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Preface

The main objective of these lecture notes is the study of stochastic equations corre-
sponding to diffusion processes in a domain with a reflection boundary. It is well known
that construction of diffusions in the entire Euclidean space is closely related to solutions
of stochastic differential equations (SDEs). Consider for simplicity the one-dimensional
case and imagine that we have already constructed reflecting diffusion in a half-line [0,∞)

with reflection at 0. Then the corresponding stochastic dynamics should have a stochastic
differential of the form

dξ (t) = a
(
t,ξ (t)

)
d t +b

(
t,ξ (t)

)
dw(t) (1)

when it lies inside (0,∞). The process ξ (t), t ≥ 0, must be continuous and should some-
how reflect when it hits 0. This reflection must be strong enough not to allow ξ to enter
the negative half-line. On the other hand, it should be continuous and must disappear
when the process enters (0,∞). Note that the diffusion process has an “infinite” speed, so
we cannot just change a speed to the opposite one at the instant of hitting 0.

In the pioneering paper on this topic [64], Skorokhod proposed finding a pair of con-
tinuous non-anticipating processes ξ (t) and l(t), t ≥ 0, such that

ξ (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

∫ t

0
b
(
s,ξ (s)

)
dw(s)+ l(t), a.s., (2)

where ξ (t)≥ 0, t ≥ 0, l is non-decreasing, l(0) = 0 and

l(t) =
∫ t

0
1Iξ (s)=0 d l(s), t ≥ 0.

The last requirement means that l may increase only when ξ visits 0.
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It turns out that equation (2) for a pair of unknown processes has a unique solution if
a and b satisfy linear growth and the Lipschitz conditions in x. Moreover, the process
ξ is Markov and the corresponding semigroup matches to some parabolic differential
equation with the Neumann boundary condition.

The situation is similar in multidimensional space. The form of the SDE with reflection
at the boundary of the multidimensional domain D is the following:

dξ (t) = a
(
t,ξ (t)

)
d t +∑

k
bk
(
t,ξ (t)

)
dwk(t)+ v

(
t,ξ (t)

)
d l(t), t ≥ 0,

where v is a reflecting vector field, ξ (t) ∈ D, t ≥ 0, l is a continuous non-decreasing
process such that and l(t) =

∫ t
0 1Iξ (s)∈∂D d l(s), t ≥ 0.

The main topics to discuss here are classical: theorems of existence and uniqueness,
continuity of a solution with respect to coefficients and initial data, the Markov property
and properties of the corresponding semigroups, relation with PDEs, etc.

A prerequisite needed for reading this book is knowledge of basic facts from stochastic
integration and SDE theory.

To simplify the presentation and understanding, results are not given in “the most gen-
eral form.” Rather, the exposition is focused on acquaintance with main ideas and ap-
proaches of reflecting SDE theory. Standard technical details from stochastic analysis are
sometimes omitted but all theorems are formulated with all assumptions and all hypothe-
ses. If a proof is not included, then the corresponding reference is given. After the main
theorems or at the end of sections, I try to give references for further development. How-
ever, I do not pretend to offer the complete historical overview, and thus, must apologize
if I forget to include a relevant or interesting article.

The material discussed here is the subject of a mini-course on reflecting stochastic
differential equations that I have given at the University of Potsdam and the Technical
University of Berlin in winter 2013 for PhD students of the Research Training Group
1845 Stochastic analysis with applications in biology, finance and physics. I would like
to express my sincere gratitude to Dr. Prof. Sylvie Roelly who invited me to give this
mini-course and encouraged me to write this manuscript, and to the RTG for the nice
opportunity. Many thanks also to Max Schneider for his great help in the English for-
mulation of this text and to Dr. Mathias Rafler for his TEXpertise, which considerably
improved the presentation.
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Chapter 1

One-dimensional
Skorokhod’s problem and

reflecting SDEs

1.1 The Skorokhod problem

Let us start with an informal description of a problem we will study. Assume that a
particle is located in a positive half-line and that there is a solid wall at the point zero. A
particle is driven according to the function f but is “glitching” at times when it intends to
go through the wall. Denote by g(t) the position of the particle at the moment t ≥ 0. If
g(t)> 0, t ∈ [a,b], then increments for g and f should be the same. When g(t) = 0, i.e. a
particle hits the wall, then all of its “intentions” to go left should be compensated. These
compensations should immediately disappear when g(t)> 0. The problem is to find g for
a given f .

We begin with a precise definition.

Definition 1.1.1 Let f ∈C
(
[0,T ]

)
, f (0)≥ 0. A pair of continuous functions g and l are

called a solution of the Skorokhod problem for f if

1) g(t)≥ 0, t ∈ [0,T ];

2) g(t) = f (t)+ l(t), t ∈ [0,T ];

1



2 1 One-dimensional Skorokhod’s problem and reflecting SDEs

3) l(0) = 0, l is non-decreasing;

4)
∫ T

0
1Ig(s)>0 d l(s) = 0. (1.1)

Equation (1.1) means that l does not increase when g(s)> 0, i.e., l may increase only
at those times when g(s) = 0. Sometimes this condition is written in the equivalent form

4’)
∫ t

0
1Ig(s)=0 d l(s) = l(t), t ∈ [0,T ].

Theorem 1.1.1 For any f ∈ C
(
[0,T ]

)
, f (0) ≥ 0, there is a unique solution to the Sko-

rokhod problem. Moreover,

l(t) =− min
s∈[0,t]

(
f (s)∧0

)
= max

s∈[0,t]

(
− f (s)∨0

)
, (1.2)

g(t) = f (t)+ l(t) = f (t)− min
s∈[0,t]

(
f (s)∧0

)
. (1.3)

Remark 1.1.1 A set where the function l is increasing may be nowhere dense. This holds,
for example, if f (t) is a typical trajectory of a Wiener process.

Proof of Theorem 1.1.1. The proof of existence is straightforward (see Figure 1.1). Let
us verify uniqueness.

Proof 1. This proof was proposed by Skorokhod in [64]. Let (g1, l1) and (g2, l2) be
solutions of the Skorokhod problem. Assume that the set {t ≥ 0 : g1(t) > g2(t)} is not
empty. Then there exists an interval (a,b) such that g1(t)− g2(t) > 0, t ∈ (a,b), and
g1(a) = g2(a). Observe that g1(t) > 0, t ∈ (a,b), so l1(t), t ∈ (a,b), is constant. Hence
g1(t)− g2(t) = l1(t)− l2(t), t ∈ (a,b), is a non-increasing positive continuous function
such that g1(a)−g2(a) = 0. This is impossible.

Proof 2. Let (g1, l1) and (g2, l2) be solutions of the Skorokhod problem. Since
g1(t)−g2(t) = l1(t)− l2(t) is a continuous function of bounded variation, we have

0≤
(
g1(t)−g2(t)

)2
= 2

∫ t

0

(
g1(s)−g2(s)

)
d
(
l1(s)− l2(s)

)
= 2

∫ t

0
1Ig1(s)=0

(
g1(s)−g2(s)

)
d l1(s)−2

∫ t

0
1Ig2(s)=0

(
g1(s)−g2(s)

)
d l2(s). (1.4)

We used condition (1.1) in the last inequality.
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Figure 1.1: The particle driving function f , particle position g and the compensating func-
tion l.

The right hand side of (1.4) equals

−2
∫ t

0
1Ig1(s)=0g2(s) d l1(s)−2

∫ t

0
1Ig2(s)=0g1(s) d l2(s)≤ 0,

because g1 and g2 are non-negative and l1 and l2 are non-decreasing. So g1(t) = g2(t),
t ∈ [0,T ], and

l1(t) = f (t)−g1(t) = f (t)−g2(t) = l2(t).

By Γ, we denote the map

g( ·) = Γ f ( ·) := f ( ·)− min
s∈[0, · ]

(
f (s)∧0

)
.

The map Γ is called the Skorokhod map. It is easy to check the following properties of Γ.
We leave the proof for the reader.

Lemma 1.1.1 Skorokhod’s map Γ is a continuous function from C
(
[0,T ]

)
to C

(
[0,T ]

)
,
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where C
(
[0,T ]

)
is equipped with the supremum norm, ‖ f‖ :=maxt∈[0,T ] | f (t)|. Moreover,

1) ∀ f1, f2 ∈C
(
[0,T ]

)
:

‖g1−g2‖ ≤ 2‖ f1− f2‖,

‖l1− l2‖ ≤ ‖ f1− f2‖,

where gi = Γ fi, li = fi−gi, i = 1,2.

2) ∀ δ > 0 : ωg(δ )≤ ω f (δ ), ωl(δ )≤ ω f (δ ),

where g = Γ f , l = f −g, ω f (δ ) = sup|s−t|<δ | f (s)− f (t)| is the modulus of con-
tinuity of f .

3) ∀ f ∈C
(
[0,T ]

)
:

‖Γ f‖ ≤ 2‖ f‖, ‖l‖ ≤ ‖ f‖.

Remark 1.1.2 The considerations in this manuscript are restricted to continuous pro-
cesses; however, it is natural to define the Skorokhod problem for càdlàg functions (see
e.g. [13]) or to consider a possibility of a jump-type exit from the boundary (see [55]).

• • • • • • • • • • • •

1.2 Reflecting SDE

Let {w(t), t ≥ 0} be a Wiener process adapted to a filtration {Ft , t ≥ 0}, a = a(t,x),
b = b(t,x) : [0,∞)× [0,∞)→ R be measurable functions, ξ0 ≥ 0 be F0-measurable. We
will always assume that Ft is completed by events of null probability and continuous
from the right.

The aim of this chapter is to construct a process ξ (t) with values in [0,∞) that has a
stochastic differential of the form

dξ (t) = a
(
t,ξ (t)

)
d t +b

(
t,ξ (t)

)
dw(t)

if ξ (t)> 0 and continuously reflects in some sense into the positive half-line when ξ hits
0. Much like the reasoning of the previous chapter, it is natural to give the following
definition.
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Definition 1.2.1 A pair of continuous Ft -adapted processes
(
ξ (t), l(t)

)
, t ≥ 0, is a solu-

tion of the SDE

dξ (t) = a
(
t,ξ (t)

)
d t +b

(
t,ξ (t)

)
dw(t)+ d l(t), t ≥ 0,

with reflection at 0 and the initial condition ξ (0) = ξ0, if

1) ξ (t)≥ 0, t ≥ 0;

2) l is non-decreasing, l(0) = 0;

3)
∫ t

0
1Iξ (s)>0 d l(s) = 0, t ≥ 0;

4) ξ (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

∫ t

0
b
(
s,ξ (s)

)
dw(s)+ l(t), t ≥ 0, a.s, (1.5)

and all the integrals are well-defined.

Let us discuss a relation between the solution of (1.5) and the Skorokhod problem.
Assume that ω is such that (1.5) is satisfied. Denote

Y (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

∫ t

0
b
(
s,ξ (s)

)
dw(s).

Then all conditions in Definition 1.2.1 for Y (t) coincide with the conditions in Defini-
tion 1.1.1 for f (t). By Theorem 1.1.1,

ξ (t) =
(
ΓY
)
(t), t ≥ 0, (1.6)

and Y (t) is a solution of the following Itô’s equation

Y (t) = ξ0 +
∫ t

0
a
(
s,ΓY (s)

)
ds+

∫ t

0
b
(
s,ΓY (s)

)
dw(s). (1.7)

Remark 1.2.1 For any non-anticipating continuous process Y (t), t ≥ 0, the process(
ΓY
)
(t) is also continuous and non-anticipating.

It is easy to see that if Y (t), t ≥ 0, is a solution of (1.7), then

ξ (t) = ΓY (t), l(t) = ξ (t)−Y (t)
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is a solution of (1.5).

Applying standard results on the solvability of Itô’s equation, we get the following
existence and uniqueness theorem.

Theorem 1.2.1 Let ξ0 be a non-negative F0-adapted random variable. Assume that
measurable functions a = a(t,x), b = b(t,x) satisfy the

1) Lipschitz condition in x, uniformly in time:

∃ L > 0 ∀ t ≥ 0 ∀ x1,x2 ∈R+ : |a(t,x1)−a(t,x2)|+ |b(t,x1)−b(t,x2)| ≤ L|x1−x2|;

2) linear growth condition in x, uniformly in time:

∃C > 0 ∀ t ≥ 0 ∀ x ∈ R+ : |a(t,x)|+ |b(t,x)| ≤C
(
1+ |x|

)
.

Then there exists a unique solution to the reflecting SDE (1.5).

For proof, it is sufficient to notice (see Lemma 1.1.1), that

∀t > 0 ∀y1,y2 ∈C
(
[0, t]

)
:∣∣∣a(t,(Γy1

)
(t)
)
−a
(
t,
(
Γy2
)
(t)
)∣∣∣+ ∣∣∣b(t,(Γy1

)
(t)
)
−b
(
t,
(
Γy2
)
(t)
)∣∣∣

≤ L
∣∣∣(Γy1

)
(t)−

(
Γy2
)
(t)
∣∣∣≤ 2L‖y1− y2‖[0,t];

where ‖ f‖[0,t] := sups∈[0,t] | f (t)|;

∀ t > 0 ∀y ∈C
(
[0; t]

)
:∣∣∣a(t,(Γy

)
(t)
)∣∣∣+ ∣∣∣b(t,(Γy

)
(t)
)∣∣∣≤C

(
1+ |Γy(t)|

)
≤ 2C

(
1+‖y‖[0,t]

)
.

Let us also give another way to prove uniqueness (cf. proof of Theorem 1.1.1) which
will be useful in the multidimensional case. Let (ξ1, l1) and (ξ2, l2) be solutions of (1.5).
Then by Itô’s formula,
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(
ξ1(t)−ξ2(t)

)2

=
∫ t

0

{
2
(
ξ1(z)−ξ2(z)

)[
a
(
z,ξ1(z)

)
−a
(
z,ξ2(z)

)]
+
[
b
(
z,ξ1(z)

)
−b
(
z,ξ2(z)

)]2} dz

+2
∫ t

0

(
ξ1(z)−ξ2(z)

)
d
(
l1(z)− l2(z)

)
+2

∫ t

0

(
ξ1(z)−ξ2(z)

)[
b
(
z,ξ1(z)

)
−b
(
z,ξ2(z)

)]
dw(z).

(1.8)

Similarly to the proof of Theorem 1.1.1, we have

∫ t

0

(
ξ1(z)−ξ2(z)

)
d
(
l1(z)− l2(z)

)
≤ 0, t ≥ 0.

It remains to take the expectation in (1.8) and apply Gronwall’s lemma. Denote

τn = inf
{

t ≥ 0 : |ξ1(t)|∧ |ξ2(t)| ≥ n
}
.

Then

E
[
ξ1(t ∧ τn)−ξ2(t ∧ τn)

]2 ≤ (2L+L2)E
∫ t∧τn

0

(
ξ1(z)−ξ2(z)

)2 ds

≤
(
2L+L2)∫ t

0
E
[
ξ1(z∧ τn)−ξ2(z∧ τn)

]2 dz.

Gronwall’s lemma yields

∀ n≥ 0 ∀ t > 0 : P
(
ξ1(t ∧ τn) = ξ2(t ∧ τn)

)
= 1.

Since ξi(t) are continuous in t, the last equality implies

P
(
ξ1(t) = ξ2(t), t ≥ 0

)
= 1,

and hence for k = 1,2:

l1(t) = ξk(t)−ξ0−
∫ t

0
a
(
s,ξk(s)

)
ds−

∫ t

0
b
(
s,ξk(s)

)
dw(s) = l2(t), t ≥ 0, a.s.

Exercise 1.2.1 Assume that a and b satisfy conditions of Theorem 1.2.1. Denote by ξx(t)
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a solution of (1.5) with the initial condition ξx(0) = x. Prove that

1) ∀ p≥ 2 ∃ K = K(p,L,C) ∀ t ≥ 0 ∀ x,y≥ 0 ∀ z≥ 0,

E sup
s∈[0,t]

|ξx(s)|p ≤ K(1+ |x|p)eKt , (1.9)

E sup
s∈[0,t]

|ξx(s)− x|p ≤ K(1+ |x|p)t p/2eKt ; (1.10)

E sup
s∈[0,t]

|ξx(s)−ξy(s)|p ≤ K|x− y|peKt ; (1.11)

E|ξx(t + z)−ξx(t)|p ≤ Kzp/2(1+ |x|p)eK(t+z). (1.12)

Hint: Write Itô’s formula, apply Gronwall’s lemma, Lemma 1.1.1 and Burkholder’s
inequality.

2) Prove estimates similar to (1.9), (1.11) and (1.12) for the process lx(t) and

E sup
s∈[0,t]

lp
x (s)≤ Kt p/2(1+ |x|p)eKt . (1.13)

3) Prove that there exist modifications of ξx(t) and lx(t) that are continuous in (t,x).
Hint: Apply the Kolmogorov’s continuity criterion: If ϕ(u) = ϕ(u1, . . . ,un), |ui| ≤
R, is a random field such that

∃β > 0 ∃C > 0 ∃ε > 0 ∀u,v : E
∣∣ϕ(u)−ϕ(v)

∣∣β ≤C|u− v|n+ε ,

then there exists a continuous modification of ϕ(u1, . . . ,un).

Take n = 2, u1 = t, u2 = x and apply (1.11) and (1.12) for ξx(t).

Let us discuss the Markov property for a solution of reflecting SDE (1.2). The method
of proof is the same as for SDEs without reflection.

By ξx,s(t), t ∈ [s,∞), denote a solution of reflecting SDE

dξx,s(t) = a
(
t,ξx,s(t)

)
d t +b

(
t,ξx,s(t)

)
dw(t)+ d lx,s(t), t ∈ [s,∞), (1.14)

with initial condition
ξx,s(s) = x.
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It follows from Exercise 1.2.1 that ξx,s(t) has a measurable (and even continuous) modifi-
cation in (x, t) and that ξx,s(t) is measurable w.r.t. the σ -algebra σ

(
w(z)−w(s),z ∈ [s, t]

)
completed by events of null probability. Hence ξx,s(t) is independent of ξ (s) and with
probability 1, we have that

ξξ (s),s(t)= ξ (s)+
∫ t

s
a
(
z,ξξ (s),s(z)

)
dz+

∫ t

s
b
(
z,ξξ (s),s(z)

)
dw(z)+lξ (s),s(t), t ∈ [s,∞).

Observe that

ξ (t) = ξ (s)+
∫ t

s
a
(
z,ξ (z)

)
dz+

∫ t

s
b
(
z,ξ (z)

)
dw(z)+ l(t)− l(s).

So
(
ξ (t), l(t)− l(s)

)
and

(
ξξ (s),s(t), lξ (s),s(t)

)
, t ∈ [s,∞), are both solutions of (1.14) with

initial condition ξ (s).

It follows from the uniqueness of the solution that

ξ (t) = ξξ (s),s(t) a.s.

Since ξ (s) is Fs-measurable and ξx,s(t) is independent of Fs,

P
(
ξ (t) ∈ A

∣∣Fs
)
= E

(
1Iξξ (s),s(t)∈A

∣∣Fs
)
= E

(
1Iξx,s(t)∈A

)∣∣
x=ξ (s)

= E
(
1Iξξ (s),s(t)∈A

∣∣ξ (s))= P
(
ξ (t) ∈ A

∣∣ξ (s)).
Thus, we have proved the following result.

Theorem 1.2.2 Assume that functions a and b satisfy conditions of Theorem 1.2.1. Then
{ξ (t), t ≥ 0} is a Markov process with transition probabilities

P
(
ξ (t) ∈ A

∣∣ξ (s) = x
)
= P

(
ξx,s(t) ∈ A

)
.

Exercise 1.2.2 Prove that the process
{(

ξ (t), l(t)
)
, t ≥ 0

}
is a Markov process. Is the

process {l(t), t ≥ 0} a Markov process?

Exercise 1.2.3 Let a = 0, b = 1, i.e., ξx(t), t ≥ 0, is a reflecting Wiener process started at
x≥ 0. Set τ(x) = inf{t ≥ 0 : ξx(t) = 0}. Prove that inf{t ≥ 0 : ξx(t) = ξy(t)}= τ(x∨y)

a.s. Describe the behavior of ξx(t), t ≥ 0, as a function of the spatial variable. Consider
also the case of non-constant coefficients.
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Example 1.2.1 Reflection for diffusions can sometimes be modelised via very intricate
stochastic equations (without Skorokhod’s construction). For example, let ξ (t), t ≥ 0, be
a Bessel process with parameter d, see [60]. Assume that τ is a stopping time such that
ξ (τ)> 0 a.s. Put τ0 = inf{t ≥ 0 : ξ (t) = 0}. It is well known that

dξ (t) =
d−1

2
√

ξ (t)
d t + dw(t), t ∈ [τ,τ0),

where w(t), t ≥ 0, is some Wiener process.
If d ∈ (0,1), then τ0 < ∞ a.s. Since ξ (t) ≥ 0, t ≥ 0, it is natural to conjecture that ξ

satisfies the following reflecting SDE

dξ (t) =
d−1

2
√

ξ (t)
d t + dw(t)+ d l(t), t ≥ 0.

However, this is not true if d ∈ (0,1). The reason for this is the divergence of the integral∫
τ0
τ

1/
√

ξ (s) ds = ∞ a.s. Note that there is some specific SDE for ξ , see [60], Ch. XI,
Exercise 1.26. It can be checked that the solution is strong, cf. [5].

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.3 Characterization of reflecting term as a local time

Consider the reflected SDE (1.5). In this section, we show that l(t) is a local time at the
point 0 of the process ξ (t). Let us recall basic facts about the local time of a continuous
semimartingale (see for ex. [60]).

Let {X(t), t ≥ 0} be a continuous semimartingale. It can be proved that, almost surely,
there exists a limit

La(t) = lim
ε→0

1
ε

∫ t

0
1I[a,a+ε]

(
X(s)

)
d〈X ,X〉s

for every a and t ≥ 0. This limit is called the local time of X at a.

1) The Tanaka formula for the local time

La(t) = 2
((

X(t)−a
)+− (X(0)−a

)+−∫ t

0
1IX(s)>a dX(s)

)
=
∣∣X(t)−a

∣∣− ∣∣X(0)−a
∣∣−∫ t

0
sign

(
X(s)−a

)
dX(s) a.s.,

(1.15)
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where signx =

−1, x≤ 0

1, x > 0.
.

2) There exists a modification of {La(t), a ∈ R, t ≥ 0} such that the map (a, t) 7→
La(t) is a.s. continuous in t and càdlàg in a (henceforth we consider only this
modification).

3) For any measurable non-negative function f , the occupation times formula holds:

∫ t

0
f
(
X(s)

)
d〈X ,X〉s =

∫
∞

−∞

f (a)La(t) da a.s. (1.16)

Now let ξ (t) be a solution of (1.5). Then ξ (t) = ξ+(t) = (ξ (t)− 0)+ and by Tanaka’s
formula:

L0(t) = 2
((

ξ (t)−0
)+− (ξ0−0

)+−∫ t

0
1Iξ (s)>0 dξ (s)

)
= 2

(
ξ (t)−ξ0−

∫ t

0
1Iξ (s)>0a

(
s,ξ (s)

)
ds

−
∫ t

0
1Iξ (s)>0b

(
s,ξ (s)

)
dw(s)−

∫ t

0
1Iξ (s)>0 d l(s)

)
= 2

(
ξ (t)−ξ0−

∫ t

0
a
(
s,ξ (s)

)
ds+

∫ t

0
1Iξ (s)=0a(s,0) ds

−
∫ t

0
b
(
s,ξ (s)

)
dw(s)+

∫ t

0
1Iξ (s)=0b(s,0) dw(s)

)
.

Here we used that
∫ t

0 1Iξ (s)>0 d l(s) = 0 by definition.
Hence

L0(t) = 2
(

l(t)−
∫ t

0
1Iξ (s)=0 a(s,0) ds−

∫ t

0
1Iξ (s)=0 b(s,0) dw(s)

)
. (1.17)

Let us give sufficient conditions ensuring that the process ξ spends zero time at 0. By the
occupation times formula (1.16),

∫ t

0
1Iξ (s)=0 d〈ξ ,ξ 〉s =

∫
∞

−∞

1Ia=0 La(t) da = 0 a.s.

So
∫ t

0 1Iξ (s)=0 b2(s,0) ds = 0. Assume that b(s,0) 6= 0 for λ -a.a. s, where λ is the
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Lebesgue measure. Then,

P
(∫ t

0
1Iξ (s)=0 ds = 0, t ≥ 0

)
= 1

and both integrals in (1.17) disappear. Hence, we have proved the following theorem.

Theorem 1.3.1 Assume that b(s,0) 6= 0 for λ -a.a. s≥ 0. Then l(t) = 1
2 L0(t), t ≥ 0, a.s.,

where L0(t) is the local time of ξ at 0.

Remark 1.3.1 Under the assumptions of Theorem 1.1.1, l(t) a.s. equals the two-sided
local time of ξ at 0 defined by

lim
ε→0+

(2ε)−1
∫ t

0
1I[−ε,ε]

(
ξ (s)

)
d〈ξ ,ξ 〉s

.

Remark 1.3.2 In the pioneering work of Skorokhod [64], the process l(t), t ≥ 0, was
identified with some additive functional of the process ξ (t), t ≥ 0. It was proved that for
almost all points

lim
∆t↓0

l(t +∆t)− l(t)√
∆t

=

√
π

8
b(t,0)1Iξ (t)=0

and

l(t) =
√

π

8

∫ t

t0
b(s,0)1Iξ (s)=0

√
ds.

The integral in the right hand side was rigorously defined as some limit of integral sums.

Example 1.3.1 (Local time and maximum process) By Tanaka’s formula,

d
∣∣w(t)∣∣= signw(t) dw(t)+L0

w(t), t ≥ 0.

The process B(t) =
∫ t

0 signw(s) dw(s) is a Brownian motion. So

∣∣w(t)∣∣= B(t)+L0
w(t), t ≥ 0.

Observe that because L0
w(t), t ≥ 0, is a non-decreasing continuous process, it may increase

only when w hits zero (see the definition of a local time). So the pair
(
|w(t)|,L0

w(t)
)

is a
solution of Skorokhod’s problem for B(t).



1.4 Approximation of reflecting SDEs 13

By Theorem 1.1.1:

∣∣w(t)∣∣= (ΓB
)
(t), L0

w(t) = B(t)−
(
ΓB
)
(t) =− min

s∈[0,t]
B(s).

Since a pair
(
ΓB( ·),mins∈[0,·] B(s)

)
has the same distribution as

(
Γw( ·),mins∈[0,·] w(s)

)
,

we have proved the following result.

Theorem 1.3.2 The two processes

{(
|w(t)|,L0

w(t)
)
, t ≥ 0

}
and

{(
w(t)− min

s∈[0,t]
w(s),− min

s∈[0,t]
w(s)

)
, t ≥ 0

}
have the same distribution.

Exercise 1.3.1 ([23], § 23) Extend functions a and b to negative values of x by

a(t,−x) :=−a(t,x), b(t,−x) := b(t,x).

Assume that b(t,0) 6= 0, t ≥ 0. Let ξ (t), t ≥ 0, be a solution of the following SDE on R

dξ (t) = a
(
t,ξ (t)

)
d t +b

(
t,ξ (t)

)
dw(t), t ≥ 0.

Prove that |ξ (t)|, t ≥ 0, satisfies (1.5) with initial condition |ξ (0)| and a new Wiener
process w̃(t) =

∫ t
0 signξ (s) dw(s).

• • • • • • • • • • • • • • • • • • • • • •

1.4 Approximation of reflecting SDEs

Euler’s scheme. Let a,b : R+→R be Lipschitz functions,
(
ξ (t), l(t)

)
be a solution of

reflecting SDE {
dξ (t) = a

(
ξ (t)

)
d t +b

(
ξ (t)

)
dw(t)+ d l(t), t ≥ 0,

ξ (0) = ξ0,
(1.18)

where ξ0 is a non-negative F0-adapted random variable, E(ξ0)
2 < ∞.
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Consider the sequence of processes that satisfy the following reflecting equation:

dξn(t) = a
(
ξn(k/n)

)
d t +b

(
ξn(k/n)

)
dw(t)+ d ln(t), t ∈

[
k
n
,

k+1
n

]
,

where ξn(t)≥ 0, t ≥ 0; ξn(0)= ξ0; ξn(t) is continuous in t; ln(0)= 0; ln is non-decreasing;∫
∞

0 1Iξn(s)>0 d ln(s) = 0. The process ξn(t) can be calculated successively

ξn(t) = ξn(k/n)+a
(
ξn(k/n)

)(
t− k/n

)
+b
(
ξn(k/n)

)(
w(t)−w(k/n)

)
+ ln(t)− ln(k/n), t ∈

[
k
n
,

k+1
n

]
,

where ln(t) is such that ξn(t)≥ 0 and ln(t) does not increase when ξn(t)> 0. This is the
Skorokhod problem on

[ k
n ,

k+1
n

]
for the function

ξn(k/n)+a
(
ξn(k/n)

)(
t− k/n

)
+b
(
ξn(k/n)

)(
w(t)−w(k/n)

)
.

Observe that
(
ξn(t), ln(t)

)
satisfies the equation

ξn(t) = ξ0 +
∫ t

0
a
(
ξn(ϕn(s)

)
ds+

∫ t

0
b
(

ξn
(
ϕn(s)

))
dw(s)+ ln(t), (1.19)

where ϕn(s) = k/n for s ∈
[ k

n ,
k+1

n

)
.

Similarly to the proof of Theorem 1.2.1, denote

Yn(t) := ξ0 +
∫ t

0
a
(

ξn
(
ϕn(s)

))
ds+

∫ t

0
b
(

ξn
(
ϕn(s)

))
dw(s),

Y (t) := ξ0 +
∫ t

0
a
(
ξ (s)

)
ds+

∫ t

0
b
(
ξ (s)

)
dw(s).

Then
ξn(t) =

(
ΓYn
)
(t), ξ (t) =

(
ΓY
)
(t)

and

Yn(t) = ξ0 +
∫ t

0
a
((

ΓYn
)
(ϕn(s))

)
ds+

∫ t

0
b
((

ΓYn
)
(ϕn(s))

)
dw(s),

Y (t) = ξ0 +
∫ t

0
a
((

ΓY
)
(s)
)

ds+
∫ t

0
b
((

ΓY
)
(s)
)

dw(s).
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Exercise 1.4.1 Prove that

sup
n

E sup
t∈[0,T ]

((
Yn(t)

)2
+
(
Y (t)

)2
)
< ∞.

Applying the Lipschitz condition for a and b and the Burkholder inequality, we obtain,
for t ∈ [0,T ],

E sup
s∈[0,t]

(Y (s)−Yn(s))2

≤CE
∫ t

0

(
ΓY (z)−ΓYn

(
ϕn(z)

))2
dz

≤ 2CE
∫ t

0

[(
ΓY (z)−ΓY

(
ϕn(z)

))2
+
(

ΓY
(
ϕn(z)

)
−ΓYn

(
ϕn(z)

))]2
dz

≤ 2C

(
E
∫ t

0

(
ΓY (z)−ΓY

(
ϕn(z)

))2
dz+

∫ t

0
E sup

s∈[0,z]

(
ΓY (s)−ΓYn(s)

)2 dz

)
,

where C is a constant. Applying Gronwall’s lemma yields

E sup
s∈[0,t]

(
Y (s)−Yn(s)

)2 ≤ E
∫ t

0

(
ΓY (z)−ΓY

(
ϕn(z)

))2
dz e2Ct . (1.20)

It follows from Exercise 1.4.1 and the Lebesgue dominated convergence theorem that

E sup
s∈[0,T ]

(
Y (s)−Y

(
ϕn(s)

))2
→ 0, n→ ∞. (1.21)

The application of (1.20), (1.21) and Lemma 1.1.1 yields the convergence

lim
n→∞

E sup
s∈[0,T ]

(
Y (s)−Yn(s)

)2
= 0.

Exercise 1.4.2 Prove that

∀T > 0 ∀ε > 0, ∃c > 0 : E sup
s∈[0,T ]

(
Y (s)−Y

(
ϕn(s)

))2
≤ c

n1−ε
. (1.22)

Hint: Use that
∫ t

0
b
((

ΓY
)
(s)
)

dw(s) =B
(∫ t

0
b2
((

ΓY
)
(s)
)

ds
)

, where B is a Brownian

motion. Since a and b are bounded, it suffices to prove (1.22) for B instead of Y .
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Estimate (1.22) together with (1.20) to give a rate of convergence for Euler approxima-
tions.

Remark 1.4.1 For more on Euler’s schemes and estimates for their rates of convergence
for reflecting SDEs in multidimensional domains, see, for example, [67, 47, 40, 48, 68].

Penalization method. Let ξ (t), t ≥ 0, be a solution of (1.18), where a and b are Lips-
chitz functions. Extend a and b to (−∞,0) such that their extensions are again Lipschitz
functions. For example, put a(x) := a(0), b(x) := b(0) for x < 0. The idea of the penal-
ization method is the following. Let us allow a process to penetrate into the set (−∞,0),
at which time we add a very large drift term that pushes the process upward. Namely,
denote by ξn(t) a solution of the SDE

dξn(t) = a
(
ξn(t)

)
d t +b

(
ξn(t)

)
dw(t)+gn

(
ξn(t)

)
d t, t ≥ 0,

where

gn(x) =

0 x≥ 0

−nx x < 0
. (1.23)

Theorem 1.4.1 Assume that ξn(0) = ξ (0) = x≥ 0. Then

sup
t∈[0,T ]

|ξn(t)−ξ (t)| P−→ 0, n→ ∞, (1.24)

sup
t∈[0,T ]

∣∣∣∣∫ t

0
gn
(
ξn(s)

)
ds− l(t)

∣∣∣∣ P−→ 0, n→ ∞. (1.25)

Let us sketch the main steps of the proof as a sequence of exercises.

Step 1. Apply Itô’s formula to |ξn(t)|p, where p≥ 2, and prove that

sup
n

sup
t∈[0,T ]

E|ξn(t)|p < ∞, (1.26)

sup
n

E
∣∣∣∣∫ T

0
gn
(
ξn(t)

)
d t
∣∣∣∣p < ∞. (1.27)

Step 2. Use the Burkholder inequality and prove that for any p≥ 2

sup
n

E sup
t∈[0,T ]

|ξn(t)|p < ∞. (1.28)
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Step 3. Use Itô’s formula for p > 2:

|ξn(t)|p1Iξn(t)<0 ≤ −np
∫ t

0
|ξn(z)|p1Iξn(z)<0 dz

+ c
∫ t

0

(
|ξn(z)|p−2 + |ξn(z)|p−1 + |ξn(z)|p

)
dz+M(t),

where M(t) = −
∫ t

0
p|ξn(z)|p−11Iξn(z)<0b

(
ξn(z)

)
dw(z), EM(t) = 0 and c is a constant

independent of n. Prove that

c
(
xp−1 + xp−2)≤ np

2
xp +

c1

np/2−1 , x≥ 0.

Further, make the conclusion that

sup
t∈[0,T ]

E|ξn(t)|p1Iξn(t)<0 <
c2

np/2−1 ,

E
∫ T

0
n|ξn(z)|p1Iξn(z)<0 dz <

c2

np/2−1 .

Step 4. Apply Burkholder’s inequality and prove that

E sup
t∈[0,T ]

|ξn(t)|p1Iξn(t)<0 <
c2

np/2−1 . (1.29)

Step 5. By Itô’s formula

(
ξn(t)−ξm(t)

)2

≤
∫ t

0
2
(
ξn(z)−ξm(z)

)(
−nξn(z)1Iξn(z)<0 +mξm(z)1Iξm(z)<0

)
dz

+ c4

∫ t

0

(
ξn(z)−ξm(z)

)2 dz+M(t), (1.30)

where M(t) is a martingale, EM(t) = 0. The first term in the right hand side of (1.30)
does not exceed

2(n+m)
∫ t

0
ξn(z)ξm(z)1Iξn(z)<01Iξm(z)<0 dz.
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It follows from (1.27) and (1.29) that

E
∫ T

0
nξn(z)ξm(z)1Iξn(z)<01Iξm(z)<0 dz

≤ E
∫ T

0
n|ξn(z)|1Iξn(z)<0 dz · sup

t∈[0,T ]
|ξm(t)|1Iξm(t)<0

≤

(
E

(∫ T

0
n|ξn(z)|1Iξn(z)<0 dz

)q)1/q

·E

(
sup

t∈[0,T ]
|ξm(t)|p1Iξm(t)<0

)1/p

≤ c5

n1/2−1/p . (1.31)

Combining Gronwall’s lemma, (1.30) and (1.31) yields

sup
t∈[0,T ]

E
(
ξn(t)−ξm(t)

)2 ≤ c6

(
1

n1/2−1/p +
1

m1/2−1/p

)
.

Applying Burkholder’s inequality again, we can get

E sup
t∈[0,T ]

(
ξn(t)−ξm(t)

)2 ≤ c7

(
1

n1/2−1/p +
1

m1/2−1/p

)
. (1.32)

Step 6. It follows from (1.32) that there is a continuous non-anticipating process ξ̃ (t)

such that
E sup

t∈[0,T ]

(
ξn(t)− ξ̃ (t)

)2
→ 0, n→ ∞. (1.33)

It remains to verify that ξ̃ (t) is a solution of (1.18). Indeed, (1.33) yields

E sup
t∈[0,T ]

(∫ t

0
a
(
ξn(s)

)
ds−

∫ t

0
a
(
ξ̃ (s)

)
ds

)2

+E sup
t∈[0,T ]

(∫ t

0
b
(
ξn(s)

)
dw(s)−

∫ t

0
b
(
ξ̃ (s)

)
dw(s)

)2

→ 0, n→ ∞.

This implies that there is a continuous process l̃(t), t ∈ [0,T ], such that

E sup
t∈[0,T ]

(
−n
∫ t

0
ξn(s)1Iξn(s)<0 ds− l̃(t)

)2

→ 0, n→ ∞.
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This process is non-negative and nondecreasing as a limit of such processes. It is easy to
see that

∫ T
0 1I

ξ̃ (s)>0 d l̃(s) = 0 a.s.

It follows from (1.29) and (1.33) that ξ̃ (t) ≥ 0, t ∈ [0,T ], a.s. Thus,
(

ξ̃ (t), l̃(t)
)

is a
solution of (1.18). This completes the proof of Theorem 1.4.1.

Remark 1.4.2 The idea of the proof is taken from [42], where the approximation scheme
for reflecting SDE in a multidimensional convex set was considered. Note that we can
even find some estimates for a rate of convergence using the reasoning above, see also [48,
68, 39].

A penalization coefficient gn must not necessarily be of the form (1.23). The statement
of Theorem 1.4.1 holds true, for example, for gn(x) = g(nx), where g is a smooth function
such that

g(x) = 0, x > 0 and g(x) =
1
x2 , x ∈ (0,1);

see [52]. In this case a process ξn(t) cannot even reach 0.





Chapter 2

Multidimensional reflecting
SDEs

2.1 Warm up calculations. Skorokhod’s problem in a
half-space

In this section we consider the reflecting problem in a half-space Rd
+ = Rd−1× [0,∞).

On the one hand, we will see a lot of similarities with the one-dimensional case. On
the other hand, we will see possible ways of generalization to more complex domains or
non-normal reflections.

As in the previous chapter, let us start with a deterministic Skorokhod’s problem.

Definition 2.1.1 Let f = ( f1, . . . , fd) ∈ C
(
[0,∞),Rd

)
be a continuous function such

that f (0) ∈ Rd
+. A pair of continuous functions g = (g1, . . . ,gd) ∈ C

(
[0,∞),Rd

)
and

l ∈ C
(
[0,∞)

)
is called a solution of Skorokhod’s reflecting problem in Rd

+ with normal
reflection at the boundary ∂Rd

+ = Rd−1×{0} if

1) g(t) ∈ Rd
+, t ≥ 0;

2) g(t) = f (t)+nl(t), t ≥ 0, where n = (0, . . . ,0,1);

3) l is non-decreasing, l(0) = 0,∫
∞

0
1Ig(s)/∈∂Rd

+
d l(s) = 0.

21
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It is easily seen from the definition that

g1(t) = f1(t), . . . , gd−1(t) = fd−1(t),

and
gd(t) = fd(t)+ l(t),

∫
∞

0
1Igd(s)>0 d l(s) = 0.

Thus, the pair (gd , l) is the exact solution of the one-dimensional Skorokhod problem for
fd . Therefore

l(t) =− min
s∈[0,t]

fd(s)∧0, gd(t) = fd(t)− min
s∈[0,t]

fd(s)∧0 = Γ fd(t).

Define a multidimensional Skorokhod’s map by the same symbol:

Γ f (t) = Γ
(

f1, . . . , fd
)
(t) =

(
f1(t), . . . , fd−1(t),Γ fd(t)

)
.

Obviously, all estimates of Lemma 1.1.1 hold true for this situation.

Let us consider a multidimensional reflecting SDE in Rd
+ with normal reflection at the

boundary.

Let a = a(t,x) : [0,∞)×Rd → Rd , bk = bk(t,x) : [0,∞)×Rd → Rd , k = 1,m, be mea-
surable functions, {wk(t), t ≥ 0}, k = 1,m, be independent Wiener processes adapted to
a filtration Ft and ξ0 be F0-measurable. Similarly to Definition 1.2.1, we say that a pair
of continuous Ft -adapted processes

(
ξ (t), l(t)

)
, t ≥ 0, is a solution of a reflecting SDE

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+n d l(t), t ≥ 0,

in Rd
+ with normal reflection at the boundary and with initial condition ξ0 ∈ Rd

+ if the
following conditions are a.s. satisfied:

1) ξ (t) ∈ Rd
+, t ≥ 0;

2) l(0) = 0, l is non-decreasing;

3)
∫ t

0
1I

ξ (s)/∈∂Rd
+

d l(s) = 0, t ≥ 0;
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4) ξ (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

m

∑
k=1

∫ t

0
bk
(
s,ξ (s)

)
dwk(s)+nl(t), t ≥ 0, (2.1)

and all the integrals are well-defined.

In coordinate form, equation (2.1) is as follows

dξ1(t) = a1
(
t,ξ (t)

)
d t +

m

∑
k=1

bk,1
(
t,ξ (t)

)
dwk(t),

...

dξd−1(t) = ad−1
(
t,ξ (t)

)
d t +

m

∑
k=1

bk,d−1
(
t,ξ (t)

)
dwk(t),

dξd(t) = ad
(
t,ξ (t)

)
d t +

m

∑
k=1

bk,d
(
t,ξ (t)

)
dwk(t)+ d l(t).

If we denote

Y (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

m

∑
k=1

bk
(
s,ξ (s)

)
dwk(s),

then ξ (t) =
(
ΓY
)
(t) (compare with (1.6), (1.7)) and

Y (t) = ξ0 +
∫ t

0
a
(
s,
(
ΓY
)
(s)
)

ds+
m

∑
k=1

∫ t

0
bk
(
s,
(
ΓY
)
(s)
)

dwk(s).

Since the multidimensional Skorokhod’s map Γ satisfies the Lipschitz condition in a space
of continuous functions (see Lemma 1.1.1), we have the following existence and unique-
ness theorem. The Markov property can also be proved similarly to Theorem 1.2.2.

Theorem 2.1.1 Assume that functions a and bk,k = 1,m, satisfy the

1) global Lipschitz condition in x:

∃L ∀t ≥ 0 ∀x1,x2 ∈Rd
+ :
∣∣a(t,x1)−a(t,x2)

∣∣+ m

∑
k=1

∣∣bk(t,x1)−bk(t,x2)
∣∣≤ L|x1−x2|;



24 2 Multidimensional reflecting SDEs

2) linear growth condition in x:

∃C ∀t ≥ 0 ∀x ∈ Rd
+ :
∣∣a(t,x)∣∣+ m

∑
k=1

∣∣bk(t,x)
∣∣≤C

(
1+ |x|

)
.

Then there exists a unique solution to (2.1). The process ξ (t), t ≥ 0, is a Markov process.

Exercise 2.1.1 Solve Exercise 1.2.1 under the conditions of Theorem 2.1.1.

Remark 2.1.1 It is well known, see e.g. [36], that an SDE in the entire Euclidean space
Rd with smooth bounded coefficients generates a flow of diffeomorphisms of Rd . This
is not true for reflecting SDEs. Assume for simplicity that coefficients of (2.1) are time-
homogeneous, infinite-differentiable with bounded derivatives and that diffusion is not
degenerate everywhere. Then for any fixed t > 0, a map Rd

+ 3 x→ ξx(t) ∈ Rd
+ is not an

injection with probability 1. Moreover, this map does not belong to a class C1
(
Rd
+,Rd

+

)
(see Exercise 1.2.3 for one-dimensional case). Nevertheless ξ.(t) ∈

⋂
p≥1 W 1

p,loc(Rd
+,Rd

+)

and its Sobolev derivative satisfies a particular stochastic equation. See results on stochas-
tic reflecting flows in [3, 11, 12, 49, 50, 51, 52, 53, 54].

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.2 Skorokhod’s problem in a domain. Definition and
preliminaries

As we have seen in the previous section, if one is able to prove nice properties of the
Skorokhod map, then the theorem on existence and uniqueness for reflecting SDEs can
be easily proved. We now give an abstract definition of the Skorokhod problem in any
domain. We even assume the possibility of a multivalued reflecting vector field. This
may be useful if we consider domains with a non-smooth boundary; for example, if we
need to define a direction of a reflection when a process visits a vertex of a corner.

Let D⊂Rd be an open set with a boundary ∂D. By D, denote the closure of D. Assume
that, for any x ∈ ∂D, a non-empty set of reflecting directions Kx is given. We will assume
that |v| 6= 0 for any v ∈ Kx. Let f ∈C

(
[0,∞),Rd

)
, f (0) ∈ D.

Definition 2.2.1 A pair of continuous functions (g, l) : [0,∞)→ Rd× [0,∞) is a solution
of the Skorokhod problem for (D,K, f ) if, for any t ≥ 0,
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1) g(t) = f (t)+
∫ t

0
v
(
g(s)

)
d l(s), (2.2)

2) g(t) ∈ D, v
(
g(t)

)
∈ Kg(t) if g(t) ∈ ∂D,

3) l is a non-decreasing function, l(0) = 0, and

∫ t

0

∣∣∣v(g(s))∣∣∣ d l(s)< ∞,
∫ t

0
1g(s)/∈∂G d l(s) = 0, t ≥ 0.

If the Skorokhod problem has a unique solution, we denote g by Γ f and call Γ the Sko-
rokhod map.

Remark 2.2.1 Sometimes it is convenient to assume that |v|= 1 for v ∈ Kx, x ∈ ∂D. If we
denote ϕ(t) :=

∫ t
0 v
(
g(s)

)
d l(s), then ϕ(t) =

∫ t
0 v
(
g(s)

)
d |ϕ|(s), where |ϕ|(t) is the total

variation of ϕ on [0, t].

Remark 2.2.2 Let K′x = {c(x)v(x) : v(x) ∈ K}, where c is a positive continuous function.
Then (g, l) is a solution of the Skorokhod problem for (D,K, f ) iff (g, l′) is a solution of
the Skorokhod problem for (D,K′, f ), where l′(t) =

∫ t
0 c−1

(
g(s)

)
d l(s).

Remark 2.2.3 If the set Kx contains only one element v(x), then we interpret (2.2) as a re-
flecting problem with reflection along a vector field v. In particular, the case D =Rd

+ with
normal reflection was considered in the previous section. We will also sometimes say that
g is a solution of (2.2) without mentioning l and conditions 2) and 3) of Definition 2.2.1.

Now let {Ft , t ≥ 0} be a filtration satisfying usual assumptions; {wk(t), t ≥ 0}, k =

1,m, be independent Wiener processes adapted to {Ft , t ≥ 0}; a = a(t,x), bk = bk(t,x),
k = 1,m, be measurable functions; ξ0 ∈ D be F0-measurable random variable.

Definition 2.2.2 A pair
(
ξ (t), l(t)

)
of continuous Ft -adapted processes is a solution of

a reflecting SDE

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+ v

(
ξ (t)

)
d l(t), t ≥ 0, (2.3)

with initial condition ξ (0) = ξ0 if

ξ (t) ∈ D, t ≥ 0;
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l is non-decreasing, l(0) = 0,

∫ t

0

∣∣∣v(ξ (s))∣∣∣ d l(s)< ∞,
∫ t

0
1Iξ (s)/∈∂D d l(s) = 0, t ≥ 0,

where v
(
ξ (s)

)
∈ Kξ (s) if ξ (s) ∈ ∂D; for t ≥ 0,

ξ (t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

m

∑
k=1

∫ t

0
bk
(
s,ξ (s)

)
dwk(s)+

∫ t

0
v
(
ξ (s)

)
d l(s), (2.4)

and all the integrals in (2.4) are well defined.

Remark 2.2.4 Sometimes we say that “ξ (t) is a solution of (2.3).” In this case we always
have the process l(t) in mind as well.

Remark 2.2.5 Together with (2.2) and (2.4), equations with a time-dependent vector field
v = v(t,x) can be considered (the corresponding definition is similar). This situation is
investigated in §3.1, 3.2; however, almost all results of this chapter (except §2.5) have
natural generalisations to the case of time-dependent reflection.

We have seen in the previous section that there is a strong relationship between prop-
erties of Skorokhod’s problem and reflecting SDEs. Namely, assume that Skorokhod’s
problem (2.2) has a unique solution and the Skorokhod map Γ is a continuous mapping
in C

(
[0,∞),Rd

)
. This implies that the map Γ : C

(
[0,∞),Rd

)
→ C([0,∞),Rd) is non-

anticipative. Observe that the process ξ (t) from (2.3) is a solution of the Skorokhod
problem for (D,K,η) with

η(t) = ξ0 +
∫ t

0
a
(
s,ξ (s)

)
ds+

m

∑
k=1

∫ t

0
bk
(
s,ξ (s)

)
dwk(s), t ≥ 0. (2.5)

That is, η(t), t ≥ 0, is a solution of Itô’s equation

η(t) = ξ0 +
∫ t

0
a
(
s,Γη(s)

)
ds+

m

∑
k=1

∫ t

0
bk
(
s,Γη(s)

)
dwk(s). (2.6)

Vice versa, if η is a solution of (2.6), then ξ = Γη is a solution of (2.4).

Remark 2.2.6 Since Γ is a non-anticipative map in C
(
[0,∞),Rd

)
, for any continuous

Ft -adapted process η(t), t ≥ 0, the process
(
Γη
)
(t), t ≥ 0, is also continuous and Ft -

adapted.
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Exercise 2.2.1 Prove Theorem 2.1.1 for a general domain D and reflection directions Kx

if Γ is a Lipschitz map in a space of continuous functions.

Remark 2.2.7 Notice that the local Lipschitz condition is usually sufficient for uniqueness
of a solution to Itô’s SDE. If we could additionally ensure that a solution does not blow
up, then we are able to prove the global existence too. This means that an investigation of
properties of deterministic Skorokhod’s maps such as continuity, the Lipschitz condition
or the local Lipschitz condition, etc., is very important for the study of reflecting SDEs.
We already know that the Skorokhod map in a half-plane with normal reflection is Lip-
schitz continuous. In the next section, we use a change of variables and localization to
reduce some reflecting SDEs to the known case.

Example 2.2.1 (Skorokhod’s problem with oblique reflection in a half-space) Let
D = Rd−1× (0,∞), v(x), x ∈ ∂Rd

+, be a vector field with values in Rd , f be a continuous
function with values in Rd , f (0) ∈ Rd

+.

Consider the Skorokhod problem

g(t) = f (t)+
∫ t

0
v
(
g(s)

)
d l(s), (2.7)

where l is a non-decreasing continuous function, l(0) = 0,

l(t) =
∫ t

0
1Ig(s)∈∂Rd

+
d l(s).

Assume that the scalar product (v(x),n) is equal to 1 where n = (0, . . . ,0,1), i.e.,

v(x) =
(
v1(x), . . . ,vd−1(x),1

)
. (2.8)

Let us write (2.7) in the coordinate form

g1(t) = f1(t)+
∫ t

0
v1
(
g(s)

)
d l(s), t ≥ 0,

...

gd−1(t) = fd−1(t)+
∫ t

0
vd−1

(
g(s)

)
d l(s), t ≥ 0,

gd(t) = fd(t)+ l(t), t ≥ 0.

(2.9)
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The last equality in (2.9) means that gd is a solution of the one-dimensional Skorokhod
problem. Therefore

l(t) =− min
s∈[0,t]

(
fd(s)∧0

)
and

gd(t) = fd(t)− min
s∈[0,t]

(
fd(s)∧0

)
.

The first (d − 1) equations in (2.9) are integral equations. If v satisfies the Lipschitz
condition, then there is a unique solution to (2.9).

Exercise 2.2.2 Assume that ν satisfies the Lipschitz condition. Let { f (n)} converge to f

uniformly on [0,T ]. Prove the uniform convergence

l(n) ⇒ l and g(n) ⇒ g as n→ ∞,

on [0,T ].

Exercise 2.2.3 Assume that v is continuous and
(
v(x),n

)
< 0 for all x from some open

set of ∂Rd
+. Construct an example when a solution of the Skorokhod problem does not

exist.

Exercise 2.2.4 Let v(x) = v = const, x∈Rd
+, (v,n)> 0. Find a solution of the Skorokhod

problem and prove that Skorokhod’s map is Lipschitz continuous.

Assume that v is a Lipschitz function and that
(
v(x),n

)
= 1, x ∈ ∂Rd

+. Let us make the
traditional estimates in (2.9) and try to prove that Skorokhod’s map is Lipschitz continu-
ous.

Let f (1), f (2) ∈C
(
[0,T ],Rd

)
, f (1)(0), f (2)(0) ∈ Rd

+. We know from §1.1 that

‖l(1)− l(2)‖ ≤ 2‖ f (1)− f (2)‖,

where ‖ f‖= maxt∈[0,T ] | f (t)|. We have

∣∣g(1)(t)−g(2)(t)
∣∣

≤ 2
∣∣ f (1)(t)− f (2)(t)

∣∣+ ∣∣∣∣∫ t

0
v
(
g(1)(s)

)
d l(1)(s)−

∫ t

0
v
(
g(2)(s)

)
d l(2)(s)

∣∣∣∣
≤
∣∣ f (1)(t)− f (2)(t)

∣∣+ c
∫ t

0

∣∣g(1)(s)−g(2)(s)
∣∣ d l(1)(s)
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+

∣∣∣∣∫ t

0
v
(
g(2)(s)

)
d
(
l(1)(s)− l(2)(s)

)∣∣∣∣ , (2.10)

where c is the Lipschitz constant of v. If we remove the third term in the right hand side
of (2.10) and apply Gronwall’s lemma to (2.10), then the bound for |g(1)(t)−g(2)(t)| will
be at least exp

{
cl(1)(t)

}∣∣ f (1)(t)− f (2)(t)
∣∣. Recall that l(1)(t) =−mins∈[0,t]

(
f (1)d (s)∧0

)
depends on f (1).

Therefore, the Lipschitz constant might be non-global and might depend on ‖ f‖. But in
a reflecting SDE, the role of f has an unknown process η(t), that depends on ξ , see (2.5).
This adds some difficulties to the study of reflecting SDEs in a general domain.

Note that we forgot to consider the third term in (2.10). It is questionable that a function
of the form ∫ t

0
v
(
g(s)

)
d
(
l(1)(s)− l(2)(s)

)
can be bounded by const ·‖ f (1)− f (2)‖ if we do not have some specific assumptions on
g. This example shows that in very simple situations, the traditional approach might be
inapplicable. Surely, some other way to show the Lipschitz property may exist.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.3 Weak solution of reflecting SDEs. Existence and
convergence

Definition 2.3.1 We say that (2.3) has a weak solution if there exists a probability space
with filtration (Ω,F ,P,Ft), Ft -Wiener processes {wk(t), t ≥ 0}, k = 1,m and processes
{ξ (t), t ≥ 0}, {ϕ(t), t ≥ 0} that satisfy all conditions given in §2.2.

Theorem 2.3.1 Assume that the Skorokhod map of a reflecting problem for (D,K, f ) is
uniquely defined and continuous in f . In other words, if fn ∈C

(
[0,∞),Rd

)
, fn(0) ∈ D,

n≥ 0 are such that

∀ T > 0 : max
t∈[0,T ]

∣∣ fn(t)− f0(t)
∣∣→ 0, n→ ∞,

then
∀ T > 0 : max

t∈[0,T ]

∣∣∣(Γ fn
)
(t)−

(
Γ f0
)
(t)
∣∣∣→ 0, n→ ∞.
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Suppose that a = a(t,x), bk = bk(t,x) are bounded functions which are continuous in
(t,x). Then there exists a weak solution to equation (2.3).

Proof. Let ϕn(t) = k
n , t ∈

[ k
n ,

k+1
n

)
. Consider a sequence of reflecting SDEs

dξn(t) = a
(

t,ξn
(
ϕn(t)

))
d t +

m

∑
k=1

bk

(
t,ξn

(
ϕn(t)

))
dwk(t)+ v

(
ξn(t)

)
d ln(t), t ≥ 0,

(2.11)
with the initial condition ξn(0) = ξ0. Observe that (2.11) can be solved successively on
each interval

[ k
n ,

k+1
n

)
similarly to §1.4. The existence and uniqueness of a solution to the

Skorokhod problem ensures the existence and uniqueness of a solution to (2.11).

Lemma 2.3.1 Let
{

αn(t), t ∈ [0,T ]
}

, n ≥ 1 be a sequence of measurable Ft -adapted
processes. Assume that

sup
n

sup
t

sup
ω

∣∣αn(t,ω)
∣∣< ∞.

Then distributions of sequences
{∫ t

0 αn(s) ds, t ∈ [0,T ]
}

n≥1 and
{∫ t

0 αn(s) dwk(s), t ∈
[0,T ]

}
n≥1 are weakly relatively compact in C

(
[0,T ],Rd

)
.

A proof can be found in, e.g. [30].

Denote

ηn(t) = ξ0 +
∫ t

0
a
(

s,ξn
(
ϕn(s)

))
ds+

m

∑
k=1

∫ t

0
bk

(
s,ξn

(
ϕn(s)

))
dwk(s).

Then,
ξn(t) = Γηn(t).

It follows from Lemma 2.3.1 that if the distributions of∫ t

0
a
(

s,ξn
(
ϕn(s)

))
ds,

∫ t

0
bk

(
s,ξn

(
ϕn(s)

))
dwk(s), n≥ 1,

are weakly relatively compact in C
(
[0,T ],Rd

)
, then so are the distributions of {ηn,n≥ 1}.

Since Γ is continuous, distributions of {ξn,n≥ 1} are also weakly relatively compact. Se-
lect a subsequence {nk,k ≥ 1} such that all mentioned sequences are weakly convergent.
Without loss of generality, we will assume that these sequences are weakly convergent
themselves.
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We need the following Skorokhod’s representation theorem; see [65] or [31] for more
information.

Theorem 2.3.2 Let {ζn,n ≥ 1} be a sequence of random elements with values in a
complete separable metric space. Assume that the distributions of {ζn,n ≥ 1} converge
weakly. Then, there is a probability space and a sequence of random elements {ζ̃n,n≥ 1}
defined on it such that

1) ζ̃n
d
= ζn, n≥ 1,

2) the sequence {ζ̃n,n≥ 1} converges almost surely.

Let us apply Skorokhod’s representation theorem to the sequence

{(
ηn( ·),ξn( ·),

∫ ·
0

a
(

s,ξn
(
ϕn(s)

))
ds,
∫ ·

0
bk

(
s,ξn

(
ϕn(s)

))
dwk(s),wk( ·),

k = 1,m
)}

n≥1
,

where the metric space is the space of functions which are continuous on [0,T ] with
values in Rd×Rd×Rd×Rdm×Rm.

We obtain a sequence of copies

Xn =
(

η̃n, ξ̃n, Ãn, B̃n,k, w̃n,k,k = 1,m
)
, n≥ 1

that converges almost surely as n→ ∞. Let F̃ n
t be a filtration generated by {Xn(s),s ∈

[0, t]}, completed by sets of null probability. It is easy to see that
{

w̃n,k(t), t ∈ [0,T ]
}

,
k = 1,m, are independent F̃ n

t -Wiener processes (they may depend on n). It can be seen
that ξ̃n = Γη̃n,

Ãn(t) =
∫ t

0
a
(

s, ξ̃n
(
ϕn(s)

))
ds a.s., (2.12)

B̃n,k(t) =
∫ t

0
bk

(
s, ξ̃n

(
ϕn(s)

))
d w̃n,k(s) a.s. (2.13)

By X =
(

η̃ , ξ̃ , Ã, B̃k, w̃k,k = 1,m
)

denote the limit of {Xn}. Let us pass to the limit in the
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equation

η̃n(t) = ξ̃n(0)+
∫ t

0
a
(

s, ξ̃n
(
ϕn(s)

))
ds+

m

∑
k=1

∫ t

0
bk

(
s, ξ̃n

(
ϕn(s)

))
d w̃n,k(s).

We have uniform convergence, i.e.

ξ̃n( ·)⇒ξ̃ ( ·), n→ ∞ a.s.

By continuity of a in x, boundedness of a and Lebesgue’s dominated convergence theo-
rem, we have ∫ ·

0
a
(

s, ξ̃n
(
ϕn(s)

))
ds⇒

∫ ·
0

a
(
s, ξ̃ (s)

)
ds, n→ ∞ a.s. (2.14)

Since Γ is continuous, convergence (in the space of continuous functions)

η̃n→ η̃ , n→ ∞ a.s.

yields
Γη̃n→ Γη̃ , n→ ∞ a.s.

Note that Γη̃n = ξ̃n ◦ϕn→ ξ̃ , n→∞ a.s. So Γη̃ = ξ̃ a.s. To conclude the proof, it suffices
to verify that η̃(t) satisfies the SDE

η̃(t) = ξ̃ (0)+
∫ t

0
a
(
s,Γη̃(s)

)
ds+

m

∑
k=1

∫ t

0
bk
(
s,Γη̃(s)

)
d w̃k(s).

It remains to check the convergence of stochastic integrals

∫ t

0
bk

(
s, ξ̃n

(
ϕn(s)

))
d w̃n,k(s)→

∫ t

0
bk
(
s, ξ̃ (s)

)
d w̃k(s), n→ ∞. (2.15)

The application of the following result completes the proof of Theorem 2.3.1.

Theorem 2.3.3 ([65]) Let {w̄n(t), t ∈ [0,T ]}, n ≥ 0, be a sequence of G n
t -Wiener pro-

cesses, where G n
t are some filtrations. Assume that G n

t -adapted measurable processes
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gn(t), t ∈ [0,T ], n≥ 0, are such that

∫ T

0
Eg2

n(s) ds < ∞, n≥ 0,

and ∫ T

0
E
(
gn(s)−g0(s)

)2 ds < ∞.

Then

E
[∫ T

0
gn(s) d w̄n(s)−

∫ T

0
g0(s) d w̄0(s)

]2

→ 0, n→ ∞.

Remark 2.3.1 We assume boundedness of a and bk in Theorem 2.3.1 only to have simple
conditions ensuring weak compactness of integrals and the possibility to pass to the limit
in (2.14) and (2.15). If we have some growth conditions for a and bk and some a priori
moments estimates of solutions of (2.11), then the proof can be done similarly.

Remark 2.3.2 The corresponding idea of the proof of a weak solution existence for an
SDE without reflection belongs to Skorokhod, see [64, 66]. For the proof for a reflect-
ing SDE in a domain, see [45, 61]. Another effective method to prove the existence or
convergence of weak solutions is based on an investigation of a submartingale problem
proposed by Stroock and Varadhan [71], see §3.2 further.

The following theorem gives us a continuous dependence of the solution of a reflecting
SDE on its equation’s coefficients.

Theorem 2.3.4 Let ξn(t), t ∈ [0,T ], n≥ 0, be weak (or strong) solutions to the SDE
dξn(t) = an

(
t,ξn(t)

)
d t +

m

∑
k=1

bn,k
(
s,ξn(t)

)
dwk(t)+ v

(
ξn(t)

)
d ln(t), t ≥ 0

ξn(0) = εn,

(2.16)

where εn are F0-measurable and the reflection vector field v is the same for all n ≥ 0.
Assume that

1) functions {an,bn,k} are bounded by the same constant:

sup
t∈[0,T ]

sup
x

sup
n

(∣∣an(t,x)
∣∣+ m

∑
k=1

∣∣bn,k(t,x)
∣∣)≤ c < ∞;
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2) coefficients converge locally uniformly in x, i.e.

∀N ∀t ∈ [0,T ] : lim
n→∞

sup
|x|≤N

(∣∣an(t,x)−a0(t,x)
∣∣+ m

∑
k=1

∣∣bn,k(t,x)−b0,k(t,x)
∣∣)= 0;

(2.17)

3) for any t ∈ [0,T ], functions a0(t, ·) and b0,k(t, ·) are continuous in x;

4) Skorokhod’s map for reflection vector field v is continuous;

5) the initial conditions converge: εn→ ε0, n→ ∞ weakly (or in probability);

6) equation (2.16) has a unique weak (or strong) solution for n = 0.

Then we have convergence ξn→ ξ0, n→ ∞ in distribution in C
(
[0,T ],Rd

)
(or uniformly

in probability if the solutions were strong).

Proof. Similarly to the proof of the previous theorem, a sequence of processes

Xn =

(
ηn( ·),ξn( ·),

∫ ·
0

an
(
s,ξn(s)

)
ds,
∫ ·

0
bn,k
(
s,ξn(s)

)
dwk(s),wk( ·),k = 1,m

)
, n≥ 1

is weakly relatively compact in a space of continuous functions on [0,T ].

To prove the convergence, it suffices to verify that, for any subsequence {ξnk}, there
is a sub-subsequence {ξnkl

} that converges to ξ0. So, without loss of generality we may
assume that a sequence {Xn,n≥ 1} is weakly convergent. We will show that the limit is
X0.

By Skorokhod’s representation theorem, construct a sequence of copies X̃n that con-
verges almost surely (in the space of continuous functions):(

η̃n, ξ̃n,
∫ ·

0
an
(
s, ξ̃n(s)

)
ds,
∫ ·

0
bn,k
(
s, ξ̃n(s)

)
d w̃n,k(s), w̃n,k( ·),k = 1,m

)
→
(

η̃0, ξ̃0,A0,Bk, w̃k,k = 1,m
)
, n→ ∞ a.s.

It follows from the assumptions of the theorem that

∫ t

0
an
(
s, ξ̃n(s)

)
ds→

∫ t

0
a0
(
s, ξ̃0(s)

)
ds, n→ ∞ a.s. (2.18)
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and by Theorem 2.3.3, we have that

∫ t

0
bn,k
(
s, ξ̃n(s)

)
d w̃n,k(s)

L2→
∫ t

0
b0,k
(
s, ξ̃0(s)

)
d w̃k(s), n→ ∞. (2.19)

By continuity of Γ,
ξ̃n = Γη̃n→ Γη̃0, n→ ∞ a.s.

So Γη̃0 = ξ̃0 and ξ̃0 is a solution of the limit reflecting SDE, and as the solution must be
unique, ξ̃0

d
= ξ0. Hence the convergence

ξ̃n→ ξ̃0, n→ ∞ a.s.

in C
(
[0,T ],Rd

)
also yields the weak convergence

ξn⇒ ξ0, n→ ∞.

If all solutions {ξn,n≥ 0} are strong, consider a sequence

Xn =
(
ηn,η0,ξn,ξ0,wk,k = 1,m

)
and a corresponding sequence of copies

X̃n =
(
η̃n, η̃n,0, ξ̃n, ξ̃n,0, w̃n,k,k = 1,m

)
that converges a.s. to

X̃0 =
(
η̃0, η̃0,0, ξ̃0, ξ̃0,0, w̃k,k = 1,m

)
.

As before
ξ̃n→ ξ̃0, n→ ∞ a.s.

and
ξ̃n,0→ ξ̃0,0, n→ ∞ a.s.,

where ξ̃0 and ξ̃0,0 are solutions of the same reflecting SDE with the same Wiener pro-
cesses w̃k.

By uniqueness of the strong solution, we have the equality ξ̃0 = ξ̃0,0 a.s. Therefore the
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convergence
ξ̃n− ξ̃n,0→ 0, n→ ∞ a.s.,

implies the convergence in probability

ξn−ξ0
P→ 0, n→ ∞

because ξ̃n− ξ̃n,0
d
= ξn−ξ0.

Remark 2.3.3 The assumption of locally uniform convergence of coefficients in (2.17)
can be relaxed. Indeed, we used (2.17) only in the proof of (2.18) and (2.19). To verify
them, it is sufficient to prove convergence in probability for an

(
s, ξ̃n(s)

)
→ a0

(
s, ξ̃0(s)

)
and bn,k

(
s, ξ̃n(s)

)
→ b0,k

(
s, ξ̃0(s)

)
as n→ ∞. If we have some uniform a priori estimates

of transition densities for ξn(s), n ≥ 0, then pointwise convergence of the coefficients is
sufficient. This follows from the next result.

Lemma 2.3.2 Let X and Y be complete separable metric spaces and (Ω,F ,P) be a prob-
ability space. Let ηn : Ω→ X , hn : X → Y , n≥ 0, be measurable mappings such that

1) ηn→ η0, n→ ∞, in probability;

2) hn→ h0, n→ ∞, in measure ν , where ν is a probability measure on X ;

3) for all n≥ 1,the distribution Pηn of ηn is absolutely continuous w.r.t. the measure ν ;

4) the sequence of densities
{

dPηn
dν

:n≥ 1
}

is uniformly integrable w.r.t. the measureν .

Then hn(ηn)→ h0(η0), n→ ∞, in probability.

The proof can be found, for example, in [8], Corollary 9.9.11 or [16], Lemma 2.

• • • • • • • • • •

2.4 Localization

Let D ⊂ Rd be an open set with a smooth boundary ∂D and ξ (t), t ≥ 0, be a solution
of the reflecting SDE in D:

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+ v

(
ξ (t)

)
d l(t), t ≥ 0,

ξ (0) = ξ0,

(2.20)
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where v is a single-valued vector field. For simplicity, we assume that a and bk are locally
bounded.

Assume that there exists a twice continuously differentiable function ϕ :Rd→Rd such
that ϕ is an injection in some neighborhood of D. This implies that the inverse map is also
C2 in some neighborhood of ϕ(D).

Denote D′ = ϕ(D), ξ ′(t) = ϕ
(
ξ (t)

)
. Then by Itô’s formula,

dξ
′(t) = Ltϕ

(
t,ξ (t)

)
d t +

m

∑
k=1

∇ϕ
(
ξ (t)

)
bk
(
t,ξ (t)

)
dwk(t)+∇ϕ

(
ξ (t)

)
v
(
ξ (t)

)
d l(t)

= a′
(
t,ξ ′(t)

)
d t +

m

∑
k=1

b′k
(
t,ξ ′(t)

)
dwk(t)+ v′

(
ξ
′(t)
)

d l(t), (2.21)

where

Lt f (x) =
d

∑
i=1

ai(t,x)
∂ f (x)

∂xi
+

1
2

d

∑
i, j=1

m

∑
k=1

bki(t,x)bk j(t,x)
∂ 2 f (x)
∂xi∂x j

,


a′(t,y) = Ltϕ

(
t,ϕ−1(y)

)
,

b′k(t,y) = ∇ϕ
(
ϕ
−1(y)

)
bk
(
t,ϕ−1(y)

)
,

v′(y) = ∇ϕ
(
ϕ
−1(y)

)
v
(
ϕ
−1(y)

)
.

(2.22)

Observe that ∂D′ = ∂
(
ϕ(D)

)
= ϕ(∂D), so

∫ t

0
1Iξ ′(s)∈D′ d l(s) = 0, t ≥ 0.

We may consider (2.21) as a reflecting SDE in D′ with a reflection vector field v′(y),
y ∈ ∂D′. Vice versa, if ξ ′(t), t ≥ 0, is a solution of (2.21) with a′, b′k and v′ from (2.22),
then ξ (t), t ≥ 0, is a solution of (2.20). Hence, if we are able to find a change of variables
ϕ such that (2.21) has a unique solution, then (2.20) has a unique solution. For example,
we know from Theorem 2.1.1 that if D′ = Rd

+, v′ = n, and a′ and b′k are of linear growth
and satisfy the Lipschitz condition, then there exists a unique solution to (2.21). We
reduce to this case (at least locally) for a reflecting equation with Lipschitz a and bk if v

is sufficiently smooth and ∂D is a smooth manifold.

It is certainly possible that the global map ϕ does not exist. Suppose that D⊂ Rd is a
bounded open set, D = ∪n

k=1Dk, where Dk are open and either Dk ⊂ D or there exists a



38 2 Multidimensional reflecting SDEs

C3-diffeomorphism ϕk : Rd → Rd such that

ϕk(Dk) = {x ∈ Rd
+ : |x| ≤ 1}, (2.23)

ϕk(∂Dk ∩∂D) = {x ∈ ∂Rd
+ : |x| ≤ 1}, (2.24)

∇ϕk(x)v(x) = n, x ∈ ∂Dk ∩∂D. (2.25)

Assume that a and bk,k = 1,m, are bounded and Lipschitz in x. Solution of (2.20) can be
constructed as follows, see [2]. Let ξ (0) ∈ Di0 . If Di0 ⊂ D, then the last term in (2.20)
has a value of 0 before the instant τ0 when ξ exits Di0 . So (2.20) is a usual SDE without
reflection and ξ is well defined up to τ0.

If Di0 6⊂ D, then we make a change of variables

ξ
′
0(t) := ϕi0

(
ξ (t)

)
.

The process ξ ′0 satisfies a reflecting SDE with Lipschitz coefficients in B = {x ∈ Rd
+ :

|x| < 1}, where the reflecting vector field at {x ∈ ∂Rd
+ : |x| < 1} is n = (0, . . . ,0,1). So

ξ ′0 and ξ are uniquely defined up to the stopping time

τ0 = inf{s≥ 0 : ξ
′
0(s) /∈ B}= inf{s≥ 0 : ξ (s) ∈ D\Di0}.

If τ0 = ∞, then ξ is already constructed. If τ0 < ∞ and ξ (τ0) ∈ Di1 , then, similarly to the
previous reasoning, we can uniquely extend ξ up to the moment τ1,

τ1 = inf{s≥ τ0 : ξ (s) ∈ D\Di1},

and so on. Therefore ξ is uniquely defined up to τ∞ = limn→∞ τn.

Exercise 2.4.1 Prove, under the assumptions made on D, a and bk that

P(τ∞ =+∞) = 1.

If D is unbounded and can be represented as an enumerable union of Dk with the
properties described above, and coefficients a and bk, k = 1,m, are locally bounded and
locally Lipschitz in x, then, using the same reasoning, the process ξ can be uniquely
constructed up to τ∞.
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Example 2.4.1 Let D = Rd
+. Assume that a sufficiently smooth vector field v(x), x ∈

∂Rd
+, satisfies (cf. Example 2.2.1)

(
v(x),n

)
= 1, x ∈ ∂Rd

+. (2.26)

We are going to find a diffeomorphism ϕ : Rd
+→ Rd

+ such that

∇ϕ(x)v(x) = n, x ∈ ∂Rd
+.

One of the ways to do this is the following. Extend v to Rd such that this extension is also
smooth and vd(x) = 1. Consider the first order PDE

∇ϕ(x)v(x) = n, x ∈ Rd , (2.27)

where ϕ : Rd → Rd is such that

ϕ(x1, . . . ,xd−1,0) = (x1, . . . ,xd−1,0),

i.e.
ϕ(x) = x, x ∈ ∂Rd

+.

Denote

x̄ = (x1, . . . ,xd−1), t = xd , ϕ = (ϕ1, . . . ,ϕd)

v̄(x̄) =
(
v1(x1, . . . ,xd−1,0), . . . ,vd−1(x1, . . . ,xd−1,0)

)
.

Recall that vd(x) = 1. Then equation (2.27) is equivalent to d systems of first order PDEs:
∂ϕk(x̄, t)

∂ t
+

d−1

∑
i=1

vi(x̄, t)
∂ϕk(x̄, t)

∂xi
= 0, k = 1,d−1,

ϕ̄k(x̄,0) = xk, k = 1,d−1,

(2.28)


∂ϕd(x̄, t)

∂ t
+

d−1

∑
i=1

vi(x̄, t)
∂ϕd(x̄, t)

∂xi
= 1,

ϕd(x̄,0) = 0.

(2.29)
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By ū(x̄, t) =
(
ū1(x̄, t), . . . , ūd−1(x̄, t)

)
, denote a solution of the following ordinary differ-

ential equation in Rd−1 :
∂ ū(x̄, t)

∂ t
+ v̄
(
ū(x̄, t)

)
= 0

with initial condition
ū(x̄,0) = x̄.

It is well known (see e.g. [17]) that, for any g ∈ C1(Rd−1), the function ψ(x̄, t) =

g
(
ū(x̄, t)

)
is a unique solution of the equation

∂ψ(x̄, t)
∂ t

+
d−1

∑
i=1

vi(x̄)
∂ψ(x̄, t)

∂xi
= 0

with initial condition
ψ(x̄,0) = g(x̄).

So
ϕk(x̄, t) = ūk(x̄, t), k = 1,d−1.

If k = d, then a solution of (2.29) is

ϕd(x̄, t) = t.

It is easy to see that if v is r times continuously differentiable and has a bounded deriva-
tive, then the constructed mapping ϕ is Cr-diffeomorphism of Rd and

ϕ
(
Rd
+

)
= Rd

+, ϕ
(
∂Rd

+

)
= ∂Rd

+,

∇ϕ(x)v(x) = n, x ∈ ∂Rd
+.

Hence, sufficient conditions ensuring existence and uniqueness of a solution to the initial
reflecting SDE in Rd

+ are

1) a and bk, k = 1,m, are globally Lipschitz in x;

2) a and bk, k = 1,m, satisfy a linear growth condition in x;

3) v ∈C3
b

(
∂Rd

+

)
.
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Exercise 2.4.2 Let G ⊂ Rd be an open set. Let there be a x∗ ∈ ∂D such that ∂D in
a neighborhood of x∗ has a form

{(
x̄,g(x̄)

)
, x̄ = (x1, . . . ,xd−1) ∈ U

}
, where g : U ⊂

Rd−1 → R is a smooth function. Construct a neighborhood Dx∗ and a map ϕ = ϕx∗(x),
x ∈ Dx∗ , that satisfies properties (2.23), (2.24) and (2.25).

Hint: Let y = y(x, t), x ∈ Rd , t ≥ 0, be a solution of the ordinary differential equation
∂y
∂ t

= v(y), t ≥ 0,

y(x,0) = x, x ∈ Rd .

Define a mapping
x = (x̄,xd)→ ψ(x) := y

((
x̄,g(x̄)

)
,xd

)
.

Verify that, if g ∈ C1 and v ∈ C1, then there exists an ε > 0 such that ψ is a C1-
diffeomorphism of the ball B

(
(x̄∗,0),ε

)
and

1) ψ

(
B
(
(x̄∗,0),ε

)
∩{xd > 0}

)
⊂ D, ψ

(
B
(
(x̄∗,0),ε

)
∩{xd = 0}

)
⊂ ∂D,

2) the inverse map ϕ := ψ−1 is such that ∇ϕ(x)v(x) = n for all x ∈ ∂D from some
neighborhood of x∗.

Summing up all of the reasoning in this section, we may prove the following result.

Theorem 2.4.1 Let D be a bounded set with C3 boundary. Assume that a and bk, k = 1,m,
are bounded functions on D satisfying the Lipschitz condition in x; let v be a C3-function
on ∂D. Then there exists a unique solution to (2.20). The process ξ (t), t ≥ 0, is a Markov
process.

Exercise 2.4.3 Formulate an analogue of Theorem 2.4.1 for unbounded D. Find some
sufficient conditions ensuring that a solution does not blow up almost surely.

Exercise 2.4.4 Construct a localization procedure for a time-dependent reflecting vector
field v = v(t,x).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.5 Properties of multidimensional Skorokhod’s problem

In this section, we give results on existence, uniqueness and continuity for a solution
of the deterministic Skorokhod problem. The most general results have been obtained for
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the normal reflection, i.e., if Kx = Nx, where the set Nx of inward normal unit vectors at
x ∈ ∂D is defined by

Nx =
⋃
r>0

Nx,r,

Nx,r =
{

n ∈ Rd : |n|= 1,B(x− rn,r)∩D = Ø
}
.

If ∂D is a smooth manifold, then Nx naturally consists of the only vector which is the
unit inward normal to the manifold. In the general case, it is possible that Nx is empty or
infinite.

Definition 2.5.1 A set D satisfies the uniform exterior sphere condition if

∃r0 > 0 ∀x ∈ ∂D : Nx = Nx,r0 6= Ø. (2.30)

Exercise 2.5.1 Prove that a convex set satisfies the uniform exterior sphere condition
with any r0 > 0.

Exercise 2.5.2 Prove that n ∈ Nx,r if and only if

∀y ∈ D : (y− x,n)+
1
2r
|y− x|2 ≥ 0. (2.31)

Hint: B(x− rn,r)∩D = Ø if and only if ∀y ∈ D : |y− (x− rn)| ≥ r.

It can be proved (see [41]) that the uniform exterior sphere condition ensures unique-
ness for the deterministic normal reflection Skorokhod problem. Let us show that this
condition implies the pathwise uniqueness for a solution of a reflecting SDE if its coeffi-
cients satisfy the Lipschitz condition.

Theorem 2.5.1 Assume that a domain D ⊂ Rd satisfies the uniform sphere condition
property; let a,bk : [0,∞)×D→ Rd , k = 1,m, satisfy the Lipschitz condition in x. Let
ξi(t), li(t), t ≥ 0, i = 1,2, be solutions of

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+n

(
ξ (t)

)
d l(t), t ≥ 0, (2.32)

where n(x) ∈ Nx, ξ1(0) = ξ2(0). Then P
(
ξ1(t) = ξ2(t), l1(t) = l2(t), t ≥ 0

)
= 1.
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Proof. Let us apply Itô’s formula and use the Lipschitz condition:

∣∣ξ1(t)−ξ2(t)
∣∣2 exp

{
−C
(
l1(t)+ l2(t)+ t

)}
≤
∫ t

0
(L−C)

∣∣ξ1(s)−ξ2(s)
∣∣2 exp

{
−C
(
l1(s)+ l2(s)+ s

)}
ds

+
∫ t

0

(
2
(
ξ1(s)−ξ2(s),n(ξ1(s)

)
−C
∣∣ξ1(s)−ξ2(s)

∣∣2) d l1(s)

+
∫ t

0

(
2
(
ξ2(s)−ξ1(s),n(ξ2(s)

)
−C
∣∣ξ1(s)−ξ2(s)

∣∣2) d l2(s)+M(t),

(2.33)

where L depends on the Lipschitz constant and M(t), t ≥ 0, is a continuous local martin-
gale, M(0) = 0. It follows from (2.31) that the second and third terms in the right hand
side of (2.33) are non-positive if C > 1

r0
. So for C > 1

r0
∨L, the process

η(t) =
∣∣ξ1(t)−ξ2(t)

∣∣2 exp
{
−C
(
l1(t)+ l2(t)+ t

)}
is a non-negative continuous supermartingale with η(0) = 0. Hence η(t) = 0, t ≥ 0, a.s.
and ξ1(t) = ξ2(t), t ≥ 0, a.s.

Exercise 2.5.3 Prove that l1(t) = l2(t), t ≥ 0, a.s. (Note that even if ξ1(t) = ξ2(t), theo-
retically different representatives for n

(
ξ1(t)

)
and n

(
ξ2(t)

)
can be taken in (2.32).)

Theorem 2.5.2 ([61]) Assume that a domain D satisfies

a) the uniform exterior sphere condition,

b) the uniform cone condition:

∃δ > 0 ∃α ∈ [0,1) ∀x ∈ ∂D ∃lx, |lx|= 1 ∀y ∈ B(x,δ )∩∂D :

C(y, lx,α)∩B(x,δ )⊂ D,

where C(y, lx,α) =
{

z ∈ Rd : (z− y, lx)≥ α|z− y|
}

.

Then for any f ∈ C
(
Rd ,Rd

)
with f (0) ∈ D, there exists a unique solution to the Sko-

rokhod normal reflection problem

g(t) = f (t)+
∫ t

0
n
(
g(s)

)
d l(s), t ≥ 0. (2.34)
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Moreover, g depends continuously on (t, f ).

A proof for convex D was considered in [72]. Existence of a solution for (2.34) for
arbitrary D satisfying assumptions of the theorem can be verified using approximations
by step functions; see details in [61]. Namely, assume at first that f is a step function,

f (t) = f (tk), t ∈ [tk, tk+1),

where 0 = t0 < t1 < .. ., lim
n→∞

tn = ∞, supk≥0
∣∣ f (tk+1)− f (tk)

∣∣< r0. Set

g(t) =

 f (0), 0≤ t < t1

g(tk−1)+ f (tk)− f (tk−1), tk ≤ t < tk+1, k ≥ 1,

where x̄ is such that |x̄−x|= inf
{
|y−x| : y ∈D

}
(if x ∈D, then x = x̄). Condition (2.30)

ensures that x̄ exists and is unique if dist(x,D)< r0. Set

ϕ(t) =


0, 0≤ t < t1
ϕ(tk−1)+g(tk−1)+ f (tk)− f (tk−1)

−g(tk−1)− f (tk)+ f (tk+1), tk ≤ t < tk−1, k ≥ 1.

Then
g(t) = f (t)+

∫
[0,t]

n
(
g(s)

)
d l(s),

where l(t) = Varϕ
∣∣t
0. If f is continuous, then define

fn(t) = f (tn,k), t ∈ [tn,k, tn,k+1),

where 0 = tn,0 < tn,1 < .. ., lim
n→∞

sup
k
(tn,k+1− tn,k) = 0. Certainly one needs some a priori

estimates for solutions of the Skorokhod problem to check that the limit of {gn,n ≥ 1}
constructed for { fn,n≥ 1} exists and satisfies (2.34).

Another way to prove the existence of a solution of the Skorokhod problem is the
penalization method. Assume that ∂D is smooth and that there exists a function p ∈
C2(Rd) such that p(x) = 0, x ∈ D; p(x) > 0, x /∈ D; p(x) =

(
dist(x,D)

)2 for x in a
neighborhood of D. Then a solution of (2.34) can be approximated by solutions of the
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following equations

gε(t) = f (t)+ ε
−1
∫ t

0
∇p
(
gε(s)

)
ds.

See details in [41], where it is also proved that the Skorokhod map satisfies the Hölder
property of order 1/2.

The question of the existence, uniqueness and properties of a solution to the oblique
Skorokhod problem is a difficult one, see [28, 18, 15, 20], where the Skorokhod problem
was considered in non-smooth domains, in particular in orthants or polyhedras. Some
conditions ensuring that the Skorokhod map is a Lipschitz function on the input function
f were obtained in the above sources, which also considered non-normal reflection. This
had specific structure sometimes; however, such reflection vector fields appear naturally
in some limit models of queuing theory. See also [19, 6] for SDEs with oblique reflection
in non-smooth domains. Note the paper [57], where some generalization of the Sko-
rokhod problem was considered. There, the condition that a reflection term has bounded
variation is relaxed.

Theorem 2.5.3 ([61]) Assume that D satisfies conditions of Theorem 2.5.2 and that a

and bk, k = 1,m, are bounded continuous functions. Then there exists a weak solution
to (2.32).

To prove the existence of a weak solution, we may use Theorem 2.5.2 together with
the Euler approximations and compactness arguments, similarly to §1.4, §2.3.

By the Yamada–Watanabe theorem, pathwise uniqueness and existence of the weak so-
lution imply the existence of a unique strong solution. This theorem was proved for SDEs
without reflection, but the proof remains true also for reflecting SDEs. So Theorems 2.5.1
and 2.5.3 yield the following result.

Theorem 2.5.4 Assume that D satisfies the conditions of Theorem 2.5.2. If a and bk, k =

1,m, satisfy the Lipschitz condition, then there exists a unique strong solution to (2.32).

Remark 2.5.1 If all the coefficients of a reflecting SDE are smooth and ∂D is a smooth
manifold, then the existence and uniqueness of a solution can be obtained by localization,
see §2.4.





Chapter 3

Other approaches to
reflecting SDEs

3.1 Reflecting SDEs and PDEs

Consider the reflecting SDE

dξ (t) = a
(
ξ (t)

)
d t +

m

∑
k=1

bk
(
ξ (t)

)
dwk(t)+ v

(
ξ (t)

)
d l(t). (3.1)

Recall that under some regularity of the coefficients, the process ξ (t), t ≥ 0, is a Markov
process, see §1.2, §2.4. We can therefore construct a semigroup corresponding to this
Markov process, use Kolmogorov’s equations and so on. One of the aims of this section is
to associate Partial Differential Equations (PDEs) with expectations of some functionals
of reflecting SDEs.

Introduce a second order differential operator

L =
d

∑
i=1

ai(x)
∂

∂xi
+

1
2

d

∑
i, j=1

σi j(x)
∂ 2

∂xi∂x j
, (3.2)

where

σi j(x) =
m

∑
k=1

bki(x)bk j(x). (3.3)

47
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Further, in this section we will always assume that all reflecting SDEs have weak solu-
tions.

Exercise 3.1.1 Let f ∈C2
b(D) be such that ∂ f (x)

∂v = 0, x∈ ∂D. Assume that a, bk, k = 1,m,
v are bounded and continuous functions. Set u(t,x) =Ex f

(
ξ (t)

)
. Apply Itô’s formula and

prove that

∀x ∈ D,
∂u(t,x)

∂ t

∣∣∣∣
t=0

= L f (x). (3.4)

Exercise 3.1.1 gives us an idea that the generator of a semigroup Tt f (x) = Ex f
(
ξ (t)

)
,

t ≥ 0, equals L, where

D(L) =C2
b(D)∩

{
f :

∂ f (x)
∂v

= 0, x ∈ ∂D
}
. (3.5)

Certainly, a lot of problems should be discussed if we are going to apply the Hille-Yosida
theorem or to determine a semigroup (see the analytical approach to reflecting SDEs
in [9, 63, 73, 74, 56]). For example,

� We have to determine a Banach space on which Tt acts. The natural choices could
be, e.g., a space of bounded continuous functions, a space of Hölder continuous
functions or a space of Sobolev differentiable functions.

� The limit
∂u(t,x)

∂ t

∣∣∣
t=0

= lim
t→0+

u(t,x)−u(0,x)
t

in (3.4) is point-wise. To determine

the generator, it should be a limit in a proper Banach space.

� It is usually difficult to describe the whole domain of the generator. It would be
nice to show that D(L) defined in (3.5) is rich enough to determine a semigroup.

We are not going to proceed with the steps above and show the one-to-one correspon-
dence between a reflecting SDE and a semigroup with the generator L. However, we do
not actually need this to prove many results including, for example, the Feynman-Kac
formula.

Let ξ (t), t ≥ 0, be a weak solution of the non-homogeneous reflecting SDE

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+ v

(
t,ξ (t)

)
d l(t). (3.6)
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Denote

Lt = ∑
i

ai(t,x)
∂

∂xi
+

1
2 ∑

i, j
σi j(t,x)

∂ 2

∂xi∂x j
,

σi j(t,x) = ∑
k

bki(t,x)bk j(t,x).

Theorem 3.1.1 (Kolmogorov’s equation for a semigroup) Let u(t,x) be a solution of
the PDE

∂u(t,x)
∂ t

+Ltu(t,x) = 0, x ∈ D, t < T, (3.7)

with the boundary condition

∂u(t,x)
∂v

= 0, x ∈ ∂D, t < T, (3.8)

and the terminal condition
u(T,x) = f (x), x ∈ D. (3.9)

Assume that functions f and bk are bounded and

u ∈C1,2
b

(
[0,T ]×D

)
. (3.10)

Then
u(t,x) = Et,x f

(
ξ (T )

)
:= E

(
f
(
ξ (T )

)∣∣∣ξ (t) = x
)
. (3.11)

Proof. By Itô’s formula

f
(
ξ (T )

)
= u
(
T,ξ (T )

)
= u
(
t,ξ (t)

)
+
∫ T

t

(
∂u(s,ξ (s))

∂ s
+Lsu

(
s,ξ (s)

))
ds

+
∫ T

t

(
∇u(s,ξ (s)),v(ξ (s))

)
d l(s)

+
m

∑
k=1

∫ T

t

(
∇u(s,ξ (s)),bk(s,ξ (s))

)
dwk(s), t ≤ T. (3.12)

The second and the third terms in the right hand side of (3.12) are equal to zero. Let
us calculate the conditional expectation in (3.12), given ξ (t) = x. Since ∇u and bk are
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bounded, we have

E
(∫ T

t

(
∇u(s,ξ (s)),bk(s,ξ (s))

)
dwk(s)

∣∣∣∣ ξ (t) = x
)
= 0. (3.13)

Hence representation (3.11) is proved.

Remark 3.1.1 The assumptions for Theorem 3.1.1 are very strong. They can be relaxed
in various ways. For example, we supposed boundedness of ∇u and bk simply to en-
sure (3.13). If we can guarantee (3.13), then to obtain (3.11), it is sufficient to assume,
for example, that u ∈ C1,2

(
[0,T )×D

)
∩Cb

(
[0,T ]×D

)
. Moreover, Itô’s formula can

sometimes even be applied for u ∈W 1,2
p . If this is the case, nothing changes in the proof.

Remark 3.1.2 We do not prove the existence of the solution for the PDE in Theorem 3.1.1.
The corresponding theory is well developed for domains D with a smooth boundary if Lt

satisfies strong ellipticity conditions. For existence and uniqueness of a solution, it is suf-
ficient to assume that all coefficients of the equation are bounded and Hölder continuous,
see for example [21, 38, 22]. In this case, the solution can be written as

u(t,x) =
∫

D
G(t,x,T,y) f (y) dy,

where G is the Green function. Moreover,
∫

D G(t,x,T,y) dy = 1 and G(t,x,T,y)≥ 0 and
satisfies the Chapman-Kolmogorov equation. It can be proved under the same (and even
weaker) assumptions that there exists a unique weak solution of (3.6) and this solution is
a Markov process, see §3.2. So the Green function G is the transition density of ξ .

Assume now that the coefficients are homogeneous in time. Let us use the following
change of variables:

g(t,x) := u(T − t,x).

It is easy to see that g(t,x) satisfies the initial value parabolic PDE

∂g(t,x)
∂ t

= Lg(t,x), t > 0, x ∈ D,

g(0,x) = f (x), x ∈ D,
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with boundary condition

∂g(t,x)
∂v

= 0, x ∈ ∂D, t > 0.

So

g(t,x) = E
(

f
(
ξ (T )

)∣∣∣ξ (T − t) = x
)
= E

(
f
(
ξ (t)

)∣∣∣ξ (0) = x
)
=: Ex f

(
ξ (t)

)
.

If p(t,x,y) is the transition density of ξ , then we have the representation

g(t,x) =
∫

D
f (y)p(t,x,y) dy.

Theorem 3.1.2 (Feynman-Kac formula) Assume that a bounded continuous function
u(t,x) satisfies PDE

∂u(t,x)
∂ t

+Ltu(t,x) = r(t,x)u(t,x), t < T, x ∈ D,

u(T,x) = f (x), x ∈ D,

and the boundary condition

∂u(t,x)
∂v

= 0, x ∈ ∂D, t < T,

where r is either a bounded or non-negative function. Suppose that for any t ≤ T , x ∈ D,

Et,x

(
m

∑
k=1

∫ T

t

(
∇u(s,ξ (s)),bk(s,ξ (s))

)2 ds

)
< ∞.

Then
u(t,x) = Et,x

(
f
(
ξ (T )

)
exp
{
−
∫ T

t
r
(
s,ξ (s)

)
ds
})

. (3.14)

Exercise 3.1.2 Apply Itô’s formula to u
(
s,ξ (s)

)
exp
{
−
∫ s

t r
(
z,ξ (z)

)
dz
}

, s ∈ [t,T ], and
prove (3.14).

Exercise 3.1.3 Assume that the operator Lt = L is homogeneous in time and u(t,x) sat-
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isfies the equation

∂u(t,x)
∂ t

= Lu(t,x)− r(t,x)u(t,x), t > 0, x ∈ D,

u(0,x) = f (x), x ∈ D,

∂u(t,x)
∂v

= 0, x ∈ ∂D, t > 0.

Prove that
u(t,x) = Ex f

(
ξ (t)

)
exp
{
−
∫ t

0
r
(
t− s,ξ (s)

)
ds
}
.

Let K,D⊂Rd be open sets, K ⊂D and ξ (t), t ≥ 0, be a weak solution of the homoge-
neous in time equation (3.1). By τK , denote the hitting time of K

τK = inf
{

t ≥ 0 : ξ (t) ∈ K
}
.

Theorem 3.1.3 Suppose that all coefficients of (3.1) are bounded, continuous functions
and that D is bounded. Assume that there exists u∈C2

(
D\K

)
satisfying the elliptic PDE

Lu(x) =−1, x ∈ D\K,

∂u(x)
∂v

= 0, x ∈ ∂D,

u(x) = 0, x ∈ ∂K.

Then τK < ∞ a.s. and
u(x) = ExτK .

Proof. By Itô’s formula,

u
(
ξ (τK ∧ t)

)
= u
(
ξ (0)

)
−
∫

τK∧t

0
ds+

m

∑
k=1

∫
τK∧t

0

(
∇u(ξ (s)),bk(ξ (s))

)
dwk(s).

Take the conditional expectation given ξ (0) = x to obtain

Exu
(
ξ (τK ∧ t)

)
= u(x)−Ex(τK ∧ t). (3.15)
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By the monotone convergence theorem,

ExτK = lim
t→∞

Ex(τK ∧ t).

Since u is bounded (the set D\K is a compact), the limit in the right hand side of (3.15)
is finite. So τK < ∞ a.s. and

u(x)−ExτK = lim
t→∞

Exu
(
ξ (τK ∧ t)

)
= Exu

(
ξ (τK)

)
= 0.

Theorem 3.1.3 is proved.

Exercise 3.1.4 Let D = {x ∈ Rd : |x| < R}, K = {x ∈ Rd : |x| < r}, where 0 < r < R.
Assume that ξ is a solution to the SDE

dξ (t) = dw(t)− ξ (t)
|ξ (t)|

1Iξ (t)∈∂D d l(t),

where w(t), t ≥ 0, is a Wiener process in Rd , i.e., ξ (t) is a reflecting Brownian motion in
a ball D with a normal reflection at the boundary. Find ExτK .

Hint: Search for a function u(x) that takes the form α|x|2 +β |x|2−d + γ if d ≥ 3 and
u(x) = α|x|2 +β ln |x|+ γ if d = 2.

Exercise 3.1.5 Let ξ be a solution of the one-dimensional reflecting SDE with a reflect-
ing barrier at x1 so that

dξ (t) = a
(
ξ (t)

)
d t +b

(
ξ (t)

)
dw(t)+1Iξ (t)=x1

d l(t),

where a and b are continuous functions, b(x)> 0, x≥ x1. Find Exτx2 , where x1 ≤ x≤ x2

and
τx2 = inf{t ≥ 0 : ξ (t) = x2}.

(We assume in all exercises that the reflecting SDEs have solutions.)

Exercise 3.1.6 Assume that there exists a function u ∈C2
(
D\K

)
such that

Lu(x)≤−1, x ∈ D\K,

∂u(x)
∂v

≤ 0, x ∈ ∂D.
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Prove that the solution of (3.1) is such that ExτK ≤ 2supy
∣∣u(y)∣∣.

Exercise 3.1.7 Assume that coefficients of (3.1) are bounded and continuous functions, D

is a bounded, connected and open set with sufficiently smooth boundary, K ⊂D is a non-
empty open set,

(
v(x),n(x)

)
> 0, x ∈ ∂D and L satisfies the strong ellipticity condition

∃C > 0 ∀x ∈ D\K ∀λ ∈ Rd : ∑
i, j

σi j(x)λiλ j ≥ c|λ |2.

Prove that sup
x∈D

ExτK < ∞.

Theorem 3.1.4 Let assumptions of Theorem 3.1.3 be satisfied. Suppose that u ∈C2
(
D\

K
)

is such that

Lu(x) = 0, x ∈ D\K, (3.16)

u(x) = 0, x ∈ ∂K, (3.17)

∂u(x)
∂v

=− f (x), x ∈ ∂D, (3.18)

where f is a continuous function. Then

u(x) = Ex

∫
τK

0
f
(
ξ (t)

)
d l(t).

Exercise 3.1.8 Prove Theorem 3.1.4.

Exercise 3.1.9 Find Exl(τK) for the reflecting SDE from Exercise 3.1.4.

Exercise 3.1.10 Find Exl(τx2) for the reflecting SDE from Exercise 3.1.5.

• • • • • • • • • • • • • • • •

3.2 Submartingale problem

Stroock and Varadhan proposed a very effective method of construction and in-
vestigation of diffusion processes connected with solving some martingale problems,
see [69, 70]. It is convenient to associate the study of diffusions with boundaries with
some submartingale problem.
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Let ξ (t), t ≥ t0, be a solution of a reflecting SDE in G⊂ Rd

dξ (t) = a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)+ γ

(
t,ξ (t)

)
d l(t), t ≥ t0. (3.19)

Assume for simplicity that a, bk and γ are bounded. Introduce the operators

Lt =
d

∑
i=1

ai(t,x)
∂

∂xi
+

1
2

d

∑
i, j=1

σi j(t,x)
∂ 2

∂xi∂x j
, t ≥ t0, x ∈ G,

Jt =
d

∑
i=1

γi(t,x)
∂

∂xi
, t ≥ t0, x ∈ ∂G,

where σi j(t,x) =
m

∑
k=1

bki(t,x)bk j(t,x).

It follows from Itô’s formula that, for any f ∈C1,2
0

(
[t0,∞)×Rd

)
such that

Jt f (t,x)≥ 0, t ≥ t0, x ∈ ∂G, (3.20)

the process

f
(
t,ξ (t)

)
−
∫ t

t0

(
∂ f
(
s,ξ (s)

)
∂ s

+Ls f
(
s,ξ (s)

))
ds, t ≥ t0, (3.21)

is a submartingale.

It turns out that the converse statement is also true. That is, if (3.21) holds for all
f ∈C1,2

0

(
[t0,∞)×Rd

)
satisfying (3.20), then ξ is a (weak) solution to (3.19).

Let us introduce the general setup and assumptions. We follow Stroock and Varad-
han [71]. Suppose that G⊂ Rd is a non-empty set such that for some ϕ ∈C2

b

(
Rd
)

G = {x ∈ Rd : ϕ(x)> 0}, ∂G = {x ∈ Rd : ϕ(x) = 0},

and
∣∣∇ϕ(x)

∣∣≥ 1, x ∈ ∂G.

Let σ =
(
σi j(t,x)

)d
i, j=1 be a bounded, measurable function with values in a set of

symmetric non-negative definite d× d matrices; a : [t0,∞)×G→ Rd be bounded and
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measurable; γ : [t0,∞)×∂G→ Rd be a bounded, continuous function such that

inf
t≥t0, x∈∂G

(
γ(t,x),∇ϕ(x)

)
> 0;

ρ : [t0,∞)×∂G→ [0,∞) be bounded and continuous.

Definition 3.2.1 A probability measure P on C
(
[t0,∞),Rd

)
equipped with the Borel σ -

algebra solves the submartingale problem on G for coefficients a, σ , γ and ρ if

1) the coordinate process ξ (t), t ≥ t0, is such that

P
(
ξ (t) ∈ G

)
= 1, t ≥ t0; (3.22)

2) for any f ∈C1,2
0

(
[t0,∞)×Rd

)
such that

ρ
∂ f
∂ t

+ Jt f ≥ 0 on [t0,∞)×∂G,

the process

f
(
t,ξ (t)

)
−
∫ t

t0
1IG
(
ξ (s)

)(∂ f
(
s,ξ (s)

)
∂ s

+Ls f
(
s,ξ (s)

))
ds, t ≥ t0, (3.23)

is a P-submartingale. If P
(
ξ (t0) = x0

)
= 1, then we denote the measure P by Pt0,x0 .

Remark 3.2.1 Functions a and σ from the definition are defined only for x∈G. In contrast
to (3.21), there is an extra indicator function 1IG

(
ξ (s)

)
in the integral in (3.23). However,

if
P
(∫

∞

t0
1I∂G

(
ξ (s)

)
ds = 0

)
= 1 (3.24)

and ρ ≡ 0, then the processes in (3.21) and (3.23) are equal a.s.

Theorem 3.2.1 A measure P solves the martingale problem for a, σ , ρ and γ if and only
if there exists a continuous, non-decreasing and non-anticipating function l : [t0,∞)×
C
(
[t0,∞),Rd

)
→ [0,∞) such that

1) the process

M(t) = ξ (t)−
∫ t

t0
1IG
(
ξ (s)

)
a
(
s,ξ (s)

)
ds−

∫ t

t0
1I∂G

(
ξ (s)

)
γ
(
s,ξ (s)

)
d l(s), t ≥ t0,
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is a continuous P-martingale with square characteristics

〈
Mi,M j

〉
(t) =

∫ t

0
1IG
(
ξ (s)

)
σi j
(
s,ξ (s)

)
ds, t ≥ t0, P-a.s.;

2)
∫ t

t0
1I∂G

(
ξ (s)

)
ds =

∫ t

t0
ρ
(
s,ξ (s)

)
d l(s), t ≥ t0, P-a.s.; (3.25)

The proof follows from [71], Theorem 2.5, where only a positive definite σ is consid-
ered, see also [27].

Remark 3.2.2 Instead of Definition 3.2.1, the equivalent martingale problem is also some-
times considered. It is required that there is a non-anticipative, non-decreasing, continu-
ous process l(t), t ≥ t0, such that l(0) = 0, l(t) =

∫ t
0 1Iξ (s)∈∂D d l(s), (3.25) and (3.22) hold

and, for any f ∈C1,2
0

(
[t0,∞)×Rd

)
,

f
(
t,ξ (t)

)
−
∫ t

t0

(
∂ f
(
s,ξ (s)

)
∂ s

+Ls f
(
s,ξ (s)

))
ds

−
∫ t

t0

[(
∂ f
(
s,ξ (s)

)
∂ s

+ Js f
(
s,ξ (s)

))

−ρ
(
s,ξ (s)

) (∂ f
(
s,ξ (s)

)
∂ s

+Ls f
(
s,ξ (s)

))]
d l(s), t ≥ t0, (3.26)

is a P-martingale. Moreover, it was shown in [27] that in (3.26), it suffices to consider
only time-homogeneous functions f , i.e., for all f ∈C2

b

(
D
)
,

f
(
ξ (t)

)
−
∫ t

t0
Ls f
(
s,ξ (s)

)
ds

−
∫ t

t0

(
Js f
(
s,ξ (s)

)
−ρ
(
s,ξ (s)

)
Ls f
(
ξ (s)

))
d l(s), t ≥ t0, (3.27)

is a P-martingale.

Remark 3.2.3 If σi j(t,x) =
m

∑
k=1

bki(t,x)bk j(t,x), then there are independent Wiener pro-

cesses {wk(t), t ≥ t0}, k = 1,m which may be defined on some extension of the probability
space such that



58 3 Other approaches to reflecting SDEs

dξ (t) = 1IG
(
ξ (t)

)(
a
(
t,ξ (t)

)
d t +

m

∑
k=1

bk
(
t,ξ (t)

)
dwk(t)

)
+1I∂G

(
ξ (t)

)
γ
(
t,ξ (t)

)
d l(t), t ≥ t0. (3.28)

As in Remark 3.2.1, if ρ ≡ 0 and (3.24) holds, then ξ (t) also satisfies (3.19).

Exercise 3.2.1 Prove that l(t), t ≥ t0, is uniquely determined from (3.28), up to a null
set, if l(t0) = 0 and

∫ t
t0 1Iξ (s)∈G d l(s) = 0, t ≥ t0.

Remark 3.2.4 Let ξ be a solution of (3.19) and

m

∑
k=1

(
bk(t,x),∇ϕ(x)

)2
> 0, t ≥ t0, x ∈ ∂G.

Then, similarly to the one-dimensional case (see §1.3), it can be shown that (3.24) holds
true. See also [62] where the process l(t) is associated with an analogue of a local time
on ∂G.

Remark 3.2.5 Function ρ corresponds to the case when the boundary ∂G is “elastic.” A
solution for positive ρ can be obtained from the case ρ ≡ 0 by some transformation of
time. This transformation slows down time in the proper way when ξ (t) with ρ ≡ 0 visits
∂G, see [29]. It also should be noted that if ρ > 0, then the solution of (3.28) may not be
a strong solution even if all coefficients are C∞ [14].

Theorem 3.2.2 (Existence of a solution; [71], Theorem 3.1) Suppose that, in addition
to all assumptions on a, σ , ρ , γ , ϕ and G, the function σ is continuous and σ(t,x) is
positive definite for all t and x. Then there is a solution P to the submartingale problem,
starting from x0 ∈ G at time t0.

Theorem 3.2.3 (Uniqueness of a solution; [71], Theorems 5.5 and 5.7) Let assump-
tions of Theorem 3.2.2 be satisfied, γ be locally Lipschitz in (t,x), and either ρ ≡ 0 or ρ

is bounded and locally Lipschitz. Then a solution to the submartingale problem is unique
for any starting point. Moreover, the corresponding solution Pt0,x0 depends measurably
on (t0,x0).

Remark 3.2.6 If we have a unique solution of a submartingale problem, then this solution
is a strong Markov process. The proof is similar to the case of the martingale problem,
e.g. [70].
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Example 3.2.1 Let G = [0,∞), γ ≡ 1, σ ≡ 1, a ≡ 0, ρ ≡ 0, ξ1 be a Wiener process
reflected at 0 and ξ2 be a Wiener process stopped at 0. Then ξ1 is a solution to the
submartingale problem (and satisfies the martingale problem discussed in Remark 3.2.2)
but ξ2 does not satisfy the submartingale problem. However

f
(
ξ2(t)

)
− 1

2

∫ t

0
1Iξ2(s)>0 f ′′

(
ξ2(s)

)
ds, t ≥ 0,

is a submartingale for any f ∈C2
0
(
R
)
, f ′(0) ≥ 0. This example shows that, for homoge-

neous in time coefficients, we cannot restrict the definition of the submartingale problem
to f ∈C2

0
(
Rd
)

such that ρ(x) f (x)+ J f (x)≥ 0, x ∈ ∂G.

Remark 3.2.7 All coefficients in the previous theorems were assumed to be bounded only
to enable convenient formulations and corresponding proofs in [71]. A localization for
the submartingale problem can be done. For example, it was proved in [71], Theorem 5.6,
that if coefficients a, σ , ρ , γ and a′, σ ′, ρ ′, γ ′ from Theorem 3.2.3 coincide in a set [t0, t0+
ε]×S, where S is a neighborhood of x0, then solutions of the corresponding submartingale
problems coincide until the exit time from this set.

Remark 3.2.8 The boundary conditions for the submartingale problem discussed in Def-
inition 3.2.1 and Theorems 3.2.1, 3.2.2 and 3.2.3 are not the general ones, see [80, 81].
For example, one may have some diffusion term during a time when the process vis-
its a boundary or the jump exit from ∂D, among other conditions. It is also inter-
esting to consider reflecting SDEs with Lévy noise or the corresponding submartin-
gale problems. However these problems exceed the scope of this manuscript, see
e.g. [79, 46, 1, 29, 43, 44, 4, 76, 56, 32, 33, 34, 35].

Remark 3.2.9 Let D be a cone with a smooth surface and O be its vertex. Suppose that
coefficients of a reflecting SDE are smooth. Then we can construct a strong solution to
this SDE until it visits O. If we do not assume that the reflection coefficient satisfies the
uniform exterior sphere and the uniform cone conditions, then we have no instruments to
construct reflecting diffusion in D after the instant of hitting O. It turns out that instead of
requirements on a reflection at the vertex, we may make the natural assumption that the
time spent at the vertex equals zero a.s., see the corresponding submartingale problem and
construction of reflected Brownian motion in a cone in [77, 78, 37]. Note that constructed
processes are not always semimartingales (compare with Example 1.2.1).
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• • • • • • • • • • • • • • • • • • • • • • • • • •

3.3 Reflecting SDEs and the Queueing Theory

The aim of this section is to show a possible relationship between reflecting SDEs
and some models of queueing theory, which is a subject of very intensive investigations.
We consider a limit theorem for one simple model of queueing theory that leads us to a
reflection SDE and discuss possible generalizations.

Consider a queueing system M/M/1/m, i.e., assume that

a) there is one device that processes requests;

b) the maximal number of requests in a system equals m (buffer size); if a new request
arrives and the buffer is overloaded, then this request is discarded;

c) inter-arrival times are exponential i.i.d. with intensity α , service times are expo-
nential i.i.d. with intensity µ .

Denote by X(t) = Xα,µ(t) the number of requests in the system at an instant t ≥ 0.
It is well known that X(t) is a birth and death Markov process with a state space E =

{0,1, . . . ,m}, birth intensity α and death intensity µ .

The process X(t) can be represented as

Xα,µ(t) = Xα,µ(0)+Nα(t)−Nµ(t)+Lα,µ
0 (t)−Lα,µ

m (t), (3.29)

where Nα(t) and Nµ(t), t ≥ 0, are independent Poisson processes with intensities α and
µ respectively; Lα,µ

0 (t) and Lα,µ
m (t) are jump processes with possible jumps equal to 1;

Lα,µ
0 (t) jumps only when Nµ(t)−Nµ(t−) = 1 and Xα,µ(t) = 0; Lα,µ

m (t) jumps only when
Nα(t)−Nα(t−) = 1 and Xα,µ(t) = m.

The process Nα(t) can be interpreted as the number of requests which have arrived
before t; Lα,µ

m (t) is the number of discarded requests before t; Nµ(t) is the cumulative
service capacity over [0, t]; Lα,µ

0 (t) is the cumulative lost service capacity over [0, t];(
Nµ(t)−Lα,µ

0 (t)
)

is the number of processed requests before t.

It is well known that
Nα(t)−αt√

α
⇒ w(t), α → ∞, (3.30)

in a space D
(
[0,∞)

)
, where w(t), t ≥ 0, is a Wiener process.
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Assume now that µ = µ(α) and m = m(α) are such that

µ(α) = α + c
√

α +o(
√

α), α → ∞, (3.31)

m(α) = d
√

α +o(
√

α), α → ∞, (3.32)

where c and d are constants. Then

Nα(t)−Nµ(t)√
α

⇒
√

2w(t)− ct, α → ∞,

in D
(
[0,∞)

)
.

Equation (3.29) can be considered as the Skorokhod problem (for step functions) with
reflecting barriers at 0 and m. It can be proved that if (3.31) and (3.32) are satisfied and
Xα,µ(0)⇒ x, α → ∞, then(

Xα,µ( ·)√
α

,
Lα,µ

0 ( ·)√
α

,
Lα,µ

m ( ·)√
α

)
⇒
(
ξ ( ·), l0( ·), ld( ·)

)
, (3.33)

in D
(
[0,∞)

)
, where (ξ , l0, ld) is a solution of the Skorokhod problem in [0,d];

ξ (t) = x+
√

2w(t)− ct + l0(t)− ld(t), t ≥ 0; ξ (t) ∈ [0,d]; (3.34)

l0(0) = ld(0) = 0; and l0 and ld are continuous, non-decreasing processes such that

∫ t

0
1Iξ (s)>0 d l0(s) =

∫ t

0
1Iξ (s)<d d ld(s) = 0, t ≥ 0.

So, the process ld(t) is an analogue of the number of lost requests during time t. We
will find a limit ld(t)/t as t→+∞. This limit characterizes the average number of lost
packets per unit of time. But before we start to calculate the limit, let us make a remark
on possible generalizations.

Remark 3.3.1 An analogue of (3.30) and (3.33) is valid not only for a Poisson process
of arrivals or processing. The Donsker invariance principle holds under various assump-
tions, see for example [7]. Diffusion approximations can be applied for group arrivals or
even non-independent group arrivals (but certainly with some mixing condition), arrival
and service rates may depend on the queue length, multi-server queueing systems can be
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considered, etc. Another generalization of the model described above is to assume that
requests may have different priorities. Then the study of such queueing systems is asso-
ciated with some Skorokhod’s problem on an orthant or simplex. For further references,
see e.g. [10, 25, 26, 58, 59, 82, 83].

Remark 3.3.2 If there is a long range dependence between requests, then the fractional
Brownian process may arise under some scaling of the arrival process [75]. The limit
behavior of l(t) as t→∞ for a reflected fractional Brownian process cannot be studied by
the methods described here and the corresponding problem is very difficult to investigate.

Consider the following generalization of (3.34)

ξ (t) = x+at +bw(t)+ l0(t)− ld(t), t ≥ 0, (3.35)

where b 6= 0 and a 6= 0.

Introduce the stopping times

σ0 = inf
{

t ≥ 0 : ξ (t) = 0
}
,

τk = inf
{

t ≥ σk : ξ (t) = d
}
,

σk+1 = inf
{

t ≥ τk : ξ (t) = 0
}
, k ≥ 0.

Observe that
{

σk+1−σk, k≥ 0
}

are i.i.d. and
{

ld(σk+1)− ld(σk), k≥ 0
}

are i.i.d. It can
be shown (see §3.1) that Eσk < ∞ and Eld(σk)< ∞.

So, by the law of large numbers,

lim
n→∞

ld(σn)

σn
= lim

n→∞

ld(σ0)+
n−1

∑
k=0

(
ld(σk+1)− ld(σk)

)
σ0 +

n−1

∑
k=0

(
σk+1−σk

)
=

E
(
ld(σ1)− ld(σ0)

)
E
(
σ1−σ0

) =
E0ld(σ1)

E0σ1
a.s.

Since E(σ1−σ0)< ∞ and E
(
ld(σ1)− ld(σ0)

)
< ∞, it can be also deduced that

lim
t→+∞

ld(t)
t

= lim
n→∞

ld(σn)

σn
=

E0ld(σ1)

E0σ1
a.s. (3.36)
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The process ld does not increase before ξ reaches d, so E0ld(σ1) = Ed ld(σ0). The
last expectation equals u(d), where the functions u(x) satisfies the equation (see Theo-
rem 3.1.4)

Lu(x) = 0, x ∈ [0,d], (3.37)

with boundary conditions

u(0) = 0, (3.38)

u′(d) = 1, (3.39)

where

Lu(x) = au′(x)+
b2

2
u′′(x).

The general solution of (3.37) is K1 + K2 exp{−2ax/b2}. Boundary conditions (3.38)
and (3.39) take the form K1 +K2 = 0

− 2K2a
b2 exp{−2ad/b2}= 1.

So

K2 =−
b2

2a
exp{2ad/b2},

E0ld(σ1) =
b2

2a

(
exp{2ad/b2}−1

)
. (3.40)

To find E0σ1, observe that
E0σ1 = E0τ1 +Edσ0.

By Theorem 3.1.3, we have that E0τ1 = u(0), where
Lu(x) =−1, x ∈ [0,d],

u(d) = 0,

u′(0) = 0.
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Hence
u(x) =− x

a
+K1 +K2 exp{−2ax/b2}.

It follows from the boundary conditions that
− d

a
+K1 +K2 exp{−2ad/b2}= 0,

− 1
a
− 2aK2

b2 = 0

and

E0τ1 = u(0) =
d
a
+

b2

2a2

(
exp{−2ad/b2}−1

)
. (3.41)

Exercise 3.3.1 Check directly that the right hand side of (3.41) is positive.

Similarly to (3.41), we obtain

Edσ0 =−
d
a
+

b2

2a2

(
exp{−2ad/b2}−1

)
. (3.42)

Formulas (3.36), (3.40), (3.41) and (3.42) yield

lim
t→+∞

ld(t)
t

=
b2

2a

(
exp{−2ad/b2}−1

)
b2

2a2

(
exp{−2ad/b2}+ exp{2ad/b2}−2

)
=

a
1− exp{−2ad/b2}

a.s. (3.43)

In particular, if a =−c and b =
√

2 as in (3.34), then

lim
t→∞

ld(t)
t

=
c

exp(cd)−1
. (3.44)

Exercise 3.3.2 Find E0ld(σ1), E0τ1 and the limit lim
t→∞

ld(t)
t

if a = 0, b 6= 0.

As we have noted, equation (3.35) may appear as a limit of queueing systems under
very general assumptions. Certainly, it is almost impossible to obtain a nice formula for
the average number of lost requests of general queueing systems. However, for a model
M/M/1/m, the limit limt→∞ Lα,µ

m (t)/t can be computed easily. Let us find this limit and
compare with (3.43).

The process Xα,µ(t), t ≥ 0, is a birth-and-death Markov process. Thus, its stationary
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distribution π = (π0, . . . ,πm) satisfies the relation

πk = (α/µ)k
π0.

So

πk =

(
α

µ

)k(
1− α

µ

)
1−
(

α

µ

)m+1 .

Therefore

lim
t→∞

Lα,µ
m (t)

t
= απm =

(
α

µ

)m(
1− α

µ

)
1−
(

α

µ

)m+1 .

If α , µ and m satisfy (3.31) and (3.32), then the last expression is equivalent to c
√

α

exp(cd)−1 .
This completely agrees with (3.33) and (3.44).

Exercise 3.3.3 Find lim
t→∞

ld(t)
t

for the reflecting SDE

dξ (t) = a
(
ξ (t)

)
d t +b

(
ξ (t)

)
dw(t)+ d l0(t)− d ld(t),

where a and b are Lipschitz continuous and b(x)> 0, x ∈ [0,d], see [24].
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