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Metastability of Morse–Smale dynamical systems

perturbed by heavy-tailed Lévy type noise

Michael Högele∗ and Ilya Pavlyukevich†

Abstract

We consider a general class of finite dimensional deterministic dynamical systems with

finitely many local attractors Kι each of which supports a unique ergodic probability

measure P ι, which includes in particular the class of Morse–Smale systems in any finite

dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavy-

tailed Lévy type noise of small intensity ε > 0. Specifically we consider perturbations

leading to a Itô, Stratonovich and canonical (Marcus) stochastic differential equation.

The respective asymptotic first exit time and location problem from each of the domains

of attractions Dι in case of inward pointing vector fields in the limit of ε ↘ 0 was solved

by the authors in [21]. We extend these results to domains with characteristic boundaries

and show that the perturbed system exhibits a metastable behavior in the sense that

there exits a unique ε-dependent time scale on which the random system converges to a

continuous time Markov chain switching between the invariant measures P ι. As exam-

ples we consider α-stable perturbations of the Duffing equation and a chemical systems

exhibiting a birhythmic behavior.

Keywords: hyperbolic dynamical system; Morse-Smale property; stable limit cycle; small

noise asymptotic; α-stable Lévy process; multiplicative noise; stochastic Itô integral; stochas-

tic Stratonovich integral; stochastic canonical (Marcus) differential equation; multiscale dy-

namics; metastability; embedded Markov chain; randomly forced Duffing equation; birhyth-

mic behavior.
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1 Introduction

Consider a multivariate deterministic dissipative dynamical system given as the solution flow

of a finite-dimensional ordinary differential equation u̇ = f(u). We assume that it has finitely

many local attractors Kι, each of which is contained in a domain of attraction Dι. By
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definition, for each initial condition in Dι the trajectory never leaves Dι and converges to Kι.

We shall not impose specific conditions on the geometry of the attractors instead we assume

that the time averages of the trajectories converge weakly to the unique invariant probability

measure P ι supported on Kι as time tends to infinity. This convergence should be uniform

w.r.t. the trajectory’s initial condition over compact subsets of the domain Dι. Dynamical

systems with finitely many stable fixed points Kι = {sι} or stable limit cycles belong to the

evident examples of systems under consideration.

The behavior of the system changes significantly in the presence of a perturbation by noise,

however small its intensity ε > 0 may be. In the generic situation, the perturbed solution

relaxes from the initial position and remains — usually for a very long time — close to the

attractor Kι of the initial domain Dι. However with probability one, it exits from Dι at some

random time instant in an abrupt move and immediately enters another domain Dj, j �= ι,

where the same performance starts anew. In this way, step by step and after possibly many

repetitions the process visits all domains, not all of them of course with the same frequency

and for an equally long period. In the literature, such a behavior of the trajectory is referred

to as metastability.

In Galves et al. [17, p. 1288], the authors describe the metastable behavior of a determin-

istic dissipative dynamical system subject to small Gaussian perturbations as follows: “A

stochastic process with a unique stationary invariant measure, which [...] behaves for a very

long time as if it were described by another “stationary” measure (metastable state), per-

forming [...] an abrupt transition to the correct equilibrium. In order to detect this behavior,

it is suggested [...] to look at the time averages along typical trajectories; we should see:

apparent stability — sharp transition — stability.”

In any case, the transition times between different domains of attraction tends to infinity

as the noise amplitude ε goes to zero, however, the growth rate of the expected transition

time as well as the probability to pass from Dι to Dj strongly depend on the nature of the

noise and the properties of the underlying deterministic system.

In this article, we study the behavior of a dynamical system given as the solution flow

of a rather generic finite-dimensional ordinary differential equation u̇ = f(u) subject to a

small noise perturbation by a multiplicative Lévy type noise with a discontinuous, non-

Gaussian heavy-tailed component. Since its dynamics will differ strongly from the case of

Gaussian perturbations, let us briefly discuss the underlying deterministic dynamical system

and summarize the metastability results in the Gaussian case.

1.1 Generic dynamical systems under consideration

There is a large body of literature on the classification of deterministic dynamical systems

and their stability properties, which we obviously cannot review here. Instead, we will restrict

ourselves to the minimal necessary orientation of the reader about the systems we consider

in this article. In the sequel we will mainly refer to the overview articles [2, 39], introductory

books [19, 44], and the extensive list of references therein.

The class of dynamical systems we consider has finitely many well separated local attrac-

tors, with respective domains of attractions. We suppose that all trajectories starting in a

compact set inside the a domain of attraction converge weakly and uniformly to a unique
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invariant probability measure concentrated on the local attractor. This invariant measure is

assumed to be parametrized by the sojourn times of the dynamical system on the attractor.

Since this class is not classical we briefly give a subsumption of its relation into well-known

classes.

The simplest class of examples are gradient systems, where f is given as the gradient

−∇U of a smooth non-degenerate multi-well potential function U : Rd → R with finitely

many minima sι, ι = 1, . . . , κ. In this case, the local invariant measure is given as a unit

point mass P ι = δsι .

A finite-dimensional dynamical system is said to have the Morse–Smale property if the

set of its non-wandering points consists of a union of finitely many periodic orbits (limit

cycles), whose points are all hyperbolic and whose invariant manifolds meet transversally.

For each of the non-trivial periodic stable orbits of the non-wandering sets of the Morse–

Smale system, which parametrizes the corresponding limit cycle, say, Kι, we can define the

invariant measure P ι by

P ι(A) :=
1

Tι

∫ Tι

0
1A(u(s;x)) ds, A Borel , u(0;x) = x ∈ Kι, u(t+ Tι;x) = u(t;x).

In the Appendix it is shown that a Morse–Smale dynamical system in any dimension over

a compact domain satisfies the required property that for all initial conditions uniformly

bounded from the separating manifold, the time average of the trajectory converges weakly

to P ι. In dimensions 1 and 2 Morse–Smale systems coincide with the class of structurally

stable systems which are generic in the sense of being an open dense subset of all dynamical

systems generated by C2 vector fields, see [37, 40]. It is known for a long time that in higher

dimensions d � 3, the Morse–Smale systems are a subclass of structurally stable systems but

that the latter fail to be generic.

We emphasize, however, that our assumptions are not restricted to the Morse–Smale

systems, since we require only the existence of finitely many local attractors satisfying the

above mentioned statistical property on the convergence of the time averages.

Finally we remark, that from a slightly different perspective we can interpret the finitely

many invariant measures P ι as the ergodic components of the so-called Sinai–Bowen–Ruelle

measure (SRB-measure, for short), sometimes referred to as the physical measure. For details

we refer to the classical text [8] and for a more recent overview to [46].

1.2 The hierarchy of cycles and time scales in the generic Gaussian case

The small noise analysis and metastability results for randomly perturbed dynamical systems

of the form dXt = f(Xt)dt + ε dW , W being a Brownian motion (the noise term may be

multiplicative as well) may be performed with the help of the large deviations theory by

Freidlin and Wentzell [16]. It is well known that with any Dι that contains a unique point

attractor Kι = {sι} we can associate a positive number Vι such that the expected exit time

from Dι is asymptotically proportional to exp(Vι/ε
2) in the limit of ε ↘ 0. This result is

a version of what is known as Kramers’ law [30] in the physics and chemistry literature.

The constant Vι can be interpreted as the height of the lowest “mountain pass” on the way

from the attractor s
ι to the boundary ∂Dι in the energy landscape given by the so-called
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quasi-potential determined by the vector field f . The same result would hold for an arbitrary

attractors Kι whose points are equivalent w.r.t. the quasi-potential, that is do not require

any additional work for transitions between them (for example like in the case of a limit

cycle).

Further, for any two domains Di and Dj , i �= j, there is a number Vij � 0 such that the

expected transition time from Di to Dj is asymptotically proportional to exp(Vij/ε
2). Note

that in the generic case the constants Vij are different and the time scales exp(Vij/ε
2) are

thus exponentially separated. This naturally leads to the hierarchy of consecutive transitions

of the random trajectory staring in Dι, the so-called the hierarchy of cycles.

Indeed, starting in Dι, we determine the unique sequence of indices j(0) = ι, j(1), j(2), . . . ,

defined such that Vj(k−1),j(k) = minj �=j(k−1) Vj(k−1),j, k � 0. The sequence {j(k)} is periodic

with some period p1 and the states C(1) = {ι, j(1), . . . , j(p1 − 1)} constitute the cycle of

the first rank. For C(1) we can analogously define cycles of the higher orders, the last cycle

containing all the states {1, . . . , κ}. Each cycle C contains the main state K(C), that is the

index of the attractor, in the basin of which the random trajectory spends most of its time

before leaving the set ∪j∈CD
j . For a detailed exposition we refer to Freidlin and Wentzell

[16] or to a recent work by Cameron [11].

It is a distinguishing property of a system perturbed by a small Gaussian noise that the

hierarchy of cycles, their main states and the logarithmic rates of the associated exponentially

large transition times are not random and are determined by the vector field f with the help

of the quasipotential.

Various refinements and generalizations of these results include the proof of the conver-

gence of a small noise diffusion X in a double-well potential to a two-state Markov chain

[17, 27], a connection between the metastability and the spectrum of the diffusion’s generator

[3, 6, 7, 28, 29], or the study of the infinite dimensional systems [4, 9, 10, 14, 15].

1.3 The unique time scale and total communication of states in the generic

regularly varying Lévy case

In this paper we treat a d-dimensional dynamical system u̇ = f(u) perturbed by a (multi-

plicative) Lévy noise with heavy-tailed jumps, that is a process whose Lévy measure possesses

regularly varying tails with the index −α < 0. As an example of such a perturbation one can

have in mind α-stable Lévy noise, α ∈ (0, 2).

To our best knowledge, the Markovian systems with heavy-tailed jumps were firstly studied

by Godovanchuk [18]. The asymptotics of the first exit times an metastability results in the

one-dimensional setting of systems represented by SDEs driven by additive heavy-tailed Lévy

processes were obtained in [24, 24]. Further the theory was developed for multivariate systems

with heavy-tail multiplicative noise in [26, 36] and for a class of stochastic reaction–diffusion

equations in [12].

The behavior of a dynamical system perturbed by heavy jumps differs qualitatively from

the Gaussian case. First, the behavior becomes non-local, that is by a single jumps of an

arbitrary big magnitude the system may change its state instantly. Second, the power law

jumps determining the heavieness of the jumps also determines the unique time scale on

which the exits from domains Di and transitions between the domains Di and Dj occur.
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For simplicitiy let us sketch the case of a small additive perturbation by a stable Lévy

process εZ with the jump measure ν(A) =
∫
A ‖z‖−d−αdz . Let Ki = {si} be a stable point.

In this situation, the first exit time from the domain Di has the mean value Qi/ε
α with the

prefactor Qi =
∫
Rd\Di ‖z − s

i‖−d−αdz. In other words, the prefactor Qi measures the set of

all jump increments of the noise, whose result is the exit from the domain Di at a single

jump. We refer to [12, 21, 24, 25] for detailed explanations.

To describe transitions between the different domains of attraction we will see that in

contrast to the Gaussian hierarchy of cycles, all mean transition times from the domain Di

to Dj are asymptotically equivalent to Qij/ε
α in the limit of small ε for Qij = Q−1

i

∫
Dj ‖z −

s
i‖−d−αdz. This means that the transition rates are not well separated for small ε. This

generic picture in the heavy-tailed framework may be associated with the very degenerate

Gaussian case when all logarithmic rates Vij are identical and the transition behavior is deter-

mined by the sub-exponential prefactors. For a very precise asymptotics of these prefactors

in the Gaussian setting we refer to Kolokoltsov [29, 28] and Bovier et al. [6].

In [21], we generalize the exit time results to underlying deterministic generic dynamical

systems with non-point attractors. The stable state si as a geometric object appearing in the

formulae for the mean transition times has to be replaced by a statistical quantity given as

the ergodic invariant probability measure P i concentrated on the local attractor Ki of the

respective domain Di. More precisely we prove that a transition time between domains Di

and Dj asymptotically grows as Q̃ij/ε
α with

Q̃ij =

∫
Ki

∫
Dj ‖z − v‖−d−αdzP i(dv)∫

Ki

∫
Rd\Di ‖z − v‖−d−αdzP i(dv)

.

The coefficient Q̃ij weights the points on the attractor Ki with respect to the corresponding

ergodic invariant measure P i. For details we refer to the introduction of [21].

We see that generically the expected transition time between any two domains of attraction

is proportional to 1/εα. Moreover it is shown that the respectively renormalized transition

times are asymptotically exponentially distributed. Let us consider the perturbed path Xε on

the time scale t/εα. On this time scale we would expect that the process Xε( t
εα ) spends most

of the time in the domains of attraction Di exhibiting instantaneous single jump transitions

from the vicinity of the attractor Ki to the domain Dj . Thus the first result of this paper

will describe a Markov chain m = (mt)t�0 on the index set {1, . . . , κ}, which will specify

the domain of attraction Di the process Xε
·/εα currently sojourns. Roughly speaking, this

allows us to determine the probability for the process Xε
·/εα to visit domains Di1 , . . . ,Din at

prescribed deterministic times 0 < t1 < · · · < tn, n � 1.

In the second part, we prove a stronger result. Under the condition that Xε
t/εα ∈ Di for

some i ∈ {1, . . . , κ}, the process Xε is naturally located in the vicinity of the attractor Ki.

We will determine the location of Xε at a slightly randomized observation time (t+σrε)ε
−α,

σ being an independent random variable uniformly distributed on [−1, 1] and rε being an

arbitrary rate characterizing the time measurement error such that rε → 0 and rε/ε
α → ∞.

We show that in the limit ε → 0, the location Xε
(t+σrε)ε−α is distributed on the attractor Ki

according to the ergodic measure P i, whereas the attractor index i = mt is itself distributed

with the law of the Markov chain m. Essentially this means that within a given vanishing
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error bound on the time scale t/εα only the statistical aggregate of the behavior Xε can be

perceived.

We can make the intuition presented above rigorous for a general class of additive and

multiplicative Lévy noises with a regularly varying Lévy measure. In particular, our main

result covers perturbations in the sense of Itô and Stratonovich, as well as in the sense of

canonical (Marcus) equation, where jumps in general do not occur along straight lines, but

follow the flow of the vector field which determines the multiplicative noise.

In the physics and other natural sciences, Gaussian perturbations of dynamical systems

with limit cycle attractors have been considered since quite some time, see e.g. Epele et al.

[13], Moran and Goldbeter [35], Hill et al. [20], Kurrer and Schulten [32], Liu and Crawford

[34], and Saet and Viviani [42]. As an application of our main result we present two examples

in detail: the Duffing equation with two point attractors and a planar system from [35] with

two stable limit cycles which lie in one another.

2 Object of study and main result

2.1 Deterministic dynamics

We consider a globally Lipschitz continuous vector field f ∈ C2(Rd,Rd). It is well-known

that this assumption is sufficient to establish the existence and uniqueness of the dynamical

system, given as the solution flow ϕ of the autonomous ordinary differential equation

u̇ = f(u), u(0;x) = x ∈ R
d, (1)

where we denote by ϕt(x) := u(t;x). Note that the dynamical system can be prolonged to

arbitrary negative times.

We assume the following properties of ϕ.

1. The set of non-wandering points of ϕ contains finitely many local attractors Kι, ι =

1, . . . , κ, κ � 1, with corresponding open domains of attractions Dι. For definitions we

refer to [2] and [19].

2. All non-wandering points of ϕ are hyperbolic and the corresponding invariant manifolds

meet transversally.

3. For any R > 0 such that
⋃

ιK
ι ⊂ BR(0), there exits a bounded, measurable, connected

set IR ⊂ BR(0) with smooth boundary, such that f
∣∣
∂IR

is uniformly inward pointing.

4. For each local attractor Kι there exists a unique probability measure P ι supported on

Kι, supp(P ι) = Kι, such that such that for all non-negative, measurable and bounded

functions ψ : Rd → R, any R > 0 defined in 3, and all closed subsets A contained in the

interior of Dι ∩ IR the limit

lim
t→∞

sup
x∈A

1

t

∫ t

0
ψ(ϕs(x))ds =

∫
Kι

ψ(v)P ι(dv) (2)

holds true.

6



2.2 The random perturbation

On a filtered probability space (Ω,F , (Ft)t�0,P), satisfying the usual hypotheses in the sense

of Protter [38], we consider a Lévy process Z = (Zt)t�0 with values in R
m, m � 1, and the

characteristic function

Eei〈u,Z1〉 = exp
(
− 〈Au, u〉

2
+ i〈b, u〉 +

∫ (
ei〈u,z〉 − 1− i〈u, z〉1B1(0)(z)

)
ν(dz)
)
, u ∈ R

m,

where A is a symmetric nonnegative definite m × m (covariance) matrix, b ∈ R
m, and ν a

σ-finite measure on R
m satisfying ν({0}) = 0 and

∫
Rm(1 ∧ ‖y‖2)ν(dy) < ∞. The measure ν

is referred to as the Lévy measure of Z, and (A, ν, b) is called the generating triplet of Z.

Let us denote by N(dt, dz) the associated Poisson random measure with the intensity

measure dt⊗ ν(dz) and the compensated Poisson random measure Ñ(dt, dz) = N(dt, dz) −
dtν(dz). Consequently, by the Lévy–Itô theorem (see e.g. Applebaum [1, Chapter 2]) the

Lévy process Z given above has the following a.s. path-wise additive decomposition

Zt = A
1

2Bt + bt+

∫
(0,t]

∫
0<‖z‖�1

zÑ (ds, dz) +

∫
(0,t]

∫
‖z‖>1

zN(ds, dz), t � 0, (3)

with B = (Bt)t�0 being a standard Brownian motion in R
m. Furthermore, the random sum-

mands in (3) are independent. For further details on Lévy processes we refer to Applebaum

[1] and Sato [43].

The following assumption about the big jumps of Z is crucial for our theory.

(S.1) The Lévy measure ν of the process Z is regularly varying at ∞ with index −α, α > 0.

Let h : (0,∞) → (0,∞) denote the tail of ν

h(r) :=

∫
‖y‖�r

ν(dy). (4)

We assume that there exist α > 0 and a non-trivial self-similar Radon measure μ on R̄
m\{0}

such that μ(R̄m\Rm) = 0 and for any a > 0 and any Borel set A bounded away from the

origin, 0 /∈ A, with μ(∂A) = 0, the following limit holds true:

μ(aA) = lim
r→∞

ν(raA)

h(r)
=

1

aα
lim
r→∞

ν(rA)

h(r)
=

1

aα
μ(A). (5)

In particular, following [5] there exists a positive function � slowly varying at infinity such

that

h(r) =
1

rα�(r)
for all r > 0.

The self-similarity property of the limit measure μ implies that μ assigns no mass to spheres

centered at the origin of Rm and has no atoms. For more information on multivariate heavy

tails and regular variation we refer the reader to Hult and Lindskog [22] and Resnick [41].

The following set of assumptions deals with the multiplicative perturbation of the dynamical

system u by the Lévy process Z.

(S.2) Consider continuous maps G ∈ C(Rd×R
m,Rd) and F,H : Rd → R

d and fix the notation

a(x, y) := F (x)F (y)∗ for x, y ∈ R
d,

where F (y)∗ is the transposed (row) vector of F (y). We assume that for any R > 0 there

exists L = LR > 0 such that f , G, H and F satisfy the following properties.
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1. Local Lipschitz conditions: For all x, y ∈ IR

‖f(x)− f(y)‖2 + ‖a(x, x)− 2a(x, y) + a(y, y)‖+ ‖H(x)−H(y)‖2

+ ‖F (x)− F (y)‖2 +
∫
B1(0)

‖G(x, z) −G(y, z)‖2ν(dz) � L2‖x− y‖2.

2. Local boundedness: For all x ∈ IR

‖f(x)‖2 + ‖a(x, x)‖ + ‖H(x)‖2 + ‖F (x)‖2 +
∫
B1(0)

‖G(x, z)‖2ν(dz) � L2(1 + ‖x‖2).

3. Large jump coefficient: For all x, y ∈ IR and z ∈ R
m

‖G(x, z) −G(y, z)‖ � LeL(‖z‖∧L)‖x− y‖.

4. Local bound for G in small balls: There exists δ′ > 0 such that for z ∈ Bδ′(0)

sup
x∈Bδ′ (K

ι)
‖G(x, z)‖ � L.

Proposition 2.1. Let the assumptions (S.2.1–3) be fulfilled. Then for any ε, δ ∈ (0, 1),

R > 0 and x ∈ IR the stochastic differential equation

Xε
t,x = x+

∫ t

0
f(Xε

s,x) ds + ε

∫ t

0
H(Xε

s,x)b ds + ε

∫ t

0
F (Xε

s,x) d(A
1

2Bs)

+

∫ t

0

∫
‖z‖�1

G(Xε
s−,x, εz)Ñ (ds, dz) +

∫ t

0

∫
‖z‖>1

G(Xε
s−,x, εz)N(ds, dz) (6)

has a unique strong solution (Xε
t∧T,x)t�0 with càdlàg paths in R

d which is a strong Markov

process with respect to (Ft)t�0, where

T = T
R
x (ε) := inf{t � 0 | Xε

t,x /∈ IR}.

is the first exit time from IR.

A proof can be found for instance in Ikeda and Watanabe [23], Theorem 9.1, or Chapter 6

in Applebaum [1]. The multiplicative perturbations in the sense of Itô, Fisk–Stratonovich or

(canonical) Marcus equations could be of special interest for applications. We refer the reader

to Applebaum [1], Ikeda Watanabe [23] and Protter [38] for a general theory of stochastic

integration in the Itô and Fisk–Stratonovich sense and to Applebaum [1], Kurtz et al. [33]

and Kunita [31] for a construction of the canonical Marcus equations. A brief comparison of

these equations can be also found in Pavlyukevich [36].

For example, assume that Z is a pure jump Lévy process with A = 0, b = 0, and let

Φ: Rd → R
d×m be a globally Lipschitz continuous function. Taking

G(x, z) := x− Φ(x)z
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we yields the Itô SDE with the multiplicative noise

Xt = x+

∫ t

0
f(Xs)dt+ ε

∫ t

0
Φ(Xs−)dZs, (7)

To obtain a canonical (Marcus) equation with the multiplicative noise

X�
t = x+

∫ t

0
f(X�

s )dt+ ε

∫ t

0
Φ(X�

s−) � dZs. (8)

we denote by ψz(x) = y(1;x, z) the solution of the nonlinear ordinary differential equation{
ẏ(s) = Φ(y(s))z,

y(0) = x, s ∈ [0, 1].
(9)

and set

G(x, z) := ψz(x).

If L is the Lipschitz constant of the matrix function Φ then the Gronwall lemma implies that

‖G(x, z) −G(y, z)‖ � LeL‖z‖‖x− y‖ ∀x, y ∈ D, z ∈ R
m,

what justifies the assumption (S.2.3).

2.3 The main result and examples

For x ∈ R
d, U ∈ B(Rd) with x /∈ U we denote the set of jump increments z ∈ R

m which send

x into U by

EU (x) := {z ∈ R
m : x+G(x, z) ∈ U}. (10)

We define the measure Qι on B(Rd) assigning

Qι(U) :=

∫
Kι

μ(EU (y)) dP ι(y), (11)

where P ι is a measure on Kι defined in (D.1) and μ is a regularly varying limiting jump

measure appearing in (5). For ε > 0 denote

λι
ε :=

∫
Kι

ν
(E(Dι)c(y)

ε

)
dP ι(y) and hε := h

(1
ε

)
.

Then the equation (5) implies

lim
ε→0+

λι
ε

hε
= Qι((Dι)c).

The main result of this article is the following metastability result.

9



Theorem 2.2. Let assumptions (D.1) and (S.1-2) be fulfilled and suppose that for all

ι = 1, . . . , κ,

Qι
(
R
d \

κ⋃
	=1

D	
)
= 0. (12)

Then there exists a continuous-time Markov chain m = (mt)t�0 with values in the set

{1, . . . , κ} and a generator matrix

Q =

⎛⎜⎝−Q1
((
D1
)c)

Q1
(
D2
)

. . . Q1(Dκ)
...

...

Qκ
(
D1
)

. . . Qκ(Dκ−1) −Qκ ((Dκ)c)

⎞⎟⎠ . (13)

such that the following statements hold.

1. Let N � 1, ι0, . . . , ιN ∈ {1, . . . , κ}, x ∈ Dι0, and 0 < s1 < · · · < sN . Then

lim
ε→0+

Px

(
Xε

s1
hε

∈ Dι1 , . . . ,Xε
sN
hε

∈ DιN
)
= Pι0(ms1 = ι1, . . . ,msN = ιN ).

2. Let σ be a random variable which is uniformly distributed on [−1, 1] and independent of

Z. Let rε : R+ → R+ be such that rε ↘ 0 and rεh
−1
ε ↗ ∞ as ε ↘ 0. Let ψ ∈ Cb(Rd,R),

ι ∈ {1, . . . , κ}, and 0 < s < t. Then

lim
ε→0+

E

[
ψ
(
Xε

t+σrε
hε

,x

)∣∣∣Xε
s
hε

,x ∈ Dι
]
= E

[ ∫
Rd

ψ(v) dPmt (v)
∣∣∣ms = ι

]
.

Example 2.3. We consider a damped low-friction Duffing equation

ẍt + δẋt − U ′(xt) = 0, δ > 0, (14)

where U(x) = x4

4 − x2

2 is a standard quartic potential. We rewrite the equation (14) as a

system of two ODEs and perturb it by the multiplicative two-dimensional α-stable Lévy noise

in the Marcus sense resulting in the two-dimensional SDE

Xε
t = x+

∫ t

0
f(Xε

s ) ds + ε

∫ t

0
G(Xε

s ) � dZs,

where

f(u) =

(
u2

−δu2 + U ′(u1)

)
, G(u) =

(
0 u2
u1 0

)

The process Z has the Lévy measure ν(dz) = α
2π‖z‖−2−α1(z �= 0)dz, where we choose the

normalization in such a way that

hε =
α

2π

∫
‖z‖� 1

ε

dz

‖z‖2+α
= εα, ε > 0.

10



The unperturbed dynamical system u̇ = f(u) has two stable point attractors s± = (±1, 0)

with the domains of attraction D± separated by the separatrix consisting of two branches

which are particular solutions of the ODE

dy±(t) = −f(y±(t)) dt

with y±(0) = 0 and ẏ±(0) = (1,±λ), with

λ =
δ −

√
δ2 + 4

2
.

The form of the supplementary Marcus flow ψz(x), see (9), is found explicitly. For for the

attractors x = s± = (±1, 0) we get

ψz(s±) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ ± cosh
√
z1z2

± sign z1
√

z1
z2

sinh
√
z1z2

⎞⎠ , z1z2 > 0;⎛⎝ ± cos
√

|z1z2|
± sign z1

√∣∣ z1
z2

∣∣ sin√|z1z2|

⎞⎠ , z1z2 < 0;(
±1

±z1

)
, z2 = 0.

We define the sets of jump increments which lead to a transition from s± to D∓ as

E± := {z ∈ R
2 : ψz(s±) ∈ D∓}

Then on the time scale t
εα , the perturbed Duffing system Xε(·/εα) converges to a Markov

chain m(·) in the sense of finite dimensional distributions where m = (m(t))t�0 has the state

space {s−, s+} and the generator

Q =

(
−Q− Q−

Q+ −Q+

)
with Q± :=

α

2π

∫
E±

dz

‖z − s±‖2+α
.

Example 2.4. In [35], Moran and Goldbeter considered a nonlinear model of a biochemical

system with two oscillatory domains which includes two variables: the substrate and product

concentrations u1 and u2. Those time evolution is governed by the equation u̇ = f(u) which,

for a particular choice of parameters, takes the form

f(u) =

(
v + 1.3 (u2)4

K4+(u2)4
− 10ϕ(u)

10ϕ(u) − 0.06u2 − 1.3 (u2)4

104+(u2)4

)
, v = 0.255,

ϕ(u) =
u1(1 + u1)(1 + u2)

2

5 · 106 + (1 + u1)2(1 + u2)2
.

(15)

The parameter v ∈ R denotes the normalized input of substrate. It was shown in [35] that

this system enjoys the property of birhythmicity, that is the coexistence of two nested stable

limit cycles, see Fig. 1(a). The inner and outer cycles have periods Ti ≈ 327 and To ≈ 338

respectively. Domains of attraction Di andDo are separated by an unstable cycle. Denote the

parametrizations of the cycles by ϕi = (ϕ1
i (s), ϕ

2
i (s))s∈[0,Ti) and ϕo = (ϕ1

o(s), ϕ
2
o(s))s∈[0,To).

11
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Figure 1: (a) Coexisting nested stable cycles in the model of an autocatalytic reaction by

Moran and Goldbeter [35]. A heavy-tailed Lévy perturbation of the substrate input enables

instant switchings between different ranges of substrate and product concentrations. (b)

Random switching between periodic regimes of the substrate (blue) and the product (green)

concentrations.

An addition of a certain quantity of the substrate, i.e. an instant increase of v causes a

switch between two stable oscillatory regimes. Perturbations of the system (15) by additive

Gaussian white noise were studied in [34].

We perturb the parameter v by a Lévy process Z which is a compound Poisson process

with the Pareto jump measure ν(dz) = αz−1−α1(z � 1), α > 0. We obtain the time scale

rate

hε = α

∫
z> 1

ε

dz

z1+α
= εα, 0 < ε < 1.

and the limiting self-similar Radon measure

μ(dz) = α
1(z > 0)

z1+α
dz, α > 0.

On the time scale t
εα , transitions between the cycles occur according to a law of the Markov

chain m on the state space {i, o} with the generator

Q =

(
−Qi Qi

Qo −Qo

)

where

Qi :=
α

Ti

∫ Ti

0

∫ ∞

1

1Do
(z − ϕ1

i (s))

|z − ϕ1
i (s)|1+α

dz ds and Qo :=
α

To

∫ To

0

∫ ∞

1

1Di
(z − ϕ1

o(s))

|z − ϕ1
o(s)|1+α

dz ds.

It is clear from the phase portrait of the system u̇ = f(u) that the area of the attraction

basin Di is much smaller than the area of Do and thus Qo � Qi. Consequently, the system

will spend most of the time in the vicinity of one of the stable cycles, preferably near the

outer one, see Fig. 1(b). Any concrete measurement of concentrations will yield a random

variable with the law P i or P o supported on the cycles, see (2).

12



3 Proof

3.1 Preliminary results on the asymptotic first exit time

The proof of the main Theorem 2.2 is based on a result about the first exit times of a

perturbed system from a domain D around an attractor formulated in Theorem 2.1 in [21].

This result holds for deterministic vector fields f which are inward pointing at the boundary

of the bounded domain D. For general Morse–Smale systems this condition turn out to be

too restrictive, since the boundary of domains of attraction Dι is typically characteristic,

that is the vector field close to the separating manifold acts tangentially. Hence there are

trajectories in the domain Dι which may stay close to the separatrix for an uncontrollably

long time until they eventually converge to the attractor. The proof of the Theorem 2.1 in

[21] does not use precisely that the vector field is inward pointing, but rather the implication

that a small reduction of the domain of attraction is still positively invariant and that all

trajectories starting in the reduced domain are close to the attractor all together in time.

Here we present another construction of the reduced domains of attraction which is ap-

plicable to our setting. It aims at avoiding the very slow dynamics near the characteristic

boundary of the domain of attraction and will not change the essential behavior of the

stochastic system. An analogous construction had been carried out in Chapter 2.2.1 of [12],

for parabolic PDEs in the context of analysis of perturbed reaction-diffusion equations, with

the additional difficulty that the latter do not have a backward flow.

We fix R > 0 and δ > 0 and consider the δ-tube around the boundary ∂Dι intersected

with Dι ∩ IR, namely

Mι,R
δ :=

⋃
y∈∂Dι

Bδ(y) ∩Dι ∩ IR.

Then the set

M
ι,R
δ :=
⋃
t�0

ϕ−t(Mι,R
δ )

denotes all initial values x such that for some time t � 0 the forward flow ϕt(x) enters Mι,R
δ .

We define the flow-adapted reduced domain of attraction

Dι,R
δ := (Dι ∩ IR) \Mι,R

δ .

For δ′ > 0, iterating this procedure by replacing Dι,R by Dι,R
δ and obtain further reductions

Mι,R
δ,δ′ :=

⋃
y∈∂Dι,R

δ

Bδ′(y) ∩Dι,R
δ ,

M
ι,R
δ,δ′ :=
⋃
t�0

ϕ−t(Mι,R
δ,δ′),

Dι,R
δ,δ′ := (Dι ∩ IR) \Mι,R

δ,δ′ .

The reduced domains Dι,R
δ and Dι,R

δ,δ′ enjoy the following important properties.

Lemma 3.1. Denote

δ0 :=
1

2
min
1�ι�κ

dist
(
Kι,

κ⋃
ι=1

∂Dι
)
, and R0 := inf

{
r > 0:

κ⋃
ι=1

Kι ⊂ Br(0)
}
,

13



and let ι ∈ {1, . . . , κ} be fixed.

1. If 0 < δ < δ0 and R > R0, then ϕt(D
ι,R
δ ) ⊂ Dι,R

δ for all t � 0.

2. If 0 < δ < δ0, R > R0, and additionally 0 < γ < δ0, then there is T ∗ = T ∗
δ,R,γ > 0 such

that for all x ∈ Dι,R
δ and t � T ∗

u(t;x) ∈ Bγ(K
ι).

This property corresponds to Remark 2.1 in [21].

3. If 0 < δ < δ′ < δ0 and R > R0, then Dι,R
δ′ ⊂ Dι,R

δ .

4. If δ, δ′ > 0 such that δ + δ′ < δ0 and R > R0, then ϕt(D
ι,R
δ,δ′) ⊂ Dι,R

δ,δ′ for all t � 0.

5. If δ, δ′, δ′′ > 0 with δ′ < δ′′ and δ + δ′′ < δ0, then Dι,R
δ,δ′ ⊂ Dι,R

δ,δ′′ .

6. We have ⋃
δ,δ′>0

δ+δ′<δ0

Dι,R
δ,δ′ = Dι ∩ IR.

The proof of the Lemma is rather straightforward and postponed to the Appendix.

Under an appropriate choice of parameters R, δ, δ′, x ∈ Dι,R
δ,δ′ , ε > 0 and ι ∈ {0, . . . , κ} we

define the time

T
ι,R
x (ε) := inf{t > 0 | Xε

t,x /∈ Dι,R
δ }.

The next Theorem 3.2 is based on the Theorem 2.1 in [21] and deals with the behavior of

T
ι,R
x (ε) in the limit of small ε. We will use the following version of Theorem 2.1 in [21] slightly

adapted to our setting.

Theorem 3.2 (The exit problem of Xε). Let Hypotheses (D.1) and (S.1-2) be fulfilled.

Choose R > R0, ι ∈ {1, . . . , κ} and δ, δ′ > 0 with δ + δ′ < δ0. If Qι(∂Dι,R
δ ) = 0 and

Qι((Dι,R
δ )c) > 0, then we have for any θ > 0 and U ∈ B(Rd) satisfying Q(∂U) = 0 that

lim
ε→0

sup
y∈Dι,R

δ,δ′

∣∣∣Ey

[
e−θQ((Dι,R

δ
)c)hεT

ι,R(ε)1{Xε
Tι,R(ε) ∈ U}

]
− 1

1 + θ

Q
(
U ∩ (Dι,R

δ )c
)

Q
(
(Dι,R

δ )c
) ∣∣∣ = 0. (16)

This result implies that under the previous assumptions the first exit times and the first exit

location behave as

hε Q
ι((Dι,R

δ )c) Tι,R
x (ε)

d−→ EXP(1),

Px

(
Xε

Tι,R(ε) ∈ U
)
→ Qι
(
U ∩ (Dι,R

δ )c
)

Qι
(
(Dι,R

δ )c
) ,

in the limit ε → 0, where the convergence is uniform over all initial values x ∈ Dι,R
δ,δ′ . These

results allow the construction of a jump process, which converges weakly to an approximating

continuous time Markov chain m with the generator (13).
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3.2 Proof of Theorem 2.2

Fix the error constant δ∗ > 0. In the first step we fix the parameters R, δ and δ′ accordingly

and construct an approximating Markov chain.

1. Approximating Markov chains. The limiting measure μ of the regularly varying

Lévy measure ν given in (3) is a Radon measure. We recall the definition of R0 in Lemma

3.1. We may fix a radius R > R0, depending only on δ∗, such that

max
ι=1,...,κ

Qι(Ic
R) <

δ∗

2
.

In addition, by compactness of IR we may fix one after the other, δ > 0 and δ′ > 0, with

δ + δ′ < δ0 =
1
2 minι=1,...,κmin{dist(Kι, ∂Dι),dist(x,Dι)} such that

max
ι=1,...,κ

Qι
(
IR \

κ⋃
	=1

D	,R
δ,δ′

)
<

δ∗

2
,

where δ = δ(R, δ∗) and δ′ = δ′(R, δ∗, δ). Combining the previous two inequalities we obtain

that

max
ι=1,...,κ

Qι
(
R
d\

κ⋃
	=1

D	,R
δ,δ′

)
< δ∗. (17)

We lighten the notation. For δ∗ > 0 and the dependent parameters R, δ, and δ′ fixed we write

shorthand D̂ι = Dι,R
δ and D̃ι = Dι,R

δ,δ′ . Furthermore we use Ac := R
d \ A for any A ⊂ R

d.

Denote bymδ∗ = (mδ∗)t�0 a continuous time Markov chain with values in the set of indices

{1, . . . , κ} ∪ {0} enlarged by the absorbing cemetery state 0 with the generator Qδ∗ given by

Qδ∗ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Q1
((

D̂1
)c)

Q1
(
D̃2
)

. . . Q1
(
D̃κ
)

Q1
((

D̂1 ∪
κ⋃

ι=2

D̃ι
)c)

...
...

Qκ
(
D̃1
)

. . . Qκ
(
D̃κ−1
)

−Qκ
((

D̂ικ
)c)

Qκ
((

D̂κ ∪
κ−1⋃
ι=1

D̃ι
)c)

0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For Q defined in (13) we construct the matrix

Q0 :=

(
Q 0

0 0

)

and denote by m0 a continuous-time Markov chain on the state space {1, . . . , κ} ∪ {0} with

the generator Q0. As a consequence of (17) we have

max
i,j

|Qδ∗(i, j) −Q0(i, j)| < δ∗.

This implies that mδ∗ → m0 as δ∗ ↘ 0 in the sense of finite dimensional distributions. Note

that the transition rate to the cemetery state 0 tends to 0 as δ∗ ↘ 0 due to (17).
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2. Transition probabilities. Let N � 1, ι0, . . . , ιN ∈ {1, . . . , κ} ∪ {0}, x ∈ D̃ι and

0 < s1 < · · · < sN . Let us show that

lim
ε→0+

Px

(
Xε

s1
hε

∈ D̃ι1 , . . . ,Xε
sN
hε

∈ D̃ιN
)
= Pι0(m

δ∗
s1 = ι1, . . . ,m

δ∗
sN = ιN ). (18)

Since 0 is an absorbing state, we can restrict ourselves to the states {1, . . . , κ}. We first

construct an approximating jump process with the help of Theorem 3.2 and define recursively

the arrival times {T ε
n}n�0 and the random states {Sε

n}n�0 taking values in {0, . . . , κ} ∪ {0}.
We fix the initial time and state

T ε
0 := 0, Sε

0 :=
κ∑

	=1

� · 1
D̃�(x).

For n ∈ N we set

T ε
n+1 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
inf
{
t > T ε

n : X
ε
t,x ∈

k⋃
	=1
	 �=Sn

D̃	
}
, if Sε

n ∈
κ⋃

	=1

D̃	,

∞, if Sε
n /∈

κ⋃
	=1

D̃	,

Sε
n+1 :=

⎧⎪⎨⎪⎩
κ∑

	=1

� · 1D̃�(X
ε
Tn+1,x), if T ε

n+1 < ∞,

0, if T ε
n+1 = ∞.

We define the approximating jump process

M ε,δ∗

t :=

∞∑
n=0

Sε
n · 1
{
T ε
n �

t

hε
< T ε

n+1

}
.

The convergence in (18) can be expressed conveniently in terms of M ε,δ∗ as follows

lim
ε→0+

Px

(
M ε,δ∗

s1
hε

= ι1, . . . ,M
ε,δ∗
sN
hε

= ιN

)
= Pι0(m

δ∗
s1 = ι1, . . . ,m

δ∗
sN = ιN ). (19)

Following for instance Lemma 2.12 and Lemma 2.13 in Xia [45], the convergence

M ε,δ∗ → mδ∗ as ε → 0

in the sense of finite dimensional distributions it is equivalent to convergence

(T ε
k , S

ε
k)0�k�n

d−→ (Tk, Sk)0�k�n,

for any n ∈ N, where Tk is the k-th arrival time for the Markov chain mδ∗ and Sk = mδ∗
τk
. This

is equivalent to the following statement. For indices ι0, ι1, . . . ιn ∈ {1, . . . , κ}, with ιk �= ιk+1,

k ∈ {0, . . . , n− 1}, u1, . . . , un � 0, and an initial value x ∈ D̃ι0 we have

Ex

[
e−u1T ε

1
−···−un(T ε

n−T ε
n−1

)·1{Sε
1 = ι1, . . . , S

ε
n = ιn}

]
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ε→0−→
n−1∏
j=0

Qιj
(
(D̂ιj )c
)

Qιj
(
(D̂ιj )c
)
+ uj+1

· Qιj
(
D̃ιj+1
)

Qιj
(
(D̂ιj )c
) . (20)

This implies the desired convergence of finite dimensional distributions (19). To prove the

convergence in (20) we use the strong Markov property of Xε for the following recursive

estimate

Ex

[
e−u1T ε

1
−···−un(T ε

n−T ε
n−1

) · 1{Sε
1 = ι1, . . . , S

ε
n = ιn}

]
= Ex

[
E

[
e−u1T ε

1−···−un(T ε
n−T ε

n−1) · 1{Sε
1 = ι1, . . . , S

ε
n = ιn}

∣∣∣FT ε
1

]]
= Ex

[
e−u1T ε

1 · 1{Sε
1 = ι1}E

[
e−u2(T ε

2−T ε
1 )−···−un(T ε

n−T ε
n−1) · 1{Sε

1 = ι2, . . . , S
ε
n = ιn}

∣∣∣FT ε
1

]]
= Ex

[
e−u1T ε

1 · 1{Xε
T ε
1
∈ D̃ι1} EXε

Tε
1

[
e−u2(T ε

2−T ε
1 )−···−un(T ε

n−T ε
n−1) · 1{Sε

1 = ι2, . . . , S
ε
n = ιn}

]]
� Ex

[
e−u1T ε

1 · 1{Xε
T ε
1
∈ D̃ι1}

]
sup

y∈D̃ι1

Ey

[
e−u2T ε

1−···−un(T ε
n−1−T ε

n−2) · 1{Sε
1 = ι2, . . . , S

ε
n = ιn}

]
.

We iterate the preceding argument n− 2 times and obtain the estimate

Ex

[
e−u1T ε

1−···−un(T ε
n−T ε

n−1) · 1{Sε
1 = ι1, . . . , S

ε
n = ιn}

]
� Ex

[
e−u1T ε

1 · 1{Xε
T ε
1
∈ D̃ι1}

] n−1∏
	=1

sup
y∈D̃ι�

Ey

[
e−u�T

ε
1 · 1{Xε

T ε
1
∈ D̃ι�+1}

]
.

The same reasoning holds true for the estimate from below if we change -mutatis mutandis-

the supremum by the infimum. The limit (16) in Theorem 3.2 states that

sup
y∈D̃ι�

Ey

[
e−u�T

ε
1 · 1{Xε

T ε
1
∈ D̃ι�+1}

]
ε→0−→ Qιj

(
(D̂ιj)c
)

Qιj
(
(D̂ιj)c
)
+ uj+1

· Qιj (D̃ιj+1)

Qιj
(
(D̂ιj )c
) .

This shows the desired convergence in (20) and finishes the proof of (19). Statement 1. of

Theorem 2.2 is proved.

3. Location of Xε on the attractor. We prove the second statement of the Theorem 2.2.

Since Xε is a strong Markov process, it is enough to prove the result for s = 0 and x ∈ D̃ι,

namely that

lim
ε→0+

Ex

[
ψ(Xε

t
hε

,x
)
]
= Eι

[ ∫
Rd

ψ(v) dPmδ
t (v)
]
.

Indeed, the Markov property of Xε yields

Ex

[
ψ(Xε

t+σrε
hε

)
]
= Ex

[ hε
2rε

∫ rε
hε

− rε
hε

ψ(Xε
t+s
hε

)ds
]

= Ex

[
E

[ hε
2rε

∫ rε
hε

− rε
hε

ψ(Xε
t+s
hε

) ds
∣∣∣F t−rε

hε

]]
= Ex

[
EXε

t−rε
hε

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]]
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�

κ∑
ι=1

Ex

[
EXε

t−rε
hε

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]
· 1D̃ι(X

ε
t−rε
hε

)
]
+ ‖ψ‖∞δ∗

�

κ∑
ι=1

sup
y∈D̃ι

Ey

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]
· Px

(
Xε

t−rε
hε

∈ D̃ι
)
+ ‖ψ‖∞δ∗. (21)

We treat the two factors of the summands separately.

Lemma 3.3. Let δ∗, δ′, δ > 0 and R > R0 be chosen as above. If 0 < γ < δ0, ψ ∈ Cb(Rd,R)

and ι ∈ {1, . . . , κ} then there is a constant ε0 > 0 such that for any ε ∈ (0, ε0]

sup
y∈Dι,R

δ,δ′

∣∣∣Ey

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]
−
∫
Kι

ψ(v) dP ι(v)
∣∣∣ � γ.

Proof. Fix 0 < γ < δ0. For convenience we return to the abbreviation D̃ι. The local

ergodicity condition (2) of the deterministic dynamical system ensures the existence of a

constant T ∗ > 0 such that for all T � T ∗

max
ι∈{1,...,κ}

sup
y∈D̃ι

∣∣∣ 1T
∫ T

0
ψ(ϕs(y)) ds −

∫
Kι

ψ(v) dP ι(v)
∣∣∣ < γ

3
.

According to Lemma 3.1.1.(b) there is a constant T ∗ > 0 depending on R, δ and γ which

ensures that for all y ∈ D̃ι and t � T ∗

dist(ϕt(y), ∂D̃
ι) > δ0.

We choose T ∗ � T ∗ without loss of generality. Denote by �ε := �2rε/hεT ∗� the maximal

number of times how often T ∗ fits into 2rε/hε. Then Tε := 2rε/hε�ε satisfies T ∗ � Tε < 2T ∗

for any ε > 0. It is well-known that for any ρ ∈ (0, 1) and ε > 0 the random variable

τ := inf{t > 0 | |ΔtZ| > ε−ρ}

is exponentially distributed with parameter ν(Bc
ε−ρ(0)) and that it is independent of the

process of (Zt)0�t<τ and hence (Xε
t )0�t<τ . Since by the regular variation of ν we have

ν(Bc
ε−ρ(0))/ε

−αρμ(Bc
1(0)) → 1 as ε → 0, there exists a constant ρ0 ∈ (0, 1) such that for any

ρ ∈ (0, ρ0]

P
(
τ >

2rε
hε

)
= exp
(
− 2rεν(B

c
ε−ρ(0))

hε

)
→ 1 as ε → 0.

In particular, we may choose the upper bounds ρ0, ε0 ∈ (0, 1) such that for all ε ∈ (0, ε0] and

ρ ∈ (0, ρ0] we have 1− exp(−2rεν(B
c
ε−ρ(0))/hε) < γ/3‖ψ‖∞. For convenience we denote by P̃

and Ẽ the probability measure P( · |τ > 2rε/hε) and its expectation. We may assume without

loss of generality that ψ is uniformly continuous on R
d, we denote its modulus of continuity

by �ψ. Since ϕψ(β) → 0 as β → 0, we may choose β0 ∈ (0, 1) such that for all β ∈ (0, β0] we

have �(β) � γ/3. For fixed β ∈ (0, β0] we apply Corollary 3.1 in [21] for the upper bound

2T ∗ of Tε, which provides the existence of constants p0, ε0 ∈ (0, 1) such that for all p ∈ (0, p0]
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and ε ∈ (0, ε0]

Ẽy

[ hε
2rε

∫ 	εTε

0
ψ(Xε

s ) ds
]
=

hε
2rε

Ẽy

[ ∫ Tε

0
ψ(Xε

s ) ds+

∫ 	εTε

Tε

ψ(Xε
s ) ds
]

�
hε
2rε

Ẽy

[(∫ Tε

0
ψ(Xε

s ) ds+

∫ 	εTε

Tε

ψ(Xε
s ) ds
)
1
{

sup
s∈[0,Tε]

‖Xε
s − ϕs(y)‖ < β

}]
+ ‖ψ‖∞e−ε−p

(22)

We continue with the first term. Recall that by construction �εTε = 2rε/hε. We are now in

the position to apply the Markov property of Xε again and obtain the recursion

hε
2rε

Ẽy

[( ∫ Tε

0
ψ(Xε

s ) ds +

∫ 	εTε

Tε

ψ(Xε
s ) ds
)
1
{

sup
s∈[0,Tε]

‖Xε
s − ϕs(y)‖ < β

}]
=

hεTε
2rε

Ẽy

[ 1
Tε

∫ Tε

0
ψ(Xε

s ) ds · 1
{

sup
s∈[0,Tε]

‖Xε
s − ϕs(y)‖ < β

}]
+

hε
2rε

Ẽy

[
ẼXε

Tε

[ ∫ (	ε−1)Tε

0
ψ(Xε

s ) ds
]
· 1{Xε

Tε ∈ D̃ι}
]

�
hεTε
2rε

( 1
Tε

∫ Tε

0
ψ(ϕs(y)) ds +�ψ(β)

)
+

hε
2rε

sup
z∈D̃ι

Ẽz

[ ∫ (	ε−1)Tε

0
ψ(Xε

s ) ds
]

�
1

�ε

(∫
Kι

ψ(v) dP ι(dv) +
γ

3

)
+ sup

z∈D̃ι

Ẽz

[ hε
2rε

∫ (	ε−1)Tε

0
ψ(Xε

s ) ds
]
.

Iterating the step in (22) �ε − 1 times and choosing ε0 ∈ (0, 1) such that for all ε ∈ (0, ε0] we

have �ε‖ψ‖∞ exp(−ε−p) < γ/3 we obtain

Ẽy

[ hε
2rε

∫ 	εTε

0
ψ(Xε

s ) ds
]
�

(∫
Kι

ψ(v) dP ι(dv) +
γ

3

)
+

γ

3
,

and eventually end up with

Ey

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]
� Ẽy

[ hε
2rε

∫ 2rε
hε

0
ψ(Xε

s ) ds
]
+

γ

3

�

∫
Kι

ψ(v) dP ι(dv) + γ.

The lower estimate follows analogously. This finishes the proof.

Lemma 3.4. Let δ∗, δ′, δ > 0 and R > R0 be chosen as above. If 0 < γ′ < δ0 and

ι ∈ {1, . . . , κ} then there is a constant ε0 ∈ (0, 1) such that for any x ∈ Dι
δ,δ′ and ε ∈ (0, ε0]

Px

(
Xε

t−rε
hε

∈ Dι,R
δ,δ′

)
� (1 + γ′)Px

(
Xε

t
hε

∈ Dι,R
δ,δ′

)
. (23)

Proof. Fix 0 < γ′ < δ0. For convenience we return to the abbreviation D̃ι. With the help of

the Markov property we obtain

Px

(
Xε

t
hε

∈ D̃ι
)
=

κ∑
	=1

Px

(
Xε

t−rε
hε

∈ D̃	
)
P

(
Xε

t
hε

∈ D̃ι
∣∣∣Xε

t−rε
hε

∈ D̃	
)
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�

κ∑
	=1

Px

(
Xε

t−rε
hε

∈ D̃	
)
sup
y∈D̃�

Py

(
Xε

rε
hε

∈ D̃ι
)

�

κ∑
	=1

Px

(
Xε

t−rε
hε

∈ D̃	
)
sup
y∈D̃�

Py

(
Xε

rε
hε

∈ D̃ι
)
.

For � �= ι, the first exit time T
ι,R
x (ε) satisfies the following estimate. For any C ∈ (0, 1) there

is a constant ε0 ∈ (0, 1) such that for ε ∈ (0, ε0]

sup
y∈D̃�

Py

(
Xε

rε
hε

∈ D̃ι
)
= sup

y∈D̃�

Py

(
T
ι,R(ε) �

rε
hε

)
= sup

y∈D̃�

Py

(
Q((D̂	)c)hεT

ι,R(ε) � Q((D̂	)c)rε

)
� (1 + C)

(
1− eQ((D̂�)c)rε

)
.

The last estimate in the preceding formula is a direct consequence of the convergence result in

Corollary 2.1 of [21]. Reducing ε0 further if necessary we obtain (1+C)(1−exp(Q((D̂	)c)rε)) �

γ′/κ− 1 for ε ∈ (0, ε0] and the desired result holds, namely

Px(X
ε
t
hε

∈ D̃ι) � Px(X
ε
t−rε
hε

∈ D̃	)(1 + γ′).

Conclusion of the Proof of Theorem 3.2: We apply the Lemmas 3.3 and 3.4 with the

choices γ = γ′ = δ∗, as well as the minimal value of all ε0 to the right-hand side of inequality

(21) and obtain for ε ∈ (0, ε0]

Ex

[
ψ(Xε

t+σrε
hε

)
]
�

κ∑
ι=1

( ∫
Kι

ψ(v) dP ι(v) + δ∗
)
(1 + δ∗)Px

(
Xε

t
hε

∈ D̃ι
)
+ ‖ψ‖∞δ∗

�

κ∑
ι=1

( ∫
Kι

ψ(v) dP ι(v)
)
Px

(
Xε

t
hε

∈ D̃ι
)
+ δ∗(1 + δ∗) + ‖ψ‖∞δ∗

= Eι

[ ∫
Rd

ψ(v) dPmδ
t (v)
]
+ δ∗
(
(1 + δ∗) + ‖ψ‖∞

)
.

With the analogous arguments we obtain

Ex

[
ψ(Xε

t+σrε
hε

,x
)
]
� Eι

[ ∫
Rd

ψ(v) dPmδ
t (v)
]
− δ∗
(
1 + δ∗ + ‖ψ‖∞

)
.

This finishes the proof.

4 Appendix

4.1 Proof of Lemma 3.1

We fix the maximal distance δ0 := 1
2 minι dist(K

ι,∪κ
ι=1∂D

ι), the minimal cutoff for the

domain R0 := inf{r > 0 | ∪κ
ι=1 K

ι ⊂ Br(0)} and an index ι ∈ {1, . . . , κ}.
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1. Fix 0 < δ < δ0 and R > R0. Claim: We have ϕt(D
ι,R
δ ) ⊂ Dι,R

δ for all t � 0.

We use that ϕ−t = ϕ−1
t , the intersection compatibility of preimages, the definition of

Dι,R
δ , as well as iterated De Morgan’s rules to obtain

Dι,R
δ = (Dι ∩ IR) \

⋃
t�0

ϕ−t

(
Bδ(∂D

ι) ∩Dι ∩ IR
)

= (Dι ∩ IR) ∩
⋂
t�0

ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)
. (24)

Using the positive invariance of IR and the injectivity of the flow x �→ ϕt(x) for all

x ∈ R
d we obtain for s � 0 that

ϕs(D
ι,R
δ ) = ϕs(D

ι) ∩ ϕs(IR) ∩
⋂
t�0

ϕs

(
ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
))

= Dι ∩ ϕs(IR) ∩
⋂
t�0

ϕs

(
ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
))

= Dι ∩ ϕs(IR) ∩
⋂
t�0

ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)

∩
⋃

0<t�s

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)

⊂ Dι ∩ IR ∩
⋂
t�0

ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)
= Dι,R

δ .

2. Fix 0 < δ < δ0, R > R0 and in addition 0 < γ < δ0. Claim: there is a constant

T ∗ = T ∗
δ,R,γ > 0 such that for all x ∈ Dι,R

δ and t � T ∗

u(t;x) ∈ Bγ(K
ι).

Since Kι is an attractor, it attracts all bounded closed sets in its domain of attraction.

D
ι,R
δ is bounded closed set in Dι. That means for any γ > 0 there is T ∗ = T ∗(γ) such

that for all t � T ∗

ϕt

(
Dι,R

δ

)
⊂ Bγ(K

ι).

3. Claim: If 0 < δ < δ′ < δ0 and R > R0, then Dι,R
δ′ ⊂ Dι,R

δ .

This follows immediately from the representation (24) by the monotonicity with respect

to inclusion of δ, which is stable under preimages.

4. Claim: If δ, δ′ > 0 such that δ + δ′ < δ0 and R > R0 , then ϕt(D
ι,R
δ,δ′) ⊂ Dι,R

δ,δ′ for all

t � 0.

The proof is virtually identical to the proof of 1, with Dι ∩ IR replaced by Dι,R
δ .

5. Claim: If δ, δ′, δ′′ > 0 with δ′ < δ′′ and δ + δ′′ < δ0, then Dι,R
δ,δ′ ⊂ Dι,R

δ,δ′′ .

This follows analogously to Claim 3.

6. Claim: We have ⋃
δ,δ′>0

δ+δ′<δ0

Dι,R
δ,δ′ = Dι ∩ IR.
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We first prove that ⋃
0<δ<δ0

Dι,R
δ = Dι ∩ IR.

Recall that by Claim 3 the family
(
Dι,R

δ

)
δ>0

is monotically decreasing as a function of

δ with respect to the set inclusion. For any x ∈ Dι ∩ IR, it is sufficient to find δ > 0

such that

x ∈
⋂
t�0

ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)

Assume δ > 0 such that in addition x ∈ (Dι∩IR)\Bδ(∂D
ι). Then due to the continuity

of t �→ ϕt(x), there is Tδ = Tδ(x) > 0 such that

x ∈
⋂

0�t<Tδ

ϕ−t

(
(Dι ∩ IR) \ (Bδ(∂D

ι) ∩Dι ∩ IR)
)
.

Furthermore, δ �→ Tδ is monotonically decreasing and continuous. We prove that

limδ→0+ Tδ = ∞. Assume T∞ := supδ>0 Tδ < ∞, then for any δ > 0

ϕ−(T∞+1)(x) ∈ Dι ∩Bδ(∂D
ι)

and hence

ϕ−(T∞+1)(x) ∈
⋂
δ>0

Dι ∩Bδ(∂D
ι) = ∂Dι,

which is a contradiction, since ϕt(D
ι) = Dι for all t ∈ R. Hence T∞ = ∞ and we find

δ > 0 such that x ∈ Dι,R
δ . The same reasoning holds analogously for Dι,R

δ replaced by

Dι,R
δ,δ′ and Dι ∩ IR by Dι,R

δ .

4.2 Local Morse–Smale flows satisfy the local ergodicity property

It suffice to prove the convergence result for a stable limit cycle K and its domain of attraction

D.

Lemma 4.1. Consider a stable limit cycle K and its domain of attraction D. Denote by T
the period of ϕ on K and x0 ∈ K. Then for any compact subset A ⊂ D and measurable set

B ∈ B(Rd) the limit

lim
T→∞

sup
x∈A

∣∣∣ 1
T

∫ T

0
1B(ϕs(x)) ds −

1

T

∫ T

0
1B(ϕs(x0)) ds

∣∣∣
holds true.

Sketch of the proof. First of all note that due to the compactness of A and the openness of

D there is a minimal positive distance between A and ∂D. Since K is a global attractor in

D, for any δ > 0 there is Tδ,A > 0 such that x ∈ A and t � Tδ,A implies

ϕt(x) ∈ Bδ(K).

It is therefore sufficient to prove that

lim
T→∞

sup
x∈Bδ(K)

∣∣∣ 1
T

∫ T

0
1B(ϕs(x)) ds −

1

T

∫ T

0
1B(ϕs(x0)) ds

∣∣∣.
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Note further that the value 1
T

∫ T
0 1B(ϕs(x0)) ds is independent of x0 ∈ K and trivially

1

T

∫ T

0
1B(ϕs(x0)) ds =

1

nT

∫ nT

0
1B(ϕs(x0)) ds.

It is sufficient to check the case Tn = nT . In this case it is therefore enough to show

lim
n→∞

sup
x∈Bδ(K)

∣∣∣ 1
nT

∫ nT

0
1B(ϕs(x)) ds −

1

nT

∫ nT

0
1B(ϕs(x0)) ds

∣∣∣.
We calculate for x ∈ Bδ(K) and n ∈ N

1

nT

∫ nT

0
1B(ϕs(x))ds −

1

nT

∫ nT

0
1B(ϕs(x0)) ds

=
1

nT

n∑
i=1

∫ iT

(i−1)T

(
1B(ϕs(x))− 1B(ΠK(ϕs(x)))

)
ds,

where ΠK is the (local) orthogonal projection of x ∈ Bδ(K) onto the smooth curve K. The

hyperbolicity of K and the compactness of K imply that for δ > 0 sufficiently small, there

exist a constant Cδ and λ > 0 such that the sequence

fn := sup
x∈K

sup
s∈[(n−1)T ,nT ]

|ϕs(x)−ΠKϕs(x)|, n ∈ N,

satisfies fn � Cδe
−λn → 0 for all n ∈ N. This uniform convergence implies the convergence

of the Lebesgue integral∫ nT

(n−1)T

(
1B(ϕs(x))− 1B(ΠK(ϕs(x)))

)
ds → 0, as n → ∞,

and hence the desired convergence

1

nT

∫ nT

0
1B(ϕs(x)) ds → 1

T

∫ T

0
1B(ϕs(x0)) ds as n → ∞.

�
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