Cloud Security
Mechanisms

Christian Neuhaus, Andreas Polze (Hrsg.)

Technische Berichte Nr. 87

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\5,0'\\] €rs;y 5
. ‘ Hasso
@ﬁ@ Plattner
"T Kemp Institut

IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fur
Softwaresystemtechnik an der Universitat Potsdam | 87

Christian Neuhaus | Andreas Polze (Hrsg.)

Cloud Security Mechanisms

Universitatsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet Uber http://dnb.dnb.de/ abrufbar.

Universitatsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts flr Softwaresystemtechnik
an der Universitat Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschutzt.

Online veréffentlicht auf dem Publikationsserver der Universitat Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2014/6816/

URN urn:nbn:de:kobv:517-opus-68168
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68168

Zugleich gedruckt erschienen im Universitatsverlag Potsdam:
ISBN 978-3-86956-281-0

mailto:verlag@uni-potsdam.de

Cloud Security Mechanisms

Editors: Christian Neuhaus, Andreas Polze

December 17th, 2013

Contents
Introduction

Threshold Cryptography
Bjorn Groneberg

The Bitcoin Protocol
Johannes Henning, Robin Schreiber

Introduction to Homomorphic Encryption
Hubert Hesse, Christoph Matthies

Differential Privacy
Toni Mattis

Private Information Retrieval
Mazimilian Schneider

Trust-Based Access Control
Vincent Schwarzer

18

30

42

60

68

Introduction

The advent of cloud computing [1, 2] has greatly changed the IT landscape over the
recent years: Cloud providers offer a variety of services as on a pay-per-use billing model
over the internet. These services are grouped in different categories based on their level
of abstraction. The most basic form of these services is described as Infrastructure-as-a-
Service (Iaas): They offer service abstractions of hardware resources (e. g. storage space,
virtual machines). On a more abstract level, platform-as-a-service (PaaS) provides an
execution environment for services using specialized software frameworks. This way, the
programmer can concentrate on the application logic while deployment, service scaling
and data logistics are solved by the PaaS platform. Finally, entire software products are
offered as web applications under the term software-as-a-service (SaaS).

The virtue of cloud computing is the possibility to decouple applications and ser-
vices from their physical infrastructure: The operation of services is outsourced to cloud
providers in large-scale data centers. This leads to a consolidation effect of hardware
resources as the varying load on different services can be evened out across the data-
center. For the customer, this way of provisioning resources offers several benefits: The
pay-per-use billing model allows provisioning of a large amount of resources on short
notice with little up-front investment: Large-scale web applications can be created with-
out building a dedicated datacenter. In addition, the flexible provisioning allows a cloud
service consumer to quickly scale his infrastructure depending on his demand.

The greatest challenge of cloud computing is however the question of security: If data
and operations are outsourced to a third party, maintaining confidentiality, integrity and
availability are a challenge. This is further exacerbated by a complicated legal situation
as cloud providers often operate across countries and continents.

Until recently, most security algorithms relied on a clear distinction between trusted
and untrusted infrastructure. Software products assumed to be running on trusted
infrastructure or heavily relied on the presence of trusted services in a distributed sce-
nario. With cloud computing, the situation is more complex: On the one side cloud
service providers depend on their public reputation — they therefore have to provide
good service (i.e. integrity, availability) and ensure data confidentiality. On the other
hand, cloud operators cannot rule out the possibility of admin personnel abusing their
privileges. While intentional service disruption or data corruption offers little incentive,
theft of data is not necessarily discovered and can be monetized. Consequently, data
confidentiality is at greater risk than correctness and continuity of service.

It is therefore reasonable to assume a honest-but-curious adversarial model for de-
signing security mechanisms to protect data confidentiality in the cloud. This adversarial
model assumes that a cloud operator will offer correct and continuous service operation
while trying to learn information by eavesdropping and monitoring of program execution.

The current state-of-the-art in access control mechanisms (role-based access control)
and cryptography (symmetric and asymmetric encryption) can only partly solve the
security challenges of cloud infrastructures. Over several years of research in security
and cryptography, novel mechanisms, protocols and algorithms have emerged that offer

new ways to create secure services atop cloud infrastructures. These mechanisms make
use of the honest-but-curious adversarial model to increase security of cloud applications.

In the summer term of 2013, the seminar cloud security mechanisms was held at the
Hasso-Plattner-Institute. This technical report presents student contributions from the
seminar.

References

[1] A. Polze, “A comparative analysis of cloud computing environments,” Hasso-
Plattner-Institute for Software Engineering, Tech. Rep., 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A berkeley view of
cloud computing,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009.

Threshold Cryptography

Cloud Security Mechanisms Seminar — Summer Term 2013

Bjorn Groneberg

1 Introduction

In today’s world security plays a big role. Every critical system or infrastructure is
secured by access control systems and encryption mechanisms. To extend the security
in some cases it is not possible that one person or authority alone can access these
infrastructures but rather a group of authorities which perform a mutual checking of
their behavior. One of the most famous examples is probably the launch of a nuclear
bomb where at least two engineers have two use their keys to push the red button.
Another example could be the question who is allowed to sign pay checks in a big
company. If only one person is responsible then he can misuse this position for his own
benefits. To prevent this, pay checks could only be valid if two or more authorities have
signed them.

Threshold cryptography mechanisms allow it to perform these tasks in a secure and
efficient way. The idea is that secrets should not be programmatically hidden which
could lead to a single point of attack but rather using mathematical procedures. The
advantage of this approach is, that the global secret is not stored at any place but is
shared in a mathematical way. This paper shows how this can be achieved and which
problems can occur in the mechanisms.

Starting at section 3 the mathematical and cryptoraphical basis such as modulo
operator, Lagrange polynomial interpolation and Elgamal encryption will be presented.
The details of the threshold cryptography mechanisms are shown in section 4. This
includes an explanation of a secure secret sharing scheme and a threshold encryption
scheme. In the end, sections 5 and 6 summarize the report and give an overview about
further research questions.

2 Related Work

One of the first publications about threshold cryptography was published by Adi Shamir
in 1979. In [1] he describes a technique how to divide data into pieces in a secure way
which is still easy to compute. This mechanism is the basis for most of the threshold
crypto systems and will be described in detail in section 4.2.

A public key encryption scheme in combination with a signature scheme was pub-
lished by Taher Elgamal 1985 in [2]. He describes an algorithm which bases on the
Diffie-Hellman-Problem and discrete logarithm problem to encrypt and sign messages.
A closer look on the Elgamal encryption scheme will be given in section 3.3.

A threshold encryption scheme as a combination of Elgamal cryptosystem and Shamir’s
secret sharing was published in [3] by Desmedt and Frankel. They proposed a practical
non-interactive public key system. The details and problems with combining this mech-
anisms are also described in this paper in section 4.3. Further remarks on threshold
Elgamal was also published in [4].

Another part of threshold cryptography are threshold signatures and a multi-authority
election system. Shoup presented in [5] a threshold RSA signature scheme which is
completely non-interactive. A universal multi-party election system which guarantees
privacy, verifiability and robustness was published by Cramer et. all. in [6]. An overview
of both mechanisms will be given in section 4.4.

3 Foundations

In this section different basic techniques which are necessary for threshold cryptogra-
phy are introduced. At first, basic mathematics like the modulus operator and residue
class systems are explained. Afterwards, the Lagrange polynomial interpolation and the
Elgamal encryption scheme will be described.

3.1 Basic Mathematics
Mathematical foundations such as the modulo operator and residue classes are presented
in this chapter.

Modulo Operator

The modulo operator is a mapping which is defined as
fp:Z— 2y (1)

where p € N and p > 1. The modulo operator finds the remainder of an integer if it is
divided by the number p. If two numbers have the same remainder by the division of a
number p they are called modulo congruent to the number p. An example is shown in
the following listing.

20 mod 6 = 2 and
14 mod 6 = 2
= 20=14 mod 6

Residue Classes and residue class system

If all integers which are congruent to a given modulus are collected to one class, this
is called a residue class. Usually, the smallest positive integer in each class is chosen
as a representative. A residue class system are all residue classes to a given modulus
which are extended with an additive and multiplicative operation. Using this operations,
additive and multiplicative inverse elements are defined as follows:

additive inverse: a 4+ (—a) =0 mod p
where (—a) is the additive inverse element of a and vice versa.

multiplicative inverse: a - (a)”! =1 mod p

where (a)~! is the multiplicative element of a and vice versa. If the modulus p is prime,
every element has a multiplicative inverse element which can be computed using the
extended Euclidean algorithm.

3.2 Lagrange Polynomial Interpolation

The idea of the Lagrange polynomial interpolation is to find a polynomial which matches
to a given set of points. The graphical representation of this problem is shown in figure 1.
A solution for this problem was presented by Joseph-Louis Lagrange in 1795.

If there are k + 1 data points (2o, y0),- .-, (Zj,Y;),-- -, (Tk, Yr) Where no two z; are
the same, then there exists a polynomial interpolation of the least degree k with the
following formula:

k

L(x) := Z yili = yolo + ... +yil; + ...+ yrly (2)
=0

The ¢; are the Lagrange basis polynomials which are defined as:

r— Tr — X r—Ti-q X — Tigq T — Tk
6= 11 ™= = R (3)

0<m<k Tj— Tm Tj— X0 Tj—Tj-1 Tj— Tj4l Tj— Tk
m#j

The Lagrange polynomial interpolation is unique for the least degree k. For example, if

3 5 3 S
¢ 21 © f@)
1 - ®
I T T T T O T T T T T 21 I T T T T O T T T T T 1
-3 -2 -1 0 1 2 3 -3 -2 -1 j) 1 2 \3
_1 J _1
1, 1 5
(1,2),(~=2,2),(2,1) FO) = —sxt—xtd

Figure 1: Lagrange interpolation of given points

there are three points (1,2), (—2,2), (2, 1), then one can start to calculate the Langrange
basis polynomials with (3):

r—x1 x—x9 xT—(=2) -2 1, .,
0 rog—T1 X9 — T2 1—(—2) 1-2 3(1’)
- - 1 z-2 1
0 = t—”% T—% % v — (2% =3z +2)

T1—d0 T —x3 —-2-1 —2-2 12

r—x9 x—x1 x—1 z—(-2) 1, ,
g = . = . — — —
2 Tro — Ty T2 —I1 2—1 2—(—2) 4(Tt)

With these basis polynomials, one can compute the Lagrange polynomial interpolation:

L(xz) = yolo+y1ls +y2l2
1 1 1
Liz) = 2-—=(@*—4)+2 - —(@*-32+2)+ (2 +2—2)
3 12 4
1, 1 5

As a result the only polynomial with a degree of 2 which matches to the given points is
fl)=—32? -z + 3.

3.3 Elgamal Encryption

The Elgamal encryption is an asymmetric encryption scheme which was published 1985
by Taher Elgamal in [2]. The keys for this encryption scheme consist of two parts, the
public part and the private part. As the name indicates, the public key is known to
all communication parties whereas the private key has to be kept secret. If a person B
wants to send a message m to person A, B has to encrypt this message with A’s public
key. The cipher is send to A and only A can decrypt the cipher with the corresponding
private key.

The encryption scheme consists of three parts: key generation, encryption and de-
cryption which will be described in detail in the following.

Key Generation

If A wants to create a public private key pair, she has to find a large prime p and a
primitive root g. This primitive root is also called generator for the finite group Z,.
Then, A chooses a random number a € {1,...,p — 1} and calculates the number A
with A = g* mod p. The public key is the triple pub = (p, g, A) and the private key is
priv = a.

As one can see, to compute the private key a from the public key (p, g, A), one has
to calculate a = log; A mod p. This is called the discrete logarithm problem, to which
no efficient solution is known today.

As an example, A can choose the prime p = 23 and the primitive root ¢ = 5. The
random chosen number is @ = 6 Then, she can compute A = 5% = 8 mod 23 and the
key pair is pub = (23,5, 8) priv = 6.

Encryption

If B wants to send a message m € {0,...,p — 1} to A, B knows the public key pub =
(p, g, A) and choose a random number b € {1,...,1 —p}. Then, he can compute B = ¢°
mod p and ¢ = A’m mod p. The cipher which is send to A is the pair ciph = (B, ¢) .

To decrypt the cipher without knowing the private key a, one has to compute m =
(Al’)_1 c= (g“b)_l - ¢ which is hard due to the Diffie-Hellman-Problem.

For example, B wants to send the message m = 12 to A and chooses a random
number b = 3. After computing B = 5% = 10 mod 23 and ¢ = 8 - 12 = 3 mod 23 the
cipher is ciph = (10, 3).

Decryption

With the knowledge of the private key a, A can decrypt the cipher (B, ¢) to obtain the
message m. She computes m = c- (B“)_l mod p, where ~! is the multiplicative inverse

element in the residue class ring Z,. This inverse element can be computed with the

extended Euclidean algorithm. In the example A computes m = 3 - (106)71 =3.6"1=
3-4=12 mod 23.

The general idea of the Elgamal encryption scheme is the Diffie-Hellman-Problem
7], which says if there are two numbers g% and ¢°, no efficient way is known to compute
g®. In the Elgamal encryption scheme the numbers A = ¢® and B = ¢® are known but
the number A® = ¢% = B® is not known to a third party but is needed to compute the
multiplicative inverse element for the decryption.

4 Mechanism Details

This section describes different mechanisms for threshold cryptography. Starting with
basic definitions about secret sharing in part 4.1, part 4.2 explains an algorithm for
sharing secrets in more detail. In part 4.3 it is shown how the Elgamal encryption scheme
can be combined with a threshold approach. After this, part 4.4 gives an overview about
further threshold cryptography mechanisms.

4.1 Secret Sharing

The general idea of secret sharing is to distribute a secret s to n parties in that way,
that only a subset with a pre-defined amount of parties is able to recompute the secret.
In a simple scenario a so called trusted dealer is used to create the secret s with the sub
secrets g, S1,...,8n—1, which are shared among the n parties. After the creation and
sharing phase, the trusted dealer should delete the generated secret s. This means there
must be no place, where the global secret s is stored. Even if this secret s is encrypted
and protected with an access control system, the storage of s would lead to a single
point of attack. The advantage of secret sharing is the possibility to hide the secret
mathematically.

There are two possibilities for recomputing the secret. The first one is the (n,n)-
threshold, which means that all n parties are necessary to recompute the secret. If there
are less then n parties, they must not be able to recompute the secret and every party or
group of parties should not be able to retrieve any information about the global secret
s from their own secret(s).

The other possibility is the (k,n)-threshold. This means, that a subset of at least
k parties is necessary to recompute the global secret. The number k£ has to be defined
during the creation of the secret. But it is not defined which parties have to participate
in the computation. Again, it must not be possible that subsets with less than k parties
are able to recompute the secret or have any information about it.

Simple Approach

A very simple but also a very insecure approach for secret sharing would be the splitting
of the secret. Figure 2 shows an illustration how the 20 digit key is split into 5 sub keys
with 4 digits each. One disadvantage of this technique is the fact that a (n,n)-threshold
is needed. The more significant disadvantage is the dramatically reduced key range if 4
of 5 parties are combining their keys. For every party 4 out of 20 digits are known and
the key space would be 10'6. But if 4 parties combining their keys, 16 digits are known
and the key space would be 10%.

After explaining this simple approach for sharing a secret, the next section gives a
detailed description of a more sophisticated technique.

‘ 1873 7632 8732 3253 2312J

‘ 1873J ‘ 7632J ‘ 8732J ‘ 3253J ‘ 2312J

Figure 2: Naive solution for secret sharing

4.2 Shamir’s Secret Sharing

This secret sharing algorithm was published by Adi Shamir in 1979 in [1]. It is a (k,n)
threshold sharing scheme and is based on the Lagrange polynomial interpolation which is
described in section 3.2. Shamir’s secret sharing consists of two part which are described
in the following.

Dealing Algorithm

In the beginning, the parameters k and n for the (k,n)-threshold and the global secret
s € Zq have to be defined. The value ¢ has to be a prime, because only in prime residue
class rings it is ensured, that every element has a defined multiplicative inverse element
which is necessary for computation.

The first step is to choose k — 1 coefficients aq,...,ar_1 and set ag := s. Then, a
polynomial f(x) is built with f(z) = ag + a17 + asx + a_12*~1. To create the shares,
a variable i is set to ¢ = 1,...,n and points with s; = (¢, f(i)) mod ¢ of the polynomial
f(z) are computed. In the end, every party gets at least one point s; as a secret share,
whereas the first part i of the share can be public and the second part f(i) has to be
kept in private. The following shows an example of creating shared secrets.

(3,5)-threshold, ¢=11, s=ayp=06
Choose random k — 1 coefficients and build polynomial f(x) = asx? + ayx + ag:
ar=1,a2 =3
f(z)=32>+2+6
Calculating shared secrets s; = (i, f(7)) mod ¢ with i € {1,...,n}:
s1 = (1,10),s2 = (2,9),s3 = (3,3),54 = (4,3), 55 = (5,9)

This dealing phase is usually performed by a trusted dealer who has to forget all infor-
mation about the creation especially the global secret s and the shares s; to guarantee
a real shared secret without a single point of attack.

Recomputation

To obtain the global secret s from the shared ones, k points s; = (x;,y;) are needed. The
goal in the recompuation step is to find the polynomial f(z) = ag+a12+ asx +aj_12F !
with f(0) = ap = s which was created during the dealing phase. This can be done by
using the Lagrange interpolation with f(x) = L(z) for the k points. Due to the fact
that only the value f(0) has to be computed the Lagrange basis polynomials (3) can be

10

simplified by setting z = 0 and S C {1,...,n}||S| = k with S as the subset of parties
which participate in the recomputation.

—X
£j7075‘ = H ﬁ mod q (4)
meS J m
m#j

In the end, the global secret can be computed with the Lagrange formula (2) using the
basis polynomials from (4)

s=L(0) = Zyjfﬁo,s mod ¢ (5)
JES

Due to the uniqueness of the Lagrange interpolation to obtain a polynomial with
degree k —1 from k points it does not matter which parties are involved in the recompu-
tation step, as long as there are exactly k shares. The following listing shows an example
how the global secret can be recomputed using the Lagrange interpolation.

—I2 —X3 -2 -3

—I —I3 —1 -3 -1
2,0,{1,2,3} To—XT1 T2 — T3 2—1 2—-3 () o
—x —9 -1 -2 -1
, _ , _ , —92.91-9.6=1 mod 11
s = LO)=v1-liop28) +¥2 la0123) T Y3 l301.23 modg
s = 10:34+9-84+3-1 mod 11

s = 6

Again, after the recomputation which should be perfomed by the trusted dealer, he has
to forget everything to maintain the security of this mechanism.

Evaluation

With Shamir’s secret sharing algorithm the global secret s is mathematically hidden
with the shared secrets s;. No party is able to retrieve any information about the global
secret if there are less than k shares available. It can be proved, that if one share is
missing, every possible solution for the global share s has the same probability. Figure
3 shows a graphical representation of this fact. The points x = 1 and x = 2 are known
with the values but the point z = 3 is not known in the (3, n)-threshold.

Furthermore, Shamir’s secret sharing algorithm is very flexible. It is easily possible
to increase the overall number of parties n after the initial dealing phase while compute
new shares from the polynomial f(z). It is also possible to remove shares, but only if
they are really destroyed. Another advantage of this mechanism is the easy replacement
of all shares without changing the secret. A trusted dealer just needs to find a new
polynomial f*(x) with the same ag. Of course, the old secrets have to be destroyed, as
well. At last, it is also possible that one party can obtain more than one share. This
could be useful if one party should be able to recompute the secret alone while other
parties should not.

A disadvantage of this algorithm is that it has to be ensured that the trusted dealer
is really trustworthy and deletes every information about the shared and the recomputed
secret.

11

Figure 3: Interpretation of Shamir’s secret sharing

4.3 Threshold Elgamal Encryption

The Elgamal encryption scheme can be used in threshold environments where the private
key is shared over n parties. To achieve this, the Elgamal encryption scheme which was
described in section 3.3 is combined with Shamir’s secret sharing algorithm from the
previous section.

Key Generation and Encryption

The generation of the private and public key is the same algorithm like the normal
Elgamal encryption. The difference is that the secret key is shared using Shamir’s secret
sharing.

It is important to have a closer look on the values which are used for the modulus in
both algorithms. To achieve a secure encryption, the Elgamal encryption makes use of
the prime p for the modulus. When combining this scheme with Shamir’s secret sharing
the modulus ¢ for the secret sharing has to be set as g = @ where ¢ is Fuler’s totient
function which is ¢(p) = p — 1 if p is prime. It should also be remembered that the
modulus g for Shamir’s secret sharing has to be a prime. The reason for this constraint
between p and ¢ and the problem with this will be shown in the decryption part of the
threshold Elgamal encryption scheme.

The encryption for the threshold scheme is a normal Elgamal encryption with the
public key and a random chosen number. The advantage is that the party who encrypts
the message cannot see that a threshold scheme is used and the information about the
parties who share the secret is hidden.

Decryption

After receiving the encrypted message, at least k parties have to work together to decrypt
it. A simple approach would be, that every participating party ¢ sends his share s; to a
trusted dealer and this dealer recomputes the global share which is the private key for
decrypting the cipher. The disadvantage is that the global share is computed during the
encryption and the parties have no control about the further use of their shares s;.

To improve the decryption different sources state the following algorithm. FEvery
participating party j receives the cipher (B, c¢) and computes a decryption share

dj =BY mod p (6)

12

This decryption share is send to the trusted dealer who computes the message m with
the following formula:

—1
[T ¢ modp (7)
JES

Where S is the subset of parties which participate in the decryption and ¢; g are the
Lagrange basis polynomials from formula (4). The following listing shows how this
formula could be derived from the Elgamal decryption scheme:

m = (Ba)f1 -¢ mod p
> yiljo,s mod g\ !
=m = Bi€s -c mod p
Aom = (Byoeo 0,smod q+...+Yyx—1€k—1,0,5mod Q)i -¢ mod p
—~m = (Byofo ,0,5meod ¢ . BYx—1£k—1,0,5m0d Q) . ¢ mod p
—1
=m = H Bngj,O,S .¢c mod P
jes
-1
=m = H d"® ¢ mod p
jes

Constraints for Decryption

The implication from the previous section which is marked with * is only valid under
certain conditions. The term

BYoto,0,smod gt +yk—1€k—1,0,sm0d ¢ 1151 p

can also be written as
BFate mod p

This is possible because the operator mod ¢ can only be applied to each summand but
not on the whole sum in the exponent. If the sum exceed the modulus ¢ there are two
possible cases. In the first case k is even and with 2¢g = p — 1 it follows:

BS2¢ta _ gSp-l+a _ gsp-1 . pga_ ga 04 P

In this conversion a direct implication from Fermat’s little theorem is used, which states
that a?~' =1 mod p if p is a prime. In the other case k is odd and it follows:

Bz 2tata _ pr5to-ltete _ g*3te-1. pa. pa _ pa. po # B* mod p

This means, that the marked implication is only valid if the £ in the sum is even which
has a theoretical probability of 0.5. As a result of this investigation it can be claimed
that using threshold Elgamal encryption in this way, false results can be computed.
Unfortunately, it is not clearly visible which value the sum has, because it is never
directly computed.

13

The following listing shows an example where the decryption of threshold Elgamal
fails due to the previous explained problem.

pub = (23,5,8)
priv. = 6
shares = (1,10),(2,9),(3,3),(4,3),(5,9)

The message m = 12 is encrypted with the public key and the random chosen b = 3:

B = 5=10 mod 23
¢c = 8.12=3 mod 23
cipher = (10,3)

The decryption starts with computing the decryption shares d; for each party and the
Lagrange basis polynomials £; ¢ from the example in section 4.2

di = 10" =16 mod 23
dy = 10° =20 mod 23
d; = 10°=11 mod 23
l10,5 =3,020,5 =8,030,5 =1 with § = {1,2,3}

The trusted dealer should compute the message with the formula (7):

/ G0s f£o0.5 305\)
m = (dy77 dy T - dg ¢ mod p

~

— (16°-20°-11')""-3 mod 23
= (17)7'-3 mod 23

19-3 mod 23

11#412=m

~

3.3 3 3
Il

It is visible that the decrypted message m/ is false. This could be corrected by multiplying
with the multiplicative inverse element of the factor BY = 10!

= BY ' m' modp

m

m = (10")7' 11 mod 23
m = 22-11 mod 23

m = 12

To circumvent these constraints, one could theoretically set ¢ = p—1 to use the modulus
in the exponent in the right way. But with the constraint that p and ¢ have to be prime
the amount of possible values for these primes would be very small. Another solution
is to detect if the decrypted message has to be multiplied by the multiplicative inverse
element of B? and correct the message in that way if necessary.

4.4 Further Threshold Cryptography Mechanisms

Beside the Elgamal encryption there exists further cryptography mechanisms which can
be extended with a threshold implementation. In this section an overview of a threshold
RSA signature scheme and a distributed e-voting mechanism is displayed.

14

Threshold RSA

The RSA signature scheme is used to verify that a message was send from a specific
sender and to ensure the message integrity. It requires a public-private key pair and a
cryptographic hash function H(z). If B wants to sign a message m, he computes the
Hash H(m) of this message and encrypts this with his private key.

sign = enc (H(m), priv)

If A receives the signed message m’ she can verify the signature by decrypting the
signature with B’s public key and computes the Hash H(m’) of the received message. If
the decrypted hash and the computed hash are equal she can be sure that B sent this
message and the message was not manipulated during the transmission.

dec(sign, pub) Z H(m')

This signature scheme can be extended with a (k,n)-threshold mechanism. The private
key is shared over n parties where k parties have to work together to create a valid sig-
nature. Every party ¢ which participates in the signature creation computes a signature
with his own shared private key.

sign; = enc (H(m), priv;)

A trusted dealer receives all partial signatures and collect them to retrieve the global
signature.
sign = collect (signy, .. ., sign)

The mathematical basis for this mechanism is very similar to the threshold Elgamal
encryption. In the end, the receiver of the signed message can verify this threshold
signature in the normal way. Usually the receiver does not even know that a threshold
signature scheme was used. A detailed description of threshold signature schemes can
be found at [5].

E-Voting

In an electronic voting system the votes could be encrypted to guarantee anonymization
and the integrity of the vote. The count of the votes should be observed that the counting
authority is not able to manipulate the vote. To achieve this, threshold cryptography
can be used as well. Cramer presented a multi-authority election system in [6] which
will be described in the following.

The votes are represented as numbers, more precisely —1 for a negative and +1 for a
positive vote. These votes are encrypted with the public key of the counting authorities
using the Elgamal encryption scheme. After the encryption the votes are published on
a public bulletin board which ensures that every voter can verify that his vote has not
been manipulated. Due to the random part in Elgamal encryption similar votes do not
result in the same encrypted vote. This means that everybody could see that somebody
has voted but it is not visible what.

After publishing the encrypted vote one or more authorities counting these votes and
compute a encrypted result of the election. Mathematical procedures which are similar
to these of the threshold Elgamal encryption are used to guarantee that the counting
can be performed even if the votes are encrypted. After counting, the authorities use
their shared private keys to decrypt the voting result. The sharing ensures, that one
authority alone is not able to manipulate the election.

15

5 Future Work

Threshold cryptography is still an open point for further research. One of the most
discussing points are the use of the trusted dealer. He is a theoretical point of attack
because he knows the global secret during the creation and also the encrypted message.
The question is how to implement such an authority in a trustworthy way. One solution
could be the distributed generation of the shared secret. In this scenario every participant
computes one part of the key in a way that every party receives their shared secret but
the global key is never computed directly.

Another open point is the problem of choosing the right modulus for combining the
Elgamal encryption scheme with Shamir’s secret sharing algorithm. As stated in section
4.3 the choice of the primes p and ¢ which is often claimed as p = 2¢ + 1 can lead to
false results. A reason for this could be that the threshold encryption schemes are not
very common in real world software solutions. Nevertheless, there are some prototype
implementations which can be found at [8] but they use a different approach for the key
generation and circumvent the problem with the modulus in the exponent.

6 Conclusion

This paper gave an introduction to threshold cryptography and showed some of the
mathematical basis for the used algorithms. The Lagrange polynomial interpolation
and the Elgamal encryption scheme are introduced as a tool for threshold cryptography
mechanisms. After giving a short overview about general secret sharing and a simple
example, the more sophisticated approach of Shamir’s secret sharing algorithm was
presented which uses the Lagrange polynomial interpolation as basis.

It has been shown how the Elgamal encryption scheme could be extended with
Shamir’s algorithm to retrieve a threshold encryption mechanism where private keys
are shared over different parties. A mathematical approach and a numeric example il-
lustrated the difficulties when combining these two mechanisms. In the end an overview
about further threshold cryptography mechanisms such as threshold signatures and
multi-authority e-voting was given. As a result, threshold cryptography is a high poten-
tial technique in nowadays security environment but has not become widely known in
the daily business.

References

[1] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp- 612-613, 1979.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” Information Theory, IEEE Transactions on, vol. 31, no. 4, pp. 469-472,
1985.

[3] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in Advances in Cryptol-
ogy—CRYPTQO’89 Proceedings. Springer, 1990, pp. 307-315.

[4] G. Christoph and A. Steffen, “Secret sharing & threshold decryption mit dem elgamal
kryptosystem,” 2010.

[5] V. Shoup, “Practical threshold signatures,” in Advances in Cryptol-
ogqy—EUROCRYPT 2000. Springer, 2000, pp. 207-220.

16

[6] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally efficient
multi-authority election scheme,” Furopean transactions on Telecommunications,
vol. 8, no. 5, pp. 481-490, 1997.

[7] W. Diffie and M. E. Hellman, “Privacy and authentication: An introduction to
cryptography,” Proceedings of the IEEE, vol. 67, no. 3, pp. 397-427, 1979.

[8] A. M. Davis, D. Chmelev, and M. R. Clarkson, “Civitas: Implementation of a thresh-
old cryptosystem,” 2008.

17

The Bitcoin Protocol

Cloud Security Mechanisms Seminar — Summer Term 2013

Johannes Henning, Robin Schreiber

1 Introduction

This paper describes the concepts and their basis as well as the implementation of the
Bitcoin Protocol. The Bitcoin Protocol is an abstract protocol which tries to achieve
byzantine fault tolerance in a distributed system without relying on a central authority
that controls all the ongoing activity in the network. In order to solve this problem the
protocol introduces a special data structure that all nodes in the network participate in.
The participation involves a significant amount of computational power, so that each
node has to invest a certain amount of work to be part of the system. The main idea
behind this concept is, that malicious or fraudulent contributions to the network do not
propagate because it may later on be discovered by other “honest” nodes and cause the
hard earned contribution to be rejected by the network. The assumption is, that the
majority of nodes are honest and also hold the majority of computing power. The main
benefit from this approach is, that one has instantiated a system of trust that is not a
single entity but rather distributed across all nodes in the network. A central trusted
authority, which approves every participation (but might also exploit the system together
with its users) is therefore unnecessary. Since the introduction of Bitcoin as a monetary
union, the Protocol has often been directly connected to the Currency, although it is
actually an entirely independent concept that can be applied to many different domains.

2 Foundations

A hash function is any algorithm that maps data of variable length to data of fixed
length. This implies that there exist multiple inputs that map to the same output e. g.
the same hash. This is called a hash collision [1]. All cryptographically save hash func-
tions guarantee that hash collisions are almost impossible to find. If an implementation
becomes vulnerable in this regard it will no longer be used for implementing any security
related algorithms.

“Public/Private Key Authentication and Encryption” [2] relies on a public key asso-
ciated with a certain individual and private key only known to that one individual. The
algorithms involved allow information to be encrypted with the public key in a way that
it can only be decrypted by the private key, as well as the other way around, which is
called signing.

3 History

There are three principles Bitcoin is based heavily upon: Public/Private Key Authenti-
cation and Encryption, Proof of Work and Time-Stamping.

18

3.1 Public/Private Key Authentication and Encryption

This is a well-known principle that was first introduced by Merkle [2] as well as further
improved. Other publications have discussed this approach in depth and it seems to
be well understood in the community, especially considering it is the base for RSA and
therefore our everyday SSL. Hence we will not discuss it further in this paper.

3.2 Proof of work

proof of work (POW) was first introduced by Dwork and Naor [3] although they called
it“pricing function”. Their initial idea was refined and expanded in multiple papers.
They identified, that the reason why we get more spam via email than via regular mail
is, that emails are significantly cheaper. They wanted to introduce postage for email
without hindering the free communication that the whole idea of the internet is based
upon. The idea they came up with was to have a user or rather the user’s computer
solve a mathematical problem that was known to take a certain amount of time, there-
fore limiting the amount of interactions the user could make with the system e.g. the
mail-server. The postage in this case would be the computational time invested for
solving the problem. A downside of this approach was identified in their publication as
well, namely the utter uselessness of the actual computation. Since a significant amount
of time was invested into computing the result of the pricing function it is just plain
wasteful to disregard the result afterwards. To this day this is the biggest problem of
POW functions.

Jakobsson and Juels [4] summarized state of the art vocabulary and useful implemen-
tations considering POW and offered formal definitions. Furthermore they introduced
“Bread Pudding Protocols” as a solution for the problem of the useless computation
done by POW functions. The name is based upon the reuse of old bread in some east-
ern dishes and accordingly tries to reuse the computation done by the POW functions.
In the Bread Pudding Protocols any server is also a client towards a different server,
therefore the server could redistribute smaller parts of the POW that he has to do to
his clients, who in turn proof to him that a certain amount of time was invested by
solving the small part. The server could then combine the partial solutions of its clients
to produce the POW required by its server.

Juels and Brainard [5] considered the dynamic reconfiguration of proof of work function
difficulty in order to make DDOS attacks less feasible. When a server comes under an
attack it starts to distribute puzzles to its clients, that the clients have to solve before
their request gets answered. The difficulty of the puzzle can be scaled according to the
amount of requests that the server is facing. Considering the nature of depletion attacks
(namely SYN flooding) they also showed a way to implement their solution stateless and
therefore not requiring any memory to be allocated on the server for the session before
the client has solved its puzzle.

Rivest, Shamir and Wagner [6] looked at POW from a different perspective. They dis-
cussed the possibility of releasing documents to the public while guaranteeing that said
documents could not be read before a certain amount of time had passed. One way this
could be done was by using an encryption scheme that had been compromised, therefore
no longer being secure, but still taking a certain amount of time to crack. Since they
had real time in mind and not computational time they also introduced the idea of al-
gorithms for POW functions that cannot be parallelized, we will discuss this approach
later on.

19

The suggestion of a concrete algorithm and implementation that the Bitcoin Protocol
uses is based upon the aforementioned approaches: Hashcash [7]. Here partial hash-
collisions are used to create easy to check but hard to solve POW functions. Hashcash
was designed as a measure for metering of publicly available online resources. They also
considered multiple versions of their function, relevant to different use cases.

3.3 Time-Stamping

The story of time-stamping is somewhat simpler since most of it is based on the work
of Haber and Stornetta. They first introduced the time-stamping of digital documents
in 1991 [8] under the light of digital documents being introduced into the legal domain
and therefore being dependent on some kind of reliable, not forgeable time-stamp. In
1993 they refined the approaches [9] to cover distributed time-stamping in an unreliable
network. This approach is widely implemented and almost verbatim described in the
original Bitcoin paper [10].

4 Mechanism Details

In the following two sections we will discuss in depth how POW and time-stamping work
and are described in the aforementioned publications.

4.1 Proof of work

Proof protocols are a foundation for many concepts in I'T security. While typically used
to proof that one possesses a certain secret (e.g. Public/Private Key Authentication),
POW functions aim to proof that a certain amount of computational power was spent
in a certain amount of time. The domain in which they were proposed was mainly
access-metering and abuse-protection. The first use case for POW functions was spam
prevention for emails [3] and was based on solving small cryptographic functions on the
email header and timestamp. As with all POW functions, solving one is always done
through some kind of brute force approach e.g. trying to crack a small encryption or
continually modifying a string in order to produce a certain hash collision.

As it is usually the case in cryptography, the POW approach is based on the assump-
tion, that one way functions exist, which is yet to be proven [4]. The generally accepted
definition of one way function is, that it is impossible to reverse. Therefore while com-
putation of f(x) given x should be moderately easy, given f(z) it should be multiple
magnitudes harder (e.g. infeasible) to compute z. A hash-function is a function that
satisfies this criteria, for it is considered to be infeasible to find hash-collisions in all
widely used implementations, as soon as vulnerabilities are found in this regard, the
usage of the specific implementation is no longer recommended.

There are multiple characteristics a POW function might have:

e probabilistic cost: as opposed to fixed cost, POW functions typically have proba-
bilistic cost. We can further differentiate between bounded and unbounded prob-
abilistic cost, which refers to the predictability of the amount of work a certain
POW function will take

e interactive/noninteractive: the user might choose his own challenge to compute
or the server might provide one for him. Security implications are obvious, since
it would typically be easier for the user to precompute answers, if he is the one
choosing them

20

(PUBLIC: hash function #(-) with output size k bits
T « MINT(s,w) find z €g {0, 1}* st H(s||z) 'L, OF
return (s, x)
V « VALUE(T) H(s|lz) 'L, o
return v

Figure 1: Hashcash pricing function [7]

e publicly auditable: the POW can efficiently be verified by a third party

e trapdoor free: in this context a shortcut within the POW function is called a
trapdoor. In early implementations it was considered a good idea for certain use-
cases, e.g. having a trusted mail-service that could send mails without investing
as much computational power

3, 7, 4]
While POW functions can be based on any one-way function, the implementation of
Hash-Cash and therefore the Bitcoin Protocol, relies on partial hash collisions, is non-
interactive, trapdoor free, has unbounded probabilistic cost and is publicly auditable.
As shown in figure 1, the MINT function takes a string s and a number w which is
the required size of the hash-collision. It concatenates s with a random binary number
x of a specified length and hashes the result to produce a hash-collision of size w with
0% e.g. the first w characters of the hash need to be zeros. The fastest known algorithm
for this MINT function is brute force (e.g. trying out different values for z), there is no
telling how fast it will be or if it will ever find a solution (unbounded probabilistic cost)
and there is no know trapdoor.
The function returns the original string s and the random addition x producing the
hash-collision, therefore any party that acquires the s and x can check the correctness
of the values by concatenating z to s and applying the hash-function once. The amount
of effort required for this check is therefore significantly lower than the amount of work
invested in the minting process, in consequence this MINT function is publicly auditable.
In this particular implementation the string s is chosen by the user (non-interactive),
however this does not mean that there cannot be any further requirements on the chosen
string. For example, the receiver of the results might require the string to contain a
current time-stamp. This approach is similar to the initial idea of Dwork and Naor [3]
and is susceptible to a precomputation attack. Fortunately this does not pose a problem
for Bitcoin which will become clear further down.

4.2 Time-Stamping

Often there is a need to certify when a document was created or last modified. For
instance when documenting the approval of a patent, it is of vital importance to be able
to proof when a certain idea was first documented. Hence there exist authorities mainly
concerned with verifying analog documents such as patents or contracts. Since analog
documents are bound to their medium it is possible to verify that the time-stamped
document has not been tempered with and that the stamp by the authority is genuine.

21

In the age of the internet, digital documents are steadily becoming the norm and it is
not hard to imagine a world, where most documents are exchanged in digital form. For
this very reason it is paramount to provide an equivalent mechanism for time-stamping
and signing digital documents that is infeasible to manipulate.

So how can we achieve this when digital documents are by nature easy to manipulate
and not bound to any physical medium? First of all we need to realize what is needed
to securely date an event:

If an event was determined by certain earlier events, and determines certain
subsequent events, then the event is sandwiched securely into its place in
history. [9]

With this idea of linking every event to events that happened earlier and familiar con-
cepts such as public/private key encryption/signing as well as hash functions Haber and
Stornetta [6, 9] proposed a distributed signing authority that can securely timestamp
documents without the need for making them publicly accessible, which is important for
sensitive data.

The basic idea is best illustrated by the following formula:

Cp = (n7tmIDn7yn; Ln) L, = (tnfla ID,,_1, ynle(Lnfl)) [6]

C,, is the client certificate it contains the sequence number n, the time t, the client id
ID, the hash of the signed document y and a reference to the last entry L, which in turn
has its own time, ID, document hash and the hash of the previous L: H(L,_1). So what
is being built here is a linear list, with each entry referencing its predecessor. Important
to note is also that we save the hash of our predecessors L which in turn contains the
hash of its predecessor and so on. It therefore becomes infeasible to insert anything
into this list or delete anything from it, since the entire following list would need to be
modified, since all subsequent hashes would change. This of course is conditioned on the
fact, that we cannot produce two different documents that have the same hash, which
is an assumption about the used hash function.
While it demonstrates the taken approach quite well, a linked list is not a particularly
efficient way to store huge amounts of data, especially when keeping in mind how one
would approach verifying the timestamp of a certain document, which would involve
traversing the list so far backward till one reaches a trusted event, while recomputing
all hashes up to this point and comparing them with the stored ones. At least when
thinking of a globally accessible signing service one would not expect a linked list to be
the data structure of choice, which is what Haber and Stornetta identified as well [9].
As a more scalable and distributable approach they suggested storing the certificates
inside a Merkle tree [11]. The basic idea stayed the same, only now the list of document
hashes is by a binary tree as illustrated in figure 2 [12]. The approaches from both
papers are implemented verbatim in Bitcoin, transactions are hashed via Merkle trees
and Bitcoin blocks are linked in a linear list.

After a predetermined amount of documents the last round value will be published via
a print medium, e.g. newspaper and therefore anchoring the event securely in history.

5 Implementation

As hinted in the Introduction, the Bitcoin Protocol tries to store bits of information
in a distributed fashion. At the same time it guarantees the authenticity of the stored
information without relying on a central authority that functions as a“trusted part”. In

22

Round Value

h(H18| | RH(i-1)

h(H14]||H58)

h(document)

Figure 2: Time-stamped document-hashes are accumulated by a Merkle tree and con-
tained within the round value node via hashing the concatenation of the child node
hashes recursively

order to achieve the authenticity of the stored information, the protocol tries to establish
something called “stabilizing consensus”[13] with regard to the correctness of the infor-
mation which is defined as follows: Let us assume that we have different instances of the
same information floating around in our network (which in a distributed system is very
likely the case). The problem is, that only one instance of the information is correct,
while all the others may have been introduced by fraudsters who want to benefit from
the propagation of the false information. The Bitcoin Protocol now guarantees that
under the assumption that the majority of computing power is in the hands of “honest
nodes”, the network will always agree on the correct instance of the information.

The Bitcoin Protocol is based on the idea that the information is stored inside Blocks
which are then arranged in a chain, where each block is dependent on the hash of its pre-
decessor. This is basically the application of a Time-stamping Server [9, 8] described in
the previous sections. The second major ingredient to the protocol is to fuse every block
in the chain with a Proof of Work as described in section 4.1, so a reasonable amount of
computing power has to be spent on the creation of such a block. In the Bitcoin Protocol
the Proof of Work is built up as follows: Every block consist of the information that is
stored and a nonce, which is an integer that can be varied arbitrarily. Also included in
the block is the hash of the previous block (this implements the time-stamping). The
hash is computed by applying the SHA-256 function twice. The protocol now requires
the hash of the newly computed block to have exactly k trailing zero bits (similar to the
constraint used in the implementation of Hashcash [7]). Again, the number k works as
a parameter for the difficulty of computing a new block in the chain.

Each node in the network now functions as a worker, who computes new blocks for an
existing chain. In order to do that a node not only tries to find the required hash-collision
but also verifies that the information stored in the block is actually correct. Nodes also
check the blocks that other nodes have computed for correctness in order to consider
them as the basis for the next block. As we assume that the majority of nodes can
be considered “hones”, correct blocks will sooner or later propagate to all areas of the

23

network. It is safe to say that this is kind of a chaotic state of the system, as many nodes
might compute a valid solution for the block at the same time, and different clusters
of nodes might start to consider different versions of the chain as the correct one. As
a result a lot of differently sized chains are propagated in the network. To solve this
problem, the protocol now defines that the longest chain is the one who stores the correct
instance of the information. A node that starts to extend an existing chain will therefore
only do that on the longest one, as it behaves according to the protocol. In case a longer
chain appears while it has already started computing a block, it will cancel computation
and commence extending the new longer chain. Given the assumption that the majority
of computing power is in the hands of “honest nodes” who verify the information in a
trusted way, the longest chain must therefore also correspond with the correct instance
of information. This has a self-stabilizing effect on the network, as it gets less and less
likely for the longest chain to be overtaken by another chain, the higher the lead of the
longest chain is. In fact the complexity of computing an alternative chain increases ex-
ponentially as shown in [10]. This makes critical race-conditions between multiple chains
extremely rare cases, which have only been encountered in scenarios where the protocol
received a critical update which still needed time until it propagated to all nodes in the
network.

5.1 Applications

It is important to realize that the type of information stored with the Bitcoin Protocol
is independent from the protocol itself. This enables a wide variety of use cases for the
Bitcoin Protocol that goes way beyond the implementation of decentralized currency.
Indeed the storage of nonvolatile information, as described in the abstract example, is a
rather useless and also inefficient application of the protocol. In fact the Bitcoin Protocol
makes most sense when we have an ever-growing amount of information, e. g. the history
of money transfers between people. In this case we do not have to repackage the same
information in every block over and over again, but instead can use them as checkpoints
for different versions of the information. There are basically only three aspects in which
the different applications which use the protocol vary. One is obviously the type of
information that is stored within the blocks. The second one is the process with whom
a single node can verify the correctness of a certain block. Lastly, most applications add
some kind of incentive to the protocol, which creates an intrinsic motivation for nodes
to behave honest and keep the network running.

5.1.1 Bitcoin

Bitcoin makes use of the Bitcoin Protocol to implement a decentralized digital currency.
Users can create wallets which are basically a simple Private/Public-Key pair. The
most important thing to understand about Bitcoin is, that there is no data structure
that resembles a Bitcoin. Instead Bitcoin models the flow of money between the wallets
by transaction-objects. A transaction-object contains (among other things) the hashes
of the wallets of the participating users, the amount of money transferred between the
wallets, and references to older, already valid, transaction-objects which are also called
“spending transaction”. Spending transactions can be regarded as the source from which
the newly created transaction receives its money. The amount of money in a wallet is
therefore the sum of all the unspent transaction-objects who contain the hash of the
respective wallet as the recipient. Clearly, the transaction-objects are the manifestation
of what Bitcoin actually is. Consequently the trustworthiness one can put into such a

24

system stands and falls with the authenticity of the collection of transaction-objects that
one receives from the network. Therefore Bitcoin stores the transaction-objects within
the computed blocks. When a node tries to compute a block it not only tries to achieve
the desired hash condition but also verifies that the transaction-objects themselves are
valid: This includes making sure that no double spending of a previously spent trans-
action occurs, or that the transaction was actually initiated by the user who submitted
the transaction. In the end, the longest chain in the network contains the correct his-
tory of transactions that have been performed within in the network. Computing a
block in Bitcoin is a fairly advanced task which cannot be carried out by any user who
wants to just use Bitcoin as a monetary union. Nodes therefore are service providers for
clients who want to place a transaction into the system so they do not have to invest
the huge amount computational power to enact a transaction. On average the current
Bitcoin network produces one block every ten minutes. This is actually not very fast,
but keep in mind that a single block can contain multiple transaction-objects at once
(currently a maximum of 2°!2), so the network is able to serve a huge amount of orders
every 10 minutes. All this ultimately begs the question where all the Bitcoins actually
come from, if there are only transaction-objects that describe the transfer of existing
bitcoins. For this purpose, Bitcoin introduces a special kind of transaction, a so called
“generating transaction” which is basically a transaction-object without a source, or
existing spending transaction. It literally spills bitcoins from nothing and can therefore
only be created by the protocol together with a newly computed block. This principle
is often called “mining a Bitcoin” although this terminology is quite misleading as not
the actual coin is computed but rather the “right” to shift coins from one source to the
other. The idea behind generating transactions is to serve as an incentive for nodes to
keep the network running. The amount of coins a generating transaction produces is
halved by the protocol every 2016 Blocks (approximately every two months), and will
ultimately reach zero when 21 Million Bitcoins are in circulation. The total number of
coins is therefore limited, and there will be a time when no new coins can be computed.
However Bitcoin maintains another kind of incentive from that time on, in the form of
transaction fees that can be gathered by nodes from the clients who place the orders.

5.1.2 Namecoin

Namecoin employs the Bitcoin Protocol to store mappings from domain names to IP
addresses in a distributed network. This globally accessible and, given that the protocols
assumptions hold, also correct mapping can then be used to perform the same lookup a
DNS server would perform, just without having to rely on a trusted party that deployed
the DNS server. Namecoin reuses a lot of the codebase of Bitcoin, mainly to simplify the
implementation overhead and therefore reuses a lot of concepts introduced in Bitcoin.
For example it stores the mappings within the same transaction-objects as Bitcoin. It
also has a similar incentive as Bitcoin called Namecoins. Similarly Namecoins are created
with the creation of a new block, but can only be spent once to place a new transaction.
That means, unlike Bitcoin, there is no continuous flow of Namecoins and the network
will eventually run out of them. Namecoin also lets domain mappings expire if they do
not occur within the 250 newest blocks. This means that a domain has to be updated
at a minimum of every two months to stay within the DNS mapping.

25

5.1.3 Bitmessage

Bitmessage constitutes probably the most exotic application of the Bitcoin Protocol
given in this paper: The goal of Bitmessage is to transfer messages between peers in
a secure and encrypted fashion, much like PGP for Mail-services does, expect it is not
reliant on a trusted party such as the mail-server or requires some kind of key exchange
or a trusted certificate. Instead Bitmessage uses blocks to store the encrypted messages
in. This leads to a chain, that basically contains all messages that have ever been send
between peers in the network. This means any node in the network can get to any
message that has ever been sent, and the Protocol also guarantees that this message is
authentic for reasons we have been describing throughout this paper. As all messages
can only be decrypted by the node to whom the message was sent, the fact that everyone
receives every message does not bear a security risk. Still, every node has to deal with
a lot of messages that are of no interest to them. To simplify the access to the messages
relevant to a specific node, Bitmessage introduces additional tree-like structures that
speed up access times. [13]

6 Future Work

6.1 Usefulness of Proof of Work

Some problems with POW identified in the first publication still exist to this day, namely
the uselessness of the computation. While solutions were offered, like the “Bread Pud-
ding Protocol” [4], nothing has yet come close to turning the computation into something
really useful. There are quite a few initiatives dedicated to acquiring as much compu-
tational power as possible for scientific research and there seems to be no shortage of
computationally intensive questions that we would like answered. One can only imag-
ine how useful an infrastructure like the Bitcoin network could be if it was computing
something worthwhile in addition to providing its current function.

6.2 Stability of Proof of Work

Hashcash and subsequently Bitcoins POW function are CPU bound. The problem with
this was identified by some of the early publications as well, e.g. Hashcash offered
another flavor of their MINT function that was non parallelizable [7]. Especially consid-
ering the original use case of POW functions, e. g. metering access and preventing abuse,
it would seem that fairness towards the regular user should be considered as elemental.
The problem with CPU bound algorithms as POW functions is, that CPU speed varies
largely across different devices that still might want access to the common resource,
consider for example a pda that wants to send an email. Therefore the threshold for the
POW function needs to be small enough that even the aforementioned pda can still send
an email. But reality suggests that malicious users, which want to send spam are able to
acquire a large amount of CPU power for doing so, therefore needing the POW function
to have large thresholds to make spam infeasible. This contradiction hinders the use of
POW functions and their relevance for their original purpose [14]. While these problems
can be solved within the domain of emails by reputation systems [15], another approach
would be not to use CPU bound algorithms.

As suggested by Dwork and Naor [16] and refined by Abadi and Burrows [17] memory
speed varies much less then CPU speed and therefore can guarantee fairness and en-
sure the usefulness for POW functions. These thoughts might become important for

26

the Bitcoin network in the future. Recent introduction of new hardware has shown how
much influence one company can have on the Bitcoin network [18, 19]. Since everything
depends on the majority of the network being honorable it might become necessary to
change the Bitcoin POW algorithm to memory bound since it would require much more
resources to take over significant amounts of the network.

6.3 Problems related to Implementation

The Bitcoin Protocol itself is not subject to change dramatically in the future. What
however will change and also affect the world as a whole are the different implementations
and applications of the Bitcoin Protocol. It is important to realize that the Bitcoin
Protocol only delivers an approximate solution to the byzantine fault, which holds as
long as the majority of computing power is in trustworthy hands. As of now this might be
the case, as the official Bitcoin Network currently outperforms the 500 supercomputers
combined by a factor of 8 [20]. This is not only possible because of the sheer number of
nodes in the network but also that many of the hardware used by the nodes is specialized
for the sole purpose of block computation. In fact, this makes it even harder to estimate
the total amount of computational power comprised by the network. Nonetheless there
are also flaws in the specific application of the protocol itself. In case of Bitcoin for
example, there had been a major bug in the verification of transactions, which allowed
users to harvest large amounts of Bitcoins by exploiting an uncatched integer-overflow.
The solution of the problem involved an update to the protocol implementation which
had to be propagated to all nodes in the network as quick as possible. This lead to
a race condition between two chains within the network, one belonging to the nodes
stuck at the old version of the protocol, and the other one maintained by the nodes who
already adopted to the bugfix. The race luckily turned out in favor of the chain owned
by the nodes with the bugfix, but this incident emphasizes that the Protocol itself is not
invulnerable, and especially not if bugs exist in the actual implementation.

6.4 Anonymity

Although Bitcoin is often advertised as Anonymous, most implementations do not guar-
antee anonymity at all. Anonymity is in fact independent from the Bitcoin protocol,
and instead bound to the way we store the information inside the blocks in the network,
which indicate who talked, send money or interacted with whom. Implementations such
as Zerocoin [21] exist, which provide means to completely anonymize the flow of money.
To do that, Zerocoin builds upon the idea of Zero Knowledge Proofs which allows some-
one to proof the ownership of some transaction without conveying that he actually owns
this transaction. This is directly related to the concept of plausible deniability, however
we cannot go into further detail about this implementation here, as it goes way beyond
what this paper tries to cover.

7 Conclusion

We have described the implementation of the Bitcoin Protocol, its concrete applications
and the concepts it is based upon. We have shown how the combination of well-known
mechanisms created something entirely new. We explained in detail what it is that
makes Bitcoin secure and able to compete with other currencies as well as what its up-
and downsides are. We are looking forward to further developments with Bitcoin and
are very interested to see what challenges arise in the future.

27

References

1]

2]

[10]

[11]

[12]

28

I. B. Damgard, “A design principle for hash functions,” in Advances in Cryptology
- CRYPTO’89 Proceedings. Springer, 1990, pp. 416-427.

R. C. Merkle, “Protocols for public key cryptosystems.” in IEEE Symposium on
Security and privacy, vol. 1109, 1980, pp. 122-134.

C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Ad-
vances in Cryptology—CRYPTO’92. Springer, 1993, pp. 139-147.

”

M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in Secure

Information Networks. Springer, 1999, pp. 258-272.

A. Juels and J. G. Brainard, “Client puzzles: A cryptographic countermeasure
against connection depletion attacks.” in NDSS, vol. 99, 1999, pp. 151-165.

R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and timed-release
crypto,” 1996.

A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.

S. Haber and W. S. Stornetta, How to time-stamp a digital document. Springer,
1991.

D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency and reliability
of digital time-stamping,” in Sequences II. Springer, 1993, pp. 329-334.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, vol. 1,
p. 2012, 2008.

R. C. Merkle, “Secrecy, authentication, and public key systems.” 1979.

H. Massias, X. S. Avila, and J.-J. Quisquater, “Design of a secure timestamping
service with minimal trust requirement,” in the 20th Symposium on Information
Theory in the Benelux. Citeseer, 1999.

J. Warren, “Bitmessage: A peer-to-peer message authentication and delivery sys-
tem,” 2013.

B. Laurie and R. Clayton, “Proof-of-work” proves not to work; version 0.2,” in
Workshop on Economics and Information, Security, 2004.

D. Liu and L. J. Camp, “Proof of work can work.” in WEIS, 2006.

C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions for fighting
spam,” in Advances in Cryptology-Crypto 2003. Springer, 2003, pp. 426—444.

M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard, memory-
bound functions,” ACM Transactions on Internet Technology (TOIT), vol. 5, no. 2,
pp- 299-327, 2005.

A. Jeffries. (2012) Miner problem: big changes are coming for bitcoin’s working
class. Accessed: 2013-12-12. [Online|. Available: http://www.theverge.com/2012/
11/16/3649784 /bitcoin-mining-asics-block-reward-change

[19] E. Rodgers. (2013) 23-year-old releases new chips that 'mine’ bitcoins 50 times
faster. Accessed: 2013-12-12. [Ounline]. Available: http://www.theverge.com/2013/
2/1/3941768 /new-chips-mine-bitcoins-50-times-faster

[20] P. Archer. (2012) Bitcoin network speed 8 times faster than top 500 supercomputers
combined. Accessed: 2013-12-12. [Online|. Available: http://thegenesisblock.com/
bitcoin-network-8-times-faster-than-top-500-super-computers-combined /

[21] 1. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous dis-
tributed e-cash from bitcoin,” in IEEE Symposium on Security and Privacy, 2013.

29

Introduction to Homomorphic Encryption

Cloud Security Mechanisms Seminar — Summer Term 2013

Hubert Hesse, Christoph Matthies

1 Introduction

When working with confidential data in an untrusted environment some sort of encryp-
tion needs to be used. This allows secure transmission as well as storage of the data.
However, it also prevents a third party from working with the data unless he receives
the decryption key and can operate on and read the plaintext (which might be undesir-
able). Homomorphic Encryption seeks to tackle this problem: it allows calculations on
encrypted data in which the result (after decryption) is the same as if the calculation
had been performed on the plaintext.

operation(plain) = decrypt(operation’ (encrypt(plain)))

1.1 Applications

The obvious application for homomorphic encryption is the use in the cloud. Confidential
data can be stored in a public cloud!, operated by an untrusted provider. Third parties
could operate on the data, running calculations and analyses without ever gaining any
knowledge about the processed data or the meaning of the results.

Another field where concrete solution strategies already exist is electronic voting.
Votes can be encrypted and published, preserving election secrecy, while still allowing
the encrypted votes to be counted verifiably [1].

There are many more future use cases that could benefit from homomorphic encryp-
tion and would allow storing private data in untrusted storage:

Medical records
Patient data can be stored and analyzed without privacy concerns. Diseases, their
treatments and success rates can be analyzed without disclosing them. In the
future, DNA markers could be analyzed while preserving the confidentiality of the
genome. E-health applications would become feasible with public storage.

Smart metering
Usage data of electronic appliances in “smart” power grids? can be collected and
analyzed privately.

Spam filtering
Currently it is not possible to have a third party scan encrypted (e.g. with
GnuPG3) E-Mails, without having access to the decryption key. Using homo-
morphic encryption, costly bayesian spam filtering could be run on undecipherable
data while still yielding meaningful spam scoring values.

LCloud resources are made available to the general public, in contrast to a private cloud.
’IEEE smartgrids: http://smartgrid.ieee.org/
3GNU Privacy Guard: http://www.gnupg.org/

30

| decrypt I | encrypt I

computer Q{> ! computer E>

Figure 1: Working with data in the cloud. Traditional encryption (on the left): The
cloud provider needs to have access to the key in order to decrypt the data and work
with it. On the right: homomorphic encryption where the cloud provider can work on
encrypted data.

2 Background

In order to allow such applications as previously listed, the encryption scheme that is
used must preserve the properties of the data while it is being computed on. In simple
terms this is what is referred to as a homomorphism.

2.1 Group homomorphisms

In general a group homomorphism is a relation between two groups, mapping operands
for the the operation defined in the first group to operands for the operation defined
in the second one. Imagine the set of all plaintexts P, C the set of all ciphertexts and
f the encryption relation. Given the groups (P, ®) and (C,®), the relation f: P — C
is a group homomorphism for P and C' if:

Va,be P: f(a®b) = f(a) ® f(b).
This definition directly points to our defition of homorphic encryption in Chapter 1:
Va,beP: adb = f! a) ® f(b
7~ flagef))

operation(plain) decrypt (operation’ (encrypt(plain))

Examples of group homomorphisms

In the groups (R, +) and (R*, x) that we deal with on a daily basis, the exp and log
functions are group homomorphisms:

exp(z + y) = exp(z) x exp(y) (e*TY = e x e¥)
and

In(a x b) = In(a) + In(b).

Both map one operation, here x and +, in the domain of the homomorphism to a
completetely different operation in the range.

2.2 RSA - Practical example

When talking about encryption, the RSA cryptosystem is usually mentioned. This is
relevant for homomorphic encryption as well, as RSA is homomorphic in regard to the
multiplication operation. This is an accidental property as in that RSA was not designed
with this result in mind [2]. This property (together with the security level of RSA) can
be taken advantage of in a simple cloud computing scenario: Imagine many rectangles
that we know the width and height of. We wish to compute their areas, but we do
not have the necessary computing power to do so. A third-party service could readily
do the necessary multiplication for us, using the rectangle’s dimensions, but we do not
want to publish this information for, say, privacy or compliance reasons. Using the
RSA cryptosystem [3], we can utilize the cloud service’s computing power while still
maintaining data confidentiality.

2.2.1 Key generation

We generate an RSA keys from two primes (p, q), say (11, 13), such that our base modulus
n = p x ¢ = 143. The public key contains a number e which is coprime with Euler’s
totient of the base modulus n (i.e. ged(e,¢(n)) = 1);* we pick e = 23. The private
key contains the decryption exponent d, which is the multiplicative inverse of e (modulo
#(n)). That means we need to solve e x d = 1 mod ¢(n), which means d = 47.> As the
resulting key pairs must include the base modulus n = 143, we arrive at (23, 143) for
the private key and (47,143) for the public key.

2.2.2 Encryption

Imagine our rectangle having dimensions of 7 x 3. Encryption of a message m in RSA
using the public key pair (23, 143) is encrypt(m) = m® mod n. The encryption of our
7 x 3 rectangle is thus a 2 x 126 rectangle:

encrypt(7) = 7% mod 143 = 2. encrypt(3) = 3% mod 143 = 126
This encrypted information is then transmitted over the insecure internet to the third
party, non-trusted cloud provider.

2.2.3 Calculation

The untrusted third party can now, without leaking any sensitive data, operate on the
data. In our scenario, it calculates the area of a 2 x 126 rectangle: 252. It must make
sure to only use multiplication to calculate the area, as this is the only operation that
is a homomorphism in RSA. The cloud provider then return the (still encrypted) result
of its calculation back to the client.

2.2.4 Decryption

The client decrypts the returned ciphertext ¢ using his private key pair (143, 23):
decrypt(c) = ¢ mod n.
In this scenario the calculation yields:

1p(n) = #(143) = (p — 1) x (g — 1) = 10 x 12 = 120 and ged(120,23) = 1.
5Solve 23 x d + k x 120 = 1 with extended euclidean algorithm, d = 47, k = —9.

32

decrypt(252) = 2527 mod 143 = 21.
As 21 =7 x 3 is indeed correct, the operation on encrypted data has succeeded.

2.2.5 Proof of homomorphism

It can be easily shown that multiplication in the RSA cryptosystem is a homomor-
phism. Given the public key pair (e,n), the encryption of a message m is given by
encrypt(m) = m® mod n. Thus, encrypting of the product of two plaintexts a,b is
equal to multiplying the ciphertexts:

encrypt(a x b)
= (axb)® modn
=a® x b® modn
= (a® mod n) x (b° mod n)
= encrypt(a) x encrypt(b)

3 Implementations

Apart from RSA, there are numerous other encryption schemes that exhibit homomor-
phic properties. The better known ones are listed in figure 3. Due to the the different
subsets of supported operations and mappings of these, not every encryption fits every
use case.

System Plaintext operation Cipher operation
RSA X X

Paillier +,—,m x k,mF X, =+, cF e x gF
El Gamal X, m X k,mF x,cx k,cF
Goldwasser-Micali <) X

Benaloh +,— X,
Naccache-Stern +,—.mxk X, =k
Sander-Young-Yung ||| x +
Okamoto-Uchiyama ||| +,—,m x k,m + k x, =¥ c+e(k)
Boneh-Goh-Nisim +,—,m x k,m+k, x(once) x,+,c* cx gF, bilinear pairing
US 7°995'7500 + +

Figure 2: Different homomorphic encryption schemes. (m refers to a message, k to a
key parameter, ¢ to any constant value.)

3.1 Restrictions

It is worth noting that the simple property of being homomorphic under certain opera-
tions, does not make an encryption scheme secure. For example, a simple Ceasar Cipher
(e.g. ROT13) would also already allow homomorphic concatenation of ciphertexts, but
is in no way secure.

Furthermore, it is vital, that only the operations permitted under the specified homo-
morphic encryption scheme (see figure 2) are applied to the ciphertexts. Using different
operations leads to false results after decryption.

SRefers to a US patent concerning “Privacy-preserving substring creation”, handed in by SAP AG,
published August 9, 2011.

33

3.1.1 Example

Assume the same scenario introduced in 2.2. However, instead of having the cloud
provider calculate the area of our rectangles, we wish to know their circumferences. Using
the same RSA encryption of our 7 x 3 rectangle (circumference ¢, = 2 x 3+2 x 7 = 20),
we arrive at an encrypted 2 x 126 rectangle (circumference c. = 2 x 242 x 126 = 256).
Decryption of the calculated area (using the private keys of the previous example) yields
2564"mod143 = 42 which is not the desired result (20 # 42). Thus, applying the +
operation on ciphertexts, which is not homomorph under the RSA cryptosystem, did
not translate to an addition on the plaintexts and in fact made the result useless.

3.2 Pollution

Performing operations on encrypted data introduces what is termed “noise” or “pol-
lution”, a name for the abstract effect that after a certain number of operations the
ciphertext can no longer be decrypted. While addition adds the noise of the operands,
multiplication multiplies it. When the noise overshoots a certain threshold (varying
with the chosen parameters for the encryption scheme), the decryption fails. Homomor-
phic encryption schemes that support +, x with these limitations are called Somewhat
Homomorphic Encryption Schemes.

3.2.1 Example

A simplified version of the pollution effect can be shown using the previous RSA example.
When using large inputs to the operation, such that the result is larger than the RSA-
modulus (N, e.g. 143), the decryption will yield a faulty result.

Consider using the same public and private keys as before, but this time, we wish to
calculate the area of a square that is 10 x 15 and will thus result in an area larger than
the RSA-modulus. As before, we encrypt the height and width:

encrypt(height) = 1023 mod 143 = 43

encrypt(width) = 1523 mod 143 = 20
Then the area is calculated in the cipherspace:

43 x 20 = 860.

The decryption step should now produce the correct result of 10 x 15 = 150, however,
due to the small RSA-modulus, we arrive at a wrong decryption result:

area = 860*7 mod 143 = 7 # 150.

4 Circuit Encryption

Every program that is referentially transparent’ can be expressed in terms of a digital
circuit. This circuit in turn can be represented as a combination of the universal AND,
OR and NOT operators (e.g. in a disjunctive normal form®). In fact, the AND and
XOR operators suffice to represent any digital circuit.”

"An expression is considered referentially transparent if it can be replaced with its computed value
without changing behavior, e. g. a call to today(), returning today’s timestamp, would not be referentially
transparent [4].

8Normalization of a logical formula as a disjunction of conjunctive clauses.

9 Any function can be written as a combination of them as well: z @ True = —(X) and —~(—z A —y) =
xVuy.

34

Brenner et. al [5] introduced a scheme we can use to homomorphically encrypt such
boolean algebra representations of programs. The main idea is to encrypt a plaintext
bit by encoding it as an integer and then encrypting the resulting integers.

1. Map 0-bits to arbitrary even integers < p. Add random multiple of secret p.
2. Map 1-bits to arbitrary odd integers < p. Add random multiple of secret p.
3. Map algebraic @ to integer + .
4. Map algebraic A to integer x .

5. Define aob = (a+b)+ (axb) (aVb=(aAb)A(a®b)in hormorphic space).

We can encrypt the corresponding integers by adding a random multiple of a secret
prime. Without the correct modulos p it is impossible to decide whether an integer
represents a 1 or a 0 bit in plaintext.

This allows us to reproduce boolean operations, thus any circuit, by integer multipli-
cation and addition. Note that this scheme fails if the results of the integer operations
growths larger than the modulus p (see section 3.2).

4.1 Example: Encrypting a Single Bit Adder

In this section we give a simple working example of an encrypted single bit adder.

Figure 3: Logical circuit of a single bit adder.

The boolean term to describe the circuit can be trivially read from figure 3.
S=(AeB)a ()
C1out = (A/\B) \ (A@ B) VAN Czn)

With the mapping scheme of Brenner et. al (see section 4), the boolean terms translate
to:

S=((A+B)+0)

Cout = (A X B)o (A+ B) x Cy)

Let’s add A =1 and B = 0 with a carry in bit of 1:
S=((1e0)®l)=0
Cot=(1N0)V(AIDO)AL)=0V1=1

Now we simulate this operation in homorphic space according to the hormophism de-
clared in the previous section. Therefore we choose a secret p = 23, translate A to 3 (an

35

odd integer), B to 4 (an even integer) and carry in bit (Cjy,) to 7 (another odd integer).
Further we add random multiples of 23:
A=34+2x%23=49;
B=445%23=119;
Cin=T+3%23=7T6
Note how this prevents a third party from distinguishing odd from even plaintext bits.
S=1((494119) +76) =244 mod 23 =14 = 0
Cout = (49 x 119) o (49 4+ 199) x 76)
= 5831015173
= (5831 + 15173) + (5831 x 15173) (with defintion ofo)
= 21004 + 88473763 = 88494767mod 23 = 13 = 1

We are able to encrypt a single bit adder such that neither the input or the output values
are revealed, while the results are preserved. Note that we worked with a simplified
representation model with only a small random multiple of p.

4.2 Encrypted Memory Access

Although arbitrary cicuits can de encrypted, memory access patterns of algorithms could
be leaked and a third party could deduce hints to the nature of the program or possible
attack vectors on it. For example, configuration paramters could be read from the same
spot in memory at the start of every program run. Since any circuit can be encrypted,
we can also build a static memory scrambler in homorphic space. Brenner et. al [5]
propose a solution with 4 memory bits and 2 address bits.

The basic idea is to mix up the usual memory access, e.g. address 01 points to
memory cell 2 instead of cell 1, address 10 to cell 1 and so on. This is achieved by
accessing the memory bit through a series of AND gates. The address bits are wired
into these AND bits with NOT!? gates in a way that the AND gate for a memory cell
only switches and reveals the value of the memory bit on the correct assignment of the
address bit for that memory cell. All the AND gates are connected to a connecting OR
gate that returns the value of the access memory bit. With this method it is possible to
access encrypted memory with an “encrypted” memory adress such that neither memory
address accessed or content are revealed to a third party, that does not know the address
wiring for this program. The concrete address wiring can be changed at compile time,
e.g. for every binary of the homorphically encrypted program.

5 Fully homomorphic encryption

In the previous sections we presented homomorphisms that mapped certain operations
to others. Therefore, specific homomorphisms have niche applications where this op-
eration is required. Ideally one would find an encryption which would allow arbitrary
operations on the ciphertext. Such schemes are called fully homomorphic encryptions
(FHE). As already discussed in section 4 every circuit (and therefore every program)
can be expressed as a boolean algebra term. Thus, any homomorphic cryptosystem that
supports binary AND and XOR — neatly represented as multiplication and addition on
multiple bits — is fully homomorphic.

ONOT Gates are implemented with value XOR 1.

36

5.1 History

Only one year after Rivest, Shamir und Adleman presented their RSA system in 1977 [3],
Rivest, Adleman and Dertouzos proposed the concept of fully homomorphic encryptions
(they called these privacy homomorphisms [6]).

For the next thirty years, no significant headway was made in the field of fully homo-
morphic encryption. However, in 1999, Paillier presented his scheme [7], which already
allowed many important operations on ciphertexts (see Table 3). Boneh, Goh and Nissim
proposed a solution in 2005 [8], which did allow both addition and multiplication, com-
ing closer to the goal of FHE. However, only a single multiplication could be performed
before the ciphertext became undecipherable.

The breakthrough came in 2009 when Craig Gentry, an IBM researcher, proposed a
new (and working) approach in his dissertation [9].

5.2 Gentry’s FHE scheme

Gentry’s idea was to use a somewhat homomorphic encryption (SWHE) as a stepping
stone to a FHE using a process he called bootstrapping. SWHESs can only allow a certain
number of operations before the noise is too large, rendering the cipher unusable.

This is comparable to an error correcting code: If the error or noise is small, the
recipient can use the knowledge of the code to remove the noise; if it is too large, not
even the error correcting code can help with recovery. This effect can be counteracted
by decrypting the data whenever the noise reaches critical levels and encrypting it again
afterwards — a process commonly referred to as reencryption. It ideally reduces the
noise to former levels. This would of course requires knowledge of the secret key which
contradicts the goal of computing in an untrusted environment.

Gentry managed to solve this problem by allowing the encryption scheme (which
can evaluate arbitrary circuits) to recursively evaluate its own decryption circuit —
the aforementioned bootstrapping.'’ Running the decryption on the ciphertext with an
encryption of the secret key produces a reencryption of that cipher with reset noise. One
condition that needs to be met is that the decrypt circuit itself must be simple enough
to not exceed the noise threshold after which the message is scrambled. When Gentry
first formulated his scheme, he found that this condition was not met. The remedy was
“squashing” the decrypt circuit at the cost of a longer key size.'? With the reencryption
step being repeatable as needed, the scheme could evaluate any circuit of finite depth
and the system became fully homomorphic.

The big drawback to Gentry’s scheme was performance, both encryption and reen-
cryption took a long time in practice. Encrypting a single bit took about 19 seconds.
However, since Gentry had based his encryption on the hard problem of ideal lattices™
This has implications for future security of the scheme. Whereas the problem of integer
factorization (used in e.g. RSA) is quantum-broken, meaning it can be solved in poly-
nomial time on a quantum computer using Shor’s algorithm [12], the problem of lattices
seems NP-hard (still, that is).

1This concept is possibly hard to grasp at first. An analogy could be the human genome, encoding
in its DNA the proteins needed to create more DNA and replicate. In essence the information needed is
recursively contained in the element itself.

128quashing describes the “procedure [of] reducing the degree of the decryption polynomial. This is
done by adding to the public key an additional hint about the secret key.” [10].

13 A special class of lattices (essentially, mathematical groups) with some additional algebraic structure,
often used in cryptography [11].

37

normal decryption

ciphertext)
[@em=fednzibosdicg, > plaintext
secret key decrypt qebrgibfvjkadfnvarskdjhfq >
[0101100101000101111 >

. re-encryption to reduce noise
ciphertext
| @ethaBdnzibsadivd, > refreshed ciphertext
encryption of secret key decrypt bo»«k@1V2{,, bob@]dhb >
| a1/2..:1/2..[,1/‘1213}311/21/‘.,323] >

Figure 4: Traditional encryption (top) vs. reencryption in Gentry’s FHE scheme (bot-
tom).

5.3 Related work

In the years following Gentry’s publication, many variations and improvements of the
scheme have been proposed. Most of these approaches share the same approach that
Gentry took, promoting a somewhat homomorphic encryption to a fully homomorphic
one using bootstrapping, but offer up to four orders of magnitude of performance en-
hancements.

Van Dijk, Gentry and Halevi managed in 2010 to simplify Gentry’s concept by using
addition and multiplication over the integers rather than working with ideal lattices
[13]. In the same year, Smart and Vercauteren tackled the problem of the large key
sizes, managing to reduce their size [14]. At the Eurocrypt ’10 conference, Gentry
and Halevi were able to present a working implementation of FHE [15]. They had
originally planned using IBM’s Blue-Gene supercomputer, but ended up only needing
a strong workstation. However, for large inputs (13,000,000-bit integers) the secret key
still needed to be 2.3 GByte in size and the reencryption step took 30 minutes.

Building on this work, Coron et al. managed in 2011 to reduce the public key size
from Gentry’s O(A10) to O(A\7)! while retaining roughly the same level of efficiency [16].
Smart et al. showed in the same year, that SIMD operations!® could be used in con-
junction with FHE, allowing parallel encryptions (especially also parallel reencryption
steps) [17].

In an effort to attack the underlying problem of having to reencrypt the cipher
periodically, Brakerski, Gentry et al. proposed in 2012 an approach using leveled fully
homomorphic encryption schemes, which work without the bootstrapping procedure,
again increasing performance [18].

The quest to find a practical FHE scheme is not merely of academic nature. In 2011
DARPA and its intelligence counterpart, IARPA both launched programs (PROCEED!S
and SPAR!7, respectively) with explicit goals to make homomorphic encryption practi-
cal. The PROCEED program, with its $20 million budget, aims to reduce the computing
time by a factor of 10 million and has disclosed that a two orders-of-magnitude speed
increase of FHE has been achieved within one year.

140 is a variant of the big-O notation ignoring logarithmic factors.

15Single instruction, multiple data operations: performing the same operation on multiple data points
simultaneously.

http://www.darpa.mil/Our_Work/I20/Programs/PROgramming_Computation_on_EncryptEd_
Data_(PROCEED) . aspx (accessed 01.07.2013).

"http://www.iarpa.gov/Programs/sso/SPAR/spar.html (accessed 02.07.2013).

38

5.4 Criticism

It has been criticised that “it will be years before a sufficient number of cryptographers
examine the algorithm that we can have any confidence that the scheme is secure”'®.
We believe this to be a valid argument as up to this point research on this topic has
been mainly performed by researchers around Gentry et al.

5.4.1 HELib

There are, however, implementations of homomorphic encryption, such as HELib'” by
Shai Halevi, that are open-source, GPL-licensed and encourage participation. HELib al-
ready includes many of the proposed perfomance optimizations of homorphic encryption
schemes. however, bootstrapping is not implemented yet. Using this model, the security
of homomorphic encryption and its implementations can be advanced at a faster pace.

6 Conclusion

Today, there are already some very interesting implementations of somewhat homomor-
phic encryption, for example CryptDB, an encrypted database that allows executing
SQL queries over encrypted data using homomorphic schemes as part of a collection
of SQL-aware encryption algotithms. Implementations of fully homomorphic encryp-
tion exist but are not production-ready just yet; considering that is was only in 2009,
that Gentry was able to show that fully homomorphic encryption is possible at all, the
progress seems impressive though.

Gentry argues that FHE might lead to more privacy and data confidentiality in
general as it is not necessary to decrypt data in order to work with it, removing a
barrier keeping people from doing so in the first place. Even if this is not the case FHE
seems like a very good solution to a lot of issues concerning data security (especially
online) today.

The major challenge for widespread adoption is still performance. However, with
funding from government agencies and more universities outside the orbit of Gentry et
al. setting up research projects dealing with homomorphic encryption®?, the path seems
prepared for further developments in this area. Halevi predicted in a talk in 20122! that
homomorphic encryption “should be usable in niche applications within a year or two”.

References

[1] K. Peng, R. Aditya, C. Boyd, E. Dawson, and B. Lee, “Multiplicative homomorphic
e-voting,” Progress in Cryptology-INDOCRYPT 2004, pp. 1403-1418, 2005.

[2] L. A. Ronald L. Rivest, Adi Shamir, “Cryptographic communications system and
method,” Patent US 4405 829, 09 20, 1983.

¥ Homomorphic Encryption Breakthrough, Schneier on Security, Bruce Schneier.

YHELib: https://github.com/shaih/HElib.

2°HomER (HOMomorphic Encryption Realization) project of the Karlsruhe Institute of Technology,
http://www.iks.kit.edu/project-homer (accessed 01.07.2013).

21Recent Advances in Homomorphic Encryption, presentation by Shai Halevi, IBM Research,
13.02.2012, http://nms.csail.mit.edu/sys-security/FHE.pptx.

39

3]

[17]

40

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb.
1978.

H. Sgndergaard and P. Sestoft, “Referential transparency, definiteness and unfold-
ability,” Acta Informatica, vol. 27, no. 6, pp. 505-517, 1990.

M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith, “Secret program execu-
tion in the cloud applying homomorphic encryption,” in Digital Ecosystems and
Technologies Conference (DEST), 2011 Proceedings of the 5th IEEE International
Conference on. 1EEE, 2011, pp. 114-119.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy ho-
momorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169-180,

1978.

P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology—FEUROCRYPT’99. Springer, 1999, pp. 223—
238.

D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on ciphertexts,”
Theory of Cryptography, pp. 325-341, 2005.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford
University, 2009.

C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryption
scheme,” in Proceedings of the 30th Annual international conference on Theory
and applications of cryptographic techniques: advances in cryptology, ser. EURO-
CRYPT’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 129-148.

V. Lyubashevsky, “Lattice-based identification schemes secure under active at-
tacks,” Public Key Cryptography—PKC 2008, pp. 162-179, 2008.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp.
14841509, 1997.

M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” Advances in Cryptology—EUROCRYPT 2010, pp.
24-43, 2010.

N. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small
key and ciphertext sizes,” Public Key Cryptography—-PKC 2010, pp. 420-443, 2010.

C. Gentry and S. Halevi, “A working implementation of fully homomorphic encryp-
tion,” Eurocrypt 2010 rump session, 2010.

J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic
encryption over the integers with shorter public keys,” Advances in Cryptology—
CRYPTO 2011, pp. 487-504, 2011.

N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,” Designs,
Codes and Cryptography, pp. 1-25, 2011.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryption
without bootstrapping,” Innovations in Theoretical Computer Science, ITCS, pp.
309-325, 2012.

41

Differential Privacy

Cloud Security Mechanisms Seminar — Summer Term 2013

Toni Mattis

1 Introduction

Whenever databases are compiled there is a natural interest in both individual contri-
butions and aggregated knowledge about the data. Given e.g. climate data or records
of astronomical events there are obviously little to no negative implications satisfying
both needs. However, many databases are the result of collecting sensitive personal
or business-related records, e.g. censuses, medical records or phone tracking data. In
this case, the public release of any individual’s contribution, e.g. income, diseases or
locations can have a severe impact on its privacy while high-level knowledge can be
life-saving, e.g. identifying correlations between risk factors and diseases. Hence, a lot
of research has been done on how to balance the need for knowledge from aggregated
data against the privacy needs of the contributors.

1.1 Problem statement

Consider a database containing the annual sales of some companies maintained by a
census office. The sales are considered sensitive information which should not be revealed
to any member of the public.

Company Municipality | Sales (USD)
Roundcat Inc. | Bridgeshire 100,000
Sumtexon Inc. | Bridgeshire | 200,000
Quotedax Inc. | Bridgeshire | 3,000,000
Triotech Inc. Fairwalk 4,000,000
Warelane Inc. | Fairwalk 1,000,000

Figure 1: Example Census Database

The census office may receive two requests: The first one queries for the total sales
of all companies in the respecting region (8.3 Mio), the second one is interested in

the total sales in Bridgeshire (3.3 Mio).

In an attack scenario, both queries could

be issued by a representative of Triotech Inc. who knows the sales of its own com-

pany. Computing the sales of the competitor Warelane Inc.

becomes trivial then:

8,300, 000 — 3, 300, 000 — 4, 000, 000 = 1, 000, 000.

The example shows the most relevant problem in privacy-preserving data mining
and publishing, the inference problem: Even though individual information is never
disclosed directly, combining multiple answers and background knowledge allows to infer
non-obvious sensitive information.

Besides the direct inference of the sensitive attribute there are related threats to
an individual’s privacy:

42

e Linkage attack: A non-anonymous data source which overlaps largely with the
(anonymized) sensitive database is available. The overlapping attributes may give
a strong evidence which anonymous record belongs to which individual in the non-
anonymous database (e.g. identifying a pair of records from a sensitive clinical
study and a public voter’s register which coincide in city, age and occupation could
lead to the voter in question being linked to his diagnosis).

e Probabilistic attack: An attacker may get to know with which probability
an individual has a certain attribute. Privacy is compromised if that probability
differs significantly from what an attacker might believe before its attack (e.g.
he might infer from clinical records that a person might have HIV with higher
probability as the average population).

1.2 Goals

Most privacy preserving methods (although mostly not explicitly stated in literature)
focus on the following goals to mitigate inference, linkage and probabilistic threads:

1. Uncertainty: Making any reasoning about individual contributors too uncertain,
even in the presence of (limited) background knowledge or additional databases,
e.g. by making many individual contributors indistinguishable. This includes
reasoning about exact values as well as reasoning about possible probability dis-
tributions.

2. Plausible Deniability: Making it impossible for an attacker to prove an individ-
ual’s contribution to an aggregate result to a third party, e. g. using randomization
so that potentially revealing results might also be coincidence.

3. Utility: Sacrificing not too much accuracy concerning aggregations and data min-
ing operators, e. g. sums and correlation measures. This can either be inferred from
a mathematical model (as in e-differential privacy) or achieved by minimizing some
error measure.

Moreover, some more recent methods address additional challenges which have proven
to be rather difficult:

1. Updatability: Maintaining privacy even when multiple versions of a database
are accessible as proposed in m-invariance [1]. Common methods actually assume
immutability of the database and therefore ignore privacy threats emerging from
incremental updates.

2. Personalization: Accommodating to individual privacy levels and preferences,
e.g. increasing the data accuracy of contributors with low privacy requirements
while protecting those with stricter privacy preferences, as in [2].

3. Distributedness: Allowing multiple data sources which do not trust each other
to collaboratively compute an aggregate result without revealing any individual
contributions. This topic is mainly subject to research in secure multi-party com-
putation (SMC).

1.3 Scenarios

Basically, there are two fundamental scenarios which lead to different solutions approach-
ing the goals above: An interactive scenario proposing a central trusted entity and a non-
interactive scenario making data accessible without being able to exert further control
over the published information.

1.3.1 Interactive scenario

In this scenario, the raw database (including each individual record) is maintained by
a central, trusted entity. Members of the public can issue queries against an interface.
Those queries may be arbitrarily expressive and complex, so the trusted entity needs to
decide on how to answer each query without compromising any individual contribution.
Typical examples are online census databases, e.g. from the decennial U.S. Censuses or
the 2011 census in Germany.

1.3.2 Non-interactive scenario

The most common non-interactive scenario is data publishing. Once distributed in pub-
lic, there is no chance to stop further analysis of any database. The central problem
is the right choice of an anonymization method anticipating even future attack vectors.
Typical examples are customer data being sold to market research companies or medical
records published by hospitals. A non-interactive release does not necessarily be a clas-
sical database, it can be just an aggregated result for which the data has been collected
(e.g. a histogram stating how a population answered a certain question).

1.4 Protecting the aggregated result

If an individual contribution could have a severe impact on the aggregated result, then
observing that impact might reveal this particular individual’s contribution. Hence, the
mechanics of some privacy mechanisms also work in the opposite direction: They protect
aggregated results from being significantly manipulated by individual contributors. Es-
pecially e-differential privacy can be used to build both a privacy-preserving data-mining
mechanism and manipulation-resistant mechanisms. A theoretic scenario would be an
online auction (e. g. for selling stock) where bidding agents have no benefit from bidding
strategically [3].

1.5 Solution strategies

There are multiple ways of trading uncertainty and plausible deniability against utility.
The most common mechanisms choose one of the following strategies:

e Reject queries leading to a privacy risk

e Obscure the data by making individuals indistinguishable (microaggregations,
k-anonymity, [-diversity, t-closeness) or noisy

e Obscure the query processing by randomly dropping and adding individuals
from and to each aggregation (random sampling)

e Obscure the result by adding random noise to the output (e-differential privacy)

44

1.6 Structure of this report

The following section is concerned with some fundamental vocabulary and concepts. The
history section will explain the origins of private data mining and publishing, introduce
some historic algorithms and proceed to modern approaches, such as k-anonymity and
differential privacy, where current research lines split. The mechanism details section will
explain the state-of-the-art mechanics of [-diversity, t-closeness and e-differential privacy.
In future work we refer to several open problems concerning both lines of research and
the conclusion summarizes current and future roles of both lines of research.

2 Foundations

We hereby define some terms which will occur in this report.

2.1 Aggregations

An aggregation or query is considered any function which takes the full database as
input and delivers any output, the aggregated result. We mostly imply that the output is
numeric. Common examples used as aggregations are count queries, which ask how many
records in the database satisfy some non-trivial predicate, subset-sum or simply sum
queries which sum up values if the corresponding record satisfies some given predicate,
average, standard deviation or co-variance and other statistical measures. The term
query refers to an aggregation function given by a user in an interactive scenario.

2.2 Mechanisms

When used in a mathematical context, a mechanism is a generalization of a function
in such a way that it yields a probability distribution over the possible results. Each
function is a mechanism that outputs probability 1 for the function value and 0 otherwise.

2.3 Quasi-Identifiers in a relational model

All methods presented here assume something similar to a relational database consisting
of one or more relations (tables). When personal data is collected, usually some unique
key is inherently associated with the data, i.e. the full name of the person, which has
to be removed or falsified first.

However, even if each record is anonymized at its own, there may still be a combi-
nation of attributes which associate a record with an entry in a different database. e.g.
date of birth, ZIP code and occupation of a medical record owner could be linked to
a public voters list containing those three attributes in addition to name, address and
party affiliation thus linking the identity of the record owner with its diagnosis. Such a
combination of attributes which is likely to enable linkage to external databases is called
quasi-identifier (QID) [4].

3 History

3.1 U.S. Census

In the 1960s, the decennial U.S. Censuses have raised scientific concerns over how re-
quests to the census offices are handled. The guidelines intended for human decision-

45

Address

Diagnosis

Name

Medication

Party
affiliation

Visit date

Medical Report Voters List

Figure 2: Quasi-identifiers: attributes linking anonymous and non-anonymous data sets

making were eventually generalized to be applied by the emerging relational database
management systems. These first privacy mechanisms were designed to either give exact
results or reject the request based on the following criteria [5]:

e Minimum Query Set: Queries covering too few individual records were rejected.

e Minimum/Maximum Overlap: Queries overlapping previous queries in too
few or too many individual records were rejected. Considering the introductory
example, the census office should not answer one of the two queries whose query
sets differ in only two company records.

e Auditing: Keep track of all information published and reject queries which
would lead to a system of equations being solvable for any single individual or
small group.

Giving exact answers comes with the price of a very resource-intensive auditing
process and eventually leads to the rejection of more and more queries. A dilemma
occurs when queries have different priorities but arrive at random times. The census
office may then be well-advised to preemptively defer some queries (e. g. those concerned
with random subsets of cities or regions) to be able to answer later queries which are of
higher interest for the public (e. g. those about whole cities or regions). Hence, balancing
short answer times against utilitaristic principles is delicate [6].

3.2 Query Set Approximation

The drawbacks inherently associated with exact answers were eliminated by making the
sets over which aggregations are computed inaccurate. This way an adversary does not
know over which individual records the final result was actually computed while still
getting a useful approximate answer.

Two different but representative methods are the random sampling based query set
approximation and micro-aggregations [5].

3.2.1 Random Sampling

The random sampling method [7] compares a fixed-length hash H(q) € {0,1}" of the
query with a (precomputed) hash h(d;) € {0,1}" of each database entry d;. Equal hashes

46

Name Age Income p.a.

Person A 30 $40.000 Name Age Income p.a.
Person B 35 $60.000 Person AB 30 - 39 $50.000
Person C 40 $30.000 Person CD 40 - 49 $55.000
Person D 45 $80.000

Figure 3: Raw and microaggregated data example

result in an entry being retracted from the query set. The probability of an n-bit entry
hash colliding with the query hash is 27", so for each query considering k elements, sta-
tistically kx2~" elements are removed. Both hash functions h and H must be kept secret.

Later versions of this algorithm also accounted for the tendency to underestimate
sums and counts by adding approximately as many pseudo-randomly selected elements
as removed from the initial query set.

Provided that the query hash is computed on some normalized form of the query
independently of syntactic details or equivalent formulations, a property of this pseudo-
random algorithm is the fact that asking the same query multiple times will always
generate the same result. Nevertheless, an attack is possible if the attacker splits its
original query into multiple queries that can be combined to the final result. e.g. in
order to obtain a full sum over incomes, he may issue two queries summing up the income
of male and female individuals and do the final addition himself. Then he could query
for the sum over married and unmarried individuals, getting a second equivalent answer,
and so on, until the noise cancels out.

3.2.2 Microaggregation/Partitioning

The method of microaggregations [5] first partitions the data and then precomputes sta-
tistical measures (e. g. count, average and standard deviation of the sensitive attributes)
for each partition. When computing an aggregated query result each partition is either
fully included or not at all. Partitions therefore serve as average individuals approxi-
mating the exact value distribution of the underlying individuals while concealing their
individual contributions.

Given the minimum partition size as privacy constraint, finding a partitioning which
minimizes the information loss is considered computationally hard. Practical solutions
choose a partitioning which addresses the most common query criterion, e.g. demo-
graphic data (censuses) should rather be partitioned by neighborhoods than by age as
querying the average age of people living in Manhattan seems more reasonable than
querying the average location of people aged 30.

Provided that partitions are large enough that no further query restriction needs to
be applied, the aggregated data can be released to the public. This makes this approach
suitable for interactive as well as non-interactive scenarios. Due to its simplicity and
the quite acceptable privacy level achieved it is still attractive nowadays, although it
has neither a mathematical privacy model allowing to prove that every individual is
sufficiently protected nor a very high utility for fine-grained queries.

47

18 19 24 27 31 34 artist
P T T Y4 AN

<20 20-24 25-29 30-34 | 35-39 performing artist visual artist
R R N /N
<20 20-29 : 30-39 . singer dancer DJ photographer painter

Figure 4: Generalization by intervals vs. generalization by taxonomies

A major drawback of microaggregations is the falsification of statistical measures
which have not been anticipated. e.g. if each partition’s mean of some attributes is
given then the correlation between those attributes is essentially destroyed on partition-
level.

3.2.3 Drawbacks

Both methods presented above are unable to accept incremental updates to the database.
An attacker observing a change in a sensitive average value (e.g. average income of a
neighborhood) can deduce the contribution of the updated single individual (e.g. the
new neighbor moved in) or small group.

3.3 Anonymization by generalization

Generalization-based approaches, also referred to as syntactic approaches rely on the
assumption that the sensitive values can always be published in an unmodified manner
if the individuals itself cannot be identified with high confidence. Unmodified sensitive
values are an important requirement for pharmaceutical studies where adverse effects
need to be investigated with maximum accuracy, so artificial sensitive values from mi-
croaggregations or random sampling induce intolerable risks for patients.

In order to enforce strict upper bounds on confidence, groups of attributes which
could isolate a single individual (QID) have to be identified and their values generalized so
that multiple individuals effectively become indistinguishable. Those equivalence classes
of indistinguishable individual records will be referred to as QID groups from now on.

3.3.1 Generalization mechanics

Consider a medical database containing ZIP code, occupation, age and diagnosis of
several patients. Diagnosis is considered a sensitive attribute while the combination of
ZIP, occupation and age could effectively identify some individuals if the attacker has
the corresponding background knowledge. The following generalizations can be made
on the QID attributes [4]:

e Interval generalization: Continuous or file-grained discrete values (e.g. age
given in years) can be discretized into larger intervals (e.g. decades).

e Taxonomic generalization: Given a taxonomy over a categorical attribute, the
sensitive values can be (repeatedly) replaced by parent nodes inside the taxonomy.
e.g. the occupation attribute values dancer and singer can be generalized to
performing artist or even artist.

48

e Suppression: If a value has no meaningful generalization but needs to be gen-
eralized (e.g. the root of the taxonomy tree, gender, URLs, images, ...), the value
can be completely retracted or replaced by a meaningless placeholder like “any”.

3.3.2 k-anonymity

k-anonymity [8] is a privacy constraint which requires the data to be generalized in such
a way that no QID group contains less than k individual records. The concept effectively
hides any individual among k& — 1 other individuals.

Although k individual records are indistinguishable, k-anonymity is a very weak
privacy constraint. An attacker targeting a single individual can obtain all sensitive
attributes of the group and be certain, that the victim cannot have any other value. In
the worst case scenario the attacker is left with a single sensitive value shared by all
group members without leaving any plausible deniability.

An attacker also learns the distribution of the sensitive attributes from the group,
which can be considered a privacy risk if it significantly differs from the overall distri-
bution. Considering e.g. employers rejecting or dismissing employees as they learn that
the employee in question could have certain diseases with much higher probability than
usual shows this vulnerability of plain k-anonymity.

A third weakness of k-anonymity is its assumption that each individual is represented
by a single record. A record owner having many records contributed to the database
may be underprotected by k-anonymity.

3.3.3 (X,Y)-anonymity

(X,Y)-anonymity [4] is an important generalization of k-anonymity. X and Y represent
attributes (or groups of attributes) in the database. When (X,Y)-anonymity is given,
for each unique value in attribute X there are at least k unique attributes in Y. The
basic k-Anonymity constraint presented above can be seen as an instance of (X,Y)-
anonymity where X is the QID and Y is a key or ID unique to each record.

If Y refers to an ID/key for the record owner (e.g. its full name) instead of the
record ID, this effectively ensures that at least k record owners are contained within
a QID group which prevents any individual from being accidentally underprotected by
k-anonymity.

3.3.4 [-diversity

In order to mitigate the problem that an attacker may rule out too many sensitive
attributes by identifying the victims QID group, the [-diversity [4] constraint ensures
that at least [different values are left for each sensitive attribute. Therefore [-diversity
facilitates that individuals may plausibly deny [—1 values attributed to them. [-diversity
automatically fulfills [-anonymity as there must be at least [entries in each QID group.
If there is only one sensitive attribute, [-diversity can be modeled as an instance of
(X, Y)-anonymity with X being the QID and Y being the sensitive attribute.

49

3.3.5 t-closeness

The t-closeness [4] constraint is even stricter than [-diversity as it forces the value dis-
tribution inside each QID group to differ by at most ¢ from the overall distribution.
Depending on whether the sensitive attribute has a numeric or categorical character, ¢
can be computed using Earth-Mover’s Distance, Kullback—Leibler (KL-)divergence or
any other common method measuring the distance of two distributions.

3.4 Differential privacy

Although they are very useful for research on unchanged sensitive values, generalization
based approaches suffer from the drawback that their privacy guarantees are not con-
sidered strong enough.

Differential privacy therefore takes a stricter approach concerning provable guaran-
tees. It does not directly protect the original data but obfuscates every processing of the
data (e.g. statistics) by adding a carefully chosen amount of noise to the output [9].

Noise camouflages individual contributions. It can be chosen proportionally to the
amount of change a single individual may have on the aggregated result, so it is uncertain
whether an aggregated result actually involves some specific individual’s contribution or
has been altered by coin-flipping [10]. This guarantees plausible deniability to each sin-
gle individual with some adjustable plausibility.

Differential privacy also guarantees that the information an arbitrarily well informed
attacker gains after seeing the result is nearly independent of whether an individual
contributed to the result or not. Hence, it defends against attacks with unlimited back-
ground knowledge [11].

The mechanisms presented in the context of differential privacy primarily focus on
non-interactive scenarios, e.g. some trusted entity releasing aggregated or otherwise
processed knowledge about candidates taking a survey, but it can be easily adapted to
interactive scenarios if the number of possible queries to the system is limited.

In 2012, five years after the formal concept of differential privacy emerged, Ghosh,
Roughgarden and Sundararajan [11] proposed the first universal utility model for count
queries and presented an improvement over the earlier privacy-utility-tradeoff for a very
restricted type of queries.

3.5 Bringing everything back together

One big issue with k-anonymity based approaches (and also microaggregations) is the
algorithm used [12]. The actual partitioning of the data in QID groups (or average indi-
viduals) can, if the algorithm is understood by an attacker, reveal a considerably large
amount of original data to the attacker provided he has sufficient background knowledge.
This is also due to the fact that a single individual, if present, could change the complete
partitioning of the data and therefore have a massive impact on the results, which is
what differential privacy strictly confines.

50

In response to the weaknesses of k-anonymity 2011, Li, Qardaji and Su proposed
the usage of e-differential privacy in the context of k-anonymity which they called e-safe
k-anonymization [13].

3.6 Summary of recent developments

On the one hand, k-anonymity, (X, Y)-anonymity, I-diversity and t-closeness are former
and current state-of-the-art models for anonymizing the basic data without anticipating
the type of aggregation. They emerged from the need for true sensitive values, especially
in the life-critical field of medical research and focus on preventing linkage attacks by
making groups of individuals virtually indistinguishable.

On the other hand, differential privacy is a concept concerned with a result com-
puted from the data, so it is closer to the original roots of privacy research assuming
some central entity doing the actual aggregation rather than just anonymizing raw data.
However, it does neither change the query set, like random sampling or k-anonymity,
nor rely on microaggregated data and thus improves the utility of the result drastically
over historic approaches. It effectively defends against probabilistic attacks.

4 Mechanism Details

The following section explains the two current branches in the line of privacy research:
[-diversity and t-closeness as state-of-the-art mechanisms for privacy-preserving data
publishing and differential privacy as emerging mechanism for privacy-preserving data
mining.

4.1 [-diversity and ¢-closeness in practice
4.1.1 Entropy [/-diversity

From an information-theoretic perspective, different sensitive values contribute a differ-
ent amount of information to a QID group. The entropy of QID group G is defined as
H(G) = =), P(si)loga(P(s:)), where s; are the different sensitive values in G, P(s;)
is the probability of s; occurring and H(G) gives the expected number of bits for each
sensitive value in the QID group. The number of bits necessary to represent ! equally
probable values is loga(1).

This leads to a state-of-the-art definition of [-diversity which is satisfied if for each
QID group H(G) > logz(l) holds.[4] In other words, the expected information content
of a sensitive value must be at least the baseline information content when all sensitive
values were equally probable.

Although entropy [-diversity makes the distribution of sensitive values less revealing
in the eye of an attacker, this method still lacks an exact control mechanism for the
probability density function (PDF) an attacker may deduce from prior knowledge com-
bined with the data. This problem will be addressed by both ¢-closeness and differential
privacy.

51

4.1.2 Semantic [-diversity

It is important to know that [-diversity can be ineffective when the [sensitive values are
semantically close. Consider a 3-diverse QID group from a medical database having flu,
HIV and tick bites as diagnoses. This is much more desirable as having three different
types of cancer in a QID group. Treating semantically close values as they were the
same during data processing can be a necessary step to make [-diversity less delicate [4].

4.1.3 t-closeness

t-closeness [14] is a recently formalized constraint which mathematically limits the dis-
closure of less expected probability distributions. Less expected means showing clear
deviation from the global distribution which an attacker might expect after looking at
the overall data. As an example, consider a medical database containing diagnoses as
sensitive attribute. If the overall distribution of HIV is small (< 10%) then identifying
a QID group containing 80% HIV diagnoses drastically increases the chance of any in-
dividual in question of having HIV. Although they can plausibly deny that fact (given
[-diversity for [> 2), credibility drastically decreases in this case, especially in the eye
of insurance companies, employers, etc.

Given a KL-Divergence based t-closeness constraint means that for each QID group
G and each possible sensitive value s; € S the inequality

1G) = Y Plsiin (;ﬁ%) <t (1)

must hold, where P(s;) is the global probability of seeing s; and P(s;|G) the probability
of s; occurring in the specific QID group G. The undefined term 0 x In(0) is set to 0.

It has been shown in [14] that the condition

ZP(S¢|G)log(P(18i)) <t41 (2)

ensures both t-closeness and [-diversity at the same time. This combination is an actual
state-of-the-art privacy constraint for data publishing.

4.2 Mechanics of differential privacy

The core assumption of differential privacy is that any individual’s privacy is protected if
its contribution does not change the outcome of an aggregated result significantly. This
assumption has several important implications:

e The same aggregated result could be generated by either the original database or
by a database where a single individual contribution is missing. This guarantees
plausible deniability for each single person (but not for groups) no matter what
background knowledge a potential attacker might have.

e [f the outcome did not change at all between a database and the same database
with one individual removed, then backward induction shows that the result would
have always been the result from the empty database and therefore of no utility.
So there is a clear tradeoff between individual privacy and utility of the outcome.

52

e If an individual’s contribution does not change the outcome significantly, then
the aggregated result can be protected against a single malicious or untruthful
contribution.

observed result (y)
P(y) 4

Figure 5: The observed output of the randomized f(D) (PDF depicted here) is practi-
cally indistinguishable from the output the neighboring databases could generate. With
small probability the observed result could even originate from a very distant database

4.3 e-differential privacy

In order to formalize the above statements, the change in the outcome introduced by
a single individual has to be quantified. e-differential privacy [9] takes a probabilistic
approach modeling an aggregate result M (D) over database D as PDF Pr[M (D) = y],
as an aggregation mechanism M is expected to randomly generate multiple values of y
with differing probabilities (noisy function). The outcomes over two databases D and
D differing in a single entry can be considered similar enough if:

Pr{M(D) = y|
Pr{M(Da) =] =

e (3)

Given €, a mechanism M satisfying this constraint for each D is called e-differentially
private.

From the perspective of an attacker this constraint guarantees that, independently of
what prior probability distribution (background knowledge) an attacker has, its posterior
distribution after seeing a result is not significantly influenced by whether an individual
contributed to the result or not. This is closely related to what ¢-closeness tries to guar-
antee at the original data level.

The exponential notation is sometimes replaced by a factor a = e and called a-
differential privacy [11].

4.3.1 Sensitivity

How much M must be randomized to satisfy e-differential privacy mainly depends on
the change a single individual can cause to a result of the underlying truthful func-
tion f. As an example, consider a function f counting individuals which satisfy some
predicate: An individual participating in the database can cause a maximum change of
1 to the outcome of f, so randomization must plausibly explain some change around

53

f(D) £ 1. But if we consider a sum function over sensitive values to which an individ-
ual may contribute up to 1,000,000, then changing the outcome by +1 clearly does not
hide the contribution of such a large value, while a change of £+1, 000, 000 definitely does.

The maximum impact an individual can have on a function f is called sensitivity [9]

S(f):

S(f) = max(|f(D) = f(Da)l) (4)

Sensitivity is additive in the sense that if f(D) = (g(D),h(D)) then S(f) = S(g) +
S(h), so multiple aggregations sum up their sensitivity[10].
The sensitivities of some common aggregation functions are:

e 1 for the count function or histograms.

e maz(S) for sums over arbitrary subsets of S. Notice that this is neither the
maximum of the actual data, nor the maximum of the subset, but the maximally
contributable number at all.

e max(S)+1 for average as it can be composed from the result of a sum and a count.

The implicit assumption in this sensitivity model is that individuals are independent,
which may lead to problems when applied to real-world input [12].

4.3.2 The Laplace mechanism

Given a truthful function f with its sensitivity S(f) an e-differentially private mechanism
M can be derived by adding noise sampled from a Laplace distribution with standard

deviation S(f)/e: [9]

M(D) = f(D) +x (5)
x ~ Lap(S(f)/e (6)

The Laplace distribution Lap(\) over a random variable X means that the probability
Pr[X = z] that X takes a value z is modeled as:

Lap(\) : Pr[X =z| = %e_‘;l (7)

The diversity parameter X is proportional to the standard deviation of this distri-
bution. Both a lower € (stricter privacy criterion) and a higher sensitivity broaden the
standard deviation.

4.3.3 Limitations

Achieving e-differentially private mechanisms using Laplacian noise is a relatively easy
approach, but also has several limitations and privacy impacts:

e suboptimal utility: It has not been shown that the approach maximizes utility
for any utility model. (Depending on the utility model, there are indeed better
approaches, such as geometric noise for count queries) [12].

e unbounded results: Results may exceed the range of plausible values with small
probability, truncation may be needed [12].

54

e non-numeric results: The Laplace mechanism does not make any sense on non-
numeric or non-continuous outputs (consider randomizing a ZIP code or string)

[15].

e additive noise across multiple queries: When the database is about to inter-
actively answer multiple queries, the same additivity applies as for the sensitivities
of simultaneous, non-interactively released results. The noise added to each single
answer must scale with the sensitivity of all future answers (e.g. answering two
counting queries requires each of the results to have twice as much noise as a sin-
gle result). This effectively limits the number of answers a database with fixed e
may give or it additively increases € [10, 16, 9]. If noise is not scaled properly, an
attacker issuing arbitrarily many questions can eventually average out the noise.

e How to set e: k-Anonymity has been around for a while now. There are estab-
lished rules for censuses on what to generalize in which ways to almost certainly
achieve £ > 1000 without loosing too much information that could be useful for
political and economical decision-making. However, there is no useful real-world
experience on the choice of € or o [12].

e independent individuals: The sensitivity model assumes that individuals are
independent, which they roughly are in many controlled studies but certainly not
in social networks [12]. In real life, an influential individual participating in a study
could induce peer pressure, so identifying the aggregated contributions of his peer
group (again, only individuals are protected, not groups) almost certainly reveals
that he participated.

4.4 Utility model for differential privacy
4.4.1 Statistical utility measures

(Dis)utility can be measured trivially in terms of variance or standard deviation on the
answer when the true answer is assumed to be the expected baseline. If the result is a his-
togram, the expected earth mover’s distance can be used, if a probability distribution is
constructed, the expected KL-divergence or mutual information can measure (dis)utility.

However, none of these statistical methods takes into account a potentially corrective
effect of the user’s background knowledge or any user-specific loss function, e. g. a binary
loss (the data becoming fully useless or the consequences fatal when the answer exceeds
some threshold). Recently, a general utility model for (discrete) differentially private
mechanisms has been developed, which considers a user’s loss function and background
knowledge [11].

4.4.2 Universal utility measure

Suppose that each user might have an individual loss function [(,j) over the natural
numbers. The function quantifies the loss a user experiences if he has seen a result j
but the true result was i. This loss-function should only depend on i and |i — j| and is
non-decreasing with increasing |i — j| (e.g. |i — j| or (i — 5)?).

The user in question also has some background knowledge, which is modeled as a
probability p; over all possible answers i. e.g. if the user was about to interact with a
database containing 5 records and he knew that either all or none of 5 records would

95

match his count query, the probability for 0 and 5 would be 1/2 and any other set to
0. In order to satisfy its belief, the user has some mechanism Y in mind, which remaps
any output from the algorithm to the belief model of the user. In the last example, this
function could map any result < 3 to 0 and any result > 3 to 5, but any probabilistic
mapping is possible, not only functions.

Given a randomized differentially private mechanism M (i) where ¢ is the real result,
and the user’s remap-mechanism Y, we can define a new mechanism Z = M oY by
chaining both mechanisms. Given the probability Pr[M (i) = y] that M delivers output
y if the truthful answer was ¢ and the probability Pr[Y (y) = j] that the user interprets
the output y as j we can compute the probability that the user perceives j if the real
answer was ¢ by summing up the decision paths over all possible y:

zij = Pr{Z(i) = j] =) Pr[M(i) = y] - PrlY (y) = j] (8)

Having these probabilities, we can compute the expected loss L(i) with i being the true
result after applying both mechanisms:

L(i) = Z 25 - (1,) (9)

Aggregating expected losses is done by weighting it with the user’s belief that each
answer ¢ has probability p; and summing up the expected losses.

L = ZPi'L(i) (10)
= Zpi‘zzij'l(i>j) (11)

J

We now know that we can maximize utility by minimizing L during the design
phase of our privacy mechanisms. The remarkable property of this model is, that it is
the first to quantify the utility of actual mechanisms (e.g. the Laplacian mechanism)
while not assuming anything about the underlying data (this property is referred to as
obliviousness).

4.4.3 Consequences of the universal utility model

Literature [11] has shown that differential privacy can indeed use better performing
distributions than Laplace noise with respect to this utility model, e.g. by applying
noise sampled from a geometric distribution to queries with sensitivity 1 (count queries).
In the discrete case, the difference A which is added to the output is sampled from the
following geometric probability distribution:

_l—a

PriA =z = T o

a” (12)
The parameter « is exactly the privacy level in the definition of a-differential privacy

or equal to e€ in e-differential privacy. With respect to the universal utility model this
noise is optimal over all legal loss functions a user might have.

56

5 Future Work

Concerning generalization-based approaches, there are several inherent problems that
need to be addressed:

e The utility vs. privacy problem is of greater concern in the context of generalization-
based approaches as in differential privacy, because they do not depend on some
fixed aggregation or mechanism. Especially in the domain of pattern recognition
and machine learning utility studies are missing [14].

e Updating the published data is very dangerous as the difference may reveal con-
tributions of added or removed individuals. Although m-invariance is a new con-
straint which allows republication given a limited background knowledge (that
the publisher has to know in advance) it does not scale to arbitrary background
knowledge. Alternatives need to be explored [1].

e High dimensionality decreases the utility of the data tremendously. This is due to
the fact that quasi-identifiers easily become unique again if an attribute/dimension
is added and a lot of values need to be suppressed in the end. This course of di-
mensionality [17] has to be broken to make these approaches viable for tracking
data, social networks, genetic information and similar data with thousands of di-
mensions.

Differential privacy may suffer from similar problems concerning updates, but the
impact on updating the database has not been studied yet. Some open questions can be
deduced straightforwardly from the limitations outlined in 4.3.3, most notably:

e The individual independence assumption has to be evaluated for real-world sce-
narios, e.g. how well the sensitivity-based model still works in social networks
[12].

e The (only) universal utility model for count queries needs to be generalized to
fit more query types. This may further improve the privacy-utility-tradeoff as
the model can be seen as objective function one can try to minimize by choosing
alternative randomization methods [11].

e The first approach of creating an e-differentially private k-anonymization uses ran-
dom sampling. The researchers expect that there might be other or better algo-
rithms to achieve e-differential privacy guarantees for k-anonymity [13].

e Differential privacy has been generalized to arbitrary domains for a limited type
of mechanisms (e.g. auctions) [3]. It is subject to further research what other
mechanisms and algorithms can be made differentially private, e.g. mechanisms
that generate trees, compound objects or complex classifiers.

There are also some exotic approaches that use compressive sensing [18], which is
basically a recently discovered lossy compression capturing the principal components
of the data but omitting very individual information and therefore satisfying strong
privacy guarantees, even e-differential privacy. Further research may signalize whether
these approaches are a feasible alternative to adding noise.

o7

6 Conclusion

Differential privacy clearly targets privacy-preserving data mining (PPDM) as it focuses
on the actual aggregation, while indistinguishability-based approaches (k-anonymity,
etc.) operate on the syntactic level of the underlying data, therefore being more suit-
able for privacy-preserving data publishing (PPDP). Differential privacy emerged from
the need for a more rigorously provable privacy guarantee than any historic approach
including those in the area of PPDP, so the lines of research were split around 2007. It
turned out that modern PPDP approaches, such as t-closeness, are indeed challenging
to develop further and getting a better tradeoff between privacy and utility, while dif-
ferential privacy is constantly making (at least mathematical) progress.

Nowadays, the choice between these two lines heavily depends on the expected use
case. Published real-world data can have an extreme impact on the productivity in this
area, as it motivates the development of new mechanisms that deliver deep insights or
business value (e. g. recommender systems after Netflix released movie-ratings issued by
a large set of users). Aggregated results, especially when released in a differentially pri-
vate manner, have a stronger guarantee that nobody’s privacy will ever be harmed but
are effectively useless when the user of the data wants to build new analysis methods.
They have a more or less informative character or can be seen as a tool which can be
built into existing algorithms to protect their users. Nevertheless both lines have a place
alongside each other and new research connecting both areas again seems to be coming

up.

In any case, there is still a lot of work ahead before the mathematical models fit some
current and future real-world scenarios, particularly those concerned with tracking data,
communication (meta-)data, social networks, genetic information and biometric data.

References

[1] X. Xiao and Y. Tao, “M-invariance: towards privacy preserving re-publication of
dynamic datasets,” in Proceedings of the 2007 ACM SIGMOD international con-
ference on Management of data, ser. SIGMOD ’07. New York, NY, USA: ACM,
2007, pp. 689-700.

[2] B. Gedik and L. Liu, “Protecting location privacy with personalized k-anonymity:
Architecture and algorithms,” IEEE Transactions on Mobile Computing, vol. 7,
no. 1, pp. 1-18, Jan. 2008.

[3] F. Mcsherry, “Mechanism design via differential privacy,” in Proceedings of the 48th
Annual Symposium on Foundations of Computer Science, 2007.

[4] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data pub-
lishing: A survey of recent developments,” ACM Comput. Surv., vol. 42, no. 4, pp.
14:1-14:53, Jun. 2010.

[5] N. R. Adam and J. C. Worthmann, “Security-control methods for statistical

databases: a comparative study,” ACM Comput. Surv., vol. 21, no. 4, pp. 515-
556, Dec. 1989.

58

[6]

M. H. Hansen, “Insuring confidentiality of individual records in data storage and
retrieval for statistical purposes,” in Proceedings of the November 16-18, 1971, fall
joint computer conference, ser. AFIPS '71 (Fall). New York, NY, USA: ACM,
1971, pp. 579-585.

D. E. Denning, “Secure statistical databases with random sample queries,” ACM
Trans. Database Syst., vol. 5, no. 3, pp. 291-315, Sep. 1980.

L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst., vol. 10, no. 5, pp. 557-570, Oct. 2002.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Proceedings of the Third conference on Theory of Cryp-
tography, ser. TCC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 265—284.

C. Task, “A practical beginners’ guide to differential privacy,” http:
//www.cerias.purdue.edu/news_and_events/events/security_seminar/details/
index/j9cvs3as2hlqdsljrdgfdc3hu8, 2012, accessed: 2013-12-12.

A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally utility-maximizing
privacy mechanisms,” in Proceedings of the 41st annual ACM symposium on Theory
of computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 351-360.

C. Clifton and T. Tassa, “On syntactic anonymity and differential privacy,” in Data
Engineering Workshops (ICDEW), 2013 IEEE 29th International Conference on.
Brisbane, QLD: IEEE, 2013, pp. 88-93.

N. Li, W. H. Qardaji, and D. Su, “Provably private data anonymization: Or, k-
anonymity meets differential privacy,” CoRR, vol. abs/1101.2604, 2011.

C. Sha, Y. Li, and A. Zhou, “On t-closeness with kl-divergence and semantic pri-
vacy,” in Proceedings of the 15th international conference on Database Systems for
Advanced Applications - Volume Part I, ser. DASFAA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 153—-167.

C. Dwork, “Differential privacy: a survey of results,” in Proceedings of the 5th
international conference on Theory and applications of models of computation, ser.
TAMC’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1-19.

W. Qardaji, “Differentially private publishing of geospatial data,” http:
//www.cerias.purdue.edu/news_and_events/events/security seminar /details/
index/9nr7je9agbgneqem9hrg2salic, 2013, accessed: 2013-12-12.

C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in Proceedings
of the 31st international conference on Very large data bases, ser. VLDB ’05. VLDB
Endowment, 2005, pp. 901-909.

Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang, “Compressive mechanism: Utilizing
sparse representation in differential privacy,” CoRR, vol. abs/1107.3350, 2011.

99

Private Information Retrieval

Cloud Security Mechanisms Seminar — Summer Term 2013

Maximilian Schneider

1 Introduction

A Private Information Retrieval Protocol allows an user to retrieve an item from a
server in possession of a database without revealing any information about which item
is retrieved. In simple terms: Bob is in possession of a database z = {0;1}" from which
Alice wants to read the i-th bit z; without Bob knowing the index i in which Alice is
interested in.

Possible Applications for this might be that Bob provides access to a database of
Chemical structures. Alice is interested in the properties in specific parts of a new struc-
ture she synthesized. Using a PIR protocol she would be able to look up these specific
parts in Bob’s database without revealing to him what she is currently researching in.

A trivial solution to this problem would be for Alice to download the entire database.
Assuming that the server would only respond with a fraction of the database, one can
argue that in this case the server would know which items were not not retrieved and
therefore gain information about which item was retrieved. This implies that the trivial
approach is also the optimal solution to Private Information Retrieval from a single
server.

In the research field of Information Theoretic Private Information Retrieval the ex-
istence of k non-co-operating replications of the database is assumed. This assumption
is sometimes weakened to the existence of k replications of the database of which up to
t may co-operate, which is called t-private Information Retrieval.

Another notable branch of research is Computationally Private Information Re-
trieval. To the problem definition of Private Information Retrieval the assumption is
added, that the server is polynomially bounded. Contrary to Information Theoretic
Private Information Retrieval this allows protocols to involve only a single server.

Computationally Private Information Retrieval problems can be additionally con-
strained, so that the user is allowed to receive only information about the particular
index he queried. This variation is called Symmetric Private Information Retrieval [1].

In the following the primary branches of research, namely Information Theoretic
Private Information Retrieval and Computationally Private Information Retrieval, are
presented. The respective history of each field of research and the connection to research
of other cryptographic primitives will be discussed. Further on the findings of [2] and
[3] are explained in detail as they were of considerable impact to this field of research.

2 Foundations

2.1 Oblivious Transfer and SPIR

Definition 1 In a I-out-of-n oblivious transfer protocol the party called “the sender”
has n messages, but wishes to share only one of those. The other party, the receiver,
wants to receive the message corresponding to an index ¢, which should remain hidden
from the sender.

60

One of the requirements for a Private Information Retrieval protocol is that the
communication must be sublinear. Therefore every SPIR protocol is always also a 1-out-
of-n oblivious transfer protocol. Moreover one can arbitrarily transform single database
CPIR protocols into SPIR protocols [4]. This implies that every single database CPIR
protocol is also a 1-out-of-n oblivious transfer protocol.

2.2 Locally Decodable Codes

Definition 2 A ¢-query locally decodable code encodes an n-bit message x by an N-bit
codeword C(z) such that any bit x; of the message can be probabilistically recovered by
querying only q bits of the codeword, even if some constant fraction of the codeword has
been corrupted [5].

The research of Private Information Retrieval has caused advances in the field of
Locally Decodable Codes, and vice versa. This was to some extent only possible because
because ITPIR resembles receiving Locally Decodable Codewords.

Theorem 1 If the queries to k different servers correspond to the q extracted bits from
a Locally Decodable Codeword, and if privately retrieving x; corresponds to recovering x;,
then from every PIR scheme a LDC scheme with constant probability 1 can be deduced.

3 History of Information Theoretic Private Information
Retrieval

The Problem of Private Information Retrieval was first proposed by [2] in 1995. To
improve upon the communication complexity (measured in bits exchanged between client
and server) they tried to replicate the database on completely non-co-operating servers.
Their scheme builds upon the idea, that they construct uniformly, randomly selected
subsets of the index set as queries, which do not reveal any information about the
retrieved index. For the specific case of 2 databases their result, which exchanges a total
of O(n!/3) bits between the client and all servers in a single round-trip, is considered as
optimal.

[6] improved upon their solution by changing the emulation. The one proposed by [2]
relied on covering codes of a distance 1. If a non-perfect covering code is used, certain
codewords are covered twice which leads to redundant computation and communication.
The improvement relied upon a recursive definition to distribute the emulation and

resulted in scheme with communication complexity O(nTl—l)

Roughly five years later this result was first improved upon by [7]. Their solution was
based on representing the database as a multivariate polynomial over a finite field. By
sending each server only subsets of the substitutions for the polynomial’s free variables,
it can reduce the polynomial only to contain at least one free variable. Their result was
not only a major contribution to the field of Private Information Retrieval, but rather
also advanced the research of Locally Decodable Codes.

[8] presented an improvement in Locally Decodable Codes using Mersenne Primes.
Though Locally Decodable Codes have a probabilistic nature, for this particular code a
construction for a non-probabilistic three server Private Information Retrieval protocol
was given. Assuming Infinite Mersenne Primes the total communication complexity is

1
O(nlesiosn). The resulting communication complexity of O(n 325812658) results from using
the largest known Mersenne Prime.

61

4 History of Computationally Private Information Retrieval

The Problem of Computationally Private Information Retrieval was first introduced
by [9]. They presented a modification to the original Information Theoretic Private
Information Retrieval solution by [2] which still relied on 2 non communicating servers.
Depending on the security parameter e > 0, the scheme’s communication complexity
was O(n®).

In the same year [3] proved that CPIR schemes do not need to rely on non-co-
operating replications. They presented the first CPIR scheme which only involved com-
munication with a single database. Their solution was based on the Goldwasser-Micali
Cryptosystem [10] which supports homomorphic exclusive or.

Subsequently many different CPIR protocols based on various other homomorphic
crypto-systems have been discovered. Most notably the result by [11] which was based
on the Damgard-Jurik crypto-system with a sublinear communication complexity of
O(loglogn).

Most recently schemes based on the hardness of the hidden lattice problem [12] have
been published. These have been the first schemes which actually fast enough to be put
into actual application.

5 Mechanism Details

5.1 2-Server Information-Theoretic Private Information Retrieval

The scheme proposed by [2] relies on constructing multiple different subsets of the index
set as queries. In order to hide the retrieved index ¢, each of these subsets is selected
uniformly at random. The replications reply with the exclusive or of all selected bits.
Through their construction of the subsets they can ensure that the retrieved index 7 is
only included in an uneven number of subsets while every other index is included in an
even number of subsets. Therefore the associativity of the exclusive or operation allows
to compute the retrieved index from the single bit responses of all replications.

As an example for the case of two replications the respective queries) and Q* would
be constructed as subsets of the index set I = [1;n]:

Q C I,whereVjel:P(j€Q)=0.5 (1)
_Je\i, ifieq@
@ = {QUi, otherwise @

RQ) =D (3)

Jj€Q
As specifying a single subset of the index set in a naive way requires n bits (one for
each bit in the queried database), they instead chose to represent their index set as a

d-dimensional cube. A simple example representation of z for d = 2 and n = 9 would
be:

T11 Ti2 T13
T= |T21 T22 X23 (4)

31 T32 T33

62

They adapted their query construction to specify d subsets of [1;1] where | = H/ﬁ]
which reduced their query size from n to d- &/n. This modification increased the number
k of required replications to k = 2¢. The four queries for the last example from equation
4 would be constructed with the help of S; and Ss, each randomly selected subsets of
[1;1].

Sy — {Sd \ @4, if the dth component of 7,75 € Sy (5)

Sa U (iq), otherwise

Q1 = Q(Sl,SQ) = {(81,82) ’ s1 €851 Nsy € SQ} (6)
accordingly: Q2 = Q(S1,52%), Q3 = Q(S1*,52) and Q4 = Q(S1%, Sox*)

As the increased number of replications also implied increased amount of communi-
cation, they let some replications emulate others, thereby reducing the number of needed
replications and total communication again. In order to guarantee privacy the respective
queries for the emulated replications may not be provided to the emulating replications.
While this procedure increases the amount of bits sent back from each server, it also
reduces the number of servers and the total communication from the client to all servers,
therefore it is called balancing.

The emulating replications prepare responses for every possible query, which one of
the emulated replications could have received, by modifying the query transmitted to
them. Their construction based on perfect binary covering codes results in an optimal
solution when using 2 codewords of length 3 to construct an emulation scheme for 3-
dimensional addressing in which 2 servers each emulate 1 additional replication per
dimension. In that case one server would receive a query Q(S1,S2,.53) while the other
one receives Q(Sy*, Sa*, S3x). The first one would have to guess Si*, Sox and Ssx in
order to calculate the missing queries, it should emulate:

Q(S1%, 52, 53), Q(S1, Sax, S3) and Q(S1, S2, Sg*)

As no information regarding those sets can be revealed, as this would let the first server
gain information on 4, every possible Sy* has to be treated equally and a responses for
each of them is calculated. The same is also true for the second server.

This leads to a 2 Server Protocol, in which the client sends each server a query of
3 - /n bits and receives from each a response of 1 4 3 - /n bits this results in a total
communication of 12/n bits per retrieved bit.

5.2 Single Server Computationally Private Information Retrieval based
on Goldwasser-Micali

The scheme proposed by [3] mainly relies on the Goldwasser-Micali cryptosystem [10]
which support homomorphic computation of the exclusive or. The basic idea is that the
server only executes homomorphic computations on encrypted numbers and that only
the client can decrypt the input and result of the computation so that his privacy is
ensured.

In order to retrieve bit i, the client sends initially a series of uniformly at random
chosen cyphertexts F1, ..., E, having the following property:

D i e
B= o Tt)
£(0), otherwise

63

Computing uniformly selected cyphertexts to encrypt 0 is easily possible, as the Goldwasser-
Micali cryptosystem relies on the quadratic residuosity problem, first discovered by [13].
The Server in turn replies with the response R, which is computed as follows:

B2 ifx=1
R(x,Er,...,E,) = 77 J 8
(!) jl_IO{Ej otherwise ()

As multiplication of cyphertexts corresponds to exclusive or of plaintexts in the Goldwasser-
Micali cryptosystem the following holds true: £(0) - £(0) = £(0 ¢ 0) = £(0). Therefore
squaring E; or not for all j # 4 has no influence on the decrypted plaintext of the prod-
uct. Furthermore the result of the decryption D(R) of the computation can be simply
be represented as:

D(R)=D | [[£(0)-
i

{i(l) -E(1), ifx=1 — 1o 9)

(1), otherwise

Similiar to the protocol described in 5.1 the total communication between the client
and server is linear to the database size, when implementing the protocol in a naive way.
Therefore [3] proposed a recursive extension to their protocol. The basic idea is that the
database is partitioned into chunks of the size ny, = {%/ﬁ] for a given recursion level of
L. The basic protocol is then applied to each of these nf_l chunks C, using the same

cyphertexts Fi, ..., E,, creating the base for the recursion.
Ce={zj|j€ ((c=1)-ng;c-nr]}, where c € [l;nﬁ_l] (10)

Rl,c :R(CmElu-”aEnL) (11)

The nﬁ_l results serve as a base for the recursion in the case of recursion level [= 1.
To execute the next step of the recursion the results from the previous step are splitted
into ny, chunks of size nf_l, where [is the next recursion level. Over each of those chunks
the PIR protocol is evaluated again, leading to the following computation:

Vie[2;L]: R .= H
r=1

"L 2 . B
{E(l_l)'nr‘rr’ if Ri—1cnp4+r =1 (12)

Eq_1)ny4r, otherwise

With each invocation of the recursion the size of the result set decreases until | = L—1
and only ny, results are left. Applying the recursion another time at this point, would
reduce the size of the result set to a single number, but it would require n” additional
cyphertexts to be transmitted from the client to the server. As the total communication
would therefore increase this step is omitted and the ny results are transmitted directly.

6 Recent Developments & Future Research

Private Information Retrieval is still an active field of theoretical research as even current
schemes struggle to be incorporated into applications. This is mostly due to the low time
efficiency when comparing the computation necessary for PIR schemes to transferring
the whole database. In 2006 PIR was still considered practically infeasible at all [14] and
the research community was criticized for focusing only on communication complexity
and not regarding overall time efficiency.

64

This discussion has shifted the problem from achieving Private Information Retrieval
with least communication possible to the development of algorithms which tradie in-
creased communication complexity for reduced computation complexity [12, 15]. Since
then PIR algorithm researchers started to consider the applicability of these algorithms
to actual computation, including computation on GPU hardware [16].

These new algorithms have increased the confidence in the feasibility of PIR [17]
and led to the first applications based on Private Information Retrieval. One notable
example is a Privacy-Preserving Domain Name System [18] which combines distributed
hash tables and a CPIR scheme [19] to provide private lookup of DNS names.

Since the emergence of common and feasible anonymization technologies like the
TOR network [20] ITPIR has become an even more interesting topic of research. Due to
the constraint of non-cooperating replications I'TPIR was always regarded impractical
for applications. But when considering that the identity of the requesting party can
be hidden from the different replications, this also means that cooperating becomes
impossible for these replications.

7 Conclusion

Since the first publication dealing with Private Information Retrieval nearly 20 years
have passed. Only current advances in research have been incorporated into practical
applications, primarily due to the high overhead in using PIR protocols. Another reason
might be that the consequences of not using PIR in most use cases usually are weighted
irrelevant, as the provider of information is often trusted to deal with the data of it’s
users in a sensible way.

The strong ties between Information Theoretic Private Information Retrieval and
Locally Decodable Codes allow PIR in general to benefit from development in this related
area, the same holds true for Computationally Private Information Retrieval in the case
of Oblivious Transfer. The continuing research and following improvements, as well as
the increasing adoption into applications promise further development in the future.

References

[1] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data privacy in
private information retrieval schemes,” in Proceedings of the thirtieth annual ACM
symposium on Theory of computing, ser. STOC ’98. New York, NY, USA: ACM,
1998, pp. 151-160.

[2] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information re-
trieval,” Journal of the ACM, vol. 45, pp. 965-981, Nov. 1998.

[3] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database,
computationally-private information retrieval,” in Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, ser. FOCS '97. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 364-373.

[4] G. Di Crescenzo, T. Malkin, and R. Ostrovsky, “Single database private information
retrieval implies oblivious transfer,” in Proceedings of the 19th international confer-
ence on Theory and application of cryptographic techniques, ser. EUROCRYPT’00.
Berlin, Heidelberg: Springer-Verlag, 2000, pp. 122-138.

65

[5]

[11]

[12]

[13]
[14]

[17]

18]

[19]

66

Wikipedia, “Locally decodable code — wikipedia, the free encyclopedia,” 2013,
[Online; accessed 22-September-2013]. [Online]. Available: http://en.wikipedia.
org/w/index.php?title=Locally_decodable_code&oldid=571624006

A. Ambainis, “Upper bound on the communication complexity of private informa-
tion retrieval,” Automata, Languages and Programming, pp. 1-9, 1997.

A. Beimel and Y. Ishai, “Breaking the barrier for Information-Theoretic Private In-
formation Retrieval,” The 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, 2002. Proceedings., pp. 1-30, 2002.

S. Yekhanin, “New locally decodable codes and private information retrieval
schemes,” Flectronic Colloguium on Computational Complexity, vol. 127, 2006.

B. Chor and N. Gilboa, “Computationally Private Information Retrieval,” Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp.
304-313, 1997.

S. S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental
poker keeping secret all partial information,” in Proceedings of the fourteenth annual
ACM symposium on Theory of computing, ser. STOC ’82. New York, NY, USA:
ACM, 1982, pp. 365-377.

H. Lipmaa, “An oblivious transfer protocol with log-squared communication,” In-
formation Security, 2005.

C. Aguilar-Melchor and P. Gaborit, “A lattice-based computationally-efficient pri-
vate information retrieval protocol,” Cryptol. ePrint Arch., Report 446, 2007.

C. F. GauB, Disquisitiones Arithmeticae, 1801.

R. Sion and B. Carbunar, “On the Computational Practicality of Private Infor-
mation Retrieval,” Proceedings of the Network and Distributed Systems Security
Symposium 2006, 2006.

J. Trostle and A. Parrish, “Efficient computationally private information retrieval
from anonymity or trapdoor groups,” Information Security, 2011.

C. A. Melchor, B. Crespin, P. Gaborit, V. Jolivet, and P. Rousseau, “High-speed
private information retrieval computation on gpu,” SECURWARE’08. Second Inter-

national Conference on Emerging Security Information, Systems and Technologies,
2008, pp. 263-272, 2008.

F. Olumofin and I. Goldberg, “Revisiting the computational practicality of private
information retrieval,” in Financial Cryptography and Data Security. Springer,
2012, pp. 158-172.

Y. Lu and G. Tsudik, “Towards Plugging Privacy Leaks in Domain Name System,”
2010 IEEE Tenth International Conference on Peer-to-Peer Computing (P2P), pp.
1-10, 2010.

C. A. Melchor and P. Gaborit, “A fast private information retrieval protocol,” in
Information Theory, 2008. ISIT 2008. IEEE International Symposium on. IEEE,
2008, pp. 1848-1852.

[20] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-generation onion
router,” in Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, ser. SSYM’04. Berkeley, CA, USA: USENIX Association, 2004, p. 21.

67

Trust-Based Access Control

Cloud Security Mechanisms Seminar — Summer Term 2013

Vincent Schwarzer

1 Introduction

Through the increase of interconnected information systems often called ubiquitous com-
puting and the offering of services by them to other peers in the network new challenges
have arisen. These are rights management and how to handle unknown peers as well as
how to find trustworthy service providers in a flood of similar offerings. An approach
to tackle these challenges is to introduce Trust and Reputation Systems (TRS) where
Trust - Based Access Control (TBAC) is a part of. TRS can be used as decision sup-
port systems for Software-as-a-Service (SaaS) offerings or support rights management
by granting and revoking access rights based on trust/reputation scores.

In a SaaS environment TRS help service consumers to choose a service provider by pro-
viding a scoring for each provider based on ratings from peers who had transactions
with the service provider before. Today service consumers often does not have sufficient
information about the quality of a service provider offers what trust and reputation sys-
tems could compensate.

Similar problems exist in ubiquitous computing that build large dynamic networked
infrastructures where new unknown peers (Information systems/users) want to access
resources. TRS help the peer to find other trustworthy peers or to assign individual
privileges to each peer autonomous because doing this manually is no longer sufficient.
Using TBAC minimizes the efforts necessary for rights management because the whole
rights management is automated and needs only minimal intervention by the provider.

TBAC introduces the trust and reputation in the field of access control mechanism.
Based on feedback after each transaction between peers a trust/reputation scores is
computed which grants/revokes access rights.These scores are determined for each peer
individually and are based on different factors like behavior or context (place, time).

In this paper I will give a general overview over TRS and introduce TBAC especially.

2 Foundations

To get an understanding for Trust and Reputation System and TBAC it is important
to introduce some central terms used in this research field.

2.1 Trust

Trust has been researched by many researchers over the years [1, 2] but there is no
unified definition of trust. The reason for that is that the definition of trust is subjective
and heavily depends on the authors viewpoint. Two commonly used definitions for trust
are:

68

Reliability Trust by Gambetta Trust is the subjective probability by which an in-
dividual A, expects that another individual B, performs a given action on which
its welfare depends [3].

Decision Trust by McKnight & Chervany Trust is the extent to which one party
is willing to depend on something or somebody in a given situation with a feeling
of relative security, even though negative consequences are possible [4].

The amount of trust necessary to conduct a certain action depends on the risk involved.
A trust score can be seen as a measure how trustworthy a peer acts in future transactions.

2.2 Risk

Risk is defined as the combination of likelihood and severity of an accident according
to Dimmock [5]. To determine the risk of an action TRS use probabilistic cost-benefit
analysis to determine if an action or privilege should be granted or denied.

2.3 Reputation

Reputation is defined according to the Oxford Dictionary [6] as: ”Reputation is what is
generally said or believed about a person’s or thing’s character or standing.”. Generally,
reputation can be seen as a collective measure of trustworthiness based on rating or
referrals from other peers. A Reputation score can relate to a group or to a single peer.

2.4 Distinction Trust & Reputation

Josang et. al. [7] published an article “A Survey of Trust and Reputation Systems
for Online Service Provision” where they examined TBAC and the difference between
Trust and Reputation. They developed an example that should illustrate the difference
between the two terms.

(1) “I trust you because of your good reputation.”

(2) “I trust you despite your bad reputation.”

In the first sentence the peer is using public information to base his trust in the trustee.
Compared to the second sentence where the relying peer has some private information
about the trustee e. g. direct experience that overrule any reputation that a person might
have. That means that trust weights more then reputation as notion.

2.5 Difference Trust System & Reputation System

As described by Jgsang et. al. [7], a distinction has to be made between trust systems
and reputation systems. The main difference between the two systems is that a trust
system score that reflects how the subjective view of the relying peer is about another
peer. Reputation system score reflects the opinion about a peer seen by the whole
community. Another difference is that trust transitivity is a explicit component in trust
systems compared to reputation systems that only take it implicitly into account. As
input trust systems take subjective and general measures of trust compared to reputation
systems who usually use information or ratings about specific events like transactions.

69

2.6 Ubiquitous Computing

Ubiquitous Computing describes a computing concept first envisioned by Weiser [8]
where computing is everywhere and anywhere. Entities can be information system of
any kind like tablets, smartphones, cars or refrigerators. They are autonomous and often
mobile and should be able to react to unforeseen circumstances like disconnection to
interacting with other unknown entities. One of the main challenges in this environment
is the management of access rights when unknown entities interact with each other.

2.7 Centralised & Distributed Reputation Systems

Reputation Systems can be distinguished into two types centralised and distributed rep-
utation systems as described by Jgsang et. al. [7]. In a Centralised Reputation System a
central authority collects all given ratings for all peers and computes a reputation score
for each peer. To do this centralised communication protocols are used that participants
can provide reputation ratings and obtain reputation scores from other peers. In a Dis-
tributed Reputation System is no central location for submitting and obtaining ratings.
Therefore each peer stores their opinion about other peers and calculates the reputation
score. If another peer wants to do a transaction with an unknown peer he can request
reputation scores from other peers who already have transacted with the peer.

3 History

The term TRSTrust and Reputation systems where TBAC is a part of was first men-
tioned by Rasmussen & Jansson [9] in 1996. Where they used the term hard security
for traditional access control mechanisms and authentication and soft security for social
control mechanisms where TRS are a part of. Since then many different methods and
technologies have been proposed how to compute trust like Simple Summation or Aver-
age of Ratings, Fuzzy Systems [10], Bayesian Systems [11, 12, 13], Analytic Ezpressions
(EigenTrust [14], Peer-Trust [15]), Discrete Trust Models [16] as well as their application
in different kind of information systems.

These information systems can be:

Role Based Access Control with notion of Trust [17, 18] This implementation is
called TBAC which combines the traditional Role-based Access Control (RBAC)
with TRS. Roles associated with the permissions are assigned dynamically based
on the trustworthiness score of a peer. Based on this score the role of the peer
changes continuously and thus his rights in the system. Example for this systems
are Trust and Context Based Access Control (TCAC) [19], TrustBAC [20]

Peer-2-Peer Networks Through the anonymous and open nature of Peer-2-Peer net-
works TRS are used to identify trustworthy peers and exclude malicious peers that
spread inauthentic files. Challenges in these systems are according to Kamvar et.
al. [14] that TRS in P2P environment should be:

Self-Policing That the peers define and enforce good behaviour without a central
authority in the system.

Anonymity The usage of TRS should not interfere with the anonymity of the
peers in the network.

70

No Profit to newcomers There should be no benefit for being a new peer in
the network to prevent malicious peers to change their identity. Reputation
can be only gained through positive interactions with other peers.

Minimal Overhead There should be minimal overhead when a TRS is used.

Robust against malicious collectives The TRS should be robust against ma-
licious behaviour of peers.

Multi Agent System Multi Agent Systems [21, 22] consist of intelligent and autonomous

agents that interact together to solve problems efficient. Trust and reputation sys-
tems are used to find trustworthy exchange partners.

Researchers that are very active in the research of trust and reputation systems are
Audun Jgsang and Nathan Dimmock.

The majority of the proposed models uses Trust Computation based on transaction
ratings. Another less researched approach is calculating trust values through a certificate
based system like the one proposed by Herzberg et. al. [23]. All models assume that
some mechanism to identify the peers identity is in place. In the next section we will
describe some trust and reputation systems more in detail.

4 Mechanism Details

Most of the current proposed Trust and Reputation models follow four general steps
formulated by Marti & Garcia-Molina [24] in 2006 shown in 1. These are:

Collect Information In trust and reputation systems the transactional behaviour of
each peer is collected to determine how trustworthy a peer is.

Aggregate Information The peer behaviour is scored and ranked based on the trans-
action history.

Select peer & Interact Based on the score and ranking a peer is chosen for the next
transaction.

Punish & Reward Each peer rates the transaction with the other peer. Based on the
rating the system can take action against malicious peers and reward trustworthy
peers.

“ — Jish
Public Inform ation) Information Interact Reward

Figure 1: Steps Trust and Reputation Models cf. Marmol et. al. [25]

71

5 Examples for TBAC

5.1 eBay

A popular example for reputation systems is the online auction house eBay evaluated by
Resnick et. al. [26]. In eBay’s centralized reputation system buyer and seller can give
ratings in different categories and a overall rating after each transaction. The reputation
of each participant is calculated by aggregating the overall ratings for the last 6 months
and ranks each member with different coloured stars. Additional to the rating each
buyer /seller can leave a text comment giving more detail about his rating.

5.2 Stack Overflow

The website Stack Overflow is using a centralized proprietary TBAC system to manage
the user privileges in their community called Stack Overflow Meta. The main idea behind
the system is that each action in the community (create threads, answer to topics, etc.)
the user receive for good behaviour or loses for malicious behaviour a certain amount
of reputation points. These reputation points for each action are aggregated for each
user to a reputation score with the formula seen in 1. Based on the score each user gets
rights granted /revoked.

Reputation = Z Rep(Action) (1)

)

Every privilege in the community is bound to a certain amount of necessary reputation.
The goals of the system are to act as incentive to be active in the community and to act
as a filtering mechanism against malicious or misbehaving users.

5.3 TCAC

TCAC is a further development of TBAC proposed by Feng et. al. [19]. It extends
TBAC system with context information thus privileges are based on trustworthiness
and context information of the peer. The context characterize the situation of an entity
which can be a person, time or location. These context constraints can be defined for
each object.

An example for a TCAC system can be seen in the picture 2 where a peer u with the
trust score t,, send an access request (AR) where the peer in session s wants to perform
operation p on an object 0. This request gets evaluated by the Access Control System
(ACS). The ACS retrieves the peer information and checks if the peer has a sufficient
trust score for the operation on the requested object. If this is the case the system checks
if the peer satisfies the context requirements. If this is the case the peer gets dynamically
a new role assigned and can conduct the requested operation on the object. If one of
the checks fails the request will be denied. After the request, the system evaluates the
transaction and stores the adjusted trust score for the peer in the database.

5.4 Beta Reputation System

The Beta Reputation System was proposed by Jgsang & Ismail [27] in 2002 as flexible
framework for reputation services in e-commerce applications. The system is based on
Bayesian Systems and the Belief Model proposed by Jgsang & Audun [28] in 2001 and
combines the Reputation Function and Rating with Reputation Discount and Forgetting.

72

Subject: <u,zt, >

*"u

lAR: <s,p,0>

Context-aware
Device

No

Database

A

Yes
CN={request _[time, location}

time=get (request_time) |Ioc:ger(location) |

CC = {timee [9 4

1,17 PM], loc = Office}

Trust ||
Evaluation

Authorization

Figure 2: TCAC access request see Feng. et.al. [19]

5.5 Beta Density Function

The Beta Density Function is the mathematical foundation of the Beta Reputation
System to represent the probability distribution of positive or negative behaviour. For
the Beta Reputation System the beta distribution f (p | «, 3) is used expressed by using
the gamma function I':

Flad) = p ooy =) ®)

With additional following restrictions 0 <p <1, a >0, 8 > 0andp # 0ifa < landp #
14if B8 < 1. Applying this formula to observing two possible outcomes e. g. positive and
negative outcomes. Where r stands for positive feedback and s for negative feedback
the beta density function of observing positive feedback r in the future can be expressed
by setting:

a=r+1landp =s+1, wherer,s >0 (3)

5.5.1 Beta Reputation Function and Rating

The Beta Reputation Function and Rating is the core of the Beta Reputation System.
After each transaction both peers give feedback positive or negative. In the case of the
Beta Reputation system the feedback is given as tuple (r,s) of continuous values where
0<r<1,0<s<1,r+s=1. The initial values of r and s are r,s=0. Based on this
the reputation function is defined as follows:
P(X+s¥r2) o« .
2 = T T T (1 —p)°T where 0 <p<1,0<rx, 0< sy
) F(T%(_i_l)r(sj)g_'_l)p (p) ’ spx LUsTp, = °T
(4)

eplry,s

73

The variables r%(and sz)f are the positive and negative feedback from a peer or collective
X about peer T. It represents the trust X has in T and depends on the subjective view
of X. The abbreviated notation of this formula is 7.

To communicate a reputation rating to other users the Reputation Rating function
Rep (rj)f , S5) is used. The function in this example gives a user a rating between [—1; 1]
where 0 is a neutral rating.

X X 7~ sp
Rep(ryp ,s7) = —————)
p(T T) ’I“%(—FS%—{-Q ()
The formula denotes the reputation rating of T by peer or collective X. To combine
feedback from different sources all positive and negative feedback is added together and
the Reputation Rating is calculated. The notation of positive and negative feedback for
T by peer or collective X and Y is:

X,Y X Y
=Trr + rr

(6)
%”—s%s%

5.6 Reputation Discounting

The main idea of Reputation Discounting is that feedback given by peers with high
reputation should weight more than feedback given by peers with low reputation. This
idea was first described by Shafer [29] in 1976 and proposed by Jgsang [28] for usage
in Trust and Reputation Systems in 2001. Applying this idea to the Beta Reputation
System the following discount functions are:

PY 2rifry
T (s +2)(rY + s¥ +2) +2r% -
Xy _ QTY ST

St

S (sE+H2)(rY 4 sh +2) 2

In this example X weights the transaction rating for 7' given by peer Y based on the
current rating peer Y has.

5.7 Reputation Forgetting

Forgetting is the third concept Jgsang is using in the Beta Reputation system first
proposed by Jgsang [30]. The idea is that old feedback is less relevant than recent
feedback because the behaviour of a peer can change over time. For this reason Jgsang
introduces a forgetting factor A that can be adjusted individual. Where A = 0 would
mean that only the last given feedback counts and A = 1 mean that the system doesn’t
forget any rating. To adapt this model it will be assumed that peers have provided
a sequence Q that contains n feedback tuples indexed by i about for example peer T
(r? I s? ;)- To calculate the reputation rating with the forgetting factor A the following
formula is used:

rgg\)—rT(; 1))\+TT2andsT(>\)— T(Z U)X+ 59 sp;3 0< A< (8)

When a new feedback is given after a transaction by a peer the current score is multiplied
by A and the new is summed up.

74

6 Future Work

Through the introduction of TRS new problems and challenges emerged that need further
research. Which will be outlined in this section.

6.1 Security Threads

By introducing TRS new security threads arise that TRS should be able to withstand.
The researchers Marti & Garcia-Molina [24] complied a classification of possible attacks
against trust and reputation systems. These attack techniques can be according to them:

Traitors A malicious peer behaves properly for a certain period of time to build up a
good reputation to act malicious later. This technique is used when a peer gets
additional privileges when the reputation increases.

Collusion This is the case when multiple malicious peers act together to cause more
damage than they could acting alone.

Front Peers These malicious peers work together to increase their reputation by giving
each other high ratings.

Whitewashers Peers that rejoin the system to get a new identity and thus get rid of
their bad reputation they had with their old identity.

Denial of Service (DoS) Attacking the system from outside by sending as many re-
quests as possible to attempt that the system is no longer reachable for everyone
else.

A good overview of possible specific attacks can be found in the analysis of Gémez &
Pérez [25].

6.2 Definition of a TBAC Standard

There is no formal standard for TBAC yet. Although there are different organization
who tries to establish a standard like SECURE [31]. The goal of the SECURE project
is to develop a trust-based generic decision-making framework for use in ubiquitous
computing. The benefit of a standard would be interchangeability of trust and reputation
scores and a certain level of guaranteed security and reliability through guidelines for
implementation.

6.3 Fit for use

There have been many models for Trust and Reputation computing been proposed but I
noticed that there is little or no research how to get initial trust values for the proposed
systems. Yet, these are necessary to introduce TBAC in existing company information
systems where disturbance of the daily operations have to be avoided when introducing
this new system. Possible approaches could be that initial trust values are predefined
based on organisation charts of the company.

75

6.4 More collaboration between researchers

I noticed that there is no significant cooperation between researchers. Thus many pro-
pose their own TRS. This leads to many similar systems and stalls further research.
For example, the ratings between trust and reputation systems are not comparable as a
result companies have additional effort if they would combine their systems.

7 Conclusion

TBAC and TRS are necessary in the future as decision support system and to manage
tasks that are no longer sufficient to maintain manually like user privileges due increasing
popularity of ubiquitous computing. But before TRS and TBAC gets widely adopted
several challenges have to be solved outlined in 6. In case of rights management it would
be also beneficial to think about hybrid systems that combine traditional access control
mechanisms with TBAC because in many companies executives don’t work very often
with the IT systems directly but should still be able to access all resources even when
they haven’t had any transactions before with this information system in particular.
Further research should be also conducted in areas like interoperability between different
TRS systems by introducing a similar solution like an Enterprise Service Bus for TRS
thus companies that are using different TRS systems can cooperate without additional
administrative overhead.

References

[1] B. A. Misztal, Trust in modern societies: The search for the bases of social order.
Polity Press Cambridge, 1996, vol. 1.

[2] N. Luhmann, H. Davis, J. Raffan, and K. Rooney, Trust and Power: two works by
Niklas Luhmann. Wiley Chichester, 1979.

[3] D. Gambetta, “Can we trust trust,” Trust: Making and breaking cooperative rela-
tions, vol. 2000, pp. 213-237, 2000.

[4] D. H. McKnight and N. L. Chervany, “The meanings of trust,” 1996.

[5] N. Dimmock, “How much is,” in Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International
Workshops on. 1EEE, 2003, pp. 281-282.

[6] O. E. Dictionary, “Oxford: Oxford university press,” 1989.

[7] A. Jgsang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems for
online service provision,” Dectision support systems, vol. 43, no. 2, pp. 618-644,
2007.

[8] M. Weiser, “The computer for the 21st century,” Scientific american, vol. 265, no. 3,
pp. 94-104, 1991.

[9] L. Rasmusson and S. Jansson, “Simulated social control for secure internet com-
merce,” in Proceedings of the 1996 workshop on New security paradigms. ACM,
1996, pp. 18-25.

76

[10]

[11]

[12]

[13]

[14]

A. Tajeddine, A. Kayssi, A. Chehab, and H. Artail, PATROL-F-a comprehensive
reputation-based trust model with fuzzy subsystems. Springer, 2006.

L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt, “Ratings in
distributed systems: A bayesian approach,” in Proceedings of the Workshop on
Information Technologies and Systems (WITS), 2001, pp. 1-7.

A. Whitby, A. Jgsang, and J. Indulska, “Filtering out unfair ratings in bayesian
reputation systems,” in Proc. 7th Int. Workshop on Trust in Agent Societies, 2004.

Y. Wang, V. Cahill, E. Gray, C. Harris, and L. Liao, “Bayesian network based trust

management,” in Autonomic and Trusted Computing. Springer, 2006, pp. 246-257.
S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for
reputation management in p2p networks,” in Proceedings of the 12th international
conference on World Wide Web. ACM, 2003, pp. 640-651.

W. Nejdl, D. Olmedilla, and M. Winslett, “Peertrust: Automated trust negotiation
for peers on the semantic web,” in Secure Data Management. Springer, 2004, pp.
118-132.

A. Abdul-Rahman and S. Hailes, “Supporting trust in virtual communities,” in
System Sciences, 2000. Proceedings of the 33rd Annual Howaii International Con-
ference on. 1EEE, 2000, pp. 9—pp.

X. Ma, Z. Feng, C. Xu, and J. Wang, “A trust-based access control with feedback,”
in Information Processing (ISIP), 2008 International Symposiums on. IEEE, 2008,
pp- 510-514.

J. Bacon, K. Moody, and W. Yao, “A model of oasis role-based access control
and its support for active security,” ACM Transactions on Information and System
Security (TISSEC), vol. 5, no. 4, pp. 492-540, 2002.

F. Feng, C. Lin, D. Peng, and J. Li, “A trust and context based access control model
for distributed systems,” in High Performance Computing and Communications,
2008. HPCC"08. 10th IEEE International Conference on. IEEE, 2008, pp. 629—
634.

S. Chakraborty and I. Ray, “Trustbac: integrating trust relationships into the rbac
model for access control in open systems,” in Proceedings of the eleventh ACM
symposium on Access control models and technologies. ACM, 2006, pp. 49-58.

J. Sabater and C. Sierra, “Review on computational trust and reputation models,”
Artificial Intelligence Review, vol. 24, no. 1, pp. 33-60, 2005.

M. Moloney and S. Weber, “A context-aware trust-based security system for ad
hoc networks,” in Security and Privacy for Emerging Areas in Communication Net-
works, 2005. Workshop of the 1st International Conference on. 1EEE, 2005, pp.
153-160.

A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access control meets
public key infrastructure, or: Assigning roles to strangers,” in Security and Privacy,
2000. SEP 2000. Proceedings. 2000 IEEE Symposium on. TEEE, 2000, pp. 2—-14.

77

[24]

[25]

[26]

[27]

28]

[29]

78

S. Marti and H. Garcia-Molina, “Taxonomy of trust: Categorizing p2p reputation
systems,” Computer Networks, vol. 50, no. 4, pp. 472-484, 2006.

F. G. Marmol and G. M. Pérez, “Security threats scenarios in trust and reputation
models for distributed systems,” Computers € Security, vol. 28, no. 7, pp. 545-556,
20009.

P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood, “The value of reputation
on ebay: A controlled experiment,” FExperimental Economics, vol. 9, no. 2, pp.
79-101, 2006.

A. Jsang and R. Ismail, “The beta reputation system,” in Proceedings of the 15th
bled electronic commerce conference, 2002, pp. 41-55.

A. Jgsang, “A logic for uncertain probabilities,” International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, vol. 9, no. 03, pp. 279-311, 2001.

G. Shafer, A mathematical theory of evidence. Princeton university press Princeton,
1976, vol. 1.

A. Jgsang, Modelling trust in information security. NTNU, 1998.

V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand, N. Dimmock,
A. Twigg, J. Bacon, C. English et al., “Using trust for secure collaboration in
uncertain environments,” Pervasive Computing, IEEFE, vol. 2, no. 3, pp. 5261,
2003.

Band

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

Aktuelle Technische Berichte

ISBN

978-3-86956-
280-3

978-3-86956-
276-6

978-3-86956-
274-2

978-3-86956-
273-5

978-3-86956-
266-7

978-3-86956-
265-0

978-3-86956-
264-3

978-3-86956-
259-9

978-3-86956-
258-2

978-3-86956-
257-5

978-3-86956-
256-8

978-3-86956-
246-9
978-3-86956-
245-2
978-3-86956-
241-4

978-3-86956-
232-2

978-3-86956-
231-5

Titel

Batch Regions

HPI Future SOC Lab: Proceedings 2012

Anbieter von Cloud Speicherdiensten im
Uberblick

Proceedings of the 7th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Babelsberg: Specifying and Solving
Constraints on Object Behavior

openHPI: The MOOC Offer at Hasso
Plattner Institute

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Repairing Event Logs Using Stochastic
Process Models

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Enriching Raw Events to Enable Process
Intelligence

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Vereinfachung der Entwicklung von
Geschiftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

des Hasso-Plattner-Instituts

Autoren /| Redaktion

Luise Pufahl, Andreas Meyer,
Mathias Weske

Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Bernhard Schulzki
(Hrsg.)

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke,
Markus Freitag

Christoph Meinel, Hasso Plattner,
Jirgen Déliner, Mathias Weske,
Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

Tobias Pape, Arian Treffer,
Robert Hirschfeld

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

Christoph Meinel,
Christian Willems

Christoph Meinel,
Christian Willems

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

Hrsg. von den Professoren des
HPI

Holger Giese, Basil Becker

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

Nico Herzberg, Mathias Weske

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin

Schreiber, Eric Seckler, Bastian

Steinert, Robert Hirschfeld

ISBN 978-3-86956-281-0
ISSN 1613-5652

	Title
	Imprint

	Cloud Security Mechanisms
	Contents
	Introduction
	References

	Threshold Cryptography
	1 Introduction
	2 Related Work
	3 Foundations
	3.1 Basic Mathematics
	3.2 Lagrange Polynomial Interpolation
	3.3 Elgamal Encryption

	4 Mechanism Details
	4.1 Secret Sharing
	4.2 Shamir's Secret Sharing
	4.3 Threshold Elgamal Encryption
	4.4 Further Threshold Cryptography Mechanisms

	5 Future Work
	6 Conclusion
	References

	The Bitcoin Protocol
	1 Introduction
	2 Foundations
	3 History
	3.1 Public/Private Key Authentication and Encryption
	3.2 Proof of work
	3.3 Time-Stamping

	4 Mechanism Details
	4.1 Proof of work
	4.2 Time-Stamping

	5 Implementation
	5.1 Applications
	5.1.1 Bitcoin
	5.1.2 Namecoin
	5.1.3 Bitmessage

	6 Future Work
	6.1 Usefulness of Proof of Work
	6.2 Stability of Proof of Work
	6.3 Problems related to Implementation
	6.4 Anonymity

	7 Conclusion
	References

	Introduction to Homomorphic Encryption
	1 Introduction
	1.1 Applications

	2 Background
	2.1 Group homomorphisms
	2.2 RSA - Practical example
	2.2.1 Key generation
	2.2.2 Encryption
	2.2.3 Calculation
	2.2.4 Decryption
	2.2.5 Proof of homomorphism

	3 Implementations
	3.1 Restrictions
	3.1.1 Example

	3.2 Pollution
	3.2.1 Example

	4 Circuit Encryption
	4.1 Example: Encrypting a Single Bit Adder
	4.2 Encrypted Memory Access

	5 Fully homomorphic encryption
	5.1 History
	5.2 Gentry's FHE scheme
	5.3 Related work
	5.4 Criticism
	5.4.1 HELib

	6 Conclusion
	References

	Differential Privacy
	1 Introduction
	1.1 Problem statement
	1.2 Goals
	1.3 Scenarios
	1.3.1 Interactive scenario
	1.3.2 Non-interactive scenario

	1.4 Protecting the aggregated result
	1.5 Solution strategies
	1.6 Structure of this report

	2 Foundations
	2.1 Aggregations
	2.2 Mechanisms
	2.3 Quasi-Identi�ers in a relational model

	3 History
	3.1 U.S. Census
	3.2 Query Set Approximation
	3.2.1 Random Sampling
	3.2.2 Microaggregation/Partitioning
	3.2.3 Drawbacks

	3.3 Anonymization by generalization
	3.3.1 Generalization mechanics
	3.3.2 k-anonymity
	3.3.3 (X; Y)-anonymity
	3.3.4 l-diversity
	3.3.5 t-closeness

	3.4 Differential privacy
	3.5 Bringing everything back together
	3.6 Summary of recent developments

	4 Mechanism Details
	4.1 l-diversity and t-closeness in practice
	4.1.1 Entropy l-diversity
	4.1.2 Semantic l-diversity
	4.1.3 t-closeness

	4.2 Mechanics of differential privacy
	4.3 ∈-differential privacy
	4.3.1 Sensitivity
	4.3.2 The Laplace mechanism
	4.3.3 Limitations

	4.4 Utility model for differential privacy
	4.4.1 Statistical utility measures
	4.4.2 Universal utility measure
	4.4.3 Consequences of the universal utility model

	5 Future Work
	6 Conclusion
	References

	Private Information Retrieval
	1 Introduction
	2 Foundations
	2.1 Oblivious Transfer and SPIR
	2.2 Locally Decodable Codes

	3 History of Information Theoretic Private Information Retrieval
	4 History of Computationally Private Information Retrieval
	5 Mechanism Details
	5.1 2-Server Information-Theoretic Private Information Retrieval
	5.2 Single Server Computationally Private Information Retrieval based on Goldwasser-Micali

	6 Recent Developments & Future Research
	7 Conclusion
	References

	Trust-Based Access Control
	1 Introduction
	2 Foundations
	2.1 Trust
	2.2 Risk
	2.3 Reputation
	2.4 Distinction Trust & Reputation
	2.5 Difference Trust System & Reputation System
	2.6 Ubiquitous Computing
	2.7 Centralised & Distributed Reputation Systems

	3 History
	4 Mechanism Details
	5 Examples for TBAC
	5.1 eBay
	5.2 Stack Overow
	5.3 TCAC
	5.4 Beta Reputation System
	5.5 Beta Density Function
	5.5.1 Beta Reputation Function and Rating

	5.6 Reputation Discounting
	5.7 Reputation Forgetting

	6 Future Work
	6.1 Security Threads
	6.2 Definition of a TBAC Standard
	6.3 Fit for use
	6.4 More collaboration between researchers

	7 Conclusion
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

