
Technische Berichte Nr. 86

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Batch Regions:
Process Instance
Synchronization based
on Data
Luise Pufahl, Andreas Meyer, Mathias Weske

ISBN 978-3-86956-280-3
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 86

Luise Pufahl | Andreas Meyer | Mathias Weske

Batch Regions

Process Instance Synchronization based on Data

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2014/6908/
URN urn:nbn:de:kobv:517-opus-69081
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69081

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-280-3

mailto:verlag@uni-potsdam.de

Batch Regions:
Process Instance Synchronization based on Data

Luise Pufahl, Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{Luise.Pufahl,Andreas.Meyer,Mathias.Weske}@hpi.uni-potsdam.de

Abstract. Business process automation improves organizations’ efficiency to
perform work. In existing business process management systems, process instances
run independently from each other. However, synchronizing instances carrying
similar characteristics, i.e., sharing the same data, can reduce process execution
costs. For example, if an online retailer receives two orders from one customer,
there is a chance that they can be packed and shipped together to save shipment
costs. In this paper, we use concepts from the database domain and introduce
data views to business processes to identify instances which can be synchronized.
Based on data views, we introduce the concept of batch regions for a context-aware
instance synchronization over a set of connected activities. We also evaluate the
concepts introduced in this paper with a case study comparing costs for normal
and batch processing.

Keywords: BPM, batch processing, process instance grouping, data view

1 Introduction

Companies use business process management systems (BPMS) to automate processes,
especially those with a high degree of repetition. Therefore, the process is first docu-
mented as process model. The process model serves as blueprint for a number of process
instances whereby one instance represents the execution of one business case [20]. In
existing BPMSs, e.g., [2, 3, 6], instances of a process usually run independently from
each other. However, there are scenarios in which process instances can and shall be
grouped and processed as one batch. For example, online retailers handle many orders
per day. They face the situation that customers place several orders with the same ship-
ping address within a short time-frame. As these orders are then processed completely
independent from each other resulting in one package per order, this behavior causes
avoidable costs for transportation. By synchronizing the processing of orders from same
customers, several articles can be shipped in one package reducing the total shipping
costs. Synchronization of instances can be realized by batch processing [1, 7, 11]. Con-
sidering the requirements from [11] to integrate batch processing into process models,
existing works are not complete. For instance, they they do not support rule-based batch
activation, multiple resource allocation of batches, or differentiation of process instances.

In this paper, we introduce batch regions to group process instances with similar
characteristics expressed as data views and synchronize their execution over a number of
activities to fulfill the defined requirements. Therefore, we generalize the batch activity

mailto:Luise.Pufahl@hpi.uni-potsdam.de;Andreas.Meyer@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de

2

concept from [11]. There, process instances are assumed to be homogenous such that
they are grouped into batches based on their arrival ignoring heterogeneous demands.
To overcome this limitation, we utilize contextual information to differentiate process
instances. Each instance acts on multiple data objects which give an instance the context
and characterizes it. However, not all data is relevant to compare process instances and
to find relations; only specific attributes of the utilized data objects are of interest. The
online retailer may identify related process instances by identical customer identifier
and shipping address. In database systems research, the concept of views allows to
extract relevant data by projection [16]. Summarized, this paper will provide these two
contributions:

Data views on process instances: The concept of views from the database domain is
applied to business processes to identify related process instances based on data. The
introduced concept is called data views for process instances.
Batch regions: We utilize the data views to generalize the batch activity concept al-
lowing to group process instances into batches based on specific characteristics and to
synchronize their execution for one or several activities connected by sequence flow.

The remainder of this paper is structured as follows. In Section 2, we introduce the
online retailer scenario in detail to discuss the motivation and challenges for grouping
and synchronizing process instances. Afterwards, we introduce the foundation of our
approach in Section 3 before Section 4 discusses the concept of data views formally and
application-wise describing the corresponding algorithms. Section 5 presents the batch
region concept and its operational semantics whose application is discussed as case study
in Section 6. Section 7 is devoted to related work and Section 8 concludes the paper.

2 Motivating Example

An online retailer receives hundreds of orders per day which are processed as described
in the process model shown in Fig. 1. Using this example, we present the opportunities
and challenges of synchronizing the execution of related process instances.

O
n
li
n
e
 r

e
ta

il
e
r

Order

received
Analyse

order

Order

[created]

Take

order out

of stock

Order

[available]

Pack

order

Ship

order

Archive

order

Order

[prepared]

Order

[packed]

Order

[shipped]

Cancel

order

Cancellation

sent

Order

[un-

available]

PI
1:

 C
ID

12

PI
2:

 C
ID

14

PI
3:

 C
ID

12

PI
5:

 C
ID

12

Order

[archived]

PI
4:

 C
ID

12

Fig. 1. Process model of an online retailer and exemplary running instances represented as labeled
token. The label, e.g., PI1: CID12, references the respecting process instance ID and customer ID.

After receiving an order from a customer, the online retailer analyzes the order. If the
ordered articles are available, they are taken from the warehouse. Otherwise – in case of
unavailability of the articles – the customer is informed about order cancellation. Next,
the taken articles are packed into a package and shipped to the customer. Afterwards, the

3

order is archived. As mentioned above, the process model serves as blueprint for a set of
process instances. Exemplary, five running instances are represented as labeled token in
the process model in Fig. 1.

The process utilizes one business object: the Order. This is represented by associating
Order data nodes to the activities as input (read) or output (write); data nodes represent
data objects on the model level. For instance, activity Analyze order reads object Order in
data state created and updates it to state analyzed. All nodes with the same object name
reference the same data class which describes the object’s structure, i.e., the attributes and
allowed data states. Fig. 2a shows the structure of the referenced Order class consisting
of a unique identifier oid, the customer ID cid etc. During process execution, a data
object of class Order is created by the first activity and updated multiple times afterwards.
Fig. 2b shows multiple entries, each referring to one distinct Order object of the five
process instances represented in Fig.1; here the instance ID refers to the order oid.

-oid

-state

-arrivalDate

-cid

-address

-...

Order Order

oid state arrivalDate cid

1 prepared 9.10.2013 CID12

2 prepared 9.10.2013 CID14

3 available 10.10.2013 CID12

4 available 10.10.2013 CID12

5 created 10.10.2013 CID12

...

...

...

...

...

...
...

address

Anystreet 1

Street 5

Teststreet 2

Anystreet 1

Anystreet 1
...

(a) Data class.

-oid

-state

-arrivalDate

-cid

-address

-...

Order Order

oid state arrivalDate cid

1 prepared 9.10.2013 CID12

2 prepared 9.10.2013 CID14

3 available 10.10.2013 CID12

4 available 10.10.2013 CID12

5 created 10.10.2013 CID12

...

...

...

...

...

...
...

address

Anystreet 1

Street 5

Teststreet 2

Anystreet 1

Anystreet 1
...

(b) Database table representation.

Fig. 2. Data class Order for the online retailer process with exemplary data objects of five instances.

As discussed in Section 1, customers may place multiple orders with the same
shipping address shortly after another. For example, the orders relating to process
instances PI1, PI3, PI4 and PI5 refer to one customer with ID CID12. Usually, those
orders are processed independently – each resulting in an individual package which is
shipped to the customer. However, due to the same shipping address, instances PI1, PI4,
and PI5 can be synchronized while packing and shipping the articles. This leads to a
reduction of total shipping costs for the online retailer by leveraging synergy effects.
Process instance PI3 cannot be processed with PI1, because the order has to be shipped
to another address. Analogously, PI2 is processed independently from the other instances
due to different customer ID and shipping address. This example implicates that we need
to select groups of process instances to be processed within one batch based on their
data. This batch must comprise multiple activities and requires means to decide when to
activate it. E.g., if the waiting time for the first arrived instance is still acceptable and
another similar one is in progress, both can be grouped into one batch. If the waiting time
gets too long, batch processing of the already arrived instances starts while the other one
initializes a new batch. Further, an instance may take a path through the model which
bypasses the batch processing as, for instance, the xor split in Fig. 1 allows. Extending
the requirements from [11], these conclusions can be summarized in four requirements:

RQ1—Identify related process instances based on values of relevant data attributes.
RQ2—Determine the relevant attributes.
RQ3—Synchronize process instance execution for multiple connected activities.
RQ4—Use information of running process instances to reasoning about the activation
of batch processing.

4

3 Foundation on Process and Data Modeling

We proceed with introducing formalisms for process and data modeling which we then
use for defining the technique for process instance grouping in Section 4. First, we give a
generic process model definition and require it to be syntactically correct with respect to
the used modeling notation. Behaviorally, we require that it terminates for all execution
paths of the model in exactly one of probably multiple end events and that every node
participates in at least one execution path, i.e., the process model must be lifelock and
deadlock free. Formally, we define a process model as follows.

Definition 1 (Process Model).
A process model m = (N,D,C,F, type) consists of a finite non-empty set N ⊆
A ∪E ∪G of control flow nodes being activities A, events E, and gateways G (A, E,
and G are pairwise disjoint) and a finite non-empty set D of data nodes (N and D are
disjoint). C ⊆ N × N is the control flow relation specifying the partial ordering of
activities and F ⊆ (A ×D) ∪ (D × A) is the data flow relation specifying input and
output data dependencies of activities. Function type : G → {and, xor} gives each
gateway a type. �

Fig. 1 shows a process model with one start event, two end events, six activities, and
multiple data nodes. Each data node has a name, e.g., Order, and a specific data state,
e.g., analyzed or shipped. All these nodes share the same name referencing the data class
Order which describes the structure of data objects and the data states; a data node maps
to exactly one data class. A data state denotes a situation of interest for the execution
of the business process. For instance, state shipped of object Order indicates that all
pre-steps like analyzing the order as well as packing and handing it over to the postal
service are successfully executed and that the package is on the way to the customer.

Definition 2 (Data Class).
A data class c = (J, S) consists of a finite set J of attributes and a finite non-empty set
S of data states (J and S are disjoint). Each attribute j ∈ J is fully qualified allowing to
determine the actual attribute and the corresponding data class. C denotes the set of data
classes utilized in the process model. �

We use subscripts, e.g., Nm and Jc to denote the relation of sets and functions to process
model m and data class c respectively and omit subscripts where the context is clear.
The same holds for the instance level concepts we introduce below. On instance level, an
arbitrary set of data objects exists. Each data object maps to exactly one data node and
therefore one data class. Formally, a data object is defined as follows.

Definition 3 (Data Object).
Let D be a set of data nodes and let C be a set of data classes, then is o = (TS , αD, αC)
a data object consisting of a sequence TS =< s1, s2, . . . , sn > of data states where
each si ∈ Sc with Sc denoting the set of data states of the corresponding data class
c = αC(o). Functions αD : O → D and αC : O → C refer each data object o to the
corresponding data node d ∈ D and data class c ∈ C respectively. O denotes the set of
data objects utilized during process model execution. �

5

At any point in time, a data object is in exactly one data state. The state may change over
time by being updated by activities which is represented by data nodes. For example,
the activity Take order out of stock updates the Order data object to the state prepared
(cf. Fig. 1). Each data state of a specific data object refers to a set of values for specific
attributes defined as follows.

Definition 4 (Data State).
A data state sO = (V, γ) of a data object o consists of a finite set V of values. Function
γ : JC → V refers each attribute of data class c to a value v ∈ V . Thereby, data state
s ∈ TS of the corresponding object o and c = αC(o) hold. �

At any point in time, each attribute can get assigned a value. If it is not defined, the value
is set to ⊥. In our example, the Order object with oid = 1 in state prepared consists
of multiple values relating to attributes; for instance, the value CID12 refers to the
attribute cid. Executions of process models are represented by process instances with
each instance belonging to exactly one model. At any point in time, the process instance
has a current process instance state z which consists of a finite non-empty set H of
states of data objects OZ ⊆ O, where each object o ∈ OZ belongs to a different data
class c, i.e.,

⋂
OZ

αC(oi) = ∅. Thus, the current state z of the process instance PI1 in
the example process consists of its corresponding Order object state prepared presented
above. A sequence of process instance states describes a process instance which we
define as follows.

Definition 5 (Process Instance).
Let m be a process model from the set M of process models, then is i = (pid, TZ , µ)
a process instance consisting of a process instance identifier pid, a sequence TZ =<
z1, z2, . . . , zm > of process instance states where each zi ∈ Zm with Zm denoting the
set of process instance states of the corresponding process model m = µ(i). Function
µ : I → M refers each process instance i from the set of process instances I to its
corresponding process model m. �

For an implementation, the correlation between a process instance and its corresponding
data objects can be realized via the object’s primary and foreign keys as discussed in [10].

4 Process Instance Grouping based on Data Views

Utilizing the process and data modeling concepts, we introduce our approach to group
process instances based on their data characteristics and synchronize their execution
at predefined positions inside a process model – at so-called batch regions which are
discussed in Section 5. We use the concept of data views for the grouping, which is
an abstracted view on the process instance data. At run-time, each process instance
gets a data view assigned which is updated dynamically with instance progressing and
changing data objects. First, we introduce the data view function in Section 4.1 upon
which data view clusters can be created; each containing a set of related process instances.
Afterwards, we describe the algorithms to create a data view for a given process instance
and its assignment to a data view cluster in Section 4.2.

6

4.1 Data View Formalisms

The data view is a projection on the values of multiple data object attributes in a specific
state of one process instance presenting only the relevant ones as specified by the
stakeholder. Therefore, the function requires as input a set of attributes being of interest
for a business situation as well as the current state of a process instance being executed
in this business environment. The attributes of interest indicate upon which aspects
instances should be grouped. Formally, we define the function as follows.

Definition 6 (Data View Function).
LetX be a set of fully qualified data class attributes denoting the attributes of interest and
let Z be a set of process instance states, then the data view function ϕ : 2X × Z → 2V

returns a set of relevant values V , referred to as data view, for a given process instance
state z ∈ Z and a given set of fully qualified data object attributes X , referred to as data
view definition. 2X and 2V denote the power set of sets X and V respectively. �

The data view function utilizes function γ of Definition 4. As γ assigns one value to
each attribute of a data object depending on its current data state, ϕ can be partitioned
into a conjunction of many functions γ – one for each attribute xi comprised by X ,
the set of fully qualified attributes of interest. Let ψ(o1) return the current state h1 of
the object o1. Then, let z = {h1, h2, . . . , hn} be a process instance state consisting of
multiple data states hi of different data objects. Via data class matching, only those
γhi of the data states in z are selected whose data state refers to a relevant data class
used in the set X . Formally, we partition the data view function such that ϕ(X, z) :=⋃
xj∈c=αC(ohi

) γhi
(xj), hi ∈ z, xj ∈ X ⊆

⋃
c∈C Jc. In the online retailer process,

Order

oid state arrivalDate cid

1 prepared 9.10.2013 CID12

2 prepared 9.10.2013 CID14

3 available 10.10.2013 CID12

4 available 10.10.2013 CID12

5 created 10.10.2013 CID12

...

...

...

...

...

...
...

address

Anystreet 1

Street 5

Teststreet 2

Anystreet 1

Anystreet 1
...

Data View Definition:
OrdersBySameCustomer

PI1
PI4

PI5

PI2

PI3

Fig. 3. Example of a data view definition and the result-
ing data view clusters.

it is aimed to group the pro-
cess instances with respect to
the customer identifier and the
customer address (cf. Fig. 2).
Thus, the set of fully quali-
fied interesting attributes X com-
prises x1 = Order.cid and x2
= Order.address; we refer-
ence this data view definition as
OrdersBySameCustomer (cf. Fig. 3). Considering process instance PI1, after execu-
tion of activity Take order out of stock, state z consists of data state h1 = ψ(Order)
= prepared, the current state of the corresponding Order object. For both attributes
of interest inX , only γh1 of object Order is needed so that ϕ(X, z) = γh1(x1)∪γh1(x2)
holds. The resulting data view for PI1 is {Anystreet 1, CID12} which is high-
lighted together with the remaining instance data views in the table in Fig. 3.

Instances of one process model can be grouped based on their data view by assigning
each to one data view cluster. Process instances with identical data views are collected
in the same cluster. A data view cluster is defined as follows.

Definition 7 (Data View Cluster).
Let I be a set of process instances, then is a data view cluster q = (k,W) a set of related
process instances W ⊆ I of the same process model m = µ(w), w ∈W characterized

7

by a data view k. Relatedness of two process instances is denoted by equality of their data
views, i.e., both instances return the same set of values for their respective current process
instance state. Q and K denote the set of all data view clusters and the corresponding
keys respectively. �

The set of all data view clusters for one process model is a key value store such that each
cluster represents one entry. As illustrated in Fig. 3, grouping the process instances PI1
to PI5 based on data view definition OrdersBySameCustomer, process instances PI1,
PI4, and PI5 belong to one cluster while PI2 and PI3 belong to two separate clusters
because either the customer identifier (PI2) or the customer address (PI3) differs.

4.2 Algorithms

We utilize the above introduced formalisms to introduce the two algorithms allowing
to create data views and cluster them appropriately. To ease algorithm presentation,
we require five additional functions which we introduce first. Function η : Z → 2O

returns the set of all data objects oi ∈ O for a given process instance state z ∈ Z.
Function ξ : X → C returns the data class c ∈ C for a given data attribute x ∈ X .
Function ψ : O → S returns the current data state s ∈ S for a given data object o ∈ O.
Function λ : Q→ K returns the key k ∈ K for given data view cluster q ∈ Q. Function
κ : Z → I returns the process instance i ∈ I for a given process instance state z ∈ Z.

Algorithm 1: Data view creation.
Input: X , z
Output: dataV iew = ϕ(X, z)
1: dataV iew ← null;
2: object← null;
3: value← null;
4: O ← η(z);
5: for all x ∈ X do
6: for all o ∈ O do
7: if αC(o) == ξ(x) then
8: object← o;
9: break;

10: end if
11: end for
12: value← γψ(object)(x);
13: dataV iew.add(v);
14: end for

Algorithm 2: Cluster assignment.
Input: dataV iew = ϕ(X, z), z, Q
Output: Q
1: clusterFound = false;
2: for all q ∈ Q do
3: if dataV iew == λ(q) then
4: q.add(κ(z));
5: clusterFound = true;
6: break();
7: end if
8: end for
9: if clusterFound == false then

10: q ← null;
11: q.k ← dataV iew;
12: q.add(κ(z));
13: Q.add(q);
14: end if

Algorithm 1 describes the implementation of the data view function introduced
in Definition 6. As discussed, the data view function requires a set X ⊆

⋃
c∈C Jc of

relevant and fully classified data attributes and a process instance state z ∈ Z to compute
the data view of the corresponding process instance κ(z). First, variables to hold the
data view, object information, and a data attribute value are initialized for later usage
(lines 1 to 3). In line 4, function η returns all data objects that are utilized in the given
process instance state z. Lines 5 to 14 iterate over each single relevant attribute x ∈ X

8

to compute the current value of this attribute xi in the given process instance state z.
Lines 7 to 10 check for each object oi ∈ O whether its data class corresponds to the data
class of attribute xi currently processed until it finds a correspondence. Then, the object
is stored in the above initialized variable (line 8) and the iteration is aborted (line 9).
Remember that each object utilized within a process instance state refers to a different
data class. After identifying the corresponding object, function γψ(object) retrieves the
current value of attribute xi and stores it in the prepared variable (line 12) before line
13 adds this value to the data view. After iterating over all attributes xi, the data view
is fully computed with the values corresponding to the order of the attributes in set X .
Thereby, we assume that X is an ordered set and the iterations are ordering preservative.

After computing the data view of a process instance based on its current state z and
the setX of relevant data attributes, Algorithm 2 assigns this data view to a corresponding
data view cluster (cf. Definition 7). In addition to the data view, Algorithm 2 requires
the state z of the corresponding process instance and the set Q of currently existing data
view clusters for the respecting process model m = µ(κ(z)); this set may also be empty.
The output of this algorithm will be the updated set Q of data view clusters. Either it is
extended by one cluster q ∈ Q containing the given process instance κ(z) or it consists
of the same number of clusters with one of them now containing the mentioned process
instance κ(z). For computation, first, a Boolean variable indicating whether a matching
cluster was found, gets initialized with value false (line 1). Lines 2 to 8 iterate over
all input cluster q ∈ Q to check whether there exists one with a key k being equal to
the input data view. If such a cluster qi is found, the process instance κ(z) is added to
that cluster (line 4). The corresponding Boolean variable is set to true (line 5), and the
iteration is aborted (line 6). In this case, the algorithm already succeeded in identifying
the fitting data view cluster and terminates. Otherwise, if no corresponding cluster qi was
found, lines 9 to 14 create a new cluster q (line 10). The new cluster q gets initialized
with the given data view as key k (line 11) and gets the process instance κ(z) assigned
(line 12). Finally, this newly created cluster is added to the set Q of data view clusters
(line 13) resulting in satisfactory algorithm completion.

By applying these two algorithms to all instances of a process model at a certain
point in time, the process instances in their respective states can be grouped into data
view clusters based on the data information they carry at that point in time. However, the
algorithm may also be applied on a subset of process instances only; for instance those a
stakeholder is interested in. Referring to batch processing and the batch region which
will be discussed in the next section, this subset may be all process instances which have
not yet reached the batch region, i.e., a specific process instance state. Such filtering may
also be applied on other criteria, e.g., process instances started between 5am and 2pm
each day.

5 Batch Region

In [11], the concept of batch activities was introduced to synchronize the execution
of several instances of an atomic activity. Thereby, the respective activity gets a batch
model assigned with different configuration parameters allowing to configure the batch
execution by selecting an activation rule and by defining the maximum batch size

9

(capacity) as well as the way of execution (parallel vs. sequential). The configured batch
activity describes the behavior for a set of batch instances, where each batch instance
manages one batch execution. Upon enablement of an activity instance of a batch activity,
it is assigned to an available batch instance. Thereby, the instances are not differentiated;
in sequence of their arrival, they are simply added to the available batch instance, i.e.,
the batch instance which has neither started its execution nor reached its capacity.

We generalize this concept with respect to the requirements discussed in Section 2 by
introducing batch regions. Thereby, we preserve the functionality of the original concept.
Section 5.1 presents the concept of batch regions and describes its integration in process
modeling and its configuration parameters. In Section 5.2, we present the corresponding
execution semantics.

5.1 Modeling
-groupingCharacteristic

-activationRule

-maxBatchSize

-executionOrder

Batch Region

CF-NodeCF-Edge 20..*

0..1

1..*

0..1

0..*

Batch Cluster

1 0..*

Model Level Instance Level

Process Instance

Node Instance

1 0..*

11..*

0..1
1..*

1..*

1

1..maxBatchSize

0..1

Fig. 4. Conceptual model for batch regions.

A process model consists of control flow
nodes connected by the control flow rela-
tion represented by edges. As the batch
handling shall be extended to a set of con-
nected control flow nodes, we propose
the concept of a batch region which flex-
ibly surrounds a specified number of con-
nected nodes with a single entry, i.e., one
specific node defines the entry to the batch
region. It describes the conditions for the
batch execution and can be configured by the process designer based on the parameters
grouping characteristic, activationRule, maxBatchSize, and executionOrder.

Fig. 4 illustrates the concept of batch regions. At model level, a batch region consists
of at least one control flow node and a correlating number of control flow edges such
that two nodes are connected by one edge. Within a batch region, activities, events, and
gateways may appear with the limitation that conditions on exclusive gateways (type =
xor) must be designed such that all process instances of one batch follow the same path.
Next, we introduce the configuration parameters of a batch region:

The groupingCharacteristic defines how the process instances are grouped by specifying
the relevant attributes for identifying related instances (cf. data view definition). We
assume that process instances do not change their data view within the batch region, i.e.,
no batch region activity updates an attribute specified in the data view definition. If no
data view definition is provided, process instances are grouped upon their arrival order.
The activationRule specifies when a batch cluster is enabled for execution allowing to
balance costs and waiting times. Analogously to [11], the process designer selects an
activation rule type and provides the required user inputs.
The maxBatchSize limits the capacity of a batch cluster by specifying the maximum
number of activity instances processed in a batch. It can be used to incorporate limits of
involved resources, e.g., at most three articles fit in one package.
The executionOrder describes whether the process instances comprised within one batch
cluster are synchronized parallelly or sequentially. Parallel execution means that all

10

instances for one activity are executed simultaneously and get terminated before the
next activity is executed the same way. Sequential execution can be activity-based, the
sequential variant of parallel execution, or case-based where the activities within a batch
region are executed for one process instance (case) before the next one can be started.

A batch region has an arbitrary number of batch clusters. A cluster’s behavior (instance
level) is defined by the batch region’s configuration. Each batch cluster comprises a posi-
tive natural number of process instances having the same data view with maxBatchSize
specifying the upper limit. A process instance consists of node instances from those only
the ones are relevant which are surrounded by the batch region.

In the remainder of this section, we discuss the activation rule in detail and provide
two example configurations explaining concept application. The activation rule allows to
optimize the batch processing. The later a batch is started, the more process instances
are synchronized resulting in lower total execution costs at the price of increasing
waiting times. In customer relations, more waiting times increases the risk of losing
customers [17]. Therefore, specifying the activation rule requires to find an optimal
trade-off between reduced execution costs and increased waiting times. The optimal
configuration settings are derived from expert knowledge, simulations, or statistical
evaluations. Different types of activation rules are provided by process engine suppliers
with each activation rule type relying on the concept of Event-Condition-Action (ECA)
rules. An action A is performed if event E is recognized and condition C is satisfied.
In this paper, the action is always the activation of the respective batch cluster. Earlier
proposed activation rule types focus on the instances in the scope of the batch activity
only [11], e.g., the threshold rule which enables batch processing as soon as a certain
number of process instances is available. In this paper, we introduce an activity rule type
where information about running process instances is considered additionally.

This information may be integrated into the event or condition definition of an
activation rule. Below, we provide a general example of such MinMax activation rule.
This rule activates a batch cluster if a minimal number of instances are assigned to it and
no other related instances being before the batch region run. Otherwise, if at least one
process instance with the same data view can be observed, the activation is postponed
until the cluster’s size equals a maximum. The rule of a batch cluster bc contains a
composite event that triggers the check of the condition if a new process instance PI
was added to bc or if no instance PI was added for w time units. The condition is a
logical expression requiring that either the minimum condition is true while there exists
no other related instance or the maximum condition is true to trigger the action. The
existence of other process instances is checked with function ExistingEqualPI().
The function first creates the data views for all running process instances in front of
the the batch region by utilizing Algorithm 1 and then assigns each one to a data view
cluster as described in Algorithm 2. If there exists a data view cluster with the same key
as the bc, the function returns true. Here, the minimum condition requires that the batch
cluster size is greater or equal a given minimal number or a defined minimal waiting
time passed. The maximum condition is satisfied if the batch cluster size is equal to the
maximal number or if the maximal waiting time passed. The configuration of the two
conditions is up to the process designer. We propose to include timing constraints within
the minimum and maximum conditions in order to avoid deadlocks.

11

ActivationRule MinMax rule
On Event (PI added to bc) OR (No PI since w time units)
If Condition ((Minimum condition) AND !(ExistingEqualPI())) OR

(Maximum condition)
Do Action Enable batch cluster bc
End ActivationRule

Fig. 5 shows exemplary batch region configurations for two abstract processes. The batch
region in Fig. 5a consists of three activities B, C, and D with B being the single entry
point. As groupingCharacteristic, the process designer chose the data view definition
OrderBySimilarCustomer introduced in Section 4. Thus, the process instances of process
P1 are grouped based on the customer ID and the shipping address of their processed
Order object. Furthermore, the MinMax rule is selected with two cases (i.e., instances) or
15 minutes for the minimum condition and three cases or 30 minutes for the maximum
condition. The capacity (maxBatchSize) of a batch cluster is set to three. In case, the
maxBatchSize is higher than the maximal threshold, further instances can be added
to the batch cluster although it was already activated as long as the processing is not
started by the task performer. We will present details on this during execution semantics
discussion in Section 5.2. Finally, all instances are processed in parallel. The process
P2 presented in Fig. 5b illustrates the compatibility to the batch activity concept [11]
with the groupingCharacteristic being unspecified resulting in batch cluster assignment
based on the arrival time only. The other parameters are filled similar to process P1.

E FA B
C

D

groupingCharacteristic = Ø

activationRule = MinMax (min (2 cases, 15min),

maxBatchSize = 3 max(3 cases, 30 min))

executionOrder = parallel

groupingCharacteristic = OrdersBySameCustomer

activationRule = MinMax (min (2 cases, 15min),

maxBatchSize = 3 max(3 cases, 30 min))

executionOrder = parallel

(a) P1.

E FA B
C

D

groupingCharacteristic = Ø

activationRule = MinMax (min (2 cases, 15min),

maxBatchSize = 3 max(3 cases, 30 min))

executionOrder = parallel

groupingCharacteristic = OrdersBySameCustomer

activationRule = MinMax (min (2 cases, 15min),

maxBatchSize = 3 max(3 cases, 30 min))

executionOrder = parallel

(b) P2.

Fig. 5. Exemplary configurations of batch regions in two abstract processes.

5.2 Execution Semantics

We utilize the online retailer process from Fig. 1 and the batch region configuration as
described for Fig. 5a as example to discuss the execution semantics of our approach.
Fig. 6 visualizes the setup as condensed version with activity Pack order being the entry
point to the batch region. If a process instance, e.g., PI5, reaches this entry point, its
execution is interrupted by transferring the activity of the entry point into the disable
state; a disabled activity instance is temporarily deactivated [21]. Then, the batch region
configuration is evaluated. If a groupingCharacteristic is specified, the data view of this
process instance is created and it is added to the corresponding batch cluster. In the given
example, the grouping characteristic OrderingBySameCustomer is specified leading to
the data view CID12, Anystreet 1 for process instance PI5. It is assigned to the
batch cluster BC1 sharing the same data view as key. If a process instance does not
match to any, as the second arrived instance PI3, a new batch cluster is created and

12

Take

order out

of stock

Pack

order

PI
5:

 C
ID

12
, A

n
ys

tr
ee

t
1

PI
3:

 C
ID

12
, T

es
ts

tr
ee

t
2

Order

received

[ready]

BC2 – CID14,Street 5

[init]

[maxloaded] [running] [terminated]

Task

performer

BC3 – CID12, Teststreet 2

[init]

offer BC execute BC

accept BC

Ship

order

[init]

PI1
PI4

PI2

BC1 – CID12, Anystreet 1

groupingCharacteristic= OrdersBySameCustomer

activationRule = MinMax (min (2 cases, 15min),

maxBatchSize = 3 max(3 cases, 30 min))

executionOrder = parallel

Fig. 6. Execution semantics using a condensed version of the online retailer process from Fig. 1.

initialized with the data view of the respective instance as key, here BC3 with CID12,
Teststreet 2 as key.

init ready running terminated

maxloaded

Fig. 7. Life cycle of batch cluster.

Fig. 7 summarizes the states and the transitions
between them for a batch cluster. Upon arrival of
a process instance requiring a new batch cluster, it
gets initialized by transitioning to state init, where
arriving instances sharing the same data view can now be assigned to the cluster. On
instance addition or after certain time durations, the activation rule is checked. In Fig. 11’s
example, we use the MinMax Rule introduced above. With process instances PI1, PI2,
and PI4 having already arrived at the batch region, the batch clusters BC1 and BC2 are
in state init. Checking the activation rule for cluster BC1 reveals that the minimum rule
is satisfied but evaluating function ExistingEqualPI() shows that there is another
instance running with the same data view – PI5 – and that the maximum condition with
three arrived instances is not yet satisfied. Thus, the activation rule is not yet fulfilled.

The arrival of PI5 adds this instance to cluster BC1. The batch cluster changes into
state ready, because the maximum condition is now satisfied. In this state, the batch
cluster is offered to the task performer of the entry activity into the batch region (cf. BC1
in Fig. 6). The task performer can be either a software service, a human, or a non-human
resource. We propose that a batch is assigned to the same employee for all user activities
within the batch region (i.e., case handling resource pattern [13]) to ensure that the batch
is performed uninterruptedly. However, other resource allocation patterns can also be
applied. Newly arriving process instances can still be added to a batch cluster in state
ready independently from resource allocation. As the arrival of PI5 also satisfies the
maxBatchSize of three, the state is transitioned to maxloaded and no further instance
addition is allowed. Once allocated to a resource, the performer may decide to start
execution. Then, the batch cluster transforms into state running. The batch cluster’s state
changes to terminated as soon as all control flow node instances of the process instances
assigned to the batch cluster have terminated. The process instances then continue their
execution individually for all control flow nodes beyond the batch region.

Next, we present the execution details starting from the acceptance of a batch
cluster by a task performer. With the configuration parameter executionOrder, the

13

process designer selects the type of batch execution. She may choose parallel as in the
above example, sequential per activity, or sequential per case. Their different execution
behaviors are illustrated in Fig. 8, Fig. 9, and, Fig. 10 using an example where two
process instances are synchronized within one batch cluster.

Task

performer

Batch

ClusterPI1.AI1
PI2.AI1

enable()

provideWorkItem()

aggregate() provide

batchTask()

execute()

terminate(R)

start()

terminate(Ri)

start()

PI1.AI2

e
n
a
b
le

()

provideWorkItem()

aggregate()

PI1.AI2

Fig. 8. Parallel execution of two instances.

In parallel execution, shown in Fig. 8,
the batch cluster changes into state running,
when the assigned task performer decides
to start the execution. Then, the disabled in-
stances PI1.AI1 and PI2.AI1 of the entry ac-
tivity into the batch region are enabled, one
of each assigned process instance PI1 and
PI2. With enablement, an activity instance
usually directly offers the work item to its
task performer. Here, the batch cluster acts
as interface between the activity instance
and the task performer to organize the batch
execution. Thus, each activity instance provides the work item to the batch cluster. The
batch cluster aggregates them into one batch task and provides it to the task performer
for parallel execution. As soon as the task performer starts the batch task, all activity in-
stances are started by the batch cluster. With termination of the batch task, the combined
result R is sent to the batch cluster which then provides each activity instance with the
individual outputs Ri of the task execution. The activity instance is terminated which
results in activation of its outgoing sequence flow leading to the enablement of the subse-
quent activity instances – PI1.AI2 and PI2.AI2 in Fig. 8. These instances again provide
their work items to the batch cluster and the above described steps are repeated until
all control flow node instances of the batch region are terminated. Then, also the batch
cluster terminates. The activity instances which gets enabled beyond the batch region
are again executed individually. They follow the usual activity semantics and provide
their work item directly to the task performer specified in the activity description. Each
activity instance knows whether its corresponding activity is part of a batch region and
thus whether to provide the work item to a batch cluster or directly to a task performer.

Task

performer
Batch

ClusterPI1.AI1
PI2.AI1

enable()

provideWorkItem()

provide(PI1.AI1)

execute()

terminate(R)

start()

terminate(R)

start()

terminate(R)

provide(PI2.AI1)

terminate(R)

generateList()

start()

start()

e
n
a
b
le

()

provideWorkItem()

PI1.AI1
PI2.AI1

generateList()

Fig. 9. Sequential per activity execution.

Similar as in the parallel execution,
in the sequential per activity execution,
shown in Fig. 9, the batch cluster enables
all disabled instances of the first activity
as soon as the task executor decides to ex-
ecute the cluster. Again, all work items
of the activity instances are provided to
the batch cluster. This time, they are ar-
ranged in a list specifying the order in
which the batch cluster provides the work
items one after another to the task per-
former. In Fig. 9, first, the work item of
activity instance PI1.AI1 is provided. With
its termination, the work item of the first

14

activity instance of the next process instance is provided – PI2.AI1. When all instances
of the first activity are terminated and the work items of the subsequent activity are
provided to the batch cluster, a new list is generated specifying the order in which the
instances of the second activity of all process instances are processed one after another.
This continues for all activities in the batch region.

Task

performer
Batch

ClusterPI1.AI1

enable()

provideWorkItem()
provide(PI1.AI1)

execute()

terminate(R)
start()

terminate(R)

PI1.AI2

...

provideWorkItem()

provide(PI2.AI1)

start()

PI2.AI1
enable()

provideWorkItem()

...

provide(PI1.AI2)

e
n
a
b
le

()

Fig. 10. Sequential per case execution.

In the sequential per case execution,
shown in Fig. 10, all nodes in the batch
region are executed for the first process in-
stance assigned to the batch cluster before
the nodes of the second process instance
can be started. Thus, only the disabled ac-
tivity instance PI1.AI1 of the first process
instance PI1 is enabled when the task per-
former decides to execute the batch cluster.
Then, the batch cluster provides the work
item of PI1.AI1 to the task performer. If
it is finished, the work item of the subse-
quently enabled activity instance PI1.AI2
of the same process instance is provided. When all nodes of the first process instance
PI1 are terminated, the disabled activity instance PI2.AI1 of the second process instance
PI2 is enabled by the batch cluster and all activity instances of this process instance are
processed as described above for the first process instance. The batch cluster terminates,
if all assigned process instances are processed.

6 Case Study

In this section, we apply the presented approach on the online retailer process presented
in Section 2 and show its impact in terms of increasing waiting time and decreasing
costs. Therefore, we compare the execution without a batch region and the execution
with a batch region having two different configurations. As indicated in Fig. 1, the batch
region comprises the activities Pack order and Ship order. For this case study, we assume
that the online retailer provides a 24h service receiving ten orders per hour resulting
in 240 orders per day. From those, 2% are canceled due to article unavailability. In
practice, customers may send further orders shortly after their first one. These orders
can be used to synchronize their execution with the earlier placed orders to pack them
into one package within the batch region in order to save shipment costs, i.e., parallel
batch execution. Easing this case study, we assume that customers only place one second
order. However, our approach can handle multiple orders of one customer increasing the
potential for cost savings. In this case study, 10% of the customers send their second order
equally distributed within one hour after the first one (24 orders per day). Afterwards,
the probability to observe a second order of a customer reduces to 2.5% per hour until
six hours after the first order (in sum, 30 orders per day). After 6 hours, observation for
second orders is stopped; they are treated as first ones. The total package and shipment
costs of our online retailer are 3.00 AC per package. The first two process activities take
together one hour. This results in an hour waiting time between order placement and

15

order packaging. The two activation rules the online retailer may use for batch region
configuration are the following ones:

MinMax Rule (min (1 instance), max (2 instances, 1 hour)): This rule activates the batch
cluster after arrival of one process instance in case that no other related instance is
observed. Otherwise, it waits for one hour. Therefore, only process instances having the
same data view (customer ID and address are identical) can be synchronized where the
second order was placed at most one hour after the first one. As a process instance takes
one hour until it arrives at the batch region, the 10% second orders arriving within the
first hour can be used for synchronization.
MinMax Rule (min (2 instance, 5 hours), max (2 instances, 6 hours)): This rule activates
the batch cluster after arrival of two process instances with the same data view or five
hours after arrival of the first instance. The waiting time for instances increases to six
hours if a second instance with the same data view is observed. Thus, all orders arriving
within six hours after their corresponding first one can be synchronized.

Normal MinMax1 MinMax2 # of synchronized order opt1 op2

Avg. succesful orders per day 235.2 235.2 235.2

Avg. number of packages 235.2 211.7 182.3 23.52 52.92

Cost per day 705.6 635.0 546.8 5.88

Cost Reduction 0.1 0.1

Average costs per succesful order 3.00 € 2.70 € 2.33 €

Cost Reduction 10.0% 22.5%

Avgerage waiting time per succesful order 1.0 1.053 2.89

105.3% 288.8%

Average waiting time per succesful order 01:00 01:03 02:53 53.4

3.2 53.4

0.041667

0.00 €

1.00 €

2.00 €

3.00 €

4.00 €

Normal MinMax1 MinMax2

Average costs per succesful order

00:00

01:00

02:00

03:00

Normal MinMax1 MinMax2

Average waiting time per succesful order

-10 %
-23 %

+5 %

+289 %

Fig. 11. Average costs and waiting time per successful order for three settings: (i) without batch
region, (ii) batch region with 1st activation rule, and (iii) batch region with 2nd activation rule.

The remaining configuration parameters are identical to the ones presented in Fig. 6.
Fig. 11 visualizes the impact of our approach. It shows the online retailer’s average
shipping costs (left) and the average waiting time a customer experiences (right) per
successful, i.e., not canceled, order. In both diagrams, the most left bar represents the
usual setting without a batch region. The middle and right bars illustrate the results for
the batch region application with the first and second MinMax rule respectively. The
percentages shown above the bars indicates the change towards the usual setting. In the
usual setting, each order is sent in a separate package costing 3.00 AC each and having
a waiting time of one hour until the articles get packed and shipped. Using the first
activation rule allows to synchronize on average 23.5 process instances per day (24
instances - 2% instances being canceled) with another instance reducing the average
shipping cost per order to 2.70AC – 10% cost savings. As consequence of synchronization,
these 23.5 orders have to wait at average 30 minutes additionally until packaging takes
place. This results in an increase of the average waiting time by 5% to 1 hour and 3
minutes. The second activation rule allows to synchronize on average 52.9 instances per
day ((24 + 30 instances) - 2% instances being canceled) resulting in the same amount
of packages less to send. Thus, the costs per order decrease by 23% to 2.30 AC. The
average waiting time increases by 289% to almost three hours, because also those process
instances which cannot be synchronized with another one have to wait for five additional
hours. However, this waiting time increase is no issue in practice as the logistics service
provider comes only once a day picking up the packages meaning that the customer gets

16

her order without delay except the waiting time causes a miss of the pick up resulting in
one day delivery delay.

In the case study, we discussed the application of the batch region to an online
retailer process. In practice, there exist multiple scenarios in which such synchronization
improves process execution. For instance, for factorization, goods of the same type or
customer shall be handled together – and goods from the competitor shall not be put
into the same shipment. Insurance and banking companies can bundle work with respect
to their customers by handling multiple claims together to use possible interrelations
for decision taking or to send one letter instead of many to inform a customer about
happenings with respect to her account.

7 Related Work

Few works provide means for batch processing of multiple process instances. [1] and [14]
describe the design for batch execution but limit configuration options to the predefined
maximum capacity based on which a batch is started. Rule-based activation is important
to balance costs and waiting time for batch execution but is not supported by these
approaches. [11] overcomes these limitations by proposing an approach for a flexible
and configurable batch activity design which supports rule-based batch activation. Addi-
tionally, [11] provides execution semantics for batch activities. In the work, instances are
assumed to be completely independent such that no differentiation is enabled. This leads
to an instance grouping based on the order of their arrival at the batch activity. In [7],
grouping characteristics for batch processing are introduced. A central buffer at the batch
processing activity receives and stores multiple process instances as they arrive. If the
central buffer exceeds a specified threshold value, waiting instances are grouped based
on data equality [8] and then one group is selected for execution. Optimizing batch exe-
cution is not possible following this approach, because batch activation only results from
the central buffer threshold excess and the group selection process is not described. [9]
introduces another mechanism using rule-based synchronization to group process in-
stances. An individual synchronization service is defined for each process instance type
handling synchronization and triggering execution. Often missing a-priori knowledge
about the types results in an inflexible batch handling. In PHILharmonicFlows [5], a
data-oriented modeling approach, batch activities are used to process multiple data ob-
jects in one go. The batch region approach described in this paper combines and evolves
on the aforementioned concepts providing flexible batch configuration and execution for
a set of connected control flow nodes. It allows to group instances based on their data
characteristics and a rule-based activation considering related running instances.

In literature, different approaches deal with identification of related process instances
for various application scenarios. [15] proposes a similarity measure which identifies
activities requiring similar work as the worker’s current one to reduce context switches.
Similarity identification uses instance data and context information and therefore requires
access for the BPMS to that context data as well as efficient analysis techniques and
computational resources. In the field of adaptive processes, [19] introduces an approach
to identify former process instances with deviations from the pre-defined model for
situations similar to the current one. Identification bases on instance data manually

17

provided by the executor including specification which data is triggering the deviation.
In process mining, clustering and classification techniques are used to improve the
mining results [18], for decision mining [12], and for prediction of instance behavior [4].
In contrast to our work, the data attributes determining instance similarity are not known
a-priori but get extracted from run-time knowledge. Thus, those techniques can also be
used to support the definition of our grouping characteristic for the data view function.

8 Conclusion

In this paper, we generalize the concept of batch activities to batch regions which allow
to group process instances based on their data characteristics and to synchronize the
execution of such a group over a connected process fragment. Multiple process instances
may depend on each other as they share some common data, e.g., equal customer
identifier and shipping address of processed orders. We allow the grouping of process
instances utilizing the concept of data views adapted from database domain. A data view
is a projection on the process instance data based on relevant attributes specified by
the process designer. Further, this paper introduces a new type of activation rule which
optimizes batch region enablement by considering running instances which have not yet
reached the batch region. Summarized, we presented means to model and configure batch
regions and we described their execution semantics. The batch regions concept fulfills
the requirements discussed in [11] for integrating batch processing in business processes
and the requirements from Section 2 to handle process instance heterogeneity. Currently,
the determination of relevant attributes for the data view (RQ2) is done manually by
the process designer. Further run-time and context information can be used to extend
the reasoning about batch processing activation (RQ4). In future, we will cope with
these restrictions and support the process designer by automatically providing relevant
attributes for the data view. We also plan to optimize batch region execution by activating
a batch region only if necessary.

References

1. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. IJCIS 10(4), 443–481 (2001)

2. Activiti: Activiti BPM Platform. https://www.activiti.org/
3. Bonitasoft: Bonita Process Engine. https://www.bonitasoft.com/
4. Ghattas, J., Soffer, P., Peleg, M.: A formal model for process context learning. In: Business

Process Management Workshops. pp. 140–157. Springer (2010)
5. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-aware

Process Management. J SOFTW MAINT EVOL-R 23(4), 205–244 (2011)
6. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaflow bpm

suite. In: CAiSE Forum 2010. LNBIP, vol. 72, pp. 174–189. Springer (2011)
7. Liu, J., Hu, J.: Dynamic batch processing in workflows: Model and implementation. Future

Generation Computer Systems 23(3), 338–347 (2007)
8. Liu, J., Wen, Y., Li, T., Zhang, X.: A data-operation model based on partial vector space for

batch processing in workflow. Concurrency and Computation 23(16), 1936–1950 (2011)

https://www.activiti.org/
https://www.bonitasoft.com/

18

9. Mangler, J., Rinderle-Ma, S.: Rule-based synchronization of process activities. In: CEC. pp.
121–128. IEEE (2011)

10. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data
Dependencies in Business Processes. In: BPM. pp. 171–186. Springer (2013)

11. Pufahl, L., Weske, M.: Batch Activities in Process Modeling and Execution. In: ICSOC. pp.
283–297. Springer (2013)

12. Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.: Discovering simulation models.
Information Systems 34(3), 305–327 (2009)

13. Russell, N., van der Aalst, ter Hofstede, A., Edmond, D.: Workflow resource patterns: Identifi-
cation, representation and tool support. In: CAiSE. pp. 216–232. Springer (2005)

14. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver: The case of
contradicting work practice. In: BIS. vol. 1, pp. 69–84. Witold Abramowicz (2005)

15. Shkundina, R., Schwarz, S.: A similarity measure for task contexts. In: ICCBR Workshops.
pp. 261–270. Citeseer (2005)

16. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th Edition. McGraw-
Hill Book Company (2001)

17. Simons Jr., J.V., Burke, G., Russell, G.R.: A cost-based model for customer batching in mass
service operations. Journal of Service Science Research 3(2), 123–151 (2011)

18. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In:
Business Process Management Workshops. pp. 109–120. Springer (2009)

19. Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle support in
process-aware information systems. Int. J. Cooperative Inf. Syst. 18(01), 115–165 (2009)

20. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Second
Edition. Springer (2012)

21. Weske, M., Hündling, J., Kuropka, D., Schuschel, H.: Objektorientierter Entwurf eines
flexiblen Workflow-Management-Systems. Inform., Forsch. Entwickl. 13(4), 179–195 (1998)

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

85 978-3-86956-
276-6

HPI Future SOC Lab: Proceedings 2012 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Bernhard Schulzki
(Hrsg.)

84

978-3-86956-
274-2

Anbieter von Cloud Speicherdiensten im
Überblick

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke,
Markus Freitag

83

978-3-86956-
273-5

Proceedings of the 7th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Christoph Meinel, Hasso Plattner,
Jürgen Döllner, Mathias Weske,
Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

82

978-3-86956-
266-7

Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Tobias Pape, Arian Treffer,
Robert Hirschfeld

81 978-3-86956-
265-0

Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

80 978-3-86956-
264-3

openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-
259-9

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-
258-2

Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

77 978-3-86956-
257-5

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

76 978-3-86956-
256-8

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

Technische Berichte Nr. 86

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Batch Regions:
Process Instance
Synchronization based
on Data
Luise Pufahl, Andreas Meyer, Mathias Weske

ISBN 978-3-86956-280-3
ISSN 1613-5652

	Title
	Imprint

	Batch Regions: Process Instance Synchronization based on Data
	1 Introduction
	2 Motivating Example
	3 Foundation on Process and Data Modeling
	4 Process Instance Grouping based on Data Views
	4.1 Data View Formalisms
	4.2 Algorithms

	5 Batch Region
	5.1 Modeling
	5.2 Execution Semantics

	6 Case Study
	7 Related Work
	8 Conclusion
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

