. Hasso
.z [l Plattner
ey Institut
° . IT Systems Engineering | Universitdt Potsdam

Built-in Recovery Support for Explorative Programming;:
Preserving Immediate Access To Static and Dynamic Informa-
tion of Intermediate Development States

Dissertation
zur Erlangung des akademischen Grades
“doctor rerum naturalium”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultat
der Universitit Potsdam

von
Bastian Steinert

Betreuer:

Prof. Dr. Robert Hirschfeld
Fachgebiet Software-Architekturen
Hasso-Plattner-Institut

Universitit Potsdam

Gutachter:

Richard P. Gabriel, PhD, MFA
IBM Research - Almaden

Prof. Dr. Ralf Laimmel
Fachgruppe Software-Sprachen
Institut fur Softwaretechnik
Universitit Koblenz-Landau

This work is licensed under a Creative Commons License:
Attribution — NonCommercial — NoDerivatives 4.0 International
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-nd/4.0/

Published online at the

Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2014/7130/

URN urn:nbn:de:kobv:517-opus-71305
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71305

ABSTRACT

This work introduces concepts and corresponding tool support to en-
able a complementary approach in dealing with recovery. Program-
mers need to recover a development state, or a part thereof, when
previously made changes reveal undesired implications. However,
when the need arises suddenly and unexpectedly, recovery often in-
volves expensive and tedious work. To avoid tedious work, literature
recommends keeping away from unexpected recovery demands by
following a structured and disciplined approach, which consists of
the application of various best practices including working only on
one thing at a time, performing small steps, as well as making proper
use of versioning and testing tools.

However, the attempt to avoid unexpected recovery is both time-
consuming and error-prone. On the one hand, it requires dispro-
portionate effort to minimize the risk of unexpected situations. On
the other hand, applying recommended practices selectively, which
saves time, can hardly avoid recovery. In addition, the constant need
for foresight and self-control has unfavorable implications. It is ex-
haustive and impedes creative problem solving.

This work proposes to make recovery fast and easy and introduces
corresponding support called CoExist. Such dedicated support turns
situations of unanticipated recovery from tedious experiences into
pleasant ones. It makes recovery fast and easy to accomplish, even if
explicit commits are unavailable or tests have been ignored for some
time. When mistakes and unexpected insights are no longer asso-
ciated with tedious corrective actions, programmers are encouraged
to change source code as a means to reason about it, as opposed to
making changes only after structuring and evaluating them mentally.

This work further reports on an implementation of the proposed
tool support in the Squeak/Smalltalk development environment. The
development of the tools has been accompanied by regular perfor-
mance and usability tests. In addition, this work investigates whether
the proposed tools affect programmers’ performance. In a controlled
lab study, 22 participants improved the design of two different appli-
cations. Using a repeated measurement setup, the study examined
the effect of providing CoExist on programming performance. The
result of analyzing 88 hours of programming suggests that built-in re-

1ii

covery support as provided with CoExist positively has a positive ef-
fect on programming performance in explorative programming tasks.

ZUSAMMENFASSUNG

Diese Arbeit prasentiert Konzepte und die zugehorige Werkzeugun-
terstiitzung um einen komplementdren Umgang mit Wiederherstel-
lungsbediirfnissen zu ermoglichen. Programmierer haben Bedarf
zur Wiederherstellung eines fritheren Entwicklungszustandes oder
Teils davon, wenn ihre Anderungen ungewiinschte Implikationen
aufzeigen. Wenn dieser Bedarf plotzlich und unerwartet auftritt,
dann ist die notwendige Wiederherstellungsarbeit haufig miihsam
und aufwendig. Zur Vermeidung miihsamer Arbeit empfiehlt
die Literatur die Vermeidung von unerwarteten Wiederherstellungs-
bediirfnissen durch einen strukturierten und disziplinierten Program-
mieransatz, welcher die Verwendung verschiedener bewédhrter Prak-
tiken vorsieht. Diese Praktiken sind zum Beispiel: nur an einer Sache
gleichzeitig zu arbeiten, immer nur kleine Schritte auszufiihren, aber
auch der sachgemaéfie Einsatz von Versionskontroll- und Testwerkzeu-
gen.

Jedoch ist der Versuch des Abwendens unerwarteter Wiederherstel-
lungsbediirfnisse sowohl zeitintensiv als auch fehleranfallig. Einer-
seits erfordert es unverhéltnisméfsig hohen Aufwand, das Risiko des
Eintretens unerwarteter Situationen auf ein Minimum zu reduzieren.
Andererseits ist eine zeitsparende selektive Ausfithrung der emp-
fohlenen Praktiken kaum hinreichend, um Wiederherstellungssitua-
tionen zu vermeiden. Zudem bringt die stindige Notwendigkeit an
Voraussicht und Selbstkontrolle Nachteile mit sich. Dies ist ermii-
dend und erschwert das kreative ProblemlGsen.

Diese Arbeit schldgt vor, Wiederherstellungsaufgaben zu verein-
fachen und beschleunigen, und stellt entsprechende Werkzeugun-
terstiitzung namens CoExist vor. Solche zielgerichtete Werkzeugun-
terstiitzung macht aus unvorhergesehenen mithsamen Wiederherstel-
lungssituationen eine konstruktive Erfahrung. Damit ist Wiederher-
stellung auch dann leicht und schnell durchzufiihren, wenn explizit
gespeicherte Zwischenstiande fehlen oder die Tests fiir einige Zeit
ignoriert wurden. Wenn Fehler und unerwartete Einsichten nicht
langer mit mithsamen Schadensersatz verbunden sind, fiihlen sich
Programmierer eher dazu ermutig, Quelltext zu dndern, um dabei
dariiber zu reflektieren, und nehmen nicht erst dann Anderungen
vor, wenn sie diese gedanklich strukturiert und evaluiert haben.

iv

Diese Arbeit berichtet weiterhin von einer Implementierung der
vorgeschlagenen Werkzeugunterstiitzung in der Squeak/Smalltalk
Entwicklungsumgebung. Regelmafiige Tests von Laufzeitverhalten
und Benutzbarkeit begleiteten die Entwicklung. Zudem priift die Ar-
beit, ob sich die Verwendung der vorgeschlagenen Werkzeuge auf
die Leistung der Programmierer auswirkt. In einem kontrollierten
Experiment, verbesserten 22 Teilnehmer den Aufbau von zwei ver-
schiedenen Anwendungen. Unter der Verwendung einer Versuch-
sanordnung mit wiederholter Messung, ermittelte die Studie die
Auswirkung von CoExist auf die Programmierleistung. Das Ergeb-
nis der Analyse von 88 Programmierstunden deutet darauf hin, dass
sich eingebaute Werkzeugunterstiitzung fiir Wiederherstellung, wie
sie mit CoExist bereitgestellt wird, positiv bei der Bearbeitung von
unstrukturierten ergebnisoffenen Programmieraufgaben auswirkt.

PUBLICATIONS

JOURNAL PUBLICATIONS

e Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in contextjs. Science of Computer Programming, 76
(12):1194-1209, 2011

CONFERENCE PUBLICATIONS

e Bastian Steinert, Damien Cassou, and Robert Hirschfeld. Co-
exist: Overcoming aversion to change. In Proceedings of the
8th symposium on Dynamic languages, DLS "12, pages 107-118,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7. doi:
10.1145/2384577.2384591. URL http://doi.acm.org/10.1145/
2384577.2384591

o Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. The
vivide programming environment: Connecting run-time infor-
mation with programmers’ system knowledge. In Proceedings of
the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! "12, pages
117-126, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1562-3. doi: 10.1145/2384592.2384604. URL http://doi.acm.
org/10.1145/2384592.2384604

e Michael Perscheid, Batian Steinert, Robert Hirschfeld, Felix
Geller, and Michael Haupt. Immediacy through interactivity:
Online analysis of run-time behavior. In WCRE’10: Proceedings
of the 17th Working Conference on Reverse Engineering, volume 10,
pages 77-86, Beverly, MA, USA, 2010. IEEE Computer Society.
doi: 10.1109/WCRE.2010.17

e Bastian Steinert, Michael Haupt, Robert Krahn, and Robert
Hirschfeld. Continuous selective testing. In Agile Processes in
Software Engineering and Extreme Programming, pages 132—146.
Springer, 2010

vii

http://doi.acm.org/10.1145/2384577.2384591
http://doi.acm.org/10.1145/2384577.2384591
http://doi.acm.org/10.1145/2384592.2384604
http://doi.acm.org/10.1145/2384592.2384604

e Bastian Steinert, Marcel Taeumel, Jens Lincke, Tobias Pape, and
Robert Hirschfeld. Codetalk conversations about code. In Cre-
ating Connecting and Collaborating through Computing (Cs), 2010
Eighth International Conference on, pages 11-18. IEEE, 2010

e Bastian Steinert, Michael Grunewald, Stefan Richter, Jens
Lincke, and Robert Hirschfeld. Multi-user multi-account inter-
action in groupware supporting single-display collaboration. In
Collaborative Computing: Networking, Applications and Workshar-
ing, 2009. CollaborateCom 2009. s5th International Conference on,
pages 1—9. IEEE, 2009

e Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke,
and Robert Hirschfeld. Debugging into examples: Leveraging
tests for program comprehension. In Testing of Software and Com-
munication Systems, pages 235-240. Springet, 2009

WORKSHOP PUBLICATIONS

e Benjamin Hosain Wasty, Amir Semmo, Malte Appeltauer, Bas-
tian Steinert, and Robert Hirschfeld. ContextLua: Dynamic
behavioral variations in computer games. In Proceedings of
the 2Nd International Workshop on Context-Oriented Programming,
COP "10, pages 5:1-5:6, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0531-0. doi: 10.1145/1930021.1930026. URL http:
//doi.acm.org/10.1145/1930021.1930026

TECHNICAL REPORTS

e Lenoid Berov, Johannes Henning, Toni Mattis, Patrick Rein,
Robin Schreiberand Eric Seckler, Bastian Steinert, and Robert
Hirschfeld. Vereinfachung der entwicklung von geschéftsan-
wendungen durch konsolidierung von programmierkonzepten
und -technologien. Technical report, Hasso-Plattner-Institute,
2013

BOOK CHAPTERS

e Bastian Steinert and Robert Hirschfeld. How to compare per-
formance in program design activities: Towards an empirical

viii

http://doi.acm.org/10.1145/1930021.1930026
http://doi.acm.org/10.1145/1930021.1930026

evaluation of coexist. In Larry Leifer, Hasso Plattner, and
Christoph Meinel, editors, Design Thinking Research: Building
Innovation Eco-Systems, Understanding Innovation, pages 219-
238. Springer International Publishing, 2014. ISBN 978-3-319-
01302-2. doi: 10.1007/978-3-319-01303-9_14. URL http://dx.
doi.org/10.1007/978-3-319-01303-9_14

Bastian Steinert, Marcel Taeumel, Damien Cassou, and Robert
Hirschfeld. Adopting design practices for programming. In
Hasso Plattner, Christoph Meinel, and Larry Leifer, editors, De-
sign Thinking Research: Measuring Performance in Context, Under-
standing Innovation, pages 247-262. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31990-7. doi: 10.1007/978-3-642-31991-4_
14. URL http://dx.doi.org/10.1007/978-3-642-31991-4 14

Bastian Steinert and Robert Hirschfeld. Applying design knowl-
edge to programming. In Hasso Plattner, Christoph Meinel,
and Larry Leifer, editors, Design Thinking Research: Studying
Co-creation in Practice, Understanding Innovation, pages 259—
277. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-21642-8.
doi: 10.1007/978-3-642-21643-5_15. URL http://dx.doi.org/
10.1007/978-3-642-21643-5_15

Robert Hirschfeld, Bastian Steinert, and Jens Lincke. Agile
software development in virtual collaboration environments.
In Christoph Meinel, Larry Leifer, and Hasso Plattner, edi-
tors, Design Thinking, Understanding Innovation, pages 197-
218. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-13756-3.
doi: 10.1007/978-3-642-13757-0_12. URL http://dx.doi.org/
10.1007/978-3-642-13757-0_12

ix

http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://dx.doi.org/10.1007/978-3-642-31991-4_14
http://dx.doi.org/10.1007/978-3-642-21643-5_15
http://dx.doi.org/10.1007/978-3-642-21643-5_15
http://dx.doi.org/10.1007/978-3-642-13757-0_12
http://dx.doi.org/10.1007/978-3-642-13757-0_12

ACKNOWLEDGMENTS

Since I was not alone on my journey, I like to thank the people who
accompanied me on my way.

But first, I would like to acknowledge and thank for the financial
support of the Hasso Plattner Design Thinking Research Program.
Participating in this program allowed me to get a deep undertanding
of design and its relation to programming. During the bi-annual
workshops I could absorb a great deal of knowledge about various
tields related to design and met many fascinating people.

I thank Robert Hirschfeld for his trust in my abilities and giving
me the opportunity to be his PhD student. I am thankful for his
support, expertise, advice, and criticism concerning all respects we
talked about. I am thankful for getting in touch with so many talented
and interesting people through him.

I thank Ralf Lammel for inviting me two times to his group where
I always felt comfortable. I am thankful for his critical and detailed
feedback on a previous version of this work and for the various con-
versations that were both exciting and thought-provoking.

I am thankful for every conversation I had with Richard P. Gabriel.
In particular in early phases of my work, when I was still looking for
the right words and had limited trust in the topic, it was helpful to
talk to Richard who often seemed to resonate with my thoughts. I am
also thankful for his kind of feedback that felt good but still made me
think.

I am grateful to my colleagues for their feedback, support, hav-
ing snowball fights, and the daily fun having weird conversations
at lunch. Thank you Damien, Felix, Jens, Lauritz, Malte, Marcel,
Matthias, Micha, Michael, and Tim. I am particularly thankful for
every close collaboration on code and papers that involved challeng-
ing hard work as well as many ups and downs.

I also appreciate the close collaboration and exchange with the var-

ious students. I enjoyed my work during all seminar, master, and
bachelor projects.

xi

I thank my parents for their support and complying with my re-
quest to not ask any longer when I will be done.

I thank Cathrin and my closest friends Daniel, Felix, Jan, Markus,
and Philipp for listening and reassuring words in bad times as well
as taking part in my joy in good times.

I am thankful for my children Lena-Sophie and Felix. I enjoy seeing

them learn and grow and I am looking forward to the next mountains
we will climb together.

xii

CONTENTS

1 INTRODUCTION 1
1.1 Designing Programs 1
1.2 Making Errors during Program Design 2
1.3 Problem Prevention and Its Limitations
1.4 Thesis Statement 3
1.5 Organization 4
2 BACKGROUND 7
2.1 Design and Programming 7
2.2 Program Design 8

2.3 The Need for Well-designed Programs 11
2.4 The Risks of Change 13

2.5 Best Practices to Prevent Tedious Recovery 16

3 MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND
SAFETY 19
3.1 Example Case: Unforeseen Recovery Needs 19

3.2 Trade-off between Costs and Safety 23

3.3 The Need for Built-in Recovery Support 28
4 COEXISTENCE OF PROGRAM VERSIONS 31

4.1 Squeak/Smalltalk 31

4.2 Concept Overview 34

4.3 Continuous Versioning 35

4.4 User Interface to Version History 38

4.5 Additional Environments 44

4.6 Continuous and Back-In-Time Analysis 48

4.7 Re-Assembling Changes 52
5 CONCEPT EVALUATION 57

5.1 How CoExist Helps in the Example Case 57

5.2 Informal User Studies 60

5.3 From Problem Prevention to Graceful Recovery 64
6 IMPLEMENTATION 67

6.1 Resolving Access to the Active Version 67

6.2 Preserving Meta-objects for All Versions 71
6.3 Late Class Binding 75
6.4 Limitations 78
6.5 Performance Evaluation 79
7 DISCUSSION 83
7.1 Why Program Design is Difficult 83
7.2 Benefits of a Reduced Need for Best Practices 85
7.3 Coding as a Means of Learning 88
8 LAB STUDY 93
8.1 Method 93

xiii

Xiv

CONTENTS

10

8.2 Results and Discussion 103

8.3 Study Design—TJustification and Limitations 107
8.4 Threats to Validity 110

RELATED WORK 113

9.1 Versioning 113

9.2 Change Recording for Evolution Analysis 115
9.3 Juxtaposing Versions 116

9.4 Fine-grained Back-in-Time Impact Analysis 117
9.5 Re-Assembling Changes 117

CONCLUSION 119

10.1 Contributions 119

10.2 Summary 120

10.3 Future Work 122

BIBLIOGRAPHY 125

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5
Figure 6

Figure 7
Figure 8

Figure 9

Figure 10

Conceptual figures of CoExist featuring con-
tinuous versioning, running tests and record-
ing the results in the background (left), side by
side exploring and editing of multiple versions
(left). Hovering shows which source code ele-
ment has been changed; holding shift in addi-
tion shows the full difference to the previous
version (right). 5

Three different conceptual models of pro-
grams. The left model is less structured
and exhibits less order than the other two,
thereby rendering development tasks more dif-
ficult. 10

Visualization Task Refactoring (from left to
right and top to bottom) 20

Screenshot of a running Squeak system hav-
ing opened various tools. From left to right
and top to bottom: a class browser, a browser
for senders of selected messages (selectors), a

sound application, and a workspace. 32

A comparison of Squeak and Eclipse 32
Development tools working on meta-objects in
Squeak. 33

The main concepts of CoExist as an extension
to Squeak. 34

Versions representing changes to meta-
objects. 36

(From top left to top right) A programmer
modifies source code, which implicitly creates
items in the version bar. The filled triangle
marks the current position in the history - the
version that is currently active. When a pro-
grammer goes back to a previous version (bot-
tom left), and then continues working, the new
changes will appear on a new branch that is
implicitly created (bottom right). 39
Hovering shows which source code element
has been changed (left). In addition, holding
shift shows the total difference to the previous
version (right). 39

XV

XVi

List of Figures

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15
Figure 16
Figure 17
Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

The integration and interaction of source
code browsers and version management
tools. 40

Selecting source code elements in devel-
opments tools highlights related version
items. 40

The version browser provides a tabular view
on change history. Selecting a row shows the
corresponding differences in the panes on the
right. 41

Two conceptual tables showing lists of ver-
sions. The table on top presents two summary
lines that, when expanded, change the repre-
sentation of the table to the one on the bot-
tom. In such tables, the numbers in the first
column are the version identifiers. Following
are the columns for the kind of change that
triggered the creation of the version, the class
and method that changed, and the time stamp
of the change. 42

Composite Pattern for Groups of Ver-
sions 43

Working with an additional fully functional
working place for a previous version, next to

the tools for the current version. 45
Different environments of tools, each working
on a different program version. 46

Continuous Analysis Concepts 49

Tests are run in the background for every ver-
sion. The results are recorded and visualized
for every version item. 50

Extracting meaningful increments by first
studying the change history and then
re-applying selected changes to another
branch. 53

Top row: Selecting two changes and re-
applying them to the currently active version
(triangle). Bottom row: Withdrawing two
changes, which results in re-applying subse-
quent changes to the change before the selec-
tion 54

Visualization Task with CoExist, Extracting a
New Class 58

Visualization Task with CoExist, From Inheri-
tance to Delegation 58

Figure 24
Figure 25

Figure 26

Figure 27

Figure 28

Figure 29
Figure 30
Figure 31
Figure 32

Figure 33

Figure 34

Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41

Figure 42

Figure 43

List of Figures

Visualization Task with CoExist, Recovery:
Going Back to the Subclassing Solution 59
Main classes and methods of the CoExist im-
plementation. 68

The same code snippet run in the context of
two different versions evaluates to different re-

sults. 69
Graph of visual objects (morphs) shown in the
conceptual screen above. 69

Accessing the currently active system dictio-
nary by resolving the dynamic variable Active-
CodeBase. 70

Sharing of meta-objects between ver-
sions. 72

Copying meta-objects from the working copy
to the newly created version 6. 73
LateClassBinding literals for the method
createPerson. 75

LateClassBinding class in comparison to the
Association class. 76

LateClassBinding introduces an additional
value send after each push literal byte
code. 77

LateClassBinding adds a push method literal
and a value send byte code before each super

send. 77

Invalid static reference after class modifica-
tion. 78

Our experiment setup to compare perfor-
mance in program design activities. 94
Screenshot of the LaserGame used for task
1. 95

Screenshot of the MarbleMania game used for
task 2. 95
Size indicators for the games used in the

study 96
The experimental procedure for both the con-
trol and the experimental group. 98

Excerpt of a spreadsheet with coded version
data. 101

The first example represents the list of in-
teractions required for the generic Rename-
Class refactoring, while the second repre-
sents an increment that is specific to the
LaserGame. 102

Final scores for participants by task 104

xvii

Figure 44 A bar plot of the study results. Error bars rep-
resent the standard error of the mean. 105
Figure 45 An interaction plot of the study results. 106

ACRONYMS

VCS Version Control System

IDE Integrated Development Environment
VM Virtual Machine

JIT just-in-time compiler

LOC lines of code

xviii

INTRODUCTION

1.1 DESIGNING PROGRAMS

Programmers spend significant time on improving the design of their
code base. Thereby, they consider qualities other than completeness
and correctness. They are interested in the code’s layout, its decom-
position into modules, and the ways in which domain concepts are
expressed [56, 19, 3]. Programmers strive for simplicity, elegance, and
conceptual integrity in their constructions.

A suitable design helps programmers to understand, maintain, and
further develop the program:

e Structure helps manage large amounts of concepts [56, 19],
e Modularization eases future modifications [56, 3], and

e Order and simplicity support thinking [2].

These aspects have no effect on the correctness of a program. But
they render program design activities important. The achieved de-
sign outcome will influence how programmers perceive the program.
Design activities thus affect later development steps and their success.
Spending effort on improving program design pays off in future de-
velopment activities.

Program design is particularly important in Agile development ap-
proaches such as Extreme Programming [8] or Scrum [65]. Agile
teams can quickly deliver value due to short development cycles and
incremental explorations. Programmers mainly rely on source code.
It is the primary and often the only artifact produced and maintained
during the development process. However, when code is the pri-
mary development artifact, it becomes imperative that it is easy to
understand. Based on a high-quality code base throughout the entire
project, development teams can respond quickly to new customer re-
quests and changes.

INTRODUCTION

1.2 MAKING ERRORS DURING PROGRAM DESIGN

While program design is important, it is also particularly difficult.
One reason is that source code, which is the subject under design, is
complex. A program typically comprises a huge number of source
code entities such as methods and classes that are related to each
other. Besides the huge number of entities, the relationships between
these entities are sometimes unclear and ambiguous. Furthermore,
entity names, which are a means of abstraction, are chosen by conven-
tion and personal preference. This gives room for misinterpretation
and errors. Besides the complexity of source code, program design
is also difficult because it is ill-structured. There is no clear problem
statement nor is there a clear goal to be achieved. Also, there is typi-
cally no objective measure for good or bad design that helps to decide
whether one solution is preferable over another. Instead, program de-
sign relies on subjective value judgment. The ill-structuredness of
design and the complexity of the domain account for the difficulty of
program design tasks.

Because designing programs is difficult, it can easily lead to un-
desired development situations. When programmers improve their
programs’ design, for example, by removing indirections that seem
unnecessary, the following things can happen:

e A promising idea turns out inappropriate. The programmer
now wants to continue exploring a previous idea, but has al-
ready modified many other parts of the source code.

e The made changes affect the program in undesired ways. But
the programmer has difficulties to find the changes that cause
the undesired behavior.

e The source code turns out to be more complex than the pro-
grammer expected. It is now unclear how the code was working
before.

e The made changes cover several independent concerns. Thus,
they should now be shared in distinct increments (commits).
But this requires careful revisiting and re-assembling.

In situations like that, programmers have to spend effort to get
back to a desirable development state. They have to manually with-
draw some of the recent changes, recover knowledge from previous
development states, or detect and fix a recently introduced bug. Such
recovery activities are often tedious and can easily be frustrating.

1.3 PROBLEM PREVENTION AND ITS LIMITATIONS

1.3 PROBLEM PREVENTION AND ITS LIMITATIONS

To avoid tedious recovery efforts, literature recommends a structured
and disciplined approach to programming, which consists in the ap-
plication of various best practices [8, 29, 28]. Best practices include
the regular use of testing and versioning tools [69] such as Git [86, 14]
or Subversion [28], but also performing small steps and working only
on one thing at a time. Regular testing helps discover bugs early. It
thus reduces fault localization costs. Regular committing helps going
back to a previous state. And, working on one thing at a time eases
to commit independent increments. The application of such practices
is a form of problem prevention. Best practices are precautionary ac-
tivities that programmers can conduct to avoid undesired situations
in the future.

However, programmers can experience sudden needs of unex-
pected recovery even though they have been applying best practices
as recommended. They might run tests regularly, but still discover
some bugs only late in the process, which then requires tedious ef-
fort to localize the faults and fix them. Similarly, programmers might
only work on one thing at a time and regularly commit small incre-
ments, but still experience the need for manually withdrawing recent
changes. They might realize only after they have finished a task that
their changes made should better be shared in two separate incre-
ments, which then requires additional effort to extract meaningful
changes from the difference between the current version and the last
commit. Also, while a thought might first seem small and only min-
imally significant, seeing it realized in source code might stimulate
new and better ideas, whose realization first require withdrawing al-
ready made changes.

1.4 THESIS STATEMENT

This dissertation argues that, first, the application of best practices to
prevent recovery has limitations. While it is often easy to tell how
tedious recovery work could have been avoided in hindsight, pro-
grammers can hardly predict recovery needs, which makes preven-
tion difficult. It will be shown how the application of best practices
is time-consuming and requires trade-offs to be practical.

Addressing this problem, this dissertation further argues that, sec-
ond, recovery can be made fast and easy to accomplish by providing
dedicated tool support. It will be shown how built-in recovery sup-

INTRODUCTION

port can preserve immediate access to static and dynamic information
of intermediate development states.

This work will show how such tool support has been implemented
as an extension to the Squeak/Smalltalk programming environment.
Moreover, this dissertation will explain how the level of available re-
covery support can positively affect cognitive processes during pro-
gramming work. The results of a controlled experiment suggest that
additional recovery support improves programming performance in
explorative tasks.

In sum, the main argument of this dissertation is as follows:

THESIS STATEMENT Programmers benefit from dedicated recov-
ery tool support that automatically keeps recovery tasks fast and easy
to accomplish by preserving immediate access to static and dynamic
information of intermediate development states.

1.5 ORGANIZATION

Chapter 2 provides background information. It introduces the con-
cept of design and relates it to programming. It then describes pro-
gram design and explains how it is important in software develop-
ment.

Chapter 3 motivates the additional tool support proposed in this
work. A case example illustrates how programmers can suddenly ex-
perience the need for recovery effort even though they have followed
best practices. After a discussion of this case example, this chapter
describes the limitations of the approach to avoid unexpected recov-

ery.

Chapter 4 introduces CoExist, a set of tools dedicated to support
various recovery needs [77]. CoExist closes a gap between undo/redo
and Version Control Systems (VCSs) [69]. While undo/redo is scoped
to individual documents, version control requires explicit and man-
ual control. Fig. 1 illustrates some of the main user interfaces concepts
of CoExist.

Chapter 5 shows how CoExist would have helped the programmer
in the reported case example. In addition to that, three informal
user studies are presented, which accompanied the development of
CoExist and helped better understand various usability aspects. It is

1.5 ORGANIZATION

U1

Crealed class: SemanticLense

‘l'k-- L

. T T T
HEHEEE BE PP

Figure 1: Conceptual figures of CoExist featuring continuous versioning,
running tests and recording the results in the background (left),
side by side exploring and editing of multiple versions (left). Hov-
ering shows which source code element has been changed; holding
shift in addition shows the full difference to the previous version
(right).

then explained how recovery support such as provided by CoExist
reduces the need for problem prevention.

Chapter 6 demonstrates feasibility of the proposed concepts. CoEx-
ist has been implemented in Squeak/Smalltalk [38]. The characteris-
tics of this IDE inspired an implementation that manages versions of
meta-objects instead of source code files, which in turn encouraged
the development of tools to compare versions of both development
and run-time artifacts. After presenting selected aspects of the imple-
mentation, its performance is evaluated.

Chapter 7 discusses various implications of the proposed approach.
Making recovery easy and fast such as provided by CoExist is gener-
ally beneficial: it helps in case of unexpected recovery needs. But
it is particularly beneficial for development tasks that are prone to
misinterpretation, false assumptions, and other errors. In addition,
dedicated recovery support also brings cognitive benefits: it supports
understanding, inference, and problem solving during program de-
sign tasks.

Chapter 8 describes the setup and the results of a controlled lab
study, which has been conducted to examine whether recovery sup-
port such as CoExist affects programmers’ performance. After de-
scribing the study design including material and tasks, the results of
the statistical analysis are presented and discussed. The chapter ends
with sections on the study’s limitation and a justification of the study
design.

Chapter 9 presents related work. The presentation is divided
among the main features of CoExist, which are: versioning, software

INTRODUCTION

evolution analysis, juxtaposing versions, back-in-time impact analy-
sis, and re-assembling changes.

Chapter 10 summarizes the results of this dissertation and outlines
directions for future work.

BACKGROUND

This work assumes that programmers care about the quality of their
code base and regularly conduct program design activities. Therefore,
the first three sections of this chapter are concerned with program de-
sign: what it is and what it is good for. Afterwards, it is explained
how changing source code can suddenly and unexpectedly lead to
tedious recovery work. This is followed by a description of best prac-
tices, which are recommended to prevent such tedious recovery work.

2.1 DESIGN AND PROGRAMMING

In [68], Herbert Simon argues that design is central to various disci-
plines (professions):

Engineers are not the only professional designers. Every-
one designs who devise courses of action aimed at chang-
ing existing situations into preferred ones. The intellectual
activity that produces material artifacts is no different fun-
damentally from the one that prescribes remedies for a
sick patient or the one that devises a new sales plan for a
company or a social welfare policy for a state. Design, so
constructed, is the core of all professional training; it is the
principal mark that distinguishes the professions from the
sciences. Schools of engineering, as well as schools of ar-
chitecture, business, education, law, and medicine, are all
centrally concerned with the process of design. [68, p. 130]

According to this description, design crosses the boundaries of in-
dividual disciplines. Practitioners of various disciplines perform ac-
tivities that involve design. The description on Wikipedia supports
this generic character of design:

Design as a noun informally refers to a plan or conven-
tion for the construction of an object or a system [...] while
"to design" (verb) refers to making this plan. [...] However,

BACKGROUND

one can also design by directly constructing an object (as
in pottery, engineering, [...], graphic design) [83]

Giving these definitions, it is reasonable to consider the construc-
tion of programs as design. While researchers have not yet agreed on
a definition of design, the following attempt allows for highlighting
the connection to programming. Programming-related concepts are
inserted in square brackets and rendered in italics.

(noun) a specification of an object [the program], mani-
fested by an agent [the developer], intended to accomplish
goals, in a particular environment, using a set of primitive
components [programming language, libraries, ...], satisfying
a set of requirements, subject to constraints [readability, per-
formance, ...]; (verb, transitive) to create a design, in an en-
vironment (where the designer operates) [59]

In line with the definitions, programming arguably involves design
and programmers conduct intellectual activities that are similar to the
activities of designers in other fields.

However, in the context of programming, it is meaningful to dis-
tinguish between two kinds of design according to whom the design
is for. On one hand, programmers design a software for end-users,
which involves the overall experience and interaction processes. On
the other hand, programmers also design for other programmers in-
cluding themselves in the future. They continuously improve the
code base in preparation for current and future coding activities.

This dissertation focuses on design activities of the second kind,
which will be referred to as program design in the following.

e User-experience design targets end-users and involves the
graphical layout and processes that guide users;

e Program design targets programmers and involves the consid-
eration of names for program constructs, indentation and code
layout, abstractions, separation into modules;

2.2 PROGRAM DESIGN

Developers continuously redesign their programs. A canonical ref-
erence about best practices in programming starts by listing some
crucial questions programmers face everyday [6]:

2.2 PROGRAM DESIGN

e How do you choose names for objects, variables, and methods?
e How do you break up the logic into methods?

e How do you communicate most clearly through your code?

Such questions are important for current and future programming
tasks. Continuously considering these and other aspects of program
design eases readability and maintainability of the source code. For
example, while the following two snippets of Smalltalk source code
have identical functionality, the latter version is easier to comprehend
and work with.

s =
r := OrderedCollection new.
1 to: s size

do: [:1 |

e :=s at: 1i.

e <5 ifTrue:

[r add: e]]

givenNumbers := " ... "

result := OrderedCollection new.

1 to: givenNumbers size do: [:i | | eachNumber |
eachNumber := givenNumbers at: i.
eachNumber < max

ifTrue: [result add: eachNumber]]

The second version is easier to understand for two reasons. First,
names can increase the readability of a program if they clearly ex-
press the role of the identified constructs. Second, indentation of
lines better conveys the structure of the source code.

Another aspect of program design is the invention of abstractions,
which allows for expressing common needs more precisely. The fol-
lowing source code abstracts over iterating elements and filtering ac-
cording to a predicate.

Collection>>select: predicateBlock
newCollection := OrderedCollection new.
self do: [:each |

(predicateBlock value: each)
ifTrue: [newCollection add: each]].
1 newCollection

10

BACKGROUND

11117 || ByyH
13654 8795

Figure 2: Three different conceptual models of programs. The left model is
less structured and exhibits less order than the other two, thereby
rendering development tasks more difficult.

While the above definition of the select: method is harder to read
than the above code iterating over numbers, it allows clients to ex-
press their goals in much less code, as the code below shows:

givenNumbers select: [:each | each < 5]

The new abstraction increases expressiveness of the previous code
snippet, makes it easier to read and understand, given that the reader
is familiar with the new abstraction. In this example, there is hardly
a right or wrong solution. The different solutions in the design space
can rather be more or less appropriate for different purposes. While
the first alternative includes more details about how the computation
of the desired effect is accomplished, which can be important in cer-
tain domains, the second alternative focuses more on what should be
achieved and is more concise.

Program design also refers to the intentional effort of structuring an
application’s code base. Figure 2 shows different conceptual models
of a program, which represent the decomposition of a program and
how the parts interact with each other. In structuring the code base,
programmers strive for simplicity and consistency, which is useful for
the following reasons:

e Structure helps manage immense amounts of information,
which can easily add up to the size of thousands of books or
even an entire library [39],

e Modularization eases change, which can reduce the number of
elements to be understood and modified in subsequent devel-
opment steps,

e Order and simplicity support thinking: Simplicity seems like
a natural desire—it enables one to see clearly. The arrangement
of elements partially determines our perception and thoughts.
Conceptual models like those presented in Figure 2 implicitly

2.3 THE NEED FOR WELL-DESIGNED PROGRAMS

act as frames that we use to understand the problem and solu-
tion spaces. Moreover, simplicity and order make us arguably
feel better, which in turn positively affects creative thinking [2].

These aspects do not affect the correctness of a program, but they
render program design activities important; their outcomes deter-
mine how the program is perceived, analyzed, and processed.

2.3 THE NEED FOR WELL-DESIGNED PROGRAMS

Programmers care about design aspects because they know it might
affect the development process. Appropriate source code design
helps in two ways: it eases the construction of new building blocks
and it also supports maintenance and evolution of existing building
blocks.

2.3.1 Constructing new building blocks

Programs are typically split up into building blocks such as methods
and classes. These building blocks can be used to implement other
building blocks, and so on. The decomposition of programs helps
to manage complexity [12]. It aids being specific only about details
relevant and inherent to a particular concept and to leave out the
details of others. A proper decomposition eases the creation and
comprehension of the individual parts, and thus supports working
on large complex systems [56].

While programmers’ current way of thinking about a feature de-
termines how they will express it in source code, the set of building
blocks available and previously implemented determines how they
think about the problem. These available building blocks define a
frame of reasoning about the problem domain. Programmers nat-
urally try to express upcoming features in the terms-the buildings
blocks—they have previously defined.

What has previously been implemented also determines, to a cer-
tain degree, the amount of programming effort needed to implement
current features of interests. For example, the availability of a con-
struct such as the select: method determines the amount of code
to be written for tasks such as filtering certain elements from a col-
lection. Consequently, the result of current programming efforts can

11

12

BACKGROUND

make future tasks easy and simple to accomplish, requiring only little
code.

2.3.2 Evolving existing building blocks

The design of programs affects future implementation tasks, because
programmers will change the code that is written today in the future.
There is hardly a piece of code that, written once, has never been
changed afterwards. Programmers will have to work on source code
written by others and on source code written earlier by themselves. In
both cases, they must gain an in-depth understanding of the source
code, either because they have never seen it before or because they
cannot remember it in sufficient detail. And to gain an understanding
can be facilitated or impeded by the program’s design.

Changing previously written source code is necessary for two rea-
sons. First, the understanding of the problem can co-evolve with the
understanding of the solution [20]. When programmers have an ini-
tial understanding of the problem, they will come up with ideas and
implement them. But the first implementation can reveal limitations,
which shows the insufficiency of the initial understanding. So, pro-
grammers have to iterate over their program understanding and their
solution to eventually complete the task.

A second reason for changing code is that programmers approach
problems incrementally. As the task to be fulfilled is typically large
and complex, programmer have no choice but to start by focusing
on one part of the problem [19] and write source code for this part.
However, the parts chosen consecutively will likely overlap in differ-
ent respects. Consequently, the code needed to cover the functionality
of the various parts is likely to overlap as well. But source code that
has been for only part of the problem typically lacks some aspects or
features that are required for other parts. So, source code needs to be
adapted to the additional requirement it should meet.

In addition to this macro level of software development, where
clients and programmers collaborate to find out what needs to be
built and in which order, programmers also have to deal with com-
plexity and uncertainty on a micro level, where programmers are
mainly concerned with how to build the desired features. Therefore,
they follow a similar iterative and incremental approach. Program-
mers focus on a particular aspect of the problem, implement it, and
thereafter consider another aspect, which potentially requires chang-
ing the code written for previous ones.

2.4 THE RISKS OF CHANGE 13

2.4 THE RISKS OF CHANGE

While programmers regularly make changes to their programs,
changing programs always involves the risk of making errors. In this
context, the term error is used with a meaning different from the term
mistakes:

“..a mistake is usually caused by poor judgment or a
disregard of [known and understood] rules or principles,
while an error implies an unintentional deviation from
standards of accuracy or right conduct....” [51]

Making an error refers to a situation where a programmers believes
in the appropriateness of current and planned actions, and only later,
after seeing the results, recognizes unexpected and undesired conse-
quences. Making an error represents a risk because it often requires
the programmer to accomplish some tedious work to recover from it.
The following situations can arise.

2.4.1 Changes suddenly turn out inappropriate

In the course of working on a programming task, one particular im-
plementation idea or a part of an idea might suddenly turn out in-
appropriate. Seeing the idea implemented can reveal unforeseen im-
plications that are undesired. For example, trying to improve several
methods by removing an indirection that first seemed unnecessary
suddenly reveals the actual purpose of this indirection. In such a
situation, programmers want to have the respective changes made
undone.

However, there is a high probability that an appropriate commit is
not available, which means reverting the code base to the last com-
mit will not only withdraw undesired changes but also changes that
should be kept. In this case, programmers have to withdraw the pre-
viously made changes by using the undo feature of the text editor.
More specifically, it requires manually applying the undo command
an unknown and different number of times for each changed file.

14

BACKGROUND

2.4.2 Program knowledge turns out insufficient

While being in the middle of a large change, programmers might
become aware that their understanding of the system, as it was, has
been insufficient. For example, they might not understand why the
new code does not work as expected, although it seems like a clean
refactoring.

To close the knowledge gap, programmers can employ a VCS. Such
systems make it typically easy to glance at a previous version of a file.
Nevertheless, this approach is impractical if the knowledge is spread
across many files or if the programmer needs to execute or debug a
previous version.

A workaround is to ask the VCs to replicate all previous files along-
side the current working copy. And if programmers require execution
or debugging, they will also have to set up a second instance of their
environment. Some VCSs such as Git also enable programmers to
stash current work (i.e., to save current changes and check out the
previous snapshot), understand the previous code, and then bring
back the current version to apply the new understanding. However,
this approach has the disadvantage of losing a view of the previous
code while working on the current one which requires programmers
to rely on their memory. Moreover, the concept of staging adds sig-
nificant complexity to the vVCS, which might be more relevant to the
user than its potential benefits [?].

The above discussion assumes that an appropriate snapshot, with
the knowledge of interest, is available. Nevertheless, if no appropriate
snapshot is available, programmers have to undo their changes first
to manually get back to a previous development state.

2.4.3 New bugs occur

Changing source code involves the risk of introducing bugs. Because
software systems are huge and complex in relation to what a human
mind can keep and process in mind, it is hard to acquire and maintain
in-depth knowledge of every single expression in the code base.

When programmers ignore testing for a while, it can require signif-
icant effort and time to find, understand, and remedy faulty behavior
that they accidentally introduced. Programmers might ignore testing
when they follow a particularly interesting idea. Being caught up in

2.4 THE RISKS OF CHANGE

creativity, they simply forgot to run tests. Alternatively, they might
ignore testing intentionally, because they first want to prototype an
idea to study its feasibility and value.

However, the more changes are made between test runs, the harder
its gets to understand and fix newly discovered bugs. It gets harder
to remember all the changes that have been made, which are possible
causes for the new bugs. In addition, it gets harder to understand the
effects of each change in detail.

2.4.4 Changes cover multiple independent concerns

Programmers want to commit their improvements to share them with
others. However, they might have difficulties separating the made
changes into meaningful increments. One commit should contain
changes that belong to one improvement [28]. When the implemen-
tation of a new feature required a particular refactoring, it is recom-
mended separating the refactoring from the feature implementation
and sharing the different sets of changes as independent increments.
When authors group their changes into small meaningful chunks,
consumers (co-developers) of these commits need to spend less time
to understand and evaluate them, because the overall information is
already partitioned so that it is easy to process. More specifically,
this practice helps co-workers to read the commit log, which is useful
to keep informed about the project, but it also eases various integra-
tion tasks, when, for example, only a few changes committed to one
feature branch should be applied to the master branch.

However, current tool support makes it hard to create small mean-
ingful commits out of a large set of various changes. Versioning tools
are unable to show all the single changes made at a semantic level,
they can only show the difference between the current development
state and previous commits. For example, even though programmers
might have modified a certain code element multiple times and for
different purposes, tools will only show a single textual difference
for this element. Programmers have to remember that the element
has been changed multiple times for multiple purposes. In addition,
they have to manually reconstruct which changes have been made for
which purpose.

Furthermore, when programmers pull apart the difference to the
previous commit into multiple new commits, they can hardly check
whether the set of grouped changes is complete and works as desired.
Only after committing their changes, programmers can checkout the

15

16

BACKGROUND

corresponding revision to see if it represents a correct, complete, and
running version, which is meaningful for others. If not, program-
mers have to manually create new commits to eventually achieve a
satisfactory revision history.

2.5 BEST PRACTICES TO PREVENT TEDIOUS RECOVERY

The issues listed above are well known. Literature describes them in
detail, teachers tell students about them, and every programmer has
experienced them (and still does) in some form or another. To reduce
the risk of encountering such situations, literature recommends fol-
lowing a structured and disciplined approach and employing certain
practices of work, which include, for example:

e Work on one thing at a time, which might be a new feature,
a refactoring task, or a bug fix. Avoid mixing the implemen-
tation of a new feature with refactoring and bug fixing with
refactoring; in general, avoid implementing multiple features at
the same time. This avoids losing track and simplifies sharing
your improvements with others.

e Small Steps: Make only small changes that you can easily con-
trol. Make sure you understand the items of work. Consider
breaking down items into manageable parts or consciously de-
ciding for a phase of experimenting, which should be preceded
by saving the current development state, for example, when us-
ing Git, by committing or stashing recent changes.

e Write tests and run them regularly. To find out if recent changes
introduced faulty behavior, programmers can validate the ap-
plications behavior. To avoid the laborious effort of manually
checking for the desired behavior, it is recommended to write
and maintain a suite of automated tests [8, 7]. Such a test suite
should ideally check for the correct behavior of most if not all
aspects of the application, so that the passing of all tests is a suf-
ficiently good indicator that the application works as desired.
If this is the case, the failure of one or more tests reveals that
recent changes introduced faulty behavior. Running automated
tests helps detect newly introduced bugs early in the process.
The set of changes that can be the cause of a new bug remains
small, so that the actual failure cause can always be located rel-
atively fast.

2.5 BEST PRACTICES TO PREVENT TEDIOUS RECOVERY

e Employ a distributed vCS such as Git or Mercurial and commit
meaningful increments. Make regular and frequent use of it by
committing small increments. This allows for going back to a
stable state more easily.

The general pattern of these practices is that programmers should
anticipate that they will make errors and should thus perform pro-
phylactic activities continuously and regularly in order to keep the
cost for recovery scenarios low.

SUMMARY

Design is central to various professions including programming. The
intellectual activities during program design tasks are similar to those
during design tasks in other fields. Program design has the goal to
support current and future programming tasks. It is concerned with
names, abstractions, or the decomposition into modules, among other.
Appropriate abstractions and a proper decomposition helps to man-
age the complexity of the domain. Currently available abstractions
and modules also determine the vocabulary and the concepts for rea-
soning about the domain and affect the effort for implementing sub-
sequent features. In consequence, a program’s design can ease or
impede program comprehension and maintenance tasks.

However, changing source code comes along with the possibility
of making errors. Changes can turn out inappropriate, program un-
derstanding can turn out insufficient, or bugs can creep into the code
without notice. Such errors typically requires tedious effort to recover
from them. To prevent tedious recovery, literature recommends the
application of various best practices: programmers should only work
on one thing at a time, make only small steps that they can control,
and run tests regularly and frequently. In general, it is recommended
to anticipate the possibility of errors and to conduct corresponding
precautionary activities.

17

MOTIVATION: THE TRADE-OFF BETWEEN COSTS
AND SAFETY

The chapter starts with an example case that illustrates how program-
mers can still have the need for tedious recovery, even though they
have followed the recommended guidelines. After a discussion of
this example case, this chapter explains the limitations of the recom-
mended best practices to prevent problems and finally derives the
need for built-in recovery support.

3.1 EXAMPLE CASE: UNFORESEEN RECOVERY NEEDS

Despite these practices and recommendations that should help avoid
problems, programmers face undesired situations from time to time,
as for instance, the following example case illustrates. While intuition
might suggest that programmers are the ones to blame, because they
obviously ignored recommendations, the discussion will show that it
is not obvious that the programmer made an error and intentionally
acted against the rules, rendering this case report an example that
our intuitive judgment is likely to be biased.

3.1.1 Experience Report

Background: At the time of experiencing the situation, the student was 23
years old and in the second semester of a masters curriculum in computer
science. (He already held a bachelors degree in computer science). Com-
pared his fellow students, he has been a very experienced programmer due to
participation in various open source projects in his spare time, internships
during semester breaks, and regular part-time jobs as programmer. He has
been a proponent of Agile principles and practices in general and testing
and versioning in particular. He has liked Git and has already had 2 years
of experience using Git.

The student had been working on a visualization task using the
Qt framework. At some point, he recognized that he has been added

19

20

MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND SAFETY

Qt framework Qt framework

QPoint QEllipse QPoint QEllipse
l——‘—| |
|:|_> |:| ‘ ‘ ‘ | : ‘“ | ‘ ‘
Lens

QEllipse QPoint QEllipse
Qt framework T Qt framework 4 Zr

\ \ \
Si S
I o I . O % =1

QEllipse QPoint QEllipse

Qt framework A Qt framework A A

‘ ‘ ’_> Semantic | ‘ ‘ ‘ | |_> Semantic ‘ |
Lens Lens

Figure 3: Visualization Task Refactoring (from left to right and top to bot-
tom)

several methods that all work on the same data. He decided to extract
a class dedicated to this data structure and these methods. He created
a new class called SemanticLens as a subclass of a Qt class QEllipse.
Figure 3 illustrates the refactoring.

After moving all methods in this new class and adapting his code to
make proper use of the new class, he contemplated his code and got
skeptical about the decision to subclass the Qt class. He remembered
that subclassing has the drawback of exposing the interface of the su-
perclass to all clients, which might make use of it, thereby creating a
dependency that can become difficult during maintenance tasks. So,
he decided to go for the delegation pattern instead. He was sure that
delegation is the right way to go. So, the student changed the super-
class of the SemanticLens class (bottom row of Figure 3, and added
a field and accessor methods to maintain a reference to a QEllipse
object and also added initialization code. He changed the methods in
SemanticLens class and made the required changes in the code using
this class.

However, while looking at the result of making all these changes,
the student realized that his belief was wrong. He could now see that
subclassing is preferable to delegation in this situation because hav-

3.1 EXAMPLE CASE: UNFORESEEN RECOVERY NEEDS

ing access to the methods of the superclass is actually useful in his
program. As a consequence of this insight, the student then faced the
laborious task of manually withdrawing all the changes previously
made to replace subclassing by delegation. He had to identify the
relevant artifacts (files), and for each file, he had to apply the undo
command an undefined number of times until reaching the desired
state. Such tasks are not only time-consuming but also tedious. As-
suming that the changes made for the initial replacement had taken
several minutes, manually withdrawing also took a few minutes. The
required recovery work would have been even more tedious, if the
student had made further changes before recognizing the error.

3.1.2 Should The Programmer Have Done Things Differently?

Programmers who read or listen to a story like the one above will
likely come up with ideas how the student should have acted to
avoid the need for recovery work. But as one can find arguments how
the student should have done better, one can also find counter argu-
ments why the advised alternative would not have been a meaningful
option. The following two arguments and corresponding counter ar-
guments illustrate opposite points of view.

3.1.2.1 Pros and Cons of Making Checkpoints

A REVIEWER: The student could have made a local commit before
starting to replace the subclassing mechanism with the delegation
mechanism. The commit would have served as checkpoint and there
would have been an easy way to recover from the undesired situation.

THE STUDENT: At this time in point the code was in an interme-
diate state and the task was not yet completed. So, I would have
committed a development state that is of no use to other develop-
ers. And, using this commit only locally and avoiding sharing it with
others would have required additional work to clean up the revision
history:.

3.1.2.2 Pros and Cons of Deferring Subtasks

A REVIEWER: The cause of the problem was mixing two different
tasks: implementing a feature and refactoring the code. The student

21

22

MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND SAFETY

could have finished implementing the functionality first before chang-
ing the code. Finishing the implementation would have helped to
understand the code and the options for improvement more easily,
so that the student would have seen the benefits of subclassing over
delegation upfront.

THE STUDENT: In the moment of seeing and working with the
code, changing the recently created class to employ the delegation
pattern did not appear as a different task. The idea appeared more
like a minor issue, similar to changing a recently entered phrase when
writing a text passage. These are small issues that people often fix in
the moment of noticing them. If I had stayed with the subclass so-
lution, I would have written more code that I would have needed to
change when moving toward the delegation solution. This additional
overhead gives reason to make the changes immediately.

3.1.3 The Role of Experience

Another interpretation is that sudden recovery needs are caused by a
lack of experience. If the student faces a similar situation again, he
will probably behave differently. It is likely that he will either stay
with the subclassing solution as the alternative was inappropriate the
last time, or he will be more careful before making changes to avoid
making the same “mistake” again.

However, even though experience can reduce the amount of unex-
pected recovery efforts, it hardly improves the ability to predict and
prevent previously unknown problems. For example, programmers
who have considerable experience in developing web shops using a
particular web framework will rarely experience situations of unex-
pected recovery. Over time, such programmers have learned how to
accomplish the required tasks. They have increased their repertoire
of proven building blocks, which makes them efficient. Relying on
proven building blocks implies that the space for design options has
been reduced, which then gives little little room for making errors.
However, the impact of experience is limited. When tasks or tools
change significantly, or when basic assumptions get challenged, the
design space widens and the amount of uncertainty increases. The
chance for unexpected discoveries increases, and so does the chance
for unexpected recovery needs. While previously established and
proven building blocks will still be of use, their applicability and us-
ability will be limited.

3.2 TRADE-OFF BETWEEN COSTS AND SAFETY

3.1.4 Hindsight Bias

While a story of unexpected recovery needs can easily suggest inad-
equate behavior, this might not necessarily be the case, as the above
juxtaposition of arguments illustrates.

Hindsight bias refers to the tendency to interpret past events dif-
ferently than they actually were due to the knowledge of the out-
come [26, 45]. An often used example is that many people believe
they knew that a crisis will come, although it was unpredictable for
experts in the field. Even though randomness played a significant
role, people tend to see cause-effect relationships among a chain of
events described in a story. Applied to the experience report of the
student, it is tempting to see the absence of certain actions as the
cause of the need for recovery, although such an outcome might have
been considered for from reasonable when being in the situation.

In sum, best practices help to avoid problems and ignoring them
will likely lead to problems. However, employing best practices might
not be sufficient to avoid sudden needs of recovery. The subsequent
section will discuss the limitation of the preventing unexpected recov-
ery needs.

3.2 TRADE-OFF BETWEEN COSTS AND SAFETY

The discussion of the example case in the previous section demon-
strates that the application of best practices involves trade-offs. On
the one hand, performing activities such as committing or running
tests help reduce the risk of unexpected recovery needs, but, on the
other hand, such practices also consume time and do not always ap-
pear appropriate.

While the example case focuses on versioning, trade-offs are inher-
ent to the approach of avoiding undesired recovery work by relying
on best practices. The following scenarios are further examples how
programmers can require tedious recovery work although they regu-
larly employ best practices:

e Programmers might run tests regularly, but still discover some
bugs only late in the process, which then requires tedious ef-
fort to localize and fix. Bugs can remain undiscovered when
programmers run only a subset of tests regularly and run the
entire suite of all tests only sporadically. For example, program-

23

24

MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND SAFETY

mers might have run the tests for the current unit of interest,
but the changes might have had effects on other units.

e Programmers might work on one thing at a time and regularly
commit small increments, but still experience the need for man-
ually withdrawing recent changes. Programmers might realize
only after they have finished a tasks that their changes should
better be shared in two separate increments, which then re-
quires additional effort to extract meaningful changes from the
difference between the current version and the last commit.

To prevent tedious recovery efforts more effectively, programmers
could employ best practices more rigorously. However, it requires
an impractical amount of development time to employ best practices
with an intensity that minimizes the risk of unexpected recovery ef-
forts. The following sections discuss the trade-offs for the various
problem dimensions.

3.2.1 Trade-off for Version control

To always have a proper snapshot to go back to in all circumstances,
programmers would have to make a commit after every small change.
Frequent commits would be required, because every promising idea
can suddenly turn out inappropriate or previously withdrawn solu-
tions can suddenly become interesting again. Consequently, every de-
velopment state can be of relevance in future development situations,
including those intermediate development states before completing
the next meaningful increments. However, making commits of all
(or most) intermediate development states would require a dispro-
portionate amount of development time, for two reasons: First, every
commit requires a commit message that later aids finding the relevant
version of interest rapidly. But writing such commit messages is a
time-consuming activity, which requires analyzing the made changes,
summarizing them, and describing their intent. Second, the main
branch of a project’s commit history should include commits that
represent meaningful increments. So, frequently making commits ig-
nores this aspects of meaningful increments, and would thus require
cleaning up the commit history later on. This involves extracting
all relevant changes, sorting irrelevant changes out, and assembling
meaningful commits that are clean and function properly. Such clean
up activities, which are not well supported by tools, can easily be
time-consuming and tedious.

3.2 TRADE-OFF BETWEEN COSTS AND SAFETY

Because of the effort required for each additional commit, program-
mers have to compromise on the density of their safety-net of com-
mits. They will typically make commits after task completion or after
having achieved a meaningful increment. And only in exceptional
circumstances, if risks suggests doing so, programmers will make a
commit in between only for the purpose of preserving fast access to
a particular development state. Consequently: every now and then,
there will be a lack of an appropriate commit to go back to or to
recovery information from.

3.2.2 Trade-off for Planning and Structuring

As the proverb “foresight is better than hindsight” suggests, think-
ing about the upcoming programming steps before actually making
changes to the code can help to avoid unexpected recovery work. For
example, when programmers consider removing the usage of the ob-
server pattern [? | because the indirections appear unnecessary, they
could thoroughly think about the necessary changes and their impact
before making those changes to the code base. This might help dis-
cover problems and limitations upfront, which in turn avoids tedious
recovery work later. However, ignoring a single aspect of a problem
can render a promising idea inappropriate. Programmers thus would
basically need to know all required changes and their impact in order
to ensure the absence of sudden needs for recovery. In the example, to
exclude all possibility of wrongly assessing the dispensability of the
observer pattern, programmers would first need to find out in detail
how all involved objects collaborate with each other, which messages
are exchanged, and what the corresponding effects are. Programmers
would also need to think through how the source code will look with-
out having these indirections in order to be sure, in advance, whether
the code would truly be easier to understand. To rule out the possi-
bility for errors and the need for recovery, programmers would have
to solve the programming task mentally upfront, before making any
changes.

But because solving a programming task mentally first can easily
become tedious and time-consuming, programmers will often think
only partially about the upcoming work. For example, they might
try to pinpoint those aspects of the task that appear particularly risky
and reflect only about them. However, programmers can easily fail
to consider crucial aspects of the problem.

25

26

MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND SAFETY

3.2.3 Trade-off for Testing

To ensure low cost for fault localization and repair, programmers
need to test the entire application after every small change. They
need to do so because changes can have implications that are gen-
erally hard to predict. Changes might, for example, unexpectedly
affect system parts beyond the borders of the current module of inter-
est. To discover such unforeseen side-effects, programmers need to
run the entire test suite, given that the test suite covers 100 % of the
functionality. However, running tests can easily consume a consider-
able amount of development time, from several seconds to minutes
to hours, depending on the software system and the test suite. This
overhead makes it impractical to run the entire test suite after every
small change.

The costs for testing typically lead to trade-offs. Programmers run
those tests continuously that directly belong to the unit of interest and
run the entire test suite only after having achieved a major increment.
Also, programmers run tests not after every small change, like after
every statement they changed, but rather run them after having made
a few small changes. More generally, the selection of tests as well as
how often they are run depends on a personal subjective assessment
of risks and needs.

3.2.4 Meta Trade-off: The Possibility to Forget, and the Costs to Avoid It

To ensure the appropriate application of best practices, programmers
need to constantly reflect on their current and future activities. Con-
stant reflection is required because the application of best practices
is a secondary task that programmers have to perform in addition to
their primary task, the actual coding work. Such a secondary task is
easy to forget, in particular because there are no reminders or trig-
gers when, for example, it is meaningful to consider the possibility
of making a commit, or when to run tests, or when to adapt the sub-
set of tests to be run. It is thus easy to ignore such considerations.
But to avoid forgetting and thus to avoid ignoring an important situa-
tion, programmers have to continuously think about secondary tasks.
However, continuously thinking about committing, testing, and re-
structuring upcoming work easily gets tedious, impedes focusing on
the primary task, and makes it hard to get work done.

Because of the costs that constant reflection on programming activ-
ities implies, programmers will typically compromise on the consis-

3.2 TRADE-OFF BETWEEN COSTS AND SAFETY

tency and rigour in the application of best practices. When they focus
on their ideas and the corresponding changes, they will easily ignore
the need for reflection. They will typically only consider committing
or running tests, when the task of current interest is completed or
when an event interrupts the flow.

3.2.5 Trade-off: Return on Investment

Not only that precautionary actions require the investment of valu-
able development time, but the return on this investment is uncer-
tain. Programmers might run tests often and regularly, but might
rarely detect bugs during these test runs, because they rarely intro-
duce any. Similarly, programmers might make commits frequently
and carefully write meaningful commit messages to ensure easy and
fast recovery, but might rarely have the need to go back to a previous
development state, because their ideas turn out useful and sufficient
most of the times. Programmers might spend more effort on preven-
tion than they would require to recover from unexpected situations.
They might not experience recovery needs at all. More generally, the
investment of development time in problem prevention might not pay
off, which is in conflict with the need to expend energy on problem
prevention.

3.2.6 Implications

The trade-off between costs and safety implies that the prevention of
recovery problems either requires a disproportionate amount of de-
velopment time or is error-prone. It is otherwise error-prone because
employing best practices selectively can hardly avoid unexpected re-
covery efforts. To reduce the impact of luck, programmers can assess
the risks of the current situation. They can reason whether it is worth
running and waiting for the entire test suite or cleaning up and mak-
ing a commit before moving on. But it is hard to estimate the overall
effects of modifications in general and to estimate whether the bound-
aries of modules are crossed in particular. It is also hard to predict
how an idea will turn out. Realizing an idea often exposes more im-
plications and constraints than expected in the beginning. More gen-
erally, the assessment of risks is typically based on heuristics rather
than on facts, which makes it error-prone. Programmers can thus
rarely ensure the early detection of bugs by running only a small se-
lection of tests. Similarly, they can rarely ensure a proper commit to

27

28

MOTIVATION: THE TRADE-OFF BETWEEN COSTS AND SAFETY

go back to by only making commits when a task is finished or before
approaching a task that appears particularly risky.

3.3 THE NEED FOR BUILT-IN RECOVERY SUPPORT

The trade-offs mentioned above can be resolved by providing tool
support that makes recovery tasks easy and fast to accomplish. More
specifically, Integrated Development Environment (IDE)s should pro-
vide dedicated support for the following recovery scenarios:

WITHDRAWING CHANGES IDEs should support programmers in
withdrawing recent changes and starting over from a previous
state. IDEs should provide a safe environment where developers
can try out ideas without fear of loosing the current stable state
of development.

RECOVERING KNOWLEDGE IDEs should support programmers in re-
covering knowledge from a previous version. This would avoid
the need for a precise understanding of every detail before mak-
ing any changes.

CORRECTING RECENT MISTAKES IDEs should support program-
mers in finding the change that caused a test to fail. This would
allow to focus on the task at hand and to assess test quality only
when it is convenient.

RE-ASSEMBLING CHANGES IDEs should support programmers in re-
assembling their recent changes into incremental improvements.
This would allow programmers to defer the consideration of
code sharing and to focus at the task at hand.

SUMMARY

Following best practices can fail to avoid unexpected recovery needs.
An example case shows how a programmer, after implementing an
idea, suddenly discovered that the changes made did not improve
the situation. Despite the fact that programmers can make errors, em-
ploying best practices is both time-consuming and exhaustive. For
example, running the entire test suite after every small change or
thinking through the effect and value of every change clearly ren-
ders programming efforts inefficient. Because of that, trade-offs are
required, which, however, imply the risk for unexpected problems.

3.3 THE NEED FOR BUILT-IN RECOVERY SUPPORT 29

These trade-offs can be avoided by providing tool support that makes
the various recovery needs fast and easy to accomplish.

COEXISTENCE OF PROGRAM VERSIONS

This chapter introduces CoExist, an approach and a set of devel-
opment tools that offer built-in recovery support. CoExist supports
programmers by automatically keeping recovery costs low and is
meant as a mechanism that complements undo/redo and VCSs such
as Git [86, 14].

After first giving an overview of CoExist’s feature set in the first
section, the subsequent section explains how the tools would have
helped the recovery scenario illustrated previously (Section 3.1). The
sections after that describe the various aspects of CoExist’s support
in detail.

4.1 SQUEAK/SMALLTALK

The Squeak/Smalltalk system [38], Squeak for short, is an open-
source implementation of Smalltalk [32, 31]. Squeak provides an en-
vironment to open and interact with games, applications, or other
tools. The user interface to Squeak, which is based on Morphic, pro-
vides directness and liveness [52]. On top of that, Squeak supports
the multi-window paradigm. Windows are the typical container of
development tools. Windows can overlap and be moved around. Fig-
ure 4 shows a screenshot of a Squeak system that has opened a wave
editor application and a few development tools.

A LIVE PROGRAMMING SYSTEM The development tools (shown
at the top of Figure 4) enable programmers to browse and modify
source code. They can work on their applications, but can also browse
and change the source code of the Squeak system itself. The source
code of the entire system is an inherent part of the same. Changes to
the code directly affect the system. In this sense, Squeak is a “live”
system. Figure 5a juxtaposes these concepts of Squeak with the main
concepts of other development environments such as Eclipse. In case
of Squeak (Figure 5b), the virtual machine starts up an image, which
is (more or less) a memory dump of the running system. In case of
Eclipse, for example, the development environment is a standalone

31

COEXISTENCE OF PROGRAM VERSIONS

N

Projects Tools Apps Extras Windows Help Search: p ;Changed 229 pm

() EToyTextNode) () Senders of #keyStroke: oY)

&

Etoys Experimental [4 EToyHierarchical Tex addChild. DockingBarMorph=>keyStroke: {evera DockingBarMorph=>keystroke: {evera
ToyHierarchicalTex as yet unclassified addNewChildafter EToyHierarchicalTextMorph>>keystre
EtoysProtocals FIEToyTextNoge T avent handing children EToyTextNode >>keystroke: {avent
EtoysProtocols-Typ{ _ EToyTextNodeWrap| mitialization clipToOwner ListChooser=>buildWith: {building} | ListChooser=>buildWith: {building}
Etoys Scripting EindentingListParagra firstDisplay ListChooser>>keystrokefromList {ef ~ ListChooser>>keystrokeFromList {e
EtoysScripting Supp — Simpler TextContaine onL Mor ke: {eventsp Mor ke: {events-pr
Etoys-Scripting Tiles; » initialize Morph>>showActions {meta-actions} Morph>>showActions {meta-actions.
EtoysStacks = 9g: ki 99
Etoys-StarSqueak 2 keyboardFocusch: PasteUpMorpl ke: {event h_ PasteUpMorpl
P2

Etoys-Tile Scriptors 7 [cmss removecChild PlunazhlaT: 2t PlunnahleT:
oy e scopors . e] e roncs S .

keystroke: evt keyStroke: evt

ke: {eventh
ro

(owner notNil and: [owner keyStroke: evt]) if True: [self]. selectedMorph ifiil: [~self]
~super keyStroke: evt. selectedMorph keyStroke: evi

EToyTexiNode new openinWorld

m%%%mm‘h‘mwwwﬁ%dw‘wﬁu i
SR ARRL AL

Figure 4: Screenshot of a running Squeak system having opened various
tools. From left to right and top to bottom: a class browser, a
browser for senders of selected messages (selectors), a sound ap-
plication, and a workspace.

ERM artifacts

Source
Code

Eclipse an Eclipse
Binaries

§§§ [[| "t |

presents /

h—

presents /

displays loads displays

loads

a VirtualMachine (1) a VirtualMachine (2)

(a) IDE concepts in Eclipse

Programming Systems (Squeak, Self, ...)

Meta-Objects

Image--
Momord classes - -
Memory
et oEEEEOO -
Compiled Methods'
Methods Source

loads / runs
stores

a VirtualMachine

(b) IDE concepts in Squeak/Smalltalk

Figure 5: A comparison of Squeak and Eclipse

4.1 SQUEAK/SMALLTALK 33

Tool Instances
a System a Hierarchy
notifies Browser Browser
a < registers
Sys??m for events a System
Notifier Browser
‘ tifi bout ds /
notiries abou reads
observes changes writes
\ 4 \ 4
a Structure of Meta-Objects
a System Compiled
Dictionary | | Classes | | Methods

Figure 6: Development tools working on meta-objects in Squeak.

application that manages source code and binary files. The binaries
can be used to open the application under development in a different
process.

WORKING ON META-OBJECTS As the source code is part of the
system in Squeak, the source code is managed through concepts also
used for other applications, which are, in case of Squeak, the con-
cepts of object orientation. Source code is thus represented as objects,
which are called meta-objects. Figure 6 shows the main concepts.

There are two main kinds of meta-objects relevant for this work:
meta-objects representing classes and meta-objects representing meth-
ods. In addition, there is a system dictionary, which maps class names
to Class objects. Class objects have access to their definition including
their superclass and the list of instance attributes. Class objects in-
clude a method dictionary that maps symbols (method selectors) to
CompiledMethod objects. On one hand, CompiledMethod objects are ar-
rays of byte code that can be interpreted by the Virtual Machine (VM).
On the other hand, they also have access to the source code that was
used to create them.

SYSTEM CHANGE EVENTS When a programmer changes the defi-
nition of class or triggers the compilation of a method, these changes
directly affect the system. Changes to meta-objects are observed by a
SystemNotifier, which propagates such change events to all develop-
ment tools, among other, which can then update their views accord-

ingly.

34

COEXISTENCE OF PROGRAM VERSIONS

Tool Instances

a System a Hierarchy

_ notifies notifies Browser Browser
registers a < rogi
gisters
for events Sys_te.m for events a System
Notifier Browser
observes l I:/z?:s/l
L ittt ST R P e :
: a Proxied Structured of Meta-Objects : s/ Version
lpmmmmmmmme pmmm e pmmmm— reads / writes
i a System | T Classes | H Compiled ! b Mgmt Tools
o || Dictionary 1 ! | Methods 1
2 e bbbl ettt
.g __________________ I _________________
P knows sets a Version
g /= 5 ActiveVersion - Browser
creates a Version
> Version1 Version2 Version3 displays Bar
a System a System a System <
Dictionary Dictionary Dictionary
manages *
Versions of Meta Objects
> I I
Compiled
| Classes IJ | Methods IJ

Figure 7: The main concepts of CoExist as an extension to Squeak.

4.2 CONCEPT OVERVIEW

CoExist is based on the insight that the risk for tedious recovery
is caused by the loss of immediate access to previous development
states. With every change, the previous version is lost, unless it has
been saved explicitly. This version, however, can be of value in future
development states, when, for example, an idea turns out inappropri-
ate.

For that reason, CoExist preserves fast and easy access to previous
development states and information thereof [77]. For every change
to the code base, CoExist creates a new version. Programmers can
rapidly switch versions or can access multiple versions next to each
other. CoExist thus gives the impression that development versions
co-exist.

Figure 7 illustrates the main concepts that have been added to
Squeak by CoExist (compare with Figure 6). The access to meta-
objects is now proxied. The proxies use the ActiveVersion object to
redirect all accesses to the active version of meta-objects. The ver-
sioning facility listens for system change events, which are sent for
changes to meta-objects. For every change event, the versioning fa-
cility creates a new version. CoExist provides access to the list of all

4.3 CONTINUOUS VERSIONING

versions and offers tools to effectively browse the version history and
identify versions of interest.

With that, CoExist contributes the following concepts and tools:

CONTINUOUS VERSIONING to create new versions in the back-
ground based on the structure of programs (Section 4.3).

USER INTERFACE CONCEPTS to support browsing and exploring
version information as well as identifying a version of interest
fast (Section 4.4).

ADDITIONAL ENVIRONMENTS to explore static and dynamic infor-
mation of previous development states next to the current set
of tools (Section 4.5).

CONTINUOUS AND BACK-IN-TIME ANALYSIS for test cases and
other computations (Section 4.6).

RE-ASSEMBLING OF CHANGES for sharing independent improve-
ments in separate commits (Section 4.7).

4.3 CONTINUOUS VERSIONING

CoExist continuously creates new versions in the background, which
relieves programmers from the need to regularly commit meaningful
development states explicitly.

4.3.1 Structured Continuous Versioning

NEED Programmers want to rapidly identify previous versions of
interest. However, automatic versioning implies the absence of user-
written commit messages, which are typically required to identify a
previous development state of interest.

APPROACH To overcome this problem, CoExist’s versioning ap-
proach is based on the structure of programs. This means, CoExist
creates new versions when the user changes the program’s structure
or modifies a structural element. So when, for example, the user
adds a new method, CoExist will create a new version. Next to meth-
ods, classes are the other main kind of structural elements in object-

35

36

COEXISTENCE OF PROGRAM VERSIONS

* succ.
Vorsi ch = item
ersion angeEvent = AClassOrMethod
0.1 itemKind
changeKind

pred. change - ?
printChangeSummary isClassltem

isMethodltem
isAdded

isModified ClassDescription CompiledMethod
isRemoved

name selector
instanceVariables methodClass

Figure 8: Versions representing changes to meta-objects.

oriented programming. Consequently, CoExist creates new versions
for the following set of events classified along two dimensions:

e Item Kind: Class, Method

e Change Kind: Added, Modified, Removed

The information about the change event that led to the creation
of a new version is recorded and linked to the respective version
object as depicted in Figure 8. The recorded change event also holds
a reference to the program element (item) that has been changed. If
the element has been modified, the change event holds two references:
one to the old version of the program element and one to the current
version.

Recording such change events preserves useful information. For
each version, it enables to understand what has been changed despite
the lack of written commit messages. For example, version objects
have sufficient information to print change summaries like shown
below.

aVersion printChangeSummary. "->"
'"METHOD Person>>#fullname ADDED at 2:15pm’

DIsCUSSION The idea of basing the versioning on the program
structure is inspired by image-based systems such as Self [87] or
Squeak/Smalltalk [38] and by versioning facilities such as Orwell [84]
or Envy [57]. In an image-based environment, programmers do not
edit files of source code. Source code is rather part of the develop-
ment environment, which directly stores and manages the structural
elements of the program and provides tools for browsing and editing
these elements.

Note: While structured continuous versioning is a natural exten-
sion to image-based systems, the idea does not depend on specifics

4.3 CONTINUOUS VERSIONING

of such systems. It can also be implemented for file-centric environ-
ments such as Eclipse or Emacs. In such environments, the unit of
editing is a file and each file includes multiple program elements.
One option to use structural information for versioning is to track the
manipulation of program elements and the moves of the text cursor
from one element to another. More specifically, when the program-
mer modifies an element and then moves the cursor to another one,
the environment can make a commit. A similar concept has been
implemented in the Engerize IDE [?].

4.3.2 Implicit Branching

NEED Programmers want to access a development state previously
withdrawn.

APPROACH When a programmer switches to a previous version
to start over, subsequent changes will be recorded on a new branch
that is implicitly created. With that, the changes that the user has
withdrawn (and the corresponding development states) will remain
accessible.

DIscUsSION The implicit branching mechanism is inspired from
and similar to the undo-branches mechanisms of Vim"' and Emacs?.
It encourages programmers to try out new ideas from previous ver-
sions, as they are now free from considering the potential loss of
valuable information.

4.3.3 No Boundaries

NEED Programmers sometimes want to change source code be-
yond the scope of their main project (or module) under development.
The code artifacts that need to be changed might be covered by an-
other (sub-)project. However, when programmers want to go back
to a previous development state, for example, all changes should be
withdrawn.

1 http://www.vim.org/
2 http://www.gnu.org/s/emacs/

37

http://www.vim.org/
http://www.gnu.org/s/emacs/

38

COEXISTENCE OF PROGRAM VERSIONS

APPROACH CoExist’s versioning approach is not restricted to a par-
ticular artifact or project. It works on a global scope. Even when the
user modifies artifacts of core libraries, CoExist will create a version
for every modification and thus allows for withdrawing every change
to the entire code base.

DIscUsSION This is different from undo/redo features and ver-
sion control systems, which are typically scoped. Undo/redo capa-
bilities of editors are scoped to documents. They enable to undo and
redo the changes made within a particular artifact. VCSs use projects
as the unit of versioning. They make it possible, for example, to
revert all artifacts of a project to a previously committed state. CoEx-
ist’s versioning, in contrast, has no restrictions. In trying out an idea,
programmers can make changes to every artifact, and if, for exam-
ple, the idea turns out inappropriate, they can withdraw the changes
easily without having to coordinate the histories of single artifacts or
projects. In this respect, CoExist complements the undo/redo and
traditional version control facilities.

4.4 USER INTERFACE TO VERSION HISTORY

CoExist users sometimes require withdrawing more than a few re-
cent changes. While the offered keyboard commands (shortcuts) are
useful to undo and redo a few changes step by step, additional tools
are required to efficiently deal with more complex recovery scenarios.
Therefore, CoExist provides two tools that offer a graphical user in-
terface to version information: the version bar and the version browser.

4.4.1 Version Bar

Figure 9 shows how Squeak’s regular user interfaces has been ex-
tended with a version bar. Similar to a timeline, it displays all ver-
sions in chronological order. Newly created versions will instantly
appear in the version bar. Hovering over the items will display ad-
ditional information such as the kind of modification, the affected
elements, or the actual change performed (Figure 10).

NEED Programmers sometimes have an interest in a previous de-
velopment state that is related to particular source code element. For
example, they might remember that the creation of a particular class

4.4 USER INTERFACE TO VERSION HISTORY

‘ <

||||||!|||I||m

Figure 9: (From top left to top right) A programmer modifies source code,
which implicitly creates items in the version bar. The filled triangle
marks the current position in the history - the version that is cur-
rently active. When a programmer goes back to a previous version
(bottom left), and then continues working, the new changes will
appear on a new branch that is implicitly created (bottom right).

<ﬂ)

<
<
<

Obiject subclass: SemanticLense
instanceVariables: ' y ...,
classVariables: "
category: 'Visualization'

‘QEHipse-subelass: Semantickense

Created class: SemanticLense

Figure 10: Hovering shows which source code element has been changed
(left). In addition, holding shift shows the total difference to the
previous version (right).

39

40

COEXISTENCE OF PROGRAM VERSIONS

Source Code version
Browsers Mgmt Tools
a System
Browser
a Version E%ﬁitgeht
e B
updates LastSelected notifies - rowser
a Senders > (g/l:j;cg&edc; _
Browser e
Element) register for <
updates a Version
Bar
a Hierarchy
Browser

Figure 11: The integration and interaction of source code browsers and ver-
sion management tools.

R

I
il
i

il
il

4 > < L L] HEE B 4 >

< ol

Figure 12: Selecting source code elements in developments tools highlights
related version items.

happened close to the time were they started a series of changes that
they want to withdraw now.

APPROACH: MAKING USE OF CURRENT SELECTION CoExist in-
tegrates tools such as the version bar with code browsing tools. As
depicted in Figure 11, code browsing tools have been extended to
notify version tools about the current selection made by the program-
mer. With that, the version tools know the meta-object (source code
element) that has been selected last. The tools use this information
to highlight versions that are related to the currently selected source
code element (Figure 12).

4.4 USER INTERFACE TO VERSION HISTORY

_. B e S
instanceVariables: 'x y ...,
A "
classVariables:

category: 'Visualization'
M Added FooManager QEHip belass:

C Added SemanticLense classVariablos—"
- o : 1
M Added SemanticLense makeFoo
M Removed FooManager manage - ~

C Modified SemanticLense

M Modified SemanticLense makeFoo

M Modified SemanticLense manage

M Added FooManager makeFoo

M Added SemanticLense doBuzz (I N i

P M Remove SemanticLense manage N v

<HIHAEEEEN- EEEEEEEE

Figure 13: The version browser provides a tabular view on change history.
Selecting a row shows the corresponding differences in the panes
on the right.

4.4.2 Version Browser: Efficiently Dealing with Numerous Versions

NEED Having created a large amount of versions, programmers re-
quire support to quickly comprehend the recent history and identify
versions of interest.

APPROACH: TABULAR VIEWS The version browser, which is illus-
trated in Figure 13, supports studying records of version information
at a glance. It displays information about change events in a table
view. As previously explained, CoExist creates new versions when
programmers create, modify, or remove elements such as methods
and classes. This structured versioning is sufficient to provide struc-
tured overviews as presented in the mockup tables of Figure 14. Each
line starting with a number represents a version with an associated
change. For example, version 1166 introduces the method Person>>
#name. Provided with such a tabular view, programmers can quickly
scan the history by means of the program structure and the used
names. Our informal study suggests that the provided information
helps identify a version of interest within a few seconds (see Sec-
tion 5.2).

APPROACH: SEARCH AND FILTER The version browser provides
a mechanism for highlighting elements or showing only a subset of
all. Programmers can query the system with the name of the method

41

42 COEXISTENCE OF PROGRAM VERSIONS

]

Kind Class Method Time

» HRMan 10 items

» HRFin 2items
Q name |
Kind Class Method Time

v HRMan 10items
1164 Addition Person 13:42
1165 Modification Person 13:42
1166 Addition Person name 13:42
1167 Addition Person birthdate 13:43
1168 Removal Person birthdate 14:08

» Renaming Person name = firsthame

1171 Addition Employee 14:08
1172 Addition Employee arrivalDate 14:08
1173 Addition Employee salary 14:08

v HRFin 2items
1174 Addition Payment 14:09
1175 Addition Payment amount 14:09

Figure 14: Two conceptual tables showing lists of versions. The table on
top presents two summary lines that, when expanded, change
the representation of the table to the one on the bottom. In such
tables, the numbers in the first column are the version identifiers.
Following are the columns for the kind of change that triggered
the creation of the version, the class and method that changed,
and the time stamp of the change.

4.4 USER INTERFACE TO VERSION HISTORY 43

0.*

Abstract Version <
Version VersionGroup

i

RefactoringGroup SameArtifactGroup
(Tool-Supported, Automated) (ConsecutiveEdits)

children

1

parent

Figure 15: Composite Pattern for Groups of Versions

they remember (or a part of its name). CoExist will highlight the
versions that matches, giving the programmer the possibility to focus
on their neighborhood instead of scanning the complete list. The
mockup tables presented in Figure 14 illustrate this concept: in the
table on the bottom, the programmer entered 'name’” as a query in
the text field on the top right to highlight all changes related to the
method name.

APPROACH: VERSION GROUPSs CoExist’s version browser also
groups related versions into one summary line. For example, a devel-
oper might find it convenient to see the changes at the level of pack-
ages instead of a detailed list of all the changes in classes and meth-
ods. This is illustrated in Figure 14 where the table at the top presents
summary groups for consecutive versions that are in the same pack-
ages (the packages are HRMan and HRFin in this case). Groups can be
expanded by clicking on the triangle.

4.4.3 Composite Versions

NEED While IDE commands that automate standard code manipu-
lation procedures are triggered by only one command, they will often
lead to multiple changes to the source code, which will be reflected
by the creation of multiple versions in CoExist. An extract method
refactoring [29], for example, will result in a version that represents
the addition of the new extracted method and in a subsequent ver-
sion that represents the method modification replacing the extracted
code with a call to the added method.

44

COEXISTENCE OF PROGRAM VERSIONS

APPROACH CoExist groups series of tool created changes and
presents them as composite versions. The version history illustrated
in Figure 14, for example, includes a composite version for a tool-
supported renaming of the method Person>>#name. The correspond-
ing line entries, the example titled 'Renaming’, can be expanded to
study the involved changes.

piscussioN Composite versions are beneficial in two ways. First,
they represent the actual command that has been triggered. This
helps remember what has been done and avoids speculation about
whether a series of changes have been caused by a single command
such as a refactoring. Second, composite versions can be visualized
as single entries summarizing the multiple changes, which reduces
the overall number of elements to be shown and to be scanned by the
user.

To detect that a series of changes has been created through a single
IDE command, CoExist integrates with the refactoring engine so that it
gets informed about both the beginning and end of automated source
code manipulations. CoExist attaches this information to all versions
created during the execution of the command, which enables tools
such as the version browser to represent the involved versions as a
composite entry.

4.5 ADDITIONAL ENVIRONMENTS

To support knowledge recovery tasks, CoExist provides a mechanism to
work with additional environments.

4.5.1 Working with Additional Environments

NEED Programmers want to study the development state of previ-
ous versions and compare it to the current one.

APPROACH Programmers can open an additional working environ-
ment to explore a previous version, as shown in Figure 16. Each work-
ing environment has its own active version pointer, as illustrated in
Figure 17. With that, each environment accesses the meta-objects of
the associated version. Similar to the default environment, additional

4.5 ADDITIONAL ENVIRONMENTS 45

A~ A~ N ~

in new world

(a) Using context menu to open an additional working environment for a previous
version.

(b) Browsing code of a previous version (left side), having highlighted (light blue
lines) those code elements that differ to the current version (right side).

(c) Debugging the program in two different versions simultaneously supports under-
standing the differences at run-time.

Figure 16: Working with an additional fully functional working place for a
previous version, next to the tools for the current version.

46

COEXISTENCE OF PROGRAM VERSIONS

—
additional default
environment environment
Development Development
Tools Tools
aSystem | | || \ a System
B . . B
rowser read/ | a Proxied Structured of Meta-Objects | read/ rowser
M a1 T IR P
agherarchy ': ! Dictionary : 1 Classes : I Methods : € a Hierarchy
rowser it S L [ttty : Browser

[[H GloballyActiveVersion e ﬁ
v

Active Active
Version * ¢ Version
* sets Version1 Version2 Version3 * sets
Version »| | aSystem a System a System < Version
Selection Dictionary Dictionary Dictionary Selection
Versions of Meta Objects
r r
Compiled
| Classes IJ | Methods IJ

Figure 17: Different environments of tools, each working on a different pro-
gram version.

environments also allow for switching back and forth between ver-
sions.

Every additional environment is a fully functional. Programmers
can browse source code, run applications and analyze their run-time
behavior using debuggers. The full access to previous development
states makes it easy to get an in-depth understanding on how the
system parts worked together previously. For example, programmers
can debug two versions of a program side by side and compare the
run-time behavior (Figure 16c).

To help programmers identify the similarities and difference of two
versions, development tools highlight those source code elements that
are different in both versions, as illustrated in Figure 16b.

DISCUSSION Providing programmers the possibility to open and
work with multiple environments has several benefits:

e It preserves the state of the current environment and its setup,
which avoids the need to re-open tools, to switch back to previ-
ous views, or to clean up from the recovery task. It avoids the
trade-off whether going back to a previous version is worth its
effort, which in turn reduces speculation.

4.5 ADDITIONAL ENVIRONMENTS

e It supports recovering information incrementally. Once the ver-
sion is identified and opened, the programmer can easily switch
back and forth between the two environments and even look
at them simultaneously. This avoids the need for considering
whether everything that will be needed has been studied care-
fully and is remembered before switching back to the most cur-
rent version and continuing work.

e It supports juxtaposing alternative solutions. Multiple environ-
ments make it easy to examine the benefits and drawbacks of
multiple solutions for a particular problem simultaneously.

e It reduces the costs of task switching. Programmers sometimes
need to interrupt a long running task to work on an important
bug report, for example. In such situations, programmers can
open an additional environment to work on the bug fix, which
has the advantage that the current tool setup can remain as is
so that continuing the interrupted thread of work will be easier.

4.5.2 Replication of Views

NEED When programmers open an additional environment on a
previous version, it is likely that they want to recover information
about the currently selected source code element.

APPROACH CoExist tries to replicate the current working context
for a newly opened environment. It will detect the currently active
tool and ask the new environment to open the same tool. Thereby, the
new tool instance is requested to present the appropriate version of
the content that the original tool instance currently presents, if possi-
ble. When, for example, the programmer currently inspects a method
definition in a system code browser, CoExist will open another code
browser trying to show this method in the previous version of inter-
est. If this method is, however, not available in the selected version,
CoExist will try to show its structural parent instead, which is, in this
case, the class containing the selected method.

DIscUsSION This idea of replicating the active context is straight-
forward for many development tools such as code browsers or test
runners. The current state of the tool needs to be detected, which
mainly consists of the current selection, and then needs to be applied
to the new instance. However, for some tools, replicating the current

47

48

COEXISTENCE OF PROGRAM VERSIONS

state is conceptually more complex. For example, the possibility to
replicate a debugging session to a previous version would be of great
use, but it requires further research to understand how to deal with
differences in program execution, how to react to them and how to
present them.

46 CONTINUOUS AND BACK-IN-TIME ANALYSIS

To support analyzing the impact of changes in retrospective, CoExist
offers two complementary approaches: continuous analysis and back-
in-time analysis. While both approaches are applicable to a variety
of analysis techniques such metrics or performance, the following
presentation will focus on testing.

4.6.1 Continuous Analysis

NEED After focusing on an idea and making several changes, pro-
grammers now want to understand the impact of every change on
test results.

APPROACH CoExist incorporates the idea of continuous testing3 [62]
by running analysis scripts for every newly created version. In par-
ticular, CoExist continuously runs a selected set of tests. CoExist
advances the original idea of continuous testing by recording all anal-
ysis results along with their corresponding version objects, so that
all results are kept for the programmer to be studied when interest
suggests doing so.

Figure 18 illustrates the main concepts of this approach. Program-
mers define analysis scripts that should be run continuously. For
every version, script runners are started to run these script in the con-
text of the newly created version. Results will be collected and linked
to the corresponding version object.

Concerning test analysis, CoExist visualizes the recorded results in
the version bar, as depicted in Figure 19. The visualization reports
the test status for every version entry and highlights when a change

Continuous testing refers to the approach of running a set of automated unit tests
continuously in the background. Programmers are notified when the last change
has caused tests to fail. This automation avoids the need to manually trigger test
execution and to wait for the test results.

46 CONTINUOUS AND BACK-IN-TIME ANALYSIS 49

Versions
Version 1 |——>| Analysis Results |
1. creates Version 2 |——>| Analysis Results |
Versioning >
_________________________ 1
pmmmmm - .) Analysis Results !
i '__>' 1
:__/?r_s'??_s_,')| Metrics Test Results | !
A : |
2. notifies points to 5. produces
\4
r==-=-Tf~-TTTTTT=====°% 1
| 1
1 Active Version i
) 1
Continuous 3. creates T has :
Analysis 1 |
1 a Script Runner i
: :
I 1
manages 4. runs
\ 4 \/
Analysis Scripts
Compute Measure Run Unit
Metrics Performance Tests

Figure 18: Continuous Analysis Concepts

caused tests to fail or a change made tests pass. By interacting with
version items, programmers can study relevant test results and the
corresponding change. They can open a test runner to inspect the
results in more detail. If the programmer requests the test runner for
the most recent version, it will be opened in the current environment.
If the programmer requests the test runner for a former version, Co-
Exist will first open an additional environment for this version, and
then open the test runner inside, so that the tests can be re-executed
in the corresponding version of the code base.

p1scUsSION This tool support avoids the overhead of manually ex-
ecuting tests and, in addition to that, it allows for ignoring test quality
without inducing drawbacks since all meta-data on how the system
changed is kept and available. This invalidates a main argument
for constantly assessing test quality, namely that bugs get harder to
locate and repair the more time passes until their discovery. Even
when tests fail, programmers can continue making changes. They
will remain able to easily identify those changes that caused tests to
fail.

50

COEXISTENCE OF PROGRAM VERSIONS

I Al Al Al A~

Go Here
Merge

Tests (55/5) ...

(a) Hovering over a version item to get the context menu, which includes test statis-
tics.

" - - A . ~| 55 passes
. . 3 failures

2 errors

[>

< RN \ 4

(b) After opening the test running via context menu, it directly shows the test result
and allows the programmer to further inspect the result, re-execute them, and
debug them.

tests newly some test(s)
passed newly failed
all tests some tests some tests
passed passed failed

(c) The meaning of test result visualization using two examples.

Figure 19: Tests are run in the background for every version. The results are
recorded and visualized for every version item.

46 CONTINUOUS AND BACK-IN-TIME ANALYSIS 51

4.6.2 Back-in-time Analysis

In addition to continuously running tests, CoExist provides an inter-
face for manually running tests on recorded versions.

[IntegrationTest buildSuite run]
valueBasedOn: aVersionOfInterest.

NEED Programmers might want to avoid running all test cases con-
tinuously, because it can decrease the computer’s overall responsive-
ness. But they will want to be able to locate introduced bugs quickly.

APPROACH Programmers can request CoExist to run a failing test
case on a range of versions to identify the change that first caused the
test to fail. To identify the change rapidly, CoExist will use a binary
search strategy.

self versionControl bisectionAnalysis:
[IntegrationTest buildSuite run defects notEmpty].

This facility for back-in-time analysis assumes that the source code
of the test cases to be executed is available in all versions. It raises an
error if this is not the case. However, an extended interface accepts
a list of source code elements, whose definitions will be applied to
each version before running the tests. (Making these changes will
implicitly create branches.) This extended interfaces makes it possi-
ble to run newly written tests back-in-time, which will be of use, for
example, when programmers discover erroneous behavior in the ap-
plication that is not yet covered by a test case. In this case, the list of
source code elements to be applied will include the new test method
and newly added utility methods.

p1scussiON CoExist’s back-in-time analysis facility builds on pre-
vious work. The distributed version control system Git, for example,
provides a command line tool called “git-bisect”. It requires a shell
script that can tell whether a version is good or bad. Using a given
script, this tool finds the commit that introduced the bug (the bad
case) by performing binary search on all versions. In comparison to
Git, CoExist integrates such features into the IDE and provides ded-
icated support for running tests. CoExist makes it particularly easy
to run or even debug test cases on previous versions. Apart from
that, CoExist is conceptually different by having a continuous change
record, which is more dense and fine-graned than a typical manu-

52

COEXISTENCE OF PROGRAM VERSIONS

ally maintained record. And this continuous change record helps
programmers to easily identify the cause of problems, which in turn
avoids the need for constant quality control. It provides programmers
the opportunity to focus on trying out their ideas.

4.6.3 Impact Analysis Beyond Tests

CoExist’s facilities for continuous analysis and back-in-time analysis
are not restricted to automated test case. While test feedback is often
a crucial aspect to software development, there are other important
aspects such as complexity metrics and performance. An undesired
deviation in performance or in any other metric can be as hard to un-
derstand and to fix as a failing test. Since the impact of source code
changes is not obvious, programmers will benefit from continuous
analysis and back-in-time analysis regarding these aspects. For that
reasons, the interfaces of CoExist support the execution of arbitrary
computations, which might trigger test runs or performance measure-
ments. The only factor that limits the possibilities, in particular for
continuous analysis, is the computational power available.

4.7 RE-ASSEMBLING CHANGES

CoExist supports re-assembling changes in two respects: it provides
a fine-grained change history and support for re-applying selected changes
on another branch.

4.7.1 Fine-grained Change History

NEED Programmers want to get an overview over the recent
changes made until the last commit and recall the distinct increments
they worked on.

ArPROACH CoExist records a fine-grained change history and col-
lects meta-information about every change, which can be presented
in tabular views like, for example, in the version browser. Besides a
tabular view of meta-information, programmers can inspect the dif-
ferences for each version (Figure 20a). By inspecting such a record
of changes, programmers can recognize the different increments they

4.7 RE-ASSEMBLING CHANGES 53

Modified in SWA18LaserBeam .)
#calculateDownWay U e last commit
" 14 Removed Method g~

15 Added Method

+ self calculateWay: #down deltaX: 0 deltaY: 1.

Tile—=self-pointstastxt-SWAL8Til

Removed in SWA18LaserBeam
M i A iDL - ol
P g =
- HaseptaserY-aserWidth
- k = aO\NA4Q] "H
¥
(a)
a new branch
T Reinoed Visthod | e origin
15 Added Method > 18 b15 Added Method
16 Added Method new feature "5"

refactoring "d"
17 Added Class 9

Added Method
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ refactoring "d"

new feature "5"

Figure 20: Extracting meaningful increments by first studying the change
history and then re-applying selected changes to another branch.



54

COEXISTENCE OF PROGRAM VERSIONS

B m

Transfer
Withdraw

Figure 21: Top row: Selecting two changes and re-applying them to the cur-
rently active version (triangle). Bottom row: Withdrawing two
changes, which results in re-applying subsequent changes to the
change before the selection

have worked on and understand which changes contribute to each of
these increments (Figure 20b).

DISCUSSION  While VCSs such as Git can show the difference be-
tween the current status of the project and the status of the last
commit, CoExist has a record of the individual changes (meta-
information) that led to this difference. Hence, tools such as the ver-
sion browser can better help programmers to reconstruct knowledge
about the change history.

4.7.2  Re-applying Selected Changes

NEED Programmers want to extract distint increments to tests them
in isolation and share small self-contained commits with others.

APPROACH CoExist allows programmers to re-apply changes at a
different place in the history, which is commonly referred to as cherry
picking. Re-applying changes creates new versions. When changes



4.7 RE-ASSEMBLING CHANGES

are applied to a version that already has a successor, a new branch
will be created implicitly, which avoids changing the current his-
tory. Figure 21 illustrates how programmers of CoExist can select
and re-apply changes. CoExist also provides a utility command for
withdrawing selected changes, which will re-apply all subsequent
changes to the change right before the selection.

In the example illustrated in Figure 20c, programmers can first ex-
tract all changes that appear to belong to the refactoring task, which
will create a new branch. To perform completeness or correctness
checks, programmers can open the created development state in an
additional environment. In addition to the automatic test runs, they
might want to run integration tests. If programmers consider the
improvement a meaningful increment, they can share it with other
programmers by pushing it to the used source code repository.

DIscUsSION  Git also provides supports for extracting small com-
mits out of many changes. Using the interactive mode of the “git-add”
command, programmers can select those modified files that shall be
included in the next commit. Moreover, for every selected file, they
can select the modified lines (“hunks”) to be inlcuded or exlcuded.
However, CoExist improves on this command in two ways. First,
instead of selecting lines ordered by their position in a file, program-
mers of CoExist can re-apply coherent changes of a record that is
based on the program structure. Second, using CoExist, the extracted
increments can be checked for completeness and correctness before
being committed.

SUMMARY

CoExist is based on the idea of continuous versioning: Any change
made to the system creates a new version, which holds the change
made as well as a complete snapshot of the current system. The gran-
ularity of versioning is in accordance with the program’s structure.
With that, each version is implicitly associated with valuable meta-
information about its creation, namely the source code entity that has
been added, modified, or removed for its creation. This information
is presented in history browsers to assist programmers in identifying
previous versions of interest. The implicitly gained meta-information
avoid the need for explicit commit messages required otherwise.

By opening additional working environments on previous versions,
programmers can browse, modify, run, and debug source code in the

55



56

COEXISTENCE OF PROGRAM VERSIONS

same way as in the default environment. This supports recovering
knowledge from previous versions without giving up their current
working set.

CoExist integrates continuous testing and advances this concept. It
continuously runs tests for every created version in the background.
Test results are recorded for later inspection. With that, programmers
can identify the changes that introduced bugs with only little effort
and can thus defer the consideration of test quality. Continuous anal-
ysis is not restricted to test cases: programmers can tell CoExist to run
other computations such as benchmarks, for example. In addition to
the continuous analysis, programmers can also use the versioning
facilities for back-in-time analyses.



CONCEPT EVALUATION

This chapter discusses the CoExist concepts presented in the previ-
ous chapter. The first section describes how CoExist would have sup-
ported the student in the reported case study (Section 3.1). The sub-
sequent section presents three informal user studies, which were con-
ducted to help discover usability problems and opportunities through
the development course. The last section evaluates how CoExist sup-
ports the various recovery needs. It is argued that tools such as Co-
Exist reduce the need for problem prevention.

5.1 HOW COEXIST HELPS IN THE EXAMPLE CASE

Were CoExist available to the programmer in the example case, (Sec-
tion 3.1) had have available CoExist, recovery would have been fast
and easy. Figure 22 shows the situation before the SemanticLens class
is extracted and how new version items appear for the creation of this
new class.

Figure 23 shows how the programmer turns the subclassing solu-
tion into delegation and new version items are created correspond-

ingly.

When the programmer then becomes aware that subclassing is ac-
tually preferable over delegation, they can use CoExist to get back
to the point before subclassing has been turned into delegation. The
Figure 24 illustrates one way to get back to the desired development
state. First, the programmer makes use of the interaction between
code browsing tools and the version bar: Selecting the SemanticLens
in the code browser highlights all changes that are related to this class,
as show in Figure 24a.

Hovering over the highlighted version items exposes the version
item that represents the initial class addition and the item that rep-
resents the later modification of the SemanticLens class (Figure 24b).
Holding shift while hovering over the latter item reveals detailed diff
information (Figure 24c), which confirm that this version item marks
the turning of the inheritance solution into delegation.

57



58 CONCEPT EVALUATION

=TT =TT
e — _ =
— —
| Qt framework T | Qt framework T ?
i B O E
Lens
=T
[— el
—
] Qt framework T T Ot framework T zr
= D N i D
< 4 >«

Figure 22: Visualization Task with CoExist, Extracting a New Class

il
il

1

|

1 Qt framework T Qt framework T T
Tons”
Lens Lens

Figure 23: Visualization Task with CoExist, From Inheritance to Delegation



5.1 HOW COEXIST HELPS IN THE EXAMPLE CASE

Evid

|
5

an N mmm mmma

(a) Interaction between code browser and the version var.

Created class: SemanticLens Modified class: SemanticLens

(b) Hovering version items to restrict selection.

Object subclass: SemanticLens

Xy

(d) Going back to the selected version and continue developing.

Figure 24: Visualization Task with CoExist, Recovery: Going Back to the
Subclassing Solution

59



60

CONCEPT EVALUATION

The programmer can now select the version item previous to that
version to be the current version, which is emphasized with the blue
triangle in Figure 24d. This will withdraw all changes that came after
this version. The code base is now back to a desired development
state and programmers can continue working from there.

5.2 INFORMAL USER STUDIES

During our work on CoExist, we regularly asked members of our re-
search group to use our system. We did informal user studies in three
phases of our research project: (1) for an early prototype that sup-
ported going back and forward one step at a time, (2) for a midterm
prototype that improved speed and provided access to any existing
version, and (3) for the final prototype.

5.2.1 Early Prototype

sTATUS: The early prototype provided only a simple undo/redo
mechanism. Programmers could go back and forward by triggering
commands. No tools that show the recorded versions or details of
them were available.

PURPOSE: The early prototype enabled programmers to try out the
idea instead of only talking about it. It is often the case that program-
mers need see a new tool and try it out in order to understand that
a demand, which they previously did not notice, has always been
there. The goal of gathering feedback at this early stage was to learn
whether other developers would confirm the need for such tool sup-
port, once they have seen and used it.

PROCEDURE: Three students were asked to try out the prototype.
Participants received a Squeak image Two that included the prototype
and a small game application. After a short demonstration of the pro-
totype, participants were instructed to change and extend the game in
an explorative manner and make use of the global undo/redo com-
mands. The proposed approach was exemplified by suggesting re-
moving code artifacts, running the game, observing the effect, and
withdrawing the changes afterwards. While removing code will of-
ten bring up the debugger, it can help understand how the removed
functionality is expected by other parts of the systems.



5.2 INFORMAL USER STUDIES

RESULTS: Two of the three participants were enthusiastic about the
prototype and confirmed its potential value. While they could not re-
trieve details from their memory, they had the feeling that such tool
support would have been useful in various development scenarios
they had experienced previously. However, one participant did not
share the enthusiasm and was skeptical about the value of the pro-
totype. In particular, he doubted the idea of removing code to see
what the effects will be. These results might indicate an inappropri-
ate study setting or that the tools. Furthermore, the student disliked
that the effect of the global undo/redo was not sufficiently transpar-
ent and observable, though he was unsure about his observation.

5.2.2  Midterm Prototype

sTATUS: Whereas the early prototype offered simple undo/redo
commands, the midterm prototype provided a version bar to identify
and go back to any version of interest. The midterm prototype also
provided the possibility to open additional working environments.
Finally, this prototype significantly improved responsiveness by pre-
serving direct access to previous versions of meta-objects instead of
only versioning source code.

PURPOSE: This study should further substantiate our assumption
that programmers require additional recovery support. One goal was
to examine whether programmers experience recovery needs when
they perform explorative programming tasks. Another goal was to
study how well the current prototype supports programmers in their
recovery needs. For example, we were wondering whether the cur-
rent design of the version bar is sufficient to rapidly identify previous
versions of interest.

PROCEDURE: One student, one PhD student, and one post-doc
were asked to spend one to two hours improving the design of a
2D puzzle game named MarbleMania, implemented by undergradu-
ate students in the context of a previous lecture. The game worked
properly and was covered by 39 unit tests (all of them passing) but
implementation showed room for many improvements. At the be-
ginning of the experiment we introduced the game play and gave a
conceptual overview of the implementation. Then we asked our sub-
jects to study the source code and to freely refactor the pieces that
they felt needed improvement. We encouraged the subjects to im-
plement their ideas as they came to mind without evaluating them

61



62

CONCEPT EVALUATION

mentally. One evaluator sat next to each subject to take notes and
to answer questions about the proposed prototypes. We also used
screen recording for later analysis.

RESULTS:  All three participants experienced the need to start over
from a previous development stat. Two participants went back to pre-
vious version two times and one participant, one time. For example,
participants tried out initial ideas to improve the program design and
by doing so learned about the limitations of these ideas. This knowl-
edge helped participants develop better ideas, which they realized
after withdrawing the previously made changes. This observation
supports that programmers can benefit from tool support that makes
recovery easy.

This study also highlighted the need for juxtaposing. Two subjects
opened a previous version in a separate environment to study as-
pects of this version. One of them wanted to study a test execution in
a previous version. To do this, he opened an additional environment,
found the test, opened a debugger, and stepped to the place of inter-
est. This led to the development of the replication feature that makes
it simple to re-create the currently active view for a different version
(with just one click).

In addition to that, we discovered that the version bar is not suf-
ficient for rapidly finding a version of interest, because it lacks an
overview of version information. This motivated the creation of the
version browser.

Furthermore, the subjects felt positive about the tools. Even some
weeks after the studies, subjects sometimes dropped in and reported
a situation where the proposed tools would have helped for their own
project.

5.2.3 Current Prototype

sTATUS: Compared to the midterm prototype, the current proto-
type includes the version browser (Figure 13), and provides features
such as search, highlighting, and grouping.

rURPOSE: This study focused on the usability of the version
browser. The goal was to find out whether programmers can quickly
identify a previous development state, when they suddenly en-



5.2 INFORMAL USER STUDIES

counter the need. In contrast to the version bar, the version browser
presents various meta-information for multiple versions at a glance.
This should help programmers to scan the history quickly for relevant
pieces of information. We wanted to test this idea.

PROCEDURE: The need for going back was induced artificially. We
asked two students to perform a pre-defined refactoring task on the
MarbleMania game. More specifically, they had to eliminate an un-
necessary observer indirection. After approximately half an hour of
work, participants were interrupted and asked to go back to the ver-
sion where they started. However, the correct version was not the
first in the list. In the provided image, the history already contained a
number of changes. The time stamps of those changes were adjusted
as well, so that time information is no good indicator to identify the
version of interest.

RESULTS: The first subject remembered the source code elements
he changed first when he started the refactoring. Because the version
browser shows the names of each modified element, the subject was
able to find the target version within a few seconds. The second
subject produced significantly more changes during the evaluation,
which made the task of finding the target version more difficult. As
a result, the subject took around 20 seconds to identify the target
version. During that period of time, the subject first identified a range
of candidate versions and then inspected the details of the associated
changes. However, both participants were able to identify the version
of interest with only limited time and effort.

5.2.4 Discussion

These informal user studies helped understand the benefits and prob-
lems of both our approach and implementation. We understood the
need for responsiveness to make the tools attractive. We also dis-
covered the need for the version browser. Indeed, the information
presented by the version bar was insufficient to identify a previous
version of interest.

63



64

CONCEPT EVALUATION

5.3 FROM PROBLEM PREVENTION TO GRACEFUL RECOVERY

The purpose of employing best practices is the avoidance of tedious
recovery work. However, CoExist enables programmers to easily deal
with such recovery situations:

e When programmers suddenly realize that their current idea is
inappropriate and it would be better to pursue another idea,
they can easily go back to a previous development state and
continue working from there on. Programmers can easily go
back and thus withdraw recent changes even when the former
state of interest has not been committed explicitly. When pro-
grammers later realize that the first idea is actually preferable,
they can go back to the state before they decided to discard
this idea. Thus, programmer can explore an idea by trying it
out. They can make the corresponding changes and thereby
learn about the implications. If the results are not sufficient, it
requires only little effort to start over.

e When programmers want to start over but want to keep some
of their recent changes, they can explore their change history
in detail and transfer (copy) all changes of interest to another
branch. CoExist supports programmer in “picking the cherries”
of their work. Also, programmers might want to mix tasks and,
for example, want to perform a refactoring in the middle of
another task because it seems beneficial. Programmers can do
so without hesitation, because they can easily re-assemble the
various changes later.

e When programmers suddenly realize that their understanding
of the code base has been insufficient, and that they now miss in-
formation that has already vanished due to recent changes, they
can easily recover the required knowledge. They can quickly
open previous versions of the code base in order to study the
source code as well as the program behavior at former develop-
ment states. Programmers can recover information while still
having direct access to the current development state and the
current tool setup, so that they can continue working immedi-
ately after they have found the missing pieces of information.
Such tool support reduces the need to be careful and to ensure
a sufficient understanding of the code base upfront. So, if pro-
grammers feel it is good to do so, they can start working on the
task to see how far they will make it, and if need be, they can
easily have a look at previous versions.



5.3 FROM PROBLEM PREVENTION TO GRACEFUL RECOVERY

e When bugs creep into the code and remain unnoticed for a
long time, CoExist helps programmers quickly identify those
changes that caused the faulty behavior. Being equipped with
such tool support, programmers can ignore quality assessment
without having serious disadvantages.

e When programmers successfully complete an improvement and
are ready to commit it, but then suddenly realize that their
recent changes actually comprises several independent incre-
ments that should be shared separately, CoExist will support
them in re-assembling those changes. They can explore the
change history, select the changes that belong to one increment,
for example, to a refactoring that simplified a feature implemen-
tation, move them to a new branch, check if the created devel-
opment state is complete and functional, commit the diff, and
move on to the next changes. Programmers thus have to take
no care of working only on one increment or that they consider
committing at the right point in time.

While a lack of tools such as CoExist requires means of problem
prevention to avoid tedious recovery work, the availability of such
tool support reduces the need and effort for means to prevent recov-
ery scenarios.

SUMMARY

CoExist would have helped the student in the reported case study.
For example, through interaction with the code browser and the ver-
sion bar, the student would rapidly identify the version right before
he started to change from subclassing to delegation. Informal user
studies further suggest that the provided tools generally enable pro-
grammers to rapidly identify previous versions of interest. The need
for responsiveness is fulfilled. Furthermore, the discussion shows
how CoExist makes various recovery needs easy and fast to accom-
plish. It thus reduces the need for best practices to prevent problems.

65






IMPLEMENTATION

This chapter highlights selected aspects of CoExist’s implementation.
The explanations provide technical details on the concepts presented
earlier in chapter 4. The class diagram in Figure 25 presents an
overview of the most important classes and methods that contribute
to CoExist. The classes on the left (bottom) were newly added to the
system, the classes on the right (top) are standard classes that were
extended.

The first section describes how a dynamic variable is used to pro-
vide access to different versions in the same environment. The sub-
sequent section explains the versioning of meta-objects to provide
immediate access and the sharing among versions to reduce perfor-
mance overhead. Sharing of meta-objects requires special treatment
of

reference between them. The corresponding changes made to the
image, the compiler, and the virtual machine are explained. After
this, attention is drawn to the the current limitations followed by a
brief evaluation of performance characteristics.

6.1 RESOLVING ACCESS TO THE ACTIVE VERSION

Figure 26 shows how the same code snippet is executed in two dif-
ferent versions and evaluates to different results. While the left
workspace is opened in an environment pointing to version 6, the
right workspace is embedded in the root environment pointing to
version 14. The class Person used in this example contains different
sets of methods in the two versions. Hence, sending the message
selectors to this class, which returns the set of selectors for which
the class has corresponding methods, evaluates to different results.

Figure 27 shows a simplified graph of the visual objects (morphs)
that are involved in the example scenario. The World morph is the
root. It directly contains the workspace morph at the right and the
additional working environment at the left, which directly contains
the left workspace morph. As the state of the objects in the diagram

67



IMPLEMENTATION

68

J0}09j9guBWNBIyBUO :BuisnsabueygweisAg|vio 108lqoue :Ajou

SSE|O. (SSe|0 |OqIASE :10}08]9S POYIS|AE :paAOWaYpoylow

SSE|DE :SSe|QUl [OqUIASE 110}09]9S POYISNMaU 0} POYIS\P|O :Woijpabueyypoyew
sweNAiobBale e :A106a)eul SWENSSEIOMSU (0} SWENSSEIQP|O :WO0J) SSB|D. :paWeUaYSSE[o
SWEBNSSE|QMBU :0} SWENSSE|QP|O WO} SSB|Q. :POWBUSYHSSE|D

sweNAioBajege :A106912QWO) SSBIDQE :POAOWSHSSE[D

SSB|QMaU :0] SSEBIDP|O :woldpabueyguoniuegsse|o

aweNAlobajee :AloBajeul Sse|De :pappyssSelo

JailloNabueygwaisis

Sse|Qpoyow
10}09|9S

juaAgpaweudy JuaAgpanoway

uoisiopne :0] AdopAyoseraiHanes
uolsione :0] AdoDie|Janes

S8|qeHeABOUEISUl

FEGRENG

s[esay|

Jspesy juaA3pappy

poyeppajidwod

uondiiosagsseld

2SegopODE Jyan[en
AdopBunjiope :011n030ayQaYsalinbai
AdoobBupiope 0] AdoDinoxoayo

asegepoge :woijarowal | wey

AdopbBuiiope :011noxo8y)salinbal
uoisione :0] sabueypdnuesjo
AdooBupiope :0] sebueyninoxoayo

>o0|ge :0p asegapoge 01 Adogppe

walqoeNIoEnsqy

109lgoeiopabueyo

Ja1noNabueyd

SJUBAJWaISASI019)51601
JuangwalsASe JuaAgalpuRy
UOISIOAE :IN0%08Y0

19]104}U0D

(4opu0 [e0160jOUOIYD)

*

UOISI9AE 0] dAje|aHydred

s)insaysisAjeue

UOISIOAE JN0>08UD

JuangwalsAge :abueyio4uoisionanes

UOISIBAMBU 0] 8SEqaI
uoisiape :abisw
yoyede :yoyedAdde

UOISJoA

uoisionaseq

Adogbuijiom

pUILON

JuBATIoRASqY.

juangabueyo

SWeNSSe|e JyHeISsasse|QunmAdod
Adoo

sse|Qe :sse|9j0Adoie|Jidope
sse|Qe :sse|9j0Adodidope

sse|Qe :ssejDjdope

uoneziuebio
Ateuonoip

9segapoy

10N.

Main classes and methods of the CoExist implementati

Figure 25



6.1 RESOLVING ACCESS TO THE ACTIVE VERSION

Person selectors ->

#(#lastname #lastname:
#firstname: #firstname
#anotherMethod)

Person selectors ->
#(#firstname: #firstname
#anotherMethod)

<HEHLHEEE BRI FFFEPEFEFE

Figure 26: The same code snippet run in the context of two different versions
evaluates to different results.

theWorld : PasteUpMorph
backgroundColor: beige
codeBase: aVersion(14)

? ¢

:WorkingEnvironment :Workspace
baCkgrOUndCOlor: darkblue ContentString: 'Person selectors ->
COdebase: ave rSion(6) zg#r‘:ztsr:r;?'\w;:ézs)gname: #firstname: #firstname

¢
:Workspace

ContentString: 'Person selectors ->

#(#firstname: #firstname #anotherMethod)'

Figure 27: Graph of visual objects (morphs) shown in the conceptual screen
above.

illustrates, the World morph is associated with version 14 and the
additional working environment is associated with version 6. The
code base associated with a morph defines the execution context for
this particular morph and all its submorphs unless being redefined.

Whenever the programmer interacts with the system, code is exe-
cuted. This code runs in the context of a particular morph, for exam-
ple, in the context of the World morph. Squeak runs a main loop. In
each cycle, it processes events such as keyboard and mouse events.
Afterwards it redraws the scene graph.

The code listing shows two main entry points into the execu-
tion of the Squeak machinery. These entry points (doOneCycle and

69



70

IMPLEMENTATION

a SystemDictionary ActiveCodeBase :

a Compiler Proxy DynamicVariable

a SystemDictionary

classNamed: #Person

doesNotUnderstand

value
a Version

classNamed: #Person

Person class
le -2 2 e o]

Figure 28: Accessing the currently active system dictionary by resolving the
dynamic variable ActiveCodeBase.

handleEvent) have been modified so that the code base of the cor-
responding morph is assigned to the dynamic variable ActiveCode-
Base. When, for example, the programmer triggers code execution in
a workspace, this workspace will handle the corresponding system
event because it has the focus. Afterward, all code executed in the
context of the dynamic variable has access to the assigned code base.

Morph >> #codeBase
1 self valueOfProperty: #codeBase
ifAbsent: [self owner
ifNotNilDo: [:ea | ea codeBase]l]]

PasteUpMorph >> #doOneCycle
ActiveCodeBase
value: self psCodeBase
during: [worldState doOneCycleFor: self]

Morph >> #handleEvent
ActiveCodeBase
value: self psCodeBase
during: [T anEvent sentTo: self]

Diagram 28 and the code listing below illustrate how the dynamic
variable ActiveCodeBase is used to resolve the currently active system
dictionary. Before the code snippets shown in Figure 26 are executed,
they are compiled. The compiler resolves symbols such as Person.
Therefore, it sends a corresponding request to the system dictionary.
Since the global system dictionary has been replaced with a proxy,
this proxy can handle the dispatch using the ActiveCodeBase vari-
able.

SystemDictionaryProxy >> #doesNotUnderstand: aMessage
| currentVersion |
currentVersion := ActiveCodeBase value.




6.2 PRESERVING META-OBJECTS FOR ALL VERSIONS

1 aMessage sendTo: currentVersion dictionary. J

6.2 PRESERVING META-OBJECTS FOR ALL VERSIONS

For CoExist to be useful, it has to provide both immediate and full
access to any version of interest. Immediate access implies that it should
be easy to get the desired information, and that the information is
provided fast. According to recommendations such as in [67, Ch. 10],
CoExist needs to fulfill user requests that are common in less than
two seconds. If programmers have to wait too long to get access to
a version they might refrain from applying the proposed approach.
Full access to any version refers to the idea that programmers should
be able to explore, modify, run, and debug any program version. The
goal for immediate and full access is important for programmers but
also for CoExist itself, because CoExist runs unit tests on all versions
independently of what the programmer is currently working on.

These requirements suggest an implementation strategy that holds
available all program artifacts of all versions in favor of a strategy
that requires re-computation or recompilation. So, instead of having
to apply a sequence of changes to a baseline in order to restore a pre-
vious development state, it is beneficial to preserve the meta-objects
such as classes and methods for each development state.

6.2.1 Sharing Meta-Objects Among Versions

To limit memory consumption, unmodified meta-objects are shared
among versions. When a class has not been modified in a series of
successive versions, the respective class meta-object is shared among
those versions. This means, the respective dictionaries point to the
same class object. Similarly, methods are shared among versions of
classes.

Figure 29 shows that each snapshot contains a dictionary which as-
sociates all class meta-objects to their names. Each class meta-object
references all its compiled method meta-objects. In the shown ex-
ample, the programmer added #bar method to the class Person in
version 6. The method addition changes the class Person, because its
method dictionary now contains an additional entry. For that reason,
there exists two different versions of the Person class. In contrast, the
class App can be shared between both version 5 and 6, because it has

71



72

IMPLEMENTATION
CoExist
< |
Version 4 Version 5 Version 6
a System a System
Dictionary (v5) Dictionary (v6)
f#icreate #foo
#bar
#doThings

Figure 29: Sharing of meta-objects between versions.

not been changed. Similarly, the method foo can be shared among
both versions of the Person class.

Note: This strategy used for managing versions of meta-objects
is related to purely functional data structures (persistent data struc-
tures) [55].

6.2.2  Copy-After-Write

Meta-objects are copied when programmers make changes to them.
When the programmer modifies a class definition, for example, by
adding an instance variable, the class is copied behind the scenes, so
that now an additional version of the class exists to which changes
can be applied while still preserving the previous class version. In
addition to the class, all other meta-objects affected by this change
are copied as well. For example, modifying a class requires copying
the system dictionary, so that one dictionary version includes the new
modified version of the class, and the other still includes the previous
version of the class.

Relying on Squeak’s notification mechanism required a copy-after-
write rather than a copy-on-write mechanism. Squeak’s notification
mechanism sends out notifications only after modifications have al-
ready been done and not before they are done. For that reason, pro-
grammers cannot directly work on the data structures of meta-objects
under versioning. Instead, the tools present a working copy to the



6.2 PRESERVING META-OBJECTS FOR ALL VERSIONS

Legend:
UML Object Diagram Notation +

— —pp>  copy of

’ Version 4 ‘ ’ Version 5 |< =— =— — — \ersion6
a System _ a System
Dictionary (v5) Dictionary (v6)

#foo
#doThings

Person

Z

App

I Person I

a System

Dictionary (wc)

Figure 30: Copying meta-objects from the working copy to the newly cre-

ated version 6.

Working
Copy

73



74

IMPLEMENTATION

programmers. After every modification to the working copy, a new
version object is created and all modified meta-objects are copied to
this version. This procedure is illustrated in Figure 30.

DISCUSSION Maintaining a working copy of meta-objects can be
avoided by changing Squeak’s notification mechanism. If change
events were sent before the actual change happens, a copy-on-write
mechanism could be used.

6.2.3 Handling References Between Shared Meta-Objects

The chosen implementation strategy, to copy modified meta-objects
and share unmodified meta-objects among versions, requires the con-
sideration of references between meta-objects in the graph of all meta-
objects. For example, when a class is modified, the class and the sys-
tem dictionary are copied. However, the modified class is referenced
by other meta-objects that were not directly modified. A class can
have subclasses, which in turn have a pointer to their superclass. In
addition, a class’ superclass references its subclasses for performance
reasons. This issue of cross references concerns all meta-objects that
are mutable and referenced by other meta-objects, which thus con-
cerns all meta-objects except method objects. Compiled methods are
not concerned because they are immutable. (New method objects are
created when the code is modified and saved.)

There exist various kinds of references between meta-objects, which
have been handled differently:

e The system organization associates classes with categories and
thus has references to all class objects. CoExist handles these
reference by also creating a copy of the system organization
whenever a class is copied.

o The subclass relationship has been re-implemented. Every class
still holds a set of references to their subclasses. But instead of
returning this set, it is refreshed on demand by looking up the
names in the currently active system dictionary.

e The superclass relationship cannot easily be re-implemented in
the image, because the superclass reference is used for execut-
ing byte codes in the virtual machine. Therefore, whenever a
class is copied, CoExist also create copies of all classes of the
subclass hierarchy.



6.3 LATE CLASS BINDING

App >> #createPerson
A Person new

: CompiledMethod :LateClassBinding

- header: ... l1ter‘all‘ - key: #Person

- literal2: #createPerson - value: Person class (|
- bytecodes: ...

rebound
at run-time

:LateClassBinding /
> - key: #App 1

literal3 |_ vglue: App class

Figure 31: LateClassBinding literals for the method createPerson.

e Method objects can also have references to classes. The nature of
these references has been changed to promote sharing of meta-
objects. The change includes adaptations to the compiler and
the virtual machine, which are describe in the next section.

63 LATE CLASS BINDING

CoExist uses late class binding to promote sharing of meta-objects
among versions. This concept changes how methods reference classes.
Traditionally, when a method’s source code includes a symbol that
refers to a class, the compiled method object will have a literal that
points to the respective class object. In addition, every method has a
reference to its owner class. These “static” references to class objects
reduce the possibilities for sharing meta-objects. When, for example,
a method is modified, it needs to be copied as well as its owner class.
However, all other methods also would have to be copied so that the
pointer from the methods to their new owner class can be adjusted
properly. Furthermore, all methods that reference the owner class
would have to copied as well, which in turn requires a copy of their
owner classes and so on.

So, instead of using regular literals, which directly point to the re-
spective class object, methods now use late bound class literals, which
mainly consist of the name of the referenced class. These are bound
to actual class objects only at run-time, when the virtual machine
executes byte code and therefore accesses the late bound class liter-
als. The actual binding of names to classes depends on the currently
active version, which is defined by a dynamic variable [9o] imple-
mented using process-/thread-local storage.

75



76

IMPLEMENTATION
LookupKey
- key: Symbol
Association LateClassBinding
- value: Object - value: Object
+ value: Object + dict: SystemDictionaryProxy

+ reLookupBinding: Object
+ value: Object

Association >>
#value
A value

LateClassBinding >>
#dict
A Smalltalk globals

#reLookupKeyBinding
A self dict at: key ifAbsent: [nil]

#value
A value := self relLookupKeyBinding

Figure 32: LateClassBinding class in comparison to the Association class.

The introduction of late class binding required modifications to
Squeak’s compiler. Instead of adding regular literals to the compiled
method, instances of the new class LateClassBinding are added to the
method during compilation (see Figure 31). LateClassBinding objects
are used for referring to both other classes and the method’s owner
class. LateClassBinding objects have two attributes, similar to regular
literals, which are named key and value. However, in contrast to reg-
ular literal objects, the value method of LateClassBinding performs a
re-binding of the value attribute using the system dictionary of the
currently active version (see Figure 31).

To trigger the execution of the re-binding code, the compiler inserts
additional byte codes. After every “push literal” byte code, an addi-
tional “value send” byte code is inserted (Figure 33), which binds
the literal’s value field to the appropriate class version, which will be
read during the execution of of subsequent bytecodes.

The execution of super sends has been modified to ensure proper
rebinding of the literal that points to the method’s owner class. This
reference is used to lookup the corresponding superclass. To trigger
the re-binding, the new byte code “push method class literal” has
been introduced (see Figure 34). This byte code is inserted into the
compiled method before every “supersend” byte code along with an



6.3 LATE CLASS BINDING

example source code

App >> createPerson
A Person new

generated byte codes

traditional with late class binding
pushLit: Person pushLit: Person
send: new send: value
returnTop send: new
returnTop

Figure 33: LateClassBinding introduces an additional value send after each
push literal byte code.

example source code

App >> asString
A super asString

generated byte codes

traditional with late class binding

self self

superSend: asString pushLit: method class

returnTop send: value
superSend: asString
returnTop

Figure 34: LateClassBinding adds a push method literal and a value send
byte code before each super send.

77



78

IMPLEMENTATION
' view in A B
. version n currentB N
. before > : :
' n+1 exists +fib() : int
' view in A B
L version n
» when <
1 n + 1 exists %0 +fib() : int
' view in A B
. version n+1 currentB R
: when g : :
' n+1 exists + fib(int) : int

Figure 35: Invalid static reference after class modification.

additional “value send” byte code, to trigger the execution of the
value method.

The described changes required corresponding adjustments to the
virtual machine that interprets the byte code. The changes were made
to the Cog VM [53]. The Cog VM consist of a regular interpreter and
multiple generations of just-in-time compilers (JiTs). For this work,
changes were made to the regular interpreter called StackInterpreter
and the first generation JIT called SimpleStackBasedCogit.

6.4 LIMITATIONS

The current prototype is sufficient for many applications, but it still
has some limitations:

e Some classes of the image need to be excluded from late class
binding, and thus, changes to them cannot be versioned. This
includes in particular all classes that are needed for implement-
ing and running the late class binding mechanism and the core
of the versioning mechanism.

e Versioning is limited to source code changes and does not in-
clude changes to any other kind of object state in the image
(except source code). For example, application state is not un-



65 PERFORMANCE EVALUATION

der version control. Hence, switching between versions only
changes the source code, and not the state of running applica-
tions. This means that switching between versions requires a
restart of the application under development. A possible im-
provement could involve snapshotting the state of running ap-
plications alongside the source code and meta-objects. With this
snapshotting in place, going to different version would imme-
diately bring back the application in the state it was when the
version was created. This improvement could be implemented
using the same mechanism as the one used in worlds [91], a
language construct to support scoped-states for each object.

e The current implementation also lacks support for direct refer-
ences to class objects, for example, when a class variable of class
A holds a reference to class B (the meta-object). Figure 35 illus-
trates this scenario. If a user makes changes to class B, and then
goes back to a previous version, the class variable of class A
will still point to the most recent version of class B. The class
modification will rebind all references from version 7 to version
n+1. However, this will also affect the view of version n, be-
cause such state changes between versions cannot be handled

properly.

65 PERFORMANCE EVALUATION

User interface guidelines suggest a limit of two to four seconds for fre-
quent programmer operations [67, Ch. 10]. Furthermore, the results
of our informal user studies suggest that performance characteristics
are an important factor for the adoption of the proposed tool support.
In the following, we report on several performance evaluations.

SETUP: As the system under evaluation, we use the Seaside® Web
application framework, because it extends many parts of the Squeak
environment, which challenges the current implementation strategy
for sharing meta-objects.> We artificially created 243 versions by load-
ing 5 consecutive releases (from 3.0.0 to 3.0.4). The entire system
including Seaside contains 3,312 classes and 68,950 methods. We
used the 4.2 release of Squeak/Smalltalk. All measurements were
performed on an Apple MacBook Pro 2.93 GHz Intel Core 2 Duo
with 4 GB of RAM.

1 http://www.seaside.st

2 For every change in a class meta-object, each subclass” meta-object needs to be copied
to create the new version. The higher in the hierarchy a class is, the more subclasses
need to be copied.

79


http://www.seaside.st

8o

IMPLEMENTATION

PERFORMANCE OF CHECKING OUT: Checking out is the action of
installing a snapshot into the IDE by copying all meta-objects (as ex-
plained in Section 6.2). Checking out requires 1.6 seconds on average,
which is below the threshold of 2 seconds.

PERFORMANCE OF LOADING: Loading is the action of updating a
working copy to a different version. Updating a working copy can be
implemented either by checking out (1.6 seconds) or by applying a set
of changes to the current working copy. We use the latter option as an
optimization when the target version has few changes with respect
to the current one. Using this option, CoExist requires 188 ms to
withdraw 30 changes, approximately corresponding to 30-60 minutes
of work (according to our experience from the studies). These results
suggest that our implementation of CoExist meets the desired response time.

MEMORY CONSUMPTION: CoExist consumes memory to maintain
snapshots of source code and meta-objects. The 243 created Seaside
versions roughly amount to a day of work (at a rate of 30 versions per
hour). CoExist requires 68 MB of memory to maintain snapshots of
these 243 versions of Seaside, indicating that the size of each version
is less than 300 KB on average. These results suggest that CoExist uses a
reasonable amount of memory.

DEVELOPMENT SLOW-DOWN: In a Squeak environment, applica-
tions are executed in the same process as the IDE and thus, IDE perfor-
mance impacts applications. We measured the overhead that the pres-
ence of CoExist in the IDE introduces by timing 10 executions of the
617 Seaside unit-tests: on average, the execution takes 270 ms with
CoExist installed and 217 ms without. Using CoExist thus makes exe-
cuting programs around 1.24 times slower, mostly due to the binding
of the class names that must be done at run-time with CoExist. These
results suggests that static class binding (compile/load-time) does not yield a
significant performance improvement compared to class binding at run-time.
These results also suggests that having CoExist always running does not
significantly slowdown the execution of programs.

This first evaluation of CoExist is promising. The results show that
subjects appreciated the tools and even missed them after the exper-
iment. Furthermore, CoExist is fast enough for frequent user opera-
tions and only consumes a reasonable amount of memory.



65 PERFORMANCE EVALUATION

SUMMARY

CoExist is implemented by versioning meta-objects, which preserves
immediate access to previous development states. To reduce over-
head, meta-objects are shared between versions. However, sharing
required modifications to the treatment of references. For example,
changes to the compiler and VM were made to enable late binding of
classes, so that the appropriate version of a class is resolved at run-
time when the late bound reference is accessed. Performance eva-
lutions suggest that, on one hand, versioning meta-objects provides
sufficiently fast access to previous versions so that programmers can
use it frequently, and, on the other hand, the memory overhead re-
quired for that is acceptable.

81






DISCUSSION

This chapter discusses the dissertation topic in a broader context. The
first section explains why low recovery costs is particularly useful for
working on program design tasks. The subsequent sections illumi-
nate cognitive implications of sufficient recovery support or the lack
thereof.

7.1 WHY PROGRAM DESIGN IS DIFFICULT

The provision of dedicated recovery support is particularly benefi-
cial for program design tasks, because design tasks in general are
inherently difficult and thus prone to false assumptions, misinter-
pretations, and errors of other kinds. Researchers have studied the
attributes of design tasks and describe, among others, that design in-
volves a co-evolution of problem and solution, requires the consider-
ation of various interrelated dimensions of the problem, and requires
subjective interpretation [48, 17]. While these attributes characterize
design in general, they do also apply to program design in particular.
They generally help to understand the demanding nature of design
task.

7.1.1  Multiple dimensions and their interdependencies.

Design can be complex because it requires the consideration of vari-
ous dimensions that frame the situation. These dimensions are con-
nected with each other: Making a change in one dimension has an
impact on a fair number of others. This raises conflicts when the
effect on other dimensions is undesirable.

Program design also involves many interdependent dimensions.
Functional requirements often need to be considered in context of
non-functional constraints such as performance, fault-tolerance, se-
curity, and overall projects constraints such as time and budget. In
addition, programmers consider aspects such as modularity and read-

83



84

DISCUSSION

ability to support subsequent tasks. These dimensions are often in
conflict: Source code optimized for performance is often harder to
understand, and improving both readability and performance takes
time and thus money, which might also be spend on the implemen-
tation of additional features; also, improving the readability and con-
ciseness of one aspect of the program might impede the readability
and conciseness of another one, and avoiding this drawback might
require a larger refactoring.

7.1.2  Co-evolution of problem and solution.

Design is difficult due to a high degree of uncertainty—"It seems that
creative design is not a matter of first fixing the problem and then
searching for a satisfactory solution concept. Creative design seems
more to be a matter of developing and refining together both the for-
mulation of a problem and ideas for a solution ... .” [20]. Study results
show that designers tend to look for patterns—a partial structure—
that helps to better understand the problem and related information.
This partial structure can aid the development of a solution idea. Try-
ing out this idea supports understanding its implications and refining
the problem. Iterating over problem and solution in this way allows
to incrementally improve the understanding of both [20].

Program design is an iterative activity as well. When program-
mers are unsatisfied with the source code, they explore it and look
for alternative structures. They look for patterns that potentially help
maintaining the code, for example, the Visitor pattern [? ]. After refac-
toring to this pattern, developers might realize that the new code still
has problems. But even if they are unsatisfied after a first iteration,
they improved their understanding of both the problem and the solu-
tion.

7.1.3  Subjectivity and Measurement.

Design is complex because it requires subjective judgment. The de-
sired goals are typically described in a vague manner and the efforts
to achieve them are mainly limited by time and budget. This vague-
ness requires designers to interpret the situation and move forward
according to inner values and beliefs. Furthermore, the open-ended
problem and solution space render metrics such as right or wrong
inadequate. Every solution can only be more or less appropriate
with respect to certain dimensions. While some dimensions allow



7.2 BENEFITS OF A REDUCED NEED FOR BEST PRACTICES

for quantitative measurements, many require qualitative considera-
tions as well as careful interpretation and judgment with respect to
importance.

Program design requires subjective judgment as well: They have to
decide, for example, whether some more decoupling would be bene-
ficial, and whether additional refactorings are worth the effort; They
might also wonder whether it is worth to create an abstraction if used
once or twice; Sometimes it might be meaningful to invent a domain-
specific language; They have to decide what is simple enough and
what name is sufficiently meaningful for a variable.

7.2 BENEFITS OF A REDUCED NEED FOR BEST PRACTICES

CoExist helps programmers deal with various recovery situations. It
makes recovery fast and easy to accomplish. Because of that, pro-
grammers have reduced need for employing best practices to avoid
recovery.

7.2.1 Cognitive Benefit: Reduced Mental Workload

Manual problem prevention by constantly performing best practices
requires conscious analytic reasoning. It involves reflecting about
recent changes, imagining upcoming changes, assessing risks, and
making decisions on what actions to be performed next.

This kind of cognitive work has to be conducted in parallel to the
main programming work. On one hand, programmers are concerned
with advancing the code base by implementing new features and im-
proving the program design. On the other hand, they are concerned
with observing their programming activities, and conducting various
practices if their assessment of the current situation suggests doing
SO.

However, research in psychology and neuroscience suggests that,
for example, attention and effort should be considered resources that
are limited [45, 44, 43, 88]. Among other cognitive capacities, the
mental working memory for conscious analytic reasoning is limited.
If there is an overload, some tasks will fall short. For example, one
study illustrates that people have deficits in perceiving information
during mental tasks [46]. Another study suggests that driving a car
and conducting a phone call in parallel is difficult (and thus danger-

85



86

DISCUSSION

ous) if the route is particularly challenging (e.g. a winding road) and
the phone call also requires concentration and reasoning [79].

Consequently, a constant need for problem prevention activities in-
creases the chance for cognitive overload during programming tasks,
in particular during program design tasks. First of all, program de-
sign task are particularly challenging as discussed above. Hence, the
cognitive load is typically high. But in addition, such tasks inherently
have considerable room for errors. Because of the increased risk for
mistakes, the ease of recovery is particularly important. Thus, pro-
grammers have to be more careful and perform problem prevention
to a stronger degree.

Cognitive overload during programming tasks, in part because of
the need for manual problem prevention, implies that some tasks will
fall short. It is thus possible that programmers ignore best practices
while being focused on advancing their code base. Reasoning about
the code base and the desired improvement can be so demanding that
programmers “forget” to consider testing or committing or else.

Another possibility is that reasoning about problems and their pre-
vention dominates the course of action. If programmers think too
hard about conducting best practices and problem prevention, there
might be insufficient cognitive capacity left for reasoning effectively
about the actual programming task. Also, a programming task might
so hard in relation to the cognitive capacity available that any other
dominant thought would disrupt performance significantly. Such ef-
fects have been shown, for example, in a study on performance pres-
sure [9]. “Results demonstrated that only individuals high in working
memory capacity were harmed by performance pressure, and, fur-
thermore, these skill decrements were limited to math problems with
the highest demands on working memory capacity. These findings
suggest that performance pressure harms individuals most qualified
to succeed by consuming the working memory capacity that they rely
on for their superior performance.” [9]. The findings suggests that
“Too much concern about how well one is doing in a task sometimes
disrupts performance by loading short-term memory with pointless
anxious thoughts.” [45, Chapter 3]

Providing sufficient recovery support avoids the need for man-
ual prevention and thus reduces the workload during programming
tasks. It allows for a temporal separation of concerns. Programmers can
focus on advancing their code base, and if need be, they can later
focus recovering from problems with only little effort.



7.2 BENEFITS OF A REDUCED NEED FOR BEST PRACTICES

7.2.2 Cognitive Benefit: Reduced Need for Self-Control

While running tests might also increase the confidence in recent
changes, the main purpose of regularly conducting best practices is
the avoidance of problems. Thereby, the return on investment is un-
clear, as discussed previously. Consequently, programmers have little
motivation to regularly conduct these activities. They typically have
more interest in solving their current programming problems and ad-
vancing the code base. To still conduct precautionary activities, even
if they are not of current interest, requires self-control (or willpower).

However, studies found that the ability to control one’s behavior
gets depleted by the use of self-control [4, 5]. Researchers proposed
self-control as a limited resource similar to a muscle: exertion leads to
decreased performance. An alternative model to poorer self-control
at time 2 after exerting self-control earlier at time 1 is that people
have “reduced motivation to exert control, reduced attention to cues
signaling a need for control, increased motivation to act on impulse,
and increased attention to reward-relevant cues” [40].

These finding suggests that programmers’ self-control ability de-
creases over the day, given the described assumption that constantly
following best practices requires self-control. This implies that their
ability to constantly follow guidelines gets depleted. It further im-
plies that less of this resource remains available for other tasks.

It is thus beneficial for programmers to work with built-in recovery
tools that reduce or even avoid the need for following best practices.

7.2.3 Cognitive Benefit: (Temporal) Separation of Creative and Judgmental
Concerns

Furthermore, built-in recovery support is particularly beneficial dur-
ing explorative tasks, which involve uncertainty and require creative
thinking. Psychology distinguishes two modes of thinking [70, 24].
While creativity along with intuition is attributed to the fast thinking
mode, the analytic approach along with suspicion is attributed to the
slow thinking mode [24]. The operations of the slow thinking mode
are expensive and exhaustive. For this reason, this mode is only used
when need be [45]. Studies suggests that whether operations of the
slow thinking mode are involved depends mainly on two aspects: pro-
cessing fluency and affect [13, 27, 85]. Processing fluency is described as
the “subjective experience of ease with which people process informa-

87



88

DISCUSSION

tion” [1] or as “cognitive ease” [45]. Affect refers to emotional state,
the mood, which people are in.

This separation of modes implies that when people are in one
mode, people are better in tasks that involve operations associated
with that particular mode, and less good in tasks that involve opera-
tions associated with the other mode [45].

These findings suggest that explorative programming tasks, which
require creativity and intuition, do not go well together with problem
prevention activities, which require suspicion and conscious analytic
reasoning. When writer constantly judge their ideas and sentence,
they will hardly create much ideas and sentences. Similar to such a
writer’s block, programmers can also experience a coder’s block [54],
when they judge their ideas too early too critically.

Providing sufficient tool support for recovery scenarios avoids the
constant need for problem prevention activities. It allows deferring
judgmental activities and thus avoids mix of the different modes of
thinking. A temporal separation of creative and judgmental concerns
is likely to increase efficiency for both kinds of tasks.

7.3 CODING AS A MEANS OF LEARNING

The presence of dedicated recovery tools such as CoExist allows pro-
grammers to immediately realize ideas instead of conducting careful
reasoning about it upfront. Programmers can make corresponding
changes without hesitation, because they can easily recover if such a
need suddenly arises.

This approach of immediately realizing ideas in order to test them
is beneficial for complex tasks. Changing source code according to
current thoughts is a form of externalizing these thoughts, similar
to talking an idea through or writing it down. Such activities have
cognitive benefits. They help to better understand the problem and
its constraints, as well as to discover new and interesting options for
solving it. The value of externalizing thoughts during design work
is supported by research on activities such as sketching and proto-
typing, which are considered crucial in fields such as architecture or
product design



7.3 CODING AS A MEANS OF LEARNING

7.3.1  Cognitive Benefits: Support Thinking by Doing

The externalization of thoughts facilitates inference, understanding,
and problem solving [81, 80]. More specifically, the creation of exter-
nal representations serves, among others, the following purposes:

REDUCED WORKING MEMORY LOAD. An external representation
contributes as an external memory for elements of thought. “This
frees working memory to perform mental calculations on the ele-
ments rather than both keeping elements in mind and operating on
them”, as explained by Suwa and others [80]. Freeing working mem-
ory is required because the number of chunks of new information
that a human being can keep in mind and process is limited. Study
results suggest that no more than 3 or 4 chunks can be held in mind.
(The complexity of chunks can strongly vary depending on previous
knowledge). Given too many chunks at once, a human being ex-
periences cognitive overload, which impedes learning and problem
solving [11, 25]. Studies have also shown, that cognitive activity rate
will slow down [11]. The mind will work slower.

RE-INTERPRETATION AND UNEXPECTED DISCOVERY. External
representations allow for re-interpretation. During the creation of
an external representation, abstract concepts and thoughts are asso-
ciated with specific tokens: the idea is depicted in a particular way,
or described using specific words, or implemented by changing and
extending the source code in a particular way. However, when de-
signers revisit these external tokens, they can see them as something
else [33]. They associate abstract concepts with these tokens that are
different than the original ones. An external representation brings to
mind information from long term memory that might otherwise not
be retrieved [80]. The particular arrangement of external tokens can
also lead to the discovery of unexpected relations and features [64].

7.3.2  External Representations in other Design Fields

Designers can rely on mental simulation to a certain degree [15]; in
particular, experts are able to do a fair amount of what-if reason-
ing [63]. However, the use of mental simulation can easily become
too complex for one’s mental abilities [25]. For that reason, designers
of various fields rely on sketching and creating physical prototypes

89



90

DISCUSSION

to externalizes theirs ideas [41]. The externalization of thoughts is
considered key to efficient and effective outcomes.

Sketching is a method that designers use for exploration in a de-
sign situation, for example, in architecture, engineering design, or
product design [16, Section 3.5.]. Sketching often reveals unexpected
consequences and thus helps to keep the exploration going. Sketch-
ing supports pursuing a line of thought, to refine an idea, and also
to study an idea’s implications [33]. It enables designers to have a
“reflective conversation with the [design] situation” [64].

Prototyping supports design activities in ways similar to sketch-
ing. A prototype is a manifestation or an embodiment of an idea
(independent of the medium) [37]. Prototypes are often created to
evaluate certain aspects of an idea such as look-and-feel, feasibility
(implementation), or usage purposes. But despite evaluation, pro-
totypes also have a generative role: They help designers explore a
design space [49]. They are sources for inspiration and aid reflection
on design activities. Several studies emphasize the value of prototyp-
ing for design tasks. For example, study results suggest that, under
given time constraints, the creation of multiple prototypes for one
design problem will yield more valuable insights and lead to better
results [22, 34], in particular for novices. The result of another study
shows that prototyping reduces fixation on a certain idea [93] and
encourages developing and engaging other ideas.

7.3.3 Source Code as External Representation

Programmers can benefit from exploring their ideas by realizing them.
Programmers should be encouraged to change the source code ac-
cording to current thoughts, observe the result and study its implica-
tion, better understand the constraints but also get inspired, change
the source code again, and so on. This approach will support pro-
grammers in reasoning about program design. Programmers will
associate many thoughts with different pieces of source code, such
as idioms, patterns, or “bad smells” [29]. They have also developed
a feeling for simplicity and beauty concerning source code, and they
“know” what kinds of code they like and what they want to avoid.
Seeing an idea realized in source code reveals unanticipated implica-
tions and facilitates the discovery of unintended features.



7.3 CODING AS A MEANS OF LEARNING

SUMMARY

Program design tasks are particularly difficult. Programmers thus
notably benefit from recovery support during such tasks when errors
are likely. But even more, the level of available recovery support has
considerable cognitive implications. Low recovery costs reduce the
need for problem prevention, which in turn reduces the mental work-
load and the need for self-control. It also allows for a separation of
creative and analytic concerns during the course of programming. In
addition, when the costs for recovery are sufficiently low, program-
mers are encouraged to try out their ideas as they come to mind and
can use coding as a means to learn and reflect about their ideas.

91






LAB STUDY

The cognitive implications described in the previous chapter gave rea-
son to hypothesize that recovery support such as CoExist influences
programming behavior. Because of that, a controlled lab study was
conducted to examine whether CoExist affects programming perfor-
mance.

8.1 METHOD

Using a repeated measurement setup, 22 participants were requested
to improve the design of two games on two consecutive days.

8.1.1  Study Design

Figure 36 illustrates the experimental setup. Participants were as-
signed to either of two groups, the control group or the experimental
group. Members of the control group used the regular development
tools for both tasks. Members of the experimental group used the
regular tools only for task 1, and could additionally rely on CoExist
for task 2.

We kept participants unaware of what condition they had been
assigned to. However, on day 2, participants in the experimental
group could guess that they were receiving special treatment because
they were introduced to a new tool and could make use of it. At the
same time, participants in the control group were unaware about the
experimental treatment. They did not know that the participants in
the experimental group were provided with CoExist.

The setup resulted in two scores for every participant, which al-
lowed testing for statistically significant differences between task 1
and task 2 as well as between the control and the experimental group.
It also makes it possible to test for an interaction effect of the two fac-

93



94

LAB STUDY

- =7
|

Regular Tools Only

Regular + CoExist Tools NIIT)

Figure 36: Our experiment setup to compare performance in program de-
sign activities.

tors, which is the indicator of whether CoExist affects programming
performance.

8.1.2 Materials and Task

On both days the task was improving the source code of relatively
small computer games. More specifically, participants were requested
to study the source code, detect design flaws in general and issues of
unnecessary complexity in particular, and improve the source code
as much as possible in the given time frame of two hours. The games
needed to function properly at the end of the task. To help partici-
pants better understand the task, we provided descriptions of possi-
ble improvements such as the following:

e Extract methods to shorten and simplify overly long and com-
plicated methods, and to ensure statements have a similar level
of abstraction

e Replace conditional branching with polymorphism

e Detect and remove unnecessary conditions or parameters

Participants should imagine that they co-authored the code and
now have time to improve it in order to make future development
tasks easier. Also, participants were asked to describe their improve-
ments and thus help imaginary team members better understand
them. (Most participants followed this instruction by regularly writ-
ing commit messages).



8.1 METHOD 95

N - A
a mirror

laser beam

gate to next level

”~
”
destroyed wall

Figure 37: Screenshot of the LaserGame used for task 1.

Figure 38: Screenshot of the MarbleMania game used for task 2.



96

LAB STUDY

LaserGame MarbleMania
# classes 42 26
# methods 397 336
# test cases 50 17
# lines of code 1542 1300

Figure 39: Size indicators for the games used in the study

On day 1, participants worked on a game called LaserGame, and
on day 2 they worked on a game called MarbleMania. Screenshots of
both games are shown in Figure 39. For the LaserGame (on the left),
the user has to place mirrors in the field so that the laser is redirected
properly to destroy the wall that blocks the way to the gate to the
next level. For MarbleMania (on the right), the user has to switch
neighboring marbles to create one or more sequences of at least three
equally colored marbles, which will then be destroyed, and gravity
will slide down marbles from above.

Both games were developed by students in one of our undergradu-
ate courses. The two selected games function properly and provide a
simple but nevertheless fun game play. Accordingly, only little time is
required to get familiar with the functionality. Furthermore, for each
of the two games, there is significant room for improvement concern-
ing the source code (because they were created by young undergrads
who were about to learn what elegant source code is). Furthermore,
both games come with a set of tests cases, which also have been de-
veloped by the respective students. However, while the offered test
cases are useful, they were not sufficient. Manual testing of the games
was necessary.

While the numbers shown in Figure 39 indicate that both games
are of similar size, the code base of the LaserGame is easier to under-
stand. The authors of MarbleMania placed a great deal of emphasis
on the observer pattern and built in many indirections, which im-
pedes understanding the control flow.

8.1.3 Participants

We recruited 24 participants, mainly through email lists of previous
lectures and projects. Of the 24 participants, 3 were bachelor students
who had completed their fourth semester, 6 were bachelor students
who had completed their the sixth semester (nearly graduated), 13
were master student who had at least completed their eighth semester,



8.1 METHOD

and 2 were PhD students. The average age was 23 with a standard
deviation of 2. For approximately 5 hours of work, each participant
received a voucher worth 60 euros for books on programming-related
topics. Of the 24 participants, the results of two were dropped which
is discussed in the results section (8.2).

Prospective participants needed to have experience in using
Squeak/Smalltalk and must have passed their fourth semester. By
this time students will have typically attended two lectures, in which
they use Squeak/Smalltalk for project work. Also, these two lec-
tures cover software design and software engineering topics. Thus
we could ensure that all participants had theoretical and practical
lessons in topics such as code smells, idioms, design patterns, refac-
toring, and other related topics.

We balanced the amount of previously gained experience with
Squeak/Smalltalk among both conditions (stratified random sam-
pling). Most participants have used Squeak/Smalltalk only during
the project work in our lectures. But 6 participants also have been us-
ing Squeak/Smalltalk in spare time projects and/or in their student
jobs, so that we could assume these participants had noticeably more
experience and were more fluent in using the tools.

8.1.4 Procedure

We always spread the experiment steps over two days, so that partici-
pants worked on both tasks on two different but subsequent days. On
both days, the procedure comprised two major steps: an introduction
to the game and a two-hour time period for improving the respective
codebase. On day 2, participants of the experimental group received
an additional introduction to the CoExist tools before working on the
actual tasks, during which they could rely on CoExist as an additional
recovery support.

Both tasks were always scheduled for the same time of the day in or-
der to ensure similar working conditions (hours past after waking up,
hours already spent for work or studies, ...). Typically, we scheduled
the task assignments after lunch so that for day 2, there was time to
run the CoExist tutorial session before lunch. (We had to make an ex-
ception for three participants, who only had time during the morning
or evening hours. Because we could not arrange a similar schedule
for these participants concerning the CoExist tutorial followed by a
large break, these three participants were automatically assigned to
the control group).

97



98 LAB STUDY

Legend
) Regular Tools Only
Control Experimental
Group Group —_—
| Regular +
L — CoExist Tools
day 1 ———————
1:00 pm
Recap IDE shortcuts
Download & Setup Task 1
1:10 pm
Introduction to
LaserGame
1:25 pm o )
1:30 pm Giving Instructions
Improving Source Code
of LaserGame
3:30 pm
day 2
10:30 am —— Setup Tutorial
- etup Tutoria
10:35 pm ==
r | Introduction to
CoExist
10:50 pm = ——
- - -
| l Try out CoExist
| (by working on a
l | Tutorial App)
12:00 am L ==
Lunch break
1:00 pm
— e
l Download & Setup Task 1
11 L
110 pm —_— e —
l | Introduction to
MarbleMania
125 pm - ==
1:30 pm — Giving Instructions
o
| | Improving Source Code
| | of MarbleMania
3:30 pm -

Figure 40: The experimental procedure for both the control and the experi-
mental group.



8.1 METHOD

Figure 4o illustrates all steps of the experiment. On day 1, partici-
pants received a brief recap of IDE shortcuts, which were also written
on the whiteboard in the room. The step of Introduction to <a game>
started with a short explanation of the game play, followed by some
time to actually play the game, to understand details, and to get com-
fortable with it.

8.1.5 Dependent Measure

We measured performance by identifying independent increments
among the overall set of made changes, and quantifying the effort for
these increments by defining sequences of IDE interactions required to
reproduce them. This measure is a proxy for how much actual work
was done within the two hours, excluding time spent on activities
such as staring into the air or browsing the code base.

8.1.5.1 Identifying Independent Increments

An independent increment is a set of interconnected changes to the
code base that represents a meaningful, coherent improvement such
as an ExtractMethod refactoring, which consists of the changes: a)
adding a new method and b) replacing statements with a call to the
newly created method. Another example for an independent incre-
ment is the replacement of code that caches state in an instance vari-
able with code that recomputes the result on every request, or vice
versa. Other generic improvements are for example:

Renaming of an instance variable

Replace a parameter with a method

Make use of cascades

Inline temporary expression

Replace magic string/number with method

Besides such generic and well-document improvements, an incre-
ment can also be specific to a certain application. The following ex-
amples are game specific improvements that were identified for the
MarbleMania game:

99



100 LAB STUDY

e Replace dictionary that holds information about exchanged
marbles with instance variables

e Replace “is nil” checks in the Destroyer with null objects (the
Destroyer class has the responsibility to “destroy” marbles
when, after an exchange, a sequence of three or more marble
exists)

e Remove button clicked event handling indirections

For each participant and task, we recorded a fine-grained change
history using CoExist’s continuous versioning feature. However, the
CoExist tools were not visible nor accessible to the users, except for
the experimental group on day 2. We then analyzed these recorded
change histories manually to identify the list of independent incre-
ments. For each programming session (per programmer and task),
the analysis consisted of two steps to gain a corresponding spread-
sheet as illustrated in Figure 41.

First, we extracted the time stamps of all versions and listed them
in a column of a spreadsheet. We then grouped these time stamps
according to the commits that subjects made during the task, and put
the corresponding commit messages in a second column (illustrated
in Figure 41). The commit messages provide context that helps get-
ting an initial understanding of the changes’ intent.

Second, we hovered over all version items step by step (compare
with Figure 10) to refine our understanding, and put names for iden-
tified increments in a third column. Such a coded increment can
involve only one actual change or consist of many. Sometimes, all
the changes made for one commit belong to one coded improvement.
Note that we only coded increments for changes that last until the
end of the session. This excludes change sets that were withdrawn
later, for example.

8.1.5.2 Quantifying the Effort for Identified/Code Increments/Improve-
ments

We measured the effort for every increment by determining the list of
IDE interactions that are required to (re)produce it. Such interactions
are, for example: navigating to a method, selecting code and copying
it to clipboard, selecting code and replacing it with the content from
the clipboard, inserting symbols. Figure 42 shows two lists of IDE
interactions, written down in an executable form (regular Smalltalk



101

8.1 METHOD

. aueLeAul,

pa309313p UO Paseq poyiaw

payydwis "~ spoyjow

13410 3] paAowal

pue ‘spoylaw paj|ed wouy
9pod pajessagul ‘uonipuod T 8Lkivlivl

SS3I3SN PAIBIFP "+ POLNSIA BAILIBOI Aot e

PoYISINBUI] 4 T
+ SjuaWALISINOWDY

: 90:€Lvl

. m 9LZ0 YL

W iAepwaienojeoy ........................ romov_\ ;

. 2u3uas ‘paoelixe Ajsnoinsid 67:20:11 .

PoyIaINaIeINde) 39U} PONOIAWIL {SPOYIDW  f-emmmmmmmemmm e e ee e e e eaaaes
-lBuadlenxy 97 : 91E|N2|ed 3S3Y) || Ul JB|IWIS [AS4In 4" "L IABIOP 0 :XE)Op UMOp# :ABppSleINOleD JjIos +

S11ey] 9p0d pajdedixs ™, STt o R .

. e 9b:c0vL Aep\UMOaIBIND[BD#
. POUISA POPPY  L1:LO-vL wesgJsse|8LvYMS Ul palipoiN

SjuawiaIdul payuap] m sabessaw Jwwo) ejep UOISIaA paulesBb-aulg suolsiaA | sabueya |enplaipul Jo} Yid

Figure 41: Excerpt of a spreadsheet with coded version data.



102 LAB STUDY

CvEval >> #renameClass

self
navigateTo: #class;
requestRefactoringDialog;
insertSymbols: 1;
checkSuggestionsAndAccept

CvEval >> #lgReplaceCollectionWithMatrix

self
navigateTo: #formWidth... in: #Grid;
selectAndInsert: 5;
navigateTo: #at: in: #Grid;
selectAndInsert: 1;
navigateTo: #at:put in: #Grid;
selectAndInsert: 1

Figure 42: The first example represents the list of interactions required for
the generic RenameClass refactoring, while the second represents
an increment that is specific to the LaserGame.

code). Executing a script computes a number that represents the ef-
fort required to reproduce the described increment.

We determined these scripts by re-implementing every identified
increment based on a fresh clean code base, which participants
started with. Re-implementing the increments ensured that we had
gotten a correct understanding. We always used the direct path to
achieve an increment, which might be different than the path made
by participants. Thus, we only measured the essential effort and
excluded any detours that participants might have made until they
eventually knew what they wanted.

For generic increments such as ExtractMethod or InlineMethod, the
required effort can vary: extracting a method with five parameters re-
quires more symbols to be inserted than extracting a method without
any parameter. We accounted for such differences by listing the inter-
actions required for an average case. However, for extreme variations
(easy or hard), we used special codes such as ExtractMethodForMag-
icNumber.

The messages used in these scripts call utility methods that
are typically composed of more fine-grained interactions. At




8.2 RESULTS AND DISCUSSION

the end, all descriptions rely on four elementary interactions,
which are: #positionMouse, #pressKey, #brieflyCheckCode, and
#insertSymbols: aNumber. The methods for these elementary inter-
actions increment a counter variable when they are executed. While
the former three increment the counter by one, the latter increments
the counter by three for every symbol inserted. So we assume that
writing a symbol of an average length is three times the effort of
pressing a single key. (While this ratio seemed particularly meaning-
ful to us, we also computed the final numbers with a ratio of two and
four. The alternative outcomes, however, show a similar result. In par-
ticular, a statistical analysis using ANOVA also reveals a significant
interaction effect.)

8.2 RESULTS AND DISCUSSION

Figure 43 shows the result scores for each participant and task, the ac-
cumulated points for the identified increment. The plots in Figures 44
and 45 illustrate the averaged score of each group for each task.

While we recruited 24 participants, we only present and further
analyze the scores of 22 participants. One of the two participants had
to be dropped because after the session we found out that he had
already been familiar with the MarbleMania game. He had used the
source code of this game for his own research. The other result was
dropped because the participant delivered a version for task 2 that
did not function properly. Further analysis revealed that this problem
could not be easily fixed and that the code already stopped working
with a change made after half an hour of work. So we decided to
drop this data set.

The results show a difference in the performance between the con-
trol and the experimental group for the MarbleMania tasks. Further-
more, the control group performed on average less well for the second
task, which indicates that improving the design of MarbleMania was
the more difficult tasks. In contrast to this increase for the control
group, the experimental group scored on average higher for the sec-
ond tasks compared to their results of the first task. The fact that the
experimental group improves while the control group degrades is an
indicator that the provision of CoExist helped to compensate for the
additional difficulty.

A 2 x 2 mixed factorial ANOVA was conducted with the task
(LaserGame, MarbleMania) as within-groups variable and recovery
support (with and without CoExist as additional support) as between-

103



104

LAB STUDY

Task 1 / LaserGame Task 2 / MarbleMania
795 306
183 62
783 513
o 1031 585
‘g 90 0
S 323 460
£ 1019 278
o 394 519
890 408
784 480
611 470
533 499
217 479
a 1286 1080
3 75 420
2 726 109
€ 548 374
£ 460 338
g 195 217
“ 353 493
651 1115
320 771

Figure 43: Final scores for participants by task




8.2 RESULTS AND DISCUSSION 105

]
[ce]
B LaserGame
O MarbleMania
5 -
s
[¢e]
@
£
[e]
o
= N
a 8
E <
[
>
2
<
S N
<
o
s
N
o - I
Control Experimental

Condition

Figure 44: A bar plot of the study results. Error bars represent the standard
error of the mean.



106 LAB STUDY

800 -

600 -
5]
£
S .
g Condition
g —e— Control
IS 400 - )
o Experimental
> -4 (CoExist Support for
% MarbleMania Task)
[3]
<

200 -

O -
1 1
LaserGame (Day 1) MarbleMania (Day 2)
Task

Figure 45: An interaction plot of the study results.



83 STUDY DESIGN—JUSTIFICATION AND LIMITATIONS

groups variable. Both the Shaphiro-Wilk normality test and Levene’s
test for homogeneity of variance were not significant (p > .05), com-
plying with the assumption of the ANOVA test.

Statistical significance tests were conducted from the perspective of
null hypothesis significant testing with alpha = .05, and effect sizes

were estimated using partial eta-squared, npz.

The results show a significant interaction effect between the ef-
fects of task and recovery support on the amount of achievement,

F(1, 20) = 5.49, p = .03, Np? = .22.

Simple main effects analysis revealed that participants in the con-
trol condition (with traditional tool support for both tasks) achieved
significantly more for the LaserGame task than for the MarbleMania
task, F(1, 10) = 9.81, p=.01, npz = 0.5, but there were no significant
differences for participants in the treatment condition (with CoExist
tools), F(1, 10) = .2, p = .66, npz =.02.

We performed correlation analyses to illuminate whether the
amount of programming experience has an influence on the observed
effects. However, there was no correlation between achievements and
years of professional education & experience (starting with college
education), Pearson’s r(20) = .1, p = .66. Furthermore, there was no
correlation between gains in achievements (difference between points
for MarbleMania and points for LaserGame) and years of professional
education & experience, Pearson’s r(20) = .05, p = .83.

The results suggest that the provision of additional recovery sup-
port such as CoExist has a positive effect on programming perfor-
mance in explorative tasks.

83 STUDY DESIGN—JUSTIFICATION AND LIMITATIONS

8.3.1 Measuring Achievements for a Fixed Time Span

For our experiment, we decided to keep the time fixed and measure
the amount of achieved improvements. Keeping the time fixed is one
of two typical ways to examine the effects of tools or methods. The
other way is to fix the amount of work to get done by providing a well-
defined goal and measure the time needed to achieve this goal [42].

We decide for a fixed time setup, because CoExist was designed
to help programmers in explorative tasks. Such tasks inherently in-

107



108

LAB STUDY

volve ambiguity and uncertainty, contradicting the requirements for a
setup that measures time to completion. A time to completion setup
requires a clearly defined task without any uncertainty or ambiguity.
There has to be a clear indicator when the task is finished. Also, the
task description should provoke similar thoughts, so that all subjects
have a similar idea how to achieve the goal. These criteria can hardly
be met in an experiment where participants accomplish a design task.

Research in the general field of design supports that a fixed time
setup is a meaningful choice for measuring performance in design
tasks. In [22, 21], for example, the authors report on the empirical
examination of prototyping techniques in product design and ad-
design. In these experiments, performance has been compared by
evaluating various quality criteria of the design outcome, and partic-
ipants had a fixed amount of time to create the best possible design.
However, we are unaware of an experiment report in the software
engineering field that examines an effect in program design tasks.

8.3.2 Using a Repeated Measurement Setup

We decided to rely on a repeated measurement study design because
programmers strongly vary in approaching such tasks. Programmers
have a difference in working speed which involves code comprehen-
sion, code writing (typing speed), but also tool usage. Moreover, dif-
ferent programming personalities will identify and work on different
kinds of issues in the source code. While some programmers will
have the tendency to focus on the various smaller independent is-
sues, others will have the tendency to find out major flaws in the
overall program structure of the code and to improve on that while
ignoring smaller issues. While the various kinds of contributions can
be similarly important for the long term success of a software project,
the differences will lead to strong variations in the response variable,
in relation to the possible difference caused by the provoked varia-
tions. In such circumstances, literature recommends repeated mea-
surement setups to ensure the ability to discover statistical effects,
in particular when having access to a limited number of participant
candidates [42].

8.3.3 Measuring Interactions for Independent Increments

To approximate the amount of work achieved within the given time
frames, we decided to identify the number independent increments



83 STUDY DESIGN—JUSTIFICATION AND LIMITATIONS

and determining the IDE interactions required for reproduction. We
decided for this unusual approach because alternative measures have
severe limitations, and we did not want to fall back on measuring
time due to the above mentioned reasons.

We could have used measures such as the number of created ver-
sions, or number of changed lines of code or similar kinds of metrics.
However, such constructs are of limited value as discussed below.

8.3.3.1 Limitations of Counting Created Versions

e Changes that lead to new versions strongly vary in the amount
of changed code. While adding leading white space is a small
change to the code, removing statements or parameters from a
method is a much larger change.

e Participants might want to withdraw changes, and in partic-
ular when they could not rely on CoExist, they need to manu-
ally withdraw made changes, which will likely create additional
changes.

e It might also be the case, that a series of changes were good
for inspiration and helped the programmer to develop a better
idea how to improve the elements of current interest. In this
case, it would be unfair to double count the made changes, the
changes made for the initial idea and also changes made for the
final improvement.

8.3.3.2 Limitations of Counting Changed LOC

Changed lines of code (LOC) or similar constructs typically have the
issue that they do not necessarily correlate with the amount of work.
Consider for example the following increments: moving all code from
the instance side of a class to the class side (analog to static in Java like
languages), or vice versa, including methods and instance variables;
removing an unnecessary superclass by moving code into its only
subclass. Such refactorings can easily result in a large number of
changed LOC, which do not correlate with amount of required work
compared to other refactorings such as ExtractMethod.

109



110

LAB STUDY

84 THREATS TO VALIDITY

The presented study has a number of threats to validity, which are
discussed below.

8.4.1 Order Effects / Counterbalancing

A possible objection to our study design is the lack of counterbalanc-
ing the treatment order, as there might be fatigue or learning effects.
However, we think that there are complex dependencies between the
order of the treatment and the dependent variable. If some partic-
ipants had received the introduction and the tutorial to CoExist for
task 1, which necessarily includes a description of its potential ben-
efits, this would have likely changed how they approach the second
task. In particular, they would have been more risk-taking than usual
when not having such additional recovery support. So in order to re-
duce effects of fatigue, we split the study over two days. Also, the two
tasks were significantly different, rendering each of them interesting
and challenging in its own way.

8.4.2  Construct Validity

Care must be taken not to generalize from our treatment and measure.
While we were motivated in this work by discussing recovery support
in general, we compared only two levels in our study. Because of this,
our results provide only limited support that more recovery support
is generally better with respect to all these other levels. Additional
studies are required to better examine and support the general con-
struct.

Also, the control and experimental group did not only differ in the
fact, that one group could rely on CoExist in addition to standard
tools for task 2. The members of the experimental group also ran
through a tutorial that explains and motivates the CoExist tools. The
tutorial or the fact of using a new tool might have contributed to the
observed effect.

In addition, there are various kinds of social threats to construct
validity such as hypothesis guessing or evaluation apprehension that
need to be taken into account [66].



84 THREATS TO VALIDITY

8.4.3 Reliability

I acknowledge the need for further reliability analyses on our mea-
sure. Additional studies are required to validate that our construct
(the amount of required interactions to reproduce the achieved inde-
pendent increments) is actually a measure for the amount of work
that got done.

I also acknowledge the need for replicating both the coding of
change histories, which is the identification of the independent in-
crements, and determining the IDE interactions required for repro-
duction. Both steps were conducted by only one person.

8.4.4 Internal Validity

While the results show a correlation between the treatment and the
outcome, there might be factors other than the treatment causing or
contributing to this effect. While the use of a repeated measurement
setup rules out single group threats, there is need to consider multiple
group threats and social threats.

To the best of my knowledge, participants of the control and ex-
perimental group are comparable in so far as they experienced the
time between both tasks similarly (selection-history threat), that they
matured similarly (selection-maturation threat), and learned similarly
from Task 1 (selection-testing threat).

However, there is a selection-mortality threat to the validity of our
study, because we needed to drop the results of two participants who
were both in the control group. But, on the other hand, we had no
need to drop any results from the experimental group.

The selection-regression threat has to be considered as well, be-
cause the average score of both groups is different. So it might be
that one of the two groups scored particularly low or high, so that
they can only get better or worse respectively. However, the lines
in the interaction plot cross. This is an indicator that, besides other
possible factors, the treatment is responsible for the observed differ-
ences in task 2. The results of the experimental group got better on
average, while the results of the control group got worse on average.
So, even if one group had a particularly high performance on task
1, the observed differences can hardly just be an artifact of selection-
regression.

111



112

LAB STUDY

The study design dealt with social threats to internal validity, such
as compensatory rivalry or resentful demoralization by blinding par-
ticipants to the treatment as much as possible.

8.4.5 External Validity

Because participants were students, the results are not necessarily
representative for the entire population of programmers. However,
we conducted correlation analyses to better understand the effect of
experience on task performance and gained differences between tasks.
The results show that there is no such correlation in the data of our
study.

The study was artificial in the sense that programmers may rarely
have a fixed time span of two hours they can spend on improving the
source code. It might be more typical that refactoring activities go
hand in hand with other coding activities such as implementing new
features or fixing bugs.

Furthermore, one might argue that refactoring a previously un-
known code base is also quite untypical. It might be more typical
that programmers know a code base and also know their problems
that need to get fixed. However, our study design focuses on objec-
tively measuring and comparing programmers’ performance.

SUMMARY

A study was conducted to empirically examine the effect of CoEx-
ist on programming performance. Participants run through a lab
study. Using a repeated measurement study, they were requested to
improve the design of two games on two consecutive days. The ex-
perimental group could additionally rely on CoExist for the second
task. Fine-grained change histories were recorded in the background,
accumulating approximately 88 hours of recorded programming ac-
tivities. Change histories were analyzed to identify increments and
determined the required effort for reproducing them. An ANOVA
test shows a significant interaction effect, F(1, 20) = 5.49, p = .03,
np? = .22, which suggests that built-in recovery support such as Co-
Exist increases programming performance in explorative tasks.



RELATED WORK

This chapter discusses the proposed concepts with respect to related
approaches and highlights similarities and differences.

9.1 VERSIONING

The undo/redo feature of text editors is very convenient for changing
recently entered text. However, undo/redo works on the level of char-
acters, which makes going back to a less recent version of a file rather
tedious. Mac OS X starting with release 10.7 provides the feature to
regularly save files without explicit request. It offers visual feedback
to support finding a previous version." This auto-save feature also
allows for juxtaposing the current version with previous ones. Never-
theless, such undo/redo concepts handle files independently of each
other, while programming typically involves the manipulation of mul-
tiple artifacts. Thus, withdrawing changes requires the developer to
manually apply the undo feature an unknown and different amount
of time for every modified file.

Version Control Systems (VCSs), which are sometimes referred to
or part of configuration management systems, manage the files that
belong to a project and support going back to previous snapshots
of the project. Developers can employ a VCS to support withdraw-
ing changes. Either developers snapshot manually from time to time,
or they let tools automatically snapshot at regular intervals, for ex-
ample, after each save operation. However, both approaches exhibit
limitations. Using the former approach, developers are required to
foresee the future, which remains hard. Developers have to continu-
ously assess the likelihood that a future situation might require dis-
carding changes and going back to the current state. Unfortunately,
this is hard to assess and there will be situations where a developer
forgot to snapshot at the most appropriate time. Furthermore, this
approach makes it hard to focus on the design task, because a control
loop keeps reminding the developer to consider snapshotting now.
To overcome these problems, another approach is to snapshot at reg-

1 http://www.apple.com/macosx/whats-new/auto-save.html

113


http://www.apple.com/macosx/whats-new/auto-save.html

114

RELATED WORK

ular intervals.? However, if performed in an unstructured way, this
approach easily results in a huge amount data that is hard to browse,
because it lacks meaningful meta-information. In contrast, CoExist
captures meta-information such as the kind of change that happened.
This information guides programmers in finding the snapshot they
are looking for, even in the presence of many of them.

Orwell [84] is an early VCS / CM that provides both source and
object sharing for Smalltalk systems. Compared to other VCS that
employ files as the unit of versioning, Orwell manages versions of
classes as well as editions of methods and classes among other. Or-
well requires class ownership, but provides an owner with a complete
development history. The programmer can also work on multiple
versions (or releases) of one class. Nevertheless, according to our un-
derstanding, Orwell’s versioning scheme is scoped to classes. This
means the user cannot easily withdraw changes that span multiple
classes and application parts. The Envy system [57], which is based
on Orwell, provides baselining as an additional concept. This enables
programmers to create named snapshots of all artifacts involved in
a project. In contrast, CoExist continuously creates snapshots of the
entire system, so the possibilities for exploring without hesitation are
not restricted to scopes such as classes.

Changeboxes [18] is an approach to capture the history of a system
and permit the existence of simultaneous versions in a single virtual
machine and development environment. Because a Changebox en-
capsulates a particular change in the history of a system it is possible
to use Changeboxes to go back to a particular state of this system.
Nevertheless, since Changeboxes has not been designed for recov-
ery scenarios, going back to previous development states is tedious:
it requires finding a Changebox in a tree with no meta-information,
creating a branch out of it, giving it a name and a color, closing all
code browsers, and opening new ones. Our approach makes going
back simpler by automating most of the process and presenting all
versions of a system with visual meta-information. Moreover, the
Changebox prototype implementation shows an important slowdown
when used on a project with close to 2,000 methods: in this setup, the
system becomes around 4.9 times slower on average. Contrary to the
Changebox prototype, CoExist versions the entire workspace (around
69,000 methods). Still, our approach exhibits only insignificant run-
time overhead (a slowdown of only 1.2 on average).

2 http://stackoverflow.com/questions/688546/continuous-version-control


http://stackoverflow.com/questions/688546/continuous-version-control

9.2 CHANGE RECORDING FOR EVOLUTION ANALYSIS

9.2 CHANGE RECORDING FOR EVOLUTION ANALYSIS

The concept of preserving change information between explicit com-
mits has been first introduced with SpyWare [60]. The authors rec-
ognized that relying only on traditional, file-based VCS limits the
possibilities of software evolution analysis. They proposed recording
fine-grained change information in IDEs (such as method modified,
instance variable added), as well as semantic borders drawn by tool
supported refactorings. Such dense change information, compared
to plain diffs, additionally supports reverse engineering activities. It
helps programmers better understand the current state of a system,
or why it has been designed or changed in a certain way. In particular,
it supports reasoning about development sessions [61] of colleagues
and to reconstruct what they have done and how. The implemented
prototype called SpyWare enables programmers to browse the change
history ordered by time, and to sort and re-arrange change informa-
tion. It features support for interactive visualizations to track changes
and to reason about statistics. In addition to browsing change history,
SpyWare also allows for generating the source code of intermediate
development states (by applying or reverting change operations).

The SpyWare approach has been continued, resulting, for example,
in tools such as Replay [35] and ChEOPS [23]. Using Replay, pro-
grammers can replay change operations, which have been previously
recorded in another development session, to better understand the
evolution of the code base. A controlled experiment shows a statisti-
cally significant improvement in time required to complete software
evolution analysis tasks. ChEOPS is an IDE prototype implemented
to fulfill the needs of Change-Oriented Software Engineering, which
is itself an extension of the SpyWare approach. ChEOPS extends Spy-
Ware by managing changes in different levels of granularity or sup-
porting the declaration of intents.

There is an overlap in the needs for software evolution analysis and
explore-first programming: both require a detailed record of change
information. But compared to our approach, the above mentioned
line of work on software evolution analysis has a stronger focus on
the recording of changes, their management, and the visual prepara-
tion. For example, the corresponding tools allow for tracking changes
on a statement level, but also for combining fine-grained changes into
composite ones, and for declaring the intent of change operations [23].
These and other aspects seem to be meaningful complements to our
work. However, instead of recording change operations, CoExist pre-
serves the artifacts of intermediate development states including both
source code and run-time artifacts, thereby avoiding the need for re-
generation. Furthermore, in addition to preserving intermediate de-

115



116

RELATED WORK

velopment states, which is similar to the above mentioned work, Co-
Exist also provides features such as implicit branching, runnings tests
in background, or browsing, running, and debugging previous ver-
sions in additional inner environments next to the current one. Such
dedicated tool support is essential for explore-first programming.

Another approach that is close to our work is VPraxis, a language
which models the history of source code through commands like “cre-
ate class Person”, and “add field 'name”’.3 Finding a version of inter-
est can then be done via queries such as “which commit last changed
this method?”. VPraxis can be attached to a development environ-
ment to monitor code changes while programmers are doing them.
Except for the unit test results and the refactoring-level grouping,
VPraxis could propose tables such as the one in Figure 14. Never-
theless, VPraxis lacks support dedicated to needs such as withdraw-
ing changes to start over, juxtaposing program versions, or back-in-
time impact analysis. Moreover, VPraxis is not integrated in a de-
velopment environment in such a way that multiple versions can be
browsed and edited independently.

9.3 JUXTAPOSING VERSIONS

Orion is an interactive prototyping tool that allows programmers to
compare the impact of multiple changes on a software system [47].
Orion uses models as an abstraction over source code and model
transformations as an abstraction over changes. Orion has been im-
plemented to support the manipulation of very large models with
more than 600,000 entities, such as classes and methods. As a result
of using abstractions instead of source code, Orion cannot be used
to execute a previous version of a software system or even study its
source code. Moreover, even if Orion’s implementation shares some
similarities with ours, its goal is inherently different: Orion has been
designed for re-engineering changes (such as the removal of depen-
dencies) whereas CoExist has been designed for all kinds of source
code changes. As a result, CoExist is fully integrated in the develop-
ment environment and versions are created automatically whereas,
with Orion, changes have to be explicitly expressed as a model trans-
formation.

Juxtapose [34] is a tool that facilitates the creation and comparison
of alternatives through a dedicated code editor. Juxtapose also allows
the execution of multiple alternatives in parallel. Nevertheless, Juxta-
pose is not associated with the history of a software system and thus

3 http://harmony.googlecode.com


http://harmony.googlecode.com

9.4 FINE-GRAINED BACK-IN-TIME IMPACT ANALYSIS

cannot propose going back or re-assembling changes into incremental
improvements.

9.4 FINE-GRAINED BACK-IN-TIME IMPACT ANALYSIS

There are various approaches that use tests to support fault local-
ization. For example, the continuous testing approach proposes to
run tests automatically after each change [62]. Because this approach
executes tests on the current development state, the execution of a
test suite is aborted after each change. Nevertheless, it immediately
presents the results to the programmer so that he can fix problems as
they appear. CoExist improves on that by recording test results and
linking them to the corresponding changes, which allows for analyz-
ing test results only when it is convenient and desired. In addition,
CoExist also supports running tests on previous versions.

The Git VCS provides the “git-bisect” command, which uses binary
search on a sequence of commits to find the first commit that intro-
duced a bug. CoExist advances this concept by integrating it into the
working environment and, more importantly, by preserving access to
all intermediate versions between two explicit commits. Furthermore,
CoExist can also run unit tests in the background during develop-
ment, and it provides support for running newly defined tests on all
previous versions.

A continuous integration server can recognize commits to a VCS.
For every new commit, it builds the code under development and
executes tests afterwards [30]. By providing a history of test results
for every commit, these servers support back-in-time impact analysis.
Unfortunately, such tools can provide fine-grained analysis only if
the commits are themselves fine-grained, which requires time and
discipline: When commits contain many changes, the programmers
have to study all these changes to locate faults.

9.5 RE-ASSEMBLING CHANGES

Best practices include making small commits (sometimes called
atomic or logical) so that every commit only affects one aspect of the
system. Followings this recommendation facilitates activities such as
going back, fault localization, and reviewing [28]. Using the interac-
tive mode of the “git-add” command can help programmers extract-
ing small commits out of many changes. This command enables pro-

117



118

RELATED WORK

grammers to define the boundaries of a commit by selecting a subset
of the modified lines in each modified file. CoExist improves on this
command by proposing change-level selection instead of line-level se-
lection, ordering the changes by time stamp, and providing means to
run anlyses for the defined increments.



CONCLUSION

When unexpected errors require tedious and time-consuming effort
to recover, programmers tend to avoid them. They either try to avoid
making errors in general or try to be prepared for them. Best practices
include running tests often and frequently, making small steps, and
performing only one task at a time.

However, when the costs for unexpected recovery are low, program-
mers have no reason to worry about making errors. With tools such
as CoExist, recovery tasks become fast and easy to accomplish. Hav-
ing such tool support reduces the need for best practices to prevent
tedious recovery work.

10.1 CONTRIBUTIONS

Following this line of thought, the main argument of this dissertation
is:

THESIS STATEMENT Programmers benefit from dedicated recov-
ery tool support that automatically keeps recovery tasks fast and easy
to accomplish by preserving immediate access to static and dynamic
information of intermediate development states.

In explaining and supporting the above argument, this work makes
the following contributions:

e It shows that effort required for preventing unexpected recov-
ery are either overly time-consuming or error-prone. This work
makes the trade-offs between costs and benefits explicit.

o It shows that the costs for unexpected recovery can be kept low
by providing dedicated tool support.

e It provides a reference implementation for the proposed con-

cepts. The described implementation shows how immediate
and full access to previous state can be achieved by versioning

119



120 CONCLUSION

meta-objects and that the performance overhead can be limited
by sharing meta-objects between versions.

e It presents a lab study that examines the effect of additional
recovery tools on programming behavior. The results indicate
a positive impact. Further research is required to support and
validate these results. The presented study is a first step of
measuring performance differences in ill-defined design tasks.

10.2 SUMMARY

This work focuses on program design tasks. Program design is con-
cerned with names, abstractions, and the decomposition into mod-
ules, among other. Such aspects affect current and future program-
ming tasks. They can, for example, ease or impede program compre-
hension and maintenance tasks. While program design activities are
important, they involve the risk of making errors: an idea can turn
out inappropriate, the programmer’s understanding of how the code
works can be wrong, or bugs can creep into the code without notice.
Recovering from such situations is often tedious and time-consuming.
Therefore, literature recommends anticipating errors and preventing
unexpected recovery.

However, following best practices can fail to avoid unexpected re-
covery needs. An example case shows how a programmer experi-
ences a sudden need to withdraw recent changes, although he fol-
lowed best practices. A discussion of this example shows that it is
hard to avoid unexpected recovery needs by following best practices.
Conducting the required precautionary activities is time-consuming.
Because of that, the application of best practices requires trade-offs
to be practical. But making trade-offs also implies the risk of unex-
pected problems.

These trade-offs can be avoided by providing tool support dedi-
cated to various recovery needs. CoExist is a set of tools that has
been developed in the course of this work. Implicitly gained meta-
information avoids the need for explicit commit messages and as-
sists users in identifying previous versions of interest. CoExist allows
for simultaneously opening working environments for previous ver-
sions. CoExist runs analysis computations such as tests cases for ev-
ery newly created version. Users can also use the versioning facilities
for back-in-time analyses.



10.2 SUMMARY

CoExist reduces the need to prevent recovery because it makes re-
covery fast and easy to accomplish problems. The presented tools
would have helped the student in the reported case example to with-
draw recent changes and start over from a previous development
state. Easy and fast recovery is made possible by continuously ver-
sioning the source code based on its structure. The automatically
recorded meta-information about each change helps users to rapidly
identify a previous versions of interest. With that, recovery becomes
inexpensive and programmers have reduced need to rely on best prac-
tices.

CoExist is implemented by versioning meta-objects. With that, it
provides full and immediate access to previous development states.
To reduce overhead, meta-objects are shared among versions. Shar-
ing classes and compiled methods is enabled by making classes late
bound, which required changes to the compiler and VM. A perfor-
mance evalution indicates that access to previous versions is suffi-
ciently fast for frequent use and that the required memory overhead
is acceptable.

Recovery support such as CoExist has considerable effects on cog-
nition during explorative programming tasks. The reduced need for
problem prevention decreases the mental workload and the need for
self-control. Low recovery costs further enable programmers to sep-
arate creative from analytical concerns. Even more, it encourages
programmers to make changes as a means to learn and reflect about
ideas.

In a controlled lab study, 22 participants improved the design of
two different applications. Using a repeated measurement setup, the
study examined the effect of CoExist as additional tool support on
programming performance. The results of analyzing 88 hours of pro-
gramming suggest that built-in recovery support such as provided
with CoExist increases programming performance in explorative pro-
gramming tasks.

CoExist fills a gap between conventional undo/redo of text editors
and VCS. Like undo/redo, no explicit control is required; it runs con-
tinuously in the background. Like VCS, the scope of the history is not
restricted to invididual files; CoExist versions the entire development
state, even independent of project boundaries. Furthermore, while
the developed concepts and tools are related to previous concepts
and tools, they are notably different in their support for recovery
needs.

121



122

CONCLUSION

10.3 FUTURE WORK

CoExist is a first step in providing a rich set of tools supporting an
explore-first programming approach. The following paragraphs out-
line directions how the presented work can be advanced.

10.3.1 Continuous Versioning

In a “live system” such as a typical Smalltalk environment, appli-
cations keep running while their implementation is changed. The
Smalltalk environment makes this possible by automatically migrat-
ing the application state after structural changes to source code. A
possible improvement could involve snapshotting the state of the run-
ning application alongside its source code and meta-objects. With this
snapshotting in place, going to different version would immediately
bring back the application to the state it was when the version was
created.

10.3.2 Juxtaposing Versions

Juxtaposing multiple versions currently consists in getting a main
window presenting the current version and one sub-window for each
different version to juxtapose. This setup works fine when the pro-
grammer wants to browse the source code of multiple versions at
once. Nevertheless, this setup could be improved in cases where a
programmer wants to see the changes for a particular program el-
ement (such as a class or a method). For these cases, future work
could provide programming tools dedicated to presenting multiple
versions of one program element. For example, a code browser could
present synchronized views of the same element in different versions.

Beyond comparing static information, tools could provide compar-
isons of dynamic data such as object states and call trees. These data
could be gathered during program and unit-test execution and then
presented to the programmer [58]. These tools would help the pro-
grammer understand the impact of a set of changes on the execution.
In the spirit of what Bret Victor proposes with dynamic pictures [89],
this idea could be expanded with comparison of application output.
For example, in the context of a game, tools could show the differ-
ences between two versions of an animation.



10.3 FUTURE WORK

10.3.3 Fine-grained Back-in-Time Impact Analysis

Beyond unit test results, CoExist’s infrastructure for running compu-
tations for each version could be extended for use cases beyond unit
tests.

PERFORMANCE FEEDBACK. While run-time performance can be
important, programmers typically ignore performance during an ini-
tial implementation and consider performance only when it becomes
critical. Nevertheless, when the application is already optimized for
speed, programmers must pay attention that new changes do not de-
grade performance. As with bug squashing, automated continuous
performance analysis could help a programmer find the change that
slowed-down the application.

QUALITY FEEDBACK. Quality-management platforms, such as
Sonar," help developers manage code quality by combining metrics
and visualizations. These platforms are automatically triggered upon
commits. Our approach could bring these platforms to a next level by
providing change-level instead of commit-level feedback. The metrics
and visualizations could then be integrated within the development
environment to provide on-demand feedback about the quality im-
provement (or decrease) of the not-yet-committed changes.

10.3.4 Re-assembling Changes into Incremental Improvements

CoExist enables programmers to select and re-apply individual
changes to any version. This feature allows for extracting incremental
improvements that are spread over a set of many changes. Neverthe-
less, CoExist does not detect dependencies between changes which
makes the feature less than ideal to use. For example, CoExist could
automatically apply the class-creation change when the programmer
wants to apply a method-creation change to a version that does not
contain the corresponding class. This kind of support can further
be improved by detecting behavioral dependencies. For example, a
method change often depends on other method changes to make the
application compile and behave properly. Besides static analysis, Co-
Exist could leverage the results of the continuously ran unit tests to
detect such dependencies.

1 http://www.sonarsource.org/

123


http://www.sonarsource.org/




BIBLIOGRAPHY

[1] Adam L. Alter and Daniel M. Oppenheimer. Uniting the tribes
of fluency to form a metacognitive nation. Personality and Social
Psychology Review, 13(3):219—235, 2009.

[2] F Gregory Ashby, Alice M Isen, et al. A neuropsychological the-
ory of positive affect and its influence on cognition. Psychological
review, 106(3):529, 1999.

[3] Carliss Y. Baldwin and Kim B. Clark. Design rules: The power of
modularity, volume 1. The MIT Press, 2000.

[4] Roy F. Baumeister, Ellen Bratslavsky, Mark Muraven, and Di-
anne M. Tice. Ego depletion: Is the active self a limited resource?
Journal of personality and social psychology, 74(5):1252, 1998.

[5] Roy F. Baumeister, Kathleen D. Vohs, and Dianne M. Tice. The
strength model of self-control. Current directions in psychological
science, 16(6):351—355, 2007.

[6] Kent Beck. Smalltalk Best Practice Patterns. Volume 1: Coding. Pren-
tice Hall, Englewood Cliffs, NJ, 1997.

[7] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[8] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change. Addison-Wesley Longman, 2004. ISBN 978-
0321278654.

[9] Sian L. Beilock and Thomas H. Carr. When high-powered people
fail working memory and “choking under pressure” in math.
Psychological Science, 16(2):101-105, 2005.

[10] Lenoid Berov, Johannes Henning, Toni Mattis, Patrick Rein,
Robin Schreiberand Eric Seckler, Bastian Steinert, and Robert
Hirschfeld. Vereinfachung der entwicklung von geschiftsanwen-
dungen durch konsolidierung von programmierkonzepten und
-technologien. Technical report, Hasso-Plattner-Institute, 2013.

[11] Zafer Bilda and John S. Gero. The impact of working memory
limitations on the design process during conceptualization. De-
sign Studies, 28(4), 2007. doi: 10.1016/j.destud.2007.02.005.

125



126

BIBLIOGRAPHY

[12] Alan F. Blackwell. What is programming. In 14th workshop of the
Psychology of Programming Interest Group, pages 204—218. Citeseer,
2002.

[13] Annette Bolte, Thomas Goschke, and Julius Kuhl. Emotion and
intuition effects of positive and negative mood on implicit judg-
ments of semantic coherence. Psychological Science, 14(5):416—421,
2003.

[14] Scott Chacon. Pro git. Apress, 2009.

[15] Bo T. Christensen and Christian D. Schunn. The role and impact
of mental simulation in design. Applied cognitive psychology, 23

(3), 2009.

[16] Nigel Cross. Design cognition: Results from protocol and other
empirical studies of design activity. Design knowing and learning:
Cognition in design education, 2001.

[17] Peter DeGrace and Leslie Hulet Stahl. Wicked problems, righ-
teous solutions: a catalogue of modern software engineering paradigms.
Yourdon Press, 1990. ISBN 978-0135901267.

[18] Marcus Denker, Tudor Girba, Adrian Lienhard, Oscar Nierstrasz,
Lukas Renggli, and Pascal Zumkehr. Encapsulating and exploit-
ing change with Changeboxes. In ICDL’oy: International Confer-
ence on Dynamic Languages, 2007. ISBN 978-1-60558-084-5. doi:
10.1145/1352678.1352681.

[19] Edsger W. Dijkstra. On the role of scientific thought. In Se-
lected Writings on Computing: A Personal Perspective, pages 60—66.
Springer, 1982.

[20] Kees Dorst and Nigel Cross. Creativity in the design process:
co-evolution of problem-solution. Design Studies, 22(5), 2001.

[21] S.P. Dow, A. Glassco, J. Kass, M. Schwarz, D.L. Schwartz, and
S.R. Klemmer. Parallel prototyping leads to better design results,
more divergence, and increased self-efficacy. ACM Transactions
on Computer-Human Interaction (TOCHI), 17(4):18, 2010.

[22] Steven P. Dow, Kate Heddleston, and Scott R. Klemmer. The
efficacy of prototyping under time constraints. In Conference on
Creativity and Cognition, 2009.

[23] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paess-
chen, and Theo D'Hondt. Change-oriented software engineer-
ing. In Proceedings of the 2007 International Conference on Dynamic
languages: In Conjunction with the 15th International Smalltalk Joint
Conference 2007, pages 3—24. ACM, 2007.



BIBLIOGRAPHY

[24] Jonathan St BT. Evans. Dual-processing accounts of reasoning,
judgment, and social cognition. Annu. Rev. Psychol., 59:255-278,
2008.

[25] Jeanne Farrington. Seven plus or minus two. Performance Im-
provement Quarterly, 23(4), 2011. doi: 10.1002/piq.20099.

[26] Baruch Fischhoff. Hindsight is not equal to foresight: The effect
of outcome knowledge on judgment under uncertainty. Journal
of Experimental Psychology: Human perception and performance, 1(3):
288, 1975.

[27] Joseph P Forgas and Rebekah East. On being happy and gullible:
Mood effects on skepticism and the detection of deception. Jour-
nal of Experimental Social Psychology, 44(5):1362-1367, 2008.

[28] Apache Software Foundation. Subversion best practices,
2009. URL http://svn.apache.org/repos/asf/subversion/
trunk/doc/user/svn-best-practices.html.

[29] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[30] Martin Fowler. Continuous integration, 2006. URL http://www.
martinfowler.com/articles/continuousIntegration.html.

[31] Adele Goldberg. SMALLTALK-8o: the interactive programming en-
vironment. Addison-Wesley Longman Publishing Co., Inc., 1984.

[32] Adele Goldberg and David Robson. Smalltalk-8o: the language
and its implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1983.

[33] Gabriela Goldschmidt. The dialectics of sketching. Creativity
Research Journal, 4(2), 1991.

[34] Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and
Scott R. Klemmer. Design as exploration: creating interface al-
ternatives through parallel authoring and runtime tuning. In
Symposium on User interface software and technology, 2008.

[35] Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea
Lungu. Software evolution comprehension: Replay to the res-
cue. In Program Comprehension (ICPC), 2011 IEEE 19th Interna-
tional Conference on, pages 161—170. IEEE Computer Society, 2011.

[36] Robert Hirschfeld, Bastian Steinert, and Jens Lincke. Agile
software development in virtual collaboration environments.
In Christoph Meinel, Larry Leifer, and Hasso Plattner, edi-
tors, Design Thinking, Understanding Innovation, pages 197-
218. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-13756-3.

127


http://svn.apache.org/repos/asf/subversion /trunk/doc/user/svn-best-practices.html
http://svn.apache.org/repos/asf/subversion /trunk/doc/user/svn-best-practices.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

128

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

doi: 10.1007/978-3-642-13757-0_12. URL http://dx.doi.org/
10.1007/978-3-642-13757-0_12.

Stephanie Houde and Charles Hill. What do prototypes proto-
type? Handbook of Human-Computer Interaction, 2, 1997.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In OOPSLA’97: International conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 1997. doi: 10.1145/263700.263754.

Viewpoints Research Institute. STEPS toward expressive pro-
gramming systems, 2010 progress report submitted to the na-
tional science foundation. Technical report, Viewpoints Research
Institute, 2010.

Michael Inzlicht and Brandon J Schmeichel. What is ego de-
pletion? toward a mechanistic revision of the resource model
of self-control. Perspectives on Psychological Science, 7(5):450-463,
2012.

John Christopher Jones. Design methods. John Wiley & Sons, 2
edition, 1992. ISBN 978-0471284963.

Natalia Juristo and Ana M. Moreno. Basics of software engineer-
ing experimentation. Springer Publishing Company, Incorporated,
2010.

Marcel A. Just, Patricia A. Carpenter, and Akira Miyake. Neu-
roindices of cognitive workload: Neuroimaging, pupillometric
and event-related potential studies of brain work. Theoretical Is-
sues in Ergonomics Science, 4(1-2):56-88, 2003.

Marcel Adam Just and Patricia A Carpenter. A capacity theory
of comprehension: Individual differences in working memory.
Psychological review, 99:122—149, 1992.

Daniel Kahneman. Thinking, Fast and Slow. Penguin Books Lim-
ited, 2011. ISBN 9780141918921. URL http://books.google.de/
books?id=0V1tXT3HigoC.

Daniel Kahneman, Jackson Beatty, and Irwin Pollack. Perceptual
deficit during a mental task. Science, 1967.

Jannik Laval, Simon Denier, Stéphane Ducasse, and Jean-Remy
Falleri. Supporting simultaneous versions for software evolution
assessment. Science of Computer Programming, 2010.

Bryan Lawson. How designers think: the design process demystified.
Architectural press, 2006. ISBN 978-0750660778.


http://dx.doi.org/10.1007/978-3-642-13757-0_12
http://dx.doi.org/10.1007/978-3-642-13757-0_12
http://books.google.de/books?id=oV1tXT3HigoC
http://books.google.de/books?id=oV1tXT3HigoC

BIBLIOGRAPHY

[49] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The
anatomy of prototypes: Prototypes as filters, prototypes as man-
ifestations of design ideas. ACM Transactions on Computer-Human
Interaction (TOCHI), 15(2), 2008.

[50] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in contextjs. Science of Computer Programming, 76
(12):1194-1209, 2011.

[51] Christine A. Lindberg. Oxford American Writer’s Thesaurus. Ox-
ford Univ,, 2008. ISBN 9780195342840. URL http://books.
google.de/books?id=KakNMgAACAAJ.

[52] John H Maloney and Randall B Smith. Directness and liveness
in the morphic user interface construction environment. In Pro-
ceedings of the 8th annual ACM symposium on User interface and
software technology, pages 21-28. ACM, 1995.

[53] Eliot Miranda. The cog smalltalk virtual machine: writing a jit
in a high-level dynamic language. 2011. URL http://design.cs.
iastate.edu/vmil/2011/papers/p03-miranda.pdf.

[54] George V. Neville-Neil. Coder’s block. Communications of the
ACM, 54(4):34-35, April 2011. doi: 10.1145/1924421.1924434.

[55] Chris Okasaki. Purely functional data structures. Cambridge Uni-
versity Press, New York, NY, USA, 1998. ISBN 0-521-63124-6.

[56] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 15(12):1053~
1058, 1972.

[57] Joseph Pelrine, Alan Knight, and Adrian Cho. Mastering EN-
VY/Developer. Cambridge University Press, New York, NY, USA,
2001. ISBN 0-521-66650-3.

[58] Michael Perscheid, Batian Steinert, Robert Hirschfeld, Felix
Geller, and Michael Haupt. Immediacy through interactivity:
Online analysis of run-time behavior. In WCRE’10: Proceedings
of the 17th Working Conference on Reverse Engineering, volume 10,
pages 77-86, Beverly, MA, USA, 2010. IEEE Computer Society.
doi: 10.1109/WCRE.2010.17.

[59] Paul Ralph and Yair Wand. A proposal for a formal definition of
the design concept. Design Requirements Engineering: A Ten-Year
Perspective, pages 103-136, 2009.

[60] Romain Robbes and Michele Lanza. A change-based approach
to software evolution. Electronic Notes in Theoretical Computer Sci-
ence, 166:93—109, 2007 .

129


http://books.google.de/books?id=KakNMgAACAAJ
http://books.google.de/books?id=KakNMgAACAAJ
http://design.cs.iastate.edu/vmil/2011/papers/p03-miranda.pdf
http://design.cs.iastate.edu/vmil/2011/papers/p03-miranda.pdf

130

BIBLIOGRAPHY

[61] Romain Robbes and Romain Lanza. Characterizing and under-
standing development sessions. In ICPC 2007: Proceedings of
the 15th IEEE International Conference on Program Comprehension,
pages 155-166. IEEE Computer Society, 2007.

[62] David Saff and Michael D. Ernst. Reducing wasted development
time via continuous testing. In ISSRE’03: International Symposium
on Software Reliability Engineering, 2003.

[63] Donald A. Schon. The reflective practitioner: How professionals think
in action. Basic Books (AZ), 1983.

[64] Donald A. Schon and Glenn Wiggins. Kinds of seeing and their
functions in designing. Design Studies, 13(2), 1992. ISSN o0142-
694X. doi: 10.1016/0142-694X(92)90268-F.

[65] Ken Schwaber. Agile project management with Scrum. O'Reilly
Media, Inc., 2004.

[66] William R. Shadish, Thomas D. Cook, and Donald T. Campbell.
Experimental and quasi-experimental designs for generalized causal
inference. Houghton Mifflin, 2002. ISBN 9780395615560. URL
http://books.google.de/books?id=07jaAAAAMAA].

[67] Ben Shneiderman and Catherine Plaisant. Designing the user in-
terface: strategies for effective human-computer interaction. Pearson
Addison Wesley, 5 edition, 2009. ISBN 978-0321601483.

[68] Herbert A. Simon. The sciences of the artificial. The MIT Press,
1996.

[69] Diomidis Spinellis. Version control systems. Software, IEEE, 22
(5):108-109, 2005.

[70] Keith E. Stanovich and Richard F. West. Individual differences
in reasoning: Implications for the rationality debate?-open peer
commentary-understanding/acceptance and adaptation: Is the
non-normative thinking mode adaptive? Behavioral and Brain
Sciences, 23(5):645-665, 2000.

[71] Bastian Steinert and Robert Hirschfeld. Applying design knowl-
edge to programming. In Hasso Plattner, Christoph Meinel,
and Larry Leifer, editors, Design Thinking Research: Studying
Co-creation in Practice, Understanding Innovation, pages 259—
277. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-21642-8.
doi: 10.1007/978-3-642-21643-5_15. URL http://dx.doi.org/
10.1007/978-3-642-21643-5_15.

[72] Bastian Steinert and Robert Hirschfeld. How to compare per-
formance in program design activities: Towards an empirical
evaluation of coexist. In Larry Leifer, Hasso Plattner, and


http://books.google.de/books?id=o7jaAAAAMAAJ
http://dx.doi.org/10.1007/978-3-642-21643-5_15
http://dx.doi.org/10.1007/978-3-642-21643-5_15

[73]

[74]

[75]

[76]

(771

(78]

[79]

[8o]

BIBLIOGRAPHY

Christoph Meinel, editors, Design Thinking Research: Building In-
novation Eco-Systems, Understanding Innovation, pages 219-238.
Springer International Publishing, 2014. ISBN 978-3-319-01302-
2. doi: 10.1007/978-3-319-01303-9_14. URL http://dx.doi.org/
10.1007/978-3-319-01303-9_14.

Bastian Steinert, Michael Grunewald, Stefan Richter, Jens Lincke,
and Robert Hirschfeld. Multi-user multi-account interaction in
groupware supporting single-display collaboration. In Collabora-
tive Computing: Networking, Applications and Worksharing, 2009.
CollaborateCom 2009. s5th International Conference on, pages 1—9.
IEEE, 2009.

Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke,
and Robert Hirschfeld. Debugging into examples: Leveraging
tests for program comprehension. In Testing of Software and Com-
munication Systems, pages 235-240. Springer, 2009.

Bastian Steinert, Michael Haupt, Robert Krahn, and Robert
Hirschfeld. Continuous selective testing. In Agile Processes in
Software Engineering and Extreme Programming, pages 132-146.
Springer, 2010.

Bastian Steinert, Marcel Taeumel, Jens Lincke, Tobias Pape, and
Robert Hirschfeld. Codetalk conversations about code. In Cre-
ating Connecting and Collaborating through Computing (Cs5), 2010
Eighth International Conference on, pages 11-18. IEEE, 2010.

Bastian Steinert, Damien Cassou, and Robert Hirschfeld. Co-
exist: Overcoming aversion to change. In Proceedings of the
8th symposium on Dynamic languages, DLS "12, pages 107-118,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7. doi:
10.1145/2384577.2384591. URL http://doi.acm.org/10.1145/
2384577.2384591.

Bastian Steinert, Marcel Taeumel, Damien Cassou, and Robert
Hirschfeld. Adopting design practices for programming. In
Hasso Plattner, Christoph Meinel, and Larry Leifer, editors, De-
sign Thinking Research: Measuring Performance in Context, Under-
standing Innovation, pages 247—262. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31990-7. doi: 10.1007/978-3-642-31991-4_
14. URL http://dx.doi.org/10.1007/978-3-642-31991-4_14.

David L Strayer and William A Johnston. Driven to distraction:
Dual-task studies of simulated driving and conversing on a cel-
lular telephone. Psychological science, 12(6):462—466, 2001.

Masaki Suwa and Barbara Tversky. External representations con-
tribute to the dynamic construction of ideas. In Diagrammatic

131


http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://doi.acm.org/10.1145/2384577.2384591
http://doi.acm.org/10.1145/2384577.2384591
http://dx.doi.org/10.1007/978-3-642-31991-4_14

132

BIBLIOGRAPHY

Representation and Inference, volume 2317. Springer Berlin / Hei-
delberg, 2002. ISBN 978-3-540-43561-7.

[81] Masaki Suwa, Terry Purcell, and John Gero. Macroscopic analy-
sis of design processes based on a scheme for coding designers’
cognitive actions. Design Studies, 19(4), 1998. ISSN 0142-694X.
doi: 10.1016/50142-694X(98)00016-7.

[82] Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. The
vivide programming environment: Connecting run-time infor-
mation with programmers’ system knowledge. In Proceedings of
the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! "12, pages
117-126, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1562-
3. doi: 10.1145/2384592.2384604. URL http://doi.acm.org/10.
1145/2384592.2384604.

[83] Wikipedia: the free encyclopedia. Design, May 2014.
http:/ /en.wikipedia.org/wiki/Design.

[84] Dave Thomas and Kent Johnson. Orwell — A configuration man-
agement system for team programming. In OOPSLA’8S: Inter-
national Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, New York, NY, USA, 1988. ISBN 0-89791-

284-5.

[85] Sascha Topolinski and Fritz Strack. The analysis of intuition: Pro-
cessing fluency and affect in judgements of semantic coherence.
Cognition and Emotion, 23(8):1465-1503, 2009.

[86] Linus Torvalds and Junio Hamano. Git: Fast version control
system. URL http://git-scm. com, 2010.

[87] David Ungar and Randall B Smith. Self: The power of simplicity,
volume 22. ACM, 1987.

[88] Evie Vergauwe, Pierre Barrouillet, and Valérie Camos. Do mental
processes share a domain-general resource? Psychological Science,

21(3):384-390, 2010.

[89] Bret Victor. Magic Ink: Information software and the graphical
interface, 2005. URL http://worrydream.com/MagicInk/.

[90] Martin von Lowis, Marcus Denker, and Oscar Nierstrasz.
Context-oriented programming: beyond layers. In Proceedings
of the 2007 international conference on Dynamic languages: in con-
junction with the 15th International Smalltalk Joint Conference 2007,
pages 143-156. ACM, 2007.

[91] Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay.
Worlds: Controlling the scope of side effects. In ECOOP’11:


http://doi.acm.org/10.1145/2384592.2384604
http://doi.acm.org/10.1145/2384592.2384604
http://worrydream.com/MagicInk/

[92]

[93]

BIBLIOGRAPHY

Proceedings of the 25th European Conference on Object-Oriented Pro-
gramming, pages 179—203, Lancaster, UK, 2011. Springer. doi:
10.1007/978-3-642-22655-7_9.

Benjamin Hosain Wasty, Amir Semmo, Malte Appeltauer, Bas-
tian Steinert, and Robert Hirschfeld. ContextLua: Dynamic be-
havioral variations in computer games. In Proceedings of the 2Nd
International Workshop on Context-Oriented Programming, COP 10,
pages 5:1-5:6, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0531-0. doi: 10.1145/1930021.1930026. URL http://doi.
acm.org/10.1145/1930021.1930026.

Robert ]J. Youmans. The effects of physical prototyping and
group work on the reduction of design fixation. Design Studies,
32(2), 2011. ISSN 0142-694X. doi: 10.1016/j.destud.2010.08.001.

133


http://doi.acm.org/10.1145/1930021.1930026
http://doi.acm.org/10.1145/1930021.1930026




COLOPHON

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both IEX and LyX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 28, 2014 (classicthesis version 1.0).


http://code.google.com/p/classicthesis/
http://postcards.miede.de/




SELBSTSTANDIGKEITSERKLARUNG

Hiermit erkldre ich an Fides statt, dass ich die vorliegende Disser-
tation selbst angefertigt und nur die im Literaturverzeichnis aufge-
fithrten Quellen und Hilfsmittel verwendet habe. Alle Ausfiihrungen,
die anderen Schriften wortlich oder sinngeméfs entnommen wurden,
sind kenntlich gemacht. Diese Arbeit oder Teile davon wurden nicht
als Priifungsarbeit fiir eine staatliche oder andere wissenschaftliche
Priifung eingereicht.

Ich versichere weiterhin, dass ich diese Arbeit oder eine andere

Abhandlung nicht bei einer anderen Fakultdt oder einer anderen Uni-
versitit eingereicht habe.

Berlin, May 2014

Bastian Steinert



	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Journal publications
	Conference publications
	Workshop publications
	Technical reports
	Book chapters

	Acknowledgments
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Designing Programs
	1.2 Making Errors during Program Design
	1.3 Problem Prevention and Its Limitations
	1.4 Thesis Statement
	1.5 Organization

	2 Background
	2.1 Design and Programming
	2.2 Program Design
	2.3 The Need for Well-designed Programs
	2.4 The Risks of Change
	2.5 Best Practices to Prevent Tedious Recovery

	3 Motivation: The Trade-off between Costs and Safety
	3.1 Example Case: Unforeseen Recovery Needs
	3.2 Trade-off between Costs and Safety
	3.3 The Need for Built-in Recovery Support

	4 CoExistence of Program Versions
	4.1 Squeak/Smalltalk
	4.2 Concept Overview
	4.3 Continuous Versioning
	4.4 User Interface to Version History
	4.5 Additional Environments
	4.6 Continuous and Back-In-Time Analysis
	4.7 Re-Assembling Changes

	5 Concept Evaluation
	5.1 How CoExist Helps in the Example Case
	5.2 Informal User Studies
	5.3 From Problem Prevention to Graceful Recovery

	6 Implementation
	6.1 Resolving Access to the Active Version
	6.2 Preserving Meta-objects for All Versions
	6.3 Late Class Binding
	6.4 Limitations
	6.5 Performance Evaluation

	7 Discussion
	7.1 Why Program Design is Difficult
	7.2 Benefits of a Reduced Need for Best Practices
	7.3 Coding as a Means of Learning

	8 Lab Study
	8.1 Method
	8.2 Results and Discussion
	8.3 Study Design—Justification and Limitations
	8.4 Threats to Validity

	9 Related Work
	9.1 Versioning
	9.2 Change Recording for Evolution Analysis
	9.3 Juxtaposing Versions
	9.4 Fine-grained Back-in-Time Impact Analysis
	9.5 Re-Assembling Changes

	10 Conclusion
	10.1 Contributions
	10.2 Summary
	10.3 Future Work

	Bibliography
	Colophon
	Declaration



