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A B S T R A C T

Organizations try to gain competitive advantages, and to increase customer satis-
faction. To ensure the quality and efficiency of their business processes, they per-
form business process management. An important part of process management
that happens on the daily operational level is process controlling. A prerequi-
site of controlling is process monitoring, i.e., keeping track of the performed
activities in running process instances. Only by process monitoring can business
analysts detect delays and react to deviations from the expected or guaranteed
performance of a process instance. To enable monitoring, process events need to
be collected from the process environment.

When a business process is orchestrated by a process execution engine, moni-
toring is available for all orchestrated process activities. Many business processes,
however, do not lend themselves to automatic orchestration, e.g., because of re-
quired freedom of action. This situation is often encountered in hospitals, where
most business processes are manually enacted. Hence, in practice it is often ineffi-
cient or infeasible to document and monitor every process activity. Additionally,
manual process execution and documentation is prone to errors, e.g., documen-
tation of activities can be forgotten. Thus, organizations face the challenge of
process events that occur, but are not observed by the monitoring environment.
These unobserved process events can serve as basis for operational process deci-
sions, even without exact knowledge of when they happened or when they will
happen. An exemplary decision is whether to invest more resources to manage
timely completion of a case, anticipating that the process end event will occur
too late.

This thesis offers means to reason about unobserved process events in a prob-
abilistic way. We address decisive questions of process managers (e.g., “when
will the case be finished?”, or “when did we perform the activity that we forgot
to document?”) in this thesis. As main contribution, we introduce an advanced
probabilistic model to business process management that is based on a stochastic
variant of Petri nets. We present a holistic approach to use the model effectively
along the business process lifecycle. Therefore, we provide techniques to dis-
cover such models from historical observations, to predict the termination time
of processes, and to ensure quality by missing data management. We propose
mechanisms to optimize configuration for monitoring and prediction, i.e., to of-
fer guidance in selecting important activities to monitor. An implementation is
provided as a proof of concept. For evaluation, we compare the accuracy of the
approach with that of state-of-the-art approaches using real process data of a
hospital. Additionally, we show its more general applicability in other domains
by applying the approach on process data from logistics and finance.
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Z U S A M M E N FA S S U N G

Unternehmen versuchen Wettbewerbsvorteile zu gewinnen und die Kundenzu-
friedenheit zu erhöhen. Um die Qualität und die Effizienz ihrer Prozesse zu
gewährleisten, wenden Unternehmen Geschäftsprozessmanagement an. Hierbei
spielt die Prozesskontrolle im täglichen Betrieb eine wichtige Rolle. Prozesskon-
trolle wird durch Prozessmonitoring ermöglicht, d.h. durch die Überwachung
des Prozessfortschritts laufender Prozessinstanzen. So können Verzögerungen
entdeckt und es kann entsprechend reagiert werden, um Prozesse wie erwartet
und termingerecht beenden zu können. Um Prozessmonitoring zu ermöglichen,
müssen prozessrelevante Ereignisse aus der Prozessumgebung gesammelt und
ausgewertet werden.

Sofern eine Prozessausführungsengine die Orchestrierung von Geschäftspro-
zessen übernimmt, kann jede Prozessaktivität überwacht werden. Aber viele
Geschäftsprozesse eignen sich nicht für automatisierte Orchestrierung, da sie
z.B. besonders viel Handlungsfreiheit erfordern. Dies ist in Krankenhäusern der
Fall, in denen Geschäftsprozesse oft manuell durchgeführt werden. Daher ist es
meist umständlich oder unmöglich, jeden Prozessfortschritt zu erfassen. Zudem
ist händische Prozessausführung und -dokumentation fehleranfällig, so wird
z.B. manchmal vergessen zu dokumentieren. Eine Herausforderung für Unter-
nehmen ist, dass manche Prozessereignisse nicht im Prozessmonitoring erfasst
werden. Solch unbeobachtete Prozessereignisse können jedoch als Entscheidungs-
grundlage dienen, selbst wenn kein exaktes Wissen über den Zeitpunkt ihres
Auftretens vorliegt. Zum Beispiel ist bei der Prozesskontrolle zu entscheiden, ob
zusätzliche Ressourcen eingesetzt werden sollen, wenn eine Verspätung ange-
nommen wird.

Diese Arbeit stellt einen probabilistischen Ansatz für den Umgang mit un-
beobachteten Prozessereignissen vor. Dabei werden entscheidende Fragen von
Prozessmanagern beantwortet (z.B. “Wann werden wir den Fall beenden?”, oder
“Wann wurde die Aktivität ausgeführt, die nicht dokumentiert wurde?”). Der
Hauptbeitrag der Arbeit ist die Einführung eines erweiterten probabilistischen
Modells ins Geschäftsprozessmanagement, das auf stochastischen Petri Netzen
basiert. Dabei wird ein ganzheitlicher Ansatz zur Unterstützung der einzelnen
Phasen des Geschäftsprozesslebenszyklus verfolgt. Es werden Techniken zum
Lernen des probabilistischen Modells, zum Vorhersagen des Zeitpunkts des Pro-
zessendes, zum Qualitätsmanagement von Dokumentationen durch Erkennung
fehlender Einträge, und zur Optimierung von Monitoringkonfigurationen bereit-
gestellt. Letztere dient zur Auswahl von relevanten Stellen im Prozess, die be-
obachtet werden sollten. Diese Techniken wurden in einer quelloffenen prototy-
pischen Anwendung implementiert. Zur Evaluierung wird der Ansatz mit exis-
tierenden Alternativen an echten Prozessdaten eines Krankenhauses gemessen.
Die generelle Anwendbarkeit in weiteren Domänen wird examplarisch an Pro-
zessdaten aus der Logistik und dem Finanzwesen gezeigt.
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B A C K G R O U N D





1
I N T R O D U C T I O N

Information technology (IT) evolves at an exponential pace as predicted by
Moore in 1965 [138]. The rapid development of technology allows the use

of increasingly complex and powerful models to capture, analyze, and predict
behavior of business processes. Business process management leverages infor-
mation technology (IT) to automate, monitor, control, and improve business pro-
cesses. Sophisticated solutions for business processes are on the market already,
but these systems are targeted at rather standardized business processes for of-
fice workers.

We want to bring process management technologies to hospitals. Hospitals
cannot directly adopt well-established methods of business process manage-
ment (BPM) because of their domain specific requirement of being able to act
outside the plan [117]. In this thesis, we consider environments of manual pro-
cess execution, that is, environments where people perform a process without
the orchestration of a process execution engine. One problem that we encounter
in such settings is incomplete information. To accurately capture such, we need
an approach that enables probabilistic reasoning. As main contribution, we in-
troduce an advanced probabilistic model to BPM that is based on a stochastic
variant of Petri nets.

chapter outline

This chapter outlines the motivation for the research work presented in this the-
sis. In Section 1.1, we introduce business process management with a focus on
hospital settings. Based on this setting, we derive the problem statement in Sec-
tion 1.2. We list our contributions in Section 1.3 and the structure of the thesis in
Section 1.4.
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4 introduction

1.1 motivation

Business process management (BPM) is a key instrument in a company’s en-
deavour to improve the efficiency and the quality of business processes. Latter
influence the quality of services and products [206]. Sophisticated methods and
tools have been developed to support continuous improvement of business pro-
cesses along the whole business process lifecycle, see the survey on BPM by van
der Aalst et al. [9]. The health care sector is facing an aging population and
increasing costs for new drugs and advanced medical devices [204]. Hospitals
in Germany, in particular, need to be efficient and reduce costs to remain prof-
itable, as the payment model changed from a length of stay based payment to a
payment per case based on diagnosis related groups in 2003 [170].

Regarding business process enactment and analysis, the methods and tools
developed for business processes in companies doing mostly office work are not
directly applicable in the health care domain, as the focus there is not on prod-
ucts or services, but on human patients [117]. Although there exist best practice
models for treatment processes based on evidence [81], each patient is individual
and may require individual treatment [195]. Doctors need to be equipped with
the freedom to act according to their best knowledge and judgement. Therefore,
a one-to-one transfer of workflow engines devised for business process automa-
tion to hospitals is infeasible.

Nevertheless, Bates et al. argue that the judicious use of IT in healthcare can
help to prevent treatment errors [32]. The authors highlight—among others—the
potential use of IT for continuous quality measurement.

The question that arises is: how can hospitals benefit from business process
technologies, while still being able to act freely outside predefined processes? A
central requirement for business process management is to measure the perfor-
mance of a process. This triggers the question how to make monitoring systems
aware of the current steps that the medical staff perform. There is ongoing re-
search in the direction of ubiquitous computing using sensors, and other devices
[193, 47, 33, 69], which aims at automatic tracking of activities in a process. We
can expect that this trend continues and more and more information gets acces-
sible to monitoring systems.

Beside these merely technical means to capture process related events, treat-
ment decisions and actions including detailed timing information are recorded
by the hospital staff. Medical personnel have the obligation to trace important
milestones [27], e.g., in a surgery: when the anesthetic was administered, when
the cut was made, etc. These circumstances support the assumption, that at least
some events in a treatment process are already (and more will be) available
electronically in the hospital information system. Given the case, that models of
execution exist, too, we can bind these events to the models at specific points
and perform monitoring of the treatment process without a workflow engine.

We can provide estimations for process instances, i.e., we can determine where
in the process the patient has been, currently is, and will be (most probably)
along the time axis. These estimations can be used to reason about probable re-
source shortages in a hospital or to predict the length of stay of a patient. Further-
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more, these estimations can be used in the case that part of the documentation is
missing for a process instance to support early correction of the documentation.
Such situations occur in hospitals, because people are responsible to track the
processes manually. In this case, we can deduce from the existing documenta-
tion and our model what the most probable steps in the process were, and when
they were most probably conducted. Moreover, we can predict the occurrence
time of future events based on our probabilistic model.

1.2 problem statement

The problem statement of this thesis is based on our experiences and gained
insights into running processes in hospitals. In the context of the SOAMED Re-
search Training Group1, we worked on a process elicitation project in the Char-
ité – Universitätsmedizin Berlin [146], and on process monitoring in cooperation
with the PIGE project supported by the University of Jena [88]. The problem
statement is motivated by settings, where only incomplete information of business
process execution is available. We encountered such settings in hospitals, where
(treatment) processes are performed that contain many activities. These models
are performed manually, however, and not all tasks are documented, or con-
nected to the monitoring system. Furthermore, the documentation itself is prone
to errors, as it is done manually.

In these settings, we want to create the possibility to reason about unobserved
events of process instances that took place in the past, or will take place in the
future. However, as we do not have exact information, the best we can do is to
use all the prior knowledge and historical observations to create a probabilistic
model for estimating the events in question.

In process execution settings with manual documentation, it is of interest to
reduce the number of times of manual documentation of activities. The goal is to
reduce the overhead to the actual work, while still maintaining high prediction
accuracy. Similarly, if we set up a monitoring system to capture the performance
of a process, we need to decide which events we have to monitor to achieve best
prediction accuracy.

The following problems arise in this context:

discover What is the time performance of the process? How long do certain
activities take?

predict When will the current case be finished? When will it reach a certain
activity?

ensure quality How can we make sure that the documentation is done cor-
rectly? How to deal with missing documentation entries?

optimize At which points should we require the staff to document steps?
Which events should be connected to a monitoring and prediction system?

1 SOAMED homepage: http://www.ki.informatik.hu-berlin.de/soamed

http://www.ki.informatik.hu-berlin.de/soamed
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1.3 scientific contribution

The contribution of this thesis is to provide a probabilistic framework in the
context of BPM. This framework is tailored towards the use case of manual pro-
cess execution and logging, as encountered, e.g., in hospitals. The framework
supports the following use cases:

1. Discovery of stochastic performance models [171]

2. Prediction of remaining process durations [177]

3. Reasoning about missing values in process event logs [174, 175]

4. Selection of optimal event monitoring points [172]

To support these use cases, we introduce a stochastic Petri net model to busi-
ness process management that allows to capture individual activity durations
in a flexible way. We collect challenges that occur when applying this particular
model and provide respective solutions. The usefulness of this model is eval-
uated with industry case studies of the motivating domain (i.e., on a hospital
surgery process), but also on the domains of logistics and finance.

Evaluation

Configuration

Enact-
ment

Design 
& 

Analysis

Business 
Process
Lifecycle

discover

 
predict

optimize

ensure
quality 

start end

Figure 1: Contributions along the business process lifecycle. We attached the contribu-
tions to the business process management lifecycle depicted in the center of the
figure. We contribute to the following phases: Evaluation, Configuration, and En-
actment.

Figure 1 presents the main contributions of the thesis along the business pro-
cess lifecycle. This figure shall guide us through the main part of the thesis.

1.4 thesis structure

The thesis is divided into three parts.

part i The first part is introductory. It presents the background of the thesis,
and its motivation. In Chapter 2, we introduce fundamental concepts that
are required for this thesis.
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part ii In the main part of the thesis, we explore each contribution in detail.
The contributions constitute the framework for probabilistic estimation of
unobserved process events. The contributions are aligned with the four use
cases listed in the previous section. In Chapter 3, we show how we can dis-
cover probabilistic models from historical observations. Then, in Chapter 4,
we use the discovered model to predict the remaining time of a running
process instance. In Chapter 5, we investigate how the probabilistic model
can assist to ensure quality of documentation in manual processes. The last
contribution is to the configuration phase of the business process lifecycle.
In Chapter 6, we present a method to optimize the selection of monitoring
points that are most relevant for monitoring and prediction.

part iii In the final part, we transfer the concepts and techniques to case stud-
ies. In Chapter 7, we discuss the implementation of the concepts. We eval-
uate the techniques on real data from a hospital in Chapter 8. Moreover,
we show the applicability of the techniques to process data from logistics
and finance. Finally, in Chapter 9, we conclude the thesis and present an
overview of unresolved issues and next steps.





2
R E Q U I R E D F U N D A M E N TA L S

In this chapter, we present existing formalisms and approaches, which are
fundamental for this thesis. We provide definitions of the concepts here. Later,

we will use them in the proposed framework for probabilistic estimation of un-
observed process events.

chapter outline

We start in Section 2.1 with the introduction to business process management
(BPM), which is ubiquitous in this work. Then, we investigate Petri nets and
stochastic extensions capturing temporal aspects of Petri nets in Section 2.2. Sub-
sequently, we give an introduction to process mining in Section 2.3. We overview
existing monitoring architectures in Section 2.4. Thereby, we address the ques-
tion of correlation and mapping between events and process models. We con-
clude with basic concepts from probability theory, and probabilistic models in
Section 2.5.

9
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2.1 business process management

In a globally competing environment, organizations strive to improve their effi-
ciency and effectiveness [84, 206]. Tools and techniques have emerged to support
the task of managing business processes. The discipline of BPM is best intro-
duced along the business process lifecycle.

Business Process Lifecycle

The business process lifecycle [9] provides a high level view on the phases of a
business process. The lifecycle consists of the following phases: (1) evaluation,
(2) design and analysis, (3) configuration, and (4) enactment of business pro-
cesses [206], as depicted in Figure 2.

In the evaluation phase the as-is business processes of an organization are ex-
amined. Thereby, techniques such as process mining [3] can be used to gain
insights into the running processes. In the design and analysis phase of business
process management, the processes are identified, and experts capture the to-be
processes in the form of business process models. If business process models are
already available, redesign [84, 167] can be performed. The redesigned process
models can be checked for correctness [1], and simulation tools [97] can be used
to check, whether the changes improve the as-is processes.

When a satisfactory business process model is selected for adoption, the pro-
cess has to be deployed to the process environment in the configuration phase.
Depending on the execution environment, this phase can result in briefing em-
ployees to follow the new specifications, or in a configuration of a workflow en-
gine [207] that controls the execution of a business process automatically. Latter
is only possible when the environment allows for automation of business pro-
cesses. For example in healthcare, automation proves to be especially challeng-
ing [117]. There are cases, in which processes are well understood and exhibit
small variance and high frequency of occurrence; these cases are good candidates

Evaluation

Configuration

Enactment Design & Analysis
Business 
Process

Figure 2: Business process lifecycle. The business process lifecycle forms a continuous
process that focuses on maintaining and improving the performance and qual-
ity of a business process. It consists of four phases: (1) evaluation, (2) design
and analysis, (3) configuration, and (4) enactment, cf. [206].
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for automation by workflow engines. However, in many process enactment en-
vironments, the use of workflow engines is infeasible. Infeasibility can be due
to high flexibility requirements, complexity or rare occurrence. Then cost of im-
plementing a workflow engine is not justified by the efficiency gained through
automated orchestration.

In the enactment phase, which closes the business process management life-
cycle, the operation of the business process takes place. We shall take a more
detailed look at this phase in the next section. In particular, we shall investigate
execution and monitoring.

Execution and Monitoring

The process enactment phase is where the daily business of organizations is con-
ducted. Customers request specific products or services of a company, which
in turn delivers these through business processes. The most interesting aspect of
business process execution, at least from a management point of view, is whether
the process is executed efficiently (i.e., in short time and with economical re-
source usage), and whether their execution conforms to the specified models.
Business process analytics [145] offers tools to ensure smooth operation, e.g., by
identifying bottlenecks.

To conduct business process analytics, we need to be able to measure the per-
formance of a business process. We use the term business process monitoring for
the task of measuring progress of process instances during their execution. In
the remainder of this thesis, we refer to this task as process monitoring or simply
monitoring. The aim of process monitoring is to provide decision support during
enactment [57]. We only can ensure the quality of process performance, if we
have insights into the running processes. Therefore, we need to measure them.
Monitoring enables us to react appropriately to changes in the process, e.g., an
increase in demand. An example shall illustrate this: If we detect that, currently,
there are a lot of cases arriving, and only few cases completing, we know that
there is a rising number of cases. In this situation, process managers can in-
vest more resources (e.g., request additional assisting specialists) to increase the
chance of timely completion of cases and avoid long waiting periods.

Business Process Models

Business processes are the central, value-generating processes in companies that
capture activities and their relations to provide products or services to clients [206].
Modeling of business processes is essential for business process management, as
models allow us to capture the essential components of a business process and
put them into relation to each other.

According to a study by Indulska et al. [94], the five top-ranked perceived
benefits of business process modeling are (1) process improvement, (2) under-
standing, (3) communication, (4) model-driven process execution, and (5) pro-
cess performance measurement. Obviously, every organization tries to obtain
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these benefits. To do so, however, business process models need to be of good
quality [133] and captured in an appropriate modeling language.

There exist several modeling techniques to capture business process models,
cf. the survey in [121]. For example, flow charts have been used to model al-
gorithms since the introduction of computers, cf. [78]. But also UML activity
diagrams [151], event driven process chains [108], or the Business Process Mod-
eling Language and Notation (BPMN) [150] are candidates for modeling busi-
ness processes. Noteworthy candidates from academia are Petri nets [159, 2],
YAWL [7], and ADEPT [165]. Petri nets are abundantly used with various exten-
sions, e.g., high-level Petri nets [22], or colored Petri nets [190, 98] have been pro-
posed [99, 134]. See also [188] for an overview on the use of Petri nets for work-
flow modeling. We shall return to Petri nets in the next section. Currently, the
BPMN is the established de facto standard for modeling business processes [192].

An example business process model in BPMN is depicted in Figure 3. The pro-
cess model captures a treatment process as encountered in hospitals performing
surgeries. Important in this example are the activities and their relations. First,
the patient is registered before being examined. Note the exclusive choice after
the examination of the patient. Here, the patient either is transferred to another
hospital, or the surgery will be performed after a scheduling activity. Afterwards,
the patient will be taken care of in stationary care, until the patient can be re-
leased.

In the given example in Figure 3, we only encounter a small number of mod-
eling constructs. The BPMN modeling language offers a wide range of available
shapes to model business processes, see Figure 4 for an overview of the basic
shapes.

Throughout this thesis, we will use only a subset of BPMN models, that we
can translate into a Petri net [159] representation. This simplification is justified
by empirical research work by zur Mühlen and Recker [144] that shows that most
models in practice do not use the full set of modeling constructs defined in the
BPMN language specification [150]. That is, the basic structural modeling con-
structs encountered in Petri nets suffice for capturing most business processes.
Additionally, the use of Petri nets can also be directly used in workflow man-
agement as proposed in [2]. Several mappings for the most common workflow
patterns of different process modeling languages into Petri nets have been col-
lected by Lohmann et al. in [120]. For models captured in BPMN, a translation
to Petri nets is presented by Dijkman et al. [59]. Therefore, we assume that busi-
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surgery
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Figure 3: Abstract surgery BPMN process model. This simple example illustrates a
mostly sequential treatment process that describes the activities in the course
of a treatment containing a surgery.
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Figure 4: Overview of basic shapes available in BPMN. Figure from [146] (cf. [150]).
Pools and lanes are used to group activities and events by organizations and
responsibilities. Flow objects capture the main modeling elements and are con-
nected by sequence flows. Message flows represent exchange of information
with other organizations. Associations relate the flow objects to artifacts. These
basic shapes can be extended by markers, resulting in constructs like, throwing
intermediate message events, looping service-task, or event-based gateways). The
standard lists 48 valid combination of events [150].

ness process models are available directly—or through translation—in a Petri
net representation.

2.2 stochastic petri nets

Before we consider stochastic extensions of Petri nets, we first introduce the basic
Petri net model. The Petri net formalism dates back to the seminal thesis of Petri
in 1962 [159]. We rely on the original definition of Petri nets [159], which is
defined as follows.

Definition 1 (Petri Net) A Petri net is a tuple PN = (P, T , F,M0) where:
• P is a set of places,
• T is a set of transitions,
• F ⊆ (P× T)∪ (T × P) is a set of connecting arcs representing flow relations,
• M0 ∈ P → IN0 is an initial marking.

Petri nets offer a simple set of basic elements that form a directed bipartite
graph of places and transitions. A state of a Petri net is determined by the mark-
ing (M : P → IN0) of a net, which is specifying the number of tokens on the
places. For markings M, with M(p) ⩽ 1 for any p ∈ P, we use the shorthand
set notation of places with a token in the marking, e.g., {p1,p4} is the marking
M with M(p1) = 1 and likewise M(p4) = 1 and all other places are empty (i.e.,
∀p ∈ P \ {p1,p4} : M(p) = 0). Transitions can have input and output places, i.e.,
a transition t ∈ T has input places •t = {p ∈ P | (p, t) ∈ F}, and output places
t• = {p ∈ P | (t,p) ∈ F}. Transitions capture changes of states. They also have a
clear firing semantic, i.e., transitions are enabled, if all their input places contain
at least one token. When an enabled transition fires, it removes a token from
each of its input places and adds a token to each of its output places. This sim-
ple firing rule allows us to specify sequential, exclusive, parallel, and recurring
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Figure 5: Abstract surgery Petri net model. Here a possible translation of the model in
Figure 3 to a Petri net is depicted. Transitions are represented as rectangles,
and places as circles.

relations between transitions, by connecting places and transitions in different
patterns in the Petri net. For example, two transitions with the same input place
represent an exclusive choice, because the transition first firing takes away the
token from the competing transition, disabling the latter.

Another benefit of Petri nets is their mathematical flavor, which allows for
various analysis methods [140, 168]. Petri nets are used, among others, for ver-
ification of workflow systems [1]. In fact, a considerable part of research in the
BPM area deals with verification of soundness properties of business process mod-
els [1], or the compliance to a given set of business rules [35, 123, 26].

Soundness is defined for workflow nets—a special class of Petri nets that has
a dedicated input place pi with no incoming arcs (i.e., ∄t ∈ T | (t,pi) ∈ F) and an
output place po with no outgoing arcs (i.e., ∄t ∈ T | (po, t) ∈ F), and all places
and transitions are on a path between these two places. Soundness requires that

• the final marking is reachable from every intermediate marking that can
be reached from the initial marking.

• for each transition there exists a firing sequence that includes the transition
and starts with the initial marking.

• if the final marking is reached (i.e., the output place po of the workflow
net has a token), no other place may still contain tokens.

Besides guaranteeing deadlock-freedom, soundness implies boundedness (i.e.,
there are only a finite number of markings that can be reached from the initial
marking) [1].

An example translation of the BPMN model presented in Figure 3 is depicted
in Figure 5. By convention, tansitions are rectangular and places are represented
as circles. Note that due to the bipartite nature of Petri nets the model has more
nodes than the original model and the decision to do the surgery is captured as
a place followed by two competing transitions (labels italic).

Various kinds of extensions to Petri nets have been proposed in order to cap-
ture performance criteria. In his thesis, Ramchandani introduced the time dimen-
sion into Petri nets [162]. Timed Petri nets use deterministic timings, and are of
limited use to model processes which involve uncertainty. The idea to integrate
exponentially distributed timings into Petri nets was independently proposed
by Symons [197], Natkin [148], and Molloy [137]. In his PhD thesis [136], Molloy
also has shown that these models are isomorphic to Markov chains, which can
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be solved analytically. The following definition captures the model of stochastic
Petri net (SPN), cf. [137].

Definition 2 (Stochastic Petri Net) A stochastic Petri net is a five-tuple: SPN =

(P, T , F,M0,L), where (P, T , F,M0) is the basic underlying Petri net. Additionally,
L : T → IR+ is an assignment of transition rates to transitions.

The transition rates in SPNs serve as parameters to the exponentially dis-
tributed firing durations of each transition. The execution semantics of SPN
models is stochastic, i.e., the choice which transition fires in a certain marking is
probabilistically made among the enabled transitions based on their transition
rates. For example, when a transition tA with rate L(tA) = 2, is concurrently
enabled with another transition tB, that has a firing rate of L(tB) = 1, the tA fires
twice as often, as transition tB.

Stochastic Petri nets were studied extensively over the years, and numerous ap-
proaches were proposed extending the modeling capabilities, while at the same
time maintaining analytical [130, 129], or at least numerical [118], tractability. An
overview over different classes of stochastic Petri nets is given by Ciardo et al.
in [51].

One well-known formalism is provided by Ajmone Marsan et al. [130]; it is
called generalized stochastic Petri net (GSPN), and is defined as follows.

Definition 3 (Generalized Stochastic Petri Net) A generalized stochastic Petri net
is a seven-tuple, GSPN = (P, T ,P,W, F,M0,L), where (P, T , F,M0) is the basic under-
lying Petri net. Additionally:

• The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt

• P : T → IN0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ⩾ 1

and ∀t ∈ Tt : P(t) = 0

• W : Ti → IR+ assigns probabilistic weights to immediate transitions
• L : Tt → IR+ is an assignment of transition rates to timed transitions, specifying

the rate parameter of the exponentially distributed firing durations.

GSPN models have been shown to be isomorphic to Markov chains [130],
which can be analyzed efficiently. The topic of analysis methods for Petri nets is
further developing, e.g., Katoen recently proposed a novel algorithm to analyze
GSPNs as stochastic real-time games [106].

For some processes, we do not want to restrict the transition durations to
follow the negative exponential distribution, or be immediate. For example, the
duration of a surgery in a hospital treatment process is assumed to follow the
normal (or log-normal) distribution [196]. Also there might be activities or events
that are not random, but deterministic, as for example time-outs, which cannot
be captured properly by an exponential distributions or their variants.

Other researchers, e.g., Dugan and colleagues, found the exponentially dis-
tributed timings too restrictive [64, 39], and proposed extensions of stochastic
Petri net models to allow arbitrary firing delays [64]. These more permissive
models are called extended stochastic Petri nets [64], non-Markovian stochastic
Petri nets [75, 90], or generally distributed transition stochastic Petri nets [127,
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39]. Although offering more flexibility in model specification, these models are
in general not efficiently analyzable. Discrete event simulation has to be used
for their analysis [64] or, given certain assumptions (e.g., block-structuredness),
they can be approximated numerically [166]. The use of GSPN models remains
popular, because of their simple characteristics [105].

Several researchers have devoted work on pushing the limit of analytical tractabil-
ity of extended models [64, 75, 50, 218]. A special generalization of stochastic
Petri nets—Markov regenerative Stochastic Petri nets—is shown to be tractable
with numerical analysis [50]. Moreover, tool support with implementation of
these numerical analysis methods is available [219, 218]. However, latter numer-
ical tractability requires that in each marking only one transition with generally
distributed timing is available. A review of different approaches for the analysis
of non-Markovian stochastic Petri nets is given by German in [74].

For our purposes, we extend the widely known definition of GSPNs pro-
vided in [130], by allowing durations of the timed transitions to be generally
distributed. In terms of the categorization proposed in [51], we use the most
general—or most permissive—model class of stochastic Petri nets.

Definition 4 (Generally Distributed Transition Stochastic Petri Net) A generally
distributed transition stochastic Petri net (GDT_SPN) is a seven-tuple:
GDT_SPN = (P, T ,P,W, F,M0,D), where (P, T , F,M0) is the basic underlying Petri
net. Additionally:

• The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt

• P : T → IN0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ⩾ 1

and ∀t ∈ Tt : P(t) = 0

• W : Ti → IR+ assigns probabilistic weights to the immediate transitions
• D : Tt → D is an assignment of arbitrary probability distributions D to timed

transitions, reflecting the durations of the corresponding activities.

Besides this choice for modeling, there are also similar models used for captur-
ing performance in workflows. In his thesis, Reijers defined a similar class called
Stochastic Workflow net [166], which is a workflow net enriched with stochas-
tic timing parameters. The main difference to GDT_SPN models is that he uses
discretized timing specifications, and restricts models to be block structured. A
comprehensive overview on the historical evolution of stochastic Petri nets is
given by Puliafito and Telek in [161]. Further, Balbo provides a more recent in-
troduction to the topic in [30].

One key characteristic of the GDT_SPN model, that our work shares with
other stochastic models, is the independence assumption. That is that transition
durations are independent from one another. This assumption and using a dis-
tribution family in the model, that is closed under the operations of summation
and maximization, allows exact analysis techniques as available for GSPN. In
practice, this assumption might not always be valid, and models assuming inde-
pendence yield poor a explanation of the real process behavior.

An extreme example helps to illustrate this point. Imagine a process in which
two activities A and B are normally distributed—both with a mean duration of
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5 and a variance of 1. If the two activities are independent, the sum of A and B is
a new random variable with the mean of 5+ 5 = 10 and a variance of 1+ 1 = 2.
This is what a GDT_SPN model would return for the resulting durations as
well. If instead the two activities A and B would be correlated positively with a
correlation coefficient of 1 (i.e., the duration of activity A being in a perfect linear
relationship with the duration of activity B) the resulting sum of the durations
would be normally distributed with a mean of 10 and a variance of 4. On the
other hand, if the activities were in a perfect negative correlation (with coefficient
−1), the resulting mean of the sum of A and B would be 10 and the variance
would be canceled to 0. If such strong correlations exist in a process, models
with the independence assumption are not the models of choice.

In Chapter 8, we shall come back to this assumption and evaluate the GDT_SPN
model in three case studies to see if the independence assumption is too strong,
or if the model can still capture the real behavior well.

2.3 process mining

In this thesis, we assume that business process models are available and capture
the behavior of a business process accurately. Even if no process models exist,
the assumption that models exist should not be regarded as a limitation of this
thesis, because numerous process mining techniques can be used to discover pro-
cess models from event logs, cf. the survey in [11], or the textbook by van der
Aalst [3].

Events and Event Logs

We first introduce the terms events and event logs that are at the core of pro-
cess mining. Event logs are a central artifact in process mining, as they contain
the information of interest in raw form. Typically, various sources can generate
events, e.g., information systems, workflow management systems, and enterprise
resource planning systems.

The term event is ambiguous, as it is used in many similar settings with differ-
ent meaning, e.g., in the logistics community, an event marks exceptional occur-
rences that require adjustment of a plan [76]. In daily life, events might specify
certain happenings, such as concerts, the visit of a famous person, etc. Luck-
ham defines events as something that happens or occurs and might change the
current state of the system [122].

In this work, we understand events as indicators for progress in business pro-
cesses. More specifically, an event indicates that an activity of a corresponding
process instance has changed its state, e.g., was completed. We largely abstract
from the technological details of how events are collected from different sources
in this thesis, and show but a few example architectures for this purpose in the
next section. Therefore, we work at the abstraction level of event logs that capture
relevant events of a business process grouped by the corresponding case, as also
defined in process mining [3].
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Definition 5 (Event Log) An event log over a set of activities A and time domain TD
is defined as LA,TD = (E,C,α,β,γ,⪰), where:

• E is a finite set of events
• C is a finite set of cases (process instances),
• α : E→ A is a function assigning each event to an activity,
• β : E→ C is a surjective function assigning each event to a case.
• γ : E→ TD is a function assigning each event to a timestamp,
• ⪰⊆ E× E is the succession relation, which imposes a total ordering on the events

in E.

Note that event logs are not restricted to the components in this definition in
general. Rather, many information systems keep track of additional aspects of
events, e.g., roles, used resources, costs, data. However, in this thesis we focus on
the time domain. In practice, correlation of events with cases (i.e., defining the β

function for each event) is non-trivial, especially if the data is unstructured as in
our use cases. Dealing with the correlation issue is out of the scope of this work,
however. The interested reader is referred to the seminal work by Agrawal et al.
in [18], where the authors describe an algorithm to mine association rules from
data. Another interesting approach is offered in the paper by Motahari-Nezad
et al. [139], which offers correlation conditions that specify how events will be
correlated with activities, and also offers discovery capability of these conditions
from an event log. Independently, Musaraj et al. [143] provide a method to iden-
tify correlation on message level based on information of timestamps only.

We assume that the environment that generates the events also sets the times-
tamps (i.e., the γ function) of the events. Setting timestamps depends on the
domain, while in some cases it might make sense to use the timestamps of event
creation, in other cases it might be possible to extract the timestamps from the
event sources.

The assignment of events to activities (i.e., the α function in the event log defi-
nition), is of interest in this thesis. We shall explain the notion of alignments [15]
in the next section.

The process mining manifesto [4] positions process mining in the context of
the real world, process models, software systems, and event logs, cf. Figure 6.
Process mining can be categorized into the following three dimensions:

1. discovery, where a process model is inferred from the event logs that cap-
ture execution traces of processes

2. conformance, where a process model is compared with observed execution
in form of event logs

3. enhancement, where a model is enriched with information extracted from
event logs

In the following, we briefly introduce these concepts.
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Figure 6: Process mining overview. The three major aspects of process mining are 1)
discovery, 2) conformance, and 3) enhancement, cf. [3].

Discovery of Process Models

Conceptually, the problem of discovery (i.e., identifying the minimal process
model that captures the relationships observed in an event log) is related to the
problem of finding a minimum finite-state automaton that is compatible with
given data, which has been shown to be NP-hard by Gold in [77]. Besides being
computationally challenging, the problem also sparks interest in research and
industry due to one of its greatest promises: the automation of the cumbersome
task of eliciting process models manually (e.g., with interviews).

The research area of process mining started with the work by Agrawal et
al. [17], in which the authors presented an automatic way to derive models from
causal dependencies of events gathered from an event log. Since then, a series
of mining algorithms were developed: algorithmic approaches, e.g., the alpha-
algorithm [12], which discovers Petri nets, or the related work by Herbst and
Karagiannis [87]. Latter constructs a model reflecting all traces as a Markov chain,
and applies iterative merging steps to simplify the model. Additionally, there are
techniques using heuristic approaches to tackle the problem, e.g., using genetic
algorithms [132].

Conformance Checking

To ensure quality of a business process, it is not sufficient to specify how a pro-
cess should be executed, e.g., in the form of business process models. Rather, it is
necessary to test, whether the specified models that capture the desired behavior
are executed as specified in practice. Conformance checking is the discipline in
process mining that tries to align the execution trace of a case to the model in or-
der to detect deviations. It helps to identify parts in the process model that need
refinement, or where employees need to adapt their work so that it conforms to
the specification.



20 required fundamentals

tA

tB

tC

tD

t1

t4

t3

p1 p2

p5

p3 p4

p6

p7 p8

t2

Figure 7: A more abstract Petri net model. This more abstract model serves as example
for explaining the alignment notion. It contains sequential, parallel, exclusive,
and iterative structural relationships.

First results were achieved by Rozinat and van der Aalst [181, 182], which use a
form of replay of a log in a model, and count the number of additionally inserted
and removed tokens that are necessary to replay a trace in the Petri net model. In
this early work, the traces in the logs are greedily replayed in a model and thus
there is no guarantee to find an optimal path through the model. In successive
work, Adriansyah et al. introduced the notion of a cost-based alignment in [15].
Latter work guarantees to find a globally optimal alignment [15] that considers
the structural properties of the model. Therefore, tt assigns costs to additional
steps in either model or trace that cannot be mimicked by the other.

To quantify conformance, the fitness measure is used [181]. A fitness value
tells us, to what degree the observed cases in the event log follow the behavior
prescribed by the model. Note that the measure of fitness used in conformance
is usually defined as a value in the range between 0 and 1. Let LA,TD be an event
log, and pn be a corresponding Petri net model. Then, van der Aalst et al. [5]
define fitness as:

fitness(LA,TD, pn) = 1−
cost of optimal alignment between LA,TD and pn

maximum cost of log LA,TD and model pn
(1)

Usually the costs of synchronous and invisible moves are set to zero and other
moves (i.e., log moves and model moves) have costs greater than zero. With
such a configuration, this definition of fitness yields a value of 1 for an optimal
alignment between model and log (i.e., where the cost of that alignment are zero).
If not a single synchronous move can be found between log and model, i.e., the
optimal alignment contains the cost of all the model moves and log moves, the
fraction in Equation 1 is 1, and this definition yields a fitness value of 0.

We will build on the cost-based alignment technique throughout this thesis.
In the following, we offer an intuition, and refer to the report by Adriansyah et
al. [16] for the formal details.

To explain the notion of alignments between a process model and an event
log, we use the abstract example Petri net model in Figure 7. In this part, we do
not focus on the semantics of the model, but on the structure. Therefore, we use
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a model that contains sequential relationships (tA, tB), parallelism (between tB
and one of tC or tD), as well as a cycle (returning from p7 to p2).

As convention, we use subscript roman letters for transitions in Tt that reflect
activities (e.g., tA, . . . , tD), while we use subscript numbers for places (e.g., p1,
. . . , p8), and transitions in Ti for control flow routing (e.g., t1, . . . , t4).

Figure 8 shows two execution traces (tr1, tr2) of the model depicted in Figure 7.
Each event in the trace corresponds to a transition in the net with matching
subscript, e.g., event B belongs to transition tB. For this example, we assume
that immediate transitions are invisible to the monitoring system (i.e., they do
not appear in the log), and all timed transitions are visible.

The cost-based alignment approach aligns each observed trace to a particular
path in the model. The challenge is to decide, to which activity instance an event
belongs. Note that we are not limited to cases where activity labels in business
processes are unique, but even if that was the case, cycles in process models
allow us to perform the activities multiple times. Therefore, a trace of a process
model can contain events belonging to different instances of the same activity.
We assume that a mapping from event types to activity types exists, but we
need to identify which occurrence of that activity type to assign an event to.
More generally, conformance checking tries to identify missing events, additional
events or incorrect ordering of events.

The alignment method synchronizes each trace with the process model in a
product model [210]. The product of two Petri nets contains both nets and intro-
duces synchronous transitions that stand for simultaneous occurrence of events
in both nets. Once pairs of synchronous transitions have been identified in the
models, we can create a product by adding a transition for each synchronous
pair. The transition is connected to the input places and the output places of the
transitions to by synchronized. A formal definition of a product of Petri nets is
given in [210]. In this thesis we do not repeat it, but explain this concept with an
example.

Figure 9 shows the product model that we can construct for the trace tr1 in
Figure 8 and the Petri net model in Figure 7, cf. [16]. Because each event in tr1
is mapped to the corresponding transition by naming convention, we create the
synchronous transitions accordingly. In a perfect alignment, we can replay both
the model and the log from start to end using only synchronous movements and
invisible movements (these are elements in the model that are not reflected in
the event logs, e.g., the splitting transition t1). This is not the case, if an event log
does not conform to the execution order dictated by the model.

tr1 : ⟨ A, B, D, C, B ⟩
tr2 : ⟨ B, D, D ⟩

Figure 8: Example event log. This event log refers to the model in Figure 7. The event
log contains two traces. The trace tr1 was created in a case where the cycle
was traversed twice. The trace tr2 does not conform to the model. (We omitted
timestamps, as they are irrelevant to the discussion.)
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Figure 9: Product of a Petri net model and a trace. The product can be derived automat-
ically by converting a trace (in this case tr1) to a sequential Petri net model.
Then appropriate synchronous transitions for each event in that trace are cre-
ated, that use the union of the input and output places in the model and the
trace of the transitions that are synchronized. The arcs of the synchronous
transitions are dashed merely for visualization purposes to avoid cluttering
the figure.

The idea of cost-based alignments is to set costs for asynchronous moves in
both model and log of the product model to penalize alignments containing asyn-
chronous moves. Then, the identification of optimal alignments can be achieved
by searching for the shortest paths in the state transition system of the product
model [15]. We need to define the final marking of the process model, which in
case of workflow nets [1] is one token at the final place. The final marking of
the product is denoting the state when both model and trace reached their end.
Next, we shall take a look at an example.

Example Alignments

Here, we discuss possible alignments for the example model and event log in-
troduced in Figure 7, and Figure 8 respectively. We denote invisible transitions
in the alignment with a τ symbol. Note that trace tr2 does not fit well into
the model, and we want to find an optimal alignment between model and log.
For this purpose, we reuse the methods developed by Adriansyah et al. in [15],
which results in a sequence of movements that replay the trace in the model.
These movements are either synchronous moves, model moves, or log moves. Fig-
ure 10(a) displays a perfect alignment for tr1 that consists of synchronous or
invisible model moves only. The ≫ symbol represents no progress in the replay
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log A ≫ B D ≫ ≫ ≫ C B ≫ ≫

model
A τ B D τ τ τ C B τ τ

tA t1 tB tD t2 t4 t1 tC tB t2 t3
(a) perfect alignment for trace tr1.

log ≫ ≫ B D D ≫ ≫

model
A τ B D ≫ τ τ

tA t1 tB tD t2 t3
(b) a possible alignment for trace tr2.

log ≫ ≫ B D ≫ ≫ ≫ D ≫ ≫ ≫

model
A τ B D τ τ τ D B τ τ

tA t1 tB tD t2 t4 t1 tC tB t2 t3
(c) another possible alignment for trace tr2.

Figure 10: Three possible alignments. These alignments could be selected (a) for trace
tr1, or (b) and (c) for trace tr2 in Figure 8.

on either side, e.g., the first step in the alignment in Figure 10(b) is a model move.
Observe that by replaying the alignment in the product net in Figure 9, we reach
both the end of the process model and the trace tr1.

For trace tr2 there exist multiple alignments, of which two are depicted in
Figures 10(b) and 10(c). In fact, for the Petri net model in Figure 7 there exist
an infinite number of alignments, as the model contains a cycle that can be tra-
versed an arbitrary number of times. However, each additional iteration results
in two additional model moves, and three invisible model moves per iteration.
The cost based alignment approach in [15] makes sure that alignments contain-
ing unnecessary moves get penalized by higher cost and get excluded from the
optimal alignments. An alignment provides a deterministic firing sequence in
the model replaying the traces in an optimal way. But in general, there can be
multiple optimal alignments for a particular trace.

It is possible to set costs to model and log moves individually, to set prefer-
ences to certain log moves or model moves. For example, one could set the costs
for log moves higher than for model moves. This would lead to higher cost of the
alignment in Figure 10(b), than of the alignment in Figure 10(c), thereby exclud-
ing the former from the resulting set of optimal alignments. Depending on the
domain, one can decide if it is more likely that an activity is erroneously missing
or added to a log.

Enhancement of Process Models

The last category in process mining covers problems that take an existing pro-
cess model and an event log as input and enrich the models with information
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contained in the event logs. Enhancement techniques can visualize bottlenecks,
service levels, throughput times, and frequencies [4].

A particular area of research in the enhancement category is model repair[66].
It might occur that a process model does not perfectly fit to the event log, be-
cause for instance some exceptional situation was not considered in the course
of creating the model, but happens in reality and is recorded. Then, it is possible
to automatically adapt business process models to better reflect observed event
logs with the techniques proposed in [66, 46]

We briefly summarize this section about process mining. We introduced event
logs, cf. Definition 5, explained the notion of alignments, cf. Section 2.3, which
can be used for conformance checking, and mentioned the three main types of
process mining, i.e., discovery, conformance, and enhancement. In this thesis, we
will not address discovery, but instead assume that models exist already—either
by manual creation or automatic discovery.

2.4 monitoring architectures

In the previous section, we introduced event logs, which we require in the re-
mainder of the thesis. In many business process execution environments (e.g., in
healthcare [117]), however, there is no central workflow engine that orchestrates
the process execution and generates event logs.

For such cases, researchers have developed monitoring architectures that pro-
vide basic monitoring capabilities using heterogeneous information sources [96,
198, 53, 88]. We shall briefly review these frameworks and architectures in the
following.

The assumption of the investigated monitoring architectures is that traces of
process execution are scattered in the IT landscape of an organization. Various
systems and tools are used during process execution for specialized purposes,
e.g., customer relationship management tools, enterprise resource planning sys-
tems. Therefore, one requirement for monitoring architectures is to provide event
collection and correlation mechanisms for events from different sources. If an or-
ganization has elicited process models that capture its business processes, these
models can serve as overview and monitoring indicator for single instances or
as aggregated view on a set of instances. For example, the currently running
activity (or activities, if the process contains parallelism) can be visualized in the
model for each process instance. Further, the already terminated activities that
led to the current activity can be highlighted to visualize the execution path of a
certain process instance.

Figure 11 shows an example monitoring framework that performs event collec-
tion, event aggregation, and event correlation with process instances. The figure
shows the components that are required to connect the heterogeneous raw event
sources (e.g., spreadsheets, information systems). In this framework, specific
event monitoring points (EMPs) are defined, with which events can be corre-
lated. These EMPs attach to process models that are representable as a graph.
We adopt our definition in [88].
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Figure 11: Example monitoring framework. The figure depicts an FMC block dia-
gram [111]. At the bottom, different sources for raw events are shown which
are collected and aggregated by the event processing component. Then, the
correlation component assigns the aggregated events to so called event moni-
toring points in the business processes. We assume that such an architecture is
used and that correlated events can be transformed into event logs.

Definition 6 (Event Monitoring Point) Let GN be a set of nodes in a procedural
process model. Let further LCT be the set of possible transitions in the lifecycle of a
process model element (e.g., start, or end of an activity). Then, an event monitoring
point (EMP) is a tuple m = (gn, lct), that is, a state transition lct ∈ LCT within the
lifecycle of a node gn ∈ GN.

Event monitoring points mark possible candidates in process models, with
which events of the surrounding IT infrastructure can be correlated. For exam-
ple, a new patient entry in a hospital information system might indicate the
termination of the activity enter patient into system of a certain clinical process. In
this thesis, we will return to the notion of event monitoring points (EMPs), when
investigating the question, which of these EMPs should be used for monitoring
in Chapter 6.

Beside the work in [88], which presented a formal and rather abstract defini-
tion of the problem of monitoring in non-automated process execution environ-
ments, there are several related approaches, which we shall discuss briefly in the
following.

An ontology for business process analysis was presented by Pedrinaci et al.
in [156]. They distinguish between process monitoring events and activity moni-
toring events, and present a detailed activity lifecycle, cf. [206], which they name
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“events ontology state model”. We do not want to predefine a specific ontology,
but we abstract from concrete lifecycles of activities and events in Definition 6.

A research branch deals with event driven business process management,
cf. [23]. The sixth workshop [179] on this topic was held in the year 2012. For ex-
ample, using complex event processing to listen to and tap into different streams
of events, Janiesch et al. [96] combine complex event processing and business
process management methods to enable monitoring of distributed business pro-
cesses. In their work, the focus is on the integration of several organizations
involved in one process. They use an event processing network of specialized
agents that perform, for instance, filtering, transformation, or pattern detection.

Another approach for correlating events to processes is based on semantic on-
tologies introduced by Thomas et al. [198]. Their approach relies on agents that
use ontologies to perform the monitoring of process instances. This enables a
flexible configuration of monitoring. Similarly, semantic technologies for moni-
toring are proposed by Costello and Molloy [53]. In latter work, semantic rules
can be specified to capture exceptions, and metrics for the performance of pro-
cesses are calculated by linking events to processes. A method that works di-
rectly on the data to identify potential candidate correlation rules is described
by Rozsnyai et al. in [185]. Their approach computes statistics such as unique-
ness of values for data attributes to identify candidates for correlation. Based
on the statistics, their algorithm finds correlation pairs and calculates confidence
values based on the statistics. In this thesis, we assume that correlation of events
to process instances is possible and the β-function assigning each event in the
event log to a case is given.

Although there exist several approaches to allow monitoring in heterogeneous
environments, the research on bridging the gaps between the low level events
and the business process models ongoing. Herzberg et al. [89] recently proposed
a framework for monitoring events in a distributed setting. The framework is
flexible and allows the definition of bindings between events and process activi-
ties on multiple layers of abstraction.

2.5 probabilistic models

Recall the motivating setting in Chapter 1, that is, for some activities in business
processes we do not know the exact occurrence of their events. In this setting,
we want to calculate probabilistic estimations for the affected events. Therefore,
we recall basics of probability theory in this section. First, let us discuss random
variables and probability distributions, as these are used to capture time in our
model.

Random Variables and Probability Distributions

This thesis is not primarily about the mathematical details of probability, and the
interested reader is referred to the classical work by Feller [68], or the textbook
by Billingsley [36]. We mainly require probability distributions in the continuous
domain.
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In general, we look at sample spaces S, which capture the possible outcomes
of an experiment. The family of subsets of S is denoted as F, such that for each
event E ∈ F a probability value of occurrence can be assigned. That is, P(E) is
interpreted as the probability that the event E occurs. We adopt the definition of
random variables from Trivedi [199, Chapter 3]:

Definition 7 (Random Variable) A random variable X on a probability space (S,F, P)
is a function X : S → IR that assigns a real number X(s) to each sample point s ∈ S,
such that, for every real number x, the set of sample points {s | X(s) ⩽ x} is an event,
that is, a member of F.

For this work, we use random variables to model duration distributions, that
is, we are interested in the probability that an activity is completed at a certain
point in time. Therefore, we consider probability distribution functions of ran-
dom variables.

Definition 8 (Probability Distribution Function) The (cumulative) distribution
function FX of a random variable X is defined as

FX(x) = P(X ⩽ x), −∞ < x < ∞
In the above definition, we use the subscript X to indicate the random variable
described by the distribution function. We omit the subscript notation and write
F(x), instead of FX(x), when it is clear, to which random variable we refer with
F(x). A probability distribution function yields probability values, i.e., the val-
ues are between 0 and 1. Further, because the cumulative nature of a proba-
bility distribution, the function in monotonically increasing and has the limits

lim
x→−∞ F(x) = 0 and lim

x→∞ F(x) = 1.

In this thesis, we consider continuous random variables, because time is contin-
uous, as well. That is, the distribution functions F(x) that we use in this thesis
are continuous in the entire domain of x ∈ (−∞,∞). That is, the derivative of
the distribution function dF(x)/dx exists everywhere (except at perhaps a finite
number of points). For continuous random variables, we are also interested in
its the density function.

Definition 9 (Probability Density Function) The probability density function of a
continuous random variable X is defined as fX(x) = dF(x)/dx

We use the terms probability density function and density function interchange-
ably. Note that density functions are not reflecting probabilities, i.e., the density
function can have values higher than 1. Of particular interest is the normal dis-
tribution that has the following density function.

f (x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2

Thus, the normal distribution is a parametric model for a probability density,
and has two parameters, a mean µ and a standard deviation σ. The mean marks
the center point around which the values are distributed in a bell-shaped curve,
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Figure 12: Relation of distribution function and density function. The probability distri-
bution function (a) corresponds to the integral of (resp. the area under) the
density function (b).

while the standard deviation σ captures the spread of the values around the
mean. For convenience, we denote the normal distribution with N(µ,σ2), that is
the mean and the variance σ2.

In Figure 12, the normal distribution N(µ = 5,σ2 = 4) is depicted. The distri-
bution function is captured in Figure 12a. We can see that the values are in the
range of 0 ⩽ F(x) ⩽ 1, which is a requirement for probabilities. For example, the
value of the distribution function F(x) at x = 4 is around 0.308, which means
that the probability that the depicted random variable takes on values less or
equal to 4 with a probability of 30.8 percent. We get the same result, if we look at
the integral of the density function

4
−∞ f (x)dx, which corresponds to the shaded

part on the left side in Figure 12b.
We can also derive the probability of an outcome of X between two values,

that is, the probability that an outcome lies between a and b is P(a < X < b) =

FX(b) − FX(a) for all a ⩽ b. An example for a = 6.5 and b = 8 is depicted in
Figure 12a as the difference between two values, and in Figure 12b as the area
under the density curve between the values 6.5 and 8.

Often, when we reason about a random variable, we are interested in the ex-
pected value of the random variable. In our setting, we want to know the expected
duration of activities, which can be used as basis for predicting of remaining du-
rations.

Definition 10 (Expected Value) Let X be a continuous random variable with density
function f . Then, the expected value (or mean) E(X) of X is given by

E(X) =

∞
−∞

xf (x)dx.

The expected value E(X) is also the first moment of a random variable X. More
generally, moments characterize a function, and one is often also interested in
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additional moments of a density function. We define moments about the mean,
or central moments as follows.

Definition 11 (Central Moments) Let X be a continuous random variable with mean
µx = E(X). Then we define the nth central moment Mn as

E ((X− µx)
n) =

∞
−∞

(x− µx)
nf (x)dx.

The second central moment is called the variance of a probability distribution.
This quantity expresses how wide the outcomes of a random variable spread
around the mean. That is, there can be two different random variables with
the same mean (or expected value), but they can have significantly different
variances.

Further moments can be of interest, e.g., the third moment, which when stan-
dardized is called the skewness. Standardization of the nth moment is achieved
by dividing the moment by σn. In this case, the skewness is defined as follows.

Definition 12 (Skewness) Let X be a continuous random variable. Its skewness is
defined as its standardized third central moment:

E


X− µx

σx

3


=
E

(X− µx)

3


E

(X− µx)

2
 3

2

We introduced skewness, because it is an established way to describe how
the values of a random variable are distributed around the mean. For example,
a random variable with positive skew (i.e., a right-skewed variable) describes
a distribution of values that is more compact to the left of the expected value
and more widespread to the right. We encounter this phenomenon in many
real processes, where most of the cases are finished in a certain time span, but
some outliers that take longer exist and need to be considered. The log-normal
distribution, for example, has a positive skewness, and can be used to model
such phenomena [196].

We want to provide the following analogy that might help to get a better
intuition of random variables and their properties. The analogy is targeted to
readers who have tried to balance a seesaw on a playground. Imagine a very
long board, on which we strew sand according to a certain distribution. When
more sand accumulates at a certain position, a heap is formed. The expected value
(or mean) of the distribution corresponds to the center of mass of the sand on
the board, where we can balance the board (assuming that the board itself is
weightless). The variance reflects how far the sand scatters from the center of
mass on average. Finally, if the distribution is right-skewed, more sand lies to the
left of the center of mass than to the right. But the sand on the left is closer to
the center of mass and has a shorter level, while the sand on the right is farther
away and has a longer level, such that balance is maintained.

Next, we continue with dependencies between random variables.
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Conditional Probability and Bayes’ Rule

Let X, Y be random events with probability of X not zero (P(X) ̸= 0). Then, the
formula to calculate the conditional probability of an event Y, given the occur-
rence of event X is:

P(Y | X) =
P(X∩ Y)

P(X)
(2)

Note that if the events are independent, it holds that P(Y | X) = P(Y), that is,
P(X ∩ Y) = P(X)P(Y). Equation 2 should be read as “the conditional probability
of event Y, given that event X has taken place.” The equation can be transformed
into the chain rule of conditional probabilities:

P(X∩ Y) = P(X)P(Y | X) (3)

More generally, if X1, . . . ,Xn are events, then we can write:

P(X1 ∩ . . .∩Xn) = P(X1)P(X2 | X1) · · · P(Xn | X1 ∩ . . .∩Xn−1) (4)

The chain rule is useful, as it allows us to express the probability of a combina-
tion of events as the probability of the first, the probability of the second given
the first, and so on.

After manipulating Equation 2, we arrive at Bayes’ Rule that allows us to refor-
mulate a conditional probability P(X | Y) using its inverse P(Y | X):

P(X | Y) =
P(Y | X)P(X)

P(Y)
(5)

An example of reasoning with conditional probabilities shall make these for-
mulae clearer. Therefore, we adopt the example from [169]. Suppose, we have
two dice. One is a fair die with 1

6 ≈ 0.166 probability to roll a 6 and a loaded die
that has a 0.6 chance of rolling a 6. Further, suppose we do not know which die
is which one and pick a die randomly. Thus, we know that

P(fair) = 0.50 and that P(loaded) = 0.50.

We are interested in finding out which die we picked by rolling it. We also know
the conditional probabilities:

P(6 | fair) = 0.166 and P(6 | loaded) = 0.6

We can compute the probabilities of the joint events with Equation 3.

P(6∩ fair) = P(6 | fair)P(fair)

= 0.166 · 0.5 = 0.083

P(6∩ loaded) = P(6 | loaded)P(loaded)

= 0.6 · 0.5 = 0.3

So far, we only stated the probabilities for this example. We are more interested
in finding out which die is the loaded one. Therefore, we roll a randomly picked
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die. What can we infer from the observed outcome? Suppose, we roll a 6. We can
achieve this result with either of the two dice. Thus, the event has the probability

P(6) = P(6∩ fair)∪ P(6∩ loaded) = 0.083+ 0.3 = 0.383

We can insert these values into Bayes’ Rule in Equation 5 and derive the prob-
ability that the dice we picked randomly is loaded, given the evidence of an
observed 6 at the first roll.

P(loaded | 6) =
P(6∩ loaded)

P(6)
=

0.3
0.383

= 0.78

Note how the probability that we picked the loaded die changed from 0.5 (with-
out knowledge) to 0.78 (with one observation of a randomly rolled 6). In Bayesian
statistics, the former probability is called prior, and the latter probability is called
posterior. The computation of posterior probabilities given prior probabilities and
observations is called inference.

Suppose, we throw the die a second time, and we get another 6. Then, the
probability that we picked the loaded die is updated to:

P(loaded | 6, 6) =
P(6, 6∩ loaded)

P(6, 6)
=

0.62 · 0.5
0.62 · 0.5+ 0.1662 · 0.5

= 0.928

Notice how the probability of holding the loaded die increases to approximately
93 percent, when observing two rolls with the number 6, consecutively. In con-
trast, the probability that the picked die is the fair one (the complementary event)
is reduced to 1− 0.928, that is around 7 percent, only. We will never have abso-
lute certainty, but we can increase our confidence in our belief, by increasing the
number of dice throws.

In fact, this set of equations (i.e., Equations 2–5) allows us to compute proba-
bilities in more complex settings as well. Once we have dependencies between
multiple random variables, however, we can resort to graphical representations
to visualize these for better understanding.

Graphical Probabilistic Models

There exist several forms of graphical probabilistic models [102], e.g., Bayesian
networks [154], neural networks, factor graphs, Markov random fields, Ising
models, and conditional random fields. These models serve multiple purposes
and have different properties. They share an underlying probabilistic model con-
sisting of a set of random variables with interdependencies, but usually differ in
structural properties as well as expressiveness.

In this thesis, we will use Bayesian networks, which have application areas in,
for example, stochastic modeling, machine learning, classification, text recogni-
tion [113]. One advantage of using Bayesian networks, as opposed to the other
models, is that we can naturally encode prior knowledge in the model as prior
probabilities, and update these based on new observations.

Bayesian networks model a set of random variables that are in relation to each
other, i.e., random variables can be dependent or independent from each other.
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Figure 13: Example Bayesian network. A Bayesian network with discrete variables cor-
responding to the middle part of the model in Figure 3 is depicted with con-
ditional probability distributions. The variables of the activities indicate the
occurrence of their termination respectively (e.g., variable E can have values
early, normal, and late). The conditional probability distributions are given con-
ditioned on the values of the parents, such that each row sums to 1.

The formalism was presented by Pearl in [153]. It captures random variables in a
directed acyclic graph, where the nodes capture random variables, and the edges
represent conditional dependencies between random variables they connect.

Definition 13 (Bayesian Network) Let {X1, . . . ,Xk} be a set of random variables. A
Bayesian network BN is a directed acyclic graph (N, F), where

• N = {n1, . . . ,nk} is the set of nodes assigned each to a random variable X1, . . . ,Xk

• F ⊂ N×N is the set of directed edges.
Let (ni,nj) ∈ F be an edge from parent node ni to child node nj. The edge reflects a
conditional dependency between the corresponding random variables Xi and Xj.

Each random variable is independent from its predecessors given the values of its par-
ents. Let πi denote the set of parents of Xi. A Bayesian network is fully defined by the
probability distributions of the nodes ni as P(Xi | πi) and the conditional dependency re-
lations encoded in the graph. Then, the joint probability distribution of the whole network
factorizes according to the chain rule as P(X1, . . . ,XN) =

N
i=1 P(Xi | πi)

Figure 13 shows an example Bayesian network for the surgery model that we
introduced in Figure 3 on page 12. The nodes qualitatively represent the activity
terminations—that is, we discretize time in this example and use values such as
early, normal, or late. The root nodes are the register patient activity denoted by the
variable R, and the decision (captured in variable D) to perform the surgery (value
yes), or send the patient to another hospital (value no). Note that by this choice
of modeling, the decision does not depend on the time of the examination, or
the other activities’ time. The specified conditional probability distributions are
given as tables. Here, for all combinations of the values of the parent variables,
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we need to specify the probabilities of the elements of the variable given the
combination. That is, we need to specify the rows in these tables as probability
distributions that sum to 1. Consider the second row of the conditional prob-
ability table of variable S in Figure 13. Here, we see that the schedule surgery
activity, given the parent values of D = yes and E = normal, is assigned the normal
state with probability 0.4, and the late state with probability 0.6. The probability
of the disabled state, given that the decision is yes is 0. These conditional proba-
bilities fully specify the probability distribution of the joint network and allow
us to reason about marginal probabilities (e.g., we can compute the probability
P(S = late) = 0.483 of the schedule surgery activity to be late).

Further, if we obtain knowledge about a certain case, for example, if we see
that the registration was done late, and the decision for the surgery is positive,
we can condition the model on this observation and compute the posterior prob-
ability of the surgery to be delayed as P(S = late | R = late,D = yes) = 0.78. It
is possible to also reason backwards in the Bayesian network. For example, if
we only observe that the schedule surgery activity has been completed normally
(i.e., S = normal), we can compute the probability of the registration being late
as P(R = late | S = normal) = 0.355—that is, the probability that the surgery
started late in this case decreased from 50 percent to 35.5 percent.

There has been a lot of research on Bayesian networks, cf. [113]. Topics in-
clude analysis [73], or representation, where different flavors of Bayesian net-
works were proposed, e.g., dynamic Bayesian networks allow the structure of
the model to change over time [142]. Qualitative probabilistic networks [205, 63]
abstract from numeric probability values and only consider effects of variables
on each other. Pfeffer [160] introduces ProPL, a probabilistic programming lan-
guage that is translated to a dynamic Bayesian network. The language describes
processes that evolve over time and consist of sub-processes that can have ran-
dom durations.

Besides representation, a challenging research problem is inference in Bayesian
networks, which is proved to be NP-hard [52], except for the special case that the
underlying network structure is singly connected (also called polytree), for which
reasoning is linear in the size of nodes. The complexity of inference spawned
a lot of heuristics to approach the problem. One heuristic is loopy belief prop-
agation, which iteratively sends messages of current beliefs in the network un-
til convergence [55]. An approach that passes Gaussian beliefs to neighboring
nodes can be found in the work by Minka [135]. We can but scratch the surface
of the topic of inference in this thesis, and refer to the textbook by Koller and
Friedman [113], as well as to the overview on inference techniques by Darwiche
in [54].

There exists a special case of Bayesian networks, where every random variable
has a normal distribution and its mean can be specified by a linear combination
of the states of the parent nodes.

Definition 14 (Linear-Gaussian model) A linear Gaussian model is a Bayesian net-
work, where all random variables are normally distributed and can be expressed by a
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linear combination of their parents. That is, for each random variable Xi in the net, we
can express the conditional probability density function given the parents πi as [38]:

P(Xi | πi) = N


j∈πi

wijxj + bi, vi


where wij and bi are parameters that capture the mean based on the value xj of the
respective parent, and vi is the variance of the conditional distribution for Xi

Linear Gaussian models are of special interest, because we can perform infer-
ence in this type of Bayesian networks in O


n3


[113], where n is the number of
nodes.

Having introduced this set of fundamental models and tools, we can focus on
the main contributions of this thesis in the following part.
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This chapter deals with obtaining the performance model of business pro-
cesses that is used in the remainder of the thesis. In terms of the business

process lifecycle, this chapter belongs to the evaluation phase. In this phase, we
want to analyze the durations of individual activities and of decision probabili-
ties based on the data that we get from an enacted business process. Recall that
we use generally distributed transition stochastic Petri net (GDT_SPN) models,
cf. Definition 4 on page 16, as our formalism, which extend GSPNs by allowing
arbitrary delay distributions for transitions.

chapter outline

First, in Section 3.1, we present related approaches that also obtain performance
models. Then, in Section 3.2, we discuss preliminary concepts and a solution
idea. In Section 3.3, we outline the challenges that are inherent to the problem.
Our approach to deal with the challenges is presented in Section 3.4. Section 3.5
deals with the evaluation of how accurately we can discover model performance
parameters in theory. Finally, we discuss the evaluation findings in Section 3.6.
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introduction

Obtaining accurate performance models of business processes is important for
any organization, as these models allow for prediction, simulation, analysis, and
improvement of business processes. Our goal is to find the stochastic model
that best explains the behavior recorded in an event log. Therefore, we need to
carefully examine the event log to identify how long the activities took in reality
and how frequent different possible paths in the model are.

Strictly speaking in the terminology of process mining, cf. Section 2.3, we
present a method of enhancement, but we want to discover the performance char-
acteristics. More explicitly, we take a model and enrich it with performance in-
formation stored in an event log. Recall that event logs in this work are a com-
mon interface to different information sources (e.g., hospital information system,
workflow management systems, or spreadsheet data) and thereby abstract from
specific data formats.

3.1 related work

Estimation of model parameters based on real observations helps to gain insights
into the performance of a system. An extensive survey of performance evalua-
tion methods is provided by Heidelberger and Lavenberg in [86]. Rolia and Vet-
land present statistical methods to obtain parameters of a queueing model for
distributed systems in [178].

In the context of workflow systems, van der Aalst et al. describe how anno-
tated transition systems can be enriched with performance information and suc-
cessively be used for prediction of remaining durations [10]. One limitation of
their approach, however, is the inability to handle parallelism correctly. Our ap-
proach is based on the more expressive Petri net formalism, which does not have
this limitation. Related work by Nakatumba and van der Aalst, that also looks
at the performance encountered in event logs, investigates the effect of resource
work load on service times in workflow executions [147].

There already exists research on obtaining Petri net models with stochastic per-
formance characteristics from data. Hu et al. propose a method to mine exponen-
tially distributed SPN models from workflow logs in [91] considering the firing
rates of transitions. Another approach was proposed by Anastasiou et al. [24]
and uses location data to elicit generalized stochastic Petri net (GSPN) [130]
models for modeling flows of customers. They fit hyper-erlang distributions to
transition durations representing waiting and service times and replace the cor-
responding transitions with a GSPN subnet exhibiting the same characteristics
of the hyper-erlang distribution. Their approach considers every transition in
isolation though, which poses no problems in serial processes. Parallelism in the
processes, especially multiple parallel transitions in conflict, are not covered in
that approach. Similarly, Janeček et al. propose to use stochastic Petri nets with
the Coxian distribution (a variant of phase-type distributions) in [95]. While the
authors argue that these models lend themselves for analytic methods of perfor-
mance analysis, they do not discuss execution policies of these models.
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There are also attempts at eliciting non-Markovian stochastic Petri nets from
data. Leclercq et al. investigate how to extract models of normally distributed
data in [115]. Their work is based on an expectation maximization algorithm
that they run until convergence. In comparison to our approach, they are not
able to deal with missing data and do not consider different execution policies.

Reconstructing model parameters for stochastic systems also has been investi-
gated by Buchholz et al. in [45]. They address the problem to find fixed model
parameters of a partially observable underlying stochastic process. In contrast to
our work, the underlying process’s transition duration distributions need to be
specified beforehand, while our aim is to infer also transition duration distribu-
tions of a GDT_SPN model. In a similar setting, i.e., with incomplete information,
Wombacher and Iacob estimate duration distributions of activities and missing
starting times of processes in [212]. The authors make the assumption that work
is interrupted by other undocumented work. The difference to our approach is
that they try to filter duration distributions of activities to remove external ef-
fects. We do not filter the duration of activities, but instead assume that external
conditions are in a steady state (i.e., the impact on the work performance is not
changing). We assume that we improve the overall model quality by implicitly
capturing external conditions in the model.

In [183], Rozinat et al. investigate how to gather information for simulation
models. They try to identify data dependencies for decisions and mean dura-
tions and standard deviations. Thereby, they do manual replay, which is not
necessarily finding an optimal alignment between model and log. The approach
that we propose is capable to deal with noise in a more robust way, by building
on the notion of alignments [15, 5], which identifies an optimal path through
the model for a noisy trace. Similarly to Rozinat, Măruşter and van Beest mine
heuristic nets from event logs and convert them in a later step to Petri net mod-
els in [131]. They do not provide an algorithm, but perform these steps by hand.
Execution policies that are required for stochastic Petri nets with arbitrary delay
distributions are excluded from their discussion, as their focus is on redesigning
the process.

3.2 conceptional overview

To enrich a Petri net model with stochastic information gathered from historical
observations, we need a Petri net model and an event log. Figure 14 provides an
overview of the elicitation approach, as proposed in [171]. The inputs to the ap-
proach are a Petri net model reflecting the structural behavior of the process, and
an event log containing the traces that represents actual executed process cases.
Further, a configuration is necessary, as GDT_SPN models are flexible in their
execution policies [128] and transition distribution types (e.g., normal, uniform,
exponential, non-parametric) that will be fit to the extracted transition durations.

We propose a pre-processing step to ensure a good fitness between model
and event log, see Section 2.3. Therefore, we compute the fitness as described
in Equation 1 on page 20, and if the fitness value is lower than a user defined
threshold (e.g., 0.7), we propose to first apply techniques to repair the model to
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Figure 14: Elicitation process overview. This model describes the conceptual method to
enrich a Petri net model with stochastic execution information gathered from
event logs. We also presented this figure in [171].

capture the behavior in the event log. For this repair step, we rely on the work by
Fahland and van der Aalst [66], which adds subprocesses to the model to allow
for deviations observed in the log. Alternatively, we can also use the method
proposed by Buijs et al. in [46] that offers additional flexibility and allows the
user to set desired parameters for the resulting model in terms of fitness, but
also supports other quality metrics, i.e., precision, simplicity, generalization, and
structural similarity to the original model. Latter work uses a genetic algorithm
approach to find candidate models. Beside these automatic approaches, the re-
pair of the model can also be done by experts manually.

Once we made sure that the event log and the model can be aligned resulting
in a reasonable fitness score, we can turn to the actual enrichment of the model.
Therefore, we use the notion of alignments [15], as we introduced in Section 2.3,
and select an optimal alignment for each trace in the event log. It is not guaran-
teed that there is only one optimal alignment. Especially, if the model contains
parallelism, the order of missing events is not defined by the model, and differ-
ent orderings of parallel events do not affect the costs. In the current approach,
we let the alignment approach decide non-deterministically between multiple
alignments that have the same costs. Note that if the trace fits the model per-
fectly, the alignment is usually deterministic. An exception to latter rule is for
example that two transitions with equal labels are executed in parallel. Then, it
is not clear, to which of the parallel activities the two corresponding events in
the trace are aligned.

tr1 : ⟨A(0.0), B(1.6), D(1.9), C(4.2), B(4.46) ⟩
tr2 : ⟨ B(0.0), D(5.81), D(7.0) ⟩

Figure 15: Example event log with time. We extend the event log from Figure 8 with
time annotations for the following discussion of the enrichment approach.

The selected alignment for a trace defines a path in the model. Let us revisit
the event log introduced in Section 2.3. But this time, we also consider timing
information. Let e ∈ E be an event, and α(e) = A We use the shorthand notation
of A(1.3) to denote an event e that happened at time 1.3, i.e., γ(A) = 1.3 and
belongs to activity A. Figure 15 is based on the example introduced in Figure 8,
annotated with timestamps. By convention, each trace starts at time 0, as for our
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purposes we are only interested in relative durations after the start of the case.
Reconsider trace tr1 with the following alignment to the model in Figure 7

log A(0.0) ≫ B(1.6) D(1.9) ≫ ≫ ≫ C(4.2) B(4.46) ≫ ≫

model
A τ B D τ τ τ C B τ τ

tA t1 tB tD t2 t4 t1 tC tB t2 t3

This alignment yields a path in the Petri net model of Figure 7, as depicted
in Figure 16. Here, we projected the alignment for trace tr1 into the model. The
black part marks the path that the trace takes in the model according to the
alignment. Once we determined the path through the model, we can begin with
the collection of the stochastic execution information.

Alignment Based Replay

In essence, the enrichment algorithm proceeds as follows. We replay the trace
according to the alignment in the model. Replay is done using a global clock,
which starts at zero with the first event in the trace. The global clock is updated
with each transition firing that reflects the occurrence of events in the trace (i.e.,
with each synchronous move). Each transition is equipped with its own timer
that counts the enabling time of that transition. Once a transition becomes en-
abled during replay, we remember the current point in time, which we get from
the global clock. When the transition fires, we compute the firing delay as the
difference between the global clock’s timestamp and the remembered local en-
abling timestamp. If the transition fires synchronously with the log, the global
clock time is updated first before latter computation. Special care has to be taken
with immediate transitions, as well as different execution policies [128], which
we will discuss later.

Beside temporal information, we are interested in the probabilities of decisions.
For example, in the model in Figure 7 on page 20, we want to discover the
relative weights of transition t3 and t4. These transition weights represent the
probability to leave the cycle W(t3), and the probability to remain in it, W(t4),
respectively. Therefore, we need to count the number of times a transition fired
in each marking1. To determine the weights of t3 and t4, we would consider
marking {p7}, i.e., the marking, in which only place p7 contains a token. The
ratio of the firing counts per marking captures the observed ratio of the firings
which happened in a particular marking.

Let us assume that in 74 cases out of 129, the next transition to fire in marking
{p7}, was transition t3, which leaves the cycle. In this case, the best estimate
for the weight of t3 would be 74

129 , and respectively 55
129 for t4. The stochastic

confidence in these fractions rises with the number of observations, i.e., we are
more confident that the real probability of picking transition t3 in marking {p7}

is 74
129 , if we observed that it was chosen in 740 out of 1 290 cases, than in the

example before.

1 A marking of a Petri net is a function that assigns each place a number of tokens. We use a
shorthand set notation for places that contain one token, see Section 2.2
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Figure 16: Alignment in the model. The alignment of trace tr1 is shown in the model.
We depicted the second iteration separately, because the alignment traverses
the cycle twice. Black parts mark the path that was taken in the alignment; the
gray parts represent omitted choices. We annotate the timing of the events of
tr1 at the top of the transitions, e.g., the event of transition tD occurred at
time 1.9.

3.3 challenges

Certain difficulties arise when trying to extract stochastic execution information
from event logs. These are not obvious, however, and we therefore explain them
in greater detail, before we turn to the algorithm.

Multiple Execution Policies

As we mentioned before in Sect. 2.2, there exist multiple execution policies for
GDT_SPN models [128]. This is due to the fact that we allow to use other distri-
butions than the negative exponential distribution for timed transitions.

In order to determine the execution policy, decisions have to be taken with
regard to the selection of the next transition, and the memory properties of en-
abled transitions that did not fire. The discussion by Marsan in [128] offers more
details on the different possible execution policies for stochastic Petri nets. In
this thesis, we consider the following selection policies:

global preselection In this selection policy, the next timed transition is ran-
domly chosen from all currently enabled timed transitions based on their
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respective weights. Subsequently, the duration of the chosen transition is
determined by drawing a random sample from its duration distribution.

race-policy In this selection policy, all enabled timed transitions sample a
duration value from their duration distribution and the one with the lowest
duration fires next.

Note that additionally to these global policies that apply for the entire model, the
discussion by Marsan also includes various forms of mixed policies that allow
specifying the execution policy per marking. Mixed policies remain out of scope
of this thesis, as it adds more complexity on the model level. When using the
race policy in our model, we can still add decisions that are based on transition
weights, if required—by modelling these decisions explicitly with immediate
transitions.

Also note that even if the race policy is used in GDT_SPN models, preselection
applies to immediate transitions that are enabled at the same time. In the case
that transitions race for the right to fire, multiple transitions make “progress”
concurrently. There has to be made a choice regarding the memory of timed
transitions that lose the race. Different memory policies exist:

age memory In this memory policy, transitions keep and accumulate their
progress until they fire. That is, they sample a duration once they get en-
abled and continuously subtract passed time (as long as they are enabled)
until their time reaches zero and it becomes their turn to fire. Intuitively
this can be understood as starting work once enabled, and pausing it, when
disabled. No progress is lost in this memory policy.

enabling memory In this memory policy, transitions keep and accumulate
their progress until they fire or are disabled by another conflicting tran-
sition firing. This policy is useful to capture situations between exclusive
transitions, where progress in one transition is lost, once the other fires.

resampling In this memory policy, all progress of transitions is lost whenever
any transition fires. Though theoretically interesting, this memory strategy
has little practical relevance for business process modeling, as all transi-
tions in parallel branches of the process also lose their progress and restart
their work, whenever one of the parallel transitions fires.

For each of these execution policies, the algorithm to enrich Petri net models
with stochastic information needs to be adopted. We cover the technical details
later in Sect. 3.4.

Ambiguous Alignments

Sometimes, if the trace does not exactly fit the model, there are multiple ways
of aligning the trace to the model. Suppose a trace encountered in the log is
⟨A(0.0),B(1.6),C(1.8),D(1.9)⟩ and we want to align this trace to our running
example model in Figure 7 (Figure 17 on page 45 shows the same model with
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additional stochastic annotations). Observe that the trace contains both events
for transitions tC, and tD, although they are exclusive according to the model.

We do not know exactly, which event in the log is a mistake. Perhaps even
both events took place in reality. However, we assume that the model captures
the as-is process. Therefore, we need to make a choice how to map the trace to
the model. The cost-based alignment without any additional specification—all
model moves and log moves sharing the same positive cost, synchronous costs
set to 0—yields the following two optimal alignments:

log A(0.0) ≫ B(1.6) C(1.8) D(1.9) ≫ ≫

model
A τ B ≫ D τ τ

tA t1 tB tD t2 t3

log A(0.0) ≫ B(1.6) C(1.8) D(1.9) ≫ ≫

model
A τ B C ≫ τ τ

tA t1 tB tC t2 t3

Both these alignments have the cost of a single log move. In the first align-
ment, a log move of event C, and in the second alignment, a log move of event
D. Note that by default (i.e., all log moves and model moves sharing the same
cost) the alignment algorithm would always prefer one alignment over the other.
It is not determined, which alignment will be the output, if there exist multiple
alignments with equal cost. Suppose that in the process, the event D (the tran-
sition tD in the model) is only happening in one out of five cases, and event C
happens in the remaining four cases. If the alignment algorithm returns always
the second alignment for some internal reason (i.e., it discards event D in favor
of C), we will get the correct alignment only in twenty percent of the cases this
trace is observed.

Because we need to make a choice between alignments with the same cost,
the favorable choice is to pick the alignment which is more likely. Therefore, we
count the occurrences of the events in the entire log, and order the costs of the
model moves and log moves by adding small fractional costs, such that the cost
of a log move of a more frequent event is cheaper than the respective cost of a
less frequent event. Thereby, the cost-based alignment always returns the more
probable alignment.

Obviously, this solution is a heuristic, and we cannot prevent wrong results.
But by favoring more frequent events in alignments, we make the right choice
more often than by letting the alignment algorithm decide arbitrarily. We have
no formal proof for bounds on the probability that the choice of events is correct
for this heuristic. However, intuitively, in case there are only two options to pick
from, we can say that the probability of picking the correct one is at least 50

percent. Latter describes the worst case scenario, i.e., to have to pick between
two equally frequent events. If one event is more frequent than the other, the
probability to make the correct choice also increases.

Concluding, we remark that these conflicts only occur, if the trace does not
exactly fit the model. Therefore, if we make sure that the model captures the ob-
served behavior before annotating it with stochastic information, we can largely
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Figure 17: Example model with stochastic annotations. The duration distributions are
depicted in the legend in the top left of the figure, e.g., transition tB is uni-
formly distributed in the range [3, 14[. The immediate transitions t3 and t4
model a probabilistic choice, i.e., the probability to leave the loop is 0.7, and
the probability to stay in the loop is 0.3.

avoid this particular ambiguity between different choices of alignments. Note
that the solution we propose here does not consider the time of the events. Latter
would provide an even better heuristic, but would require multiple iterations of
the algorithm until convergence. We shall return to this idea in the outlook in
Sect. 3.6.

Censored Values

We can extract the time that a transition takes for firing in a trace, by computing
the difference between the moment of firing and the moment of enabling of that
transition. If we do this repeatedly for a lot of occurrences of the transition firing,
we get an overview of the distribution of that transition, e.g., we can compute
the mean duration, the variance, or plot a histogram.

Depending on the chosen execution policy, however, it might happen that a
transition loses a race, and loses its progress during replay of the trace in the
model. In that case, we are unable to collect the actual duration of that transition,
because the transition in the model restarts the work. In the following, we explain
this subtle but important issue with an example.

Figure 17 shows our running example model with annotated timing informa-
tion. Note that time units are omitted from the model, as they are not relevant
to the discussion. We assume time units to be days unless otherwise specified in
this thesis. Also note that in the current marking the three transitions {tB, tC, tD}

are enabled. Transition tB is parallel to transitions tC and tD, while latter are
in conflict for the token on place p5. Assume that we do not use a preselection
policy, but the decision, if either tC fires or tD fires is determined by race. That is,
whichever takes less time, will be the one to fire. Following this policy, we take
a random sample for the duration of each enabled transition, and compare their
values.
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Figure 18: Density distributions with time-out. The two densities of the probability dis-
tributions of transitions tC and tD are depicted. Because in a race selection
policy, the next transition is the one with the lower duration, transition tC
will never exhibit values higher than 10 (the deterministic time-out modeled
by transition tD).

In our example model in Figure 17, the duration distribution of tC (i.e., D(tC))
is normally distributed with a mean of 9 and a standard deviation of 2. The distri-
bution of tD is deterministic and fires always after 10 time units. This model cap-
tures a time-out, as encountered in many time-constrained business processes.
The time-out construct is supported by major modeling and execution languages,
e.g., BPMN [150], BPEL [101]. Time-outs also have been discussed by Koehler et
al. in [112].

Figure 18 shows the two probability density functions of the transitions tC,
and tD. Note that while the normal density function follows the well-known
bell-shaped curve, the density of the deterministic transition tD is a Dirac delta
function, i.e., all probability mass is concentrated on a single point (10 days). In
the figure, the area right of the deterministic time-out is shaded. Be aware that
whenever the transition tC would take longer than transition tD, i.e., the random
samples fall into the marked region, these values are not observed, i.e., they are
censored.

To reconstruct the underlying stochastic model, we need to take these censored
values into account. While in this example, the values are censored always at
a deterministic boundary, more generally, the problem is to infer the underly-
ing duration distribution, given randomly censored samples of a random vari-
able. This problem has been investigated in the seminal work by Kaplan and
Meier [104], and is also known as “density estimation with randomly censored
data” [13]. Amongst others, Kooperberg provided implementations of such an
estimation algorithm for the statistics software R [114].

Not taking these censored values into account would introduce a bias into the
parameters of the model. Reconsider Figure 18, where all sample values of the
underlying normal distribution, which are higher than 10, are censored. Here,
theoretically, around a third of the samples would fall into the censored area
behind the time-out of transition tD.
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Figure 19: Bias of censored data. If we do not account for the unobservable part above
the time-out threshold, the sample mean µ̄ is shifted to the left of the real
mean value µ and produces a bias of about one time unit in this example.

Figure 19 shows the bias that is created, when only the observable data are
used for learning the stochastic parameters of transition tC in our example. The
histogram shows the results produced by the remaining portion of 1 000 samples
drawn from a normal distribution. In the figure, the real parameters of the dis-
tribution of tC are depicted in gray as the bell-shaped curve, with the real mean
value µ = 9. The sample mean µ̄ (at around 7.97) is depicted as a black vertical
line and the bias between these two quantities is shown in between. The extent
of this bias depends on the competing transitions durations, and it can be diffi-
cult, or sometimes even impossible to restore the original population parameters.
Think of an extreme case, where a timeout is never happening, or always firing,
i.e., we do not have any concrete duration samples of a distribution, but only a
lower bound.

Sampling Bias

When conducting a survey to get accurate estimates about a population, it is
important to use a representative subset of the population. Therefore, the sample
needs to be selected randomly. A comprehensible example is when participation
in a survey is voluntary. Then, people with strong opinions are more likely to
respond and cause a bias by underrepresenting people with indifferent opinions.
Another example is to select only a certain group of cases, or perform the study
in a specific region.

Translated to our setting, sampling bias occurs, when we gather performance
data of a process only in certain cases. In our architecture, we do not distin-
guish cases but collect all. However, if an organization relies on manual process
documentation, it might be that certain cases with specific characteristics (e.g.,
high workload in the system, or long and tiring procedures) are less likely to get
documented, as the process participants are more likely to make errors under
stressful conditions. We shall investigate this matter of missing documentation
in Chapter 5.
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Another kind of sampling bias can occur, when we collect cases of a nonrepre-
sentative time span. Then, we select only samples of the process in the particular
state in that time span. For example, if we elicit a stochastic model and use only
the cases of the Christmas sale period, these estimates might not be representa-
tive for the entire year’s process performance.

This bias can occur in case of changes in the underlying process over time.
In the data mining community this is called concept drift (gradual change), or
concept shift (abrupt change) [19, 208, 200, 220]. This means that the data that
was used for training a model does not necessarily match the actual data for
which the model is applied [85].
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Figure 20: Concept drift types. The figure shows different classes of concept drift,
cf. [220]. From top to bottom, the changes in the contexts are sudden drifts,
gradual drifts, incremental drifts and recurring contexts.

Figure 20 shows different types of changes that might occur in real systems.
The classification is adopted from [220]. Sudden drifts occur for instance when
a migration to a new system is performed. For example, if a hospital decides to
adopt a new hospital information system, the performance of the processes are
expected to change abruptly. Gradual drift might occur, when the adoption of a
new system of process is accompanied by a transition phase, i.e., both concepts
run in parallel, but gradually less and less instances follow the old schema. In-
cremental drifts model smooth transitions between concepts, as might be in the
case of a new process participant getting gradually accustomed to the tasks and
increasing the performance until it reaches a steady state. Recurring contexts are
capturing seasonality, e.g., summer and winter, or day and night.

Typical methods to adapt the model to these changes include (1) sliding win-
dows [56] (only using a fixed size of the most recent observations for learning),
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(2) exponential smoothing [72] (similar to sliding windows, but using all historical
information by weighting recent observations higher than past observations), or
(3) seasonal forecasts (autoregressive integrated moving average (ARIMA) mod-
els [42, 203]).

Sampling bias in general, and concept drift and concept shift in particular, are
out of scope of this thesis, as this is a research field on its own. We assume that
either the process is in a steady state, or methods to detect and adapt to changes
are used in addition to the methods proposed in this work. We shall return to
this limitation in Chapter 9.

Special Cases

We highlight special cases that we need to consider, when eliciting stochastic
information of event logs and process models. First, we need to identify imme-
diate transitions, i.e., transitions in the model that serve as routing nodes only.
Second, we want to be able to identify deterministic timed transitions, e.g., tran-
sitions that capture fixed time-outs.

In technical terms, once we have gathered the observed samples and censored
samples, we can check, whether a transition is deterministic, by comparing the
observed samples. If the samples are sufficiently close, we define the transition
to be deterministic. This can be made more robust against noise, by removing
outliers before applying these rules. In the mined model, the deterministic value
is estimated as the mean (or the more robust median) of the observed values.
Additionally, we check, whether the censored values are consistent with the de-
terministic value. Recall that a censored value in our case is always of the form
that a value is greater than an observed value of a transition that won the race.
Thus, we need to check, if the censored values do not contradict the observed
deterministic value.

Also deterministic, but not taking time are immediate transitions, which fire
immediately after they have been enabled, provided that they are selected among
competing immediate transitions. We assume immediate transitions to be invisi-
ble. But if corresponding events exist in the event log, we can identify immediate
transitions by checking whether all their observed durations are between 0 and
a small threshold. Note that we do not provide a default value for the threshold,
as it depends on the domain how large these thresholds have to be. Response
times of systems should be considered in the threshold, for example.

3.4 approach and algorithm

Now, that we addressed the main challenges, we present the details of the algo-
rithm to enrich Petri nets with stochastic information from event logs.

Assumptions

For the algorithm to produce optimal results, the following assumptions need to
be met. These assumptions summarize the previous discussions.
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event logs Heterogeneous event sources are mapped to a homogeneous event
log. This can be achieved by a monitoring architecture, see Section 2.4. That
is, in this thesis, we are on the same abstraction level as process mining
techniques. The events capture the termination of activities contained in
the log.

existing fitting model A Petri net model exists or can be discovered from
the event log and fitness between model and event log is good. That is, we
are able to map events to transitions in the model. The event log specifies,
to which transition an event belongs.

steady state The process generating the data in the event log is in a steady
state. This assumption is a strong one, but concept drift detection is a re-
search topic that is out of scope for this thesis.

independence We assume that dependencies between activity durations are
not existent or negligible. We also assume independence between routing
decisions through the process model that are made in a case.

coverage There are sufficiently many traces in the event log to accurately es-
timate the decision probabilities, and parameters of distributions, for each
transition.

Algorithm to Discover GDT_SPN Models

Given these assumptions, the algorithm enriches Petri net models with stochastic
execution information as described in Algorithm 1.

First, the costs of asynchronous transitions is determined in lines 2. The method
countTransitions orders events by their number of occurrence in the event log,
and assigns costs to the corresponding transitions, such that the ordering of the
costs is consistent with the number of occurrence (the most encountered event is
assigned the least cost). We do not prefer an alignment with two asynchronous
moves over an alignment with one asynchronous move, however. Therefore, we
make sure that the highest cost of a transition is less than twice the cost of the
transition with the lowest cost.

Second, the structures to collect performance information (i.e., duration of ac-
tivities and occurrence counts) during replay of the traces are prepared in lines
4–5 of Algorithm 1. Using the alignments, which we find with the techniques
in [15], these structures are filled during replay of the model. Thereby, the exe-
cution policy of the GDT_SPN model is considered. During replay of each trace
(line 8), we keep track of enabling times and firing times of transitions, and reset
them depending on the memory policy. Hereby, we obey the execution policy
and collect the enabled times of the transitions until firing. The effect of the
replay function is that we collect duration information of transitions. Further, if
transition conflicts have been resolved by weights, we obtain relative counts of
transition firings for each visited marking. These counts are incremented each
time a transition is chosen in a marking.
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Algorithm 1 Enrichment algorithm

1: procedure enrichPN(pn, log, policy, distType, thresh)
2: trCosts← new Map of String to Float

// Collects transition costs for the alignment in trCosts
3: trCosts← countTransitions(log)

// Counts event occurrences, orders them, and adds fractional costs
4: trTimes← new Array of Lists

// Stores transition durations in trTimes during replay
5: trCounts← new Array of Maps

// Collects transition counts per marking in trCounts
6: for all trace ∈ log do
7: alignment← align(trace, pn, trCosts) // Get alignment, cf.[15]
8: replay(alignment, trace, pn, trTimes, policy, distType)

// Collects information of executed transition counts per marking
// and transition durations respecting the chosen execution policy

9: end for
10: weights← optimizeWeights(trCounts)

// Compute a map of Transition to Float by minimizing the squared
// error in each equation for each marking by gradient descent.

11: spn← new GDT_SPN
12: spn.copyStructureOf(pn)

// Fill new model with elements of the Definition 1
13: for all tr ∈ spn.getTransitions( ) do
14: times← trTimes.getAll(tr)
15: if allImmediate(times, thresh) then
16: tr.setImmediate( )
17: else if allDeterministic(times, thresh) then
18: tr.setTimed(fitDist(“deterministic”, times))
19: else
20: tr.setTimed(fitDist(distType, times))
21: end if
22: tr.setWeight(weights.get(tr))
23: end for
24: return spn // Enriched model with path

// probabilities and distributions
25: end procedure

We require the transition counts per marking (variable trCounts in Algorithm 1)
to estimate the weights of the transitions. This is important for the global prese-
lection firing policy, where the next transition is always determined by the rel-
ative weights of the enabled transitions (cf. Section 3.3 for the discussion on
different execution policies). We explain the optimization of the weights (by the
optimizeWeights function) in the next subsection. After the weights have been
determined, we create a new GDT_SPN model in line 11 that the algorithm
returns later. The structure of the input Petri net is copied into the new net.
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Afterwards, the transitions are annotated with their timing characteristics and
their weights. For timing, we need to decide whether the transition belongs to
the set of immediate transitions Ti, or to the set of timed transition Tt. If the ob-
served durations, which we extracted during replay, are all within 0 and a user
defined threshold (thresh), a transition is assumed to be immediate, cf. line 16 in
Algorithm 1.

We distinguish between random transition durations and deterministic transi-
tion durations (i.e., transitions always firing after a given duration). This check
is performed in line 17. If it is positive, the timed transition is assigned a de-
terministic distribution, i.e., one with the Dirac delta density function set to the
mean (or median) of the values. If the observed times are indeed random du-
rations, the specified distribution type (e.g., normal, uniform, or nonparametric
kernel density estimation) will be fit to the data and assigned to the transition
duration. Finally, the weights will be set according to the values determined by
the optimizeWeights function, which we will discuss in the following. Once all
transitions are updated with the stochastic information gathered from the log,
the algorithm returns the obtained GDT_SPN model.

Optimizing the Weights

To determine the model parameters of the GDT_SPN model, we follow a maxi-
mum likelihood approach. That is, we select the model parameters, with which
the observed data is best explained. In our case, we try to fit the weights of
transitions (i.e., the W function in the GDT_SPN) to the ratio of observed oc-
currence counts. The problem is related to estimating the probability of a biased
coin landing on heads from a number of coin flips. Latter problem is well known
in statistics, and the maximum likelihood estimate coincides with the observed
ratio of heads (e.g., if the coin lands on heads in twenty cases out of a hundred
coin flips, the maximum likelihood estimate for the probability of the coin land-
ing on heads is 0.2). Analogously, in our case if we encounter markings in the
Petri net model during replay, where multiple transitions are enabled, we assign
the weights of these transitions according to the relative ratio of occurrence. In
simple examples, as in Figure 5, where we only have one decision, we do not
need to optimize the weights, but we can assign the observed firing ratios of the
transitions to the transition weights.

In the more general case, where single transitions can be enabled in multiple
markings, and also be in conflict with different sets of other transitions, we need
to optimize the weights. We illustrate this with our running example Petri net
model from Figure 7. We assume that transition weights are used to determine
the next firing transition (i.e., we assume that the preselection firing semantic is
used instead of the race semantic). Figure 21 shows a fragment of the model and
two markings. We annotated the model with the observed number of transition
firings in each marking that we counted during replay of a log. Enabled transi-
tions are depicted gray. On the left-hand side, in Figure 21a, the marking {p3,p5}

has been visited 30 times, of which in 15 cases the transition tB fired first, in 7

cases transition tC fired first, and in the remaining 8 cases transition tD fired first.
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Figure 21: Transition counts per marking. The figures show the inner part of the cycle in
our running example. The enabled transitions are shaded gray and annotated
with the counts of occurrences that could have been produced by replaying a
log on the model. Note that the ratios of these counts are estimators for the
real probability of selecting these transitions.

The 15 times that transition tB fired, led to marking {p4,p5}. This is depicted on
the right-hand side, in Figure 21b. In this marking, transition tB is not enabled,
transition tC fired 5 times, and transition tD fired 10 times.

Thus, from the example transition counts in Figure 21, we derive the following
equations for the weight of each enabled transition in markings with competing
transitions. That is, for marking {p3,p5} in Figure 21a we derive Equation 6–8,
and for marking {p4,p5} in Figure 21b, we derive Equation 9 and Equation 10:

W(tB)
W(tB) +W(tC) +W(tD)

=
15

15+ 7+ 8
(6)

W(tC)
W(tB) +W(tC) +W(tD)

=
7

15+ 7+ 8
(7)

W(tD)

W(tB) +W(tC) +W(tD)
=

8

15+ 7+ 8
(8)

W(tC)
W(tC) +W(tD)

=
5

5+ 10
(9)

W(tD)

W(tC) +W(tD)
=

10

5+ 10
(10)

Dividing Equation 7 by Equation 8 yields

W(tC)
W(tD)

=
7

8
(11)

and dividing Equation 9 by Equation 10 yields

W(tC)
W(tD)

=
5

10
(12)
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Obviously, we cannot find an assignment to the weights of transitions tC and
tD that fulfills Equation 11 and Equation 12. Instead, we apply the following
method. We add error variables ϵi ∈ {ϵ1, . . . ϵn} for each equation.

W(tB)
W(tB) +W(tC) +W(tD)

=
15

30
+ ϵ1 (13)

W(tC)
W(tB) +W(tC) +W(tD)

=
7

30
+ ϵ2 (14)

W(tD)

W(tB) +W(tC) +W(tD)
=

8

30
+ ϵ3 (15)

W(tC)
W(tC) +W(tD)

=
5

15
+ ϵ4 (16)

W(tD)

W(tC) +W(tD)
=

10

15
+ ϵ5 (17)

With these introduced error variables, the equations are valid for any assignment
of parameters to transitions weights. We want to find the assignment of weights
that minimizes the errors. Hereby, we also take into account the relative number
of sample observations that we have about a certain weight, e.g., information
about the weight of transition tC is in Equation 14 and in Equation 16 with a
total of 30+ 15 observations, therefore we weigh error ϵ2 with 30

45 and ϵ4 with
15
45 . Notice that we only have one source of information for transition tD (i.e., the
selection ratio in marking {p3,p5}) and therefore the error ϵ3 is assigned a weight
of 30

30 , or 1. In this example, we want to minimize the following expression.

30

45
· ϵ21 +

30

45
· ϵ22 +

30

30
· ϵ23 +

15

45
· ϵ24 +

15

45
· ϵ25 (18)

Note that we can substitute the error variables ϵ1,. . . ,ϵ5 by the expressions using
transition weights with the formulas from Equations 13–17. Then, our task is to
search for the assignment of the weights that minimize the expression 18. This
is an optimization problem.

Formally, the optimization works as follows. Let L be the universe of event
logs, let G be the universe of GDT_SPN models, and let M be the universe of
markings. During replay of the log LA,TD ∈ L in the model g ∈ G, we replay each
trace of log LA,TD in the model g according to the path defined by the alignment
for that trace. Thereby, we collect the information how often each transition is
fired in each marking. This is captured by the function countT : L×M× T → IN0.
An example for the setting depicted in Figure 21a is countT({p3,p5},LA,TD, tB) is
15 for the log LA,TD, in which transition tB was fired 15 times in the marking
{p3,p5}. We also define a function countM : L×M → IN0 aggregating all transi-
tion counts, i.e., countM(LA,TD,M) = Σt∈T countT(LA,TD,M, t).

Let enabled : M → 2T be the function returning all enabled transitions in a
given marking of a GDT_SPN model. These are all the transitions, of which all
input places have at least a token in the marking. We use the shorthand notation
TM for the enabled transitions in marking M. Let Mc be the set of markings with
competing transitions, which we encountered during replay. This set contains
markings, where the set of enabled transitions contains more than one transition,
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i.e., Mc = {M ∈ M | 1 < |TM|}. Lastly, we need to count the number of times
we observed information about a transition. Therefore, we define countTotalT :

L× T → IN0 such that countTotalT(LA,TD, t) =


M∈Mc
countM(LA,TD,M).

Then, our optimization problem can be stated as finding the assignment of
weights that minimizes the squared errors, as in Equation 18.

arg minW

 
M∈Mc


t∈TM

countM(LA,TD,M)

countTotalT(LA,TD, t)


W(t)

te∈TM
W(te)

−
countT(LA,TD,M, t)
countM(LA,TD,M)

2


(19)

In fact, we are facing a convex optimization problem, similar to linear regres-
sion. Note that instead of a regression line, we fit a single multidimensional
point to the observed ratios. We motivated the optimization of the weights by
the example using preselection, however, these conflicting ratios between activ-
ity weights can also occur between competing immediate transitions in the race
policy.

We assume that the weights of the transitions are fixed, cf. Definition 4, and
therefore the error is due to chance in the observed sample. The problem that
we need to solve is to find the transition weights, which explain the potentially
contradicting observations best. In other words, we want to find maximum like-
lihood estimators for the weight parameters.

The best estimators are those that average out the errors best. In the example in
Figure 21, we would try to find weights for transition tC and tD that lie between
the two ratios 7

8 and 1
2 and minimize the error for both markings. Note that

there are infinite weight pairs that specify a certain optimal ratio. For example,
if 2

3 would be optimal, i.e., with the weights 2 and 3 respectively, so would the
ratios 4

6 , with weights 4 and 6, etc. Therefore, we constrain the search for optimal
joint weight assignments to those weights that are normalized, i.e., the sum of
the weights of all transitions in the model needs to be equal to the number of
transitions in the model.

We then solve the minimization problem by a gradient descent search, see also
the introduction by Snyman [194]. That is, we start with an initial assignment of
weights, e.g., setting all transition weights to 1. Then, we compute the gradient
vector (i.e., the partial derivation of the cost function for each transition weight).
We take a step into the direction of this gradient vector with a certain step size.
As we get nearer to the optimal solution, the gradient converges to 0, and we
can stop the descent. Because our problem is convex, this optimization method
is guaranteed to find the optimal result, when convergence is reached. In certain
cases it might happen that with a large step, we move past the optimum and
further away from the solution. Then, the search is diverging in each step from
the optimal solution—but this can be prevented in the algorithm by controlling
whether the gradient increases, and reducing the step size parameter in that case.
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Fitting Distributions

There exist several methods to fit distributions to data. The focus of this thesis,
however, is not on the invention of new fitting techniques. We already sketched
the problem of the bias that occurs when trying to restore the original distribu-
tions of timed transitions in conflict. Therefore, we will only list a few examples.
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(a) Normal fit to the data.
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(b) Exponential fit to the data.

Figure 22: Normal and exponential fit to data. The normal distribution and the expo-
nential distribution are fit to the same data set of 100 random samples from a
normal distribution.

One of the simplest cases is to fit a normal distribution to observed data. There-
fore, we only need to compute the sample mean µ̄ and the sample standard
deviation σ̄ of the data. All statistics tools support this computation, and pro-
vide built-in functions to calculate these quantities. An example is depicted in
Figure 22a. The normal distribution has a property, which makes it sometimes
inappropriate to model time: It is defined in the negative domain, as well as in
the positive domain. For obvious reasons, we do not want to model negative
times for activity durations. But the normal distribution has some benefits as
well: In some models, using the normal distribution is the only possibility to
derive tractable solutions. Moreover, if the data is normally distributed—as it is
assumed for surgery durations [196]—this model is the best choice.

Another simple case is to fit an exponential distribution to data. The expo-
nential distribution has only one parameter: the firing rate λ. The firing rate
determines how often per time unit the transition fires. To fit an exponential
distribution to data, we only need to compute the mean µ̄ of the data samples,
and the best estimator for the rate λ is µ̄−1, cf. Figure 22b, where an exponen-
tial distribution is fit to a random data sample. The exponential distribution is
often used to capture waiting times, or inter-arrival times of customers [44]. In
this example, the data was generated by a normal distribution which makes an
exponential fit inappropriate.
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Figure 23: Setup for evaluating the quality of the discovered model. To rate the quality
of the algorithm, the experiment compares the true parameters of a GDT_SPN
model with the rediscovered GDT_SPN model. We analyze dependencies on
available number of traces and the tolerance to noise in the event log.

3.5 conceptual evaluation

So far, we described the challenges how we can address them, and discussed the
issue of optimizing weights for transitions, and also how fitting parametric dis-
tributions to data work. In this section, we perform a conceptual evaluation, that
is, we test the algorithm in controlled experiments, where our assumptions—
especially the independence assumption—hold. Therefore, we investigate how
well the algorithm can restore a given model, of which we know the stochas-
tic parameters. In practice however, the theoretical model behind the observable
phenomena is not known.

In this conceptual evaluation, we focus on the following two questions:
• How does the number of traces affect model accuracy?
• How tolerant is the algorithm regarding noise in the log?

3.5.1 Experimental Setup

The experimental setup is depicted as a BPMN model in Figure 23. We rely on a
simulation based approach. First, we need a GDT_SPN model. Note that there ex-
ist already algorithms that can discover less expressive performance models from
data [24, 115], which can serve as a starting point, or a hand-made model can be
used—we our running example model depicted in Figure 17. Subsequently, mul-
tiple logs are simulated from the GDT_SPN model with increasing trace count
from 10 traces to 10 000 traces. The simulated event logs, the underlying Petri net
(P, T , F,M0) of the GDT_SPN model, and the given execution policy are passed
as input to the discovery algorithm, see Figure 23. The algorithm produces a
GDT_SPN model, which we compare with the original model.
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3.5.2 Model Quality Results and Interpretation

There are several ways to assess the accuracy of a model. First, we measure the
model quality results of the obtained GDT_SPN models in terms of the bias that
is introduced by trying to infer the original distributions from a given number
of traces. Second, we artificially introduce noise into the observable traces and
evaluate how tolerant the approach is, i.e., how well it can restore the original
model parameters depending on the amount of noise.

Model Accuracy

To test for the error that our method produces in the model parameters, we
calculate the mean absolute percentage error (MAPE) of the estimated first mo-
ment and the original first moment of each timed transition’s distribution, cf. the
overview by Hyndman and Koehler on measures of accuracy[93]. Note that we
omitted the first transition tA from the calculation, because we cannot calculate
its duration, as there is no previous event with a timestamp in the log. Weights
are evaluated relatively to each other when selecting an immediate transition,
and additionally in preselection mode also when selecting the next timed transi-
tion. Therefore, we need to compare the weight ratios in each marking of the
original model with those of the discovered model, where selection of the next
transition is based on weights. Because weights are evaluated relatively to each
other, we normalize them, before we calculate the MAPE of the weights in each
relevant marking.

Figure 24a shows the error between the transition weights of the original
model, and the transition weights of the model that we discovered from the
event log. The errors gradually decrease with a higher number of traces, and the
plots are in logarithmic scale on the x-axis. Note that weight errors of all race
policies collapse, as their weights are computed in the same way. However, the
preselection policy has more constraints on the weights, and random behavior of
small event logs prohibits discovering the true weights accurately. Figure 24b
shows the mean average percentage error of the 1.moments, when a nonpara-
metric kernel density estimation is used for calculating the duration of timed
transitions. As expected, the preselection execution policy does not suffer from
bias due to censored data. The race with resampling method is the most difficult
to reconstruct, as many of the samples are discarded. The enabling memory policy
has less bias, and in the age memory policy, the algorithm can restore most of
the original sample durations. Figure 24c depicts the error that remains, when
the log-spline density estimator [114] is used. Note that this method considers
censored data and can correct the bias well. It reduces the biases of the race
execution policies significantly.

Noise Tolerance

For the second experiment, we keep the trace size at 1000 and run the discovery
algorithms with logs of varying degrees of artificial noise, i.e., random addition
and deletion of events. Figure 25 depicts the same measures as before, i.e., the
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Figure 24: Effects of trace size on restored model accuracy. Mean average percentage
error (MAPE) of weights and MAPE of 1.moments of inferred distributions
for timed transitions of the model in Figure 17. Number of traces drawn in
log-scale.
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Figure 25: Mean average percentage errors. The graphs show the errors between the
model in Figure 17 and the reconstructed model with increasing amount of
noise, i.e., reduced fitness.
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MAPE of relative weights in the markings and the MAPE of the 1.moments of the
distributions. Observe how in Figure 25b the MAPE of the 1.moments increases
non-linearly with lower fitness values. The quality starts dropping rapidly be-
low a fitness of 0.8 in this example. When dealing with noisy logs, the Petri
net models should be repaired first in a preprocessing step, as described in Sec-
tion 3.2. In Figure 25c, we see that with noise, the logspline fitting method with
censored data [114] fails to produce reliable results. This is caused by the failure
of our algorithm to detect immediate and deterministic transitions in the pres-
ence of noise, and these special cases are treated as regular timed distributions
with the specified distribution type to learn. We try to fit a log-spline density
to data that consists of many equal values (many zero values for immediate
transitions and many ten values for the deterministic transition tD) and some
outliers. The log-spline fitting method has problems with distributions that are
not smoothly distributed, but are mostly concentrated at a deterministic single
value, and therefore the resulting values in Figure 25c with noise are not as good
as expected. Additional preprocessing to align model and log in case of noise, or
relying on another density estimation technique, could improve the results.

Interpretation of the Results

We used a small example model, cf. Figure 17, for the purposes of our evalua-
tions. But the results show that indeed, the sample size influences the accuracy.
We know from the central limit theorem [36] that the statistics that when taking
random samples of a population, the sample mean µ̄ is a random variable—as it
is based on random samples that differ every time we collect a sample—that is
normally distributed with the parameters µ̄ ≈ N


µ, σ2

n


.

This in turn states that by increasing the sample size, the variance of the mean
decreases. This should be intuitive, as it becomes more likely to get the true
population mean by taking more random samples. In the extreme case that we
sample all members of a population, we get the true mean. As concluding re-
mark, we caution against drawing general conclusions from these preliminary
evaluations. Larger errors are expected for models with bigger state spaces.

3.6 discussion

In this chapter, we described the conceptual approach to enrich Petri net models
with stochastic information. We proposed an algorithm and evaluated its per-
formance by measuring the bias it produces as compared to an original model.
The approach has also a number of limitations, which we want to point out here.
These limitations provide hints for possible future work.

Limitations

Beside the discussed assumptions (e.g., steady state of the process, independence
between activities), the presented approach has the following limitations.
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resource agnosis The current approach is unaware of resources in the pro-
cess. These are only implicitly captured in the duration distributions.

independence between instances We treat each process instance individ-
ually. That is, we do not consider relationships between instances and pro-
longed waiting times due to other instances were started before and are
being processed during execution of the current instance.

waiting vs . execution time The distinction between waiting and execution
time is not explicit in the definition of GDT_SPN models. Waiting time in
this context is the time from enabling an activity to its beginning, and exe-
cution time is the time from beginning an activity to its termination, cf. [206,
Section 3.4]. In our running example and also in our case studies, we do
not have the required information to make the distinction between waiting
and execution times. Nonetheless, the model allows to separately capture
these two times by additional transitions, that is, an activity is captured by
two transitions: one for the beginning and one for termination of an activ-
ity. This can be extended to even more fine-grained activity lifecycles, as
discussed by Weske [206], while the conceptual method remains the same.

missing first activity duration The duration of the first activity cannot
be recovered by our current approach, if we only have termination events
of activities, because we do not know when the process started. This in
turn means that the algorithm interprets the first activity as an immediate
transition in the resulting GDT_SPN model. Under certain assumptions
(i.e., resources are captured in the event log, and resources start the next
instance immediately after they completed the previous one), this limita-
tion can be lifted. Therefore, Wombacher and Iacob propose a method to
infer the distribution of start times based on completion times of previous
activities of the starting resource [212]. Their method works best in envi-
ronments, where users start the next case of a process immediately after
finishing the previous case.

With these limitations in mind, we want to abstract from the concrete method
to a more high level viewpoint. Next, we discuss degrees of freedom of stochastic
models, and smoothing techniques.

Degrees of Freedom in the Model

The optimization step to find the most likely weights is most helpful if the log
size is relatively small, or if for certain markings there is little information avail-
able about which transitions fired. Due to the law of large numbers, the error
terms will get close to zero, if there are enough observations, and the model is
truly using the same set of weights for the activities in each marking. Another
option is to add more flexibility to the model, i.e., to allow transition weights to
depend on the markings. Latter option is providing more flexibility, but increases
modeling effort tremendously.
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Even more intricate is the notion of history aware stochastic Petri nets [191].
This model allows transition probabilities that not only depend on the current
marking, but on the entire history of the current execution. This formalism helps
capturing the effect in loops, where after each iteration, the probability to leave
the loop rises. However, training such nets from data might become difficult,
as depending on the model, the possible history of a state (i.e., the different
combinations to get to a certain state) can suffer from combinatorial explosion.
Consider a car manufacturing process where a customer can make n binary de-
cisions whether to pick extras like climate control, radio, electronic seat adjust-
ments, and others. There are 2n possible histories in such a case. To train such
models can become difficult, as the number of required samples to estimate all
the parameters correctly, also increases exponentially with the number of deci-
sions. Too much expressiveness in the model can lead to overfitting issues [38].

We presented a way to learn the parameters of a simple model, where the
weights of transitions are fixed and do not depend on the current—or previous—
state of the execution. Technically, the presented approach is the more difficult
one, as in other cases, we do not need to average weights, but can simply rely on
the observed ratio of times.

Smoothing Techniques to Avoid Extreme Values

In this work, we proposed to use a maximum likelihood approach that coincides
with counting the relative observed frequencies, cf. [199]. However, such a method
will generally underestimate the probability of a transition which has not been
observed in the event log, but is possible according to the model. In latter case,
a transition weight of 0 will be assigned to such a transition. Is it right to assign
this extreme probability value, only because we did not encounter a trace in our
event log that took the respective path?

In machine learning, several techniques to circumvent assigning these extreme
probability values have been proposed, cf. the study by Zhai and Lafferty on
smoothing methods [215]. For example, discounting methods, such as the Katz
back-off model [107] or [28], reduce the counts of an observed word (in our
case counts of observed transition firings) by a certain value and redistribute the
“freed” probability mass to possible unobserved words.

The adoption of such smoothing methods to the weight calculation appears
straightforward. For example, the add one smoothing method—a special case
of Laplace smoothing—simply increases the count of all transitions by 1 [125,
Chapter 6]. Thereby, zero values are avoided trivially. However, this simplistic
smoothing method does not yield the most effective parameter estimators [49].

Let us close the discussion at this point, and turn to the first use case of the
discovered performance model: The prediction of remaining process durations in
the next chapter.
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In the previous chapter, we described an approach to discover generally dis-
tributed transition stochastic Petri net (GDT_SPN) models. In this chapter, we

turn to one of the potential applications of this type of model, that is, prediction
of remaining duration. In the business process lifecycle, this application is use-
ful in the enactment phase, where we can use such predictions for operational
support for running cases. Here, we estimate an unobserved process event that
is expected in the near future, that is, we estimate the time of the process end
event.

chapter outline

After a brief introduction, we discuss related work in Section 4.1. The conceptual
approach that we propose is described in Section 4.2. Consequently, we compare
the approach against existing state-of-the-art approaches in Section 4.3. Last, we
discuss the findings and potential improvements in Section 4.4.
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introduction

To deliver products and services in time, companies need to manage their busi-
ness processes efficiently. Therefore, they track the current state of the process,
to timely detect undesired deviations and react accordingly. Similarly, in the con-
text of hospitals, it is helpful for hospital administration to have good estimates
of how long patients will stay and occupy resources.

The motivation is to ensure customer satisfaction by increasing the overall ratio
of products and services that complete within given time thresholds. Thus, to
prevent exceptionally long remaining service times, accurate prediction methods
are essential.

In this setting, we propose to use GDT_SPN models to predict process remain-
ing time, taking into account all available information in a monitoring setting,
that is, the information from already observed events and the information about
the absence of expected events—up to the current point in time.

4.1 related work

A lot of related work exists that deals with prediction based on historical ob-
servations, or based on initial beliefs. Prediction based on time series data is
widespread. Time series capture periodical measurements of data. For example,
the daily closing value of a company share at the stock market is a time series, or
the weekly sales numbers of a product. Many methods exist to create appropri-
ate models to capture the underlying process that emits such data. Due to space
limitations we cannot give an overview about all of them, but instead refer to an
overview in [79]. Methods investigating time series often assume changes in the
state of a process over time and also a strong dependence between consecutive
data points, whereas in our GDT_SPN model we assume a steady state of the
process and independence between activity durations. Work on the analysis of
trends and change points in processes can for example be found in [214], but
are out of scope of this thesis. For this work, we assume that the current perfor-
mance model of the process is representing the current real world performance,
cf. Chapter 3. So either the process is in a steady state, or mentioned methods,
as in [214], are used to detect concept drifts and to keep the model up to date.

Process Related Predictions

Methods to analyze discrete time SPN models have been investigated by van der
Aalst et al. [6] and by Reijers in his PhD thesis [166]. In contrast, we consider
continuous timing in our GDT_SPN models and also take the elapsed time of an
individual case into account.

There has been work on prediction of case durations based on historical obser-
vations. In their work, van der Aalst et al. use the available information in logs
to predict the remaining duration based on observed durations in the past [10].
They create an annotated state transition system for the logs, which can be cal-
ibrated in terms of abstraction. In that state transition system, they collect re-
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maining durations for each visited state from the traces in the log. Our approach
is similar in the sense that it also abstracts from data and resources, but uses
GDT_SPN models instead of transition systems, making our approach more ac-
curate when parallelism exists in the process. The work in [10] serves as one of
the benchmarks for the prediction method proposed in this thesis.

Building on the work in [10], Folino et al. [70] present an improvement based
on predictive clustering. They make use of additional contextual information of
a trace (e.g., the current workload in the system) to perform clustering. The idea
is to group similar traces and base predictions for new ones with similar features
on only similar historical cases of the log. They use the predictions to warn in
case of a predicted transgression of a threshold. It seems promising to combine
the work in [70] with a GDT_SPN approach.

Other work for prediction of performance was presented by Hwang et al. [92]
and similarly Zheng et al. [217]. They use formulae to compute quality of service
criteria, such as expected durations of compositions. Typically, these works as-
sume the service compositions to be composed of building blocks, that is, of
blocks with single-entry single-exit, cf. the formal definition in the work by
Kiepuszewski et al. in [109]. The methods proposed can be used for business
processes, too. However, the block-structured assumption is lifted in this work,
allowing for more complex models, and we also consider already running in-
stances.

The work presented by Leitner et al. [116] also considers running instances.
They use regressions for durations between two-point measures in the process.
The predictions are then used to identify whether a service level agreement will
be violated. By contrast, our work includes knowledge of the whole business
process model to make predictions and we use the elapsed time since the last
event as constraining factor.

Closely related to our approach is the prediction method presented by Wom-
bacher and Iacob in [211]. In that work, the authors prepare event logs of unstruc-
tured processes for prediction of activity durations. They use mean duration of
activities for predictions, but they do not use runtime information of elapsed
time since the last event.

Also based on the assumption that activity durations are normally distributed,
the work by Anklesaria et al. estimates completion time for PERT networks [25].
PERT networks are used to model projects with required activities that are in
dependency relations, e.g., an activity can only begin after two previous activi-
ties have been completed. Optionality and loops are not captured in such mod-
els, however, and the remaining project time is determined by the longest path
through the network. Anklesaria et al. investigate the effects of correlations be-
tween different paths to increase the accuracy of the predicted error by taking
into account multiple paths.

Kang et al. [103] advocate business process monitoring in real time. Their ap-
proach is based on classifying historical traces in correct and incorrect traces by
data mining techniques, such as support vector machines. Similar to our motiva-
tion, their goal is to predict and classify current instances, e.g., if they are likely
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to exceed deadlines. Their approach only captures sequential processes, however,
and timestamps of events are not considered in the prediction.

Simulation has also been proposed and used for operational decision making
by Rozinat et al. [184]. The idea is to set up a simulation environment capturing
the current situation and start a short-term simulation from this state with dif-
ferent simulation parameters. Their use of simulation is for operational decision
support and is focused on the overall performance of business processes. In con-
trast, we use simulation to make a prediction for the current instance only and
use the current elapsed time as additional input to the simulation which allows
to improve single predictions.

Analysis of stochastic Petri nets with generally distributed firing times (i.e,
GDT_SPN models in this thesis) has already been done before. Monte Carlo sim-
ulation is the preferred choice for analysis, e.g., in [31, 218]. However, previous
work rather focuses on transient analysis (e.g., average throughput and waiting
times of the model) instead of predicting remaining durations of single instances
with conditional probability densities.

Quality of Service Related Forecasting

Jiang et al. [100] handle time series in business activity monitoring and focus
on detecting outliers and change points. Their approach does not consider the
process structure, but they only consider specific features of a process, such as
customer usage profiles, and within those features they focus on adapting the
prediction model to observed trends and changes. Another approach by Zeng et
al. [214] applies the ARIMA forecasting method to predict performance criteria
for event sequences (corresponding to traces in our terminology) and thus sup-
port seasonality of changes. They do not use that approach for single instances,
but rather for aggregated key performance indicators. Their prediction can be
mapped to the prediction approach in [10] with the states distinguished as lists
of ordered events. Based on that model the values are classified by regression
to separate them into the ones that meet the thresholds defined for the key per-
formance indicators, and those that violate them. There is a drawback of using
event sequences for prediction in processes with parallelism, as there is a com-
binatorial state space issue with the interleavings. For a single prediction only
the cases that had the same interleaving order of events are used as estimators.
Much useful training data are spread to other interleaving orders and do not
influence the prediction for the current sequence. Compared to that, our work
improves the aspect of prediction of a single case in real time and is less likely to
suffer from sparse training data issues in processes with parallelism.

Trend aware forecasting methods are out of scope of this thesis, and we as-
sume the process to be in steady state. If the process performance is subject
to seasonality or trends, however, an integration of trend-aware methods like
ARIMA seems promising. In the following, we explain our approach in more
detail.
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4.2 approach and algorithm

In this section, we introduce the prediction algorithm. The prediction is done us-
ing historical information (i.e., information on how similar cases have performed
in the past) and the information that we have about the current case (i.e., the pre-
vious finished activities, and the current time).

4.2.1 Assumptions

The following assumptions are necessary, so that the prediction algorithm can
produce optimal results.

availability Historical and current process information (i.e., the start or end
of activities) are available as event logs, cf. Definition 5.

timeliness The events that happen in reality and indicate process progress
are timely detected (i.e., the time from occurrence of an event to the corre-
sponding update in the event log is negligible).

soundness The GDT_SPN model that we use for prediction is a sound WF-net,
cf. Section 2.2. This assumption is reasonable, as usually models exhibiting
deadlocks, or livelocks are assumed to be subject to modeling errors [59].

independence Activity durations do not depend on each other. That is, they
are mutually independent. This assumption specifies a simplified world-
view, as sometimes correlations might occur between activities. For in-
stance in a hospital surgery process, all activities may take longer than
normally, if there are complications with a patient. On the other hand,
there may also be negative correlations. For example, process participants
might hurry, after having spent too much time on a previous task, to meet
a given deadline. We shall investigate the validity of this assumption with
three case studies in Chapter 8.

We rely on either a workflow engine to provide the availability of events in an
event log, or in case of manual execution, we rely on a monitoring architecture,
as sketched for instance in [88], cf. Section 2.4.

Now, we turn to the key concept we base the prediction upon—that is, con-
strained activity durations.

4.2.2 Conditional Activity Durations

Based on the assumption of timeliness, we can use information that goes beyond
the plain list of observed events. We can use the information that a single activity
has not been completed yet at the current time, if the event for completion of the
task is not contained in the event log.

The concept is best illustrated with an example. Recall the GDT_SPN model
in Figure 17 on page 45. For sake of the following discussion, assume that the
execution policy of the network is preselection (i.e., the decision which transition
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(b) After 8.5 days, the truncated density is signif-
icantly different from the original density

Figure 26: Probability density function conditioned on time. The graphs show the den-
sity functions of the duration of transition tC, i.e., constrained to (a) being
greater than one day, and (b) being greater than 4.5 days.

is firing next in a marking is made randomly based on transition weights). We
are not restricting the memory policy, as we only consider a single transition
firing in this example.

Without loss of generality, we assume that transition tC was selected in the
lower branch of the model in Figure 17, and we align the time axis of the prob-
ability density function of transition tC to zero when it becomes enabled. Fig-
ure 26 shows the density function of the conditional distribution of transition
tC at two later points in time. Figure 26a depicts the normally distributed proba-
bility density, which is the well-known bell-shaped curve, where after two days,
transition tC did not fire yet. Note that this observation does not change the orig-
inal distribution much, as it is very unlikely that the activity is completed earlier
than after two days. Figure 26b shows the same situation, but more time has
passed without detecting the firing of transition tC. In dashed gray the probabil-
ity density function of the original duration fδ(t) is depicted. The vertical line
shows the current time t0 that advances from left to right, as time proceeds. The
thick black curve fδ(t | t ⩾ t0) is the truncated density function that represents
the distribution of the activities that took longer than t0. It depicts the condi-
tional probability density of the duration conditioned on having a duration that
is greater than t0.

More generally, let t ∈ TD represent time. Let t ∈ Tt be a timed transition with
the assigned duration distribution function Fδ = D(t). We obtain the density func-
tion fδ by differentiating the distribution function Fδ, that is, fδ(t) = dFδ(t)/dt.
Let t0 ∈ TD, t0 ⩾ 0 be the current time since enabling of ti. Let further fδDirac

denote the Dirac delta function which captures the whole probability mass at a
single point. Then we define the density function of the truncated distribution
as:

fδ(t | t ⩾ t0) =


0 t < t0 Fδ(t0) < 1

fδ(t)
1−Fδ(t0)

t ⩾ t0, Fδ(t0) < 1

fδDirac(t − t0) Fδ(t0) = 1

(20)
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The part of the density function that is above the threshold t0 is rescaled such
that it integrates to 1, which is a requirement for probability density functions.
Note that in the exceptional case that Fδ(t0) = 1 (i.e., the current time t0 pro-
gressed further than the probability density function’s support), we use the Dirac
delta function with its peak at t0. In this case, the activity is expected to finish
immediately at t0.
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(c) truncated lognormal density

Figure 27: Different truncated probabil-
ity density functions.

The intuition is as follows. We base
our predictions on a stochastic model
describing the distribution of a large
amount of cases. Thereby, we dis-
card the fraction of the cases that
is not consistent with our observa-
tion for the current activity’s dura-
tion, i.e., those cases that would have
completed the currently running ac-
tivity before the current time. In con-
trast to using conditional probability
density functions, traditional meth-
ods predict the remaining duration
of a case only upon event arrival,
and subtract elapsed time from the
predicted duration at later points in
time [61, 10].

Figure 27 shows the effect that trun-
cation has on different types of dis-
tributions. The density of the nor-
mal distribution (depicted in Fig-
ure 27a) decreases faster than that of
the exponential distribution. There-
fore, truncation of the normal distri-
bution makes us more certain that
the corresponding event will happen
soon. In the figure, the value of the
conditional density function is higher
than the original density and more
concentrated.

The exponential distribution, de-
picted in Figure 27b, is a special case,
where conditioning on elapsed time does not affect the shape of the distribution,
that is, exp(t) = exp(t + t0 | t > t0). Latter property is an effect of the memory-
less property. It implies that the probability that an event will occur in the next
minutes is not affected by the time that we spent waiting before. That is, if X is
an exponentially distributed random variable, then for any t, t0 ⩾ 0 it holds that
P(X > t0 + t | t > t0) = P(X > t).

Heavy-tailed distributions (e.g., the lognormal distribution depicted in Fig-
ure 27c) are on the other side of the spectrum. Latter distributions can get a
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Figure 28: Conditional multi-modal distribution. When a distribution consists of two
modes as depicted here (e.g., caused by two different service execution envi-
ronments that are hidden to the user), the knowledge that no event occurred
after waiting for 100ms makes the constrained distribution fδ(t | t ⩾ t0) more
accurate than the unconstrained distribution fδ(t).

higher variance, if we condition on elapsed time. This means that the longer we
wait for an event, the less likely it will be that we will observe it in the next
minutes. The uncertainty and the expected value of the distribution grows with
the time that we spent waiting. In the figure the value of the conditional density
is lower and decreasing at a slower rate than the unconditional one.

We can gain the most information about the expected events, when condi-
tioning multi-modal distributions (i.e., distributions with multiple peaks in their
density functions). An example is depicted in Figure 28. The depicted distribu-
tion has two modes, that is, its values are clustered at two different time points.
Let us assume that the service response time of a cloud computing environment
exhibits such a distribution. This could be due to fast servers (average response
time: 70 milliseconds) and slow servers (average response time: 170 milliseconds)
that respond to the request. Let us assume that there are three times more fast
servers as there are slow ones and that a request is distributed randomly among
the servers. Note that we cannot observe in advance, which type of server will
provide the response, therefore, we cannot use clustering techniques for predic-
tion in this case.

The average duration of the service is (3 · 70+ 1 · 170)/4 = 95 milliseconds in
this example. If we observe that there is no response by the time t0 = 100 mil-
liseconds, we can condition fδ(t) on this information and our estimated value
of fδ(t | t > t0) becomes 170 milliseconds, which is accurately capturing the
slower servers’ response times. In other words, we can conclude with high cer-
tainty that the request is handled by the slower server, if we have waited for 100
milliseconds without response. Note that not taking elapsed time into account,
our estimation would be based on all historical cases (i.e., captured in fδ(t)) and
result in the expected duration of 95 milliseconds. This example shows that we
can get more accurate results by excluding inconsistent cases from prediction,
especially if we use non-parametric methods that are able to approximate distri-
butions with multiple modes.
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4.2.3 Prediction Algorithm

Besides the already mentioned assumption of immediate detection of events by
the prediction framework, we consider each activity duration in isolation, inde-
pendently from other activities. This is a common simplifying assumption that
we share with all analytical approaches to prediction.

To make predictions for a single case needs, we need to know the current state
of the case and the model that captures experiences about the behavior of the
process. The prediction algorithm takes four inputs: (1) the GDT_SPN model of
the business process, cf. Definition 4 on page 16, (2) the current trace of the case,
i.e., all observed events up to time t0, (3) the current time t0, and (4) the number
of simulation iterations indicating the precision of the prediction. Algorithm 2

describes the procedure.

Algorithm 2 Prediction algorithm

1: procedure Predict(model, trace, currentTime, iterations)
2: currentMarking← replay(trace, model)

// replay the observed events in the model
3: times← new List() // used to collect results
4: for all i ∈ iterations do
5: time← simulateConditionally(model, currentMarking, currentTime)
6: times.add(time)
7: end for
8: return getMean(times) // the average of the simulated values
9: end procedure

The algorithm is straightforward. It starts in line 2 with finding the appropriate
current state (i.e., the current marking) in the model by replaying the available
observed events of the case in the model. In the replay method, we use the
alignment technique (see Section 2.3) to find the state in the model that reflects
the observed trace with least deviations.

In lines 3–7 the algorithm collects simulation results (i.e., completion times) of
a given number of simulation iterations in a list. Each simulation run represents
a sample from the possible continuations of the process according to the model.
The simulateConditionally method simulates continuations of the trace for
the GDT_SPN model, but instead of sampling from the original transition dis-
tributions Fδ(t), it samples from the truncated distributions conditioned on the
current time Fδ(t | t ⩾ t0), as described in Sect. 4.2.2 before. The completion
times of all simulated continuations of the case are collected and the algorithm
returns the mean of these sample values. Provided enough samples, their mean
value converges to the expected value of the time of the process end event.

Note that the accuracy of a prediction based on simulated samples depends on
both the number of computed samples as well as the standard deviation within
the samples. Therefore, we also support the mode, where not a sample size is
specified, but instead the user can set required accuracy thresholds. For example,
the user can let the simulation continue taking samples, until the 99 percent
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Figure 29: Setup for evaluating the prediction quality. The figure shows the preparation,
i.e., simulation of a GDT_SPN model, and the extraction of the underlying
Petri net. We use a cross-validation, where the log is split into training log
and test log. The former is used for learning the GDT_SPN model, the latter
is used for evaluating the periodic prediction accuracy. We measure prediction
accuracy at 2N equidistant points in time, such that the mean duration is at
the Nth measurement.

confidence interval on the prediction lies within ± 3 percent of the predicted
value.

4.3 conceptual evaluation

In the conceptual evaluation, we compare our approach under laboratory condi-
tions with other existing methods. The comparison methods are the state transi-
tion based prediction method, described in [10], and the results of a pure GSPN
approach, that can be solved analytically.

4.3.1 Experimental Setup

The experimental setup is depicted in Figure 29. We want to emulate a real
setting, where activity duration distributions are not known upfront, but only a
Petri net model and the event log are available. Therefore, we create an GDT_SPN
model with duration distributions and transition weights. From this model, we
simulate 10 000 traces of execution and collect them in an event log. Besides
the simulated log, also the Petri net model (i.e., the underlying Petri net of the
GDT_SPN model), is used as input. Note that the stochastic information of the
GDT_SPN model is discarded at this point, and the experiment only uses the
event log and the Petri net model.

To evaluate the prediction quality, a 10-fold cross validation is performed.
Therefore, the log is split into ten evenly divided parts and nine of them are
used as the training log to learn the performance behavior and the remaining
part as test log to test the prediction accuracy. We iterate over these parts, such
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that each of them is used once as test log. The Petri net is enriched to a GDT_SPN
by collecting the performance data in the training log.

We are interested in the different prediction methods’ accuracy to predict the
remaining duration of a case at any time during the process. Therefore, we trigger
the predictions periodically. The length of such a period is based on the mean
process duration that is obtained from the training log. More precisely, 2N pe-
riodic predictions are made for each instance in the test log, such that the Nth
snapshot is at the mean duration of the process. This means that while initially
all instances still run, some instances will be finished at later prediction itera-
tions. Note that only predictions for running cases are added to the resulting
statistics.

The evaluation proceeds for each trace in the test log as follows. At each it-
eration of the periodic prediction, we compute the relative time t0 to the trace
start and pass t0 and the partial trace containing the events of the case with time
t ⩽ t0 to the prediction algorithm described in Section 4.2.3. The predicted dura-
tion for different prediction methods are computed and compared to the actual
duration of the trace from time t0. The simplest method for prediction is using
the average remaining time, which is simply the mean process duration gathered
from the training set minus the elapsed time t0. Additionally, we compare our
predictions with the state transition systems approach [10] with different config-
urations. Predictions based on the history sharing (i) the last observed event only,
(ii) the list of all previous observed events, and (iii) the set of all previous observed
events. Finally, we compare our approach with a regular GSPN based approach,
i.e., an approach where only exponential distributions are allowed in timed tran-
sitions of the model.

Note that if any of the methods predicts a negative remaining time, i.e., that the
current case should have completed already at time t0, the predicted remaining
duration is set to 0.

4.3.2 Prediction Results and Interpretation

For our experiment, we set N to 20, i.e., we perform 40 periodic predictions.
Figure 30 shows (a) a small model containing four parallel branches used for the
simulated experiment, and (b) the root mean square error (RMSE), for each of
the 40 periodic predictions mentioned above. The RMSE is an error measure for
quantifying the error between a predicted and a real value, cf. [79]. The smaller
the RMSE value, the better is the prediction in average. All prediction algorithms
perform similarly at the start of an instance, except the GSPN model which fits
exponential distributions to all timed transitions. Although the prediction error
of the GSPN model is higher than that of the other methods, it can be analyzed
efficiently. After some time has progressed, however, our prediction approach
based on constrained Petri net simulation outperforms the other approaches
significantly in this case.
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D(tC)=norm(5,1)

D(tB)=exp(5)

D(tD)=gamma(4,1)

D(tA)=uniform(2,6)
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D(tE)=norm(10,3)
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(a) A GDT_SPN process model with four paral-
lel activities A, B, C, D and a final activity E,
with annotated duration distributions.
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Figure 30: Prediction quality for a parallel model. A model with four parallel branches
(a) and corresponding prediction errors (b) using 10-fold cross-validation
with 40 periodic predictions, s.t. the 20th iteration is at the mean duration.

4.4 discussion

Our idea for using the information of an event not occurred yet is tailored to
processes with only sparse execution information, as motivated in Section 1.1.
Thereby, we focus on situations that often occur in manual process environments,
such as hospital treatment processes. Obviously, if we had a process with a thou-
sand activities that each only take relatively small times in relation to the process
duration, the conditioning of single activity durations to passed time would not
yield significant improvements compared to existing prediction approaches. In
summary, we collected the following insights:

memoryless activity durations Our method cannot improve the predic-
tions for remaining process durations, compared to existing GSPN-based
approaches, if the duration distributions in the process activities are expo-
nentially distributed. In this case both the conditional prediction method
with GDT_SPN models and the GSPN-based approach produce the same
result.

parallelism When activities are executed in parallel, the number of allowed
interleaving execution orders grows exponentially in the worst case. This
means that prediction methods, that only use those historical cases, which
had the observed execution order, only consider an exponentially shrinking
fraction of the historical observations. Our approach that is based on the
Petri net formalism does not suffer from this issue.

density of monitoring information We expect less relative improvement
of our prediction method in processes with a lot of monitored activities.
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The potential improvement of our method (i.e., to improve the prediction
of already running activities) is limited to the activities currently active.
Therefore, an increasing number of observable activities in the process re-
duces the effect of individual activity durations on the process duration.

independence assumption So far, we evaluated the approach under lab-
oratory conditions, where our assumptions—especially independence be-
tween activity durations—are satisfied by design. An evaluation with real
data is required to show the potential improvements in real cases. We in-
vestigate the performance of the prediction algorithm in case studies in
Chapter 8.

We conclude that, given the stated assumptions, the prediction of remaining
durations can be significantly improved compared to state of the art approaches.
In manual process execution environments (e.g., hospitals) monitoring informa-
tion is sparse. Therefore, the presented approach can help to improve the predic-
tions. Next, we address the problem of missing documentation that we encoun-
tered in hospitals.
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So far, we have seen how we can obtain stochastic process models of execution
from data (Chapter 3) and use the models subsequently in predicting the

remaining duration of a case (Chapter 4). In our assumptions the monitoring
was complete—that is, we assumed events to be always detected. Unfortunately,
in real settings, the event logs are often subject to quality issues [4] that affect
process monitoring or process mining techniques.

In this chapter we loosen this assumption and discuss a problem that often
occurs in manual process execution: Missing documentation. This problem be-
longs to the evaluation phase of the business process lifecycle, because the quality
of the documentation is evaluated and compared to the process model to find
deviations in order to improve documentation quality.

chapter outline

After a brief motivation, we discuss related approaches in Section 5.1. Then, we
consider the problem that we need to solve in Section 5.2. Having outlined the
problem complexity, we propose its decomposition in Section 5.3. We compare
the results of two different artificial models in Section 5.4, where we also discuss
implications and limitations of the proposed solution.

79
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introduction

Suppose you need to manage a hospital, and your staff (e.g., doctors, nurses)
manually record the performed treatment steps. There exist regulations that
require treatment steps to be documented [27]. Furthermore, the documenta-
tion serves multiple purposes: accounting, auditing, quality securing, clinical
evidence, etc. As a hospital manager, you might be interested in accounting, as
only documented treatments are reimbursed by health insurance companies.

The problem is, however, that people happen to forget things. In our experience
with the documentation of a surgery process [110], we observed that around ten
percent of treatment steps were missing from the documentation. Unfortunately,
we are not able to extrapolate our experience with that limited sample to generic
insights. Instead, to reason about error rates of humans, we draw on large-scale
studies that other researchers have conducted.

One of the largest empirical studies on errors in medical practice is the Har-
vard Medical Practice Study of 1984 [43]. The researchers investigated the out-
comes of more than thirty thousand patient treatments in hospitals in the state
of New York. They found that in 3.7 percent adverse events occurred, of which
more than every fourth is due to negligence. Regardless, of the actual error per-
centage, we can note that errors (e.g., forgetting to document an activity) do occur
when humans perform activities in a process.

A more qualitative approach is pursued by Reason [164]. He compares dif-
ferent theories of errors—personal model, legal model, and system model—and
shows that different remedies are applied in practice, depending on the theory
of error [164]. In this thesis, we assume the system model, which states that er-
rors are commonplace, and not the individual is to blame, but the system should
be improved to avoid errors.

In our case, we are facing the problem that documentation can be forgotten.
We do not want to blame the doctors or the nurses, but provide help to identify
documentation errors. Our vision is to provide a system that detects potential
errors in documentation during enactment and notifies the process participants
of these problems. This way, the participants get reminded to amend the docu-
mentation, as long as they remember whether they have done the corresponding
activity, and when exactly.

The problem of forgotten documentation is a special case of the problem of
missing data. We provide a brief overview on the existing literature on this prob-
lem in the next section.

5.1 related work

The term missing data is used, when for some cases and for some variables data
is missing. The problem of missing data has been studied extensively in statis-
tics over more than fifty years [209, 186, 21, 189]. Statisticians collect surveys
from samples of a population to make inferences about parameters of the whole
population. Often, values are missing from these surveys due to a number of
reasons. Consider a survey asking people for their income. In this survey people
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might not respond, if they do not understand the question due to language rea-
sons, or they might not want to respond if their income is very high, or very low.
Thus, when dealing with missing data, it is important to know the mechanisms
causing such phenomena.

Mechanisms Causing Missing Data

In statistics, the missingness mechanism describes the manner in which data are
missing from a sample of a population. The early work by Rubin [186] discovered
important implications of the process leading to missing data, and analyzed
which minimal conditions are necessary to ignore the missing data mechanism.
He distinguishes three kinds of the mechanism causing missing data: missing
completely at random (MCAR), missing at random (MAR), and not missing at
random (NMAR) [186], see also the overview by Schafer and Graham on the
techniques to deal with these cases in [189].

Rubin found that the data need to be missing at random (MAR) (i.e., the con-
dition whether a data is missing, is not influenced by its value) for unbiased
imputation of the missing data. Further, he defined the mechanism that causes
data to be amiss as a probabilistic phenomenon. To clarify what MAR means, we
introduce the following notation. Let Xcomp be the complete data that can be par-
titioned in observed and missing data Xcomp = (Xobs,Xmiss). Let R be the random
variable of missingness. This means that R indicates, whether a data set contains
missing entries. We can think of R as a random process that has a certain prob-
ability of occurring and causing data to be amiss. The MAR property specifies
that the probability of missingness is independent from the missing data:

P(R | Xcomp) = P(R | Xobs) (21)

This allows the missing data values to depend on the observed data, but not on
the missing data. A more rigorous assumption is that the missing data mech-
anism is independent also from the observed values. In this case the data is
missing completely at random (MCAR), and the following equation must hold:

P(R | Xcomp) = P(R) (22)

MCAR implies Equation 21 and therefore techniques applicable for the MAR
case are also applicable for MCAR case. If the missing data mechanism R de-
pends on the missing data, the data is NMAR. This is the most challenging case,
as the missing data mechanism has to be modeled and taken into account to get
unbiased estimates for the population parameters. We do not address the latter
case, but refer to the overview by Schafer and Graham in [189] that discusses
possible applications.

How to Deal with Missing Data?

Two common methods to deal with missing data are listwise deletion (i.e., to dis-
card an observation containing missing values from the statistics), or imputation
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(i.e., to insert artificial values for the missing data). The advantage of using list-
wise deletion is that it is simple. If the data is MCAR, and only few entries in
the data have to be discarded due to missing events, this solution can be used
without losing too much information. Listwise deletion has a drawback, how-
ever. If a large portion of the samples have to be discarded, the efficiency of the
estimate suffers from this technique. Furthermore, if the data is not MCAR, but
MAR, this method fails to take dependencies into account and produces biased
parameter estimates.

Better results can be achieved with imputation methods, but special care is
required. A basic imputation method is mean substitution, i.e., replacing missing
values of a variable with the sample mean of the observed values. Mean substi-
tution generates a bias, because the uncertainty of the missing variables is not
taken into account.

More sophisticated imputation methods that are able to deal with data that
is MAR, and are recommended as state of the art [189], are maximum likelihood
estimation, and Bayesian multiple imputation. Both these methods are efficient (i.e.,
they make use of all observed data to increase confidence in the estimations), and
produce unbiased estimators in the MAR case. The seminal work by Dempster
et al. [58] describes the expectation maximization algorithm that finds the maxi-
mum likelihood of the parameters by iterating an estimation and maximization
step until convergence. Later, Rubin introduced the idea to replace missing val-
ues with multiple simulated values (imputations) and average results of each
data set to account for the variability of the missing data [187]. The technical
details of these techniques are not in the focus of this thesis, however, and the
interested reader is referred to the book by Little and Rubin [119] on this topic.
The aforementioned imputation techniques, however, focus on missing values in
surveys and are not directly applicable to event logs, as they do not consider
control flow relations in process models and usually assume a fixed number of
observed variables. In business processes with cycles, there is an additional com-
plexity, because we need to determine how often cycles have been traversed in a
case.

Missing and Noisy Data in Event Logs

Related work on missing data in event logs is scarce. Nevertheless, in a recent
technical report, Bertoli et al. [34] propose a technique to reconstruct missing
events in event logs. The authors tackle the problem by mapping control flow
constraints in BPMN models to logical formulae and use a SAT-solver to find
candidates for missing events. In contrast, our GDT_SPN model builds on Petri
nets, which allows us to deal with cycles and probabilities of different paths.

Methods developed in the area of process mining provide functionality that
enables analysis of noisy or missing event data. In process mining, the quality
of the event logs is affecting for the usefulness of the analysis results and low
quality poses a significant challenge to the algorithms [4]. Therefore, discovery
algorithms which can deal with noise (e.g., the fuzzy miner [83], and the heuris-
tics miner [3]) have been developed. Their focus is on capturing the common and
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frequent behavior and abstracting from any exceptional behavior. These discov-
ery algorithms take the log as granted and abstract from rare behavior, instead
of trying to identify potential missing events.

Another example is the alignment of traces in the context of conformance
checking [15], which we introduced in Section 2.3. The aim of alignments is to
replay the event log within a given process model in order to quantify confor-
mance by counting skipped and inserted model activities. We build upon this
technique and extend it to capture path probabilities as gathered from histori-
cal observations. Note that most of the work focuses on repairing models based
on logs, instead of repairing logs based on models. Examples are the work by
Fahland and van der Aalst [66] that uses alignments to repair a process model to
decrease inconsistency between model and log, and the work by Buijs et al. [46],
which uses a genetic algorithm to find similar models to a given original model.

In this chapter, we pursue the opposite approach, that is, we want to identify
deviations from a given model and suggest to correct the supposedly faulty
documentation.

5.2 problem and its complexity

The problem in general is to find the most likely explanations of erroneous doc-
umentation. We limit our scope to missing documentation, and assume that the
documented events are correct. As introduced in Section 2.4, we assume that the
documentation that is scattered in the IT landscape of the organization can be
collected and normalized to the abstraction level of event logs, cf. Definition 5

on page 17. Thus, we can formulate the problem as follows:

problem : The problem is to find the explanations for missing data (i.e., the
missing events and their time) in event logs that are most likely according
to our statistical GDT_SPN model.

As opposed to a survey with a known number of variables, a GDT_SPN model
can have optional branches, parallelism with many possible interleaving execu-
tion orders, and cycles. Cycles allow to repeat a set of tasks arbitrarily often,
which leads to a potentially infinite number of repetitions. This means that we
face a more difficult problem than identifying the most likely values of a given
random variable in a survey. We simultaneously need to decide which variables
are missing (most likely).

Therefore, we need to align a trace with the GDT_SPN model. We want to find
the most likely alignment considering structure, priorities, path probabilities and
duration distributions in the model. Note that the cost-optimal alignments in [15]
that we introduced in Section 2.3, only consider the structure of the process. By
incorporating into the alignment the time aspect—which is continuous in our
case—the solution space of the problem, which has countable solutions in the
structural alignment setting (countable infinite solutions, if the model contains
cycles), grows to uncountable infinite solutions, by considering time.

In theory, we need to compare the probabilities of all possible paths in the
model that are conforming to the trace. In paths that visit activities multiple
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times, different assignment combinations of the events in the trace to the activ-
ities in the model exist (e.g., if there are two transitions of activity A along a
path, but only one corresponding event, there are two possible assignments of
the event). Additionally for each path, there are infinite possible assignments of
time values to the missing events.

Let us explain the problem complexity with our running example model in
Figure 17 on page 45. Consider trace tr3: ⟨A(0.0),B(9.6)⟩ and the Petri net model
in Figure 17. Clearly, the trace does not fit the model, as either the entry for
activity C, or for activity D, is missing from trace tr3. We assume one of the
activities has happened in reality, but was forgotten in the documentation. Two
cost-minimal paths through the model are given by the following (structural)
alignments.

log A(0.0) ≫ B(9.6) ≫ ≫ ≫

model
A τ B D τ τ

tA t1 tB tD t2 t3

log A(0.0) ≫ B(9.6) ≫ ≫ ≫

model
A τ B C τ τ

tA t1 tB tC t2 t3

Note that by assigning equal costs to every log move, these two alignments are
both cost-optimal. Furthermore, because activity B is parallel to either C or D,
the missing events could also have happened before B. That is, also the following
two alignments are cost-optimal.

log A(0.0) ≫ ≫ B(9.6) ≫ ≫

model
A τ D B τ τ

tA t1 tD tB t2 t3

log A(0.0) ≫ ≫ B(9.6) ≫ ≫

model
A τ C B τ τ

tA t1 tC tB t2 t3

So, by assuming that only one event is missing from the trace, as in the pre-
vious alignments, we already have four different alignments to choose from for
repair. But, there might be further possibilities. It might have happened, that a
whole iteration of the cycle happened in reality, but was forgotten to be docu-
mented. In this case, the path ⟨A,D,B,C,B⟩ would also be an option to repair
trace tr3. Furthermore, in the second iteration activity D could have been exe-
cuted: ⟨A,D,B,B,D⟩, in which case two different assignments of the event B in
trace tr3 to the path in the model exist. In general, there are infinitely many pos-
sible traces that need to be considered for a model that contains cycles. Further,
there are infinite possible time values for the inserted missing events in these
traces.

To compare the probabilities of these paths, we need to compute the probabil-
ity distributions of the activities on the paths and compare which model path
and which assignment explains the observed events’ timestamps best. To reduce
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Figure 31: Dividing the problem. We divide the problem into two sub-problems: repair-
ing the control flow and repairing the timestamps.

the complexity, we propose to decompose the problem into two separate prob-
lems: 1) repair structure and 2) insert time, as sketched in Figure 31. The method
uses as input a log that should be repaired and a GDT_SPN model specifying
the as-is process.

Note that by this approach, we accept the limitation that missing events on a
path can only be detected, if at least one event in the trace indicates that the path
was chosen. If we considered also time in the structural repair, we could identify
optional events that, when added to the trace, make the other recorded events
more likely. For example, if there was an optional activity that delays the next
process activities by one day, we could infer whether the optional activity was
executed by looking at the time that passed from the preceding activity to the
next activity.

5.3 approach and algorithm

In this section, we explain a realization of the method described above. For this
realization, we make the following assumptions:

normative model The GDT_SPN model is normative. That is, it reflects the
as-is process in structural, behavioral and time dimension. We assume that
the process is performed according to the model.

soundness The GDT_SPN model is sound, see [1] and Section 2.2.

independence Activity durations are independent and have normal probabil-
ity distributions, containing most of their probability mass in the positive
domain. If the durations are of a different shape, we approximate them
with normal distributions capturing the mean and the variance of their
distribution.

correctness of events The events recorded in the event log happened in
reality, and their timestamps are correct. All events contain a timestamp.

non-empty traces Each trace in the event log contains at least one event.

missing at random We assume that data is MAR, that is, the probability that
an event is missing from the log does not depend on the time values of the
missing events.
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Figure 32: The repair approach described in more detail. The inputs to the algorithm are
the event log with missing entries, and the GDT_SPN model. We align each
trace with the model to find candidate cost-optimal alignments to choose
from, based on their path probabilities. In the second step, we convert the
path along the chosen alignment to a Bayesian network and infer the most
likely time values to the events that are supposedly missing.

The algorithm is depicted in Figure 32, and repairs an event log as follows.

5.3.1 Repair of the Structure

For each trace, the algorithm first repairs the structure. Therefore, the path in
the model is selected that best fits to the observations in the trace. The notion
of cost-based alignments [15] that we introduced in Section 2.3, is used for this
part. It tells us exactly:

a) when the model moves synchronously to the trace, i.e., where the events
match the allowed transitions

b) when the model moves alone, i.e., an event is missing from the trace
c) when the log moves alone, i.e., there is an observed event that does not fit

into the model at the recorded position
To calibrate the alignment algorithm so that it returns all possible paths through
the model, we set the costs of synchronous and model moves to 0, and the cost of log
moves to a high value, e.g., 1000. Then, based on the assumption of the normative
model and the correctness of the events, an alignment only contains synchronous
moves and model moves. This works well for acyclic models. For cyclic models,
where infinite paths through a model exist, we need to assign small costs to
model moves, to limit the number of resulting alignments that we compare in
the next step. Notice that with this step, we consider only the alignments with a
minimal number of model moves. Thereby, we exclude alignments with multiple
unobserved iterations of cycles, but also exclude single optional transitions that
are not reflected in the log.
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In the next step, cf. box Pick alignment in Figure 32, we decide which of the
returned cost-minimal alignments to pick for repair. For each alignment, the algo-
rithm replays the path taken through the model and multiplies the probabilities
of the decisions made along the path. This allows us to take probabilistic infor-
mation into account when picking an alignment and enhances the alignment
approach introduced in [15]. We also consider that, for one trace, paths with
many forgotten activities are less likely than others. That is, we allow to specify
the parameter of the missing data mechanism, i.e., the rate of missingness. We
let the domain expert define the probability of forgetting an event. The domain
expert can specify how to weigh these probabilities against each other. That is,
the expert can give preference to paths with higher probability (i.e., those paths
that include transitions with high relative weights), or to paths with less missing
events that are required to be inserted into the trace. This novel post-processing
step on the cost-optimal alignments allows one to control the probability of paths
in the model that are not reflected in a log by any event.

For example, consider a loop in a GDT_SPN model with n activities in the
loop. By setting the chance of missing entries low, e.g., setting the missingness
probability to 0.1 (10 percent chance that an event is lost), an additional itera-
tion through the loop will become more unlikely, as its path probability will be
multiplied by the factor 0.1n. This factor is the probability that all n events of an
iteration are missing. We select the alignment with the highest path probability,
and thereby determine the structure of the repaired trace. Then, we can continue
and insert the times of the missing events (i.e., the identified model moves of the
alignment) in the trace.

5.3.2 Inference of the Time

To insert the timing information, we need to combine the probabilistic informa-
tion captured in the GDT_SPN model with the information that we have for
each trace, i.e., the timestamps of the recorded events. Bayesian networks, as in-
troduced in Section 2.5 on page 26, offer a solution for this task: Setting random
variables to given values (that is, inserting evidence) and performing inference on
the remaining variables.

A GDT_SPN model cannot be directly translated into a Bayesian network, be-
cause Bayesian networks do not support cycles. In the previous step, we iden-
tified the path through the GDT_SPN model that is optimal in terms of struc-
tural violations, and also most probable in terms of missing entries and chosen
branches. With the path given, we can eliminate choices from the model by re-
moving branches of the process model that were not taken. Thus, we unfold the
net from the initial marking along the chosen path. Note that loops are but a
special type of choices and are eliminated from the model by unfolding along
a given trace. The unfolded GDT_SPN model can be converted into a Bayesian
network, where we perform inference for the missing values, after inserting the
observed evidence (i.e., occurrence time of observed events).

For example, reconsider trace tr1 = ⟨A(0.0), B(1.6), D(1.9), C(4.2), B(4.46)⟩
and suppose that activity D was forgotten to be documented. That is, only trace
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Figure 33: Unfolded model of trace tr ′1. The model is unfolded according to the align-
ment of trace tr ′1, cf. the similar case in Figure 16 on page 42. By unfolding
the model according to the alignment, we get rid of certain paths and itera-
tions that are allowed in the model, but are not selected in the path of the
alignment.

tr ′1 = ⟨A(0.0),B(1.6),C(4.2),B(4.46)⟩ is observed. Then, we align tr ′1 to the run-
ning example model in Figure 7 on page 20. Suppose, we obtain the following
alignment:

log A(0.0) ≫ ≫ B(1.6) ≫ ≫ ≫ C(4.2) B(4.46) ≫ ≫

model
A τ C B τ τ τ C B τ τ

tA t1 tC tB t2 t4 t1 tC tB t2 t3

The unfolded model according to this alignment is shown in Figure 33. In
the figure, the black parts mark the path taken in the model, while the gray
parts have been removed during unfolding. Note that the unfolded model still
contains parallelism, but it is acyclic. Thus, we can convert it into a Bayesian
network with a similar structure, where the random variables represent timed
transitions. Notice that due to multiple iterations of loops, activities can happen
multiple times. We differentiate iterations by adding an occurrence index, e.g.,
tB,1 and tB,2 correspond to the first and second occurrence of the transition tB.
The unfolding is done by traversing the model along the path dictated by the
alignment and keeping track of the occurrences of the transitions and places.

We transform the unfolded model into a Bayesian network with a similar struc-
ture. Most immediate transitions are not needed in the Bayesian network, as



5.3 approach and algorithm 89

Petri Net

Parallel Split

Sequence (timed)

A B

B

Parallel Join:

A

B

Sequence (immediate) :

start A B

start

A B

join

A B

start B

A

B

max

sum

sumsum

sumsum

unfolded stochastic Petri net Bayesian network

Figure 34: Transformation rules. The Transformation of unfolded GDT_SPN models to
Bayesian networks.

these do not take time and no choices remain in the unfolded process. Only im-
mediate transitions joining parallel branches are kept as nodes in the Bayesian
network.

Figure 34 shows transformation patterns for sequences, parallel splits, and
synchronizing joins. These are the only constructs remaining in the unfolded
form of the GDT_SPN model. In the resulting Bayesian network, we use the
sum and max relations to define the random variables given their parents. More
concretely, if timed transition ti is followed by timed transition tj in a sequence,
we can convert this fragment into a Bayesian network with random variables Xi

and Xj. From the GDT_SPN model, we use the transition duration distributions
D(ti) = Fδi

and D(tj) = Fδj
. Then, the parent variable Xi has the unconditional

probability distribution P(Xi ⩽ t) = Fδi
(t) and the child variable Xj has the

conditional probability distribution function:

P(Xj ⩽ t | Xi) =

 t

−∞(fδi
∗ fδj

)(t)dt =
 t

−∞
∞

−∞ fδi
(x)fδj

(t − x)dx


dt (23)

The ∗ operator that we apply here is representing a convolution operation and is
used for summation of independent random variables [36]. For each value of the
parent xi ∈ Xi, the probability distribution is defined as P(Xj ⩽ t | Xi = xi) =

Fδj
(t − xi), i.e., the distribution of Xj is shifted by the value of its parent to the

right. A parallel split, see lower left part in Figure 34, is treated as two sequences
sharing the same parent node.
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The max relation that is required for joining branches at synchronization points,
cf. the lower right pattern in Figure 34, is defined as follows: Let Xi and Xj be
the parents of Xk, such that Xk is the maximum of its parents. Then,

P(Xk ⩽ t | Xi,Xj) = P(max(Xi,Xj) ⩽ t) = P(Xi ⩽ t) ·P(Xj ⩽ t) = Fδi
(t) · Fδj

(t)

that is, the probability distribution functions are multiplied.
In Bayesian networks that we construct this way, inference is an NP-hard prob-

lem [52]. To increase the performance and the applicability of our approach, we
convert this generic Bayesian network model into a linear Gaussian model where
inference can be done efficiently in O


n3

, where n is the number of nodes [113],

see Section 2.5. Therefore, each distribution is approximated with a normal dis-
tribution capturing the first two moments (i.e., the mean and the variance) of
the distribution. Then, we need to handle the max relation, which is no linear
combination of its parents. Note that the maximum of two normally distributed
random variables is not normally distributed. Therefore, we use a linear ap-
proximation, as described in [216]. This means that we express the maximum
as a normal distribution, with its parameters depending linearly on the normal
distributions of the joined branches. The approximation is good, when the stan-
dard deviations of the joined distributions are similar, and the approximation
degrades when they differ, cf. the experiments by Zhang et al. in [216].

Once we constructed the Bayesian network, we set the values for the observed
events for their corresponding random variables, i.e., we insert the evidence into
the network. Then, we perform inference in the form of querying the posterior
probability distributions of the unobserved variables. For latter task, we use the
Bayes Net Toolbox (BNT) for Matlab [141], which implements the inference meth-
ods. This corresponds to the second step in the insert time part of Figure 32.

The posterior probability distributions of the queried variables reflect the re-
sulting probabilities, when the conditions are set according to the evidence. Our
aim is to get the most likely time values for the missing events. These most likely
times are good estimators for the time when the events occurred in reality, and
thus can be used by process participants as clues during root cause analysis.
For example, in order to find the responsible person for the task in question, an
estimation of when it happened most likely can be helpful. Then, obvious docu-
mentation errors can be corrected by the responsible person.

Note that repaired values with most likely time values need to be treated with
caution, as they do not capture the uncertainty of the missing values. Therefore,
we mark repaired entries in the event log as artificially inserted. We envision a
monitoring environment, where these inserted event entries are passed as sug-
gestions to the corresponding process participants to correct potential documen-
tation errors.

Once we determined the most probable values for the timestamps of all miss-
ing events in a trace, we proceed with the next trace in the log starting another
iteration of the algorithm. In the next section, we evaluate the quality of the
events that we artificially inserted into the traces.
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of missingness

Measures:
control-flow conformance
time conformance

Input
GDT_SPN
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Figure 35: Setup to evaluate repair quality. We assume that the GDT_SPN model cap-
tures the behavior of the process correctly. Therefore, we simulate traces ac-
cording to the model and collect them in an event log. We randomly remove
events (maintaining at least one event per trace), and repair them according
to the model. We evaluate how well the repaired entries match the original
entries.

5.4 conceptual evaluation

We evaluate the structural correctness of the repaired traces, and the error of the
time values of the repaired events compared to the time values of the original
events.

5.4.1 Experimental Setup

To evaluate the quality of the algorithm, we follow the experimental setup de-
scribed in Figure 35. The assumption of the normative model allows us to skip
the cross-validation part. We assume for the conceptual evaluation that we know
the GDT_SPN model that captures the process characteristics. We simulate 1000

traces based on the GDT_SPN model to get an event log. Then, the simulated
event log is passed to the experiment. Here, we simulate a missingness process
by randomly removing events from the event log. The chance of removing an
event is increased with each iteration, but we ensure that at least one event re-
mains in every trace. We pass the event log that contains missing entries with
the GDT_SPN model to the repair algorithm that we described in Section 5.3.

The repair algorithm’s output is then compared with the original traces to see
how well we could restore the missing events. We use two measures for assessing
the quality of the repaired log. The cost-based fitness measure, cf. Section 2.3,
compares how well a model fits a log. It is based on the costs of asynchronous
movements. For this evaluation, we want to distinguish model moves and log
moves. Therefore, we use the raw metrics of the number of synchronous moves,
model moves, and log moves. This way, we have a measure to check, whether we
repaired the right events in the right order. For measuring the quality of repaired
timestamps, we use a simple measure by comparing the real event’s time with
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Figure 36: Results for the running example. Evaluation results for repairing 1000 traces
of the model in Figure 17 with an increasing amount of noise on the x-axis.

the repaired event’s time. This makes sense if we have chosen the correct event
to be inserted. We use the mean absolute error (MAE) of the events that have
been inserted. This is the arithmetic mean of the absolute differences between
repaired event times and original event times. Formally, let Erem be the events
that are removed from an event log. Let eo ∈ Erem with γ(eo) = to be the original
event that we removed from a trace and let ei be the repaired event with its time
γ(ei) = ti. Then the error of the repaired event’s time is err(eo) = ti − to. The
MAE of all such events is

MAE =


eo∈Erem

|err(eo)|
|Erem|

.

5.4.2 Imputation Results and Interpretation

We first evaluate the repair algorithm’s ability to repair a trace correctly with the
GDT_SPN model introduced in Figure 17 on page 45.

Repair Results of the Running Example

The experiment was performed with a log of 1000 simulated traces. Figure 36

displays the (a) structural, and (b) time quality which we achieved by repairing
an event log with randomly removed events. Each dot is based on the repair
results of this log with a different percentage of randomly removed events. In
Figure 36a, the raw fitness metrics of the alignment are shown. The solid line
with circles shows the number of synchronous moves. The other two lines are the
number of model moves (dashed line with triangles) and the number of log
moves (dotted line with crosses) necessary to align the two traces.

We cannot guarantee the ordering of events due to parallelism in the model. A
change in the ordering of two events in the repaired trace results in a synchronous
move for one event, and a log move and a model move for the other event—to
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Figure 37: Non-free choice example GDT_SPN model. This model has normally dis-
tributed durations for its timed activities. There are more dependencies be-
tween activities as in our running example. When omitted, weights of imme-
diate transitions are 1 by convention. Labels for places are omitted, too, except
for the initial place pstart (with a token) and for the final place pend.

remove it from one position and insert it in another. Currently, the algorithm
uses time distributions (i.e., the posterior probability distributions of missing
events) to determine the time of the missing event and thereby the ordering
of multiple parallel activities. Consider an extreme case, where n identically
distributed transitions are started in parallel. The chance to restore the correct
ordering (if no further information exists) is 1

n! in this case.
In Figure 36b, we can see the mean absolute error in the relative time units

specified in the model. The graph shows that the offset between original event’s
time and repaired event’s time increases with the amount of noise. In this case
the relationship looks like a linear one. This is not necessarily the case, however,
as we will see in the next example.

Results for a Second Example

Because our running example is mostly meant to illustrate the concepts of the
performance model used throughout this thesis, cf. Definition 4 on page 16, we
also evaluate the repair quality of the proposed algorithm in a more complex
model.

In Figure 37, another GDT_SPN model is depicted. We use it as a second
example for the repair algorithm. The activities are normally distributed with
most of the probability mass in the positive area. In this example, there exist
more dependencies between activities, i.e., more activities share the sequential
relationship. Thus, we expect to be able to correctly repair more events than in
the previous example with comparable amount of noise.

The results for the second example model (cf. Figure 37) are depicted in Fig-
ure 38. As expected, the quality of the repaired model does not suffer that much
from missing events at low noise levels, because the algorithm is able to restore
missing events that are in a sequential relationship to observed events. Note
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Figure 38: Results for non-free choice example model. Evaluation results for repairing a
simulated log of the GDT_SPN model in Figure 37.

that a process model with only sequential relationships exhibits only one pos-
sible trace, which can be always correctly repaired, when at least one event is
observed.

It is interesting to note that for this second example, the absolute error of the
repaired times exhibits a non-linear relationship to the number of missing events
in the log. There are two reasons for this non-linear growth of error, compared to
the previous results for the running example. First, the distributions of the times
in the first example are a mix of uniform, normal and deterministic times (the
first lognormal distribution is not taken into account, as the first event in the log
marks the completion of activity A, and we do not know the start). In contrast,
the second example only contains normally distributed values.

A second reason is the non-linear decrease of synchronous moves with in-
creasing noise in the second model. It is intuitively clear that if we do not restore
the events in correct order, the time of the missing events will also become less
accurate.

5.5 discussion

To summarize the evaluation of the synthetic models, we note the following
observations:

model generality The quality of the structural repair is influenced by the
generality of the model, i.e., by the possible behavior that the model al-
lows. Obviously, a constrained model that allows only one sequence (see
Figure 39a) of execution is easy to restore structurally, as opposed to an
ad-hoc process, as for instance a flower model (see Figure 39b), where the
execution sequence of activities is arbitrary, and correct restoration is im-
possible. In our experience, the generality of most business process models
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tB

tC tD

tA

(a) Sequence.

tB

tCtD

tA

(b) Flower model.

Figure 39: Model Generality. In comparison two models with transitions tA, . . . , tD are
depicted. The left model allows exactly one execution trace ⟨A,B,C,D⟩, while
the flower model on the right allows to execute the activities in any order, any
number of times.

is between these two extremes, and sequential dependencies between ac-
tivities are common.

time quality The quality of the repair of the timestamp of the missing events
depends on multiple factors. First, to better estimate the times of the ac-
tivities, it helps to have selected the correct alignment, that is, the time
quality depends on the quality of the structural repair. Second, the under-
lying distributions of the durations play a decisive role in the quality of the
repaired times. The best achievable estimate is bound by the variance of
the duration distributions. More precisely, the estimates are bound by the
variance of the conditional distributions—conditioned on the timestamps of
the observed events before and after an activity.

optional branches When more than one activity exists on optional branches
or in loops, moderate amounts of noise can be repaired structurally. In this
case, the quality is non-linear. With higher probability of missingness, the
probability increases that whole branches of the process are missing and
thus cannot be repaired by the algorithm. In contrast, missing entries for
single optional events cannot be repaired by the algorithm, leading to a
rather linear relationship between noise and repaired quality, in case of a
model with many optional single activities.

With these insights, we now turn to another problem that arises in manual
process execution environments. The next chapter deals with the question, at
which points it makes most sense to document a process.
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Having dealt with errors in documentation in the previous chapter, we now
also consider that manual documentation takes time and is costly. There-

fore, we want to identify the most relevant points, when documentation is re-
quired to produce optimal prediction results.

In terms of the business process lifecycle, we provide a method to assist config-
uration of a process. This method can also be employed to identify the optimal
selection of event monitoring points, when configuring a monitoring architec-
ture, cf. Section 2.4.

chapter outline

This chapter is structured as follows. First, we introduce the problem and de-
scribe the setting of monitoring in manual process environments in more detail.
We compare related work in Section 6.1 and present an approach to the prob-
lem in Section 6.2. We evaluate how well the approach performs conceptually in
Section 6.3. Finally, in Section 6.4, we discuss our approach and its limitations.
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introduction

When asked, physicians often complain about the burden of documentation. In
fact, in a survey in Maryland in 2007, more than half of the nurses reported
that they spend 25–50 percent of their shift with completing patient documen-
tation [82]. In the following, we concentrate on the use of documentation for
monitoring purposes.

One straightforward way to reduce time and cost is to avoid unnecessary docu-
mentation. Obviously, if certain documentation steps are required due to legal
reasons [27] or for accounting purposes, we cannot simply discard them. The
remaining documentation steps, however, should be examined more closely, and
we are interested in identifying the most relevant documentation steps. We mea-
sure the relevance of a certain documentation step in its effect on the monitoring
and prediction quality of the process.

Business process monitoring assists in performance estimation. For example, it
is required for the prediction of time until completion of a process instance or
the duration of certain activities, see Chapter 4 and our earlier work on proba-
bilistic monitoring [176]. Monitoring enables the detection of performance issues,
e.g., being behind schedule, so that corrective actions can be taken to finish the
affected instances as planned, and to avoid deviations from target goals and
service level agreements.

Recall that, in this thesis, we assume that a monitoring architecture, cf. Sec-
tion 2.4, is used in an organization. A monitoring architecture collects informa-
tion (e.g., manual documentation, logs) that is produced by process participants
and systems for monitoring and analysis purposes. Although there is ongo-
ing work on the topic of (semi-)automatic configuration of such architectures,
cf. [29, 158, 157], an automatic mapping between raw event sources and business
processes is not yet usable in production. Therefore, a high amount of manual
work is required to wire business processes with raw event sources.

By the terminology that we use in this thesis, we are binding event that re-
flect state changes from the IT landscape of an organization to event monitoring
points (EMPs), cf. Definition 6 on page 24. Recall that EMPs mark state changes
in the lifecycle of activities in a business process. Besides deciding, which tasks
process participants should document, we motivate the work in this chapter
also with the problem of manually wiring events in the process environment to
EMPs. We would like to have a means to decide, which events we should monitor
to ensure optimal prediction quality during the execution of business process
instances. Thereby, we want to keep the number of these configurations low,
because each additional installed EMP costs time and money.

6.1 related work

A related problem can be found in the research field of project management. There,
the optimal timing of control points within a project is important. Control points
are moments in a project where control activities are conducted to compare the
measured project state against the project plan. On the one hand, control activ-
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ities are required, because they allow the detection of project deviations from
the planned schedule and the implementation of corrective actions. On the other
hand, they produce direct costs, are time-consuming, and bind resources. There-
fore, the decisions to be made include:

• How many control points are required during a project?

• At which intervals should the project progress be controlled?

Partovi and Burton [152] evaluate the effectiveness of five control timing poli-
cies in a simulation study: equal intervals, front loading, end loading, random
and no control. These policies refer to the density of control points in a project.
It turns out that the heterogeneity of the projects, rendered comparison of the
policies infeasible. De Falco and Macchiaroli argue that individual allocation of
monitoring activities is required [67]. To that end, they provide a method to
quantitatively determine the optimal control point distribution by first defining
the effort function of a project based on activity intensity and slack time. This
knowledge (i.e., to know the phases of high activity) allows one to place control
points more densely in accordance with the activity.

Raz and Erel also rely on the notion of activity intensities [163]. They deter-
mine the optimal timing of control activities by maximizing the amount of in-
formation generated by each single control point. The amount of gathered infor-
mation is calculated based on the intensity of activities carried out since the last
control point and the time elapsed since their execution. Raz and Erel solve the
optimization problem by a dynamic programming approach. It seems promis-
ing to apply the same technique to the optimal allocation of EMPs in a process
model as well. In contrast to control points that can be distributed continuously
in a project, EMPs can only be positioned at well-defined places in a process
model, e.g., at the end of activities.

Another related use case for optimal allocation of control points is the capa-
bility to diagnose systems. In this setting, a diagnosis component of a system
(e.g., a microprocessor) tries to identify reasons for unexpected behavior [48]. A
set of sensors (observations) and a model of the system is required to detect
system components that are responsible for incorrect behavior. Installed sensors
divide the system into clusters. The connections between components inside of
a cluster are not monitored, only the connections with components outside of a
cluster can be observed. Ceballos et al. [48] present a concept to allocate a set of
new sensors to maximize the system diagnosability. Their approach maximizes
the number of monitored clusters with a given number of additional sensors.
To tackle the exponential complexity of this maximization problem, the authors
resort to a greedy algorithm. Their greedy algorithm considers bottlenecks in
the system as candidates for allocating one sensor at a time. This approach is
transferred to business processes in the work of Borrego et al. [40, 41]. They in-
stall control points within a process to identify the activities that are responsible
for deviating behavior from the process model. For the allocation, the authors
rely on the algorithm in [48]. Latter algorithm focuses on increasing the number
of monitored activity clusters. However, a maximum number of activity clusters
does not necessarily yield an optimal prediction quality.



100 selection of monitoring points

tA tB tC tD tE

tF tG tH tI

m1 m1'
m2 m3

m4 m5

m2' m3'

m4' m5'

Figure 40: Process model with differently allocated EMPs. In the first scenario
(m1, . . . ,m5) the EMPs are concentrated at the beginning and the end of the
process, while in the second scenario (m ′

1, . . . ,m ′
5), the EMPs are allocated

rather uniformly throughout the process.

6.2 optimization of the selection

In the following, we assume that an organization wants to reduce cost by only
configuring the set of event monitoring points in a monitoring architecture that
provides the highest prediction quality over the process duration. In other words,
the objective is to keep the uncertainty of the remaining process duration as low
as possible over the entire process duration. Let us illustrate this by an example.
Consider the sequential process in Figure 40.

In the figure, two configurations of EMPs are annotated: in the first scenario,
we measure the start (m1), the end of activity A (m2), the end of activity B (m3),
the end of activity H (m4), and the end of the last activity I (m5). In the second
scenario, the second measurement is after activity B (m ′

2), the third after D (m ′
3),

and the fourth after F (m ′
4).

Let us assume that the activities in this process are all similar—both in terms of
mean duration that they require for completion, as well as in the variance in their
duration. Then, we can sketch the uncertainty of the remaining process duration
as a function over time that is highest when we start an instance, and decreases
when we get more information about the progress of the process instance. Fi-
nally, when the instance completes, the uncertainty about the remaining process
duration becomes zero.

We can depict the uncertainties in a graph by using the elapsed mean time
as the x-axis, and the uncertainty of the remaining process duration as the y-
axis. Figure 41 illustrates the effect of the choice of EMPs on the uncertainty of
the process duration. Note the big block in Figure 41a, which indicates a long
period of high uncertainty in the process. A more uniformly distributed selection
of EMPs yields a more balanced amount of uncertainty during the execution of
the process, cf. the optimal allocation in Figure 41b.

The previous example showed the intuition of selecting a set of EMPs for
monitoring. That is, it showed the effects of which EMPs are selected. Another
question that appears in this context, is how many EMPs we want to install. Or—
translated to real life settings—how many activities should be documented by
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Figure 41: Inhomogeneous and homogeneous monitoring allocation. The overall uncer-
tainty of the process duration is depicted for the process in Figure 40. The
(a) first scenario allocates event monitoring points m1, . . . ,m5, and the (b)
second scenario allocates m ′

1, . . . ,m ′
5. We consider the configuration with the

smallest uncertainty area under the graph as optimal.

the process participants (or alternatively, how many EMPs should be configured
in a monitoring architecture).
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Figure 42: Minimal and maximal monitoring allocation. Distribution of uncertainty in
dependence of the number of EMPs. The width of a column is the mean
duration between the EMPs, the height is a measure of uncertainty, e.g., mean
square error. In (a), only start and end of a process instance is measured. In
(b), all EMPs are set up to reach the highest possible prediction quality.

In Figure 42, we consider two extreme cases. That is, we either only monitor
the start and the end of the process, as in Figure 42a, or we monitor the start of
the process and the end of every activity, as depicted in Figure 42b.

With this intuition of the problem, we can now proceed to the formulation of
the optimization problem that we solve in this chapter.

6.2.1 Problem Formulation

For this chapter, we restrict process models to consist of sequential activities only.
For each process, we require that it has a start event and an end event that can
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be monitored. The end event coincides with the termination of the last activity
in the process. Let us assume that the termination event of each activity can be
monitored, i.e., we can connect the termination EMP of each activity to an event
source from the process execution environment. Then, for each monitoring point,
we are interested in the remaining mean duration:

Definition 15 (Mean Remaining Duration) The mean remaining duration of a pro-
cess is a function meandur : EMP → R+

0 assigning to each event monitoring point
mi ∈ EMP the arithmetic mean of the durations from the time at mi until the termina-
tion time of the process which is captured by the termination of the last activity in event
monitoring point m(n+1).

The remaining mean duration is strictly decreasing from activity to activity in
sequential processes, as we do not consider activities with negative durations,
i.e., for all pairs of monitoring points (mi,mj) (with i < j ⩽ n+ 1, where n is
the number of sequential activities) it holds that meandur(mi) ⩾ meandur(mj).

Definition 16 (Uncertainty of the Remaining Duration) The uncertainty of the re-
maining duration is a function udur : EMP → R+

0 assigning a non-negative value to
an EMP. The function udur captures an uncertainty measure of the remaining process
duration.

We allow the domain expert to select an appropriate uncertainty function that
captures the uncertainty of the remaining duration at EMPs. An example mea-
sure is the sample variance, i.e., the spread of individual process durations from
the mean process duration at an EMP. More sophisticated measures of uncer-
tainty, as the RMSE that we used in Chapter 4, can also be computed, by simu-
lating a prediction at each EMP with a cross-validation of the event log. For the
method that we describe, it is only necessary that we can quantify the uncertainty
of the remaining process duration.

Definition 17 (Monitoring Uncertainty) Let GDT_SPN be a sequential process model
with the set of transitions T = {t1, . . . , tn} and the corresponding set of possible event
monitoring points EMP = {m1, . . . ,mn+1}, where m1 denotes the start of the process,
and each mi, 1 < i ⩽ n+ 1 denotes the firing of transition ti−1, i.e., the end of the
corresponding activity in the process. The overall uncertainty U in the process is defined
as:

U (m1, . . . ,mn+1) =

n
i=1

udur (mi) · (meandur(mi) − meandur (mi+1))

Note that, with this definition, we interpret the monitoring uncertainty as the
area under the stair-shaped uncertainty figures, cf. Figure 41, and Figure 42. We
formulate the problem of selecting the optimal event monitoring points (EMPs)
as follows:

problem : Find a subset of size k of the available event monitoring points, such
that the monitoring uncertainty U using that subset is minimal.
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Figure 43: Different combinations with same local optimal solutions. When choosing
k out of n potential EMPs, we can partition the EMPs into two parts, and
look at the sub-problem to choose p EMPs (p < k) out of the remaining q

EMPs. Then, as long as the last EMP mn−q is selected in the first part, the
combinations of k − p selected EMPs in the first n − q potential EMPs are
irrelevant for the remaining q EMPs. That is, their configuration does not
affect the remaining monitoring points, as latter only depend on the last EMP
in the chain.

6.2.2 Approach and Algorithm

Now that we have formalized the optimization problem, we can formulate the
solution algorithm for optimal placement of EMPs in a process model, such that
the overall uncertainty is minimal. The algorithm is inspired by the approach
in [163] that was proposed for the allocation of control points in projects. Notice
that in contrast to the approach in [163], where control points can be allocated
in arbitrary intervals (e.g., on a daily basis) in projects, the selection of EMPs
is only possible at well-defined positions, that is, at state changes of an activity.
Therefore, the maximum amount of EMPs is limited by the combinations of ac-
tivities in a process model and the state transitions of activities. In the examples
we have seen so far in this theses, we only encountered a single event per activity
that denoted the termination of the activity. This is but a coincidence, and can
be extended to more complex activity lifecycles [206]. For example, if we assume
an activity lifecycle with two transitions (events are mappable to the start and
the end of an activity), the maximum number of EMPs is 2n (with n being the
number of activities in the sequential process model).

The problem of selecting k EMPs optimally out of n potential EMPs is compu-
tationally complex. There exist


n
k


combinations to consider for a solution. For-

tunately, we can make use of the fact that a local optimal solution, i.e., which p

EMPs to select (with p < k) from q subsequent potential EMPs (with p < q < n),
only depends on the last selected EMP, and not on the entire combination of all
previously selected EMPs.

Figure 43 illustrates the property that for a remaining assignment of p out of
q EMPs, the combinations of the previous EMPs do not matter. More specifically,
there exist


n−q−1
k−p−1


combinations in this example for the previous n− q EMPs

(depicted as different allocations on the left hand side of Figure 43). All these
combinations share the same local optimal solution for the remaining p out of q
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EMPs. This makes a dynamic programming approach, as also proposed in [163],
feasible.

In optimization problems, it is possible to transform a problem into its dual,
that is a complementary form. We make use of this possibility, and instead of
minimizing the overall uncertainty U, we maximize the reduction of uncertainty
of a given number of selected EMPs. Note that in a sequential process model, the
allocation of an additional EMP mj reduces the overall uncertainty of the predic-
tion by the uncertainty of the activities since the last EMP mi. This reduction
applies for the remaining mean duration meandur(mj). The reduction of uncer-
tainty Ū can be interpreted as the white area that complements the stair-shaped
uncertainty area to a rectangle that is as high as the highest uncertainty at the
start and as wide as the mean process duration of the process. Thus, we define
the overall reduction of the uncertainty Ū of the allocated EMPs as:

Ū(m1, . . . ,mn+1) =

n
i=2

(udur(mi−1) − udur(mi)) ·meandur(mi) (24)

Note that this sum starts at index i = 2, because we require to monitor at
least the start and end of the process. In this term, each individual summand
represents the reduced uncertainty for the remainder of the process. Let mi,mj

be subsequently selected EMPs with i < j. We define Ū(mi,mj) as the removed
uncertainty by selecting mj:

Ū(mi,mj) = (udur(mi) − udur(mj)) ·meandur(mj) (25)

We are interested in the maximal reduction of uncertainty that we can achieve
by adding an EMP mj after the last EMP mi. We call this quantity Ū∗

1(mi):

Ū∗
1(mi) = max

i<j⩽n
(Ū(mi,mj)) (26)

However, we are even more interested in the EMP (i.e., the argument) that
maximizes the reduced uncertainty:

m∗
j1
|mi = arg max

i<j⩽n

(Ū(mi,mj)) (27)

With these equations, we mathematically captured the optimal solution for
adding one additional EMP. The problem, we try to solve is more complex, as
we are also interested in allocating two or more EMPs, given the last EMP. We
denote the multiplicity with an index. That is, Ū∗

2(mi) expresses the maximum
reduction of uncertainty with two additional EMPs after the last EMP mi:

Ū∗
2(mi) = max

i<j⩽n−1
(Ū(mi,mj) + Ū∗

1(mi)) (28)
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With this, we can also recursively define the more general formula for the
reduction of overall uncertainty by an additional k EMPs:

Ū∗
k(mi) = max

i<j⩽n−(k−1)
(Ū(mi,mj) + Ū∗

k−1(mj)) (29)

Again, we are interested in the arguments that yield the optimal reduction of
uncertainty, i.e., the selection of EMPs that maximize this formula:

m∗
jk
|mi = arg max

i<k⩽n−(k−1)

(Ū(mi,mj) + Ū∗
k−1(mj)) (30)

With this notation, we can reformulate the problem, cf. Section 6.2.1, as to com-
pute Ū∗

(k−2)(m1) (cf. Equation 29) (i.e., the maximum reduction of uncertainty
gained by k event monitoring points, given that two of them measure the start
and the end of the process), and return the arguments m∗

j(k−2)
,m∗

j(k−3)
, . . . ,m∗

j1
,

cf. Equation (30). To solve this problem, the proposed algorithm pursues the
following steps [172]:

1. Determine the set EMP of potential EMPs in the given process model. Let
n = |EMP| be the number of EMPs.

2. For each m1, . . . ,mn ∈ EMP calculate the remaining mean duration meandur(mi)

until process termination based on given historical execution data. We can
rely on the technique presented in Chapter 3 and compute the mean of the
discovered distributions of the activities.

3. Calculate the uncertainty udur(mi) of the remaining durations for each
potential EMP based on historical execution data according to the given
uncertainty function (or from the learned distributions).

4. Compute Ū∗
(k−2)(m1) for the given number k of requested EMPs by using

dynamic programming for searching through the

n−2
k−2


solution combina-

tions. Thereby, intermediate computed optima are stored to save time by
not recomputing such solutions. Note that by relying on dynamic program-
ming we pay with computer memory to improve computing speed.

With a small extension, the presented algorithm can be also used to determine
the required number of EMPs to meet a given uncertainty threshold. Therefore,
the algorithm has to be executed iteratively by incrementing the number k of
allocated EMPs, starting with 2, until the threshold is met. If the given threshold
cannot be met, even with all potential EMPs selected, this extended algorithm
returns the overall uncertainty inherent to the process to the user.

6.3 conceptual evaluation

In the previous chapters, we conceptually evaluated the quality of the methods.
In this chapter, however, we face an optimization problem, for which we find
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Figure 44: Selection algorithm runtime performance. The plot shows the durations in
seconds to find the optimal subset of EMPs in relation to the problem size.
The parameter k is set to 10 percent of the number of possible EMPs. Up
to selecting 100 event monitoring points out of 1000, the runtime of the algo-
rithm is under 2 seconds. Above the number of 1800 possible candidate EMPs,
computer memory shortage causes irregularities.

the optimal solution by enumerating all possible candidates. That is, we are
guaranteed to find the optimal subset of EMPs that yields the minimal uncertainty
of the remaining duration over time. Therefore, we only conduct a scalability
analysis, to see, at which model sizes the limits of the dynamic programming
approach are.

We tested the scalability of the algorithm in a controlled experiment. Therefore,
we randomly generated stair shaped uncertainty graphs with n = 50, 100, . . . , 2000
nodes and computed the optimal selection of k = n

10 EMPs in each run with a
laptop computer. Figure 44 depicts the results, that we also presented in [172].
Notably, determining the optimal allocation of 100 EMPs out of 1000 potential
candidate EMPs takes less than three seconds, cf. Figure 44. The number of pos-
sible combinations of allocation is


1000
100


= 6.4 · 10139. In this case, dividing the

problem into independent sub-problems, creates 3.9 · 107 optimization steps, of
which only 87 495 need to be computed, and the rest can be retrieved from the
dynamic programming table (i.e., cached result). Most business process models
that we encountered contain around 10-100 activities, which the algorithm could
handle very fast.

We shall investigate the effect and potential of finding the optimal allocation
of event monitoring points in the next part of this thesis, where we apply this
method in a case study with real data from a hospital surgery process.

6.4 discussion

We have seen that, conceptually, the algorithm can deal with large process mod-
els, but we need to point out the limitations of the current method and potential
future improvements. The major current limitations of the approach are:
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independence of activities Correlation between activities is not taken into
account explicitly.

sequential processes The presented algorithm is requiring sequential pro-
cesses at the moment. To a certain degree processes with decisions or cy-
cles could also be handled by this approach, if a single path in the model
is much more frequently taken than others.

Dependencies between activities are cumbersome, as they can cause the uncer-
tainty of the remaining process duration to rise from one EMP to the next EMP.
While in the motivation, we sketched the shape of the uncertainty graph as a
decreasing stair-shaped function, cf. Figure 41, it can occur that after an activity
that is negatively correlated with a subsequent activity finishes, the uncertainty
in the remaining process duration is higher after the second measurement than
after the first. Assume the extreme case that there are only two sequential ac-
tivities in a process that are negatively correlated with a correlation coefficient
of −1. That is, the durations of activities A and B are in a linear relationship,
such as αA+βB = constant. Then, the variance of A+B can be zero (in the case
that α = β), compared to the variance of the duration of the activity B, which is
greater than 0.

Such an extreme case could happen, if the process always took a fixed amount
of time, regardless of when the work was completed. In this case, measuring the
end of the first activity is indeed useless for estimating the remaining process
duration. It is enough in this case to know when the process started.

Although the algorithm does not explicitly support correlation information
on the uncertainty of the remaining durations, it does support the latter case
of negative correlation implicitly. That is, it would not select an EMP between
two negatively correlated activities, if the uncertainty of the second activity was
greater than the uncertainty of both activities combined.

The second limitation (i.e., the restriction to sequential process models) is due
to complex dependencies of EMPs in parallel branches of a process model. We
discussed some of the difficulties in [176], i.e., that it is possible to gain knowl-
edge about a parallel branch based on the occurrence of an event that is moni-
tored in another parallel branch in the process. Figure 45 shows that the influ-
ence of a single event monitoring point on a branch of a process extends to other
parallel branches. Notice that this effect is related to the flow of dependencies
in Bayesian networks, where paths of influence (i.e., sequences of consecutive
edges) exist in the graph and can be blocked by setting certain variables to a
value. See the discussion on paths of influence in probabilistic models in Pearl’s
book [155, Section 1.2.3].

An approximation of the solution to more complex processes structures would
be possible by numerical analysis, as proposed van der Aalst et al. in [6], and
detailed in the thesis of Reijers [166], and similarly by Eder and Pichler in [65].

We also want to mention the following minor limitations:

simplified model The uncertainty function assigns one value to each EMP.
However, as we have seen in Chapter 4, the distribution function of an
activity conditioned on elapsed time is changing, as time proceeds—unless
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Figure 45: Effect of an event on the distribution of a parallel branch. Upon the detection
of event e2 on a parallel branch, the estimation on the start time of the upper
branch gets updated from the original normal distribution N(5, 12) to the
more accurate conditional distribution N(5.917, 0.2752), cf. [176].

the duration is exponentially distributed. The uncertainty can decrease, or
even increase as time passes, which we did not consider in the optimization
problem.

model elicitation If we used the optimized selection approach to select
which event monitoring points should be connected in a monitoring archi-
tecture, we would require performance models to optimize the selection.
We would not have the performance data, however, and could use expert
estimates, or it would be possible to manually sample duration of process
activities.

Although there are some limitations to the approach, we provide means to
select the event monitoring points (EMPs) for an optimal prediction quality. The
mathematical formulation allows to use any uncertainty function udur in the com-
putation. An obvious extension is to assign weights to EMPs that can be added
to the optimization function (cf. Equation 24) by prioritizing specific EMPs. For
example, differing setup costs could be taken into account this way, too, without
increasing the complexity of the problem or the algorithm.
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I M P L E M E N TAT I O N I N P R O M

We implemented the methods and algorithms that we proposed in the previ-
ous part in ProM1 (see also the report on ProM by van Dongen et al. [62]).

chapter outline

This chapter is dedicated to the implementation and it also highlights design
decisions. Readers who are not interested in implementation aspects can skip
this chapter and continue reading the application of the concepts to real use cases
in Chapter 8. Here, we first give an introduction to ProM in Section 7.1. Then, we
describe the technical details of the GDT_SPN model and the extension in the
Petri Net Markup Language (PNML) format in Section 7.2. Finally, we describe
the implemented plug-ins and the architecture in Section 7.3.

1 The ProM framework http://www.promtools.org

111

http://www.promtools.org


112 implementation in prom

Figure 46: Screenshot of the user interface of ProM. Here, several objects are loaded in
the object pool, i.e., a GDT_SPN model (selected), and three event logs. The
available objects can be processed with plug-ins, e.g., we could mine a Petri
net model from an event log.

7.1 introduction to prom

ProM is an open-source framework for collecting tools and applications of pro-
cess mining [62]. The framework is written in the programming language Java [80]
and is extensible by packages. These packages can contain plug-ins that are in-
cluded by the framework and provided to the user for execution.

The ProM framework is actively maintained, such that it matured to a profes-
sional level [202]. Some of its highlights include the following [202]:

• clear separation of plug-in functionality and the graphical user interface

• a common object pool that serves as input and output to plug-ins

• plug-in variants for overloading of plug-ins to handle different input sets

Beside these mentioned features, the fact that it is maintained as free software
helped to make ProM a successful toolkit. By the time of writing this thesis, the
ProM website lists more than 500 plug-ins in more than 120 packages2 available.

An architectural description of the ProM framework is not in the scope of this
thesis. Instead, we refer to the documentation available in [202]. Figure 46 shows
the user interface of ProM with the available objects that can be analyzed with
the installed plug-ins.

Next, we describe the extensions in ProM that implement the concepts that we
introduced in the previous parts.

2 http://www.promtools.org/prom6/ (last accessed on April 25, 2014)

http://www.promtools.org/prom6/
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7.2 pnml exchange format

First, we need to capture the extensions to Petri nets, which we support, i.e.,
GDT_SPN specific attributes, such as priority, weight and distribution of transi-
tions. We did not have to create the entire GDT_SPN model specification from
scratch, as Petri nets are already supported in the ProM framework—in fact, the
very first discovery algorithms generate Petri nets from event logs [12].

As standardized format for exchanging Petri nets between tools the Petri Net
Markup Language (PNML) was developed [37]. The specification provides an
extension mechanism, which can be used for adding specific properties. For our
work, we made the design decision to use the available extension mechanism,
instead of waiting for the promised third version of the PNML specification.

It turned out that with only a few extensions to the Petri net model, we are
able to capture the entire GDT_SPN model. Recall, that GDT_SPN models are
Petri nets with additional properties for transitions, i.e., priority, weight, type
(immediate or timed), and distribution of the duration.

We define an extension in the toolspecific element that can be added to all
elements in the PNML specification [37]. The extension is kept minimal. That is,
for each property that we require for transitions in GDT_SPN models, we add a
key-value pair.

This is best illustrated with an example. Suppose we want to serialize a timed
transition tA with weight W(tA) = 0.5, with priority P(tA) = 0, with a normal
distribution with mean µ = 12 and standard deviation σ = 2.7. Then, the transi-
tion’s representation in PNML can be written as:

<transition id="tA">

<name>

<text>A</text>

</name>

<graphics>

<!-- omitted -->

</graphics>

<toolspecific tool="StochasticPetriNet" version="0.1">

<property key="priority">0</property>

<property key="weight">0.5</property>

<property key="distributionType">NORMAL</property>

<property key="distributionParameters">12;2.7</property>

</toolspecific>

</transition> �
The PNML standard allows to extend the Petri net model in arbitrary fashion
with the toolspecific element. The only requirement is that the name of the
tool and a version number is given [37]. Our extension is currently using the
StochasticPetriNet name and a preliminary version number of 0.1. We assess
this extension as preliminary proof-of-concept, and extensions (e.g., raw data,
censored data, time units) might be added to the model in the future.

Notice the four properties that we added to the transition through this exten-
sion. The keys are predefined, but self-explanatory, e.g., distributionType for
the type of distribution. The key and value for priority and weight of a transition
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are added as integer, and float values respectively. The distribution is specified
by both a type (distributionType) and parameters (distributionParameters).
Table 1 lists the distribution types that are currently supported for transitions in
GDT_SPN models:

Table 1: Supported distribution types and their PNML keys.

distribution type value in PNML parameters

Immediate IMMEDIATE 0

Normal NORMAL 2

Log-normal LOGNORMAL 2

Exponential EXPONENTIAL 1

Beta BETA 2

Gamma GAMMA 2

Uniform UNIFORM 2

Student-T STUDENT_T 2

Weibull WEIBULL 2

Gaussian kernel density GAUSSIAN_KERNEL unbounded

Histogram HISTOGRAM unbounded

Log-spline density LOGSPLINE unbounded

Deterministic DETERMINISTIC 1

The number of parameters for the distributions vary, if more than one param-
eter is required, the values are separated with semi-colons (;). For example, the
immediate transition does not require any parameters, because it takes by def-
inition always 0 time. Another example is the deterministic distribution, which
only requires one parameter specifying the time point, when it usually fires.
For non-parametric distributions (e.g., histograms, log-spline distribution), we
store the raw data in place of parameters, i.e., the sample points to which a
non-parametric distribution can be fit.

With these four extensions for transitions in regular Petri nets, we are able
to capture the full GDT_SPN model specification, as given in Definition 4. We
will now introduce the plug-ins that we developed for the presented conceptual
methods of Part ii.

7.3 implemented plug-ins

To be able to work with the GDT_SPN model, we extended the ProM Petri net
classes by subclasses that capture the additional stochastic information. First, we
need plug-ins to be able to read and write this format.
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Figure 47: Import plug-in for stochastic PNML models.

Import and Export of Stochastic Petri Nets

We realized the import and export with the eXtensible Markup Language (XML)
serialization framework Simple3 that can be configured by annotating the classes
and attributes and provides serialization to and de-serialization from XML. The
respective plug-ins are registered in ProM and the user can select the format
StochasticPetriNet when opening a PNML file. When a GDT_SPN model is
obtained from historical data, this plug-in can export the model to the PNML
format with the extensions described in Section 7.2.

We also want to be able to import previously exported (or manually created)
GDT_SPN models from PNML files. Figure 47 shows the choices for available
Petri net formats in ProM. The selected entry PNML Stochastic Petri net files marks
the import plug-in that can be used to de-serialize GDT_SPN models.

Enriching Petri Nets with Stochastic Information in ProM

We implemented the enrichment algorithm (cf. Section 3.4) in ProM as a plug-
in taking two arguments: (1) an event log and (2) the Petri net model. The two
arguments are aligned to each other by the cost-based alignment technique that
is presented in [15], and also implemented in ProM in the PNetReplayer package.
Once aligned, the collection of stochastic information can start. Therefore, the
user needs to specify a distribution type, the time unit to be used in the enriched
Petri net (e.g., whether the mean of a normal distribution is expressed in minutes,
hours, or days), and the execution policy, cf. Section 3.3, which the model shall
obey.

We use standard statistical techniques to fit simple distributions to the data.
For the non-parametric case that is able to deal with censored data, we rely on the
log-spline algorithm by Kooperberg [114], which is implemented in the statistics
software R4. The output of the plug-in is a GDT_SPN model, which can not only
be used for gaining insights into the process (i.e., identify bottlenecks, comparing
frequency of paths), but also for monitoring and predicting termination time of
process instances, or reasoning about missing documentation.

3 Simple – XML serialization: http://simple.sourceforge.net/
4 The R Project for Statistical Computing: http://www.r-project.org/

http://simple.sourceforge.net/
http://www.r-project.org/
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Figure 48: An obtained model with stochastic information. The probability density func-
tion of the selected timed transition is visualized in a frame below the model.

In Figure 48, we can see the plug-in that visualizes the additional stochastic
information stored in a GDT_SPN model. The graphical representation of the
probability density function of the currently selected transition is realized using
the JFreeChart library5.

Prediction of Remaining Durations in ProM

At the point when we extended the Petri net model in ProM, there were already
several semantics implemented for different flavors of Petri nets. The extension
to generally distributed transition stochastic Petri net (GDT_SPN) models turned
out to be simple. However, after some experimentation, we found out that the
implementation could be optimized, e.g., finding the enabled transitions of a
marking in a bounded Petri net can be done in constant time, by precomputing
the reachable markings.

Functionality to determine which transition is enabled in the simulation, as
well as to take random samples of the probability distributions of the timed
transitions, can be implemented efficiently. As described in Section 4.2.2, we need
to be able to draw random samples from the truncated distributions of timed
distributions for simulating the remaining process duration. The simplest way to
draw random samples from truncated distributions is to do rejection sampling.
Rejection sampling draws a sample from the unconditional distribution, then
checks whether it fits the condition, and either accepts it as valid sample, or
rejects it, if it does not match the condition, and repeats this process until a

5 JFreeChart: http://www.jfree.org/jfreechart/

http://www.jfree.org/jfreechart/
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valid sample is drawn. This technique is very useful for distributions, for which
efficient sampling techniques are known in the general case. If the truncation
is extreme, i.e., most of the probability mass is truncated, this technique suffers
from inefficiency, as the probability to obtain valid samples can near 0. For that
case, we resort to the following method.

Slice sampling is a very efficient sampling method to sample from arbitrary
distributions [149]. It only requires that we are able to compute the density of a
probability distribution. Note that we provided the formula of truncated distri-
butions in Section 4.2.2. Slice sampling works by performing a random walk in
the two-dimensional area under the density function. In slice sampling, uniform
sampling alternates in horizontal and vertical slices of this area. The samples stay
within the boundary of the density function. The values of the horizontal coor-
dinates are collected after each iteration, and they converge to the distribution
described by the density function. Neal has shown latter property for density
functions f, where f(x) > 0 for all x, cf. the original article in [149].

However, convergence is not guaranteed for all cases. For instance, it is pos-
sible to design a very extreme probability distribution, which has two modes
that are far away from each other, and in between the probability is zero. Then,
the random walk under the density function will have no chance to reach the
second mode in practical implementations of the algorithm. Note that such theo-
retical extreme cases are irrelevant for durations in practical business processes.
Usually, if there is a chance that an activity takes much longer than usual, there
should also be a chance that it finishes at some point in time between the usual
and that long duration.

Note that when dealing with probability values, zero probabilities should be
avoided or used with great caution, as a probability value of 0 stands for im-
possibility. For our case of modeling durations, it is reasonable to assume that a
duration cannot be negative, but to exclude intervals between probable durations
is not a sensible thing to do.

Another property that we need to be aware of, when relying on slice sam-
pling, is that subsequent samples in a sequence of samples are correlated. This
unwanted effect is negligible for unimodal distributions, but can be observed
for multimodal distributions, where transitioning from one mode to another is
unlikely. We can mitigate the effect in any case, by taking a sufficiently large
number of samples (i.e., enough samples such that the distribution is approxi-
mated), and shuffling the samples randomly before returning them.

We can conclude that although in theory there might be some issues with
slice sampling, the technique offers a very efficient way to produce samples in
practical use cases. We will evaluate the efficiency of the sampling methods in
Chapter 8.

Repairing Event Logs with Missing Entries

For brevity, we only highlight the design decisions made for implementing the
method to reason about the missing events in Chapter 5. The input to the algo-
rithm is an event log and a GDT_SPN model.
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Again we use the alignment method to choose the path through the model
for an individual trace. The second step (i.e., performing inference to gain in-
sight into the unobserved parts in the trace) is done by converting the GDT_SPN
model into a Bayesian network. Note that before conversion, we get rid of cycles
by unfolding according to the alignment, as described in Section 5.3.2. We then
convert the model to a Bayesian network that we build in the Bayes Net Toolbox
for Matlab (BNT) [141]. If the duration distributions are not normally distributed,
however, we approximate them with normal ones by computing the first two mo-
ments, i.e., the mean and the variance of the distributions. The resulting Bayesian
network is a linear Gaussian model, and the inference is done by the (BNT) im-
plementation. We collect the results and store both the most likely timestamp,
as well as the marginal distributions for events that are missing according to the
model in the log.

The inference procedure is a computationally intensive task. We use Octave6,
a free Matlab-clone, for running BNT [141]. To increase performance of the al-
gorithm, we support parallelism by splitting the inference to multiple worker
threads. The user can select how many worker threads to create, and can thereby
utilize additional processor cores.

Optimally Selecting Event Monitoring Points

Finally, we also implemented the algorithm for optimally selecting EMPs in order
to reduce uncertainty. We build the selection on the existing TransitionSystems

plugin [201]. The uncertainty function udur can be selected to be an error mea-
sure (e.g., the mean absolute error, or the root mean square error) from a cross-
validated prediction experiment, or simply based on the sample variance of the
remaining duration at each EMP.

Figure 49 shows the user interface to the selection of monitoring points. The
visualization presents the uncertainty graph that decreases over time as more
information gets available at the EMPs. The user can select the desired number
of EMPs on the top left of the figure. The maximal monitoring effort (i.e., when
using all EMPs for prediction) overlays the optimal allocation given the desired
number of EMPs. This allows the user to compare the relative uncertainties of
the selections. The optimal selection of the possible EMPs are highlighted with
an arrow and bold type. The uncertainty function can be selected to be either
computed directly from the samples (e.g., to use the sample variance), or by
a simulated prediction experiment using cross validation (e.g., to compute the
RMSE of the predictions at each EMP).

With the implementation of the concepts, we evaluate the contributions of this
thesis with case studies in the next chapter.

6 GNU Octave http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/
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Figure 49: Uncertainty visualization and optimal selection of EMPs. In the figure three
EMPs are selected, that is, the algorithm computed the optimal position of m2,
while m1, and m3 are fixed at the start and end of the process. As uncertainty
function udur, the sample variance of the remaining durations is selected. The
overall uncertainty area is normalized by division of the maximal uncertainty
value and the overall mean process duration to an area of 1. This way, the
overall uncertainty of the selection of EMPs can be compared to the setting of
selecting all event monitoring points.
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E VA L U AT I O N W I T H C A S E S T U D I E S

In the previous chapters, we laid the foundations and introduced the con-
cepts of discovery, prediction, imputation and cost-efficient allocation of mea-

surement points. Here, we evaluate the applicability of these concepts for real
life settings. Fortunately, in the course of this dissertation, we got access to pro-
cess data of a hospital, a logistics provider, and an insurance company. We use
this data to check, whether we can still observe the improvements encountered
in the conceptual presentation.

chapter outline

This chapter is organized as follows. First, we introduce the industry use cases
with which we evaluate our approaches in Section 8.1. To evaluate the discovery
method, we measure the bias between discovered GDT_SPN models and real
event logs in Section 8.2. Then, to evaluate the prediction method, we compare
our approach with state of the art work on prediction and benchmark methods
in Section 8.3. Further, in Section 8.4, we evaluate the repair approach with the
use cases. Last, we evaluate the optimization of monitoring points in Section 8.5.
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8.1 industry use cases

In this section, we introduce the processes that are used for the evaluation of the
concepts in real settings.

Surgery Process in a Clinic

Recall that we are motivated by the settings encountered in hospitals to work
with probabilistic models in this thesis. Therefore, the first use case that we in-
vestigate is the surgery process of a hospital that comprises treatment relevant
steps. Efficient management of the surgery process is decisive for hospitals, be-
cause the operating room is usually their most costly asset [124].

We use data from a Dutch university clinic, which we also analyzed in [110].
The process is depicted as a Petri net model in Figure 50. It is a rather sequential
process that deals with both outpatients and ordered inpatients. Each transition
corresponds to a treatment step that a nurse records in a spread sheet with
timestamps. In the process, the patient is either ordered from the ward, or ar-
rives through the emergency department. Latter option is not recorded in the
documentation that we obtained, resulting in the missing transition on the lower
branch. Later at some point, the patient arrives in the lock to be prepared for
the surgery. Once the operating room (OR) is ready, the patient leaves the lock
and enters the OR. In the OR, the anesthesia team starts the induction of the
anesthesia. After that, the patient optionally gets an antibiotics treatment. The
surgery starts with the incision (i.e., the first cut with the scalpel) and finishes
with the suture (i.e., the closure of the tissue with stitches). Next, the anesthesia
team performs the emergence from the anesthesia, which ends when the patient
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Figure 50: Surgery model. The Petri net model for a surgical procedure in a Dutch hos-
pital.
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has regained consciousness. Finally, the patient leaves the OR and is transported
to the recovery.

In the corresponding event log 1310 cases are recorded. According to the
model in Figure 50, there are twelve mandatory events and two optional events
that can be observed. As we have investigated [110], there exist some confor-
mance issues, i.e., missing events for some of the mandatory events, as well as
swaps in the order of the tasks. Consider the antibiotics treatment that is op-
tional in the model and only allowed after the induction to anaesthesia and
before the incision. In the event log, out of 295 cases, where antibiotics treatment
was documented, only 183 happened at this exact position in the process [110].
This kind of non-conformance often appears with real data that is not recorded
by a process execution engine, and proves to be an additional challenge for the
conceptual methods we introduced in Part ii. Later in this chapter, we shall see
how strong these non-conformance issues affect our approach.

Shipment Import Process of a Logistics Provider

To demonstrate the more general applicability of our methods to other domains,
we also evaluate the methods on a process that we encountered at a logistics
provider in the Netherlands.

arrival of
seavessel

discharge
container

pick up
container by

inland
transport

Figure 51: Logistics process model. The process model captures three sequential stages
of a logistics process: the arrival of seavessels, container discharges, and fur-
ther inland shipping.

Figure 51 depicts the model of the import process. Each case in the event log
reflects a container. The corresponding event log contains event entries for each
of the transitions in the model. First, a sea vessel arrives, then, the container is
discharged, until it finally is picked up by inland transport to reach its destina-
tion in Europe. In this example, the conformance between log and model is very
good because of the high degree of automation and standardization. In fact, the
fitness between model and log is 1, that is, the log fits the model perfectly.

Loan Application Process of a Financial Institute

As a third process, we analyze the loan application process of a Dutch financial
institute. The event log contains 262 000 events in 13 087 cases. In contrast to
the previous two event logs, which we cannot disclose, this event log is publicly
available [60]. The event log is very detailed and comprises three different related
processes. We only consider the top-level process that is depicted in Figure 52.
See also the analysis by Adriansyah and Buijs [14].

In Figure 52, we see a Petri net model that captures the top-level process of
the loan application. On this level, we find the typical stages of a successful
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Figure 52: Loan application process model. This Petri net process model captures a high
level view on a loan application process. Besides the sequential happy path
(i.e., submitting, preaccepting, accepting, finalizing, and approving the loan),
there is also the option for the client to cancel the loan or for the clerk to
decline it.

loan application, i.e., first the loan is submitted, then it gets preaccepted, then
accepted, and after finalization it is approved. Beside this regular path, the client
can cancel the loan application, or the clerk can decline it at several stages. Notice
that not all choices are present in the model, e.g., the clerk cannot accept and
immediately reject the loan afterwards. Although this might be possible in reality,
the model is based on the observable behavior of the process, where such a case
did not occur.

8.2 obtained process models

When we introduced the method to obtain a generally distributed transition
stochastic Petri net (GDT_SPN) model from an event log and a matching Petri
net model in Chapter 3, we looked at the introduced bias of the technique on an
artificial process model. Therefore, we compared the accuracy of the obtained
distribution of individual timed transitions and the accuracy of the transition
weights at decision points. We already saw the effects of log size (i.e., the num-
ber of samples) on the learned model parameters.

In this section, we evaluate how well we can learn the behavior of a process,
i.e., how well the obtained model reflects the overall process. To achieve this, we
perform the following experiment. We first enrich Petri net models for each of the
use cases in Section 8.1, and obtain GDT_SPN models. We use latter to simulate
traces of execution of the process model and compare the traces with the original
ones. When we have collected enough sample traces, we can calculate simple
statistical measures, e.g., the sample means, but we can also compare the two
distributions by statistical tests, e.g., the Kolmogorov-Smirnov test. This way, we
can test how well the learned model is able to reproduce the observed behavior.
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(b) Quantile-quantile plot for the real surgery
durations and the simulated durations.

Figure 53: Surgery process model results. The simulated results are compared with the
observed results. We see that much of the probability mass overlap. The
shorter surgery duration values, however, are underrepresented in the sim-
ulated traces.

Obtained Model Quality for the Surgery Process

To obtain GDT_SPN models, as described in Chapter 3, we need to choose certain
parameters of the model, that is, the selection policy and the distribution family
of the timed transitions. For the surgery process model, see Figure 50, the choice
of selection policy has no effect, because it contains no parallelism or loops. For
estimation of the timed transitions we rely on the work of Kooperberg [114]
that uses log-spline density estimators. In that approach, the overfitting prob-
lem is mitigated by the provided implementation—The implementation uses the
Akaike information criterion (AIC) [20] that penalizes models with too many de-
grees of freedom. Thus, a certain balance between overfitting and generality of
the learned distribution is provided.

To compare with the real 1310 traces, we simulated an equal number of arti-
ficial traces. Figure 53 shows two alternative visualizations to compare the real
traces with the simulated traces from the obtained model. We can interpret the
histogram representation as follows: the simulated (blue diagonal stripes) traces
contain less cases with short durations up to two hours, but more cases that
take two to five hours. The histogram of the simulated durations is shifted to
the right and is also narrower than the histogram of the original durations (red
vertical stripes), which shows the bias that we have between the model and the
real traces.

There are several potential explanations for the model bias. The most impor-
tant one is the quality of the event log. As we discussed in [110], there are missing
entries in this manually documented event log, such that only 540 traces out of
1310 fit the model exactly. For example, there are traces where only the ordering
of the patient and the arrival in the lock is documented, see Figure 50, which
results in underestimation of the real surgery duration in the real traces. Our ob-
tained GDT_SPN model assumes that no event is forgotten and that a simulation
always yields full traces that fit to the model.
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(b) Quantile-quantile plot for the real surgery
durations and the simulated durations.

Figure 54: Logistics shipment process results. .

Besides the effect of missing data on the learned model, another source of
bias is that our obtained GDT_SPN model is not able to capture dependencies
between activities. For example, it might be that for simple surgeries each step
is short, or all activity durations tend to take longer due to other causes, e.g., too
many patients waiting in parallel.

Obtained Model Quality for the Shipment Import Process

We use the same setting, as for the surgery model, i.e., the log-spline approxima-
tions to the timed transitions. In Figure 54, we compare the real durations from
arrival of the container to pick up by inland transport with the simulated dura-
tions. Note that in this scenario we do not face the problem of missing entries,
as in the surgery case. We also see that the acquired model is able to reproduce
the observed behavior quite well.

The mean real duration is 4 days and 39 minutes. The mean simulated du-
ration is 4 days and 8 minutes, which accounts for a bias of 0.54 percent. The
standard deviation of the real duration is 54 hours and 14 minutes compared to
50 hours 51 minutes for the simulated traces. This accounts for a 6.26 percent
lower standard deviation in the simulated cases. Although here, the model is
not able to capture the full variance of the process, a two-sample Kolmogorov-
Smirnov test for equality fails to reject the hypothesis that the two samples are
from the same distribution with a p-value of 0.189. In other words, the probabil-
ity that both the real traces and the simulated traces could have been generated
by the same underlying distribution is not small enough to reject the hypothesis.

Obtained Model Quality for the Loan Application Process

Last, we obtain a GDT_SPN model for the loan application process and compare
the simulated traces with the observed traces. Figure 55 shows the histograms in
comparison and the quantile-quantile plot for the real traces and the simulated
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Figure 55: Financial loan application process results. Except for a few outliers (simulated
traces can take up to 120 days, whereas the longest real trace took about 80

days) the approximation of the learned model can be read from the overlap
of the histograms or the rather straight line of the quantile-quantile plot on
the right.

ones. The mean duration of the real traces is 8 days,18 hours and 53 minutes,
compared to the mean simulated duration of 9 days, 1 hour and 41 minutes.
This yields a bias of 3.2 percent for the mean. The standard deviation of the
simulated durations is only 0.35 percent smaller than that of the real durations.

real simulated bias

surgery process duration
mean 3.364 h 3.777 h +12.28%

sd 2.840 h 2.315 h -18.49%

import process duration
mean 4.027 d 4.005 d -0.55%

sd 2.261 d 2.119 d -6.28%

loan appl. process duration
mean 8.787 d 9.070 d +3.22%

sd 12.642 d 12.598 d -0.35%

Table 2: Means and standard deviations of durations. Units are either hours (h) or days
(d). The bias is calculated as percentage value compared to the values of the real
traces.

Table 2 summarizes the three use cases and shows the overview of the mean
durations and sample standard deviations of the real case durations for each use
case. These values are compared with the simulated traces sample statistics and
the bias is shown as relative difference. We can read from the table that for the
surgery case we get the worst approximation (i.e., the highest bias), but as we
discussed earlier this is expected due to the high amount of missing entries. In
fact, if we mine a process model from the traces, we get a spaghetti-like model
with a lot of possible traces.
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Discussion

In our sample of real-world processes, the independence assumption, i.e., the
assumption that activity durations are independent, did not yield large biases
in our models. We are unable to make a general claim to the validity of this
assumption, because there might be cases where dependencies between activ-
ity durations are more prominent. Therefore, before using this framework, the
process should be checked for strong dependencies between activity durations.

The worst results of the model were achieved for the surgery process. Here,
we compare a log that faces the challenge of many missing events that are re-
sponsible for short case durations, with traces that fully comply with the model
in figure 50 on page 122. Obviously, comparing full traces with parts of traces
explains that in the real log, there are more traces that have very short durations,
also increasing the overall variance.

We argue that overall, the observed bias is acceptable given that in reality
there can be many influential factors that cause side effects, e.g., dependencies
between variables, or dependencies on other factors. In the extreme case that
only the duration of one single activity is measured in a process, we can always
produce a model with no bias of the mean, even if the distribution is bi-modal.
To also capture the second moment (i.e., the variance) of the duration correctly,
we use the logspline fitting approach [114]. This non-parametric approach can
theoretically fit any distribution.

Our method has difficulties in capturing the variance in the import process.
This indicates that the activity durations are positively correlated to some ex-
tent. Further investigation has shown that the correlation of the two durations
recorded in the process (i.e., from arrival to discharge, and from discharge to
pick-up) is 9.76 percent. Latter explains the reduced variance in the simulated
traces, which is based on the assumption that the durations are independent.

8.3 predicted remaining durations

In this section, we evaluate the prediction approach presented in Chapter 4 with
the real use cases. We follow the same experimental setup that we used for the
conceptual evaluation of the prediction approach. The difference is that we do
not have the theoretical model, and it is not guaranteed that we can capture
the process characteristics with the obtained GDT_SPN model. Recall the exper-
imental setup that is depicted in Figure 29 on page 74. Again, we perform a
10-fold cross validation using nine parts of the log as training data and one part
as test data. We measure the prediction accuracy for each trace in at 2N points
in time, such that the Nth point in time is the mean process duration. As in the
conceptual evaluation of the prediction approach, we set N to 20.

Figure 56 shows the results for the three industry case studies that we intro-
duced in Section 8.1.
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(b) RMSE in days for the shipment import process at 40

periodic predictions.
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(c) RMSE in days for the loan approval process [60] at 40

periodic predictions.

Figure 56: Prediction quality for logistics process. The root mean square errors are col-
lected for periodic prediction iterations of the case studies. Thereby, a 10-fold
cross validation is performed on the data with 40 periodic predictions, s.t. the
20th iteration is at the mean duration.
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Surgery Process Prediction Results

Our first case study is the surgery process. As discussed in Section 8.1, we face
a problem of missing data in the event log of the surgery process. To reduce the
effect of missing data, we filter out non-fitting cases and use only the 570 cases
that fit the model. Figure 56a shows the results for the surgery process. The first
15 iterations are zoomed in to show the details. It is remarkable that at the first
iterations our prediction approach performs worse than the competing method
based on annotated state transition systems [10]. Latter does not split the remain-
ing process duration into individual independent activity durations as we do in
our approach. Therefore, dependencies between activity durations are implicitly
captured. At around the 13th iteration, by conditioning activity durations on the
elapsed time, our approach outperforms the other approaches. Note that due
to the small variability in the surgery process, the benchmark methods collapse
to the same prediction quality. In comparison to the conceptual evaluation, the
difference between the approaches is not that pronounced, however.

Shipment Import Process Prediction Results

Next, in Figure 56b, we evaluate the prediction approaches with the logistics
process. This process only has three transitions, i.e., two time spans can be mea-
sured in between, cf. the model in Figure 51. Additionally, these two durations
have a high variability. Our approach can capitalize on the additional knowledge
of passed time, and the GDT_SPN model with conditional distributions yields
significantly better results than the comparison methods.

For this use case, the different abstraction levels of the comparison method [10]
collapse to the same results, cf. Figure 56b, because the process is sequential. The
GSPN method yields on average comparable results to the benchmark. We can
observe, however, that our approach produces more accurate predictions of the
remaining process duration.

Loan Approval Process Prediction Results

For the loan approval process the prediction models—except the simplest model
that only averages remaining time—produce comparable results until reaching
the mean duration, i.e., the 20th monitoring iteration. For the cases that take
longer than the average, the Petri net based prediction methods (i.e., the GSPN
approach and our prediction approach using conditional probabilities in the
GDT_SPN model) outperform the benchmark method based on annotated state
transition systems [10].

Note that the simpler GSPN based method, that is, using a model with expo-
nential distributions for the activities, performs almost as well as our more flex-
ible approach. This indicates that the process activities are well approximated
with the exponential distribution. The implicit assumption of the exponential
distribution applies here, that is, events have a certain rate of occurrence, and
that rate is independent of how long we waited before.
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Figure 57: Prediction algorithm performance. Prediction durations for differently sized
randomly generated, acyclic GDT_SPN models. Axes in log-scale.

Another characteristic of this process is that the best average prediction is not
accurate, as the error is in a range of 10–15 days.

Summary

To summarize the qualitative evaluation results, the following characteristics of
our approach can be observed:

• At early prediction periods, the approach performs about as well as the
benchmarks.

• The improvements become more significant as time proceeds.
• The approach is most valuable for long running cases, which are critical to

be detected and avoided.

Scalability Analysis

We propose to use simulation as means to predict the remaining service exe-
cution time for a running case. Therefore, it is interesting to see how long the
prediction approach takes to simulate the remaining behavior of the process. To
test for scalability, we conduct the following experiment.

First, we randomly generate structured, acyclic GDT_SPN models of differ-
ent sizes by iterative insertion of sequential, parallel, and exclusive blocks, until
we reach the desired node size of the net. For each timed transition we spec-
ify a distribution, i.e., either uniform, normal, or lognormal distributions, or non-
parametric Gaussian kernel density estimators based on a random number of
observations. In general, the run-time of the prediction algorithm depends on
multiple factors:

• The average number of transitions that need to fire to reach the end of the
process, influenced by the size of the net, the progress of the current case,
and potential cycles.
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• The kind of transition distributions, as there exist distributions that are rather
costly to draw samples from, e.g., complicated non-parametric models, as
well as very simple models, e.g., the uniform distribution.

• The requested accuracy of the prediction. Besides the fact that computing a nar-
row confidence interval takes more samples than allowing more sampling
error, the variance of the process durations also influences the number of
samples required to achieve the requested precision.

• The computing power of the system running the simulation.
For our experiments, we fixed the requested accuracy to a 99 percent confidence
interval within maximum ±3 percent of error of the mean remaining duration.
Regarding computing power, we used a regular laptop computer with a Pentium
i7 620M (2.66 GHz cores) equipped with 8GB of ram. We varied the other two
factors, i.e., the average number of transitions and the kinds of distributions used.
Figure 57 depicts the average time taken for remaining time prediction of acyclic
GDT_SPN models based on the number of transitions in the model in log-scale.
For example, predicting the duration of a medium sized model (100 transitions)
takes around 300 milliseconds for rather expensive non-parametric Gaussian ker-
nel density estimation. Prediction of models with lognormally distributed values
takes long because of higher variance. Note that a prediction of a model with
10000 transitions still is feasible in less than 100 seconds with these configura-
tions.

In our experience, most business processes involving human activities take
hours, days, or sometimes even months to complete. In these situations, the qual-
ity of the prediction is more important than the performance of the prediction
approach. If performance is critical however, the approach could be extended to
provide a fall back option to an analytical method based on GSPN models, as
implemented in [218].

8.4 repaired missing data

In this section, we examine how well the missing data imputation works in a real
setting. We motivated the imputation approach that we presented in Chapter 5

with our observations in manual processes, i.e., we encountered around ten per-
cent of forgotten documentation in a hospital event log [110]. Now, we use that
real-life log and investigate how well we can restore artificially forgotten events.

The experimental setup is depicted in Figure 58. We do a similar experiment,
as in the conceptual part (see Figure 35). The problem is that we do not know,
if an event that is missing from the event log is a documentation error, or if the
corresponding activity was not performed. Even with our assumption of a nor-
mative model (i.e., that the model captures the execution), we have no means to
evaluate how well our imputed values fit the supposedly missing events. There-
fore, we need to conduct a controlled experiment. To obtain actual values to
compare our repaired results with, we first acquire traces that fit the model. We
perform a 10-fold cross-validation on these traces—that is, we split them into a
training log and a test log. We use the training log to learn the GDT_SPN model
and the test log to randomly remove events and pass the log with missing data
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Figure 58: Setup to evaluate repair quality of case studies. We select the fitting traces
from the real event log. With that log, we do a cross validation, and learn
the performance model from the training log. From the test log, we randomly
remove events (maintaining at least one event per trace), and repair them
according to the model. We evaluate how well the repaired entries match the
original entries in the trace.

to the repair algorithm with the learned GDT_SPN model. The remaining part
is equivalent to the conceptual evaluation. This way, we are able to see how the
repair algorithm performs in realistic settings.

Repairing the Surgery Process Event Log

We first look at the results obtained from repairing the event log of our surgery
case study.

The log of this treatment process contains missing entries, which motivated
the work that we presented in Chapter 5. Out of 1310 patient treatment cases,
only 570 fit the model shown in Figure 50 perfectly. The other cases contain one
or more missing events. We use the 570 fitting cases to evaluate how well we can
repair them after randomly removing events.

Figure 59 shows the evaluation results with the real log. Observe that the
structure can be repaired quite well in comparison to the example used in the
conceptual evaluation in Figure 38 on page 94. This is due to the sequential
nature of the model with twelve events in sequence and two activities that are
optional. This process model is rather restrictive, and shows a process that is
standardized and linear in its execution. The number of synchronous moves
gradually approaches twelve, as the amount of missing events increases. This is
caused by the inability of the algorithm to repair single undetected events that
are optional (e.g., the event perform antibiotics prophylaxis cannot be repaired, if it
is missing).

The mean absolute error in the restored events is higher than the artificial ex-
ample. This value greatly depends on the variance in the activity durations. In
the evaluation example, the variance of certain activity durations in the model is
quite high, e.g., the duration of the start of emergence activity has a mean of 4.69
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Figure 59: Repair results for the surgery case study. The x-axis shows the amount of
noise that is introduced into the event log. Each point on this axis represents
an iteration of repair with a certain amount of introduced noise. We require
at least one event in each trace, which means that we cannot increase the
amount of missing events to 100 percent.

hours and variance of 18.292. The data underlying this model is right-skewed
with most values small, and some outliers. Here, the normal distribution is inap-
propriate, and other distributions might fit better.

Obviously, the ability to repair a log highly depends on the information con-
tent of observed events in the trace and the remaining variability in the model.
For instance, we can always repair a pure sequential model with fitness 1.0 of
the repaired log, even if we observe just one activity. However, the chance to pick
the same path through a model composed of n parallel activities with equally
distributed times is only 1

n! .
The deterministic repair mode, which we evaluated, is unable to restore op-

tional branches without structural hints, i.e., at least one activity on that optional
branch needs to be recorded. This affects single optional activities most, as their
absence will not be repaired. However, many real-life processes are sequential,
and can be repaired correctly.

Repairing the Shipment Import Process

Figure 60 shows the results of performing the experiment on the shipment im-
port process depicted in Figure 51. The structural quality of the traces (Fig-
ure 60a) can be restored without error, which is obvious, as there is no other
possibility than the prescribed order of the three events. The figure on the right,
i.e., Figure 60b, is more interesting and shows that the error of the repaired times
linearly grows with the amount of noise. This can be due to the nature of the
distributions, as well as to the fact that the model only consists of three sequen-
tial transitions. Here, in the worst case only one event remains per trace, such
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Figure 60: Repair results for the shipment import process. Depicted are the repaired
quality of the structure (a) and the timestamps (b). The structure of a purely
sequential model can be completely restored, even if only a single event re-
mains in a trace. The timestamps of the missing events can be restored to
an average error of under 20 hours with no noise. The quality decreases in a
linear relationship to the amount of missing events.

that, missing events are either direct neighbors of the remaining event, or apart
by one missing event.

Repairing the Loan Application Process Event Log

In Figure 61, we depict the results for repairing missing events in the loan appli-
cation process. Here, the event logs are generated by a process execution engine,
which ensures that the event logs fit the model. Nonetheless, it is interesting
from a theoretical perspective to evaluate how well we could repair the traces if
entries were amiss. We perform the same experimental setup as in the previous
case studies, and in the conceptual evaluation of the repair method in Chapter 5.
Figure 61a shows similar characteristics as the previous case studies. The ability
to restore the correct events is decreasing with the number of missing events.
Notice that we are unable to remove more than around 70 percent of the events,
because we always keep at least one event of each trace in this experiment.

Figure 61b also shows the non-linear growth of the error of the time that was
restored. Even at lower noise levels, the average error of repairing one missing
event in a trace is around one and a half days. In regard of the high variance
of the duration of this process—many cases finish in less than one day (due to
early rejects), while some applications might take up to 80 days—this result is
not surprisingly bad. Therefore, if the participants documented the process by
hand and the accept loan event was missing from documentation, it would be
helpful to be reminded, whether they performed the accept loan activity around
a certain likely day.
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Figure 61: Repair results for the loan application process. In the loan application process,
the mean absolute error is non-linearly increasing with the amount of noise.
The average number of moves is rather low (slightly above 3) for a process
that has five transitions on the main path. This indicates that many cases are
almost immediately declined or canceled.

Discussion

In our case studies, the repair algorithm exhibits similar characteristics. That is,
it can tell us rather well which events are missing. The error in the question when
these events have happened needs to be measured in relation to the variance of
single activity durations. Given the assumptions that activity durations are inde-
pendent, and without additional information (e.g., schedules, interdependencies
between instances), the proposed method, that conditions on the observed events’
occurrence times and computes the expected occurrence based on the posterior
probability, is the best estimation possible.

We need to point out some limitations of this experiment, however. The miss-
ing data problem has been motivated by our observations in manual process
execution environments, where documentation is done by hand. This is only
the case in the surgery case study. The other two case studies are supported by
IT systems and do not suffer from missing data issues. In the surgery case, we
removed 770 inconsistent cases from the 1310 cases in the experiment. We are un-
able to judge the repair quality of the events missing in these 770 cases, because
we do not know the actual time values of these events. It is also not possible to
restore the true time information of the missing events, because the event log is
from the year 2011.

Therefore, we perform a controlled experiment, where we take intact traces
and simulated the missingness mechanism. We cannot make conclusions about
the missingness mechanism causing the missing events from looking at a Petri
net model and an event log, in which certain events that are required by the
model are missing. However, we make the assumption that data is missing at
random (MAR), or missing completely at random (MCAR), (see Section 5.1).
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More investigation into the causes of missing data in process event logs is neces-
sary, however.

We cannot exclude that—for some reason—the absence of an event from a
case depends on the activity duration. Latter corresponds to the not missing at
random (NMAR) case, in which special correction mechanisms are required [21].

Also, in this evaluation, we assumed that our model accurately represents the
process behavior. Therefore, we only selected the part of the real event log that
fits the model. We did this to eliminate another source of noise in the experiment,
i.e., the error that is introduced by estimating the model parameters from noisy
data.

First, we assume that the model contains the truth about the process, while in
many cases there might not be such a model, e.g., in cases where the process is
constantly evolving. We assume also that the timing information of the events
in the event log are correct. That is, we do not test for plausibility of the exist-
ing events, but rather try to add missing events that are in accordance to the
observations in the event log.

8.5 selected monitoring points

When selecting event monitoring points (EMPs), we are interested in identifying
those that are most helpful for predicting the remaining duration of the pro-
cess. We can use this information to ease the burden of unnecessary manual
documentation for process participants, but there is another more relevant moti-
vation, when setting up a monitoring architecture in a distributed environment.
In such a scenario, we assume that we could set up monitoring on all the activi-
ties, but to limit costs, we are satisfied with connecting a subset of the activities
to the monitoring architecture. We presented an algorithm to select the optimal
subset of monitoring points of a given size in Chapter 6.

Evaluating the Selection

To evaluate the selection of monitoring points, we measure how much we can
improve the prediction quality by selecting monitoring points optimally in con-
trast to selecting them randomly. We then measure the prediction performance of
our prediction algorithm at equal intervals, as we also did in Section 8.3.

Figure 62 shows the prediction quality depending on the number of event
monitoring points (EMPs) for the surgery process case study. Due to the large
number of combinations that are possible, there are 462 combinations to select 6

out of 11 possible EMPs, we enumerate all possible values only if the number of
combinations is less than 100, otherwise, we randomly select a hundred sample
combinations. There is a clearly visible trend that shows that on average, the
number of installed monitoring points improves the prediction quality. There is
an interesting effect visible in this plot, that shows that it is important for predic-
tion quality where we install EMPs in the process, respectively which activities
we decide to document. It turns out in this case study, that if we do not select
the optimal EMPs, the overall prediction accuracy can even decrease although we
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Figure 62: Prediction errors depending on number of EMPs. The graph shows box plots,
where each sample is representing a configuration of monitoring points. For
example, for 2 EMPs there is only one configuration, for 3 EMPs there are 11

combinations (start and end fixed, the remaining EMP can be at each transi-
tion in between). Each sample point captures the average prediction accuracy
of 40 periodic predictions, i.e., the average of the root mean square errors of
the predictions of the surgery process. We have removed the optional order
patient event from this analysis, so that all cases start with the arrival in the
lock.

increase the number of EMPs. This unexpected result is visible in Figure 62 if we
compare the prediction results of 2 and 3 selected EMPs respectively.

Discussion

We investigated this matter, and it turned out that selecting only the perform
antibiotics prophylaxis EMP, besides the EMPs at the start and end of the process,
decreases the prediction accuracy. This is caused by the implicit assumption
in obtaining the process performance characteristics, that activity durations are
independent from the path that was taken. Thus, if we only measure the start
(i.e., arrival in lock), the optional activity perform antibiotics prophylaxis, and the
end of the process (i.e., departure of recovery), the time estimation of departure
of recovery contains the durations from the start to end (collected from cases
without antibiotics treatment), and from the optional activity (in cases antibiotics
were administered). For a better model, the times need to be separated, i.e., for
the cases that antibiotics prophylaxis is performed, the remaining time needs to
be separately estimated, than if it is not performed. Another effect that can be
responsible for this counterintuitive behavior is that by only measuring start and
end of the process, all dependencies between activities are implicitly taken into
account.

This evaluation shows the necessity to optimize the selection of EMPs, when
installing a monitoring environment. The prediction quality with three optimally
selected EMPs is about as good, as when installing all thirteen EMPs. This result
shows that it is possible to get better prediction results by optimally selecting
four EMPs, than by choosing eleven EMPs in the least effective combination.



9
C O N C L U S I O N

Concluding this thesis, we provide a summary of the contributions of this
thesis in Section 9.1. Last, we discuss limitations and future work in Sec-

tion 9.2.

9.1 summary

With this thesis, we have introduced an advanced probabilistic model to business
process management that is motivated by the need for probabilistic handling of
unobserved process events in the healthcare domain. The probabilistic model
is based on the Petri net formalism and allows us to capture arbitrary dura-
tion distributions of activities, and path probabilities. The model can be applied
throughout the business process lifecycle. We support i) to discover the perfor-
mance model, ii) to predict the remaining duration with it, iii) its potential to ensure
the documentation quality, and iv) to optimize the placement of monitoring points in a
business process. Let us briefly summarize each of these contributions in more
detail.

I) Discover the Performance Model

First, we have highlighted different execution policies and model properties that
pose challenges in discovery. We have reduced the problem caused by the race
policy to the censored data problem in statistics. To estimate duration distribu-
tions with censored data, we have employed an existing implementation based
on a non-parametric log-spline fitting technique [114].

The second challenge that we have addressed is to find the optimal assignment
of weights to transitions in the GDT_SPN model that best explains the possibly
contradictory observations of firing counts. We have approached the problem
with a maximum likelihood estimation approach, which identifies the optimal
weight assignments by optimizing a convex cost function with gradient descent.

II) Predict the Remaining Duration

Prediction of the time of a future process state—in our examples, we have been
interested in the end event—of an already running case is a sparsely covered
topic in business process management research. Most works focus on analysis of
a whole process. In this thesis, we have used a probabilistic approach to achieve
improved prediction results for single running instances. We have shown that
conditional probabilities can be exploited in situations where we can condition
on gained knowledge, e.g., when we know that a certain activity takes longer
than a part of our historical observations.

139
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III) Ensure the Documentation Quality

We have observed that in manual process execution environments, it is often the
case that activities are executed in reality, but corresponding events are missing
from documentation. A plausible cause for this is human error. Usually, in pro-
cess mining the assumption is made that the event log contains the truth about
the process, and there are no techniques addressing this mismatch.

We have presented a method that is built on a conformance checking tech-
nique, and have proposed a decomposition of the problem: to decide first which
events are missing, and later to decide when those events happened most likely.
Thereby, we have accepted the limitation that we follow a heuristic. The tech-
nique works as follows. The model is unfolded according to the chosen path
and converted into a Bayesian network. In latter, we perform inference given the
event occurrences to compute the most likely time values of the missing events.

IV) Optimize the Placement of Monitoring Points

Last, we have also faced the question, at which points in the process it makes
most sense to install event monitoring points (EMPs). We have assumed that we
already had some knowledge about the process and its activities. This knowl-
edge can for example be provided by process participants. We have shown how
we can capture the optimization in a Bellman equation that is suitable for a solu-
tion based on dynamic programming. We have investigated how much we can
gain by optimal allocation of EMPs in the surgery use case. It has turned out
in this case that we can achieve comparable prediction accuracy when optimally
selecting three EMPs, as when selecting eleven EMPs in a non-optimal combina-
tion.

Implementation and Evaluation

We have implemented the contributions in ProM as plug-ins that are publicly
available and have evaluated the approaches with real-world process data. Be-
side the health care domain that has served as motivation, we have checked
the applicability of the methods to other domains, such as finance and logis-
tics. The evaluation has indicated that the model is able to capture the different
performance models in the encountered cases with low degree of bias. Also the
prediction performs comparable to related work at early points in time of an
instance, but can outperform the other approaches the more time passes.

9.2 limitations and future work

Rosenblueth and Wiener argue that “no substantial part of the universe is so sim-
ple that it can be grasped and controlled without abstraction.” [180]. In fact, most
of the limitations of this thesis are caused by the choice of abstraction. We have
chosen to represent processes as a form of Petri nets. We have abstracted from
dependencies between activity durations, from changes in the environment (i.e.,
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concept drift in the data mining terminology), from resources and their working
schedules, and from data in the processes. But even with all these abstractions,
the performance of a process can be captured statistically in the models, as we
have evaluated in Section 8.2. In the following, we discuss how we can reduce
the level of abstraction to better capture reality.

Petri Net Model

A limitation of our approach is caused by the choice of representation. By choos-
ing Petri nets, we disregard complex workflow patterns, such as the synchroniz-
ing merge [8] that is supported in the OR-join construct in BPMN [150]. This
limitation is often not relevant, however, as empirical work by zur Mühlen and
Recker [144] suggests that a large share of process models consists of only ba-
sic workflow constructs that can be expressed in Petri nets. Nonetheless, an ex-
tension of the probabilistic model to more complex workflow constructs seems
promising. Following up on the Pfeffer’s idea to use dynamic Bayesian networks
for process modeling [160], a direct translation from BPMN models into Bayesian
networks should be investigated in future work. There are unresolved research
questions when using dynamic Bayesian networks, however. For example, how
can we predict future states, when it is not clear yet, how often a loop in the
process model will be traversed.

Dependencies Between Activity Durations

As we have observed in the event log of our logistics use case, the two durations
of the time from arrival of a seavessel to discharge and from discharge to pick
up by inland transport are correlated with a correlation coefficient of 0.0976 (i.e.,
9.76 percent). See the discussion in Section 8.2. Such dependencies introduce a
bias in our method, because the GDT_SPN model is unable to represent such
dependencies. One way to extend the model is to make each activity aware of
the history, as in the proposal by Schonenberg et al. in [191]. That is, to condition
probabilistic decisions on previous decisions in the case. For example, this allows
us to express that the probability to leave the loop rises with each iteration.
The work in [191] is not dealing with duration aspects, however, but focuses on
choices in the routing of a case in the model. The problem that makes it difficult
to automatically derive such a more flexible model is that one needs to decide,
on which events in the past to condition the probabilities and the probability
distributions.

If we assume that all events in the history can influence the current activity
duration, we are facing the curse of dimensionality, see also Bishop’s discussion
on the curse of dimensionality for machine learning problems in [38, Section 1.4].
Each single variable increases the combinations by another dimension. The num-
ber of samples that we need to estimate such a multivariate distribution correctly
grows exponentially with each additional variable (i.e., in our case with each ad-
ditional activity to condition on). Techniques to reduce the dimensions, or to
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abstract from them, are required, and future work should address the problem
of finding good abstraction criteria.

Resources and Schedules

In this thesis, resources (e.g., actors) and schedules are out of scope. Resources
and their schedules play an important role in business process management,
however, and we expect substantial improvements of model accuracy by explic-
itly capturing resources. The proposed method is based on Petri nets, which
offers the capability to add resources to the model in a natural way. One possibil-
ity is to model resources as tokens. With the current firing semantic of GDT_SPN
models (i.e., firing of timed transitions is instantaneous and atomic), each activ-
ity that is performed by a resource needs at least two transitions. That is, one
transition starting the work (to block the required resources), and a second one
ending the work (to release the blocked resources). Thus, we need to model
waiting times and execution times of activities separately, and we need to know
the resource constraints of the activities and the available resources of the pro-
cess execution environment. If this additional information is available, resource
integration is possible without the need to extend the GDT_SPN model.

If we wanted to also integrate resource schedules into the GDT_SPN model, we
would require an extension of the formalism, as the execution semantics that
we have considered do not support a global clock, and constraints. An option
could be to use the more expressive Coloured Petri net approach, as proposed
by Jensen [98]. An open question is how to learn these models from event logs,
but already there exists work on mining data aware model for simulation by
Rozinat et al. [183]. Another question is how to integrate work breaks of process
workers into the model. First steps to extract such interruptions from the data
have been proposed in [212].

Enriching the model with less detailed workload information (i.e., by catego-
rizing cases based on current workload in the system), can reduce prediction
errors significantly, as Folino et al. have shown [70]. We expect to achieve compa-
rable improvements by applying the former refinement to our model. A compar-
ison between this coarse grained system load model with a full resource model
with queuing would be very interesting in order to see if it is reasonable to spend
more effort on making the model more detailed.

Concept Drift Detection

We have mentioned in our assumptions that we assume the business process to
be in a steady state. A successful application of the model in real-world settings
requires to dismiss this assumption, because real-world business processes are
subject to many different external influences. For example, changes in average
arrival rates of patients range from two patients per hour in the night to twelve
patients per hour around noon on Sundays [126]. For such recurring changes,
further research might explore a similar approach as in [70], that is, to cluster
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the cases based system load and obtain multiple models that are then used in
the respective system state.

For gradual changes (e.g., evolution of the process, or of the market) we envi-
sion a system that has a concept drift detection component added to the archi-
tecture that makes sure that concept drifts are detected. When detecting that the
current model is no longer accurate, a new calibration of the GDT_SPN model
can be triggered to adapt it to the changed environment.

An example method is provided by Gama et al. in [71] that indicates a drift if
a threshold for wrong classifications is breached, and relearns the probabilistic
model from the cases after that breach to improve successive estimations. An
application of this idea to the continuous time domain used in this thesis could
be the following: we categorize the cases as fitting to the GDT_SPN model, if
the probability of their occurrence is above a certain threshold according to the
model, and as not fitting otherwise. Then, if we encounter many cases that are
not fitting to the model (i.e., a number above a threshold), we can update the
model.

Further methods to not react to, but anticipate concept drifts also exist, e.g.,
as Yang et al. propose in [213]. Latter work keeps a collection of contexts in a
history and tries to anticipate the next changes based on patterns observed in
the past.

Most Likely Alignment between Log and GDT_SPN Model

The cost-based alignment method is time-agnostic [15]. We have made but a first
step towards finding the most likely alignments by considering the path prob-
abilities in the selection of the alignment. The problem, however, is not solved
yet entirely. As we have mentioned in the discussion of the problem complexity
in Section 5.2, the inclusion of time in the search for the most likely alignments
is increasing the number of solutions to the uncountable infinite domain. More-
over, each time value of missing events affects the joint likelihood of the events
in the network. This poses significant challenges to a deterministic search.

Nevertheless, we are convinced that it is possible to solve this intriguing and
challenging problem, and we will tackle it in future work.
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[18] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining Associa-
tion Rules Between Sets of Items in Large Databases. SIGMOD Record,
22(2):207–216, June 1993.

[19] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-Based Learning
Algorithms. Machine learning, 6(1):37–66, 1991.

[20] Hirotsugu Akaike. A New Look at the Statistical Model Identification.
Automatic Control, IEEE Transactions on, 19(6):716–723, 1974.

[21] Paul D. Allison. Missing Data. Number 136 in Quantitative Applications
in the Social Sciences. Sage, Thousand Oaks, CA, 2001.

[22] Martin Alt, Andreas Hoheisel, Hans-Werner Pohl, and Sergei Gorlatch. A
Grid Workflow Language Using High-Level Petri Nets. In Parallel Process-
ing and Applied Mathematics, pages 715–722. Springer, 2006.

[23] Rainer von Ammon, Christoph Emmersberger, Torsten Greiner, Adrian
Paschke, Florian Springer, and Christian Wolff. Event-Driven Business
Process Management. In DEBS ’08: Proceedings of the second international
conference on Distributed event-based systems, 2008.

[24] Nikolas Anastasiou, Tzu-Ching Horng, and William J. Knottenbelt. De-
riving Generalised Stochastic Petri Net Performance Models from High-
Precision Location Tracking Data. In VALUETOOLS’11, pages 91–100. ICST,
2011.

[25] Kaiomars P. Anklesaria and Zvi Drezner. A Multivariate Approach to
Estimating the Completion Time for PERT Networks. The Journal of the
Operational Research Society, 37(8):811–815, 1986.

http://www.win.tue.nl/bpi2012/lib/exe/fetch.php?media=adriansyah.pdf
http://www.win.tue.nl/bpi2012/lib/exe/fetch.php?media=adriansyah.pdf


bibliography 147

[26] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Visually Specifying
Compliance Rules and Explaining their Violations for Business Processes.
Journal of Visual Languages & Computing, 22(1):30–55, 2011.

[27] Bürgerliches Gesetzbuch (BGB). § 630f Dokumentation der Behandlung,
2013.

[28] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A Maximum Like-
lihood Approach to Continuous Speech Recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, Pami-5(2):179–190, March 1983.

[29] Thomas Baier and Jan Mendling. Bridging Abstraction Layers in Process
Mining by Automated Matching of Events and Activities. In Florian Daniel,
Jianmin Wang, and Barbara Weber, editors, Business Process Management,
volume 8094 of Lecture Notes in Computer Science, pages 17–32. Springer
Berlin Heidelberg, 2013.

[30] Gianfranco Balbo. Introduction to Stochastic Petri Nets. In Lectures on
Formal Methods and Performance Analysis, pages 84–155. Springer, 2001.

[31] Gianfranco Balbo and Giovanni Chiola. Stochastic Petri Net Simulation. In
Proceedings of the 21st conference on Winter simulation, pages 266–276. ACM,
1989.

[32] David W. Bates, Michael Cohen, Lucian L. Leape, J. Marc Overhage,
M. Michael Shabot, and Thomas Sheridan. Reducing the Frequency of
Errors in Medicine Using Information Technology. Journal of the American
Medical Informatics Association, 8(4):299–308, 2001.

[33] Eric Becker, Vangelis Metsis, Roman Arora, Jyothi Vinjumur, Yurong Xu,
and Fillia Makedon. SmartDrawer: RFID-Based Smart Medicine Drawer
for Assistive Environments. In Proceedings of the 2nd International Conference
on PErvasive Technologies Related to Assistive Environments, PETRA ’09, pages
49:1–49:8, New York, NY, USA, 2009. ACM.

[34] Piergiorgio Bertoli, Mauro Dragoni, Chiara Ghidini, and Di Francesco-
marino, Chiara. Reasoning-based Techniques for Dealing with Incomplete
Business Process Execution Traces. Technical report, Fundazione Bruno
Kessler, Data & Knowledge Management, 2013. https://dkm.fbk.eu/

images/9/96/TR-FBK-DKM-2013-1.pdf.

[35] Henry H. Bi and J. Leon Zhao. Applying Propositional Logic to Workflow
Verification. Information Technology and Management, 5(3-4):293–318, 2004.

[36] Patrick Billingsley. Probability and Measure. Wiley Series in Probability and
Statistics. John Wiley & Sons, 2012.

[37] Jonathan Billington, Søren Christensen, Kees Van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael We-
ber. The Petri Net Markup Language: Concepts, Technology, and Tools. In
Applications and Theory of Petri Nets 2003, pages 483–505. Springer, 2003.

https://dkm.fbk.eu/images/9/96/TR-FBK-DKM-2013-1.pdf
https://dkm.fbk.eu/images/9/96/TR-FBK-DKM-2013-1.pdf


148 bibliography

[38] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[39] Andrea Bobbio and Miklós Telek. Computational Restrictions for SPN
with Generally Distributed Transition Times. In Dependable Computing—
EDCC-1, volume 852 of LNCS, pages 131–148. Springer, 1994.

[40] Diana Borrego, María T. Gómez-López, Rafael M. Gasca, and Rafael Ce-
ballos. Determination of an Optimal Test Points Allocation for Business
Process Analysis. In Network Operations and Management Symposium Work-
shops (NOMS Wksps), 2010 IEEE/IFIP, pages 159–160. IEEE, 2010.

[41] Diana Borrego, María Teresa Gómez-López, and Rafael M. Gasca. Minimiz-
ing Test-Point Allocation to Improve Diagnosability in Business Process
Models. Journal of Systems and Software, page (to appear), 2013.

[42] George E. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco, 2 edition, 1976.

[43] Troyen A. Brennan, Lucian L. Leape, Nan M. Laird, Liesi Hebert, A. Rus-
sell Localio, Ann G. Lawthers, Joseph P. Newhouse, Paul C. Weiler, and
Howard H. Hiatt. Incidence of Adverse Events and Negligence in Hos-
pitalized Patients: Results of the Harvard Medical Practice Study I. New
England journal of medicine, 324(6):370–376, 1991.

[44] Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng
Shen, Sergey Zeltyn, and Linda Zhao. Statistical Analysis of a Telephone
Call Center: A Queueing-Science Perspective. Journal of the American Statis-
tical Association, 100(469):36–50, 2005.

[45] Robert Buchholz, Claudia Krull, and Graham Horton. Reconstructing
Model Parameters in Partially-Observable Discrete Stochastic Systems. In
Analytical and Stochastic Modeling Techniques and Applications, pages 159–174.
Springer, 2011.

[46] Joos C.A.M. Buijs, Marcello. La Rosa, H.A. Reijers, Boudewijn F. van Don-
gen, and Wil M. P. van der Aalst. Improving Business Process Models
using Observed Behavior. In Post-Proceedings of SIMPDA 2012, LNBIP.
Springer, 2013. (to appear).

[47] Andrea Cangialosi, Joseph E. Monaly, and Samuel C. Yang. Leveraging
RFID in Hospitals: Patient Life Cycle and Mobility Perspectives. Communi-
cations Magazine, IEEE, 45(9):18–23, 2007.

[48] Rafael Ceballos, Victor Cejudo, Rafael M. Gasca, and Carmelo Del Valle.
A Topological-based Method for Allocating Sensors by Using CSP Tech-
niques. In Current Topics in Artificial Intelligence, volume 4177 of Lecture
Notes in Computer Science, pages 62–68. Springer, 2006.



bibliography 149

[49] Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing
Techniques for Language Modeling. In Proceedings of the 34th annual meeting
on Association for Computational Linguistics, pages 310–318. Association for
Computational Linguistics, 1996.

[50] Hoon Choi, Vidyadhar G. Kulkarni, and Kishor S. Trivedi. Markov Regen-
erative Stochastic Petri Nets. Performance Evaluation, 20(1):337–357, 1994.

[51] Gianfranco Ciardo, Reinhard German, and Christoph Lindemann. A Char-
acterization of the Stochastic Process Underlying a Stochastic Petri Net.
IEEE Transactions on Software Engineering, 20(7):506–515, 1994.

[52] Gregory F. Cooper. The Computational Complexity of Probabilistic Infer-
ence Using Bayesian Belief Networks. Artificial intelligence, 42(2):393–405,
1990.

[53] Claire Costello and Owen Molloy. Towards a Semantic Framework for Busi-
ness Activity Monitoring and Management. In AAAI Spring Symposium: AI
Meets Business Rules and Process Management, pages 17–27, 2008.

[54] Adnan Darwiche. Inference in Bayesian Networks: A Historical Perspec-
tive. In Rina Dechter, Hector Geffner, and Joseph Y. Halpern, editors,
Heuristics, Probability and Causality – A Tribute to Judea Pearl, volume 11.
College Publications, 2010.

[55] Adnan Darwiche and Judea Pearl. On the Logic of Iterated Belief Revision.
Artificial Intelligence, 89(1–2):1 – 29, 1997.

[56] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Main-
taining Stream Statistics over Sliding Windows. SIAM Journal on Comput-
ing, 31(6):1794–1813, 2002.

[57] Joseph M. DeFee and Paul Harmon. Business Activity Monitoring and Sim-
ulation. Technical report, BP Trends Newsletter, White Paper and Technical
Briefs, 2004.

[58] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum Like-
lihood from Incomplete Data via the EM Algorithm. Journal of the Royal
Statistical Society. Series B, 39(1):1–38, 1977.

[59] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
Analysis of Business Process Models in BPMN. Information and Software
Technology, 50(12):1281–1294, 2008.

[60] Boudewijn F. van Dongen. BPI Challenge 2012 Dataset, 2012. http://dx.

doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[61] Boudewijn F. van Dongen, R. A. Crooy, and Wil M. P. van der Aalst. Cycle
Time Prediction: When Will This Case Finally Be Finished? In On the Move
to Meaningful Internet Systems: OTM 2008, pages 319–336. Springer, 2008.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f


150 bibliography

[62] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. (Eric)
Verbeek, Anton J.M.M. Weijters, and Wil M. P. van der Aalst. The ProM
Framework: A New Era in Process Mining Tool Support. In Applications
and Theory of Petri Nets 2005, pages 1105–1116. Springer, 2005.

[63] Marek J. Druzdzel and Max Henrion. Effcient Reasoning in Qualitative
Probabilistic Networks. In Proceedings of the 11th National Conference on
Artificial Intelligence, Washington, pages 548–553, 1993.

[64] Joanne B. Dugan, Kishor S. Trivedi, Robert Geist, and Victor F. Nicola.
Extended Stochastic Petri Nets: Applications and Analysis. In Proceed-
ings of the Tenth International Symposium on Computer Performance Modelling,
Measurement and Evaluation, pages 507–519. North-Holland Publishing Co.,
1984.

[65] Johann Eder and Horst Pichler. Duration Histograms for Workflow Sys-
tems. In Engineering Information Systems in the Internet Context, pages 239–
253, 2002.

[66] Dirk Fahland and Wil M. P. van der Aalst. Repairing Process Models to
Reflect Reality. In BPM, volume 7481 of LNCS, pages 229–245. Springer,
2012.

[67] Massimo de Falco and Roberto Macchiaroli. Timing of Control Activities
in Project Planning. International Journal of Project Management, 16(1):51–58,
1998.

[68] William Feller. An Introduction to Probability Theory and Its Applications, vol-
ume 1. John Wiley & Sons, 3rd edition, 1968.

[69] Shahina Ferdous. Multi Person Tracking and Querying with Heterogeneous
Sensors. PhD thesis, University of Texas at Airlington, 2012.

[70] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Discovering
Context-Aware Models for Predicting Business Process Performances. In
On the Move to Meaningful Internet Systems: OTM 2012, pages 287–304.
Springer, 2012.

[71] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning
with Drift Detection. In Advances in Artificial Intelligence–SBIA 2004, pages
286–295. Springer, 2004.

[72] Everette S. Gardner. Exponential Smoothing: The State of the Art. Journal
of forecasting, 4(1):1–28, 1985.

[73] Dan Geiger, Thomas Verma, and Judea Pearl. Identifying Independence in
Bayesian Networks. Networks, 20(5):507–534, 1990.

[74] Reinhard German. Non-Markovian Analysis. In Ed Brinksma, Holger Her-
manns, and Joost-Pieter Katoen, editors, Lectures on Formal Methods and Per-
formance Analysis, volume 2090 of Lecture Notes in Computer Science, pages
156–182. Springer Berlin Heidelberg, 2001.



bibliography 151

[75] Reinhard German, Christian Kelling, Armin Zimmermann, and Günter
Hommel. TimeNET: A Toolkit for Evaluating Non-Markovian Stochastic
Petri Nets. Performance Evaluation, 24(1):69–87, 1995.

[76] George M. Giaglis, Ioannis Minis, Antonios Tatarakis, and Vasileios Zeim-
pekis. Minimizing Logistics Risk through Real-Time Vehicle Routing and
Mobile Technologies: Research to Date and Future Trends. International
Journal of Physical Distribution & Logistics Management, 34(9):749–764, 2004.

[77] E. Mark Gold. Complexity of Automaton Identification from Given Data.
Information and Control, 37(3):302 – 320, 1978.

[78] Herman Heine Goldstine and John von Neumann. Planning and Coding
of Problems for an Electronic Computing Instrument. Institute for Advanced
Study, Princeton, New Jersey, 1948.

[79] Jan G. de Gooijer and Rob J. Hyndman. 25 Years of Time Series Forecasting.
International Journal of Forecasting, 22(3):443–473, 2006.

[80] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley Professional, third edition, 2005.

[81] Richard Grol and Jeremy Grimshaw. From Best Evidence to Best Prac-
tice: Effective Implementation of Change in Patients’ Care. The Lancet,
362(9391):1225–1230, 2003.

[82] Brian Gugerty, Michael J. Maranda, Mary Beachley, V. B. Navarro, Susan
Newbold, Wahnita Hawk, Judy Karp, Maria Koszalka, Steven Morrison,
Stephanie S. Poe, and Donna Wilhelm. Challenges and Opportunities in
Documentation of the Nursing Care of Patients. Documentation Work
Group, Maryland Nursing Workforce Commission. Baltimore., May 2007.
(accessible online at: http://www.mbon.org/commission2/documentation_
challenges.pdf).

[83] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy Mining: Adap-
tive Process Simplification Based on Multi-perspective Metrics. In BPM,
volume 4714 of LNCS, pages 328–343. Springer, 2007.

[84] Michael Hammer and James Champy. Reengineering the Corporation: A
Manifesto for Business Revolution. Business Horizons, 36(5):90–91, 1993.

[85] David J. Hand. Classifier Technology and the Illusion of Progress. Statisti-
cal Science, 21(1):1–14, 2006.

[86] Philip Heidelberger and Stephen S. Lavenberg. Computer Performance
Evaluation Methodology. Computers, IEEE Transactions on, 100(12):1195–
1220, 1984.

[87] Joachim Herbst and Dimitris Karagiannis. Integrating Machine Learning
and Workflow Management to Support Acquisition and Adaptation of
Workflow Models. Intelligent Systems in Accounting, Finance and Manage-
ment, 9(2):67–92, 2000.

http://www.mbon.org/commission2/documentation_challenges.pdf
http://www.mbon.org/commission2/documentation_challenges.pdf


152 bibliography

[88] Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti. Towards Pro-
cess Evaluation in non-Automated Process Execution Environments. In
Proceedings of the 4th Central-European Workshop on Services and their Compo-
sition, ZEUS, pages 96–102, 2012.

[89] Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event Processing
Platform for Business Process Management. In Enterprise Distributed Object
Computing Conference, EDOC 2013, Vancouver, Canada, (to appear). IEEE.

[90] András Horváth, Antonio Puliafito, Marco Scarpa, and Miklós Telek. Anal-
ysis and Evaluation of Non-Markovian Stochastic Petri Nets. In Com-
puter Performance Evaluation. Modelling Techniques and Tools, pages 171–187.
Springer, 2000.

[91] Haiyang Hu, Jianen Xie, and Hua Hu. A Novel Approach for Mining
Stochastic Process Model from Workflow Logs. Journal of Computational
Information Systems, 7(9):3113–3126, 2011.

[92] San-Yih Hwang, Haojun Wang, Jian Tang, and Jaideep Srivastava. A Prob-
abilistic Approach to Modeling and Estimating the QoS of Web-Services-
Based Workflows. Information Sciences, 177(23):5484–5503, 2007.

[93] R.J. Hyndman and A.B. Koehler. Another Look at Measures of Forecast
Accuracy. International Journal of Forecasting, 22(4):679–688, 2006.

[94] Marta Indulska, Peter Green, Jan Recker, and Michael Rosemann. Business
Process Modeling: Perceived Benefits. In Conceptual Modeling-ER 2009, vol-
ume 5829 of Lecture Notes in Computer Science, pages 458–471. Springer
Berlin Heidelberg, 2009.
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