI(Q;an,Q) - EQ<ln (dHH |A2f)>
An,\@Q
Qs dWeA

n
AW @A d( [ @ien, WEOQ(dE) @ WEANAR)

Ai)

d ( [ @ien, WEOQ(dE) ® W@Ai\An) IO
An,Q
+1In 5 +In ——
dIT oly: dlIy, o
= L+ (Q:W) = I, (Q o X(0) 'ym®™™) = Ly, (Q; W)
+Eqo(Hy,) (22)
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The normalised third term of (22) vanishes: By subadditivity of the relative
entropy (see Proposition 15.10 in [G11]),

0 <Zyp\a, (@ W) STy (Qi W) — Iy, (@Q; W)

and since lim,, |A,|/|A] = 1 it follows that

lim

1
- mIAﬁ\An(@W) =0. (23)

Let us compute the fourth term of (22). By stationarity of ¢ and by the
definition of Hy,, we get

Eo(Hy,) = —|An]EQ(/01 by (X)dXo(t) — %/01 bf(X)dt). (24)

From (23), (24) inserted in (22) we obtain

1 _—
hTan MIAx(Q; 113, o) =
3(Q) — 3(Q o X(0)Y) — By (/0 by (X)dXo(t) — %/O bf(X)dt).

|
Now we are ready for proving that the free energy vanishes under P.

Proposition 3.5 The probability measure P is a zero of the free energy:
J°(P)=0.

Proof. The representation (21) implies that the free energy J® is non nega-
tive. So the proof of Proposition 3.5 is complete as soon as we can show that
J°(P) <0.

Since P is absolutely continuous with respect to Hfm p with a F +-measurable
density (see Remark 3.1), for any finite set I' containing A, Zp(P; an’ 5)
and Z, + (P; Hfm 5) are identical. Taking in particular I' = A} ", one obtains

_ 1 _
3°(P) = lirlln T Zy++(P; Hfmp). (25)
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Thanks to Lemma 3.3

_ dP A1
T (P ) = E—(ln FIn —An )
i ) ! dn?\n,ﬁ Apt dHf Plagt
drrt+ dIig
= FE5 (111 An,P +1In n.P )
" dH?\n,P AT dHA PIAET

= —Ep(Hyp) = Ep(In(Zy,)) + Ep(Ha,)
1 1 /1
= I E( [ bi0dxa(e) - 5 [ b
0 0
By (25) and (26) the proof of Proposition 3.5 is completed provided that we

show that Ea(ln(Z
lim W > 0. (27)

Indeed we have

Ep(In(Zy,)) = / In ( / e Harmbas) o Wfi(o)(dw)) P(de)
N / . ( / Fn =0 605) —Hn, (onnas) g, W@-(m(dw)) P(de)
> [, - Hy) @, (€ do)Plag)
_ / $ / bu(0:()) (d€:(1) — 5 bu(6:()) )T, (€, o) PUE).

€A T\As
Since

| e 6 o) i) < b (28)

it remains to prove that

it it [ /0 oy 6:() s (¢ )) T (6. dw)P(de) > —o0.  (29)

neAT\An

In the following, we show that (29) is a consequence of (28). We use the
decomposition of £(¢) under P, proved in Section 3.3.1, as a Brownian semi-
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martingale with drift 5 € L?(dt ® dP). Therefore for any A and any i ¢ A

/ / b (04() ) ()11 (&, deo) P(de)
-/ / b (04()) (A1) — Bu(6,€)d) T (€, duo) P(de)
/ / b (04(0)) 1 (0:€) dt T (. o) P(de)
-/ / b (0,(0)) (0,6t TT (€. ) P(de)

> —(f / b2(0,(c))dt 1 (6. ) P(de) ) Olﬁfdt)m

1/2

9 /
> bl Bp( 5 dt) > —o0
0
uniformly in A. H

Therefore the minimum of the free energy is attained on P:

P(P)=0= mln{ P(Q), Q € P:(9) such that J(Q) < +oo},

or, with other words, P solves a variational principle.

3.5 P is a weak solution of the SDE (1)

We have to identify the initial marginal law of P and its drift.

3.5.1 Identification of P’s marginal law at time 0

Let g be a bounded T-local function on R%", satisfying g(w) = g(wr) for
all w € R%". By shift invariance of p, for all n > 1 and i € Z% such that
0T C A,

pa, © 07 (g) = po 07 (9) = lg)-

17



So PoX(0)"Yg) = lim P, oX(O)’l(g)

n—00
E Pper

1€A,

) 1 _
= lim — Z [a,, ©0; 1(9) = M(9)7

n—00 |An‘ -
i€AR,0; T'CAn

tin X(0)"(9)

which proves that P o X (0)~! = p.

3.5.2 Identification of the dynamics under P

It only remains to identify the unknown drift 5 of P. Let us rewrite the free
energy functional of P inserting :

(P) = 3<P>—’J<Pox<o>—l>—Ep( / be(30)(dXo(t) — B(X)dt)

+ [ (B0mi0 - Joi00)ar)
= 3P) =30 — B [ (B00BX) - i) ).

By Proposition 3.5, this quantity vanishes. On the other side, due to Lemma
3.1, 3(P) >T(p) + %Ep(fol BE(X)dt). Therefore,

0 > 85 [ sr00d - [ (AEOb) + J0i00)ar)
- 35( (A(X) b)),

which implies that 3;(w) = by (w) for dt ® P-almost all ¢ and w.

It completes the proof that P is an infinite-dimensional Brownian motion
with drift b and initial law p.

4 On the Gibbs property

In this section, we deal with the Gibbsian structure of solutions of the SDE
(1). First recall that the probability measure II}""(€,.) is not always well

18



defined, as remarked in Section 3.3.2. To circumvent this difficulty take
117 (€,.) = 0 when the partition function Z,(€) is not finite or when the
stochastic integral with respect to & in H} is not defined. In this way the fam-
ily of kernels (Hf*) Aczd builds a local specification as introduced by Preston

in [Pr76] (2.10)-(2.14), which allows to define associated Gibbs measures.

Definition 4.1 A probability measure Q on 2 is a Gibbs measure with re-
spect to the specification (Hf’+)ACzd if, for all finite subset A of Z¢,

Qo) = [ 1. o) Q) (30)

Note the similarity with equation (20) where @ appears here in place of
P. Tt follows that P is a Gibbs measure with respect to the specification
(11" ") ycza. Actually we obtain a more general result.

Theorem 4.1 Let Q) be a probability measure in Py(2) with finite specific en-
tropy. Then Q) is a Gibbs measure with respect to the specification (Hf’+)ACzd
if and only if Q is a weak solution of the SDE (1).

Proof.

“«<": it is similar to the proof of Theorem 2.1. Indeed, in Section 3, for
proving that P is a weak solution of the SDE (1), we only used the fact that
P satisfies equation (20) and that its specific entropy is finite.

"=": it is straightforward. A similar detailed proof can be found in
[DPRZ02], Proposition 1.

To complete this section we present the
Proof of Theorem 2.2.
Let us recall that a shift invariant probability measure is ergodic if it is trivial
on the o-field of shift invariant sets.
By previous Theorem 4.1, the set of weak solutions Sol is exactly the set
of shift invariant Gibbs measures with finite specific entropy. It is known
that the set of stationary Gibbs measure admits a representation by mixing
of its extremal points which are ergodic (Theorem 2.2 and 4.1 in [Pr76]).
Since the specific entropy functional is affine ([G11], Proposition 15.14), this
representation remains valid inside of the set of Gibbs measures with finite
specific entropy and the first part of the theorem is proved.
Now let p be an ergodic probability measure in ?S(de) with finite specific
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entropy. By Theorem 2.1, there exists a weak solution P of the SDE (1) with
initial condition p. Thanks to the above representation, P is a mixing of er-
godic weak solutions of the s.d.e. (1). Their initial condition is necessarily
1, by ergodicity. The second part of the theorem is then proved. M

5 An unbounded drift setting

In this section, we improve the result presented in Theorem 2.1 by adding to
the bounded non-regular drift considered above an unbounded regular term.
More precisely, the drift decomposes now as follows:

b =b; + by
where

e none of by or by is supposed to be Markov.

e b; is A-local and uniformly bounded (i.e. satisfies (2) and (3) as in
Section 2.3); It is possibly non-regular.

e by is possibly unbounded but local and regular in the sense that it
satisfies the following uniform pathwise Lipschitz assumption:
4L > 0 such that Vw,w' € €,

vt € [0, 1], [bos(w) —bas(w)] < L sup |wi(s)—wi(s)](31)

s<tieA

and |ba:(0)] < L. (32)

(Without loss of generality, we consider the same A-locality for both drifts
b; and by). Under these assumptions the drift b has a sublinear growth, or
equivalently

by(w)? < 0(1 + Zw;(tf) (33)

where C':= 2(||by[|Z, + L?) and w*(t) =: supg<,<; [w(s)|-

A typical example of such a drift, dealt in [RRR10] Equation (20), is
t
bas(w) = [ als.wals)ds
0
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where af(s, ) is a Lipschitz function from R to R.

We can now state our next existence result.

Theorem 5.1 Fiz an initial probability measure € Py(RZ") with finite
specific entropy, satisfying the integrability condition [ 2% ju(dx) < 4+oo. As-
sume that the drift b admits the decomposition b = by + by with by and by
as above. Then the infinite-dimensional SDE (1) admits, at least, one shift-
mvariant weak solution P with initial marginal law p. Moreover its specific

entropy J(P) is finite and Ep<supt€[0’1] Xo(t)2> < 4o00.

Proof.

The proof will have the same structure than the proof of Theorem 2.1.
Nevertheless some technical issues will appear in the computation of the up-
per bounds involved in the tightness and in the minimization of the free
energy. This leads us to construct in (34) an infinite-dimensional approxima-
tion of (1) for general boundary conditions and deterministic initial condition.
In Lemma 5.1 we prove an upper bound for the supremum norm of this ap-
proximating process. In particular, it implies (41) which is a crucial uniform
integrability property of b? under the kernels TT4.

In fact we solve the SDE (1) in the Hilbert subspace of R defined as
weighted ¢?-space, which we now define, following the framework of [SS80].

Take the summable sequence v; := W,i € Z%. As usual,

d
E(y) = {z € R¥ |z :== Y yia? < +oo}.
i€z

For any finite subset A C Z¢ and ¢ € Q a fixed path, we define the
A-approximation of the SDE (1) with outside frozen configuration ). and
initial fixed condition £(0) as the solution of

dX;(t) =be(6;(Xaéxc))dt+dB;i(t), 1€ A, te]|0,1],
Xa(0) = EA(O)y (34)
XAc = CAc-

Note that this SDE depends on £, only via its initial value £, (0).
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Lemma 5.1 For any £ € Q, the SDE (34) admits a weak solution P&*,
Moreover there exists a constant K > 0 which does not depend on A such

that
Bpean (I1X°12) < K (1+ I6a0) 2 + €3 12). (35)

Proof. First, if the drift b reduces to its regular part b, that is if b; van-
ishes, the Lipschitz continuity (31) and (32) ensures existence and uniqueness
of an (even strong) solution to (34), see [RW87] Theorem 11.2. Now, if the
non-regular term b; does not vanish, since it is bounded, applying Girsanov
theory, one obtains a weak solution to (34).

To obtain the upper bound (35), we take our inspiration from (4.18) in [SS80]
or Lemma 4.2.9 in [R99] who treated the particular Markovian case. First
fix i € A. By Ito formula applied to X;(¢)? and (33), one gets

t
X0 < KO+ [ (X704 Y X6 Deeat 3 6160 ueisa) s
0 keA keAC

where M, is a martingale with quadratic variation 4 [ X;(s)?ds. Using Doob
inequality,

E(M;}) < \/E((M})?) < 2sup /E(M2) < 1+sup BE(M?) < 1+4/ X

s<t s<t

Therefore, denoting by u;(t) the function ¢ — Epea (X7 (t)?), we obtain
t
w(t) < €(0)+1 +4/ us(3)ds
0
¢
+/ ( 1 + Zuk $) lkeirn + Z &i(s) llkel+A)>ds +t
0

keA keAe

IN

(5?(0)+C+2+CZ(g;)QﬂkeHA) ZQZ;C/ uy(s)ds (36)

keAe

where the matrix @ is given by Qi = (5 + C)lgeanisa for k € Z¢, and
& =8(1) = SUPg<s<i 1€(s)]-

For i € A°, we consider the rough inequality

+ZQ“€ / g (s)ds. (37)

22



Remark now that there exists a real number ¢’ > 0 depending only on A
but not on A, such that

vk € 74, Z%’Qik < C'.

Thus, summing over i the inequalities (36) and (37) weighted by -, we get

2
y

o "
St < IO +(C+2 Y %+ g kel + gk

€A
t
s [ (s,
0k

> could be equal to 400 if £* ¢ (*(y). This leads by

where the term ||€x.
Gronwall’s lemma to

* C/ i A ,
Bpea(IX*(01Z) < (I6a©)1Z+(C+2 Y3+ =g l€heall + lEiel2) "
i€EA
< K(l + 1165 (0)]2 + IISXcHi)

for a constant K which does not depend on A and is uniformly bounded for
tef0,1]. =

In particular, from the upper bound (35) we deduce, under the assumptions
£ € (%(v) that, for any j € Z¢,

Epen (X)) < 7;%(1 n H€*H3) < +00. (38)
Note that this upper bound is uniform in A but not in j. This issue is solved

below thanks to the stationarity.
As in Section 3.1, we define P, as the marginal law

Opc ,An
P, = / P (dn, (0))

With other words, P, is a weak solution on A,, of SDE (34) with vanishing
outside configuration and random initial condition following the law gy, .
The definition of the space-averaged P, is done by (10) too. The bound (33)
for the growth of the drift together with (38) implies that
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1
sup sup B, ( / b2(6:(X, 0) d
0

n i€,

1
-y S“p/ / b2 (0i) dt P55 (dw) i, (dé, (0))
0

n €A,

1
- S“p/ / b2 (w) dt PP 600 )00 () iy (déy, (0))
0

n 1€,
< C+CK(1+/ 10:24,) I3 p2a,, (dn,,) )Z
JEA
< C+CK(1+(Z%- /Z xo,udx>27] , (39)
jezd JEA

where the last inequality comes from the stationarity of p. From (39) we
deduce an uniform bound, as in (13) Section 3.2, which implies the tightness
of the sequence (Pn)n and the existence of an accumulation point, denoted
by P.

The structure of the limit point P is similar as for bounded drift (see Section
3.3). Note that, by the convergence of (P,), to P for the local topology, we
also obtain that

1
Ep(|X*|?) <400 and Ep (/ b?(X)dt) < 400, (40)
0

which means that the finiteness of the second moment and of the specific
entropy propagates through the dynamics.

Some more technical problems appear to generalize the results obtained
in Section 3.4. First, the free energy J°(Q) is not a priori defined for any Q
with finite specific entropy, but only for Q satisfying Fg fo bZ(X)dt) < +oo0.
Thanks to (40), it is the case for ) = P, which is exactly What is needed
in the following. Thus the proof of the variational principle (Proposition 3.5
for bounded drift) works as soon as we gain the following boundedness:

sgpls;}\g// b7 (G:w) dt T1Y (€, dw) P(d€) < 400, (41)

which is the generalization of (28).
Recall that, for any &, IIY (€,.) defined in (17) corresponds to a weak so-
lution of (34) with fixed initial condition £, (0) and frozen path outside &xe.
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Therefore we deduce from the stationarity of P and inequalities (33), (38)
and (40)

SUD,, SUDjgA,, // b?(0;(w)) dt T4 (& dw)P P(dE)
= sup sup// b?(w) dt P& (dw) P(d€)

n i¢Ay,
< sup sup / / 1+ ) wit ) dt PS% (dw) P(dE)
noigAn JEA

<C+CK(1+EP 1X*)1? )Z% < too.

JEA

Now, to complete the proof of Theorem 5.1 we only need to identify the drift
and the initial distribution of P. This can be done in a very similar way as
in Section 3.5. [ |
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