TR BEEN T =
1§ Feis | S pAj: ERF §
f«v . S ?ﬁ”:?in: - 2

Pornsarp Pornsawad | Christine Béckmann

Modified iterative Runge-Kutta-type methods for
nonlinear ill-posed problems

Preprints des Instituts fiir Mathematik der Universitit Potsdam
3 (2014) 7






Preprints des Instituts fiir Mathematik der Universitit Potsdam






Preprints des Instituts fiir Mathematik der Universitidt Potsdam
3(2014) 7

Pornsarp Pornsawad | Christine Bckmann

Modified iterative Runge-Kutta-type methods for
nonlinear ill-posed problems

Universitatsverlag Potsdam



Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet iiber http://dnb.dnb.de abrufbar.

Universitatsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Preprints des Instituts fiir Mathematik der Universitit Potsdam
wird herausgegeben vom Institut fiir Mathematik der Universitéit Potsdam.

ISSN (online) 2193-6943

Kontakt:

Institut fir Mathematik

Am Neuen Palais 10

14469 Potsdam

Tel.: +49 (0)331 977 1028

WWW: http://www.math.uni-potsdam.de

Titelabbildungen:

1. Karla Fritze | Institutsgebdude auf dem Campus Neues Palais

2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation
Published at: http://arxiv.org/abs/1105.5089

Das Manuskript ist urheberrechtlich geschiitzt.

Online veroffentlicht auf dem Publikationsserver der Universitdt Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2014 /7083 /

URN urn:nbn:de:kobv:517-opus-70834
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70834


mailto:verlag@uni-potsdam.de

Modified Iterative Runge-Kutta-Type Methods for
Nonlinear Ill-Posed Problems

Pornsarp Pornsawad®*, Christine Béckmann®
?Department of Mathematics, Faculty of Science, Silpakorn University, Mueng, Nakorn
Pathom, 73000, Thailand
bInstitute of Mathematics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam,
Germany

Abstract

This work is devoted to the convergence analysis of a modified Runge-Kutta-
type iterative regularization method for solving nonlinear ill-posed problems
under a priori and a posteriori stopping rules. The convergence rate results
of the proposed method can be obtained under Hélder-type sourcewise con-
dition if the Fréchet derivative is properly scaled and locally Lipschitz con-
tinuous. Numerical results are achieved by using the Levenberg-Marquardt
and Radau methods.

Keywords: Nonlinear ill-posed problems, Runge-Kutta methods,
Regularization methods, Holder-type source condition, Stopping rules
AMS Classification: 65J15, 65J22, 47J25, ,7J06

1. Introduction

Let X and Y be infinite-dimensional real Hilbert spaces with inner prod-

ucts (-,-) and norms || - ||. We consider a Fréchet-differential nonlinear ill-
posed operator equation
F(w) =g (1)

where F' : D(F) ¢ X — Y with a non-closed range R(F) and a locally
uniformly bounded Fréchet derivative F'(-) of F' in D(F). We assume that
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(1) has a solution w, for exact data (which need not be unique). Therefore,
the element wy € X, which is an initial guess, is assumed to be known. We
have approximate data ¢° with

llg® — glly <e. (2)

A family of iterative Runge-Kutta (RK)-type regularization methods for non-
linear ill-posed problems of the form

Wiy = wi + 7b" (8 + T AF (wi) ' (w)) 1F (wp)* (97 — F(ug)) (3)

has been developed in [5] where the notation 1 means the (sx1) vector of
identity operators and 4 is the (sxs) diagonal matrix of bounded linear oper-
ators with identity operator on the entire diagonal and zero operator outside
of the main diagonal with respect to the appropriate spaces. The idea is
founded on the asymptotic regularization [24] where an initial value problem

d
Ew
has to be solved and, therefore, RK methods are used. The parameter 7; in
(3) is the steplength or also named the relaxation parameter. The (s xs) ma-
trix A and the (sx1) vectors b are the given parameters which are correspond-
ing to the specific Runge-Kutta method. Whereas in [5] the convergence of
the whole family of RK-type regularization methods for nonlinear problems
is investigated in [19] the convergence rate analysis for the first stage family
is developed. For linear problems those methods are presented in [4, 15, 22].
Both studies for the nonlinear case deal only with an a posteriori parameter
choice namely the discrepancy principle.

In [23] the following modification of the Landweber iteration is proposed

Wi = wi, — F'(wp) (F(w) — 97) — an(wy, — ).

The additional term oy (wf—() compared to the classical Landweber iteration
is motivated by the iteratively regularized Gauss-Newton method, see e.g.
1,2, 3,9],

(1) = F'(w})* (9" — Fuwf) + F'(wf) (wf — w(t))), ¢ >0, w(0) = wf,

Wi = Wi+ (F(wp) F' (w) + o)~ (F' (wi) (97 — F(wi)) + a(wo —w)) (4)

where wy is an initial guess for the true solution. In [9] this method is
investigated under merely the Lipschitz condition of the Fréchet derivative



of F' using an a posteriori stopping rule. In order to avoid saturation for the
convergence rate under Holder source condition an alternative rule is used

ok (F(wi,) — o7, (F'(wi ) F'(wi,) + o 1) 7H(F(wi,) — g7)) < Me® A > 1,

where the termination index k. is the first integer fulfilling the above inequal-
ity and A > 1 is a large number. In [8] the method (4) is examined under
logarithmic source conditions. Moreover, in [7] the frozen method of (4),
i.e., without updating the Fréchet derivative is regarded using the balancing
principle [18] under certain general source conditions.

Different Newton-type methods were studied a lot during the last two
decades, see e.g. [10, 13, 21], describing the strategy of outer and inner
method. In [10] the method

Wit = Wi, + o, (B (wi) " F' (wi)) (F" (wi)" (F'(wy) — ¢°)
using discrepancy principle for several spectral filter functions {g,} is re-
garded. Order optimal convergence rate under certain Holder source condi-

tions is achieved.
General iteratively regularized Gauss-Newton methods

Wiy = Wi, + Goy, (F (wi)" F'(wp) (F" (wh)* (F (wi) — g7 — F'(w) (wy, — wo))

are examined in [2, 11, 12, 14, 16]. In [12, 14] this method is investigated
under local Lipschitz condition of the Fréchet derivative for Holder and log-
arithmic source conditions whereas [16] extended this method to work with
a general source condition with an index function ¢ [17]. Error estimates
are given under a priori and a posteriori parameter choices. Under weaker
conditions convergence results could be obtained in [11].

In this paper we investigate a modification of (3) as follows

Wiy = wi + b TTF (wi)* (9 = F(wp)) — 7 (wg =€) (5)

where IT™! stands for (§+7, AF'(w)* F'(wg))*. For the convergence analysis
of the modified Runge-Kutta-type regularization (5) the parameter oy = 1/7
satisfy

0< g <1. (6)
The condition (6) yields useful result [23], i.e., for I,k € Nand [ < k

k

1-JJa-c)=> o [J@-a,) <1 (7)

s=I j= s=j+1



In addition if

Zak<oo (8)

the product [[,2,(1 — ay) converges and [[,—,(1 — ay) tends to 1 as [ tends
to infinity. The condition (8) provides the finite stopping index for € > 0 and
is necessary for the convergence analysis in the noise free case.

This paper is organized as follows. In the next section we investigate the
convergence analysis of the proposed modification of the RK-type method
(5) under a priori and a posteriori parameter choices. In Section 3 the con-
vergence rate is given for both parameter choices and in Section 4 we show
a numerical example and compare different methods.

2. Convergence Analysis

In this section a convergence analysis of the modified Runge-Kutta-type
regularization (5) is provided. Therefore the local property of the nonlinear
operator in a ball B,(wy),

|F() — F(w) — F'(w)(w — w)|ly <n||F(w) — F(w)|y (9)

for w,w € B,(wy) C D(F) with n < 1/2 is required. It is also useful to
deduce from (9) that

1 - . 1 -
——[[F(w)(w = @)[ly < [|F(w) = F()lly < ——[[F(w)(w—@)[ly (10)
n+1 U
hold for all w, 1 € B,(w). Due to the boundedness of the operator 6" H, '1
and bT(A — I)S;H, '1 with the (sxs) identity matrix I, Sy = F'(wy,), Sf =
F'(wy)* and H, ' = (8 + 7, ASS;) " there exist constant ¢;, ¢y > 0 with

C —

vl < 167 H 1yl < callylly (11)
and

187 (A = 1SpH ylx < exllylly- (12)

In addition the Fréchet derivative F'(-) of F' is bounded in a ball B,(wy), i.e.,

[F'(w)]| < L. (13)



The approximations (11) and (12) are used to prove that the iterative reg-
ularization method (3) converges to a solution. In the presented work the
iteration will be terminated by a posteriori and a priori stopping criterion,
i.e.,

a posteriori stopping criterion

" — F(wi )|y < Ae < |lg° = F(wi)lly, 0<k<E, (14)
with
2 1
(76 — 1)(¢? = 2¢1m — 2¢1¢97 L) — 4y (n + 1)
for some positive number c.
a priori stopping criterion
Cry, <e<Cr', 0<k<Ny, whereC <p/6. (16)

Proposition 1.  Let w, be a solution of (1) in B, /s(wo)NB,s(¢) with we =
wg. Assume that the assumptions (9)-(13) and for some positive number ¢,
the assumption

IF(C) = g lly < cce (17)
hold. If 7, > 2 and the termination index k, is defined by (14) with
(1 — 1)(c] — 2c1m — 2¢1c9m L) — dey(n + 1) — 2e1(n + 1) (7 + ¢¢) /A > 0 (18)
holds then wj_, € B,(wg) and

lw. = wially < (1= 7 )ws — willx + 7, 'p/8. (19)

Moreover the termination index k, in (14) is finite if Y o 7, ' < oo.
Proof.  Let 0 < k < k,. For short we use f(t) := bT(I — At)7'1, see
Appendix for more detail. Using (5) we can show that

Jwiyr — w5
= (172 wf — wallk + |7 f (~7eSES)F (wi) (F(wf) — )%
(e ) lws — ¢ — 200 — 7 7 wg — e, we — () x
—2(1 — 7, "Wwi, — wa, T f (=785 Sk) F (wi)* (F(wg) — ¢°)) x
27 (s — ¢ f (—TSESK)F (wp)" (F (wf) — g°)x. (20)
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Using (2), (9), (11)-(13) and the consistency property of the RK method,
V' H H "1y =b0"1y =y Y, b = y for y € Y the fifth term in (20) becomes
=27, — 1) (wy, — we, (=T SES) F' (wp)* (F(wi) — 97)x
= 2(mp — 1){(F(w}) — ¢° — F'(w;)(w;, — wy), (=SS (F(w;) — g°)) x
—2(me — D(F(wp) — 97, f(=meSkS) (F(wp) — 97))x
< 2(m — DIIF(w) = 97 = F'(wi) (wi = w)lly [ f (=756 S5) (F(wi) — ¢°)lIv
—2(1p — D) (b7 (8 + 7, ASKS;) H, "1(F (wg) — ¢°), f(=7eSkSE) (F(wg) — ¢°))x
< 2¢i(m — 1) (e + e +nllg” = F(wi)lly)llg” = Fw)lly
Q(Tk = DIIf (=7SkSp) (F(wg) — 99) Iy
)7 (Spb" (A = D H ' U(F (wy) = 9°), Spf (= meSuSp) (F(wp) — ¢7))x
)Th (S f (= 70SeSE) (F(wi) — 9°), S f (= 7wSeSe) (F(wi) — 9°))x
< 261(Tk — (e +n) +nllg” = Flwp)lv)llg™ = Fwi)lly
—(me = Del|F(wi) — I3 +2(7 — meerea LI F(wg) — o715
=27, — V)|l S F(=7wSkSk) (F(wi) — ¢°) 1% (21)
Using (2), (9), (11) and (17) we can show that the last term in (20) becomes
2(ws = ¢, f(=TeSESe) F' (wi) " (F(wi) — 9°))x
= 2(F"(wp) (ws — w), f(=7wSeSE) (F(wi) — )y
+2(F (wi) (wy, = ), f(=7eSeSp) (F(wi) — g%))v

= —2(F(w,) = F(wg) = F'(wi) (ws — wi), f(=755) (F(wp) — 9°))v
+2(F(w.) — F(wg), f(—755p) (F(wg) — 9°))y
+2(F(Q) = F(wg) — F'(wi) (¢ — wi), f(=7wSS) (F(wi) — g°))v
2<F( ) = F(wi), f(=7eSkSp) (F(wi) — %))y
< 2+ Dllg” = Flwp)lly [(ec + e +2/lg° = Flwp)lly].- (22)

Applying (21) and (22) into (20) we get
lwin = w5
< (=7 )l — wallk + e f (<78 Sk) i (F(wy) — 9°) %

+(r ) llws = ClI% + 200 = 7 ) g — wallxllws = ¢l
+2e1(me = (e + 1) +nlg” = F(wp)ly)llg” — F(wi)lly
— (e = Vel F(wp) = g°I1y + 2(m — DreereoL|| F(wp) — oI5
—2(m = )7l S5 f (=7 SeSk) (F(wi) — 9|5
+2e1(n+ Dllg” = Fwp)lv[(ec + 1) + 2[lg° = F(wp)]lv]- (23)
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It follows from the fact that 7, > 2 for all k£, (23) becomes

[wher — will5
< (0= 7 Dllwg = willx + 7w = Cllx)?
+ [((7x — 1)(2e1m — ¢ + 27c100L) + 4y (L+ 1)) [|¢° — F(wp)|ly
+2c1 (1 + ) (7 + c)el lg” = Fwp)lly- (24)
Thus for the discrepancy principle (14) it follows from (24) that
lwier —wllx < (1= 77 Hllw — wallx + 7 ws = Cllx)?
2 € £ 13 £
e+ 17+ e)[Ae — [|F(wp) — o[yl F(wi) — g7y
< (= D lwg = willx + 7 Jwe = Cllx)*. (25)

The equation (25) together with the assumption that w, is a solution in
Bys(wo) N B,s(C) we get

lwiy = willx < (=77 Dllwg = wallx + 77 (0/8). (26)

From (26) it follows by induction for 0 < k < k, that

k k k
iy = wallx < flwo —willx [T =7 +p/8d ' TT (1 =71 (27)
=0 =0 i=j+1

It follows from the approximation (7) that

lwfs —wnllx < oo — wellx(1) + (p/8)(1) < p/4

holds and thus |[wj, —wol|x < [|why —w|x +||we —weol||x < p/44+p/8 < p
which shows wj,, € B,(wo).

Therefore, if the iteration (5) is terminated by (14), we get ||w; —w.| x < p/4.
Thus

201 — 7, ) Hlwy — wllx[Jwe = Cllx < 27, (p/4)(p/8) = 7, ' p?/16 (28)
and

(T ) llws = ClI% < (7 )*(0/8) < 7' p? /64 (29)



are obtained. Applying (14) to (24) yields

Wi — wal[%
< (1= 7 Dllwg — willx + 7 lws = Cllx)?
+lg° = F(wp)|ly [4e1 (1 +n) — (% — 1)(c] — 2¢1m — 274¢105L)
+2¢1 (1 +n) (1% +C<)/)\]
< (1= 7 g, = willx + 7 lwe = Cllx)* = DIIF (w) - g°lf5 (30)
for some positive number D with 0 < D < (7, — 1)(¢f — 2¢1n — 273c109L) —
der(14+1m) —2¢1 (14 n) (7 +¢¢)/A. Next the estimations (28)-(29) are applied
in (30) to show that
[wipr = willx + DIIF (wi) — 715
< (=7 D lwg = wlx + ()l — ClI%
+2(1 = 7 )7 Hlwg — willxllw. = ¢l
< lwg — wallk + 7, 07 (31)

With the fact that 35" (g — walk — gy, — wallf) < o — well%, the
equation (31) provides

ko1 ko1
DY |IF(wg) = 6|15 < llwo — wall% +p° > 7"
k=0 k=0
Consequently,
ko1 ko1
DY F(wp) — gl < p*(1/64+ ) 7). (32)
k=0 k=0
On the other hand, the discrepancy principle (14) yields
() < llg" ~ Py, 0<k <k. (33)
Adding (33) for k =0 to k = k. — 1, we get
k=1
(Ae)he < Y llo” — F(wp)]3- (34)
k=0
Combining (32) and (34) the assertion is obtained. O
Proposition 2. Let the assumptions of Proposition 1 and
max{c; L(n+1)(mx + ¢¢), c1(n+ 1) (1 + ¢¢) } < 9/16 (35)

8



hold. If the termination index Nj is chosen according to (16) and

(1 — 1)(¢? — 21 — 2¢1comp L) — dey(n+1) > E > 0 (36)
holds for some positive E then wj,, € B,(wo) and

lwe = wiyllx < (=7 ) fJws — willx + 7 'p (37)

for some positive number p with p < p/2. Moreover

NO NO
EY |IF(wp) = ¢} < p*(1/64+ ) 7). (38)
k=0 k=0
Proof.  Let 0 < k < Ny. Due to (2) and (13) it follows that
1 13 &€
[1F(wi) —glly <e+ ﬂllF'(wZ)(wk —wi)llx <&+ 2Lfwi — wllx. (39)

Applying the condition (16), i.e. ¢ < O, ', and the estimation (39) to (24),
we get

Wi — w*||%(
< (=1 lwg = will
+ ((me = 1)(2c1n = & + 2mpc1coL) 4+ der(n + 1)) [|l¢° — F(wp) |5
201CL(77 + 1)(7‘k + Cc)
1-— 7'];] )

() (s = ClI% + 2e1(n + 1) (70 + ¢0)C%). (40)

+2(1 = ) Jwg — wallx (we = Cllx +

Setting

2¢,CL(n + 1) (7, + ¢¢)
1— 7',;1

p := max{||w,—(||x+ ; \/||w* —ClI% +2¢1(n + 1) (73 + ¢0)C?}

and using (36), (40) becomes
Wi — wal[%
< (=7 Hllwg — willx +77'p)?
— (e = )(ef = 2e1m = 2mper65L) — der(n + 1)) [lg° — F(wp) Iy
< (=7 llwg — willx + 7 'p)*.

X +T,;1p. (41)

Thus, [lwi,, — welx < (1 -7 |lwg — w,

9



Note that p < p/2 due to the assumption (35). From (41) it follows by
induction for 0 < k£ < N, that

k k
Wiy — wil[x < \w0*w*||XH L-mH+pd m J[Ja-=h
=0 isjtl
< |MU0—'U&HX'+p
< 5p/8. (42)

Therefore,

lwpy — wollx < [Jwiy — willx + |Jwe —wollx < 5p/8+p/8 < p (43)

which shows that wj_,, € B,(wp). Using (16), (35) and (42) we can show
that

2711~ g — e (Js — ¢l 4 22O Nt
< 528 (44)
and
(7 )2 (llws = ¢15 + 21 (n + 1) (75 4+ ¢0)C?) < 3(1;1)?p?/64. (45)

Applying (44)-(45) to (40) we get

lwi 1 = w5
< (=7 ) lwg — wl[x + 57 p° /8 + 3(r )" /64
+ (7 = 1) 2e1n = €] + 2c100m L) + des(n + 1)) [|F (wi) — o°[f5
< (=7 lwg — willx + 770" = B F(wy) — o711y (46)
for some positive number E with 0 < E < (7 — 1)(¢} — 2¢1m — 2¢1c9m L) —
4ei(n+1). Similar to (32), (46) implies the last assertion, i.e.,

E||F(w;) = 1y < g — wallx = wpyy — wallx + 7007

implies

No No No
EZ | F(w5) — g% |13 < |lwo — wsl[3 + p ZTk_l < p*/64 + pQZTk_l.
k=0 k=0 k=0

10



We note that the tangential cone condition implies
. 1
[F(Q) =g lly < [[F(¢) = Fw.)[| + ¢ < EIIF'(M*)(M* —Qlly +e
Using (13) we get

. L
1) = ¢°lly < 7= llw. = Cllx +=.
-1
If w, is a solution of (1) in B,s(wo) N B,/s(¢) and the closeness condition of
¢ to the solution w,, i.e. [Jw, — (|[x < €. for some positive number ¢, is
satisfied, then the assumption (17) can be achieved.

Proposition 3. If >} 7, < oo and (36) hold for all k € N, then
in the noise free case,

D F(wy) — gl < oo (47)
k=0
Proof. Tt follows from (24) that
Wi — w5
< (=7 Dllwe — willx + 7 Hlws = Clx)?
+ (1 = 1) (2cin = ] + 2mpcr6oL) + des (1 + 1)) |lg — F(wi) |3
< (=7 Dllw = willx + 7 [Jwe = Cllx)*
—Ellg — F(wy)|ly (48)

where E > 0 is defined by (36). Thus
lwier = willx < (1= 7 lwe — willx + 7w, = ¢y
Note that w, is a solution of (1) in B,s(wo) N B,/s(¢) which yields

x < (1- 7',;1)||wk — wy||x +T,;1p/8.

||wk+1 — Wy
It follows by induction and (7) that

c[la=nh+psd ot [T =77

i=j+1
< p/4 (49)

Jwrrr —willx < [Jwo — ws

11



Using (49) we get

(7 2 llws = €l + 200 = 7 ) lwe — willxflwe = Cllx < 7" (50)
Applying (50) to (48) we can show that

BI|F(wi) — gl3

< (=17 wk — w5 = Nweer — wall%
+(r ) flwe — CII% +2(1 — 1)Tk1||w/c*w>«||X||w**C X
< (=7 llwe — willx = llwess — willx + 707
< Nlwg — w5 = [ wier — wall5 + 77107 (51)

Similar to (32), (51) implies

EY NF(we) — gly < llwo —w.lk +p° Y7t < p?(1/64+ ) 1)
k=0 k=0 k=0

O

Proposition 4. Let ¢ = 0 and (6) hold. If the conditions (9)-(13)
are satisfied and if F(w) = g is solvable in B,(wy) as well as the relaxation
parameters 7, are bounded, then wy converges to a solution of F(w) = g
in B,(wy). Moreover, if wy = ¢ and w' is the unique wy—minimum-norm
solution and if N'(F'(w')) C N (F'(w)) for all w € B,(wy), then wy converges
to wf.

Proof.  Let w, be a solution of F(w) = g in B,3(wq) N B,s(¢) and denote
e := wy — Wy. Then, for each n > m,

Enil = emH 1—T Z H 1_Tf1)(w*—§)
j=m j=k+1

> S (=SS Sp(F(wp) —g) [[ (1 =7"). (52)

k=m j=k+1

If e = 0, (48) implies that

[wisr — wallx < (1— 7)) |Jwg — @[ x + 7 s — Cllx- (53)
Thus
lerallx < (=7 Dllerllx + 7 Hlww = Cllx
< (=7 Ylexllx + 7 ' p/8. (54)

12



By induction we can show that

el < llewlls T (1= 7" +m@2} Ma-=~Y 63

j=m r=j+1

Proposition 2 implies that the sequence ||€k||x is bounded, and thus it has
a convergent subsequence |len||x to some w > 0. Let ||esu)||x be a subse-

quence of ||eg]|x. For given sufficiently large I € N, we denote k(I) for the
maximal index k such that s(I) > n(k). Now (55) can be written by

s(l)—1 -1

lesollx < leagaplls [T =771 +0/8 Z ! H (1—7Y). (56)

j=n(k()) j=n(k()) r=j+1
Iy ngl < oo the product [[;2,(1 — 7. ') = 1 as | — oo which implies
that Hs(l) ! (1 7. ') — 1 as | — oo. Thus (56) implies that

s()—1 s(l)—1 s(h)—1

||€s(z)||x—||€n(;;)||x <p/8 Z Tj’l H (1-7, ") =p/8 |1 - H (1— ijl

g=n(k(t)) =i g=n(k(1)
Consequently,
timsup (Jlexo 1x = lleagollx ) < 0. (57)
Similary,
timsup (e, iy 1x ~ llexolx) < 0. (58)

Using (57)-(58) together with the fact that [le, g |lx — w as I — oo, we get
llesyllx = w as I — oo. Thus |[ex||x — w as k — oo. For j > k we choose
with j > [ > k such that

lg— Fnly < llg— Flwp)ly, k<r<j (59
Using (52) we get
] J—1 Jj1
b = all0-n) -5 T =m0
- r=1 s=r+1 .
=2 (=788 8 (Fw,) —g) [T (1=
r=l s=r+1



which provides

(e1 - 61760
= 61—€1H1—T €1X4'<Z7'1~71 H (1 =7 (@ =€), er)x
Zﬂ» (=72575,) 7 (F(wr) — 9) H (1—7.") en)x
- (1 Tlo-+ ) ||el||x+2f1 I (07 )0 = Gon =
—I—i: 1:[ (1 — 777 f (=78, S (F (wy) — g), F'(w,)e;) x. (60)
Using (9), (11) and (59) we get
i: 1:I l_T ( TTS S*)( ( )_.Q)aFl(wr)(wl_d)*»X
< ) mallF(w) = glly (1F (w) (we = we)lly + [[F'(wy) (wr —@.)[v)
< ZT || F(wr) = glly (U + ) [|F(wi) — F(w,)lly
i I (wr) = F(w.)]y)
< Bra(l+n)>|IF(w,) — gl (61)

r=I

for some 7 with 7, < 7 for all »r € Ny. Using (61) and Proposition 3 the
third term on the right hand side of (60) tends to zero. The fact that ||e;|| x
is bounded and

1ZJH(lnl) zﬁ(lnl) —1 (62)
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imply (1 ~-TIZa - 7'[1)) lel]|% tends to zero. Moreover the second term
on the right hand side of (60) which is written as

j—1 j—1
Mot T (=7 = G ow — ) x
r=I s=r+1

X el”X}

7—1
< (1 ~TIa- )) i — ¢

i=l
tends to zero due to (62), w, € B,s(wo) N B,/s(¢) and ||e;||x — w as | — oo.
With the above imformation we get |(e; — €j,e;)x| — 0 as | = oo. In the

same manner, |(e; — ek, €;) x| — 0 as [ — co. Thus the equations

llej — enllx = 2(er — e en)x + llesl5 — lledll%
and

ller — exllx = 2{er — ex, en)x + [lexllk — llerl%
provide that |le; — ¢]|x and |le; — exl|[x tend to zero. This means that
lle; — exllx < |lej — el x + |ler — exl||x tends to zero. Thus e, and wy are
Cauchy sequences. Denote the limit of wy by w,. The continuity of F' provide
that F'(wg) — F(w.) as k — oo. By Proposition 3 the residual g — F'(wy)
converges to zero. Thus w, is a solution of F/(w) = g.

Next we will show that w, is the unique wy—minimum-norm solution of
F(w) = g. Let w' be the unique wy—minimum-norm solution of F(w) = g.
Thus w' — wy € N(F'(w))*. If wy = ¢ and N(F'(w')) € N(F'(w)) for all
w € B,(wy), (5) provides
Whp1— Wy = TkF'(wk)*bTH,gll(g—F(wk))—T,;1(wk—C) € R(F'(wy)*) C N(F'(azk))J‘
Thus, wy — wy € N (F'(2))* which implies
wh — w, = w' — wy +wy — w, € N(F'(«1))*. (63)

The tangential cone condition together with (63) provide the assertion. [
Theorem 1. Let the assumptions of Proposition 1 and 2 hold.

(i) If k. = k.(e,g°) is chosen according to (14) to stop the Runge-Kutta-
type method (5) , then wi — w, as e — 0.

(ii) If No(e) is chosen according to (16) to stop the Runge-Kutta-type
method (5), then wy, .y — w. as e —= 0.

Proof.  The proof is analogous to the one in [23].
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3. Convergence Rate Analysis

In this section we assume that F' is properly scaled with a Lipschitz-
continuous Frechéchet derivative in B,(wy), i.e.

| F'(w) — F'(0)|| < L|jw —@||x, w, € B,(wp) (64)
with L < 1. Additionally, the Holder type sourcewise condition

wy, — = F'(w,)v, veX. (65)
is considered. For fixed 0 < ¢ < 1 the relaxation parameter is chosen as

= (k+1)¥, keNg (66)

where [y € Ny is sufficiently large, i.e. such that 7, > max{2,1+ 1/¢;} and
in addition for k& > [,

1 1-(1+1/k)% 1 -,
QxR 1k moe ik (67)

Theorem 2. Let w, be a solution of (1) in B,y(wg). Assume that (64)
and the following closeness conditions, i.e.,

U(k) :=

2 < C < min{1,70p*/4} (68)

Tollwo — w,
with 0 < C(1;, — 1) < 1 and
2w, — C||% +2(1 — 7, D2|v|[% + 17¢2C* (1, — 1)* < L*C)2 (69)

hold. Moreover, assume that ( satisfies (65) and the relaxation parameter is
chosen according to (66). If (5) is terminated by the discrepancy principle
(14) where X satisfies

1 2c 1
v T](Tk — 1)+ 2L + (7 — D2neareL = 5e}) <0 (70)
then in the case of noisy data
[wi, (o) = willx = Ok, (71)

If (5) is terminated by a-priori stopping rule (16) with
17 979 1,
16 + 21ci L7 + (16 — 1) (27,C109L — 501) <0 (72)
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then in the case of noisy data

lwhy, — w.llx = O("?). (73)
For the noise free case if (72) holds then

lwr = w.|[x = Ok 7). (74)

Proof.  For short we use f(t) := b" (I — At)"'1, see Appendix for more
detail. Firstly we find the estimate of ||wj,, — w,|[x. Using (5) we can show
that

[ —wellx = (1= 772 [lwg = wil[5 + (572 [lwe = 1%
H7ef (—76SESE) Sk (F(wh) — 97) %
=21 =7 )7y (wf — we,we = Qx
—2(1 = 7 " )wy, — w, T f (=7 SESk) Si(F(wp) — 97))x
27wy — G e f (TS Se) S (F(wp) — ¢%))x. (75)
Using the fact that 2(A, B) < ||A]|?+||B||* for the last term on the right-hand
side of (75) we get
27w, — i f (=TS Sk) Sy (F(wy) — ¢°)) x
< (7 P llws = IS A+ i f (=7 SESk) Sk (F (wi) = 67) % (76)

Inserting (76) into (75) we obtain

2
X

Jwiy — wal[% < (1 =7 )?]Jwp — walX +2(7 )P lws — ¢
+2|| 7 f (=755 Sk) Sk (F(wy) — 9°) 1%
—2(1 — 7 )7 wp — wa, wi — O x
—2(1 - Tk_l)Tk(w,i — Way f(=TESSk)SE(F(wy) — g°)) x (77)

Due to the Lipschitz condition (64) it follows that
~ ~ - 1= ~ ~
1P (w) = F (@)= F'(@)(w=)ly < SLw=|k, w,d € Byy(wo).(78)
Using (2) and (78) we can show that
L

|F(w;) — g° — F'(w.)(wf, —w,)||y < 5||w,‘€C — w*||§( +¢e
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and consequently

13 € € L €
1" (wa) (wi, = wa)llx < (i) = ¢°lly + Sk — wlix +.
The sourcewise representation (65) and the estimate (79) yield

=201 =7 ) wh — wews = Q) x
—2(1 — Tk_l)7'1;1<w,§ — wy, F'(w,)*v) x

2(1 = 7 7 I () (i — wa) v [lvllx
2(1 = )7 N F(wh) = g7l llvllx
+(1 =7 ) Lllwg — wal & [lvllx +2(1 = 7 ellvllx

VANVAN

The fact that 2AB < A% + B? leads to

2L[wy, — w3 (- mSeSP) (F (wp) — 99 v
< f =78k SO (F (wi) — g5 + L2[lwi — we]l.

Using (2), (78) and (81) we can show that

—2(1 — Tk_l)Tk(wfC — Wy, f(=TESESk)SE(F(wg) — ¢°))x

(79)

(81)

= 2(m — D(F(wy) — " — Fl(wp)(wy — w.), f(=mSeSp) (F(wh) — 9°))y

—2(m = D(F(w) — 97, f(=mSkSp) (F(wi) — 97))v

< 2(n = 1) (lg = F(wf) = F'(ui)(w, — wi)ly +¢)
XL (- 7uSkS0) (F () — ) Iy
27 = )(F(uf) — o7, S (=SS} (F () = )y
= (= DEwf — w3 (7SS ) — )l
#2070 = DellF (eSS wh) — o)y
—2(m = D{F(w5) — &, (=SS0 (F(f) — 9y
< ;m—nu<m&&x<wrwm@+¢m—nﬂw@~m&
2~ Dell S SDFa) o)l
~2(m — D{F(R) — o, F(-TeSeSHF(R) — 9°)v-

(82)

Note that the consistency property of the RK method and the assumptions

(11)-(13) imply
=27k = 1)(F(wy) — g, f(=mSeSE) (F(wi) — 97))y
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< 2(m = 1) (1 F (7wSeSE) (F(wh) — 99115
+7el|SE0T (A — D H U(F (wf) — ) xSk f (- mSeSE) (F(wf) — ¢°)llx
— 7kl [Sp f (=TS Sk) (F(wi) — 9°)[%)

< (= DAEF(wg) = ¢°lI5 + 2(m — Dmperco L F(wi) — ¢°[[5-

=27 — V)7ell Si f (=7 SeSi) (F(wi) — 97)II5- (83)
Combining (82) and (83) leads to

—2(1 — 7 1wy — ws, f(=7S5Sk) Sp(F(wi) — ¢°)) x
1 1 N
503(% — DIIF(wg) = ¢°|I3 + 5 (T = 1)L |lwg — w.|x
+2c1 (e — Vel F(wy) — ¢°[ly
— (1 — DA F(wi) — &° I3 + 2(me — Dmeerco L) F(wy) — o7 I3
—2(m, — D7l Spf (=S Si) (F(wi) — 9°) I
1 1 -
= (2nciel — 503)(% — D[ F(wg) — g5 + 5 (T = 1)L ||lwp, — w.ll
+2¢1 (1. — Del|F(wg) — ¢° ||y
—2(1 — D7 ||Sk f (= 7Sk Si) (F (w) — ¢°) 1% - (84)
Applying (80) and (84) into (77) we get
Jwi ey — wall% < (1= 7 )llwg — w5 (1= 77" (1 = Lljollx))
1 _
e DL - wll
+27, (7 Hlwe = ClI% + (L= 7 DIF(wi) — °llv llv]lx)
+2e((1 =7, )7 Hollx + en(me — DIF(wg) — ¢°ly)

1
+H|F(w§) — ¢°|13-(2muct L2 + (1 — 1) (27pcr1c0L — ch)) (85)

To prove by induction that 7||w§ — w,||% < C for a posteriori parameter
choice rule (14) we observe that the assumption (68) implies the case & = 0.
Let k < k,(¢) and assume that 7||wf — w,||% < C. It follows from the
discrepancy principle (14) and the property 2AB < A% + B? that

¢ _ F(we
(1= ol < 21— 7 ol 1LY
1 € 13 — —
Sl I+ (1 2 Pl (s6)

19



and

Nl = Pl

2eci (e — D||lg° — Fwy)|ly < 2ei(m — 1 3

(87)
Similarly,

21— Yy ollsllgr— Py < 16"~ Qi) B+ )2 (r )2 o (88)
Inserting (86)-(88) into (85) we obtain

[wier — willX
< (=7 Ywy — w5 (1 =7, ' (1 = LJv]1x))

(= D Elf, — .l
<1 + 1 + 2—( T — 1) + 21 L + (1 — 1) (273e1c0 L — 1('%))
PR 2
|| F(wg) = g° Iy
+Hr )2 2llwe — IR+ 200 - )P lolR)- (89)

Note that the assumption (69) and 75, > 2 provide

2 p p

2 Tk 72 Tk s 175 9 o Tk 72

< —r — ——||w, — — —C 1 < ——L*C.
Thus we can conclude from the assumption (64) and (68) that

Pl < 4G < 1. (90)

Due to the assumptions (70) and (90) we have

. 1 .
lwher —wallx < (0= 77)wf = wallx + 5 (7 = DE[Jwf, — wix

+H(re ) @llws = % + 201 =77 loll%)- (91)

Define f3 := 7p||w — w.||% and B := 2||w, — ¢[[% + 2(1 — 77 ")?|]v||%. Thus
(91) can be written as

Tk Tk Tk+1
B < B (e = 1)+ (e~ DIP+ =5 B, (92)
k k k

Define J(f;) := 52 (7' — 1) L2} + B ! (Tk — 1)+ ™5 5+ B. Using the closeness

assumption (69) we can see that

B < L*C/2. (93)

20



The definition of .J yields

JC) -C = Blq_nicr+ o2 -1+ Xlp_¢
27 T} Ty

- C (1 S yE 1)) + L (é?%(m 1)+ B> . (94)

Tk Tk

Note that from the assumption (68) we have C?(r, — 1) < C. This estimate
combines with (93) provide

1~ - 1 ~- 1~-0 1 ~- -
502L2(Tk— 1)+ B< §0L2+B < 5CL2+§OL2 =CL” (95)
Note that
(k +1)¥
Wk +1 Y (k4 1)Y = (k+ 1+ 1Y) +1
= 7o (e = Tea (1 — 1)). (96)

Applying (67) and (96) into (95) we obtain
1~ - - . -
502L2(Tk—1)+3 < CL* < U (k+lo)C = 7Y (70 — Toa (76 — 1)) C.(97)

Therefore (94) becomes

2
L _ _ 1) -
JC) ¢ < ¢ <1 S e, 1)) LT “ T =D g

2
i i Tkt

By the assumption of the induction and the fact that J(5j) is monotonically
increasing we can see that

i < J(Br) < J(C) < C.

Thus the induction is complete. Due to the monotonicity of {7, '} and (68)
we can see that wj_ , € B,(w,).

It remains to show the rate of the modified RK-type method where the
termination index is chosen according to a-priori parameter choice rule (16).
Similarly to the previous case we will show that 7 |w; — w,||% < C. Clearly
the assumption (68) implies the case £ = 0. Let k& < N, and assume that
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mellwi — w,||% < C. Tt follows from (16) and the property 2AB < A% 4 B?
that

1F(wi) — g°llv
4

1
< 16C%(1 -7 ) + 1o (wh) = gI5 (99)

2eci (1, — V|| F(wg) — ¢°lly < 87'/,;10(:1(71C - 1)

and
2¢(1 =7 7 Hlvllx < 2010 =7 (7 ) vl (100)
Applying (88), (99)-(100) into (85) we obtain

lwin = w5

_ € — 2 1 T €
< (= Dlwg = w0 =7 (0= Lllollx)) + 5 (me = DEwh — .l

17 1
+|F(wf) — ¢°|13 (16 + 21, L2 + (1 — 1) (27Re1c0L — 5(‘%))

+(r ) 2llws = ¢l
+(1 =7 D)ol + 16C%¢ (1 — 1)2 +2C (1 — 7 ) ||v]lx) - (101)
Due to the assumptions (72) and (90) it follows that
iy — wel%
1 .
< (U= lhwg — w5 (=7 (1= Llollx)) + 5 (7 = DI o —

+(r ) (2w — (%
+(1 =7 )l +16C%ci (e — 1)* +2C(1 = 77 vl x) - (102)

Define fy = mflwg — wllx and B := 2w, — (JI% + (1 = 7)ok +
16C%¢3 (1 — 1)2 + 2C(1 — 7, ") ||v]|x. Hence (102) can be written as

Thk+1 Tk+1 2 Tk+1 7
< Br— (1, — 1 —1)L 103
Br+1 < Bk 2 (7 — 1) + 277 5 (e = VLB + —5- 2 (103)
Define J(f;) = 2““ (i — 1)L*B7 + (1, — 1)By + 25 B. Similar to the
k_

previous case we can show that 1 < J(B8;) < J(C) < C. The monotonicity
of {r, '} and (68) deduce that w,Hl € B,s(w,). Moreover, the rate result
for the noise free case is proven, since k,(0) = oo. Due to (16) the assertion
for the noisy case is obtained. O
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Table 1: The values of ¢; and ¢» for some RK methods.
Landweber Levenberg-Marquardt Radau Implicit trapezoidal

c1 1 1 1 1
Co 1] - 0.3, '/ 0.5(27;) /2

4. Numerical Example

In this section, we consider the nonlinear operator F : L*[0,1] — L?[0,1]
defined by

[Fw)(s) = exp. /0 k(s, Hw(t)dt (104)

with the noisy data ¢°(s) = exp((s* — 2s® + 5)/12) + ecos(100s), s € [0,1]
and the kernel function defined by

 s(1—t) ifs<t
k(s ) = { t(1—s) ift <s. (105)

Note that supg ;< |k(s,t)| < 1. The operator F' is Fréchet differentiable
and its Fréchet differential is given by [20]

F'(w)h = F(w) /01 k(s, t)h(t)dt. (106)

Moreover ||F'(w)|| < exp(1/v/30) if wy = 0.

This example was considered in [5] where the values of ¢; and ¢, for some
RK methods are presented in the Table 1. It has been shown that the number
of iteration steps are rapidly reduced if the relaxation parameter increases for
the Levenberg-Marquardt (LM) and Radau methods [5] using the iterative
RK-type method defined by (3). In order to make the implementations for
the modified RK-type method (5) more clear we briefly recall useful nota-
tions and formulas in a finite space.

Let w;,(t) € R(P,) be a solution of the problem F,,(w) = Qmng° in
a finite space with the orthogonal projections of X and Y onto X,, and
Y,, denoted by P,, and @),,, respectively. For each pair of the finite space
Xm and Y, it is convinence to denote that 7 1= T, Wiy 1= wp, 44y and
wy = wy, ;. For the Hilbert spaces in Example 1 and 2, i.e. X and YV
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are L2]0,1], we choose orthogonal bases {o{™ .. oW} and {\™ .. 4o}
which is defined by the piecewise continuous function with ¢(¢) = 1 for

t € [tj,tjs], ¥(t) =1 for s € [sj,s,41] and () = 0,9(t) = 0 otherwise.

Due to X,, :span{gpg-m)}jzlwm and Y, :span{w§m)}j:1,,,,,m we let wi(t) =

S e (1), wi (1) = S oM™ (0) and (1) = T, ™™ (1)

for some U™ = (u{™ .. ulfhT vim) = (™ 40T and Zm = (2™ 0T
For the 1- and 2-stage modified RK-type regularization which is defined in

the finite space by

Wiy = Wi + 70" (8 + T AF, (wi) Fy, (wh) T LE (wi) (Qmg® — Fn(w}))
— (Wi =€) (107)

the following propositions provide the coefficient vector V™.

Proposition 6. For the 1-stage Runge-Kutta method A = (a11), b = (by)
and 1 = (1) if I+ (1/h™)a;, ®™ is nonsingular, then the coefficient vector
V(™ corresponding to (107) is given by

Vi) = (1= YU 4771 20 by (T4 (/BT 0y, @) 71 QU™ (108)

(m)

where the matrix (™ = (¢;7");j-12,..m and the vector Q™) = (@™ . qm)

are defined by

o) = ("™, (wi) B, (wi) ™ (1)) x (109)
and

a™ = (@ (1), Fly(wf) (Qug" — Fa(wg)))x /A" (110)
Proof.  The idea of the proof is analogous to Proposition 5 in [5]. O

Proposition 7. For the 2-stage Runge-Kutta method A = (a;;)i =12,
b=(by by)Tand1= (1 1TifS = I+(1/h™)(TrA)®™ (7. /h(™))2(det A) (D)2
and R = I + (7/h™)a;;®™ are nonsingular, then the coefficient vector
V(M) corresponding to (107) is given by
Ve = (1 - HU™ 4 77 20 b RU™ 4 by SO (111)
where the matrix (™) and the vector Q™ are defined by (109) and (110),
respectively. Moreover,

S(m) == Sil(l + (Tk/h(m))(an — agl)(b(m))Q(m) (]_].2)
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Table 2: The relative L2—error ey, for the Levenberg-Marquardt, Radau and Gauss-
Newton methods with m = 65,\ = 1.1,7, = 0.5k and wy(t) = ((t) = ew.(t). The
termination index is chosen according to the discrepancy principle (14).

Method ek, €k, Sk, Tk,
LM 1.0e-3 14 0.6543 0.9298 98
1.0e-4 26 0.0750 0.9084 338
1.0e-5 34 0.0390 0.8947 578
1.0e-6 101 0.0167 0.9634 5100.5
Radau 1.0e-3 14 0.6536 0.9288 98
1.0e-4 26 0.0738 0.8875 338
1.0e-5 34 0.0389 0.8728 578
1.0e-6 101 0.0167 0.9602 5100.5
GN 1.0e-3 31 0.7013 0.9962  480.5
1.0e-4 103 0.0393 0.0763 5304.5

and
R =R7HQ™ = (m/h™)arn®™ ). (113)

Proof.  The idea of the proof is analogous to Proposition 5 in [5]. 0

We note that the choice of 7, in Theorem 2 does not satisfy the condition
in Proposition 1. We set 7, = 0.5k% in Table 2 which yields Y T,gl < 00
according to Proposition 1. Therefore the iterates (5) converges even if the
sourcewise representation is not satisfied. However the choice ((t) = cw,(t)
satisfies the condition (17). Let Kz := fol k(s,t)z(t)dt. Thus the adjoint of
K is defined by K*z := fol k(s,t)z(s)ds. Due to (106) the adjoint operator
of F'(w) is defined by F'(w)*y := K* (F(w) -y). For the example we have
wy(t) = t(1 —t) and F(w,) = exp(%). If v(s) = cexp(—%) for
some number ¢ € R, we can see that

1

F'(w,)*v = K*(F(w,) -v) = K" (c) = c/ k(s,t)ds = gt(l —t) = 0.5cw,(t).
0

This means that for a priori guess ((t) = (1 — 0.5¢)w,(t) we have w, —

¢ € R(F'(w,)*). Therefore ((t) = cw,(t) is used in Table 3 for the choice

7 = (k + 10)09,
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Table 3: The relative L2—error ey, for the Levenberg-Marquardt, Radau and Gauss-
Newton methods with m = 65, A = 1.1, 7, = (k + 10)%% and wy () = ((t) = ew. (). The
termination index is chosen according to the discrepancy principle (14).

Method € k. €k, Sk. T, k0%,

LM 1.0e-3 26 0.7021 0.9972 34.7328  4.0648
1.0e-4 128 0.0796 0.9527  131.3652  0.8905
1.0e-5 435 0.0269 0.9981  418.6744  0.5346
1.0e-6 1473 0.0148 0.9995 1378.5729  0.5312

Radau  1.0e-3 26 0.7018 0.9969 34.7328  4.0634
1.0e-4 128 0.0793 0.9879  131.3652  0.8872
1.0e-5 432 0.0270 0.9973  415.8800  0.5351
1.0e-6 1442 0.0149 0.9997 1350.0410  0.5273

GN 1.0e-3 504 0.7038 0.9998  482.8959 14.9962
1.0e-4 1824 0.0795 0.9803 1701.2390  3.1598

In Tables 2 and 3 the iterates are stopped by the discrepancy principle
(14). However as mention in [22] a large step size 75 can lead to an overshot
solution. To avoid the problem with a large step size the quotient s :=
lg° — F(wj)||y/Ae is used and wj_ is accepted if s, ~ 1. The values of
sk, reported in Tables 2 and 3, are very close to 1 as expected. Except the
iteratively regularized Gauss-Newton (GN) method with & = 1.0e—4 in table
2. Here the iteratively regularized Gauss-Newton method [3] is given by

Wy = Wi+ (Tk_1[+FI(TI)Z)*FI(U);))_l(FI(U)Z)*(QE — F(wy)) +Tk_1(’11)0 —wy)).

While it is not possible to show the rate result in table 2, table 3 indicates
that for the Levenberg-Marquardt and Radau methods wj, converges to w,
with a rate O(k,;%*9) as expected if k, is chosen according to the discrepancy
principle where 73 satisfies (66).

5. Conclusions

In this paper, we proposed the modified Runge-Kutta-type regularization
for nonlinear ill-posed problems. The proposed iterative method is terminate
by a priori and a posteriori parameter choice rules under the certain condi-
tion on a priori guess (, the step size 7, and on the nonlinear operator F.
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For the noise case the termination index k. (e, ¢°), chosen according to the
discrepancy principle, is finite if >3~ 7, " is finite. However if >3 77"
diverges the sourcewise representation of w, — ¢ guarantees that wy € B,/».
The convergence rate results for the modified RK-type regularization can be
obtained under the sourcewise representation of w, — ( if the Fréchet deriva-
tive is properly scaled and is locally Lipschitz continuous. The numerical
example shows that the Levenberg-Marquardt and Radau methods converge
to a solution with a few iteration steps and a large step size without the
problem of an overshot solution.
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7. Appendix

From the spectral theory and functional calculus if (o;; v, u;) is a singular
system for a compact linear operator K, an integral with respect to a spectral
family F) can be defined by

f(K*K)z = '/f(/\)dEAx = Zf(o?)(x,w)vj (114)

where f is a (picewise) continuous function and we integrate over the whole
domain. Here the parameter A is used for the spectral family only. Thus for
all (picewise) continuous function

o

FIKK)K 2= f(o)) (K z,v))v if (z,u) K*u;=K* f (K K*)(115)

J=1 J=1

where f(KK*) is defined analogously to f(K*K). If f(K*K) is defined via
(114), then for z,y € X

UK, y) = / FV)A(Exz, ) (116)
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and
(K| = / FONd| Bl (117)

The formular (115)-(117) remain valid if K : X — Y is a linear bounded
operator (for more detail see page 47 in [6]) where the function of a selfadjoint
operator T := K*K in X with spectral family {F)},cr is defined by

(T = / J(\dEyz, € D(A(T)). (118)

Let f: D(f) € X — Y be defined by f(\) = b7 (I — AN)7'1 where [ is
an (sx s) identity matirx and the matrix A and vector b are given by the
Runge-Kutta method. Here the notation 1 stands for the (sx 1) vector of 1.
Thus, f is a (sx s) matrix of picewise continuous function. The definition
(118) provide that (116) holds and thus

for the linear bounded operator Sy := F'(wy). By the linearity of the operator
SkS; we have SpSpb" A = SpSp (305 bittig)j=12,.s = (3052 Diij Sk Si)j=1.2,00s =
bT AS;.S;. Analogously, the assumption (12) can be represented by

1SEb" (A — D H 1yllx = 16" (A = DSgH 1yl x < calylly-
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