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Abstract

Metabolic systems tend to exhibit steady states that can be measured in terms of
their concentrations and fluxes. These measurements can be regarded as a phe-
notypic representation of all the complex interactions and regulatory mechanisms
taking place in the underlying metabolic network. Such interactions determine
the system’s response to external perturbations and are responsible, for example,
for its asymptotic stability or for oscillatory trajectories around the steady state.
However, determining these perturbation responses in the absence of fully specified
kinetic models remains an important challenge of computational systems biology.
Structural kinetic modeling (SKM) is a framework to analyse whether a metabolic

steady state remains stable under perturbation, without requiring detailed knowl-
edge about individual rate equations. It provides a parameterised representation
of the system’s Jacobian matrix in which the model parameters encode informa-
tion about the enzyme-metabolite interactions. Stability criteria can be derived by
generating a large number of structural kinetic models (SK-models) with randomly
sampled parameter sets and evaluating the resulting Jacobian matrices. The pa-
rameter space can be analysed statistically in order to detect network positions
that contribute significantly to the perturbation response. Because the sampled
parameters are equivalent to the elasticities used in metabolic control analysis
(MCA), the results are easy to interpret biologically.
In this project, the SKM framework was extended by several novel method-

ological improvements. These improvements were evaluated in a simulation study
using a set of small example pathways with simple Michaelis Menten rate laws.
Afterwards, a detailed analysis of the dynamic properties of the neuronal TCA
cycle was performed in order to demonstrate how the new insights obtained in this
work could be used for the study of complex metabolic systems.
The first improvement was achieved by examining the biological feasibility of

the elasticity combinations created during Monte Carlo sampling. Using a set
of small example systems, the findings showed that the majority of sampled SK-
models would yield negative kinetic parameters if they were translated back into
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kinetic models. To overcome this problem, a simple criterion was formulated that
mitigates such infeasible models and the application of this criterion changed the
conclusions of the SKM experiment.
The second improvement of this work was the application of supervised machine-

learning approaches in order to analyse SKM experiments. So far, SKM experi-
ments have focused on the detection of individual enzymes to identify single re-
actions important for maintaining the stability or oscillatory trajectories. In this
work, this approach was extended by demonstrating how SKM enables the detec-
tion of ensembles of enzymes or metabolites that act together in an orchestrated
manner to coordinate the pathway‘s response to perturbations. In doing so, stable
and unstable states served as class labels, and classifiers were trained to detect
elasticity regions associated with stability and instability. Classification was per-
formed using decision trees and relevance vector machines (RVMs). The decision
trees produced good classification accuracy in terms of model bias and general-
izability. RVMs outperformed decision trees when applied to small models, but
encountered severe problems when applied to larger systems because of their high
runtime requirements. The decision tree rulesets were analysed statistically and
individually in order to explore the role of individual enzymes or metabolites in
controlling the system’s trajectories around steady states.
The third improvement of this work was the establishment of a relationship

between the SKM framework and the related field of MCA. In particular, it was
shown how the sampled elasticities could be converted to flux control coefficients,
which were then investigated for their predictive information content in classifier
training.
After evaluation on the small example pathways, the methodology was used to

study two steady states of the neuronal TCA cycle with respect to their intrin-
sic mechanisms responsible for stability or instability. The findings showed that
several elasticities were jointly coordinated to control stability and that the main
source for potential instabilities were mutations in the enzyme α-ketoglutarate
dehydrogenase.
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Zusammenfassung

Metabolische Systeme neigen zur Ausbildung von Fließgleichgewichten, deren Konzen-
trationen und Reaktionsflüsse experimentell charakterisierbar sind. Derartige Mes-
sungen bieten eine phänotypische Repräsentation der zahlreichen Interaktionen
und regulatorischen Mechanismen des zugrundeliegenden metabolischen Netzw-
erks. Diese Interaktionen bestimmen die Reaktion des Systems auf externe Pertur-
bationen, wie z.B. dessen asymptotische Stabilität und Oszillationen. Die Charak-
terisierung solcher Eigenschaften ist jedoch schwierig, wenn kein entsprechendes
kinetisches Modell mit allen Ratengleichungen und kinetischen Parametern für
das untersuchte System zur Verfügung steht.
Die strukturelle kinetische Modellierung (SKM) ermöglicht die Untersuchung dy-

namischer Eigenschaften wie Stabilität oder Oszillationen, ohne die Ratengleichun-
gen und zugehörigen Parameter im Detail zu kennen. Statt dessen liefert sie eine
parametrisierte Repräsentation der Jacobimatrix, in welcher die einzelnen Parame-
ter Informationen über die Sättigung der Enzyme des Systems mit ihren Substraten
kodieren. Die Parameter entsprechen dabei den Elastizitäten aus der metabolis-
chen Kontrollanalyse, was ihre biologische Interpretation vereinfacht. Stabilität-
skriterien werden durch Monte Carlo Verfahren hergeleitet, wobei zunächst eine
große Anzahl struktureller kinetische Modelle (SK-Modelle) mit zufällig gezogenen
Parametermengen generiert, und anschließend die resultierenden Jacobimatrizen
evaluiert werden. Im Anschluss kann der Parameterraum statistisch analysiert
werden, um Enzyme und Metabolite mit signifikantem Einfluss auf die Stabilität
zu detektieren.
In der vorliegenden Arbeit wurde das bisherige SKM-Verfahren durch neue

methodische Verbesserungen erweitert. Diese Verbesserungen wurden anhand
einer Simulationsstudie evaluiert, welche auf kleinen Beispielsystemen mit ein-
fachen Michaelis Menten Kinetiken basierte. Im Anschluss wurden sie für eine
detaillierte Analyse der dynamischen Eigenschaften des Zitratzyklus verwendet.
Die erste Erweiterung der bestehenden Methodik wurde durch Untersuchung der

biologischen Machbarkeit der zufällig erzeugten Elastizitäten erreicht. Es konnte
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gezeigt werden, dass die Mehrheit der zufällig erzeugten SK-Modelle zu negativen
Michaeliskonstanten führt. Um dieses Problem anzugehen, wurde ein einfaches
Kriterium formuliert, welches das Auftreten solcher biologisch unrealistischer SK-
Modelle verhindert. Es konnte gezeigt werden, dass die Anwendung des Kriteriums
die Ergebnisse von SKM Experimenten stark beeinflussen kann.
Der zweite Beitrag bezog sich auf die Analyse von SKM-Experimenten mit Hilfe

überwachter maschineller Lernverfahren. Bisherige SKM-Studien konzentrierten
sich meist auf die Detektion individueller Elastizitäten, um einzelne Reaktionen
mit Einfluss auf das Stabilitäts- oder oszillatorische Verhalten zu identifizieren.
In dieser Arbeit wurde demonstriert, wie SKM Experimente im Hinblick auf mul-
tivariate Muster analysiert werden können, um Elastizitäten zu entdecken, die
gemeinsam auf orchestrierte und koordinierte Weise die Eigenschaften des Sys-
tems bestimmen. Sowohl Entscheidungsbäume als auch Relevanzvektormaschinen
(RVMs) wurden als Klassifikatoren eingesetzt. Während Entscheidungsbäume im
allgemeinen gute Klassifikationsergebnisse lieferten, scheiterten RVMs an ihren
großen Laufzeitbedürfnissen bei Anwendung auf ein komplexes System wie den
Zitratzyklus. Hergeleitete Entscheidungsbaumregeln wurden sowohl statistisch als
auch individuell analysiert, um die Koordination von Enzymen und Metaboliten
in der Kontrolle von Trajektorien des Systems zu untersuchen.
Der dritte Beitrag, welcher in dieser Arbeit vorgestellt wurde, war die Etablierung

der Beziehung zwischen SKM und der metabolischer Kontrollanalyse. Insbeson-
dere wurde gezeigt, wie die zufällig generierten Elastizitäten in Flusskontrollkoef-
fizienten umgewandelt werden. Diese wurden im Anschluss bezüglich ihres Infor-
mationsgehaltes zum Klassifikationstraining untersucht.
Nach der Evaluierung anhand einiger kleiner Beispielsysteme wurde die neue

Methodik auf die Studie zweier Fließgleichgewichte des neuronalen Zitratzyklus
angewandt, um intrinsische Mechanismen für Stabilität oder Instabilität zu finden.
Die Ergebnisse identifizierten Mutationen im Enzym α-ketoglutarate dehydroge-
nase als wahrscheinlichste Quelle für Instabilitäten.
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Allgemeinverständliche
Zusammenfassung

Der zelluläre Stoffwechsel enthält eine Vielzahl von Enzymen, welche spezifische
biologische Substanzen (auch Metabolite genannt) ineinander umwandeln. Die
Menge und Aktivität der einzelnen Enzyme, zusammen mit der Verfügbarkeit
an energiereichen Ressourcen, bestimmt die Funktionalität jeder einzelnen Zelle.
Metabolitkonzentrationen können experimentell bestimmt werden, wobei es ist
eine zentrale Aufgabe der aufstrebenden Disziplin der Systembiologie ist, aus derar-
tigen Messungen das zugrundeliegende Reaktionsnetzwerk zu rekonstruieren, sowie
sein Verhalten unter verschiedenen experimentellen Bedingungen vorherzusagen.
Hierzu werden in der Regel detaillierte kinetische Modelle konstruiert, die das
Verhalten jedes Enzyms genau beschreiben.
Falls das Wissen über einzelne Enzyme nicht für den Bau eines detaillierten

kinetischen Modells ausreicht, bietet die verwandte Methodik der strukturellen
kinetischen Modellierung (SKM) die Möglichkeit, Aussagen über wichtige Posi-
tionen im Reaktionsnetzwerk zu treffen. Hierbei werden experimentell gemessene
Daten mit bekannten Informationen über die Umwandlungszahlen jedes Enzyms
verbunden. Das zugrundeliegende mathematische Verfahren liefert dann Infor-
mationen über die Antwort des Netzwerkes auf äußere Störungen, sowie über
diejenigen Netzwerkkomponenten, welche auf diese Antwort maßgeblichen Einfluss
haben.
Die vorliegende Arbeit erweitert die SKM Methodik um einige grundlegende

Verbesserungen. Zum Beispiel wird ein Filterkriterium hergeleitet, das die zufäl-
lige Simulation biologisch unrealistischer Szenarien verhindert, welche bei bisheri-
gen SKM Experimenten ein Problem war. Des Weiteren wird gezeigt, wie mit
Hilfe komplexer statistischer Verfahren Netzwerkinteraktionen detektiert werden
können, welche gemeinsam in koordinierter Weise Einfluss auf das Systemverhalten
ausüben.
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1. Introduction

In the last decade, biological research has been revolutionized by the advent of
high-throughput technologies which enable the measurement of the components of
a cell on a large scale. This gave rise to the discipline of systems biology which
aims at integrating and interpreting this vast body of information on a system level
in order to understand the underlying processes which take part in the cell (Dunn
et al , 2010; Nägele and Weckwerth, 2012). As a consequence, elucidating the way
in which individual components interact in a biological network and coordinate its
function has become one of the major goals of systems biology (Cornish-Bowden,
2006; Bruggeman and Westerhoff, 2007; Yuan et al , 2008). Metabolic networks are
a subclass of biological networks that describe the enzymatically catalysed inter-
conversion of small molecules (metabolites) in the living organism. The study of
metabolism has gained considerable interest in the last decade because it provides
a snapshot or ‘phenotype’ of the processes taking place in the cell (Stitt et al ,
2010). In doing so, it tries to describe the ultimate responses of an organism to
different environmental conditions, or to treatments within an experiment.
The progress in experimental techniques has enabled the creation of large amounts

of metabolomics data (Zhang et al , 2011). Such datasets typically measure either
the concentrations of individual metabolites or the rates of the enzymatic reactions
converting them into each other. Consequently, they provide a detailed description
of the metabolic state of a cell or organism in response to specific environmental
or experimental conditions. However, this phenotypic representation renders it
difficult to elucidate the exact mechanisms that caused the network to behave in
the observed manner. To this end, sophisticated statistical analysis techniques
have been proposed to analyse metabolomics datasets and to obtain information
about the underlying structure and regulatory mechanisms of a metabolic network
(Boccard et al , 2010; Kholodenko et al , 2012; Xia et al , 2012; Franceschi et al ,
2013). However, the reconstruction of a more detailed picture of the processes
taking place in a metabolic network requires mathematical modelling (Rodríguez
and Infante, 2009).
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1. Introduction

1.1. Mathematical modelling of metabolic

networks

Mathematical models provide formal definitions of the processes taking place in a
metabolic network and allow simulations and predictions of system behaviours un-
der different conditions. Most approaches for mathematical modelling of metabolic
networks can be broadly subdivided into (1) structural modelling and (2) kinetic
modelling. Both categories differ in the extent of knowledge they require about
the system as well as in the types of results they are able to obtain (Steuer, 2007).

Analysing metabolic steady states by structural modelling

In general, metabolic systems are assumed to operate in steady working states.
These so-called ‘steady states’ are characterised by constant concentrations and
reaction rates. Usually, a metabolic system is assumed to maintain a particular
steady state until changes in external factors require adjustments of the reaction
rates, typically resulting in the transition into a new steady state. Such factors
can be, for example, changes in nutrient availability, the requirement to adjust the
production of certain end products, or hormonal signals that lead to changes in
the abundance or in the catalytic activity of enzymes involved in a pathway.
Structural modelling typically focusses on the analysis of reaction rates in steady

state scenarios without considering possible time-dependent changes in the sys-
tem’s components. This restriction enables it to rely solely on information about
the network structure (stoichiometry). A prominent example is flux balance anal-
ysis (FBA), where the optimal distribution of steady state fluxes is computed by
linear optimization (Orth et al , 2010).
Thanks to the rapid progress in next-generation sequencing, which allows the

characterization of many of the genes and enzymes present in a cell, the structure
of a metabolic network can nowadays be comprehensively reconstructed on the
genome level (Thiele and Palsson, 2010). This enables the wide-spread application
of structural modelling techniques. For example, it can help to predict the effects
of genetic modifications in biotechnology, or to understand how certain diseases
affect the cell’s metabolism (Folger et al , 2011).
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1.1. Mathematical modelling of metabolic networks

Capturing dynamic system behaviour by kinetic modelling

In contrast to structural modelling, kinetic modelling aims at describing the metabolic
system by a set of ordinary differential equations (ODEs) that comprehensively
capture the time-dependent behaviour of every reaction in the system (Pfau et al ,
2011). This detailed representation enables the analysis of the dynamic properties
of the network. In contrast to structural modeling, such an analysis is not re-
stricted to steady states. For example, it allows the prediction of system responses
to external stimuli, the incorporation of metabolic inhibitors or activators, and the
simulation of oscillatory behaviour (Heinrich and Schuster, 1996). However, this
approach relies on detailed knowledge about all enzymatic rate laws and kinetic
parameters in the system, which are often difficult and labour-intensive to obtain
experimentally (Li et al , 2012). As a consequence, kinetic models are usually small
and focus on specific pathways or subsystems of a metabolic network.

Metabolic control analysis

Building upon the kinetic modelling framework, specialized methods have been
developed to investigate specific aspects of a metabolic system. One of these
approaches is metabolic control analysis (MCA), which aims at predicting the
impact of changes in certain system parameters (e.g. enzyme concentrations) on
the overall system (Fell and Sauro, 1985; Kacser and Porteous, 1987; Fell, 1997).
MCA quantifies the amount by which different system parameters exhibit control
on the fluxes or on the individual metabolites within a metabolic system. These
quantities are captured in variables called flux control coefficients (FCCs) and con-
centration control coefficients. A third category of MCA variables, the so-called
elasticities, quantifies the local influences of changes in metabolite concentrations
on the individual reaction rates. Elasticities describe the sensitivity of the individ-
ual reaction rates to changes in metabolite concentrations and can be understood
as partial derivatives of the reaction rates with respect to each metabolite in the
system.
The study of FCCs elucidates the effect of changes in an enzyme’s concentration

on the overall fluxes through the pathway. One of the fundamental insights gained
in this manner was that the control of flux is typically distributed among many
different enzymes instead of just depending on a single ‘rate-limiting step’ (Kacser
and Porteous, 1987). Furthermore, it could be shown that the FCCs directly
depend on- and can be calculated from the elasticities.

3



1. Introduction

1.2. Stability analysis by metabolic modelling

Besides enabling the simulation of how metabolite concentrations evolve in time,
kinetic models also provide information about local dynamic properties of steady
states. Such properties comprise, for example, the bifurcation structure, the possi-
bility of oscillations, or the local asymptotic stability of the steady state (Heinrich
and Schuster, 1996).

Local stability can be understood as the robustness of a steady state to small
perturbations, like those arising from natural fluctuations in the concentrations
of enzymes and metabolites in a cellular environment. Consequently, a stable
steady state allows the fine-tuned response of the reaction rates to perturbations,
eventually enabling the return to the original steady state.

Studying the local dynamic properties of steady states is of great importance
because not only do they help us gain a deeper understanding of the functioning
of a pathway, but they can also help us to systematically predict what type of
system responses can be expected when changing certain parameters experimen-
tally. In a kinetic model, the dynamic properties of a steady state can be derived
from the eigenvalues of the corresponding Jacobian matrix. This matrix contains
the partial derivatives of the reaction rates, and therefore its computation requires
detailed knowledge about the kinetic rate laws, as well as their in vivo kinetic
parameters. In practice, however, this data is often not available in sufficient ac-
curacy. This problem of incomplete knowledge severely hampers the computation
and subsequent analysis of the Jacobian matrix (Jamshidi and Palsson, 2008).

To cope with these uncertainties in kinetic parameters and rate laws, several
strategies have been introduced independently of each other in recent years. These
methods typically rely on stricter assumptions about the system than used in struc-
tural modelling, avoiding the necessity to construct comprehensive kinetic models.
Although not offering the full functionality of a kinetic model, this trade-off en-
ables the analysis of properties of the system not accessible by structural modelling
alone. For example, methods for local stability analysis under uncertainty have
been suggested by Wang et al (2004), Steuer et al (2006), or van Nes et al (2009).
All of these methods have in common that they address uncertainties in the model
parameters in a statistical manner. More precisely, instead of computing the Ja-
cobian matrix from kinetic rate laws, its elements are sampled randomly using
Monte Carlo approaches, yielding ensembles of models that can be analysed with
respect to the system properties of interest.
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1.2. Stability analysis by metabolic modelling

The work of van Nes et al (2009) aims at estimating the probabilities of observing
local stability in different network motifs in genome-scale metabolic networks.
Their ultimate goal is to answer the question about whether local stability is the
driving force behind the evolution of metabolic systems. Using the yeast metabolic
network as a reference, they show that this hypothesis is not confirmed, and that
stability does not seem to be the major selection criterion in metabolic network
evolution. One drawback of their method is that it does not investigate particular
realizations of steady states in terms of experimentally observed concentrations
and reaction rates. Instead, it examines the general ability of a motif to yield
stable steady states in principle. As a consequence, it does not account for the
situation that a motif could yield a large proportion of unstable steady states
in theory, but the steady state realizations actually occurring in the living cell
are stable. This issue has been previously discussed in detail in the context of
gene-regulatory networks by Doyle and Csete (2005). A similar generalization is
performed by Wang et al (2004) who aim at applying MCA to the study of systems
for which neither kinetic models nor experimentally obtained steady state data are
available.

A very similar approach which enables the analysis of realistic and experimen-
tally characterized steady states is the structural kinetic modelling (SKM) frame-
work suggested by Steuer et al (2006). It is based on a generalised modelling
framework to investigate dynamic properties of real-life systems (Gross and Feudel,
2006). The basic idea of SKM is the construction of a parameterised version of
the Jacobian matrix in an observed steady state. Consequently, instead of relying
on a detailed set of rate equations, together with accurate estimates of the kinetic
parameters, the Jacobian matrix in the observed steady state depends only on
a set of structural kinetic model (SK-model) parameters. These parameters are
equivalent to the elasticities from MCA and offer a straight-forward biological in-
terpretation. Thus, the parameters describe the influence of changes in metabolite
concentrations on the reaction rates in the steady state. In enzymatic reactions,
this influence depends largely on the amount of saturation of an enzyme with its
metabolites (Wang et al , 2004). Experimental values for the steady state’s elas-
ticities are often unknown in practice. However, the statistical exploration of the
parameter space by Monte Carlo sampling can indicate regions associated with
different local dynamic properties of the system. This enables the identification of
enzymes and metabolites with major roles in determining the system’s response
to the fluctuations of metabolites or enzymes within the cellular environment.
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1. Introduction

1.3. Goals of the thesis

This thesis presents a new methodology for elucidating the stabilizing and desta-
bilizing mechanisms present in metabolic systems. So far, SKM experiments have
focused on the detection of individual enzymes to identify single reactions impor-
tant for maintaining the stability of a steady state (Grimbs et al , 2007; Bulik et al ,
2009). Here, this approach will be extended by demonstrating how SKM enables
the detection of ensembles of enzymes or metabolites that act together in an or-
chestrated manner to coordinate the pathway’s response to perturbations. This is
achieved by replacing the previously used univariate approach by supervised ma-
chine learning in order to search for multivariate patterns of elasticities associated
with stability or instability (Girbig et al , 2012a; Girbig et al , 2012b). As shown in
Figure 1.1, the information about stable and unstable states serve as class labels,
and classifiers are trained to detect elasticity regions associated with stability and
instability. Classification is performed using decision trees and relevance vector
machines. Both algorithms lend themselves to this task because they preserve the
original feature space, making it possible to interpret the detected patterns in a
biological context.
In addition to looking for stabilizing or destabilizing patterns, it will also be

investigated whether the proposed machine-learning approach can be applied to
study criteria for the emergence of oscillations in metabolic systems (Heinrich and
Schuster, 1996).

Elasticity 
set ε1 

Elasticity
set ε2 

Elasticity 
set εn 

...SK-model
1

SK-model
2

SK-model
n

Stable Unstable Stable

Machine 
learning

Stabilizing/
destabilizing

elasticity patterns

Figure 1.1.: Workflow for Monte Carlo based model generation and the subsequent de-
tection of patterns by machine learning. A large number of SK-models is created based
on randomly sampled elasticities and stable/unstable models are identified. Using the
elasticities as feature vectors and the stability information as class labels, a classifier can
learn those patterns with highest discriminatory power between both classes.
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1.4. Outline of the thesis

The application of this extended SKM approach is demonstrated on a set of small
artificial pathways that enable the analytical assessment of the derived patterns.
Furthermore, a real-world example will be presented in form of the neuronal tricar-
boxylic acid cycle (TCA cycle). The TCA cycle not only plays a central role in the
energy metabolism of eukaryotic cells but it also provides metabolic precursors for
biosynthetic pathways. The resulting drain of organic compounds is compensated
by anapleurotic reactions in order to maintain a continuous flux through the cy-
cle. As a consequence, maintaining the balance between biosynthetic- and energy
providing- processes is crucial for mitochondrial energy homeostasis (Koopman
et al , 2012). The proportion of flux through the cycle compared to adjacent path-
ways depends on enzyme and metabolite concentrations, as well as the enzymes‘
kinetic properties. As a consequence, the risk that perturbations or enzymatic
mutations destabilize the cycle, potentially leading to energetic collapse, varies
between enzymes. For example, kinetic models demonstrate the sensitivity of the
TCA cycle to α-ketoglutarate dehydrogenase (AKGDH) activity. Indeed, dys-
function of this enzyme has been observed in neurodegenerative disorders (Berndt
et al , 2012). This motivates the systematic analysis of the role of this and other
enzymes as well as the investigation of how they coordinate their activities in order
to maintain functional steady states.

1.4. Outline of the thesis

In Chapter 2 of this thesis, the mathematical background of the SKM framework
is introduced in detail. Furthermore, this Chapter explains how stabilizing elas-
ticity patterns can be derived by decision trees and RVMs. Details about the
construction and analysis of the SK-models are given in Chapter 3. A part of this
project was dedicated to the development of a MATLAB toolbox that enables the
automated generation and analysis of SK-models. The corresponding Applications
Note (Girbig et al , 2012b) will be provided in Chapter 4. In Chapter 5 several
small example systems are introduced and analysed using the different classifica-
tion strategies. The same chapter also contains several other analyses elucidating
an important properties of SKM that has not been investigated in the literature so
far, namely the biological feasibility of the elasticity combinations created during
Monte Carlo sampling. Chapter 6 demonstrates how the proposed methodology is
applied to study destabilizing mechanisms in the neuronal TCA cycle. A summary
and discussion is provided in Chapter 7.
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2. Mathematical Background

2.1. A short introduction to kinetic modelling of

metabolic networks

Given a metabolic network with m metabolites S1, S2, . . . Sm and n reactions
r1, r2, . . . rn, the time-dependent changes in metabolite concentrations [S] := ([S1], S2], . . . [Sm])

can be described by the ODE system:

d[S]

dt
= N · v([S]) =: f([S]). (2.1)

Here, v([S]) := (v1([S]), v2([S]), . . . , vn([S])) describes the reaction velocities, which
typically depend non-linearly on the concentrations. The stoichiometric matrix
N ∈ Rm×n contains the molecularities of substrates and products of each reac-
tion (Heinrich and Schuster, 1996). Consequently, the vector f([S]) := (f1([S]),

f2([S]), . . . fm([S])) summarizes the time-dependent changes of each metabolite in
the network for a given set of concentrations and parameters.
A steady state is defined as a point [S]∗ in the state space where the rate of

production equals the rate of consumption for each metabolite. Hence, no net
changes in the concentrations can occur and all reaction rates fulfil the mass bal-
ance equation

d[S]

dt
= N · v([S]∗) = 0. (2.2)

Because all concentrations are fixed over time, a system can only leave a steady
state in response to changes caused by external influences. Such influences can
comprise, for example, the alteration of flux into the system as well as changes in
enzyme concentrations. If the steady state is unstable, even small perturbations
of this nature are sufficient to leave the steady state.
Depending on the underlying catalytic mechanisms, different rate laws have been

developed to model enzyme catalysed reactions. One of the most wide-spread types
of rate laws is the Michaelis Menten equation (Cornish-Bowden, 2004).
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2. Mathematical Background

The Michaelis Menten equation for irreversible reactions

Given an irreversible reaction rirrev : S → P , the corresponding reaction rate is
approximated by the equation

virrev([S]) =
Vmax · [S]

[S] +KM

=
Vmax · [S]/KM

1 + [S]/KM

. (2.3)

Here, Vmax describes the maximum possible reaction rate, which is achieved when
all enzymes are completely saturated by their substrate S1. KM is the Michaelis
constant describing the substrate concentration at which half of the maximum
velocity is achieved.

The Michaelis Menten equation for reversible reactions

A reversible reaction rrev : S ↔ P can be represented by the equation

vrev([S], [P ]) =
V +
max · [S]/Kv+

M

1 + [S]/Kv+

M + [P ]/Kv−
M︸ ︷︷ ︸

v+

− V −max · [P ]/Kv−
M

1 + [S]/Kv+

M + [P ]/Kv−
M︸ ︷︷ ︸

v−

, (2.4)

where S and P are the substrate and product concentrations, and v+ and v−

indicate the forward and backward reaction rates with maximum velocities V +
max,

V −max and Michaelis constants Kv+

M , Kv−
M (Cornish-Bowden, 2004).

2.2. Analysing local dynamic steady state

properties

The response of the system in steady state to small perturbations depends on
the asymptotic stability of the steady state. When it is asymptotically stable, a
coordinated system response enables the return of concentrations and fluxes to
the same values prior to the perturbation. If the steady state is unstable, such a
return is not supported.
As explained by Heinrich and Schuster (1996), the trajectories of a perturbation

δ[Si] can be computed by the Taylor expansion of equation (2.2):

d(δ[Si])

dt
=

m∑
k=1

∂fi
∂Sk |[S]=[S]∗

δ[Sk] +
1

2

m∑
k,l=1

∂2

∂Sk ∂Sl
δSkδSl + . . . . (2.5)
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2.3. Metabolic control analysis

In the case of infinitesimally small perturbations, the quadratic and higher order
terms can be neglected and equation (2.5) can be approximated by the linear
differential equation system

d(δ[Si])

dt
= J[S]∗ · δ[S], (2.6)

where J[S]∗ is the Jacobian matrix evaluated in the steady state with elements

Ji,k :=
∂fi
∂[Sk] |[S]=[S]∗

=
n∑
j=1

Ni,j
∂vj
∂[Sk] |[S]=[S]∗

. (2.7)

The solutions of the linearised system (2.6) can be expressed as

δ[S](t) =
m∑
i=1

cib
λit
i , (2.8)

where bi and λi are the eigenvectors and eigenvalues of J[S]∗ , and the constants ci
represent the initial perturbations (Heinrich and Schuster, 1996). Equation (2.8)
shows that, only if the largest real part of the eigenvalues is negative, changes
evoked by perturbations diminish over time and the steady state is asymptotically
stable. The Jacobian matrix also indicates whether trajectories oscillate in the
neighbourhood of a steady state. In particular, oscillations occur if the eigenvalues
with the largest real parts form a complex conjugate pair (Makarov and Dong,
2001).

2.3. Metabolic control analysis

2.3.1. Flux control coefficients and elasticities

Flux control coefficients

Metabolic control analysis (MCA) (Fell, 1997) quantifies the control of an indi-
vidual reaction rj on a steady state flux F through the system by the flux control
coefficient (FCC)

CF
ej

:=
∂ ln (F )

∂ ln (ej)
=

∂F/F ∗

∂ej/e∗j
. (2.9)
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2. Mathematical Background

Here, ej is the concentration of the enzyme catalysing reaction rj (steady state
value indicated by ∗). FCCs describe the proportions by which control over a
certain system flux is shared by the individual reactions. Consequently, all FCCs
have to sum up to 1 for each flux. This is stated by the summation theorem

n∑
j=1

CF
ej

= 1. (2.10)

Elasticities

In a steady state, the responses of the reaction rates to changes in any reactants or
effectors are quantified by elasticity coefficients, or briefly ‘elasticities’. Elasticities
are defined by

ε
vj
Si

:=
∂ ln(vj)

∂ ln([Si])
=

∂vj/v∗j
∂[Si]/[Si]

∗
,=

∂µj
∂xi

, (2.11)

where [Si]
∗ is the steady state concentration of metabolite Si and v∗j = vj([S]∗)

is the rate of reaction rj in the same steady state. µj :=
vj
v∗j

and xi := [Si]
[Si]∗

are
defined as the reaction rates and concentrations in a system normalized to the
steady state values. Elasticities are the partial derivatives of the reaction rates
in this normalized system. Consequently, they describe the influence of changes
in the normalized concentrations on the normalized reaction rates. In enzymatic
reactions, this influence depends predominately on the amount of saturation of an
enzyme with its metabolites.
The relationship between elasticities and FCCs is defined by the connectivity

theorem

n∑
j=1

CF
ej
· εvjSi

= 0, i = 1, . . . ,m. (2.12)

Deriving FCCs from elasticities

Using the simple paradigms of the summation and connectivity theorems, it is
possible to uniquely identify all FCCs from the elasticities. Simple matrix meth-
ods for calculation of FCCs have been suggested by Fell and Sauro (1985) and
Westerhoff and Kell (1987). Despite being easy to implement and intuitive to ap-
ply, these algorithms are restricted to specific predefined pathway topologies like
linear pathways or cycles, and not generalizable to arbitrary networks. The elas-
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2.3. Metabolic control analysis

ticities used and the FCCs produced by these methods refer to net reactions (i.e.
summarizing forward and backward direction), which corresponds to the nature of
experimentally accessible data.

Wang et al (2004) describe an alternative approach that enables the calculation
of FCCs for networks of any structure and size using the following equation:

C = −E · (N ·V · E)−1 · (N ·V ·Π) + Π, (2.13)

where, E ∈ R2n×m is matrix of elasticities, with separate values for forward and
reverse reactions, N ∈ Rm×2n is the corresponding stoichiometric matrix, and V ∈
R2n×2n is a matrix containing the steady state reaction rates of forward and reverse
reactions on the diagonal. Π ∈ R2n×m contains the enzyme-parameter elasticities,
which describe the relative impact of changing an enzyme’s concentration on the
rates of its catalysed forward and reverse reaction rates. Typically, this relationship
is assumed to be linear and the corresponding entries are set to 1. The matrix
C ∈ R2n×n contains the computed FCCS. Its entries Cvi

Ej
describe the impact of

perturbing the concentration of every enzyme Ej on each steady state reaction
rate v+/−i , with reactions being split into forward and backward directions.

Summarizing FCCs for forward and reverse reactions

The FCCs computed by equation (2.13) describe the impact of all enzymes on all
steady state reaction rates, separated by forward and backward directions. This
high level of detail leads to an exceedingly larger number of FCCs than produced
by the method of Fell and Sauro (1985) or Westerhoff and Kell (1987), making
it difficult to get an impression of the control exhibited by an enzyme on the
net steady state flux through a reaction. For better interpretability, FCCs can
therefore be summarized over forward and reverse directions. Each entry of C

then describes the impact of perturbing the concentration of one enzyme on the
net flux through each reaction. Using definition (2.9), this can be done in the
following way:

Cvi
vj

=
∂ ln (v+i − v−i )

∂ ln (ej)
(2.14)

=
e∗j

v+∗i − v−∗i
· ∂(v+i − v−i )

∂ej
=

e∗j
v+∗i − v−∗i

·
(
∂v+i
∂ej
− ∂v−i
∂ej

)
. (2.15)
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2. Mathematical Background

Because of

∂ ln (v)

∂ ln (e)
=
e∗

v∗
· ∂v
∂e

(2.16)

⇔∂v

∂e
=
∂ ln (v)

∂ ln (e)
· v
∗

e∗
= Cv

e ·
v∗
e∗
, (2.17)

we can rewrite equation (2.15) as

Cvi
ej

=
e∗j

v+∗i − v−∗i
·
(
C
v+i
ej ·

v+∗i
e∗j
− Cv−i

ej ·
v−∗i
e∗j

)
(2.18)

=
Cvi
ej
· v+∗i − C

v−i
ej · v−∗i

v+∗i − v−∗i
, (2.19)

where v+∗i and v−∗i refer to the steady state fluxes through reactions r+i and r−i .

2.3.2. Relationship between elasticities and enzyme kinetic

parameters

Irreversible Michaelis Menten kinetics

If a reaction rate v([S]) follows irreversible Michaelis Menten kinetics, the corre-
sponding normalized rate law µ := v

v∗
can be derived as

µ(x) =
v([S])

v([S]∗)
=
v(x · [S]∗)

v([S]∗)
(2.20)

=
Vmax · (x · [S]∗)

(x · [S]∗) +Kv
M

· [S]∗ +Kv
M

Vmax · [S]∗
(2.21)

= x
[S]∗ +Kv

M

(x · [S]∗) +Kv
M

(2.22)

The derivative with respect to the normalized substrate x is then given by

∂µ

∂x
=

[S]∗ +Kv
M

x · [S]∗ +Kv
M

− x · [S]∗([S]∗ +Kv
M)

(x · [S]∗ +Kv
M)2

(2.23)

Evaluation of the derivative at the steady state (indicated by x = 1) provides

14



2.3. Metabolic control analysis

the substrate elasticity

εvS :=
∂µ

∂x |x=1
(2.24)

=
[S]∗ +Kv

M

S∗ +Kv
M

− [S]∗([S]∗ +Kv
M)

([S]∗ +Kv
M)2

(2.25)

= 1− [S]∗

[S]∗ +Kv
M

(2.26)

=
1

1 + [S]∗/Kv
M

∈ (0, 1] (2.27)

Reversely, the original kinetic parameters can be computed from the elasticities
for a given steady state by

Kv
M =

[S]∗ · εvS
1− εvS

(2.28)

Vmax = v∗ · (1 +
Kv
M

[S]∗
), (2.29)

where v∗ and [S]∗ indicate the reaction rate and substrate concentration in steady
state.

Reversible Michaelis Menten kinetics

Repeating the procedure described above for the reversible Michaelis Menten kinet-
ics introduced in equation (2.4) reveals the following equations for the elasticities:

εv
+

S =
1 + [P ]

Kv−
M

1 + [S]

Kv+
M

+ [P ]

Kv−
M

∈ (0, 1] (2.30)

εv
−

P =
1 + [S]

Kv+
M

1 + [S]

Kv+
M

+ [P ]

Kv−
M

∈ (0, 1] (2.31)

εv
+

P = εv
−

P − 1 ∈ (-1, 0] (2.32)

εv
−

S = εv
+

S − 1 ∈ (-1, 0] (2.33)

The relationship to the original kinetic parameters for a given steady state looks
as follows:
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2. Mathematical Background

Kv+

M = [S]∗ · 1− εv+S − εv
−
P

εv
+

S − 1
(2.34)

Kv−

M = [P ]∗ · 1− εv+S − εv
−
P

εv
−
P − 1

(2.35)

V v+

max = v+([S]∗, [P ]∗) ·
1 + [S]∗

Kv+
M

+ [P ]∗

Kv−
M

[S]∗

Kv+
M

(2.36)

V v−

max = v−([S]∗, [P ]∗) ·
1 + [S]∗

Kv+
M

+ [P ]∗

Kv−
M

[P ]∗

Kv−
M

(2.37)

A closer inspection of equations (2.34) and (2.35) shows that Kv+

M and Kv−
M

become negative for
εv

+

S + εv
−

P 6 1. (2.38)

Because Michaelis constants are given in units of concentrations and, as such, are
required to be non-negative, elasticity combinations not fulfilling equation (2.38)
are biologically infeasible for any given steady state.

Multiple substrates and products

Reactions with multiple substrates and products require more complex rate laws
than the Michaelis Menten equation. Because of this complexity, each elasticity
depends on a distinctly larger number of kinetic parameters. Consequently, ex-
pressing kinetic parameters in terms of the elasticities in a manner similar to that
shown in equations (2.34)-(2.35) is an analytically challenging task.

For example, reactions with random order binding of their substrates and prod-
ucts are among the simplest to model mathematically (Cornish-Bowden, 2004).
The rate of such a reaction

A+B ⇔ C +D

can be calculated using the following equation:

v =

V v+
max[A][B]
KiAKmB

− V v−
max[P ][Q]
KmPKiQ

1 + [A]
KiA

+ [B]
KiB

+ [P ]
KiP

+ [Q]
KiQ

+ [A][P ]
KiAKmB

+ [P ][Q]
KmP+KiQ

. (2.39)

Equation (2.39) comprises eight kinetic parameters, which can be used to cal-
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culate eight elasticities. Each elasticity then describes the influence of one of the
four reactants on the forward or backward reaction. When trying to derive terms
that express the kinetic parameters in terms of the eight elasticities, it is necessary
to solve a system of eight nonlinear equations. An attempt to solve such a system
using a trial version of the MATHEMATICA language (Wolfram Research, 2012)
was impossible because the program failed to converge towards an analytical so-
lution. Consequently, a rule similar to equation (2.38) is not available to us in the
same straight-forward manner.

2.4. The principles of structural kinetic modelling

(SKM)

2.4.1. Computing the Jacobian matrix from elasticities

As described in Section 2.2, local dynamic properties of a steady state, like stability
or oscillatory behaviour, can be derived from the Jacobian matrix evaluated in the
steady state. Computation of the Jacobian matrix typically requires knowledge of
all enzyme kinetic rate laws and kinetic parameters describing the reactions in the
system in order to compute the partial derivatives ∂vj

∂[Si]
.

However, structural kinetic modelling (SKM) enables the computation of the
Jacobian matrix without relying on such knowledge. Instead, it uses the following
rearrangement of equation (2.7):

Ji,k =
n∑
j=1

Ni,j
∂vi
∂[Sk] |[S]=[S]∗

=
n∑
j=1

Ni,jv
∗
j

[Sk]∗
· [Sk]

∗

v∗j

∂vi
∂[Sk] |[S]=[S]∗

(2.40)

=
n∑
j=1

λi,j · ε
vj
Sk
, (2.41)

with λi,j := Ni,j ·
v∗j

[Si]∗
and elasticities εvjSk

as defined in Section 2.3.
The Jacobian matrix can thus be computed by the simple matrix multiplication

J[S]∗ = Λ · E, (2.42)

where the matrix E contains the elasticities εvjSi
, j = 1 . . . , n, i = 1 . . . ,m, and

Λ ∈ Rm,n is the matrix of normalized stoichiometric coefficients λi,j.
As already explained in Section 2.3, elasticities associated with enzyme-catalysed

17



2. Mathematical Background

Normalized
matrix :

Pathway
stoichiometry

Steady
state information

1)
Normalization step

Jacobian
matrix:

2)
Sampling step

Sampled
elasticities

3)
Evaluation step

Eigenvalues

Oscillations
yes/ no

Stability
yes/no

Figure 2.1.: The principles of SKM. SKM experiments can be summarized by the fol-
lowing steps: 1) normalization of the stoichiometric matrix with respect to steady state
fluxes and concentrations; 2) random sampling of the elasticities and computation of
the Jacobian matrices; 3) evaluation of the Jacobian matrix for each sampled set of
elasticities with respect to local dynamic steady state properties.

reactions indicate the amount of saturation of the enzyme with a particular metabo-
lite. Because of this implication, the sampled elasticities in SKM experiments are
also called ‘saturation parameters’ (Steuer et al , 2006). In particular, the larger
the absolute value of an elasticity, the less the enzyme catalysing the reaction is
saturated with its metabolite (Wang et al , 2004). In this work, however, I will
refer to the sampled variables as elasticities to emphasize their proximity to the
MCA framework.

2.4.2. Monte Carlo sampling of structural kinetic models

As demonstrated by equation (2.42), the Jacobian matrix for a given steady state,
for which experimental measurements are available, can be derived solely from a
set of model parameters (elasticities) E ∈ Rn,m, the stoichiometric matrix N, and
the steady state measurements [S]∗ and v∗. While the stoichiometry, the steady
state concentrations and the fluxes are experimentally accessible, the elasticities
are often unknown in practice. However, due to the normalization step, they are
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2.4. The principles of structural kinetic modelling (SKM)

restricted to pre-defined intervals, from which they can be sampled in a Monte
Carlo approach. This enables the creation of a large number of models followed by
the exploration of the parameter space to detect regions associated with stability
or instability. An overview of the SKM approach is shown in Figure 2.1.

The interval boundaries are chosen according to the type of kinetics employed
by an enzyme. For example, if a reaction follows reversible Michaelis Menten ki-
netics, its substrate-associated elasticities are restricted to (0, 1], while its product-
associated elasticities lie within (-1, 0] (see Section 2.3.2 for details). Further ex-
amples for other types of rate laws can be found in the supplementary information
of Steuer et al (2006).

2.4.3. Evaluating SKM experiments

Strategies for analysing SKM experiments can be categorised into quantitative and
qualitative approaches (Girbig et al , 2012b).

Quantitative analysis

Quantitative strategies count the proportions of stable and unstable models and
derive conclusions about the general tendency of the system towards stability.
Possible applications are the comparison of stability tendencies under different ex-
perimental conditions, or the assessment of the effect of certain types of metabolic
regulators on stability. An example that investigates the impact of such regulators
on the stability of the Calvin-Benson cycle (CBC) is given by Girbig et al (2012a).
This approach can also serve for detecting the different types of dynamical be-
haviour that could emerge in the system given a suitable set of elasticities. Such a
behaviour could be, for example, the presence of oscillations, which are indicated
by complex conjugated eigenvalues (Section 2.2). For example, Steuer et al (2006)
present a detailed analysis of the possible dynamics of a simple kinetic model of
the CBC. They find that 5.7% of the sampled SK-models are unstable. The largest
proportion of these unstable models gives rise to only one positive eigenvalue each,
indicating non-oscillatory trajectories around the steady state. However, 0.6% ex-
hibit two or more non-negative real parts, which hints at the possibility of more
complex system responses.
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Qualitative univariate analysis

Qualitative strategies aim at analysing the specific conditions responsible for stabil-
ity or instability. If an elasticity parameter contributes to a dynamic property like
stability, we can assume that this elasticity is distributed differently among those
SK-models exhibiting the property and those models that do not. Therefore, the
simplest approaches for detecting such elasticities are univariate in nature, which
means that they compare the elasticity values leading to stable or unstable states
in a pairwise manner. For example, Grimbs et al (2007) perform distribution com-
parisons using the Kolmogorov-Smirnoff test or correlation coefficients in order to
detect the enzymes with most effect on the stability of Erythrocyte metabolism.

Qualitative multivariate analysis

SKM enables the identification of stable and unstable as well as oscillatory and
non-oscillatory steady states for a large number of randomly generated parame-
ter sets. When searching for model parameters with high discriminatory power
between different dynamic steady state properties, previous SKM analyses used
univariate comparisons in order to detect single enzymes that play ‘key roles’ in
maintaining the stability of a steady state. However, it is a well-established fact
that metabolic control is not conducted by few key enzyme alone. Instead, changes
in flux distributions can also be caused by the joint orchestration of several en-
zymes (Kacser and Porteous, 1987). Such orchestration of enzyme activities cannot
be detected by univariate tests that simply compare the distributions of elastici-
ties between stable and unstable models. Instead, methods based on supervised
classification can help identify such patterns in the elasticity space (Girbig et al ,
2012a).

This thesis aims at exploring the possibilities and possible limitations of this
approach in greater detail. Furthermore, it will be investigated whether patterns
can also be derived in terms of FCCs and the performance and interpretability of
such FCC patterns will be compared to those based on elasticities.
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2.5. Supervised classification approaches to

evaluate SKM experiments

In supervised classification, our goal is to derive an algorithm that can predict a set
of discrete target values T = {t(1), t(2), . . . , t(q)} from a set of training data points
X = {χ(1), χ(2), . . . , χ(q)}. Typically, the training data are real-valued vectors
consisting of p features (χ(i) ∈ Rp). After training, the derived decision function
needs to be assessed using previously unknown test data points. This provides
information about the generalizability of the classifier to new cases. If a classifier
performs well on the training data, but poorly on the test data, it was overfitted
(Rokach and Maimon, 2008, p. 49). In general, overfitting can be reduced by
choosing sufficiently large training data sets that enable the classifier to derive
robust classification rules during training.
In the given scenario, we aim at predicting information about the stability and

oscillatory properties of a steady state based on a set of elasticities or FCCs created
by an SKM experiment. After construction of the classifier, we want to be able to
interpret the derived classification rules. Two algorithms lend themselves to this
task because, in addition to often achieving good classification results, their derived
decision functions are also easily accessible for manual interpretation. These two
algorithms are called (1) decision trees and (2) relevance vector machines (RVMs).
This work will explore the potential of both approaches for the evaluation of SKM
experiments.

2.5.1. Decision trees

Decision trees offer an intuitive algorithm that classifies a data point by estab-
lishing a series of quantitative or qualitative criteria on its features. If all criteria
are fulfilled, a particular class label is assigned. Each series of criteria is repre-
sented by a path through a tree, in which each node contains a criterion, and each
leaf contains the class label associated with the path. Consequently, the decision
tree can offer a complex and nonlinear representation of the class boundaries in
the feature space. Different implementations exist offering various algorithms of
constructing the tree (Rokach and Maimon, 2005).
One possible way to construct decision trees is the C5.0 algorithm (Quinlan,

2013), which is a commercial version of the C4.5 algorithm (Quinlan, 1998) with
increased speed and memory efficiency that makes it well applicable for large num-
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2. Mathematical Background

bers of training samples. One interesting feature of this algorithm is the possibility
to create ‘rulesets’ that summarize the derived conditions for each class in an easily
interpretable manner. In contrast to the classical decision tree structure, where
the abundance of a feature depends on its position in the tree (for example, the
feature in the root is always used), features in rulesets can be mutually exclusive.
This motivates their use in finding diverse combinations of features important for
different dynamic properties. The discovered rulesets describe patterns imposing
coordinated thresholds on the saturation of different enzymes in the system.

2.5.2. Relevance vector machines (RVMs)

In RVMs (Tipping, 2001, Tipping et al , 2003) a data point χ is classified by
computing its probability of belonging to a particular class t ∈ {0, 1} as

P (t) =

(
1

1 + ey(χ)

)t
·
(

1− 1

1 + ey(χ)

)1−t

, (2.43)

with y(χ) =
∑q

i=1 ωi · Φ(χ, χ(i)). Φ(χ, χ(i)) is the value of a kernel function that
provides a measure of the distance between the data point with unknown class
label χ, and each of the training samples χ(i). Similar to support vector machines
(Schölkopf et al , 1999), the kernel is intended to project the data points into higher
dimensional space in which they are more easily separable.
One of the most prominent features of RVMs is their ability to obtain a sparse

solution in which most of the weights ωi become infinitesimally small. This solution
is obtained using a Bayesian approach that imposes a prior distribution on the
weights so that their expected values are zero (Gopinath et al , 2013). This ensures
that during model fitting, most weights will vanish. Consequently, prediction is
only based on a small set of weights and their associated training vectors. Because
these vectors have been determined as the most informative for prediction, they
are also termed ‘relevance vectors’ (RVs).
The RVM algorithm has several advantages compared to other kernel based clas-

sifiers like SVMs. The prediction can take place within comparably short runtime
because it only requires the computation of the few kernel values with non-zero
weights. Furthermore, the decision function is easier to interpret because the
RVs represent typical instances of each class. In contrast, the decision boundaries
detected by SVMs often vary only little between both classes because of the prox-
imity of the vectors representing the boundaries on both sides of the margin. A
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2.5. Supervised classification approaches to evaluate SKM experiments

third advantage is that the sparsity of the solution avoids an over-adaptation to
the training data characteristics, which makes the classifier very robust against
overfitting (Weiss and Ellis, 2006; Li et al , 2012; Gopinath et al , 2013).
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3. Model generation and analysis

3.1. Model generation

In order to systematically evaluate the machine learning approaches analysed in
this work, three simple artificial example models were constructed. For each of
these example pathways, a kinetic model with known rate laws and kinetic pa-
rameters was created. These kinetic models were used to compute steady state
concentrations and fluxes for structural kinetic modelling (SKM). Applying SKM
to a kinetic model for which the ‘true kinetics’ are already well-defined may seem
counter-intuitive at first, since one of the most distinctive advantage of SKM refers
to its ability to analyse system dynamics if detailed kinetic information is not avail-
able. However, for method development this approach yields several advantages:

1. By defining small artificial pathways, we can assess the impact of changes
in pathway topology on system dynamics and classification results. For this
purpose, three distinct pathway structures were constructed: a linear, a
branched, and a cyclic pathway.

2. We can compare the derived elasticity patterns associated with certain dy-
namic steady state properties to the true elasticities derived from the kinetic
model.

3. The statistical exploration of the elasticities can elucidate the system’s re-
sponse to possible mutations that would be time consuming with simulations
based on the kinetic model.

In the first part of this chapter, all kinetic models used within this work will
be introduced. Afterwards, the procedure for constructing SK-models based on
these steady states will be described. Finally, these SK-models will be statistically
analysed in a univariate an multivariate manner.
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3. Model generation and analysis

3.1.1. Illustrative example pathways

In order to account for the impact of pathway topology on the dynamic properties
of steady states of a metabolic network, kinetic models were constructed using
three different pathway structures (Figure 3.1).

system boundary

source sinkS3 S4S2S1r1 r2 r3 r4 r5

(a) Linear pathway

system boundary

source sink

S3

S4

S2S1r1 r2

r3

r4 r6

r5

(b) Branched pathway

system boundary

source sinkS1

r2

r5

S2

S4

S3r1 r6

r3

r4

(c) Cyclic pathway

Figure 3.1.: Pathway topologies underlying the small example models used for SKM anal-
ysis.

Kinetic parameters and rate laws were chosen as uniformly as possible in order
to eliminate their influence on the outcome of the analysis. All reactions were
modelled using reversible Michaelis Menten kinetics. A positive feedback term
was included to increase the range of possible dynamic behaviours. Tables 3.1 and
3.2 describe the resulting differential equation systems underlying each pathway.
Suitable values for the kinetic parameters were identified by a grid search with the
aim of enabling the emergence of both unstable and oscillatory steady states in
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3.1. Model generation

each model. The kinetic parameters were chosen in such a way that the resulting
steady states would enable the emergence of instabilities when analysed by SKM.
For this purpose, a preliminary study was performed for each pathway. In doing
so, a large number of possible combinations of kinetic parameters were selected
iteratively. For each parameter set, the corresponding steady state was computed
and the probabilities of stability and oscillations was estimated by a small Monte
Carlo simulation using 1000 iterations. An overview of the resulting parameter
values used for model creation is given in Table 3.3. The Michaelis constants of
the backward reactions were chosen to be substantially lower than those of the
forward reactions in order to ensure faster forward than backward rates, and,
consequently, a positive net flux through each reaction.

d[S1]
dt =

[
v+1 − v

−
1

]
−
[
v+2 − v

−
2

]
d[S2]
dt =

[
v+2 − v

−
2

]
−
[
v+3 − v

−
3

]
d[S3]
dt =

[
v+3 − v

−
3

]
−
[
v+4 − v

−
4

]
d[S4]
dt =

[
v+4 − v

−
4

]
−
[
v+5 − v

−
5

]
(a) Linear pathway

d[S1]
dt =

[
v+1 − v

−
1

]
−
[
v+2 − v

−
2

]
d[S2]
dt =

[
v+2 − v

−
2

]
−
[
v+3 − v

−
3

]
−
[
v+4 − v

−
4

]
d[S3]
dt =

[
v+3 − v

−
3

]
−
[
v+5 − v

−
5

]
d[S4]
dt =

[
v+4 − v

−
4

]
−
[
v+6 − v

−
6

]
(b) Branched pathway

d[S1]
dt =

[
v+1 − v

−
1

]
−
[
v+2 − v

−
2

]
+
[
v+5 − v

−
5

]
d[S2]
dt =

[
v+2 − v

−
2

]
−
[
v+3 − v

−
3

]
d[S3]
dt =

[
v+3 − v

−
3

]
−
[
v+4 − v

−
4

]
−
[
v+6 − v

−
6

]
d[S4]
dt =

[
v+4 − v

−
4

]
−
[
v+5 − v

−
5

]
(c) Cyclic pathway

Table 3.1.: ODE systems used to model the pathways depicted in Figure 3.1.

All three kinetic models were implemented in MATLAB (MATLAB, 2010) using
the Systems Biology Toolbox 2 for Matlab (Schmidt, 2013; Schmidt and Jirstrand,
2006). Steady states were computed using the SBsteadystate function of the Tool-
box. This function attempts to solve the mass balance equation (2.2) by numerical
optimization based on the Newton algorithm. Initial conditions were set to 1 mol

l

for each metabolite and pathway.

Construction of SK-models SK-models were constructed using the MATLAB
Toolbox for Structural Kinetic Modeling (Girbig et al , 2012b). This toolbox, which
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3. Model generation and analysis

v+([S], [P ])
Vmax· [S]

K+
M

1+
[S]

K+
M

+
[P ]

K−
M

Rate law of reaction r+1 , r
+
3 , r

+
4 , r

+
5 and r+6 .

v−([S], [P ])
Vmax· [P ]

K−
M

1+
[S]

K+
M

+
[P ]

K−
M

Rate law of reaction r−1 , r
−
3 , r

−
4 , r

−
5 and r−6 .

v+2 ([S], [P ], [A])

Vmax· S

K+
M

(1+
KA
[A]

)(1+
[S]

K+
M

+
[P ]

K−
M

)

Rate law of reaction r+2 including a mixed
activation term

v−2 ([S], [P ], [A])
Vmax· [P ]

K−
M

(1+
KA
[A]

)(1+
[S]

K+
M

+
[P ]

K−
M

)

Rate law of reaction r−2 including a mixed
activation term

Table 3.2.: Kinetic rate laws used for the ODE-models described in Table 3.1. Reactions
were modelled using reversible Michaelis-Menten kinetics (Bisswanger, 2008). A posi-
tive feedback term representing mixed activation was included for reaction v2 (Cornish-
Bowden, 2004).

K+
M 3 mol

l
Michaelis constant of the forward reactions

K−M 30 mol
l

Michaelis constant of the backward reactions

V
v+/−
max 1 mol

l·sec Maximum forward/backward velocity of each reaction

KA 1 mol
l

Activation constant of reactions r+2 and r−2
source 1 mol

l
external constant source metabolite

sink 1 mol
l

external constant sink metabolite

Table 3.3.: Parameters used for creating kinetic models of the small example systems in
Figure 3.1.

is described in detail in the subsequent chapter of this work, enables the straight-
forward construction of SK-models for a given steady state.

Elasticities were sampled from a set of 100 discrete and evenly spaced values
that ranged from 0.01 to 1 in steps of 0.01. The goal of the discretization was to
make the predicted decision tree patterns better reproducible over different trees.

Until now, SKM experiments described in the literature did not take into account
whether the sampled elasticities were associated with biologically feasible, i.e. non-
negative, kinetic parameters (see Section 2.3.2 for details). In order to assess the
proportion of biologically infeasible models, as well as their impact on the results of
the experiment, the sampling procedure was performed twice: once with and once
without filtering out those elasticity combinations that would result in biologically
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3.1. Model generation

infeasible models. For biologically feasible models, the following filtering criterion
had to be fulfilled for all reactions rj:

ε
v+j
S + ε

v−j
P > 1 (3.1)

Here, ε
v+j
S is the elasticity describing the substrate influence on the forward reaction

v+j , and ε
v+j
P describes the corresponding influence of product perturbations on the

reverse reaction v−j .
For each set of biologically feasible elasticities, a complementary set of flux

control coefficients was computed using equation (2.13).

3.1.2. SK-models of mitochondrial energy metabolism

The TCA cycle plays a central role in energy metabolism and in providing precur-
sors for biosynthetic pathways. Consequently, this pathway relies on mechanisms
that guarantee a stable flux through the cycle despite the perturbations occur-
ring at the branch points to adjacent pathways. Because of its importance for
cell metabolism, the intrinsic stabilizing mechanisms of the TCA cycle and the
adjacent reactions for the respiratory chain and adenosine triphosphate (ATP)
synthesis were investigated by SKM. After sampling, the elasticities were analysed
by univariate comparisons, decision trees and RVMs. This analysis was intended
to serve as an example of how these methods perform, and what types of infor-
mation they can provide, when applied to a metabolic system of realistic size and
complexity.

Kinetic model

The kinetic model by Berndt et al (2012) served as a reference for network stoi-
chiometry and steady-state information. This model describes the electron transfer
reactions taking place in the respiratory chain complexes I and III in great detail.
As a result, it contains 96 state variables for the different redox states of complex
I and 48 state variables for complex III.

Steady state computation

Steady state concentrations and fluxes were computed by numerical integration
using the ode15s solver. In each integration step, reaction rates were computed
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3. Model generation and analysis

using the MATLAB implementation of Berndt et al (2012). Initial values were
also provided by the authors in their original code. Integration was performed
over 1000 seconds until all concentration changes were below 2.5 · 10−8 mol

l
.

Two steady states were computed for SKM analysis which represented different
degrees of workload imposed on the cell. In the neuron, an increased work load
implies an increase in ATP demand by the cell in order to restore the membrane
potential after neuron triggering. The first state (also called reference state) repre-
sented a situation where cytosolic O2 consumption was 50% of its maximum value.
This corresponded to a moderate work amount of ATP consumption by the cell
(Berndt et al , 2012). In contrast, the second state resembled a phenomenon called
‘gamma oscillations’ (Fell and Axmacher, 2011; Singer, 2013; Brittain and Brown,
2014; Hanslmayr and Staudigl, 2014), which represented a scenario of strong work-
load, resulting in increased consumption of ATP and O2. This steady state was
computed by setting cytosolic O2 consumption to 90% of the maximum value.

Construction of SK-Models

The stoichiometric matrix of mitochondrial energy metabolism was constructed
according to ODE system in Table 3.4. Instead of including all detailed electron
transfer reactions of the kinetic model, complex I and III were reduced to one
reaction each. More precisely, complex I was represented by the rate of flavin
reduction, and complex III was represented by the rate of cytochrome C (CytC)
reduction in the original kinetic model. All 14 regulatory interactions listed by
Nelson and Cox (2004) for the TCA cycle (Table 3.5) were taken into account
by including elasticities that represented the different types of feedback. Those
elasticities representing activating influences were sampled from the interval (0, 1]

and those for inhibitors were sampled from [-1, 0). The resulting SK-model covered
24 metabolites, 20 reactions and 71 elasticities.

Elasticities of the reactions with a single substrate and product (Aconitase
(ACON), Fumarase (FU) and H+-Leak (H-leak)) were filtered for biological fea-
sibility using the criterion derived in equation (3.1). In the remaining models,
the FCCs were checked in order to detect whether the effect of pyruvate import
on pyruvate dehydrogenase (PDH) was positive. This criterion was used as an
additional indicator of the biological plausibility of the sampled models. Only the
remaining models after both filtering steps were used for the subsequent univariate
and multivariate analyses.
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3.1. Model generation

d[PY Rm]
dt

= vPY R/H-sym − vPDH
d[Hm]
dt

= vP/H-sym+vPY R/H-sym−vK/H-anti−vNa/H-anti+vH-leak +
vCITS − 5 vCI − 2 vCIII − 4 vCIV + 3 vATP -syn

d[ACCOAm]
dt

= vPDH − vCITS
d[CITm]

dt
= vCITS − vACON

d[ICITm]
dt

= vACON − vIDH
d[AKGm]

dt
= vIDH − vAKGDH

d[SUCCOAm]
dt

= vAKGDH − vSCS
d[SUCCm]

dt
= vSCS − vSDH

d[FUMm]
dt

= vSDH − vFU
d[MALm]

dt
= vFU − vMDH

d[OXAm]
dt

= vMDH − vCITS
d[COAm]

dt
= vCITS − vPDH + vSCS − vAKGDH

d[NADHm]
dt

= vPDH + vIDH + vAKGDH + vMDH − vCI
d[NADm]

dt
= −vPDH − vIDH − vAKGDH − vMDH + vCI

d[QH2]
dt

= vSDH + vCI − vCIII
d[Q]
dt

= −vSDH − vCI + vCIII
d[CytC(red)]

dt
= 2 vCIII − 2 vCIV

d[CytC(ox)]
dt

= −2 vCIII + 2 vCIV
d[Pm]
dt

= vP/H-sym − vSCS − vATP -syn

d[ADPm]
dt

= vATP/ADP -anti − vSCS − vATP -syn

d[ATPm]
dt

= −vATP/ADP -anti + vSCS + vATP -syn

d[Pc]
dt

= −vP/H-sym + vATPuse
d[ADPc]

dt
= −vATP/ADP -anti + vATPuse

d[ATPc]
dt

= vATP/ADP -anti − vATPuse

Table 3.4.: ODE system describing the stoichiometry used for the SK-model of mitochon-
drial energy metabolism. The subcellular location of a metabolite X is indicated by the
subscripts Xm (mitochondrial matrix) and Xc (cytosol). All abbreviations are explained
in Appendix A.

31



3. Model generation and analysis

Reaction Metabolite Type of regulation

PDH ATPm I

PDH ACCOAm I

PDH NADHm I

PDH COAm A

PDH NADm A

CITS SUCCOAm I

CITS NADHm I

CITS CITm I

CITS ATPm I

CITS ADPm A

IDH ATPm I

IDH ADPm A

AKGDH SUCCOAm I

AKGDH NADHm I

Table 3.5.: Regulatory interactions included into the SK-model of mitochondrial energy
metabolism. The letter ‘I’ stands for inhibitory relationships, whereas ‘A’ describes
activating influences.

3.2. Model analysis

3.2.1. Quantitative analysis

For each steady state, the numbers of stable and unstable SK-models were counted
in the unbalanced data set of 104 randomly sampled models with and without filter-
ing for biological feasibility. Oscillatory and non-oscillatory models were analysed
in a similar manner.

3.2.2. Univariate qualitative analysis

In order to determine the elasticities associated with stability and oscillations,
elasticity distributions of the corresponding SK-models were compared using the
Kolmogorov-Smirnoff test. Those elasticities whose distributions significantly dif-
fered between both classes were extracted. If not stated otherwise, the significance
level α was set to 0.01.
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3.2. Model analysis

3.2.3. Multivariate qualitative analysis

Using stability or oscillations as class labels, classifiers were trained in order to
detect discriminating patterns in the parameter space. Focusing only on the bio-
logically feasible models, each set of randomly sampled elasticities or FCCs derived
from the elasticities served as a feature vector for classifier training. As a first step,
the impact of training data size on classification performance was assessed. In do-
ing so, balanced datasets of increasing sample sizes were created by repeatedly
sampling model parameters until equal numbers of stable and unstable, as well as
oscillatory and non-oscillatory, cases were obtained. For each sample size, clas-
sifiers were trained on five independently created training data sets. In order to
test the generalizability of the derived decision function, the performance of each
classifier was evaluated on a separately sampled balanced test set.
Classification accuracy on training and test data were assessed by the balanced

error rate (BER)

BER = 0.5 ·
(
FP

P
+
FN

N

)
, (3.2)

where FP and FN are the numbers of wrong positives and negative predictions,
and P and N are the total numbers of positive or negative labels in the data set.
Here, the ‘positive’ class is assumed to consist of those models which are stable or
oscillating, and the ‘negative’ class consists of unstable or non-oscillating models.
However, due to the symmetry of equation (3.2), the reverse definition would be
possible as well.
Decision tree training was performed using the C5.0 library in R (R Core Team,

2012) in the RULES mode. After training, the generalizability of each of the ob-
tained decision tree rulesets was assessed by the Laplace ratio

Lk =
hk − ek + 1

hk + 2
. (3.3)

Here, k is the ruleset index, hk is the number of ‘hits’, which are defined as the
test samples meeting the conditions given by the kth ruleset, and ek is the number
errors made when applying the ruleset to these test samples (Quinlan, 2013). In
total, 105 test samples were used for the assessment. Since our aim was to derive
reliable conditions for stability and instability, we selected only those rulesets with
Laplace ratio > 0.95 for further analyses.
RVM training was performed using the SparseBayes Software, which is a

freely available MATLAB implementation of the RVM learning algorithm (Tip-
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ping, 2013). For each training data size, five independent training sets were created
and RVMs were trained on each of them. Following the author’s example (Tip-
ping et al , 2003), the Gaussian kernel was chosen for RVM training. It required
a variance parameter σ which was determined by grid search. In doing so, each
parameter was evaluated on a set of 50, 000 test samples. The final classification
accuracy was computed on a holdout dataset of 50, 000 samples using the best
performing sigma from each grid search.
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4. A MATLAB toolbox for
structural kinetic modelling∗

Abstract

Summary: Structural kinetic modelling (SKM) enables the analysis of dynami-
cal properties of metabolic networks solely based on topological information and
experimental data. Current SKM-based experiments are hampered by the time-
intensive process of assigning model parameters and choosing appropriate sampling
intervals for Monte-Carlo experiments. We introduce a toolbox for the automatic
and efficient construction and evaluation of structural kinetic models (SK-models).
Quantitative and qualitative analysis of network stability properties is performed
in an automated manner. We illustrate the model building and analysis process
in detailed example scripts that provide toolbox-implementations of previously
published literature models.

Availability: The source code is freely available for download at http://bioinformatics.uni-
potsdam.de/projects/skm.

4.1. Introduction

SKM enables the analysis of dynamical features of metabolic systems in steady
states, without requiring the knowledge necessary for the construction of kinetic
models, such as kinetic parameters and reaction rates. Instead, these properties
are derived solely from topological information and experimentally measurable
steady state data. In doing so, the SKM algorithm derives a ‘parameterized’
∗Original article:
Dorothee Girbig, Joachim Selbig and Sergio Grimbs
A MATLAB toolbox for structural kinetic modeling
BIOINFORMATICS APPLICATIONS NOTE
Vol. 28 no. 19 2012, pages 2546-2547
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4. A MATLAB toolbox for structural kinetic modelling

version of the system’s Jacobian matrix, in which model parameters encode the
partial derivatives of the reaction rates around the steady state (Steuer et al ,
2006). Once the Jacobian matrix is computed for a given set of parameters, the
evaluation of its eigenvalues indicates whether the steady state is stable. Here,
a simple normalization step enables the restriction of the parameter values to
predefined sampling intervals (for example, (0, 1] for classical enzyme kinetics).
This enables the combination of SKM with a Monte-Carlo approach (Steuer et al ,
2006) in which large numbers of SK-models are created using randomly sampled
parameters. The resulting Jacobian matrices can then be evaluated quantitatively
(by counting the proportions of stable and unstable models) or qualitatively (by
analysing the conditions that lead to such stability or instability). Qualitative
SKM-analysis can be performed by pairwise comparisons of the model parameters
leading to stable or unstable states (Grimbs et al , 2007) or by machine learning
approaches that search for patterns in the parameter space (Girbig et al , 2012a).

The SKM-experiments presented so far used customized algorithms in which the
SK-models had been constructed manually ‘from scratch’ for each pathway (Steuer
et al , 2006; Grimbs et al , 2007; Steuer et al , 2007; Reznik and Segrè, 2010). While
this might be sufficient for small systems like in the mentioned examples, the
construction of SK-models for larger systems, or even systems of genomic scale is
not feasible manually. However its potential to be applied to large-scale systems
is a major advantage of SKM compared to kinetic modelling. Because it does
not rely on detailed kinetic knowledge, it is well-suited for the investigation of
large metabolic systems for which only limited or uncertain information about the
individual reaction mechanisms is available.

Here we present a MATLAB toolbox that enables the automated construction
and evaluation of SK-models. Models can be constructed from a minimal input
consisting only of the stoichiometric matrix N, steady state concentrations [S]∗

and the steady state fluxes v∗, with the experimental data being obtained from
metabolomics and isotope tracing experiments. Model parameters can be derived
automatically based on the information in N. The user can also assign additional
model parameters (for example to describe regulatory interactions) or manually
manipulate the suggested parameter positions and intervals.

We illustrate the model building and analysis process in example scripts which
demonstrate the construction of previously published literature models (Steuer
et al , 2006; Girbig et al , 2012a) using the toolbox.
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Model parameter information

SKM-Toolbox

Monte-Carlo 
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Figure 4.1.: SK-model building and evaluation using the SKM-toolbox. Required input
arguments are the stoichiometric matrix N, steady state concentrations S0, and the
fluxes v0. Model parameters are assigned according to the information in N. They can
be manually adjusted (i.e. by adding allosteric regulators) before starting the Monte-
Carlo-simulation. The resulting distributions of model parameters and eigenvalues for
stable/unstable models are displayed automatically.

4.2. Features

The key functionalities of the toolbox can be summarized as follows:

• SK-models can be constructed from a minimum required input which consists
only of N, [S]∗ and v∗.

• Information about the model components and their stoichiometries can be
efficiently imported from SBML files.

• The program is flexible to modifications of the model parameters. This
can be achieved by either manually modifying the automatically determined
parameters, or by building parameter matrices ‘from scratch’.

• MATLAB functions for the quantitative and qualitative analysis of the re-
sulting models are provided.

The most labour-intensive step in the construction of SK-models for Monte-
Carlo experiments consists of choosing the model parameters’ network positions,
and assigning appropriate sampling intervals. The sampling intervals depend on
the type of kinetic rate law assumed for the reactions. For example, the interval
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(0, 1] serves for modelling enzyme-substrate interactions in enzymatic reactions
while [−n, 0) models the impact of an allosteric inhibitor with Hill coefficient n.
Internally, the toolbox uses a MATLAB struct object to store network positions

of model parameters that describe different types of interactions. If not provided as
an input argument for the toolbox, the struct will be automatically created based
on the stoichiometric coefficients in N. The toolbox also enables the generation of
a template struct for manual modification by the user (for example by including
regulatory interactions) prior to the start of the program.
After Monte-Carlo simulation, the eigenvalues of each Jacobian matrix, as well

as an indicator of the stability of each underlying model are returned. This infor-
mation can be further analysed by additional toolbox functions, such as pairwise
comparisons between stable and unstable models. It can also be converted into
input for the decision tree algorithms C4.5 or C5.0 (Quinlan, 2013), or analysed
manually with respect to specific questions posed by the user. For instance, the
example script for the simplified glycolysis model of Steuer et al (2006) demon-
strates how to reproduce the results in the original publication with the toolbox.
Using this system as an example, Figure 4.1 provides an overview of the model
building and evaluation process.

4.3. Availability and implementation

The SKM-toolbox was developed under MATLAB version 7.11 (release R2010b).
The SBML import requires the freely available LibSBML package (Bornstein et al ,
2008).

4.4. Summary

The proposed toolbox helps to overcome a major bottleneck of SKM-experiments,
namely the time-intensive assignment of the model parameters. Furthermore, it
provides a unifying framework for publishing and sharing SK-models. With the
increasing availability of genome-scale reconstructions of metabolic networks, as
well as the fast progress in experimental methods measuring concentrations and
fluxes in these networks, our toolbox can assist in applying SKM to larger and
more complex systems than attempted so far.
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5. Results obtained for the small
example pathways

This chapter describes the results of analysing the small example pathways intro-
duced in Section 3.1.1. It will start with a brief description of the steady states
exhibited by each pathway, and will then continue with the outcomes of the various
univariate and multivariate SKM experiments.

5.1. Steady states

Figure 5.1 shows the steady state concentrations for each pathway and metabo-
lite. In all pathways, the concentration of S1 clearly exceeded the other three
metabolites.

Linear Pathway Branched Pathway Cyclic Pathway

m
m

ol l

0
1

2
3

4
5

S1
S2
S3
S4

Figure 5.1.: Concentrations of metabolites S1 - S4 in the steady states computed for the
small kinetic example models. Different pathway topologies had strong influences on the
metabolite concentrations in steady state.
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5. Results obtained for the small example pathways

A possible reason for the high abundance of S1 might be that the external
source metabolite had fixed concentration and resulted in a high forward reaction
rate (Figure 5.2). This high forward rate needed to be compensated by a high
concentration of its product S1 in order to adapt the overall rate of r1 to the rates
of the subsequent reactions in steady state. Reaction r2, which was activated by
S4 (linear and branched pathway), or S3 (cyclic pathway), showed lower rates in
the forward and backward direction than the other reactions, indicating a weak
influence of the activation term in the given steady states.
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Figure 5.2.: Reaction rates of the steady states computed for the small kinetic example
models with different pathway structures

Elasticities for each steady state are depicted in Table 5.1. Because of the
homogeneous choice of kinetic parameters, many substrate- or product associated
elasticities were similar within each pathway (e.g. εv

+
3
S2

= ε
v+4
S3

= ε
v+4
S4

= 0.79 in the

linear pathway, or εv
+
3
S2

= ε
v+4
S2

= 0.92 and εv
+
5
S3

= ε
v+6
S4

= 0.9 in the branched pathway).
With exception of r2, substrate associated elasticities were all close to, or larger
than, 0.8, indicating a weak degree of saturation of the corresponding enzymes by
their substrates. Elasticities describing the influences of products on the backward
reactions were all close to 1, showing that the corresponding enzymes were even
less saturated by their products than they were by their substrates. These high
elasticities allowed for a fast response to perturbations by all enzymes downstream
of r2 in each pathway. Elasticities associated with the feedback term (εv

+/−
2
S4

or
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5.1. Steady states

ε
v
+/−
2
S3

) had slightly lower values, showing that the positive feedback adapted more
slowly to changes in the activating metabolite.

v+1 v−1 v+2 v−2 v+3 v−3 v+4 v−4 v+5 v−5

S1 -0.05 0.95 0.58 -0.42

S2 -0.01 0.99 0.79 -0.20

S3 -0.02 0.98 0.79 -0.20

S4 0.55 0.55 -0.02 0.98 0.79 -0.21

(a) Steady state elasticities in the linear pathway.

v+1 v−1 v+2 v−2 v+3 v−3 v+4 v−4 v+5 v−5 v+6 v−6

S1 -0.09 0.91 0.44 -0.55

S2 1.00 0.92 -0.08 0.92 -0.08

S3 -0.01 0.99 0.90 -0.10

S4 0.74 0.74 -0.01 0.99 0.90 -0.10

(b) Steady state elasticities in the branched pathway.

v+1 v−1 v+2 v−2 v+3 v−3 v+4 v−4 v+5 v−5 v+6 v−6

S1 -0.12 0.88 0.35 -0.64 -0.12 0.88

S2 -0.01 0.99 0.79 -0.21

S3 0.69 0.69 -0.01 0.99 0.87 -0.13 0.87 -0.13

S4 -0.03 0.97 0.78 -0.22

(c) Steady state elasticities in the cyclic pathway.

Table 5.1.: Elasticities in each steady state of the example models. Each entry εvjSi
de-

scribes the impact that changing the normalized concentration Si
S∗
i
has on the normalized

reaction rate vj
v∗j
.

The corresponding FCCs that were computed from the elasticities using equation
(2.15) are shown in Table 5.2. As explained in Section 2.3.1, these values describe
the summarized impact of each enzyme perturbation on the overall reaction rates.
In the linear pathway, the control over the total flux became smaller with each
of the consecutive enzymes in the reaction chain. While reaction r1 had a large
positive influence on the flux through the pathway, r4 exhibited no control at
all. The last reaction, r5, even exhibited negative control, which implied that an
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5. Results obtained for the small example pathways

increase in this reaction would lead to a strong decrease in total flux. A possible
reason for this observation could be that an acceleration of r5 would lead to an
increased consumption of its substrate S4. Because S4 acted as an activator of
r2, a reduction in this metabolite would lead to a reduction in the steady state
reaction rate of r2 and therefore to a reduction in overall flux.

e1 e2 e3 e4 e5

F t 0.79 0.44 0.03 0.00 -0.26

(a) FCCs for the linear pathway steady state. Because of the linear structure, there exists
only one steady state flux F t = v1 = v2 = v3 = v4 = v5 through the whole pathway.

e1 e2 e3 e4 e5 e6

F t 0.59 0.92 -0.23 0.24 -0.03 -0.49

F b1 0.59 0.92 0.22 -0.21 0.03 -0.55

F b2 0.59 0.92 -0.68 0.68 -0.08 -0.44

(b)
FCCs for the branched pathway steady state. Because of the branched pathway structure,
steady state fluxes can be divided into the flux through the upper branch F b1 = v3 = v5,
the flux through the lower branch F b2 = v4 = v6, and the total flux F t = v1 = v2.

e1 e2 e3 e4 e5 e6

F t 0.48 1.41 0.04 -0.63 -0.10 -0.21

F c1 0.41 1.41 0.04 -0.20 -0.03 -0.64

F c2 0.35 1.41 0.04 0.24 0.04 -1.07

(c)

FCCs for the cyclic pathway steady state. Due to the cyclic pathway structure, steady
state fluxes can be divided into the total flux through the system F t = v1 = v6, the flux
through the upper part of the cycle F c1 = v2 = v3 and the flux through the lower part
of the cycle F c2 = v4 = v5.

Table 5.2.: FCCs for each investigated steady state. Each entry describes the impact of
changing the concentration of enzyme ej on the steady state fluxes in the normalized
system.

The FCCs of the branched pathway’s steady state showed that reactions r1
and r2 exhibited positive control on the flux through the pathway and that they
influenced both branches to the same extent. The control exhibited by r2 was much
larger than that exhibited by r1. Reactions r3 and r5, which were involved in the
upper branch of the pathway, exhibited negative control on the flux through the
lower branch (F b2). The opposite behaviour could be observed for the reactions of
the lower branch, r4 and r6. Of all reaction involved in either of the two branches,
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5.1. Steady states

only r4 exhibited positive control on the total flux through the pathway. This can
be explained by the fact that r4 was involved in the positive feedback loop exhibited
by its product S4. An increase in r4 also increased the concentration of S4, which
led to an acceleration of r2, and therefore also of the total flux. In contrast, similar
to the linear pathway, a reduction of S4, either by increased efflux catalysed by
reaction r6, or by an increased flux through the upper branch reactions r3 and r5,
reduced the positive feedback and therefore decreased the total flux.
Similar to the branched pathway, FCCs of the cyclic pathway steady state also

indicated a competitive coordination of fluxes through the upper and lower part
of the cycle. Thus, increasing the rates through r4 or r5 slowed down the steady
state flux through the upper part of the cycle (F c1), and hence, through the whole
system (F t).
Table 5.3 shows the eigenvalues with maximum real parts derived from the

Jacobian matrices of each example model in steady state. As indicated by the
complex conjugate pair of eigenvalues, the linear pathway was the only example
system that exhibited oscillations around the steady state. The smallest maximum
real part belonged to the steady state of the branched pathway. Consequently, this
steady state enabled the fastest response to perturbations.

Linear pathway Branched pathway Cyclic pathway

λ1 −0.34 + 0.14i −0.79 −0.04

λ2 −0.34− 0.14i −0.30 −0.06

Stable yes yes yes

Oscillating yes no no

Table 5.3.: The two eigenvalues with largest real parts associated with each steady state.

The results described so far referred to the steady state properties corresponding
to the underlying kinetic models. If the same steady states had been produced
by enzymes with different kinetic parameters to those used in the kinetic models,
different elasticities and FCCs could have emerged. As a result, the responses
to perturbations could have been of different nature to those presented in Table
5.3. We will next attempt to obtain a more comprehensive view of the possible
types of perturbation responses that can arise from different enzyme properties
and associated elasticities. The results of the corresponding SKM experiments
will be presented in the next Section.
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5. Results obtained for the small example pathways

5.2. Quantitative analysis of local dynamic steady

state properties

Out of 10,000 SK-models sampled for the linear pathway, only 907 (9.07 %) were
biologically feasible in the sense that the randomly sampled elasticities led to non-
negative kinetic parameter values (see Section 2.3.2 for details). For the branched
and cyclic pathways, only 891 (8.91 %) and 944 (9.44 %) feasible models remained.
These low numbers show that it is important to account for biological feasibility
when performing SKM experiments.
In order to assess whether filtering for feasible models can impact the results

of SKM experiments, probabilities of the different types of dynamic steady state
properties were compared before and after filtering (Figure 5.3).

Stability Oscillations

linear (all)
linear (filtered)
branched (all)
branched (filtered)
cyclic (all)
cyclic (filtered)

P
ro

ba
bi
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0.
0
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6
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8
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0

Figure 5.3.: Distribution of dynamic steady state properties in each pathway. The prob-
ability of observing oscillations increases after filtering for biologically feasible kinetic
parameters.

While the proportions of stable models were hardly affected by the filtering, the
chance to observe oscillations strongly increased in each pathway. Consequently,
there seemed to be a stronger trend towards oscillatory behaviour among the
biologically realistic models compared to the total space of randomly sampled
models with arbitrary elasticity combinations.
A summary of the observed dynamic properties in each pathway is given in
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5.3. Univariate search for discriminating features

Table 5.4. In all three pathway topologies, the majority of models resulted in
stable steady states. The few observed instabilities almost exclusively occurred in
non-oscillatory models. Oscillations only emerged around stable steady states in
the given scenarios. The strongest tendencies towards oscillatory behaviour could
be observed in the branched pathway, with 20% of oscillating models observed
before filtering and over 44% after.

Linear pathway Branched pathway Cyclic pathway

all filtered all filtered all filtered

Total stability (%) 0.9776 0.9532 0.9909 0.9916 0.9906 0.9874

Total oscillations (%) 0.0361 0.1996 0.2004 0.4355 0.0661 0.1204

Stable/ with oscilla-
tions (%)

0.0361 0.1996 0.2002 0.4352 0.0661 0.1202

Stable/ no oscillations
(%)

0.9415 0.7536 0.7907 0.5564 0.9245 0.8672

Unstable/ with oscil-
lations (%)

0.0000 0.0000 0.0002 0.0003 0.0000 0.0002

Unstable/ no oscilla-
tions (%)

0.0224 0.0468 0.0089 0.0081 0.0094 0.0124

Table 5.4.: Detailed list of proportions of possible steady state properties in each pathway
determined by Monte Carlo sampling.

A more detailed view of the possible dynamic properties per pathway is provided
in Figure 5.4, which shows the distributions of the real and imaginary parts of the
eigenvalues in the filtered models. In all three pathways, the majority of SK-
models led to negative maximum real parts (located left of the origin in the 2D
histograms). Imaginary parts that differed from zero were all located in this region
as well. In contrast, eigenvalues with positive real parts only rarely displayed
imaginary parts different from zero. This fits to the observation that oscillations
were almost exclusively encountered around stable steady states.

5.3. Univariate search for discriminating features

Figure 5.5 shows an exemplary illustration of elasticity distributions in linear path-
way models. After filtering for biological feasibility, most of the remaining elastic-
ities in each pathway were located above the 50% quantile of the sampling interval
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5. Results obtained for the small example pathways
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Figure 5.4.: 2D histograms displaying the distributions of eigenvalues with maximum real
parts computed by SKM. The number of points in a specific bin, n, has been transformed
to log(n+1). Adding the +1 in the logarithm ensures that a value of 0 (dark green) is
equivalent to a frequency of 0. a): linear pathway; (b): branched pathway; (c): cyclic
pathway.

(0, 1]. The reason for this behaviour was that the filtering criterion given in equa-
tion (3.1) favoured large elasticity values. Despite this general trend towards large
values, several individual elasticities could be observed that favoured small values
for a specific class. For example, εv

+
5
S4

was located exclusively below 0.4 for unstable
linear pathway models (Figure 5.5). In contrast, stable models could be realized
with elasticities from the whole range (0, 1]. This can be interpreted in the fol-
lowing way: For any value in this elasticity, it was possible to find an appropriate
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5.3. Univariate search for discriminating features

combination of values in the other elasticities that made the steady state stable.
However, unstable states were only possible if the efflux reaction r5 responded
slowly to perturbations in its substrate S4, regardless of the elasticities at other
network positions.
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Figure 5.5.: Class specific distribution of elasticities in the linear pathway. Elasticities
associated with the influx reaction r1, the regulated reaction r2, as well as the efflux
reaction r5 differ most strongly between each class.

In order to systematically search for elasticities that played dominant roles in
determining different dynamic properties, the elasticity distributions of oppos-
ing classes (stable/unstable and oscillating/non-oscillating) were compared by the
Kolmogorov-Smirnov test. This test enables the comparison of two empirical distri-
bution functions F1(x) and F2(x) using the test statistic Dks = sup

x
|F1(x)−F2(x)|,

which describes the maximum distance between the distribution functions (Dar-
ling, 1957). For better illustration, Figure 5.6 shows two examples in which the
distributions of elasticities εv

+
5
S4

and εv
−
4
S4

were compared between stable and unsta-

ble models of the linear pathway. While the distribution functions of εv
+
5
S4 differed

strongly between stable and unstable models, those of εv
−
4
S4 coincided closely in both
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5. Results obtained for the small example pathways

classes.
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jected (computed p-value: 0).
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Figure 5.6.: Illustration of the Kolmogorov-Smirnov- (KS-) test. The distribution func-

tions of (a) εv
+
5
S4 and (b) εv

−
4
S4 were compared between stable and unstable models of the

linear pathway. Stable models are shown in green, unstable models in red. The pairwise
distance is shown in orange. The displayed numbers refer to the maximum distance
values, which are also the test statistics of the KS-test.

The systematic comparison of the distribution functions revealed that for all
three pathway topologies, almost all elasticities contributed significantly to sta-
ble or oscillatory behaviour (Tables 5.5 - 5.7). Sorting the elasticities by the test
statistics that compared stable and unstable models provided the following rank-
ing: the biggest differences were observed for the elasticities associated with the
regulated reaction r2, as well as with the efflux reaction of the regulatory metabo-
lite (S3 in the cyclic pathway, S4 otherwise) (Figure 5.7). This showed that the
enzymes involved in the regulatory feedback loop were most critical for controlling
stability. The elasticities associated with the efflux reactions were typically located
at much lower values for unstable models than for stable models for all pathway
topologies (see Figure 5.5 for linear pathway data). This showed that stability
was most strongly endangered when the efflux of the activator reacted slowly to
perturbations. We can assume that in such a case, instead of being carried out
of the system, perturbations were amplified by the positive feedback loop. This
mechanism appeared to be the main reason for instabilities.
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5.3. Univariate search for discriminating features

The univariate comparisons performed so far gave a first impression of the impor-
tance of the individual elasticities for stability or oscillatory behaviour. However,
in most cases they could not provide quantitative thresholds for elasticities as-
sociated with these properties. Instead, they only allowed the conclusions that
certains elasticity were associated with ‘rather big’ or ‘rather small’ values in a
certain class. Additionally, almost all network positions contributed significantly
to these properties. Consequently, dynamic properties like stability or oscillations
could not be attributed to single enzymes or metabolites alone.
A more refined picture of the interplay of the different network positions can only

be obtained by multivariate approaches, which examine the impact of ensembles of
elasticities that act together to cause instabilities or oscillations. In the following,
we will demonstrate how machine learning approaches can be used for this task,
and how they help to discover quantitative thresholds for elasticities associated
with the dynamic properties of a steady state.

Stability Oscillations

Elasticity Distance Elasticity Distance

ε
v+5
S4

0.71 ε
v−1
S1

0.4242

ε
v+2
S4

0.5086 ε
v+5
S4

0.2652

ε
v−2
S2

0.3598 ε
v+2
S4

0.229

ε
v+2
S1

0.3016 ε
v+4
S3

0.1928

ε
v−1
S1

0.1436 ε
v−3
S3

0.1856

ε
v+3
S2

0.0772 ε
v−2
S2

0.1478

ε
v+4
S3

0.065 ε
v+3
S2

0.137

ε
v−3
S3

0.0358 ε
v−4
S4

0.092

ε
v−4
S4

0.0304 ε
v+2
S1

0.091

Table 5.5.: Distances between the elasticity distributions of the opposing classes for the
linear pathway, determined by the Kolmogorov-Smirnov test. Bold values indicate sig-
nificant differences (significance level: α = 0.01).
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Stability Oscillations

Elasticity Distance Elasticity Distance

ε
v+2
S4

0.6364 ε
v+2
S4

0.475

ε
v+6
S4

0.617 ε
v−2
S2

0.3416

ε
v−2
S2

0.565 ε
v+6
S4

0.233

ε
v+2
S1

0.4946 ε
v+4
S2

0.1252

ε
v+3
S2

0.2322 ε
v+2
S1

0.0728

ε
v+4
S2

0.2108 ε
v−1
S1

0.0498

ε
v−4
S4

0.1596 ε
v+5
S3

0.0424

ε
v+5
S3

0.1 ε
v−4
S4

0.0356

ε
v−1
S1

0.0958 ε
v+3
S2

0.0298

ε
v−3
S3

0.0536 ε
v−3
S3

0.022

Table 5.6.: Distances between the elasticity distributions of the opposing classes for the
branched pathway, determined by the Kolmogorov-Smirnov test. Bold values indicate
significant differences (significance level: α = 0.01).

Stability Oscillations

Elasticity Distance Elasticity Distance

ε
v+2
S3

0.6768 ε
v+2
S3

0.5548

ε
v+6
S3

0.6092 ε
v−2
S2

0.4332

ε
v−2
S2

0.5832 ε
v+4
S3

0.2254

ε
v+2
S1

0.418 ε
v+2
S1

0.1906

ε
v+4
S3

0.304 ε
v+3
S2

0.1774

ε
v−4
S4

0.1214 ε
v+6
S3

0.1678

ε
v+3
S2

0.1114 ε
v−1
S1

0.0552

ε
v−1
S1

0.0716 ε
v−4
S4

0.0516

ε
v−5
S1

0.0482 ε
v−3
S3

0.0444

ε
v+5
S4

0.0334 ε
v−5
S1

0.02

ε
v−3
S3

0.0302 ε
v+5
S4

0.0112

Table 5.7.: Distances between the elasticity distributions of the opposing classes for the
cyclic pathway, determined by the Kolmogorov-Smirnov test. Bold values indicate sig-
nificant differences (significance level: α = 0.01).
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5.3. Univariate search for discriminating features
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Figure 5.7.: Ranking individual elasticities with respect to their distribution differences
between stable and unstable models. The ranking was determined by the Kolmogorov-
Smirnov test (see Tables 5.5-5.7 for details). The four elasticities with largest impact on
stability have been marked in red.
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Figure 5.8.: Ranking individual elasticities with respect to their distribution differences
between oscillatory and non-oscillatory models. The ranking has been determined by
the Kolmogorov-Smirnov test (see Tables 5.5-5.7 for details). The four elasticities with
largest impact on oscillatory behaviour have been marked in red.
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5.4. Analysing stability and oscillation conditions by decision trees

5.4. Analysing stability and oscillation conditions

by decision trees

5.4.1. Decision tree classification performance

In order to assess the performance of the decision tree algorithm in classifying
stable versus unstable as well as oscillatory versus non-oscillatory models, trees
were trained on balanced datasets of increasing sample size as described in Section
3.2.3. Figures 5.9 - 5.11 show the mean balanced error rates (BERs) obtained for
each pathway. A complete list of the mean BERs and their associated standard
deviations is given in Appendix C.1.1.

Classification by elasticities

When classifying based on elasticities, training errors of stability prediction were
small for all sample sizes (red squares in Figures 5.9 (a), 5.10 (a), 5.11 (a)). This
indicated that the training data contained sufficient information for the decision
tree algorithm to make into precise rules. In machine learning terminology, this
property can be reformulated as having ‘little bias’. In order to assess the general-
izability of the derived rules, however, they needed to be evaluated on a separate
test data set.
As could be expected, the test errors (red triangles) were higher than the training

errors for small sample sizes because the small training data sets did not provide
sufficient information to derive robust and well generalizable classification crite-
ria. When increasing the sample size, however, the test errors approximated the
training errors closely for each pathway structure. This indicated that the derived
rulesets were well generalizable and not prone to overfitting if the training data
was chosen sufficiently large.
Training errors of elasticity-based oscillation prediction tended to be slightly

higher than those for stability prediction for the majority of sample sizes (blue
squares in Figures 5.9 (a), 5.10 (a), 5.11 (a)), hinting at a slightly higher bias.
In other words, it was more difficult for the decision tree algorithm to formulate
patterns for oscillatory conditions than for stability conditions. The test errors
(blue triangles) reached a plateau significantly higher than the training errors
in all pathways (see Table C.1a for standard deviations)). This indicated that
the derived decision tree rules were not as well generalizable and more prone to
overfitting as was the case for stability prediction.
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(a) BERs obtained by classifying
based on elasticities.
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(b) BERs obtained by classifying
based on FCCs.

Figure 5.9.: BERs obtained by classification of linear pathway models according to differ-
ent types of features. The depicted values represent the average over the BERs obtained
from five trees created for each training data size.
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(b) BERs obtained by classifying
based on FCCs.

Figure 5.10.: BERs obtained by classification of branched pathway models according to
different types of features. The depicted values represent the average over the BERs
obtained from five trees created for each training data size.

Classification by FCCs

The differences in performance between stability and oscillation prediction were
even more prominent when the classification was based on FCCs instead of elas-
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Figure 5.11.: BERs obtained by classification of cyclic pathway models according to dif-
ferent types of features. The depicted values represent the average over the BERs
obtained from five trees created for each training data size.

ticities. In the linear and branched pathway, training and test errors for stability
prediction both approximated zero, which hinted at a perfect or close to perfect
separation based on the derived rules with almost no bias or overfitting. In other
words, stability rulesets seemed to be particularly easy to derive with high gener-
alizability (red curves in Figure 5.9 (b), 5.10 (b), 5.11 (b)). In the cyclic pathway,
however, high training errors hinted at a high bias for stability prediction. We
can conclude that it was difficult for the decision tree algorithm to derive stabliz-
ing FCC patterns from the training data for this system. Similar to the linear
and branched pathway, the test errors closely approximated the training errors for
large sample sizes. This showed that, even if deriving stabilizing rules from the
training data could be problematic for the decision tree algorithm, the rules that
were eventually detected were not prone to overfitting and generalized well.

In all three pathways, oscillation prediction based on FCCs was prone to high
bias, as indicated by large training errors (blue curves in Figure 5.9 (b), 5.10 (b),
5.11 (b)). However, test errors approximated the training errors closely for large
sample sizes, hinting at little overfitting in all cases.
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5. Results obtained for the small example pathways

Summary: Classification performance

In summary, stability prediction based on elasticities enabled the derivation of well
generalizable patterns with good performances for all pathway structures. Stability
prediction based on FCCs worked optimally for the linear and branched pathway,
while it encountered problems for the cyclic pathway. Oscillatory patterns based on
elasticities produced smaller training errors than those based on FCCs. However,
the derived rules were prone to overfitting. In general, however, they still tended
to outperform those derived by FCCs in terms of test errors. An exception was
the branched pathway, for which the test errors for elasticity patterns and FCC
patterns were comparable for large sample sizes (blue triangles in Figures 5.10 (a)
and 5.10 (b)).
From the observations obtained so far, we can conclude that different pathway

topologies and the resulting differences in steady state values can have profound
impact on the classification performance. When evaluating an SKM experiment
by supervised machine learning, it is therefore necessary to compute individual
learning curves similar to the ones presented here in order to assess the quality
and generalizability of the derived patterns.

5.4.2. Ruleset numbers and sizes

In order to analyse the derived decision trees, we obtained the corresponding rule-
sets produced by the C5.0 algorithm. These rulesets summarized all paths through
each tree in an easily readable format (Quinlan, 2013). Each ruleset was annotated
with the associated numbers of correctly and incorrectly classified samples. These
values were used to compute Laplace values which served as objective performance
measured for each ruleset.
In general, the number of rulesets strongly increased for increasing training sam-

ple sizes (see Appendix C.1.2 for a detailed overview). However, only a relatively
small proportion of rulesets exhibited sufficiently high Laplace values on the test
data (L > 0.95) in order to be considered as ‘reliable enough’ for further consid-
eration (see Tables C.4 - C.6) in the Appendix. For the following analyses, we
will focus only on rulesets of those trees derived using the maximum training size
of 20,000 because they offered the most comprehensive collections of rulesets with
sufficient generalizability.
Rulesets derived by the C5.0 algorithm each can have different numbers of condi-

tions, depending on the complexity of the described path through the tree. Tables
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5.4. Analysing stability and oscillation conditions by decision trees

5.8 and 5.9 show the distribution of ruleset sizes with Laplace values > 0.95 that
were derived from five trees trained on 20,000 training samples each.

Conditions per ruleset

Class label Pathway 1 2 3 4 5 6 7 8 9 10 Sum

Stability
prediction

Stability
linear 7 58 167 160 53 8 0 0 0 0 453

branched 12 40 111 147 70 15 0 0 0 0 395

cyclic 7 46 132 107 34 6 0 0 0 0 332

Instability
linear 0 0 11 27 20 8 2 0 0 0 68

branched 0 1 6 30 27 6 3 0 0 0 73

cyclic 0 0 6 25 18 8 0 0 0 0 57

Oscillation
prediction

Oscillating
linear 0 0 0 0 2 38 56 21 12 3 132

branched 0 0 4 21 78 91 60 13 3 0 270

cyclic 0 0 0 2 12 20 10 7 2 1 54

Not
oscillating

linear 4 53 163 280 186 91 17 0 0 0 794

branched 6 16 125 206 110 44 12 6 0 0 525

cyclic 9 51 198 244 131 28 4 0 0 0 665

Table 5.8.: Distribution of elasticity ruleset sizes with Laplace value > 0.95. The numbers
have been summarized over all the five trees that were constructed for each classification
problem.

The numbers and sizes of rulesets differed significantly among the classifica-
tion problems as well as with the type of feature used. Using elasticities as input
features led to large numbers of rulesets for stable as well as for non-oscillatory
steady states, whereas rulesets for instabilities and oscillations were observed less
often (Table 5.8). While it was possible to formulate reliable stabilizing or non-
oscillatory patterns with only one condition each, rulesets of this size did not
emerge for instabilities or for oscillatory steady states. This observation showed
that forcing the system to exhibit either an unstable steady state, or oscillatory
behaviour in the neighbourhood of a steady state, requires a more complex in-
terplay of several network components than would be the case for the respective
opposite behaviours.
Stability classification based on FCCs produced exactly one ruleset per tree for

the linear pathway (Table 5.9). As shown in the previous section, these simple rules
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5. Results obtained for the small example pathways

were sufficient to enable optimal separation of both classes (see also Tables C.1b
and C.2b in Appendix C.1.1). For the cyclic pathway, such simple and straight-
forward boundaries could not be derived. When classifying data obtained from the
branched pathway steady state, only two rulesets could be obtained out of five trees
with sufficiently large Laplace values. For the cyclic pathway, the trees produced
several rulesets of varying complexities. Only for the branched pathway, reliable
FCC based rulesets could be derived for oscillatory behaviour. This observation,
namely that it was possible to formulate reliable criteria in terms of flux control to
ensure oscillatory trajectories, hinted at the possibility that oscillations generally
emerged more easily in the branched pathway structure.

Conditions per ruleset

Class label Pathway 1 2 3 4 5 6 7 8 Sum

Stability
prediction

Stability

linear 5 0 0 0 0 0 0 0 5

branched 0 2 0 0 0 0 0 0 2

cyclic 0 6 9 14 7 3 0 0 39

Instability

linear 5 0 0 0 0 0 0 0 5

branched 5 7 2 0 0 0 0 0 14

cyclic 6 0 1 0 0 0 0 0 7

Oscillation
prediction

Oscillating

linear 0 0 0 0 0 0 0 0 0

branched 2 8 17 39 10 1 1 1 78

cyclic 0 0 0 0 0 0 0 0 0

Not
oscillating

linear 8 37 24 5 0 0 0 0 74

branched 0 18 21 18 8 2 1 0 68

cyclic 0 1 1 1 1 0 0 0 4

Table 5.9.: Distribution of FCC ruleset sizes with Laplace value > 0.95. The numbers
have been summarized over all the five trees that were constructed for each classification
problem.

5.4.3. Detecting the most informative elasticities

As described in the previous section, the decision trees trained using elasticities
produced large numbers of rulesets that could contain many conditions each. In
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5.4. Analysing stability and oscillation conditions by decision trees

order to get a first impression of the information contained in these rulesets, they
were analysed using summary statistics. The focus of this analysis was two-fold:

1. Investigate the abundance of each elasticity per ruleset in order to determine
the most informative candidates.

2. Compare the types of quantitative thresholds derived for each feature. In par-
ticular, the proportion of lower and upper bounds imposed on each elasticity
in rulesets associated with a particular class was computed. This provided
a first impression about whether low or high values were preferred for this
elasticity in the given class.

Linear pathway Table 5.10 shows the frequencies of elasticities in rulesets with
Laplace values > 0.95 obtained for the linear pathway, together with the propor-
tion of lower bounds associated with each elasticity in percent. For example, the
first entry ‘0.38 (98.25 %)’ shows that elasticity εv

−
1
S1

was present on average 0.38

times per ruleset, and that 98.25% of these rulesets contained conditions constrain-
ing it by a lower bound. Stability-associated rulesets contained conditions for a
wide variety of elasticities, where no elasticity occurred more than 0.81 times per
ruleset. In contrast, almost each instability-associated ruleset contained exactly
one condition using the elasticities εv

+
2
S4

and εv
+
5
S4

(Table 5.10). In general, the types
of boundaries imposed on each elasticity tended to be opposite between stability-
and instability-associated rulesets.

The distribution of upper and lower bounds indicated that stability generally
required fast perturbation responses in the influx reaction r1 and in the efflux
reaction r5, thus enabling fast transport into and out of the system. In contrast,
reactions located inside the pathway tended to adapt slowly to changes, thereby
dampening perturbations.

The positive feedback strength encoded by εv
+
2
S4 was exclusively restricted by up-

per bounds in stability-associated rulesets. This indicated that it was favourable
for stability if the feedback remained small, so that perturbations were not am-
plified within the system. On the other hand, εv

+
2
S4 was often restricted by lower

bounds in instability-associated rulesets, whereas conditions on εv
+
5
S4

often applied
upper bounds. This showed that instabilities tended to emerge when the strength
of the activating feedback term was large, accompanied by a slow response of the
efflux reaction r5 to perturbations.
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5. Results obtained for the small example pathways

When considering rulesets for oscillations in the linear pathway, we could de-
tect four elasticities (εv

+
2
S4
, εv

+
3
S2
, εv

+
4
S3
, εv

+
5
S4
) occurring with frequencies close to or

greater than 1 per ruleset. These elasticities described the control of r2, r3, r4
and r5 by their substrates S2, S3 and S4. This indicated that oscillations required
the fine-tuned interplay between these pathway positions and that conditions for
oscillations tended to be more complex than those for instabilities, which were
dominated by only the two elasticities εv

+
2
S4

and εv
+
5
S4
. Another difference to stabil-

ity/instability conditions was that the majority of oscillation-associated rulesets
tended to impose lower bounds on the affected elasticities. This showed that os-
cillations generally required fast responses to perturbations in the majority of the
system components, whereas stability or instability required more differentiated
combinations of elasticity values.

Elasticity Stability Instability Oscillating Not oscillating

ε
v−1
S1

0.38 (98.25 %) 0.62 (4.76 %) 0.86 (92.11 %) 0.58 (5.03 %)

ε
v+2
S1

0.55 (99.19 %) 0.56 (0 %) 0.16 (80.95 %) 0.15 (64.46 %)

ε
v+2
S4

0.68 (0 %) 1.04 (95.77 %) 1.08 (92.96 %) 0.54 (21.65%)

ε
v−2
S2

0.62 (0 %) 0.71 (97.92 %) 0.37 (83.67 %) 0.47 (14.48 %)

ε
v+3
S2

0.17 (1.3 %) 0.22 (100 %) 0.98 (100 %) 0.38 (5.94 %)

ε
v−3
S3

0.16 (2.78 %) 0.13 (88.89 %) 0.85 (93.75 %) 0.60 (3.16 %)

ε
v+4
S3

0.07 (13.33 %) 0.10 (85.71 %) 1.00 (98.48 %) 0.41 (3.7 %)

ε
v−4
S4

0.05 (4.35 %) 0.03 (50 %) 0.73 (95.83 %) 0.54 (2.82 %)

ε
v+5
S4

0.81 (100 %) 1.04 (4.23 %) 1.07 (93.62 %) 0.52 (32.60 %)

Table 5.10.: Frequency of elasticities in ruleset conditions for the linear pathway with
Laplace values > 0.95. Values in brackets refer to the percentage of lower bounds
associated with each elasticity (green: > 90% lower bounds; red: 6 10% lower bounds).

For example, the first entry (0.38 (98.25 %)) shows that elasticity εv
−
1
S1

was present on
average 0.38 times per ruleset, and that 98.25% of these rulesets contained conditions
constraining it by a lower bound. Consequently, the elasticity was required to take on
rather high values by most rulesets. Elasticities present at least 0.9 times per ruleset
on average are marked in bold.
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5.4. Analysing stability and oscillation conditions by decision trees

Branched pathway Table 5.11 shows the frequencies of elasticities in ruleset for
the branched pathway with Laplace values > 0.95. Like for the linear pathway, no
subset of particularly essential elasticities could be detected that were prominent
in every stability-associated ruleset. The most abundant elasticities were εv

+
6
S4 , ε

v+2
S4

and ε
v+2
S1 , which both occurred in approximately 60 % of all rulesets. Elasticities

belonging to reactions r4 and r5, which formed the branch not involved in the
feedback loop, occurred only rarely per ruleset. These differences showed that,
while it was favourable for stability to control the positive feedback term tightly,
the remaining reactions did not need not be constrained as strongly.

Elasticity Stability Instability Oscillating Not oscillating

ε
v−1
S1

0.09 (94.12 %) 0.04 (0 %) 0.17 (24.44 %) 0.18 (92.55 %)

ε
v+2
S1

0.57 (99.55 %) 0.75 (1.82 %) 0.60 (98.14 %) 0.30 (18.12 %)

ε
v+2
S4

0.57 (0 %) 0.99 (98.61 %) 1.24 (80.36 %) 0.79 (0 %)

ε
v−2
S2

0.54 (0 %) 0.62 (93.33 %) 1.20 (78.70 %) 0.92 (1.66 %)

ε
v+3
S2

0.51 (99.50 %) 0.51 (2.70 %) 0.11 (32.26 %) 0.08 (92.68 %)

ε
v−3
S3

0.05 (85.71 %) 0.01 (0 %) 0.06 (13.33 %) 0.04 (76.19 %)

ε
v+4
S2

0.33 (0 %) 0.38 (96.43 %) 0.71 (94.79 %) 0.50 (3.44 %)

ε
v−4
S4

0.33 (0.76 %) 0.25 (94.44 %) 0.37 (86.00 %) 0.41 (4.19 %)

ε
v+5
S3

0.10 (95.00 %) 0.08 (0 %) 0.17 (11.11 %) 0.13 (87.88 %)

ε
v+6
S4

0.59 (100 %) 0.92 (2.99 %) 1.24 (41.32 %) 0.82 (99.53 %)

Table 5.11.: Frequency of elasticities in ruleset conditions for the branched pathway with
Laplace values > 0.95. Values in brackets refer to the percentage of lower bounds
associated with each elasticity (green: > 90% lower bounds; red: 6 10% lower bounds).
Elasticities present at least 0.9 times per ruleset on average are marked in bold.

With exception of εv
+
2
S1 , the elasticities belonging to r2 and r4, which were the

reactions involved in the feedback term, were almost exclusively restricted to low
values. In contrast, elasticities associated with the remaining reactions r1, r3, r5
and r6 tended to be restricted to high values. These reactions either represented
influx reactions, efflux reactions or reactions of the branch not involved in the feed-
back term. This showed that in stable steady states, we could generally assume
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5. Results obtained for the small example pathways

a fast response in the influx and efflux reactions to perturbations, while reaction
r4, which was responsible for producing the potentially destabilizing activator S4,
needed to respond slowly. Reversely, a slow response of the influx and efflux reac-
tions, together with the fast propagation of perturbations by the positive feedback,
was the major source for instabilities.
We found three elasticities with particularly high frequencies per oscillation-

associated ruleset. This is one elasticity less than detected for the linear pathway.
The detected elasticities were either related to the regulated reaction r2 or to the
two efflux reaction r6. In contrast to the linear pathway, fewer elasticities were
constrained by lower bounds in oscillation-associated rulesets. This indicated that
oscillations in the branched pathway did not require perturbation responses that
were as fast as in the linear system. This coincided with the earlier observation
that the emergence of oscillations was much more likely in the branched pathway
than in the linear pathway (see Table 5.4 and Figure 5.3 in Section 5.2).

Cyclic pathway Table 5.12 shows the frequency of elasticities in ruleset con-
ditions for the cyclic pathway with Laplace values > 0.95. The most frequent
elasticities in stabilizing rulesets were those associated with the regulated reaction
r2 (εv

+
2
S1
, εv

+
2
S3
, εv

−
2
S2
), as well as those describing the substrate influence of S3 on its

downstream reactions (εv
+
4
S3
, εv

+
6
S3
). Similar to the linear and branched pathway,

stability-associated rulesets imposed lower bounds on the influx and efflux reac-
tions v1 and v6, indicating that stability required fast responses to perturbations
at the system boundaries. The feedback term was exclusively restricted by up-
per bounds, again emphasizing the requirement of strict control of the feedback
strength to maintain stability.
As previously observed for the linear and branched pathway, elasticities were less

homogeneously distributed in oscillatory conditions than in stability conditions.
Again, the most prominent elasticities were associated with the regulated reaction
r2, as well as with the efflux of the regulator out of the system (r3 and S3 in this
case). The majority of the most abundant elasticities was constrained by lower
bounds hinting at the necessity of fast perturbation responses in both reactions.

Summary: Most informative elasticities When investigating the stabilizing
rulesets derived for all three pathway structures, we could identify sets of elastici-
ties that were more abundant than others. However, none of these elasticities was
present in every ruleset. Instead, elasticities could occur in some rulesets while
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Elasticity Stability Instability Oscillating Not oscillating

ε
v−1
S1

0.06 (90.48 %) 0.07 (0 %) 0.11 (83.33 %) 0.16 (4.72 %)

ε
v+2
S1

0.47 (100 %) 0.58 (3.03 %) 0.07 (50 %) 0.09 (87.93 %)

ε
v+2
S3

0.57 (0 %) 0.98 (98.21 %) 1.22 (81.82 %) 0.61 (3.22 %)

ε
v−2
S2

0.64 (0 %) 0.81 (97.83 %) 1.22 (81.82 %) 0.76 (6.93 %)

ε
v+3
S2

0.16 (0 %) 0.14 (100 %) 0.98 (96.23 %) 0.45 (1.6 %)

ε
v−3
S3

0.09 (9.68 %) 0.07 (100 %) 0.50 (85.19 %) 0.38 (2.76 %)

ε
v+4
S3

0.62 (100 %) 0.84 (4.17 %) 0.89 (18.75 %) 0.76 (99.80 %)

ε
v−4
S4

0.06 (26.32 %) 0 (-) 0.24 (7.69 %) 0.19 (88.19 %)

ε
v+5
S4

0.02 (75 %) 0.04 (100 %) 0.04 (50 %) 0.03 (75 %)

ε
v−5
S1

0.02 (14.29 %) 0.02 (100 %) 0.02 (100 %) 0.03 (47.06 %)

ε
v+6
S3

0.67 (100 %) 0.95 (0 %) 1.04 (87.50 %) 0.36 (44.81 %)

Table 5.12.: Frequency of elasticities in ruleset conditions for the cyclic pathway with
Laplace values > 0.95. Values in brackets refer to the percentage of lower bounds
associated with each elasticity (green: > 90% lower bounds; red: 6 10% lower bounds).
Elasticities present at least 0.9 times per ruleset on average are marked in bold.

being absent in others. This emphasized that stabilizing sites were distributed
over the whole system and that unfavourable values in one elasticity could be
compensated by specific combinations of values at other positions. This explains
the high abundance of stabilizing models observed in the Monte Carlo experiment
(see Figure 5.3). The types of constraints (i.e. upper or lower bounds) imposed
on elasticities in stabilizing conditions indicated that it was favourable for stabil-
ity if the influx and efflux reactions responded quickly to concentration changes,
while reactions within the system were preferred to respond slowly, thus preventing
perturbations from being spread internally through the system.

In contrast to stabilizing rulesets, oscillatory rulesets clearly emphasized the im-
portance of particular subsets of elasticities in each system. These elasticities were
present at least once per ruleset for a given pathway. This showed that oscillations
relied on combinations of elasticity values at a few specific network positions. This
also explained why oscillations generally emerged less frequently than stability in
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the observed steady states during Monte Carlo sampling. Almost all of these ‘im-
portant’ elasticities were associated with reactions or metabolites involved in the
activating feedback term and were constrained by lower bounds. This indicated
that the feedback term played a crucial role in maintaining oscillations in the given
example pathways, and that systems with high feedback strength were more prone
to exhibit oscillatory behaviour.

5.4.4. Ruleset examples

After the statistical analysis of the elasticities involved in decision tree rulesets for
various types of dynamic behaviours, we now take a closer look at some particular
examples of such rulesets. We start with rulesets that describe conditions under
which the system is likely to be stable. For the ease of biological interpretability,
we will only look at the smallest rulesets that have been derived for each pathway.
At the end of this section, we will present one example of a ruleset that describes
oscillatory conditions.

Stability-associated rulesets derived for the linear pathway

As previously shown in Section 5.4.2 (Table 5.8) the five trees trained on linear
pathway data produced seven elasticity rulesets composed of a single condition
each. Among these rulesets, four contained conditions that used elasticity ε

v+2
S4
,

and the remaining three contained conditions that used ε
v+5
S4
. A summary of the

associated thresholds and ruleset performances is shown in Table 5.13.
The conditions for both elasticities were well reproducible, as indicated by small

standard deviations of the derived thresholds. The first four rulesets indicated
that stability was secured in almost every model in which the regulatory feedback
strength εv

+
2
S4

was smaller than or equal to 0.26. Alternatively, εv
+
5
S4
, which encoded

the strength by which the regulatory metabolite S4 amplified its own efflux out of
the system, was required to be larger than 0.61. Both scenarios aimed at restricting
the accelerating influence of S4 on the flux through the pathway, confirming that
the positive feedback loop posed a threat on stability if it became too prominent.
The small ruleset size (only one condition necessary per ruleset) indicated that

fulfilling either of the depcited conditions was sufficient for maintaining stabil-
ity. This was confirmed when looking at the true elasticities for the given steady
state (Table 5.1 in Section 5.1): the feedback strength ε

v+2
S4

computed using the
underlying kinetic model was equal to 0.55 and did not satisfy the first condition.

64



5.4. Analysing stability and oscillation conditions by decision trees

Number of
rulesets

Summarized
conditions

Laplace values Equivalent kinetic
conditions

4 ε
v+2
S4

6 0.26±0.03 0.9989± 0.0013
V

v
+/−
2

max 6 0.61±0.03

KA 6 0.29± 0.05

3 ε
v+5
S4
> 0.61±0.01 0.9998± 0.0001

K
v+2
M > 1.21± 0.03

K
v−2
M > 22.77± 0.23

V
v+2
max > 0.53± 0.01

Table 5.13.: Summary of stabilizing elasticity rulesets (one condition each) in the linear
pathway. It is sufficient for maintaining stability to either restrict the strength of the
positive feedback (first row), or to ensure fast perturbation responses of the efflux out
of the system (second row).

However, εv
+
5
S4

was equal to 0.79 and fulfilled the second condition. The kinetic
parameter thresholds derived from the elasticity threshold were also met by the
kinetic model (see Section 3.1.1 for details). As a result, the observed steady state
was stable (Table 5.3).

Training based on FCCs produced minimally sized trees that contained exactly
one ruleset with one condition each. Among the resulting five rulesets, three
contained conditions for the coefficient CJt

E3
, and two for CJt

E5
(Table 5.14). The

negative threshold for CJt

E3
showed that reaction r3 could inhibit flux through the

system for specific combinations of elasticities. The corresponding rulesets showed
that restricting this FCC to values close to or above 0 is an near-optimal criterion
for ensuring stability. A closer look at the number of true positives showed that
they equalled the total number of stable models in the test data, leading to a
recall of 1. Only few false positives (between 2 and 8 per tree) were observed,
possibly because the resolution of the training data sets was not refined enough to
derive thresholds that optimally separated the test data. We can summarize that
instabilities could only arise due to negative impact of r3 on the total flux, whereas
stability was guaranteed if the impact of r3 was close to 0 or positive. The rulesets
in the remaining two trees referred to the acceleration of flux caused by increasing
the rate of efflux reaction r5. They indicated that stability was ensured as long
as the influence of the efflux reaction on total flux was low, whereas instabilities
arose if it got too large.
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Number of rulesets Summarized conditions Laplace values

3 CJt

E3
> −0.0115± 0.0008 0.9999± 0.0001

2 CJt

E5
6 0.4116± 0.0387 1.0000± 0.0000

Table 5.14.: Summary of stabilizing FCC rulesets (one condition each) in the linear path-
way. J t refers to the steady state flux through the pathway. It is sufficient for maintain-
ing stability to either restrict the negative impact of r3 on total flux (first row), or to
ensure strong enough acceleration of total flux by the efflux reaction r5 (second row).

Stability-associated rulesets derived for the branched pathway

Like the linear pathway, rulesets of size one computed for the branched path-
way differed widely in the elasticities used in their conditions (Table 5.15). Most
rulesets referred to either the feedback strength ε

v+2
S4

(7 rulesets), or the strength

of efflux εv
+
6
S4

(3 rulesets). Additionally, one tree contained one ruleset that con-
strained the effect of S2 on the branching reaction r4 to small values. Another tree
contained a ruleset constraining the feedback strength of r2 by its product S2.

Thresholds on the feedback strength εv
+
2
S4

could be assigned to two clusters, both
restricting the elasticity with upper bounds of different strictness. This separa-
tion was a result of the differences in resolution in this elasticity in the randomly
sampled training data sets. Even when only focusing on the stricter version (first
row), the corresponding thresholds on εv

+
2
S4

were less strict than those derived for the
linear pathway. This showed that the steady state observed in the branched path-
way topology could buffer perturbations more efficiently, even for larger feedback
strengths. In contrast, the lower bound on efflux activation εv

+
6
S4

was stricter than in
the linear pathway, emphasizing that this network position required tighter control
(third row). The condition affecting εv

+
4
S2

(fourth row) indicated that ensuring small
responses to perturbations in the entry point to the branch that exhibited the pos-
itive feedback (reaction r4), could also restrict the feedback strength sufficiently
to ensure stability.

When computing the Michaelis constants required to fulfil the condition εv
−
2
S2

6

0.43 (last row of Table 5.15) for the given steady state, they turned out to be
negative. The reason for this result was that this condition imposed an upper
bound on the elasticity which only allowed small values. However, according to
the filterting criterion derived in equation (3.1), the Michaelis constants could
only be positive if εv

+
2
S1

+ ε
v−2
S2

> 1. Consequently, εv
+
2
S1

must be at least greater
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Number of
rulesets

Summarized
conditions

Laplace values Equivalent kinetic
conditions

3 ε
v+2
S4

6 0.41±0.02 0.9997± 0.0002
V
v
+/−
2

max 6 0.44±0.02

K
v
+/−
2
A 6 0.24±0.02

4 ε
v+2
S4

6 0.64±0.01 0.9589± 0.0045
V
v
+/−
2

max 6 0.7± 0.03

K
v
+/−
2
A 6 0.59±0.04

3
ε
v+6
S4
> 0.74±0.08 0.9971± 0.0023

K
v+6
M > 1.02± 0.44

K
v−6
M > 24.48± 2.60

V
v+6
max > 0.41± 0.13

1 ε
v+4
S2

6 0.18 0.9674

K
v+4
M 6 0.06

K
v−4
M 6 5.60

V
v+4
max 6 0.09

1 ε
v−2
S2

6 0.43 0.9987

K
v+2
M 6 −0.87

K
v−2
M 6 −0.06

V
v−2
max 6 0.01

Table 5.15.: Summary of stabilizing elasticity rulesets (one condition each) in the
branched pathway.

than 1 − 0.43 = 0.57. Instead, Table 5.1 shows that for the given steady state,
ε
v+2
S1

= 0.35. The ruleset therefore only affected those SK-models for which the
sampled elasticities fulfilled the described condition, which was not the case for
the true steady state elasticities.

Like the linear pathway, training based on FCCs on branched pathway data
produced minimally sized trees with one ruleset each. Four of these rulesets con-
tained exactly one condition each, whereas one ruleset contained two conditions
(Table 5.9). All rulesets of size one required tight control of the lower branch by
the entry point reaction of the competing branch, r3 (Table 5.16). As indicated
by the negative upper bound, stability was ensured in almost all models in which
an increase in the rate of r3 led to a reduction in steady state flux through the
lower branch, which contained the feedback term. On the other hand, in unstable
models, this competition mechanism seemed to be disturbed so that perturbations
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leading to an increase in the rate of r3 also strengthened the positive feedback,
which eventually would lead to an amplification of the flux through the whole
system.

Number of rulesets Summarized conditions Laplace values

1 CJb1

E1
6 7.2942

0.9628

CJb2

E3
6 −0.0535

1 CJb2

E1
6 2.5686

0.9968

CJb2

E5
6 −0.01800

Table 5.16.: Summary of stabilizing FCC rulesets (two conditions each) in the branched
pathway. Jb1 and Jb2 refer to the steady state flux through branch 1 and 2 (see Section
5.1 for details).

Stability-associated rulesets derived for the cyclic pathway

Table 5.17 summarizes the smallest stability-associated elasticity rulesets obtained
for the cyclic pathway. One ruleset described the inhibition of the regulated re-
action r2 by its product S2. Like previously observed for the branched pathway
steady state, the corresponding kinetic parameters were negative so that this con-
dition was not realizable without modifying other elasticities in the system.
Five conditions (one per tree) were derived for the activating influence of regu-

lator S3 on r2, all of them restricting it with upper bounds. When looking at the
threshold values, four of these conditions formed a cluster around 0.66, whereas
one tree applied a stricter upper bound of 0.49. The equivalent conditions on the
kinetic parameters of reaction r2 restricted them to values below those used in
the original kinetic model (1 for each parameter). The stricter ruleset (second
row) constrained the corresponding kinetic parameters to a distinctly stronger ex-
tent than the other four (third row). Since this ruleset also led to the highest
Laplace values, we can conclude that the system became more likely to be stable
for smaller feedback strength. This observation coincided with those made in the
linear and branched pathways. Interestingly, the kinetic parameters of the original
kinetic model used for steady state computation lay outside of the ‘stable’ value
ranges derived from these thresholds. This indicates that these rulesets were not
comprehensive and that stabilitiy coild also be ensured for other combinations of

68



5.4. Analysing stability and oscillation conditions by decision trees

Number of
rulesets

Summarized
conditions

Laplace values Equivalent kinetic
conditions

1 ε
v−2
S2

6 0.39 0.9992
K

v+2
M 6 −2.18

K
v−2
M 6 −0.33

V
v−2
max 6 0.02

1
ε
v+2
S3

6 0.49 0.9992 V
v
+/−
2

max 6 0.61

KA 6 0.43

4 ε
v+2
S3

6 0.66±0.01 0.9647± 0.0093
V

v
+/−
2

max 6 0.91±0.04

KA 6 0.87± 0.05

1 ε
v+6
S3
> 0.80 0.9992

K
v+6
M > 1.73

K
v−6
M > 27.38

V
v+6
max > 0.63

Table 5.17.: Summary of stabilizing elasticity rulesets (one condition each) in the cyclic
pathway.

elasticities. Instead, they fulfilled the requirements of the last ruleset, which ap-
plied a lower bound on the efflux of activator S3. Indeed, the original steady state
elasticity had a value of 0.87 which exceeded the threshold of 0.8 (Table 5.1). We
can conclude that the computed steady state was stable in the given kinetic model
because of the fast response of this reaction to perturbations, enabling them to
be carried out of the system before they led to an amplification of flux due to the
feedback term.

When training on cyclic pathway data, it was not possible to find stability-
associated FCC rulesets with only a single condition that offered a classification
performance as optimal as for the linear and branched pathway. Instead, seven
rulesets were derived of which six contained two conditions and one contained three
conditions. Each of the FCC rulesets of size two contained one condition for the
control of the overall flux through the system by reaction r5 (CJt

E5
), as well as one

additional condition referring to the control exhibited by reaction r1 (Table 5.18).

Depending on the type of ruleset, the additional condition referred to either
the control that influx reaction r1 exhibited on the total system flux, or on the
flux through the upper arm of the cycle. From the derived thresholds we can
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Number of rulesets Summarized conditions Laplace values

4 CJt

E1
> 0.2212± 0.0911

0.9740± 0.0123

CJt

E5
> −0.1106± 0.0162

2 CJc1

E1
> 0.1700± 0.1443

0.9822± 0.0107

CJt

E5
> −0.0896± 0.0243

Table 5.18.: Summary of stabilizing FCC rulesets (two conditions each) in the cyclic
pathway. Jc1 refers to the steady state flux through the upper arm of the cycle, whereas
J t refers to the flux through the whole pathway.

conclude that it was favourable for stability if the competing effect of the lower
cycle arm (which included reaction r5) on the total flux was restricted, so that
the corresponding FCC did not fall too far below zero. Additionally, the influx
reaction r1 needed to sufficiently accelerate flux through the upper arm for the
system to be stable.

Oscillation-associated rulesets derived for the branched pathway

Oscillation-associated rulesets were larger than those associated with stability,
hinting that more fine-tuned criteria were necessary to produce oscillatory be-
haviour in the example systems. As an example, Table 5.19 shows a summary of
elasticity-based rulesets of size three for the branched pathway.

Number of
rulesets

Summarized
conditions

Laplace values Equivalent kinetic
conditions

4 0.9618± 0.0104

K
v+2
M > 12.65± 6.46

ε
v−2
S2
> 0.9± 0.1 K

v−2
M > 3.71± 3.11

ε
v+2
S1
> 0.76±0.14 V

v+2
max > 0.97± 0.54

ε
v+2
S4
> 0.24± 0.1 V

v−2
max > 0.03± 0.02

KA > 0.11± 0.07

Table 5.19.: Summary of oscillation-associated elasticity rulesets (three conditions each)
for the branched pathway.

All four rulesets contained conditions for all elasticities associated with the reg-
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5.5. Analysing stability and oscillation conditions by RVMs

ulated reaction r2. All elasticities were restricted by lower bounds, with varying
degrees of strictness of the associated thresholds. This coincided with the observa-
tions described previously in Section 5.4.2, which also indicated that oscillations
were favoured if the individual reactions responded quickly to perturbations.

5.5. Analysing stability and oscillation conditions

by RVMs

5.5.1. Classification performance

In order to assess the classification performance of RVMs, and to compare it to
the performance of the decision tree classifiers, RVMs were trained on the same
balanced datasets as the decision trees. Whereas decision trees had been trained
up to a sample size of 20,000 samples, the longer runtime of the RVM algorithm
made it necessary to stop after 1000 samples. Despite the strongly reduced sample
size, training and test errors were comparable or even better than those provided
by the decision trees for 20,000 samples (see summary in Table 5.20 as well as a
detailed list in Appendix C.2.1). The only exceptions were observed in the FCC
based classification of the cyclic pathway models.

We can conclude that in most scenarios RVMs were able to capture the class
differences in the training data better than the decision trees. In other words,
they were less prone to bias than the decision tree classifiers. The low test errors
indicated that the derived decision functions were also well generalizable and usu-
ally not prone to overfitting. Only the elasticity based classification of oscillatory
steady states revealed significantly higher test errors compared to the training er-
rors (see Figure C.1 - C.3 in Appendix C.2.1). However, they still outperformed
the decision trees. These good classification results are especially interesting con-
sidering the strongly reduced number of training samples necessary to achieve the
observed performance.

When classifying based on FCCs, RVM performance for 1000 training samples
was slightly below that obtained by decision trees for 20,000 training samples.
Similar to decision trees, RVMs performed excellent when predicting stability of
the linear and branched pathway, whereas stability of the cyclic pathway was more
challenging. As shown in Figure C.3, in the latter case, errors started with 50%
for small sample sizes, showing that it was not possible for the RVMs to deduce
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Elasticities FCCs

Pathway Classifier Stability Oscillations Stability Oscillations

linear DT (20,000 samples) 0.011 +- 0.001 0.039 +- 0.001 0 +- 0 0.166 +- 0.004

RVM (1000 samples) 0.002 +- 0.001 0.015 +- 0.004 0 +- 0.001 0.16 +- 0.006

branched DT (20,000 samples) 0.009 +- 0.001 0.034 +- 0.002 0.002 +- 0 0.059 +- 0.002

RVM (1000 samples) 0.001 +- 0.001 0.011 +- 0.004 0 +- 0 0.061 +- 0.006

cyclic DT (20,000 samples) 0.007 +- 0 0.025 +- 0.002 0.1 +- 0.002 0.198 +- 0.003

RVM (1000 samples) 0.004 +- 0.002 0.009 +- 0.007 0.126 +- 0.01 0.212 +- 0.018

(a) Classification errors determined on the training data.

Elasticities FCCs

Pathway Classifier Stability Oscillations Stability Oscillations

linear DT (20,000 samples) 0.029 +- 0.001 0.094 +- 0.001 0 +- 0 0.179 +- 0.001

RVM (1000 samples) 0.014 +- 0.002 0.049 +- 0.003 0 +- 0 0.182 +- 0.003

branched DT (20,000 samples) 0.024 +- 0.001 0.087 +- 0.002 0.004 +- 0 0.071 +- 0.001

RVM (1000 samples) 0.008 +- 0.001 0.045 +- 0.001 0.006 +- 0.002 0.069 +- 0.001

cyclic DT (20,000 samples) 0.02 +- 0.001 0.059 +- 0.001 0.113 +- 0.001 0.209 +- 0.001

RVM (1000 samples) 0.008 +- 0 0.043 +- 0.003 0.134 +- 0.007 0.215 +- 0.003

(b) Classification errors determined on the test data.

Table 5.20.: Comparison between the BERs obtained by decision tree (DT) classification
(20,000 training samples) and RVMs (1000 training samples). Despite the much smaller
training data, the RVMs exceed the decision trees in most cases.

an appropriate decision function from small training datasets. Although similar
problems had been encountered by decision trees, a biological interpretation of at
least parts of the deduced trees had still been possible by focussing on the best
performing rulesets. RVMs do not offer this possibility and therefore do not ensure
that the derived RVs are indeed good representatives for each class. Because of this
difficulty, the following analysis will only focus on prediction based on elasticities.

5.5.2. Decision functions and relevance vectors

When training the classifier to distinguish stable from unstable models, the ma-
jority of the returned RVs represented stable models. In contrast, fewer RVs were
produced for unstable models in each training run (Table 5.21). This confirmed
the previous observations that stable models allow a larger variety of elasticity
combinations than unstable models.
Classification of oscillatory versus non-oscillatory models produced larger num-
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bers of RVs than stability prediction. This showed that oscillations could be pro-
duced by very diverse combinations of elasticities, confirming once more that they
are a more complex phenomenon than stability.
Each of the derived RVs represented one particular instance of a ‘typical’ class

member. Because RVMs are designed to obtain sparse solutions, we can assume
that the RVs differ strongly within each class in order to cover its region in the fea-
ture space as widely as possible. This assumption was confirmed by high standard
deviations obtained when summarizing all RVs representing a particular class. To
illustrate this point, Table 5.22 shows a summary of the RVs derived for the linear
pathway. Because of the large spread within each class, we can conclude that sta-
bility or oscillatory behaviour did not depend on any single elasticity, but rather
were the results of diverse combinations of elasticities.

Class label Pathway Run 1 Run 2 Run 3 Run 4 Run 5 Sum

Stability
prediction

Stability

linear 10 7 5 10 9 41

branched 4 4 4 5 4 21

cyclic 7 4 4 3 4 22

Instability

linear 3 4 5 2 3 17

branched 3 2 2 3 3 13

cyclic 1 4 3 3 2 13

Oscillation
prediction

Oscillating

linear 11 11 11 13 12 58

branched 15 10 16 10 7 58

cyclic 9 8 16 13 10 56

Not
oscillating

linear 13 16 13 12 14 68

branched 12 16 10 15 17 70

cyclic 16 17 7 16 23 79

Table 5.21.: Numbers of RVs obtained by training five RVMs on independent training
sets of sample size 1000 each.

Figure 5.12 illustrates an example of the RVs produced during a single classifi-
cation run. Elasticities as well as RVs have been clustered based in their similarity.
The clustering offers a straight-forward method to look at elasticities that have to
be coordinated to ensure stability or oscillations.
Stable models were represented by four RVs. They differed most strongly in
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Stability prediction Oscillation prediction

Elasticity Stability Instability Oscillating Not oscillating

ε
v−1
S1

0.64 +- 0.23 0.54 +- 0.19 0.59 +- 0.24 0.6 +- 0.24

ε
v+2
S1

0.68 +- 0.24 0.48 +- 0.23 0.7 +- 0.21 0.76 +- 0.22

ε
v−2
S2

0.51 +- 0.26 0.9 +- 0.12 0.77 +- 0.23 0.52 +- 0.3

ε
v+2
S4

0.47 +- 0.26 0.88 +- 0.08 0.64 +- 0.24 0.41 +- 0.31

ε
v+3
S2

0.71 +- 0.21 0.55 +- 0.26 0.68 +- 0.21 0.72 +- 0.23

ε
v−3
S3

0.69 +- 0.22 0.57 +- 0.28 0.65 +- 0.25 0.66 +- 0.23

ε
v+4
S2

0.63 +- 0.26 0.86 +- 0.13 0.71 +- 0.23 0.62 +- 0.27

ε
v−4
S4

0.72 +- 0.22 0.82 +- 0.2 0.71 +- 0.24 0.74 +- 0.19

ε
v+5
S3

0.54 +- 0.25 0.37 +- 0.31 0.48 +- 0.29 0.54 +- 0.26

ε
v+6
S4

0.57 +- 0.29 0.2 +- 0.18 0.43 +- 0.27 0.63 +- 0.3

Table 5.22.: Summary of the RVs representing different classes of branched pathway mod-
els. For each elasticity, means and standard deviations were computed from all RVs
derived for a particular class over all classification runs. RVs differed strongly within
each class in order to cover its region in the feature space as widely as possible.

elasticity ε
v+6
S4

and ε
v+2
S4
. A high value in ε

v+2
S4

was accompanied by a low value in

ε
v+6
S4

and vice versa. This shows that the feedback strength exhibited by activator
S4 had to be coordinated with its efflux rate out of the system. All three RVs of
the unstable class had high values in elasticity εv

−
1
S1

which showed that instabilities
could only arise if perturbations were propagated quickly at the entry point into
the system. Furthermore, unstable models contained either high values in ε

v+2
S1

and ε
v+6
S4
, or in ε

v+3
S2

and εv6S4
. Interestingly, if both ε

v+2
S1

and ε
v+3
S2

had high values,

instabilities could only arise if εv
+
6
S4

was low.
Oscillatory RVs were more diverse, but generally also required large values in

ε
v+6
S4

together with small values in ε
v+4
S2
. This similarity to the stabilizing rulesets

might explain why most of the rulesets fulfilling the complex oscillation criteria
also fulfilled those for stability, so that the proportion of stable oscillatory models
was larger than that of unstable oscillatory ones.
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(a) RVs representing the stable class.
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(b) RVs representing the oscillatory
class.
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(c) RVs representing the unstable
class.
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(d) RVs representing the non-
oscillatory class.

Figure 5.12.: Examples of the RVs representing each class in branched pathway models.
Elasticities and RVs have been clustered based in their similarity using the default
settings of the heatmap function in R. Increased colour intensity indicates larger elasticity
values.
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6. The neuronal TCA cycle: a
real-world example

This chapter is dedicated to elucidating local system properties of the neuronal
TCA cycle. The TCA cycle is of fundamental importance for cellular energy
metabolism because it is the major source for reduced nicotinamide adenine din-
ucleotide (NADH) and ubiquinol (QH2), which are required for the production of
adenosine triphosphate (ATP) in the mitochondrion (Figure 6.1). Its reactions are
tightly controlled by allosteric feedback regulators to enable an adjustment of the
steady state fluxes to varying ATP demands (Nelson and Cox, 2004). In neurons,
a steady supply of ATP is crucial for restoring the cellular membrane potential
after triggering an action potential. Once the system obtains a functional working
state that enables it to meet the ATP demand of the cell, we can therefore expect
this state to be robust against perturbations from the cytosol (Koopman et al ,
2012). Such perturbations can arise, for example, due to neuronal activity and
the resulting fast fluctuations of ATP turnover. In order to elucidate the mecha-
nisms responsible for perturbation responses in this system, two steady states will
be analysed here by using the previously presented methods for the evaluation of
SKM experiments.

6.1. Steady states

Two steady states representing different scenarios in terms of cytosolic ATP de-
mand were computed using the kinetic model developed by Berndt et al (2012).
While state 1 (reference state) was characterised by a moderate extent of neuronal
activity, state 2 described a phenomenon called ‘gamma oscillations’. Gamma oscil-
lations are defined as rhythmic brain activity with alternating epochs of enhanced
and reduced neuron firing in a frequency of 30−100 Hz (Fell and Axmacher, 2011;
Singer, 2013). They have been associated with cognitive processing and memory
formation (Brittain and Brown, 2014; Hanslmayr and Staudigl, 2014).
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Figure 6.1.: Network model of the TCA cycle and connected pathways. In the TCA
cycle, pyruvate (PYR) from the cytosol is incorporated into citrate (CIT) and converted
to CO2 by a series of oxidation steps. The energy released in this process is utilized
to form the reduced metabolites NADH and QH2. In the respiratory chain complexes
CI, CII, and CIV these metabolites are oxidised, driving the import of protons into the
mitochondrial matrix. As a result of this process, a proton gradient is created which
then serves as a driving force for ATP synthesis. The picture has been adapted from
Berndt et al (2012). Metabolites marked in grey were treated as constant values and not
included into the ODE system shown in Table 3.4.
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6.1. Steady states

Figure 6.2 shows the reaction rates of both investigated steady states. Because
of the high frequency of action potentials, gamma oscillations are accompanied by
a large ATP demand in the cytosol. This requires higher rates of mitochondrial
ATP synthesis, which in turn can only be achieved by accelerated respiratory
chain and TCA cycle reactions. The computed steady states indicated that the
increased fluxes through the TCA cycle led to elevated levels of the low-energy
metabolites ADP, NAD, Q, as well as reduced Cytochrome C (CytC) (Figure
6.3). Reciprocally, the energy-rich metabolites ATP, NADH, QH2 and oxidised
CytC were less abundant under gamma oscillations compared to the reference
state. Furthermore, the level of α-ketoglutarate (AKG) was strongly reduced, while
succinate (SUC) concentration was distinctly increased under gamma oscillations.
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Figure 6.2.: Reaction rates of two steady states (reference state and gamma oscillations)
of the neuronal TCA cycle.
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Figure 6.3.: Metabolite concentrations of the investigated steady states.

6.2. Quantitative analysis of local dynamic steady

state properties

For each steady state, 10,000 SK-models were sampled and the proportions of
stable and oscillatory models were determined. The system contained three re-
actions with only one substrate and product each (ACON, FU, H-leak). The
corresponding elasticities were filtered for biological feasibility using the criterion
derived in Section 2.3.2. In doing so, 76.08% of all models could be corrected for
biological feasibility in these reactions within each steady state. In 63.3% of the
resulting models the FCCs indicated negative control of PYR import on PDH.
Consequently, an additional criterion was implemented during sampling that only
admitted models in which pyruvate import exhibited positive control on the PDH.

All models showed strong tendencies towards stability (Figure 6.4). Oscillatory
trajectories were only observed in between 30 - 40 % of all models that included
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6.3. Univariate search for discriminating features
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Figure 6.4.: Distribution of local dynamic properties of both steady states of the TCA
cycle.

regulators. In contrast to the small example pathways in which all enzymes fol-
lowed simple Michaelis Menten kinetics, the dynamic behaviour of the TCA cycle
steady states was hardly affected by elasticity filtering (Table 6.1). This indicated
that the affected reactions ACON, FU and H-leak did not play significant roles in
controlling stability or oscillations.
Similar to elasticity filtering, removing biologically infeasible FCCs had no sig-

nificant impact on stability and it led to only a minor reduction in oscillations
around the reference state. This observation shows that it is generally not pos-
sible to reliably detect biologically infeasible elasticity combinations simply from
the eigenvalues and emerging dynamic properties in an SKM experiment. Instead,
we need to rely on prior knowledge about the expected flux control exhibited by
at least some of the enzymes in the system, in order to reduce the sampling space
for the elasticities and thereby increase the chances to obtain realistic SK-models.

6.3. Univariate search for discriminating features

In order to detect the network positions that exhibited the most control over the
system’s dynamics, elasticities and flux control coefficients were compared using
the Kolmogorov-Smirnov-test. The five most influential elasticities of the reference
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6. The neuronal TCA cycle: a real-world example

No filtering Filtered elastici-
ties

Filtered elastici-
ties & FCCs

State 1 State 2 State 1 State 2 State 1 State 2

Total stability (%) 0.998 0.998 0.996 0.999 0.996 0.998

Total oscillations (%) 0.372 0.397 0.372 0.391 0.350 0.401

Stable/ with oscilla-
tions (%)

0.372 0.397 0.372 0.391 0.349 0.401

Stable/ no oscilla-
tions(%)

0.625 0.602 0.624 0.608 0.646 0.598

Unstable/ with oscil-
lations (%)

0.000 0.000 0.000 0.000 0.000 0.000

Unstable/ no oscilla-
tions (%)

0.002 0.002 0.003 0.001 0.004 0.002

Table 6.1.: Detailed list of proportions of possible steady state properties of the TCA
cycle determined by Monte Carlo sampling. State 1: reference state; State 2: gamma
oscillations.

state are shown in Table 6.2, together with the distances between the distributions
of the opposing classes. All depicted elasticities were associated with p-values
below 0.01.
The majorities of top-ranking elasticities that controlled stability were associ-

ated with citrate synthase (CITS). CITS marks the entry point to the TCA cycle
for carbon backbones in the form of acetyl-CoA (ACCOA). Because of this impor-
tant function, together with its interconnectedness to the TCA-cycle metabolites
oxalacetate (OAA) and citrate (CIT), as well as with the cofactor coenzyme A
(COA), it can be expected to play a crucial role in maintaining stability.
The second most influential elasticity described the control of AKGDH by its

substrate AKG. The enzyme complex AKGDH is not only considered a rate-
limiting step in the TCA cycle (Berndt et al , 2012), but also catalyses a complex
reaction, which involves different types of cofactors (NAD, NADH, COA). Due
to these connections, a change in this enzyme can be expected to affect the rates
of other reactions in the network and to cause potential threats to stability. In
the reference state, the allosteric inhibition of AKGDH by succinyl-CoA (SUC-
COA) closely followed the substrate activation of CITS and AKGDH with respect
to its importance in controlling stability. However, its role was less important
under gamma oscillations. During gamma oscillations, the substrate activation
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6.3. Univariate search for discriminating features

Stability Oscillations

Elasticity Distance Distance Elasticity Distance Distance

(state 1) (state 2) (state 1) (state 2)

εCITS+

OAAm
0.54 0.53 εAKGDH+

AKGm
0.39 0.14

εAKGDH+

AKGm
0.48 0.40 εIDH+

ICITm
0.21 0.41

εAKGDH+

SUCCOAm
0.38 εAKGDH+

SUCCOAm
0.19 0.13

εCITS+

SUCCOAm
0.31 0.32 εCITS+

CITm
0.13

εCITS+

CITm
0.28 0.33 εCITS+

SUCCCOAm
0.09

εIDH+

ICITm
0.28 εAKGDH+

COAm
0.10

εIDH+

ADPm
0.09

Table 6.2.: The top five elasticities with largest distances between their distributions
in opposing classes for the TCA cycle model, determined by the Kolmogorov-Smirnov
test. All values were associated to p-values below 0.01. Elasticities reflecting allosteric
inhibition are marked in red, whereas activating regulators are marked in green. State 1:
reference state; State 2: gamma oscillations.

of isocitrate dehydrogenase (IDH) by isocitrate (ICIT) played a dominant role.
IDH not only interacts with the cofactors NAD and NADH, but it also produces
AKG, which serves as a substrate for AKGDH. We can conclude that in both
steady states, elasticites associated with reactions that were located upstream of
the TCA cycle and that contained the cofactors COA or NAD/NADH exhibited
most control on stability. The differences in top-ranking elasticities between sce-
narios of moderate and high ATP demand showed that control over stability can
shift with changing steady states. In both steady states, the concentrations of
SUCCOA and ICIT coincided closely. However, the concentration of AKG was
lower during gamma oscillations, which could be a possible explanation for greater
emphasis on ICIT in controlling system properties.

Occurrence of oscillatory trajectories around the reference state was mainly con-
trolled by the substrate activation of AKGDH by AKG. Under gamma oscillations,
however, substrate activation of IDH by ICIT was most important. The test statis-
tics of the KS-test indicated that the corresponding elasticity showed strong distri-
bution differences between oscillatory and non-oscillatory models. In contrast, all
other elasticities exhibited distance values of 0.14 or lower. Analogous to control-
ling stability, the enzyme IDH turned out to obtain more control over oscillations
when flux through the system increased and the levels of AKG decreased under
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6. The neuronal TCA cycle: a real-world example

gamma oscillations.
In summary, the Kolmogorov-Smirnov test revealed that the distributions of

some elasticities associated with CITS, AKGDH, and to a more limited extent IDH,
differed strongly between stable and unstable models. Three of the top-ranking
elasticities represented allosteric feedback effects. However, we already observed
in Chapter 5 that comparing individual elasticity distributions is only informative
to a limited extent when detecting quantitative elasticity thresholds associated
with a specific system property. For example, the homogeneous distributions of
elasticities in stable steady states had showed that, for almost all values in any
elasticity, there existed a combination of other elasticities that allow the system to
maintain stability in the small example systems. Therefore, the following section
will demonstrate how deriving quantitative thresholds for elasticity combinations
can help in the understanding of which enzyme mutations could potentially make
the system prone to instabilities.

6.4. Analysing instability conditions by

multivariate pattern search

6.4.1. RVM classification performance

Due to the longer runtime of the RVM algorithm, RVMs could only be success-
fully trained for smaller sample sizes than those possible for decision trees. When
analysing the example pathways in Chapter 5, small sample sizes had been suffi-
cient to obtain comparable or even better RVM classification performances than
could be obtained by decision trees. In contrast, the TCA cycle posed a more
challenging classification problem, which made it difficult for the RVM algorithm
to deduce informative and reproducible decision functions. As a result, training
RVMs on the corresponding SK-models led to high bias as well as large general-
ization errors (Table 6.3). Because of these drawbacks, the following analysis will
focus on the decision tree results only.

6.4.2. Decision tree classification performance

In order to assess the performance of the decision tree algorithm in classifying sta-
ble versus unstable as well as oscillatory versus non-oscillatory models, trees were
trained on balanced datasets derived from SK models for the reference state. Dur-
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6.4. Analysing instability conditions by multivariate pattern search

Algorithm Balanced training
error

Balanced test error Runtime in minutes

Decision trees 0.039 ± 0.006 0.092 ± 0.005 0.39 ± 0.01

RVMs 0.148 ± 0.013 0.294 ± 0.037 34.236 ± 1.518

Table 6.3.: Comparison of classification performance between decision trees and RVMs
for stability conditions of the TCA cycle. For each algorithm, training was performed
five times on independently sampled datasets comprising 2000 SK-models for the refer-
ence state of the TCA cycle. The depicted values show means and standard deviations
obtained from the five replicates.

ing training, the sample sizes were gradually increased in order to check whether
data availability was a limiting factor for model bias and generalizability.
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Figure 6.5.: BERs obtained by classification of SK-models of the TCA cycle reference
state according to different types of features. The depicted values represent the average
over the BERs obtained from five trees created for each training data size. Red curves:
classification of stable versus unstable models; blue curves: classification of oscillatory
versus non-oscillatory models. Squares: training errors; triangles: test errors.

When classifying based on elasticities, training errors of stability prediction were
small for all sample sizes (see Figure 6.5 for exemplary training curves obtained
for the reference state, as well as Appendix D.1.1 for details). Consistent with
the observations obtained previously for the small example pathways, the training
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6. The neuronal TCA cycle: a real-world example

data contained sufficient information to be translated into rules by the algorithm
so that the derived trees were less prone to bias. For increasing sample sizes,
the test errors approximated the training errors closely. This indicated that most
rulesets generalised well with little overfitting.
Training errors for elasticity-based oscillation prediction were distinctly higher

than those for stability prediction, hinting at a higher model bias. Consequently,
it was more difficult for the decision tree algorithm to formulate patterns for os-
cillatory conditions than for stability conditions. The test errors always stayed
significantly higher than the training errors, indicating that, similar to classifica-
tion on the small example pathways, the derived trees were not as well generalizable
as those constructed for stability prediction.

Classification by flux control coefficients (FCCs)

In contrast to the results obtained for the small example pathways, stability and
oscillation prediction for TCA cycle models both suffered from high bias, which
showed that it was difficult for the decision tree algorithm to derive stabilizing
of oscillatory FCC patterns from the training data (Figure 6.5). The previous
observation that classification performance for the linear and branched pathway
structures was much better than that for the cyclic pathway already indicated
that the success of stability prediction based on FCCs strongly depended on the
pathway topology (Figure 5.9 - 5.11). Similarly to the cyclic pathway structure in
the small example models, the complex structure of the TCA cycle model therefore
introduced high bias for classification.
Consistent with the results obtained from the small example pathways, test

errors closely approximated training errors for large sample sizes. This confirmed
that, despite the difficulties in deriving informative FCC-based rules, those that
were eventually detected generalized well to unknown test cases.

6.4.3. Ruleset numbers and sizes

Tables 6.4 and 6.5 show the distribution of ruleset sizes with Laplace values > 0.95

that were derived from five trees trained on 20,000 training samples each. Due to
the high model bias when training on the FCC data sets, no reliable rulesets in
terms of FCCs could be derived for the TCA cycle steady states.
Using elasticities as input features led to large numbers of rulesets for stable and

unstable models. Despite the previously observed high abundance of stable models
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6.4. Analysing instability conditions by multivariate pattern search

Conditions per ruleset

Class label 1 2 3 4 5 6 7 8 9 10 Sum

Stability State 1 0 0 1 10 26 27 23 11 3 1 102

State 2 0 0 1 1 16 34 24 14 3 0 93

Instability State 1 0 3 10 21 32 21 21 7 4 1 120

State 2 0 2 21 30 40 38 18 10 2 1 162

Table 6.4.: Distribution of elasticity ruleset sizes with Laplace value > 0.95 obtained by
classifying stable versus unstable models. The numbers have been summarized over all
the five trees that were constructed for each classification problem. State 1: reference
state; State 2: gamma oscillations.

during random sampling, reliable stability rulesets were less frequent and contained
larger numbers of conditions than those describing unstable steady states. Only
one reliable ruleset could be derived for oscillatory trajectories around the reference
state, whereas none could be detected during high neuron activity. Containing
eight conditions, the detected ruleset for the reference state was comparably large.

Conditions per ruleset

Class label 1 2 3 4 5 6 7 8 9 10 Sum

Oscillations State 1 0 0 0 0 0 0 0 1 0 0 1

State 2 0 0 0 0 0 0 0 0 0 0 0

No oscillations State 1 0 7 19 26 17 7 3 3 0 1 83

State 2 1 22 25 27 17 12 7 1 1 0 113

Table 6.5.: Distribution of elasticity ruleset sizes with Laplace value > 0.95 obtained by
classifying oscillatory versus non-oscillatory models. The numbers have been summarized
over all the five trees that were constructed for each classification problem. State 1:
reference state; State 2: gamma oscillations.

Rulesets ensuring non-oscillatory trajectories around the reference state con-
tained at least two conditions each. In contrast, the higher neuronal activity in
state 2 not only increased the number of rulesets describing non-oscillatory tra-
jectories, but it also enabled the emergence of one ruleset for which one condition
was sufficient. This indicated that faster flux caused by gamma oscillations made
it easier to formulate reliable conditions in order to ensure non-oscillatory trajec-
tories.
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6. The neuronal TCA cycle: a real-world example

To summarize, it was possible to formulate reliable destabilizing or non-oscillatory
patterns with low numbers of conditions, whereas rulesets reliably describing sta-
ble or oscillatory steady states always required three or more conditions. We can
conclude that in a complex system like mitochondrial metabolism, with its sophis-
ticated interconnectedness of substrates and cofactors, changes in at least three
(but often more) enzymes are generally required to reliably change local system
properties while maintaining the same steady state.

6.4.4. Detecting the most informative elasticities for

stability control

Table 6.6 shows the frequencies of elasticities in stabilizing rulesets with Laplace
values > 0.95 obtained for both steady states, together with the proportion of
lower bounds associated with each elasticity in percent.
Analysis of the small example pathways in the previous section had already

shown that elasticities were distributed widely among stabilizing rulesets, whereas
destabilizing rulesets focused on a smaller number of certain elasticities that were
more prominent than the rest. Such a strong difference in ruleset content between
the stable and unstable class could not be detected for the TCA cycle steady states.
Moreover, there existed no single elasticity that was required in every stabilizing
or destabilizing ruleset. Instead, the investigated system properties could both
be invoked by diverse combinations of elasticities associated with PDH, AKGDH,
CITS and IDH. Under gamma oscillations, two additional elasticities (εATPsyn−

Hm
,

εCIII+

Hm
) were included in the vast majority of rulesets. They described the extent

to which ATP synthesis and Complex III (CIII) were affected by increasing proton
concentration in the matrix.
These results indicated that, similar to the univariate comparisons shown in the

previous section, the most informative elasticities for reference state stability were
associated with reactions upstream of the TCA cycle. The high ATP demand un-
der gamma oscillations led to a shift in control that included reactions involved in
ATP synthesis. The univariate comparisons had only revealed comparably small
distribution differences in εATPsyn−

Hm
(KS-test statistic of 0.13) and εCIII+

Hm
(KS-test

statistic of 0.09). However, the multivariate analysis revealed that these elastici-
ties were of central importance in controlling stability under gamma oscillations.
The shift towards ATP synthesizing reactions reduced the importance of allosteric
inhibition of AKGDH and CITS. As a result, stabilizing rulesets for gamma oscil-
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6.4. Analysing instability conditions by multivariate pattern search

Elasticity Stability Instability

State 1 State 2 State 1 State 2

εAKGDH+

AKGm
0.92 (87.23 %) 0.94 (95.4 %) 0.87 (5.77 %) 0.81 (6.87 %)

εATPsyn−

Hm
0.92 (96.51 %) 0.64 (5.77 %)

εCIII+

Hm
0.69 (87.5 %)

εAKGDH+

NADHm(regulator) 0.75 (92.11 %) 0.86 (30.1 %)

εAKGDH+

SUCCOAm(regulator) 0.74 (77.33 %) 0.68 (1.22 %) 0.71 (26.96 %)

εCITS+

CITm(regulator) 0.72 (39.73 %) 0.52 (31.75 %) 0.48 (32.47 %)

εCITS+

NADHm(regulator) 0.43 (96.15 %) 0.34 (98.18 %)

εCITS+

OAAm
0.36 (86.49 %) 0.55 (56.86 %) 0.42 (100 %) 0.28 (62.22 %)

εCITS+

SUCCOAm(regulator) 0.35 (2.78 %) 0.47 (88.64 %) 0.33 (2.5 %) 0.27 (93.02 %)

εIDH+

ICITm
0.34 (11.43 %) 0.39 (13.89 %) 0.27 (84.38 %) 0.23 (56.76 %)

εPDH+

COAm
0.27 (96.43 %) 0.37 (94.12 %) 0

εPDH+

COAm(regulator) 0.25 (68 %) 0.26 (12.5 %) 0.19 (86.96 %) 0.21 (88.24 %)

εPDH+

NADHm(regulator) 0.22 (9.09 %) 0.19 (0 %) 0.17 (95 %) 0.2 (93.75 %)

εPDH+

PYRm
0.17 (93.75 %)

Table 6.6.: Frequency of the ten most common elasticities in ruleset conditions for the
TCA with Laplace values > 0.95. Rulesets were derived from SK-models of two steady
states: a reference state (Ref) and gamma oscillations (Gam). Values in brackets refer
to the percentage of lower bounds associated with each elasticity (green: > 90% lower
bounds; red: 6 10% lower bounds). Elasticities present at least 0.9 times per ruleset on
average are marked in bold. State 1: reference state; State 2: gamma oscillations.

lations contained no regulatory elasticity associated with AKGDH and only one
out of three associated with CITS.

Frequencies of lower and upper bounds indicated that high values in both
εATP-syn−

Hm
and εCIII+

Hm
were favoured in stable models, but low values were preferred

in unstable models. This implied that in many SK-models a fast response to
changes in proton gradient was required for CIII and ATPsyn in order to maintain
stability. Rulesets describing instabilities under gamma oscillations focused more
strongly on allosteric regulation of AKGDH and CITS than stabilizing rulesets.
In contrast, elasticities associated with the proton gradient were not as abundant
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6. The neuronal TCA cycle: a real-world example

in destabilizing rulesets as in stabilizing ones. This showed that changes in the al-
losteric inhibitors of AKGDH and CITS seemed to be the bigger risk to instabilities
than perturbations in the proton gradient.

The elasticity εAKGDH+

AKGm
, which described substrate activation of AKGDH by

AKG, was the most abundant elasticity in all rulesets. This observation agreed
with the univariate comparisons in which the same elasticity had shown strong dis-
tribution differences between both classes. The high abundance of lower bounds in
stabilizing rulesets showed that they tended to restrict AKGDH-associated elastic-
ities to large values, whereas destabilizing rulesets often restricted them to small
values. Therefore, a quick response of AKGDH to perturbations seemed to be
favourable for stability. Reciprocally, a slow response could be a potential threat
to stability of the steady states and could be a result, for example, of a mutation
that reduced the Michaelis constant associated with AKG,.

Contrary to εAKGDH+

AKGm
, the elasticity εCITS+

OAAm
, which described the substrate ac-

tivation of CITS by OAA, occurred in only 36 − 55% of reliable stabilizing and
destabilizing rulesets, despite the strong class-differences observed by the pairwise
comparisons. This indicated that, even if the distributions differed significantly so
that stable models often tended to have different values than unstable models, sta-
bility and instability were also possible with values that were predominately found
in the opposing class. Both stabilizing and destabilizing rulesets for the reference
state mainly restricted this elasticity by lower bounds, whereas under gamma os-
cillations, such a prevalence could not be detected. A similar phenomenon was
observed for elasticity εCITS+

SUCCOAm(regulator), which described the regulatory effect of
SUCCOA on CITS. It was restricted by upper bounds in the reference state, but
by lower bounds during gamma oscillations.

6.4.5. Simple causes of instabilities in the TCA cycle

Trees trained on SK-models for the reference state and for gamma oscillations pro-
duced five elasticity rulesets with two conditions each (Table 6.7). In each ruleset,
one condition imposed a very strict upper boundary on the substrate activation
of AKGDH by AKG. The second condition restricted the feedback inhibition of
AKGDH by its product SUCCOA. According to these rulesets, instabilities were
likely to arise if AKGDH was highly saturated by its substrate AKG and by its
product SUCCOA. This indicated that the kinetic properties of AKGDH had to
be tailored towards allowing fast responses of this enzyme to perturbations, and
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Steady state Summarized conditions Laplace values

Reference
state

εAKGDH+

AKGm
6 0.0433± 0.0252

0.9748± 0.0158
εAKGDH+

SUCCOAm
> -0.13 ± 0.0781

Gamma
oscillations

εAKGDH+

AKGm
6 0.03± 0

0.9748± 0.0158

εAKGDH+

SUCCOAm
> -0.24 ± 0.01

Table 6.7.: Summary of destabilizing elasticity rulesets (two conditions each) in the TCA
cycle.

that mutations that changed these properties were among the most hazardous
for mitochondrial metabolism. The rulesets were well reproducible between both
steady states. Consequently, the crucial role of AKGDH in causing this specific
type of instabilities was independent of the overall flux through the system and of
the concentrations of their reactants.

In order to understand the reasons for instabilities caused by the conditions in
Table 6.7, the eigenvectors belonging to the largest real parts of the affected models
were analysed. The eigenvectors of the Jacobian matrix can give an approximation
of the system’s behaviour in the neighbourhood of the steady state (see Section
2.2 in Chapter 2). Among 100,000 SK models with equal numbers of stable and
unstable instances computed for the reference state, 7535 fulfilled the conditions
in Table 6.7. 7367 (97.77 %) of these models indeed described unstable steady
states. Under gamma oscillations, 7852 fulfilled the conditions and 7668 (97.66 %)
of these models actually belonged to unstable steady states.

Analysis of the eigenvector with largest real part indicated that perturbation led
to an accumulation of AKG, accompanied by a decrease in the subsequent TCA
cycle metabolites (Figure 6.6). A possible explanation for this behaviour could be
that the strong saturation of AKGDH by its substrate AKG prevented an acceler-
ation of the enzyme, which would be necessary to cope with slight perturbation-
induced increases in the concentrations at the entry point to the TCA cycle. Be-
cause AKGDH was allosterically inhibited by its product SUCCOA in the model,
the resulting depletion of SUCCOA could be expected to decrease the inhibitory
feedback and assist in accelerating the reaction. However, the conditions in Table
6.7 stated that changes in SUCCOA only weakly affected the inhibitory feedback.
Due to the combination of weak activation by its product and strong inhibition by
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Figure 6.6.: Eigenvector belonging to the largest positive eigenvalue in unstable models of
the reference state that fulfilled the instability conditions in Table 6.7. Each eigenvector
component describes the time-dependent concentration changes in one metabolite in the
linearised system (see Section 2.2 for details). Concentrations that increased due to a
perturbation are shown in blue; decreasing metabolites are shown in red. Instabilities
arise due to accumulation of AKG and a depletion in the subsequent metabolites.

its substrate, the response of the enzyme to changes in its reactants would be too
slow to diminish the perturbations.

6.5. Summary: TCA cycle analysis

In this chapter, two steady states of mitochondrial metabolism were analysed with
respect to their stabilizing properties. Both steady states varied in the amount of
ATP production and fluxes through the system.
Monte Carlo sampling of SK-models revealed strong tendencies towards sta-

bility in both steady states. The filtering criterion derived in Chapter 3 served
for correcting for kinetically infeasible elasticity combinations associated with en-
zymes that followed Michaelis Menten kinetics. An additional filtering step was
introduced to correct for models with biologically unrealistic FCCs.
Univariate comparisons between elasticity distributions of stable and unstable

models showed that elasticites associated with reactions located close to the entry

92



6.5. Summary: TCA cycle analysis

point to the TCA cycle and that contained the cofactors COA or NAD/NADH
exhibited most control on stability.
Multivariate analysis was performed in order to detect quantitative criteria

for instabilities and for oscillatory trajectories. For this purpose, classification
was attempted using RVMs and decision trees. Although RVMs had previously
demonstrated excellent performance for the analysis of small example pathway,
the complexity of the mitochondrial metabolic network hampered classification in
the given scenario. The direct comparison identified the decision tree algorithm
as the superior approach for the analysis of SK-models in a complex biochemical
pathway.
Decision tree classification enabled the detection of stabilizing and destabilizing

rulesets with little bias and overfitting when elasticities were used as training data.
Formulating patterns for oscillatory conditions was more difficult than for stability
conditions. This indicated that oscillating trajectories around the observed steady
states of mitochondrial metabolism are a complex phenomenon that requires the
fine-tuned coordination of many elasticities and that it remains a challenge to
describe these combinations by reliable and reproducible rules.
Closer inspection of stabilizing and destabilizing elasticity rulesets showed that,

similar to the univariate comparisons, the most informative elasticities for reference
state stability were associated with reactions upstream of the TCA cycle. The
high ATP demand under gamma oscillations led to a shift in control that included
reactions involved in ATP synthesis. The sensitivity of AKGDH to changes in
its substrate AKG was the most frequent feature in stabilizing and destabilizing
rulesets. A slow response of AKGDH to perturbations was detected as a potential
threat to stability of the steady states.
Closer inspection of destabilizing rulesets revealed one simple and easily repro-

ducible pattern which was a potential reason of instabilities in both investigated
steady states. Eigenvector analysis indicated that in the affected models, instabil-
ities arose due to slow responses of the enzyme AKGDH to perturbations.
In summary, using machine learning helped to unravel a more detailed picture

on the potential sources of instabilities than was possible with univariate elasticity
comparisons alone. For example, they hinted at a shift in the system components
with biggest importance for controlling stability under increased ATP demand.
The decision tree algorithm yielded quantitative thresholds that could be inter-
preted in a straight-forward manner. Additionally, eigenvector analysis of the
models fulfilling certain ruleset criteria helped to obtain a better understanding of
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the trajectories around unstable steady states.
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In this thesis the development of new approaches for the execution and evalua-
tion of SKM experiments was investigated. In Chapters 2 and 3, the relationships
between elasticities and the kinetic parameters of the reversible Michaelis Menten
rate law were inspected and it was shown how models could be checked for biolog-
ical plausibility during Monte Carlo sampling of the elasticities. Furthermore, it
was demonstrated how the sampled elasticities could be converted to flux control
coefficients (FCCs) using the connectivity theorem in order to derive the FCCs
associated with different local system properties. Additionally, a new approach for
evaluating SKM experiments was presented that extended the previously used uni-
variate elasticity comparisons by multivariate pattern search. In the cases where
prior knowledge about the underlying types of rate laws existed, it was shown how
the derived elasticity patterns could be calculated back into kinetic parameters. In
Chapter 4, a toolbox for the efficient construction and analysis of SK-models was
introduced (Girbig et al , 2012b). This toolbox was used for all SKM experiments
presented in this thesis.

All new methodological advancements were first evaluated in a simulation study
using a set of small example pathways that employed simple Michaelis Menten
kinetics with homogeneous choices of kinetic parameters (Chapter 5). In doing
so, the main goal was to show how SKM could be used to study the conditions
for stability or for oscillatory trajectories. Afterwards, a detailed analysis of the
dynamic properties of the neuronal TCA cycle was performed demonstrating how
the new insights obtained in this work could be used for the study of complex
metabolic systems (Chapter 6).

In the following, every topic will be recapitulated in greater detail. The oppor-
tunities, but also possible potential drawbacks for practical applications will be
presented and discussed.
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7.1. Investigating metabolic steady states by

SKM

7.1.1. The challenge of finding biologically plausible models

In order to perform an SKM experiment, it is not necessary to specify the ki-
netic rate laws in detail. However, the sampling procedure requires the selection
of predefined intervals for each elasticity. Often, the interval (0, 1] is chosen for
enzymatic reactions. This interval represents the range of possible elasticity values
for reactions following Michaelis Menten kinetics (see Section 2.3.2 for analytical
derivation). In this work, I demonstrated that if this assumption of Michaelis
Menten kinetics holds true, only very specific combinations of elasticities allow
to maintain the steady state with non-negative kinetic parameters (Section 2.3.2,
equation (2.38)). Because of this, an easily applicable filtering criterion for enzy-
matic reactions with a single substrate and product was introduced in Section 3.1.1
(equation (3.1)), that enabled the detection of elasticity combinations associated
with negative kinetic parameters.

If this filtering criterion is not taken into account during Monte Carlo sampling,
the large abundance of SK-models with biologically implausible elasticity combi-
nations can bias the output of the experiment. For example, analysis of a set of
simple example pathways showed that even for small models with 9− 11 sampled
elasticities, approximately 90 % of the resulting SK-models contained elasticity
combinations that required at least one negative value in the kinetic parameters
in order to enable emergence of the observed steady state. Focusing only on those
models with non-negative kinetic parameters hardly changed the numbers of stable
models, but strongly affected the frequency of oscillatory trajectories around the
steady state.

The filtering criterion introduced in equation (3.1) offers a helpful starting point
when sampling elasticities for reactions that can be assumed to follow reversible
Michaelis Menten kinetics. When analysing complex biological systems, one has
to keep in mind, however, that the analytical derivation of similar criteria for
more complex rate laws is not possible in the same straight-forward manner. For
example, the TCA cycle model analysed in Chapter 6 contained only four reaction
with a single substrate and product each. Although 76.08 % of all models could be
corrected for biological feasibility in these reactions, the challenge remains to detect
similar criteria for the remaining reactions in order to refine the results of the Monte

96



7.1. Investigating metabolic steady states by SKM

Carlo experiment. So far, attempts to solve the resulting equations analytically
were hampered by the complexity of the corresponding nonlinear equation system.

An interesting alternative approach could be based on random sampling of ki-
netic parameters instead of elasticities. The elasticities could then be calculated
analytically using the partial derivatives of the rate laws in the steady state. This
approach is similar to the sampling routine introduced by Wang et al (2004) for
Michaelis-Menten kinetics. The analytical computation of elasticities requires prior
knowledge about the catalytic mechanism and the corresponding type of rate law
for each enzyme. However, it would offer a helpful extension of the filtering crite-
rion introduced in this thesis for studying enzymes for which such prior knowledge
about reaction mechanisms and suitable rate laws is available (Li et al , 2012).

Although elasticity checks were only possible for a limited number of reactions
in the TCA cycle, an additional filtering criterion was introduced that was based
on the FCCs belonging to each set of elasticities. In particular, it required that an
increase in substrate input into the system had no negative implications for the
overall flux through the TCA cycle.

Both types of filtering demonstrated how prior knowledge about a system could
be incorporated (if available) in order to narrow down the combinations sampled
elasticities to those that could actually occur in nature for the experimentally
observed steady state. However, they should also serve as a reminder that the
success rate of detecting biologically unrealistic models depends on the nature
of the kinetic rate laws and that it remains a challenging task to select feasible
SK-models if they contain complex enzymatic reactions.

7.1.2. Information that can be obtained from elasticities

The first intuitive approach in evaluating an SKM Monte Carlo experiment is to
quantify the proportions of models with certain dynamic properties like stability of
oscillations. This can provide information about the likely behaviour of a system
for which the elasticities are unknown. For example, Steuer et al (2006) set all
elasticities associated with product inhibition to equal values of increasing mag-
nitude in order to show the general effects of product inhibition on stability. In
order to understand the mechanisms involved in the emergence of certain dynamic
properties, one can next attempt to infer causal relationships between the observed
behaviour and the elasticities responsible for its emergence. This can be done by
exploration of the sampled elasticities using supervised univariate or multivariate
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statistical analyses.

Univariate comparisons of elasticities

In this thesis, elasticities were compared by the Kolmogorov-Smirnov test between
stable and unstable, as well as between oscillatory and non-oscillatory models.
Typically, distributions differed significantly in almost every elasticity. In order to
obtain a fine-tuned picture of the individual contribution to the system’s behaviour,
they were ranked by the test statistics that estimated the maximum difference
between the compared distribution functions.

Extension of the previously used univariate approaches for model
evaluation by multivariate machine learning

In Section 5.3, the visual inspection of the elasticities obtained for the small ex-
ample models showed that many elasticity distributions indeed differed strongly
between stable and unstable models. However, it was also shown that most dis-
tributions widely covered the complete sampling interval. This implied that, even
if an elasticity showed a strong tendency towards a specific value range in stable
models, it was still possible to ensure stability if the elasticity obtained a value
typically found among unstable models by an appropriate choice of the other elas-
ticities in the system. This indicated that, for almost each value in each elasticity, a
suitable set of values in the other elasticities existed that enabled the construction
of a stable model.
We concluded that stability of a steady state was the result of a the fine-tuned

interplay between different elasticities in the network. In order to elucidate possi-
ble combinations of elasticities responsible for stable or unstable models, the SKM
framework was extended in this thesis by multivariate pattern search. In contrast
to previous studies that used univariate tests to search for single, important param-
eters, this enabled the search for ensembles of enzymes and metabolites ensuring
stability. This new approach allowed the determination of fine-tuned interactions
between combinations of several enzymes and metabolites that could not be inves-
tigated by classical in vivo studies focusing only on a limited number of enzymes
per experiment.
In doing so, the applicability of two supervised machine-learning approaches

was evaluated. Because the goal was to obtain information about possible ways in
which elasticities act together in a concerted manner, the most important aspect in
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the choice of appropriate classifiers was the interpretability of the derived decision
functions. This motivated the use of two classifiers, namely decision trees and
RVMs.

The decision function, which forms the basis for assigning a class label to an
unknown data point by a classifier, can either provide a representation of the
boundaries between the different classes, or it can describe the ’typical’ class cen-
ters and perform classification based on their similarities to an unknown data
point.

Examples of classifiers of the first category are SVMs, perceptrons or decision
trees (Hastie et al , 2009). In this thesis, decision trees were chosen because they
offered the best interpretability of the derived decision function. In particular, the
C5.0 algorithm used in this work offered the additional feature of summarizing the
paths through a tree by compact rulesets. These rulesets can be understood as
’patterns‘ of enzyme-metabolite relationships that mark the transition from stable
to unstable steady states, or vice versa.

The second category of classifiers aims at detecting descriptions of class centres
rather than boundaries. For example, the RVM algorithm provides a small set of
the ‘most typical’ data points for each class (Tipping et al , 2003). These repre-
sentative data points are called RVs. When classifying a new data point, the RVs
then serve for estimating the probability of belonging to a particular class. A big
advantage of RVMs is that they produce sparse solutions that contain as few RVs
as possible. Therefore, the RV output tends to be smaller and easier to inspect
visually than the large numbers of rulesets produced by decision trees. On the
other hand, the quantitative rulesets returned by decision trees turned out to be
more easily interpretable because they only focused on a small subset of ‘impor-
tant’ elasticities whereas each RV contained the complete set of all elasticities in
the system.

Another advantage of both classifiers compared to univariate comparisons was
that they provided characteristic patterns per class instead of one decision bound-
ary for both classes.

Classification by RVMs

When evaluated on three small example network with simple pathway structures,
RVMs outperformed decision trees in terms of classification accuracy and the
sparseness of the trained models. For example, RVM-based classification of sta-
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bility for the linear pathway revealed 5-10 RVs, whereas decision trees consisted
of hundredes of rulesets in order to accurately describe the differences between
stable and unstable models. A property that made RVMs particularly interesting
candidates for the evaluation of SKM experiments was that they outperformed
decision trees in terms of classification accuracy even when training was based on
much smaller sample sizes. This was a promising advantage for the analysis of
systems of a larger scale, in which Monte Carlo experiments can be time consum-
ing because of the runtime requirements that go along with the evaluation of large
Jacobian matrices.

When applied to classify models of the TCA cycle, however, it turned out that
RVMs were outperformed by decision trees both in terms of runtime and classi-
fication results (Section 6.4.1). A possible explanation could be that the TCA
cycle posed a more challenging classification problem due to the larger number
of sampled elasticities and the more complex pathway structure. The observed
high training errors indicated a high model bias, which resulted from difficulties
to detect informative RVs during training. Additionally, the observed test errors
distinctly exceeded the training errors, showing that the derived decision functions
were prone to overfitting, and consequently not well generalizable to unknown test
points. Because of these observations, RVMs could not be considered further for
analysing the SK-models of the TCA cycle. It could be possible, however, that
larger training samples would lead to improvements in classification performance
and that the availability of faster computers and algorithms could enable RVM
based classification of large SK-models in the future. For example, there are ap-
proaches to improve the runtime of RVMs (Yang et al , 2010) but a discussion of
this topic goes beyond the scope of this thesis.

Classification by decision trees

Using decision trees to classify sampled elasticities for stable and unstable models
produced good results in terms of model bias and overfitting. This observation
was consistent for the small example pathways (Section 5.4.1) and for the model
of mitochondrial metabolism (Section 6.4.2). Prediction of oscillations generally
tended to be more challenging than stability prediction.

In contrast to RVM output, decision tree rulesets could be filtered for reliability
by evaluating them on an independent test data set and inspecting the resulting
Laplace values (Section 3.2.3). In doing so, identification of typical patterns for a
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specific system property could focus on the best performing rulesets. For example,
the most reliable rulesets were evaluated statistically to detect the most abundant
elasticities together with tendencies towards low or high values in a particular
class. Selected rulesets were also evaluated individually to investigate interesting
scenarios in which instabilities could arise.

For the small example pathways, it was demonstrated how these rulesets were
translated back into thresholds for kinetic parameters. Such thresholds can poten-
tially be used to simulate trajectories of perturbation responses. In contrast, the
complex nature of the rate laws in the TCA cycle model rendered it difficult to
derive kinetic parameter thresholds in the same straight-forward manner. Instead,
an alternative approach for the investigation of trajectories in unstable models was
introduced (Section 6.4.5) based on the investigation of model eigenvectors fulfill-
ing the conditions in a simple unstable ruleset. Each eigenvector belonging to a
positive eigenvalue of the Jacobian matrix then indicated the time-dependent de-
velopment of the trajectories in the linearised system. In doing so, it was possible
to get a general impression of the system’s behaviour around an unstable steady
state. One has to keep in mind, however, that we can only analyse the instabil-
ities in the linearised system, which could differ from those in the true system.
Furthermore, it is not possible to infer the longterm behaviour of the trajectories
when moving away from an unstable state. This would require simulations by a
kinetic model, with specification of the rate laws and their kinetic parameters.

When investigating patterns associated with certain dynamic steady state prop-
erties, one has to keep in mind that not all randomly sampled models are covered
by rulesets with high Laplace values. Consequently, there might be unstable mod-
els for which reliable criteria could not be found by the decision tree algorithm.
Decision tree classification is intended to look at those scenarios that are easy to
detect and to describe by simple patterns, instead of providing a comprehensive
decision function able to classify any new data point.

7.1.3. Converting elasticities to FCCs

Principles of deriving FCCs from elasticities A particularly interesting prop-
erty of elasticities is the ability to convert them into FCCs (Westerhoff and Kell,
1987; Wang et al , 2004). This implies that, for each set of sampled elasticities
in an SKM experiment, we can obtain a detailed picture of the corresponding
proportions of control exhibited by each enzyme on each steady state flux. The re-
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lationship between sampled elasticities and corresponding flux control coefficients
has been extensively studied in the related field of MCA. In this thesis, FCCs
were derived from the sampled elasticities and their usability for describing easily
interpretable conditions for instabilities or oscillations was evaluated.

Do FCCs provide sufficient information to predict stability of a steady state?
Decision tree training revealed that the quality of the detected FCC patterns dif-
fered strongly depending on the complexity of the pathway structure. Classifica-
tion performance for two simple pathway structures (linear and branched pathway)
exceeded that of elasticity based training in terms of training and test errors. How-
ever, for the circular pathway structures of a small cyclic pathway and of the TCA
cycle, elasticities turned out to be superior in terms of their information content
for classification and orchestrated pattern detection.
The differences in classification between elasticities and FCCs seemed surprising

at first, because the MCA framework explains how both features can be intercon-
verted without loss of information. However, an additional processing step was
performed before classification that summarized FCCs explaining the forward-
and reverse-effects. Therefore, a loss of information was taken into account when
calculating FCCs from elasticities. Using the full FCCs on the other hand, would
not only make the interpretation of the resulting rulesets difficult, but also inflate
the feature space.

7.1.4. Elucidating stabilizing mechanisms in a metabolic

system

As stated in the introduction, local stability can be understood as the robustness
of a steady state to small perturbations that can occur easily in a cellular environ-
ment. From this we can conclude that it would be impossible to observe unstable
steady states in a metabolic system, because trajectories would diverge from it
due to natural perturbations. This implies that it would be disadvantageous for a
metabolic system if the operating state of a pathway best suited to fulfil a certain
functional role is unstable and cannot be reached. Stability analyses in this work
therefore focused on the detection of the stabilizing mechanisms present in the
investigated systems, as well as scenarios in which possible mutations could alter
kinetic properties in ways that could be hazardous for the stability of functional
working states.
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Lessons learnt from the small example pathways

Pairwise comparisons of the elasticity distributions between stable and unstable
models of the small example pathways emphasized the roles of the positive feedback
term and the efflux out of the system. The elasticities associated with the efflux
reactions were typically located at lower values for unstable models than for stable
models, indicating that fast responses of these reactions were required in order to
maintain stability. This was confirmed by unstable decision tree and RVM patterns
which generally described slow perturbation responses of efflux reactions but fast
propagation of perturbations by the feedback term. This agrees with earlier results
obtained by analysing the Calvin Benson Cycle (CBC) in plant metabolism, where
allosteric regulators were shown to strongly influence stability (Girbig et al , 2012a).

Stability analysis of mitochondrial metabolism

A detailed SK-model of mitochondrial energy metabolism was presented and anal-
ysed in this work. It covered the TCA cycle, the respiratory chain, ATP synthesis,
as well as ATP exchange with the cytosol. In total, it comprised 24 metabolites, 20
reactions and 71 sampled elasticities. In order to observe possible shifts in control
during increased workload on the mitochondrion, two steady states were analysed
that varied in the amount of cytosolic ATP consumption. Monte Carlo sampling
of SK-models revealed strong tendencies towards stability in both steady states,
and the occurrence of oscillatory trajectories in 35− 40% of all models.
Both the univariate comparisons and the decision tree rulesets showed that

the most important elasticities for reference state stability were associated with
reactions upstream of the TCA cycle. We detected no single elasticity that was
required in every stabilizing or destabilizing ruleset. Instead, the investigated
system properties could both be invoked by diverse combinations of elasticities
associated with PDH, AKGDH, CITS and IDH. This coincides with observations
that enzymes of the TCA cycle and respiratory chain are typically modulated
together by external stimuli like Ca2+ uptake and that they share the control
of flux through the system (Koopman et al , 2012). In order to systematically
assess the impact of these stimuli on the system, the model presented in this work
could be extended by the corresponding regulatory interactions and analysed with
respect to the emerging changes in stabilizing and destabilizing patterns.
Ruleset analysis additionally showed that the high ATP demand under gamma

oscillations lead to a shift in control that included reactions involved in ATP
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synthesis. Additionally, the statistical analysis of the ruleset conditions revealed
that a slow response of AKGDH to perturbations was a serious threat for stability.
Eigenvector analysis confirmed that indeed the simplest way to induce instabilities
was to slow down the responses of AKGDH to perturbations.
Overall, the decision tree algorithm discovered more rulesets reliably causing

instability than ensuring stability (see Table 6.4 in Chapter 6). This showed that
the reasons for instabilities in this system could be diverse and comprise different
combinations of elasticities. Interestingly, this observation differs from the results
previously obtained for the CBC (Girbig et al , 2012a), where the number of reliable
destabilizing patterns (3 rulesets for a training size of 10,000) was found to be
distinctly lower than the number of stabilizing ones (62 rulesets). However, because
the overall proportion of unstable SK-models of the CBC (16 %) was lower than for
the TCA cycle (< 1 %), these differences in ruleset numbers could be explained by a
generally higher vulnerability of the CBC model to instabilities. As a consequence,
elasticity modifications leading to instabilities in the CBC model would not need to
be as fine-tuned as for the TCA cycle. However, the study by Girbig et al (2012a)
also showed that the incorporation of additional allosteric regulators, which were
not part of established kinetic models, could significantly decrease the occurrence of
unstable models to 6 3% in SKM experiments. It would therefore be interesting
to repeat the decision tree analysis of the CBC on SK-models that take these
regulators into account in order to test if they increase the complexity of the
destabilizing patterns.

Limitations of decision tree-based stability analysis

We have to keep in mind that the decision tree rulesets do not explain all insta-
bilities that can occur in mitochondrial energy metabolism for two reasons:

1. Although a large number of SK-models was created during Monte Carlo
sampling, it could be possible that certain elasticity combinations leading
to instabilities were not included. In fact, due to the high dimensionality of
the sampling space that consisted of all possible value combinations for 71
elasticities, even a set of 20,000 SK-models only enabled a sparse coverage.

2. Focusing on the most reliable rulesets with Laplace values > 0.95 implied
that the majority of rulesets was discarded after training (see also Table D.2
(a) in the Appendix). Although the rulesets was not mutually exclusive, so
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that most elasticity combinations were represented by more than one ruleset,
it is possible that there were some SK-models with elasticities not meeting
any criteria of any remaining ruleset.

Therefore, the goal of the presented analysis was to find simple and reproducible
mechanisms that could impair stability, not cover the whole range of theoretically
possible destabilizing mechanisms.

7.1.5. Conditions for oscillatory trajectories around steady

states

Analysis of the small example pathways revealed that conditions for oscillations
were more complex than conditions for instabilities. Statistical evaluation of the
most reliable rulesets for oscillatory and non-oscillatory trajectories in the small
example pathways showed that oscillating systems favoured large values in the
relevant elasticities. This explains the strong increase in oscillatory models due to
elasticity filtering, because the filtering criterion in equation (3.1) favoured large
elasticity values.
When analysing the TCA cycle model, the main interest lay on the detection

of possible destabilizing mutations. However, in systems for which the study of
oscillations is of particular interest, a similar procedure could be performed with
focus on the comparisons of oscillatory versus non-oscillatory models instead of
stable versus unstable ones. For example, oscillations in glycolysis have been
studied intensively by Heinrich and Schuster (1996). Therefore, it would be of
great interest to extend the knowledge obtained so far by analysing oscillatory
decision tree rulesets.
Despite the gain of mechanistic insights that could explain possible reasons

for observed oscillations in a system, oscillation prediction can also render itself
helpful for predicting whether experimental values can be expected to fluctuate
during measurements.

7.2. Conclusions and outlook

The fast progress in metabolomics technologies has enabled the collection of vast
amounts of data about metabolites and fluxes within cellular systems in the recent
years. In order to obtain a full understanding of the ways in which metabolism
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is organized and controlled, however, we need to extend the established statistical
approaches for analysing and comparing measured metabolite profiles (Boccard
et al , 2010; Kholodenko et al , 2012; Xia et al , 2012; Franceschi et al , 2013) by
taking into account the underlying network structure and dynamics. However,
elucidating the dynamics of complex metabolic systems remains a big challenge in
those cases in which detailed kinetic models are not available. The SKM frame-
work (Steuer et al , 2006) allows the investigation of the mechanisms that control
the system’s behaviour around experimentally observed steady states without re-
quiring estimates of all rate laws and kinetic parameters involved. This makes it a
promising approach for the study of large metabolic networks that typically have
many unknowns in terms of kinetic parameters and rate laws. It is important to
note that this work does not focus on the types and strengths of changes in order
to alter flux (Stitt et al , 2010) but instead on the intrinsic mechanisms protecting
stability and ensuring that the system only significantly changes in response to
targeted and coordinated signals.

It has already been demonstrated in the past how SKM can help to detect
single stabilizing sites in metabolic networks (Grimbs et al , 2007) and how this
information can be used to aid in the construction of new kinetic models (Bulik
et al , 2009). In this thesis, I investigated how the sampling procedure can be
refined in certain cases, and how multivariate pattern search can help to obtain
a more detailed picture of possible reasons for instabilities of a metabolic steady
state.

We have to keep in mind, however, that the applicability of the SKM approach
depends on the scope and on the quality of available data. Today, obtaining accu-
rate quantitative measurements of concentrations and fluxes is still a challenging
task (Maier et al , 2013; Da Silva et al , 2013; Sellami et al , 2013). In the re-
lated work of Wang et al (2004), this problem was circumvented by estimating
steady state fluxes by FBA (Orth et al , 2010), and by sampling the concentrations
randomly. van Nes et al (2009) avoid the incorporation of steady state data by
sampling the components of the Jacobian matrix directly. These approaches en-
abled to obtain insights about the general capacities of a network based on their
stoichiometry and (in the case of Wang et al (2004)) on prior knowledge about
all rate laws and kinetic parameters. In contrast, the crucial advantage of SKM is
the possibility to analyse local dynamic properties of actually observed metabolic
steady states. After incorporating the observed steady state data into the stoichio-
metric matrix, we only need to sample the elasticities from predefined distributions
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in order to obtain and evaluate the corresponding Jacobian matrices of the system.
Ultimately, we can conclude that the choice of a suitable method for inves-

tigating the dynamic properties of a metabolic system in steady state relies on
the availability of suitable data and on the depth of information that should be
achieved. If steady state information is only partially available, it could also be
possible to combine metabolite measurements with estimated steady state fluxes.
For example, Maier et al (2013) describe a large study in which all detectable
metabolites of Mycoplasma pneumoniae were measured and partly quantified with
respect to their absolute concentrations. These quantitative measurements could
be combined with FBA fluxes in order to perform a large-scale SKM analysis.
The ability to detect sets of enzymes that exhibit control on the system’s dy-

namic properties in a coordinated manner could aid in the design of systems with
desired behaviours via synthetic biology (Kruse, 2010). Another interesting field of
research is the investigation of the genomic organization of the involved enzymes.
It was recently postulated that genes for metabolic enzymes are organized in an
economical way so that transcriptional regulation is sparse and highly selective in
cost-intensive pathways (Wessely et al , 2011). A related question to investigate
would be whether similar preferences for coordinated regulation of selected genes
can also be detected for enzymes jointly involved in the control of dynamic sys-
tem properties. We can conclude that, with metabolomics technologies becoming
more and more refined, SKM is a promising technique to explore the dynamics of
systems of larger scales in the near future.
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A. List of Abbreviations

A.1. General abbreviations

BER Balanced error rate

CBC Calvin-Benson cycle

FBA Flux balance analysis

FCC Flux control coefficient

MCA Metabolic control analysis

ODE Ordinary differential equation

SKM Structural kinetic modelling

SK-model Structural kinetic model

TCA cycle Tricarboxylic acid cycle (also called citric acid cycle)
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A. List of Abbreviations

A.2. Enzyme names

ACON Aconitase

AKGDH α-Ketoglutarate dehydrogenase

ATP/ADP-anti ATP-ADP antiport

ATP-syn ATP synthase

ATP-use Cytosolic ATP consumption

CI Complex I

CIII Complex III

CIV Complex IV

CITS Citrate synthase

FU Fumarase

H-leak Proton leak

IDH Isocitrate dehydrogenase

K/H-anti K+-proton antiport

MDH Malate dehydrogenase

Na/H-anti Na+-proton antiport

PDH Pyruvate dehydrogenase

P/H-sym Phosphate-proton symport

PYR/H-sym Pyruvate-proton symport

SDH Succinate dehydrogenase (also called complex II)

SCS Succinyl-CoA synthetase
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A.3. Metabolite names

A.3. Metabolite names

ACCOA Acetyl-CoA

AKG α-Ketoglutarate

ADP Adenosine diphosphate

ATP Adenosine triphosphate

CIT Citrate

COA Coenzyme A

CytC(ox)/(red) Cytochrome C (oxidised / reduced)

FUM Fumarate

H Proton ion

ICIT Isocitrate

MAL Malate

NAD Nicotinamide adenine dinucleotide (oxidised)

NADH Nicotinamide adenine dinucleotide (reduced)

OAA Oxalacetate

P Inorganic phosphate

PYR Pyruvate

Q / QH2 Ubiquinone/ ubiquinol

SUC Succinate

SUCCOA Succinyl-CoA
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B. Notation

m Number of metabolites in the network

n Number of reactions in the network

Si Name of the ith metabolite in the network (i = 1, 2, . . .m)

rj Name of the jth reaction in the network (j = 1, 2, . . . n)

N ∈ Rm×n Stoichiometric matrix of the metabolic network

J ∈ Rm×m Jacobian matrix of the metabolic network

[Si]
Concentration of metabolite Si (in units of mol

l
, if not stated

otherwise)

vj := vj([S])
Rate of reaction rj (in units of mol

l·sec , if not stated otherwise),
typically dependent on metabolite concentrations [S] and ki-
netic parameters k

fi = fi([S](t)) Time-dependent changes in metabolite Si

[Si]
∗ Steady state concentration of metabolite Si

v∗j = vj([S]∗) Steady state rate of reaction rj

xi = [Si]
[Si]∗ Concentration of metabolite Si normalized to the steady state

µj =
vj
v∗j Rate of reaction rj normalized to the steady state

V
vj
max

Maximum velocity parameter of the Michaelis Menten equa-
tion for reaction rj

K
vj
M

Michaelis constant of the Michaelis Menten equation for re-
action rj. Interpretation: substrate concentration of at which
vj has reached half of its maximum velocity

F Steady state flux through the metabolic system
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B. Notation

ej Concentration of the enzyme catalysing reaction rj

CF
ej

Flux control coefficient quantifying the control of reaction rj
on flux F

ε
vj
Si

Elasticity coefficient quantifying the influence of the normal-
ized concentration [Si] on the normalized reaction rate vj in
the steady state

X = {χi}qi=1 Input data set for the binary classification problem (χi ∈ Rp)

T = {ti}qi=1
Binary class labels associated with the input data serving as
targets for the classification problem (ti ∈ {0, 1})
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C. Additional results (example
pathways)

C.1. Additional results of decision tree

classification

C.1.1. Balanced error rates for increasing sample size

The following tables show the balanced error rates (mean ± standard deviation)
for increasing training data size, determined by training five individual decision
trees on independent training sets of each size. All values have been rounded to
three decimal places.
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C. Additional results (example pathways)

Balanced error rates of the linear pathway

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.008 +- 0.011 0.06 +- 0.032 0 +- 0 0.088 +- 0.046

100 0.02 +- 0.012 0.052 +- 0.052 0 +- 0 0.102 +- 0.053

200 0.015 +- 0.007 0.06 +- 0.048 0 +- 0 0.144 +- 0.039

500 0.018 +- 0.008 0.049 +- 0.019 0 +- 0 0.15 +- 0.006

1000 0.014 +- 0.003 0.037 +- 0.007 0 +- 0 0.166 +- 0.023

2000 0.015 +- 0.002 0.052 +- 0.006 0 +- 0 0.161 +- 0.01

5000 0.012 +- 0.001 0.045 +- 0.005 0 +- 0 0.161 +- 0.012

10000 0.013 +- 0.001 0.044 +- 0.003 0 +- 0 0.164 +- 0.004

15000 0.011 +- 0.001 0.042 +- 0.001 0 +- 0 0.164 +- 0.004

20000 0.011 +- 0.001 0.039 +- 0.001 0 +- 0 0.166 +- 0.004

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.127 +- 0.011 0.301 +- 0.038 0.018 +- 0.016 0.277 +- 0.033

100 0.111 +- 0.023 0.254 +- 0.046 0.015 +- 0.006 0.274 +- 0.028

200 0.088 +- 0.014 0.218 +- 0.01 0.004 +- 0.003 0.239 +- 0.016

500 0.066 +- 0.009 0.186 +- 0.01 0.002 +- 0.001 0.207 +- 0.01

1000 0.053 +- 0.006 0.168 +- 0.006 0.001 +- 0.001 0.207 +- 0.008

2000 0.047 +- 0.004 0.143 +- 0.001 0 +- 0 0.193 +- 0.004

5000 0.039 +- 0.002 0.122 +- 0.002 0 +- 0 0.185 +- 0.004

10000 0.034 +- 0.001 0.106 +- 0.002 0 +- 0 0.181 +- 0.001

15000 0.031 +- 0.001 0.097 +- 0.002 0 +- 0 0.18 +- 0.002

20000 0.029 +- 0.001 0.094 +- 0.001 0 +- 0 0.179 +- 0.001

(b) Classification errors determined on the test data.

Table C.1.: Balanced error rates of decision tree classification in the linear pathway.
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C.1. Additional results of decision tree classification

Balanced error rates of the branched pathway

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.02 +- 0.02 0.024 +- 0.017 0.008 +- 0.011 0.024 +- 0.022

100 0.026 +- 0.019 0.042 +- 0.019 0 +- 0 0.024 +- 0.005

200 0.013 +- 0.006 0.053 +- 0.015 0.003 +- 0.003 0.039 +- 0.011

500 0.009 +- 0.003 0.039 +- 0.005 0.001 +- 0.001 0.034 +- 0.005

1000 0.011 +- 0.002 0.042 +- 0.003 0.002 +- 0.001 0.042 +- 0.009

2000 0.013 +- 0.003 0.049 +- 0.006 0.002 +- 0.001 0.057 +- 0.007

5000 0.01 +- 0.001 0.042 +- 0.003 0.002 +- 0.001 0.057 +- 0.003

10000 0.01 +- 0 0.04 +- 0.002 0.003 +- 0 0.057 +- 0.003

15000 0.009 +- 0.001 0.036 +- 0.001 0.002 +- 0.001 0.058 +- 0.003

20000 0.009 +- 0.001 0.034 +- 0.002 0.002 +- 0 0.059 +- 0.002

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.152 +- 0.063 0.235 +- 0.038 0.049 +- 0.027 0.139 +- 0.031

100 0.109 +- 0.018 0.213 +- 0.03 0.021 +- 0.009 0.116 +- 0.011

200 0.078 +- 0.008 0.186 +- 0.007 0.018 +- 0.009 0.116 +- 0.01

500 0.066 +- 0.008 0.154 +- 0.009 0.007 +- 0.002 0.093 +- 0.002

1000 0.051 +- 0.003 0.14 +- 0.003 0.006 +- 0.001 0.092 +- 0.007

2000 0.044 +- 0.002 0.129 +- 0.003 0.006 +- 0.001 0.084 +- 0.005

5000 0.034 +- 0.002 0.109 +- 0.005 0.004 +- 0 0.078 +- 0.002

10000 0.029 +- 0.001 0.099 +- 0.002 0.004 +- 0 0.073 +- 0.001

15000 0.027 +- 0.001 0.092 +- 0.002 0.004 +- 0 0.072 +- 0.001

20000 0.024 +- 0.001 0.087 +- 0.002 0.004 +- 0 0.071 +- 0.001

(b) Classification errors determined on the test data.

Table C.2.: Balanced error rates of decision tree classification in the branched pathway.
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C. Additional results (example pathways)

Balanced error rates of the cyclic pathway

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.016 +- 0.026 0.028 +- 0.027 0.052 +- 0.023 0.104 +- 0.071

100 0.022 +- 0.004 0.038 +- 0.019 0.044 +- 0.021 0.128 +- 0.057

200 0.011 +- 0.004 0.036 +- 0.011 0.075 +- 0.021 0.167 +- 0.051

500 0.012 +- 0.005 0.026 +- 0.005 0.078 +- 0.024 0.172 +- 0.033

1000 0.009 +- 0.004 0.028 +- 0.006 0.082 +- 0.019 0.19 +- 0.023

2000 0.01 +- 0.003 0.031 +- 0.006 0.098 +- 0.008 0.198 +- 0.011

5000 0.009 +- 0.002 0.028 +- 0.005 0.103 +- 0.004 0.2 +- 0.006

10000 0.007 +- 0.002 0.025 +- 0.003 0.1 +- 0.006 0.199 +- 0.003

15000 0.007 +- 0.001 0.024 +- 0.002 0.101 +- 0.004 0.193 +- 0.005

20000 0.007 +- 0 0.025 +- 0.002 0.1 +- 0.002 0.198 +- 0.003

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.113 +- 0.016 0.203 +- 0.024 0.23 +- 0.048 0.299 +- 0.042

100 0.11 +- 0.041 0.19 +- 0.025 0.177 +- 0.021 0.262 +- 0.013

200 0.067 +- 0.011 0.147 +- 0.013 0.17 +- 0.017 0.249 +- 0.011

500 0.055 +- 0.005 0.12 +- 0.003 0.146 +- 0.009 0.241 +- 0.013

1000 0.045 +- 0.005 0.108 +- 0.007 0.132 +- 0.004 0.226 +- 0.004

2000 0.038 +- 0.004 0.094 +- 0.004 0.129 +- 0.006 0.218 +- 0.006

5000 0.028 +- 0.002 0.078 +- 0.001 0.122 +- 0.003 0.215 +- 0.003

10000 0.023 +- 0.001 0.068 +- 0.001 0.116 +- 0.002 0.209 +- 0.003

15000 0.021 +- 0 0.062 +- 0.001 0.115 +- 0.002 0.208 +- 0.001

20000 0.02 +- 0.001 0.059 +- 0.001 0.113 +- 0.001 0.209 +- 0.001

(b) Classification errors determined on the test data.

Table C.3.: Balanced error rates of decision tree classification in the cyclic pathway.
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C.1. Additional results of decision tree classification

C.1.2. Ruleset numbers and sizes

The following tables show the numbers and sizes of the decision tree rulesets ob-
tained for selected training data size, determined by training five individual deci-
sion trees on independent training sets of each size. All numbers are given in the
format x/y, where x and y are the numbers of rulesets with Laplace values > 0.95,
or > 0.5, respectively. Observed minimum and maximum ruleset sizes are given
in brackets. Decision trees have been trained either using elasticities (left) or flux
control coefficients (right) as features.

Ruleset statistics derived for the linear pathway

Elasticities Flux Control Coefficients

TrainingSize Stability Instability Stability Instability

200 17/23 (1, 3) 5/17 (3, 4) 5/5 (1, 1) 5/5 (1, 1)

500 33/41 (1, 3) 20/26 (2, 4) 5/5 (1, 1) 5/5 (1, 1)

1000 47/53 (1, 4) 20/30 (2, 5) 5/5 (1, 1) 5/5 (1, 1)

5000 153/157 (1, 5) 38/46 (3, 6) 5/5 (1, 1) 5/5 (1, 1)

10000 219/224 (1, 6) 67/78 (2, 6) 5/5 (1, 1) 5/5 (1, 1)

20000 453/455 (1, 6) 68/79 (3, 7) 5/5 (1, 1) 5/5 (1, 1)

(a) Classification of stable versus unstable states.

Elasticities Flux Control Coefficients

TrainingSize No oscillations Oscillations No oscillations Oscillations

200 0/36 (0, 0) 0/10 (0, 0) 3/17 (1, 2) 0/12 (0, 0)

500 5/63 (1, 4) 0/30 (0, 0) 9/30 (1, 2) 0/11 (0, 0)

1000 42/116 (1, 5) 0/49 (0, 0) 11/33 (1, 3) 0/16 (0, 0)

5000 184/301 (1, 7) 15/130 (5, 8) 38/77 (1, 3) 0/22 (0, 0)

10000 414/559 (1, 7) 59/226 (5, 9) 56/106 (1, 4) 0/21 (0, 0)

20000 794/953 (1, 7) 132/341 (5, 10) 74/132 (1, 4) 0/29 (0, 0)

(b) Classification of oscillating versus non-oscillating models.

Table C.4.: Observed numbers and sizes of the rulesets derived for the linear pathway.

121



C. Additional results (example pathways)

Ruleset statistics derived for the branched pathway

Elasticities Flux Control Coefficients

TrainingSize Stability Instability Stability Instability

200 20/26 (1, 2) 7/14 (2, 4) 4/5 (2, 2) 5/9 (1, 1)

500 28/35 (1, 5) 7/16 (2, 5) 5/5 (2, 2) 5/11 (1, 1)

1000 47/53 (1, 5) 32/37 (2, 6) 5/5 (2, 2) 5/10 (1, 1)

5000 125/130 (1, 5) 45/53 (3, 7) 4/5 (2, 2) 6/17 (1, 2)

10000 226/226 (1, 6) 43/48 (3, 7) 3/5 (2, 2) 5/19 (1, 1)

20000 395/395 (1, 6) 73/79 (2, 7) 2/7 (2, 2) 14/36 (1, 3)

(a) Classification of stable versus unstable states.

Elasticities Flux Control Coefficients

TrainingSize No oscillations Oscillations No oscillations Oscillations

200 3/25 (2, 2) 0/24 (0, 0) 2/13 (1, 2) 4/15 (1, 2)

500 18/46 (1, 4) 1/37 (4, 4) 10/29 (1, 3) 8/18 (1, 4)

1000 26/72 (1, 4) 0/35 (0, 0) 16/33 (1, 4) 18/29 (1, 4)

5000 155/228 (1, 7) 31/157 (3, 7) 40/50 (1, 7) 33/50 (1, 4)

10000 269/367 (1, 8) 82/249 (3, 9) 62/73 (1, 6) 56/70 (1, 7)

20000 525/683 (1, 8) 270/529 (3, 9) 68/78 (2, 7) 78/96 (1, 7)

(b) Classification of oscillating versus non-oscillating models.

Table C.5.: Observed numbers and sizes of the rulesets derived for the branched pathway.
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C.1. Additional results of decision tree classification

Ruleset statistics derived for the cyclic pathway

Elasticities Flux Control Coefficients

TrainingSize Stability Instability Stability Instability

200 19/23 (1, 2) 7/14 (3, 4) 2/14 (3, 3) 1/19 (1, 1)

500 33/34 (1, 3) 5/13 (2, 4) 3/14 (2, 5) 3/25 (1, 1)

1000 43/46 (1, 4) 25/30 (2, 5) 4/20 (2, 4) 3/42 (1, 2)

5000 129/131 (1, 5) 38/44 (2, 5) 13/31 (3, 5) 3/36 (1, 1)

10000 197/200 (1, 5) 64/72 (3, 7) 30/64 (2, 6) 5/70 (1, 2)

20000 332/332 (1, 6) 57/64 (3, 6) 39/85 (2, 6) 7/78 (1, 3)

(a) Classification of stable versus unstable states.

Elasticities Flux Control Coefficients

TrainingSize No oscillations Oscillations No oscillations Oscillations

200 11/28 (1, 2) 0/16 (0, 0) 0/10 (0, 0) 0/11 (0, 0)

500 34/62 (1, 4) 1/25 (4, 4) 0/12 (0, 0) 0/17 (0, 0)

1000 51/91 (1, 5) 1/24 (3, 3) 0/15 (0, 0) 0/16 (0, 0)

5000 218/272 (1, 7) 1/37 (5, 5) 1/17 (2, 2) 0/20 (0, 0)

10000 382/431 (1, 7) 13/89 (4, 8) 3/29 (3, 4) 0/25 (0, 0)

20000 665/725 (1, 7) 54/133 (4, 10) 4/48 (2, 5) 0/42 (0, 0)

(b) Classification of oscillating versus non-oscillating models.

Table C.6.: Observed numbers and sizes of the rulesets derived for the cyclic pathway.
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C. Additional results (example pathways)

C.2. Additional results of RVM classification

C.2.1. Balanced error rates for increasing sample size

The following tables show the balanced error rates (mean ± standard deviation)
for increasing training data size, determined by training five individual RVMs on
independent training sets of each size. All values have been rounded to three
decimal places.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.008 +- 0.011 0.06 +- 0.042 0 +- 0 0.136 +- 0.036

100 0.008 +- 0.004 0.06 +- 0.046 0 +- 0 0.162 +- 0.031

200 0.006 +- 0.005 0.018 +- 0.016 0 +- 0 0.188 +- 0.025

500 0.015 +- 0.004 0.02 +- 0.006 0.001 +- 0.002 0.17 +- 0.007

1000 0.002 +- 0.001 0.015 +- 0.004 0 +- 0.001 0.16 +- 0.006

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.054 +- 0.017 0.186 +- 0.03 0 +- 0 0.251 +- 0.031

100 0.044 +- 0.007 0.15 +- 0.02 0 +- 0 0.217 +- 0.009

200 0.029 +- 0.004 0.11 +- 0.017 0 +- 0 0.201 +- 0.017

500 0.02 +- 0.001 0.066 +- 0.003 0 +- 0 0.189 +- 0.002

1000 0.014 +- 0.002 0.049 +- 0.003 0 +- 0 0.182 +- 0.003

(b) Classification errors determined on the test data.

Table C.7.: Balanced error rates of RVM classification of linear pathway models.
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C.2. Additional results of RVM classification

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0 +- 0 0.028 +- 0.03 0.016 +- 0.026 0.036 +- 0.033

100 0 +- 0 0.032 +- 0.024 0.004 +- 0.009 0.066 +- 0.029

200 0.002 +- 0.003 0.054 +- 0.019 0.001 +- 0.002 0.061 +- 0.012

500 0.003 +- 0.005 0.016 +- 0.013 0.001 +- 0.002 0.062 +- 0.008

1000 0.001 +- 0.001 0.011 +- 0.004 0 +- 0 0.061 +- 0.006

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.031 +- 0.003 0.143 +- 0.052 0.028 +- 0.011 0.094 +- 0.009

100 0.027 +- 0.006 0.106 +- 0.02 0.017 +- 0.009 0.086 +- 0.004

200 0.019 +- 0.003 0.09 +- 0.006 0.009 +- 0.004 0.08 +- 0.005

500 0.011 +- 0.003 0.073 +- 0.005 0.006 +- 0.001 0.073 +- 0.003

1000 0.008 +- 0.001 0.045 +- 0.001 0.006 +- 0.002 0.069 +- 0.001

(b) Classification errors determined on the test data.

Table C.8.: Balanced error rates of RVM classification of branched pathway models.
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C. Additional results (example pathways)

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0 +- 0 0.028 +- 0.033 0.5 +- 0 0.188 +- 0.05

100 0 +- 0 0.038 +- 0.033 0.5 +- 0 0.24 +- 0.032

200 0.001 +- 0.002 0.032 +- 0.01 0.274 +- 0.207 0.21 +- 0.017

500 0.004 +- 0.003 0.017 +- 0.005 0.136 +- 0.02 0.226 +- 0.012

1000 0.004 +- 0.002 0.009 +- 0.007 0.126 +- 0.01 0.212 +- 0.018

(a) Classification errors determined on the training data size.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

50 0.052 +- 0.014 0.139 +- 0.021 0.498 +- 0.001 0.252 +- 0.012

100 0.041 +- 0.008 0.092 +- 0.027 0.498 +- 0.001 0.23 +- 0.005

200 0.018 +- 0.006 0.078 +- 0.01 0.289 +- 0.193 0.223 +- 0.005

500 0.011 +- 0.001 0.057 +- 0.008 0.142 +- 0.003 0.22 +- 0.007

1000 0.008 +- 0 0.043 +- 0.003 0.134 +- 0.007 0.215 +- 0.003

(b) Classification errors determined on the test data.

Table C.9.: Balanced error rates of RVM classification of cyclic pathway models.
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C.2. Additional results of RVM classification

C.2.2. Learning curves

This Section illustrates the learning curves with BER values listed in Tables C.7 -
C.9.
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Figure C.1.: Classification of linear pathway models
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(b) Classification by FCCs.

Figure C.2.: Classification of branched pathway models
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C. Additional results (example pathways)
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(b) Classification by FCCs.

Figure C.3.: Classification of cyclic pathway models
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D. Additional results (TCA cycle)

D.1. Additional results of decision tree

classification

D.1.1. Balanced error rates for increasing sample size

The following tables show the balanced error rates (mean ± standard deviation)
for selected training data sizes, determined by training five individual decision
trees on independent training sets of each size.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

2000 0.039 +- 0.006 0.124 +- 0.015 0.264 +- 0.018 0.307 +- 0.021

4000 0.033 +- 0.003 0.121 +- 0.006 0.246 +- 0.009 0.292 +- 0.01

8000 0.032 +- 0.005 0.12 +- 0.008 0.244 +- 0.007 0.292 +- 0.006

12000 0.029 +- 0.002 0.118 +- 0.008 0.246 +- 0.009 0.284 +- 0.012

16000 0.029 +- 0.002 0.11 +- 0.004 0.244 +- 0.006 0.289 +- 0.008

20000 0.028 +- 0.003 0.112 +- 0.006 0.242 +- 0.003 0.282 +- 0.004

(a) Classification errors determined on the training data.

Elasticities Flux control coefficients

TrainingSize Stability Oscillations Stability Oscillations

2000 0.092 +- 0.005 0.221 +- 0.011 0.302 +- 0.012 0.363 +- 0.013

4000 0.081 +- 0.003 0.209 +- 0.003 0.28 +- 0.003 0.341 +- 0.008

8000 0.072 +- 0.002 0.199 +- 0.003 0.271 +- 0.003 0.327 +- 0.003

12000 0.065 +- 0.002 0.19 +- 0.003 0.269 +- 0.003 0.318 +- 0.005

16000 0.062 +- 0.001 0.186 +- 0.002 0.264 +- 0.003 0.316 +- 0.004

20000 0.058 +- 0.002 0.181 +- 0.002 0.261 +- 0.002 0.314 +- 0.001

(b) Classification errors determined on the test data.

Table D.1.: Balanced error rates of decision tree classification in the TCA cycle model.
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D. Additional results (TCA cycle)

D.1.2. Ruleset numbers and sizes

The following tables show the numbers and sizes of the decision tree rulesets ob-
tained by classification on the reference state for selected training sizes. They
were determined by training five individual decision trees on independent training
sets of each size. All numbers are given in the format x/y, where x and y are the
numbers of rulesets with Laplace values > 0.95, or > 0.5, respectively. Observed
minimum and maximum ruleset sizes are given in brackets. Decision trees have
been trained either using elasticities (left) or flux control coefficients (right) as
features.

Elasticities Flux Control Coefficients

TrainingSize Stability Instability Stability Instability

2000 10/71 (4, 6) 22/62 (2, 5) 0/23 (0, 0) 0/20 (0, 0)

4000 29/117 (3, 7) 27/87 (2, 6) 0/37 (0, 0) 0/35 (0, 0)

8000 59/188 (3, 9) 54/145 (2, 6) 0/40 (0, 0) 0/46 (0, 0)

12000 68/222 (3, 8) 114/250 (2, 9) 0/51 (0, 0) 0/33 (0, 0)

16000 105/277 (3, 9) 88/234 (2, 8) 0/64 (0, 0) 0/43 (0, 0)

20000 102/315 (3, 10) 120/314 (2, 10) 0/58 (0, 0) 0/57 (0, 0)

(a) Classification of stable versus unstable states.

Elasticities Flux Control Coefficients

TrainingSize No oscillations Oscillations No oscillations Oscillations

2000 6/90 (2, 3) 0/43 (0, 0) 0/23 (0, 0) 0/11 (0, 0)

4000 11/171 (2, 5) 0/44 (0, 0) 0/45 (0, 0) 0/10 (0, 0)

8000 26/284 (2, 5) 0/74 (0, 0) 0/64 (0, 0) 0/6 (0, 0)

12000 63/405 (2, 8) 0/78 (0, 0) 0/77 (0, 0) 0/23 (0, 0)

16000 79/548 (2, 8) 0/99 (0, 0) 0/79 (0, 0) 0/17 (0, 0)

20000 83/610 (2, 10) 1/142 (8, 8) 0/116 (0, 0) 0/32 (0, 0)

(b) Classification of oscillating versus non-oscillating models.

Table D.2.: Numbers and observed sizes of the rulesets derived for reference state of the
TCA cycle model.
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